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Anderson, Ryan Clarke (M.S., Civil, Environmental, and Architectural Engineering) 

Pointwise Extensions to the Zienkiewicz-Zhu Adaptive Refinement Procedure 

Thesis directed by Associate Professor John O. Dow 

ABSTRACT 

The two primary components of the Zienkiewicz and Zhu (ZZ) adaptive refinement 

procedure for upgrading finite element models are improved in this work.  A new approach for 

identifying the improvements needed to produce a more accurate model that is based on 

determining the in situ modeling deficiencies contained in the individual elements is developed.  

A pointwise error estimator that has the same basis as the integrated error estimator that is used 

in the current form of the ZZ approach is presented. 

The relative importance of the two primary components of the adaptive refinement 

process is reversed because of these developments.  The refinement guide becomes the primary 

component, instead of the error estimator, because the new refinement guide is based on first 

principles instead of being a heuristic function of the error estimator. 

The identified in situ modeling deficiencies of the individual elements is combined with 

the modeling capabilities of the element and the termination criterion to estimate the number of 

elements needed to improve the model to the desired level of accuracy.  This reduces the role of 

the error estimator to satisfying the termination criterion. 

The integrated error estimator in the existing form of the ZZ adaptive refinement 

procedure estimates the error in the strain energy content of the individual elements.  The 

pointwise error estimator developed here is based on the inter-element jumps at the nodes in the 

finite element strain representations.  This pointwise error estimator is simpler to compute and is 
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expressed in terms of the strain components.  This type of metric is more useful to the analyst 

because the estimated error is expressed in terms of quantities that are central to solid mechanics.  

The smoothed solution that is central to the ZZ approach is given a solid theoretical basis 

in this work.  It is shown that the inter-element jumps are identical to the residuals produced by 

the failure of the finite element solution to satisfy the governing differential equation being 

solved.  This means the smoothed solution definitively adds a portion of the discretization errors 

to the existing finite element solution.  Thus, the smoothed solution is an improved solution. 
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CHAPTER 1 

INTRODUCTION 

A comprehensive overview of error estimation procedures in the finite element method is 

presented in Chapter 13 of reference 1 with a bibliography containing 77 references.  The error 

estimation procedures are broadly categorized as recovery techniques and residual techniques. 

Starting in 1988, Zienkiewicz and Zhu published a series of papers that contained the first 

practical approach to error analysis and adaptive refinement [2].  In the final version of this 

procedure, a smoothed solution is formed by averaging the finite element nodal strains at the 

inter-element nodes.  The smoothed solution is considered to be a better solution than the 

discontinuous finite element strain distribution because it is continuous.  In Chapter 6, the 

improvement in the smoothed solution is identified using results from the residual approach. 

After the smoothed solution is formed, the strain energy contained in the difference 

between the smoothed and the discontinuous strain distribution is computed by integrating over 

the domain of the individual elements.  This strain energy quantity is taken as an estimate of the 

error in the element.  Then, a heuristic estimate of the number of elements needed to improve the 

solution to the desired level of accuracy is made [1].  In Chapter 8 of this work, new approaches 

for estimating the degree of refinement needed for the individual elements so the overall finite 

element model rapidly converges to a result that satisfies the termination criterion are presented. 

 The residual approach to error analysis is presented most cogently by Kelly in reference 

3.  In this presentation, Kelly assumes that any finite element solution, no matter how badly it 

represents the problem being analyzed, is the exact solution to some problem.  Specifically, this 
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finite element solution, with its discontinuous strain distribution, is the exact solution to the 

problem being modeled that has been augmented with a fictitious set of distributed applied loads. 

 The fictitious distributed loads are taken to be equal to the residuals that exist on the 

domain of the individual elements when the finite element solution is substituted into the 

governing differential equation being solved.  Furthermore, Kelly argues, the inter-element 

jumps in the discontinuous finite element strain distribution are due to these fictitious loads 

acting as equivalent nodal loads.  This contention is derived and demonstrated in Chapter 4. 

 The objective of this work is to develop pointwise extensions to the Zienkiewicz-Zhu 

approaches to error analysis and model refinement. 

 In this work, improvements are made to both the error estimation process and the 

development of refinement guides.  The error estimation process is given a stronger theoretical 

basis by integrating the recovery and residual approaches to error estimation to explain why the 

smoothed solution is a better solution than the finite element solution.  The error estimator is 

functionally improved because it is a pointwise quantity.  No integration is required in its 

computation.  Furthermore, the pointwise error estimator is expressed in terms of strain 

quantities instead of strain energy quantities.  As a result, the termination criterion can be 

directly related to failure criteria. 

A new type of refinement guides is developed and demonstrated that estimates the 

number of subdivisions that must be given to each element, i.e., h-refinement, to satisfy the 

specified level of accuracy.  This refinement guide identifies the modeling deficiencies in the 

individual elements by comparing smoothed solutions to the modeling capabilities of the element 

being evaluated.  As such, this approach is a recovery technique. 
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The advantage of the refinement guides developed here is that they are not heuristic.  

They have a rational basis because they are based on first principles.  The in situ performance of 

the individual elements is estimated by comparing the characteristics of an improvement to the 

finite element solution to the strain distribution that actually exists in the element being 

evaluated.  Then, the estimated modeling deficiencies in the individual elements identified by 

this process are related to the termination criterion to identify the required level of refinement to 

produce an acceptable solution. 

 The developments presented here are based on the use of a physically interpretable 

notation that was introduced in 1983 [4].  This self-referential notation is the basis of procedures 

that were initially developed to evaluate lattice structures for the international space station [5, 6, 

7].  The objective of this evaluation was to identify coupling between the various deformation 

patterns with the specific goal of eliminating truss configurations that coupled flexure with 

torsion.  This was important to eliminate rotations when the Space Shuttle docked. 

 The evaluation of the trusses essentially inverted the finite element method.  That is to 

say, the stiffness matrix is reduced in size and the independent variables are expressed in terms 

of strain components, i.e., εx , εy , and γxy .  In a series of papers that culminated in a book, 

procedures for evaluating the modeling characteristics of individual elements were developed, 

alternate formulation procedures for forming finite element stiffness matrices were presented, 

and the finite element and finite difference methods were integrated.  All of these advances are 

used in this work. [8 - 24] 

 The succeeding Chapters contain the following.  Chapter 2 provides an intuitive 

introduction to the errors and their source in finite element models.  The errors are seen as inter-
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element jumps in the strain and they are shown to decrease when the finite element model is 

improved. 

 Chapter 3 introduces the physically interpretable notation that serves as the basis of this 

work.  This notation is used to replace the standard displacement interpolation polynomials.  This 

notation is superior to the standard notation in two ways.  The arbitrary coefficients of the 

standard notation are replaced with coefficients that are expressed in terms of rigid body 

motions, the strain components, and gradients of the strain components.  Furthermore, the 

interpolation polynomials are clearly Taylor series expansions.  As a result of these two 

improvements to the notation, the interpolation polynomials can be used in the developments 

presented here to evaluate the modeling capabilities of individual finite elements, to provide an 

alternate approach for forming element stiffness matrices and to form finite difference templates. 

 Chapter 4 demonstrates the theoretical basis for the residual approach to error analysis.  

The failure of the finite element solution to satisfy the governing differential equations on the 

domains of the individual elements is shown to be the source of the inter-element jumps in finite 

element solutions that do not capture the exact solution.  In addition, the identification of the 

source of the inter-element jumps means that the smoothed solution formed by nodal averaging 

used here and in the ZZ approach to error estimation are definitively closer to the exact solution 

than the discontinuous finite element solution.  As discussed in Chapter 6, the smoothing adds a 

component of the error in the finite element model to the finite element solution.  Therefore, the 

smoothed solution is closer to the exact solution than the finite element solution. 

 Chapter 5 introduces and applies the adaptive refinement process.  The results of adaptive 

refinement are contrasted to the results of uniform refinement.  It is seen that uniform refinement 

introduces unneeded elements in regions of low error, rendering the model inefficient.  The three 
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necessary components of adaptive refinement are identified, namely: 1) an error estimator, 2) a 

termination criterion and 3) a refinement strategy.  In this introduction, the inter-element jumps, 

which are pointwise quantities, provide the basis for each of the three components needed for 

adaptive refinement. 

 Chapter 6 introduces and demonstrates the Zienkiewicz and Zhu (ZZ) error estimation 

process.  This approach is an example of the recovery approach to error estimation.  The ZZ 

approach differs from the residual approach presented in Chapter 4 by estimating the error in the 

strain energy content on the individual elements.  In this approach, the strain energy contained in 

the difference between a smoothed solution, which is taken to be an improvement on the 

discontinuous finite element solution, and the finite element solution is used as the error 

estimator.  In this work, the differences between the strains in the smoothed solution and the 

inter-element nodal strains are taken as the error estimators.  As such, these error estimators 

integrate the recovery and the residual approaches to error analysis because the inter-element 

jumps, which are due to residual quantities, are used to improve the finite element solution and to 

estimate the errors in the finite element model. 

