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SUMMARY

The reliance of unmanned aerial vehicles (UAVs) on GPS and other external

navigation aids has become a limiting factor for many missions. UAVs are now phys-

ically able to fly in many enclosed or obstructed environments, due to the shrinking

size and weight of electronics and other systems. These environments, such as urban

canyons or enclosed areas, often degrade or deny external signals. Furthermore, many

of the most valuable potential missions for UAVs are in hostile or disaster areas, where

navigation infrastructure could be damaged, denied, or actively used against the ve-

hicle. It is clear that developing alternative, independent, navigation techniques will

increase the operating envelope of UAVs and make them more useful.

This thesis presents work in the development of reliable monocular vision-aided

inertial navigation for UAVs. The work focuses on developing a stable and accurate

navigation solution in a variety of realistic conditions. First, a vision-aided inertial

navigation algorithm is developed which assumes uncorrelated feature and vehicle

states. Flight test results on a 80 kg UAV are presented, which demonstrate that it is

possible to bound the horizontal drift with vision aiding. Additionally, a novel imple-

mentation method is developed for integration with a variety of navigation systems.

Finally, a vision-aided navigation algorithm is derived within a Bierman-Thornton

factored extended Kalman Filter (BTEKF) framework, using fully correlated vehicle

and feature states. This algorithm shows improved consistency and accuracy by 2

to 3 orders of magnitude over the previous implementation, both in simulation and

flight testing. Flight test results of the BTEKF on large (80 kg) and small (600 g)

vehicles show accurate navigation over numerous tests.

xiv



CHAPTER I

INTRODUCTION

This thesis presents several monocular vision-aided navigation solutions for use on

unmanned aerial vehicles (UAVs), and evaluates their performance with simulation

and flight testing.

The vision-aided inertial navigation systems (V-INS) presented here operates by

estimating the state of the vehicle and the location of features in the world, a paradigm

known as simultaneous localization and mapping (SLAM). A stream of images from

a monocular camera is used to gain information on feature locations and update the

state. The state updates are combined with data from an inertial sensor and any

additional sensors to provide a full navigation solution for the UAV. The navigation

architecture has the benefit of not requiring external infrastructure such as predefined

features or GPS satellites to bound the drift of the inertial navigation solution.

The navigation systems are intended for use on UAVs, which often have fast,

nonlinear dynamics and use software controllers to maintain stability and follow a

trajectory. It cannot be taken for granted that a navigation algorithm designed inde-

pendently from the vehicle dynamics controller will perform adequately when inserted

into a control loop with a nonlinear plant and/or nonlinear controller, due to the lack

of applicability of the separation principle to nonlinear systems. Therefore, the algo-

rithms presented here are simulated and flight tested on representative vehicles with

controllers in the loop to verify robustness to nonlinearities.

In contrast with other vision-aided inertial navigation approaches for UAVs, the

algorithms developed in this research do not require generation of an initial map and

extension of the map based on spatially separated keyframes. Map and state updates
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happen on every frame, allowing what information is available to be incorporated

immediately and at high frame rates. Also, the Bierman-Thornton EKF implemen-

tation is believed to be one of the first EKF SLAM implementations that explicitly

takes numerical stability considerations into account.

Specific contributions made in this thesis are listed below:

• Development of a practical EKF-based V-INS which ignores feature-vehicle cor-

relations.

• Development of a theorem allowing the integration of Kalman filter updates

with limited shared information.

• Application of the theorem to a novel integration method of the uncorrelated

vision-aiding module and a dynamically configurable INS solution.

• Development of a V-INS with fully correlated features for UAVs.

• Development of a novel implementation of a fully correlated V-INS in a factored

EKF formulation, with efficient feature marginalization and initialization.

• Monte Carlo analysis of the numerical stability of the proposed algorithm, show-

ing 2 to 3 orders of magnitude improvement over standard EKF and Joseph-form

EKF.

• Demonstration of this numerical stability improvement on flight code, along

with a comparison of computation time with the standard EKF.

• Simulation results for all systems, illustrating the performance in realistic controller-

in-the-loop scenarios.

• Flight test results showing the performance of the navigation algorithms with

controller in the loop on multiple vehicles, indoors and outdoors.
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These contributions have advanced the understanding of the performance and

capabilities of visual EKF-SLAM as applied to UAV navigation.

1.1 Motivation

Unmanned aerial vehicles have existed since the beginning of heavier-than-air flight.

Their use has increased greatly in recent years due to the miniaturization of avionics

equipment. The availability of low cost sensors, computers and communication de-

vices has enabled the expanded operation of UAVs by allowing greater operational

control of their behavior and improved data acquisition. As the size and weight of

aerial vehicles and their payloads continue to shrink, vehicles are physically able to

operate in new and challenging environments. The guidance, navigation and control

challenges posed by these new environments, and the opportunities offered by the

development of technology, make this an important area of research.

The specific challenges posed by UAVs to navigation comes in several forms. The

fact that the vehicle is unmanned allows a vehicle to operate in more dangerous

and less developed areas than a manned vehicle. Navigational infrastruture such as

VOR systems or GPS satellites might not be available for use in hostile or disaster

areas. With the reduction of vehicle size, operation in indoor and other enclosed

environments has become possible, and in such areas the use of GPS is limited or

non-existent. The reliance on an external infrastructure for vehicle navigation is a

limiting factor.

On the other hand, the abundance of sensor data and our ability to process it has

increase exponentially. The availability of low-cost ranging devices, cameras, pressure

sensors and inertial senors can provide a wealth of data for generating a navigation

solution. These devices do not rely on external infrastructure, and in the case of

inertial sensors are entirely interoceptive.

3



These considerations have led to research in navigation systems that take advan-

tage of available sensor data and reduce reliance on GPS. In particular, navigation

based on visual sensing is of interest due to low sensor cost, and the fact that many

UAV applications require a camera payload already. Furthermore, cameras provide a

wealth of data about the environment. Use of a monocular camera, rather than stereo

or another configuration, is attractive since it is a more common sensor configuration

than stereo on UAVs. The development of monocular vision-aided inertial navigation

for UAVs will expand the environment in which UAVs can operate, and increase their

usefulness.

1.2 Related Work

The literature pertaining to monocular V-INS for UAVs is quite large. Monocular

visual SLAM has been an active area of research in the computer science and robotics

communities for many years, and is only recently beginning to be applied to UAVs. It

developed with different constraints and priorities than those specific to the aerospace

community. UAV navigation has developed somewhat separately, and is now begin-

ning to take advantage of lightweight sensors and computing power. The relevant

literature from both areas is considered.

1.2.1 Visual Simultaneous Localization and Mapping

Simultaneous localization and mapping has been a very active research area over the

past 20 years. A large amount of valuable work has been done, using a variety of

sensors and estimations methods. Specifically in the area of monocular visual SLAM,

much progress has been made since an effective camera-only system was first presented

by Davison et al. in [9]. This method as well as subsequent extensions [10, 6, 7] is

based on an extended Kalman filter for estimating the camera pose as well as point

features. A one-point RANSAC algorithm is used to improve feature correspondence,

and inverse depth parameterization for feature points allows fast depth estimation.

4



Alternatively, Eade and Drummond [12] developed a particle filter based approach

to the problem of monocular SLAM. One of the most successful paradigms has been

developed by Klein and Murray [27], called parallel tracking and mapping (PTAM).

This method separates the tracking and mapping functions of the SLAM algorithm

into separate threads, so that fast feature tracking and camera localization can be

done at frame rate, and map building can happen when necessary at a slower rate.

This division allows a full bundle adjustment solution of the mapping problem, usually

too computationally intensive a task for real-time applications. Recently, attempts

have been made to characterize the relative merits of bundle adjustment and filter-

based methods [44].

The combination of inertial measurements and vision information has been stud-

ied also. Corke et al [8] identify the complimentarity of the sensing modalities and

highlight the fact that the combination requires no external infrastructure. Many

approaches for fusing this information have been researched, including non-SLAM

approaches such as optical flow, [22], losely coupled approaches[51, 41], and tightly

coupled approaches [34, 24]. The fusion of inertial and visual data is especially ap-

plicable to UAVs, due to need to estimate full 6 DOF motion of the vehicle, and has

been successfully applied to commerical products such as the Parrot AR.Drone1 This

literature review will focus on V-INS solutions that perform mapping and localization,

with an emphasis on systems applicable to UAVs.

1.2.2 Estimator Consistency

The concept of estimator consistency can be defined as the correctness of the uncer-

tainty given by the estimator. An estimate is consistent if it accurately accounts for

the uncertainty in the estimate. Much recent work has gone into characterizing and

1http://ardrone2.parrot.com/

5

http://ardrone2.parrot.com/


improving the consistency of navigation algorithms. In Castellanos [2], the impor-

tance of feature correlations to the vision-aided navigation consistency was noted. It

was found through experimental results that while ignoring feature correlations did

not dramatically affect the resulting estimate, the covariance of the estimate quickly

became overconfident due to ignoring feature-vehicle correlation. Martinelli analyzed

the observability of the V-INS system in [35] and characterized the observable sub-

space for a variety of configurations. It was shown that in the presence of gravity there

is always an unobservable subspace about the gravitational axis. In Huang et al. [23]

and Hesch et al. [20], it was noted that a significant source of estimator inconsistency

is linearization in the estimator algorithm, which causes spurious information gain.

It was shown that calculating and maintaining the unobservable subspace through

optimally adjusting the measurement Jacobian and state transition matrix improved

consistency of the estimator. In [20] and [21] this was analyzed specifically in the

context of visual SLAM and visual odometry, and experiments were conducted on

pre-recorded datasets.

1.2.3 Numerical Stability

In the context of V-INS, numerical conditioning can become a significant factor be-

cause the problem is inherently not completely observable [35], and the covariance

will increase monotonically in certain subspaces. This can lead to a poorly condi-

tioned covariance matrix over time. Variants of the EKF have been proposed to

improve the numerical conditioning over the standard EKF. The UD filter used in

this paper was first proposed by Bierman and Thornton [45] [17]. In a detailed case

study of a portion of an interplanetary space mission, they compare the UD filter

to standard EKF, the Joseph-stabilized EKF, and the square-root filter [1]. They

demonstrate that the UD filter performs accurately using single precision arithmatic

where both the standard EKF and Joseph-stabilized filters fail. Additionally, the
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UD filter demonstrated computational load which was approximately 1.5 times the

standard and Joseph-stabilized, and much less than the square-root filter. The formu-

lation of the UD filter presented here extends the original algorithm to allow feature

states to be efficiently added and removed from the filter.

The problem of numerical stability only rarely been considered in EKF-SLAM

formulations, but was recognized early in large-scale and full solution SLAM formu-

lations. For example, factor graph approaches uses a square root formulation and

provably numerically stable algorithms due to the potential for numerical difficulties

in the large optimization problem[11]. The formulation of the UD filter presented

here, first presented in Magree et al. [34], uses an extension of the original algorithm

to allow feature states to be efficiently added and removed from the filter. In parallel

with that work, Schmid et al. [39] applied the same technique to adding and remov-

ing reference states, allowing a change in the reference frame of the SLAM problem.

Another approach is to track the uncertainty in absolute position externally to the

filter. In [30], a relative navigation approach is taken, where estimates are tracked

with respect to a local reference frame. The optimization then remains local and the

resulting collection of reference frames may then be put through a global optimizer.

Uncertainty in position is transfered to the local reference, and the estimator need

only capture the relative uncertainty with respect to the keyframe.

