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ABSTRACT

This dissertation focuses on developing and evaluating hybrid approaches for analyzing free-form

text in the medical domain. This research draws on natural language processing (NLP) techniques

that are used to parse and extract concepts based on a controlled vocabulary. Once important con-

cepts are extracted, additional machine learning algorithms, such as association rule mining and

decision tree induction, are used to discover classification rules for specific targets. This multi-

stage pipeline approach is contrasted with traditional statistical text mining (STM) methods based

on term counts and term-by-document frequencies. The aim is to create effective text analytic pro-

cesses by adapting and combining individual methods. The methods are evaluated on an extensive

set of real clinical notes annotated by experts to provide benchmark results.

There are two main research question for this dissertation. First, can information (special-

ized language) be extracted from clinical progress notes that will represent the notes without loss

of predictive information? Secondly, can classifiers be built for clinical progress notes that are rep-

resented by specialized language? Three experiments were conducted to answer these questions by

investigating some specific challenges with regard to extracting information from the unstructured

clinical notes and classifying documents that are so important in the medical domain.

The first experiment addresses the first research question by focusing on whether relevant

patterns within clinical notes reside more in the highly technical medically-relevant terminology

or in the passages expressed by common language. The results from this experiment informed

the subsequent experiments. It also shows that predictive patterns are preserved by preprocessing

text documents with a grammatical NLP system that separates specialized language from common

language and it is an acceptable method of data reduction for the purpose of STM.

Experiments two and three address the second research question. Experiment two focuses

on applying rule-mining techniques to the output of the information extraction effort from experi-

xi



ment one, with the ultimate goal of creating rule-based classifiers. There are several contributions

of this experiment. First, it uses a novel approach to create classification rules from specialized

language and to build a classifier. The data is split by classification and then rules are generated.

Secondly, several toolkits were assembled to create the automated process by which the rules were

created. Third, this automated process created interpretable rules and finally, the resulting model

provided good accuracy. The resulting performance was slightly lower than from the classifier

from experiment one but had the benefit of having interpretable rules.

Experiment three focuses on using decision tree induction (DTI) for a rule discovery ap-

proach to classification, which also addresses research question three. DTI is another rule centric

method for creating a classifier. The contributions of this experiment are that DTI can be used to

create an accurate and interpretable classifier using specialized language. Additionally, the re-

sulting rule sets are simple and easily interpretable, as well as created using a highly automated

process.
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Chapter 1

Introduction

A central challenge in knowledge discovery is handling both structured and unstructured data.

Structured data are the typical elements one might find stored in a database, carefully selected at-

tributes and their associated data types such as numbers, dates, or limited-length character strings.

These data are typically part of planned data collection efforts with associated data quality con-

cerns expressed through integrity constraints and business rules. Unstructured data are the inher-

ently ambiguous free-form passages of text or semi-structured lists and tables of data that are nat-

ural human language artifacts. With the advent of the Internet and World Wide Web protocols,

there are vast amounts of unstructured data available on-line with no end in sight. Of course, this

immense collection of information lacks any central planning, data quality standards, or easily in-

terpreted meta-data, making its use a challenging endeavor. Data analytic techniques including

traditional statistics, machine learning, and data mining have been successfully applied to struc-

tured data collections. Modern technology has made it possible not only to search for but to also

collect and store massive amounts of unstructured textual documents. There is a need to be able

to analyze and draw conclusions concerning these data. Text mining, while not as mature as data

mining, is being applied to many disciplines in the hope of uncovering unexpected and perhaps

counter-intuitive new knowledge.

A series of classic studies in medicine provide motivation for further research in this area.

Swanson and Smallheiser pursued a stream of research that looked at connecting important, but

bibliographically unrelated topics, by uncovering linkages through intermediate topics. Swanson’s

first effort in this regard connected fish oil with the treatment of Raynaud’s syndrome (Swanson,

1986a). While this first research was somewhat serendipitous and largely conducted by hand, it

provided promising results and a framework for a more automated discovery process. His original

discovery was prompted by reading two unrelated literature collections, leading to the hypothe-

sis that fish oil might be useful in the treatment of Raynaud’s syndrome. Patients suffering from
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Raynaud’s disease have problems related to blood flow in the extremities. Swanson then found

the literature on fish oil and its beneficial effects on blood viscosity, making the connection and

formulating a hypothesis. His second discovery followed a similar logical process, connecting

magnesium with migraine headaches (Swanson, 1988). These discoveries led to work on more au-

tomated hypothesis generation approaches based on text mining the medical literature (Swanson,

1987, 1989, 1990; Smallheiser and Swanson, 2007a, b, 1998).

This dissertation focuses on developing and evaluating hybrid approaches for analyzing

free-form text in the medical domain. This research draws on natural language processing (NLP)

techniques that are used to parse and extract concepts based on a controlled vocabulary. Once im-

portant concepts are extracted, additional machine learning algorithms, such as association rule

mining and decision tree induction, are used to discover classification rules for specific targets.

This multi-stage pipeline approach is contrasted with traditional statistical text mining (STM)

methods based on term counts and term-by-document frequencies. The goal is to create effective

text analytic processes by adapting and combining individual methods. The methods are evaluated

on an extensive set of real clinical notes annotated by experts to provide benchmark results.

Traditional “bag of words” methods create classifiers with acceptable performance and

rules can be constructed using these methods as well. So why combine NLP with STM? Sizes

of databases are constantly growing. Currently, there are over one billion progress notes available

in VA databases. By combining these techniques, they can be used as a method of data reduction.

Initial results from this research show it is possible to reduce the amount of data used to create the

classifiers by as much as 75%. The terms used to create the classifiers can be reduced by as much

50%. Rules created from specialized language are more likely to be interesting and more easily

interpretable because much of the noise is removed.

1.1 Why the medical domain?

Imagine your 85 year old grandfather goes to the hospital for a routine out patient procedure.

Grandpa has fallen a couple times in the past year and received a few bruises but he’s embarrassed

so he does not mention this to the admissions nurse. His procedure is completed without any com-

plications and he is in recovery waiting for you to come pick him up. He decides he needs to use

the restroom and gets out of his bed without requesting assistance and falls on the floor and breaks
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his hip along with some other injuries. Grandpa now becomes an inpatient and his quality of life

is altered for his remaining years. There are two issues with this scenario. First, and most im-

portantly, Grandpa now has a very painful and lengthy recovery ahead of him. Also, the older a

person is when they experience a fall-related injury, the less likely they are to have a meaningful

recovery. Secondly, had everything gone as expected, Medicare and his coinsurance would have

covered the cost of his procedure. Now, because the injury happened inside the hospital, the hospi-

tal is financially responsible for his medical bills for the treatment of his fall-related injuries. Had

the hospital staff known that your Grandfather was at risk for a fall, simple precautions could have

been in place to prevent the fall.

Falls are an important health care issue especially among aging veterans. A history of a pre-

vious fall is one of the most important clinical indicators that identifies an elderly patient as high

risk for additional falls and targets them for fall prevention programs (Ganz et al., 2007). However,

information about fall-related injuries (FRIs) in administrative databases has been found to be sig-

nificantly under-coded, thereby limiting a clinicians access to information about a history of falls

(Luther et al., 2005).

With the evolution of the electronic health record (EHR), ever increasing amounts of struc-

tured and unstructured data are being made available for research purposes. An EHR is made up

of both structured and unstructured data. More and more of this information is aggregated at the

point of patient contact by smart devices or captured as clinicians use mobile devices to create

clinical or pharmaceutical orders. Data such as vitals, demographic data, lab results and medical

codes are stored in structured data fields. In addition to the more structured data, the art of care-

ful observation and documentation has a long tradition in medicine. Clinicians are trained to use

the SOAP (Subjective, Objective, Assess, Plan) system for documenting the more subtle on-going

issues that are not easily captured through formal medical coding systems or the EHR structured

data fields. Much of the information stored in unstructured data is information provided by pa-

tients to clinicians. In other words, when a patient expresses how they feel or where a specific pain

has been occurring, this type of data is mainly stored in unstructured data. The most obvious arti-

fact of this documentation process is the large number of unstructured clinical notes that are also

an important component of the EHR. Specifically, the Veterans Health Administration, the largest

health care system in the US, has imported all veterans’ health records into its EHR system, which
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at this time exceed one billion progress notes.

Components necessary for this research are the controlled vocabularies of medical terms.

Creating such vocabularies is a very labor intensive and time consuming activity,and even though

controlled vocabularies have been created for numerous fields of research in many different dis-

ciplines, the development of controlled vocabularies in medicine are especially well-developed

and well-funded. Foremost is the Unified Medical Language System (UMLS) Metathesaurus cre-

ated by the National Library of Medicine (NLM). The Metathesaurus is a vocabulary database

containing biomedical and health related concepts as well as relationships among the concepts. It

is comprised of more than 100 source vocabularies, each representing hundreds, thousands, and

sometimes millions of health related terms. Because well-developed controlled vocabularies are a

necessary component of this research stream, this makes medicine an attractive area on which to

perform data/text mining research.

1.2 Research Questions

There are two main research questions this dissertation addresses. The first, can information (spe-

cialized language) be extracted from clinical progress notes that will represent the notes without

loss of predictive information? This is addressed by the experiment in Chapter 4. With this ques-

tion emerge some interesting issues to be addressed. Specifically, is the locus of predictive infor-

mation in specialized language, common language, or a combination and does the quality (i.e.,

coverage) of the controlled vocabulary affect the specialized language? In other words, is the qual-

ity of a controlled vocabulary covering a mature area better that one covering an emerging area?

The second research question is, can classifiers be built for clinical progress notes that are repre-

sented by specialized language? Three criteria were used to decide on the approaches to be used to

answer this question. First, the approaches had to allow for automated rule extraction. Secondly,

the resulting classifier had to be interpretable and finally, the classifier needed to be accurate. Two

approaches allowed this question to be answered while still adhering to these criteria. The first

approach uses modified association rule techniques to create classification rules. This approach

provided a classifier that supplied rules and was interpretable, however, even though it had ac-

ceptable accuracy we felt another approach might provide a more accurate model. The second ap-

proach uses a decision tree induction (DTI) process to create a decision tree and production rules.

4



This approach created rules and was interpretable just as the first method, however, the accuracy

achieved with this classifier was much better.

Figure 1 shows the two research questions as well as the experiments used to answer them.

The results from the first research question are used to inform the next two experiments used to

answer the second research question.

Specialized
vs

Common Language

Decision Tree 
Induction Applied to 

Specialized 
Language

Rule Mining Applied 
to Specialized 
Language

Approach 2

Approach 1

Specialized

Language

Specialized

Language

Research Question 2Research Question 1

Figure 1.: Research Question Approaches

Figure 2 provides an overview of the research landscape and interrelationships between

the three experiments in this dissertation. In order to classify documents in health care, decision-

making rules are often handcrafted by clinical experts (Hayes and Weinstein, 1990; Hayes et al.,

1990). The left side of figure 2 shows this method of classification. This dissertation concentrates

on more automated, machine learning methods of classification. Research question one uses a hy-

brid methodology utilizing grammatical NLP in conjunction with machine learning. The results

of this are used to inform the two approaches used to answer research question two. The next sec-

tions describe each of the research questions in more detail.
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Figure 2.: Dissertation Map

1.2.1 Research Question One - Specialized Language vs Common Language

Medical progress notes are comprised of specialized language (medically-relevant terminology)

and common language. The first experiment focuses on whether relevant patterns within clinical

notes reside more in the highly technical medically-relevant terminology or in the passages ex-

pressed by common language. Of course, it is likely that a combination of both medically-relevant

and common language is used to express many thoughts regarding the progress of care. Yet, there

is still an interesting question to be resolved in determining the locus of clinically relevant pat-

terns. There is a natural experiment in separating the two languages and assessing the predictive

power of the language subsets. This experiment addressed the first main goal of this dissertation

and the results from this experiment informed the subsequent approaches that address research

question two. The research question this experiment sought to answer is using statistical text min-

ing (STM) for the purpose of classification, which set of terms from progress notes will provide

better accuracy: (1) all terms (2) only medically-relevant terms (MRTs) or (3) terms based on

common language? The contribution of this experiment is that it shows that predictive patterns
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are preserved by preprocessing text documents with a grammatical NLP system that separates spe-

cialized language from common language and it is an acceptable method of data reduction for the

purpose of STM.

This research described a way to reduce EHR text notes to only medically-relevant terms by

using a grammatical NLP system to extract medical concepts from progress notes. These medically-

relevant terms were used in a statistical text mining process in order to classify the notes as either

FALL or nFALL. Evaluation metrics were collected and all were slightly better when compared to

those for text mining the raw progress notes. This shows that important patterns are not lost by re-

moving common language, effectively reducing the information to be processed and in turn max-

imizing efficiency. Since no loss occurred, this extracted data can serve as a foundation for other

data mining research such as targeted information extraction and even clinical discovery.

1.2.2 Research Question Two - Rule-based Classifiers

An accurate classifier was created in the first experiment to answer research question one. Since

logistic regression was used to create the model, it is difficult for a human to interpret in spite of

its accuracy. For research question two, the goal was not only to see if classifiers can be built for

clinical progress notes represented by specialized language, but also can those classifiers be rule

based in order to improve their human interpretability. Three criteria were used to select the ma-

chine learning methodology for creating the classifiers. The first is criterion is automated. Human

can create rules but this is time consuming and expensive. One goal is to create an automated pro-

cess for generating rules. The second criterion is interpetable. An accurate classifier can be cre-

ated using many different machine learning methodologies, some of which, result in models that

are not easily interpretable by humans. We wanted the rules generated for the classifier to be in-

terpretable. The third criterion is accurate. This should be self explanatory because an inaccurate

model is obviously useless. We also wanted this model to be more accurate than simply assign-

ing a single classification to every case. Two approaches were used to answer this research ques-

tion taking the criteria into consideration. The main contribution of the experiments performed to

answer research question two is that predictive patterns are preserved by preprocessing text doc-

uments with a grammatical NLP system that separates specialized language from common lan-

guage.
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Approach One - Classification Rules

The first approach focuses on applying rule-mining techniques to the output of the information

extraction effort resulting from the first research question, with the ultimate goal of creating rule-

based classifiers. Association rule mining is one of the most widely used data mining techniques.

In particular, market basket analysis relies on using rule mining on the often very large collections

of shopping basket data collected at point-of-sale terminals. Most of the time, rule mining is ap-

plied to structured data. In addition to research question two, this approach addresses a couple of

research questions specific to it. First, Can traditional association rule mining procedures be used

to generate rules (frequent item sets) using specialized language? Secondly, can these rules be

used with acceptable accuracy for classification purposes? There are several contributions from

this approach. First, it uses a novel approach to create classification rules from specialized lan-

guage and to build a classifier. The data is split by classification and then rules are generated. Sec-

ondly, several toolkits were assembled to create the automated process by which the rules were

created. Third, this automated process created interpretable rules and finally, the resulting model

provided good accuracy.

There are other methods for creating a classifier that might have better performance such

as support vector machines (SVMs), which are especially useful where large variable sets ex-

ist. A dilemma arises using other methods in that the resultant predictive model cannot always

be interpreted by a human. One of the benefits of creating a classifier with rules is that the rules

themselves are interpretable. This approach used the data set from the first research question ex-

periment based on the extracted medically-relevant terms. A rule-based classifier was used to

classify this data set. The resulting performance was slightly lower than from the classifier from

the first experiment but had the benefit of having interpretable rules. Another dilemma that ex-

ists within association rule mining is extracting meaningful and interesting rules. By mining using

only medically-relevant terms, most terms that create uninteresting or not meaningful rules are

eliminated before the mining process begins.

Approach Two - Decision Tree Induction (DTI)

Approach two focuses on using DTI for a rule discovery approach to classification. DTI is an-

other rule centric method for creating a classifier. It is a method whereby the process iteratively
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selects a set of attributes that most effectively splits the sample data into subsets to create a classi-

fier. The tree is made of nodes which are either leaf nodes indicating the classification or decision

nodes that specify a test to be carried out on a single attribute value. Of course, these pathways

through the decision nodes are basically rules and a decision tree classifier is human interpretable.

The research question this approach seeks to answer is can decision tree induction be used to clas-

sify clinical progress notes represented by specialized language? There are several contributions,

which are the result of this approach. First, DTI can be used to create an accurate and interpretable

classifier using specialized language. Secondly, the resulting rule sets are simple and easily inter-

pretable. Third, an automated process is used to create rule sets.

There was no significance in the difference in the performance of the STM classifier from

the first experiment versus the DTI model from this approach. However, the resultant classifier

from the DTI process was much more interpretable, where as the model from the STM process

would be nearly impossible for a human to interpret.
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Chapter 2

Research Methodology

This chapter is organized in four sections, two are theoretically based and the other two are ap-

plication based. The first section is a theoretical discussion of computational linguistics and how

these theories lay the ground work for NLP. The second section is a discussion on how computa-

tional linguistics are applied, specifically, an explanation of NLP and how it is used in this disser-

tation. The third section is a theoretical discussion of computational learning theory and informa-

tion theory and how they lay the ground work for STM. The fourth section is a discussion of the

STM techniques used to complete the three studies.

2.1 Computational Linguistics

The Association for Computational Linguistics defines computational linguistics as “...the scien-

tific study of language from a computational perspective.” Computational linguistics is based on

linguistic theories and how mathematics can be applied. Computational linguists are interested in

providing computational models of various kinds of linguistic phenomena. There are two schools

of thought where processing language is concerned. One is statistically based where probabilities

are associated with possible meanings and the most probable outcome is the correct one. The sec-

ond is based on linguistics and the only way to gain understanding of text is to learn the rules of

the language. STM is based on the first approach. Computational linguistics is based on the sec-

ond approach.

When computers began to be thought of as useful for interpreting text there were two groups

of scientists interested in this: cryptographers and linguists. Cryptographers were generally statis-

ticians and saw the computer as being used for translation. Probabilities are associated with pos-

sible meanings and the most probable outcome is the correct one. Warren Weaver, a pioneer in

machine translation, published along with Shannon landmark work on communications (Shan-
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non and Weaver, 1949). Linguists, not being mathematicians, saw the computer as being used to

implement linguistic theories. Computational linguists develop formal models simulating aspects

of the human language faculty and implement them as computer programs. The creation of CYK

(Cocke, Younger, Kasami) is generally thought of as the birth of computational linguistics (Cocke,

1969; Kasami, 1965; Younger, 1967). Chomsky, one of the most famous linguists, published this

sentence in Syntactic Structures, “Colorless green ideas sleep furiously” Chomsky (1957). It is

grammatically correct but semantically nonsensical. He used it show the inadequacy of probabilis-

tic models of grammar and the need for more structured models.

Real world applications based on computational linguistics include applications in natu-

ral language understanding such as machine translation, spoken dialog systems, and question an-

swering as well as NLP which include information retrieval (IR), information extraction (IE), and

concept/term extraction. For the purposes of this dissertation, this section will only concentrate

on computational linguistics from an NLP perspective. Because of the use of body language and

other non-verbal cues, people are able to relax the rules of language and still effectively communi-

cate verbally. Written communications can many times be written using relaxed language rules but

without the verbal cues, effective communication can be hampered. This creates a need for com-

putational linguistics because not all written utterances are grammatically correct. IE, translation,

and grammar checking also create a need for computational linguistics.

Linguistics can be broken down into two categories: form and meaning.

• Form

– Morphology - Study of internal structures of words and how they can be modified

– Syntax - Study of how words combine to form grammatical sentences

– Phonology - Study of sounds (signs) as discrete, abstract elements in the speaker’s mind

that distinguish meaning

• Meaning

– Semantics - Study of the meaning of words (lexical semantics) and fixed word combina-

tions (phraseology) and how these combine to form the meanings of sentences

– Pragmatics - Study of how utterances are used in communicative acts, and role played by

context and nonlinguistic knowledge in the transmission of meaning

11



The technologies used in this dissertation are mainly concerned with form, however, mean-

ing has a secondary consideration. This section discusses the theoretical aspects of computational

linguistics. The following subsections will provide definitions for terminology used within the sec-

tion and an explanation of the two categories. Unless otherwise stated, the information provided

in this section applies to the American English language. Most of the basics of computation lin-

guistics applies to languages in general. However, this dissertation is concerned with American

English, therefore, that is the concentration of this section.

2.1.1 Terminology

This sections provides definitions of terms, ideas, and theories used throughout this chapter.

Table 1: Computational Linguistic Terminology

Terminology Explanation

Affix A morpheme that is attached to a word stem to form a new word.

Morpheme The smallest unit in a language, which can be assigned a mean-
ing.

NP Noun Phrase - A phrase containing a noun and other modifying
words such as adjectives, adverbs, and other nouns.

VP Verb Phrase - A phrase containing a verb and modifying adverbs.
Context Free Grammar
(CFG)

A formal grammar in which every production rule is of the form
V → w where V is a single nonterminal symbol and w is a string
of terminals and or nonterminals. Used in linguistics to describe
the structure of sentences and words in natural language.

Bottom-up Parsing A strategy for analyzing unknown information that attempts to
identify the most fundamental units first, and then to infer higher-
order structures from them.

CYK Cocke, Younger, and Kasami. Sometimes referred to as CKY, is a
parsing algorithm for context free grammars that uses bottom-up
parsing and dynamic programming.
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2.1.2 Form

Morphology

Morphology deals with strings that make up words and these strings are combined to make sen-

tences. It also attempts to uncover the rules that govern the creation of words (Trost, 2003). Re-

gardless the language, the smallest unit in a language, which can be assigned a meaning is a mor-

pheme. Each language contains hundreds of thousands or even millions of words. In contrast,

languages contain some 10,000 morphemes, an order of magnitude smaller than the number of

words. There are semantic morphemes called roots such as dog, red, and take. There are also ab-

stract morphemes that imply plurality and tense such as s. A free morpheme forms a word on its

own such as dog. Bound morphemes occur only with other morphemes such as s in dogs. Each

language has grammatical rules that control how these morphemes are connected to create words.

Much of the parsing technology in an NLP pipeline has its background in morphology. The

parser finds tokens, then words. The part of speech for each word is computed and used to cre-

ate phrases. This being done correctly starts with determining word boundaries correctly. If the

words cannot be determined correctly, all subsequent steps will also be incorrect. These technolo-

gies were used in the first experiment to extract medically-relevant terms from the progress notes.

More detail on this can be found in Chapter 4 and in Appendix D. Vocabularies and ontologies as

well have underpinnings in morphology. The basic unit for both is words. From there words are

combined to create terms. These are explained in more detail in a subsequent section. The fol-

lowing sections discuss the core theoretical foundations that underpin critical components of NLP

pipelines.

Roots and Stems The root of a word is the base morpheme for the word with no affixes. For

example, the root of degrade is the morpheme grade with the affix morpheme de removed. A sim-

ilar concept is stemming. A stem is the base form of a word. One example is the stem for gave,

gives, and giving is give. Give is the base form for each of those words but not the root. Another

example is the stem for degrades and degrading is degrade while the root for degrades is grade.

A stemming NLP component was used in the NLP pipeline in experiment one, which focused on

assessing the predicative power of specialized versus common language. More detail on this can

be found in Chapter 4.
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Tense, Plurality, and Gender Some languages mark words with tense, plurality, and gender

while others do not (Trost, 2003). For example, Latin based languages mark words with gender

such as in Italian pomodoro (tomato - masculine), and cipolla (onion - femine). On the other hand,

Japanese does not mark plurality on nouns.

Derivation and Compounding New words can be created using derivation and compounding

(Trost, 2003). By using derivation, affix morphemes are added to stems to create a new word that

is also a different part of speech from the original word. For example, the noun hospitalize can be

derived from hospital by adding the affix morpheme ize. By compounding, a new word is created

by joining two base morphemes. For example, by compounding door and bell, a new word, door-

bell is created.

Affix There are different types of affix morphemes that can be joined to stem morphemes. A pre-

fix affix is joined to the beginning of a stem (Trost, 2003). For example, by adding the prefix un to

common creates uncommon. A suffix affix is a morpheme joined to the end of a stem. A common

suffix is to add an s to a stem to make it plural.

There are also rules for affixes. Multiple suffixes can be added to stems to create new words,

however, there are rules that control the order for affixes. For instance, the suffixes ize and ation

can be added to hospital to create hospitalization. Those same suffixes cannot be added in a differ-

ent order. The string hospitalationize is not a word. ize must be connected to a noun and creates a

verb. ation must be connected to verbs and creates nouns.

Applications There are several practical applications of the morphological theories in NLP.

Word processors apply morphology theories in hyphenation, spell checking, and grammar check-

ing. Grammar rules are used in NLP parses to determine parts of speech. Stemming is another

NLP component used to convert words into their stem forms.

