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SUMMARY 

The complexities of our surrounding environments are becoming increasingly 

diverse, more integrated, and continuously more difficult to predict and characterize. 

These modeling complexities are ever more prevalent in System-of-System (SoS) 

simulations where simulation run times can surpass real-time and are often dictated by 

stochastic processes and non-continuous emergent behaviors. As the number of 

connections continue to increase in modeling environments and the number of external 

noise variables continue to multiply, these SoS simulations can no longer be explored 

with traditional means without significantly wasted computational resources. 

This research will discuss the defining features of an SoS and many of the issues 

plaguing the SoS industry. Then, it will move to a literature review of the concepts 

currently used to explore design spaces, and finally, it will explore a set of two cascading 

research areas which will culminate in an adaptive sequential design of experiments for 

SoS simulations.  

The first research area will investigate the key features to SoS and the attributes of 

these SoS which are important to be identified while exploring their simulations. To 

complete this investigation, first SoS properties are deduced from SoS’s relationship to 

its super-class, complex systems. Second, following this examination, properties are 

further induced by investigating notional SoS simulations. From these two research 

avenues it will be discovered these spaces are nonparametric, conditionally variant, non-
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normally and non-identically distributed. Further, attributes of the output metrics are 

identified that will increase the likelihood of locating interesting regions of SoS 

simulations.  

The knowledge and information gained from this first research focus is used in 

developing and comparing existing techniques capable of capturing SoS attributes. 

Several methods from the literature are compared on numerous stochastic mathematical 

problems and a single notional SoS simulation to determine their relative performance. 

From this comparison it will be shown that there are currently no methods capable of 

learning both the mean and variance of these complex spaces. Although the best method 

will be shown to be the MARS algorithm for generic high dimensional stochastic 

problems, it will be shown to be inadequate for SoS simulations.   

Finally, these two research areas will enable the synthesis of an adaptive 

sequential algorithm capable of exploring stochastic simulations with emphasis on the 

attributes common to SoS. This final research area will determine strategically where to 

place points in the design space to improve its predictive capability. The final algorithm 

will be tested on an identical set of stochastic mathematical problems and the notional 

SoS simulation from the second research area, but will also include a published high 

dimensional SoS simulation. The final method will be shown to improve the exploration 

of stochastic simulations over existing methods by increased global accuracy, the number 

of simulations required to learn the space, and the computational speed.  
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CHAPTER 1 

INTRODUCTION 

 Computer modeling has profoundly affected the scientific community, [3] and 

our ability to analyze complex interactions. The number of interactions and their 

complexity are becoming more integrated and dependent on other components, and the 

number of interacting systems in our society is continuing to increase. [4] As new 

systems are developed, with new requirements and independent limitations from 

connected systems, the question is how these new systems will fit into existing 

infrastructure and how introduced systems will adapt over time to various scenarios. 

These questions have spawned the development of a new analysis field: System-of-

Systems (SoS) engineering. Although single systems may work individually, they may 

fail when incorporated into existing infrastructure, [5] and these new systems, if designed 

improperly, can drastically shift the way existing integrated systems operate. [6] 

As the interaction of systems becomes more interdependent, the prediction of 

their future performance becomes more difficult. System-of-Systems Engineers (SoSEs) 

use computer models to predict future performance and characterize the complexities of 

these SoS. [7] Because of the complexity and magnitude of interactions, SoSEs use 

stochastic simulations with random noise variables to predict the performance of the 

intertwined systems over differing strategic operations, growth scenarios, varying 

component degradation, and many other evolving limitations. These simulations produce 

a multitude of possible outcomes and lead to highly nonlinear and often discontinuous 
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responses; yet it is through these complex computational simulations that SoSEs learn the 

behavior of SoS. [8] 

Some methods of simulation attempt to model these interconnected systems as 

probability distributions, requiring the designer to impose a prior judgment. Others 

attempt to remove preconceived performance on the design space through physical laws. 

Depending on the SoS analysis required, available modeling tools can vary drastically, 

ranging from predetermined probability distributions linked together, to monolithic 

simulated physics models (many more simulation methods can be found in [9]). It is the 

purpose of these models to explore the design space and expand the knowledge of the 

designer. [9] As will be discussed, agent-based simulations (ABS) and physics based 

models are often required for the desired flexibility, [6] but require significant 

computational time.  

Any of the SoS simulation methods have two items in common: the use of 

random variables (RV) to explore aleatory uncertainty (statistical uncertainty due to noise 

variables, ex. uncertainty of weather) on the system or SoS, and a large number of design 

variables (DV) which must be investigated to capture the simulation’s non-linearity. Each 

of the simulation methods handle these aspects with varying fidelity and differing 

underlying assumptions, and drastically varying resources on supporting data, setup time, 

and computational expense, but all increase computational time as complexity and the 

number of systems increase. For designers interested in exploring the effect of DVs on 

the design space, the computational expense in characterizing the simulation is a concern. 
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This dissertation research focuses on the design space exploration of these SoS 

simulations. 

Two problems arise from this increased computational expense involving the 

exploration of the design space: an inability to explore the uncertainty associated with the 

simulation and an inability to explore the influence of the DVs on the capability of the 

system. The increasing complexity of the modeled systems will only worsen the 

exploration of SoS design spaces. Increased execution time reduces the ability to explore 

a design space because combinations of DVs, and RVs cannot be investigated – both in 

exploring the variability associated with uncertainty and the fundamental DV interactions 

of the stochastic simulation. These limitations are most drastically seen with physics-

based time step simulations which cannot simply bypass transit time but also perform 

better at capturing the emergent behaviors [9] essential to SoS simulation exploration.  

The exploration of these large stochastic SoS simulations is conducted with one of 

two design techniques, either static designs or adaptive sampling. In brief, the static 

methods implicitly increase the dimensionality of the problem and don’t incorporate 

information learned as time consuming simulations are completed. In one implementation 

of a static method, the simulation is investigated as a physical experiment by simulating 

DVs and uniformly repeating experiments to capture influence due to uncertainty from 

the RVs. However, this uniform replication wastes simulations in regions of low 

variability. This process can lead to experimental designs which are too large or too small 

and require sub design of experiments (DoEs) to be developed with great complexity [10] 

and are less optimal than the initial design. Adaptive methods place future points based 



4 

 

on the information that is gained from completed simulations, but often make inaccurate 

assumptions about the distribution of noise, [11] or contour of the space. Adaptive 

sampling methods have been recently developed capable of exploring these spaces, but 

their implementation and logic are not widely accepted in the literature, and their 

development is not customized for pertinent features of SoS (stochastic spaces and 

enhanced exploration near regions of possible emergent behaviors).  

The use of existing static DoEs treats the space equally amongst all dimensions 

and all regions of each dimension. This uniform treatment is necessary in early 

exploration when little or no information is known about the space or when experiments 

are computationally inexpensive; however, as experiments are performed, new 

information is gained and adaptive sampling should be used. This adaptive sampling 

should not make any assumptions on the mathematical form of the space or on the 

distribution of the error. It is important to perform quality experiments instead of 

quantity. [6] When experiments are tested without using the information gained from 

each previous experiment, valuable information is ignored. If the designer wants to 

characterize the space and explore as many aspects as possible or create a predictive 

function, he or she must either sacrifice model accuracy in the exploration or in the 

precision of the local variability. 

This dissertation focuses on the development of an adaptive sequential design of 

experiments for these complex SoS computer simulations. This algorithm ameliorates the 

exploration of these spaces to enhance a designer’s understanding of complex 

interactions, with using as few simulations as possible. Although the context of this 
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problem is broad and the applications germane to many stochastic spaces, the 

development of this algorithm has been specifically developed for a single motivating 

problem. 

1.1 Specific Motivating Problem 

There are many examples of SoS within the literature, but the specific motivating 

problem for this research is a family of civilian unmanned aerial vehicles (UAVs) to be 

used off the coast of Greece. During the summer months, fires occur on the Greek islands 

located southeast of the Balkan Peninsula. Because of the number and size of the islands 

it is impossible to place fire stations which adequately prevent the spread of fires. To 

prevent fires it has been proposed to use two sets of UAVs for monitoring the islands: 

one set for early detection and the second to extinguish the fires using a dropped 

extinguishing material. The monitoring aircraft and extinguishing aircraft interact 

together in dynamic mission allocation to collectively extinguish fire locations. To assess 

the effectiveness of these aircraft, an SoS ABS is used where each agent has a set of 

logic. The implementation of this SoS simulation can be seen below as developed in an 

ABS modeling environment known as NetLogo. [12-13]  
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Figure 1.1: Greek Fire Fighting Agent Based Simulation 

In Figure 1.1, four search aircraft are marked with blue and black Xs and 

surrounded by a faint white circle representing their radar searching area. Each of these 

aircraft search the islands using complex adaptive potential algorithms which drive each 

aircraft to explore the regions of the islands they have not seen, and will not be searched 

by the other aircraft. As fires are identified in random locations on the islands, the search 

aircraft mission transitions to monitoring the specific fire location, and initiating contact 

with extinguishing aircraft. The extinguishing aircraft then make recurring missions to 

the fire location to drop extinguishing material on the fire until the fire is either 

extinguished, or simulation maximum run time of 24 hours is reached. More about the 

simulation setup can be found in [14]. It is the purpose of simulations like this one is to 

determine the sensitivities and relative uncertainties of different DVs to output metrics 

and thus allow more educated design trade-offs. 
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The objective of developing this specific simulation environment is to design a 

family of aircraft capable of searching and extinguishing fires while sharing components 

across platforms to reduce cost and maintaining the high success of extinguishing fires. 

There are many DVs that must be considered when investigating this SoS simulation, 

such as the number of aircraft, the size of the payload, speed, radar range, and many 

others.  

Like other SoS problems, this simulation has many DVs and RVs. Examples of 

the RVs are the starting location of the fire or the wind speed ( wind speed determines the 

direction and speed of the fire propagation). As with other SoS, there is control over the 

DVs but little control over the RV, meaning the simulation is stochastic and at each DV 

location within the simulation there is a swath of output values for the metric. Below is a 

small exploration of the above design space using a 1,200 point Latin Hypercube 

Sampling (LHS) of different combinations of 12 DVs and 20 replications at each 

location. Each of these DVs produce a mapping to the amount of burned land caused by 

the fire (one of the measures of effectiveness). For ease of viewing, the DVs are sorted by 

their mean burned land over each of the 20 replications. As the fire burns, more land is 

burned, which is a negative metric. Ideally, the aircraft within the simulation should 

prevent as much of the land from being burned as possible with the least variability. 
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Figure 1.2: Heteroscedasticity of Greek Fire Fighting Problem (Metric: Amount 

of Burned Land in Hectares). Blue Line is the Mean of the 20 Replications 

Each of the design points is sampled 20 times producing the bracketed chart seen 

above. Each bracket represents the minimum (seen at the bottom of each bracket) and the 

maximum (seen at the top of each bracket). The mean of the data sampled at that location 

is represented by the blue line. The boxed regions represent areas which are over-sampled 

or under-sampled based on their relative complexity which will be discussed below. 

The complexity of this design space is clear:  it is nonparametric (non predefined 

functional form) and there is clear heteroscedasticity (non constant variance). The non-

constant variance is also conditional on the combination of DVs and is thus conditionally 

variant. The conditional variance implies there is an underlying function that maps the 

local variance to the DVs.  

By looking at the mean it is clear the space is nonparametric, meaning that a 

predefined functional form cannot be used to map the DVs to the measure of 

effectiveness (the burned land). Although this space is sorted by the mean, which 

convolutes the deduction, it is clear that the mean is almost constant for the majority of 

the space, while in a small section of the space there are high values. Thus, it can be 
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concluded, there are not any parametric functional forms that would accurately fit this 

space.  

As a designer of these vehicles, it is clear that designing far from the regions with 

the high mean and high variance is desirable because this would result in high 

extinguishablity with low uncertainty. The issue becomes how to explore these spaces 

and find regions which are beneficial areas to explore without wasting simulations. In the 

above exploration a uniform sampling of 20 replications are used at each DV 

combination, but it is clear that not all areas required 20 samples. The areas of high 

variance could use more replications to increase confidence in the mean and variance, 

while areas of low variance could use less. Second, 50% of the space has almost no 

change in the mean performance, indicating the LHS design over-samples this region 

with too many combinations of DVs when they can be better used in the nonlinear region. 

Both of these drawbacks cause a significant over-sampling in areas which are easily 

understood or learned, and an under-sampling in regions which are not well known. 

Although this simulation is able to execute in approximately 10 seconds (this is fast on 

the time horizon of SoS simulations) significant computational effort is wasted by placing 

points in regions already understood.  

From the complexity of the design space (nonparametric and heteroscedastic) and 

the inefficient distribution of both exploration (DV combinations) and replication (RV 

repetitions) experiments comes the motivation for this research: how to explore stochastic 

SoS design problems to reduce the number of SoS simulations required. 
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1.2 Research Objectives 

The objective of this research is to develop a new adaptive sampling technique 

capable of intelligently exploring SoS design spaces. This research, however, can be 

more broadly applied to any stochastic simulation with similar features to SoS. The 

specific features will be discussed in later chapters, but they can be briefly described 

here; any heteroscedastic, nonparametric space with continuous and/or discrete ordinal 

inputs, which may have a large number of regression points and may be high 

dimensional. Overall this research uses several sub research areas to expose the features 

of SoS which are of interest to an SoS designer, determine methods of capturing these 

features, and then develop an adaptive algorithm to systematically place future 

experiments to both explore and exploit regions which are underrepresented.  

The final algorithm uses an amalgamation of mathematical processes combined in 

a rigorous routine to determine where future DV and replications should be placed within 

the design space. The intelligence of the algorithm can be seen in two differing aspects. 

First, as an improvement over the existing methods which use either static exploration, or 

simple adaptive processes which are inadequate for SoS simulations. Second, as a change 

of how the process exploration is conducted. Instead of placing new simulation locations 

throughout the design space based solely on the location of previous simulations, the 

algorithm adaptively changes the number of replication simulations and the location of 

future simulations based on the how well the algorithm ‘thinks’ it knows the space. Areas 

which are believed to be known poorly are explored more heavily and areas which have a 

higher variance are sampled more heavily (reasoning for this will be discussed in the 
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dissertation). Thus, ‘intelligent’ is intended to mean the algorithm modifies its behavior 

based on what it has ‘learned’ from the points already placed. 

1.3 Research Contributions 

There are many contributions to the literature from this dissertation. The largest 

contribution is the development of an algorithm capable of exploring stochastic, 

conditional variance design spaces. To obtain this larger contribution, three smaller 

incremental contributions are also added to the literature. The first incremental 

contribution is an investigation of the current limitations of the state-of-the-art design 

space exploration methods and their applicability to SoS class problems. As will be seen, 

not only are current design space exploration methods inadequate for SoS problems, there 

is a large gap in the literature for adaptive exploration techniques which adequately work 

for any heteroscedastic, nonparametric space where both the mean and variance are 

desirable.  

The second incremental contribution is an investigation of the statistical attributes 

of SoS problem spaces. Although SoS have seen significant growth in the last 20 years 

and their defining features are becoming better understood, these attributes and their 

impacts on modeling environments are still being explored. The most important attribute 

which impacts the design of these SoS is the possibility of emergent behaviors which 

must be mitigated, designed out of, or designed into the complex system. This second 

contribution explores the relationship of complex systems to SoS and an example set of 

notional SoS problems to identify mathematical attributes which may indicate regions of 

emergent behavior. Although it cannot be said with certainty the area is an emergent 
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behavior, it can be identified there are specific changes to the design space, which may 

indicate an emergent behavior has occurred and this location requires more points for 

exploration. This contribution also defines statistical attributes of SoS simulation 

environments to enhance the development of statistical methods capable of exploring 

these spaces.  

The final incremental contribution is an investigation of the methods capable of 

capturing the high dimensional, nonparametric mean while also capturing the variance. 

These spaces are large with varying complexity throughout a single simulation. Despite 

the lack of statistical techniques capable of handling the nonparametric regression of the 

mean and variance, this contribution uses a set of test problems to determine which 

techniques are best suited for ‘learning’ these spaces. It is from this contribution the 

fundamental intelligence of the adaptive algorithm is derived. 

1.4 Dissertation Structure 

1.4.1 Paper Model 

The requirements for the Ph.D. process, and thus, the dissertation, depend 

dramatically on the university (Georgia Tech), the college (Engineering), the school 

(Aerospace Engineering), or even the specific research laboratory. This process for the 

school of Aerospace Engineering within Georgia Tech has traditionally been a single 

document with 200+ pages of serial work where each chapter requires the information 

learned in previous chapters. The document before you deviates from this serial work in 
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one critical aspect: each chapter, with the exception of this introduction, chapter two and 

the conclusion, is intended to be standalone. 

The presentation structure of this research encompasses the very vision of SoS 

engineering. Each chapter is by itself standalone and has a purpose of adding to the 

greater research community, and when connected, it forms a larger emergent 

contribution. Each of the chapters is essential for developing an intelligent solution to the 

greater problem of exploring SoS design spaces. Although the research conducted for 

each chapter is part of a larger picture, this research conquers each of these tasks as 

research tasks in their own right.  

This dissertation has two stories: the overall research objective of developing a 

method of searching SoS design spaces, but also smaller research objectives, questions 

and hypotheses. It follows that each chapter will have its own motivation, research plan, 

comparison tests, and results. As this dissertation continues, these comparisons will 

become more intricate, relying on gained knowledge by the researcher, but not 

necessarily required for the reader. 

1.4.2 Chapter Outline 

Chapter 1 has set the overall objective of the dissertation. This overall objective is 

to develop a method capable of exploring SoS design spaces. For those not familiar with 

the defining features of SoS, Chapter 2 is included which presents the attributes of SoS 

that are commonly accepted in the literature. Of these attributes, emergence is the 



14 

 

defining feature that SoS engineers attempt to manage. (An initial familiarization of 

emergence is given in Chapter 2 and an in-depth exploration later in Chapter 4.) 

Chapter 3 introduces and deeply investigates the inadequacies of exploring the 

complexities of SoS design spaces with traditional exploration methods. These spaces 

have several attributes which increase the difficulty of traditional exploration methods in 

searching these spaces. In general, there is a lack of methods capable of exploring 

stochastic simulations. A detailed discussion of the current methods of exploring design 

spaces is given, as well as the difficulties these methods have in understanding SoS 

design problems.   

Chapter 4 conducts an investigation of SoS design spaces to determine their 

statistical attributes. It is well known one of the defining features of an SoS is its 

emergent properties, and it is also known that an SoS is a specific subclass of complex 

systems. An investigation of the statistical attributes of SoS simulations and the 

mathematical identification of locations which might identify emergent behaviors are 

discussed. These mathematical and statistical properties of the function space are 

explored by using two separate paths: first by deduction, by researching common 

identifying features of emergent attributes in complex systems, and second, by using 

notional SoS simulations that are well understood and have well known emergent 

behaviors. The features from these two approaches are then used to develop common 

features in SoS simulations which may indicate emergent behavior, and thus need 

increased points in the region to explore.  
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In Chapter 5 the statistical attributes in Chapter 4 are treated independently from 

SoS and an investigation of learning methods capable of capturing the mean and variance 

are investigated and compared. The nonparametric, conditionally variant, and often high 

dimensional problems are an active area of research in the statistics community and pose 

serious challenges in accurately representing the mean and the variance. A literature 

review is conducted which explores some of the most recent advancements in these 

problem spaces, and develops a research plan for how to investigate these spaces. The 

most recent and capable methods are extracted from the literature and tested side-by-side 

on a set of test problems, both mathematical and SoS simulation based, to determine 

which class of methods works the best.  

Chapter 6 uses the statistical properties which have been identified and the best 

methods for capturing these properties to develop a sequential algorithm capable of 

placing points throughout a design space. This algorithm uses a single method from 

Chapter 5 and several other statistical techniques to adapt the placement of points 

throughout a complex stochastic simulation. Because of the diversity of these SoS 

simulations the assumptions of many traditional sequential methods are removed such as 

the functional shape of the space or the shape of the error distributions. Instead, a very 

basic set of assumptions are used such as a single output metric of interest and continuous 

and/or ordinal discrete input parameters. A further discussion is provided in Chapter 6.      

The final algorithm developed in Chapter 6 is then compared to existing adaptive 

methods on a variety of problems. The final test problem is an exploration of the 

motivating problem for this dissertation. Although it cannot be proven this method is 
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adequately exploring the Greek fire fighting problem space, the validation of this 

algorithm is shown on a small test problem, its sensitivities determined to increases in 

dimensions, and finally it is showcased on the motivating problem.  

Finally, Chapter 7 concludes and summarizes the findings of this dissertation and 

discusses areas of possible future work. 
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CHAPTER 2 

UNDERSTANDING SYSTEM-OF-SYSTEMS 

System-of-Systems (SoS) is an abstract concept that is still not clearly defined by 

the field and thus before any proper research can be conducted on the subject, a uniform 

frame of reference must be obtained. This short chapter is used to provide a brief 

overview of some of the key features of SoS. It first starts with a brief but rapid history, 

moves to the broad definitions found in the literature, then shifts to commonly accepted 

characteristics of these complex entities, and finally discusses techniques used to model 

these design problems.  

Although there is a lack of uniformity in the definitions throughout the literature, 

there is a general acceptance of SoS characteristics. It is these characteristics the industry 

uses to classify SoS entities and differentiate these complex systems from individual 

systems. This research will focus on a specific defining attribute which SoS engineers 

(SoSEs) attempt to manage, emergent behavior, and will develop enhanced methods for 

exploring SoS design spaces. 

2.1 A Brief History of SoS 

To gain an enhanced insight into the meaning of SoS, it is important to understand 

the lineage of these complex systems. Some attribute the cultural understanding of the 

underpinning concepts of SoS – the development of more complicated and intricate 

features than individual systems – to the book written in 600 BC “The Art of War,” [15] 

while others to Aristotle (the whole is greater than the sum) in 300 BC. [16] Although the 
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initial conception of SoS is an interesting debate it was not until 1930 in Bertalanffy’s 

work that the specific lexicon of today’s SoSEs began. [17]  

In 1950, Von Bertalanffy continued to publish concepts on open systems in 

biology, [18] a concept similar to today’s SoS. In his work he discusses the existence of 

an abstract concept of interactions of “living” systems where information, energy, etc. are 

capable of leaving the system and interacting with its environment. This concept of open 

systems is one of the key features in today’s characteristics of SoS. 

It was not until the early 1970’s that the engineering community saw its first 

exposure to the name “System-of-Systems” in Ackoff’s work, [19] in which he 

acknowledges the impact of systems on the current era and discusses the influences of 

other systems on each other. Even with Ackoff’s work, the engineering community still 

required 20 years to develop the concept before its first engineering application.  

Early in SoS development, systems engineers (SEs) identified SoS as a distinct 

sub class of problems that are not well suited to centrally managed SE processes. [20] 

However, through the traditional methods used to analyze these new complex systems, a 

new sub-class of engineering was required. In 1981, Blanchard and Fabycky introduced 

the concept of “system-life-cycle engineering,” [21] and this was the first instance of 

engineering the defining attributes (open and continuously evolving).  

In the last 20 years the development of this new field has grown [22] with 

exuberance. Every year, there has been the development of new sub fields, terminologies, 

and calls for organizations and consortiums. The figure below shows the rapid 
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proliferation of publications in academics shortly after the first engineering application of 

SoS in the Strategic Defense Initiative in 1989. [21, 23] 

 

Figure 2.1: History of SoS and SoSE [21] 

The early academic publications stimulated the need for industry and government 

applications with the first area for advancement seen through the military. The resulting 

integration of capability-based design and acquisition by the military in recent years has 

further stimulated the growth of SoS. [24]  Although there has been much published on 

SoS, and even many applications for the field, it is still in its infancy, and many of the 

papers are attempting to develop a working definition and/or characteristics of these SoS.  
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2.2 Defining System-of-Systems 

Even with a dense outline of activities over the last 20 years, SoS is young and 

lacks a uniform definition. Much of the existing literature discusses specific applications 

of SoS and the defining features without a clear uniformly accepted definition. Some of 

the early (2004) definitions of SoS include complex biological entities such as the human 

body [25] while many of the newer definitions would specifically remove such systems. 

[7, 21, 26]  

The number of definitions which exist for SoS can make the understanding and 

synthesis of such an abstract concept difficult to comprehend. The definitions can range 

from simple to complex, and most include some, but not all, aspects of current SoS 

definitions. To enhance the understanding of an SoS it is best to describe the concept with 

abstract examples. For example, a famous Finnish-American Architect Ero Saarinen 

states: “always design a thing by considering its next larger context – a chair in a room, a 

room in a house, a house in an environment, an environment in a city plan.” [27] The 

chair properly accents the rest of the furniture in the room, and this concept is no 

different than the concept of SoS: it is important newly designed systems properly accent 

the existing structure already in place. 

A list of some of the existing definitions of SoS and its corresponding fields can 

be found below. [28]  

Definition 1: Sage and Cuppan [29] 

Systems-of-systems exist when there is a presence of a majority of 

the following five characteristics: operational and managerial 
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independence, geographic distribution, emergent behavior, and 

evolutionary development. Primary focus: Evolutionary acquisition of 

complex adaptive systems. Application: Military.  

Definition 2: Kotov [30] 

Systems-of-systems are large scale concurrent and distributed 

systems that are comprised of complex systems. Primary focus: 

Information systems. Application: Private Enterprise.  

Definition 3: Carlock and Fenton  [31] 

Enterprise Systems-of-systems engineering is focused on coupling 

traditional systems engineering activities with enterprise activities of 

strategic planning and investment analysis. Primary focus: Information 

intensive systems. Application: Private Enterprise.  

Definition 4: Pei [32] 

System-of-systems Integration is a method to pursue development, 

integration, interoperability, and optimization of systems to enhance 

performance in future battlefield scenarios. Primary focus: Information 

intensive systems integration. Application: Military.  

Definition 5: Lukasik [33] 

SoSE involves the integration of systems into systems-of-systems 

that ultimately contribute to evolution of the social infrastructure. Primary 

focus: Education of engineers to appreciate systems and interaction of 

systems. Application: Education.  

Definition 6: Manthorpe [34] 

In relation to joint warfighting, system-of-systems is concerned 

with interoperability and synergism of Command, Control, Computers, 

Communications, and Information (C4I) and Intelligence, Surveillance, 

and Reconnaissance (ISR) Systems. Primary focus: Information 

superiority. Application: Military. 

Definition 7: DeLaurentis [35] 

[SoS are] a collection of trans-domain networks of heterogeneous 

systems likely to exhibit operational and managerial independence, 

geographical distribution, and emergent behaviors that would not be 

apparent if the systems and their interactions are modeled separately. 
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Definition 8: Under Secretary of Defense of Acquisition, 

Technology, and Logistics stated [36] 

[SoS are] a set or arrangement of interdependent systems that are 

related or connected to provide a given capability. 

Since there is no widely accepted definition for an SoS it is best to describe its 

attributes, which, although are still changing, are more static than a unified definition 

intended to encompass all SoS. Because the definition for the field is still malleable, no 

further work will be conducted on attempting to define an SoS. Instead, the defining 

features will be discussed and used throughout this research. These features will enable a 

reader to at least classify such entities as SoS, or some other system. 

2.3 Describing System-of-Systems 

Sage specifies SoS as having many levels: SoS level, system level, subsystem 

level, component level and part level. He further specifies that systems are categorized as 

SoS, which he also calls collaborative systems, when they can operate detached from 

parent systems; and the components are managed in a large part for their own purposes 

yet they also function as a part of a whole to achieve otherwise un-achievable goals. He 

further makes the distinction that it is not the complexity or the size of the system, but it 

is often the evolutionary nature of the unified system that constitutes an SoS. [37] 

Since systems are closed, they are typically acquired in a single acquisition 

transaction, while SoS are frameworks for future system acquisition and are acquired in 

several transactions. From this concept, Cook developed the distinction of a monolithic 

system to an SoS by “system attributes and acquisition approaches.” [21] Maier 
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developed five distinguishing characteristics of SoS from large and complex monolithic 

systems: [38] 

1. Operational independence of Elements: If the system-of-system is 

disassembled into its systems the component systems must be able to 

usefully operate independently. The system-of-systems is composed of 

systems which are independent and useful in their own right. 

2. Managerial Independence of the Elements: The component systems not 

only can operate independently, they do operate independently. The 

component systems are separately acquired and integrated but 

maintain a continuing operational existence independent of the 

system-of-system. 

3. Evolutionary Development: The system-of-systems does not appear 

fully formed. Its development and existence is evolutionary with 

functions and purposes added, removed, and modified with experience. 

4. Emergent Behavior: The system performs functions and carries out 

purposes that do not reside in any component system. These behaviors 

are emergent properties of the entire system-of-systems and cannot be 

localized to any component system. The principal purposes of the 

system-of-systems are fulfilled by these behaviors. 

5. Geographic Distribution: The geographic extent of the component 

system is large. Large is a nebulous and relative concept as 

communication capabilities increase, but at a minimum it means that 

the components can readily exchange only information and not 

substantial quantities of mass or energy. 

Sauser et al. linked each of the SoS characteristics to their system level equivalent 

to enable the de-linearization from systems.  There is an ongoing debate on whether the 

above distinguishing characteristics are complete or correct. Reference [25] gives a 

second list of elements which define Biological, Social, and Military SoS specifically 

negating Managerial and Operational elements from the above list.  

In 2006, Boardman and Sauser published a literature review of 40 SoS definitions. 

Through this review they were able to develop patterns of distinguishable characteristics 
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for SoS which they concluded to be systems which have autonomy, belonging, 

connectivity, diversity, and emergence. [21] Each of Boardman and Sauser’s 

characteristics have specific lineage from Maier’s distinguishing features.  

Autonomy indicates subsystems must be able to be managed and operated 

independently from other systems within the integrated SoS. In simpler terms, if a system 

is removed, the function of the other systems should still remain operable, albeit to a 

lesser extent. This is an important distinguishing feature from systems. If, for example, 

biology systems are used (such as the human body), it can be seen they do not fit into this 

category. If a single system, such as the respiratory system, is removed from the whole, 

the integrated system does not work and shuts down; thus, this is a system and not an 

SoS.  

Belonging and connectivity are similar in their meaning. For a system to belong, 

it must be able to ‘plug into’ an existing network of other systems. An aircraft by itself is 

not an SoS, but when it is integrated into the air transportation system which has many 

aircraft and airports, it becomes an element of an SoS.  

Emergence is possibly one of the most important attributes of an SoS and will be 

a driving feature for the rest of this research. It is the defining feature that is often the 

investigation of design work with these complex entities. [1, 39-40] Emergence is the 

concept that the whole is greater than the sum. When all of the systems are combined, 

there is a feature which exists that was not there prior to the connection of the systems. 

To see examples of emergent behavior, one only has to turn to a current detested element 
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in our society: traffic. Alone, a driver does not cause traffic. Even when that driver is 

integrated with road systems, there may not be traffic, but introduce many vehicles of 

varying types and differing managing capabilities, and traffic appears. This is an example 

of an undesirable emergent behavior and, specifically, a feature SoSEs must attempt to 

mitigate and manage.  

Below is an example of a simple emergent behavior shown in a coding 

environment commonly used to develop agent-based simulations (ABS), NetLogo. The 

example below is one of NetLogo’s library models intended to show modelers how to use 

the software. The example consists of several cars, each of which decelerates when 

approaching one another and accelerates when far away. Because these cars are started in 

random locations their initial state may be close to one another, which would require 

them to slow. The single red car is marked so that the user can track the continuously 

looping simulation. 
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Figure 2.2: Example Emergent Behavior (Simulation from [41]) 

The example shows how traffic can be developed even with the absence of any 

accidents. The clustering of cars in the simulation, and the traffic it causes, is a simple 

example of an emergent behavior. If there are few cars in the simulation, traffic is not 

expected; however, upon introducing more vehicles, the behavior changes.   

As interactive systems, with the above SoS characteristics, become more 

complicated in their attributes, there is an increasing need to design these systems with 

synergy in mind to achieve more optimal outputs. [42] The acquisition of new 

capabilities has the potential to greatly improve the performance of the military and civil 

focuses. By considering the existing network in the integration of new systems, new 

behaviors can be developed which not only add existing capabilities, but ensure the 

system is properly integrated without adverse impacts and may even enable positive 

emergent conditions. To evaluate these complex entities and their integration into 

existing infrastructure there are many possible modeling options. 

Emergent Behavior 
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2.4 Modeling Techniques for System-of-Systems 

There is an increasing demand for SoS [39] and an increasing demand to simulate 

SoS performance over a breadth of conditions. Because these systems interact with their 

surroundings it is not enough to model the system as independent from its environment. 

The interaction of these complex SoS with their environments is a multi-disciplinary 

issue for SoSEs, [36] and thus these interactions must be modeled as well. There are 

many different approaches to accomplish and analyze this imitation of real world SoS. 

[43] 

The two overarching simulation types for SoS, and for most any model, are either 

continuous or discrete. Continuous models describe changes of an element or system over 

continuous time. The computational expense of continuous approaches gave rise to the 

development of discrete simulations for SoS. To minimize computational costs, only the 

areas where events occur are investigated in these simulations. 

Discrete simulations can include both network models [21] or discrete event 

simulations. [9]  The use of discrete methods in the initial exploration of combinatorial 

designs is common because of their rapid development. [44-47] 

The highest fidelity simulation for an SoS is a continuous time model which 

models the system continuously while simulating all of its possible environmental 

interactions and capturing all of the nuances. These nuances, however, come at an 

expense. Continuous models require more development and simulation time for an 

identical set of events than do other models. Nonetheless, these continuous time models 
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are gaining popularity in SoS modeling. [48] Continuous-based simulations for SoS 

typically include either system dynamic models or ABSs, [9] but there are only two 

methods to explore and understand emergence phenomena: post analysis of real life data, 

or ABSs. [49] Since a defining feature of SoS is emergent behavior, discrete simulations 

are frequently used to eliminate uninteresting combinations, and ABSs used to 

understand the remaining interactions. This research focuses on the use of ABSs because 

they are time consuming, therefore reaping the most benefit from adaptive sampling, and 

they can provide the most in-depth information of SoS emergent properties. [9] 
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CHAPTER 3 

INADEQUACIES OF TRADITIONAL EXPLORATION METHODS 

IN SYSTEM-OF-SYSTEMS 

The systematic experimentation of computer simulations is used ubiquitously to 

increase understanding throughout many fields, from organizational alignment [50-51] to 

engineering systems. [52-53] There is no argument that as the expense and time 

consuming nature of physical experiments increase, it is often more desirable to conduct 

computer simulations. [50] Additionally, there are classes of problems which are 

incapable of being explored and eliminated with the use of physical experimentation. One 

of these problem spaces is known as Systems-of-Systems (SoS), or the interaction of 

many systems working together.  