1.2.4 Vision-aided Navigation for Aerial Vehicles

Application of visual navigation techniques to UAVs is relatively new compared to

ground vehicles. Until recently there has been a lack of published work characterizing

the performance of V-INS systems on a UAV with a controller in the loop, with the

notable exceptions listed in this literature review. The author speculates that this is

due to the difficulty of performing flight tests, and perhaps an misplaced reliance on

the separation principle, which states that for linear systems a state estimator and
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controller may be designed independently. However, there is no corresponding princi-

ple for nonlinear systems, and the author argues that any comprehensive evaluation

of a V-INS system for such a configuration must be tested. The flight test results

presented here aim to build on previous discussions of this topic such as [33].

The following section emphasizes implementations of vision-aided navigation sys-

tems on UAVs, which have been flight tested with controller in the loop.

1.2.4.1 Monocular Vision

Work on the application of V-INS to aerospace systems is becoming more common.

This work is driven in part by the need for independence or reduced reliance on GPS

for unmanned aerial vehicles. Vision aiding for obstacle avoidance [50], and for vehicle

localization [55] were early efforts in this area. Langelaan et al. used an unscented

Kalman filter for simultaneously estimating vehicle states as well as feature locations

in inertial space [28]. A Mahalonobis norm was used as a statistical correspondence

for data association from frame-to-frame for each estimated feature. New feature

locations were initialized using a projection onto the ground plane. Simulation results

for a UAV navigating through a 2D environment were presented, however no flight

test results were reported. Similarly, Veth [49] developed an EKF-based visual SLAM

system, and demonstrated it on recorded data and ground vehicles.

In addition to EKF-SLAM formulations, numerous parallel localization and map-

ping implementations have been developed for UAVs. Weiss et al.[51] describe results

from the development of a monocular visual navigation system over several years. The

system is based on a modified version of the parallel tracking and mapping (PTAM)

algorithm of Klein and Murray [27]. The integration of PTAM on an unmanned ve-

hicle system required improvement of overall system robustness, including robustness

to repeated patterns in images, and limiting keyframes for constant time processing.

The 6 degree of freedom (DOF) state estimate is incorporated as a black box pose
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measurement in an EKF. Forster et al.[15] also use a parallel localizing and mapping

framework similar to PTAM, but uses image intensity patches rather than features

and descriptors in the tracking thread. In Faessler et al.[14], their method was com-

bined with dense mapping system which computed dense surface reconstruction at a

ground station in real time. The system was validated with over 100 flights. Mostegel

et al.[37] describe a system for evaluating the quality of the map and current view

for localization purposes. They use the results to plan a trajectory which finds the

best next pose in a 4-dimensional search space (3 position, 1 attitude). While these

approaches show great potential, there can be large delays during the addition of new

maps. Localization happens at high frame rate, but mapping is slow, and can be

a limitation on speed of exploration. The EKF-based systems, on the other hand,

calculate new state estimates for map and vehicle at frame rate, at the cost of severely

limiting the number of features.

A similar approach to the keyframe-based methods are those that compute the

full SLAM solution. In Indelman et al. [24] the full SLAM solution is computed

by taking advantage of the graph structure of the problem through the use of factor

graphs. The method is validated on prerecorded datasets. While not a constant time

algorithm, the method uses the graph structure to efficiently compute solutions in

real time.

1.2.4.2 Stereo and Hybrid Approaches

Two notable stereo approaches are presented in [40] and [19]. Schmid et al.[40]

describe a complete UAV system based on a quadrotor platform. The vehicle sensors

are an inertial measurement unit (IMU) and a stereo camera module, in combination

these allow a full 6 DOF navigation solution. The navigation algorithm is EKF

based, and extends the state vector with delayed states to account for measurement

latency from the stereo camera module. The stereo camera module provides odometry
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measurements to the EKF and depth images to update the map of voxels in open

loop. The use of stereo cameras for processing vision data removes the ambiguity in

depth of monocular cameras, but at the expense of a much higher processing burden

and measurement latency. Heng et al. takes a similar approach [19], aligning new

stereo frames to previous keyframes, though all processing was done on the onboard

CPU to reduce latency. The navigation systems presented here processes at a much

higher frame rate, but requires a depth prior, typically acheived by using a downward

facing camera and an altitude measurement.

Some approaches try to balance the benefits of visual odometry (low computation)

with full slam (accuracy). Shen et al.[41] develop a system for high speed flight of a

quadrotor which makes several simplifications to improve frame rate on an embedded

computer. The navigation system is fundamentally monocular, but uses low frequency

stereo measurements for mapping and estimating scale. Mapping and localization

are separated, and mapping assumes known camera location, therefore the full slam

problem is not attempted. However, the navigation algorithm is still robust enough

to allow aggressive accelerations with forward-facing cameras and IMU as the only

sensors.

Another vision-aided system that avoids the full SLAM problem is given in [38]

and [3]. Stereo frames are used to estimate average velocity between pairs. Rather

than update velocity directly, the avearage velocity is used to calculate a relative

motion measurement (change in position and attitude). The expected relative motion

is calculated using delayed pose and pose covariance stored during last image frame.

1.2.4.3 Absolute Localization

While the goal of SLAM formulations is to provide highly accurate navigation solu-

tions, at the end of the day it is a relative estimation paradigm, giving no absolute
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position information. Incorporating additional a priori information into the naviga-

tion solution can resolve the ambiguity. In Chiu et al. [4], georeferenced features are

matched to features extracted from the current frame, and used to update a smooth-

ing information filter. In van Dalen et al. [48], a system for matching aerial images

to satellite maps is presented, which uses normalized cross-correlation within a par-

ticle filter of horizontal vehicle position samples. A resulting location estimate and

covariance is fed into the EKF estimator performing visual SLAM. For such systems,

it is important that the underlying SLAM system maintain a consistent horizontal

position covariance.

1.3 Context of This Work

This thesis builds on previous research developing vision-aided inertial navigation sys-

tems. Wu et al. developed a method for fusing feature information from a monocular

vision sensor in an extended Kalman filter framework [53, 52, 54]. The approach in

those papers relied on tracking features whose locations were estimated when GPS

was active. When GPS was inactive, they demonstrated that this method ensures

bounded hover of a rotorcraft UAV through flight test results. This work was contin-

ued in Chowdhary et al. in which a fully independent vision-aided inertial navigation

system was presented and flight tested.[5]. The systems presented here improve upon

Chowdhary et al. in numerous ways, in particular by using improved feature cor-

respondence in all systems, and in the factored EKF by accounting for correlations

between the vehicle and feature states.

1.4 A Guide to This Document

The rest of this document is ordered as follows: In Chapter 2, background mate-

rial for the understanding the key algorithms of the thesis is presented. The vehicle

and measurement models used throughout this document are described, and an brief
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review of the standard and Joseph-form EKF is given. Next, in Chapter 3 a vision-

aided inertial navigation system is presented which is based on a sequential Kalman

filter formulation and ignores feature-vehicle correlations. Simulation and flight test

results are shown to evaluate system performance. Chapter 4 presents a theorem

which defines requirements for a modular filter structure, and then applies this the-

orem to a dynamically configurable filter with a vision-aiding module. Simulation

results characterize the behavior of the filter. Chapter 5 describes a new formulation

of the EKF-SLAM problem in terms of a Bierman-Thornton factored Kalman filter

(BTEKF). A Monte Carlo simulation demonstrates the benefits of the implementa-

tion, and simulation and flight test results are presented on two vehicles. Finally,

Chapter 6 concludes the thesis and identifies future work.

12



CHAPTER II

PRELIMINARIES

The following section lays the groundwork for the sections that follow. In it are

presented an overview of the extended Kalman filter (EKF). The EKF forms the

basis of all the estimator techniques that are used in this thesis. Next, the reference

frames used throughout the work are defined. Finally, the vehicle state vector, non-

linear propagation equations and the camera model are given. Finally two alternative

feature parameterizations are described.

2.1 The Extended Kalman Filter

The following gives a brief summary of the standard and Joseph-form EKF methods.

For a more detailed treatment, see Gelb [16] or Grewal and Andrews [17].

Let the model be defined as a hybrid continuous plant with discrete updates:

ẋ(t) = f(x(t)) +B(u(t) + η(t)), x(0) = x0 (1)

zk = h(x(tk)) + νk (2)

The plant model f and measurement model h are assumed to be infinitely differen-

tiable. The stochastic plant noise η(t) is drawn from a Gaussian distribution such

the expectation E(η(t)) = 0 and E(η(t)η(s)T) = δ(t − s)Q. Similarly, the discrete

stochastic variable νk is drawn from a Gaussian distribution such that E(νk) = 0 and

E(νkν
T
j ) = ∆(k − j)R. The functions δ(t) and ∆(k) correspond to the Dirac and

Kroniker delta functions, respectively, and B is the input matrix.

The standard EKF makes the assumptions that in the vicinity of the current

estimate and measurement, plant and measurement functions behave linearly. The

function can be linearized about the current estimate and the Kalman update and

13



propagation equations can be applied. Furthermore, to facilitate implementation

on a digital computer, the continuous plant derivative is evaluated at discrete time

intervals and numerically integrated. The propagation of the state estimate at sample

time tk is given by

˙̂x(tk) = f(x̂(tk)) +Bu(tk) (3)

x̂(tk+1) = Integration( ˙̂x(tk),∆tk) (4)

A variety of methods are available to perform the integration. The covariance of the

estimate, P = E(x − x̂)(x − x̂)T must also be propagated. Let Pk = P (tk). Then

Pk+1 is given by the following discrete propagation equation.

Pk+1 = ΦPkΦT +Q∆tk (5)

The state propagation equation can be generated by from the linearized plant model

A =
∂f(x)

∂x x=x̂(tk)
(6)

Φ = I + A∆tk (7)

Matrix exponential may also be used for computing the state transition matrix, but

Euler integration is often used for computational efficiency and ease of implementa-

tion. The discrete measurement updates are applied by generating the Kalman gain

from the linearize measurement equation;

C =
∂h(x)

∂x x=x̂(tk)
(8)

The discrete Kalman update is generated in the following way. Letting x̂k = x̂(tk)

K = PkC
T
(
CPk(−)CT +R

)−1
(9)

x̂k(+) = x̂k(−) +K(z − h(x̂k(−))) (10)

Pk(+) = Pk(−)−KCPk(−) (11)
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It was known very early that a naive implementation of the Kalman filter equations

was numerically unstable. An early attempt to improve numerical behavior was

the so-called Joseph-form of the covariance update equation. This implementation

addressed the problem of off-optimal gain values causing assymetries in P [16]. Joseph-

form covariance update is given by

Pk(+) = (I −KC)Pk(−)(I −KC)T +KRKT (12)

Both the standard and Joseph-form EKF implementations are commonly found

in the filtering literature and in visual EKF-SLAM in particular.

2.2 Reference Frames

A local inertial reference frame is defined, with axes in the North-East-Down con-

figuration. In addition to the local inertial frame, the vehicle and feature states

are described in two other reference frames, the vehicle body frame and the camera

frame. The body frame is attached to the vehicle, with its origin at the vehicle center

of gravity. The orientation of the body frame is chosen to have the x axis point out

the front of the vehicle and the z axis point down. The camera frame is attached to

the camera and located at the optical center. The x axis lies along the optical axis,

and the z axes points down along the image plane. For clarity of presentation, it is

assumed that the camera frame and body frame have the same origin and differ only

in orientation. In practice, a static body frame offset vector is applied to account for

the camera not being at the origin. The local inertial frame is denoted with a i, body

frame with b, and camera frame with c. Figure 1 illustrates the coordinate frames.

2.3 Vehicle Model

The vehicle model is based on the specific force and angular velocity input from an

IMU. The non-linear dynamics of the vehicle are driven by raw IMU input, which is
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Figure 1: A schematic of the key reference frames used in this presentation: the
inerial frame i, the vehicle body frame b, and the camera frame c. In general, the
camera and body frame origins can be in different locations, but for simplicity of
presentation it is assumed they are co-located.

assumed to have a static or slowly evolving bias and corrupted by white Gaussian

noise.