Syntax

Syntax is the study of the rules used to construct phrases and sentences in natural languages (Ka-

plan, 2003). Just as there are rules that govern how words are made by combining letters, there are

grammatical rules that govern how words are combined to make phrases and sentences. In order
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for a grammatical NLP parser to make sense of a phrase, it must first be parsed into its grammati-

cal components. There are several syntactic theories that are behind this technology. A major goal

of syntactic theories is to define a notation that can be used to create rules that define a grammar.

Theories that were once popular are now considered to be out dated but they were instrumental

in the development of newer, more explanatory theories. A few syntactic theories are explained

below. What these theories have in common is that they map a sentence into a tree structure. The

root is the sentence, next are the phrases such as NPs and VPs, then the parts of speech, and finally

the words that comprise the sentence. How these theories differ is how the tree is built and what

can further be done with the tree.

• In 1957, Chomsky published Syntactic Structures where he laid out the original generative

theory, Transformational Grammar (Chomsky, 1957). In this theory, a sentence can be rep-

resented by a deep structure and a surface structure. The deep structure is the starting point

and maps a sentence in a tree of phrases representing the sentence. This tree goes through a

series of transformations where one tree is the input for a subsequent transformation until the

final tree, the surface structure, is created. The sentences of the language are the strings that

appear at the bottom of the surface structures. One example is to transform an active declara-

tive sentence into the passive equivalent. It is possible to go from a deep structure to a surface

structure but it is next to impossible go from a surface structure to a deep structure.

• Generalized Phrase Structure Grammar (GPSG) - Developed in the late 70s by Gerald Gazdar.

It is a framework for describing the syntax and semantics of natural languages (Gazdar et al.,

1985). One of its goals is to show that syntax of natural language can be described by CFG,

however, Gazdar has since argued that this is not true. Much of the innovations from GPSG

were later incorporated into Head Driven Phrase Structure.

• Head-Driven Phrase Structure Grammar (HPSG) - Developed by Carl Pollard and Ivan Sag. It

is used in NLP because it is organized in a modular way. It uses the concept of a sign which

has a type hierarchy and its features describe its properties (Phonological, Syntactic, and Se-

mantic) (Pollard and Sag, 1988). Grammatical rules are expressed through the constraints

signs place on each other.

• Lexical Functional Grammar (LFG) - Initiated by Joan Bresnan and Ronald Kaplan in the 70s.
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LFG views language as being made up of structures that are grammatical functions and syn-

tax (Bresnan, 1976). A sentence is broken into phrases such as verb phrases (VP) and noun

phrases (NP) and then further broken into parts of speech until finally are the words of the sen-

tence.

Syntactic Rules In English, words comprise a sentence if there is a noun and verb, as in:

Bob visited.

One grammatical rule from this could be:

A sentence can consist of noun-verb sequence.

Take this one step further and examine the sentence:

Bob visited Mary

Now another rule can be created.

A sentence can consist of a noun-verb-noun sequence.

So far these have been simple sentences. Do the rules hold when the sentence becomes

more complex? Take for example the sentence:

The man from city visited old woman.

There are more words in this sentence than previous examples but the previous rule still ap-

plies: man visited woman. More rules need to be created to compensate for the additional words.

The concept of a phrase becomes important now. A phrase is a contiguous sequence of related

words. The first phrase in the sentence above is The man from the city. The second phrase is old

woman. Now and additional rule can be created that describes this sentence.

A sentence can consist of NP - VP - NP.

In addition, rules can be made that qualify what comprises a NP or a VP. Syntactic rules

describe how sentences are constructed but are not concerned with meaning. In other words, a

sentence can be grammatically correct a not make any sense. A popular game, Mad Libs, allows
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players to create nonsensical sentences that are syntactically correct. Leonard Stern and Roger

Price created the game and published the first book of the game in 1958. Players are given sen-

tences with words missing. They are told to give a word based only on the part of speech. Those

words are entered along with the original words provided and a grammatically correct sentence is

formed, however, this sentence most likely is nonsensical because the player supplying the words

is unaware of the other words supplied by the game. The game is good for a laugh but it is also a

good exercise in syntax by looking at how sentences are formed by parts of speech and phrases.

Applications NLP parsers are grounded in syntactic theories which enable them to correctly

parse text into its correct parts of speech. This is one of the beginning steps in most NLP pro-

cesses. For example, to perform a lookup, the application must have the correct word to lookup

and its part of speech. The pipeline used in experiment one parses text eventually into words and

determines whether each word is a medically-relevant term or not. The details on how this is ac-

complished are in Chapter 4.

Phonology

This dissertation concentrates only on written language due to the fact that the progress notes are

written. However, much of this same background applies to spoken language as well. There are

language recognition systems that are used to convert natural spoken language into a form that a

computer can understand then NLP is performed on that. The IBM Watson computer application

is one example of that (Ferrucci et al., 2010). Phonology is briefly mentioned here even though no

spoken technology is used in this dissertation.

Phonology is the study of sounds as they are used in language. Computational phonology

is the study of computational techniques used to represent and process phonological information

(Bird, 2003). Humans have a vocal apparatus capable of creating an infinite variety of sounds.

Human language takes this infinite number of sounds and reduces them into a sound system con-

sisting of a few dozen categories of sounds called phonemes.

It should be noted that phonemes do not match one to one to the number of letters in an al-

phabet. The letter t has multiple phonemes associated with it and many vowel phonemes are as-

sociated with multiple letters such as ou. The number of phonemes in the English language also
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varies from dictionary to dictionary. For instance, the American Heritage Dictionary uses 25 con-

sonant and 18 vowel phonemes on the other hand, the Longman Pronunciation Dictionary uses 24

consonants and 23 vowels (Ladefoged, 2001).

2.1.3 Meaning

Semantics

Semantics is the study of the meaning of language. Computation semantics is the area of compu-

tational linguistics that uses a computational approach to natural language to acquire the meaning

(Lappin, 2003). Semantics is concerned with how the meanings of individual words contribute to

the meaning of the phrase or sentence containing those words.

There are two approaches to computational semantics. First, is static where each sentence

meaning is self-contained. Secondly, is dynamic where the semantic interpretation of a sentence

is dependent on previous sentences in the discourse. In using dynamic approaches, a dialog record

is constructed that allows the meanings of previous sentences to be used in the interpretation of

subsequent sentences.

Syntax and semantics are tied together. Once a sentence has be analyzed and parsed into its

syntactic components, computational semantics computes systematically the sentence’s mean-

ing from the words (Lappin, 2003). In many models, a syntactic structure is two dimensional

in that it contains both syntactic and semantic information. The Parallel Correspondence Model

(PCM) is an approach that encodes both syntactic and semantic information. There are several the-

ories that utilize this approach. GPSG, HPSG, and LFG discussed in the previous section use the

PCM model. In Fernandez et al., they propose a HPSG approach that applies semantic meaning

to phrases and sentences based on questions previously listed in the discourse (Fernandez et al.,

2011).

Applications The biggest application of semantics within NLP is Word Sense Disambiguation

(WSD). Homonyms exist in the English language, which are words that have different meanings

but are spelled and pronounced the same. Take for instance, the word cold. Cold can be used to

describe how one feels, the temperature outside, an illness, and many other meanings. NLP parsers

used to extract meanings from words are grounded in semantic theories. The pipeline used in ex-
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periment one does not have a WSD module. At the time, a WSD module for medical terminology

could not be located. Currently, this is a growing area of research within medical informatics.

Pragmatics

Closely related to semantics is pragmatics. Pragmatics is the study of the meaning of linguistic

messages in terms of context (Leech and Weisser, 2003). Mostly, pragmatics is related to speech

rather than the written word, however, it is discussed here because it has some practical applica-

tions in the field of NLP.

Illocutionary Acts, also known as Speech Acts, is one of the philosophical foundations of

pragmatics (Austin, 1962; Searle, 1969). A speech act conveys meaning through action. Up until

this point most approaches to language had been treated as a statement that can be treated as either

true or false (Leech and Weisser, 2003). Statements such as I promise are a verbal action rather

than stating something that is true or false. Speech acts characterizes verbal actions as one of three

categories of acts: locution, illocution, and perlocution.

Locution is the actual utterance and its apparent meaning (Austin, 1962). The utterance,

Don’t run in front of cars in its locutionary meaning is an utterance stating not to run in front of

cars. It does not convey whether the cars are moving or parked or where the cars are located. How-

ever, given the same utterance, from a speaker to a hearer next to a busy highway and the meaning

is taken not to run out into the traffic in front of the moving cars. This is the illocutionary mean-

ing. Now given the same statement in the same situation and it prevents the hearer of the utterance

from running out in front of cars and getting hurt, that is the perlocutionary meaning. The per-

locutionary meaning is dependent on two things: whether the hearer understands the utterance and

whether the hearer is willing to comply with the utterance.

Applications There are many applications for pragmatics in speech recognition and yet not as

many with written text. One of the areas in NLP where pragmatic theories are applied are the use

of pronouns. Pronouns are used extensively in writing and many utterances contain multiple pro-

nouns, some referring to people and others referring to objects. The challenge is to determine who

or what the noun is that the pronoun is referring. Pragmatic theories underpin the technology used

by NLP processes to determine these references.
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2.2 Natural Language Processing (NLP)

NLP is concerned with the interaction between natural language, human language as opposed to

computer language, and computers. This section discusses NLP and associated technologies that

are grounded in computational linguistic theories.

2.2.1 Vocabularies and Language Systems or Terminologies and Ontologies

The process of classifying information is as old as language itself. There is a nomenclature used

to represent language and the different tools used to classify language. A great deal of disagree-

ment exists in the literature concerning the meanings of some of these terms. What follows is the

nomenclature that will be used throughout this dissertation as well as the definitions. Since there is

disagreement, this should alleviate confusion caused by any preconceived definitions. Table 2 lists

some common terms used throughout this dissertation.

Table 2: Language Nomenclature

Terminology Explanation

Document Used to describe a unit of text. Has nothing to do with the way it is
physically stored. It is a logical unit.

Word (Graphic) A string of contiguous alphanumeric characters with space on either
side: may include hyphens and apostrophes, but no other punctuation
marks (Kucera and Francis, 1967).

Lexeme Corresponds to a set of words taken by a single word (Kucera and
Francis, 1967). The result of stemming. For example, “give”, “gave”,
“gives”, “giving”, and “given” all stem to the lexeme give.

Token The basic unit in a document. Can represent a word, number, symbol,
or letter. e.g. “Heart attack” contains two tokens; “Heart” and “attack”.
“B/P: 110/70” contains the other types of tokens. Both “B” and “P”
are letter tokens. “/” and “:” are symbol tokens and “110” and “70”
are number tokens. For the purposes of this dissertation, a token is sur-
rounded by spaces.

Term/Concept A single word or multiple contiguous words that represent a concept.
The two words in “heart attack” represent a single concept, therefore,
those two words can be a single term. “Heart” by itself is also a term.
A term can represent one or many concepts. e.g. “cold” can represent
a descriptive concept for temperature or it can represent a common
illness. A concept can also be represented by one or many terms. e.g.
“heart attack” and “myocardial infarction” represent a single concept.
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Controlled Vocabulary

In the field of computational linguistics, terms are brought together in collections to be used for

processing. A controlled vocabulary is the basic collection used. There are different types of con-

trolled vocabularies and the ANSI/NISO standard Z39.19-2005 (Ano, 2005), which covers vo-

cabularies and the development of them, explains in detail how controlled vocabularies are con-

structed, formatted, and managed. A controlled vocabulary in its basic form is a list of terms to be

used for processing. This is also the foundation for all other vocabulary collections. The goal of

a controlled vocabulary is to achieve consistency. Without consistency, the other vocabulary col-

lections would be ineffective. The standard defines relationship indicators and how they are used.

Figure 3 shows the relationship between the different types of controlled vocabularies. Table 3

list the different relationships that can be expressed by terms in the different types of controlled

vocabularies which are listed in table 4. Disciplines other than medicine use controlled vocab-

ularies as well. The Art and Architecture Thesaurus (AAT), the Getty Thesaurus of Geographic

Names (TGN), the Union List of Artist Names (ULAN), and the Cultural Objects Name Author-

ity (CONA) are all vocabularies that contain information on art, architecture, and material culture

and are all vocabularies that are created, maintained, and copyrighted by the The Getty Research

Institute (The Getty Research Institute, 2011). The Library of Congress Subject Headings (LCSH)

has been maintained since 1898 to catalog materials held by the US Library of Congress (Library

of Congress, 2011) . LCSH is also used internationally. The Labourline Thesaurus is published by

Labour Canada Library Services and consists of industrial relations/human resource management

terms (Chaplan, 1995). Another vocabulary resource is the Taxonomy Warehouse (TW:, 2011).

This is a repository of vocabularies and contains over 670 vocabularies covering 73 subject do-

mains. Vocabularies covering practically anything from Academic Link Thesaurus for Universities

to Zoological Record Thesaurus can be found at the Taxonomy Warehouse.

Ontology

Early students of Aristotle used the term metaphysics to refer to what Aristotle referred to as “first

philosophy.” Ontology has also been used as an alternative for metaphysics. The term ontology

was first published in 1613 independently by two different philosophers, Goclenius and Lohard

(Goclenius, 1613; Lorhard, 1613). Goclenius implies that ontology is concerned with abstract enti-
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Table 3: Vocabulary Relationships

Relationship Explanation Expressed
By

Example

Equivalency Used when more than one term can be
used to express a single concept or lexi-
cal variants.

USE &
USED
FOR

“MI” & “my-
ocardial in-
farction” and
“orthopedic” &
“orthopaedic”

Hierarchy Express broad to narrow or narrow to
broad relationships. Also known as “isa”
“hasa”

BT, NT “broken femur”
is a “fracture”
and “central
nervous sys-
tem” has a
“spinal cord.”

Association Sibling and derivational relationships. RT “broken femur”
and “broken
radius” are sib-
lings.
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Table 4: Vocabulary Types

Vocabulary Explanation Example

Synonym Ring Used exclusively in information re-
trieval. Ensures when a concept is used
in a search, any document containing
that concept or any synonymous concept
can be retrieved.

Searching for all documents
pertaining to heart attack, a syn-
onym ring is used to also re-
trieve documents pertaining to
MI, Myocardial Infarction, and
any of the other many concepts
that represent heart attack.

Taxonomy Controlled vocabulary with hierarchical
structure to it.

Thesaurus Controlled vocabulary with order and
structure added so relationships between
terms are represented by the standard-
ized relationship indicators.

UMLS Metathesaurs, a the-
saurus of medical concepts and
relationships made up of con-
trolled vocabularies such as ICD
1 and MeSH 2 (Cimino et al.,
2008; Tuttle et al., 2008).

Lexicon The vocabulary including its words and
expressions for a language. An inven-
tory of a languages lexemes. It is also
synonymous with thesaurus.
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ties and formal structures (Munn and Smith, 2008). The German philosopher, Christian Wolff used

the term when referring to Aristole’s “first philosophy” (Wolff, 1736). The computer and infor-

mation science disciplines have adopted the ontology to be a formal representation of knowledge.

Today, some refer to taxonomies, thesauri, terminology, and ontologies interchangeably. There is

much discussion as to what an ontology is as can be seen by the many definitions in table 5 (Al-

berts, 1993; Wielinga and Schreiber, 2010; van Heijst et al., 1997). Even though these definitions

differ, they all have the concept of expressing knowledge.

One of the most widely referenced definitions of ontology is from Gruber.

Ontologies: vocabularies of representational terms - classes, relations, functions, objects

constants - with agreed-upon definitions, in the form of human readable text and machine-

enforceable, declarative constraints on their well-formed use. Definitions may include re-

strictions on domains and ranges, placement in subsumption hierarchies, class-wide facts

inherited to instances, and other axioms.

The Penman Upper Model and the Generalized Upper Model, a descendant of the Penman

Upper Model, are examples of linguistic ontologies that exist (Bateman, 1990). The General Up-

per Model ”provides a domain- and task-independent classification system that supports sophisti-

cated natural language processing while significantly simplifying the interface between domain-

specific knowledge and general linguistic resources.”

Unified Medical Language System (UMLS)

In 1986, The National Library of Medicine (NLM) formed a multidisciplinary multi-site team to

create the UMLS (Humphreys et al., 1998).“The purpose of NLM’s Unified Medical Language

System (UMLS) is to facilitate the development of computer systems that behave as if they ‘un-

derstand’ the meaning of the language of biomedicine and health (National Library of Medicine,

2010).” The UMLS consists of three knowledge sources: Metathesaurus, Semantic Network, and

SPECIALIST Lexicon. These tools are provided by the National Library of Medicine and are

freely available to anyone possessing a license which is also free.
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Table 5: Ontology Definitions

Author Definition

Wielinga and Schreiber An ontology is a theory of what entities can exist in
the mind of a knowledgeable agent

Alberts An ontology for a body of knowledge concerning
a particular task or domain describes a taxonomy
of concepts for that task or domain that define the
semantic interpretation of the knowledge

van Heijst An ontology is an explicit knowledge level speci-
fication of a conceptualization, which may be af-
fected by the particular domain and task it is in-
tended for

Gruber A specification of a representational vocabulary
for a shared domain of discourse - definitions of
classes, relations, functions and other objects - is
called an ontology.

Metathesaurus

The Metathesaurus is a large vocabulary database. The contents of this database are provided by

source vocabularies such as SNOMED-CT, DSM, and MeSH. The Metathesaurus provides con-

cepts which allow terms from different source vocabularies to be map to concepts. These concepts

allow users to link these heterogeneous source vocabularies together. The Metathesaurus also pro-

vides relationships between concepts, both parent/child and sibling. For example, the concept

‘myocardial infarction’ has a parent concept ‘structural disorder of the heart’, which has a parent

‘heart disease’ and a sibling ‘infarction.’ These concepts can be represented by terms from differ-

ent source vocabularies. Of the three knowledge sources, the Metathesaurus is the most widely

used (Chen et al., 2007). For the purposes of this dissertation, the UMLS Metathesaurus is consid-

ered a thesaurus and not an ontology.

Semantic Network

The Semantic Network currently contains 135 semantic types and 54 relationships. These se-

mantic types are categories in which to group the concepts in the Metathesaurus. There are also

semantic grouping such as organisms, anatomical structures, biologic function, chemicals, and
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events, which categorize the semantic types. These semantic types can be used to focus NLP ef-

forts toward a specific topic.

SPECIALIST Lexicon

Lastly is the SPECIALIST Lexicon and Lexical Programs. A set of lexical NLP tools have been

created and provided by the NLM. The purpose of these tools is help researchers “investigate the

contributions that natural language processing techniques can make to the task of mediating be-

tween the language of users and the language of online biomedical information resources (Na-

tional Library of Medicine, 2010).” A part of speech tagger, a spell checker (GSpell), and visual

tagging tool are just some of the tools that make up the lexical programs. The SPECIALIST Lexi-

con provides the general English lexical information which also includes biomedical terms needed

by the SPECIALIST Lexical Programs.

2.3 Computational Learning Theory

Where as the first section in this chapter discusses the theories used in NLP, this section discusses

the theories that are the underpinnings for Statistical Text Mining (STM) and associated technolo-

gies.

Computational Learning Theory also known as Statistical Learning Theory is a mathemat-

ical theory related to the analysis of ML algorithms. There are different approaches to computa-

tional learning theory. ML theories refer to the term “concept” differently from what has been and

will be used in this research. In this section, the term “concept” is used to mean the set of all in-

stances that positively exemplify some simple or interesting rule (Kearns and Vazirani, 1994). For

example, in the case of this research, the concept fall is represented by the set of all positive fall

documents. A “concept class” or “classification” is a collection of concepts over all instances. For

example, the documents in the corpus previously mentioned is a concept class made up of FALL

and nFALL concepts. This dissertation is not building any new theories or directly testing any the-

ories traditionally used in Information Systems (IS) research. It does however, combine several

existing ML technologies in novel ways to preprocess and classify documents. The three theories

that follow are some of the theories that have been used in either the building of the these ML al-

gorithms or in the evaluation of them.
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Probably Approximately Correct

Probably approximately correct learning (PAC learning) was proposed by Leslie Valiant in 1984

(Valient, 1983). The premise of PAC learning is that for a learning algorithm to be considered suc-

cessful (the correct part), learning an unknown target concept entails obtaining, with high proba-

bility (the probably part), a hypothesis that is a good approximation (the approximately part) of the

target concept (Haussler, 2011).

Vapnik-Chervonenkis Theory

Vapnik-Chervonenkis theory, otherwise known as VC theory, was proposed by Vladimir Vapnik

and Alexey Chervonenkis (Vapnik, 1998). It explains learning from a statistical point of view. VC

theory introduced the idea of Support Vector Machines (SVMs) which are another popular predic-

tion model building technique, however, it is not used in the dissertation because it is not designed

to be interpretable. VC theory also has a core concept called the VC Dimension. The VC Dimen-

sion is a way of quantifying the ease of learning categories from small data sets (Vapnik, 2000;

Kearns and Vazirani, 1994).

Algorithmic Learning Theory

Algorithmic learning theory also known as algorithmic inductive inference is another ML frame-

work and was introduced in Gold’s seminal paper Language identification in the limit (Gold, 2011).

He created this framework when he was investigating language learnability. In his research, infor-

mation is presented to the learner about an unknown language as well as a class of possible lan-

guages. The research question asked is “is the information sufficient for the learner to determine

which of the possible languages is the unknown language.” The learner receives a unit of informa-

tion and guesses which language the unknown language is. The language is considered learnable

if an algorithm exists that the learner can use to make guesses and after a finite period of time, the

guesses are correct. The idea of ML algorithms is based on this theory.

2.3.1 Machine Learning

The Oxford Dictionary defines “learning” as the acquisition of knowledge or skill through study,

experience, or being taught. From a computer science perspective, this definition fails to include
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the conditions that must occur in order for the same results to be achieved from multiple experi-

ences. Repeatable results is the desired effect to be achieved using ML. If a student is taught the

same material from professor A or professor B, the testing result of that student will most likely be

different for the two professors. However, using ML, given learning sets with the same probability

distribution, an algorithm should perform with no statistically significant difference.

Types of Machine Learning

There are two types of ML, supervised and unsupervised. The main difference between the two

methods is that in supervised learning, the model has some knowledge of the classification of a

subset of the data and learns from this subset. Supervised learning uses a “training” set of data to

learn. One of the main uses of supervised learning is classification. The classification of each da-

tum in the training set is known. The ML algorithm then uses this information to then classify data

with an unknown classification. Unsupervised learning on the other hand is used for discovery

tasks such as clustering. In this case, classifications of the data are not known. The ML algorithm

is then used to find patterns or clusters of information within the data. For the purposes of this dis-

sertation, supervised learning techniques are used.

With supervised ML, the machine is given examples chosen randomly and based on those

examples it attempts to generate an answer. Figure 4 shows a ML model (Vapnik, 1998). The Gen-

erator is the source of situations or in this case, documents. x ∈ X . For this research, X is the

set of documents or the corpus used in the STM process. x is fed to both the Supervisor and the

Learning Machine. The Supervisor then returns y for each x. In other words, for each document

x in the corpus X , there exists a classification y. If there are l documents in the corpus, then the

learning machine will have l pairs, (x1, y1), ..., (xl, yl) to use to learn. The Supervisor includes an

operator that is used to determine the value of y. For this research, the Supervisor is the group of

annotators that established the Gold Standard. The operator used in this case is not a mathematical

function but is based on a set of rules that the annotators used to determine the classification for

each document. The Learning Machine will create its own operator, which approximates the Su-

pervisor’s operator, to determine the classification, ȳ. Logistic regression, classification rules, and

decision tree induction are the ML techniques used in this dissertation.

28



Generator Supervisor

Learning 
Machine

x
y

ȳ

Figure 4.: Model of Learning from Examples

Machine Learning Algorithms

There are numerous ML algorithms. Decision tree induction is a category of algorithms and there

are several DTI algorithms. Table 6 describes many of these algorithms, some of which are used

in this dissertation. There are many more but for the purposes of STM, these are some of the more

popular.

2.3.2 Information Theory

In 1948, Shannon published what became a seminal article on maximizing the amount of infor-

mation that can be transmitted across an imperfect channel (Shannon, 1948). At the time, it was

thought that the faster you transmitted information the more errors occurred. He showed this was

not true provided the data were transmitted slower than the capacity of the channel. From this

came measurement techniques that are also used in the STM and ML processes. Many of these

measurements are used in the decision tree induction process and will be discussed in more detail

in a later chapter.