The key to exploratory SoS models is the computer experiment. [54] Where 

physical experiments would only allow the assessment of a single vein of thought, like 

the implementation of a policy, before contaminating all future tests, simulations can be 

used to estimate outcomes and compare performance. These simulations provide a unique 

capability to investigate alternative sets of inputs which are impossible to independently 

compare in a physical world. They provide designers and policy makers an insight where 

a dearth of information exists, [55] and increase decision making information. [49]  

There has been a significant growth of interest in SoS and their simulations in the 

last 20 years by academics, but SoS exploration has been most influenced by the military.  

These SoS design spaces and the evaluation of alternative concepts embody the very 
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nature of military infrastructure. Whether with the investigation of alternative concept-of-

operations or the introduction of new systems and capabilities, the military is interested in 

how the existing infrastructure changes, adapts, and emerges.  

The military has become increasingly interested in emergent phenomenon and 

specifically how it is modeled, explored, and analyzed using agent-based simulations 

(ABS). [49, 56-57] The reason for this interest is the complexities and resulting 

emergence inherent in combat scenarios. One of the specific interests of the military is 

how to explore and analyze the Global War on Terror. [57] Through the exploration of 

these systems, the military is attempting to determine how it should react to such 

complicated networks and whether their current methods are “good” or “bad.” [57] There 

is a growing need to handle the attributes of these SoS networks, and many researchers in 

both academics and industry are calling for better capabilities in handling the exploration 

and analysis of these spaces. [29, 58-59] Large integrated systems can take seconds to 

weeks to simulate, [52] and the number of configurations to analyze are immense, yet the 

available computing resources are too little. 

The purpose of this paper is to expose the inadequacies with current design of 

experiment (DoE) methods in dealing with these stochastic simulations. These stochastic 

simulations exhibit many unique properties that must be explored but are not investigated 

with current exploration methods.  

Exploring complex system design spaces requires new exploration techniques. 

[60] Although one experiment at a time is most optimal for optimization or exploration of 
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the space, “one-design-at-a-time experimentation should be considered as obsolete as 

one-factor-at-a-time experimentation.” [60] Because of the sequential and concurrent 

nature of ABSs, and the ubiquity of cluster computing, this provides opportunities for 

parallelization and multiple-designs-at-a-time. 

3.1 SoS Design Process 

As with any computer based experimentation, a simulation must be developed 

that represents the concept of interest. In SoS this model must embody the logic of each 

individual system and its interaction with the surrounding systems and environment.  

Whether this logic is used to determine the implementation of a new policy or the success 

of a new system into existing infrastructure, the simulation is indented to map a set of 

inputs to a specified measure of effectiveness (MoE). This MoE is an overall measure of 

how well or poorly the collective interactions of the SoS are at completing their 

objective.  

Unlike many other simulation environments, there is no real optimum in the 

evaluation of SoS simulations, only trade studies. These simulations are the culmination 

of many underlying assumptions that predict a range of future scenarios and rely on 

probabilistic methods to quantify aleatory uncertainty. [61] Because there is uncertainty 

within the SoS models, [49] these models offer an ability to explore the sensitivities and 

influences of new technologies, scenarios, and tactics of the world around us. “The 

purpose of the exploratory computational model is to help acquisition professionals 

develop intuition for procuring and deploying systems in an SoS context, not to provide a 

tool validated for use in managing real acquisition programs.” [62]  
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3.1.1 SoS Design Environments 

There are a growing number of ways to develop simulations for these SoS, but 

most common are discrete event and ABS. With an important feature of SoS being 

emergent phenomenon, ABSs have become the leading technique for developing SoS 

simulations. [49] These ABSs explored through experimentation are a commonly 

accepted approach to understanding emergent phenomena. [63] Each ABS consists of 

entities (agents) with specific attributes, logic and reaction rules to other entities within 

the simulation. As a simulation progresses, these interactions collectively affect the 

success of the overall objective.   

ABSs are increasingly being used to investigate complex systems. [64-65] Each 

iterative simulation is used to improve understanding of the space and to gain insight on 

the important features that might lead to emergent behaviors. [64] However, the 

investigation of these complex systems is a time consuming and convoluted process. [64] 

The design space of these simulations represents the collective set of variables a 

designer or decision maker has control over within the simulation. These variables of 

direct control (endogenous) are labeled design variables (DVs) within the simulation. A 

second set of variables which the designer does not have control over (exogenous) and 

are left to be dictated randomly, are known as random variables (RVs). The DVs in 

aircraft SoS simulations are parameters like wing area, fuel tank size, etc. while the RVs 

are parameters like specific geographical location of a companion or adversarial agent 

within the simulation.  
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This dichotomy of variables indicates that each set of DV inputs does not provide 

a unique value of the MoE, but a distribution dependent on the relative sensitively of 

those DVs to the RVs. It is often of interest when investigating these simulations to 

determine regions of the design space where the DVs have little sensitivity to the RVs, 

and thus making a robust set of DVs to the uncontrollable factors.  

3.1.2 Complications with SoS Spaces 

There are many complications with developing SoS simulations.  First, large scale 

agent-based structures suffer from inefficiencies due to repeated planning and task 

allocation, [66] and can take anywhere from seconds to weeks to simulate a single set of 

inputs. This means each set of DVs should be placed to gain the most information about 

the mapping of DVs to the MoE to reduce the amount of simulation time required for a 

specified accuracy.  

Second, using these simulations there is no way to predict and guarantee the 

results of an SoS ABS because it is impossible to know all the variables and their correct 

impacts. [49] Thus, trends and a general understanding of the collective SoS body of 

interactions and their impacts on a metric are the desired outcome. This means a large 

sampling of the space is required. It is not a single area of the space that must be 

understood but the entirety of the space. Even simple ABSs can require “astronomically 

large” experiments to explore and understand. [67]  

Third, these simulations are stochastic, and each metric may have several 

differing values for a single set of inputs. Even though identical DV inputs with a 



34 

 

controlled set of RVs will result in repeatable results (deterministic), the fact that the 

simulation does not control the RVs produces a stochastic simulation. [3, 68] To capture 

the magnitude of this aleatory uncertainty, DVs are repeatedly simulated causing an 

integer scaling of the number of experiments and increasing the resources necessary to 

explore these spaces. When exploring these models “deterministic physics based models 

will not perform the task of exploring emergent phenomena adequately.” [49] Yet, it is 

these emergent phenomenon that SoS depend on to achieve its purpose. [40] The type of 

design and its appropriateness critically depends on the response of the SoS simulation – 

“there is no one-fits-all design.” [67] 

Finally, the military has identified a need to run simulations with hundreds of 

variables with high complexity. [69] Many other organizations and studies have 

identified these simulations commonly need more than 20+ variables [57] and may 

consist of hundreds of continuous and discrete DVs, [50, 67]  but it is impossible to 

brute-force search SoS design spaces with more than 5-10 variables. [67] Their 

complexity indicates these simulations will have likely longer relative run times, and the 

number of DVs will produce an exorbitantly large hyperspace, producing a 

computationally expensive exploration. 

3.2 Traditional Exploratory Methods 

DoEs within engineering and many other fields provide a unique capability to 

explore complicated simulations and design spaces. Because these SoS spaces are time 

consuming to simulate, and their spaces are highly nonlinear, the use of DoEs enable the 
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designer to explore the space in an intelligent manner. These exploration points can then 

be used to trend, regress, and/or study the space. 

There are two types of exploration methods, heuristic or algorithmic based. [70] 

The heuristic exploration methods are most often used in the literature [70] and mainly 

consist of static DoEs. Static DoEs are defined before any analysis has been completed 

and provide well structured experiments that have been optimized for a specific 

hyperspace size.   

The less common algorithmic based methods are typically used to find an 

optimum and are considered adaptive sampling. These adaptive sampling techniques use 

a warm-start static DoE and adjust the location of subsequent samplings depending on the 

specific shape of the design space. Each future sampling location depends on the previous 

sampling locations and the change in the objective metric. Although these methods can 

be used to explore, their utilization in design space exploration is much less common than 

their utilization in optimization. [53] For those who know little of DoEs and their 

applications, the reader is directed to one of the many seminal works on these analysis 

techniques within simulations, [71-72] or the current state-of-the-art. [73] 

There are many reasons to conduct structured experiments. Reference [74] and [3] 

identified four objectives to using DoEs: understanding the problem, predicting values of 

the output, performing optimization, and aiding in verification [75] and validation. SoS 

exploration fall into the first two categories. With large systems with many inputs, the 

designer knows very little regarding the interactions of the system, and needs to 
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understand and explore the design space. As the designer explores space, information is 

gained about how the SoS may respond to varying excitations of DVs.  

3.2.1 Static DoEs 

There are many different types of static DoEs and the type to use greatly depends 

on the objective and the application. [68] Ideally for computer experiments it is desirable 

to use space filling designs for prediction accuracy. [76p125] The reason to use space 

filling designs is because they provide the best means for exploring areas of the design 

space where non-smooth models are expected. [75] Even within space filling designs, 

however, there are several categories, but it has been shown that a specific type, Latin-

hypercube sampling (LHS) designs, can require an order of magnitude fewer points than 

other techniques, [77-78] and are thus considered more efficient. [79]  

3.2.1.1 The Exploration Process 

The exploration process can be broken into two main steps, data collection, and 

data learning. For design space exploration, these two steps are conducted with a DoE 

and a predictive regressed function. The DoE is selected before anything is known about 

the response based on the experimenters’ understanding of how the space should be 

sampled. This sampling can range from sampling the edges of the space to sampling the 

internal region depending on whether basic trends or a representative model of the space 

is desired. But as discussed earlier, LHS designs are typically used for the exploration of 

computer simulations. 
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Each combination of DVs is sampled in the design space and the response metric 

is collected. Following complete data collection, a simple regression is used to develop a 

fast mathematical transfer function of the design space, and map the DVs to the objective 

metric. These fast mathematical models allow the designer of a system to play games 

with the inputs, debug the underlying code, [52] identify interesting trends in the data, 

explore new regions, [52-53] create a faster responses for other simulations, [80-81] or 

even optimize the system. [80-81] 

Because the computer simulations being used are stochastic [74] and have a 

combined influence from DVs and RVs, modifications have to be created to emphasize 

either the sampling or the learning aspect of the exploration process. These modifications 

are required to be handled statistically. [82-83] The statistical analysis is conducted either 

by replication [84] or by simulating them as input variables and conducting a statistical 

analysis of the surrogate model. The two main techniques for handling the randomness of 

these simulations with static DoEs are using either combined arrays, or variations of 

crossed arrays. 

3.2.1.1.1 Combined Array 

A combined array treats all of the DVs and RVs as independent variables that can 

be controlled by a designer within a simulation. As an example the starting latitude and 

longitude for vehicles are assumed to be controlled factors, when in reality they are noise 

because a designer wants the system to be robust to location. A DoE is used which spans 

the full added dimension of both DVs and RVs and a surrogate is used to map these 
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variables to a response. Once the mapping has been created, a Monte-Carlo is conducted 

on just the RV to determine the uncertainly associated with each RV. [85]  

Two fundamental issues that result from the process of combined arrays are that it 

propagates error and not all variables can be controlled. When a regression is conducted 

the model does not fit the theoretically ideal space. This means there is a bias to the 

regression that is propagated when the regression is used to develop statistical bounds on 

a mean that is not accurate.  

Second, SoS simulations have many random variables which are incapable of 

being controlled in a simulation and must be left to fluctuate randomly. An example may 

be whether a cloud is obstructing the line-of-sight to an advisory.  This variable must be 

handled probabilistically and is impossible to control. (Other examples can be found in 

[1].)  

3.2.1.1.2 Crossed Array 

The other form of static DoEs intended to handle RVs is crossed arrays. Crossed 

arrays are a method developed by Taguchi [86] where there exists an inner array and an 

outer array. Although the RV can be controlled in the outer array like is necessary for 

combined arrays, and is done by Taguchi, these RVs can be left to fluctuate to measure 

the total uncertainty of all the RVs by simply repeating each of the DV inputs several 

times. These repeated crossed arrays are more similar to how physical experiments 

capture noise, by replications and blocking. [87] In the case of noise variables, replicates 

provide an evaluation of the mean function performance versus the variance of the 
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function. [74] It can be shown that there is a reduction in computational cost for 

combined arrays over crossed arrays; [88-89] however crossed arrays are a better 

approximation of aleatory uncertainty (specifically in the presence of three-factor 

interactions). [90] 

Currently, lead methods for sampling stochastic design spaces for exploratory 

purposes are random sampling, LHS designs, and orthogonal arrays. [91] This process is 

conducted by selecting an LHS design or other array and repeating its sampling until the 

mean values have reached the desired accuracy.  

However, how many replications should be simulated? The number of replicates 

found in the literature ranges from 5 or 8 [92] to 30, [93p262] 50, [75] or even  100 

replicates for some SoS war simulations. [1, 56, 84, 94] It can therefore be a challenge to 

determine the number of replicates to run. [95] Replicates are intended to increase the 

signal to noise ratio of a test when a response has variation due to uncontrolled variables. 

[96] From reference [93p262] in the discussion of how many repetitious simulations to 

conduct, it is mentioned that the sample size should be large, or, as a heuristic, it should 

be above or equal to 30. The issue with all of these rules for SoS, is that it actually 

depends on the design space. When the variance is non-homogenous, it is known that an 

increased number of replications may be required, [97] but this increased sampling need 

may not be uniform.  

The number of replications depends on the local variance of the design space. 

Since SoS simulations have varying effects of DVs and RVs it is not expected that the 
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number of required replications be uniform over the entirety of the design space. Thus, by 

selecting a specific number for all variable combinations, some regions of the space will 

be over sampled, wasting simulations, while others are under sampled.   

3.2.1.2 Issues with the Static DoE Process 

The benefit of static DoE methods is that they are simple to employ and well 

understood; however they have many issues when adapting them to stochastic 

simulations such as SoS. Although some specific issues have been identified for each of 

the static methods, there are larger issues with using static designs at all. Most 

pronounced is that in the time consuming nature of SoS simulations, information is 

actively learned as each simulation is completed, and an offline static DoE approach does 

not utilize this growing information. If regions of the space are highly linear or have low 

variance, fewer simulations should be placed in these regions focusing computational 

effort in other more interesting areas. 

As an example, a large section of the design space may have simulations that are 

incapable of completing an objective. If this is the case the resulting space would have 

low variance and will be constant, ergo, few simulations are required to determine these 

attributes. But in a static DoE exploration, this region will be sampled with identical 

frequency compared to the rest of the space. That is, those areas that have high 

nonlinearity are explored with the same frequency as those that are linear. 

A second issue with using predefined static DoEs on spaces that are vast and 

unknown, is that information is always gained in phases. [1, 49p3, 69, 94p14] It is 
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impossible to know the number of simulations required to adequately explore a space to a 

desired fidelity without first exploring the space. Thus, designs are often used to augment 

each other. A first DoE will be used to learn something and then more simulations will be 

added based on an initial sampling. However, if a second design is used on top of the 

existing design, it will result in less optimal placement and possibly a less accurate 

surrogate. [10]  

Yet, despite these complications, most methods of exploration in stochastic spaces 

use static DoEs. [98]  

3.2.2 Adaptive Sampling 

The use of computer simulations instead of physical experiments has led to a slow 

progression from classical DoEs to Design and Analysis of Computer Experiments 

(DACE). [91] These sampling techniques are founded on the basis that computer 

experiments have been historically deterministic and are simulated on single CPU 

machines, and are thus captured sequentially. [75]  The clear motivation for moving to 

adaptive experiments is the sequential process. As one experiment is simulated and 

information of the space is gained, the previous information can be used to place new 

simulations.  

In adaptive sequential designs a model of the space is being developed as new 

information is being gained; and thus, the algorithm has control over its training data. 

This concept is known in the literature as adaptive sampling, active learning, query 

learning, reflective exploration, sequential exploratory experimental design, application-
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driven sequential designs, and sequential designs, or selective sampling. [99-102] The 

adaptive algorithm is attempting to ‘learn’ the space as each piece of information is 

returned. In general, these sequential methods require fewer experiments than canned 

static DoEs. [95, 103-104] 

In traditional DACE, computer experiments are assumed to be deterministic, [3] 

and use Kriging for regression. [105] For the last several decades adaptive sampling 

research has been focused on deterministic simulations, [106] but has recently been 

modified to handle simulation noise. In the presence of noise, often Kriging is still used, 

but is adapted and is assumed to be stationary. [68, 102, 107-108] In these noisy datasets, 

new points are placed in areas of high model uncertainty in an attempt to gain as much 

information as possible. [103-104]   

Adaptive sampling has significant importance in simulation exploration, [104] 

and when designing complex systems in large, high-dimensional spaces sequential 

methods should be used. [60] Further, research thus far has shown that adaptive sampling 

search techniques greatly enhance the analysis of ABS, [67] a typical example of a 

stochastic simulation. As discussed adaptive sampling is broken into two areas, 

deterministic, and stochastic.  

3.2.2.1 Adaptive Sampling for Deterministic Spaces 

There are many types of simulation problems that are well suited for deterministic 

adaptive sampling methods. Since the inception of adaptive DoEs for deterministic 

simulations, there has been a plethora of development. [106] Some of these methods are 
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simple, where a predetermined functional form for the space is assumed and future points 

are optimally chosen based on how the samples fit into this functional form (ex. D-

optimal). [53] But there are many assumptions with this procedure of selecting a model a-

priori and it draws doubt as to the rigor in using many optimal designs. [109] Further, 

methods which assume a functional form require a parametric model, which has a low 

likelihood of fitting an SoS design space because there is no optimal design for 

nonparametric methods. [110]  

The Bayesian method Kriging, is most common in the literature for adaptive 

exploratory designs, because it quantifies the model uncertainty in a deterministic 

simulation. [111] Recently, there has been significant research in various other 

techniques with the development of the SUMO lab [112-114] which specializes in 

deterministic adaptive sampling routines. The interested reader is turned to [101] for 

more examples of deterministic adaptive designs. These methods attempt to balance 

sampling exploration of unknown areas, and enhancement of poorly defined regions.  

[115] 

3.2.2.1.1 Issues with Deterministic Adaptive Methods 

These methods, beyond not being explicit stochastic methods, have other issues 

that have limited their successful integration into the SoS design space exploration 

community. They often incorporate a long list of discretionary terms that ‘tune’ where 

points are placed in the simulation. For Kriging, one must use a specified correlation 

function, while other methods provide the designer enough control to equally spread 
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points over the space or concentrate them at a single location. [53] If a designer is 

provided this much control, then the placement of points is not determined by the 

simulation space itself, as much as the specific adjustments provided a priori, when little 

is known about the response.  

Another issue with these methods is that they are time consuming. One of the 

largest issues with Kriging models is its difficulty in regressing large datasets because of 

its required N
3
 computational time (N is the number of samples). [107, 116] Although 

this is not a concern with very computationally expensive simulations and relatively 

small datasets, as the size increases and the simulation time decreases, this regression 

time can significantly cut into available computational resources.  

3.2.2.2 Adaptive DoEs for Stochastic Spaces 

In the very recent literature (2007) there has been an introduction of a new area, 

DASE (Design and Analysis of Simulation Experiments) by Kleijnen. [117] In Kleijnen’s 

coining of DASE he combines the important aspects of DoEs and DACE by recognizing 

simulations (both computer and physical) can be stochastic and are sequential, which are 

not explicitly handled by either of the previous methods. Beyond DASE, there are few 

other methods for sequential design of experiments found for stochastic systems. [107, 

118]  

With SoS simulations, the similarity to computer experiments appears in that they 

are still deterministic but only for a predefined vector of DV and RV inputs. The DVs 

and RVs will provide identical results every time they are simulated, but if the RVs 



45 

 

change, the response will change; in essence, this is changing the environmental variables 

of a physical experiment. The response may change drastically or negligibly depending 

on the local variation of the function.  

The first use of Kriging in random simulations can be traced back to 2003, [119-

120] but is most often applied to deterministic simulations. [120-121] The deterministic 

model uses a ‘nugget’ parameter, or mathematically, a regularization parameter, to 

approximate the amount of noise in the simulation. This process assumes the noise to be 

homoscedastic and provides a constant value across the space, [107] which is not valid 

for heteroscedastic SoS simulations. Another method of handling these stochastic 

nonparametric simulations is to use stochastic Kriging [122] where repetitions are 

conducted at each location to approximate the variance and the variance is then removed 

from the predictive uncertainty. In general there are two issues associated with stochastic 

adaptive designs, where to places new points, and whether (or how many) repetitions 

should be simulated.  

If the mathematical form of the variance structure is known,  it can be de-trended 

to a homoscedastic space, [123] and rigorous mathematical formulations determined to 

quantify the required repetitions. [122] Recently Bayesian approaches have increased in 

the literature for sequential experiments, [124] but these approaches often assume 

normally distributed error. [121, 125]  

Kleijnen developed an approach to adjust both the number of replications and 

exploration locations. This method uses the deterministic non-parametric regression 
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function Kriging as the learning mechanism and a small warm-start DoE. Each time a 

new vector of DVs is added to the space, replications are added to that location until the 

desired accuracy is achieved. Unlike Kriging where new points are placed in regions of 

the highest uncertainty (strongly correlated to distance from other points), new DVs are 

chosen based on the highest predictive variance. The predictive variance is determined by 

conducting a bootstrap technique where a single replication at each of the DV locations is 

selected and a new deterministic model created.  

There are other methods such as KB-ORG which is proposed for the large 

combinatorial agent-based down-selection, [66] or algorithms which explore regions of 

‘interest’, [126] but many of these methods assume the designer is well informed about 

the interactions. There is a lack of stochastic adaptive sampling routines in the literature.  

3.2.2.2.1 Issues with the Adaptive Sampling for Stochastic Simulations 

Kleijnen’s adaptation is intuitive by combining an algorithm for regression 

adaptive sampling with an algorithm for determining the local number of replications, 

and bootstrapping the field; however, in exploration a couple issues arise. First, if one 

area of the space has a high variance, this adaptive sampling technique will require a 

large number of replications at a single location and will spend all available points 

attempting to achieve the desired accuracy at one location, while obtaining no 

information about other areas. 

The second, also concerns regions of high variance. Since new locations are 

added based on regions with high predictive variance, if a location is found that has a 
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high variance nothing balances this algorithm’s exploration of new areas versus 

exploration of regions of high variance. An example of this is where areas with high 

nonlinearity will not be explored if it is not a region of high variance.  

3.3 Call for New SoS Exploratory Methods  

Although there have been significant improvements in modeling and data 

visualization over the last decade, [127] there has still been very little research conducted 

in the joining of exploratory data analysis and complex modeling. [127] Traditional 

design space exploration methods, such as DoEs, are incapable of exploring the SoS 

design spaces. Galway and Lucas [128] identify many of the difficulties with large-scale 

complex systems simulations: 

“The computer models…tend to be very large, often with thousands 

of parameters, and the run times are correspondingly long…. As a result, 

relatively sparse ‘data’ exist…the simulations are almost never 

validated…. However…important decisions must be made.” 

The use of traditional exploration methods is not well suited for SoS simulations. 

SoS simulations are computationally expensive, nonparametric, heteroscedastic, and may 

have large datasets. Each one of these features creates a unique problem when analyzing 

SoS. Simulation experiments should be handled fundamentally different than real world 

experiments [75] and this paper further illustrates that experimentation for SoS 

simulations should be handled differently than generic computational simulations. As 

analysis problems become larger the use of traditional methods to explore their 

interactions becomes intractable and prohibitively costly. [126] 
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The data produced from SoS simulation can be large [49] and finding ways to 

either select important aspects or to only run the simulations of interest within these vast 

spaces is paramount. [49, 56] Although research has indicated the need for adaptive 

sampling, the use of customizable designs (specifically, LHS) are still one of the most 

widely used methods [55] and are the predominant frequentist design (repetitions to 

determine uncertainty). [129]  

When exploring SoS simulations, regions of high nonlinearity or changes in 

variation, are of specific importance. It has been shown that these regions in military 

simulations may be indicative of combat, [49] and be highly variable to the randomness 

of the simulation. As a designer, these regions are important because sensitivities can be 

determined. This non-monotonicity is a capability added to one side and not the other 

[49] and can provide insight into adversaries and technology improvements. 

Traditional DoE assumptions do not hold for these complex systems. SoS ABSs 

have a specific set of attributes which are not handled well with traditional analysis 

methods, specifically nonlinear behavior, intangibles (ex. trust, discipline), and co-

evolving landscapes (ex. anticipating an adversaries cognition). [49] Below is a list of 

assumptions published by Sanchez and Lucas [1] which compare many of the limitations 

of traditional DoE methods to common simulation attributes of ABSs (these are not 

specific to SoS simulations). 
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Sanchez and Lucas’s investigation of ABSs can be used to draw many 

conclusions regarding the design space of SoS simulations. This deduction can be made 

because ABS simulations are used to simulate SoS, and if ABSs have a characteristic, 

then any SoS simulation which uses ABSs may also exhibit similar attributes. Although 

there has been much research conducted by the SEED lab [130] at the Naval Post 

Graduate school for ABSs, there are still many gaps. 

Large systems require new methods of experimental design suitable for highly 

adaptive models which are capable of capturing complex nonlinear responses in high 

dimensionality design spaces. [131] Below, several areas of improvement are discussed 

which would make adaptive sequential experiments better capable of exploring SoS 

simulations. These areas deal with their stochastic nature, high dimensions, handling of 

defaulted values (or failed simulations), large quantities of data, the need to evenly 

explore, and batch simulations.  

Table 3.1: Exploration Characteristics of a Agent Based Models [1] 

Traditional DoE Assumptions Agent-Based Simulation Characteristics 

Small or moderate number of factors Large number of factors 

Liner or low-order effects Non-linear, non-polynomial behavior 

Sparse effects Many substantial effects 

Negligible high-order interactions Substantial higher-order interactions 

Homogeneous errors Heterogeneous errors 

Normally distributed errors Various error distributions 

Black box model Substantial expertise exists 

Univariate response Many performance measures of interest 
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3.3.1 Stochastic Domain 

These SoS design spaces are stochastic as indicated throughout this paper. 

Beyond simply stochastic, these design spaces are also conditionally variant. This means 

that the variance is not constant (heteroscedastic) and dependent on the specific inputs. 

As an example, aircraft completing a military objective in an urban environment may not 

respond equally to the wind and weather at heights of the buildings versus heights far 

above the buildings. This change of the variance due to different DVs is known as 

conditional variance.  Since the variance is not expected to be constant, the number of 

replications should depend on the local variance and not be uniform throughout the space. 

Only simulating the proper number of repetitions will reduce the number of simulations 

wasted.  

Additionally the error in these spaces may not, and will likely not have normally 

and identically distributed error throughout the simulations space. This means that any 

method which places points based on the inferences deduced from these assumptions, 

could be misplacing simulations for areas of greater benefit.  

3.3.1.1 Heteroscedasticity 

Typically when investigating simulations a designer usually assumes a normal 

distribution and a homogenous simulation variance. [117p87] Many stochastic 

simulations however, have changing variance throughout the design space. [117p88] 

Although there are many tests for heteroscedasticity, a test for its presence has little 

importance. It is understood when exploring an SoS design space there will be failed, or 
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undesirable simulations which have a constant response and don’t exhibit a variance, 

while other areas of the design space will. [75] The vast majority of SoS design space 

will be heteroscedastic. 

The DoE literature gives little attention to heterogeneous variance. [117p92] Yet, 

changes in the variability in ABSs is a specific area of interest in the analysis of robust 

parameters. [83] 

3.3.1.1.1 Possibility of Failed Simulations 

A specific type of heteroscedasticity is the presence of failed simulations or 

simulations that are incapable of completing a specified objective. In large design spaces 

and varying tracked MoEs there will be simulations that cannot complete a specified task 

because of the combination of the DVs or RVs. When developing DoEs for complex 

systems it may not be possible to identify problematic input combinations. [75] These 

local regions will have nearly constant means and low variances relative to other regions.  

Since these simulations are already computationally expensive, simulating many 

experiments in these regions will limit the number of simulations capable of being 

simulated in other regions. Any adaptive sequential algorithm must be capable of placing 

few to no points and few or no replications in regions of failed simulations. 

3.3.1.2 Non-uniformity and Non-normality of Error Distributions 

Many stochastic simulations are assumed to have normally distributed error, 

[117p79] at least asymptotically, and this can be seen in the heavy use of modified 
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Kriging models. This is not the case for ABSs and is not the case for SoS simulations. 

Errors can be bounded on one side of a mean and have long tails on the other, or take on 

a plethora of alternative distribution depending on the underlying simulation. This lack of 

normality does not affect the mean response, but instead the inferences, and thus the 

location of future points. Further, with the noise of the simulation not restricted to a 

specific distribution, it is not restricted to an identical distribution throughout the space.  

3.3.2 High Dimensional 

SoS simulations may contain hundreds or even thousands of quantitative and 

qualitative variables. [55] Traditional adaptive designs do not scale well and are 

inefficient in exploring ABSs. [1] “…there are not many readily available tools for high 

dimensional explorations where we can take millions of runs—as is frequently the case 

with computational experiments.” [49] Future design space exploration methods must be 

capable of learning high dimensional design spaces. 

High dimensional spaces increase the number of design points required to explore 

and understand the space. As the number of dimensions increase the volume of the hyper-

sphere grows exponentially. This rapid growth requires increased points to gain identical 

coverage in a small dimensional space.  

3.3.3 Large Number of Design Points 

Because of the possibility of high dimensions, these SoS computer models can 

require thousands of runs with varying inputs to understand the space and provide 
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decision-maker insights. [132] Not all methods of learning these spaces are capable of 

handling these large datasets. As mentioned earlier, Kriging, a commonly used regression 

tool, is prohibitively slow for simulation datasets above 500 points. The number of points 

required to regress and trend these spaces can be high and require the adaptive method to 

be capable of handling large datasets.  

3.3.4 Uniform Exploration 

Although the method developed by Kleijnen, [117] provides a method to change 

the number of repetitions at each DV location, the total allotted simulation quantity may 

be expended in a single location. This provides a great understanding of one or few 

locations, but no understanding of many other areas. If the goal is to understand the 

complexity of interactions over the entire space, the propagation of gained information 

should enhance uniformly across the space.  

High fidelity in a single, or few, locations does not enhance a designer’s 

understanding of complex interactions, and thus a balance must be created which evenly 

progresses the space until the specified fidelity is reached, or the total amount of 

simulation time is encountered.  

3.3.5 Batch Sets of Simulations 

Although Kleijnen states sequential experiments are desirable because computer 

simulations are inherently sequential, [117p9] this is no longer correct. The ubiquity of 

multi-core machines and the recent proliferation of cluster and cloud computing has 
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opened the door for concurrent simulations and increased design space exploration. The 

use of sequential experiments must be adapted to the number of available computing 

units. Kleijnen stated “a change of mind set is needed” in reference to going from 

traditional DoEs to sequential experiments, and this thought continues: a change in 

thought must occur to produce many small samplings of the design space; in essence, a 

balance between one shot DoEs and purely sequential sampling. 

Adaptive methods up to this point have focused on single sample approaches 

because simulations up to this point have been simulated on single core machines, and 

have been only capable of exploring one simulation at a time. In static DoEs all of the 

experiments can be simulated at once, concurrently, if the cluster allows, which is perfect 

for modern day independent parallel computers. However, the move to DACE and DASE 

allow only single experiments which leaves much of the available computing power 

underutilized. 

DASE is a vast improvement over DACE in progressing towards methods capable 

of exploring SoS spaces, but it still adds single simulations. For SoS, it is desirable to be 

able to add new simulations in the number of CPUs that have become available, and thus 

in batches.  

3.4 Conclusion 

In conclusion, the current methods used to explore computer simulations are 

incapable of efficiently exploring stochastic simulations on modern day computing 

clusters. There must be an adaptation of the way these sequential algorithms place 
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simulations so that the information over the entire design space is progressed equally and 

not focused on small areas which have high variance.  

There have not been any methods which handle these heteroscedastic simulations 

and specifically investigates areas important to SoS designers. As seen throughout this 

paper, one such attribute is regions of emergent behavior, yet there has been no research 

to-date that has focused on the specific characteristics of emergent behaviors in SoS 

simulations. New adaptive methods must be develop which exploit these emergent 

regions and more accurately sample the space. 
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CHAPTER 4 

CHARACTERISTICS AND EMERGENT ATTRIBUTES OF 

SYSTEM-OF-SYSTEMS’ SIMULTIONS 

Systems-of-Systems (SoS) in the last 20 years has grown from an embryonic 

abstract concept to a large scale engineering necessity and has shown no signs of 

retreating in its path of growth. The applications of this engineering field can range from 

the strategic management of business units in the private sector to the proper integration 

of military assets, and is surely to have many more applications yet to be exposed. 

However, in early stages of any rapidly expanding field the growth of problem solutions 

often lag the growth of possible applications, and for SoS class problems this unmet 

growth has not proven different. The issues plaguing the field have left a continuously 

flowing reservoir of problems to be solved by academia and industry ranging from purely 

how to understand the concept and its implications, to the accuracy of using unvalidatable 

testing environments. 

In 2003 Purdue University conducted a study to identify areas of engineering 

which will be important in the near future; [29] and within this study, SoS were explicitly 

mentioned as well as many other fields which would directly benefit from advancements 

in SoS engineering. Although there are many definitions for SoS, their essential 

characteristics have converged. There are many attributes that are required to characterize 

an SoS, but one of the most interesting is emergent behaviors, [7, 26, 38]  and it is also 

the most important. [49] 
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Within SoS, and any complex system, it is the design of these specific emergent 

behaviors which engineers are trying to enable or prevent. [40, 49, 56-57, 94p14] As it 

follows, it is important to identify their causes, or at least the regions within the design 

space where they will occur. It is a key goal of Complexity Science and complex systems 

engineering to identify and analyze emergent behaviors, [133]  and apply this knowledge. 