The vehicle state is given by the following vector:

x̂a =

[
p̂i v̂i q̂i ŝb ω̂b

]T
(13)

where p, v, q, is the vehicle position, velocity and attitude quaternion, respectively,

sb is the acceleration bias and ωb is the gyro bias. Superscript i denotes the inertial

frame and hatted variables indicate estimated quantities. The rotation matrix from

body to inertial is denoted Lib = LT
bi. The vehicle state is propagated by integrating

data from the IMU. IMU sensor measurements are corrupted by noise and bias as

follows:

sraw = a+ sb + Lbig + ηa, (14)

ωraw = ωt + ωb + ηω. (15)

where a, and ωt are are the true acceleration and angular velocity, respectively, and

g is the acceleration due to gravity in the inertial frame. It is assumed that the
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noise is zero mean and white Gaussian, i.e. ηa ∼ N (0, Qa) and ηω ∼ N (0, Qω). The

estimated bias is subtracted from the IMU data before propagation in the model

s = sraw − ŝb, (16)

ω = ωraw − ω̂b. (17)

The vehicle dynamics are given by the following:

˙̂pi = vi (18)

˙̂vi = Libs− g = Lib(sraw − ŝb)− g (19)

˙̂qi =
1

2
Q(ω)q̂i =

1

2
Q(ωraw − ω̂b)q̂

i (20)

˙̂sb = 0 (21)

˙̂ωb = 0 (22)

where s is bias-corrected specific force, and angular velocity ω is the bias-corrected an-

gular velocity. The function Q : R3 → R4×4 maps angular velocity to the quaternion

derivative matrix coefficient and, in the first-element-scalar convention used here, is

given by [43]

Q([a1 a2 a3]
T) =



0 −a1 −a2 −a3

a1 0 a3 −a2

a2 −a3 0 a1

a3 a2 −a1 0


(23)

Using the quaternion representation in the estimation algorithm causes the co-

variance matrix to become singular and requires careful accounting of the quaternion

constraints. To avoid these difficulties, a minimal representation of the vehicle’s atti-

tude is used, which defines the vehicle’s current attitude with respect to an arbitrary

reference frame, in this case the attitude in the previous time step. Since the time

step is short, we can assume this attitude change is small and it can be defined as an
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infinitesimal error quaternion.

δq =

[
1 R̂

]T
(24)

such that

δq = q̂−1ref ⊗ q̂. (25)

Additional details on this formulation can be found in [52, 29]. The resulting minimal

vehicle state vector is

x̂v =

[
p̂i v̂i R̂ ŝb ω̂b

]T
(26)

2.4 Camera Model

The camera model describes the relationship between objects in the world and their

image as recorded by the camera. A standard distortion-compensated pinhole camera

model is used to describe this relationship, as described in [32]. A camera calibration

is performed to determine intrinsic camera parameters of principle point, focal length

and distortion. For simplicity, it will be assumed that the principle point is in the

center of the image plane, and distortion has been compensated for, thus reducing

the model to an ideal pinhole camera model. Additionally, the the image plane will

be treated as if it is located in front of the optical center. Given the feature point

location in the camera frame, rcf = [X, Y, Z]T, the image plane location (u, v) is given

by

z =

u
v

 = h(x) + ν =

fu Y
X

+ νu

fv
Z
X

+ νv

 (27)

where fu and fv are the horizontal and vertical focal lengths, respectively, and νu ∼

N (0, Ru) and νv ∼ N (0, Rv), R = diag(Ru, Rv). Figure 2 illustrates the camera

model.
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Figure 2: A schematic of the camera model.

2.5 Feature Parameterization

Numerous methods exist for parameterization of feature locations. Perhaps the most

obvious one is a Cartesian parameterization, where the feature location is described by

its Cartesian coordinates in a local inertial frame. The primary benefit of this method

is its simplicity of implementation and clarity. However, alternate parameterizations

have been proposed which capture the uncertainty of features better, and allow for

infinite uncertainty in depth and points located at infinity. There are a variety of

forms, but they all parameterize the location of feature points using inverse distance

to the feature. These methods of parameterization are essential for implementations

of camera-only visual SLAM that do not delay in initializing points, due to the infinite

uncertainty in depth from a single observation [6] [42].

In the applications of the navigation systems presented here, there are less strin-

gent requirements. It is assumed that some form of depth prior is available, such as a

sonar or initial terrain height. With the additional information, the question of which

parameterization to use must factor not only improved uncertainty characterization,

but also greater computational cost of larger feature state vectors and/or propaga-

tion of feature states. Therefore both Cartesian parameterization and inverse depth

parameterizations were implemented for use in the presented navigation algorithms.
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The Cartesian parameterization is given as follows: Let xfj be the state of feature

j. Then the state vector is made up of the coordinates of the feature in the local

inertial frame,

xfj = pfj ∈ R3 (28)

The feature location can then be transformed into the camera frame with the following

conversion

rcf = Lci(pf − pv) (29)

which then can be used in the camera model presented in 2.4.

The inverse depth parameterization used here is taken from [6]. It is an anchored

form, in which the location of the feature is described with respect to an anchor point,

in this case the optical center of the camera at point initialization. The feature is

described with a 6 dimensional vector consisting of the Cartesian coordinates of the

anchor point and the modified polar coordinates to the location of the feature, all in

the local inertial frame.

xfj =

[
pa1 pa2 pa3 θ ψ ρ

]T
∈ R6 (30)

The vector pa = [pa1 pa2 pa3 ]
T defines the anchor point, the pair (θ, ψ) are the

azimuth and elevation of the ray from the anchor point to the feature, and ρ is the

inverse distance of the feature from the anchor point. The (0, 0) axis for the polar

coordinates may be chosen arbitrarily, and in this case is chosen to be the direction

of the optical axis of the camera when the vehicle is on the ground.

To find the relative feature location from the state vector, the following conversion

is made

hcf = Lci [ρ(pa − pv) +m(θ, ψ)] (31)

where the function m(·, ·) maps azimuth and elevation to a unit vector direction.

Note that hcf is the normalized ray towards the feature point, rather than the vector
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between the camera and feature. However, this may still be used in the camera model

to compute image location, because all points along the ray map to the same image

location. The state vector can be transformed back into Cartesian coordinates (for

display or conversion) with the following transformation:

pfj = pa +
1

ρ
m(θ, ψ) (32)

The inverse depth parameterization allows features to exist at ρ = 0, which is

a distance of infinity. Additionally, the uncertainty of ρ can be such that 0 is in a

significant portion of the Gaussian distribution, allowing the uncertainty to capture

an unbounded distance. The cost of this parameterization is the addition of three

states for each feature, which, in a simple implementation, halves the number of

features able to be processed for a given amount of computational power.

Other inverse depth parameterizations exist which do not require additional states.

For example, modified polar coordinates may be used without the anchor state, and

be referenced from the vehicle itself [42]. However, this parameterization has its own

computational cost from the requirement of propagating the feature states.
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CHAPTER III

STATE ESTIMATION IGNORING FEATURE

CORRELATIONS

In this chapter, an estimation algorithm is presented which estimates the vehicle state

and the locations of features, assuming no correlation among features and between

features and vehicle states. Instead, decoupled covariance matrices are stored for

each feature and the vehicle states. The primary advantage of this formulation is the

reduction in computational requirements – for example, for Cartesian parameteriza-

tion, operations are performed on a set of small covariance matrices of size Nv ×Nv

and 3× 3, rather than one large matrix of size (Nv + 3Nf )× (Nv + 3Nf ). This formu-

lation might also be compared to Rao-Blackwellized particle filter approaches such as

FastSLAM [36] [12], with only one particle. The cost of such an approximation is the

loss of the relative uncertainty of vehicle and features. The filter no longer captures

the fact that the relative position of features and vehicle is known accurately, but the

global position is not. This causes the filter to become overconfident.

The visual SLAM navigation system uses an extended Kalman filter to estimate

the state of the vehicle and the location of image features in the environment. Images

are captured and features are extracted from the images. The features from the

first image are used to initialize a database of feature states. When each subsequent

image is captured, features are extracted and matched to the points stored in the

database, the error between their predicted and measured location is used to update

their location and the vehicle state via the extended Kalman filter gain and update

equations. Points that are no longer visible due to vehicle motion are discarded and

unmatched measurements are initialized into the database. Between image captures,

22



Uncorresponded 
features 

Extended Kalman 
Filter 

Feature 
Correspondence 

Harris 
Corner 
feature 

locations 

Estimated 
vehicle state 

Predicted feature point 
locations 

Residuals 

New Point 
Init 

Feature 
Point 

Database 

Harris 
Corner 

Detector 

Camera 

Pinhole 
camera 
model 

Sonar IMU 

State and 
covariance 
matrices 

Figure 3: A block diagram describing the navigation system. Pixel location of fea-
tures are corresponded to predicted locations of database points. The resulting resid-
ual is fused with inertial data and sonar altimeter data to estimate the vehicle state,
feature locations and associated covariance matrices. Uncorresponded features can
be used to update the database as current points leave the field of view. The result-
ing architecture simultaneously estimates feature point locations and vehicle states
without requiring the vehicle to maintain view of particular landmarks.

the vehicle state is propagated by integrating data from the IMU. A schematic of the

algorithm is shown in Figure 3. Pseudocode of the algorithm is given in Algorithm 1.

3.1 Propagation of the Estimator

The extended Kalman filter propagates the covariance of the state estimate at each

time step using the Jacobian of the dynamic model evaluated at the current state.

The nonzero elements of the Jacobian matrix A are given below

∂ ˙̂pi

∂v̂i
= I3×3,

∂ ˙̂vi

∂R̂
= −L̂ibs̃,

∂ ˙̂vi

∂ŝb
= −L̂ib, (33)

∂
˙̂
R

∂R̂
= −ω̃, ∂

˙̂
R

∂ω̂b
= −I3×3,

where ã indicates the skew symmetric matrix composed of the components of a.

The database of feature points are parameterized as either Cartesian coordinates

in the inertial frame or as inverse depth points, as described in Section 2.5.

x̂f =

[
p̂f1 . . . p̂fNf

]T
∈ RNfsNf (34)
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Algorithm 1 Navigation update and confidence-based database management
while new IMU packets are available do

Propagate state and covariance matrix.
if new image available then

Extract Harris corner features.
5:

//Point correspondence
for All database points j do

Project database point onto image plane.
for All features i do

10: Calculate Mahalanobis distance Zij = eTij(CjPCT
j + R)−1eij .

end for
end for
for All database points j do

Find feature imin such that { Ziminj ≤ Zij for all i and Ziminj ≤ Zmax }.
15: if feature imin already corresponded to database point jprev

and Ziminj < Ziminjprev then
Correspond database point j to feature imin and recorrespond database point jprev.

end if
end for

20: //Kalman filter update
for All database points j do

if Database point j was corresponded then
Increment confidence in database point j.
Perform Kalman filter update.

25: else
Decrement confidence in database point j.

end if
end for

30: //Point initialization
for All features i do

if Feature i was uncorresponded then
Get inertial frame point location based on altitude, Eq. (44).
Set confidence of new point based on number of corresponded database points during
previous update.

35: for All database points j do
if New point confidence > database point confidence then

Insert new point in database location j.
break

end if
40: end for

end if
end for

end if
end while

where Nfs is the size of each feature stat vector, and Nf is the number of stored

features. The covariance matrix for each feature point is Pfj . Database points are

assumed to be static and have no process noise, therefore no propagation is necessary.
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3.2 State and Covariance Update

The measurement model used in the navigation algorithm is the standard pinhole

camera model. An undistortion transform is applied to the image features before

being used in the algorithm, and so a simple camera model is appropriate. The

camera model is described in Section 2.4.