Where as Shannon was interested in reproducing at one point, either exactly or approxi-

mately, a message selected at another point, ML is concerned with taking a “message” and pre-

dicting whether it is similar to another message. Other concepts such as N-Grams also came out of

Shannon’s research (Shannon, 1951).

Information theory is applied in many places in machine learning but specifically two within

the technology used within this dissertation. The first place is in the decision selection process
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Table 6: Machine Learning Algorithms

Algorithm Description

Association Rule Mining A method for discovering interesting and meaningful
rules between variables or features. Even though asso-
ciation rule mining was not used in its complete form,
more information can be found in Chapter 5.

Classification Rule Mining Similar to association rule mining, however, rather than
being concerned with the interestingness of the rule, the
rule is judge on how well it is used in a classifier. Spe-
cific details on classification rule mining can be found in
Chapter 5.

Decision Tree Induction (DTI) A method in which a decision tree consisting of decision
nodes and leaf nodes is created. Decisions are made and
can lead to additional decision nodes or leaf nodes. The
leaf nodes are the classes for the classifier. There are sev-
eral DTI algorithms, such as C4.5, ID3, CHAID (CHi-
squared Automatic Interaction Detector), and Multivariate
Adaptive Regression Splines (MARS). Specific details on
DTI can be found in Chapter 6

Support Vector Machine Given a group of classified data belonging to one of two
classifications, an SVM graphs these training cases with
as large a gap between the two classifications as possible.
It then maps an unclassified case amongst the two clas-
sifications and predicts the classification based on which
side of the gap it is mapped. SVMs are good for classifi-
cations where the cases have large numbers of variables
or features.

Clustering Is an unsupervised methods where cases are grouped to-
gether based on similarities.
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in DTI. The C4.5 algorithm used in answering the second research question relies on the infor-

mation gain ration. This is explained in more detail in Chapter 6. Additionally, text mining uses

entropy as a possible weighting scheme. It can be used as both a frequency and term weighting

scheme. Many models were built to answer the first research question (specialized versus com-

mon language) and some used entropy for frequency and term weightings, however, the none of

the models selected as having the best performance used entropy for weightings.

Entropy

The entropy of a random variable is the measure of the amount of information in that variable or

in other words a quantified measure of uncertainty in a random variable. This indicates how easily

message data can be compressed. For example, there is more uncertainty in predicting the number

from rolling a 6 sided die as opposed to predicting the flip of a two-sided coin. With the die you

have a 1 in 6 chance of predicting it correctly but a 5 in 6 chance of predicting it incorrectly. With

the coin, you have a 1 in 2 chance of either predicting it correctly or incorrectly. The uncertainty is

less with the coin.

Mutual Information

Mutual information on the other hand is the amount of information one random variable contains

about a second random variable. In other words, it is the measure of the information common or

mutual between two random variables. Mutual information can be used to measure the informa-

tion common between two cases.

Information Gain

Related is also information gain also known as Kullback-Leibler divergence (Kullback and Leibler,

1951). Information gain is the change in entropy from one state to another state. Information gain

can be used in decision tree induction in evaluating the splitting criterion. An attribute with high

information gain is preferable to a lower value. Information gain has a bias toward attributes with

many possible distinct outcomes (Quinlan, 1988). For example, an attribute such as patient ID

would have a high information gain value than an attribute such as gender but patient ID most

likely would not be a good choice for an attribute on which to split.
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Information Gain Ratio

To alleviate the bias issue caused by information gain, information gain ratio or just gain ratio is

used. Again, the information gain will be high for an attribute that has many distinct possible out-

comes. In many cases, an attribute may have many unique values such as IDs. To calculate gain

ratio, information gain is divided by the information learned about the attribute, otherwise known

as the split information. For example, if the attribute is an ID, the information gain is going to be a

large number because it seemingly gives a lot of information. That is divided by the number of bits

learned about the feature. The larger the entropy for the attribute the larger the denominator. In

this case, attributes such as IDs will be penalized more than attributes with few possible outcomes.

In other words, just as 50 is much larger when compared to 1, however, 1/2 is the same as 50/100.

2.3.3 Deductive vs Inductive Reasoning

There are two broad areas of reasoning, deductive and inductive (Trochim, 2000). Using a deduc-

tive approach, general truths lead to specific conclusions whereas using an inductive approach,

specific observations lead to general conclusions. Darwin applied inductive reasoning in the devel-

opment of his theories on evolution. Specifically, he observed differences in finches on different

islands within the Galapagos islands (Darwin, 1859; Lack, 1940). He observed the finches were

isolated on the different islands and reasoned because the finches also had similarities, they all

came from a common ancestor but had adapted and evolved to meet the requirements of each indi-

vidual island. The specific observations he made were of the finches and their unique traits on the

different islands. This led him to a general conclusion, evolution and adaptation.

Research can be performed using both types of reasoning (Trochim, 2000). Induction can

be used to ultimately create a theory as in the previous example with Darwin. Deductive reasoning

can then be used to validate or falsify a theory. Deductive reasoning is a top–down approach. Re-

searchers start with a theory concerning the topic of interest. That is narrowed to a hypothesis that

can be tested. Observations are then collected to support the hypothesis which allows specific data

to be used to test the hypothesis. Inductive reasoning on the other hand is a bottom–up approach.

Specific observations are used to detect patterns which then generalize into tentative hypotheses.

These hypotheses can be explored and developed into more general theories. Even though these

are two separate methods of reasoning, together they are used in a circular process. See figure 5.
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Figure 5.: Inductive/Deductive Reasoning

Inductive generalization starts with a premise about a specific sample which leads to a con-

clusion about a general population (Norton, 2010). For example the premise, 80% of the injury

progress notes in the sample having features A, B, and C are fall notes implies the conclusion,

80% of all injury progress notes having features A, B, and C are fall notes. With inductive gener-

alization, the premise is generalized to the conclusion population. Classification tasks or concept

learning in general are inductive by nature and classification tasks using unstructured data specifi-

cally are performed well using inductive inferencing or ML methods.

Concept learning is an example of inductive learning. Concepts are induced from obser-

vations. Bruner defines concept learning as “...the search for and listing of attributes that can be

used to distinguish exemplars from non exemplars of various categories (Bruner et al., 1956).” In

psychology research, there are many theories that describe concept learning as applied to humans

or chimps. Computational Learning Theory and Information Theory provide the foundations for

concept learning, also known as supervised ML, where computers are the learners. These theories

provide the foundations for the techniques that are used in this research.

2.4 Statistical Text Mining (STM)

Data mining allows unknown information to be extracted from structured data. Text mining has

the same purpose but it applies to unstructured data. There are three phases to STM. Since STM

is performed on unstructured data, adding structure to the data is the first phase. The next phase is

identifying patterns and lastly is evaluation and interpretation.
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Text mining has been shown to be effective in many domains. For example, text mining

is now being applied to social media content. It is one possible way to support Facebook’s anti-

bullying campaign (Foley, 2011). Documents are collected and manually annotated as bullying

or not. These documents are then used to train a model used by Facebook to determine bullying

behavior by sites. Another social media use of text mining is a study that was done to determine

the most popular subjects posted on the web (Kalafatis, 2010). They determined that “how to”

was the most popular subject and the most likely way to improve the popularity of a user’s posts

and achieve higher click-through rates. Yet another social media use is mining Twitter feeds to

determine users’ sentiment. Wall Street firms are using this information to inform the buying and

selling of stocks (Bollen et al., 2011). One such firm was able to make a 24% gain in a week by

buying and selling airline stocks based on Twitter users’ sentiment concerning swine flu pandemic

outbreak fears (Shell, 2011). Text mining is also used in fraud detection. One study used text min-

ing techniques to process employee emails to detect disgruntled employees, who are a major con-

tributor to occupational fraud (Holton, 2009) . Collecting documents has become easier as tech-

nology advances, however, evaluating massive numbers of documents has left analysts perplexed.

Recent studies have looked at how to apply text mining to this problem. One such study evaluated

using text mining to predict new uses for existing technologies, specifically engineering technolo-

gies that may have an impact on viral warfare in the future (Smalheiser, 2001). Another use is in

intelligence analysis in the context of military, police, and business intelligence. One example is a

study that used multilingual text mining of Open Source Intelligence to train intelligence analysts

(Baldini et al., 2007). This dissertation will explore statistical text mining techniques as applied to

the medical domain.

2.4.1 Structure

Before any processing can take place, the unstructured text must be structured. This is done by

first parsing the documents into words or tokens. Next a term-by-document matrix is created. This

can be thought of as a spreadsheet where the rows represent the documents and the columns repre-

sent each unique word in the corpus. A value is then entered for each cell in the term-by-document

matrix this can be anywhere from a 1 or 0 representing presence or it can be some weight deter-

mined by one of many weighting schemes. This matrix can be sizable but sparsely populated.
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Table 7: Term-By-Document Matrix

D1 D2 D3

cough X
day X
had X
motivated X
of X
packs X
patient X
per X
quit X
smoking X X
to X
two X X
weeks X

Given the following three sample documents, a term-by-document matrix can be created (table

7).

D1: smoking two packs per day

D2: patient had two weeks of cough

D3: motivated to quit smoking

The X’s in the matrix represent the presence of the term in the document. One of the things

that can be observed is that the matrix is sparsely populated in that two thirds of the matrix has no

value because the term does not exist in that document. Perhaps, since a term exists in only one

document, that term may not have any predictive power. By reducing the size of the matrix the

process can be completed in less time. The term-by-document matrix in (table 7) consists of only

three documents and 13 unique words. The processing time would be significantly longer for a

corpus of 2,000 documents containing 75,000 unique words. By using dimension reduction tech-

niques, the size of the term-by-document matrix can be reduced thus reducing the processing time.

One such method is Latent Sematic Analysis (LSA) using Singular Value Decomposition (SVD)

(Deerwester et al., 2010). Factors are created that represent a concept. For example, the matrix

made up of 2,000 documents and 75,000 unique terms could be reduced to 200 SVD factors. Each

factor contains weights for each term but the matrix is reduced because it is made up of the 2,000

documents and 200 factors. This dissertation introduces another approach to dimension reduction.
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By processing the corpus first with an NLP pipeline, the relevant terms can be extracted from the

documents, thus reducing the number of unique terms. This technique is discussed in a later chap-

ter.

2.4.2 Identifying Patterns

After the term-by-document matrix is created, a predictive model is created from the terms, or

the SVD factors, or a combination of both. Logistic regression (Kurt et al., 2008), decision trees

(Wilcox and Hripcsak, 1999), and Support Vector Machines (SVM) (Cortes and Vapnik, 2011;

Dumais, 1998) are all popular statistical methods for creating predictive models. A classified sub-

set (training) of the documents is used to train one of the statistical models. The model is then

tested on another subset of documents (test). In some cases a third subset (validation) can be used.

The model can use the validation subset to improve the performance of the model. Evaluation met-

rics can be used to evaluate the performance of a specific model.

2.4.3 Evaluation and Interpretation

There are numerous evaluation statistics that can be used to evaluate and interpret the performance

of the model. Based on the results of these statistics, the model can be determined as effective or

not.

Confusion Matrix

Before applying one of the statistics, a confusion matrix needs to be created. This matrix will

show the numbers of correctly and incorrectly classified documents processed by the model. The

center of figure 6 shows the four possible results that can occur from a classification problem. If

both the gold standard and model predicted classifications match, then the result is either a True

Positive (TP) or True Negative (TN). If, however, the classifications do not match then one of the

false results will be applied. A False Positive (FP) is where the gold standard classification is neg-

ative yet the model predicted the classification to be positive, or falsely classified as a positive.

These are the results of Type I errors. On the other hand, if the gold standard classification is pos-

itive and the model predicted the classification to be negative, or falsely classified as a negative,

then a False Negative (FN) is the result. These misclassifications are Type II errors.
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Figure 6.: Confusion Matrix and Evaluation Metrics

Evaluation Metrics

From these four classification results, several statistics can be calculated to help evaluate and in-

terpret the model. Figure 6 shows the statistics and the formulas for calculating them around the

outside of the chart. Table 8 lists the evaluation metrics used and a short explanation of each.

Traditional NLP research does not report specificity or NPV (Sokolova and Lapalme, 2009).

The reason being is in that type of research, typically there are no cases classified as true negative

(TN). A grammatical NLP pipeline with the purpose of extracting terms compared to a human

annotated gold standard will find terms that match the human annotation and those will be true

positives (TP). It will find terms that were not found by the human annotation and those will be

false positives (FP). It will also not find terms that were found by the human annotation and those

will be false negatives (FN). The pipeline, however, cannot not find terms that were also not found

by the human annotation. Those would be true negatives. Because of this, specificity and NPV are

typically excluded from NLP research. Those statistics are however, reported in STM research and

will be reported here.

Many different metrics are used to evaluate the performance of a classifying model, among

those, accuracy is the most widely used (Sokolova and Lapalme, 2009). Depending on how the

model is to be evaluated, some measures will work better than others. A measure is invariant if its

value does not change when the confusion matrix changes. For example, if the number of cases

making up the (FN) counts were reduced and the cases making up the (TN) counts were increased

by the same amount, the metric precision would not change to reflect the change in counts.
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Table 8: Evaluation Metrics
Statistic Definition

Sensitivity (Recall) Proportion of actual positives which are correctly identi-
fied as such. This measures the lack of missed classifica-
tions

Specificity Proportion of negatives which are correctly identified.

Accuracy Proportion of correctly identified of the total identified. It
is a balance of Precision and Recall.

Negative Predictive Value Proportion of actual negatives identified from the total
negatives identified.

Precision (PPV) Proportion of actual positives identified from the total
positive identified. This measures the lack of false posi-
tives.

F-Measure Weighted average of the precision and recall.

As mentioned above, traditional NLP does not have a count of TNs. This explains why F-

Measure is reported in this type of classification task because if there are zero TNs, the F-Measure

calculation would have zero in its denominator. Accuracy on the other hand uses all four counts in

its calculation. Where accuracy is not a good evaluator is in a task where one class is very small

and the other very large. For example, if a task’s data split is 2% for the positive class (class of in-

terest) and 98% for the negative class, the model could simply classify everything as the negative

class and achieve 98% accuracy which would be deceiving. Accuracy is an acceptable measure

when being compared to baseline. The data split for the data set used in the three studies in this

dissertation is approximately 23% for the class of interest and 77% for the negative class. Because

the class of interest is not very small, accuracy is the measure that will be used to ultimately com-

pare the models to baseline and decide which model to move forward through the process. Other

evaluation metrics will be reported as well but will not be used in the selection of a model. Accu-

racy is invariant in two situations; first, if the positives and negatives are exchanged, and secondly,

when there is a uniform change in the positives and negatives. These two situations are not of con-

cern for this research because the size of the data set is constant and the models are not being com-

pared to models created from other data sets.
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Chapter 3

Data

The James A. Haley Veterans Hospital in particular is the largest hospital in the Veterans Health

Administration, serving over 115,000 veterans in four counties and is one of five poly-trauma cen-

ters in the US. The data set used for this dissertation was originally collected for a pilot study and

the goal of this study was to show that fall related injuries treated in out patient clinics within the

VA are under coded (Luther et al., 2005).

Within the EHR there is a hierarchical structure. (See figure 7) At the top of this structure is

the patient. Below the patient are episodes of care. An episode of care is documented as the main

reason the patient is at the facility. It could be anything from an annual physical to a weekly psy-

chiatric care appointment. It also could be a visit to the facility for the treatment of an injury. A

patient will have many episodes of care throughout his/her enrollment in the system. Each episode

of care has progress notes associated with it. For example, if a patient is at the facility for the treat-

ment of an injury, there may be progress notes from x-ray, nursing, orthopedic, pharmacy, and

physical therapy clinicians. Together, these notes document an episode of care and each note, if

documented correctly, will have an ICD-9 code for the reason for visit code identifying the treat-

ment of the injury. In some case, this same patient might also have visited, for reasons unrelated

to the injury, a facility such as the dermatology clinic while at the facility. The notes associated

with treatment at the dermatology clinic in this case would also have a reason for visit code for the

treatment of the injury because that is the primary reason for the visit. This hierarchical structure

allows inferences to be made at different levels.

Because of this hierarchy, inferences can be made at different levels within the system. In-

dividually, each note can be classified. Based on the classifications of the notes, episodes of care

can also be classified, then based on the episode’s classifications, patients can be classified. All of

these different classifications allow inferences to be made at these different levels. Using this data

set, inferences can be made concerning FRI. If an individual note is classified as a “fall” note and

39



Progress 

NoteProgress 

NoteProgress 

NoteProgress 

NoteProgress 

Note

Progress 

NoteProgress 

NoteProgress 

NoteProgress 

NoteProgress 

Note

Progress 

NoteProgress 

NoteProgress 

NoteProgress 

NoteProgress 

Note

Patient

Episode of Care Episode of Care Episode of Care

Figure 7.: Episode of Care Hierarchy

the reason for visit code is for the treatment of an injury, an inference can be made that it is a FRI.

The inference can then be rolled up to the patient level and infer that the patient has experienced a

FRI. Based on this, the patient can receive education and services to help prevent future falls.

3.1 Cohort

The construction of the research data set started with identifying patients. There are three groups

of patients, that make up this cohort. All of the patients in this cohort are fiscal year 2007 patients

from a single hospital within the VISN 8 (Veterans Integrated Service Network). First, patients

with a reason for visit code for treatment of an injury and an External Cause of Injury code (E880-

E888), commonly referred to as an E-code, listed as a secondary diagnostic code were identified.

The second group are the matched controls. They were selected from the pool of patients treated

for similar injuries but did not receive a fall-related E-code. For example, a patient who fell and

broke her arm would have received a reason for visit code for treatment of the broken arm and

a fall-related E-code for a secondary diagnostic code, whereas a patient who broke his arm as a

result of being hit would not have received a fall-related E-code. These controls were matched

based on facility, gender, type of injury, and age. Two matched controls were identified for every

patient in the original set. Upon further examination of the patients, it was discovered that some

patients had an E-code incorrectly listed as the reason for visit code. These patients made up the
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third group and were also added to sample. Because the reason for visit was listed as the E-code,

no matched controls were used for these patients. This resulted in a total of 453 patients.

3.2 Collection

All outpatient progress notes were collected for these patients using a 48 hour window around a

recorded visit to an outpatient clinic for an injury. This documented an episode of care. A 48 hour

window was used for two reasons. First, most clinical notes are recorded immediately after the

clinical encounter. Second, if notes are not completed immediately, the Joint Commission on the

Accreditation of Healthcare Organizations requires they be completed within 48 hours. All notes

that represent an episode of care were collected even if they were not directly related to the care of

that injury. This resulted in a total of 5,009 progress notes.

3.3 De-Identification and PHI

In order to comply with Health Insurance Portability and Accountability Act (HIPAA) and the

local Institutional Review Board (IRB), the notes were cleansed of protected health information

(PHI). A discussion of HIPAA and other health care related regulations can be found in Appendix

F.

A program was used to replace names with XXXNAMEXXX. For example,

Mr Johnson saw Dr Smith last week in the ortho clinic.

would be changed to

Mr XXXNAMEXXX saw Dr XXXNAMEXXX last week in the ortho clinic.

Dates were also altered. A random number was generated and added to the original date. All dates

concerning a specific patient were modified with the same random number. This way, it could not

be determined what day a particular patient received a particular treatment, but the time between

visits was preserved so that the data could be used for a temporal study in the future. All other PHI

was handled in a similar fashion.
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3.4 Annotation

In order to use supervised learning techniques, a classified dataset is needed. One way to obtain

this is to have humans classify the data set to be used to train and test the classifier. Due to costs,

traditionally in NLP a subset of the data set is classified or annotated by humans. In other words, if

the data set is comprised of 5,000 records then a subset of the data, perhaps 500 records, would be

annotated by multiple annotators. Inter-rater or inter-annotator agreement can then be calculated.

If there is disagreement between annotators, an adjudicator is then used to come to an agreement

as to the annotation. Using this method, at least two annotators must look at every record. Every

record (5,009) in the data set used for this research was annotated by an annotator because the data

set was going to be used for something other than pure grammatical NLP. Because of this, having

at least two annotators as well as an adjudicator view each record would be very costly. Tradition-

ally in NLP, annotators annotate or mark passages of text that are to then be extracted by the NLP

system. This requires multiple annotators view each document in order to gain agreement. The

data set for this research simply required a binary document level classification. Since it is a fairly

simple task to decide whether a document is pertaining to a FRI or not, a different approach to

classifying the documents was used.

Four clinicians in total were used to accomplish this task, one was considered an expert.

Three clinicians (A, B, and C) were used to annotate all notes as FRI or not and a clinical expert

(D) was used to establish the “gold standard.” All clinicians were trained on the annotation tool

and schema then they annotated Training Set 1. Inter-rater reliability was calculated at that point.

D was used to create the training standard and the three clinicians training annotations were com-

pared to D’s in order to calculate inter-rater reliability. The clinicians were trained on the differ-

ences that appeared and they then annotated Training Set 2. The same process was used as was

used on the previous training set. Clinicians were again trained on the differences and began anno-

tating the Final Set. During the annotation process, D was used to rate the reliability of the other

clinicians by randomly selecting and annotating 10 notes out of every 1,000 annotated by the other

clinicians. Kappa was used to assess inter-rater reliability (Cohen, 2006, 2005). Kappa scores for

the three clinicians can be seen in table 9.

Intra-rater reliability was also calculated for the 3 clinicians annotating the dataset. Since

the benchmark of 80% inter-rater reliability was not achieved by clinicians A, B, and C on the first
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Table 9: Inter-rater Reliability Kappa Scores (%)

D to A D to B D to C

Training Set 1 91 84 71
Training Set 2 82 100 80
Final Set 100 100 100

Table 10: Intra-rater Reliability Kappa Scores (%)

A B C

Training Set 2 100 100 94

training set that there was no need to compute intra-rater reliability. The benchmark inter-rater

reliability was achieved on dataset 2, therefore intra-rater reliability was calculated for clinicians

A, B, and C. Table 10 shows the intra-rater reliability Kappa scores for the clinicians.

Two open source tools were used to create the annotations for the dataset; Protege and Know-

tator. Protege is a free, open source ontology editor and knowledge base framework (Gennari

et al., 2003; Musen et al., 1987). Knowtator is a general purpose annotation tool that was designed

as a Protege plug-in (Ogren, 2006). Items annotated were Fall Related Injury (FRI), history of fall,

and method of fall. The FRI annotation was used to classify each note as either containing an FRI

or not. A tool was used by the clinicians to annotate a fall within the note. The mechanism of the

fall, place of the fall, time of the fall, and injury were also annotated.

Patient fell off the stairs in his house yesterday morning and cut his head on a table.

This would be annotated as a fall with stairs being the mechanism, the house being the

place, yesterday being the time and cut head being the injury. Because of the fall annotation this

note would be classified as a fall. In conjunction with this annotation and the associate ICD-9 code

indicating the reason for visit was the treatment of an injury, the note would also be classified as a

FRI.

3.5 Dataset

The final annotated data set included 1,151 FRI (FALL) and 3,858 not FRI (nFALL) progress

notes. The complete data set was then stratified and divided (70%/30%) into a training data set
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(TRAIN) and evaluation data set (TEST). This data set will be used for all of the experiments in

this dissertation.
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Chapter 4

Medically Relevant Terminology vs Common Language Study

4.1 Abstract

The purpose of this research is to answer the question, can medically-relevant terms be extracted

from text notes and text mined for the purpose of classification and obtain equal or better results

than text mining the original note? A novel method is used to extract medically-relevant terms for

the purpose of text mining. A dataset of 5,009 EHR text notes (1,151 related to falls) was obtained

from a Veterans Administration Medical Center1. The dataset was processed with a natural lan-

guage processing (NLP) application which extracted concepts based on SNOMED-CT terms from

the Unified Medical Language System (UMLS) Metathesaurus. SAS Enterprise Miner was used to

text mine both the set of complete text notes and the set represented by the extracted concepts. Lo-

gistic regression models were built from the results, with the extracted concept model performing

slightly better in the evaluation metrics than the complete note model.

4.2 Introduction

Falls are an important health care issue especially among aging veterans. A history of a previous

fall is the single most important clinical indicator that identifies an elderly patient as high risk for

additional falls and targets them for fall prevention programs. However, information about fall-

related injuries (FRIs) in administrative databases has been found to be significantly under-coded,

thereby limiting information about a history of falls to clinicians (Luther et al., 2005).