 Chapter 7 extends the pointwise error estimator introduced in Chapter 5 with one-

dimensional problems to two dimensions.  The error estimator is demonstrated with two loading 

conditions.  The first loading condition is a uniform load over the domain of the problem.  This 

example demonstrates that the error estimator based on inter-element jumps approaches zero 

when the finite element solution approaches an exact solution.  The second loading condition is a 

complex loading condition that produces a result that cannot be represented exactly by a 

polynomial representation.  The pointwise error estimator is demonstrated by uniformly 

reforming the model.  As the model is improved, the error estimates are reduced, thus, 
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demonstrating their efficacy for a complex loading condition.  As an aside, the six-node linear 

strain elements used in the examples presented in this Chapter are formed using the alternate 

element formulation procedure mentioned in Chapter 3. 

 Chapter 8 demonstrates a new approach for identifying the level of refinement needed in 

an adaptive refinement scheme for a finite element model to rapidly converge.  This approach 

uses the physically interpretable notation introduced in Chapter 3 to evaluate the modeling 

deficiencies in the individual elements in a finite element model.  This approach compares the 

complexity of an improved strain distribution on the domain of an element to the strain 

distribution actually contained in the element being evaluated.  This approach uses pointwise 

quantities in the evaluation.  It is demonstrated with one-dimensional problems, but it is 

extendable to two-dimensions. 
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CHAPTER 2 

AN OVERVIEW OF FINITE ELEMENT MODELING CHARACTERISTICS 

2.1 – Introduction 

When a finite element model cannot represent the exact 

solution to a continuum problem, the result contains 

discretization errors.  These errors are produced when the 

exact solution is more complex than the interpolation functions 

used to form the individual finite elements are capable of 

representing.  The discretization errors can be removed or 

reduced to an acceptable level by improving the finite element 

model1. 

In theory, even an inexperienced analyst can produce 

accurate finite element results by repeatedly subdividing every 

element in the model until convergence is achieved.  However, 

this procedure, known as uniform refinement, is impractical 

because it leads to unnecessarily large models.  This inefficiency exists because elements are 

subdivided in regions of zero or acceptable error. 

The practical alternative to uniform refinement is adaptive refinement, a procedure 

where the model is only improved in regions with unacceptably high errors.  An example of 

adaptive refinement is illustrated in Fig. 2.1 for a shear panel with an internal circular hole.  This 
                                                        
1  The Weierstrass Approximation Theorem provides the theoretical basis for model refinement.  The theorem says 
that any continuous function can be uniformly approximated on that interval by polynomials to any degree of 
accuracy.  Note that this theorem does not say that the function can be represented exactly.  The theorem says that 
the exact solution can be approximated as closely as desired [26, 27]. 

 
a) Initial Mesh 

 
b) Adaptively Refined Mesh 

Figure 2.1 – Adaptively Refined 
Stress Concentration 
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finite element model, an approximation of the Kirsch problem [25], contains a stress 

concentration at the upper-most point on the one-quarter circle in this doubly symmetric 

problem.  The initial mesh of six-node triangles shown in Fig. 2.1a contains 430 degrees of 

freedom.  This model is loaded with a uniform load on the right hand end of the panel. 

When this problem is adaptively refined so that the estimated error in the strain energy 

content of each element is less than 5 percent, the final adaptively refined mesh contains 11,454 

degrees-of-freedom as shown in Fig. 2.1b [23].  Note that the elements on the boundary are not 

subdivided.  This means that these elements represent the exact solution with an adequate degree 

of accuracy. 

For the sake of comparison, it is estimated that if the initial model is uniformly refined 

until the same level of error is achieved at the stress concentration that the model would contain 

over 106 degrees-of-freedom.  This means that the nodal density for the uniformly refined mesh 

would be as dense everywhere as in the densest portion of the adaptively refined model, i.e., the 

final figure would be all black.  This comparison highlights the fact that adaptive refinement is 

necessary if accurate approximate solutions are to be achieved with efficiency. 

The adaptive refinement process consists of three distinct components: 1) an error 

estimator, 2) a termination criterion and 3) a refinement guide.  The development and/or 

confident application of each of these components depends on an understanding of the source of 

the discretization errors, a recognition of the effect of these errors on the approximate solution 

and an understanding of how to improve the finite element model to reduce the errors. 

The three objectives of this Chapter are designed to provide this understanding of the 

errors in finite element models.  These objectives are the following: 

1) To demonstrate the effect of discretization errors on finite element solutions. 
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2) To provide an intuitive understanding of the cause of discretization errors that 

exist in finite element solutions. 

3) To demonstrate approaches for improving the finite element representation. 

These objectives will be achieved with a series of demonstrations. 

 In the next Section, two examples of finite element models that produce exact results are 

presented.  As can be seen these solutions are continuous.  That is to say, these solutions contain 

no inter-element jumps in the strain representations, which is the signature of an exact solution. 

Next examples are presented where the finite element models are incapable of 

representing the exact solutions.  This inability to represent the exact solution can be seen by the 

presence of inter-element jumps in the strain representations.  Furthermore, it will be seen that 

the inter-element jumps in the strains are reduced as the model is improved so that it better 

represents the exact solution.  Then, it will be demonstrated that the discretization errors are 

produced when the strain model in the individual finite elements cannot exactly represent the 

actual strain distribution that exist on the domains of the individual elements. 

2.2 - Characteristics of Exact Finite Element Results 

The objective of this Section is to demonstrate the characteristics of a finite element 

solution when it is identical to the exact solution.  As will be seen, an exact finite element 

solution exhibits no discontinuities in the strain 

representation. 

The fact that an exact finite element solution 

produces a strain representation that is continuous is 

demonstrated with the two examples shown in Fig. 2.2.  

The finite element model consists of five, four-node bar elements of equal length fixed at both 

 
(a) Constant Distributed Load 

 
(b) Linearly Varying Load 

Figure 2.2 – Two Finite Element Models 
with Distributed Loads 
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ends.  Only the inter-element nodes are shown in this figure.  The model is loaded with the two 

distributed loads shown in Figs. 2.2a and 2.2b, respectively. 

In Fig. 2.2a, the finite element model is loaded with a constant load distribution.  In Fig. 

2.2b, the model is loaded with a linearly varying load.  It should be noted that the loads shown 

are actually in the horizontal direction so they produce tension and compression in the bar. 

The strain distributions produced by the finite element model for these two loading 

conditions are shown in Fig. 2.3a and b, respectively.  The inter-element nodes are shown as 

“o’s” and the interior nodes are shown as “x’s” in these figures.  Both of the finite element strain 

distributions in Fig. 2.3 are continuous.  If the finite element results were not continuous, jumps 

would exist in the strain representation at the inter-element nodes identified with the “o’s.”  The 

fact that there are no discontinuities in the strain representations means that both finite element 

results shown in Fig. 2.3 are exact solutions. 

 
In Chapter 3, the modeling capabilities of the individual four-node elements are 

investigated.  It will be seen that a four-node bar element is capable of representing strain 

distributions that are a linear combination of constant strain, linearly varying strain and 

quadratically varying strain.  When the behavior of the individual elements in Fig. 2.3a is 

  
a) Constant Load Strain Distribution b) Linear Load Strain Distribution 

Figure 2.3 – Exact Finite Element Strain Distributions 
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examined, it is seen that each element is representing the same linear variation of strain and there 

are no inter-element jumps in the strain representation.  

In Fig. 2.3b, the individual elements each represent a parabolic strain distribution and 

there are no inter-element jumps in the strain representation.  Since each of the four-node 

elements is capable of representing the strain distribution of the exact result on its domain, there 

are no discretization errors and, hence, there are no inter-element jumps in the strains.  This 

means that the finite element result is identical to the exact result. 

 The two foregoing examples identify the two primary characteristics of finite element 

representations that are at the heart of adaptive refinement: 

1) A finite element solution contains no errors if the interpolation polynomial of each 

element is able to capture the exact strain distribution in the portion of the solution 

that it represents. 

2) There are no inter-element jumps in the strains if the finite element exactly 

reproduces the actual solution. 

Since an exact finite element result does not contain any inter-element jumps in its strain 

representations, the goal of adaptive refinement is to modify a finite element model so that the 

inter-element jumps are reduced to a level that produces acceptable stress and strain results.  In 

some of the examples that follow, the magnitudes of the inter-element jumps are used as an error 

estimator and as a termination criterion. 