The navigation algorithm performs the state update in a sequential manner. Each

feature point is treated as an independent measurement, and correlations between

the measurement and state are ignored. At each time step, a subset of the feature

database is observed and used to update the state. During each feature update j, the

Jacobian of the measurement model, Ck, is calculated at the current state estimate:

Ck =

[
∂zj
∂x̂v

∂zj
∂p̂fj

]
(x̂v ,p̂fj )=(x̂v ,p̂fj )k|k−1

(35)

Subscript k|k − 1 indicates the a priori estimate at timestep k. The state and co-

variance update is calculated according to the familiar EKF update equations. The

combined covariance for the state and feature point j is given by

Pj =

Pv 0

0 Pfj

 (36)

Then,

Kk = Pjk|k−1C
T
k

(
CkPjk|k−1C

T
k +R

)−1
(37) x̂v

p̂fj


k|k

=

 x̂v
p̂fj


k|k−1

+Kk(zj − h(x̂v,k|k−1, p̂fjk|k−1)) (38)

Pjk|k = (I −KkCk)Pjk|k−1 (39)

A note on the notation: the “timestep” k is incremented on each feature update,

even though no time has passed while updating measurements from a given frame,
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and therefore no propagation step has been carried out. In other words, for a given

image,

 x̂v
p̂fj


k+1|k

=

 x̂v
p̂fj


k|k

and Pv,k+1|k = Pv,k|k.

3.3 Point Correspondence

Before extracted features can be used in the EKF, it must first be determined which

database point they correspond to. The Mahalanobis distance is used to narrow the

pool of potential matches, and then a feature descriptor is used to choose the best

match from the pool. The use of a descriptor added robustness by limiting the number

of false matches, especially in the presence of state error when the nearest statistical

point may not be the best.

The feature detector is a modified Harris corner detector, which extracts points

based on the image gradient in orthogonal directions[18]. To ensure good feature

separation, the detector partitions the image into bins, and sets a maximum number

of features in each bin. Also, a minimum distance between features can be set. The

feature descriptor used to uniquely identify the point is the pixel intensity in a window

surrounding the feature. The feature locations as well as the intensity descriptor is

passed to the navigation algorithm in order of their Harris corner score, up to a

maximum number.

The search region is determined using the estimated location uncertainty:

Sj = (CjPjC
jT +R) (40)

The statistical distance between measurement zi and the image plane location of point

pfj is given by

eij , zi − h(x̂v, p̂fj) (41)

Zij = eTij(S
j)−1eij (42)
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A maximum value, Zlim, is set for Zij for measurement i and database point j to be

considered as possible matches.

All measurements satisfying the Zij threshold are compared to the database point

using their image descriptor. The average difference between pixel intensities is cal-

culated and the pair with the lowest difference, below a maximum threshold, is con-

sidered to be corresponded to the database point.

The descriptor from the corresponded measurement is stored with the database

point for use in the next iteration. This method, as opposed to retaining the original

descriptor for the life of the database point, allows the appearance of the point to

change slowly as the camera location changes, and makes it unnecessary to use more

complex scale and rotation invariant descriptors.

If a measurement zi does not meet the conditions to match any database point, it

is considered to be a measurement of no currently stored point and is uncorresponded.

Uncorresponded points can be used to initialize new database points, as described in

the following section.

3.4 Initialization of New Points

New points are initialized from uncorresponded features, and features with the highest

corner score are initialized first. Because of the lack of depth information from a single

monocular image, additional information is necessary to estimate the measurements’

state vector from their two-dimensional image plane location. In many common

environments for vehicles with a camera aligned with the body z-axis, it is a reasonable

assumption that the points lie on a plane at a distance of the altitude of the vehicle.

This assumption would be valid, for instance, for a vehicle flying indoors over an

uncluttered floor, or a outdoor vehicle flying over a plane. By initializing points with

a suitable uncertainty in altitude, points that are in fact not on the ground plane will

converge to the correct altitude if they remain in view [52].
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The following steps describe the initialization for Cartesian parameterized fea-

tures. The inverse depth initialization is similar. Let the direction of the feature in

the inertial frame be given by

hif = Lic


1

u/fu

v/fv

 (43)

Then the 3d location of the new feature is

hif
X i

j

hif1
=


Xj

Yj

Zj


i

= rifj . (44)

p̂fj = rifj + p̂ (45)

Distance X i
j is assumed to be the altitude of the camera, and image plane locations

u and v and focal lengths fx and fy are known. The covariance of the new feature is

set to fixed value scaled by the distance of the vehicle to that feature:

Pfj = Lic


||rifj ||

2 0 0

0 R0||rifj ||
2/f 2

u 0

0 0 R0||rifj ||
2/f 2

v

LT
ic. (46)

where Pfj is the 3×3 covariance of point pfj with itself, and R0 is a scalar initialization

value. All other cross-correlation terms in P are ignored.

Feature removal from the database is decided by storing a probabilistic measure

of the feature’s existence. A similar method is used in occupancy grid models [46].

The probability is stored in log-odds form:

lt,i = log

(
p(fi|z1:t)

1− p(fi|z1:t)

)
(47)

where p(fi|z1:t) is the probability of the existence of feature i conditioned on the

measurements until time t. Bayesian inference on a binary random variable can be
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given in the following log-odds form.

lt,i = log

(
p(fi|zt)

1− p(fi|zt)

)
+ log

(
p(fi|z1:t−1)

1− p(fi|z1:t−1)

)
− log

(
p(fi)

1− p(fi)

)
(48)

= lt−1,i + lupdate − l0 (49)

where lupdate is the inverse measurement model output, lt−1,i is the log-odds of the

previous time step, and l0 is the log-odds prior of the map. l0 is assumed to be 0,

indicating a prior probability of existence of 0.5.

The inverse measurement model is often difficult to determine analytically, so ad

hoc methods are sometimes used. In this work, the probability of existence given a

feature correspondence, p(fi|correspondence) ≈ .75, and the probability of existence

given a noncorrespondence, p(fi|noncorrespondence) ≈ .45. This leads to log-odds

values of 0.92 and -0.184, respectively. By limiting the maximum and minimum value

of lt,i to ±4.6 (0.01 < p(f) < .99 ), a scale is constructed on which a capped, weighted

count of correspondences and noncorrespondences is stored for each feature. Without

loss of generality, the count, max and min, and update values may be scaled and

translated. On a scale from 0 to 100, for example, the values for a correspondence

and noncorrespondnence are 10 and -2 respectively.

A sliding threshold is used to determine whether features exist or not, and thus

whether they are candidates for replacement. This threshold is set high when few

features are being corresponded, so that features are replaced quickly, and low when

many features are being corresponded, so that they are replaced slowly. The new

features are initialized at the value of the threshold. In this work the threshold is

set to 3.7 if 2 or fewer features were corresponded, −3.7 if 10 or more features were

corresponded, and 0 otherwise.

To demonstrate the effectiveness of the proposed method, it is compared to a fixed

threshold feature removal method. The fixed threshold method is implemented by

setting the existence threshold to 0 regardless of the number of features corresponded.

29



0 2 4 6 8 10
0

5

10

15

t (s)

P
oi

nt
 C

or
re

sp
on

de
nc

es

 

 
Average
Min/Max

(a)

0 2 4 6 8 10
0

5

10

15

t (s)

P
oi

nt
 C

or
re

sp
on

de
nc

es

 

 
Average
Min/Max

(b)

Figure 4: The number of feature correspondences over time. The left plot data was
gathered using the dynamic thresholding. The right plot uses a fixed threshold and
is shown for comparison. After the change in image texture at t = 1, the dynamic
threshold method more quickly removes old points from the database.

This fixed threshold method is equivalent to the method proposed in [9] and [10], with

the number of iterations equal to 50 and the percent correspondence equal to 50%.

The simulated vehicle was flown over a highly textured surface which was in-

stantaneously changed to a low textured surface. This is similar to the effect of

instantaneous lighting changes, such as a light being switched off in a room. The

texture removal was performed 8 times for each method, and the average, minimum

and maximum number of feature correspondences is shown in Figure 4. It can be seen

that the dynamic threshold does a better job maintaining a steady number of consis-

tent features throughout the test. When the texture is removed, the fixed threshold

takes a longer time to throw out the now-unobservable features, as the confidence

index for these points fall. In the dynamic thresholding case, the threshold is raised

when few features correspond, and so unseen features are removed quickly. The dy-

namic threshold method allows the navigation algorithm to rapidly adapt to dynamic

environment.
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3.5 Results

Validation of the vision-based navigation system was conducted on the GTMax [26],

a 80 kg modified Yamaha RMAX helicopter UAV with custom avionics and flight

software designed by the Georgia Institute of Technology Unmanned Aerial Vehicle

Research Facility (UAVRF). Figure 5 shows a picture of the GTMax. The helicopter

is outfitted with a variety of sensors including an Inertial Science IMU sampled at 100

Hz, short-range sonar, magnetometer, and differential GPS. The vehicle was equipped

with a Prosilica GC 1380 camera with global shutter for vision-based navigation. Two

onboard computers with 1.6 GHz Intel Pentium M CPUs process information from

these sensors for guidance, navigation and control of the vehicle. For the vision-

based navigation described in this paper, the secondary computer performs image

acquisition and feature detection, while the primary computer performs the navigation

update and handles vehicle guidance and control. All flight results presented below

employ the GTMax’s baseline adaptive flight controller that has been described in

detail in [25].

Simulation results presented below were generated using the Georgia Tech UAV

Simulation Tool (GUST). The GUST software package that combines a high-fidelity

vehicle and environment model, onboard flight control software, and ground station

software. The vehicle model is a six rigid body degree of freedom model with addi-

tional engine and rotor dynamics. The vehicle model simulates sensor noise, delay,

location, orientation, and actuator dynamics and saturation.

3.5.1 GTMax Flight Test Results

The data presented below show excerpts from a single flight during which there were

16 minutes of continuous operation of the vision-based navigation system (16 minutes

is about 40% of the typical endurance of the GTMax). Figure 6 shows the navigation

solution during the flight, and the top-down view also shows the location of the vehicle
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Figure 5: The GTMax helicopter weighs 80 kg and has a rotor diameter of 3 m. For
vision-based navigation, a downward-facing camera is mounted on the nose of the
vehicle.

as given by GPS for comparison. Note that the vehicle is not drawn to scale. Speeds

as high as 6 m/s were reached and the vehicle flew at multiple altitudes. The flight

was carried out over a grassy area with a fence occasionally in view. The satellite

imagery in Figure 6 gives a rough indication of the flight area.

For all tests, the camera was mounted to the nose of the aircraft pointing down-

ward, and monochrome images were gathered at approximately 20 Hz and at 320× 240

pixel resolution. The best features in each image, with a maximum of 20, were out-

put for use in the navigation algorithm. A maximum of 50 feature locations were

stored in the database. Differential GPS data was gathered at 5 Hz and was used

for altitude measurement in the navigation solution. The measurement is analogous

to using a barometric pressure sensor, in that both measurements are relative to an

initial datum, rather than the altitude above ground. Also, the GPS position and

velocity output is presented below for comparison to the vision-based navigation in

the horizontal plane.
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Figures 7 and 8 show the results of a series of translational commands given to

the GTMax while using vision-based navigation. Figure 7 shows that the navigation

solution corresponds well with the GPS output, despite the vehicle traveling over 90

m each way, and having to replace online the database of feature locations. At time

100-120 seconds, it can be seen that a velocity error causes the vehicle to drift. This

(a)

(b)

Figure 6: The ground station visualization of full 16 minute (40% of aircraft en-
durance) flight trajectory while using vision-based navigation. GTMax flight test
data presented in this paper, except for the landing maneuver, is excerpted from this
flight. The navigation output is shown in red, and GPS data from the flight is show
in blue, for comparison. Note that the image of the vehicle is not drawn to scale.
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Figure 7: Comparison of vision-based navigation position states (red dashed line)
with GPS location data (blue solid line) of the GTMax during translational com-
mands. GPS data was used in navigation solution for altitude only. The commands
were given as indicated by the free dash-dot line. The vehicle tracked the commanded
positions with 7 m drift of the vision-based navigation solution from GPS position
data. These results are part of a 16 minute flight.

drift is possibly caused by mis-corresponded measurement and database features,

which can occur over areas with poor texture and poor feature distribution over the

image. In poorly textured areas, features are less repeatable from frame to frame, and

periodic dropouts of features could cause a database point to be incorrectly matched

to a neighboring feature. An absolute position error of 7 m is incurred over the course

of the maneuver.