The purpose of this research is to answer the question can medically-relevant terms be ex-

tracted from text notes and text mined for the purpose of classification and obtain equal or better

1Funding for this research came from the Consortium for Healthcare Informatics Research, [HIR-09-002] HSR&D
Center of Excellence, James A. Haley Veterans Hospital, Tampa, FL. This report presents the findings and conclusions
of the authors and does not necessarily represent the Department of Veterans Affairs (VA).
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Figure 8.: Breakdown of Terms

results than text mining the original note? A novel approach was used to extract medically-relevant

terms for the purpose of text mining. Figure 8 illustrates the conceptual idea behind this approach.

Within each document are two sets of terms: one, medically-relevant and the other, common lan-

guage terms. Of those terms, it is assumed the medically-relevant terms are more predictive than

common language terms (as shown in the separated bottom portion of the figure 8). Thus, this re-

search explores a means of extracting the medically-relevant terms from a document while dis-

carding the common language terms. This research assumes most of the predictive terms will be

in the extracted relevant term set. There is probably a small set of predictive terms in the common

language but leaving them out of the model is acceptable if the model is at least as accurate as if

they were included.

Essentially, we are testing if any important patterns are lost by removing passages of text

not annotated via NLP. If no loss occurs, it is quite reasonable to use text or other data mining

methods on only the output of the Natural Language Processing (NLP) process. The rest of this

paper will discuss the background behind this process, the dataset used, the process used to extract

the relevant terms, the model building process, and finally a discussion of the results.
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4.3 Background

There is disagreement in the literature as to what fields fall under NLP. Most agree that NLP is an

area under artificial intelligence (AI) and can also be broken down itself into many areas, some of

which are; information retrieval (IR), information extraction (IE), and question answering (Hirschman

et al., 2002). IR uses algorithms to retrieve documents in response to a query similar to search en-

gines. Question answering differs from IR in that just the information that answers the question is

returned rather than an entire document or search results. It also assumes that the NLP algorithm

has some understanding of the question being asked. IE is used to extract names and entities from

the text being processed. An intelligent system must be able to form classes of entities united by

some principle. It must also be able to recognize membership of an entity in one of these classes

(Michalski, 1990). The idea of named entity recognition (NER) is to identify all of the instances

of named entities within specified text (Cohen and Hersh, 2005). Some include data and text min-

ing as fields that fall under NLP. For the purposes of this research, we will refer to NLP separately

from Statistic Text Mining (STM). This research used NLP to extract the medically-relevant terms

or named entities (NEs).

Text mining is the automated discovery of new, previously unknown information from un-

structured textual data (Hearst, 1999). Swanson argued that unknown information exists in the

medical domain because it would be physically impossible for a human to read all of the available

literature and create all of the possible hypotheses (Swanson, 1987). By mining the bibliographies

of existing literature, he developed the hypothesis that dietary fish oil improves Raynaud’s Syn-

drome (Swanson, 1986b). Tremblay et al. showed that text mining a set of text notes from elec-

tronic health records (EHR) could be helpful in correctly identifying notes pertaining to fall related

injuries (Tremblay et al., 2009).

Several tools exist that have been shown to be successful in extracting information from

medical text notes. MedLEE has knowledge-based components and processing engines to process

text (Friedman et al., 2004). Multi-threaded Clinical Vocabulary Server (MCVS) uses SNOMED-

CT codes to process text and represent medical terms (Elkin et al., 2006). The Unstructured In-

formation Management Architecture (UIMA) is an open source project that allows users to build

systems that analyze large volumes of unstructured information in order to discover knowledge.

UIMA has been used to create NLP applications using a pipeline architecture (Ferrucci and Lally,
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2004). The Mayo Clinic built an NLP framework using the UIMA called cTAKES (Clinical Text

Analysis and Knowledge Extraction System) (Savova et al., 2008). This system is a UIMA pipeline

which processes clinical notes and identifies medical NEs based on the UMLS. Another open

source architecture is the General Architecture for Text Engineering (GATE) (Cunningham et al.,

2002; Cunningham, 2002). The Health Information Text Extraction (HITEx) tool was created

originally to extract smoking status for asthma research (Zeng et al., 2006). In the same way cTAKES

is a medically related pipeline built on the UIMA architecture, HITEx is a medically related pipeline

built on the GATE architecture.

The UMLS is comprised of the Metathesaurus, Semantic Network, and SPECIALIST Lex-

icon. The Metathesaurus is a database of medically related terms and is made up of source dictio-

naries such as SNOMED-CT, ICD, and other sources. Contained in the Metathesaurus are over 1.7

million unique concepts. Each concept is represented by one to many terms. There are also 135

semantic types within the Metathesaurus that allow the concepts to be categorized. The Metathe-

saurus used for this research was 2009AA.

Medically-relevant terms for each document are obtained from the UMLS Metathesaurus.

The sizes of the sets containing the relevant terms and common language are dependent on the

source vocabulary used. For example, if the notes are orthopedic notes and an unrelated specialty

source vocabulary is used, e.g., Diagnostic and Statistical Manual of Mental Disorders (DSM),

the number of the medically-relevant terms will most likely be smaller than if a general source

vocabulary was used, e.g., SNOMED-CT.

4.4 Methods

4.4.1 Data Set

Cohort

The construction of the research data set started with identifying patients. There are three groups

of patients that make up this cohort. All of the patients in this cohort are patients from a single

hospital within the VISN 8 (Veterans Integrated Service Network) that were treated in fiscal year

2007. Table 11 lists the make up of the three groups. Group 1 consisted of patients with a rea-

son for visit code for treatment of an injury and an External Cause of Injury code (E880-E888),
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Table 11: Cohort description
Group Reason for Secondary

Visit Code Dx Code
1 Injury E880-E888
2 Injury -
3 E880-E888 -

commonly referred to as an E-code, listed as a secondary diagnostic code. Group 2 made up the

matched controls. They were selected from the pool of patients treated for similar injuries but did

not receive a fall-related E-code. For example, a patient who fell and broke her arm would have

received a reason for visit code for treatment of the broken arm and a fall-related E-code for a sec-

ondary diagnostic code, whereas a patient who broke his arm as a result of being hit would not

have received a fall-related E-code. These controls were matched based on facility, gender, type of

injury, and age. Two matched controls were identified for every patient in the original set.

Upon further examination, it was discovered that some patients had a fall-related E-code

as the reason for visit code but had no specific injury listed. These patients made up group 3 and

were also added to sample. Because the reason for visit was listed as the E-code, no matched con-

trols were used for these patients. This these groups resulted in a total of 453 patients.

Collection

All outpatient progress notes were collected for these patients using a 48 hour window around a

recorded visit to an outpatient clinic for an injury. This constituted an episode of care. A 48 hour

window was used for two reasons. First, most clinical notes are recorded immediately after the

clinical encounter. Second, if notes are not completed immediately, the Joint Commission on the

Accreditation of Healthcare Organizations requires they be completed within 48 hours. All notes

that represent an episode of care were collected even if they were not directly related to the care of

that injury. This resulted in a total of 5,009 progress notes.

Annotation and Partitioning

Three clinicians (A, B, and C) were used to annotate all 5,009 notes as fall (FALL) or not fall

(nFALL) and a clinical expert (D) was used to rate the reliability of the other clinicians by ran-

domly selecting and annotating 10 notes out of every 1,000 annotated by the other clinicians. After
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training sets, the inter-rater and intra-rater reliabilities for the three clinicians had a Kappa score

above 95%. This annotated data set became the reference or “gold” standard for the classification

task.

In order to comply with Health Insurance Portability and Accountability Act (HIPAA) and

the local Institutional Review Board (IRB), the notes were cleansed of protected health informa-

tion (PHI) using an automated process. The final annotated data set included 1,151 FALL and

3,858 nFALL progress notes and was then divided into two stratified splits, 70% training (TRAIN)

and 30% testing (TEST).

4.4.2 Process

A combination of grammatical NLP and STM are used to create a classifier. This is compared to

a classifier created using just STM. Figure 9 shows the flow of data through this process and each

step is explained in further detail in the following sections.

Corpus

Grammatical

NLP
CMN CUIS

STM STMSTM

Structured 

TBD Matrix

Structured 

TBD Matrix

Structured 

TBD Matrix

ClassifierClassifierClassifier

Evaluation

Evaluation 
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Figure 9.: Study Process

A modified CONSORT flow diagram is used to show the reduction of the dataset through

the process. In this case, no notes were excluded from the dataset, but rather words/terms were

excluded throughout the process. See figure 10. These word/terms comprise common language.

50



5009 EHR Notes
comprised of >2.1 million tokens

0 Notes
~1.5 million tokens

5009 notes
539k CUIs

CUIs not predictive
excluded from model

CUIs predictive 
Included in model

Exclude (Cmn Lang)

NLP

Text Mining

Figure 10.: CONSORT Flow Diagram

NLP

For this project, a GATE pipeline was created using openNLP modules for basic parsing and cus-

tom components for negation and NE identification. The UMLS concept component was designed

to look up noun phrases in the SNOMED-CT source vocabulary of the Metathesaurus in which

slightly over 300,000 unique concepts were represented. Because many of the words related to

“fall” are verbs, this component was also configured to look up verb phrases as well. The compo-

nent uses the word(s) in the noun or verb phrase and looks them up in the Metathesaurus. If found,

they are annotated as a named entity (NE) and the appropriate properties are set. Specifically, the

beginning and ending point in which the NE exists within the document, the source vocabulary,

and the negation status are documented. In cases were the NE is comprised of multiple words, the

concept that described the most words was the only concept returned. For example, if the phrase

is “Regional Medical Center” several concepts can be identified; one for “regional”, “medical”,

and “center” as well as one for “medical center” and other combinations of those three words. To

avoid inflating word/concept counts, we chose to only use the concept that covered the most words

in the phrase. In this case, only the concept for “regional medical center” was used.

The negation component of the pipeline implemented the latest version of NegEx (Chapman

et al., 2001). The NegEx algorithm identifies whether a word is negated, possibly negated, or not

negated.
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A feature extractor component was created to extract the NEs and negation status from the

entire set of annotations. Within this component, the list of NEs for a note was parsed, and the

CUI for each one was written to a file along with the negation status. The negation status was con-

catenated to the end of the term. For example, if an NE was annotated as the CUI “C0027051” and

was annotated as negated, the feature extractor would convert that CUI to “C0027051 neg.” The

annotations for each note were written to a separate line within a file along with the note ID and

classification, fall or not fall.

Word Sense Disambiguation (WSD) also caused concept counts to be inflated. For exam-

ple, the term “cold” returns seven concepts from the Metathesaurus. Since text mining is not con-

cerned with context, it did not matter what concept was returned for term as long as it was consis-

tent throughout the corpus. The feature extractor component also took all of the CUIs and negation

status associated with a term and concatenated them with an underscore. Continuing with the ex-

ample “cold”, the following was used to represent this concept:

“C0024117nn C0719425nn C0009264nn. . . ”

By retaining all of the CUIs representing a term, the concepts can be explored as future research.

Another component was created that extracted the common language from each note to a

separate file. In essence, if the token was not identified as a concept it was identified as common

language. Just as with the concept file, the common language for each note was written to a sepa-

rate line within a file along with the note ID and classification.

Text Mining

Three different datasets were created from the original set of 5,009 notes. Each dataset contained

all 5,009 notes but was comprised of different components from the notes. The first was the origi-

nal medical text notes (TEXT), the second was the NLP extracted CUIs representing the NEs with

negation (CUIS) and the third was the common language (CMN). In addition, each was also di-

vided into three partitions: training (60%), validation (20%), and test (20%). Using SAS Enter-

prise Miner 6.1/Text Miner 4.2, models were built from the training partition of each dataset. Then

the weights of the terms were adjusted to improve the models using the validation partition. Fi-

nally, the models were evaluated against their respective test partition. Based on the evaluation

metrics for the validation set, the model with the best accuracy for each dataset was selected.
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Table 12: Term-by-Document Matrix
Doc 1 Doc 2 Doc 3

ankle 0 0 1
at 1 0 0
care 0 1 0
fell 1 0 0
health 0 1 0
home 1 1 0
patient 1 0 1
twisted 0 0 1
visited 0 1 0
yesterday 1 1 0

In basic terms, SAS parsed the documents and counted words, then assigned weights to

words in order to rank their predictability. A term-by-document frequency matrix is then created.

If the following were three documents:

Doc 1 - Patient fell at home yesterday.

Doc 2 - Home health care visited yesterday.

Doc 3 - Patient twisted ankle.

a term-by-document frequency matrix would be created from those three documents (see

table 12). Notice that the matrix is sparsely populated in that more than half of the matrix is pop-

ulated with zeros. With nearly 7,000 unique concepts extracted from the 5,009 documents, the

matrix would be quite extensive and presumably just as sparsely populated. Latent Semantic Anal-

ysis (LSA) was implemented using Singular Value Decomposition (SVD) and “roll-up terms”

were used to reduce the dimensions of the matrix (Albright, 2004). The phrase “roll-up terms”

in SAS refers to terms kept for prediction purposes. In this case, using the top 200 roll-up terms

and a maximum of 200 SVDs were found to provide the best results.

Several additional things can be done to improve the results of the text mining process. A

stop list can be created, which is a list of all of the possibly irrelevant words that might be found

in the document. When text mining the TEXT and CMN dataset, the standard SAS stop list was

used. This list is comprised of words such as articles, prepositions, and other non-predictive words.

Stemming, which is reducing words to their root form, was also performed on these two datasets.

For example “giving”, “given”, and “gave” can all be reduced to ‘give” (Lovins, 1968). Neither a
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stop list nor stemming was used on the CUIS dataset because they consisted of conceptual terms

and not actual words.

4.5 Results

Table 13 show the number of tokens comprising the data set before the NLP pipeline was exe-

cuted. Table 14 shows the number of tokens in the data set containing just the common language

(CMN) and the data set with just the CUIs (CUIS). Notice that the CMN and CUIS numbers do

not sum to the TEXT numbers. This is because some of the concepts represent multiple terms.

Table 13: Token Make-up of TEXT Data Set
TEXT

Total Avg/Note Min Max
FALL 183,666 535 16 3,656

TEST nFALL 462,865 399 5 3,885
Total 646,531 467

FALL 486,518 607 26 3,569
TRAIN nFALL 1,021,351 378 3 3,681

Total 1,507,869 492

Total 2,154,400 480

Table 14: Token Make-up of CMN and CUI Data Sets
CMN CUIS

Total Avg Min Max Total Avg Min Max
FALL 134,073 391 6 2,590 44,160 129 5 943

TEST nFALL 330,944 286 3 2,855 119,339 103 1 951
Total 465,017 338 163,499 116

FALL 357,889 446 13 3,054 114,441 143 6 663
TRAIN nFALL 732,966 271 1 2,657 261,105 97 1 909

Total 1,090,855 359 375,546 120

Total 1,555,872 348 539,045 118

Logistic regression models were created from the results of the text mining. Over 45 models

were used testing different weighting schemes, numbers of SVD factors and terms, regression se-

lection model and criteria, and other SAS settings. See Table 15 for the specifics for each dataset.
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Table 15: Text mining and regression settings

Setting TEXT CUIS CMN

SVD Resolution Low Low Low
Max SVD Dimensions 200 200 200
Freq Weight Binary Binary Log
Term Weight None None None
Num Rollup 200 200 200
Drop Other Terms No No No
Diff POS No N/A No
Select Model Stepwise Stepwise Stepwise
Technique Default Congra Default
Select Criterion Default Valid Misclass Default

Table 16: LR Comparison (%)

TEXT CUIS CMN % Diff

Accuracy 91.68 93.08 81.69 1.01%
F-Measure 81.86 85.10 56.69 2.25%
Precision (PPV) 82.22 86.59 52.48 3.91%
Specificity 94.72 95.99 86.53 1.08%
Recall (Sensitivity) 81.50 83.66 61.64 0.72%
NPV 94.48 95.00 90.34 0.55%

Table 16 shows the evaluation metrics, comparing the logistic regression models for TEXT, CUIS,

and CMN. The last column in the table shows the percent difference between the metrics for TEXT

and CUIS.

Table 17 shows the top 5 predictive terms from the model. The middle column shows the

terms from the model for TEXT. The right column shows the terms generated from the model us-

ing for CUIS. Notice that “visible” and “date” exist in both lists, however, they did not receive the

same ranking for each model. It was not until term 10 that the lists begin to differ greatly. These

results demonstrate that removing common language terms has no negative impact on the results

of text mining in order to classify these documents.

4.6 Discussion

The text mining process benefits from the NLP output with the addition of negation. If, for exam-

ple, every note had the phrase “fall,” text mining would not select this as predictive. On the other

55



Table 17: Top 5 Predictive Terms from Text Mining TEXT and CUIS

Rank TEXT CUIS

1 fall fall (C0085639)
2 date visible (C0205379)
3 visible date (C2348077)
4 therapy therapy (C0087111)
5 riskof riskof (C0035647)

hand, if 80% of the notes had “fall” and 20% of the notes had “didn’t fall,” that might be predictive

but since text mining tools do not typically associate negation with terms, it would just identify

“fall” in 100% of the notes and not use the term. By creating a single term made up of the NE and

the negation status, “C0085639 neg,” terms can be more precisely determined as predictive or not.

Since the inception of HIPPA, de-identifying health records before medical research can be

performed has become paramount. Tools exist for this purpose such as De-ID (website) and HMS

Scrubber (Beckwith et al., 2006). One research group has reported recall of 97% and precision of

75% in de-identifying EHRs (Neamatullah et al., 2008). By using NLP to extract only the CUIs

from EHRs, a side effect is that PHI is removed from the final dataset. A possible case where the

PHI is not removed is if a patient of clinician has a last name that is also a vocation such as Baker.

Baker could be identified as a CUI.

The baseline for this set of notes is approximately 77%. In other words, if all of the notes

were classified as nFALL, 77% accuracy would be achieved. As can be seen in Table 16, text min-

ing the common language resulted in slightly better accuracy, 81.69%. Our original assertion was

that there is a small amount of predictive information in the common language, which this result

suggests. However, by leaving this predictive information out, the accuracy of the model using

medically relevant terms (CUIS) does not suffer. In fact, it improves.

4.6.1 Error Analysis

85 documents from the test dataset were incorrectly classified by the model, 55 were Type I er-

rors and 30 were Type II errors. These documents were analyzed by a human and four categories

of sources of error surfaced. They included misspellings, clinician judgments in annotating, fall

history, and templates/grammar.
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Misspellings

Some of documents identified as Fall notes by the annotators used the term “feel”, “feal”, or “fal’

for “fell” or “fall.” Clinicians writing the documents can be in a rush and spelling is not their main

concern and rightly so. These accounted for six of the false negatives. The term “feel“ is used in

documents classified as Fall and NotFall to describe how a patient feels so this term is not a good

predictor. The model was able to accurately classify other notes containing these misspelled terms,

however, these six notes must not have enough of the other terms used in the model to be accu-

rately classified.

Clinician Judgments

Annotation judgments were made by the clinical annotators when classifying documents. For ex-

ample, “patient found unconscious on floor” or “wheelchair overturned with patient in it” were

judged by annotators that because of what happened, the patient must have fallen. None of the top

predictive terms were in these notes. These notes accounted for 12 false positives and 10 false neg-

atives. Because there was not a clear line separating what differentiated a FALL document from a

History of a Fall document, judgments were also made to classify these notes. A note containing,

“CC: patient fell two months ago and didn’t seek treatment. Complains of pain in rt ankle.” is not

clearly either of the classification categories. It could be classified as a History of a Fall and there-

fore a nFALL document because of the time frame from when the injury occurred. It also could be

classified as FALL document because this seems to be the first time the patient is seeking care for

the injury but it is not clear as to whether the fall was the cause of the injury.

Fall History

As mentioned previously, documents classified as a History of a Fall were not classified as FALL

documents. Of the misclassified documents, 30 of the false positives and seven of the false neg-

atives were classified as History of a Fall. Many of these documents contained the same types of

statements as FALL notes. For example, in many notes “follow-up“ was the only thing that differ-

entiated a FALL document from a History of Fall document. In the test dataset, there were a total

of 265 documents classified as History of a Fall and therefore nFALL. Of these, the model was

able to correctly classify 228 of the History of a Fall documents as nFALL.
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Templates/Grammar

Lastly, is that EHR text notes are rarely grammatically correct which makes it even more challeng-

ing to correctly identify sentences and parts of speech. It is not so much that they are grammati-

cally incorrect as it is that they contain clinician’s thought written as phrases rather than complete

correct grammatical sentences. Clinicians are rightly most concerned with giving veterans the best

care as quickly as they can. Because of this, they write notes using phrases and widely accepted

codes such as c/c for chief complaint. To complicate this is the use of templates and an aging EHR

system. The EHR system used by the VA is one of the oldest still being used and it stores the text

from notes in 80 character fields. This is a leftover from mainframe days. Because of this sentence

and part-of-speech tagging is challenging.

We currently use a regular expression sentence splitter that when all else fails, marks an end

of line as the end of the sentence. The reason for this is templates. A template within a note may

look like the following:

Stroke? Yes Heart Attack? No

If this template is parsed to end of line, then the appropriate negation assertion will be as-

sociated with the concept. In other words, the patient did have a stroke and did not have a heart

attack. In contrast, if there is also textual information within the same note and sentences span

multiple lines, negation can be detected incorrectly. For example:

Patient experienced loss of consciousness but did not

suffer a concussion.

This will be parsed into two sentence because there is nothing to denote a sentence on the

first line so the end of line will mark the end of the first sentence. This is because there is an end-

of-line character after “not.” The period on the second line will denote the entire second line as a

separate sentence as well. The problem caused by this is that “concussion” should be negated but

because the negation is on the previous line and in turn the previous sentence, it will be incorrect.

In other words, by marking sentences as the end of line if punctuation does not exist, template in-

formation will be correctly processed but textual entries will be incorrectly processed.

Another option for sentence marking is not to use the end of line to denote a sentence. This

causes problems of its own in that the template information will now be incorrectly annotated. The

“Yes” in the first example will now be associated with heart attack and nothing is associated with
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stroke so strokes assertion will be correct but heart attacks assertion will be incorrect. This method

does, however, correct the problem with sentences spanning multiple lines. In the second example,

“concussion” will be negated because both lines will be marked as a single sentence. Using this

method, the opposite results are achieved from marking sentences at ends of lines.

As far as we can determine, this problem is unique to the VAs VistA (Veterans Health Infor-

mation Systems and Technology Architecture) EHR system. The main reason is that the system

was originally developed decades ago and textual information could only be stored as a maximum

of 80 characters. More modern systems developed using RDBMS have larger fields for text. That

means an end of line does not appear unless someone actually presses return/enter.

4.6.2 Limitations

One limitation has already been mentioned previously. Templates cause issues with the NLP pro-

cess and resolving this is a large challenge. At this time, SAS Text Miner does not have cross fold

validation available. This or a similar method is necessary in order to test if the results are signif-

icant and not a result of the way the data was split. SAS also does not have Support Vector Ma-

chines (SVMs) available in Text Miner. Testing other models could provided interesting results. In

a concurrent study, regular expressions were able to achieve 91% accuracy with only a single rule

that detects “fall” or “fell” with 12 constraints to handle negation. In other words, FRIs are fairly

easy to detect. At this point, we are not sure this generalizes to other medical topics.

4.6.3 Future Work

The subject of the data for this study was falls and the source library, SNOMED-CT, was used in

identifying NEs from the text notes. Duplicating this experiment on other datasets with different

classifications is needed to generalize the results. A future study is also needed to determine which

source libraries to use in identifying NEs. Is it best to use all of the source libraries available in the

Metathesaurus or is it better to scale back and use only those relevant to the subject? For example,

if the study topic was Post Traumatic Stress Disorder (PTSD) would it be better to use the source

library DSM or let the Metathesaurus decide which NEs are relevant and use all of the available

source libraries? Additionally, our current results show an increase in all of the statistics listed in

table 16, however, future research will undertake cross-fold validation in order to determine sta-
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tistical significance between the performance measures from the models. Further analysis is also

needed to determine parts of speech for both the CUIS and CMN. As mentioned previously both

verb and noun phrases were used to locate concepts. An interesting analysis would be to compare

the results of NLP using exclusively verb phrases, exclusively noun phrases and the combination

used in this research.