However, there has been little research on the characteristics of emergent behavior in 

SoS. Many papers discuss the importance, but few explicitly discuss the statistical 

attributes of SoS design spaces or the statistical attributes of possible emergent behaviors 

in these spaces.  

This paper conducts an investigation of emergent characteristics and simulation 

attributes of SoS agent-based simulations (ABS). This investigation is intended to aid in 

the development of future adaptive algorithms capable of exploring SoS simulations and 

exploiting regions of possible emergent behavior. 

4.1 Background 

The growing interest in SoS simulations has left many gaps throughout the 

literature, but it is clear that emergent behavior is one of the defining features of these 

complex systems. There is no doubt the world’s complexity is increasing, [4] with new 

connections being strengthened and old connections being slowly forgotten. It is the job 

of SoS Engineers (SoSEs) to model these complex interactions and deduce adaptations 

which can improve the symbiotic relationships of the interacting systems. “Exploiting 

emergent behavior offers great potential for SoS, not only to overcome the problems of 
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interoperation but also to achieve levels of adaptability, scalability, and cost-effectiveness 

not possible in traditional systems.” [40] 

Because SoS are open, meaning their boundaries from one system to another are 

not well defined, SoS belong to a continuum of ad-hoc, short-lived and long lasting, 

continually-evolving, complex systems, [42] which drive unforeseen consequences. 

Within ABSs, one of the often used tools to explore complex interactions, it is important 

to find the regions and ranges which exhibit ‘interesting’ phenomena. [1] It is these 

interesting interactions which get labeled emergent behavior. Some of the literature 

classifies any unforeseen result of a simulation as an emergent phenomenon, [134-135]  

while others insist a stronger definition. [134, 136] 

Emergent behaviors exist in every aspect of our lives but typically go unnoticed. 

Whether this behavior is traffic, geese flying in formation, the unforeseen periodic 

synchronization of welding machines on a manufacturing line, [134] or the designing of 

incentive plans for customers and/or employees, [137-138] the designer is hoping for a 

specific emergent behavior to be prevented or to arise. It is therefore important to capture 

these regions of the design space to explain why an emergent phenomenon may occur.  

4.1.1 Evolution as a Type of Emergence 

As previously discussed, there are several attributes which characterize an SoS 

and they have started to converge to a uniformly accepted set. In all of the 

characterization, each mention emergent behavior explicitly; however, some also mention 

an evolutionary component. For the purpose of this paper, these two items, evolutionary 
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and emergent behaviors will be treated identically. Evolutionary attributes of an SoS 

change the existing behavior from one state to another over time, and it is in these that 

evolutionary attributes are exhibited as an emergent behavior. [139] Richard Dawkins 

states, “The theory of evolution by cumulative natural selection is the only theory we 

know of that is in principle capable of explaining the existence of organized complexity.” 

[140] Emergence and evolution are intertwined, and an area that exhibits evolutionary 

behavior in the allotted amount of run time for an SoS simulation is also important to SoS 

designers. 

4.2 Research Plan 

The fundamental purpose of this paper is to determine statistical attributes of SoS 

simulations and to give defining characteristics of areas which might exhibit emergent 

behavior. In essence, this paper attempts to determine an initial set of distinguishing 

attributes of emergent phenomena from the rest of a design space. Emergent phenomena 

cannot be predictable from, deducible from, nor reducible to its parts alone. [133, 141] In 

some cases, if the behavior is simple, it may be possible to conceptualize the existence of 

an emergent behavior, [142] and perhaps even where it may occur, but only for simple 

systems. This means it is not possible to determine the existence of the emergent 

behavior before a space has been explored. It is required that when searching these design 

spaces an algorithm increases exploration of areas of possible emergent behavior. It is 

important to determine the factors that produce simulated forks in the road, [56] and the 

regions that show a significant change in behavior. “The analyst should seek to explore 

‘emergent behavior’ within simulations.” [56p157] 
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There are two research approaches to answering these questions. The first is 

through SoS’ relationship to complex systems. Since an SoS is a subclass of complex 

systems, any of the attributes of emergent behavior that have been identified in the super 

class of complex systems may be seen in SoS. SoS emergent phenomenon cannot exhibit 

more than what is present in complex systems. 

The second approach is to use the simulation environments in which SoS are 

usually developed, ABSs. There are many attributes that apply to these ABSs and 

although they likely apply to SoS simulations, it has yet to be validated that these 

attributes are apparent in SoS.  

4.2.1 Subclass of Complex Systems 

There are a plethora of definitions for complex systems but many of them have 

similar attributes which are summarized in [143-144] and it is clear to see its super class 

relationship to SoS. Complex systems can further be decomposed into an additional 

subclass known as Complex Adaptive Systems (CAS), from this specific class of 

problem it is even more prevalent to see the relationship of SoS to CAS. Below are the 

four major characteristics of CAS: [65] 

1) Parallelism. Agents coexist and interact simultaneously. 

2) Conditional action. The actions performed by agents depend on the signals 

received. 

3) Modularity. Each agent has varying sets of rules that can be changed or modified 

based on interactions. 

4) Adaptation and evolution. The agents change over time to change (usually 

enhance) performance. 
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The relationship of SoS to CAS has not been found explicitly in the literature, but 

its lineage is obvious. SoS and CAS share many features and are distinguished by their 

purpose: CAS is a physics concept that is the understanding and identification of 

emergent complex patterns, while SoS is the design and implementation of these complex 

networks into existing infrastructure. From the relationship of CAS to SoS it is possible 

to deduce characteristics of emergent phenomena and map them to specific simulation 

characteristics. 

4.2.2 Simulation Based Investigation 

“No self respecting thesis on complex systems would fail to include 

an agent based model.” Alex Ryan [20] 

The second approach of investigating simulation attributes and emergent 

properties in SoS simulations is to look at notional SoS simulations. There have been 

many attributes discussed in the literature for statistical properties of ABSs, [1] but these 

simulations are not discussed in the context of SoS. Agent simulations are the most often 

used mechanism for determining emergent properties, [63] but are not, by themselves 

SoS simulations.  

Although simple, the statement by Ryan [20] on including ABSs in complete 

works is well founded. ABSs can be considered the most time consuming and expensive 

models with the highest fidelity for SoS problems. This indicates that for new methods or 

processes to be considered viable for SoS and other complex systems, they must be tested 

and verified in ABSs.  
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Being that “complex events are derived from the agent-based model itself,” [145] 

a common example of emergent behaviors in CAS is expressed through the use of 

cellular automata (CA). [146-148] In CA each cell follows an explicit set of rules in 

which a cell can have a binary output (in some cases there may be a gradient of colors) 

and an emergent behavior is seen through the visualization of some predetermined 

pattern. In general there are two ways of looking at integrated simulations, either as a 

whole with all of its interactions (ex. visually analyzing every simulations), or at specific 

epochs (whether this be objective driven or time). With visual analysis a more complete 

picture of the emergence can be observed, but the classification of emergence is left up to 

a subjective observer, [135] and is time consuming. Although research has developed 

techniques to systematically identify patterns, [133] the existence of a pattern is not 

necessarily important. 

When designing these SoS, there are specific metrics the designer has chosen as 

important culminating outputs. When discussing emergent phenomena within SoS, it is 

implied that not all emergent phenomenon are important to the designer. The only 

emergent phenomena that are important are those that influence the metrics of interest in 

the specified amount of time. As a trivial example, if a flock of geese is the targeted SoS 

and the metric is energy savings, there is no doubt that if they spell a name in the sky this 

is an incredible emergent behavior, but if it does not impact energy savings or does not 

happen in the allotted amount of simulation time, it is of no importance to the designer. 

There is no clear process for defining or identifying temporal emergent behaviors, [145] 

which by definition is an important aspect of SoS. 
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Throughout the SoS literature there has been no published SoS simulation which 

has well established emergent properties and is also accessible to the general academic 

community. Because of the growing military interest in SoS engineering, many of the 

SoS simulations discussed in dissertations and the general research community are not 

well published, verifiable or validatable, and don’t have well accepted emergent 

behavior. Although this poses an issue for discussion of emergent properties in 

reproducible works, there are examples of SoS which have been well studied, but are not 

typically associated with SoS simulations. Three such examples are chosen for further 

exploration in this research, and pose common design problems when dealing with SoS 

networks.  

The first is a simulation of cars developed in an ABSs environment known as 

NetLogo. Cars and their interaction with the highway system is an ideal example of a 

well studied SoS problem. Highway planners are often trying to design, limit, and in 

general, understand the interaction between drivers on a macro-level to eliminate the 

adverse emergent behavior known as traffic. [149-150] (It is the spontaneous aspect of 

traffic that are often considered emergent – not caused by accidents.) 
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Figure 4.1: Both Figures Show a Highlighted Red Car and a Graph of its Speed 

Compared to the Min and Max Speeds of All the Cars, Right: Simulation with No 

Emergent Behavior, Left: Emergent Behavior 

In both of the figures above, there is traffic initially due to the random placement 

of the vehicles, but after time passes the spreading of the vehicles removes this attribute. 

When traffic is not present, the speed chart converges to a single speed for all cars, while 

if traffic is present, the speed of the red vehicle oscillates between the maximum and 

minimum speeds.  Although this simulation has not been validated with exact quantities, 

the resulting emergent behavior has. In looping studies conducted with human vehicles, 

traffic can be seen to emerge.
1
 Whether or not this simulation and its precise performance 

is validated is not germane, it exhibits a well known emergent behavior and its statistical 

impacts on the simulation can be classified. It is up to the model designer to determine 

whether the simulation is accurate enough to model reality. 

The second simulation is also developed in a NetLogo environment but has its 

genesis since the beginning of life, and has been well studied for the last hundred years. 

This example is a predator-prey model (references [142, 151] have also used a predator-

                                                

1 The random variable of humans causes inconsistent speed matching between cars and causes 

traffic to emerge on a continuous loop. http://www.youtube.com/watch?v=Suugn-

p5C1M&NR=1&feature=fvwp, http://www.youtube.com/watch?v=19S3OdK6710 
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prey models as an example of complex system interactions with emergent behaviors but 

focus on the individual patterns created). This inherently stochastic model has been 

around for a century in its closed form differential equation, known as the Lotka-Volterra 

equations and has also been adapted to discrete event simulations and system dynamic 

models. This simulation provides a cross modeling component and implies stochastic 

features of emergent properties exist in other modeling environments for SoS, and not 

just ABSs. Unlike the traffic simulation, the emergent behavior in the ABSs predator-

prey is positive, and is desirable to be designed into the simulation. This emergent 

behavior is the dynamic stability of the interacting species. Not all combinations of inputs 

allow the emergence of an oscillating harmony described by Lotka-Volterra, but as a 

possible designer of an eco-system, the symbiotic relationship is necessary.  

The final simulation investigates yet another class of problem which is well 

known and has implications on design, but has a surprising emergent behavior. This ABS 

is developed in C (code found in reference [152]) and is outstanding research conducted 

by Helbing et al. [153] and published in Nature (2000). In this research, the researchers 

use footage of people in panic to calibrate an agent simulation to exhibit identical 

features. In their exploration of the design space, they found that placing a pillar near the 

exit of doorways actually enhances the exit flow out of an enclosed room of people in 

panic. This interaction of people with other people and their surroundings is another 

example of an SoS exhibiting an emergent behavior. 
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Figure 4.2: Left: Initialization of Panic simulation, Right: Simulation After 

Panic has Been Initiated and the Crowd Attempts to Leave the Room [27] 

As a final note it is important to discuss the type of discrete variables explored in 

some of these simulations. When exploring an SoS design space, it is apparent from the 

above simulations that only inherently ordinal discrete inputs are considered, and no 

conclusions are drawn as to categorical (nominal) discrete values. There is still ongoing 

research in dealing with categorical discrete variables. [154p318] 

4.3 Characteristics and Emergent Attributes Results 

First an exploration of the attributes inferred from the relationship of SoS to CAS 

are discussed. Following the discussion of CAS an investigation of each of the ABSs 

mentioned earlier is used to identify similar features amongst the simulations.  

4.3.1 From Complex Adaptive Systems 

A precise understanding of emergence is important in the study of complex 

systems; [65] however, defining emergence is similar to defining SoS: there are a breadth 

of definitions. Like SoS the study of emergence is relatively new, being that historical 

models did not contain the complexity required to exhibit an emergent behavior. [141] 
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Although there are many definitions for emergence, [135-136, 141, 146, 155-156] 

emergence is often defined as the macro level behaviors that cannot be determined from 

studying the micro level behaviors, [157-158] and results in identifiable distributions, 

coherent patterns, equilibrium, and so forth. [159] As discussed, it is not the presence of 

these emergent phenomena alone that are of interest to the designers of SoS, but only 

those that impact the objective metric.  

The most important aspect of deducing statistical attributes of emergence in SoS 

simulations, is how does emergence exhibit itself in complex system. Goldstein [141] 

indicates that emergent properties identify themselves differently but they must share 

interrelated properties: radical novelty, coherence or correlation, global or macro level, 

dynamical, and ostensive.  

From Goldstein’s list and related works three sets of attributes can be identified as 

properties which may exhibit emergent phenomena in SoS simulations. These attributes 

are related, and are nonlinearities, changes in variance, and discrete changes. 

4.3.1.1 Nonlinearities and Changes in Variance 

From Goldstein’s list, the dynamical aspect is specific to evolutionary changes of 

the amalgamated underlying systems. This further supports the assertion that 

evolutionary changes can be treated as emergent phenomenon in SoS simulations. 

Although this list provides an enhanced understanding of an emergent behavior, it does 

not provide an analytical indication of how an emergent behavior may arise to be clearly 

and automatically identified. It can also be said from Goldstein that not all SoS will 
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exhibit emergent behaviors; however, through this paper if an emergent behavior does 

exist, it is important to identify its possible location and more heavily explore this region.   

From Goldstein and Schaefer, it can be determined that two ways emergent 

behaviors will show themselves in simulations is as nonlinearities [141, 160] and 

dynamic behavior. [141]  

Although there is significant literature on weak [135, 139, 146] and strong 

emergence, [135, 139] this paper does not differentiate the two, nor attempt to explain the 

phenomena in their complex theory. Even though it is more likely the existence of strong 

emergence will be of increased interest to a designer, it cannot be said that the weak 

emergence, despite its increased predictability and resolve, will not be of interest. Instead, 

any emergence which produces a change in the underlying behavior of the integrated SoS 

and impacts the metrics of interest is important.  

 Instead of using a subjective observer some research attempts to describe 

emergent behavior with a mathematical representation. [139] From reference [139], it 

was found that [strong] emergence can result in oscillation with global and local 

causality. Combining the dynamic, time dependent properties of Goldstein’s work, [141] 

some of the attributes from Bar-Yam’s work [139]
2
, and characteristics of dynamic 

                                                

2 Note to the reader, Bar-Yam’s inductive argument is built off the example of a binary string 

where the number of constraints (number of bits which can be flipped, N) is changed and the emergent 

behavior is seen to oscillate.  From this, it is extrapolated that environmental constraints (N) will cause 

oscillation. In this dissertation, for most cases the constraints are constant (but still capable of varying 

depending on the simulation, ex. policy changes) and the number of inputs changed.   
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unintended fixed states, oscillations, thrashing, and chaos [126, 134, 136] will result in an 

increased variability, and/or a step change in the tracked metric.  

Emergence within a simulation may exhibit itself in many fashions, such as 

patterns, like discussed; however when investigating SoS, it is not any emergent behavior 

which is of interest. The only emergent behaviors are those which improve or degrade the 

performance (nominal or variability). 

4.3.1.2 Discontinuity and Discrete Changes 

Another concept of emergence is discussed in the artificial intelligence 

community [135, 148, 161], as something that happens between time, t, and time, t +
Δt, and “a detector becomes active,” and some complexity event occurs. This notion is 

described as “an all-or-nothing phenomenon,” [161] which can be interpreted as a 

discrete response (Bonabeau, [161], actually uses the example of a binary output change 

due to inputs). In Deguet et al., [135] the emergent is explained as a disconnect from the 

designer and the observer: “the behaviors observed … is non-obvious to the observer—

who therefore experiences surprise.” The crux of this paper is a lasting surprise: if a 

possible emergent has been identified, and after an investigation of the design logic, a 

surprise still exists, this behavior can be classified as emergent. This concept has both 

analytical and subjective means of determining an emergent behavior. If a discrete 

change has occurred in a metric then it is a possible emergent behavior, but must be 

verified. In classical simulation (DoEs) and the resulting responses, the space is assumed 

to be smooth, [3, 74] and it is clear that in the presence emergent phenomenon, this is not 
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always the case. These transition regions and areas of rapid change are of specific interest 

when investigating SoS simulations. [115, 126]  

Being that SoS simulations are simulated with both discrete and continuous 

variables it is important to note the discrete variable will inherently have discontinuous 

jumps. However, the magnitude of a discrete change over a discontinuous variable will 

likely be more dramatic than along a continuous variable. (This will be seen below when 

investigating simulations.) 

4.3.1.3 Summary from Complex Systems Similarity 

From the above literature of complex systems and CAS, emergent behaviors will 

exhibit themselves in a variety of ways, but if coalesced into a metric taken at a specified 

epoch, then these attributes can be well identified in a stochastic simulation. These 

attributes can be changes in the local variance, nonlinearities, and/or discontinuities.  

Both the nonlinearities and regions of high local variance are locations that require 

further exploration of any stochastic simulation (low variance regions will already be 

more precise), but additional simulations are also required in regions of discontinuities. 

Conveniently, areas of discontinuity fit with continuous models will exhibit high 

nonlinearity and an artificial increase in local variance. Thus, if regions of high variance 

and nonlinearity are used as the identifiers for additional simulation exploration, this will 

overlap with existing requirements for stochastic simulations. 
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4.3.2 From Simulations  

A further investigation of emergent behavior can be conducted through 

simulations. ABSs explored through experimentation is a commonly accepted tool to 

understanding emergent phenomenon. [63] In this section several notional SoS 

simulations are investigated for their statistical attributes and for features which can be 

used to determine statistical attributes of areas which need increased exploration.  

4.3.2.1 Traffic 

The traffic simulation has been modified slightly: first the simulation was 

modified to enable automated running to investigate hundreds of thousands of 

simulations. The second modification was to track the random variable which dictates the 

starting position of the vehicles and their starting accelerations. The final modification 

was to develop a metric which would allow the exposure of emergent behavior. For this 

simulation the obvious adverse emergent behavior is traffic, or a mass slowing of the 

vehicles which does not dissipate. 

4.3.2.1.1 Problem Setup 

From preliminary exploration of this ABS it can be determined that the presence 

of traffic exists between ten and thirty vehicles within the simulation. Depending on the 

acceleration and deceleration rates of the vehicle, varying discrete vehicle quantities 

create a transition from non-existence to existence. This transition occurs at 

approximately the middle of the below ranges. These ranges can be seen as a mapping 
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from the total design space allowed by the simulation to all the simulation combinations 

tested. Each of the small blue points represents a design location sampled. 

 

 

Figure 4.3: Total Design Space of Traffic Simulation Compared to Explored 

Region. Each Blue Point Represents an Input Vector Tested of Number-of-Cars, 

Acceleration, and Deceleration 

The above space represents 260,000 combinations of design variables where each 

design point is replicated 100 times to account for the stochastic nature (26 million 

simulations). These simulations represent 230 CPU days of computational time on a 

windows cluster. The number of replications have been chosen by checking the 

convergence of both the maximum relative residual and the sum of all the residuals (this 

can be seen in Appendix A), using uniform replication over the design space, when the 

maximum relative residual reaches below 5%, replication stops.   

Table 4.1  Range of Variables Investigated 

Variable Name Minimum Maximum 

Number-of-Cars 10 30 

Acceleration 0.0025 0.0065 

Deceleration 0.01 0.04 
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In simulating SoS problems a common stopping criteria for a single simulation is 

to simulate a specific amount of time or epochs. In this simulation the cars were allowed 

to travel for ten simulated hours. This time is used to allow all pertinent interactions 

enough time to emerge. One issue with using a stopping criteria is determining when 

enough time has elapsed. Some simulations may require more or less time to produce an 

emergent behavior. This time has been chosen after preliminary boundary tests of the 

simulation. 

4.3.2.1.2 Metrics 

There are many possible metrics which can be tracked in any SoS simulations. 

The metrics are chosen based on the importance and the reason for developing the 

simulation; however, there are many different metrics which can track identical attributes 

but are coalesced differently. For this traffic simulation two metrics are used to showcase 

differences in performance in tracking a single emergent behavior with varying metrics.   

The first metrics is the total distance traveled by the tracked red car in the 

simulation. It is expected that in simulations which exhibit traffic in the ten hours of 

simulated drive time, the distance transversed will be shorter than simulations which do 

not have traffic. Traffic impedes travel.   

Another metric takes advantage of the oscillatory behavior of traffic. Cars stuck in 

traffic oscillate between a maximum speed and a minimum speed, while cars not in 

traffic do not oscillate. To capture this change in speed a standard deviation of the 

velocity (STDoV) over the time history of the simulation is used. Simulations that exhibit 
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traffic are expected to have a higher velocity variance than simulations without traffic. It 

is important to note that the specific emergent frequency of the traffic is not of interest 

only that it has occurred. In some cases the traffic appears to contain double frequencies, 

while in others, single. The macro-level phenomenon is traffic and it may exhibit itself in 

many patterns.  

4.3.2.1.3 Traffic Simulation Results 

Below are two plots showing the entire three-dimensional design space with color 

representing the magnitude of the specific metric. Again, each design point is represented 

by a single marker in the simulation space and each design point represents the mean 

metric of 100 replications. In the below figures, the mean of the tracked metric is 

displayed (left: ����(��� ��!�) and right: ����("�#$%). 

 

Figure 4.4: 3D Design Space, Right: Mean Distance Traveled, Left: Mean 

Standard Deviation of Velocity 

In both images in Figure 4.4 the transition from one state to another is clearly 

distinguishable. At some point in the simulation traffic almost always occurs, while in 

another it almost never occurs. Although both of these figures identify an emergent 
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behavior, the transition from non-existence to existence is distorted in the STDoV. At 

some design locations with high vehicle quantities in the simulation the standard quantity 

appears to lose its distinguishing emergent properties. This loss is not seen through the 

distance metric and intuitively it is known not to exist. As more vehicles are added to the 

simulation the probability of traffic and its severity should increase. It is important to the 

SoS engineer (SoSE) to identify regions of possible emergent behavior because they can 

indicate drastic shifts in performance. As seen in the above example, if a designer is 

developing a highway system and it can be clearly indicated that cars above a specific 

acceleration capability transition to traffic, then governs can be implemented on car 

acceleration systems to prevent traffic and increase average velocity. (Governs on 

acceleration are only used for illustration because of the above example.) 

In the STDoV plot it is much harder to see the presence of the emergent 

phenomenon. It is obvious when looking at the data something has happened to the 

metric, but to distinguish that it is an emergent phenomenon is more difficult.  Reasoning 

for this increased difficulty can be found in the metric itself. Below are two plots for the 

STDoV, one with traffic and one without. 
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Figure 4.5: Close-up of Standard Deviation of Velocity Through a Time History, 

Left: Emergent Behavior Present, Right: No Emergent Behavior 

The issues with the STDoV can be seen in Figure 4.5 as indicated by the black 

line. First, the STDoV spikes in both simulations, the one with traffic and the one 

without, which creates difficulty in distinguishing the prolonged presence of traffic. If the 

presence of traffic at any point in the simulation is desired, the maximum of the STDoV 

might be a good metric; however in this analysis, the prolonged presence of traffic is the 

phenomenon of interest.  

Second, this metric has a convergence behavior dependent on time. Unlike the 

distance metric which as time increases, causes the emergent behavior to become more 

pronounced the standard deviation metric becomes less pronounced. Since the distance 

metric diverges – the distance for the non-traffic case will continue grow faster than the 

traffic case – when tracking this metric, it is easy to determine the presence of traffic. The 

STDoV metric however, converges. Since the top speed is finite, once it is reached the 

STDoV in the non-traffic simulations will start to decrease, and if left to simulate, will 

approach zero. The STDoV in the traffic simulations, on the other hand, will maintain a 

relatively constant value. This means that depending on the amount of simulation time, 

the two values may be identical, rendering the identification of the emergent behavior 
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impossible. This indistinguishable feature is due to the transient aspects of the simulation, 

and is an artifact of any metric taken over a time history.  

Finally, the STDoV has a non-monotonic behavior depending on the inputs. At 

low values of cars in the simulation, there is almost no interaction and thus a very low 

variance in the velocity. While at high inputs of cars the cars interact so much that again 

there is almost no variance in the velocity. This reverting behavior of the metric across 

the variable domain means there will be a spike in the domain which will be indicative of 

an emergent phenomenon. 

Below is the raw data for the STDoV and the mean and standard deviation of the 

100 replications (2,200 simulations). Each striation is a single DV combination with 

multiple repetitions. 
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There is significant dispersion throughout the 100 replications at each of the 

design points with a clearly defined spike where the presence of the emergent behavior 

transitions. Although there is high variance throughout this data, there is a significant 

increase at the region of transition followed by a trough in the data variance. This 

dispersion in the data is caused by issues enumerated earlier for this metric. The trough in 

the variance is where these issues are negated because the simulation has been simulated 

for the perfect time, meaning the variance has not been provided time to revert.  The 

emergent phenomenon for this metric is seen by an increase in nonlinearity, and an 

increase in local variance. Although the emergent properties are pronounced, finding a 

single spike in a large design space is not a trivial process, and using convergent metrics 

 

 
Figure 4.6: Standard Deviation of Velocity with Accl=0.0045 and 

Decl=0.026, Top: Unsmoothed Data 100 Replications, Bottom: Mean and 

STD of Data 
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mean there is a critical allotted simulation time, otherwise the features of the behavior 

may be lost.  

This same metric can be investigated on a continuous variable such as the 

acceleration. Below is a figure of the continuous variable. 

 

For this reverting metric the continuous variable shows a more pronounced 

impact. Both the data mean and standard deviation are significantly more pronounced 

when compared to the discrete variable. However, if the raw data is investigated, it is 

much more difficult to determine the transition. There is an increase in nonlinearity, but 

the data reverts back to indistinguishable from pre to post emergent transition. This 

 

 
Figure 4.7: Standard Deviation of Velocity with #Cars=17 and Decl=0.026, 

Top: Unsmoothed Data 100 Replications, Bottom: Mean and STD of Data 
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means that it may be more difficult to identify regions of emergent behaviors in high 

dimensional spaces.  

It has clearly been established that some metrics are better for discerning the 

presence of emergent phenomenon. Instead of looking at the poor metrics, the distance 

metric can be investigated.  The identical 2,200 simulation points from Figure 4.8 can be 

seen below in the amount of distance traveled by the red vehicle. 

 

Along the discrete variable of the number-of-cars in the simulation there is a 

clear, discontinuous, and dramatic change in the amount of distance covered in the 

simulation. With few cars in the simulation there is a relatively large distance covered, 

 
Figure 4.8: Distance Traveled with Accl=0.0045 and Decl=0.026, Top: 

Unsmoothed data 100 replications, Bottom: Mean and STD of Data 
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while at a critical number of vehicles, this distance transforms. At the specific region of 

the emergent behavior there is a spike in the local variance. This variance is caused by 

the randomness of the simulation where some random seeds will cause traffic to emerge 

while others will not. This discontinuity can also be seen as high nonlinearity by a 

continuous function. Thus, if using continuous functions to learn/regress these 

nonparametric spaces, regions of nonlinearity can also be indicative of emergent 

phenomenon. This conclusion has been seen in both the comparison of SoS to CAS and 

in the traffic simulation.  

In the bottom of Figure 4.8 the mean and standard deviation can be seen for the 

data. There is almost no variation throughout the simulation until the region of the 

emergent behavior. The cause for the variation is the random initial conditions. Near the 

region of emergent behavior, given certain initial conditions, the simulation encounters 

traffic with fewer cars, or does not with more cars. Although this spike in standard 

deviation has occurred in this exploration, there is no guarantee that this will occur in all 

explorations. The fact that the correct seed was selected that made this emergent behavior 

shift happened by chance, and thus it is possible that the standard deviation would remain 

constant, while the mean still shifts.  

Next the distance metric over a continuous variable can be investigated. This 

divergent metric still performs well by producing drastically differing performance before 

and after the emergent phenomenon. A plot of the data mean and standard deviation can 

be seen below. 
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Again, there is a high nonlinearity at the transition of the emergent behavior with 

a large increase in the variance. The data shows the transition to be significantly less 

pronounced in the continuous variable versus the discrete variable. This identifies that an 

emergent behavior, depending on the metric may be identified as a nonlinearity, a 

discrete change, and/or a change in the local variance. All of these attrbutes are 

confirmed by the investigation of CAS. 

4.3.2.1.4 Additional Attrubutes 

From the above simulation it has already been seen that the simulation space is 

nonparametric and heteroscedastic, but there has not been any exploration of the 

distributions at each of the design points. From [1] it is known that ABSs have many of 

 
Figure 4.9: Distance Traveled with #Cars=17 and Decl=0.026, Top: 

Unsmoothed data 100 replications, Bottom: Mean and STD of data 
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the features seen in the SoS example problems and the analysis of CAS, but what do the 

error distributions look like over a single simulation. Using the 100 replicate simulations, 

a mean can be calculated and the amount of error from the mean plotted in a frequency 

chart, seen below. 

 

Figure 4.10: Distribution from a Single Design Point within the Traffic 

Simulation for the Distance Metric 

This distribution is taken far from the emergent behavior where there is little 

change in the distance traveled metric. From the above distribution it can be easily seen 

this distribution is not approaching normality and has a heavy negative skew. Since an 

investigation of only 100 samples may be inadequate to distinguish a distribution shape, 

neighboring design points can be investigated because of their proximity. This 

assumption is made because neighboring points in a simulation are expected to have 

similar features, and transitions from one distribution or state are expected to be smooth 

far from emergent behaviors. Since each of the simulations are independent from each 

other, each new design point holds a new set of samples, and if the design points are 
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sufficiently close, it is expected the distributions will approach each other. Below are 

three neighboring design points. 

 

Figure 4.11: Distribution from Three Neighboring Design Points within the 

Traffic Simulation for the Distance Metric 

From the above figure it can be seen that all three distributions with small 

increments in deceleration have similar distributions and the distributions are not 

approaching normality. As seen, the shape of the distribution is similarly related to its 

neighbors, and they are all non-normal and negatively skewed. This provides validation 

that it is not a correct assumption to use any exploration method that uses normal 

distributions to develop inferences for future point locations. Since it is only required that 

one SoS simulation violate a set of assumptions, it can be concluded that SoS simulations 

may not follow traditional assumptions for regression methods (parametric, normally and 

identically distributed).  

Finally, it is important to discern if the distribution is constant throughout a design 

space. Although it seems intuitive that it should not be, it is proper to validate this notion. 

Next one can compare the edges of the design space to see if the distributions are 
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consistent throughout the space. Below is an image of the two corners of the design 

space. 

 

Figure 4.12: Comparison of Distance Distributions from the Edge of the Design 

Space 

The image on the left appears to be negatively skewed while the image on the 

right appears to be normally distributed. This indicates that it is not possible to assume 

that the space will have a uniform error, let alone a normally distributed error. When 

developing a method to learn these spaces, methods that assume a constant distribution 

for the space should not be used unless it is known that the specific SoS space being 

investigated has these properties. In SoS simulations the complexity of the random 

variables can have a gambit of options, from any distribution (uniform, normal, beta, 

etc.). 
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4.3.2.2 Predator-Prey 

The Predator-Prey analysis is left to Appendix B. 

4.3.2.3 Panic Simulation 

There have been no modifications to Helbing et al.’s [153] panic simulation. The 

simulation has been downloaded from their public website, complied and simulated on a 

Linux cluster. Within the panic simulation there are many different settings that can be 

used to analyze different variations of the human panic problem. This SoS environment 

consists of varying sizes of simulated people and has been calibrated to actual panic 

scenarios. With all of these pedestrians (systems) interacting, this produces an ideal test 

bed to find possible emergent behavior in this simple but real-world example. This 

simulation provides other tests which have not been previously explored with the 

NetLogo simulations. 

4.3.2.3.1 Problem Setup 

This simulation is written in C and is simulated on a Linux cluster with 120 

CPUs. Approximately 140,000 simulations were used to explore this space; 14,000 

simulations to explore the ranges given below, and ten repetitions per location. The total 

computational cost is approximately 1,700 CPU days. 
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Unlike the traffic or predator-prey simulation, determining the number of 

replications for this simulation is a bit more challenging. The number of replications are 

coded into the simulation before compiling which makes updating and modifying more 

challenging. Second, the simulation run time is significantly more time consuming 

(twenty minutes per simulation). Only ten repetitions are used for this simulation because 

it has a lower variability than the traffic simulation and because the simulation is 

significantly more expensive, meaning few replications can be tested. The fewer number 

of repetitions will make finding changes in the design space more challenging because it 

will be difficult to discern noise over metric changes. Instead, similar results can be 

accomplished by analyzing the trend of the data to determine how much variation exists 

between data points.  

Like the NetLogo simulations, this exploration of the panic simulation swept 

across three variable dimensions. From the paper presented in Nature, it is known the 

interaction of the panicking population and the column exhibits an emergent behavior. At 

some x and y location, and a specified diameter, the average time required for the 

population to leave the room decreases. The reason for this decrease is because at certain 

Table 4.2  Ranges of Variables Tested for Panic Simulation 

Variable Name Minimum Maximum Increment 

Diameter 0 2.9 0.1 

X-Location 12 13.1 0.1 

Y-Location 6.5 7.9 0.1 

 



88 

 

input settings the column causes the population to exit in an alternating pattern instead of 

creating a preventative human arc at the doorway.  

The paper does not provide an indication of which combination of variables 

produce this beneficial emergent behavior. A sweep of the column x and y location and 

the column diameter is performed to find beneficial regions.  Since each simulation exists 

of 200 human surrogate agents an intuitive metric is the mean time for the collective 

body to exit. Being that this metric tracks a single simulation and ten replicates are 

performed, the mean (replicate) of the average (single simulation) time to exit is used as a 

metric which expresses the success of exiting. Below are the design points tested in the 

simulation with the color gradient expressing the mean-average-time-to-exit (MATtE) the 

panic room. 