Figures 9 and 10 show the results of a 90 second hover of the GTMax. The vehicle

remains within approximately a 1.6 m radius circle around the commanded position.

Figure 11 show the performance of the V-INS solution during autonomous descent

and landing. This is the first time an autonomous landing has been performed under

vision-based navigation for a vehicle of this class in completely unmapped environ-

ments, to the author’s knowledge [5]. This maneuver demonstrates that the navi-

gation solution is robust to large altitude changes and corresponding changes in the
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Figure 8: Comparison of vision-based navigation velocity states (red dashed line)
with GPS velocity data (blue solid line) of the GTMax during translational input
commands. These results are part of a 16 minute flight.
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Figure 9: Comparison of vision-based navigation position states (red dashed line)
with GPS location data (blue solid line) of the GTMax during a 90 second excerpt of
hovering flight approximately 100 ft above ground. GPS data was used in navigation
solution for altitude only, and this can easily be replaced with a barometer or active
range sensor. The vehicle remained within approximately 1.6 m of the commanded
position despite a small amount of drift in the navigation solution from 22 seconds
to 60 seconds. These results are part of a 16 minute flight.
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Figure 10: X-Y position of vehicle as given by vision-aided navigation solution (red
dashed line) and raw differential GPS data (blue solid line) of the GTMax during a
90 second excerpt from extended hovering flight approximately 100 ft above ground.
These results are part of a 16 minute flight.
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Figure 11: Time history of the position states of the GTMax navigation solution
during autonomous descent and landing. The red dashed line gives the naviga-
tion solution position, and the blue solid line gives the GPS position. A video
of the maneuver can be found at http://uav.ae.gatech.edu/videos/g120124e1_

visionBasedLanding.wmv.

surface texture beneath the vehicle, and that the solution can be trusted during ma-

neuvers with low velocity error tolerance. A video of the maneuver can be found online

at http://uav.ae.gatech.edu/videos/g120124e1_visionBasedLanding.wmv.

3.5.2 GTMax Simulation Results

A 350 second simulation was performed to analyze the performance of the navigation

system over an area with a non-flat ground plane, and provide further validation of

long-distance flight. During this simulation, the vehicle traveled over 560 m at an

altitude of 50 m, over a group of buildings up to three stories tall (approximately

10 m). Images were captured from a simulated camera located on the vehicle. An

image from the simulation environment, along with the true path of the vehicle and

the waypoints of the trajectory, is shown in Figure 12.

Figure 13 show the GPS and navigation output in the x-y plane and with respect

to time. The final navigation error over the 560 m flight path was 5 m. Note that

no loop-closure was performed, indicating that similar performance can be expected
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over non-repeating paths. It can be seen that the navigation solution provides data

which ensures the stability of the vehicle during the entire trajectory.

Figure 12: Flight path during a simulated flight over a group of buildings. The
vehicle flew at an altitude of 50 m and and buildings were as tall as 10 m. The vehicle
flew four times around the path indicated by the purple waypoints, for a total linear
distance of 560 m. The true path of the vehicle is shown in blue, and the final error
between the true position and navigation solution was 5 m.
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Figure 13: Plots illustrating the navigation solution (red) and GPS position (blue)
during a simulated flight over non-flat ground.
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CHAPTER IV

MINIMAL STATE UPDATE FOR MODULAR STATE

ESTIMATION

This chapter describes a novel modular filter which allows the previous vision-aided

navigation architecture to be used with a wide variety of navigation filters. This

architecture makes use of a theorem stating the minimum state information necessary

for the architecture, and is algebraically equivalent to standard EKF formulation

presented in Chapter 3. This theorem is general and can be applied to any modular

filter satisfying the given conditions.

The use of this architecture greatly simplifies integration of the vision-aided navi-

gation component of a complex navigation filter, and allows the vision component to

be designed independently of the rest of the filter.

4.1 Equivalent State Update

The following theorem describes how the full vehicle state estimator may be equiv-

alently updated by an update to part of the state and knowledge of the change in

state and covariance. Let the probabilistic estimate of the full system, system A, be

defined as

N (xA, PA). (50)

and the estimate of the partial system, system B, be

N (xB, PB). (51)

The following two assumptions are made about the relationship between systems

A and B:
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Assumption 4.1.1 For a given measurement z, the systems have associated mea-

surement matrices HA and HB.

z = HBxB = HAxA (52)

Assumption 4.1.2 The state vector xB is a linear combination of xA:

xB = HcxA (53)

Note that under Assumption 4.1.1 and 4.1.2 the following identities hold:

HAPAH
T
A = HBPBH

T
B (54)

HA = HBHc (55)

The following theorem describes the minimal state update.

Theorem 4.1.1 Given estimates (50) and (51), and associated measurement matri-

ces, and under assumption 4.1.1 and 4.1.2, then the following Kalman filter update

equations

xA(+) = xA(−) + PA(−)HT
A
(
HAPA(−)HT

A +R
)−1

(z −HAxA) (56)

PA(+) = PA(−)− PA(−)HT
A
(
HAPA(−)HT

A +R
)−1

HAPA(−) (57)

Can be equivalently expressed in terms of ∆xB and ∆PB given by

xB(+) = xB(−) + PB(−)HT
B
(
HBPB(−)HT

B +R
)−1

(z −HBxB) (58)

= xB(−) + ∆xB (59)

PB(+) = PB(−)− PB(−)HT
B
(
HBPB(−)HT

B +R
)−1

HBPB(−) (60)

= PB(−) + ∆PB (61)

with the following modified update equations:

xA(+) = xA(−) + PA(−)H̃T
(
H̃PA(−)H̃T + R̃

)−1
(z̃ − H̃xA) (62)

PA(+) = PA(−)− PA(−)H̃T
(
H̃PA(−)H̃T + R̃

)−1
H̃PA(−) (63)
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where

H̃ , LT
1 P
−1
B (−)Hc (64)

R̃ , −LT
1 P
−1
B (−)L1 −D−11 (65)

z̃ , H̃xA(−)−D−11 LT
1 ∆xB (66)

∆PB = LDLT =

[
L1 L2

]D1 0

0 0


LT

1

LT
2

 (67)

and LDLT is the diagonalization (eigenvalue decomposition) of symmetric matrix

∆PB.

Proof.

Consider the desired covariance update

PA(+) = PA(−)− PA(−)HT
A
(
HAPA(−)HT

A +R
)−1

HAPA(−) (68)

Applying Eq. (54) and (55) and dropping the “(−)” for clarity, gives

PA(+) = PA − PAHT
c H

T
B
(
HBHcPAH

T
c H

T
B +R

)−1
HBHcPA (69)

= PA − PAHT
c P
−1
B PBH

T
B
(
HBPBH

T
B +R

)−1
HBPBP

−1
B HcPA (70)

Inserting ∆PB,

PA(+) = PA + PAH
T
c P
−1
B ∆PBP

−1
B HcPA. (71)

The change in covariance ∆PB is symmetric positive semidefinite, so there exists

a eigendecomposition ∆PB = LDLT unique up to permutation of columns of L.

Furthermore, note that if ∆PB is not full rank, then with appropriate order of columns

of L,

∆PB = LDLT =

[
L1 L2

]D1 0

0 0


LT

1

LT
2

 = L1D1L
T
1 (72)
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where D1 is full rank. Inserting into Eq. (71),

PA(+) = PA + PAH
T
c P
−1
B L1D1L

T
1 P
−1
B HcPA. (73)

Now, applying definition (64) and letting

D1 = −
(
H̃PAH̃

T + R̃
)−1

(74)

gives desired form of update in Eq. (60). Solving for R̃,

R̃ = −LT
1 P
−1
B (−)L1 −D−11 (75)

Next, consider the state update, and applying Eq. (54), (52), and (55), inserting ∆xB

and applying definition (64),

xA(+) = xA + PAH
T
A
(
HAPAH

T
A +R

)−1
(z −HAxA) (76)

= xA + PAH
T
c P
−1
B PBH

T
B
(
HBPBH

T
B +R

)−1
(z −HBxB) (77)

= xA + PAH
T
c P
−1
B ∆xB (78)

= xA + PAH
T
c P
−1
B L1L

T
1 ∆xB (79)

= xA + PAH̃
TLT

1 ∆xB (80)

Setting LT
1 ∆xB =

(
H̃PAH̃

T + R̃
)−1

(z̃ − H̃xA) gives the desired form of the state

update. Then, inserting Eq. (74) and solving for z̃ gives

LT
1 ∆xB = −D1(z̃ − H̃xA) (81)

=⇒ z̃ = H̃xA −D−11 LT
1 ∆xB (82)

�

Theorem 4.1.1 describes the necessary transformations applied to the state and

covariance updates, ∆xB and ∆PB, performed on system B, in order to incorporate

the update into system A as a measurement update with a chosen form (within the

limits set by assumptions). Application of this theorem allows systemA to be updated
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with only limited information about the update of B. System A needs the following

information about the update to B: Updates ∆xB, ∆PB, and prior covariance PB(−).

Additionally, system B can limit the state vector to only those states required by the

measurement model.

4.2 Modular Vision-aided Navigation

An example of Theorem 4.1.1 applied to a vision-aided inertial navigation system is

presented in the following section. The presentation highlights the key advantage of

this architecture; the vision-aiding system system B. is independent of changes in the

structure of the primary navigation system, system A. Furthermore, the vision-aiding

system update is incorporated into the primary navigation system as a measurement

update, and can be designed independently.

The primary navigation system state vector is composed of vehicle position, atti-

tude, and velocity as well as sensor states for bias and scale factor estimation. These

additional states can be dynamically added to or removed from the state vector in

accordance with availability of a particular sensor. Let the state vector be defined as

xA =

[
p R v . . . < otherstates > pf

]
. (83)

The linearized measurement model for feature measurements is dependent on vehicle

states alone:

HA =

[
∂z
∂p

∂z
∂R

0 . . . 0 ∂z
∂pf

]
=

[
HAv HAf

]
∈ R2×NA (84)

As described int Chapter 3, correlations between the features and the state are ig-

nored, and the covariance of system A is given by

PA =

PAv 0

0 PAf

 (85)

The vision module performs the state update described in Chapter 3. Propagation

is performed in the primary navigation system and when new vision data becomes
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available, the required information is passed to the vision module. The information

necessary to perform the update is dependent on the choice of vehicle state vector

for the vision module, which in turn is dependent on satisfying Assumptions 4.1.1

and 4.1.2. For the vision module vehicle state vector, we choose only those states

from xA on which the measurement module depends. This gives a state vector and

measurement matrix

xB =

[
p R pf

]
(86)

HB =

[
∂z
∂p

∂z
∂R

∂z
∂pf

]
=

[
HBv HBf

]
∈ R2×(6+3Nf ) (87)

which satisfies Assumption 4.1.1. We now note that Assumption 4.1.2 is satisfied

with the following definition of Hc

Hc =

 I6 0 . . . 0

0 0 . . . I3Nf

 =

Hcv 0

0 Hcf

 ∈ R(6+3Nf )×NA (88)

xB = HcxA (89)

The feature states are updated as before, and the update of xB and associated covari-

ance PB is performed as described in Theorem 4.1.1. The following values are passed

to the primary navigation system, where the primary state and covariance update is

constructed according to Eq. (64)-(67).