4.6.4 Conclusion

This research described a way to reduce EHR text notes to only medically-relevant terms by us-

ing NLP to extract NEs from text notes. The results were used in text mining to classify the notes

as either FALL or nFALL and all of the evaluation metrics were slightly better than those for text

mining notes. This shows that important patterns are not lost by removing common language, ef-

fectively reducing the information to be processed and in turn maximizing efficiency. Since no

loss occurred, this extracted data can serve as a foundation for other data mining research such as

targeted information extraction and even clinical discovery.
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Chapter 5

Rule Mining Study

5.1 Abstract

This research explores a data/text mining-based approach to classifying textual progress notes

within the electronic health record (EHR). A multi-step process that involves natural language

processing, statistical text mining, association rule mining, and contrast sets is used to create

classifiers that can accurately classify progress notes. A dataset of 5,009 EHR clinical progress

notes (1,151 related to falls) was obtained from a Veterans Administration Medical Center1 and

annotated to indicate the presence or absence of fall-related injuries. An automated classification

process was developed by using a combination of customized, open source software that creates

a classifier comprised of the best combined rule sets. The preliminary results demonstrate that

the process does create reasonable classifiers, though not quite as good as our benchmark mod-

els based on statistical text mining. However, the resulting rule-based classifiers are easily inter-

pretable and can serve as a base for handcrafted expert refinements.

5.2 Introduction

Falls are an important health care issue especially among aging veterans. A history of a previous

fall is the single most important clinical indicator that identifies an elderly patient as high risk for

additional falls and targets them for fall prevention programs. However, information about fall-

related injuries (FRIs) in administrative databases has been found to be significantly under-coded,

thereby limiting information about a history of falls to clinicians (Luther et al., 2005).

Traditionally, rules have been used for two purposes, classification tasks and information

discovery. These rules can either be handcrafted by subject matter experts or created through an
1Funding for this research came from the Consortium for Healthcare Informatics Research, [HIR-09-007] HSR&D

Center of Excellence, James A. Haley Veterans Hospital, Tampa, FL. This report presents the findings and conclusions
of the authors and does not necessarily represent the Department of Veterans Affairs (VA).
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automated process. This research explores a data/text mining-based approach to classifying textual

progress notes within the electronic health record (EHR). A multi-step process that involves natu-

ral language processing, statistical text mining, association rule mining, and contrast sets is used to

create classifiers that can accurately classify progress notes.

Rules were created using an approach the modifies the process of creating association rules.

Figure 11 shows a high-level overview of the flow of data throughout this rule mining/classification

process. Each of these steps will be described in more detail in subsequent sections of this re-

search. Briefly, the progress notes are processed using a Natural Language Processing (NLP)

pipeline that extracts the medically relevant concepts from the documents. Concepts representing

the original progress notes are split into training and test data splits and within each, fall (FALL)

and not fall (nFALL). The rule mining process is run against the training data and contrast sets are

evaluated. The resultant rules are then used to classify the test split of data and the results are ana-

lyzed.

5.3 Background

In previous work (Jarman and Berndt, 2010, 2011), we showed that medical progress notes can

be separated into two types of language: specialized and common. The specialized language was

represented by Concept Unique Identifiers (CUIs) that were extracted from medical progress notes

using a grammatical NLP pipeline in conjunction with the Unified Medical Language System’s

(UMLS) Metathesaurus. Slightly better accuracy in classification prediction using Statistical Text

Mining (STM) was achieved using just specialized language (i.e., CUIs) compared to all language

in the progress notes. The previous study demonstrated that predictive information was not lost

by separating the two types of language from each other within the progress note that makeup the

data set. This study builds on our prior work by using the same data set and the extracted CUIs.

There are two basic approaches to machine learning: supervised and unsupervised. Super-

vised is used to classify based on a model built using pre-classified data whereas unsupervised is

used to cluster data or discover patterns within the data. There are many methods that can be used

to classify documents, some of which use rule based approaches. Decision tree induction is one

method whereby the process iteratively selects a set of attributes that most effectively splits the

sample data into subsets to create a classifier (Quinlan, 1993). Rule mining is another rule based

62



1.  NLP to 
Extract 
Concepts

Progress
Notes

3.  Association 
Rule Mining

TRAIN
FRI

TEST
FRI/not 
FRI

Frequent 
Item 
Sets

5.  Evaluate 
Contrast Sets

4.  Convert Freq 
Item Sets into 

Rules 

6.  Evaluate 
Rules

Classification 
Rules

Classification 
Rules

TRAIN
nFRI

3.  Association 
Rule Mining

Frequent 
Item 
Sets

2.  STM

Figure 11.: Flow of Rule Mining/Classification Process

approach and can be used in both supervised and unsupervised learning. Many use the terms asso-

ciation rules and classification rules interchangeably (Freitas, 2000). However, for the purposes of

this research, the aim of association rules mining is unsupervised pattern discovery, while classifi-

cation rules are used to classify data sets.

Association rule mining can be used to extract rules from a data set which can be used for

knowledge discovery (Agrawal et al., 1993; Agrawal and Srikant, 1994). An association rule con-

tains an antecedent and a consequent.The antecedent implies the consequent, where the antecedent

is a set of items that appear in the documents/transactions and the consequent also appears in the

same transactions/documents but does not exist in the antecedent. For example, customers that

buy beer and chips also buy diapers. “Beer and chips” together is the antecedent and diapers the
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consequent. One issue with association rule mining is how to limit the number of rules extracted.

Without limits, rules can be extracted that exist in a very few documents/transactions. The total

number of rules created can also be quite large, leading to information overload. The concepts of

support and confidence are used to constrain the rules that are surfaced. Support is used to retain

item sets that meet a minimum predefined pervasiveness. If support is set at 20%, only item sets

that exist in at least 20% of the documents/transactions are then retained. In other words, if sup-

port is set at 20%, then at least 20% of the customers at a store must buy beer, chips, and diapers

to qualify. Confidence is also used to constrain the rules retained. If minimum confidence is set at

30%, then 30% of the customers of the store that buy beer and chips, also buy diapers. Using these

two statistics, the number of rules can be reduced to a far more manageable number. An example

of pruning based on support and confidence follows.

Problem: Retain frequent item sets meeting at least 20% support. Table 18 shows a list of

item sets and item set 3 is pruned because it does not meet the minimum support of 20%.

Table 18: Example Item Sets

No Item Set Support (%)

1 Corned Beef, Cabbage 35
2 Beer, Chips, Diapers 20

******** Prune Below **********
3 Lunch Meat, Drier Sheets, Eye Liner 9

Problem: Retain rules meeting a minimum confidence of 30%. Table 19 show a partial list

of rules created from the retained items sets in table 18 (Item sets 1 & 2). Rules 4 and 5

are pruned because they do not meet the minimum confidence of 30%.

Researchers have used many approaches to creating classification rules (Li et al., 2001; Liu

et al., 1998; Zimmermann and Raedt, 2004). In general, rules are created where the antecedent is

the set of information that predicts the consequent or classification. Some automated methods have

achieved accuracy levels comparable to human crafted rule classifiers (Apte and Damerau, 1997).

In classification rule mining, the same item sets can be extracted and applied to multiple

classifications with differing support. These are known as contrast sets (Bay and Pazzani, 2001).
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Table 19: Example Rules

No Antecedent Consequent Confidence (%)

1 Corned Beef Cabbage 35
2 Beer, Diapers Chips 32
3 Beer, Chips Diapers 30

******** Prune Below **********
4 Chips Diapers 15
5 Beer Chips 12

It is necessary to identify the contrast sets in classification rule mining in order to create the most

accurate classifier. If an item set occurs in the positive classification data with similar support as in

the negative classification data, the rules created from this item set may not be useful in the clas-

sifier. On the other hand, a contrast set may have very high support in one classification and very

low support in the other classification. The rules created from this item set may be very helpful in

the classifier. Therefore, it is necessary to identify and analyze the contrast sets among frequent

item sets, looking for asymmeteries that are usedful in discriminating between classes.

5.4 Methods

5.4.1 Data Set

Cohort

The construction of the research data set started with identifying patients. There are three groups

of patients that make up this cohort. All of the patients in this cohort are patients from a single

hospital within the VISN 8 (Veterans Integrated Service Network) that were treated in fiscal year

2007. Table 20 lists the make up of the three groups. Group 1 consisted of patients with a rea-

son for visit code for treatment of an injury and an External Cause of Injury code (E880-E888),

commonly referred to as an E-code, listed as a secondary diagnostic code. Group 2 made up the

matched controls. They were selected from the pool of patients treated for similar injuries but did

not receive a fall-related E-code. For example, a patient who fell and broke her arm would have

received a reason for visit code for treatment of the broken arm and a fall-related E-code for a sec-

ondary diagnostic code, whereas a patient who broke his arm as a result of being hit would not

have received a fall-related E-code. These controls were matched based on facility, gender, type of
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Table 20: Cohort description
Group Reason for Secondary

Visit Code Dx Code
1 Injury E880-E888
2 Injury -
3 E880-E888 -

injury, and age. Two matched controls were identified for every patient in the original set.

Upon further examination, it was discovered that some patients had a fall-related E-code

as the reason for visit code but had no specific injury listed. These patients made up group 3 and

were also added to sample. Because the reason for visit was listed as the E-code, no matched con-

trols were used for these patients. This these groups resulted in a total of 453 patients.

Collection

All outpatient progress notes were collected for these patients using a 48 hour window around a

recorded visit to an outpatient clinic for an injury. This constituted an episode of care. A 48 hour

window was used for two reasons. First, most clinical notes are recorded immediately after the

clinical encounter. Second, if notes are not completed immediately, the Joint Commission on the

Accreditation of Healthcare Organizations requires they be completed within 48 hours. All notes

that represent an episode of care were collected even if they were not directly related to the care of

that injury. This resulted in a total of 5,009 progress notes.

Annotation and Partitioning

Three clinicians (A, B, and C) were used to annotate all 5,009 notes as fall (FALL) or not fall

(nFALL) and a clinical expert (D) was used to rate the reliability of the other clinicians by ran-

domly selecting and annotating 10 notes out of every 1,000 annotated by the other clinicians. After

training sets, the inter-rater and intra-rater reliabilities for the three clinicians had a Kappa score

above 95%. This annotated data set became the reference or “gold” standard for the classification

task.

In order to comply with Health Insurance Portability and Accountability Act (HIPAA) and

the local Institutional Review Board (IRB), the notes were cleansed of protected health informa-

tion (PHI) using an automated process. The final annotated data set included 1,151 FALL and
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3,858 nFALL progress notes and was then divided into two stratified splits, 70% training (TRAIN)

and 30% testing (TEST).

5.4.2 Process

Figure 11 shows the flow of data throughout this rule mining/classification process. The follow-

ing sections are numbered to correspond to the appropriate process in the diagram and provided

further explanation of that process.

1. Concept Extraction

As stated previously, the data set for this research was created and first used in a prior research

project. The details of process 1 in figure 11 are presented as part of this prior research and can

be reviewed in Jarman et al. (Jarman and Berndt, 2010). Not only were the concepts extracted

from the progress notes in this previous research but data splits were also created that were used

previously and in this current research. The data set of 5,009 progress notes was divided into two

stratified splits, 70% training (TRAIN) and 30% testing (TEST). TRAIN was further separated

into FALL and nFALL data splits as indicated by the human annotators. The result was 802 FALL

documents (TRAINFALL) and 2,705 nFALL documents (TRAINnFALL).

2. Rule Mining

The two TRAIN splits were the input into this next process (process 2 in figure 11) for rule min-

ing. The rules for this research were created using traditional association rule mining techniques in

that frequent item sets with a specified support were created (Agrawal and Srikant, 1994). These

frequent item sets became the antecedent of the classification rules. The consequent became the

document’s classification. In other words, if the frequent item sets were being created on the TRAINFALL

documents, then the consequent for those rules became the classification FALL.

RapidMiner 5.1 (Mierswa et al., 2006), a data and text mining application, was used for

the rule generation. RapidMiner code modules, called operators, were used to mine the docu-

ments and create a term-by-document matrix, where individual CUIs represented terms, for each

TRAIN split. From this matrix, frequent item sets were created for TRAINFALL with a support

of 40% or in other words, the item sets created existed in 40% of the documents. This generated
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42 frequent item sets comprised of 10 distinct concepts. The same process was performed against

TRAINnFALL using the same support with no item sets resulting. RapidMiner has a feature that

allows the system to reduce the required support until a specified number of item sets are created.

This was used until 50 item sets were created. The support used and the number of item sets to

be created were both selected to establish a manageable number of item sets for each split in this

initial analysis.

3. Contrast Sets

The frequent item sets from both TRAINFALL and TRAINnFALL were compared to identify con-

trast sets in process 3 in figure 11. Of the 42 item sets from TRAINFALL, 14 of them also existed

in TRAINnFALL. These contrast sets were identified but not removed at this stage of the analysis.

Pruning did not occur at this stage but rather after the rules had been built and tested. The reason is

that if one of the resultant rules from the contrast sets predicted FALL with high accuracy, perhaps

85%, and predicted nFALL with low accuracy, maybe 15%, it may be beneficial to keep the rule.

4. Rule Creation

In process 4 in figure 11, the classification rules were created from the 42 FALL frequent item

sets. The frequent item sets, individually, became the antecedent of each rule and the classifica-

tion, FALL, became the consequence of each rule. The resultant rules were then turned into reg-

ular expressions using GATE’s JAPE (Java Annotation Patterns Engine) (Cunningham, 2002).

Using these JAPE regular expressions, a GATE pipeline was created that first parsed each docu-

ment into tokens and sentences. Next, a JAPE transducer was used to execute each JAPE regular

expressions against the TRAIN documents. Lastly, a component was used that wrote to a text file,

the document ID and the results of the evaluation metrics for each rule for that document ID. This

would be used later in the analysis.

5. Rule Evaluation

Even though the GATE application allows for this pipeline to be executed against a defined cor-

pus of documents, GATE also has an API (Application Programming Interface) that allows for

other applications to be created accessing the functionality of GATE. An application was used that
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accessed the GATE API to automate the process of combining rules and evaluating them. The in-

dividual rules were first executed against the TRAIN split. Based on accuracy, the application de-

termined the best set of rules, which became the classifier. This classifier was then tested on the

TEST split. This occurred in process 5 in figure 11 and of which the details follow.

First, each rule was evaluated separately against the TRAIN split. Consider that a single rule

can be made up of a single CUI or multiple CUIs “anded” together. Next, the computer created

rule combinations iteratively based on the accuracy of each possible rule combination. For exam-

ple, the rule with the highest accuracy was selected and evaluated then the rule that provided the

highest accuracy in combination with the previous rule set was added and evaluated. It should be

noted that by adding rules and creating combinations the accuracy did not always increase. If there

was a tie in the accuracy of multiple rules, the first rule in the list was used.

Lastly, the set of rules was then pruned at the first combination determined the most accu-

rate. The result was a single combination of rules that was then executed against the TEST split

and evaluation metrics were collected.

5.5 Results

After the rule mining process was run against the TRAIN split, the 42 resultant frequent item sets

were comprised of 10 concepts which can be seen in table 21. Each singular CUI was itself a fre-

quent item set within the 42 and the support can be viewed in the table.

Table 21: Concepts in Itemsets

CUI Concept Support (%)

C0085639 Fall 90.9
C0030193 Pain 79.9
C0030705 Patient 71.8
C0391850 Pulse 55.1
C0013227 Medication 50.4
C0020517 Allergy 47.8
C0439505 Per Day 46.9
C0686904 Patient Needs 45.5
C1261322 Clinical Evaluation 44.5
C0277786 Chief Complaint 44.3

Table 22 shows the top eight predictive item sets from the association rule mining process.
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Evaluation metrics were collected for all 42 rules, however, only the top eight are expressed here

because they were the only ones used to create the rules with the highest accuracy.

Table 22: Highest Predictive Itemsets

Rule Concepts Support (%) Accuracy (%)

2 Fall & Pain 72.6 87.7
19 Fall & Per Day 42.4 82.0
10 Fall & Pain & Pulse 48.1 86.1
14 Fall & Pain & Time 44.8 82.6
23 Fall & Pain & Allergy 41.1 83.0
24 Fall & Pain & Medication 41.0 83.0
25 Fall & Patient & Pulse 40.5 84.4
5 Fall & Pain & Patient 55.2 84.3

The baseline accuracy for this data is 77%. In other words, if every document was classi-

fied as a nFALL document, 77% accuracy would be achieved. As can be seen in figure 12, the ac-

curacy does not drop below the baseline until after rule 17 is added. Table 23 shows the top four

predictive rule combinations. The accuracy of using just rule 2 is 87.7% on the TRAIN split. By

adding the rule that provided the next highest accuracy in combination with rule 2, rule 19, the

overall accuracy is increased to 88.0%. Rules can be redundant (Klemettinen et al., 1994). Redun-

dant rules do not add to or increase the predictive power of the classifier. In this case, the high-

est classification accuracy is achieved with the combination of rules 2 and 19. As can be seen by

the last two rule combinations in the table, adding subsequent rules does not change the accuracy.

Therefore, the rules below the line in this table were pruned.

Table 23: Top Predictive Item Set Combinations on TRAIN (%)

Item Set(s) Accuracy F-Measure Precision Recall Specificity

2 87.7 73.0 73.4 73.6 92.2
2 & 19 88.0 74.9 71.6 78.6 90.8

2 & 19 & 10 88.0 74.9 71.6 78.6 90.8
2 & 19 & 10 & 14 88.0 74.9 71.6 78.6 90.8
...

Based on these metrics, the combination of rule 2 and rule 19 classified with the best per-

formance and table 24 show the evaluation metrics of both rule 2 by itself and the combination of

rules 2 and 19 on the TEST data set.
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5.6 Discussion

One of the challenges of association rule mining is determining interesting or meaningful rules.

With classification rule mining this is not necessary because the desired result is the most accurate

classification not the most accurate classification based on meaningful rules. However, one of the

benefits to using the specialized language (CUIs) in the rule mining process is that much of the

language (common) that creates the uninteresting rules is removed. With that said, the two rules

providing the most accurate classifier are interesting and can be interpreted. Rule 2 contained the

concepts “Fall” and “Pain” and together should be a good predictor of a FRI document. Many of

the patients that fall are elderly and have blood pressure issues. If someone with blood pressure

issues gets up too quickly, they can become dizzy and in some cases black out. Progress notes that

mention “fall” and “pulse” might be referring to a similar issue. The rules containing “medication”

and “per day” might also be referring to the same issue.

None of the rules used in the classifier was one of the contrast sets. Therefore, no pruning of

contrast sets was needed.

Table 24: Top Predictive Item Set Combinations on TEST (%)

Item Set(s) Accuracy F-Measure Precision Recall Specificity

2 86.9 70.8 72.0 79.7 92.0
2 & 19 87.5 74.0 70.4 77.8 90.3

Figure 12.: Rule Accuracy
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As mentioned previously, this research utilizes a data set that was the result of a previous

research project. That project used STM to create a classifier to classify the FALL documents

and was able to do so with 92.22% accuracy. Even though the accuracy achieved by this current

project was not as good as that using STM, this was the first attempt using a rule mining approach

and with further efforts might achieve results as good if not better.

Another data set, created the same way, from another medical center was available for both

the prior and this research. The rules created on TRAIN and evaluated against TEST were also

evaluated against this other data set (TEST2). In the previous research, the final STM model trained

on TRAIN and evaluated on TEST was also evaluated on TEST2. A comparison can be seen in

table 25. The percent change between the two models between the two data set is similar for ac-

curacy and specificity, however, the difference in percent change for recall between the two data

sets is notably different. This shows that the generalizability of the rules is similar to STM where

accuracy is concerned, however, the false negative rate is notably greater.

Table 25: Evaluation Comparison of Different Data Sets

Data Set Classifier Accuracy (%) Precision (%) Recall (%) Specificity (%)

TEST Rules 87.5 70.4 77.8 90.3
STM 93.1 82.2 81.5 94.7
Percent Diff 6.4 16.8 4.8 4.9

TEST 2 Rules 87.3 58.0 50.6 93.6
STM 93.1 73.8 82.6 94.9
Percent Diff 6.7 27.2 63.2 1.4

5.6.1 Error Analysis

Document were classified by clinicians as FRI if a fall was the mechanism of the patients injury.

In other words, if the document said, “patient tripped and injured his ankle yesterday,” that doc-

ument was classified as a FALL document. On the other hand, if the document said, “patient has

fallen several times in the past year and is here today because she bumped her head getting out of

the car,” that document was classified as a history of a fall because the mechanism of her injury

was not a fall but it clear states she has a history of falling. During the human classification pro-

cess, most history of a fall documents were classified as nFALL. The goal of this study was to be

able to classify current falls. Because of this distinction, this classifier has more Type II errors than
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it would have if history of fall and FALL were combined. This is evidenced by the specificity de-

creasing as the accuracy increases. In the TRAIN split there were 127 history of fall documents

classified as nFALL. Of those 127 documents, 107 were classified incorrectly by the classifier as

FALL documents.

Upon reading the notes associated with errors, some specific patterns were found. Rule 2

contains the concept “Pain”. In many FALL notes, pain is mentioned frequently. Not only is the

pain mentioned but the location of the pain is also mentioned, such as hip pain or back pain, both

of which are unique concepts themselves. One improvement to the model would be to be able to

roll up all of the different pain related concepts to “pain”.

Another source of error is the misspelling of “fall” and “fell.” “Fall” was misspelled as

“feel”, “fal”, and “feal.” A human can read the note and tell by the context that “fall” was the

correct term even though the clinician mistyped the term. In many cases a spell checker would

not help because even though they misspelled “fall”, the misspelling was a correct word, such as

“feel.”

Many of the type II errors were documents that contained fall risk assessments and men-

tions of pain. The classifier incorrectly classified these documents as FALL because of the assess-

ments.

Some of the human classifications were based on judgment calls. For example, one docu-

ment does not contain the term “fall” or any of its other forms. The document mentions that the

patient slipped while exiting the bus and ruptured her achilles tendon. The document does contain

the term “pain.” Even though the note does not mention the patient falling, the annotator deter-

mined this injury was caused by a fall.

As with any human task, error is associated with it. A few of the misclassified documents

were actually correctly classified and the human annotator had misclassified the document. Out

of the 186 documents reviewed that were misclassified by the classifier, six were determined to be

incorrectly classified by the human annotators.

5.6.2 Limitations and Future Work

Frequent item sets contain sets of items that occur frequently, hence the name. They do not contain

items that do not occur or are omitted from the transactions/documents. One of the limitations of

73



the method used in this research is that constraints are not added to rules. For instance, to address

the problem mentioned above with history of fall documents, perhaps the concepts “History” and

“Fall” appear in nFALL documents but not in FALL documents. The combination of rules 2 and

19 might benefit from the addition of “but not History”. Future research will address this issue.

Because this was the first attempt at building a rule based classifier, a manageable number

of frequent item sets was used. Future research will use more traditional values for support which

in turn will create more frequent item sets and more rules. A tool that will convert the frequent

item sets into regular expressions will be created to make the larger number of item sets still man-

ageable.

The accuracy of the classifier developed could be the result of the data split. The same pro-

cess could be performed against different splits of the data. It might be interesting to compare the

resulting rules from multiple data splits. The same process could be performed against multiple

different splits of the data (i.e., x-fold cross validation) to provide a more robust measure of accu-

racy.

5.6.3 Conclusion

There are other methods for creating a classifier that might have better accuracy as well as pre-

cision and recall. Support vector machines (SVMs) can be used and are especially useful where

large variable sets exist. The problem is that using other methods, the resultant predictive model

cannot always be interpreted by a human. One of the benefits of creating a classifier with rules is

that the rules themselves are interpretable. Not only do rules as a classifier have the benefit of be-

ing easier to understand and interpret but there is also the added benefit of being able to potentially

improve the performance of the classifier by using handcrafted expert refinements.
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Chapter 6

Decision Tree Induction Study

6.1 Abstract

This research explored a data/text mining-based approach to classifying textual progress notes

within the electronic health record (EHR). The primary goal for this research was to create a clas-

sifier that accurately identified progress notes of patients being treated for a fall-related injury

during that episode of care. The secondary goal was to create a classifier that can be easily in-

terpreted. A multi-step process that involved Natural Language Processing (NLP), Statistical Text

Mining (STM), and data mining was used to create rule-based classifiers that accurately classify

progress notes. A data set of 5,009 EHR clinical progress notes (1,151 related to falls) was ob-

tained from a Veterans Affairs Medical Center and annotated to indicate the presence or absence

of documentation of the patient being treated for a fall-related injury during that episode of care.

A process was developed that used a combination of customized, open source software to create a

classifier comprised of a decision tree. The preliminary results demonstrate that the process does

create reasonable classifiers as well as production rules that are easily interpretable and can serve

as the basis for a clinical decision support system (CDSS).