2.3 - More Demanding Loading Conditions 

 The next objective of this Chapter is to demonstrate the existence of a direct connection 

between the errors in a finite element result and the size of the discontinuities in the inter-
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element strains.  This goal is accomplished by applying two loading conditions that produce 

strain distributions that are too complex for the four-node bar element to represent. 

These two loading conditions are presented in this Section.  It is shown in the next 

Section that these loading conditions produce complex strain distributions in the bar element.  

The initial five-element model will be seen to contain significant inter-element jumps in the 

strain.  That is to say, the individual elements are incapable of representing the complexity of the 

exact strain distribution on their domain that is produced by these two loading conditions. 

The first loading condition is centered on the bar as shown in Fig. 2.4a.  It produces the 

exact strain distribution shown in Fig. 2.4b, which contains the following types of variation in 

the strains: 1) regions that are close to linearly varying, 2) regions that approximate parabolic 

variations, 3) a maximum extreme point, 4) a minimum extreme point, and 5) three inflection 

points that are indicated on the figure. 

  
a) Centered Load b) Resulting Strain Distribution 

Figure 2.4 – A “High-Demand” Loading Condition and Resulting Strain Distribution 
  

The second loading condition is shown in Fig. 2.5a.  It is similar to the loading condition 

in Fig. 2.4a, except that it is shifted slightly to left of center.  This loading condition produces the 

exact strain distribution shown in Fig. 2.5b.  This non-symmetric strain distribution is nearly 

identical to the one for the symmetric case.  However, it is shown in later Sections that this non-

symmetric loading condition surfaces modeling characteristics that are submerged in the 

symmetric case. 
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a) Load Shifted to the Left b) Resulting Strain Distribution 

Figure 2.5 – A “High-Demand” Loading Condition and Resulting Strain Distribution 
  

The two loading conditions shown in Figs. 2.4a and 2.5a are not random choices.  They 

are used because they produce displacements in the continuous bar that are Runge functions.  

Runge functions are often used to test interpolation procedures because they are difficult for a 

polynomial interpolation function to reproduce [28].  The displacement of the bar produced by 

the symmetric loading condition is shown in Fig. 2.6. 

 The Runge functions that represent the 

displacements can be integrated twice to produce the 

loading conditions.  The loading condition shown in 

Fig. 2.4.a is derived from the following Runge 

function: f(x) = 300/(x + 30.0 / 2.0)2.  For 

completeness, the off-center distributed load shown in 

Fig. 2.5a is found by integrating the following displacement function twice, f(x) = 300/(x + 30.0/ 

2.2)2.  It should be noted that the exact strains contained in the example problems shown in Figs. 

2.4b and 2.5b are the first derivative of the displacement functions. 

2.4 – Discretization Errors in an Initial Model 

 When the symmetric distributed load shown in Fig. 2.4a is applied to a bar problem that 

is modeled with five four-node elements and fixed ends, the strain distribution produced by the 

 
Figure 2.6 – A Runge Function 
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finite element model is compared to the exact result in Fig. 2.7a.  The difference between the two 

curves identifies the actual error in the finite element solution.  In order to clearly identify the 

boundaries of the individual elements, the end nodes of the individual elements are designated 

with “o’s.” 

In Fig. 2.7b, only the finite element approximation of the strain distribution is shown.  

The interior nodes of the individual elements are designated as “x’s” in this figure.  The finite 

element solution is shown separately in this figure because in later refinements it can be difficult 

to visually separate the exact and the approximate solutions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 - An Unconverged Finite Element Result 
 
As can be seen in Fig. 2.7a, the finite element solution differs markedly from the exact 

solution in the region containing the critical maximum and minimum points.  However, the finite 

element solution is close to the exact solution in the portions of the bar that start from each of the 

fixed boundaries.  This figure demonstrates the two primary objectives of this Chapter: 1) 

discretization errors are produced when the individual finite elements cannot represent the exact 

strain distribution and 2) the inter-element jumps in the strain identify the location and 

magnitude of the discretization errors. 

When the modeling characteristics of the individual elements are studied, it is observed 

that the errors in the finite element result are inversely proportional to the ability of the 

  
a) Compared to Exact Result b) Result with Inter-Element Jumps Emphasized 
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individual finite elements to represent the exact result.  The nearly linear strains represented by 

the first and last elements in Fig. 2.7 are very close to the exact result.  Similarly, the strains 

represented by the second and next to last element are nearly parabolic and are quite close to the 

exact result.  As shown in the previous section, four-node finite elements can represent linear and 

quadratic distributions exactly.  Since each of these elements is very close to representing the 

exact strain distribution, the contributions made by these elements to the inter-element jumps are 

small. 

In contrast to this accurate representation of the exact strain distribution, the strain 

distribution produced by the center element is not even close to the exact result.  The exact result 

has an “S” shape that contains two extreme points, the maximum and the minimum, and three 

inflection points.  A single four-node element does not have the capacity to represent this 

complex strain distribution so the inter-element jumps contributed by this element are large. 

Figure 2.7a has demonstrated the correlation between the failure of the finite element 

model to represent the exact strain and the inter-element jumps.  The inter-element jumps in the 

finite element strain representation are small at the two end portions of the bar where the finite 

element result is close to the exact result.  Conversely, the inter-element jumps are large in the 

center of the bar where the approximate solution and the exact result differ widely.  Thus, it can 

be deduced that the discretization errors are quantified by the inter-element jumps.  As 

mentioned earlier, this observation will be given a solid theoretical basis in later Chapters. 

This section has demonstrated two important characteristics of finite element results.  

First, the inter-element jumps are correlated to the difference between the exact result and the 

finite element representation.  Second, the differences between the exact solution and the exact 
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result depend on the ability of the interpolation function in the finite element to capture the exact 

strain distribution. 

2.5 - Error Reduction and Uniform Refinement 

 The problem that was just solved will now be refined by subdividing each element into 

two equal length elements.  The model is uniformly refined in order to: 1) examine the behavior 

of individual elements as the finite element model is improved and 2) identify the need for the 

adaptive refinement process.  Two uniform refinements will be applied to the five-element model 

solved in the previous Section to produce models with ten and twenty elements, respectively.  

The result for the first application of uniform refinement is shown in Fig. 2.8. 

 When Figs. 2.8a and b are compared to Figs. 2.7a and b, it is seen that the ten-element 

approximation is significantly closer to the exact result than the five-element representation.  

Replacing the (over-driven) center element with two elements allows the finite element model to 

capture the general “S” shape of the exact result because of the ability of the individual elements 

to represent quadratic strain distributions.  Since the individual finite elements provide a better 

representation of the exact solution everywhere in the bar than was the case for the five-element 

representation, the inter-element jumps are reduced.  This reduction in the errors is expected as 

the increasing the number of elements in the model better represent the exact solution. 

  
a) Compared to Exact Result b) Result with Inter-Element Jumps Emphasized 

Figure 2.8 – A Uniformly Refined Finite Element Result 
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The inter-element jumps associated with the two elements in the center of the ten-element 

model are still relatively large compared to the errors in the remainder of the problem.  These 

errors exist because the exact strain distribution in the region of these two elements is still too 

complex for the two four-node elements to capture.  Specifically, the modeling capabilities of the 

two elements in the center of the bar are incapable of capturing the complex shape of the exact 

result that contains both the peak values and the inflection points identified in Fig. 2.4b. 

 The strain distribution produced by the second uniform refinement is shown in Fig. 2.9.  

As can be seen, the four elements representing the center portion of the bar are better able to 

capture the “S” shape than were the two elements in the previous model.  Due to the 

improvement in the finite element strain model, the inter-element jumps are reduced, as would be 

expected. 

  
a) Compared to Exact Result b) Result with Inter-Element Jumps Emphasized 

Figure 2.9 – A Uniformly Refined Finite Element Result 
 
The primary flaw in uniform refinement can be seen in this sequence of refinements.  

These examples show that uniform refinement introduces too many elements into regions of the 

model with little or no error.  This can be seen at the two ends of the bar.  Little, if any, error 

exists in these regions after the first uniform refinement.  Hence, little improvement is possible in 

these two regions as a result of a second uniform refinement.  Thus, little, if any, improvement 
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occurs in the finite element representation at the two ends of the bar when the number of 

elements is doubled in these two regions.  It can be concluded that this use of additional 

modeling capacity in regions of low error is wasted. 

This section has identified the need for adaptive refinement by demonstrating that 

uniform refinement introduces unnecessary modeling capability in regions that are already well 

represented.  Inversely, a comparison of Figs. 2.8 and 2.9 demonstrated that the finite element 

model was significantly improved when additional elements were introduced into regions of high 

error.  This improvement is produced because the subdivision of the exact result simplifies the 

strain distribution that an individual element must represent. 