 

Figure 4.13: Emergent Behavior Exhibited in the Mean-Average-Time-to-Exit 

In Figure 4.13 there is a transition in the mean-average-time-to-exit the room. 

Intuitively the relationship of the x and y location to the column diameter cuts a spherical 

Interesting Phenomenon 
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wedge from the rectangular volume. Once the column has reached a region too close to 

the doorway, agents are no longer able to leave the simulation, causing the MATtE to be 

undefined.  

The scale of the colorbar legend also indicates another interesting phenomenon 

that most of the simulation is broken up into one of two regions: nothing exiting, or 

everything exiting, but there also exists a region with abnormally high MATtE. The 

region where nothing exits is where the column completely blocks the doorway and 

prevents anything from exiting the room. Although difficult to see there is faint plane of 

points in the center of the design space with high MATtE. These points have a 

significantly higher MATtE. This is another example of a metric that shows an emergent 

behavior, but because of the metric used, it is more difficult to distinguish its region of 

influence.  As the pillar moves closer to the doorway it moves from having no impact, a 

gradual enhancement (decrease in MATtE), to impedance, and finally to prevention. 

Since this direction is not monotonic, it increases the difficulty of determining where the 

emergent behavior exists. 
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Figure 4.14: Signal to Noise of Mean Average Time to Exit 

Like in the traffic simulation, variance has increased in regions near the emergent 

behavior. This can be seen in the low signal to noise near the spherical region in Figure 

4.14: Signal to Noise of Mean Average Time to ExitFigure 4.14. Although this result 

seems to be repeated in all of the SoS simulations investigated (see traffic and predator-

prey), it is not necessarily indicative of an emergent behavior. Variance is likely to 

increase in regions of an emergent behavior because of the random variation. A discrete 

change in a metric will have a perturbed initialization point causing the behavior to occur 

and shifting inputs, and causing an increased variance. Although this increased variance 

has occurred in every simulation tested, it is possible the variance will not change if the 

emergent behavior is caused by a discrete variable or is less sensitive to the inputs. This 

means that areas with higher relative variance may be indicative of emergent behavior, 

and should be explored more.  
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To investigate the change in the metric, and specifically the emergent behavior, a 

plane of points can be selected from the center of the exploration space. The points are 

selected from approximately the center of the design space (Column Y-location=7.5) and 

all of the column x locations and diameters a plotted as a surface. 

 

Figure 4.15: Y-location Iso-surface of Column (7.5) of the Mean-average-time-

to-exit (Left: Surface, Right: Corresponding Points) 

The left plot in Figure 4.15 shows the surface of the points in the right figure. 

There are a number of points on this surface indicating it has been well explored, and the 

smoothness of the surface indicates the mean response has been captured sufficiently to 

identify clear trends in the data, and thus ten replications are sufficient for the purpose of 

this exploration.  

There exist two interesting features in the surface: first, the steep increase in the 

MATtE. For some locations of a column all traffic out of the room is halted, while in 

other locations agents must ‘squeeze’ by the column, significantly slowing the rate of 

exit. The second feature is the trough on the left of the peek. Both of these valleys are 

minimums in the MATtE: a desirable emergent behavior. To the left of the peek, the 
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tough has a high nonlinearity where it transitions to a preventative effect on the room, 

while on the right, large discrete changes in the underlying response, and both areas need 

increased points placements when exploring the space. These features have been seen 

repeatedly as indications an emergence may exist.  

Although not the focus of this research, it is important to note the placement of a 

column to the left of the peek is more desirable than the placement to the right. The 

reason for this is despite that the placement to the right may produce significantly 

reduced exit times, a slight miscalculation renders exiting the room impossible. While 

placing the column to the left of the peek does not produce the lowest exit times, the 

worst case scenario is that it takes slightly longer to exit versus not being able to exit 

entirely. 

4.4 Conclusions 

This study attempts to find the stochastic features and emergent attributes present 

in SoS simulations. If these attributes and features can be determined, it is possible to use 

algorithms to enhance the learning these complex design spaces and hone features that 

are specifically important to the designer.  

From this study it can be determined that the metric used to learn about a space 

and track emergent behaviors is important. Not all metrics show the presence of an 

emergent behavior equally, and some increase the difficulty in finding the regions by 

producing single local spikes in the data. Where it is possible, metrics should be designed 

to be divergent in the presence of an emergent behavior instead of reverting. Divergent 
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metrics will produce more visible behaviors and will decrease the sensitivity to the 

simulation run length.  

The metrics should try to remove the effects of a transient start-up in the 

simulation. As seen in the traffic simulation, the transient start-up blurred the region of 

the emergent behavior for some metrics. It is desirable the metrics not depend on 

transient start-up and are only determined at a steady state. Choosing the proper metric 

can increase the ease of distinguishing emergent behaviors.  

Although it was already known, this research confirmed the inability of 

parametric methods to regress these complex SoS design spaces. These spaces do not 

follow any predefined form and have local changes that are incapable of being 

regressed/learned using parametric techniques.  Additionally, the traditional assumptions 

of normally and identically distributed noise do not hold when investigating SoS spaces. 

These spaces are heteroscedastic, and their errors uncorrelated and un-identical. This 

means that inferences gained from traditional regression techniques are inadequate and 

will provide inaccurate results. Any method used to develop inferences must be capable 

of using nonparametric methods and not use any assumed distribution.  

Emergent behaviors, as deduced from CAS and as seen in SoS simulations, can 

exhibit themselves in several different features: local nonlinearities and/or discrete metric 

changes, and changes in the local variance. Although none of these features guarantee 

that an emergent behavior exists, they are all features that may indicate the presence of an 

emergent behavior which is a known critical design feature of SoS. Further, although not 
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always present, regions of increased variance may identify transitions from a pre to a post 

emergent state and have been seen in all of the simulations tested. Any future studies that 

develop means of exploring SoS design space should place more design points in regions 

which exhibit any of the aforementioned features. 
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CHAPTER 5 

CAPTURING VARIANCE IN HIGH-DIMENSIONAL, 

NONPARAMETRIC, AND CONDITIONALLY VARIANT SPACES 

Within many science and engineering fields it is often necessary to regress data in 

order to draw conclusions and/or inferences. Depending on the field, this data may be 

collected from vast datasets, gathered from physical experimentation, or determined 

through computer enabled simulated experiments. In a relatively new class of problems, 

Systems-of-Systems (SoS), large integrated simulations are used to understand complex 

stochastic interactions and the regressions are used to conduct engineering design 

tradeoffs. These regression techniques are necessary to explore, understand, and learn the 

major trends in these vast design spaces. However, these spaces contain vast quantities of 

input dimensions, are conditionally variant, non-normally distributed, not necessarily 

identically distributed, nonparametric, and may contain 100s to 100,000s of data points. 

Additionally, approximations for both the mean (trend) and local variance (uncertainty) 

are necessary for learning these spaces, [115] yet there has been little prior work 

modeling these problems without using these assumptions. [162] 

Although there is significant literature on mean function estimation, the literature 

on variance estimation is limited. [163-165] Most work in nonparametric regression has 

concentrated on estimating the underlying function [166] and not the variance; however, 

the regression of the variance can be nearly as important as the mean function. [165, 167] 

Even with the significant growth of non-parametric regression over the last three decades, 

high dimensional, nonparametric modeling is a leading research area in regression 



96 

 

analysis, and there is a possibility for significant advancement. [168] Many techniques 

make assumptions on one or multiple of the follow: structure of the regression 

(parametric), error uniformity (homoscedastic), and/or the error distribution (normality). 

[169p246, 170-171] But for these complex spaces, none of these assumptions can be 

made, and in general, there is a lack of methods capable of handling nonparametric 

heteroscedasticity. [170]  

This paper conducts a comparison of the current state-of-the-art methods capable 

of regressing both the mean and variance for stochastic, conditionally variant, high 

dimensional, nonparametric datasets. After selecting methods from the literature, 

sensitivity studies are conducted on changing the dimension, the variance, and 

replications versus exploration on differing classes of problems. 

5.1 Literature Review of Regression Techniques 

“An economist was standing with one foot in a bucket of boiling 

water and the other foot in a bucket of ice. When asked how felt, he 

replied, ‘On average I feel just fine.’”  Hanson, B.E. [172p42] 

The above quote is a comical example of why it is important in SoS to capture 

both the mean and the variance. The mean in a stochastic simulation may show an 

adequate design, but the variance indicates there is significant uncertainty. In the statistics 

literature, the mean is often the focus of regression and using the notation of statistics, 

these spaces are represented by the following functional form. 

&('�) = �('�) + �('�)� 
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Where a metric, y, from the simulation can be mapped from its inputs, x, by a 

mean function, �('�), and a standard deviation function, �('�), the error, e, may take on 

any distribution shape, but has a mean of zero, and standard deviation of one. The 

modeling of a random process consists of determining the mean and an understanding of 

the error; [173] however, in the literature it is often assumed � is constant: the function 

space is homoscedastic. [163] Although it is simplest to capture the variance by Monte-

Carlo analysis, these simulations may be computationally expensive to simulate, [174] 

and the fewest number of simulations are desired for the greatest amount of information 

gained. 

Many of the methods used in statistics, machine learning, and econometrics have 

many similar features to SoS design spaces. In econometrics, the variance is often 

ignored or treated as a constant nuisance parameter when compared to the mean, 

[172p42] but much of the literature has focused on nonparametric methods of capturing 

the mean, [154p429] and not the variance. Spatial econometrics assess the relation of 

specific economics in surrounding regions, and is the synthesis of our societal SoS. Many 

of the methods used in these fields are useful in the evaluation of simulation based SoS. 

However, in traditional approaches to regression, typically parametric methods are 

implemented (ex. linear, polynomial, etc.). 

To regress the variance in an SoS design space there are several things that are 

needed. Despite the enormous amounts of literature of nonparametric regression 

techniques, there are significantly fewer resources for capturing the variance of a 

nonparametric space. Of this subset of papers there are even fewer authors who handle 
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conditional variance and there are virtually no methods which explicitly mention high 

dimensional conditional variance in nonparametric spaces. [175] Below is a pictorial 

representation of the amount of literature which focuses on each of the issues 

(nonparametric, high dimensional, and conditional variant regression of the mean and 

variance).  

 
Figure 5.1: Proportional Distribution of Literature in High-dimensional, 

Nonparametric, and Heteroscedastic Variance Regression 

The concept of nonparametric regression has had a ‘presence’ in the literature for 

nearly a century. The first debate regarding the importance of nonparametric methods 

dates back to the 1920s [176p18] and it wasn’t until the 1940s the initial interest grew. 

[177-178] Even with this early introduction it wasn’t until the 1970s and 1980s that the 

research became important, [179] and this is likely due to the increase in computing 

power. These methods, more drastically than parametric methods, suffer from the curse 

Nonparametric Regression

High-
dimensio

n

2 papers 
since 
2002Heteroscedastic

papers since 1987

Non-

parametric 

Variance 

Regression

papers 

since 1985



99 

 

of dimensionality, and are significantly affected by the sparsity of points in the data. 

[180p133] Further, parametric models can cause severe inference bias in the presence of 

non-uniform errors. [181] 

Nonparametric inference parameters are still relatively new, [182] and when 

variance estimation is considered, it is rarely the target of statistical analysis and is 

typically required for hypothesis testing. [183] For the regression of data using 

nonparametric techniques there exists a dearth of methods, and still fewer methods for 

estimating the variance. The first steps to estimate the variance were to use direct 

neighboring points, [177, 184-185] and some of the first adopters of conditional variance 

estimation were in the late 1980s with Muller and Stadtmüller, [179, 186] and Hall and 

Carroll [187] using kernel based methods. Some recent methods of approximating the 

variance are quite innovative. An example of this is that conducted by Carter [188] 

whereby the variance is approximated by looking at high frequency coefficients and the 

mean by low frequency coefficients. 

There are increased difficulties with capturing the variance of nonparametric and 

heteroscedastic spaces. Many methods capture variance in nonparametric homoscedastic 

spaces, or parametric heteroscedastic spaces, but rarely nonparametric heteroscedastic 

spaces. Adding high dimensions further increases the difficulty, being nearly all the 

literature focuses on one-dimensional representation, and many of the methods are not 

easily or accurately expandable. 
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5.1.1 Heteroscedasticity and Conditional Variance 

A common assumption in parametric and nonparametric regression is the 

homogeneity of the variance. [189] However, the importance and awareness of 

heteroscedasticity has increased in recent years, [190] and although there are many tests 

for heteroscedasticity in parametric data, this is not the case for nonparametric data. [189] 

The presence of conditional variance is common and important in many areas including 

finance, [191]  reliability, [191] and econometrics [169, 192] (others can be found in 

[165]), and the default in empirical work should be to assume the data is heteroscedastic. 

[172p43] Greene [169p499] uses the example of company profits to explain conditional 

variance: even after accounting for firm size, a larger variation exists in profits for large 

companies than the variation in small companies. Because of the ubiquity of financial 

data, most of the applications of capturing the variance deal with historical univariate 

financial trends. [191-193] 

Variance estimation in a heteroscedastic space is still an area of active research. 

[194p262] In fact, even the presence of slight heteroscedasticity can mislead researchers 

when using least squares. [195] In least squares regression with non-constant variance 

little accuracy will be sacrificed in areas near the mean variance, but on either side of the 

extremes the regression is likely to have severe error. [196] Although ordinary least 

squares remains unbiased, consistent and asymptotically normally distrusted in the 

presence of heteroscedasticity, it will no longer be efficient and the inference procedures 

no longer appropriate. [169] Even using a parametric model for the variance structure in a 

nonparametric space can be inaccurate in determining the residuals. [185] By some 
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sources, the best determination of the variance function in a heteroscedastic and 

nonparametric space is a three point kernel method, [185] but this will be shown later to 

not be the case.  

It is possible to convert a space from a nonparametric form to a linear parametric 

form with the use of radial basis functions. This conversion to a parametric form allows 

conventional methods of calculating the variance to be used, like seen in the below 

equation. But these approximations are significantly negatively biased [197] due the 

number of degrees of freedom provided to the model. Even after providing corrections 

this process still performs poorly. 

)*0 = (,-,)./,-���0(�12),(,-,)./ 

This above functional form uses the residuals from the regression as an 

approximate of the error, and can thus calculate the variance.  

5.1.2 Multidimensional Spaces 

Over the last two decades there has been significant progress in regression 

methods but a lack of methods capable of handling high dimensional spaces. [198] High 

dimensional problems containing heteroscedastic errors are a common problem in 

biological applications, and like many areas, the heteroscedastic analysis of these datasets 

has largely been ignored. [199] 

There are few papers which mention multidimensional determination of variance 

[200] and those that do, assume homoscedasticity. Of the literature that does develop 
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approximations for the variance, most assume univariate spaces, [165, 184-185, 201-202] 

while few focus on multivariate extensions.  For the univariate approximation Rice [201] 

and Gasser [185] are considered the seminal works and are referenced throughout the 

literature.  These methods have been modified (1988) by Buckley et al. [203] to improve 

the ease of their computation using an asymptotically equivalent. [184] While Hall et al. 

developed a class of estimators which are considered optimal within this formulation. 

[184, 204] More recently there have been many techniques proposed for univariate 

smoothing including kernel methods, local polynomial methods, spline methods, Fourier 

methods, and wavelet methods. [168] Reference [168] gives an outstanding and recent 

overview of various nonparametric regression techniques. 

In 2002 Spokoiny was the first to apply variance estimation for higher 

dimensions. [183] Later Munk et al. also considered high dimensional conditional 

variance using difference based methods. [175] With the exception of Spokoiny [183] 

and Munk et al. [175] dimensions greater than three have never explicitly been 

considered for nonparametric variance regression. Although some of the methods are 

easily extendable to higher dimensions many of these methods break down as the 

dimensions increase (ex. kernel methods) due to the curse of dimensionality. [154p430, 

168, 176p31, 181, 205p7] As the number of dimensions increase, the number of points 

required to accurately fit the space increase more rapidly than the dimensions.  

Some methods show the low dimensional homoscedastic variance methods 

presented by [200] can be extended to higher dimensions, but only to dimensions less 

than eight. [183] Eight dimensions is a significant improvement over the typically 
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univariate solutions offered by the literature; however, it does not provide the flexibility 

of no dimensional limits which would be desirable by SoS simulations. Further, these 

techniques only provide a solution for homoscedastic errors and not the conditional 

variance of SoS simulations. In larger dimensions with finite samples, differencing 

schemes may be subject to large biases. [175] One method attempts to capture the 

variance of high dimensional stochastic simulations by conducting an intelligent 

dimension reduction [206] which is not a possibility for SoS. The number of dimensions 

are chosen because they are important to the simulations and the effects are required to be 

captured. 

5.2 Research Plan 

The underlying research objective of this paper is to understand which currently 

developed methods are capable of capturing the mean and variance of nonparametric, 

conditionally variant design spaces which can contain large datasets (>500) and be high 

dimensional (≥3). To answer this research objective several methods from the literature 

will be developed and implemented on a breadth of problems.  

The literature can take on many different forms of testing regression methods. 

Some papers develop a list of basic functional forms and exhaustively compare the 

methods to differing numbers of explanatory variables or noise, [207-208] while others 

select test problems and specifically investigate the characteristics that future problems 

will have. [170] The function investigations that use a small sample of problem types also 

typically conduct a two part analysis. First the analysis investigates a known functional 
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form with added errors, [209] and then moves to a real data problem, often Silverman’s 

motorcycle acceleration data. [68, 107, 210-213]  

The issue with using real data with this problem is the ability to validate that the 

technique has found the correct mean and variance. In real data, such as Silverman’s 

motorcycle data, there is no way to verify the code has the correct value of the underlying 

mean or variance. In the literature this real data check is conducted visually for anomalies 

rather than with rigor. [68, 107, 211] There are three issues with this approach for SoS 

spaces. First there is no real data that represents an SoS in the literature; second, this does 

not provide a repeatable measure of an algorithm’s performance; and finally, visual 

inspection in high dimensions is intractable. SoS are analyzed by simulation and thus 

instead of using real data, representative functions and a simulation of an SoS can be 

used.  

This comparison uses four different test problems, three of which are used in the 

literature for robust design and are scalable to n-dimensions with varying variability and 

complexity. The fourth is a notional SoS simulation. All of the test functions for this 

evaluation have been chosen for specific characteristics which are similar to SoS. First, 

all of them are multidimensional problems. Second, each function has a complex 

conditional variances, and third, each function cannot be fit with a parametric model.  

The main assumption for SoS in this research, is the mean can be expected to be 

smooth for continuous and ordinal discrete inputs and is assumed to be smooth for the 

majority of the space. Although there may be discrete steps in the response population, 
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these steps are assumed to be uncommon and when fit with a continuous function will 

result in an increase in local variance. 

5.2.1 Test Methods 

There is an abundance of different regression methods. Many methods such as 

linear and polynomial regressions assume a form for the data and are not typically well 

suited for simulations with many extrema [91] such as SoS. It can thus be deduced that 

nonparametric functional forms are required to generalize regression of these spaces and 

to reduce the errors of using an incorrect model form. [214-215] In reference [101] a list 

of regression methods and items which must be considered when choosing regression 

methods is presented. 

Nonparametric variance estimators can be classified into three different types: 

kernel type estimators, series type methods, [163, 183, 191, 193] and difference type 

estimators [184-185, 201, 216].  [167, 184] The most common types of smoothers are 

spline (series) and kernel. [172p190, 217p281] There are many applications of these two 

curve fitting techniques, [165, 185, 217p76-82, 218-219] but the use of splines in 

nonparametric regression is relatively young; [220] and is sometimes labeled as 

semiparametric because it uses piecewise parametric functions.  

Difference estimators have been commonly used to capture the variance, [184, 

201] and they do well in highly oscillatory regions because the bias is more important 

than the variance. [184] When the signal to noise is large, Gasser et al. shows that their 

method has a lesser bias issue; [185, 216] however, as the variance, or the noise to signal, 
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increases, difference methods and kernel methods decrease in performance. [184] In 

nearly all cases studied for higher dimensions (d>4) kernel based methods performed 

better than difference based methods. [175] In general, the asymptotic efficiency of 

difference based methods is less compared to kernel based methods. [175, 221] 

Kriging is a commonly used fully nonparametric regression method and performs 

well for arbitrarily smooth deterministic spaces. [97] Kriging has also been shown to be 

less sensitive than radial basis functions to the experimental design. [97] Kriging, 

although flexible in fitting models, limits the number of points capable of being fit 

because of its computational expense [116, 222] and in Kriging’s traditional form, it is 

intended for deterministic functions, and not stochastic spaces. Although a stochastic 

version of this technique has been developed, and there are other Bayesian methods 

created for heteroscedasticity, they all assume distributions for the error. [194p282, 

217p136] Further, Bayesian methods can be found to be sensitive to the choice of prior, 

[223] and thus their shape can greatly depend on user input. Neural Networks (NN) are 

also a nonparametric regression technique, [97, 224] but they also require significant 

fitting time as the number of points increase, and they further perform poorly in the 

presence of noise. [225]  

Between kernel methods and Kriging exists smoothing splines. [217p393] It is 

important that the method of capturing the underlying regression is capable of handling 

local features because the function space will not have a uniform smoothness throughout. 

However, the issue with fully nonparametric methods like kernels is that as the dimension 

increases their performance degrades, [226] because the hyper-sphere scales with the 
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power n. It is this feature that many semiparametric methods attempt to mitigate. There 

are many different types of semiparametric models, each with their own set of 

assumptions. This may include, but is not limited to, additive models, link functions 

(index models), and generalized additive model and piecewise methods. Additive models 

are specifically designed to reduce the curse of dimensionality. [217p278] Generalized 

additive methods allow different types of link functions to be used depending on the type 

of error distribution assumptions. [227] However, in general, these methods make an 

assumption on the error distribution a priori and the inferences from these functions 

cannot be used.  

For estimating the variance nonparametrically, Hansen [172p211] suggests using 

a kernel based method, despite mentioning kernel and series methods perform similarly 

for twice differentiable functions. [172p226] The reason is that in high dimensions spline 

based methods will have increased knot cross terms. These knots for structured spline 

methods are systematic transitions in a space, and can significantly increase as the 

dimensions of the problem grow.  

There are two spline methods that are possible for these spaces because they may 

have high dimension, are nonparametric (or semiparametric), and have the possibility for 

large datasets: MARS (regression splines which parsimoniously chooses knots) and 

polyharmonic splines (interpolation method that does not required structured knots). Both 

of these methods will be covered in greater detail in later sections.  
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There are two approaches taken for approximating the variance: methods that use 

repetitions to help approximate the variance and methods that do not to use repetitions. 

From the above discussion, there are several methods which will be compared from the 

literature. Three methods which do not use repetitions and two methods that do. 

5.2.1.1 No Repetitions 

There are three methods considered that do not require replications. Although 

there are many variations and combinations of methods that can be considered, only those 

that are specifically mentioned for heteroscedastic regression or specifically indented for 

high dimensional datasets and nonparametric regression are used. Of these techniques 

three are chosen: a kernel smoothing routine by Cawley et al. [228] which regresses both 

the mean and the variance; a combination of a mean spline smoothing regression using 

MARS by Friedman [229] with a kernel method for the variance; and finally, a double 

MARS routine where the mean and resulting residuals are regressed to approximate the 

mean and variance. 

5.2.1.1.1 Kernel Method 

By far, the implementation of kernel methods are more widely used in the 

literature than any of the other. [164] Kernel methods attempt to smooth the space by 

selecting a weight for each (or a subset) of neighboring points. There are several different 

types of kernel regression algorithms, including the Nadaraya-Watson, Priestley-Chao, or 

the Gasser-Müller. Each of these methods are relatively similar, and they place an 

importance on neighboring points. 
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A key feature of kernel methods is determining the weight function (a.k.a. kernel 

function) that must be placed on the neighboring points. [176p45] The style and type of 

weight can vary significantly. Below is an example of kernel smoothing with a simple 

Gaussian kernel. 

3('�, 4) = �'5.6789:
 

; = ∑ 3('�, 4)&1=1>/∑ 3('�, 4)=1>/  

D is the distance (not necessarily Euclidean) of a point of interest to another point, 

and k is a tuning parameter that is found by optimization. There are many different kernel 

functions (w in the above formulation – sometimes called correlation function) which can 

be used. References [53, 180p41] list other forms. Examples include Gaussian, uniform, 

triangular, etc. Although the importance of the kernel function seems critical, it actually 

is less important than the selection of the bandwidth parameter, k. The difference 

between two different canonical kernel functions is almost negligible when bandwidths 

are properly scaled [180p58, 230ch6.2.3] and for kernel methods with random designs 

and appropriately sized bandwidths, all kernel functions are asymptotically equivalent. 

[217p74] For a good discussion regarding the bandwidth choice and its impacts on the 

kernel distribution the author points the reader to reference [231]. 

Kernel methods require a bandwidth selection which is a standard compromise 

between the bias and variance. [101p72, 217] For kernel methods, the bias of incorrectly 

capturing the mean is proportional to the bandwidth squared, [180p47] and the larger the 
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bandwidth, the less the bias, and the smaller the bandwidth, the larger the variance. 

Reference [219] found that cross validation for the choice of the bandwidth parameters is 

one of the most common data-based methods for its determination. A form of cross 

validation will be used to determine the bandwidth in this research. 

One problem with kernel methods and selecting a bandwidth is that the spacing of 

the points is either considered uniform or of sufficient density. [217p93] The issue with 

this is that in SoS it is desired that points be placed in regions of interest and not 

uniformly over the space. If non-uniformity in point placement is conducted, this will 

likely require local weighting of bandwidths, which adds significantly more complexity 

and will develop more difficulties in balancing the bias-variance trade off.  Additionally, 

because of the weightings, it can be difficult to handle the boundaries, especially in 

multidimensional cases, [164] and sometimes kernel methods are dominated by these 

boundary effects. [232] To improve kernel boundaries there are a couple different 

methods, [164, 204] but the method implemented in this research automatically accounts 

for the boundaries. 

The kernel method chosen for this test problem is an extension of support vector 

machines by Cawley et al. [208-209, 211, 228, 233-234] This technique has the added 

benefit over other kernel methods in that it does not require a boundary condition. 

Additionally, this method attempts to approximate an unbiased estimator of the variance 

by a fast leave-one-out cross validation routine. The method is known as LOOHKRR or, 

Leave-one-out Heteroscedastic Kernel Ridge Regression, and its cross validation can be 

computed with relatively little expense. [234] This procedure is an almost unbiased 
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estimator of the properties of the statistical model, [233] and thus provides an excellent 

test method for the purely nonparametric estimation of the design space. The kernel 

method developed by Cawley et al. solves a weighted least squares model.  

In Cawley et al.’s paper a simple monotonic optimization routine is implemented 

with a log penalty function to determine the proper bandwidth. However, since this log 

function is not monotonic and the space can’t be visually inspected, it is unknown where 

the best local bandwidth optimum is located. Thus, a genetic algorithm (GA) is used to 

search for the proper bandwidth. The GA is an implementation of MATLAB’s 

parallelized GA and limits the population size to 30. After the max population has been 

reached, the algorithm is stopped even if the algorithm has not converged. 

5.2.1.1.2 MARS and Kernel Method 

One method of capturing the variance is to use a piecewise smoothing method 

such as a semiparametric regression spline for the mean and use a kernel method on the 

residuals for measuring the variance. Using this method, the variance can be 

approximated (asymptotically) using the second sample moment of the error: an 

approximation for the biased variance. [216] The deviation from the mean function can 

contain two pieces of information, the variance portion and the error of improperly 

capturing the mean function. [180p46] This approach attempts to mitigate the effects of 

the curse of dimensionality by providing less degrees of freedom in capturing the mean 

than a fully nonparametric approach. [181] There are three general ways to reduce the 

dimensionality of the problem. [180p148] The first is the most obvious and perhaps 
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idiotically simple: remove dimensions. This process reduces the number of dimensions 

until the nonparametric method is capable of handling the specified number of 

dimensions for the number of points tested. The second technique is to develop a link 

function or index. This process takes a parametric function and transforms it using a link 

function. The final is a semiparametric model, where the nonparametric space is broken 

into several parametric subsections.  

This class of methods attempts to keep the flexibility of nonparametric 

approaches and can take on a range of models to bridge the gap of parametric and 

nonparametric models. [194p161] Semiparametric models are similar to nonparametric 

models in that they can fit almost any space, but they make the assumption that the space 

can be broken down into parametric components. A good example of semiparametric 

regression is the use of piecewise linear regression splines. This method breaks the space 

down into a set of linear regressions which intersect at knots in the space. Once knots 

have been determined the function space is fit by many parametric regressions. 

The concept of semiparametric methods is to gain the ability of nonparametric 

spaces with the N
.5
 convergence rate of parametric methods. Many of the semiparametric 

methods developed consider univariate models [235] and are widely discussed in the 

literature. [236] The development of the partially linear regression model was developed 

by Engle et al. [205, 235-236] and like kernel methods the type of polynomial used for 

each section is of little importance compared to the bandwidth chosen. [217p247] 
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To automate the smoothing, a piecewise spline regression routine developed for 

high dimensional noisy data is used. Friedman in the early 1990s proposed Multivariate 

Adaptive Regression Splines (MARS) specifically for these attributes, [198, 229] and it is 

tailored to multivariate smoothing. [220] MARS is an efficient technique designed to 

handle multivariate piecewise functions, [237p31] and was originally introduced as a 

computationally efficient nonlinear regression routine using recursive partitioning. [238]  

MARS is a semiparametric model which does not assume a predetermined form 

of the regression. The reader is directed to Friedman’s paper for an in-depth discussion of 

the math, but a brief description will be given here. MARS is a modification of various 

other regression techniques, specifically recursive partitioning and splines. Two of the 

issues with recursive partitioning are its lack of continuity and its inability to capture low 

order trends when compared to the number of data points, while splines are plagued by 

the curse of dimensionality. MARS conducts two passes. First there is a forward pass in 

which an over fit model is developed. The over fit model is developed by adding basis 

functions which minimize the least squares. The second pass is a backward pass where 

the algorithm systematically removes basis functions to determine if the basis function 

benefits the model. 

Studies have shown that MARS techniques can be faster and are less likely to 

over fit the data than nonparametric methods. [239] MARS performs well whenever the 

true function has low local dimension. [207] Low local dimension is perfect for SoS 

problems. For the majority of the space, transitions from one variable to another are 

expected to be smooth and only depend on a couple variables. One issue is that MARS 
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can be drastically slowed as the number of dimensions grow and possible knot locations 

increase. [237p31] (Although there are methods capable of enhancing the computational 

speed of MARS [68, 240] they are not used in this research.) 

To implement this method in MATLAB the MARS toolbox developed by 

Jekabsons [241] is implemented. Only two changes from the defaults are made to 

enhance the algorithm for SoS design spaces. The first is changing the maximum number 

of knots in the regression spline. The default is 21, but to be truly semiparametric, the 

number of knots should be equal to the number of points.  

The second modification is changing the “endspan” parameter of the algorithm. 

To prevent over-fitting near the edges of the design space, a specified number of points 

are removed from the regression based on the number of dimensions being regressed. 

However, since the points have been strategically placed in the design space (whether by 

LHS design or by adaptive sampling) every point in the simulation is important and 

expensive to run; ergo, no points are removed from the simulation space. 

To capture the variance of this function, the kernel method from Cawley et al. 

presented in the previous section is implemented. This method again prevents the use of 

boundary kernels and automatically finds the proper bandwidth for the kernels. Instead of 

using the kernel mean and kernel variance in Cawley et al.’s method, the MARS mean is 

used and the kernel variance.  
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5.2.1.1.3 Double Regression with MARS 

Another technique is to smooth the space with a smoothing function and then 

calculate the residuals squared and smooth this space again with another smoothing 

function. This second smoothing is the expected value of the error squared which is 

asymptotically synonymous with the variance. In many cases a regression is applied to 

the residuals to capture the conditional variance, [117p90, 163, 183, 187, 191] and in the 

presence of homoscedasticity is considered unbiased. [163] However, this process is 

often not considered because it biases the variance in heteroscedastic datasets. There is 

error in the approximation of the mean, ergo, the calculated variance is biased from the 

expected variance. When a mean function is sufficiently smooth, it will have no first 

order effects on the estimation of the variance. That is, the variance function can be 

estimated with the same asymptotic risk as the mean function. [217p269, 242] This 

process is often considered when presented with conditional variance in time series data. 

[191]  

If the mean is known (the best approximation is the regression created), then the 

remaining residuals can be used to calculate an approximation for the standard deviation 

as seen below. 

� = ?@A(& − �)2C 
The expected value of the squared residuals is equivalent to the variance. As more 

points in a simulation are added, a better prediction of the mean function is determined, 
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and thus once enough points are captured a good approximation can be made reducing 

the bias. 

The issue with simply regressing the residuals is that a spline fit may go negative 

in transitions form high residuals to low residuals, which is infeasible by the above 

equation. Regression of the residuals requires a transformation. In some applications a 

log transform is used (see Cawley et al.), but through experimentation, this has been 

found to exacerbate the variance error. Instead, a simple truncation is used where any 

value of the queried spline which is negative is truncated to zero.  

The smoothing regression splines used in this section for both the mean and the 

variance are the MARS algorithm described in the previous section. The same 

assumptions and modifications to the algorithm have been implemented as in the 

previous section. 

5.2.1.2 Repetitions 

Another more common approach to determining the local variance in high 

dimensional spaces is the use of replications. At each testing location a specified number 

of replications are used to determine the mean and variance to a specified tolerance. 

Replications are used here as a comparison to the methods which do not require 

replications. There will be two different approaches taken to regress the mean and 

variance with replications. The first is the regression of the mean and standard deviation 

using the MARS algorithm mentioned earlier, and the second uses a semiparametric 

interpolation routine known as polyharmonic splines.  
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When using regression the data is not fit precisely, the data is smoothed. Thus 

simulating a precise number of replications for a specified tolerance will over simulate 

locally because there is smoothing. Because of this smoothing, if the mean is known to be 

within 1% the regression may smooth the accuracy to be within 10% or worse. For this 

reason, polyharmonic splines are used as the other fitting method because they go 

through every point unless the function space is over constrained (the points are too close 

for the order of the function).  

When determining the number of replications necessary, it depends on the local 

variance of the function. Areas of higher variance require more replications to acquire 

identical precision as those with lower variance. To capture varying required fidelities, 

several replication quantities are used ranging from five to 200 replications. 