6.2 Introduction

Falls are an important health care issue especially among aging veterans. A history of a previous

fall is one of the most important clinical indicators that identifies an elderly patient as high risk

for additional falls and targets them for fall prevention programs (Ganz et al., 2007). However,

information about fall-related injuries (FRIs) in administrative databases has been found to be sig-

nificantly under-coded, thereby limiting a clinicians access to information about a history of falls

(Luther et al., 2005).
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In health care, there are many uses of Knowledge Discovery and Data Mining (KDD), one

of which is to classify documents. Based on those document classifications, inferences can then be

made at different levels such as episode of care or patient. For example, if a document can be clas-

sified as documenting a fall related injury, an inference can be made that that patient is at risk for

a future fall. Surveillance systems as well as Clinical Decision Support Systems (CDSS) are ex-

amples of systems within health care that are built using classification methodologies. In general,

a “black box” approach for a classifier, in which predictors are not specified to users, is acceptable

in a surveillance system. Accuracy of the classification is the most important concern and how the

classification was achieved is not as important. In CDSSs, the accuracy of the classifier is impor-

tant but so is the interpretability of the resultant model. The use of Decision Tree Induction (DTI)

in CDSSs has become popular because it can have acceptable levels of accuracy in classification

tasks while at the same time creating human understandable rules (Eom et al., 2008). Table 26

shows a sampling of studies that have analyzed the use of decision trees in CDSSs.

Table 26: CDSS Decision Tree Studies
Author Medical Topic

Murphy (Murphy, 2001) Breast Cancer Diagnostic Errors
Qu et al. (Qu et al., 2002) Prostate Cancer Detection
Won et al. (Won et al., 2003) Detection of Renal Cell Carcinoma
Geurts et al. (Geurts et al., 2005) Classification of Proteomic Fingerprints
Olanow et al. (Olanow and Koller, 2007) Management of Parkinson’s Disease

The primary goal for this research was to create a classifier that accurately identified progress

notes of patients being treated for a fall-related injury during that episode of care. The secondary

goal was to create a classifier that can be easily interpreted. A hybridized approach was used to

create this classifier. First, a grammatical Natural Language Processing (NLP) pipeline was used

to extract the medically relevant terms from progress notes. These medically relevant terms rep-

resenting the progress notes were then fed into a Statistical Text Mining (STM) process which

provided structure to the text. Next, this structured version of the data was fed into a DTI process

which built the classifier. Evaluation metrics were gathered to evaluate the model and provided

guidance in pruning the tree. The resultant pruned tree model was then used to classify testing data

and the results were analyzed. Finally, production rules were created from the resultant tree which

can be interpreted by clinicians.
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6.3 Background

In previous work (Jarman and Berndt, 2010, 2011), we showed that medical progress notes can

be separated into two types of language: specialized (medically relevant) and common, without

losing predictive information. The specialized language was represented by Concept Unique Iden-

tifiers (CUIs) that were extracted from medical progress notes using a grammatical NLP pipeline

in conjunction with the Unified Medical Language System’s (UMLS) Metathesaurus. Slightly bet-

ter accuracy in classification prediction using Statistical Text Mining (STM) was achieved using

just specialized language (i.e., CUIs) compared to all language in the progress notes. The previous

study demonstrated that predictive information was not lost by separating the two types of lan-

guage from each other within the progress notes that make up the data set. This study builds on

this prior work by using the same data set and the extracted CUIs.

6.3.1 Decision Tree Induction

There are many decision tree induction algorithms. They all have the same basic idea in that the

tree is made up of decision nodes and leaf nodes. A decision is made at the decision node and the

response is either positive or negative, assuming a binary decision tree. Based on that response,

the next step in the tree is either another decision node or a leaf node. The leaf node represents a

classification. Figure 13 is a graphical representation of an example decision tree. The flu symp-

toms fever, body aches, head ache, and nausea represent decision nodes. The flu and not flu nodes

represent leaf nodes.

The decision tree induction process is traditionally performed in two steps. In the first step,

an induction process constructs the decision tree. In the second step, the decision tree is “pruned”

or reduced in order to prevent over-fitting and to make the tree more interpretable by a person.

One of the earliest works in creating a tree of decisions based on a set of cases is Hunt’s Experi-

ments in Induction (Hunt et al., 1966). In this work, they implemented several Concept Learning

Systems (CLSs).

Independent of Hunt’s work, other researchers developed similar methods. Specifically,

Friedman’s work was the underpinnings of both the CART (Classification and Regression Trees)

system and Quinlan’s ID3 algorithm (Friedman, 1977; Breiman et al., 1984; Quinlan, 1986). C4.5,

a descendant of ID3, is a set of programs that create classification models based on decision tree
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Figure 13.: Example Decision Tree

induction and the main program is also referred to as C4.5 (Quinlan, 1993). The decision tree in-

duction algorithm selected for this research is based on the C4.5 algorithm.

To correctly apply C4.5 to a classification task, there are some key requirements concerning

the data and the classification task itself. These requirements are described in table 27 (Quinlan,

1993).

Table 27: C4.5 Requirements

Requirement Description

Attribute-Value
Description

Attributes must be consistent among the data and must not vary
from one case to another.

Predefined
Classes

Categories to which cases are assigned must have been previously
established.

Discrete Classes Classes sharply delineated. A particular case either does or
doesn’t belong to a class. There must be more cases than classes.

Sufficient Data A detailed classification model usually requires hundreds or even
thousands of training cases.

“Logical” Clas-
sification Mod-
els

Models build decision trees or sets of production rules only.
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Decision Selection

One way DTI algorithms differ is in the way they select the decision nodes. Hunt suggested that

Information Theory could be used to determine this (Hunt et al., 1966). CART use the Gini index

to derive the splitting criterion at each decision node (Breiman et al., 1984). The Gini index mea-

sures inequality or in this case how often a case would be incorrectly classified if it was classified

based on the distribution of classes among the training cases. ID3 uses information gain from In-

formation Theory to evaluate a splitting criterion. Using information gain as the criterion has a

strong bias in favor of tests with many outcomes. To alleviate the bias, Quinlan uses gain ratio in

C4.5, which is robust and gives a better choice of tests than gain criterion (Quinlan, 1988).

Each decision node in the tree has “costs” associated with it. Traversing 10 nodes to clas-

sify a case is more “expensive” than traversing five nodes to classify a case. The goal is to select a

“cheap” tree but not at the expense of a low classification rate.

Once the tree is constructed, a case is classified by starting at the root and traversing the

tree, responding to decision nodes until a leaf is reached. Evaluation metrics are collected in order

to make decisions on tuning the tree for better performance.

6.3.2 Pruning

A tree which is constructed until a leaf node represents a single class, or in other words no false

positives or false negatives, might over fit the data on which it was trained causing a higher error

rate when used to classify unseen test cases. This could also potentially be an “expensive” tree. In

addition, such an “expensive” tree may be too large to be interpretable by a person. This is where

tree pruning comes into play.

The idea in pruning a tree is to remove decision nodes in the tree that do not contribute to

the classification accuracy or will reduce the error rate on the unseen data. This creates a less com-

plex tree which in most cases is more easily understood by a human. The problem is how does one

base decisions on unseen data? There are two schools of thought on pruning.

• Deciding not to divide any more (stopping). The problem with this method is you may stop

dividing while some benefit may still exist in dividing or you may stop too late where the tree

is barely simplified (Breiman et al., 1984).
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• Removing some of the decision nodes after they have been built. The problem with this method

is that you have already incurred the “cost” of building decision nodes that will be discarded.

Also, how do you know when to stop pruning?

C4.5 uses the second method and constructs an over fit tree then prunes it back (Quinlan,

1993). The “cost” of building an over fit tree is offset by the benefits of exploring the entire tree

before pruning it.

These two methods of pruning do not address the problem of lowering the error rate on un-

seen data. Decision nodes cannot be removed to reduce the error rate on training data because that

is the exact reason they were added to the tree. There are two methods of predicting the error rate.

• Reserve a small set of data from the training data. In other words, if the original data set was

spilt 70%/30% (training/test), split the 70% into two more splits. Use it to calculate error rates

and make pruning decisions based on this set. The disadvantage with this method is that data

may be scarce and the training data will be even smaller by setting aside a subset. One way

around this is to use a cross validation approach.

• Use the entire training set to train the model and calculate predicted error rates (resubstitution

error) of the test data set based on the training set to make pruning decisions (Breiman et al.,

1984). This is referred to as pessimistic pruning and is the method used in C4.5.

If a specific leaf node covers N training cases and covers E of them incorrectly, then the

resubstitution error rate is E/N . Pessimistic pruning uses a confidence interval along with the re-

substitution error rate to calculate the upper limit on the probability. This upper limit becomes the

predicted error rate and it is this error rate that is used to decide whether to prune a node or not.

Quinlan suggests in his book, ”...this does violence to statistical notions of sampling and confi-

dence limits, so the reasoning should be taken with a large grain of salt (Quinlan, 1993).” With that

said, this method has produced acceptable results.

There is a stream of research in discovering ways to improve existing pruning methods

and new ways to implement pruning techniques (Mansour, 1997; Mehta et al., 1995; Rastogi and

Shim, 2000). Another study designed a pruning strategy based on minimizing loss rather than min-

imizing error (Bradford et al., 1998).
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6.3.3 Production Rules

A graphical depiction of a tree can give a person an at-a-glance basic understanding of the tree.

The person can start at the root and traverse the tree by making decisions at each node until a leaf

node is reached. Another way to express the tree is using a set of production rules. Production

rules can give a person further understanding of tree. For instance, what if a clinician was only

concerned with the portion of the tree that classified the positive cases? The clinician can be pro-

vided with the production rules that result in positive classifications, which may provide some in-

sight.

In the example decision tree in figure 13, there are two paths through the tree that result in a

false classification and three paths that result in a true classification. These individual paths result

in production rules (Quinlan, 1987). A rule is comprised of an antecedent and a consequent and

can be worded as an “If Then” statement. The “If” portion of the rule is the antecedent and the

“Then” portion of the rule is the consequent. Take the rule “If fever=true and body aches=true and

nausea=true Then the class is flu” for example. The antecedent is the conjunction of the decision

nodes for a specific path and the consequent is the leaf node for that path. An entire tree can then

be represented by a number of rules that matches the number of leaf nodes. The tree in figure 13

can be represented by five rules because there are five leaf nodes.

There is a stream of research that investigates these rules and pruning them based on indi-

vidual error rates. This is beyond the scope of this project. The rules for this project were used

for the purpose of representing the tree and eventually giving clinicians additional insight into the

classifier.

6.4 Methods

6.4.1 Data Set

Cohort

The construction of the research data set started with identifying patients. There are three groups

of patients that make up this cohort. All of the patients in this cohort are patients from a single

hospital within the VISN 8 (Veterans Integrated Service Network) that were treated in fiscal year

2007. Table 28 lists the make up of the three groups. Group 1 consisted of patients with a rea-
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Table 28: Cohort description
Group Reason for Secondary

Visit Code Dx Code
1 Injury E880-E888
2 Injury -
3 E880-E888 -

son for visit code for treatment of an injury and an External Cause of Injury code (E880-E888),

commonly referred to as an E-code, listed as a secondary diagnostic code. Group 2 made up the

matched controls. They were selected from the pool of patients treated for similar injuries but did

not receive a fall-related E-code. For example, a patient who fell and broke her arm would have

received a reason for visit code for treatment of the broken arm and a fall-related E-code for a sec-

ondary diagnostic code, whereas a patient who broke his arm as a result of being hit would not

have received a fall-related E-code. These controls were matched based on facility, gender, type of

injury, and age. Two matched controls were identified for every patient in the original set.

Upon further examination, it was discovered that some patients had a fall-related E-code

as the reason for visit code but had no specific injury listed. These patients made up group 3 and

were also added to sample. Because the reason for visit was listed as the E-code, no matched con-

trols were used for these patients. This these groups resulted in a total of 453 patients.

Collection

All outpatient progress notes were collected for these patients using a 48 hour window around a

recorded visit to an outpatient clinic for an injury. This constituted an episode of care. A 48 hour

window was used for two reasons. First, most clinical notes are recorded immediately after the

clinical encounter. Second, if notes are not completed immediately, the Joint Commission on the

Accreditation of Healthcare Organizations requires they be completed within 48 hours. All notes

that represent an episode of care were collected even if they were not directly related to the care of

that injury. This resulted in a total of 5,009 progress notes.

Annotation and Partitioning

Three clinicians (A, B, and C) were used to annotate all 5,009 notes as fall (FALL) or not fall

(nFALL) and a clinical expert (D) was used to rate the reliability of the other clinicians by ran-
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domly selecting and annotating 10 notes out of every 1,000 annotated by the other clinicians. After

training sets, the inter-rater and intra-rater reliabilities for the three clinicians had a Kappa score

above 95%. This annotated data set became the reference or “gold” standard for the classification

task.

In order to comply with Health Insurance Portability and Accountability Act (HIPAA) and

the local Institutional Review Board (IRB), the notes were cleansed of protected health informa-

tion (PHI) using an automated process. The final annotated data set included 1,151 FALL and

3,858 nFALL progress notes and was then divided into two stratified splits, 70% training (TRAIN)

and 30% testing (TEST).

6.4.2 Process

The process used to create the classifier is a hybrid approach consisting of NLP, STM, and DTI.

The NLP and STM were discussed in our previous research mentioned above, therefore, the de-

tails of those processes will not be discussed here (Jarman and Berndt, 2010, 2011). Instead, the

focus will be on the DTI process. Figure 14 shows the flow through this process. The numbered

sections below correspond to the numbered steps in the diagram and further describe the process.

GATE (General Architecture for Text Engineering) was used for the NLP portion of the pro-

cess (Cunningham, 2002). RapidMiner 5.1 (Mierswa et al., 2006), an open source data and text

mining application, was used for the STM and DTI processes. RapidMiner code modules, called

operators, were used to mine the documents and create a term-by-document matrix, where individ-

ual CUIs represented terms. Other operators were used to implement the DTI process which was

based on C4.5. 10 fold cross validation was also used in the model building process. The average

accuracy of the 10 folds was used during the model building process to determine which model to

use in subsequent steps.

Step 1. Concept Extraction

As stated previously, the data set for this research was created and first used in a prior research

project (Jarman and Berndt, 2010). Using a grammatical Natural Language Processing (NLP)

pipeline, the concepts were extracted from the progress notes along with each concepts assertion

status, either negated or not negated. The result is a set of CUIs, or medically relevant terms, that
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Figure 14.: Flow of Decision Tree/Classification Process
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Table 29: Term-by-Document Matrix
Doc 1 Doc 2 Doc 3

ankle False False True
care False True False
fell True False False
health False True False
home True True False
patient True False True
twisted False False True

represents each progress note.

Step 2. Statistical Text Mining (STM)

Most of the time, one thinks of decision trees being built from structured data or in other words

column row values from a database. In this case, the data is unstructured. Each note contains a set

of CUIs and the number of CUIs representing each note varies from note to note. In order to apply

structure, the data set was processed using STM. The result was a term-by-document matrix. Bi-

nary term occurrence was used to populate the vectors within the matrix. In other words, True rep-

resented the presence of a term in a specific document and False represented the lack of that term

in a specific document. Table 29 shows an example of a term-by-document matrix. This matrix

provides structure for three documents. Using binary term occurrence, regardless as to whether a

term exists once or many times in a document, True is the value for the term for a specific docu-

ment.

The handling of missing data is a challenge in data mining. There are many ways to deal

with this challenge, however, the structure supplied by the term-by-document matrix also provides

a solution for how to handle missing data. Refer back to the example matrix in table 12. More

than half of the matrix contains “False” as a value. In essence, these are missing values. The term

“ankle” becomes a variable to be used in the decision tree induction. It only exists in Document

3, therefore, there would be missing data for this variable for Documents 2 and 3. By using STM

along with binary term occurrence, the value “False” for the variable “ankle” for Documents 2 and

3 provides an accurate value which represents a lack of the term’s existence.

The resulting term-by-document matrix contained 6,250 terms which became the attributes

to be used in the tree induction process. Terms occurring in the documents once were removed
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from the matrix and are not included in the 6,250. This process was used in our previous studies as

well.

Step 3. DTI

Since the primary goal of this research was to create an accurate classifier, the trees created by the

induction process were evaluated on accuracy. The models were created using the TRAIN portion

of the data set. After creating several models, each was evaluated and judged on its accuracy. The

model with the best accuracy was selected and then pruned to make it more understandable by a

person. Multiple steps were used to create this model. A description of this process and the steps

used follows.

Step 3a. DTI - Criterion

The first step was to decide what criterion was to be used for the selection of the attributes and

splitting decisions. Even though C4.5 traditionally uses Gain Ratio, RapidMiner’s implementation

allows other choices. Several models were built and the model with the best accuracy used Gain

Ratio. Table 30 shows the evaluation metrics for the TRAIN partition of the data set.

Table 30: Evaluation Metrics for Best Model All Terms (%)
Metric TRAIN

Accuracy 93.0
Precision 81.7
Recall 89.5
Specificity 94.1
F-Measure 85.4
NPV 96.8

Step 3b. DTI - Reduce Terms

The next step in the model building process was to scale back the number of terms/attributes used

in the model. With 6,250 unique concepts/terms extracted from the 5,009 documents, the term-

by-document matrix would be quite extensive. The model building process would have to decide

which of those 6,250 variables/attributes would be used in the decision nodes. By reducing the
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dimensions of the matrix, the model building process is also reduced. Several models were con-

structed adjusting the number of attributes used {50, 100, 150, 200, 300, 400, 500, 1,000, 2,000,

3,000, 4,000, 5,000, 6,000, 6250}. To determine which terms to use, the STM process was ad-

justed. Before populating the term-by-document matrix vectors with binary occurrence values,

gain ratio was used to determine the top terms from the documents. The matrix was then con-

structed using these top terms and then converted to binary occurrences, and the model with the

best accuracy used 400 terms. Figure 15 shows the accuracy of the models starting with 50 terms

and ending with using all of the terms. There is a relatively large jump in accuracy from 50 terms

to 100 terms but after that, the change is minimal.

Figure 15.: Model Accuracy Based on Terms Used

Step 3c. DTI - Adjust Minimum Leaf Size

To avoid over fitting the data, the minimal size of a leaf was then adjusted. The lowest leaf size

tested was 4 and the largest 15. The results can be seen in figure 16. As can be seen from the fig-

ure, the difference in accuracy between the models is minimal. The best accuracy was achieved

with a minimal leaf size of 8, 10, and 12. When the trees are pruned, the larger the leaf size the

more aggressive pruning will be. The potential exists to remove more detail and more cases from
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the tree by pruning leaves with 12 cases rather than 8 cases. It was for this reason that the model

selected to use in the next step had a minimal leaf size of 8. Table 31 shows the evaluation metrics

from this resultant model.

Figure 16.: Model Accuracy Based on Minimal Leaf Size

Table 31: Evaluation Metrics for Best Model Minimal Leaf (%)
Metric TRAIN

Accuracy 93.3
Precision 82.2
Recall 90.0
Specificity 94.2
F-Measure 86.0
NPV 97.0

Step 3d. DTI - Prune

The model selected so far had the best accuracy of all of the models tested, however, the second

goal of the research had not yet been addressed. Not only was the model supposed to be the most

accurate but also be understandable or interpretable by a human. The resultant model had four de-

cision nodes and five resulting production rules. In general, trees are made more understandable

by pruning. The tree generated at this point was already understandable. Figure 17 shows the re-
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sulting tree. The modeling process used the actual CUIs but in the figure, the concept terms are

used to make it more easily read.

Falls

Injury

At risk 
for falls

Slipping

nFall Fall Fall

nFall Fall

= false

= false = false

= false = true

= true

= true= true

(17, 223) (13, 5)

(699, 149)(12, 2)(61, 2326)

(Fall, nFall)

Figure 17.: 4 Level Decision Tree

The reason the tree was relatively small was based on the minimal leaf size decision made

in the construction process. Even though pruning was not required on the tree that resulted from

the classifier, RapidMiner allows for both pruning methods discussed earlier. The first is to start at

the root and prune everything down from a specified level. The second is to prune from the bottom

of the tree up.

The first method, pruning everything from a specified node down, was used to create a tree

that was limited to a specified depth. Specifically, a one-level or “stump” tree was created using

this method (Iba and Langley, 1992). This one-level tree split on the CUI representing “fall” and

achieved 87.2% accuracy on TRAIN data. From there, levels were added to the tree and the evalu-

ation metrics were collected. Table 32 shows some of these metrics for the models. The tree being

evaluated only had four levels so no further levels could be added.
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DTI - Production Rules

As mentioned previously, the number of production rules corresponds to the number of leaf nodes.

In the final pruned model there are five leaf nodes and thus five production rules. The rules follow:

• If Falls = True and At risk for falls = True and Injury = True then class is Fall

• If Falls = True and At risk for falls = False then class is Fall

• If Falls = False and Slipping = True then class is Fall

• If Falls = False and Slipping = False then class is nFall

• If Falls = True and At risk for falls = True and Injury = False then class is nFall

The first three rules could be provided to a clinician to enable them to gain some insight into

the classifier.

Table 32: Pruned Trees Eval Metrics (%)
Levels Accuracy Prec Recall Specif

2 87.2 65.9 90.9 86.1
3 93.0 82.4 88.4 94.4
4 93.3 82.2 90.0 94.2

The second method, prune from the bottom up, is used to reduce the levels of a complex

tree. Since the tree pruned with the first method is already relatively shallow, this method was not

needed.

6.4.3 Results

After selecting the model that provided the best accuracy and pruning the resultant tree, the TEST

data partition was then run against the model and the evaluation metrics were collected. In addi-

tion, another data set, created the same way, from three other medical centers was available from

the prior research. The model created on TRAIN and evaluated against TEST was also evaluated

against this other data set (TEST2). In the previous research that constructed the data sets, the final

STM model trained on TRAIN and evaluated on TEST was also evaluated on TEST2. Table 33
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Table 33: Evaluation Comparison of Different Data Sets (%)
Stat TEST TEST2

DTI STM DTI STM
Accuracy 93.7 93.1 90.8 90.1
Precision 94.3 86.6 77.2 75.8
Recall 97.4 83.7 71.0 66.9
Specificity 82.6 96.0 95.3 95.2
NPV 91.6 95.0 93.6 92.8
F-measure 95.8 85.1 74.0 71.1

Figure 18.: % Difference Between Decision Tree and STM Classifiers
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shows some of the evaluation metrics for the two classifiers on the two different data sets. Figure

18 graphically shows the percent difference between the two classifiers on the two data sets.

The baseline accuracy for this data (TEST and TRAIN) is 77.2%. In other words, if every

document was classified as a nFALL document, 77.2% accuracy would be achieved. The accuracy

of the final model was 93.7% as can be seen in table 25. A χ2 test was performed to test the sig-

nificance of the difference between the two results (χ2 = 164.4, p < 0.001). Accuracy was the

metric used to select the model along each step of the process. Other metrics could have been used

but their values were such that the same model building decisions would have been made, result-

ing in the same final model.

There was no significance in the difference in the accuracy of the STM versus the DTI

model for either TEST (χ2 = 0.4, p > 0.1) or TEST2 (χ2 = 0.03, p > 0.1). However, the

resultant model from the DTI process was much more interpretable, where as the model from the

STM process would be nearly impossible for a human to interpret.

6.5 Conclusions

6.5.1 Error Analysis

One of the main sources of error is the misspelling of “fall” and “fell.” “Fall” was misspelled as

“feel”, “fal”, and “feal.” A human can read the note and tell by the context that “fall” was the

correct term even though the clinician mistyped the term. In many cases a spell checker would

not help because even though they misspelled “fall”, the misspelling was a correct word, such as

“feel.” This accounted for a large portion of the percent difference between the STM and the DTI

classifiers. The STM model can identify other patterns in addition to “fall.” That way, when “fall”

is misspelled, those other patterns enable the STM model to still correctly classify a case.

The primary goal of this study was to identify documentation of the treatment for a fall-

related injury during that episode of care. Documents were classified by clinicians as FALL if a

fall was the mechanism of the patient’s injury. In other words, if the document said, “patient fell

and injured his ankle yesterday,” that document was classified as a FALL document. Just the mere

mention of the word fall did not guarantee a note would be classified as FALL. For example, if a

document contained, “patient has fallen several times in the past year and is here today because

she bumped her head getting out of the car,” that document was classified an nFALL because the
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mechanism of her injury was not a fall even though it clearly states she has a history of falling.

This category of documents, nFALL using fall terms, was the source of many Type I errors. In the

TEST partition, of the 66 false positives, 30 of the cases fell into this category of annotations.

A few of the false positives were due to motor vehicle accidents being incorrectly classi-

fied by the model as a fall. In one note, the patient was “...thrown from a golf cart and fell on the

ground.” Another note stated, “... the patient fell off his motorcycle.” When the annotation schema

was created, it was agreed upon not to classify motor vehicle accidents as falls.