∆PB =

∆PBv 0

0 ∆PBf

 (90)

PB(−) =

PBv(−) 0

0 PBf (−)

 (91)

∆xB (92)

The corresponding update of system A then occurs according to Theorem 4.1.1.

Due to the neglect of feature-vehicle correlations, only the updates to block diagonal
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terms PAv and PAf
need be considered. In terms of variables passed from system B

the updates are given by

PAv(+) = PAv(−) + PAv(−)HT
cvP

−1
Bv (−)∆PBvP

−1
Bv (−)HcvPAv(−) (93)

PAf
(+) = PAf

(−) + PAf
(−)HT

cf
P−1Bf (−)∆PBfP

−1
Bf (−)HcfPAf

(−) (94)

Now, noting that by Assumption 4.1.2 the following equivalence holds,

PB = HcPAH
T
c (95)

we find that the prior covariances for the feature states are equal

PAf
(−) = PBf (−) (96)

We then apply this to Equation (94).

PAf
(+) = PAf

(−) + PAf
(−)HT

cf
P−1Bf (−)∆PBfP

−1
Bf (−)HcfPAf

(−) (97)

= PBf (−) + PBf (−)I3Nf
P−1Bf (−)∆PBfP

−1
Bf (−)I3Nf

PBf (−) (98)

= PBf (−) + ∆PBf (99)

Therefore the posterior covariances are also equal

PAf
(+) = PBf (+) (100)

We only need to store this information once, and so in practice the feature states and

covariances are stored and updated only in system B, saving computation time.

Note that the dynamic modification of state vector xA, such as the addition or

removal of states, does not affect the design of system B or the information that is

exchanged between the systems. The independence of the the system is a key feature

which allows ease of integration into complex filter architectures.

4.3 Results

The following section presents results based on recorded sensor data using the mod-

ular filter architecture. The sensor data was gathered for the DARPA all-source po-

sitioning and navigation (APSN) program, and is from test scenario 19. In addition
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to corresponded features, sensor data is was available from an inertial measurement

unit, terrain reference altimeter, barometric altimeter, and magnetometer. The IMU

is has a nominal acceleration bias of 1 milligee, and a gyroscopic drift of 2 deg/hr.

Figures 14 - 16 compare results of the navigation system running with vision

updates and without. Figure 14 shows the result of the navigation system running

without vision, along with 2σ uncertainty bounds. Figure 15 shows the result of

the navigation system running with vision, along with 2σ uncertainty bounds. Note

that the uncertainty of the navigation solution is highly overconfident due to the as-

sumption of uncorrelated features and vehicle states, but the estimate is improved

compared to the unaided estimate. Figure 16 shows the top-down view of the nav-

igation trajectories and the ground truth estimated from GPS-INS solution. Error

statistics from both cases are listed in Table 1.

Table 1: Error statistics for navigation solutions with and without vision-aiding.

Horizontal Error Statistics

no vision vision

Linear distance [m] 38869 38869
RMS 3D Error [m] 136.04 106.57
RMS 3D Error per linear distance 0.35 % 0.27 %
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Figure 14: Attitude error (a) and position error (b) with 2σ bounds of navigation
solution without vision aiding.
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Figure 15: Attitude error (a) and position error (b) with 2σ bounds of navigation
solution using modular vision aiding.
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CHAPTER V

VISION-AIDED NAVIGATION USING A FACTORED

EXTENDED KALMAN FILTER

In this chapter, a state estimation algorithm is presented which captures the corre-

lations between features and vehicle states. In contrast to the previous algorithm, a

fully populated covariance matrix for all vehicle and features states is propagated and

updated with new sensor information. It is shown that the primary benefit of this

approach is a more accurate estimate of the uncertainty, which in turn improves its

behavior in the presence of additional sensors. By accurately estimating the growth

of position uncertainty as features are added and removed from the state vector, abso-

lute measurements of position, such as from a GPS measurement, will appropriately

move the vehicle estimate, the feature estimates, and their associated uncertainties.

When feature and vehicle correlations are not tracked, an absolute position update of

the vehicle will not modify the feature states, and the poor vehicle covariance estimate

can cause slow convergence of the vehicle to the true estimate.

The algorithm is implemented within a Bierman-Thornton EKF (BTEKF) for-

mulation [17], which maintains the covariance of the estimator in a factored form

for improved numerical stability. The BTEKF formulation is of importance in this

application because the relative nature of vision-aided estimation without known fea-

tures may cause covariances with large condition number over large time intervals

and distances.
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5.1 State Vector Definition

For the fully correlated estimation algorithm, the vehicle and feature states are defined

as described in Ch. 2. The dynamic model and measurement model are also defined

as in Ch. 2. The state vector of the system is composed of the vehicle state and the

feature states:

x̂ =

[
x̂v p̂f

]T
∈ RNv+NfsNf (101)

=

[
p̂i v̂i R̂ ŝb ω̂b p̂f1 . . . p̂fNf

]T
(102)

where Nv and Nf are the number of vehicle states and features, respectively, and

Nfs is the number of states to describe a single feature. The covariance of the state

vector is given by P ∈ R(Nv+NfsNf )×(Nv+NfsNf ), though it is not explicitly tracked in

the BTEKF.

5.2 Bierman-Thornton Extended Kalman Filter

The Bierman-Thornton EKF is a modification of the standard EKF formulation which

maintains the estimator covariance in a modified Cholesky factorization. It is com-

posed of the Bierman propagation equations and Thornton update equations. Effi-

cient algorithms for computing the resulting covariance factors are available [17].

5.2.1 Thornton Propagation Equations

The BTEKF stores the covariance factors U and D, where U is an upper triangular

matrix with unit diagonal entries, and D is a diagonal matrix. The factors relate to

the covariance matrix by

P = UDUT. (103)

The Thornton propagation equations for timestep k − 1 to k are given below. Let Q

be the process noise and Φ be the state transition matrix for the discrete dynamic
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system. Then the propagated covariance is given by

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1. (104)

Rewriting this in terms of factors U and D gives

Uk(−)Dk(−)Uk(−)T =

[
Φk−1Uk−1(+) I

]Dk−1(+) 0

0 Qk−1


Uk−1(+)TΦT

k−1

I

 .
(105)

Factoring terms on the right side,Uk−1(+)TΦT
k−1

I

 = BL (106)

where B is an orthogonal matrix and L is lower triangular. Comparing the result to

the left side of Eq. (105) gives

Uk(−) = LT (107)

Dk(−) = BT

Dk−1(+) 0

0 Qk−1

B (108)

The propagation of factors U and D is therefore a matrix factorization problem.

Propagation of the state vector proceeds according to the nonlinear dynamic equations

presented in Ch. 2.

5.2.2 Bierman Measurement Equations

The Bierman measurement update equations update the covariance factors to account

for new measurement. The equations assume a scalar measurement. In standard

EKF, the covariance update is given by

P (+) = P (−)− P (−)CT
(
CP (−)CT +R

)−1
CP (−). (109)

53



Rewriting in terms of U and D and dropping the (−) for clarity gives

U(+)D(+)U(+)T (110)

= UDUT − UDUTCTCUDUT

CUDUTCT +R
(111)

= U

[
D − DUTCTCUD

CUDUTCT +R

]
UT. (112)

Now, consider the factor in brackets. If this can be factored into its modified Cholesky

form,

D − DUTCTCUD

CUDUTCT +R
= UaD(+)UT

a , (113)

where Ua is an upper triangular matrix, then inserting in to Eq. (112) gives

U(+)D(+)U(+)T = U
[
UaD(+)UT

a

]
UT (114)

= [UUa]D(+) [UUa]
T (115)

and it can be seen that the updated diagonal matrix D(+), and U(+) is given by

U(+) = UUa (116)

Additionally, the Kalman gain K is easily computed from U(−) and D(−) and used

to update the state vector.

5.3 Marginalization and Initialization in the
Bierman-Thornton EKF

The initialization and marginalization of features in the BTEKF is more difficult

than the standard EKF formulation due to the factored form of the covariance. In

the standard EKF, all terms contributing to the correlation of a particular state are

contained in the row and column corresponding to its location in the state vector.

However, it will be shown that in factored form, the values in diagonal matrix D

contributes to all state correlations. In the following section, the initialization of a

new feature and its covariance in the BTEKF is expressed as a factorization problem,
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and this problem turns out to be of identical form to the Thornton propagation

problem, allowing the same algorithm to be used.

Consider full covariance matrix P for state vector x. Since the initialization occurs

during a single timestep k, the subscripts will be omitted. Let x be divided into three

parts, and P divided correspondingly.

x̂ =

[
x̂1 x̂2 x̂3

]
(117)

P =


P1 P12 P13

PT
12 P2 P23

PT
13 PT

23 P3

 (118)

by extension, the modified Cholesky factors are given by

U =


U1 U12 U13

0 U2 U23

0 0 U3

 , D =


D1 0 0

0 D2 0

0 0 D3

 (119)

Consider the case where we wish to marginalize and initialize a subset of states,

x2, in the middle of the state vector. We wish to initialize the state vector xTnew =[
xT1 , xT2new

, xT3
]T

. Typically, the desired new feature is known in terms of a mea-

surement and possibly a prior.

x2new = g(x1, x2init
, x3) (120)

In the particular case of a feature, the function g(·) would represent the inverse

camera model, and x2init
the feature location in the image, (u, v) and a depth prior,

d. Associated with the initialization state x2init
is an uncertainty covariance Rinit.

We can now define a state covariance in terms of the marginalized state covariance

and Rinit.

P0 =


P1 0 P13

0 0 0

P13 0 P3

+


0 0 0

0 Rinit 0

0 0 0

 (121)
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Written in terms of covariance factors U and D,

P0 =


U1 U12 U13

0 0 0

0 0 U3



D1 0 0

0 D2 0

0 0 D3



U1 U12 U13

0 0 0

0 0 U3


T

+


0 0 0

0 Rinit 0

0 0 0


(122)

= ŪDŪT + R̄init (123)

The covariance matrix P0 corresponds to state vector xinit =
[
xT1 , xT2init

, xT3
]T

. To

find the covariance corresponding to xnew, the Jacobian of the state transformation

is found:

J =
∂xnew
∂xinit

=


I 0 0

∂x2new

∂x1

∂x2new

∂x2init

∂x2new

∂x3

0 0 I

 (124)

Then the updated covariance factors can be found with the same process as the

covariance propagation, described in Section 5.2.1.

UnewDnewU
T
new = J

(
ŪDŪT + R̄init

)
JT (125)

= J̄D̄J̄ (126)

= LT︸︷︷︸
=Unew

BTD̄B︸ ︷︷ ︸
=Dnew

L (127)

where J̄ =
[
JŪ, J

]
, D̄ = diag(D, R̄init), and B and L are the QR factors of J̄T. The

matrices J and R̄init may be created for all initializing features, and the factorization

can occur once. This method of feature initialization allows the use of the BTEKF

implementation without costly reconstruction and re-factorization of the covariance

from the factors.

5.4 Results

This section presents the simulation and flight test results for the fully correlated

vision-aided navigation system described in this chapter. First is presented the results
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of a Monte Carlo simulation study, which demonstrates the benefit of the Bierman-

Thornton EKF visual SLAM implementation over standard and Joseph-form. Next,

simulation and flight test results are presented for the GTMax platform, which demon-

strate the improved numerical stability, the low position drift, and validate the algo-

rithm in a closed-loop test. Finally, results of an implementation of the system on a

small quadrotor are presented.