5.2.1.2.1 Polyharmonic Splines 

Radial basis functions (RBFs) are one of the most promising methods for 

interpolation. [243] RBFs are a super-class and represent a breadth of different 

interpolation techniques. These methods are capable of handling large sets of points 

anywhere from 10,000s to 100,000s, [244] and one of the subclasses of RBFs is 

polyharmonic splines. 

This class of spline is a special case of RBFs and is similar to the kernel method 

discussed earlier. These splines however, do not require any tuning of a bandwidth like 

the kernel methods and they fit through each data point provided instead of smoothing the 

data like MARS. A benefit of this method over some of the other methods is that it is a 
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solution of a linear problem once transformed into an RBF domain, meaning the spline 

can be determined quickly. As discussed, this is not a smoothing method, which means it 

does not inherently give the mean response. Additionally, these splines have been shown 

to work well in higher dimensions (4D). [244] 

The form of the polyharmonic spline can be seen below with an additional term to 

improve extrapolation. (The extrapolation term produces a close to linear extrapolation.) 

�(') =  D 31
=
1>/ E(F'� − !1F) + GH I1'�K 

c represents the center of each of the polynomial basis function locations, and E is 

a unique type of basis function for polyharmonic splines. Both w and v are weightings 

which must be determined by solving the system of equations. The subset of the RBFs for 

the polyharmonic splines (E in the above equation) is the below subspace. E can take on 

any one value of k for the entire domain of the design space.  

E(L) = M L6, 4 = 1, 3, 5 …L6 ln(L) , 4 = 2, 4, 6 …V 
The above form can be transformed into matrix notation for solving. If the size of 

the number of centers is small (<768), the system is solved directly, otherwise, the system 

is solved using an iterative routine minimizing the residual. This cut off is determined by 

MATLABs thin plate spline routine which is a 3D implementation of polyharmonic 

splines.  
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IW %H% � K I3G K = I&0K 
Where, 

W1,X =  EYZ!1 − !XZ[, % = \ 1 … 1!/ … !=] , & =  A&/ … &=CH 

To solve this system of equations, the MATLAB thin-plate spline algorithm is 

modified to handle N-dimensions, and the speed of the problem increased by ten for 750+ 

nodes by removing repetitive calculations. When the function above fails to converge on 

an iterative scheme because there are too many points in a small space for the order of 

spline, the resulting regression approximates a nonparametric least squares.  

Although splines do not exhibit Runge’s phenomenon where the error tends to 

infinity in-between points as the order of the spline increases, [172p218] incorrectly high 

orders can exaggerate error in-between points. It is thus desirable to keep the order of the 

spline as low as possible, first to prevent noisy, high-order oscillations (Runge’s 

phenomenon) in the interpolation, but also for fast computation of the space. It is known 

a priori that the space is non-linear, and thus the lowest polyharmonic spline that can 

capture curvature is the second order.  

There are a couple downsides to polyharmonic splines. First, the second order 

spline scales with the magnitude of the response: if the space is multiplied by a factor, the 

curve will be different (this is because of the log term in the second order formulation). 

The second is there must be at least as many points as there are dimensions plus one to 
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produce a fit within the space. As an example, a 40D space needs 41 points to determine 

a plane, while methods like MARS automatically determine the important inputs in a 40D 

space. 

5.2.1.3 Summary of Methods Tested 

From the above discussion it can be seen that there are several different methods 

tested with varying types of benefits. Below is a list of all the methods tested. 

 

5.2.2 Test Functions 

There are several datasets which are examples of heteroscedastic spaces such as 

Silverman’s motorcycle data [210-211] but conducting a comparison of methods on data 

Table 5.1  Tested Regression Methods 

Method Name 

Cawley kernel 

MARS mean with kernel variance 

MARS mean and MARS residuals 

MARS with 5 replications  

MARS with 20 replications 

MARS with 50 replications 

MARS with 100 replications  

MARS with 200 replications 

MARS with 10,000 replications (Considered population) 

Polyharmonic Spline with 5 replications  

Polyharmonic Spline with 20 replications 

Polyharmonic Spline with 50 replications 

Polyharmonic Spline with 100 replications  

Polyharmonic Spline with 200 replications 
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poses a significant problem: it is impossible to discern which method is closer to the 

correct answer. Instead, this research will use test functions as opposed to real-life 

datasets. The use of functions provides a precise knowledge of the population mean and 

variance throughout the design space.   

The functions are required to have complicated variance structures as well as 

complicated mean structures. This is not common when developing test functions. [207, 

239] The reason is that it is most common the mean function is of interest. In general a 

test function should be simple enough to analyze the algorithm but complex enough to 

simulate real-world behavior. [2] Many of the functions investigated do not have 

sufficient size or have all of the features desired. To circumvent this problem Goh et al.’s 

work [2, 245] (adapted from Zitzler et al. [246]) on the development of noise induced 

multi-objective optimization problems can be used as test functions with adequate 

features. Additional test functions for multi-dimensional robust optimization can be 

found in [247p45]. 

Multi-objective optimization, although a different objective than design space 

exploration, operates on identical problems: noisy, multi-model function spaces. Like in 

Goh et al. an important factor in SoS is capturing the uncertainty in the design variables 

or the environmental parameters. Goh et al.’s work is developed from the vehicle routing 

problem with stochastic demands: a common network simulation often used to test 

optimization routines. [2, 248-249] (Like many of the network models, this process can 

be adapted to an agent-based simulation, [250] and thus has many of the features of SoS 

spaces). 
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Although there are five classes of problems (Classes 1,2,3,6,7) three classes will 

be used for their applicability. These functions provide complex design spaces that can be 

scaled to n-dimensions and contain heteroscedasticity. Below are the test functions 

chosen for this research. 

 

 

 

  

Table 5.2  GTCO Test Functions [2] 

Name Class Function 

GTCO1 Class 1 
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Within this formulation Goh et al.
3
 has classified two types of variables: decision 

variables (XD) and noise variables (XR). However, in the above function space it can be 

easily identified the noise variables are also controlled design variables which adjust the 

function space. To create heteroscedastic noise features a uniform distribution is used 

which is scaled by different amounts throughout the design space. The function must be 

at least two dimensions, one in the decision variable space and the second in the noise 

variable space. When using these test functions in this paper, the dimensions will be 

increased along the noise variable space because of its increased complexity as compared 

to the decision variable.  

The σ in these functions should not be confused with the notation of standard 

deviation in the rest of this paper. σ in the above functions is the range of the uniform 

distribution. Since these functions are stochastic and not closed form, the variance of the 

function domain must be found through sampling the space. It is further important to note 

that by changing the σ in these functions the mean response also changes.   

Below are images of the mean function and standard deviation for the three 

GTCO test functions. These functions shown below have been sampled with 10,200 

points over the space spread equally across two variables (1-XD and 1-XR). Each of the 

10,200 design points have been simulated 1,000 times to retrieve an accurate 

                                                

3 Additional noise has also been added to the output of the function. This allows for a sensitivity 

study on the amount of noise and the ability to capture the variance. The added noise is N(0,�). 



124 

 

representation of the mean and standard deviation. All functions are tested with a uniform 

distribution range of -0.2 to 0.2.  

To determine the sensitivity of different methods from changes in the variance, 

additional noise is added to the function. This noise is normally distributed with a mean 

of zero and a standard deviation of a specified amount and added to the final output of 

each of the GTCO functions. 
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From Figure 5.2 it is seen that the variance structure over the design space is 

complicated for all three function types. In GTCO1 there is almost a discrete change in 

 

 

 
Figure 5.2: GTCO Function Surfaces for XR and XD Explorations (10,200 

Points Sampled 1,000 Times, No Added Noise) 
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the variance on one side of the design space, while both GTCO2 and GTCO4 are multi-

modal. Because of the formulation of these test functions, these shapes of standard 

deviation will be identical in higher dimensions.  

Each of the functions display small spikes in the mean and standard deviation. 

These spikes are artifacts of sampling and are distortions of the expected surface. If a 

higher sampling rate is used these deviations from the mean would be reduced, and 

possibly removed.  

Although the mean function is simple compared to the variance structure, it is still 

nonparametric and does not follow an identical shape in both 1-XD and 1-XR dimensions. 

In XD the space is an obvious monotonic Pareto front, while in the XR dimension the 

complexity is much greater. Below is an expansion of the XR dimension. The below 

figures show identical statistical values to the figures above, but instead of exploring the 

XD and XR dimensions the below plot conducts an expansion of the XR dimension. This 

expansion shows how the design space changes as additional XR dimensions are added to 

the design space for each of the test functions. 
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Figure 5.3: GTCO Function Surfaces for XR and XR Explorations (10,200 

Points Sampled 1,000 Times) 
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From Figure 5.3 it is important to recognize the complexity of the underlying 

mean function and the resulting standard deviation function. All of the functions exhibit 

local and global maximums and are highly oscillatory with plateaus. As the XR dimension 

increases, these complex forms will propagate in all directions.  

Since the GTCO test functions are not intended to be SoS test functions, a small 

SoS simulation is also used as a test function. The final function to be included is a 

predator-prey agent-based simulation (ABS). This simulation represents an SoS with a 

known emergent behavior. (For more detail please see Appendix B.) Since these GTCO 

test functions are not indented to be SoS test functions, the predator-prey model will 

enable direct inferences to how these methods will perform on SoS simulations. Because 

SoS spaces are typically high dimensional and require long run-times, the population 

values cannot be determined, and therefore more examples of SoS spaces are not used.  

Additionally, integrating the methods directly into the simulation would require 

significant run time to determine data that could not be used later, thus a full exploration 

of the design space is conducted on the predator-prey simulation with 30,000 design 

points each replicated 200 times (6 million simulations). These points were then used 

with a NN to regress the mean and STD. This NN equation is then the queried function 

for each of the methods. Since the predator-prey model is based off of simulated data, the 

mean and STD function have been regressed and thus to make the equation set stochastic 

again the error on the mean is assumed to be normally distributed with a conditional STD 

equivalent to the regressed STD.  
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Below the ranges of the test functions can be seen. 

 

Because of a couple interesting results achieved by exploring the predator-prey 

simulation, further exploration for the GTCO functions at lower dimensions are also 

conducted for both the MARS and polyharmonic spline methods.  

 

5.2.3 Comparison Metrics 

There are many techniques for comparing the performance of different regression 

methods on test functions. The most common are the performance at the points tested, the 

performance over the entire space, and the time required to regress the space. This paper 

will not deviate from this trend but will only present the performance over the entire 

space and the time. The performance over the tested locations is not of particular interest 

in developing a method capable of understanding a space with the fewest possible test 

locations because it does not represent the global accuracy necessary for exploration. 

Table 5.4  Low Dimension Testing of GTCO Functions 

Test Function Dimensions Added STD Sample Size Methods 

GTCO1 3,5,7 0.01,0.1,0.2 10,50,100,500,1000 MARS, Poly 

GTCO2 3,5,7 0.01,0.1,0.2 10,50,100,500,1000 MARS, Poly 

GTCO4 3,5,7 0.01,0.1,0.2 10,50,100,500,1000 MARS, Poly 

 

Table 5.3  Full Test Ranges for all test Methods and Test Functions 

Test Function Dimensions Added STD Sample Size Methods 

GTCO1 10,15,20,30,40 0.01,0.1,0.2 10,50,100,500,1000 All 

GTCO2 10,15,20,30,40 0.01,0.1,0.2 10,50,100,500,1000 All 

GTCO4 10,15,20,30,40 0.01,0.1,0.2 10,50,100,500,1000 All 

Pred-Prey 3 0 10,50,100,500,1000 All 
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After determining which regression methods to test and which types of functions 

to test, the next step is to determine how to quantify performance. There are many 

metrics which are capable of measuring the performance such as R
2
, Mean Integrated 

Squared Error (MISE), Mean Squared Error (MSE), Root Mean Squared Deviation, 

Mean Squared Predicted Error (MSPE), and Integrated Squared Error, etc. Some focus on 

the global fit of the space, while others on the deviation from the points tested, and 

depending on the reference chosen, some are considered more commonly used than 

others. [76p176, 104, 164, 180, 191, 251, 252p14, 253p144] Each of these metrics give 

slightly different information of the fit of the space, and some give improper trends in 

some types of spaces, and proper trends in others. [169p467, 180p133] Although there is 

no convention, [198] the two most commonly used metrics for global performance are 

MISE and MSPE. [76p176, 207, 239] (Most common for the locations tested is MSE. 

[164, 232]) 

Both the MISE and the MSPE use a static sampling of the space and calculate 

their respective metrics. MISE averages the integrated squared errors from these 

samplings, while MSPE takes the average of these samplings. Because this function 

domain is stochastic and the population value at each location can only be approximated 

through sampling, there are locations throughout the space which do not accurately 

capture the population value. (Please see local anomaly spikes in Figure 5.2 and Figure 

5.3.) This means that an integration method may be dictated by these outliers and by 

using the mean instead of the integrated squared error, these outliers in function 
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population do not drive the performance of the tracked metric. Thus, a variation of the 

MSPE (or average predicted squared error) is used as the global metric.  

In the literature it is not uncommon to use 1,000-5,000 samples of the space to 

calculate the MSPE. However, since this space is stochastic, each sample location 

requires a large number of replication samplings to approximate the mean and variance 

(10,000 replications are used for this study). The number of times this space is required to 

be sampled is high, and the number of functions and method to be compared is large. 

This means that the metric is a limiting factor. To solve this problem an adaptation of the 

MSPE is implemented in this research and is coined the Converged Average Predicted 

Squared Error (CAPSE). 

This process uses a uniform sampling over the space of 100 data points and 

calculates the MSPE using 10,000 replications at each of the 100 points to calculate the 

mean and standard deviation. Following this calculation, a second sampling of 100 points 

is used and the MSPE of the 200 samples is compared to the values of the 100 samples. If 

the resulting sample has changed by less than 1% the metric is considered converge and 

stopped. If the sample is not converged, then additional samples of 100 are taken until the 

metric has reached 100 samples of 100, or converged. On average throughout this study, 

700-1,000 samples were required to converge to within 1%. An added benefit of this 

method is that across all functions and variances (higher variance will require larger 

samples to converge), the metric is compared with other samples that have approximately 

the same amount of error in their metric. Below is a depiction of the routine implemented 

for this metric. 
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It is important to realize the CAPSE has units and although its ideal value is zero, 

this is not a feasible outcome. The magnitude of the metric depends on the functional 

space. The values cannot be compared to other function tests. The predator-prey model 

has a significantly larger magnitude than the GTCO functions which will be seen in the 

results.  

Randomly Sample 

Space 

Determine Each 

Sample’s Population 

Statistics 

Calculate APSE 

First 

Sample 

Calculate Change of 

APSE by Combining 

All Previous 

Samples with Latest  

Converged 

Figure 5.4: Converged Average 

Predicted Squared Error Routine 
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5.2.4 Test Setup 

The final test setup can be seen as a collection of different methods tested on a 

collection of different functions, with different static Latin hypercube sampling (LHS) 

sizes, where the main test metric is the CAPSE. The chosen design of experiment is an 

LHS because it has been shown throughout the literature to perform best for the purpose 

of a representative model.  

Despite these function spaces being stochastic, the goodness of fit metric 

probabilistic, and the LHS design points randomly placed producing a unique regression, 

many repetitions of each method on each function are not simulated. To run many 

repetitions of these functions would significantly increase the computational time. 

Instead, by running many types of configurations (variance, dimension, number of 

regression points), a trend is be formed. If many repetitions are conducted it is expected 

the trend to be continuous and smooth. Any deviations from a smooth function are due to 

noise in the data and the lack of repetitions.  

The test procedure is as follows. First the test function is selected and each of the 

parameters including dimension, standard deviation, and the number of test points for the 

regression. Given that all of the environmental variables have been defined, each of the 

fitting methods is used to fit the space with the identical LHS design. After each fit, a 

measure of the fit is performed. The procedure can be seen below. 
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Figure 5.5: Test Setup 

5.3 Variance Capturing Results 

This analysis represents two months of simulation time on 48 CPUs. All 

comparisons of different methods were run on identical machines (Intel Xeon 3.2GHz 

4CPUs with 4GB of RAM) using all of the parallel and vectorizing features of 

MATLAB. Below the analysis will first look at the different methods compared visually 

in two-dimensional space. Then an investigation of the regression methods and their 

sensitivities to different GTCO function parameters such as dimension, LHS size, and 

variance. This analysis will be followed by an investigation of the predator-prey function 

space, and many of the issues encountered in using these regression methods to capture 

this complex function. From the predator-prey model it is concluded that an investigation 

of smaller dimensions must be preformed to understand the trade-offs of using MARS 

versus polyharmonic splines. Finally, an investigation is discussed on the use of 

replications versus not using replications within a design space. 
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5.3.1 2D Visualization 

As a notional comparison of how well these different methods perform with 

varying numbers of points in the regression field for heteroscedastic problems, a visual 

inspection of the two dimensional versions of the GTCO1 test functions can be 

investigated. For these visual inspections zero additional variance has been added to the 

functional space. To test these functions the XD value is set to (0.5, 0.0). This provides a 

cross section along the 0.5 plan of XD which shows the domain over half of the range of 

XD.  

Below are the mean and the standard deviation function as regressed by the 

double kernel method and the corresponding errors. 
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Figure 5.6: GTCO1 Test Function Regression Using 10 LHS points and Cawley et 

al.'s Kernel Method. Left: Mean (Top) and Standard Deviation (Bottom). Right: 

Mean (Top) and Standard Deviation (Bottom) Regression Error 

The mesh grid represents an approximate population value of the mean and the 

variance function using 1,000 samples at each of the 10,200 input locations, while the 

multi-color transparent surface represents the predicted function as dictated by the 

regression method and the ten LHS points. The right figures represent the absolute error 

of the function space corresponding to both the mean and standard deviation, 

respectively. 

A graphical comparison of the different methods will be investigated shortly, but 

it is often interesting to investigate the trend with two dimensional spaces since they 

cannot easily be visualized at higher dimensions. Cawley et al.’s kernel method captures 

the basic trend of the mean function, but has more difficulties capturing the variance 

function. This difficulty is due to the lack of LHS points used in the space. 



137 

 

Below is a comparison of the remainder of the regression methods investigated: 

MARS-kernel method, double MARS method, and the MARS replication method using 

10,000 repetitions. All methods are shown using the identical 10 LHS design points. 

 

Figure 5.7: GTCO1 Test Function Regressed with 10 LH Points. Left: MARS-

Kernel Method Right: Double MARS Method 

The two MARS methods that use the raw data to attempt to capture the STD (the 

MARS-kernel method and the MARS-MARS residual method) show MARS’s inability 

to capture trends with few data points. MARS is unable to distinguish any trend in the 

data and identifies the entire field as noise resulting in a mean plane for both the mean 

and STD. Although there are settings in the MARS algorithm to increase the sensitivity 

to noisy data, this is a parameter which must be specified by the user and infers that the 

user knows something about the complexity/noise of the space. These planes above are 

due to the large noise to signal ratio in the data and will only become worse as this ratio 

increases.   
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The standard deviation in both of the above plots are straight planes. The root of 

this is the mean regression method that identifies the field as purely random and thus fits 

a line to the mean of all the data causing the kernel method to produce a nearly identical 

outcome to the regression of the residuals. 

 

Figure 5.8: GTCO1 Test Function Using MARS regression of the Mean and STD. 

10,000 Repetitions are Used to Capture the Mean and STD of the 10 LHS points 

If an approximation for the population mean and standard deviation are used 

(10,000 samples at each input location), the MARS regression method begins to capture 

the trend. The reason for this is because the noise in the simulation is smoothed due to the 

high number of samples in each of the locations. However, the trend is still not as good as 

the kernel smoothing method.  

The number of points can be increased to identify changes in the regression 

routines as more points are added to the design space. Below is a 100 point LHS design.  



139 

 

 

Figure 5.9: GTCO1 Regression Using 100 LHS Points. Left: Cawley et al.'s Kernel 

Method Right: MARS-Kernel 

 

Figure 5.10: GTCO1 Regression Using 100 LHS Points. Left: Double MARS 

Method Right: MARS with 10,000 Repetitions 

From Figure 5.9 and Figure 5.10 it can be seen the kernel methods do not capture 

any aspect of the standard deviation where there is a high gradient. The double regression 

of the mean function and the remaining residuals perform well, but contain high 

oscillations in regions of high standard deviation gradients. The MARS method using 
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10,000 replications at 100 locations across the design space has regressed the space with 

little error in comparison to the other methods. To capture this performance, many 

repetitions must be run at each of the design locations which means that there are 

substantially higher number of points in the sampling of this design space when 

compared to the other methods. As will be explored later, there is a trade-off of running 

replications versus additional exploration points. Holding the number of points constant 

will be explored to determine whether it is better to add points for exploration or 

repetitions to increase the model accuracy.  

From the sampling figure of the MARS regression, it is clear that the MARS 

technique (a semiparametric regression technique) is fully capable of capturing this 

nonparametric function space given enough information about the design region.  

For a final visual comparison of these methods in two dimensions is a 1,000 point 

LHS design below.  
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Figure 5.11: GTCO1 Regression Using 1,000 LHS Points. Left: Cawley et al.'s 

Kernel Method Right: MARS-Kernel 

 

Figure 5.12: GTCO1 Regression Using 1,000 LHS Points. Left: Double MARS 

Method Right: MARS with 10,000 Repetitions 

With 1,000 points in the space all methods perform relatively similarly in 

capturing the mean functional form, with the repetition method capturing the corners the 

best. There is, however, significant variation amongst the methods in capturing the 

standard deviation.   
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Both of the kernel methods have issues capturing the regions of high slope. This 

is because the kernel methods use a single bandwidth parameter for all areas of the design 

space. The optimal kernel size for flat regions is different than that of regions of high 

gradient, forcing the optimizer to compromise between the regions.  

The regression of the residual method exhibits enormous amounts of noise, but 

seems capture the overall trend of low error on two edges and a high error in the center. 

Finally, and not surprisingly, the MARS method using 10,000 replication samplings 

performs best of all the methods presented. 

5.3.2 Function Sensitivity 

There are several functions that have been tested and there exists significant data 

from simulating all of these test functions at many different test conditions. Instead of 

showing all the possible combinations of plots only the extreme combinations and/or the 

interesting plots will be shown. The first set of function spaces to be discussed are the 

GTCO functions because the breadth of trade studies that can be conducted.   

The below comparison is of the log of the CAPSE mean regression performance 

for the GTCO2 function. From left to right the figure shows an increase in LHS size (10-

1,000) and from top to bottom an increase in variance (0.01-0.2). 
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From Figure 5.13 it can be seen the kernel method works consistently poorly for 

the feature space of GTCO2. Regardless of the dimension, the number of points used to 

learn the space, or the variance, it is one of the worst performing regression methods. 

This is not to say that it will work poorly in all spaces, but it appears to work poorly for 

capturing the oscillatory nature of the GTCO2 compared to its competition. The 

polyharmonic splines also work poorly. Regardless of the number of replications used, 

the global performance is almost always identical.  

 

 
Figure 5.13: Comparison of Methods for the GTCO2 Test Function Using CAPSE 

of the Mean 
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V
ar

ia
n
ce

 



144 

 

It is important to note the selection of LHS DoE points used in the above figure. 

Each circle in the above figures represents a location of data collection. Each of the 

methods in the above figures, for a given set of inputs (function dimension, function 

variance, etc.) use an identical DoE as the other methods. For example, the image with 

0.2 variance and a LHS of ten (lower left) at dimension thirty, the MARS regression 

method using five replicates has a large local degradation in performance. This single 

method does not do well with the LHS design chosen, but using the same design and 

other methods it can be seen the methods perform significantly better. Since each DoE is 

random, there will be configurations of a DoE which may perform out of the ordinary, 

both positively and negatively.  

All MARS methods perform similarly for a low number of points in a high 

dimensional space. This effect is an artifact of using the MARS algorithm. Since only a 

few points are used in a high dimensional space MARS attributes the functional space to 

the major trend along the XD direction and a random scattering of noise in the others. 

This can be seen in both of the ten point LHS designs with varying variance. As the 

variance increases, there is dispersion in the methods, and the methods which contain a 

higher number of repetitions perform better than those with a lower number of 

repetitions. This further indicates that areas in a design space which contain locally 

higher values of variance require more repetitions than those that have a relatively lower 

variance.  

The degradation in the kernel method’s performance is caused by the constant 

size of the GA search. Since the search has a fixed population, the global optimum of the 
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bandwidth becomes harder to find. This means that the kernel method has an increased 

degradation in performance as the dimension of the problem increases. Another reason is 

as the dimension of the problem increases the Euclidian distance between two points has 

a high range (points that are far away are much further than in small spaces). This 

increased distance means the bandwidth parameter must be selected as a compromise 

between points which are far and those that are close, producing a worse fit. If points are 

added sequentially, producing some areas which have clustered points and others which 

have an absence, this global fitting will only worsen the regression. 

In the large dimensional space, it is obvious ten sample points is not sufficient to 

learn any but the simplest of design spaces. As the number of LHS design points increase 

to 1,000 with a low variance, all methods (except the polyharmonic and kernel methods) 

perform similarly. With the low variance, whether five replicates are used or the entire 

population, the mean is captured. An interesting trend following from this regression is 

the improvement in performance as the number of dimensions increase using the MARS 

routine. As the dimension of the problem grows, all of the MARS methods see an 

improvement in performance slightly. This trend is not expected because as the number 

of dimensions increase and the number of points remain constant, the error should 

increase. This may be caused by MARS fitting to the XD trend and ignoring the other 

dimensions as noise.  

Again, as the variance increases the dispersion in the methods also increases with 

the MARS repetition methods still out-performing any of the other methods. The fact that 

the MARS methods with repetitions outperform the methods without repetitions is not 
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surprising: these methods use more data. The polyharmonic splines do not perform well 

when there are few points in the design space compared to the other methods. However, 

as the number of points increases, and under spaces with high variance, their performance 

increases, but is still not as good compared with the MARS methods.  

As discussed throughout this paper, it is important to capture the variance of the 

space while simulating as few simulations as possible. Below are the same plots as shown 

in Figure 5.13 but for capturing the standard deviation of GTCO2. 

 

 

 
Figure 5.14: Standard Deviation Performance of GTCO2 Using CAPSE of STD 
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The regression of the standard deviation is a similar trend as seen in capturing the 

mean. There is substantial uncertainty when few points are used in a high dimensional 

space and the noise in capturing the response increases as the variance increases. 

Surprisingly, in high variance, the kernel method despite not being able to capture the 

mean, or STD in low variance, performs comparable with all of the other methods in 

attempting to capture the variance. The polyharmonic splines also do well compared to 

the replication methods using the MARS algorithm. As seen with the mean analysis, 

there is an increase in performance at low variance as the number of dimensions increase. 

As the number of replications increase the performance of the methods requiring 

replications also increase for both MARS and the polyharmonic splines. 

Since all of these plots are on the same scale, an interesting result for this specific 

function, is that the approximation of the variance does not seem to improve as more 

points are added to the space for the majority of the methods, independent of the 

variance. This result seems to be caused by the regression routine deducing the space as 

purely noise, or only being able to capture the macro-phenomenon (XD). The reason there 

is no additional convergence with MARS is because as the number of points increase, the 

algorithm sees the function space due to its low signal to noise ratio, as a noisy 

distribution. Some examples of this will be shown later using the predator-prey model.  

Although the simulations are assumed to be computationally expensive, and thus 

the regression time is not of the highest importance, it is important to understand how this 

may impact the problem. Below is a comparison of the regression time required to learn 

the space for each of the methods. 
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Figure 5.15: Comparison of Regression Time for Each of the Methods as a 

Function of the Number of Points Left: 10 Dimensions, Right: 40 Dimensions 

Unfortunately the methods involving kernel smoothing take disproportionately 

longer than all of the other methods. As points are added to the design space the kernel 

method must map each point to a kernel space, which is related to all other points by its 

distance and recalculate for each GA query. There are some modifications to speed this 

process up which truncates the number of points that are considered close, but these have 

not been implemented. (This width parameter has not been implemented because it is a 

discretionary term that is not a property of the space. Whether this parameter should be 

five, ten, or 200 cannot be known, and requires the experimenter to know something 

about the space a priori.) 

It is important to note that the MARS method offers an order of magnitude 

reduced time to regress the space, but still requires a significant amount of time as the 

number of points increase. Although in the literature MARS is stated as being capable of 

handling large quantities of points, as the complexity of a space increases MARS requires 
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increased time to fit the space. MARS can regress 10,000s of points for a 1D spline, but 

requires hours to regress 1,000 points within the GTCO2 test space.  

A similar analysis can be conducted on the other test problems investigated. Of 

the three GTCO functions tested, GTCO2 and GTCO4 have similar attributes and thus 

similar performance. GTCO1, however, has identical scaling with non-oscillatory 

behavior, which in theory makes the function space easier to predict. The GTCO1 

function can be seen below. 

 

 

 
Figure 5.16: GTCO1 CAPSE Mean Comparison 
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The performance of the varying methods is similar for GTCO1 as in GTCO2. The 

kernel method and polyharmonic splines perform the worst in capturing the mean. As the 

variance of the space is increased, the only methods that perform consistently are those 

with repetitions, and as variance is added, the dispersion in the methods increase. As the 

number of exploratory points in the design space increase from ten to 1,000, there is a 

one to three order-of-magnitude improvement in the CAPSE. Like GTCO2 there is not 

degradation in the performance as dimension is increased. This outcome is surprising as 

the number of points are spread over a greater area. A large difference in the performance 

of the GTCO1 and GTCO2 function is the amount of dispersion caused by the increase in 

variance. As the variance increases in GTCO1 there is less dispersion of the mean 

CAPSE. This is a result of the reduced complexity of GTCO1 compared to GTCO2. The 

more oscillatory and the higher the variance the more difficulty the regression methods 

have at capturing the metric. 
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Both the kernel method and the regression of the residuals perform poorly in 

capturing the variance structure of the design space. As expected, the method with the 

approximate population values for the mean and STD (10,000 samples) performs 

consistently the best out of all the methods. The methods which use multiple repetitions 

significantly outperform the other methods, with the MARS-kernel smoothing methods 

occasionally performing well. There is similar performance between the MARS method, 

and the polyharmonic splines. This performance similarity is independent of the test 

function complexity. As the test function complexity increases, polyharmonic splines and 

 

 
Figure 5.17: GTCO1 CAPSE STD Performance Comparison 
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MARS perform equally well at capturing the variance, but the MARS algorithm performs 

better at capturing the mean function.  

5.3.3 Predator-Prey Simulation 

The predator-prey model and its performance can be seen below. In investigating 

this space identical issues can be seen as in the previous two test functions with little 

increase in performance as more design locations are added to the space for most of the 

methods. It is important to note the error scale compared to the error of the GTCO 

functions. This function space has a significantly higher error because the function 

maximum is on the scale of 100s. Another difference is the figures below also do not use 

test function dimension as the x-axis, but instead the size of the LHS design. Since the 

predator-prey simulation has a static dimension, the number of points used to regress the 

space are used.  
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Figure 5.18: Predator-Prey Simulation Performance, Left: CAPSE Mean, Right: 

CAPSE STD 

For both the mean and the STD, there is little performance increase as the number 

of the points in the design space increase for almost all methods. This outcome is 

surprising. For a 3-dimensional design space with 1,000 samples, it would be expected 

that the regression of the design space would perform well. However, as discussed 

earlier, this model exhibits a high noise-to-signal ratio in some regions of the design 

space which causes the regression to perform very poorly. The only methods that perform 

well and continue to enhance their regression of the space as points are added, regardless 

of noise, are the polyharmonic splines. 

In all of the other functions polyharmonic splines perform amongst the worst, but 

for the only SoS sample problem, they perform not only better, but are the only regressor 

that improves as more points are added to the space.  

It is important to note that in comparing the different algorithms, serious issues 

are encountered with the SoS space due to its complexity. This space has zero variance 

for a large fraction of the domain and nearly instantaneously changes to high variance. 
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When simulating this space with the double kernel method developed by Cawley et al. 

instabilities in the Cholesky factorization prevent the convergence of the mean and 

variance. With a large number of points in the matrix being near zero and a small fraction 

having large values the matrix diagonal diverges.  

To investigate the odd performance, a single plane in the predator-prey design 

space is selected. This plane is the edge of the grass-grow time, which can be seen in 

Appendix B to have the highest variation. 

 

Figure 5.19: 100 (Projected 2D) Point Kernel Smoothing Method of Mean 

Using only 100 points the kernel method, as seen in Figure 5.19, captures the 

trend of the data field: most of the data field is zero, while there is a large spike near the 

edge. The identical set of points can be seen below with a MARS regression. 
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Figure 5.20: Left: 100 Points Regression Using MARS for the Mean, Right: 200 

Point MARS (Projected 2D) of Mean 

The MARS method produces a similar trend as the kernel method with the 

majority of the design space zero and a large spike near the edge. The MARS method 

predicts the transition to the spiked region well. However, as the number of points 

increases to 200, the MARS regression method is no longer able to distinguish noisy data 

from the true data field. The number of points has increased in the field, but yet the 

regression has worsened. This worsening has several implications. 

First, as more points are added to a design space, it is typically assumed the 

regression function will only improve. This is shown not to be the case. For MARS there 

is an optimal number of points for a space. Once this optimal has been reached, the 

regression will no longer improve and may worsen. This means that a designer must be 

conscious of the restrictions of the regression method used to learn the space. Additional 

simulations may not improve the performance and thus the simulations are wasted 

computational time.  
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Second, this is a strong reasoning for adaptive sampling. More points should be 

placed in regions of high noise. Because the function has such high noise, MARS is not 

able to distinguish the true trend of the space from the noise. If more points are placed in 

regions of high noise, this should allow the regression routine to adapt locally. Methods 

such as MARS and polyharmonic splines are capable of changing their shape based on 

local trends. From these plots it can be determined that adaptive sampling is not only 

necessary for time consuming experiments, but it is also required for high noise design 

spaces to improve fit. Adaptive methods are unable to fit noisy spaces using LHS designs 

even with large samples of data.   

It is apparent that MARS does not fit locally to data as well as some of the other 

methods, specifically polyharmonic splines. Below one can see the progression of 

polyharmonic splines using 100 and 200 LHS points, respectively. 