Some of the human classifications were based on judgment calls. A portion of the cases

considered judgment call classifications contain a form of the term “syncopy”, the medical term

for fainting. The annotators made the judgment that if a person suffered a syncope spell and was

found on the floor, they fell when they lost consciousness. As can be seen from the decision tree,

the term syncope does not occur frequently enough to be included in the tree. Most of these cases

fell into the path down the left side of the tree in figure 17. The rule for this path was If Falls =

False and Slipping = False then class is nFall and this rule resulted in the largest number of false

negatives.

Some of the false positives were due to the term “fall” existing in the note but the term had a

different meaning. For example, some notes contained, “...patient fell asleep...” or “... patient was

seen by Dr XX last fall...” Improving the NLP pipeline, specifically by adding a more effective

word sense disambiguation component would help in classifying these cases.

6.5.2 Future Work

This is but one method of creating a rule-based classifier. Other methods include handcrafting

rules as well as creating automated classification rules. Future work will examine these other

methods and compare the overall accuracy as well as an economic analysis examining costs for

these different methods.

For this initial research, classifying fall-related notes was a fairly straightforward target. As

mentioned previously, just splitting on the concept “Falls” accurately classifies 87% of the cases.

Now that we have a methodology for creating decision trees, it needs to be further tested on more

complex medical targets.

The accuracy of the model is strongly dependent on the accuracy of the training data. In this
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case the classification of the training data is adequate, however, the accuracy of the NLP process

used to extract the CUIs can be improved.

Binary term occurrence was used to populated the term-by-document matrix vectors for

this research. Other weighting schemes exist and need to be explored to determine if they help in

creating a better classifier.

6.5.3 Concluding Remarks

Currently, there is an initiative to implement EHR systems across the US. The VA Veterans Health

Administration is the largest health care system in the US and exclusively uses an EHR and has for

several years. Being able to parse through these large amounts of data and being able to provide

clinicians information from the EHR is the next step in this initiative. CDSSs not only require ac-

curacy but also a human interpretable classifier for clinicians to take full advantage of the system.

Other classifying methods such as Support Vector Machines (SVMs) can be used and are espe-

cially useful where large variable sets exist, however, the resultant predictive model can seldom

be interpreted by a human (Burges, 1998). One of the benefits of creating a rule-based classifier is

that the rules themselves are interpretable. The method evaluated in this research is an approach

that used NLP, STM, and DTI technologies to create an accurate, rule-based classifier.
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Chapter 7

Conclusion

This dissertation has two main research questions.

• Can information (specialized language) be extracted from clinical progress notes that will rep-

resent the notes without loss of predictive information?

• Can classifiers be built for clinical progress notes that are represented by specialized lan-

guage?

These questions were addressed in three related experiments. The first experiment addresses

the first research question by separating the specialized language in a progress note from the com-

mon language and then building a classifier to answer the question. The second research question

is addressed by two approaches, each of which use the resulting data set of specialized language

from the first experiment. These two approaches also address the second question by building rule-

based classifiers.

7.1 Research Question 1

The first experiment developed a grammatical NLP process to extract the medically relevant terms

from medical progress notes and then used STM to build a classifier to show that there was no

loss of predictive information in separating the medically relevant terms from the common lan-

guage. This was the main contribution of this experiment and it informs the two approaches that

address research question two. Because of the importance of this finding, two figures from that

experiment have been included again in this chapter. Figure 19 shows the breakdown of medi-

cally relevant terms compared to common language. The important idea this figure presents is that

progress notes are comprised of medically relevant terms and common language and the ratio for
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Figure 19.: Breakdown of Terms

this particular data set is approximately 1:3. Even more importantly, the majority of predictive in-

formation is contained within the medically relevant terms, with a very small amount of common

language that also contains some predictive information, labeled as Predictive Common Language

in the figure. The medically relevant terms in the pie chart (figure 19) reflect the extent of coverage

in the controlled vocabulary. This is certainly domain specific and in some ways is a measure of

vocabulary quality.

The second figure, figure 20, shows the accuracy of the STM classifiers. Three important

points are shown with this figure. First, the classifier using just the medically relevant terms was

more accurate on this data than either the entire text from the progress notes or the common lan-

guage from those same notes. This suggests that accurate classifiers can be built using just the

medically relevant terms extracted from medical progress notes. This also suggests that by ex-

tracting just the medically relevant terms that perhaps some noise may also be removed from the

data. Secondly, is that a very small amount of common language from the previous figure, labeled

as Predictive Common Language, suggests that there is some predictive information in the com-

mon language. The results in figure 20 support this assertion. The accuracy of the classifiers using

any of the three data partitions is better than the baseline of 77.2%. The small wedge in figure 19

matches to the part of the common language bar between 77.2% and 81.7% in figure 20. Thirdly,
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Figure 20.: Accuracy of Text, Medically Relevant Terms, and Common Language

even though the common language contains some predictive information, no loss in classifier ac-

curacy occurred by removing this information. Excluding this predictive information contained in

the common language does not reduce the performance of the model but instead actually increases

the performance of the model. This is supported in that the accuracy of classifier using medically

relevant terms is slightly higher than the accuracy of the complete text from the notes. This also

supports the idea that removing the common language also removes some noise. The results of

this experiment were key to informing the remaining two. The next two experiments address the

second research question concerning rule-based classifiers.

7.2 Research Question 2

Research question 2 was addressed by two separate approaches. The first approached used a mod-

ified association rule mining process to create a rule-based classifier. The second approach used

a decision tree induction process to create a rule-based classifier. The first experiment used lo-

gistic regression to build the classifier and within this process, LSA was used as a data reduction

technique. Logistic regression models themselves may be difficult to interpret based on the num-

ber of variables in the model but with the addition of LSA vectors used as variables, which them-
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selves are not intended to be interpreted, the resultant model was accurate but was not easily inter-

pretable.

7.2.1 Approach 1: Classification Rule Mining

In the first approach, a hybrid approach including NLP, STM, association rule mining, and contrast

sets was created in order to build a rule-based classifier. The goal of this experiment was to not

only create an accurate classifier but to also create a classifier that was interpretable. The method-

ology used to create the rule-based classifier was the main contribution of this approach. This in-

cluded using the NLP pipeline from the first experiment to extract medically relevant terms and

using STM to create a term-by-document matrix to apply structure to the textual data, as well as

creating frequent item sets, creating classification rules, and examining contrast sets. Unique in

this approach was the way the classification rules were created. Typically, rules are built from a

complete data set, ignoring any classification, meeting a specified confidence from frequent item

sets that meet a specified support. What made this approach unique was that the data set was split

into two partitions based on the classification. The rules were then generated for each classifica-

tion partition separately and the consequent used was the actual class to be predicted. As a result,

two sets of rules were generated: one for FRIs and the other for not FRIs. The hybrid approach

used in this experiment was our first attempt at creating a classifier that was interpretable and even

though the approach succeeded at that, the overall classifier accuracy was not as high as the logis-

tic regression classifier from the first experiment. We had hoped to come closer to that accuracy.

The second approach was an attempt at just that.

7.2.2 Approach 2: Decision Tree Induction

The second approach is informed by both previous studies and builds a rule-based classifier. For

this experiment, DTI was used and the resultant decision tree provided interpretable rules and bet-

ter predictive accuracy than both the classification rule model from approach one and the logistic

regression model from the first experiment. The main contribution of this experiment was again

the methodology used to create the DTI classifier. This included using from the first experiment

the NLP pipeline to extract medically relevant terms and using STM to create a term-by-document

matrix to apply structure to the textual data, then a process for creating an accurate, pruned deci-
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sion tree. A compact, accurate decision tree was created that provided five production rules that

were interpretable.

Figure 21 shows the accuracy of all of the models tested in this dissertation. To reiterate the

three experiments, experiment one created a logistic regression model using the complete notes

(TEXT), the extracted medically relevant terms or specialized language (CUIS), and the com-

mon language (CMN). Experiment two created classification rules based classifier (Class Rules),

and experiment three used decision tree induction to create a classifier (DTI). Both the figure and

the table also include a model from an unpublished study in which regular expression based rules

(REBR) were created by a human and tested against the same progress notes. Table 34 shows the

results from the models from the three experiments comprising this dissertation as well as from

the unpublished regular expression based rules study. χ2 was used to test significance between

the accuracy of each individual model built from an NLP data set compared to the accuracy of the

complete textual notes model. The only model that was not significantly different was the model

created against the specialized language (CUIS). The p-value for this test was 0.1489.

Figure 21.: Graph of accuracy for all models

7.3 Other Contributions

The studies in this dissertation also had some unplanned, secondary contributions. First is that by

extracting the medically relevant terms, the PHI is also removed from the notes. Since there was
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Table 34: Results from all studies (∗p < 0.001)(∗ ∗ p < 0.05)

Experiment Accur F-Meas Precis Specif Recall NPV χ2

(PPV) (Sens)
REBR 95.2 90.2 84.8 94.9 96.2 98.8 14.1*

Exp 1
TEXT 91.7 81.9 82.2 94.7 81.5 94.5
CUIS 93.1 86.6 86.6 96.0 83.7 95.0 2.1
CMN 81.7* 56.7 52.5 86.5 61.6 90.3 64.9*

Exp 2 Class Rules 87.5 74.0 70.4 90.3 77.8 93.2 15.3*

Exp 3 DTI 93.7 95.8 94.3 82.6 97.4 91.6 4.4**

no loss in predictive information, this turns out to be an excellent method to de-identify medical

progress notes to be used in machine learning tasks. In fact, the notes can be turned into nothing

but a sequence of concept identifiers, so that even the wording can be masked.

Secondly, the approach developed here includes a natural data reduction technique. In the

data set used in this dissertation, the notes were made up of approximately 26% medically rele-

vant terms and 74% common language. Extracting the medically relevant terms turns out to be an

excellent data reduction technique. The amount of space needed to store just the terms is nearly

75% less than what is needed to store the entire set of progress notes. Not only is storage reduced

but also processing time. Since the terms are a quarter of the original notes, there is much less to

parse and execute the model against. In future work, a study needs to be conducted to examine the

economic ramification of this data set reduction technique.

7.4 Future Work

While each experiment addresses future work specific to that experiment, there are also some areas

of future work that apply in general to this stream of research. Of primary concern is the selection

of a medical topic and targets for any machine learning efforts. We assume the accuracy rates of

the models in this dissertation are in part due to the low complexity of the task. First of all, it is a

binary classification and secondly, as can be witnessed by the decision tree, just the concept “fall”

accurately predicts approximately 87% accurately. This idea of prediction based on medically rel-

evant terms needs to be tested on other more complex medical topics.

All three experiments constructed models that classified a single progress note as either FRI
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or NOT FRI. The next step is to show that this can be introduced into either a surveillance or a

clinical decision support system. In these cases it will be important to show that classifications can

be rolled up from the note level to either the episode of care or to the patient level.

7.4.1 Ontology Development

In the research community, there is a lack of agreement as to what an ontology is. Regardless,

most will agree that in its basic definition, an ontology represents knowledge. Because medical

informatics is currently a hot topic, there is a drive for creating ontologies. The knowledge gleaned

from the combination of these experiments can be used to inform the ontology building process.

The first experiment results in an extraction of medically relevant terms, pertinent to the medical

topic of interest. This resulting medical “vocabulary” can be used to aid clinicians in researching

terms pertinent to the medical topic of interest. The second and third experiments resulted in inter-

pretable rules. These rules can also be used to aid clinicians in discovering the relationships that

exist between the terms in the vocabulary used. We are not proposing using these processes as an

automated way to build an ontology but rather as an automated way to provide information to clin-

icians interested in building ontologies. The idea of using the results from this dissertation as as an

aid to ontology development is both future work and a contribution.

7.4.2 NLP

The medically relevant terms extracted are only as good as the NLP pipeline. Medical progress

notes provide issues that other sources of text do not have. First, is sentence detection. Clinicians’

time is valuable and after spending time with patients, they have a small amount of time to doc-

ument visits or treatments. Because of this, clinicians type more fragments than grammatically

correct sentences. An entire stream of research exists to improve sentence detection within med-

ical progress notes. As these sentence detectors become available, they need to be tested in our

pipeline.

WSD

As mentioned previously, there is an important issue related to word sense disambiguation (WSD).

The error analysis in the third experiment brought to the surface the many uses of the word fall.
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One can fall asleep or be treated in the fall of the year, neither of which have anything to do with

a FRI. Just as with sentence detection, there is a community of researchers addressing the WSD

issue within health care.

Acronym Detection

Similar to WSD is acronym detection. Acronyms are plentifully used in business and technol-

ogy but even more so in health care related to the military. Not only are there many acronyms but

many of them have multiple meanings depending on the medical topic. Most lay people under-

stand BP to mean Blood Pressure but it also stands for Binding Peptide, Bronchial Provocation,

Bleomysin/cisplatin Protocol and many other meanings. Improved WSD would also improve the

accuracy of the NLP pipeline.

Templates

An important issue within VistA, the VA open source EHR, is the use of templates. Clinicians en-

ter textual notes or unstructured data into the EHR. Templates help apply structure to unstructured

notes but they cause problems for a computer processing them. A template is text stored in the

system that is pasted into a text field and allows the clinician to enter information without having

to type all of the information. For example, a template might contain yes/no checklists pertinent to

a clinical area.

Heart Attack? Yes

Stroke? No

High Blood Pressure? Yes

The template with the questions is pasted into the text area and clinicians enter yes or no

as appropriate. The problem goes back to the sentence detection. If it uses the “?” as a sentence

boundary, the negation module will apply “No” to High Blood Pressure rather than Stroke as was

intended. If it uses end of line markers, then the negation in this example will be correctly applied,

however, the processing of free text areas will be incorrect. Researchers are also currently working

to improve template detection.
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Cascading Errors

Another area that needs to be addressed for this research stream is how do errors that occur in the

NLP pipeline effect steps further in the process? The results of the models suggest that in spite of

the cascading effect of error, or the introduction of noise, the processes still build accurate models.

This is evidenced by the results in experiments one and three since the accuracy as well as other

evaluation metrics was higher for these models than was the classification of the unprocessed tex-

tual notes.

7.5 Final Discussion

The goal of this dissertation was to use AI technologies such as grammatical NLP, STM, and

data mining to address two research questions. First, can information be extracted from clinical

progress notes that will represent the notes without loss of predictive information? And secondly,

can rule-based approaches be used to build classifiers that will accurately classify progress notes

based on the extracted medically relevant terms while at the same time creating rules that can be

understood and interpreted by a person? Three separate experiments helped address these ques-

tions, with the last two building off of the first experiment. These three experiments showed that

accurate, rule-based classifiers can be created for data sets consisting of progress notes reduced to

only medically relevant terms. There are still questions to be answered in this area, but these ex-

periments lay the ground work for a future research stream combining NLP, STM, and data mining

as tools for better understanding the electronic health record.
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Appendix A

Terms and Definitions

Corpus - A large set of texts or documents

cTAKES - Clinical Text Analysis and Knowledge Extraction System

DTI - Decision Tree Induction

EMR - Electronic Medical Record

EHR - Electronic Health Record

FRAE - Fall Related Ambulatory Event

FRI - Fall Related Injury

GATE - General Architecture for Text Engineering

ICD-9 - International Statistical Classification of Diseases and Related Health Problems

Lexicon - The vocabulary including its words and expression for a language

LSA - Latent Sematic Analysis

NIH - National Institutes of Health

NLM - National Library of Medicine

NLP - Natural Language Processing

PHR - Personal Health Record

POS - Part of Speech

SOAP - Subjective Objective Assessment Plan SOAPE - SOAP + Education

STM - Statistical Text Mining

SVD - Singular Value Decomposition

SVM - Support Vector Machine

UIMA - Unstructured Information Management Architecture

UMLS - Unified Medical Language System
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Appendix B

Tools

Most of the NLP tools are based on a pipeline architecture, which means that the output of one

component is the input to the next component in the pipeline much like water running through

pieces of pipe. Basic to most NLP tools are components that parse a document in segments, sen-

tences, tokens, parts of speech, and chunks. From there, customized modules are implemented to

process the language in the desired way. For example, a named entity component would look up

terms in some dictionary to determine if they are named entities or not. Temporal relationships is

another use for an NLP component. Yet another is negation. Once named entities are determined,

it is often necessary to determine their negation status.

B.1 Negation

The problem of negation assertion is a phenomenon that continues to challenge linguistic researchers.

One might think it is as easy as associating a negation term with a term in the sentence. Syntax can

cause many issues with this problem. The English language does not contain double negatives

as do some European languages but negating a negative term occurs. For example, “The patient

does not seem unhappy.” Also is the concept “rule out” in the sentence, “we have not ruled out

diabetes.” Negation terms can also apply to more than one term in a sentence. In the sentence,

“Patient denies dizziness and falling” the patient is denying both falling and dizziness. Negation

terms can also appear in a sentence either before or after the term to be negated. One of the more

complex situation is where the negation appears in either the sentence before or after the sentence

containing the term to be negated. Some approaches such as regular expressions and heuristics

have been used to approach this problem but currently the most widely used method within the

NLP community is NegEx (Chapman et al., 2001). After a sentence has been parsed into tokens,

NegEx uses a list of terms, both pre and post negation terms, to determine if a negation term ex-
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ists. If a negation term exists it then negates the terms either preceding or following it within the

sentence. Terms within a sentence are marked as “not negated”, “negated”, “possibly negated”, or

“not found” if the entity is not found within the sentence. NegEx does not allow for negation in

another sentence.

B.2 MetaMap/MMtx

MetaMap is a program that was developed by the National Library of Medicine (NLM) and is

public domain (Aronson, 2001). It was designed to map Metathesaurus concepts to biomedical

text. This software was evaluated as a potential source for this dissertation. It was rejected for two

reasons; one it is written in prolog and a prolog developer was not available and two, it was not

available for the Microsoft Windows platform. At the time, it was only available for different ver-

sions of the UNIX/Linux OS.

B.3 UIMA/cTAKES

Unstructured Information Management Architecture (UIMA) was originally created by IBM and

is now an Apache open source project (Apache Software Foundation, 2009). It is an architecture

that allows developers to create systems that process large volumes of unstructured information to

discover information relevant to end users. UIMA allows components, analysis engines (AEs) to

be combined to create a processing pipeline. It is more than just an application framework. It is a

enterprise level architecture. Much research has been done either building NLP applications using

UIMA or evaluating components built based on UIMA (Ogren et al., 2008; Kipper-Schuler et al.,

2008).

Probably the most popular medical informatics pipeline based on the UIMA is the Mayo

clinic’s Clinical Text Analysis and Knowledge Extraction System (cTAKES) (Savova et al., 2008).

It was designed specifically to find cancer specific concepts in health documents but has been re-

leased under an open source license and can be configured to locate any medically relevant con-

cepts within documents. We initially investigated using this pipeline for this dissertation, however,

because of the complex framework of both UIMA and cTAKES, modifying the pipeline became

too complicated and time consuming.
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B.4 GATE

Another pipeline architecture is the General Architecture for Text Engineering (GATE) (Cunning-

ham et al., 2002; Cunningham, 2002). This tool was developed by a group at the University of

Sheffield and is also available as open source software. Many other text processing pipelines, both

medical and non-medcal, have been created using this tool (Pakhomov et al., 2005; Cunningham

et al., 2002; Mitchell et al., 2004; Holton, 2009). The Health Information Text Extraction (HITEx)

tool was created originally to extract smoking status for asthma research (Zeng et al., 2006). In

the same way cTAKES is a medically related pipeline built on the UIMA architecture, HITEx is

a medically related pipeline built on the GATE architecture. Based on an evaluation of these sys-

tems, GATE was selected as the preferred tool for this research.
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Appendix C

SAS Enterprise Miner

The focus of this appendix is to show the model building process used by SAS Enterprise Miner.

SAS has several statistical applications such as basic SAS and Enterprise Guide. Enterprise Miner

is a separate application that allows users to create pipelines that perform data mining tasks. There

is an additional module that can be added to Enterprise Miner called Text Miner that allows for

text mining processes to be created. For the first experiment in this dissertation, SAS Enterprise

Miner 6.2 with Text Miner 4.2 was used to create pipelines that analyzed the three data sets: clini-

cal progress notes (TEXT), CUIs (CUIS), and common language (CMN).

Each component in SAS Enterprise Miner has both input and output. The modules are con-

nected to each other in a pipeline fashion to create a process. Each module or component has prop-

erties that can be manipulated to make the process behave in the desired manner. SAS is a propri-

etary software application and as such, does not allow components to be created by users as open

source solutions do. What SAS does have to address this is a code component that allows a SAS

developer to create SAS code components that deliver behavior as coded. What follows is a de-

scription of the pipeline process used to mine the CUIs. However, all three pipeline processes were

created similarly.

C.1 Graphical User Interface

Figure C.22 shows a screen shot of the entire SAS Enterprise Miner graphical user interface (GUI).

The numbers identify the main portions of the GUI are explained here in further detail.

C.1.1 1 - Project

This first pane shows the Enterprise Miner project. The main components from this pane are the

Data Sources and the Diagrams. Multiple SAS data sources can be created in used in the different
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Figure C.22.: SAS Enterprise Miner Graphical User Interface

SAS applications. There are six SAS data sets used in this project. A user can also create multiple

diagrams in a single project. There are three list here but the TM Notes diagram is the only one

that is discussed here.

C.1.2 2 - Properties

This pane shows the properties for the selected component. Displayed here are the properties for

the diagram but as each component in the pipeline is selected, the appropriate properties will be

displayed in this pane.

C.1.3 3 - Tab Bar

The tab bar shows the different components that are installed in Enterprise Miner. The Sample

Tab, figure C.23 is used to create SAS data sets and data partition components. The Model Tab,

figure C.24, has the available model building algorithms. Because this installation also has SAS

Text Miner installed, there is a Text Mining tab, figure C.25, that has the components available for

text mining. The components are dragged from the tab bar into the diagram workspace in order to

build the pipeline.
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Figure C.23.: Sample Tab

Figure C.24.: Model Tab

Figure C.25.: Text Miner Tab

C.1.4 4 - Diagram Workspace

This is the main pane where the process is created. Shown in figure C.22 are three separate pipelines

created in a single diagram workspace. Each one is independent of the others. The icon on the bot-

tom right corner of each component symbolizes its completion status. The green checks in this

figure let the user know that each component has executed through completion successfully. If a

component had failed it would have a red X and the pipeline would halt. One of the benefits of

SAS Enterprise Miner is that only the components that have been changed or have not run through

completion will execute. If a pipeline has a component that processes the data set and takes a sig-

nificant amount of time but really only needs to run once will not slow down the total time of the

pipeline process.

C.2 Pipeline

The following sections explain the pipeline process for the CUIs. The purpose of each component

is discussed along with its corresponding properties. The TEXT and CMN pipelines use the same
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components with only slight changes to the properties. These changes are discussed in Chapter 4.

C.2.1 TMPTRAINCUI

This is the training set containing the CUIs for each progress note. It also contains the ID for each

note and the classification, FALL nFALL, decided upon by the clinicians. Figure C.26 show the

properties for this component. The Output Type is changed from the default View to Data. This is

done to make the SAS code module located at the end of the pipeline work correctly. SAS Views

are difficult to access.

Figure C.26.: Training Data Set Properties

C.3 Data Partition

The data partition component in SAS Enterprise Miner allows for a data set to be divided into up

to three partitions: Training, Validation, and Test. The model is built using the Training partition.

The model can be tuned using the Validation partition. The Test partition is unseen data and the

model is tested on this data set. For this dissertation the data was separated into two partitions:

Training and Test. Using SAS, the Training partition was then separated into two further parti-

tions: Training and Validation, using a 70% 30% split. It was also changed from View to Data for

the same reasons as explained with the SAS data set above. Figure C.27 show the properties that

were changed for this component.
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Figure C.27.: TRAINING Data Partition Properties

TMPTESTCUI

This is another SAS data set and contains the Test partition of the CUIs data set. Figure C.28 show

the properties for this component. The Output Type was changed from View to Data for this data

set for the same reasons as the Training data set.

Figure C.28.: TEST Data Partition Properties

C.3.1 Text Miner

This component is available to Enterprise Miner because the Text Miner package was installed.

Figure C.29 shows the properties for this module.
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Parse

The standard stoplist that comes with Enterprise Miner was used. This removed common words

that have no predictive power such as articles. Terms or CUIs that occurred in single documents

were also removed. In the case of the CUIs, since CUIs are just alpha numeric representations of

concepts, there was no need to treat punctuation, numbers, parts of speech, or noun groups differ-

ently. However, these were all used on the TEXT and CMN data sets.