The GTMax platform and model are used in several of the presented results, and

is essentially the same as described in Chapter 3. The most significant difference

is the use of a single computer based on the Intel i7 mobile processor. The single

computer runs two processes, one for guidance, navigation and control and another for

feature and descriptor extraction. Image features and descriptors are generated using

SIFT features [31] or a modified Harris corner detector. The simulation platform is

described in Chapter 3.

5.4.1 Monte Carlo Analysis of UD and Standard EKF

This section describes a series of simulations comparing the numerical consistency

of Bierman-Thornton EKF, Joseph-form EKF, and standard EKF. The simulation

scenario in these tests is a downward-facing camera moving above a surface and

looking at a grid of feature points. The filters estimate the camera position, attitude

and velocity as well as feature locations. Each filter is run with identical input data

and the results are compared over a series of progressively more poorly conditioned

filtering problems.

Two simulation series are performed: one with a high assumed measurement un-

certainty, and another with an low assumed measurement uncertainty. The high

measurement uncertainty assumes a camera resolution typically found on today’s

real-time slam algorithms, and measurement accuracy of extracted feature points to

pixel accuracy. The low measurement uncertainty assumes a much larger camera
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resolution, approaching the largest resolution easily available on the market today.

The low measurement uncertainty cases also assume perfect knowledge of the best

linearization point, to exclude failures caused by linearization. The low measure-

ment uncertainty series shows what a filtering algorithm might have to handle from

a speculative future sensing platform.

5.4.1.1 Filtering Setup

The standard EKF and Joseph-form EKF are both implemented using the equations

outlined in Section 2.1. The state integration was performed using a Adams-Bashforth

method, which is similar to the two stage Runge-Kutta.

Measurement updates for all filters are performed using sequential scalar updates.

The measurement model assumes a feature noise covariance R, though no noise is

applied to the feature point measurements in the simulation. The plant model given

by f(x) is a simple propagation of inertial measurement unit data. The IMU noise is

drawn from a Gaussian distribution for each of the Monte Carlo runs, but is identical

for each filter. The feature correspondence is known.

In the high measurement noise case, the measurement Jacobian C is defined as

usual for an EKF,

C =
∂h(x)

∂x x=x̂k|k−1

(128)

However, it has been shown in Hesch et al. [20] and previous works that the lin-

earization of the Jacobian is often a source of filter overconfidence and inconsistency.

Errors in the estimate, and hence the linearization point of the Jacobian, contribute

fictitious information to the filter and change the observability properties of the sys-

tem. In an ideal world, the Jacobians would be evaluated at the true system state,

not the state estimate. Of course, this information is not generally available. Instead,

the updates and propagation can be constrained such that observability properties

match the true observability characteristics of the nonlinear system.
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Figure 17: Example trajectory and solution for a single simulation run.

Since observability is not our main focus, we have approximated the technique of

Hesch et al. by evaluating our Jacobians at the true state for the low measurement

uncertainty series of Monte Carlo tests:

Cideal =
∂h(x)

∂x x=xk−1

(129)

This allows us to show a best case scenario, where the observability properties are

ideal, and the linearization is the best possible.

5.4.1.2 Test environment

The simulated camera follows a trajectory at an altitude of 100 ft over a grid of points.

The grid and camera trajectory are shown in Figure 17, along with the navigation

result from a single run. The propagation takes place at 100 Hz, and the camera

updates at 20 Hz.

For each series, test points were chosen over a range of initial position covariances.

At each test point, ten Monte Carlo simulations were run with different noise vectors

drawn from the same Gaussian distribution function. The UD filter and standard filter
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were run on identical noise vectors and the results recorded. Table 2 summarizes the

results of the tests.

Table 2: Summary of results from Monte Carlo comparison of EKF implementations.

Test Series Position covariance at which failure first occurs,
for each EKF implementation

Standard Joseph-form Proposed

High R: R = 10−6 1× 1011 1× 1010.5 1× 1012.5

Low R: R = 10−10 1× 106 1× 106 1× 109

5.4.1.3 Test with high measurement covariance

The results of the high measurement covariance test are presented in Figure 18. A

criterion for the failure of the navigation solution was chosen to be an RMS estimation

error greater than 1 ft, approximately an order of magnitude greater than the best

run. Failure was typically associated with very large RMS error, on the order of

103 ft or more. The plots show the percent of the ten Monte Carlo runs that were

successful. It can be seen that both the standard and Joseph-form filters deteriorate

at approximately the same P0 value. The Bierman-Thornton EKF remains stable up

to P0 value of approximately 2 orders of magnitude greater.

5.4.1.4 Test with low measurement covariance

The results of the test are presented in Figure 19. Each plot line indicates the percent

of successful runs out of the 10 Monte Carlo runs taken for a given initial position

covariance, P0, indicated along the x axis. Note that the values for initial position

covariance are shifted down with respect to Figure 18, because failure occurs sooner

as the measurement covariance decreases. This indicates that in the future, numerical

stability will become more important. Again, it is clearly seen that as the conditioning

worsens, the standard EKF and Joseph-form fail earlier than the UD filter, by about

three orders of magnitude in initial covariance.
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Figure 18: Percent of successful Monte Carlo runs for each initial condition, for the
standard EKF, Joseph-form EKF, and the Bierman-Thornton EKF. Measurement
standard deviation of .001 of image width.

61



  1e+04  1e+05  1e+06   1e+07  1e+08   1e+09  1e+10   1e+11  1e+12   1e+13  1e+14   1e+15

0

20

40

60

80

100

Horizontal Position P
0
 Values (ft2)

%
 S

ta
b

le
 M

o
n

te
 C

ar
lo

 R
u

n
s 

 (
R

M
S

 E
rr

o
r 

B
el

o
w

 1
.0

 f
t)

 

 

Standard EKF

Joseph Form EKF

Bierman Thornton

Figure 19: Percent of successful Monte Carlo runs for each initial condition, for the
standard EKF, Joseph-form EKF, and the Bierman-Thornton EKF. Measurement
standard deviation of .00001 of image width.
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5.4.2 Demonstration of Improved Numerical Stability in GUST

To demonstrate the improved numerical properties in a flight-ready executable, the

BTEKF was compared to a standard EKF in GUST. The standard EKF was imple-

mented as described in Section 2.1. A state vector of 15 vehicle states and 16 features

was used, giving a full state vector of 63 states in the form described in Chapter 5.

The filter was initialized with a diagonal matrix P0, and a diagonal process noise

Q was used. The initial covariance is given in Table 3. Camera and magnetometer

sensors were used.

Table 3: Initial covariance of the state vector.

Initial Covariance

φ, θ 2× 10−9 rad2

ψ 0.1 rad2

px, py, px 5× 1011 ft2

vx, vy, vx 0 (ft/s)2

abx, aby 1 (ft/s2)2

abz 2× 10−6 (ft/s2)2

ωb 2× 10−8 (rad/s)2

Features Computed

Figures 20 and 21 illustrate the operation of the filter, during initialization until

5 seconds, and then in full operation afterwards. Figure 20 shows the root-mean-

squared position error for the two filters. It can be seen that the unfactored standard

EKF implementation quickly diverges about 5 seconds after the end of the initial-

ization routine, while the factored BTEKF remains accurate. Similarly, in Figure 21

the state variances of the unfactored standard EKF quickly become unreasonable,

whereas the factored BTEKF is stable throughout.

The failure of the standard EKF is directly related to numerical problems which

do not occur in the BTEKF. Also, the standard EKF fails at an initial position

covariance that agrees with the Monte Carlo study presented in Section 5.4.1.

The average computation time for the covariance propagation was measured over
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Figure 20: Position RMS error for the standard EKF (unfactored) and the BTEKF
(factored). Filter initialization ends at 5 seconds.

60 s of filter operation for both implementations. The simulation was run on a

desktop computer with a Core i7 processor. The results are presented in Table 4. The

BTEKF propagation was found to be on average slightly more efficient at propagating

the covariance than the standard EKF. It should be noted that no special effort was

made to make the standard EKF efficient, and that a more in-depth comparison would

take greater advantage of sparsity in both the standard EKF and BTEKF algorithms.

However, since many implementations of the standard EKF are in precisely this form,

it is still a useful comparison.

Table 4: Average computation time over 60 s of operation for one covariance propa-
gation for BTEKF and standard EKF.

Propagation Time

BTEKF 0.00211 s
Standard EKF 0.00262 s
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Figure 21: Position and attitude covariance for the standard EKF (unfactored) and
the BTEKF (factored). Filter initialization ends at 5 seconds.
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Figure 22: Horizontal position of vehicle as given by vision-based navigation posi-
tion states (red dashed line) and simulation truth data (blue solid line) of the GTMax
during a simulated flight of an oval trajectory. The total distance flown was approx-
imately 1600 m.

5.4.3 Simulated Navigation Performance

The BTEKF was evaluated in simulation flying an oval trajectory. The GTMax flew

four laps of an oval trajectory at 30 ft/s velocity and an altitude of 100 ft. The

BTEKF vision-aided navigation solution was used in the controller loop in real time.

Vision data was simulated by overlaying satellite maps on the simulation ground, and

capturing images from rendered graphics from the camera location. SIFT features[31]

were used.

Figures 22, 23, and 24 show the results from the simulation. Figures 23 and 24

show the error between the simulation truth states and the navigation output. Also

shown are 2σ uncertainty bounds. Is is apparent that the navigation solution remains

consistent with the uncertainty throughout the test. Figure 22 shows the trajectory

of the vehicle and the navigation estimate. Table 5 shows some performance statistics

from the simulated flight.
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Figure 23: Horizontal position error and 2σ-covariance of vision-aided navigation
system of the GTMax during a simulated flight of an oval trajectory. The final
horiontal position error was 9.7 m.
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Figure 24: Attitude error and 2σ-covariance of vision-aided navigation system of the
GTMax during a simulated flight of an oval trajectory.
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Table 5: Horizontal error statistics for the simulated oval trajectory using vision-
aided navigation.

Horizontal Error Statistics

Distance [m] 1575
RMS Error [m] 5.5
RMS Error per linear distance 0.35 %
Final Error [m] 9.7
Final Error per linear distance 0.61 %

5.4.4 Flight Test Results

The BTEKF SLAM navigation system was flight tested on the GTMax platform in

three separate tests. The navigation system provided input to the vehicle controller,

which tracked an oval trajectory defined by an operator. The navigation system was

operated with a controller in the loop, and important validation criteria because of

the highly non-linear nature of the SLAM navigation.

The sensors available to the navigation system were as follows: camera, capturing

images at 57.66 fps and 320×240 resolution, magnetometer at 10 Hz, IMU at 100

Hz. Also, the absolute altitude of the vehicle was measured either with a baromet-

ric pressure sensor or was simulated with differential GPS altitude above a datum.

Horizontal differential GPS was recorded for comparison, but was not used in the

navigation solution. Harris corner features were used, and an 11 × 11 pixel window

around each feature was used as a descriptor, as described in Section 3.3. Figure 25

shows examples of images from the camera used during the tests.

The quantitative results from three separate tests are shown in Table 6. The

results from test 1 and 2 were taken with GPS altitude in the solution, and test 3

used pressure altitude. The error and % error is low and in agreement across all tests.

Figures 26, 27, and 28 show results from Test 3. An annotated video of the

test can be found at http://uav.ae.gatech.edu/videos/g150317a1_noGPS.mp4.