 

Figure 5.21: Polyharmonic Spline Regression of the Predator-Prey SoS 

Simulation Left: 100 Points Right: 200 Points  

In the above plots it can be seen why the polyharmonic splines performs 

significantly better than any of the other methods. These splines fit the space locally and 
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have only mild global influences. As more points are added to the space, the fit is seen to 

improve. These splines capture many of the benefits of the MARS method and the kernel 

methods; they are fast and adapt locally.  

An additional issue with MARS can be seen below, which is a partial cause of the 

improper fit seen in the predator-prey simulation. MARS does not implicitly handle 

interaction terms. MARS models are not particularly robust to correlated inputs. [239] 

There is a switch to tell the MARS algorithm to handle interaction terms up to a specified 

quantity, but these significantly increase the regression time and assumes the designer 

knows there might be interaction terms. 

 

Figure 5.22: MARS Regression of Simple Sin Wave and Noise (���(�����) +�(�, �. �)) 
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Figure 5.23: Polyharmonic Spline Regression of Simple Sin Wave and Noise 

(���(�����) + �(�, �. �)) 

As seen above the polyharmonic splines are able to capture the trend of the data 

field using identical LHS designs with significantly greater accuracy in the presents of 

interaction terms. This example problem is again shown on a low dimensional problem. 

Throughout the GTCO test function polyharmonic splines were shown to perform worse, 

but yet on the SoS test function interaction terms and the shape of the space expose a 

major weakness of MARS. To understand this interaction these two regression methods 

can be further explored in low dimensions. 

5.3.4 Low Dimension Analysis 

For the low dimension test simulations, only MARS and polyharmonic splines are 

investigated on the GTCO1 test function. The other methods have been shown to be poor 

repressors to these two methods. 
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In low dimension (≤7) and low samplings (top-left in Figure 5.24) the 

polyharmonic splines perform similarly to MARS. With low samples within the space 

little can be concluded. As points are added to the space there is a transition as the 

number of dimensions and variance change. With high sampling and low dimensions 

polyharmonic splines perform better than MARS, but as the dimension increases, 

polyharmonic splines perform worse than MARS for capturing the mean. With only two 

dimensions the polyharmonic splines always perform better, as the variance increases this 

cut-off is shifted to three or four dimensions, but as the dimensions increase, this 

 
Figure 5.24: GTCO1 Low Dimension CAPSE Mean Comparison 
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performance continues to degrade. It can be deduced that polyharmonic splines perform 

better in low dimension spaces than high dimensional spaces for capturing the mean.  

Next the performance of these two methods in capturing the STD can be 

investigated. Below are identical plots from above, but showing the CAPSE for the STD. 

 

As the dimension of the space increases MARS is seen to improve in low noise 

for capturing the STD. Polyharmonic splines perform consistently in low dimension in 

capturing the variance, their performance does not increase or decrease as higher 

dimensions are added. In high noise the performance can range from worse than MARS 

 
Figure 5.25: GTCO1 Low Dimension STD Comparison 
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to better based on the number of replications used. So far the polyharmonic splines have 

been shown to require less regression time, meaning they can handle substantially larger 

quantities of regression data compared to the other methods. They can capture the STD of 

all the spaces tested as well if not better than all of the other methods; they perform best 

at low dimension, but they do not capture high dimension. 

5.3.5 Replications versus Exploration 

A focus of this research has been attempting to capture the variance of a function 

space using as little information as possible. If replications are required, the focus then 

changes to how many replications should be added. It is known that the number of 

replications should depend on the local variance, but local variance is not known a priori, 

and as seen in the implementation of MARS, there is an optimal number of points that 

must be simulated in the design space. Single SoS simulations have sections which have 

deterministic outcomes (ex. predator-prey simulation), and sections which have low-

signal-to-noise ratios. It should be obvious to the reader that sections with deterministic 

outputs should require no replications, while areas of high noise require replication.  

As more points are added to the design space it is beneficial to add points for 

exploration as well as repetitions. The repetitions are for increasing the confidence of the 

regions already explored in the design space, specifically the variance of highly noisy 

sections. The hypothesis of this paper has been that it is better to add points for 

exploration versus adding repetitions by using neighboring data. In order to evaluate 

whether this assertion is correct, a trade-off must be conducted: is more gained by adding 
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repetitions, or by adding exploratory simulations. Using the replication simulations from 

the above analysis, a plot can be created which shows all of the combination and areas of 

iso-simulation lines. By iso-simulation lines, it is meant that everywhere along this line 

has the same number of simulations/points in the space whether by replications or 

explorations. This line means a trade can be conducted while holding the number of total 

simulations constant.  

Below are two figures which show iso-simulation lines from the experiments 

simulated in the above studies. By multiplying the number of repetitions by the size of 

the LHS design the number of points in the simulation can be seen, this results in 

parabolic iso-simulation lines. Because it is difficult to evaluate a gradient on a curved 

line, the plot can be transformed using a log-log plot to produce linear iso-simulation 

lines. Each of the red points in the simulation represents a single test location in this data 

field from the regression data discussed earlier.  

Depending on the number of the simulations, and the direction of the gradient 

over these lines, a clear determination of the benefit of simulating more exploratory cases 

versus repetitions can be determined. 
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Figure 5.26: Transformation of Parabolic Iso-simulation Curves to Linear  

As simulations are added, climbing from one iso-simulation line to another 

(perpendicular to the iso-simulation lines), a clear determination of the greatest addition 

can be formed. The plots are created using the CAPSE sampling of the design space and 

MARS, and thus represent the design space and not just the points sampled. Below is the 

gradient information for increasing dimension and increasing variance for capturing the 

mean. 
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The contours in Figure 5.27 show an interesting result. In relatively low 

dimension and variance, during early exploration it is important to allocate more points 

for exploration than repetitions to capture the mean. If points are solely used as 

repetitions, the gradient adjusts to show that more improvement will be gained if points 

are used to explore versus repeat.  

As the dimension increases and maintains a low variance, the strongest 

improvement in the mean comes from increasing exploratory simulations. As the number 

of exploratory simulations increase, the gradient transitions to conducting repetitions. By 

 
Figure 5.27: GTCO2 Improvement of Mean as Points are Added to the Design 

Space 
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increasing the variance a transition from running exploratory simulations to repetitions 

occurs. Although there are areas that show points should be removed in one direction or 

the other to gain information, this is due to noise. The overall trend of these plots is the 

pertinent feature. As seen in the previous charts of the GTCO function performance, 

areas of high variance exhibit more noise in the performance of the regressions. This can 

be seen in the above plots: the plots with high noise are more likely to show regions of 

removing points. These regions are artifacts of noise introduced in either the LHS design 

or the CAPSE metric. As discussed, some designs may, by chance, produce a better 

regression. 

The STD equivalent of the contours in Figure 5.27 can be seen below. 
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The contours in Figure 5.28 for STD show similar trends to those used for the 

mean, but have stronger gradients for adding simulations as replicates than as exploratory 

simulations as expected. There is also increased noise in the high variance spaces. To 

capture the variance, rarely is it better to add exploratory simulations. Despite the 

increased noise, the trend in the plot is clear.   

The improvement expected in the mean versus the STD and whether to add 

replications or exploratory simulations conflicting in some regions, and thus it is best to 

merge these two function spaces.  The mean is not expected to be on the same magnitude 

 
Figure 5.28: GTCO2 Improvement of STD as Points are Added to the Design 

Space 
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as the variance; the variance, in most spaces, will be significantly smaller than the mean. 

Thus adding these functions is not appropriate. The space is normalized by the largest 

value for the respective metric, and then added. These plots provide an indication of how 

points should be added to the GTCO2 space to capture the variance and mean when they 

have equal importance to each other using MARS regression. 

 

Comparing the individual plots in Figure 5.29, each function throughout its 

regression process requires a new number of points allocated to explore a design space or 

replicate existing points. Thus, from this it can be concluded that in some cases more 

points added to explore a space can be better than adding points for replications; 

 
Figure 5.29: GTCO2 Overall Metric for Adding Simulations 
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however, it depends on the specific function and where points have been placed prior. 

Above is the test function for GTCO2 and below is an identical plot for GTCO1. 

 

Depending on the function the ratio of replication points to exploratory points are 

required to change and adapt as the function space is explored. Additionally, from the 

functions tested, when initially exploring spaces, the test ratio of points is approximately 

50%. This means approximately 50% of the points should go to exploring the space and 

50% to repetitions. 

 
Figure 5.30: GTCO1 Addition of Points to Capture Both STD and Mean 
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5.4 Conclusions 

Several conclusions can be drawn from the above analysis. First, kernel 

smoothing methods, as discussed in the literature, do not perform well when investigating 

high dimensional spaces with many local extreme. Although this method is a 

nonparametric method, the use of a bandwidth parameter causes the space to be overly 

smoothed in some areas and under smoothed in others. This inaccurate smoothing has 

many possibilities for enhancement from the literature such as different bandwidths for 

different dimensions, or windows of influence which only use ‘n’ closest points. 

However, kernel methods are still computationally expensive and any adaptation will 

only likely increase the expense. 

Of all the methods tested on high dimensions, MARS preformed best in capturing 

the mean and one of the best in capturing the standard deviation. In high dimension 

MARS was able to distinguish important aspects in the functions tested even in the 

presence of high noise. However, MARS, although it works well for high dimensions, 

there is a point in both low and high dimensions that the function no longer improves to 

local attributes with the addition of more points. This is a serious problem because as 

more points are added to the domain, an increased understanding of the space is expected. 

If more points are simulated and there is no gain in understanding of the space, these are 

wasted simulations and another regression method should be used to improve the global 

understanding. Further, as points are added the regression of a domain using MARS can 

worsen. As seen in the data of the predator-prey model, MARS works well initially in 
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obtaining structure of the problem using a small amount of data, but quickly reaches a 

plateau in performance. 

To enhanced MARS the number of interaction terms must be increased but this 

assumes the designer knows that the space will have interaction terms. If this input is left 

too high, a significant amount of time will be wasted in searching for interactions that are 

not present. Some small studies have also indicated that even after increasing the number 

of interaction terms, MARS may be incapable of determining interactions in the presence 

of noise.  

The MARS method does not perform as well as expected. The polyharmonic 

splines, however, capture the mean poorly but the variance well, and in some cases, better 

than MARS. The polyharmonic splines do well in small dimensions, but their 

performance degrades as the number of dimensions increase. Additionally, the size of the 

dataset polyharmonic splines can regress is significantly larger than any of the other 

methods because it is a linear monotonic regression. Polyharmonic splines do not require 

any user input and can capture interaction inherently in its structure. For a generic 

regression method that is capable of handling a breadth of difficulties such as changes in 

dimension, interaction terms, and large datasets, it is recommended that polyharmonic 

splines are used. If additional modularity is available, polyharmonic splines should be 

used in low dimensions, and MARS in high dimensions. MARS is exceptional at 

capturing macro trends in the data while this is not the case for polyharmonic splines.  



171 

 

Second, the test functions chosen, specifically the GTCO functions, have been 

shown to not perfectly represent an SoS design problem. Since the performance of the 

methods shifted on the testing of the predator-prey test function, this indicates that 

although the GTCO functions are complicated and difficult to capture, they are not 

necessarily representative of an SoS space. Some of the complications the predator-prey 

model added are vast regions of uneventful data and correlated inputs. When developing 

test functions for future SoS tests, it is important to add these complexities to the data 

space.  

Third, the number of replicates, their location and whether or not they should be 

used depends on the function space and the regression routine. This means that for every 

function there is an optimal ratio of replications to exploration simulations that must be 

added to a given space. The ratio is unique to the function and is also unique to what 

locations have already been explored in the space and the magnitude of the variance of 

those points explored. At one extreme there is a discrete simulation that requires only 

exploration points, and at the other extreme a highly noisy function space that will 

require replication points and a small magnitude of explorations. The high noise function 

space should never require 100% replications because it is also important to explore new 

areas of the space. Thus, the ratio is bounded by zero and approaches 100% but should 

never reach 100%.  This number will further depend on the number of points which are 

added to a space.  

As final conclusion, stochastic simulations require adaptive sampling routines. It 

is impossible to know the local variance at points tested before simulating any points. 
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From the tests shown in this paper initial designs are required to learn areas of the space 

that may have high noise and place additional samples in these regions. If uniform 

sampling is conducted, significant points in both replications and exploration will be 

wasted in regions that have already been adequately explored. As the predator-prey 

model showed, by not using adaptive sampling, some regression routines may perform 

worse because they will be biased by regions which have a disproportionately large 

amount of noise, but a disproportionately low amount of samplings to understand the 

signal. 
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CHAPTER 6 

EXPLORING VARIANCE IN HIGH DIMENSIONAL 

HETEROSCEDASTIC SPACES 

In recent decades computer simulations have become the preferred method of 

experimentation when investigating complex interactions that are either difficult to 

analyze or expensive to conduct as physical experiments. Computer simulations, 

however, are computationally expensive, [101] and may take days or even weeks to 

produce answers. [101, 254] For this reason there has been a development of many 

sequential experimentation methods specific for computer simulations. These sequential 

(or adaptive sampling) routines are often used for two reasons: first, because sequential 

statistical procedures are known to be more efficient than fixed sized procedures; [103] 

and second, computer simulations proceed sequentially by nature making easy adaption 

to sequential algorithms. [117p149] 

In the early development of these sequential methods global exploration was the 

objective where future experiments were placed in deterministic simulations based on the 

highest uncertainty of Kriging regression. [3] In more recent years the majority of 

sequential procedures have focused on optimization, [64, 100, 255-256] with a small 

subset focusing on global exploration and the understanding of the complex interactions. 

[112, 115, 257] In sequential experiments for optimization, the main objective is a 

localized surrogate model with sufficient fidelity to optimize, while the alternative 

approach is distributed fidelity over the entire space which captures the basic interactions 

between inputs and output metrics. [112] The global surrogate model creates a 
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representative function that mimics the original simulator using as few simulations as 

possible. [254] 

In the literature these exploration methods often assume deterministic computer 

simulations, [101, 254] however, this assumption is no longer valid. There are many 

computer simulations that encompass random components and are more similar to 

physical experiments in their capturing of noise. A specific class of problems is known as 

System-of-Systems (SoS), or a group of interacting complex systems which have large 

amounts of uncertainty. [51] It is the exploring of these complex system spaces that 

require new exploration techniques. [60] 

These spaces represent a multi-dimensional, nonparametric, conditionally variant, 

non-normally and non-identically distributed dataset with 100s to 10,000s of data points; 

and are not well handled by any of the sequential methods developed throughout the 

literature. These SoS design spaces are driven by a designer’s need to understand the 

uncertainty and emergent properties of complex interactions, and because these models 

are not validatable, optimization has little meaning. Once an accurate global model is 

developed a rapid exploration of the space can be conducted where tradeoffs can be 

determined on the fly and the design explored. In general, there is an opportunity for 

improvement for sampling techniques in nonparametric response surface methods. [119, 

217p423] 

Additionally, the literature has focused, nearly exclusively, on single sequential 

experiments, but modern data farming has the disposal of clouds of CPU clusters. These 
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clouds of CPUs require a hybrid between physical experimentation techniques such as 

design of experiments (DoEs) and purely sequential techniques like Design and Analysis 

of Computer Experiments (DACE). When simulating concurrent computer simulations 

on large distributed clusters, all available resources should be used which means small 

sub-DoEs which best complement the existing space should be developed.  

This research develops a global exploratory algorithm for simulations with similar 

statistical features to SoS design spaces where the mean and variance functions are 

desired outputs. The simulation environment is treated as a black-box with specific 

statistical properties and new points are added to the design space to complement the 

existing analysis points already simulated. 

6.1 Literature Review of Adaptive Sampling Methods 

Typically DoEs are fully determined before the beginning of the simulation. 

There are many reasons for this pre-selection of designs, and non-custom exploration. In 

the early development of experiments statisticians were consulted after experimentation 

was conducted, making metric based adaptation impossible. [258] More recently, 

adaptations are not typically conducted because of their increased complexity, and the 

relative little expense of computer simulations. However, computer simulation 

complexity will always stay relative to computer power capability: increases in computer 

performance will enable more complicated and thus more computationally expensive 

simulations. 
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One of the first published instances of adaptive design was H. F. Dodge and H. G. 

Romig who proposed a double sampling in 1929 where a decision to conduct a second 

sampling depends on the outcome of the first. [259] There are similar processes today 

that use static DoEs and human-in-the-loop adaptive processes. These DoEs are 

commonly referred to as nested DoEs and allow a designer to add additional experiments 

to increase sampling of a space, [260-261] but these are complicated to create. [254]  

Kriging is a common way of simulating complex computer codes in a sequential 

process. [105] Kriging models are often used for the sequential exploration of 

deterministic computer simulations, [117] because it produces an ‘uncertainty band’ for 

where it thinks the least is known about the space. Kriging was developed for spatially 

correlated data sets of typically 2-3 dimensions. Since its development Kriging has been 

adapted, and for lack of a better word, ‘jimmy-rigged’ to work with a broad set of 

problems; including high dimensional problems, uncorrelated spaces and even random 

processes. Although Kriging and its adaptations have been beneficial, an algorithm can 

only be molded so much before it becomes unrecognizable from its original form, and 

requires the creation of a new algorithm and new processes. 

Only recently has Kriging been used on random simulations, and even now it is 

rarely used. [117p140] One problem with using Kriging in the regression of SoS design 

spaces, is it assumes a stationary covariance process and thus a constant variance. 

Although, studies have shown that Kriging is not particularly sensitive to heterogeneity, 

[117p147] the noise is assumed to be homoscedastic. There are few instances in the 

literature that attempt to optimally place sequential points in heteroscedastic spaces. [118] 
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The first instance of an adaptive design for a heteroscedastic and conditionally variant 

simulations was published in 1999 implemented on a discrete event traffic simulation (the 

classical M/M/1 queuing problem). [262] In this paper the form of the underlying mean is 

known, and the variance structure is not, but the variance is assumed to be a solely 

conditional on the mean. Thus, by dividing the variance function by the mean function, 

the heteroscedasticity is transformed to homoscedasticity. The difficulty of performing a 

similar analysis on an unknown mean form “will [out] of necessity be elaborate”.  [262] 

Yang et al. [263] further developed this technique to conduct sequential experiments on 

the number of replications.   

There are many examples in the literature of sequential algorithms for exploring 

different aspects of computer codes. Kennedy and O’Hagan consider the exploration of 

uncertainty analysis of computer codes where input parameters are unknown. [174] In 

this research the process of capturing the uncertainty is in calibration of the computer 

model to existing data. Oakley considered the sequential estimation of percentiles of 

uncertain and expensive computer codes. [264] Oh et al. [50] considered using system 

matter experts to enhance exploration in areas of interest, and others consider complex 

systems but use constant repetitions. [64]  

Picheny et al. [110] provides an excellent overview of adaptive sequential design 

of experiments which adjusts learning fidelity near contour lines while also providing a 

method to minimize global uncertainty and local exploration. Recently, Kleijnen 

published a book on Design and Analysis of Simulation Experiments (DASE). Kleijnen 

[117p154] provides a good overview of many of the sequential techniques used in to-date 
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in both random and discrete simulations. Most of these focus on optimization, while a 

subset focus on the exploration of the design space. 

One issue is that it is impossible to determine a priori the number of replicates 

necessary before the simulation is started. [265] Throughout the literature there has been 

only one method that adapts the number of repetitions at each design point and handles 

multidimensional heteroscedasticity. [117p148]  

6.2 Development of a New Adaptive Algorithm 

This culminating research enhances the exploration of stochastic simulations and 

develops a technique capable of creating a global approximation for the mean and 

variance. In sequential designs it is essential to determine which features are important 

[101] so that they can be better explored. For stochastic simulations there are three 

attributes which must be considered: first, points should be placed far away from other 

points, to ensure exploration of the space; second, points should be placed where the 

model ‘likely’ performs poorly to enhance the model in this area; and third, where the 

model has a high variance to increase accuracy of the mean and variance. In complex 

systems, these areas of high variance may be indicative of an emergent behavior whereby 

fitting with a continuous model causes an artificial increase in variance due to a discrete 

change. This algorithm is named ARGUS (Adaptive ReGression using Uncertainty 

Sampling), after the all-seeing guardian of Greek Mythology. (The code for this 

algorithm can be found on MATLAB’s Code Exchange) 
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Further, this algorithm attempts to learn all parts of the space evenly. This means 

that new points are placed in regions that are far away from other points, but proportional 

to how uncertain the region is known. This balance of exploration applies to both 

exploration points (used to explore regions not understood) and repetition points (used to 

increase understanding of the mean and variance of points already tested).  

6.2.1 Assumptions 

This algorithm attempts to impart few assumptions regarding the space’s 

attributes. The final mean and variance can take on any form, parametric or other; and the 

algorithm makes no assumption on the distribution of the error or its consistency 

throughout the space.  

The stochastic simulation is assumed to be a black-box, meaning that the inner-

workings of the simulation are not important to the algorithm, only that it is stochastic 

and has inputs and outputs. There are, however, assumptions made on the inputs and 

outputs of the stochastic simulation. Inputs are assumed to be continuous and/or ordinal 

discrete variables and not categorical, and the outputs are assumed to have a single metric 

of interest.  

The use of continuous or ordinal discrete variables implies a functional 

relationship can be developed. One aircraft in a simulation will somehow be related to 

two aircraft in the simulation, and so on. Categorical input variables do not have this 

implied relationship; policy one may not have a relationship to how policy two may 

respond to otherwise identical inputs. 
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The single output metric assumes that there is only one metric which drives the 

adaptive sampling of the space. New experiments should be placed in regions of 

uncertainty for this single metric. Although there may be many metrics of interest, as is 

often the case in SoS spaces, only one is chosen as the metric which will drive future 

placement. There are modifications to this algorithm which would allow the investigation 

of multiple output metrics by implementing a correlation component, but this is not 

implemented in this research. There are a lack of multi-objective studies which 

investigate uncertainty in the literature, [2] and the solution to multiple objectives is 

saved for future work.  

This algorithm assumes the designer knows the simulation is stochastic. If the 

simulation is not stochastic, a deterministic method is more capable of exploring the 

space. The reason for this, as will be seen, is that a single experiment is always reserved 

for a repetition so that the algorithm is capable of determining the greatest benefit. If the 

simulation is known to be deterministic, this simulation will always be wasted.  

The final assumption is deduced from the motivating focus of this research, SoS 

and complex systems. An area of high variability, whether caused by an actual increased 

uncertainty or by fitting a discrete space with a continuous model, implies an area which 

should be further explored. In stochastic simulation, areas of increased variability should 

be explored to increase the accuracy. In SoS, a discrete change may indicate an emergent 

behavior and imply further exploration should be conducted. Since the discrete change 

and continuous fit will cause an increase in local variance, this should also be explored. 



181 

 

(The continuous mean function produces values that do not lie on top of the data, 

producing a larger variance locally.) 

6.2.2 Algorithm 

As discussed, the simulation environment is assumed to be a black box. There are 

three inputs to the design phase: the size of the warm-start DoE, the number of total 

experiments to add, and the number of points the sequential algorithm should add at each 

iteration. The design variables (DVs) in the sequential routine are scaled from 0-1 and are 

continuous. Any scaling or rounding is conducted when sending the inputs to the 

simulation. Although the variables are treated as continuous this only determines the 

locations of future inputs. If points are placed discretely in the simulation, new points will 

be pushed to be far away from the existing points in the space.  

 

 

Figure 6.1: Overarching Algorithm Integration 
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In the overarching process above it can be seen an initial DoE is used to explore 

the black-box simulation and metrics are determined for these inputs. The metrics are fed 

into the sequential routine to develop an approximation for the mean and variance. Using 

a mean and an approximation for how well the mean represents the space the sequential 

algorithm determines where new points should be placed and returns these values. 

Following the simulation of these new points, and the creation of the corresponding 

metric values, the sequential algorithm is queried again until the maximum number of 

simulations are added.   

From the overarching process the sequential algorithm can be expanded and 

shown in greater detail. Below is a flow chart of the algorithm. 

 

Above is a top level overview of the functional breakdown of ARGUS. Some of 

the methods in the above chart are further expanded into sub functions which will be 
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discussed in the below sections. The algorithm first attempts to learn the mean function 

of the space and develops an approximation for the uncertainty of this function. 

Following this a determination of the uncertainty, a positively biased approximation for 

the standard deviation is determined.  

If this is the first iteration, there is no previous data on how well replications have 

performed versus exploration points in improving the regression. If this is not the first 

iteration, a determination of the optimal ratio of replications to exploratory simulations is 

calculated. Once the ratio is determined, the allotted number of replications or 

exploratory simulation are distributed throughout the space. These variables are then 

submitted to the user to scale and round and simulate for their output metrics.  

This process starts with a warm-start DoE to gain the initial mappings from the 

inputs to outputs.  

6.2.2.1 Warm-start 

To start a sequential adaptive design of experiments, a warm-start (or start-up) 

DoE is conducted to initially characterize the design space. It is recommended to use 

between 25-35% of the allotted simulations as an initial warm-start, [115, 262] , but 

warm-start size is not critical. A study will be conducted later in this paper to show the 

sensitivities of this algorithm to the size of the warm-start design. As will be seen, the 

size of the warm-start for this algorithm has relatively little impact on the function space 

compared to other methods. 
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The type of DoE chosen for this work is a LHS design. Although there are many 

other static DoE types, LHS has been shown to produce better fits and reduce fitting error 

over other DoEs. [3, 87]  

6.2.2.2 Learning Function 

Stochastic simulations can have a range of different attributes. For this adaptive 

sequential DoE algorithm, few assumptions are made on the attributes of the space. The 

reason for this lack of assumptions is that SoS interactions can range from simple to 

complex and the developer of these simulations does not know how the space will look. 

These simulations can have 10,000s of points, are heteroscedastic, nonparametric, and 

can be high dimension. [132] This lack of knowledge of the space requires an adaptive 

routine that is capable of investigating the space without imparting assumptions. 

Assumptions often made appear mostly with a choice of a specific regression 

method (learning algorithm), but they also arise in how future points are determined. The 

problem is that high dimensional, nonparametric, and large datasets remain a challenging 

problem in the literature. [266] Often sequential parametric forms are used instead 

because they are easy to implement, and can be implemented in the presence of 

heteroscedasticity. [267] 

For nonparametric methods some references recommend kernel based methods, 

[172p211] because they are flexible, but these methods have issues as the dimension and 

dataset size increase. (See Chapter 5) Kriging is the most common adaptive sequential 
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learning algorithm throughout the literature. It has been used mainly for deterministic 

problems but also has many uses in for stochastic datasets. [103-104]  

Besides Kriging and kernel methods, there are an abundance of learning methods 

present in the literature. After an extensive literature review and a comparison of many 

different nonparametric methods including MARS, kernel methods and polyharmonic 

splines, it has been determined that to handle the attributes of these design spaces and the 

amount of data that is required to be regressed, polyharmonic splines are best method to 

be implemented. (See Chapter 5) 

It is important to note, polyharmonic splines are an interpolation routine to a 

stochastic space with sparse sampling. This attribute of being an interpolation routine has 

two outcomes when it is used as a learning method. In regions that do not have 

repetitions and have sparse local data, the routine will exactly fit through the data which 

may not be a precise representation of the local mean. In regions that do have repetitions 

and sparse data, the regression routine will exactly fit through the mean of the points. 

Last, in regions that are highly sampled and the interpolation routine is incapable of 

fitting through the data, the routine will result in a minimization of the error. 

The polyharmonic spline class used in the regression routine is a second order. 

Second order splines are desirable over the other orders because they are capable of 

capturing curvature but also are inexpensive to calculate and do not produce large 

erroneous function values in-between sampled points. One implication of using this 

interpolation method is the number of points required to create a functional mapping. 
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Although nonparametric, the use of an interpolation routine means many of the points 

must be used to develop a simple functional relationship. Other methods such as MARS, 

however, are automatically capable of determining which variables are important in the 

space.  

6.2.2.3 Uncertainty of the Regression Function 

In general, more points should be placed in a space where less information is 

known. Since the goal of exploration based adaptive sampling routines is to develop a 

global approximation of the space, future experiments should be placed in regions that 

are poorly known. To determine where areas of the space are poorly known, the 

algorithm has to approximate the uncertainty of the space. There are several ways to 

approximate the uncertainty. Many methods such as Kriging assume the space is 

normally distributed with constant variance. However neither constant variance, nor 

normally and identically distributed errors can be assumed in these complex simulations. 

In parametric regression the inferences developed (derived confidence intervals) can 

dictate where future points should be placed, however, the space cannot be assumed to be 

parametric either. It is this ability of making inferences for a computer code that is known 

as uncertainty analysis. [264]  

In very large datasets, data is separated into three categories: learning, testing, and 

evaluation. [176p46] However, if the data pool is small, other techniques must be 

implemented. The uncertainty analysis must determine regions of the space known poorly 

but must be nonparametric in both the underlying regression and distribution of the 



187 

 

errors. A technique in the statistical literature capable of conducting this method is known 

as bootstrapping. Bootstrapping is a nonparametric approach to statistical inference. 

[268p587] Bootstrapping performs particularly well when the sample size is small, 

[268p587] and is easily applied to complex data structures such as clustering and 

stratified samples. [268p587, 269] Bootstrapping can also be shown to work better than 

other cross validation techniques. [270] As new areas of the design space are explored 

and repeatedly sampled, there will be clustering of the data. Areas that have a high 

clustering will be known with higher certainty than areas that have a lower clustering 

because there are few samples in these regions. Bootstrapping is able to account for 

disproportional sampling.  

Bootstrapping can make valid inferences possible in the presence of 

heteroscedasticity of unknown form, [268p597, 269] but because it does not impose 

assumptions of the regression it is an inefficient estimator. [172p197] Bootstrap methods 

in nonparametric and heteroscedastic data, however, can be the only technique known to 

identify confidence intervals. [217p429] Additionally, the evaluation of bootstrapping is 

easily parallelizable because each evaluation does not depend on the other evaluations, 

and is thus a perfect method to determine the uncertainty for cluster applications.  

The basic idea behind bootstrapping is the approximation of the standard error. In 

parametric regression confidence intervals are determined based on an approximation for 

the standard error, or the amount of local variance compared to the root of the number of 

points sampled. Areas that have more sampling are known better than those that do not; 

and areas that have higher variance have a higher uncertainty. However, in nonparametric 
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heteroscedastic regression a valid approximation for the number of points, if clustered, is 

complicated. Instead, bootstrapping attempts to solve this problem by repeatedly 

sampling of the space with replacemet. Areas that have large numbers of points compared 

to other regions will be sampled more heavily resulting in greater confidence in these 

areas.  

The purpose of bootstrap in nonparametric regression methods is to mimic the 

stochastic nature of the model and the type of method used depends on the type of 

problem (whether it is hetero- or homoscedastic). [217p425] The fundamental principle 

behind bootstrapping is the central limit theorem to asymptotically approximate the 

statistical parameters of the population. [271] These bootstrapping methods can further be 

shown to converge at the rate of √" where S is the size of the sample but have also been 

shown to converge more slowly for nonparametric regressions. [271] MacKinnon [269], 

and Efron and Tibshirani [272] provide a good overview of bootstrapping and its 

advances sine the 1980s. 

All bootstrapping methods conduct a re-sampling of the space by a Data 

Generating Process (DGP) whereby samples are taken with replacement. The type of data 

re-sampled, however, depends on the type of bootstrap technique. Only two of these 

methods are capable of handling heteroscedasticity, pairs bootstrap and wild bootstrap. 

[273-275, 276p23, 277-278] Although wild bootstrapping has been shown to perform 

better for structured experiments in the presence of heteroscedasticity when compared to 

pairs bootstrapping, [271, 274] pairs bootstrapping is the method implemented in this 

research. Wild bootstrapping assumes a regression which will result in residuals and re-
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samples the residuals after scaling. Since the learning method implemented is an 

interpolation routine, the only residuals present in the space will be those with repetitions.  

Pairs bootstrapping was first developed by Freedman in 1981, [273-274] samples 

the x and y values in pairs. A population of the data is provided to the bootstrapping 

routine and a sample equal to the population size is sampled from the dataset. The dataset 

is sampled with replacement so the resulting sample will have some x-y pairs with 

multiple samples and some not sampled at all from the population. The sample is then 

regressed. This process is repeated many times. The standard error can then be calculated 

from all of the replications of the regression model using the below formulation for the 

bootstrap statistic for the mean and variance. 

�� =  ∑ ��_�>/�  

"�@ =  �∑ (�� − ��)2_�>/� − 1  

Where T is the value of the bootstrap regression and R is the number of 

repetitions. Using the above form a standard error for every point of the space can be 

calculated. Areas of high standard error are more unknown than areas of low standard 

error. Bootstrapping repetitions, R, equal to 100 is sufficient for capturing the standard 

error. [279-280] 

Bootstrapping is not without its issues. It is incapable of handling infinite 

variance, [281p57] in the presence of small populations the bootstrap can be significantly 
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bias and variable, [282-283] and it can be inconsistent. [284] Pairs bootstrapping, 

specifically, can be considerably biased because of the replacement. [274, 285] However, 

any bias is not of particular concern as long as it is uniform over several iterations. 

Bootstrapping is being used to determine future point placement over other locations and 

not to develop valid inferences. As long as areas of high uncertainty are higher than areas 

of low uncertainty this is not a concern. 

There have been a couple small modifications to the traditional DGP pairs 

bootstrap routine to work with the datasets produced from this process. Bootstrapping is 

conducted with replacement with regression routines that don’t fail in the presence of 

replications in a dataset (data with identical inputs but different outputs). Every sample in 

the space has equal probability of being selected, this means that if one location has two 

samples, it has double the probability of being selected as a sample locations. The 

modification appears if the same input location occurs multiple times within the same 

sample. Since the learning method is an interpolation routine, multiple samples at the 

sample location produce a singular matrix, and is incapable of being solved. Thus any 

samples which have identical input locations are reduced to only single sample. This can 

be done because it has been shown that only 20% of the population is required be used to 

still produce valid bootstrapping. [284] 

6.2.2.4 Capturing the Variance 

Even in nonparametric regression a transformation can occur to use parametric 

techniques of approximating the variance. When using radial basis functions, a 



191 

 

transformation is conducted in to a basis function domain and a linear set of equations are 

used to fit the space. When this process is conducted the below form can be used 

combined with the squared errors to approximate the heteroscedastic variance. 