Transform

Since LSA was used, SVD dimensions were computed. Figure C.29 shows 200 dimensions cre-

ated using Binary Frequency Weightings. 200 roll-up terms were also used for this specific com-

ponent. In SAS speak, a roll-up term is simply a term kept for analysis rather that being excluded.

Cluster

In this example, no clusters were used as can be seen by the Automatic Cluster property being set

to NO. Once this property is set to no, all of the remaining properties in this section are ignored.

C.3.2 Regression

Logistic regression was the model building technique used in the first experiment. Figure C.30

show the properties for this component. Many different logistic regression models were tested by

changing the properties of the component with the final model being explained in Chapter 4.

C.3.3 Model Comparison

The model comparison component was used to take the model built from the TRAINING data and

execute it on the unseen TEST data. The default properties were used for this component.

C.3.4 SAS Code

A SAS code component was used to extract the confusion matrix from embedded SAS data sets

for both TRAINING and TEST. Figure C.31 shows the code executed.
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Figure C.29.: Text Miner Properties
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Figure C.30.: Regression Properties
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Figure C.31.: SAS Code Component

For each data partition this code creates a SAS data set containing the counts of the true

positives, true negatives, false positives, and false negatives. In this code , class (figure C.32) is

the actual classification and I class (figure C.33) is the classification determined by the model.

These variables are accessed by clicking on the ellipses for the Exported Variables From the dialog

window that opens, figure C.34, select the data set, TEST in this case, and click on the Properties

button. From there select the the Variables tab to see the variables for that data set.
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Figure C.32.: Actual Classification Variable
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Figure C.33.: Predicted Classification Variable

Figure C.34.: Data Set Variables Properties
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Appendix D

General Architecture for Text Engineering (GATE)

The focus of this appendix is to show the model building process used by GATE, an open source

NLP program. This example follows the pipeline process used to create the data sets used in this

dissertation. The first experiment uses three different data sets extracted from a single set of clin-

ical progress notes: the original notes (TEXT), extracted CUIs (CUIS), and common language

(CMN). This pipeline process extracts both the CUIs and the common language.

D.1 Graphical User Interface

Figure D.35 shows a screen shot of the entire GATE graphical user interface (GUI). The numbers

identify the main portions of the GUI are explained here in further detail.

D.1.1 1 - Navigation

This part of the GUI shows the all of the GATE components that are available to the user.

• Applications - Each pipeline process is stored in an application

• Language Resources - Corpora can be loaded in interface and used execute a pipeline against

• Processing Resources - The components used to create the pipeline in GATE are referred to

as Processing Resources. There are several supplied with the application plus users can create

their own by extending classes supplied with GATE.

D.1.2 2 - Loaded Processing Resources

This part of the application show the Processing Resources available to be used in the pipeline.

They must be loaded here before they can be used in the pipeline.
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Figure D.35.: GATE Graphical User Interface
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D.1.3 3 - Selected Processing Resources

This part of the application shows the actual pipeline. Not only are the Processing Resources listed

here but the order of the resources to be used in the pipeline is also defined here.

D.1.4 4 - Corpus

A corpus can be listed here. If so, the pipeline is executed against it when the application is used.

The corpus used in this dissertation was relatively large and the application executed faster from a

command line supplied by GATE.

D.1.5 5 - Parameters

Each of the processing resources has a list of corresponding parameters that can be set by the user.

D.2 Pipeline Processing Resources

What follows is a list of the processing resource that comprise the NLP pipeline used to create the

CUIS and the CMN data sets along with their descriptions. Screen shots of their parameters are

also included if they were changed from the default settings.

Several of the processing resources start with JAHVA, James A. Haley VA, these are the in

house developed processing resources. Some are wrappers around predeveloped components such

as OpenNLP components. Other were develop purely in house in order to meet a specific need of

the pipeline.

D.2.1 Document Reset PR

This is the first processing resource and simple resets all of the annotations for note within the

corpus.

D.2.2 ANNIE English Tokeniser

ANNIE, A Nearly New Information Extraction System, is an IE system that is distributed with

GATE. Some of these prebuilt components were used in this pipeline. The tokeniser separates the

document into tokens. Tokens are not words but contain text. There are different types of tokens.
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• Word - contiguous upper or lower characters including a hyphen and no other punctuation.

• Number - Any combination of consecutive digits.

• Symbol - Examples are currency symbols but not punctuation.

• Punctuation - There are three types of punctuation: start e.g. (, end e.g. ), and other e.g. .

Each symbol is a separate token.

• Space - White space(s) are defined as a single token.

D.2.3 JAPE Transducer

JAPE, Java Annotation Patterns Engine, and allows you to recognize regular expressions in an-

notations on documents. The JAPE processing resources were used in this pipeline to extract the

common language and get counts of the different data set sizes.

D.2.4 RegEx Sentence Splitter

There are different methods for sentence splitting such as a rule based approach or a machine

learning approach but based on the format of the clinical progress notes in the data set for this dis-

sertation, the regular expression based sentence splitter gave the best performance.

D.2.5 JAHVAOpenNLPPOSTagger

This is a wrapper around the OpenNLP Part of Speech Tagger. The OpenNLP POS Tagger uses a

probability model to predict the correct POS tag out of the tag set.

D.2.6 JAHVAOpenNLPChunker and JAHVAPhraseTagger

The chunker in combination with the phrase tagger takes the POS annotations from the POS Tag-

ger and combines them into phrases such as noun and verb phrases.

D.2.7 JAHVAUMLSConceptFinder

There are several UMLS concept finders in existence but none seemed to have the functionality

desired for these studies. They all have the basic functionality of looking up a given phrase in the
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UMLS database. Where they failed is that they returned too much information. For example, the

phrase, “Regional Medical Center” would return seven CUIs: one each for “Regional”, “Medical”,

“Center”, “Regional Medical”, “Medical Center”, and “Regional Medical Center”. This arbitrarily

inflated the counts of the CUIs representing the progress notes. It was desired for these projects

to have only the CUI that described the largest phrase or in this case “Regional Medical Center.”

Therefore a component was created that did just that. Figure D.36 shows the parameter settings

for this processing resource. In most cases, UMLS concepts are only looked up in noun phrases,

however, since most “fall” related words are verbs, verb phrases were also added to the lookup.

Figure D.36.: JAHVA UMLS Concept Finder Parameters

D.2.8 JAHVAConceptNegator

This is an implementation of the NegEx algorithm. It takes a given phrase and looks for predefined

negation terms within a phrase. Negation terms are either pre-negation such as “Patient denies

falling” or post-negation such “Broken leg is ruled out.” This component returns a negation status

of either negated, not negated, or possibly negated. Figure D.37 shows the parameter settings for

this resource.

Figure D.37.: JAHVA Concept Negation Parameters

D.2.9 JAHVAConceptWriter

This processing resource creates two different unique tokens to be used in the STM process. First,

it combines the CUI found in the ConceptFinder and the negation status found in the Concept-
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Negator by concatenating them with a predefined character. For example, C0013478 nn is the CUI

representing the concept “WHATEVER” and nn is the not negated status of the CUI. Secondly, it

handles the WSD issue by combining all of the CUIs returned for a single term to make a single

CUI. For example, there are seven CUIs that represent the different meanings of the term “cold.”

This dissertation was not concerned with which was the correct CUI but only that the term “cold”

was found in the text. Returning seven different CUIs arbitrarily inflated the word count represent-

ing the clinical notes so the handles this, all of the CUIs returned representing a single term were

concatenated to form a single CUI. Figure D.38 shows the parameter values for the resource.

Figure D.38.: JAHVA Concept Writer Parameters

D.2.10 Nonconcept Counter (JAPE Tranducer)

This JAPE transducer was used to count all of the terms used to create the Common Language

data set.

D.2.11 JAHVAAnnotationWriter

This processing resource writes annotations. The type of annotation is defined in the parameters

and in this case nonconcept annotations were used. This is how the Common Language data set

was created. Figure D.39 shows the parameter settings.

Figure D.39.: JAHVA Annotation Writer Parameters
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D.2.12 JAHVAAnnotationCountWriter

This component provides counts of the different data sets used. Figure D.40 shows the parameter

settings for this resource.

Figure D.40.: JAHVA Annotation Count Writer Parameters

D.2.13 JAHVATokenFrequencyWriter

This component provides the frequency tokens occur in the corpora. For example, the CUI repre-

senting fall may appear in a corpus 704 times. Figure D.41 shows the parameter settings for this

resource.

Figure D.41.: JAHVA Token Frequency Writer Parameters
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Appendix E

RapidMiner

RapidMiner started at the Artificial Intelligence Unit of the University Dortmund. In 2006, two

of the original team members formed a company, Rapid-I, that is now the main contributor of the

RapidMiner product. The community edition of RapidMiner was used for this dissertation. The

focus of this appendix is to show the model building process used by RapidMiner, an open source

statistical program. This example follows the building of the decision tree induction process used

in the third experiment in this dissertation.

E.1 Graphical User Interface

Figure E.42 shows a screen shot of the entire RapidMiner graphical user interface (GUI). The

numbers identify the main portions of the GUI are explained here in further detail.

Figure E.42.: RapidMiner Graphical User Interface
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E.1.1 1 - Overview

The part of the GUI shows the overview of the entire process to be executed. It is not meant as an

editable window but merely to show to overall process.

E.1.2 2 - Operators and Repository

The modules that make up the process in RapidMiner are called operators. One of the tabs in this

section shows all of the available operators to this installation of RapidMiner. Since it is extensible

environment, RapidMiner also allows for the creation of operators and these will be listed here as

well. This installation has 10 custom operators installed in the James A. Haley folder.

RapidMiner also has a concept of a repository. Processes and datasets can be stored in the

repository to be used again at a later time or in another process. The repository tab lists all of

these. It is not shown here because it was not used for this single process.

E.1.3 3 - Process

This is main pane where the work is created. Each of the icons in this pane is an operator and

when they are connected together, they make up the process. Each operator has parameters that

are set by the user to determine how the operator will behave. Some of the operators are contain-

ers for other operators. In this example, the Validation operator is a container operator. It will be

explained further in a subsequent section. Each operator icon has colored dot in the bottom left

corner to show its status: red signifies an error, yellow signifies the operator has not executed yet,

and green signifies that the operator has executed successfully. Most operators have inputs, with

the exception of data, and all have outputs. What those are, are determined by the individual oper-

ator. For example, exa is the example data set and mod is the model. These inputs and outputs are

how the operators are connected together to create a process.

Breakpoints can also be set in the process pane. This will allow the user to see the progress

of the operator and any outputs when it is finished or during its execution.

Below the process pane are status tabs that display errors that may occur and any logs that

may have been recorded.

RapidMiner stores the actual process in an XML file. There is an XML tab in this pane that

allows the user to edit the actual XML if desired instead of using the GUI.
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E.1.4 4 - Parameters

Each operator has parameters that can be set by the user to determine how the operator behaves.

These are set on the parameters tab. The available parameters are determined by the operator de-

veloper. Each operators parameters will be discussed in detail in a subsequent section.

E.1.5 5 - Monitoring and Help

Each operator will have help displayed on the help tab that gives a brief description and a list of

its inputs and outputs. The monitoring tab shows the memory usage of the process throughout its

execution.

E.2 DTI Process

This will expand upon the DTI process used to create the decision tree in the third experiment.

Only the operators and their parameters are discussed here. The data set and methods for creating

the DTI process are discussed in Chapter 6. Each subsection is title with the title of the operator

discussed. Figure E.43 shows the main process for the DTI. Each operator and its corresponding

parameters, inputs, and outputs are discussed in further detail.

Figure E.43.: Main DTI Process
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E.2.1 TrainCUIs

This is the training data set. The parameters set here is the file with the actual data and is not shown.

In this case, the CUIs are in a single, tab delimited file with format of: Note ID (ID), CUIs (Nomi-

nal), classification (label). A wizard is also included with this operator that allows the data param-

eters to be set correctly. Each note is listed on a separate line in this file.

E.2.2 Process Document

Figure E.44 shows the properties for the Process Document operator. This operator takes the raw

data and converts it into a term by document matrix. There are two Process Document operators

used in this process but only one is discussed. They have the same purpose. One is used on train-

ing data and the other on test data.

Figure E.44.: Process Document Parameters

• Vector Creation - Binary term occurrences was used. This is a simple, does the term occur at

least once or not.

• Prune Method -
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• Prune Below Absolute - It was decided that if the term occurred less than twice in the entire

corpus it was not to be included in the matrix.

• Prune Above Absolute - This was a mandatory parameter and this was chosen as an arbitrar-

ily large number larger than the total number of notes. This would never be reached to prune

terms because the data set contained only 5,009 notes.

Inputs

• Example set - from the original data set

Outputs

• Example set - Term by document matrix

E.2.3 Validation

This is a container operator and was used to create the cross validation process of of the DTI. Fig-

ure E.45 shows the operators that are contained in the validation operator and are explain in this

section. The Validation operator is split into two containers: training and testing. Term Weight-

ings, Numerical to Binomial, Remember, and Decision Tree are operators placed in the training

container. Apply Model 2 and 3, Numerical to Binomial, Performance, and Log are operators

placed in the testing container.

Figure E.45.: Validation Operator

Term Weightings

Figure E.46 shows the parameters for the Term Weights operators. Term weightings are calculated

based on training data and the weightings model is remembered. All of the terms in the term by
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document matrix are assigned weightings based on Gain Ratio. This operator has an option to ei-

ther keep all of the terms or just the N terms. This screen shot shows keeping the top 400 terms.

This is the setting that was used in the experiment to adjust how many terms were kept for each

iteration of the process.

Figure E.46.: Term Weights Parameters

Inputs

• Example data set

Outputs

• Example data set

• Preprocessing Model

Numerical to Binomial

At this point the data is a term by document matrix containing weights for term values. This is

then converted to binomial. The term by document matrix is passed through this operator and con-

verted from weights to simply the presence or absence of a term in the output.

Remember

The term weightings are created on training data and those weightings need to be used on the test

data as well. A remember operator allows this to happen. It remembers the weightings model built

on the training data and can be used in subsequent steps. The weighings cannot be also built on

test data because the test data needs to be unseen by all steps of the process therefore, the weights
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are remembered from the training data and applied to the test sets. If a “term” exists in test data

and not in the training data, therefore, not having a weight, this term is excluded from the set and

not used in the model.

Decision Tree

Figure E.47 shows the parameters for the Decision Tree operator. The reason for these parameters

is explained further in Chapter 6.

Figure E.47.: Decision Tree Parameters

Inputs

• Training - Example Set

Outputs

• Model - The actual decision tree

• Averagable - The statistics of the averages of the folds

Apply Model (Term Weights)

Apply Model operators are used every time some sort of created model needs to be applied to the

example set in the process. It is not just used because a final model was built and needs to be ap-

plied to data. In other words, for every created model or preprocessing model on the training side
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of the Validation operator, there needs to be a corresponding Apply Model operator on the test side

of the Validation operator that applies the model, whatever it is, to the test data set. This particu-

lar Apply Model operator applies the term weights that were calculated on the training data and

applies them to the test data set.

Inputs

• Model - The model being applied Unlabeled Data - Data before the model is applied

Outputs

• Labeled Data - the model applied data

Numerical to Binomial

This is the same as the operator discussed above.

Apply Model (Decision Tree)

This operator applies the decision tree model created on the training data and applies it to the test

data that is in binomial form after the training term weightings have been applied.

Inputs

• Model - The decision tree model created on the training data Unlabeled Data - Data before the

model is applied

Outputs

• Labeled Data - the model applied data

Performance

This operator calculates the evaluation metrics on the data input into it. The following were the

metrics selected

• Accuracy

• Classification Error
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• Precision

• Recall

• F Measure

• False Positive

• False Negative

• True Positive

• True Negative

• Sensitivity

• Specificity

• Positive Predictive Value

• Negative Predictive Value

Inputs

• Labeled Data - The example set

Outputs

• Performance - The evaluation metrics selected

Log

This operator writes whatever is input into it to a log file specified in the parameters. All of the

evaluation metrics calculated above are logged by this operator.

E.2.4 Test CUIs

This a another data operator and it contains a link to the file containing the test data set. The for-

mat for this data is identical to the training data set.

Outputs

• Out - The test data set
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E.2.5 Preprocess Document

This is the same as the previous Preprocess Document operator and creates the term by document

matrix from the test data.

Inputs

• Example - The test data set

Outputs

• Example - The test data with applied term by document matrix

E.2.6 Recall

The Recall operator recalls whatever it is told to. In this case, it remembers the term weightings

from the Remember operator. In other words, the term weightings were calculated on the terms in

the training data set and applied weightings. Those weightings are now applied to the test data set.

Outputs

• Result - Term Weightings

E.2.7 Apply Model (Term Weightings)

This operator performs the same functionality as the Apply Model for term weightings already

discussed in the Validation operator.

Inputs

• Model - Term Weightings

• Unlabeled Data - Term by document matrix on test data

Outputs

• Labeled Data - The new term by document matrix with applied term weightings
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E.2.8 Numerical to Binomial

This operator performs the same functionality as the Numerical to Binomial operator already dis-

cussed in the Validation operators.

Inputs

• Example - The example set

Outputs

• Example - The term by document matrix with values converted to binomial

E.2.9 Apply Model (DT)

This Apply Model operator takes the decision tree model output from the Validation operator and

applies it to the test data set.

Inputs

• Model - The decision tree

• Unlabeled data - The binomial term by document matrix

Outputs

• Labeled Data

• Model

E.2.10 Performance

This Performance operator executes identically as the previously discussed Performance operator

with the exception that it reports the performance of the decision tree on the test data rather than

the training data.

Inputs

• Labeled Data - Example set

• Performance
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Outputs

• Performance - The evaluation metrics selected

• Example - Example set
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Appendix F

Regulation

A discussion of a health care related topic would not be complete without a discussion of health

care related regulations. These regulations are designed to protect both clinicians and patients but

indirectly effect health care related research.

F.1 HIPAA

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) was first introduced by

senators Kennedy and Kassebaum and has two titles; Title I protects health insurance coverage for

workers and their families, and Title II requires the establishment of standards for EHR transac-

tions (HHS, 2011) . Privacy regulations that are dictated by Title II are what affect research and

apply to covered entities. A covered entity is an entity that has access to Protected Health Infor-

mation (PHI). Some examples of covered entities are billing services, health insurance companies,

and health care providers. The VA health care system is different from typical U.S. health systems

in that it is a single entity that bills, provides health care, and provides “insurance” but because it

is a covered entity, is regulated by the act. HIPAA defines what entails PHI. In general terms, PHI

is anything that can identify an individual and as researchers, it is our responsibility to secure all

PHI from these progress notes. The act defines 18 PHI items and they are listed below.

1. Names

2. Geographical locations containing fewer than 20,000 people

3. Dates other than year

4. Phone numbers

5. Fax numbers
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6. Email addresses

7. Social Security numbers

8. Medical record numbers

9. Health plan numbers

10. Account numbers

11. License and certification numbers

12. Vehicle Identification Numbers (VIN) and license numbers

13. Device identifiers

14. Uniform Resource Locators (URLs)

15. Internet Protocol (IP) addresses

16. Biometric identifiers

17. Full face images

18. Any other unique identifier

F.2 HITECH

The Health Information Technology for Economic and Clinical Health Act was part of the Ameri-

can Recovery and Reinvestment Act of 2009 (HHS, 2011). It addresses the issues of electronically

transmitting health information, including PHI. The part of the act that is of concern for researcher

is the part that enacts procedures for accounting for PHI. When, HIPAA was enacted, the EHR

was not as popular as it is now. HITECH extends the accounting of PHI to include EHRs.

F.3 Effect on Research

The restrictions HIPAA has had on health care related research has significantly effected researchers’

abilities to perform their jobs which includes chart review. Several studies have been conducted

that show this to be true. One such study showed that the percent of follow-up surveys completed

151



by patients of a study dropped from 96% to 34% due to HIPAA regulations (Armstong et al.,

2005). Another study based on surveys of clinical researchers shows that 67.8% of the respon-

dents agreed the HIPAA has made health care related research more difficult while at the same

time only a quarter of the respondents said that HIPAA has enhanced study participant’s confiden-

tiality and privacy (Ness, 2007). Another study showed that due to HIPAA, they have had a 73%

drop in subject accrual which tripled recruitment costs (Wolf and Bennett, 2006). With the increas-

ing amounts of identity theft, one can assume that privacy is going to become more of an issue

rather than less. Because of this, there exists a need to help research adhere to HIPAA and other

health care, privacy related regulations while at the same time making it easier for them to navi-

gate these regulations without increasing costs and decreasing participation in health care related

studies.

152



Appendix G

Mind Map

Based on the research methodology and background information, figure G.48 is a mind map of the

research topic and how it motivates this dissertation as well as how the topic will be approached.

The health care discipline was selected because of the availability of controlled vocabularies to

allow for the extraction of the specialized language. Even though clinical progress notes are un-

structured they are documented by clinicians in a very structured manner. Clinicians are taught to

follow the SOAP (Subjective, Objective, Assessment, and Plan) method of documenting clinical

encounters. A low complexity yet still relevant target was needed and fall-related injuries (FRIs)

met both of these requirements. This allowed the processes to be developed without being hin-

dered by the complexity of the target. A history of a previous fall is one of the most important

clinical indicators that identifies an elderly patient as high risk for additional falls and targets them

for fall prevention programs (Ganz et al., 2007). However, information about FRIs in administra-

tive databases has been found to be significantly under-coded, thereby limiting a clinicians access

to information about a history of falls (Luther et al., 2005). Therefore, the topic FRIs is very rele-

vant.

As far as choosing a statistical method, the choices were either methods that were or were

not easily interpreted by a person. In health care there are two types of systems that take advan-

tage of predictive models; surveillance and Clinical Decision Support Systems (CDSS). Typically,

in a surveillance system, the accuracy of the prediction model is the most important feature, how-

ever, in a CDSS, not only is the accuracy important but the interpretability of the resulting model

is also important. In this dissertation we chose to implement rule-based models for their ease of

interpretation. In the second experiment, rules will be created and from those rules, a classifier will

be built. In the third experiment, this will be done in the opposite order. DTI will be used to create

a classifier and from that classifier, rules will be created. Both methods are addressing the second

goal of this dissertation, creating a rule-based classifier.
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Figure G.48.: Dissertation Mind Map
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Appendix H

Information Systems Research Framework

The research performed for this dissertation was conducted using the information systems research

framework, specifically, the design science paradigm. The technologies and methods used to per-

form this research have their roots in Computational Linguistic, Computational Learning, and In-

formation theories. These technologies and methods will be used to create the artifacts, which are

classifiers. Classifiers were built using various machine learning (ML) techniques. These classi-

fiers were also evaluated in how well they classified clinical progress notes.

“The goal of information systems research is to produce knowledge that enables the appli-

cation of information technology for managerial and organizational purposes (Hevner and March,

2003).” Hevner et al. propose a conceptual framework for performing information systems (IS)

research. A diagram mapping out this framework can be seen in figure H.49.

People
 - Roles
 - Capabilities
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Organizations
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 - Structure & Culture
 - Processes

Technology
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 - Applications
 - Communications Architecture
 - Development Capabilities

Foundations
 - Theories
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Develop/Build
 - Theories
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 - Analytical
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 - Experimental
 - Field Study
 - Simulation

Environment Knowledge BaseIS Research

Business

Needs

Applicable

Knowledge

Relevance Rigor

Application in the 
appropriate environment

Additions to the 
knowledge base

Assess Refine

Figure H.49.: Information Systems Research Framework

This framework contains two paradigms that researchers use to perform IS research, behav-
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ioral science and design science. These two research paradigms are circular in nature, and together

these paradigms allow theories to be built that address phenomena related to business needs and

artifacts to be built and evaluated that address those business needs. In the rigor versus relevance

argument (Applegate, 2002), behavioral science addresses rigor with the development of theories

and design science addresses relevance with the development of artifacts that address business

needs. Within this framework, prior IS research and reference disciplines provide the foundations

for future research. This dissertation utilizes the design science paradigm. The technologies and

methods used to perform this research have their roots in information and computational learning

theories. These methods and technologies will be used to create the artifacts, which are classifiers.

H.1 Design Science

The design science paradigm defines IT artifacts as constructs, models, methods, and instantia-

tions. Table H.35 shows the different IT artifacts used in this research and the artifacts marked by

** are the artifacts created by this research.

Table H.35: Dissertation IT Artifacts
Artifact Explanation

Construct Computational linguistic vocabulary
Model Machine Learning Model
Methods ** Methodologies used to create classifiers
Instantiation ** Implementation of the classifier algorithms
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