2.6 - Error Reduction and Adaptive Refinement 

 In this section, the effectiveness of the adaptive refinement process will be demonstrated.  

This will be shown by subdividing only the elements with the highest levels of inter-element 

jumps and comparing the results to those produced by uniform refinement.  It will be seen that 

the selective refinement of the finite element model produces a more efficient use of the 

modeling capabilities of a finite element model.   

In this Section, the elements to be subdivided are identified by visual inspection.  In later 

Chapters, refinement guides are developed that improve the model using a wide variety of 

criteria.  In its simplest form, a refinement guide subdivides individual elements by quantifying 

the discretization errors using metrics (measures, quantities) that are computed with error 

estimators. 

 As can be seen in Fig. 2.7, the largest error in the five-element mesh is contained in the 

center element.  In this first example of adaptive refinement, only the center element is 
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subdivided.  The finite element solution for the resulting six-element model is presented in Fig. 

2.10 side-by-side with the ten-element uniformly refined model. 

When the result from the adaptively refined model is compared to the result for the ten-

element uniformly refined model, the results are seen to be quite similar.  The two extreme 

values are captured by both approximations, and the largest inter-element jumps are similar in 

size and location.  Minor differences occur in the inter-element jumps at less critical points in the 

strain distribution.  The differences between the two solutions are quantified in later Chapters 

after the error estimators are developed. 

  
a) A Ten Element Uniformly Refined Result  b) A Six Element Adaptively Refined Result 

Figure 2.10 – A Uniformly Refined Result and An Adaptively Refined Finite Element Result 
  

The two elements in the center of the model in Fig. 2.10b are easily identified as 

containing the highest level of errors because they are associated with the largest jumps in the 

inter-element strains.  To further demonstrate the advantages of adaptive refinement, these two 

high-error elements will be subdivided. 

When Fig. 2.10b is compared to Fig. 2.10a, it can be observed that slightly more error is 

present in the two elements flanking the center elements in the adaptively refined model than in 

the elements of the corresponding region of the ten-element uniformly refined model.  Even 

though the strain is nearly zero in this region, i.e., this is not a region of critical strain, these two 
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elements will be adaptively refined because the error is slightly higher in this region than in the 

corresponding region of the uniformly refined model.  When the six-element model is adaptively 

refined, the result is a ten-element model. 

 The strain distribution for the adaptively refined ten-element model is shown side-by-side 

with the result from the uniformly refined model with twenty elements in Fig. 2.11.  When these 

two results are compared, it can be seen that the two approximations are nearly identical.  This 

example further demonstrates the fact that the judicious refinement of a model produces an 

efficient use of modeling capacity. 

  
a) A Twenty Element Uniformly Refined Result b) An Eight Element Adaptively Refined Result 

Figure 2.11 – A Uniformly Refined Result and An Adaptively Refined Finite Element Result 
 
This section has shown the modeling efficiency that results from applying adaptive 

refinement.  However, the visual identification of elements that can be profitably subdivided 

must be replaced with procedures that can be applied automatically.  This will be accomplished 

in later Chapters. 

2.7 – The Effect of Element Modeling Capability on Discretization Errors 

 The objective of this section is to further highlight the direct relationship between the 

discretization errors and the modeling characteristics of individual finite elements.  This is 

accomplished by comparing and contrasting the results for a problem modeled using both four-

node and three-node elements.  The two models have different numbers of elements but they 
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contain the same number of degrees-of-freedom.  An initial model of twenty-three degrees-of-

freedom as well as a uniformly refined model of forty-seven degrees-of-freedom are solved.  

This problem is deformed with the non-symmetric loading condition shown in Fig. 2.5. 

 The exact solution and the approximate strain distributions for the two initial models are 

shown in Fig. 2.12.  The primary purpose of this example is to compare and contrast the way the 

two different elements attempt to capture the extreme points in the stress distribution.  Both 

models overshoot the maximum strain with a linear representation.  Neither element can capture 

both extreme points because the exact strain distribution is more complex than either element can 

represent. 

The most significant qualitative difference between the modeling capabilities of the four- 

and the three-node elements is seen in their attempts to represent the minimum peak.  Because 

the strain representation of the four-node element is capable of representing a quadratic curve, it 

closely captures the actual shape near the minimum extreme point.  The three-node model cannot 

capture the extreme point on the domain of an element because a three-node element can only 

represent linear strain. 

  
a) Four-Node Elements b) Three-Node Elements 

Figure 2.12 – Twenty-Three Degree-of-Freedom Models 
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In the Figs. 2.12a and 2.12b, the magnitudes of the inter-element jumps for both of the 

finite element models are too large with respect to the absolute value of the maximum strains to 

be acceptable.  The two models are uniformly refined in order to improve the representations of 

the strains.  The results of these improvements to the models are presented in Fig. 2.13. 

Figure 2.13 - An Unconverged Finite Element Result 
 
As can be seen in Fig. 2.13a, the four-node model closely captures both extreme values of 

the strain distribution.  In the case of the three-node-model shown in Fig. 2.13b, there are 

significant inter-element jumps in the regions of the extreme values. 

The contrasting behavior of the two models at the minimum extreme point is highlighted 

in Fig. 2.14.  In this figure, the regions containing the minimum extreme values for the two 

refinements of both the four-node and the three-node models are magnified as if examined under 

a microscope.  In both four-node representations shown in Figs. 2.14a and c, the extreme value is 

captured on the domain of a single element.  When these two figures are compared, it can be 

seen that the location and the magnitude of the representation of the minimum strain is improved 

in the second model so that it almost matches the exact result. 

When the two representations produced by the two models formed with three-node 

elements shown in Figs. 2.14b and d are examined, it can be seen that further refinement is 

  
a) Compared to Exact Result b) Result with Inter-Element Jumps Emphasized 
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needed if the three-node model is going to capture the location of the extreme value more 

closely. 

  
a) Initial Four-Node Model b) Initial Three-Node Model 

  
c) Uniformly Refined Four-Node Model d) Uniformly Refined Three-Node Model 

Figure 2.14 – Magnification of the Minimum Points 
  

This section has shown that the modeling capabilities of the individual elements are 

related to the accuracy of the solution.  In later Chapters, it is shown that higher-order elements 

are significantly more efficient than lower-order elements when the modeling capability of the 

elements is fully utilized. 

 It should be made clear that no one best element exists for every application.  For 

example, if the maximum stress or strain concentration occurs on the boundary, an element 
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capable of representing linear strain distributions is adequate.  This can be seen in Figs. 2.12 and 

2.13 by the accuracy of the results as they approach the extreme points. 

If the stress concentration takes the form of an extreme value, elements that are capable 

of representing a quadratic strain distribution have the advantage of being able to capture the 

extreme value on the domain of a single element.  This advantage has been shown clearly in this 

Section. 

2.8 - Summary and Conclusion 

 This Chapter has accomplished the three objectives identified in the Introduction of this 

Chapter, namely: 

1) It has been shown that modeling errors appear in finite element models as 

inter-element jumps in the stresses or strains and that the size of the jump is 

proportional to the severity of the modeling error. 

2) It has been shown that the modeling errors are directly connected to the ability 

of the individual elements to represent the complexity of the exact solution to 

the problem, i.e., the errors are related to the modeling characteristics of the 

individual finite elements. 

3) It has been shown that models can be improved with uniform refinement, 

adaptive refinement and with the use of higher-order finite elements. 

The applications of uniform and adaptive refinement have shown that the practical 

application of the finite element method requires the use of adaptive refinement.  If uniform 

refinement is used instead of adaptive refinement, inefficient models with too many degrees of 

freedom are generated.  The use of higher-order elements is studied in detail in later Chapters. 
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As described in this Chapter, the implementation of adaptive refinement requires the 

following three capabilities: 

1) The ability to identify the location and to estimate the magnitude of discretization 

errors in the finite element model. 

2) The ability to identify when to terminate the adaptive refinement process, i.e., the 

ability to identify when the solution is as accurate as is desired. 

3) The ability to identify how to effectively refine the finite element model in regions of 

excessive error, i.e., develop refinement guides. 

The knowledge gained in this Chapter is used as the basis for developing the three 

capabilities just identified for the implementation of the adaptive refinement process.  That is to 

say, in later Chapters, the following is developed: 1) error estimators, 2) termination criteria, and 

3) refinement guides. 