[172p102&131, 197] 

)*0 = (,-,)./,-���0(�12),(,-,)./ 

This estimator is referred to as the White, Eicker, or Huber estimator. [197] 

Which is a consistent estimator in the presence of heteroscedasticity of unknown form. 

However, there are several issues with using this form to capture the variance. First, since 

an interpolation routine is used, the errors for the majority of the space will be negatively 

biased. Second, the number of degrees of freedom provided to the function are equal to 

the number of x locations in the space, again producing a negative bias. Although there 

are corrections to the above form they are not applicable with the above issues. The 

interested reader is directed to [197]. 

As a result the variance is negatively biased. [172] This negative bias produces 

additional issues in the hierarchy of the algorithm. Since additional points are placed in 

regions of high variance, if the variance is incorrect and lower than expected, the variance 

will never correct itself. Areas of erroneously high variance will continue to be sampled 

and will converge to correct values, but areas of erroneously low variance will never be 

re-sampled. This produces an inherent instability in the routine. Areas that are incorrect 

should be sampled so that they can be corrected, but it is important to sample high 

regions. 
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It is desirable to over approximate the standard deviation so that when more 

points are located in regions of high standard deviation, the plot becomes more accurate, 

and thus lowers to the correct value and allows the exploration of other areas with high 

standard deviation. It has been shown that replications are necessary to develop accurate 

approximations for the variance (See Chapter 5), but a correct representation for the 

variance is not guaranteed for a pre-allocated number of replications. In the literature it is 

recommended that at least ten replications are required for an accurate representation, 

[122, 286] but this still does not provide certainty. Thus a synthetic variance requires the 

incorporation of additional points until sufficient replications can be added.  

To supplement the repetition points and produce a temporary over approximation 

of the variance, replications are coupled with neighboring point in the simulation. By 

coupling conditional changes in y to the conditional change in the variance an over 

approximation is produced. If the mean function has no change, then all included points 

produce only the variance present. If the mean does change, then there will be the 

variance of the noise and an additional variance due to the change in the mean function, 

producing a higher than variance.  

Additionally, the coupling of repetitions and exploration points produce a self 

correcting algorithm. If the variance is too low, then when additional exploration 

simulations are placed nearby, the variance will be increased because it has been coupled 

with the mean. 
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The number of points to include is determined based on the closest (Euclidean) 

points in the simulation. The default number of points to include is the five nearest 

neighbors. Five has been determined from sensitivity studies. Too few points produce a 

negative bias, and too many produce a washout of regions that have higher variance and 

need additional exploration.  

As replications are added to the space, fewer neighboring points should be used. 

To implement this, a maximum number (30) of points are enabled to be included to 

calculate the variance. If each neighboring points has ten replications only the 30 closest 

points, including replications, will be used to approximate the variance.  

Finally, of the points chosen to calculate the variance a DGP bootstrapping 

technique is used to produce a more accurate mean variance.  

6.2.2.5 Adding Points 

In placing new points as discussed there are three criteria which are important for 

adaptively searching SoS simulations. Two are common to all adaptive sampling, while 

the third is specific to SoS and stochastic spaces: points far from other points, points 

where the model fits poorly, and regions of high variance. A proper adaptive sampling 

must balance these aspects. It has already been discussed how the variance and poor fit 

are captured within the algorithm, but not how new points are placed in the design space 

based on this information and balanced with existing simulations.  
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When exploring the design space it is most common to place points in the 

maximum variance, [103-104] like is conducted by Kriging. By placing points in the 

maximum variance, points are placed in regions where the least is known about the space, 

and the most information can be gained. There are typically two ways to place points in 

deterministic spaces: error-based sequential methods and exploitation-based sequential. 

Error-based methods place points where there is high error, but often spend large 

resources on areas difficult to capture, while leaving other areas largely under-sampled. 

[112] Exploitation designs on the other hand attempt to place points in areas of interest, 

specifically areas of nonlinearities, discontinuities, or local optimum. [112] To add points 

in this algorithm, the latter process is used. 

Points can be added in any frequency to the design space. This process allows the 

designer to determine the number of points added based on the number of available 

computing nodes. It is ideal to have every node on a cluster of machines simulating so 

that computing power is not wasted.  

This algorithm automatically balances where future points should be placed based 

on the number of additional experiments added to the design space at each iteration. First 

the algorithm determines an optimal ratio of repetitions to exploratory simulations based 

on previous performance. After the ratio of replication is determined the points are 

distributed to either explore the space or conduct repetitions. This process allows for an 

equal increase in understanding of the space instead of learning one area very well, but 

knowing nothing about the other regions.  
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There are two aspects to each exploration and replication. First it is important to 

determine how many of the allotted points should be proportioned in either direction. 

Second, for those points allotted to exploration, where should they be placed; and for 

those allotted to replications, where should they be placed. These two sub algorithms are 

separate. This section deals with how the exploration cases should be distributed. The 

answer to this is that they should be as far away from other points to promote exploration, 

while not focusing on the edge of the space, and should be points that explore areas of 

high variance and areas that are not known well. Repetitions on the other hand, should be 

used in areas that have already been explored, but have high variance.  

6.2.2.5.1 Determining the Ratio 

It is essential to use replications throughout the design space in regions of high 

uncertainty to determine the variance. However the number of replications in the space 

depends on the local magnitude of the variance. If there is high uncertainty in the space, 

than more replications are required, while if there is less uncertainty, fewer replications. 

(See Chapter 5.) After the number of simulations to add to the space are specified the 

proper ratio of replications to exploration points must be determined. The proper ratio of 

replications to exploratory points is determined by the contours of the space, but to 

precisely achieve this value a full exploration of the space and its sensitivity must be 

conducted. This would require a full exploration, to conduct an exploration, and is 

impossible. 
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 Instead, an approximation of how many points should be allocated to each area is 

used based on the convergence of the mean and standard deviation functions. 

Convergence of the residuals can give an approximation for which type of point is 

causing the largest change in the simulation space. If the greatest change is caused by 

adding replications, than more replications should be added; and if it is caused by 

exploration points, than more exploration points should be added. This is based on the 

assumption that the mean and variance functions approach the population values as more 

points are added to the space. An accurate way to determine the optimal number of 

repetitions versus the number of exploration points is an active area of research and it 

depends on the simulation itself, [122] but this process can provide an approximation.   

To determine the ratio, two iteration models are compared, the old model and the 

new updated model. Since there are two models per iteration, one for the mean and one 

for the STD, the change in the mean is assessed independently to the change in the STD. 

This means that an optimal ratio for the mean is determined, as well as an optimum ratio 

for the STD. Because the mean and STD models can have different magnitudes the two 

ratios are determined independently and are then averaged. 

The average squared change in the function caused by only the replications points 

and separately only by the exploration points is calculated. Following this, the mean or 

STD ratio is determined by the average change of the repetitions to the total change. 

Below is the equation. 

�,����_�,����� + �,����_ 
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The above function represents only one of the two functions. This ratio ensures 

that the ratio is weighted proportionally to the number of points added to repetitions. As 

an example, if only one point is added as a repetition, it is going to contribute less, 

proportionally, to the total change in the simulation, and thus must be weighted 

accordingly. Below is a pictorial representation of this process. 

      

 

 

 

The above example steps through the first two iterations of adding four points and 

shows how the ratio for the mean is determined. In the first iteration four points are used 

to explore the space. In the second iteration, two of these points are placed in regions to 
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already sampled x locations). The initial ratio is 50% because no previous model exists 

and previous research has identified 50% is a good starting ratio (See Chapter 5). These 

new points are simulated, and a new model created. The new data points are then broken 

into two subsets, those used for repetitions and those used for exploration. The average 

change in the mean at the points used for the repetition over the total average change in 

the mean for both repetitions and exploration points provides the ratio for the mean 

function. This same process is conducted for the standard deviation and the ratios are 

averaged. By using the squared residuals it ensures the errors are positive and places 

additional emphasis on points that change the model the most.  

This notional example shows an issue with this process. It assumes the local 

change in the residual is caused by either the repetition or the exploration point, when it 

can be actually caused by both and not the two groups independently. As the dimension 

of the space increases, this is less of a concern. Another issue is it is based on the 

previous iteration’s data and not the current iteration solely. This means the ratio is on a 

constant lag. Although it would be better to have the information solely based on the 

current data, this information is not available.  

To prevent solely adding points to one direction or the other, a maximum and 

minimum is placed on the ratio. The maximum and minimum ensure that one experiment 

will always be used to explore and repeat. If two experiments are added, the ratio will 

always be 50%, if three are added, than the ratio will always be either 33% or 66%, and 

so on. If only one experiment is chosen to be added, then it will be used to explore. 
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To prevent erratic changes in the ratio, a historical average is taken of the two 

most recent ratios. This process smoothes changes and prevents the function from over 

compensating. There is no reason to expect the ratio to jump from one extreme to another 

if this ratio does fluctuate in this manner, simulations will be wasted as the simulation 

oscillates and over corrects. The averaging of the previous slows the oscillations and 

reduces the number of simulations used to overly explore one of the two directions.  

The key is to balance exploration versus exploitation. The exploitation criterion is 

to place points in regions of high variance and nonlinearities, but it is essential not place 

all available points in these regions. To enhance the exploration, an augmented LHS DoE 

is proposed that places points in-between existing points. Thus regardless of the size of 

the DoE, points can always be added which do not overlap the existing points in the 

design space.  

6.2.2.5.2 Adding Exploration Simulations 

After the allotted number of points is determined to be added to explore the space, 

the location of these points must be identified. The exploration of the space must balance 

two things that have been mentioned at the beginning of this section: the exploration of 

new regions, and the addition of points in regions which are known to have a poor fit.  

From the overview of the algorithm, the distribution of exploration points can be seen 

below. 
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First candidate locations are identified, which is a selection of points that can be 

added in the design space and complement the existing points within the space. Then, 

from this set of candidate points, a subset is selected to be added to the space where there 

is the highest uncertainty. This dual process ensures that new points complement existing 

simulations but also exploit the known uncertainty of the space.  

6.2.2.5.2.1 Finding New Candidate Locations 

There are many different strategies for adding new points in a design space after 

running an initial DoE. Often in sequential designs new candidate points are selected 

based on a new space filling designs. [68, 117p150, 287] These new designs are created 

independent of the existing points already placed in the space. After a second DoE is 

created, points from this DoE are selected which are predicted to enhance the space the 

most. The issue with this process is, by chance, a new point may be created near an 

existing point, where more information could be gained if the location was further away. 

Another problem is this process does not push points from existing points, and may cause 

clustering.  

 Find Candidate Points 

Select Candidates with Highest Uncertainty 

Distribute Exploration Points 

Figure 6.6: Expansion of Distributed Exploration 

Points 
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An obvious solution to the above problem is to add points that maximize the 

Euclidian distance between points, however, this will push points towards the edges of a 

space, and in high dimensions, there are many edges. In the presences of systematic error 

it is often better to run designs focusing on the center of the space than at the edges. [3, 

287] There are existing methods which enable the placement of points in regions which 

have increased failures. [10] It is ideal that when new points are added to the space the 

properties of the LHS designs are preserved because they have been shown to require 

fewer points for regression. There are other methods which maintain LHS properties such 

as augmented LHS designs which double the size of the current LHS design, but only 

work if the current points are an LHS design. There is no commonly accepted way of best 

augmenting designs. 

It is important to augment the existing points in the space to allow for future 

points to be added which will maintain many of the properties of the LHS designs. These 

properties are maximum intersite distance (the distance from other points in n-

dimensional space – Euclidean) and the maximum projected distance (the projected 

distance of all the points onto each axis – infinity norm). The tradeoff between intersite 

distance and projection distance is equivalent in choosing points locally far away from 

each other and producing points which are non-collapsible. 

To maintain the properties of LHS designs, a variation of Crombecq et al.’s [254] 

mc-intersite-projection-threshold algorithm is implemented. This algorithm places new 

points in the space with a Monte-Carlo (MC) algorithm based on existing points in the 

space. This algorithm from Crombecq et al.’s paper has been shown to perform well 
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compared to other methods in maintaining intersite and projection distance properties as 

new points are added to the space. 

The algorithm presented in this research requires a set of candidate points to be 

determined. This process starts with requesting the number of candidate points. Since the 

number of candidate points must be higher than the number of points to be added for 

exploration the maximum of either the points in the design space or two times the number 

of points to be added is used. This number is provided so there are sufficient candidate 

points within the space to downselect. In the beginning of the algorithm two times the 

number of points in the space will be the dominant number. As more points are added, 

the number of points in the space will be the dominant number. The reason this change in 

logic is used is because as more points are in the space, a large gap in the intersite or 

projection distance does not necessarily produce the highest uncertainty, and it is 

important that candidate points be placed throughout the space.  

To produce the above set of points, a larger collection of points must be used to 

determine which points have the greatest intersite and projection distance from the MC 

analysis. This collection is simply the number of candidate points desired times two. This 

provides a large collection of points so that only the optimally placed points are selected 

for future candidates.  

To seed the space a LHS design is used because it provides a uniform sampling in 

all dimensions. Each point in this LHS design is then moved from its current location to 

the center of the projected distance of its neighboring points in each of the dimensions. 
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By moving the point from its current random location to the center of the projected space, 

this increases the speed of the MC algorithm. Once the point has been placed at the 

optimum projected distance, it is then optimized to maximize the intersite distance within 

the threshold parameter provided by Crombecq et al. The threshold parameter improves 

the ability for future design points to be placed to maintain future LHS properties. Once a 

point has been positioned optimally, it is temporarily added to the existing DoE points so 

that future points will be positioned optimally with respect to all points, including the 

new location. Below is a depiction of this process using an initial ten point LHS design 

with twenty candidate points desired. 

 

     

     
Figure 6.7: Process for Optimizing New Candidate Point Locations 
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As can be seen in the above in process figure, the process starts with an initial 

LHS design. Each point in the LHS design is optimized compared to the other points in 

the space by first moving the random location to the optimum projected location, and 

then optimized based on the intersite distance and bounded by the threshold parameter. 

After all the points have been optimized the points with the greatest intersite distance are 

selected as candidate points. As can be seen from the initial LHS design to the final 

candidate points, the points have been spread throughout the space and provide a good 

coverage of regions that have not been explored, but still exhibit a random component.  

Mathematically, the objective function can be seen below as an if statement. If the 

point in the space has the threshold to move, then it is optimized, otherwise its intersite 

distance is not optimized.   

��1� = 2z�  

�^�(') = � 0, �� min�8 ||51 − 5||.� < ��1�min�8 ||51 − 5||2 , �� min�8 ||51 − 5||.� ≥ ��1� V 

In the above formulation ��1� is the minimum threshold parameter where n is the 

number of points already added to the space and alpha is 0.5 (determined by Crombecq et 

al.). As mentioned earlier, this parameter preserves future LHS properties, by deciding 

whether or not to optimize the intersite distance. The objective function can also be seen 

above where if there is room to move, the point is optimized. In the above formulation, pi 

represents the point to be added to the field, and p represents all other data points. Since 
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the objective routine is locally monotonic, a simple optimization routine is implemented. 

(For this algorithm sequential quadratic programming (SQP) is used.)  

Two points are artificially added to the design space, zero and unitary. In 

Crombecq et al.’s original algorithm, these two extreme points start the design space 

selection, however in the implementation used in this research a seed LHS design is used, 

and later simulations are added by uncertainty. Adding simulations at unitary and zero 

doesn’t necessarily benefit this implementation since the objective is to learn the space as 

accurately as possible with the minimum amount of information. The two points on the 

edges allow the algorithm to use these as artificial bounds that can’t be superseded. The 

two extreme points also prevent points from being driven toward the edges. 

Balancing the number of candidate points is important. Too many and there will 

be many points selected in the same region which improves the model. Too few, and 

there will not be any points located in the region that needs it the most. The numbers 

chosen have been selected because of preliminary tests conducted with the algorithm. 

6.2.2.5.2.2 Choosing Exploration Points 

After a set of locations is identified for further exploration, the points with the 

highest uncertainty are chosen. There are a couple of ways of conducting this exploitation 

in the literature, [68] such as using assumed distributions. However, this algorithm has an 

approximation for the uncertainty obtained using the bootstrap technique discussed 

earlier. Thus, after the candidate points have been determined, the subset of these points 



206 

 

which have the greatest standard error as identified from bootstrapping are added to the 

space.  

By conducted the process in this fashion (point locations then areas of poor 

performance), there is an inherent balance to exploration and exploration of regions 

unknown. If the algorithm was left to place points it knew the least, all points would be 

placed near the edges of the design space. Further, as more points are added to a region, 

this pushes more points to be explored in other regions of the space. This prevents the 

algorithm from over sampling regions: the algorithm always implicitly balances 

exploration of new areas and increased understanding of areas already known.   

6.2.2.5.3 Adding Replications 

Regions of high variability in stochastic design spaces must be explored for many 

reasons: first, regions of high variability require more points to capture the variability 

accurately, [97, 265, 288] independent of the type of error distribution. Second, regions 

of high relative variability are areas which may exhibit an emergent behavior, and may be 

an area of increased interest.  

Since repetitions have been determined as a necessity, it is essential how they are 

distributed within a design space. Once the number of repetitions is identified, their 

distribution throughout the design space must be considered. To place repetitions there 

are many things that must be considered. First, points should be placed in proportion to 

their variance. Regions of high variance should have more replications then regions of 

low variance. Second, there should be no maximum placed on the number of repetitions 
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at a specific location. If there is a single spike of variance in the space, then this spike 

should receive all of the replications.  

From this, it can be deduced that the replications should be placed in proportion to 

the total number of replications in the space and in proportion to the magnitude of the 

variance. This scheme does not distribute points proportional to the allotted repetitions 

per iteration, but instead to the total number of repetitions run throughout the simulation. 

(Although adding repetitions may be best added in proportion to the convergence of 

standard error, √�, they are added in proportion to n for ease.) 

First, all of the points with their predicted standard deviations are summed (Tsig 

below), using the prediction for standard deviation discussed earlier. This total standard 

deviation is used to normalize the local standard deviation (Lsig below), at a specific 

location. Using this ratio, the total number of replication in the space are scaled so that 

each site has the proper number of replications.    

Number of new repetitions� = max (0, Lsig�Tsig ∗ Treps − Lreps�)  
As the accuracy of the of the standard deviation improves, it may be determined 

that the specific location has too many replications, at which point the above linear 

equation will produce negative values and must be truncated. The number of repetitions 

which should be added to each location can be determined and allocated throughout the 

space. The total number of new repetitions are then scaled and rounded to the number of 

available repetitions for the current iteration (this must be done because of the negative 
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values). Finally, because there is rounding, there may be some experiments over or under 

the specified amount of repetitions. If this number is violated, being that the adjustment is 

small, the points are either taken from or added to the design location which has the 

largest number of new repetitions. 

6.2.2.6 Simple Example 

The process of adding simulations appears complex because it has many 

components. To elucidate, below is a simple example that shows four iterations of the 

amalgamated algorithm. This example is a simple sine wave in 3-dimensional space seen 

below with normally distributed error. 

�(,/, ,2) = sin(6,/,2) + 0.5 ∗ �(0,1) 

The above equation is simple, but it provides an easy visualizable space. This 

space is initialized with a five point LHS design and ten points are added to the space at 

each iteration. Below, each of the above algorithms can be seen to operate together. The 

below plot shows the standard error distribution as a contour plot in the top left, the ratio 

per iteration in the bottom left, the population mean (grid) and predicted mean (color 

contour) in the top right, and the population STD (grid) and predicted STD (color 

contour) in the bottom right. 
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Figure 6.8: First Iteration of ARGUS on a Simple Example Problem 

The distribution of new points can be seen on the standard error plot. This 

prediction is created from the first five warm-start points in the space. From the standard 

error, the algorithm has identified that one corner of the design space is not fitting 

properly and allocates exploration points to this region. Since the STD is uniform, the 

repetitions are placed randomly over the space (one at each node). As indicated 

previously, the first iteration allocates half of the points to exploration and the other half 

to repetition, as seen by the 50% ratio. From the mean plot and the point locations, it is 

obvious why the mean has taken the shape it has: all the points are in the center of the 

space and produce an increasing plane.  
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Figure 6.9: Second Iteration of ARGUS on a Simple Example Problem 

On the second iteration, the number of repetitions have been decreased, increasing 

the number of exploration simulations. From the algorithm developed, it is expected the 

ratio of replications to exploration simulations will be biased to simulate more 

exploration simulations. The reason for this is that the over approximation for the 

variance is develop by using neighboring points, which means the mean and the STD are 

heavily impacted by exploration simulations, especially in the presence of function 

spaces with large relative mean variations. The standard deviation is slowly starting to 

correct itself and it can be seen that it has decreased in magnitude. The standard error plot 

now represents both the sets of new points from this iteration and the last iteration. 
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Figure 6.10: Third Iteration of ARGUS on a Simple Example Problem 

With only 25 points added to the function space, the mean and standard deviation 

have begun to take shape in the in the presence of signal-to-noise ratios ranging from 

zero to two (mean/STD). There is no clustering of points as seen in the standard error 

plot. The points are being added in uniform coverage over the space similar to a LHS 

design while reducing areas that have poor fit. The transition of the number or 

replications is smooth, and does not seem to be oscillatory. Although the STD is still 

high, sections are being reduced as more points are added to the field.   
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Figure 6.11: Fifth Iteration of ARGUS on a Simple Example Problem 

With only 55 point in the space, the mean function trend has been determined. 

The mean function is still noisy, but a noisy function is expected in high noise datasets. 

The STD function is still over estimated, but the algorithm is slowly correcting itself.  

6.2.3 Stopping Design 

There are two commonly used stopping criteria when conducing sequential 

experiments: a maximum number of points tested, [289] or the uncertainty in the 

regression form has reached a required fidelity [100, 103] (this can be true for both 

deterministic and stochastic simulations). These two stopping criteria are intuitive. If 
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there is a maximum available computational time, then the maximum number of 

experiments should be run for this time. However, if the model converges to a static 

form, then each simulation does not change the existing model and it should be stopped. 

(See Chapter 5) 

It is cautioned to apply the second of the two stopping criteria in the exploration 

of any space, but especially stochastic spaces. Simply because the mean and standard 

deviation functions have converged to a static solution does not mean the space is 

explored. Stochastic complex system spaces are complex by definition. Despite a 

converged learning function, there are new areas which may cause this convergence to 

deviate, but have yet to be explored. An example of this phenomenon will be discussed in 

the results section.  

Additionally, although there are two commonly used methods, this does not 

indicate both methods provide adequate information on the convergence of the routine. In 

some cases it is recommended that a sequential routine be allowed to run until its root 

mean squared error has reached 5% and the normalized maximum less than 10%, but 

these convergent criteria cannot indicate how accurate the model is to the population 

values. [53] 

6.2.4 Limitations 

ARGUS sequential sampling is specifically intended for stochastic simulations. 

There are many methods capable of handling deterministic simulations in the literature 

including Kriging for small datasets, and the plethora of methods developed in the 
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SUMO toolbox. [113] If it is known that the simulation space is parametric, then a 

parametric model should be used; if deterministic, a deterministic routine should be used; 

and if it is known the space is homoscedastic, a homoscedastic routine should be used. 

The reason for this is that when one of these assumptions is made it reduces the 

complexity of the algorithm and can better predict where future points should be placed.  

This algorithm always reserves a single point to either explore repetitions or 

exploration. If the function space is known to be deterministic, the one simulation 

reserved for replication will always be wasted. If few samples are added to the space at 

each iteration, then the number of wasted points reserved for capturing the variance could 

be substantial.  

It has also already been discussed the type of input variables that this routine is 

intended to use. These variables are continuous and/or ordinal discrete values. If the 

inputs are categorical, no functional relationship can be determined for the mean and 

variance, and thus regression and placing points in high uncertainty has little meaning. 

This algorithm also only considers a single output metric.  

A note regarding a limitation of this algorithm is that it does not remove outlier 

points. Outliers happen in any stochastic simulation where due to the randomness of the 

space, and the configuration of inputs, an anomaly happens and a point does not fit the 

population data. Although there are methods for predicting and removing outliers, [290, 

291p109] this routine does not attempt to remove or smooth any impact of outliers. 

Instead the algorithm relies on its self-correcting nature: if an outlier occurs, this will 
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increase the local variance and uncertainty of this region, and in the presence of high 

uncertainty and increased variance, more points will be placed in this region. As more 

points are placed, the regression will smooth itself.  

6.2.5 Additional Features 

The algorithm has been specifically designed to allow the designer to stop and 

start the function at any iteration and not lose the incremental information gained. When 

exploring computationally expensive simulations, information can be gained in phases as 

computational resources become available. Since this routine relies on previous iteration 

information there is a concern that if the function is stopped, this information will have to 

be regained in order to determine the proper replication ratio. This is not the case. Instead 

all the information necessary for the sequential iteration is stored in a single history 

variable. As long as this history variable is supplied to the sequential routine, the routine 

will restart where it left off. If the designer has used an allotted number of CPU hours but 

is given access to more computational time later, all of the information needed to 

progress and add additional points is included in the function’s history structure.  

Additionally, although one experiment at a time is most optimal for perfect 

optimization or exploration of the space, “one-design-at-a-time experimentation should 

be considered as obsolete as one-factor-at-a-time experimentation.” [60] This algorithm 

provides the ability to implement batch simulation runs. Since cluster computing is 

ubiquitous in modern day computing, it is desirable to produce a set of points that are 

capable of utilizing the available computational resources.  
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6.3 Research Plan 

With the development of any new technique or algorithm, it must be compared to 

the current state-of-the-art to determine its improvements. ARGUS’ purpose is to 

enhance the search of stochastic spaces, thus must be compared and tested to other 

methods on various stochastic spaces to determine its sensitivity. It is necessary to 

determine how well ARGUS forms in complex system design space and on general 

stochastic functions.  

This section will discuss the test function that will be used to compare ARGUS 

against other stochastic search methods. Following the test functions a short description 

of the other comparison methods will be discussed and the metrics which will be used to 

gauge the success. Finally a test plan is developed which shows how these methods are 

compared on each of the functions used.  

6.3.1 Test Functions 

In adaptive sampling and machine learning, one of the most common test 

problems is the multi-armed bandit problem where a group of slot machines are 

attempted to be learned. [292] The objective is to maximize the expected reward from 

these machines. Like many other sequential test functions, the main objective is 

optimization and not a global understanding. Additionally, the space of interest does not 

have the properties of complex systems, namely, heteroscedasticity.   
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Since there is no commonly accepted SoS simulation in the literature, several 

different functions are used to explore the performance of this function. First, a notional 

SoS ABM simulation is used known as the predator-prey model. This simulation has 

many different agents in a spatial simulation that interact with their surroundings. More 

information can be seen about this example function in Appendix B. Since the predator-

prey model is a small example of only 3 dimensions, it allows an exhaustive search of the 

space which cannot be provided in higher dimensions. A large sampling of points (30,000 

design locations at 200 replications each) can be used to characterize the performance 

throughout the space with little loss in accuracy. However, the number of dimensions are 

static and it is impossible to determine sensitivities of this algorithm with changes in 

variance (signal-to-noise) or dimension. For the predator-prey simulation the objective 

metric used is the mean number of wolves still in the simulation. If the population of 

wolves has not become extinct in the allotted amount of time, it is highly probable the 

simulation has encountered the dynamically stable emergent behavior. 

To determine the sensitivities of this algorithm to dimensions and variance, a test 

function for robust design is used. This test function is developed by Goh et al. [245, 247] 

for robust design and allows the function space to be scaled to n-dimensions. Although 

there are many function types discussed in Goh et al.’s work function type one is the only 

function used for this comparison. By using a predetermined mathematical function, the 

function space can be sampled at high frequency to determine the accuracy of the 

sequential algorithm.   
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Finally, to demonstrate the problem on a large scale test problem, a published SoS 

simulation is used. A final test is compared on an SoS simulation develop to enhance the 

design of UAVs in the civilian application of extinguishing forest fires. This simulation is 

a problem with many intricate civilian aircraft. This simulation uses several aircraft with 

varying mission types to search, monitor, and extinguish forest fires in the Greek Isles. 

For the Greek fire fighting problem the objective metric that is used to track the 

simulation is the size of the burnt land. More regarding this simulation can be found in 

[12]. Below can be seen the variables modified in this simulation.  

 

 It is unknown if this simulation exhibits any emergent behaviors, but is a large 

complex SoS simulation that provides many of the attributes required for SoS.  

The first example problem provides an investigation of a notional SoS problem 

but does not allow any understanding of the algorithms sensitivity. The second function 

allows an investigation of sensitivities, but is not necessarily representative of SoS 

Table 6.1:  Design Ranges for Greek Fire Problem 

Variable Name Min Max 

Number of Extinguishing ACs 1.5 8.49 

Number of Searching ACs 1.5 6.49 

Velocity of Drop ACs 131.744 197.616 

Velocity of Search ACs 131.744 197.616 

L/D of Drop ACs 22.12 33.18 

L/D of Search ACs 22.12 33.18 

Fuel Capacity of Drop ACs 400 4000 

Fuel Capacity of Search ACs 400 4000 

Retardant Weight of Drop ACs 2000 12000 

TSFC at Cruise of Drop ACs 0.27712 0.48486 

TSFC at Cruise of Search ACs 0.21936 0.38388 

Radar Range of Search ACs 37000 200000 
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attributes, just a heteroscedastic space. This final example is a large (12 dimension) SoS 

design space that was the motivation for this algorithm. Since this design space is large, 

and the simulation time consuming, it is impossible to know the population performance. 

But this function showcases the algorithm’s capability on large SoS simulations.  

6.3.2 Comparison Methods 

Although there are many methods for sequential optimization in deterministic and 

stochastic spaces, and many global exploration methods for deterministic spaces, there 

are few available methods that are capable of handling stochastic problems. This lack of 

methods has resulted in no papers comparing and identifying the best methods to search 

stochastic spaces.  

As mentioned throughout this paper, Kriging is a common nonparametric 

algorithm used to optimize and explore deterministic spaces when there is little known, 

[263, 293] but in its adaptation to handle stochastic functions [68, 102, 107] it assumes 

homoscedasticity and even this approximation may be inaccurate in high variance. [294] 

Homoscedasticity, is not a valid assumption for complex system simulations, however, 

Kriging provides a common baseline reference. For this comparison deterministic 

Kriging is implemented with a regularization parameter (often called a ‘nugget’ 

parameter and a Gaussian correlation function) is used to adapt it to a stochastic space. A 

description of Kriging for stochastic simulations can be found in the following references 

for the interested reader [104, 120, 122]. Throughout the rest of this work, this function 

will be labeled as Krig in all figures. This method utilizes the Kriging code from 
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Forrester [295] with a few adaptations for speed. Instead of using Forrester’s sequential 

Genetic Algorithm (GA), MATLAB’s parallelized GA is used.  

A second method has been developed recently by Beers and Kleijnen [104] 

(2008). This method also uses Kriging as the nonparametric regression routine but 

simulates many repetitions at each design location in the space tailored to the variance. 

Once replications have been simulated at each design point, a bootstrapping routine is 

conducted by selecting a simple experiment from each design point location. This 

bootstrapping further removes the assumption of normal errors. After several bootstraps 

have been conducted, an approximation for the predictive variance throughout the design 

space can be calculated from the variance of each regression. Future points are then 

placed at areas of the highest predictive variance and repeated until the accuracy of the 

mean is sufficient, as specified by the user. For the implementation of this algorithm in 

this research a limit of 20 points is used as the upper limit for the number of repetitions. 

Since these spaces may contain high variance, many replications may be needed to 

achieve 95% confidence in the mean. This method will be labeled Brs20 throughout the 

figures. Beers and Kleijnen’s convergence criteria are developed specifically for the 

M/M/1 discrete event test problem and not for generic simulations, and thus the 

implementation of a 95% confidence interval is used. If this constraint is relaxed, the 

algorithm may perform better in comparison, being that no similar constraint is placed on 

the other methods. To implement Beers and Kleijnen’s method an existing Kriging code 

is used from the Informatics and Mathematical Modeling group at the Technical 
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University of Denmark. [296] (This is the identical Kriging toolbox used by Beers and 

Kleijnen.)  

Additionally variations of the ARGUS sequential algorithm are also implemented. 

The major input into this sequential routine is the number of points to add to a design 

space per iteration. Although it has been discussed the important factor driving this 

number should be dictated by the number of available CPUs, a comparison can be 

conducted to evaluate the differences in sample rates. For this comparison, four sample 

rates will be tested, one sample at a time (this does not allocate repetition simulations), 

five samples, ten samples, and twenty samples. 

The final method used to compare the sequential algorithm against is a static LHS 

design. There are several ways this LHS design can be investigated. The limiting factor is 

the number of total points that are added to the design space is 500. To accomplish this 

number a couple approaches are used, 10 points in the space at 50 replications each, 100 

points at 5 replications, and 500 points using several regression methods.  

6.3.3 Test Metrics 

Since there are several different test functions, each with different properties, this 

requires several different test metrics, some specific to each test problem. The first metric 

to be considered is time. The time to regress the space at each iteration is a metric 

common to all sequential methods and all function types.  
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The second metric is specific to the predator prey model. Since the space has been 

explored with 30,000 design points, 1/4
th
 of these points are used to determine the global 

accuracy of the regression method. Once a regression of the space is created, 1/4
th
 of the 

points throughout the space are subtracted from the regression model, squared and 

averaged. This produces an averaged predicted squared error (APSE) over the space. This 

metric is assessed every 20 points added to the simulation for each algorithm, using the 

identical set of sample points from the space. Although the metric is stochastic, the 

performance is directly comparable between the algorithms.  

For the Goh et al. GTCO1 function, since the function space is stochastic but can 

be quickly sampled, a converged sampling of the space is used. This global sampling 

technique is called CAPSE. (Please see 5.2.3)  

The final metric is the convergence of the mean and standard deviation regression 

functions. As more points are added to the space, the mean and STD learning functions 

are expected to converge to static functions. The rate of this convergence can be used to 

determine relative performance.  

6.3.4 Test Setup 

Each test function, due to their dimensional size, has different metrics which can 

be used to assess the performance of the different algorithms. Despite the relative 

complexity, each test function and algorithm combination tests several warm-start LHS 

design sizes and the stopping criteria is a maximum number of points added to the space. 
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This maximum number is 500 simulations; once there are 500 simulations within a space, 

the algorithm is stopped.  