Figure 26 shows a image of the planned trajectory as seen from the ground station
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during the test. Figure 27 shows the navigation solution along with the GPS sensor

data. The trajectory of the vehicle agrees with the GPS sensor data in general with

a moderate amount of drift in the solution. Also the results are very similar to what

was predicted in simulation in Section 5.4.3 Figure 28 shows the horizontal error plots

between the navigation solution and the GPS data, as well as the 2σ error covariance.

The altitude of the vehicle above the datum is shown for reference. The error is shown

to be consistent with the covariance.

Table 6: GTMax Flight test results for oval trajectory.

GTMax Flight Test Results

Test 1 Test 2 Test 3
(GPS Altitude) (GPS Altitude) (baro Altitude)

Time [s] 200 155 120
Linear Distance [m] 1163 951 768
Horizontal RMS Error [m] 5.51 5.51 3.09
RMS Error per linear distance 0.47 % 0.58 % 0.40 %
Final Error [m] 3.88 6.35 3.37
Final Error per linear distance 0.33 % 0.67 % 0.44 %
Video hyperlink1 hyperlink2

1http://uav.ae.gatech.edu/videos/g140624_visionBased_oval.mp4
2http://uav.ae.gatech.edu/videos/g150317a1_noGPS.mp4

(a) (b) (c) (d)

Figure 25: Example images from the camera, showing typical image texture during
the flight test.
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Figure 26: Image from ground control station during flight of oval trajectory. Yellow
trace shows the navigation solution. Blue trace shows the GPS data. Purple line
indicates the commanded trajectory.
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Figure 27: Horizontal navigation solution and differential GPS data for autonomous
flight with controller in the loop.
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Figure 28: Horizontal position error of navigation solution from GPS truth for au-
tonomous flight with controller in the loop. Altitude is shown for reference.

5.4.5 Miniature Quadrotor Flight Tests

The vision-aided navigation system presented here was also implemented on a small

quadrotor platform. The implementation highlights the use of the vision-aided system

on a lightweight vehicle with significant payload constraints. The payload constraints

limit the amount of onboard processing power and sensors available to the navigation

system.

The quadrotor is equipped with three sensors: A MEMS-grade IMU, a monochrome

camera, and a sonar. The MEMS-grade IMU is an InvenSense MPU-60501, and pro-

vides filtered specific force and angular velocity measurements at 100 Hz. The camera

is a Point Grey2 Firefly MV, capturing monochome images in 320×240 resolution at

70 Hz. The sonar is a Maxbotix3 LV-MaxSonar-EZ4, reporting at 10 Hz with a tested

1http://www.invensense.com
2http://www.ptgrey.com/
3http://www.maxbotix.com/
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Figure 29: The GTQMini, a quadrotor equipped with an IMU, sonar and camera
and a Core i7 based computer weighing less than 600 g.

operational range from 20 cm to over 400 cm. The sensor data is processed onboard

the vehicle on a GigaByte4 Brix BXi7-4500U single board computer with an Intel5

Core i7-4500U 1.8GHz/3.0GHz processor. The entire vehicle weighs less than 600 g.

Figure 29 shows a picture of the vehicle.

The GTQMini was tested in an indoor environment with a motion capture system

as ground truth. The vehicle was tasked to fly over 4 laps of an oval trajectory of

approximately 1 m by 2 m. The trajectory is illustrated in Figure 30, along with

the navigation solution and the commanded trajectory. It is clear from the figure

that the majority of the error occurs due to drift in yaw. This is further confirmed

in Figure 31. The position error remains within the 2σ error bounds as expected.

The yaw error, however, drifts beyond the expected error. This is likely due to the

spurious information gain caused by linearizations in the EKF, as identified in Hesch

et al. [20]. A similar modification to the one proposed there could be applied.

A second test of the vehicle was carried out to test the behavior of the navigation

solution over longer trajectories. Due to the environment, no ground truth data

4http://www.gigabyte.us/
5http://www.intel.com/
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Figure 30: GTQMini trajectory during four laps of a small oval. The majority of
the navigation error is caused by yaw drift.
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Figure 31: GTQMini error in the unobservable modes of the system, horizontal
position and yaw. The horizontal position remains within the 2σ error bounds, but
yaw does not.
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was available throughout the flight. Instead, the final position was measured and

compared to the navigation solution. The trajectory was flown at a speed of 0.9 m/s

(3 ft/s) and an altitude of 0.9 m (3 ft). The vehicle was commanded to fly out and back

to a waypoint 10 m in front of the vehicle. This trajectory was flown twice, without

removing the error between runs. The final Euclidian distance from the starting

location after the first and second circuits were 0.6 m and 1.2 m, giving an average

error accumulation of 0.6 m per 20 m round trip. Figure 32 shows a frame from the

flight test. A video of the flight test can be found at http://youtu.be/GGqexQy-FgE.

Figure 32: Frame from visual SLAM flight test. Both the flight and the view on the
Ground Control Station (GCS) are displayed. The white spheres in the GCS window
show the matched features used for the navigation system. A video of the flight test
can be found at http://youtu.be/GGqexQy-FgE.
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CHAPTER VI

CONTRIBUTIONS AND FUTURE RESEARCH

6.1 Contributions

This thesis has presented an uncorrelated V-INS system and evaluated its performance

with flight testing. A novel modular implementation of this algorithm was presented

which allows integration with a variety of filters. Finally, an algorithm using fully

correlated feature and vehicle states was developed, based on the Bierman-Thornton

factored EKF. The BTEKF algorithm in particular highlighted the numerical stability

of the approach, and illustrated the benefit of accurately accounting for the covariance

of vehicle and feature states.

In particular, the following contributions were made:

i) Development of a practical EKF-based V-INS which ignores feature-vehicle cor-

relations. A vision algorithm with low computational requirements is demon-

strated that is capable of stabilizing the helicopter over long periods and long

trajectories. Correlations between features and vehicle state are ignored, which

degrades consistency but maintains usable estimates and low computational

burden. Key improvements to feature correspondence and database manage-

ment are described.

ii) Development and application of a theorem allowing the integration of Kalman

filter updates with limited shared information. The theorem describes a novel

way of combining two separate filters such that the combination is equivalent to

a single standard implementation. This allows greater flexibility in integration of

filter modules. The demonstration of it in a modular filter architecture validates

the approach.
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iii) Development of a novel implementation of a fully correlated V-INS in a fac-

tored EKF formulation, with efficient feature marginalization and initialization.

The use of fully correlated feature and vehicle states dramatically improves the

consistency of the filter, especially in position. This improvement allows better

integration with additional absolute sensors which might be found on a UAV,

such as GPS. The improved consistency also allows the position uncertainty

to grow arbitrarily large over time, as should be the case in a relative navi-

gation framework. The implementation in a factored framework improves the

numerical stability of the filter even in the presence of the large position uncer-

tainty, and does so with minimal additional computational load compared with

a standard EKF implementation.

iv) Monte Carlo analysis of the numerical stability of the proposed algorithm, and

demonstration in flight code. Numerous tests were performed to quantify the

benefits of the factored EKF. The Monte Carlo analysis demonstrates a 2 to 3

order of magnitude improvement in the size of the position uncertainty over the

standard and Joseph-form EKF. In addition, the demonstration in the flight

code shows that this improvement carries over to real-world scenarios. Finally,

the recorded propagation times show that the factored framework poses min-

imal additional computational burden over a naive standard implementation,

agreeing with the literature.

v) Simulation and flight test results showing the performance of the navigation al-

gorithms with a controller in the loop on multiple vehicles, indoors and outdoors.

Simulations were performed to validate all proposed algorithms. The navigation

algorithms were operated both open loop (in the case of the modular filter in

Chapter 4) and, more importantly, with a controller in the loop. The use of a

controller in the loop is an important validation criteria due to the nonlinearity
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of the estimation problem and the potential for controller-navigation coupling.

Flight test results were presented for three extended flights of the GTMax ve-

hicle. The navigation system had less than 1% RMS error in all tests. Finally

the same navigation system was implemented on a small quadrotor vehicle and

demonstrated in indoor flight.

6.2 Conclusions

This thesis has described several algorithms for performing monocular vision-aided

inertial navigation on a UAV. This research advances the state of the art by improving

the reliability and flexibility of V-INS. Reliable GPS-denied navigation will open new

frontiers of applications for UAVs, allowing them to take on more tasks that are dull,

difficult, dangerous, or impossible for human actors.

Several conclusions can be drawn from the results of this thesis. In particular,

the contrast between the algorithm with ignored correlations, described in Chapter 3

and the algorithm with full correlations, described in Chapter 5, illustrates the roll of

correlations in the navigation system. Correlations between features and vehicle states

capture the relative nature of the navigation system. The navigation system estimates

the vehicle state relative to the features, but no absolute position information is gained

from feature measurements. It is the correlations between features and vehicles which

account for this fact.

Marginalization and initialization in the BTEKF was shown to have a convenient

form. The form allows for efficient implementation of adding and removing features

within the visual SLAM system, but it is not limited to this application. The form

may be leveraged for modifying the state and covariance vector for whatever purpose.

The results of the Monte Carlo analysis of numerical stability illustrates the im-

portance of the use of stable algorithms. This is especially true as sensing platforms

improve and measurement covariances decrease.

77



Finally, the practicality of vision-aided inertial navigation for UAVs is demon-

strated in a variety of real-world scenarios. The contributions of this thesis increases

the ease of implementation on practical systems, improve the robustness of visual

navigation, and improves the compatibility with other sensors. Immediate use of in-

formation to update both features and vehicle eliminate delay in creation of map and

exploration.

6.3 Future Work

There are topics that are considered promising future directions to pursue.

i) Evaluation of alternate filtering techniques. The EKF is one among many non-

linear filtering paradigms, and it is by no means guaranteed to be the best for

the V-INS problem. In fact, there are good reasons to believe that, due to the

highly nonlinear measurement function, that other filter designs or nonlinear

optimization techniques may be better suited to the problem. The sigma-point

EKF in particular is of interest, and has been used successfully in loosely-

coupled V-INS systems in the past[3]. Also, comparison to other numerically

stable methods such as the square root information filter and square root filter

would be beneficial.

ii) Extension of marginalization and initialization techniques to other decomposi-

tions and applications. The ideas used in processing the marginalization and

initialization of features can be applied generally to modifications of the U and

D factors in the Bierman-Thornton EKF. Extensions for combining operations,

such as initialization and propagation, may yield some computational benefit.

It may also be possible to extend these results to other factorizations, such as

the Potter square root filter or the square root information filter.

iii) Application of observability constraints to the BTEKF estimator. It has been
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shown [21, 20, 35] using various observability analysis techniques that V-INS

systems are not fully observable, and that designing the estimator to account

for this fact can improve estimator consistency. Implementation on a UAV with

a controller in the loop would validate these advantages on a typical system.

iv) Investigation of batch methods such as bundle adjustment. Full bundle adjust-

ment, using all locations and feature observations, provides the optimal solution

to the SLAM problem but is typically computationally intractable for real-time

systems[47]. Methods have been proposed to approximate the full bundle ad-

justment problem by using key frames and performing the mapping in non real-

time [27, 51], or to perform bundle adjustment in real time with one keyframe

and an uncertainty prior [13]. Applying non-linear optimization techniques has

the potential to improve consistency and reduce error.

v) Investigation of techniques to improve V-INS over long time periods and dis-

tances. A variety of methods for sub-map joining and optimization have been

proposed in the computer vision community [13, 56], but few have been imple-

mented on aerial vehicles or vehicles with controllers in the loop. Incorporating

a secondary optimization over a collection of submaps and poses could improve

accuracy of the navigation system, allow for loop closures, and generate maps

of the environment which would aid in mission tasks.

The research goals presented here will significantly advance the state of the art in

monocular vision-aided inertial navigation for UAVs.
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