 

 

 

 

 

 

 

 

 

 



26 

 

CHAPTER 3 

STRAIN MODELING CAPABILITIES OF INDIVIDUAL FINITE ELEMENTS 

3.1 – Introduction 

In the previous Chapter, it was shown that the errors in finite element results appear as 

jumps in the inter-element strains.  It is demonstrated in the next Chapter that these jumps are 

produced when an individual finite element cannot capture the complexity of the exact solution 

that exists on its domain.  These errors are called discretization errors because the discrete 

number of finite elements in the model cannot capture the shape of the exact solution.  Examples 

of inter-element jumps in the strain that identify discretization errors are shown in Fig. 3.1. 

 The ability with which a finite element model can 

represent an exact solution depends on the modeling 

capabilities of the individual finite elements.  This can be 

seen in Fig. 3.1 by comparing the four-node element 

representation of a minimum point with that of a three-node 

element representation. 

 As can be seen in Fig. 3.1a, a single four-node 

element captures the minimum point on its interior.  In 

contrast, a three-node model cannot capture an extreme point 

on its interior as shown in Fig. 3.1b.  This means that it is 

more efficient to represent an extreme point with the higher-

order element because there are fewer constraints on the model, i.e., an inter-element node need 

not be located at or near the extreme point. 

 
      (a) A Four-Node Representation 

 
     (b) A Three-Node Representation 

Figure 3.1 – Finite Element Strain 
Representations vs. The Exact Result 
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 The goal of adaptive refinement is to efficiently identify regions with unacceptable levels 

of error and to improve the finite element model in these regions.  The model is improved by 

modifying the discrete finite element representation in regions of unacceptable error so that it is 

better able to capture the exact solution.  The model is improved by subdividing the existing 

elements or by introducing higher-order elements. 

 In later Chapters, procedures are developed for estimating the magnitude of the localized 

errors and identifying the level of refinement needed in these regions to produce an acceptable 

solution.  The implementation of these procedures requires two capabilities: the ability to 

identify the modeling characteristics of individual elements and the ability to identify in situ the 

details of the strain representation that actually exist in the individual elements in a finite element 

solution. 

The objective of this Chapter is to present and apply a procedure for evaluating the strain 

modeling capabilities of individual elements.  This is accomplished by replacing the standard 

form of the displacement interpolation functions with polynomials that are physically 

interpretable.  The replacement of the standard form of the displacement interpolation functions 

is accomplished by expressing the coefficients of the interpolation function in terms of quantities 

that cause displacements in the continuum, namely, rigid body displacements and strains.  This 

form of the interpolation polynomial will be used in the development of error measures and 

refinement guides. 

In the Sections that follow, a procedure is presented for representing the displacement 

interpolation polynomials in terms of physically interpretable quantities, namely, rigid body 

motions and strain quantities; identify the modeling capability of several elements during the 

formulation process; and determine the strain characteristics being represented by individual 
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elements in a loaded finite element model.  Each of these topics is covered in more detail in 

Reference 1. 

3.2 – Identification of the Modeling Capabilities of a Three-Node Bar Element 

The strain modeling capabilities of a three-node element are introduced and discussed in 

this Section.  The nodal displacements in a three-node bar are a combination of three linearly 

independent displacement patterns.  Each of these displacement patterns can be formed so they 

represent a clearly defined strain state.  The three 

physically interpretable strain states represent a rigid 

body displacement, a deformation due to a constant 

strain and a deformation due to a linearly varying 

strain.  The procedure for forming these physically 

interpretable deformation patterns is outlined and 

developed in detail in the next two Sections. 

The displacement pattern for the three-node 

element that is due to a rigid body displacement is 

shown in Fig. 3.2a.  As would be expected, the rigid 

body motion contributes the same displacement to 

each of the three nodes.  The actual contribution of 

the rigid body displacement to the overall 

displacement depends on the participation level of 

this component. 

It should be noted that, by definition, an element undergoing a rigid body displacement 

does not deform.  Thus, the strain in an element undergoing a rigid body motion is equal to zero.  

 
(a) Displacement due to Rigid Body Motion 

 
(b) Displacement due to Constant Strain 

 
(c) Displacement due to Linearly Varying Strain 

 
(d) Total Displacement; A Linear Combination  

of (a), (b), and (c) 
Figure 3.2 – Linearly Independent Deformation 
Patterns for a Three-Node Bar and Their Sum 
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In order to make the discussion simpler in later sections, a rigid body motion is considered here 

as a “zero-th order” strain distribution. 

When a three-node bar is deformed with a state of constant strain, the nodal 

displacements vary linearly in the element as shown in Fig. 3.2b.  The actual displacements 

produced by this strain state depend on its level of participation in the overall solution.  The 

center node is chosen as the local origin for the element so it does not displace. 

The third physically interpretable displacement pattern that a three-node element can 

represent is shown in Fig. 3.2c.  The displacement pattern for this contribution is parabolic.  This 

displacement pattern is produced by a linearly varying strain distribution. 

 Every displacement of the three-node bar is a linear combination of these three linearly 

independent modeling capabilities.  An example of such a linear combination is shown in Fig. 

3.2d.  This deformation is an example of the most complex shape that a three-node element can 

represent because it is composed of a linear combination of the three deformation patterns shown 

in Figs. 3.3a – 3.3c.  It should be emphasized that the displacements in a bar are actually along 

the axis of the bar in the longitudinal direction.  For visual clarity, these axial displacements 

appear as lateral representations in Fig. 3.2. 

3.3 – An Overview of Self-Referential Notation for a Three-Node Bar Element 

 An overview of the motivation for and an outline of the derivation of the self-referential 

coefficients of the displacement interpolation polynomial are presented in this Section.  This 

presentation gives an analytic perspective to the modeling capacities illustrated in the previous 

Section.  The contents of this Section are condensed in Fig. 3.3.  The detailed derivation 

presented in the next Section puts this physically interpretable notation on a solid theoretical 

foundation. 
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Before outlining the derivation, the limitations of the standard form of the displacement 

interpolation polynomial, shown in Fig. 3.3a, are identified.  The arbitrary coefficients, the “a’s”, 

have no clearly identified physical meaning.  This means that they have no direct connection to 

the physical phenomenon they represent, namely, the displacements in the continuum.  As a 

result, the strain modeling capabilities of an individual element cannot be evaluated by 

inspecting the displacement interpolation polynomial. 

This deficiency can be eliminated 

by forming an interpolation polynomial in 

which the coefficients are expressed 

directly in terms of strain quantities.  This 

is desirable because the deformations in 

the continuum are produced by strains and 

the strains are quantities sought in the 

analysis.  The ability to identify the strain 

modeling capability of individual elements 

by visual inspection is demonstrated in 

this and in later Sections. 

This development forms the 

physically interpretable interpolation 

polynomial in a three-step process.  In the 

first step of the derivation, shown in Fig. 

3.3b, the standard form of the 

interpolation function is interpreted as a truncated Taylor series expansion of the displacements 

(a) An Arbitrary Interpolation Function 
 

 
(b) A Taylor Series Representation of the 

Interpolation Function 

 

 
(c) Define Taylor Series Coefficients in Terms  

of Strain Quantities 
 ; 0th Order Strain Quantity 

 

 ; 1st Order Strain Quantity 

 

 ; 2nd Order Strain Quantity 

 
(d) Transformed Interpolation Function 

 

Figure 3.3 - The Formulation of Self-Referential 
Interpolation Polynomials 
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with respect to a local origin.  This step replaces the content-free "a’s" with coefficients 

expressed in terms of the displacement and its derivatives.  The constant term is interpreted as a 

rigid body displacement. 

In the next step, shown in Fig. 3.3c, the derivatives of the displacements in the Taylor 

series expansion are expressed in terms of strain and the derivatives of strain.  This is 

accomplished by introducing the strain-displacement relation, εx  = du/dx.  The coefficients of the 

displacement interpolation function are now expressed in terms of quantities that are directly 

related to the deformation of the continuum. 

Two features of the notation need to be emphasized.  The subscripts written after the 

comma indicate a derivative and the subscript zero indicates that the quantity is evaluated at the 

local origin of the finite element.  As mentioned in the previous Section, a rigid body motion is 

identified as a zero-th order strain term since a rigid body motion does not cause the continuum 

to deform.  

A simple substitution remains as the final step.  The coefficients of the Taylor series 

presented in Fig. 3.3b are replaced with the coefficients expressed in terms of the strain 

quantities contained in Fig. 3.3c.  The final form of an interpolation polynomial is shown in Fig. 

3.3d.  The displacement interpolation function is now expressed directly in terms of quantities 

that are important to solid mechanics problems, namely, the strains. 