The first test function is the predator-prey simulation. Each of the sequential 

algorithms is connected directly to the NetLogo simulation. When an algorithm identifies 

a unique simulation which needs to be added to the space, it is simulated and the metric 

tracked. Because this simulation has few design variables, and has already been 

extensively explored this allows the comparison of each of the sequential methods using 

APSE, the learning time per iteration, and the convergence of the learning functions as 

measures of success of the functions. Since Kriging methods are only expected to worsen 

as number of dimensions increase due to the increased number of points to accurately 

regress the space, only ARGUS based sampling will be explored on the other functions. 

The second function compared is the GTCO1 test function. This function allows 

sensitivities to the number of dimensions and the magnitude of the variance to be 

conducted. By investigating the number of dimension and the variance, this function 

produces a large number of combinations which must be evaluated. The number of 

dimensions range from 10 to 40 (10, 20, 30, 40) and the variance from 0.01 to 0.2 (0.01, 

0.1, 0.2). To assess the performance the learning time per iteration, the CAPSE, and the 

convergence of the mean and STD regression function are used.  

The final test function is the Greek fire fighting problem. Again, the algorithms 

are connected directly to the NetLogo simulation. Since this space is a 12 dimensional 

space and the simulation time is long, it is impossible to capture a global measure of 
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Algorithms 

Measures 

LHS Size 

performance. Thus the only measure for comparison can be the convergence of the mean 

and STD functions and the learning time per iteration. 

 All of these simulation are simulated on identical windows machines (Intel Xeon 

3.2GHz 4CPUs with 4GB of RAM), and required approximately two months of 

computational time. Below is a diagram showing the test conducted for each method.  

 

Figure 6.12: Test Functions and Their Respective Measures and Algorithms 
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6.4 Algorithm Comparison Results 

6.4.1 Predator-Prey Simulation 

The first comparison of the various methods is the predator-prey simulation. An 

investigation of the time to learn the function at each iteration is presented and its 

sensitivity to the size of the warm-start DoE. In the below figure the size of the warm-

start DoE is seen progressing from left to right with the static DoEs on the right most 

plot. The time presented for the static DoE is the required time to regress 500 points with 

the specified regression method.  

 

Figure 6.13: Regression Time (log) for each of the Sequential Methods 

As expected, the Kriging method using the GA global optimization of the 

bandwidth is the most time consuming. As the number of points included in this 

regression increase, the time increases significantly. The high noise in algorithm’s plot is 

caused by the stochastic searching routine.  

The Brs20 method does not increase in time significantly as points are added to 

the space. There is, however, a notable increase in the Brs20 method as the size of the 
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static DOE is increased. This lack of increase as new points are added to the space is an 

artifact of the progression of the Brs20 method. Since points are added one location at a 

time, up to 20 points per location, it is possible every location in the space requires 20 

replications. If 20 replications are required, this only requires 25 unique design locations 

to achieve the 500 allotted simulations. Instead of regressing 500 points like the Krig 

method, the Brs20 method is only regressing the mean of approximately 25 design 

locations for the 10 LHS sample size. Although this number increases as the size of the 

warm-start DoE is increased, it is still significantly fewer points. Since there is not much 

increase in the regression time with the increase of LHS size, this shows that there is also 

a significant time advantage for the local optimization versus the global search.  

All of the ARGUS sequential methods perform exceptionally compared to the 

required time of the Kriging method. Since the regression time for the ARGUS methods 

is low, this indicates the regression expense for using this method is not the limiting 

factor for its implementation. Large datasets can be used to explore a space with rapid 

regression.  

From comparing the ARGUS sequential routines to the static DoE it can be seen 

the amount of time to regress the space at the final iteration of 500 simulations is less 

computationally expensive than using many regression methods like MARS. It is more 

expensive than using simple polyharmonic splines, but this is because ARGUS also 

spends time identifying future simulation and addition logic that a simple regression does 

not conduct. Thus, the amount of time for the algorithm should be the amount of 

regression time plus added time for the incorporated logic.  
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The next comparison is how the methods perform when comparing the global 

regression performance. Below is an identical layout from the Figure 6.13 but presents 

the APSE approximation. Because of a single outlier, two plots are presented, one 

showing the maximum range, and the other with the outlier removed.  

 

The Krig method performs erratically. There are many places in the regression 

history that the model does not fit the space properly causing significant spikes in the 

magnitude of error. Brs20 on the other hand does not change its performance of the 

space. As points are added to the space, there is little change because simulations are 

being adding at single locations as replications and the space is not being explored 

 

 
Figure 6.14: APSE Mean Comparison of Different Sequential Methods Top: 

Total Range, Bottom: Zoomed Range 
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equally. The algorithm is too focused at finding desired accuracy at a specific location. 

Both of these methods perform worse than using any size, repetitions number, and 

regression method of the static DoEs.  

The ARGUS algorithm, regardless of the number of sequentially added points per 

iteration performs better than the other sequential methods. The close-up figure shows the 

sequential method is noisy both amongst the different number of added simulations per 

iteration, and within a single implementation. This noise is due to the inherent 

randomness of the process. The learning function ‘thinks’ it has learned specific parts of 

the function but it is not until it has explored further, that points are placed in regions that 

are more important.   

There is little sensitivity of the ARGUS methods to different warm-start DoEs. As 

long as the algorithms have sufficient points to add after the warm-start, the convergence 

of the mean is mildly sensitive to the size of the warm-start DoE and the number of 

points to be added per simulation. At small warm-start LHS designs, it appears that this 

sequential routine is more sensitive to the number of simulations added per iteration.  

Nearly all of the implementations perform better than all of the Static DoE sizes 

and their respective regressions. There is, however, a single instance where only a couple 

of the ARGUS methods are capable of performing better than the 100 LHS points 

replicated 5 times. This outcome could be caused by an anomaly DoE which happens to 

perform better than all of the other methods. Part of the reason for this performance, is 

the interpolation method is very good. Much of the space has zero mean and zero 
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variance and since this method is an interpolation method, it captures these trends with 

zero error and is not biased by the small region with high variance. 

 Regardless, however, all of the methods appear to achieve approximately this 

identical error, without specifying the number of replications. If 100 samples with 5 

replications at each sample is the optimum number, than ARGUS has been able to 

identify the same performance with significantly less sensitivity to the inputs. Some of 

the implementations of the ARGUS algorithm perform better than using a static LHS 

DoE. Below an investigation is shown for the STD. 

 

 

 
Figure 6.15: APSE STD Comparison of Different Sequential Methods Top: 

Total Range, Bottom: Zoomed Range 
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Again, very poor performance is seen for both the algorithms that use Kriging. 

For the ARGUS implementations there is much greater sensitivity to the number of 

points added at each iteration. Surprisingly, the best number of points to add at each 

iteration for ARGUS is a single point. Adding a single point performs consistently better 

than any other algorithm and often better than the optimal DoE. The reason the single 

simulation performs best is that so much of the space has zero performance. This zero 

performance means that no experiments are used to determine the variance, and since 

little of the space has a variance, this method performs well. As can be seen, the 5 point 

per iteration implementation performs similarly. This similar performance is caused by 

the early wasting of replication points. Replications are wasted early in the simulation 

process when little is known about the space and it appears there is a high variance.  

The final comparison is the convergence of the mean and standard deviation 

learning functions.  
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As can be seen, the convergence of the Kriging methods do not indicate anything 

regarding the progression of the algorithm. The Krig method does not converge or 

diverge, but is a noisy constant. Bers20 only changes its convergence as new design 

points are added; otherwise its performance always shows a converged function. The 

ARGUS methods shows a convergence of the mean function which is not noisy and can 

be used as an exit criteria. The convergence of the ARGUS methods for the STD appears 

to always be converged. This indicates that the convergence of the learning function is 

 

 
Figure 6.16: Convergence of the Deferent Sequential Methods Top: Mean, 

Bottom: STD 
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not the best indicator of the success of the algorithm, but if it is used, the mean function 

should be used and not the STD because it is more stable.  

Although the mean function is converging to a value, the concave trend is counter 

to the expected convergence. As more points are added to a space, the mean change in the 

function shape should be getting smaller; but instead, the mean change in the function is 

growing and stabilizing. This may indicate the space needs more points in the space then 

the allotted 500. If more points are added it is possible the convergence function may 

begin to reflect.  

6.4.2 GTCO1 

The GTCO test function provides a determination for the sensitivities of the 

ARGUS algorithm to changes in variance and the size of the stochastic problem. Since 

the logic for the adaptive algorithm is independent of the size or variance of the problem, 

the time per iteration will be consistent over these variables. Below is the required 

learning time for the ARGUS methods with varying warm-start DoEs.  
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Figure 6.17: Time (Seconds) to Learn per Iteration for the GTCO1 Test 

Function with Varying Warm-start DoEs 

The time to regress the space is dependent on the number of point in the space. It 

does not depend on the size of the warm-start DoE. The rapid increase in regression time 

when there are few points in the space is due to the requirements of the polyharmonic 

splines. When there are fewer points in the space than the number of dimensions, the 

average plane is used to fit the data and the inversion of matrices is not required, 

significantly reducing the regression time. The static DoEs that are capable of regressing 

the space faster than the ARGUS algorithm are the polyharmonic spline methods and the 

ten point MARS method. The polyharmonic splines regress the space fast enough to be 

assumed zero, while the MARS method requires a small, but finite amount of time.  

Since this function is scalable to n-dimensions, an investigation of how this 

algorithm performs as the number of dimensions is changed can be inspected. Below are 

two figures for changing dimensions while holding the amount of variance in the space 

constant. First, an exploration of the CAPSE mean can be investigated.  
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 In nearly all implementations, the ARGUS20 algorithm outperforms other 

adaptations of the algorithm independent of the number of dimensions. This slight benefit 

is caused by how future points in the simulation are located. If only one simulation is 

added to the space, it is more likely this point will be pushed closer towards an edge in a 

high dimensional space. Since this space is so large there are many edges and these edges 

will have the largest uncertainty early in exploration. This uncertainty will cause the 

ARGUS algorithms that have few added points per iteration to be located close to the 

edges. The larger the number of points added per iterations the more spread-out these 

 

 

Figure 6.18: CAPSE Mean with a Change in Dimension Top: 10 Dimensions, 

Bottom: 40 Dimensions 
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points will be forcing them to be also located in the center of the design space. This 

provides additional motivation for adding points in batches.  

Comparing the adaptive sampling routine to the static DoEs it appears at first 

glance to be poor performance. However, it is important to notice which regression 

methods perform well. Since the underlying learning function for this routine is the 

polyharmonic spline, it is expected that the performance of the adaptive method 

outperforms the static DoE method with an identical regression. As seen, it does in all 

dimensions tested, all sizes of warm-starts, and independent of the number of points 

added per iterations. In some cases it performs comparable to the static DoE with 100 

samples and five repetitions. Without knowing this is the optimal, the adaptive algorithm 

has allocated the proper number of repetitions over the space to not only perform 

comparable, but better.  

The MARS routine, however, fits the space with a static DoE better than the 

adaptive sampling routine. This similar performance can be seen in Chapter 5. This 

regression method consistently outperforms the polyharmonic splines. If the MARS 

algorithm is used as the underlying regression routine, the performance will likely be 

improved. From this, it can be deduced that there are advancements in the underlying 

regression routine, the performance of this method will improve. This algorithm has been 

developed so that the regression routine can be replaced as there are advancements in 

high dimensional, nonparametric, heteroscedastic regression.  
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 As expected, the global error in the ten dimensional problem compared to the 

global error in the 40 dimensional error has increased; the larger the space, the more 

error.  As a final interesting outcome, the global accuracy of the functions has converged. 

The global accuracy does not improve as more points are added to the space, and this 

becomes more prevalent as the dimension of the space grows. Only the macro level trend 

of the space is determined, while the algorithm cannot seem to capture the finer aspects.  

Next an investigation of the CAPSE mean performance can be compared for an 

increase in variance.  

 

 

 

Figure 6.19: CAPSE Mean with a Change in Variance Top: 0.01 Added STD, 

Bottom: 0.2 Added STD 
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As the variance of the space increases, the dispersion between the methods 

increases. The adaptive methods have increased trouble learning the space as more noise 

is added. There is so much added difficulty the adaptive methods do not do as well as the 

static DoE methods with similar learning functions. Thus, form the above plots it can be 

determined that as the noise level in a space increases, this adaptive routine loses some of 

its enhancements. This method performs best in stochastic simulations that have noise, 

but are dominated by noise. As the noise increases, it is expected any method will have 

increased difficulties in capturing the space.   

Finally, a similar investigation can be conducted for capturing the STD in the 

space. Below are two plots for the STD in a ten dimensional and 40 dimensional space. 
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All of the sampling rates for ARGUS (5, 10, and 20) have identical performance 

regardless of the size of the warm-start DoE size. Further, by comparing the performance 

of ARGUS methods and the static DoEs, it is seen that the accuracy of capturing the 

variance is substantially worse. Although this seems like a negative outcome, this 

incorrect variance is inherent in the ARGUS algorithm and a purposeful feature. 

In the plot above the deviation from the population value is observed, however, 

this does not give a direction of this deviation. Because ARGUS uses neighboring points 

in the simulation, and this simulation is sparsely sampled, the neighboring points are 

 

 

Figure 6.20: CAPSE STD with a Change in Variance Top: 0.01 Added STD, 

Bottom: 0.2 Added STD 
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spread far from each other. This causes changes in y to be the dominating component of 

the variance as calculated from the neighboring points. Thus, the seemly inaccurate 

representation of the variance in the above figure is actually an over estimation of the 

population variance. If a better accuracy is desired, and thus, a lesser positive bias, the 

number of neighboring points to include in the approximation of the variance can be 

reduced. By reducing the number of neighboring points the sensitivity of the variance is 

increased and is less biased by fluctuations in the y.  

Finally, because of the outcome seen above, there is no need to investigate the 

sensitivities of this method to changes in variance. Since the variance is coupled with 

changes in y, by increasing the variance of the space, these components will be added and 

the over estimation increased.  

6.4.3 Greek Fire Fighting Problem 

Without significant computational resources it is impossible to determine the 

global accuracy of the Greek fire fighting problem. Instead of using the CAPSE, the 

convergence of the mean and STD function can be assessed. It has already been shown 

that the STD function is a poor indicator of the convergence of the routine. Below the 

convergence of the mean and the STD for the Greek fire fighting problem can be seen.  
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 Again the mean function shows a convergence trend that is counter to the 

expected. Regardless of the size of the warm-start LHS design, the change in the function 

at 500 points in the space is consistent. There seems to be little importance on the number 

of samples added per iteration. Unlike the convergence trends seen earlier, the mean 

function has significant noise independent of the number of points added per iteration. 

This noise is always early in the sequential algorithm, and appears to be related to how 

 

 

Figure 6.21: Convergence of the Different Sequential Methods Top: Mean, 

Bottom: STD 
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many simulates are placed in the space using the static DoE. It is possible these spikes are 

caused by the algorithm initially exploring the edges of the space which drastically 

change the shape of the learning function.  

 The STD regression in this test problem is more noisy than seen in the other test 

functions, but also is converging, and with a convex curvature, unlike the other test 

functions. The STD regression also has significantly less noise than the mean function. 

This less noise is caused by a low variance over the majority of the space. Most of this 

space has very low variance, which causes less change in the variance regression as seen 

in the predator prey simulation.  

The lack of convergence is indicative of one or both of two possibilities; first, there 

are insufficient simulations in this space. Because this space is high dimensional and is 

known to be nonlinear and have areas of low signal-to-noise, the likelihood of 500 

simulations being an adequate coverage of the space is unlikely. Thus the lack of 

convergence is expected. Second, the convergence of the function space is a poor 

stopping criteria. As seen in the predator-prey simulation, the STD learning function 

indicated the function had converged while the mean function still showed changes in the 

function. Because of this erroneous and conflicting convergence it is not recommended to 

use this stopping criterion.  

6.5 Conclusions 

This research has culminated in the development of an adaptive sequential design 

of experiments for stochastic simulations. Through literature review the algorithm is 
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developed by combining many existing functions to evenly explore a design space and 

determine where replication simulations should be placed.  

Using the developed algorithm, comparison algorithms, and example functions, 

sensitivities are determined and shown to have little impact on the performance of the 

algorithm. In nearly all instances of capturing the mean performance, ARGUS has proven 

to be more accurate in regressing the space with a similar regression method. Despite 

ARGUS not performing as well as MARS and a static DoE, it is possible to replace the 

regression routine with MARS to improve performance in high dimensional spaces. 

MARS however is incapable of regressing the same size datasets as polyharmonic 

splines. Thus, as the regression routines improve in the literature, this adaptive sampling 

method will also improve. 

In the presence of increased noise, it is better to simulate the space with a static 

DoE. This result is again a result of the regression method. In increased noise it is less 

likely the polyharmonic splines will be fit to the mean, and this process will not be fixed 

until replications are simulated. To enhance this feature the learning method should be 

changed from an interpolation method to a regression method, like MARS. However, as 

has been seen, MARS does not provide similar capabilities and thus, an advancement in 

the regression community must happen to enhance the search of stochastic spaces.  

As seen, this method provides a positively biased approximation of the STD. This 

feature, although it provides an inaccurate approximation for the STD, its known bias 

provides a designer of these problems a gauge of the uncertainty of the space.  
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Additionally ARGUS has been shown to perform better than other state-of-the-art 

sequential algorithms for stochastic spaces. This enhanced performance comes from its 

uniform exploration of the stochastic space and the placement of replications. In higher 

dimension spaces, this algorithm’s performance decays because of the current state-of-

the-art in regression capabilities. Upon improved regression capabilities, the performance 

of the algorithm is also expected to improve.  
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CHAPTER 7 

CONCLUSION 

With any field expanding as rapidly as System-of-Systems (SoS) there is always 

significant area for improvement. The contributions of this dissertation answer many 

questions specific to SoS problems. The overarching goal of this research is to enhance 

the exploration of an SoS design space by both reducing the number of experiments 

required to explore a space, and give the designer a more methodical approach to 

developing experimental designs. The resulting algorithm is an amalgamation of various 

nonparametric techniques presented throughout the statistics literature. This new 

approach reduces the amount of simulation time required to analyze these integrated, 

complex and computationally expensive simulations by balancing the number of 

replications and exploratory simulations for various areas of the space.  

This algorithm has been elucidated on several example problems to demonstrate 

its progression and sensitivities. Because of the limitation on the types of regression 

methods capable of capturing high dimensional spaces, this method is shown to be 

negatively impacted by increases in dimension. As advancements in the statistics 

community improve regression capabilities, the learning capabilities of this algorithm 

will also improve.  

In the process of developing this algorithm, several contributions have been 

required. First, the investigation of traditional design-space exploration methods and their 

inabilities to adequately explore SoS spaces. From this literature investigation, several 
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advancements to SoS simulation exploration techniques are identified such as simulating 

batches of experiments, instead of single simulations; capturing the variance in 

conditionally variant spaces; handling large datasets; and exploring high dimensional 

datasets. Each of these components is further explored through this research, but before 

further investigation could be conducted, the specific simulation attributes of SoS spaces 

are identified. 

To understand the characteristics of SoS spaces a two pronged approach is taken 

which explores SoS’ relationship to complex systems and the attributes of emergent 

behaviors; and the investigation of notion SoS spaces. From both of these studies it is 

concluded that emergent behaviors can expose themselves in agent-based simulations by 

three characteristics: nonlinearities, changes in variance, and discrete changes in the 

metric. Additionally, this exploration of SoS spaces confirms these spaces have non-

normally, non-identically distributed errors, and this limits the types of regression 

methods capable of learning these spaces.  

Using the information gained from the inadequacies of traditional exploration 

methods and exploring SoS spaces, research is conducted on the available methods in the 

literature capable of regressing both the mean and the variance of these nonparametric, 

heteroscedastic spaces. Several methods are compared, including MARS, kernel 

methods, and less commonly known polyharmonic splines. It is determined that although 

MARS methods perform best in high dimensions, polyharmonic splines provide 

increased flexibility; improve their fit as more points are added to the space; and can 

handle substantially larger datasets.  
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Finally, all of this information is used in developing the adaptive sequential 

algorithm ARGUS. This function is tested against other methods discussed commonly in 

the literature and shown to perform better.  

7.1 Future Work 

With any substantial piece of work, there are always areas for improvement. 

There are three major advancements that can be conducted on this work: varying types of 

regression, multi-metric, and-multi simulation evolutionarily sequential methods.  

As shown through Chapter 5, polyharmonic spline perform well in low 

dimension, but lose their performance in high dimensions, while MARS methods work 

poorly in low dimensions and improve in high dimensions, but are incapable of handling 

large datasets. One modification is to adapt the type of regression methods used as the 

simulation progresses. In low dimensions use a polyharmonic spline, while in high 

dimensions use MARS techniques. This process will improve regression of small datasets 

(<500), for a range of dimensions. As the size of the dataset increases however, 

polyharmonic splines will have to be used regardless of the dimensions.  

This research has focused on the learning of a single metric, however, there are 

many metrics which are interesting and require learning in SoS spaces. As has been seen, 

not all metrics produce identical emergent behaviors and may require the placement of 

future simulations in different regions due to the stochastic nature of the simulation. It 

follows that the algorithm must be capable of handling multiple metrics. Throughout the 

literature there are some techniques that have been found that might enable the learning 
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of multiple metrics. This concept uses the correlation between the two metrics to 

determine where both metrics require additional points.  

The final advancement is the development of an evolutionary sequential design of 

experiments. When SoS simulations are developed, they are developed in stages and 

small explorations are conducted at each stage. These explorations are used to verify the 

model is working correctly, but the process of simulating experiments throughout the 

space is identical to the final exploration. If these initial simulations can be used in the 

full regression of the space, it will likely improve the understanding of the space early in 

exploration. As more simulations are added to the space, the importance of this initial, 

and perhaps slightly inaccurate, data can be phased out, but the added benefit will be a 

better understanding of the space in early learning, and a better allocation of available 

resources.  

There are many more additions that can be added to this algorithm but have not 

been included here. Throughout this research it has been assumed that there is no 

information about the space or its distributions, but if this assumption is relaxed, 

significant improvements can be made. As an example of these improvements, the 

incorporation of human knowledge in the design process or final assumed distributions 

can be added to the algorithm.  

If information about the interactions is known a priori, then local regions of the 

design space can be more heavily targeted for exploration. This will provide a greater 

understanding of regions which are known to be important to the designer. Further, if 
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information is known regarding the distribution, inferences can be deduced which will 

provide the designers with probabilistic measures of how accurate and precise the 

resulting functions are in representing the space.  
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APPENDIX A  

With any stochastic simulation, the number of repetitions conducted provides the 

analyst with an understanding of the variation throughout the space. In determining this 

variation the proper number of repetitions must be conducted. If there are too few 

repetitions the sample standard deviation will not be close enough to the population 

standard deviation. While if a design location is repeated too many times, the expense of 

replicating is unnecessary and could be better used exploring other regions of the design 

space.  

Depending on what is needed by the replications, there are several different 

approaches to determine when enough repetitions have been completed. One technique is 

to conduct a student-t test. Another method is to track the residual of the standard 

deviation as points are added. When the residual has reached a small enough value, as 

determined by the designer the repetitions can be halted. The residual is how much a 

value may change by adding new repetitions. If the value changes significantly, there will 

be a high residual, while if the value changes slightly, the residual will be small. As will 

be seen, the residual is capable of increasing as more points are added to the simulation. 

This means that as new points are added there is a larger change in the tracked value than 

previously seen. Although this may happen occasionally, the standard deviation will 

converge over time.  

Since there are many points in a design space, checking each point individually 

would be a time consuming process. Below are three plots of the residual over the traffic 

SoS simulation with all 260,000 unique design points. As repetitions are added, the 
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residual is seen to decrease. To track the entire design space, several metrics of the 

residual can be used: the mean, the sum, or the max residual. Although the max residual 

performs quite well on small datasets, as the number of design point’s increase, the 

author has found that the maximum error may flip-flop in various areas of the design 

space causing it to not converge in a reasonable number of iterations, this is only 

worsened if the design space includes values near zero. Instead of using the maximum 

relative residual, the absolute residual is used and normalized by the initial value. Below 

one can see how the three metrics compare. 

���������������������������1 =  �^�('�1./ − '�1'�1 ) 

W^��������������������������1 = �^�('�1./ − '�1) 

For each point within the simulation there exists a residual. In the above equation 

i represents the repition while the vector represents each point that has been tested within 

the design space. How this residual has converged can be measured by the above 

mentioned metrics. 

MaxResidual� = max (�^�('�1./ − '�1)1)max (�^�('�1./ − '�1))  

SumResidual� = D ���������������������������1 

MeanResidual� = ����(���������������������������11) 
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Figure A.1: Convergence of Sum of STD of Residuals (Top Left), STD of Absolute 

Normalized Residuals (Top Right), and STD of Average 

From the above figure, one can see that the average residual converges before any 

of the other metrics. As the design space grows, the majority of the design space variation 

is captured while small areas are not captured well. This is both a positive and negative 

attribute of the average residual. If the trend of the variation is desired then the average is 

a good metric to track. However, there may be several spots in the design space which 

have exceptionally high error. The average residual does not captured local high error 

because it is washed-out by the other locations in the design space. A similar metric to 

the average is the sum of the residual. Because it does not average it is slightly less likely 

to ignore the local regions of high residual, however it is still washed-out slightly. One 
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can see from the above image that the sum of the residual converges to 25% of its 

original starting value while the mean residual converges to well under 5%. 

Another metric is the maximum residual. Because some areas of the design space 

may have zero variation this causes issues in calculating the residual because it 

approaches an undefined value and is not well behaved. Instead of calculating the relative 

residual the absolute residual is used and the maximum is normalized by the initial 

maximum absolute residual in the design space. From this, it can be seen that the residual 

is reduced to approximately 15% of the initial maximum residual.  

There are many ways to determine the number of repetitions to be simulated. As 

discussed earlier Using the car simulation as an example, the number of repetitions for 

small subsets of the design space can be tracked by following the residual: the amount a 

metric has changed with added points. If there is little change, it is likely that the solution 

has converged, while if there is significant change it is unlikely the solution has 

converged.  

For this paper it is important to characterize the variance over the design space, 

and thus the repetitions, although they enhance the mean as well as the standard 

deviation, the convergence will be used on the standard deviation. There are several 

metrics which can be used: the sum of the residual, the average residual or the maximum 

residual. In small number of cases it is the author’s opinion that the maximum residual is 

the best metric to track. 

 



253 

 

APPENDIX B  

Investigation of the Predator-prey model 

The predator-prey model is a commonly used problem in many fields which can 

be discussed in the context of an SoS. The predator-prey model takes on many forms 

within the literature and is arguably the building block of the ecosystem. One of the most 

common representations is the Lotka-Volterra model [297] which represents the complex 

workings of the biological ecosystem as two first order, non-linear, time dependent, and 

competing differential equations. 

�'� = '(z − ¢&) 

�&� = −&(£ − ¤&) 

Within these two equations: 

• y represents the predators, 

• x represents the prey, 

• 
¥a¥¦  and  

¥§¥¦  are the growth of the population with respect to time, 

• And the rest represent parameters of the interacting species.  

The above mathematical form is not an SoS, but is an idealization of an SoS. 

Even if this function has an additional noise term, it still does not exhibit many of the 

requirements of an SoS. It is not until this simulation is handled spatially (arguably the 

same can be achieved with a desecrate event simulation), with the individual systems 
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interacting that it captures the attributes of an SoS. This model has all of the attributes 

commonly associated with SoS which can be discussed here.   

• Each unit operates on its own objectives and heuristics providing each turtle, 

agent, object, or “system” with an operational independence.  

• Each of the systems within the system enters and leaves dynamically from the 

simulation depending on food supply and therefore has managerial independence. 

(This is a passive managerial independence oppose to the typically implied active 

management.) 

• There is a simulated geographic distribution with each system separated and only 

interacting when proximity is achieved. 

• Depending on the characteristics desired to include – there is a diversity 

• Included in the same category there is an evolution and emergent behavior. 

The emergent behavior of this simulation is exhibited as several characteristics: 

non-linearity, and thrashing. In the case of a stochastic spatially represented predator-

prey model thrashing in the end metrics is a positive emergent behavior which is 

desirable in the SoS: a dynamic equilibrium. 

When simulating SoS in ABMs there is a time history, but it is not the entire time 

history that is important because it is difficult to address all of this data in a useful 

manner, instead, it is a specific final metric. For the case of the predator-prey model this 

is the population of either the predator or the prey. When these metrics thrashes – battle 

against each other – the SoS is in an equilibrium state. This state is desirable because we 

want these systems to compete, otherwise, one of the populations die and eventually the 

other populations die as well.  

This trashing behavior in a stochastic simulation, as discussed earlier in the 

dissertation, shows itself as an increased variance. Each simulation call which reaches 
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equilibrium will sometimes respond with a differing value in its time dependent 

simulation with sometimes the predator winning and other’s the prey. In either case, 

given a random starting location the metrics when an equilibrium has been reached will 

fluctuate greatly, increasing the local variance of the function. 

Simulation 

The simulation used for this test case is a well published agent based simulation 

developed in Netlogo known as the Wolf Sheep Predation. [298-299] A picture of the 

simulation environment can be seen below. 

 

Figure B.1: Predator Prey Simulation Environment 

This simulation has three competing systems with two of them predators. The 

reason two predators are chosen is because according to reference [298-299] this will 
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often produce stable solutions – these stable solutions are exactly the emergent behavior 

desired. The logic in these simulations is relatively simple as seen below. It is important 

to note that it is not necessary the simulation be validated. However, it is important that 

the design space be understood and specific attributes which are desirable and 

undesirable be identifiable throughout the simulation. This simulation uses very simple 

logic to replicate a known phenomenon. 

 

Setup of Experiments 

For this exploration only three variables were modified and the rest were set to 

constant conditions. These three variables modified were the speed the grass would re-

grow, and the amount of energy the wolf or sheep would gain from their respective prey.  

Below are the default values and the ranges of the experiments. 

Table B.1: Per Time Step Logic of Agents in Predator-prey Model 

Wolf Sheep Grass 

Move randomly and 

decrease energy 

Move randomly and 

decrease energy 

If green do nothing 

If lands on patch with 

sheep, eat it and increase 

energy 

If lands on patch with 

grass, eat it and increase 

energy 

If not green  wait X time 

and turn green 

If energy<0, die If energy<0, die  

Reproduce with given 

probability 

Reproduce with given 

probability 
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These ranges for each of these variables were chosen to be outside of the region 

of stability. By choosing these ranges outside the region of stability, it can be visually 

determined where the emergent behavior of dynamic stability has been encounter. The 

above simulation was run with a full factorial design including every possible whole 

number combination, totaling roughly 30,000 simulation points. Since this emergent 

behavior is identified by a change in the local variance, 200 replicate simulations were 

run with varying random initial conditions to capture the variance accurately. 

Approximately 6 million simulations were completed on a windows cluster. Below is an 

image of the entire design space and the size of the relative design space investigated for 

this exploration. 

Table B.2: Variable Ranges 

Variable Value or range tested 

Grass grow time 5-30 

Initial  number of sheep 100 

Initial number of wolves 50 

Sheep gain from food 4-30 

Wolf gain from food  9-50 

Sheep reproduce percentage 6% 

Wolf reproduce percentage 5% 
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Figure B.2: Design Space 

Each simulation had one of two exit criteria: either the simulation ran for the 

allotted simulated hour (this time does not corresponded to true hour, only 3600 ticks), at 

which point the simulation was assumed be have reached a steady oscillatory state (a 

steady state does not exist, the frequency is allowed to change, and fluctuate, but at the 

least the transit start-up is assumed to have dissipated). Or, the number of wolves in the 

simulation is zero. The second exit criterion is a preventative measure. This stopping 

criterion prevents the simulation from developing an exorbitant sheep population because 

it has no natural predators.  

The visual convergence of the repetitions can be determined by tracking the 

residuals of the standard deviation as more repetitions are conducted. Below is a plot of 

the mean and maximum absolute residuals. 
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Figure B.3: Error Convergence 

These two metrics are calculated from each standard deviation as new repetitions 

are added to the space. Please see Appendix A for an explanation. Both of the above 

metrics have converged to below 10% (well below in the case of the mean) indicating 

that little change in the variance is expected if further cases are added.  

There is an anomaly early in the convergence of the mean. Since this significantly 

higher value is early in the number of repetition it should not concern the designer 

because it is likely caused by a seed value that has skewed the repetition.  

Next the design space can be investigated. 
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Figure B.4: Output Metrics For Predator-prey Model, Left: Mean-Surviving-

Wolves, Right: STD-of-Surviving-Wolves 

The two metric can be seen as an output of the design space: the mean of the 

surviving wolves and the standard deviation of the surviving wolves. In both cases a 

change is seen in the response. Over the vast majority of the space little has happened. 

This means, that despite the increased stability of this model, if little is known about the 

space a prior, it may be difficult to find the desirable emergent behavior. 
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The above three plots are taken from the axes of the design space that show areas 

of emergent behavior. In all of these cases the design space ranges from no impact in the 

mean or the variance to a stable dynamic trade-off between the three species in the 

simulation. As a designer of this system it is essential that the standard deviation be 

known because there are areas that some of the simulations do not achieve equilibrium 

 

 

 

Figure B.5: Slices of Design Space Comparing Metrics (Only Five of 200 

Replicates Shown) 
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for all seeds. Although this attribute is identified in the changing of the mean, this value 

can be drastically changed by a few outlier simulations because the down side is 

anchored at zero. It is further interesting to see that there are areas of the design space 

which have a high variance but the mean function is near zero. This indicates that most of 

the cases are non emergent while a few have high oscillations.  

Although this space is not perfectly smooth in its transitions, which it should 

approach as points are added to the design space and the repetition count increases, it can 

still be regressed. The reason for regression is to provide an SoS test problem for the 

second research focus of this dissertation.  

The chosen method for regression in this case is the use of neural networks using 

MATLAB’s built in function “newgrnn”, a generalized regression neural network. A 

regression function of both the mean and the standard deviation can be created. The error 

will be assumed to be normally distributed with mean zero because it does not impact the 

performance of the chosen methods.  

Below are two images of the regression. As can be seen this regression fit the space well. 

There are small errors dispersed throughout the design space as well as some 

extrapolation errors. 
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Figure B.6: NN Regression of Predator-prey Model 
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