When Fig. 3.3d is examined, the modeling capabilities of an individual finite element can 

be identified by inspection.  For example, a three-node element will have a displacement 

interpolation function that consists of the first three terms shown in Fig. 3.3d.  When the three 

coefficients expressed in physically interpretable notation are extracted from Eq. 3.3d, they are 

the following: 
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These three coefficients indicate that a three-node bar element can represent a rigid body 

displacement, a constant strain and a linearly varying strain distribution.  The physical meaning 

of these three terms is discussed in detail in Section 3.2 and illustrated in Fig. 3.2. 

This result might, at first, seem somewhat simplistic.  The one-dimensional case is used 

almost exclusively in this presentation in order to provide a straightforward, compact 

introduction to the physically interpretable, self-referential notation.  In a later Section, the 

displacement interpolation polynomials for a four-node planar element are presented in this 

physically interpretable notation.  The coefficients are expressed in terms of rigid body 

displacements, rigid body rotation, normal strains, and shear strain. 

The analysis of a two-dimensional element is introduced solely to demonstrate another 

facet of the power and usefulness of this self-referential notation.  The use of this physically 

interpretable notation allows modeling errors inherent in the four-node quadrilateral to be 

identified by inspection. 

3.4 – Identification of the Physically Interpretable Coefficients 

The previous Section discussed the significance of the self-referential notation for a 

three-node bar and outlined the procedure for forming the coefficients for this physically 

interpretable notation.  In this Section, the procedure for forming these coefficients in detail is 

presented.  This is done to show that this process is straightforward and easily implemented. 

The standard interpolation polynomial for the three-node element is the following: 

        (Eq. 3.1) 
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In Eq. 3.1, the coefficients of the interpolation function do not have any obvious physical 

meaning.  For example, the physical meaning of the coefficient a3 was identified in the previous 

Section as being the derivative of the normal strain, i.e., a3 = εx,x.  The process for identifying the 

arbitrary ‘a’ coefficients in terms of strain quantities is presented next. 

The first step toward embedding physical meaning into these arbitrary coefficients is to 

interpret Eq. 3.1 as a truncated Taylor series expansion.  When Eq. 3.1 is written as a second-

order Taylor series expansion, the following is obtained: 

       (Eq. 3.2) 

 
where the subscript zero refers to the local origin, which is located at the center of the 

element in this analysis.   

Equation 3.2 directly introduces physical meaning into the interpolation polynomial.  

This is the case because the dependent variable of Eq. 3.2 is chosen to be the displacement of the 

continuous bar being analyzed. 

The constant term of Eq. 3.2 is interpreted as a rigid body displacement.  It represents the 

displacement of the local origin, the point designated as “0.”  As mentioned in the previous 

Section, the rigid body displacement is considered as a zero-th order strain term because a rigid 

body motion does not cause a deformation.  The coefficient of the constant term is expressed as: 

         (Eq. 3.3) 
 
where “rb” designates a rigid body displacement in the x direction. 

The coefficient of the linear term is interpreted as a constant normal strain since the 

strain-displacement relation from linear elasticity is εx = du/dx.  In order to make it clear that the 
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coefficient of the linear term refers to the value of the constant strain at the local origin, the 

coefficient is written with a subscript zero as: 

         (Eq. 3.4) 

 
The coefficient of the quadratic term is interpreted as the rate of change of the normal 

strain in the x direction.  When this coefficient is expressed in terms of the derivatives of the 

normal strain, the following is obtained: 

     (Eq. 3.5) 

 
where a subscript after the comma, e.g., ‘x,x’ indicates a derivative with respect to x. 

This term is a gradient of the normal strain.  As a result, this self-referential notation is 

designated as strain gradient notation. 

 When the coefficients of Eq. 3.2 are expressed in terms of the physically interpretable 

quantities as presented in Eqs. 3.3 – 3.5, the result is the following: 

       (Eq. 3.6) 

 
where the subscript 0 refers to the local origin and the subscript following the comma 

indicates differentiation with respect to x. 

 Equation 3.6 indicates that the displacements in a three-node element are produced by a 

rigid body displacement, a constant strain and a linearly varying strain.  The displacements 

produced by these three independent components are illustrated in Fig. 3.2. 

3.5 – The Decomposition of Element Displacements into Strain Components 
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 One of the objectives of this Chapter is the development of the capacity to identify the 

details of the strain representation for an individual element in a finite element solution.  This is 

accomplished by introducing the nodal displacements of an element into Eq. 3.6 to extract the 

level of participation of each of the strain states that the element can represent. 

 The participation factors for the individual strain states are found by treating the 

displacement at each of the nodes on an individual element as a boundary condition.  To 

implement this idea, Eq. 3.6 is equated to the nodal displacement at each of the nodes in an 

element.  The nodal locations for the example presented here are shown in Fig. 3.4. 

When Eq. 3.6 is evaluated at 

node 1, the displacement is equal to 

the nodal displacement, u1, and the 

nodal location is given as x1 = –L/2.  

When these conditions are introduced 

into Eq. 3.6, the result is the 

following: 

   (Eq. 3.7) 

When Eq. 3.6 is evaluated at the location of each of the three nodes of the finite element 

in the local coordinate system as shown in Fig. 3.2, the result is as follows: 

 
Figure 3.4 - A Three-Node Element with a Local Coordinate 

System 
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     (Eq. 3.8) 

 
This equation relates the three nodal displacements of a three-node element to the three 

physically interpretable quantities that produce displacements in the element.  The subscript ‘0’ 

on the last term of Eq. 3.8 implies that those quantities are being evaluated at the local origin, 

which in this case is located at node 2.  The subscript "i" indicates a reference to the i-th element. 

 Equation 3.8 presents an intermediate step in our development.  The inverse of this 

equation contains the relationship being sought.  This is the case because after a finite element 

problem is solved, the nodal displacements of each of the individual elements are known.  As a 

result, the quantities on the left-hand side of Eq. 3.8 are known and the quantities on the right-

hand side of Eq. 3.8 are sought. 

 When Eq. 3.8 is inverted, the following system of equations is obtained: 

      (Eq. 3.9) 

 
Equation 3.9 allows the identification of the contributions of the independent strain states 

to the nodal displacements that exist in a three-node bar element.  The quantities on the left hand 

side of Eq. 3.9 are referred to as participation factors. 

3.6 – A Common Basis for the Finite Element and Finite Difference Methods 

Equation 3.9 has a significance that extends far beyond that discussed in the previous 

Section.  The finite difference approximations of the derivatives are implicitly contained in Eq. 
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3.9.  This is demonstrated in this Section.  In Ref. 1, it is shown that Eq. 3.9 can serve as the 

basis for forming finite element stiffness matrices.  This means that the finite difference method 

and the finite element method have a common basis. 

The existence of a common basis for the two methods means that the finite difference 

method can be rationally extended to represent practically any domain or boundary condition 

that can be modeled by the finite element method.  In later Chapters, the common basis of the 

two methods is used to provide the theoretical and practical foundation for pointwise error 

measures. 

 Next, it is demonstrated that Eq. 3.9 implicitly contains the standard form of the finite 

difference approximations for the first and second derivatives.  This is accomplished with a 

slight change of notation.   

Figure 3.5 presents a one-dimensional, three-node finite difference template with even 

spacing.  This figure is similar to Fig. 3.4 except that the notation is changed so that it matches 

the standard notation for a central 

difference template. In this notation, 

the nodal spacing is designated as h 

instead of as L/2.  When Eq. 3.9 is 

rewritten with this notation, it becomes: 

   (Eq. 3.10) 

 The first row indicates that every node has a rigid body displacement that corresponds to 

the displacement of the local origin.  When the equations contained in the second and third rows 

are extracted from Eq. 3.10, the following is obtained: 

 
Figure 3.5 - A Three-Node Finite Difference Template 
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       (Eq. 3.11) 

 
The two components of Eq. 3.11 are identical to the standard form of the central 

difference template approximations of the first and second derivatives at the local origin.   

The components of Eq. 3.11 are developed for evenly spaced nodes.  The nodes can, in 

general, be unevenly spaced [24].  The use of unevenly spaced nodes reduces the order of the 

error in a finite difference template.  However, it is not clear whether the idea of the order of 

error has much meaning in an adaptively refined problem where the introduction of smaller 

elements is the objective of the process. 

It should be noted that Eq. 3.10 can be extended to multi-dimensions.  The procedure for 

developing finite difference templates in two-dimensions for unevenly spaced nodes is presented 

and demonstrated in Ref. 1.  This capability may provide another important contribution to 

computational mechanics by leading to a revival of the finite difference method in solving solid 

mechanics problems.  In fact, adaptive refinement procedures for finite difference models have 

been demonstrated using an error measure that can be used with either finite element or finite 

difference representations [24, 29].   

3.7 – Modeling Capabilities of the Four-Node Bar Element 

 In Fig. 3.1, the ability of a four-node bar element to better represent a minimum point 

than a three-node element was shown.  In this Section, the modeling capability of a four-node 

element that makes this improved result possible is identified.  Then, using this result, a 

relationship is formed that allows the identification of the in situ participation of the individual 
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strain components of individual four-node elements.  In the next Section, the capability 

developed in this Section is used to identify the in situ performance of four-node bar elements. 

 When the displacement interpolation function for a four-node bar element is expressed in 

terms of the physically interpretable quantities, the result is the following: 

     (Eq. 3.12) 

 
where the subscript “0” refers to the local origin and the subscript following the comma 

indicates differentiation with respect to x. 

 This interpolation function is identical to the one for a three-node bar given by Eq. 3.6 

with the addition of a cubic term.  Equation 3.12 indicates that the displacements in a four-node 

element are produced by a rigid body displacement, a constant strain, a linearly varying strain 

and a quadratically varying strain.  That is to say, this element can represent a strain distribution 

that is one-order higher than can be represented by a three-node element.  The difference in the 

modeling capabilities produced by this additional term is shown graphically in Fig. 3.1. 

 An analogous relationship to Eq. 3.9 is developed here for a four-node element using Eq. 

3.12.  This process is demonstrated for the four-node bar shown with even spacing in Fig. 3.6.  

The local origin is located at the center of the bar. 

 
Figure 3.6 - A Four-Node Element with a Local Coordinate System 

 
When Eq. 3.12 is evaluated at the four nodal locations of a four-node bar, the following 

system of equations is formed: 
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     (Eq. 3.13a) 

 
When Eq. 3.13a is evaluated at the four nodal locations shown in Fig. 3.6, the following 

is obtained: 

     (Eq. 3.13b) 

 
This equation relates the nodal displacements of a four-node element to the four 

physically interpretable strain components that exist at the local origin of the element being 

analyzed.  The subscript "i" on the first term relates the nodal displacements to the i-th element.  

The subscript "0" on the last term relates these quantities to the local origin of the i-th element.  

The four nodal locations are identified in Fig. 3.6 as x1 = -L/2, x2 = -L/6, x3 = L/6 and x4 = L/2. 

 As was the case for Eq. 3.8, Eq. 3.13 is an intermediate step to the desired result.  The 

level of participation of the individual strain states that exist for a given set of element 

displacements is sought.  The participation factors are found by inverting Eq. 3.13b. 

 When Eq. 3.13 is inverted, the system of equations becomes the following: 

    (Eq. 3.14) 

 
Equation 3.14 allows the identification of the contribution of the independent strain 

quantities that a four-node bar element is capable of representing to the known nodal 

displacements of the element. 
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3.8 – Identification and Evaluation of Element Behavior 

 In this Section, the usefulness of the physically interpretable notation is demonstrated 

further.  This is accomplished by identifying the strain states that an individual element is 

actually representing in an existing finite element result.  This result is obtained by using Eq. 

3.14 to decompose the in situ displacements of individual elements into the contributions of the 

strain quantities that produce the nodal displacements.  In later Chapters, this ability is used to 

evaluate element performance and to formulate refinement guides. 

 The in situ behavior of the individual elements is identified here for an example problem.  

The example is the fixed-fixed bar represented with five four-node elements that is loaded with 

the symmetric load shown in Fig. 2.4a.  The finite element strain representation and the exact 

strain distribution for this problem were originally shown in Fig. 2.7 and are reproduced here for 

the convenience of the reader as Fig. 3.7. 

The participation factors for the linearly 

independent strain states that produce the displacements 

of the individual elements contained in Fig. 3.7 are 

presented in Table 3.1.  These values are found by using 

Eq. 3.14 to decompose the nodal displacements of each 

of the five elements. 

The quantities in the column labeled as (urb)0 

identify the contribution of the rigid body displacement to the nodal displacements for the 

individual elements.  These quantities designate the total displacements of the local origin of the 

individual bars.  This meaning can be seen in Eq. 3.12 because this equation is the Taylor series 

representation of the displacement interpolation polynomial.  The other terms in the expansion 

 
Figure 3.7 – A Five Element Finite Element 

Result Compared to the Exact Result 
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do not contribute to the displacement of the local origin since they are multiplied by an x-term 

(x, x2, …), which is zero at the origin. 

Table 3.1 – Physically Interpretable Components 
Element No. (urb)0 (εx)0 (εx,x)0 (εx,xx)0 

Element 1 -0.0390 -0.0897 -0.1204 -0.1903 
Element 2 -0.3212 -0.5785 -1.6580 -4.2016 
Element 3 -2.7992 0.0 9.3401 0.0 
Element 4 -0.3212 0.5785 -1.6580 4.2016 
Element 5 -0.0390 0.0897 -0.1204 0.1903 

  
The column labeled as (εx)0  contains the constant strain at the local origin of the 

individual elements.  The meaning of this quantity can be correlated to Fig. 3.7 by comparing the 

strain at x = 3.0 in the figure to the value for (εx)0 of Element 3 in Table 3.1.  This comparison is 

possible because the point, x = 3.0, is also the local origin of Element 3.  As can be seen, the 

strain at x = 3.0 is equal to zero in both the plot and in the table. 

 The quantities labeled as (εx,x)0 in Table 3.1 are the slopes of the strain at the center of the 

individual elements.  These quantities measure the rate of change of εx in the x direction.   The 

meaning of this quantity can be given substance by comparing the values in Table 3.1 to the 

slopes at the center of Elements 2 and 4 that are identified in Fig. 3.8. 

The slopes, (εx,x)0 , of Elements 1 and 5 are 

negative and small relative to the other three elements 

in the model.  This can be seen either by consulting 

Table 3.1 or by inspecting Fig. 3.8.  The slopes of 

Elements 2 and 4 are both negative and significantly 

larger in magnitude than the slopes of Elements 1 and 

5.  Both Fig. 3.8 and Table 3.1 show that the slope of 

the center element, Element 3, is large and positive. 

 
Figure 3.8 – Slope at x =0, (εx,x)0 

for Elements 2 and 4 
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The quantities in the final column of Table 3.1 are the values of the second derivative of 

the strain at the local origin, (εx,xx)o.  These quantities can be interpreted geometrically as the 

curvature of the strain representation at the center of the individual elements. 

The meaning of curvature is illustrated in Fig. 3.9.  In this Figure, the radii of curvature 

for Elements 2 and 4 are shown.  The radius of curvature indicates the size of the circle that has 

the same curvature as the function being analyzed at the point of tangency.  The curvature is 

equal to the reciprocal of the radius of curvature, curvature = 1/ (radius of curvature). 

An inspection of Fig. 3.9 shows that 

Elements 1 and 5 are nearly straight lines, so they 

have a small curvature as is validated in Table 3.1.  

On the other hand, Fig. 3.9 and Table 3.1 show that 

Elements 2 and 4 have a significantly larger 

curvature than Elements 1 and 5.  The curvature of 

Element 3 is given as 0.0 in Table 3.1.  This means 

that the radius of curvature for this element approaches infinity.  That is to say, the strain 

representation in Element 3 is a straight line, which can be seen in Fig. 3.9. 

The ability of Eq. 3.14 to identify the in situ participation of the individual strain states 

for individual elements was demonstrated in this Section.  This capability is used to decompose 

the nodal displacements of an element into the independent strain states in order to form 

refinement guides in later Chapters. 

3.9 – Formulation of a Two-Dimensional Strain Model 

 The one-dimensional problems are presented as a way to introduce and extend the 

components that make up the adaptive refinement process.  However, the focus on the one-

 
Figure 3.9 – Curvature at x =0, (εx,xx)0 

for Elements 2 and 4 
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dimensional problem does not exhibit a major contribution resulting from the use of self-

referential notation, namely, the identification of strain modeling errors in multi-dimensional 

finite elements. 

 The objective of this Section is to show that physically interpretable notation allows 

individual finite element strain modeling characteristics to be identified by inspection.  This a 

priori evaluation of the modeling capability of an element is possible because the self-referential 

notation allows problem-specific knowledge to be brought to bear on the analysis.  The value of 

this capability will be shown by identifying strain modeling errors in four-node quadrilateral 

finite elements that are submerged when the standard notation is used. 

This Section and the one following demonstrate the power and usefulness of self-

referential notation when it is applied to multi-dimensional solid mechanics problems.  In this 

Section, the strain representations that are produced by the standard notation are compared to 

those produced by the physically interpretable notation for a four-node planar element, such as 

the one shown in Fig. 3.10.  

 In the following Section, the self-referential 

strain models that are formed in this Section are 

used to identify several strain modeling errors in the 

four-node planar element. 

The standard form of the displacement 

interpolation polynomials for a four-node element is the following [31, 32]: 

       (Eq. 3.15) 

 
As can be seen, these functions are augmented linear polynomials because an "xy" term 

augments the linear terms in the two equations.  They are not complete quadratic polynomials 

 
Figure 3.10 – A Four-Node Quadrilateral Element 
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because they do not contain x2 and y2 terms.  Note that the arbitrary coefficients – the "a’s" and 

the "b’s" – provide no direct information about the modeling capabilities of this finite element. 

The displacement interpolation polynomials for the four-node quadrilateral expressed in 

physically interpretable notation are the following: 

    (Eq. 3.16) 

 
These displacement polynomials contain the following eight linearly independent 

coefficients: two rigid body displacements, (urb )0 and (vrb )0 ; one rigid body rotation, rrb ; three 

constant strain terms, (εx)0 , (εy)0 and (γxy)0 ; and two gradients of the normal strains, (εx,y)0 and 

(εy,x)0 .  That is to say, the four-node quadrilateral can represent the three rigid body motions, the 

three constant strain states and two other deformation patterns.  For a complete development of 

Eq. 3.16, see Ref. 1. 

The next step in identifying the advantages of the strain gradient notation is to form the 

strain models that are produced by the standard and the physically interpretable forms of the 

displacement interpolation polynomials given by Eqs. 3.15 and 3.16, respectively.  When the 

definitions of the three strain components from linear elasticity are applied to the standard form 

of the displacement polynomial given by Eq. 3.15, the following strain models are obtained: 

    (Eq. 3.17) 

    (Eq. 3.18) 

      (Eq. 3.19) 

 
This result shows that the two normal strains contain a constant term and a linearly 

varying term.  Neither of the normal strain representations are complete linear polynomials, i.e., 
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they do not contain both an x and a y term.  The shear strain component is a complete linear 

polynomial because it contains both an x and a y term.  Nothing can be said about the detailed 

strain modeling capabilities of this element from visually inspecting Eqs. 3.17 – 3.19 because the 

coefficients of these equations have no intrinsic physical meaning. 

The strain representations for the four-node quadrilateral element produced by the self-

referential displacement polynomials given by Eq. 3.16 are the following: 

  (Eq. 3.20) 

   (Eq. 3.21) 

     (Eq. 3.22) 

 
When Eqs. 3.20 – 3.22 are inspected, it is seen that the strain representations formed from 

the self-referential notation are expressed in terms of physically meaningful quantities.  The three 

strain expressions given by Eqs. 3.20 – 3.22 contain five different quantities.  The deformations 

produced by the three constant strain terms, (εx)0 , (εy)0 and (γxy)0 are shown superimposed on the 

original shape of an element in Figs. 3.11a –3.11c, 

respectively. 

The displacements produced by the two strain 

gradient terms (εx,y)0 and (εy,x)0 are shown 

superimposed over the original shape of the element 

in Fig. 3.12.  The two strain states shown in Fig. 3.12 

can be interpreted as flexure terms, since they have 

the form of the strain distribution contained in beam 

elements.  As can be seen in Fig. 3.12, one side of the 

 
Figure 3.11 – Constant Strain States 

 
Figure 3.12 – Flexural Strain States 



47 

element is in tension and the other is in compression. 

As these two figures show, the coefficients of the strain expressions can be directly 

related to the physical problem being represented.  In the next Section, the strain models for the 

four-node planar element given by Eqs. 3.20 – 3.22 are evaluated by comparing them to the 

expected representation from continuum mechanics. 

3.10 – Analysis by Inspection in Two Dimensions 

In this Section, it is shown that the physically interpretable notation provides a 

transparency to the finite element method that does not exist with the standard notation.  The 

value of this transparency is demonstrated by identifying several strain modeling errors that exist 

in the four-node quadrilateral by visually comparing the strain models given by Eqs. 3.20 – 3.22 

to the strain representations from linear elasticity. 

In order to simplify the comparison of the strain model in the four-node quadrilateral 

element to the expected result from continuum mechanics, both strain representations are 

expressed in a similar form so they can be compared visually.  When the strain expressions from 

continuum mechanics are expanded as Taylor series and put in vector form, the following is 

obtained: 

  (Eq. 3.23) 

 
Only the constant and linear terms of this Taylor series expansion are explicitly 

presented.  The higher-order terms are not presented in detail because the strain models for the 

four-node planar element do not contain any higher-order terms. 
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For completeness, it should be noted that the strain modeling errors in the four-node 

element result from the fact that the displacement interpolation polynomials for the element are 

not complete polynomials.  As an aside, it should be noted that a six-node triangle, the linear 

strain triangle, is derived from complete displacement interpolation polynomials.  The strain 

models for the six-node element match the complete linear representations presented in Eq. 3.23; 

hence, it contains no inherent strain modeling errors.  Since the six-node element contains no 

inherent strain modeling errors, it is to be preferred to the four-node element in practically any 

application. 

 In order to more easily evaluate the strain modeling capabilities of the four-node element, 

Eqs. 3.20 – 3.22 are presented in the following vector form: 

 (Eq. 3.24) 

 
This form of the strain representation for the four-node element contains a constant term 

and two separate linear terms, both of which contain an x and a y component.  This 

demonstration will show that the quantity labeled as the First Linear Term contains errors of 

omission and the quantity labeled as the Second Linear Term contains errors of commission. 

 The errors of omission are seen when the First Linear Term of Eq. 3.24 is compared to 

the Linear Term in Eq. 3.23.  The First Linear Term of Eq. 3.24 contains four zeros.  When this 

term is compared to the Linear Term of Eq. 3.23, no similar zeros exist in the continuum 

representation.  The four strain quantities missing from Eq. 3.24 are the following: (εx,x)0 x , 

(γxy,x)0 x  , (εy,y)0 y and (γxy,y)0 y.  The absence of these terms can be viewed as imposing physical 
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constraints on the individual four-node elements, which has the tendency to make the individual 

elements overly stiff. 

 The errors of commission are seen when the Second Linear Term of Eq. 3.24 is compared 

to the Linear Term in Eq. 3.23.    If the shear strain representation is extracted, which is 

contained in Eq. 3.24 for the convenience of the reader, the following equation that is identical to 

Eq. 3.22 is obtained: 

      (Eq. 3.25) 
 
When Eq. 3.25 is compared to the third row of Eq. 3.23, it is seen that they do not match 

each other.  The constant terms are the same, but the linear terms are different.  The coefficients 

of the two linear terms x and y in Eq. 3.25 are the normal strain quantities (εx,y)0 and (εy,x)0 , 

instead of the expected shear strain quantities (γxy,x)0  and (γxy,y)0 .  The existence of these 

differences in the shear strain model in the four-node element represents errors in the modeling 

capabilities of this element. 

The fact that the two normal strain terms contained in Eq. 3.25 are in error can also be 

demonstrated with a physical argument.  The two normal strain terms contained in the shear 

strain expression are incorrect because they violate the constitutive relationship for solid 

mechanics.  There is no connection between the shear strains and the normal strains in linear 

elasticity.  Thus, this element incorrectly engages a shear strain when the element is experiencing 

any linearly varying normal strain.  This error is well known in finite element analysis and is 

identified as parasitic shear. 

Planar eight- and nine-node elements also possess errors of the type identified for four-

node elements.  If the standard approach of using reduced-order Gauss quadrature integration is 

used in an attempt to eliminate parasitic shear from these elements, other errors are likely to be 
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introduced.  The errors in these elements can be minimized by identifying these errors and 

improving the strain model during the formulation process using self-referential notation [24].  

Because these higher-order elements still contain errors even after they are improved, these 

elements are less effective than the six-node linear strain triangle.  Thus, it is recommended that 

the six-node element be used exclusively in place of eight- and nine-node elements. 

This discussion of the modeling characteristics of the four-node element is intended to 

demonstrate the direct connection between the approximate solution technique and the solid 

mechanics problem provided by the self-referential notation.  This brief analysis has shown that 

the four-node quadrilateral element contains several strain modeling errors.  Since the four-node 

quadrilateral element contains modeling errors in all three strain components, the four-node 

element is less capable of representing the continuum than is a three-node element except 

possibly in certain special problems.  In a converged result, the effect of the existing linear terms 

would be eliminated because the four-node element cannot capture the Poisson effect [24].  In a 

non-converged result, the four-node element is overly stiff because of the strain modeling errors2.    

3.11 – Summary and Conclusion 

 This Chapter introduced the physically interpretable notation that provides a direct 

connection between the formulation of finite elements and the equations of continuum mechanics 

that are being represented by the finite element method.  This notation expresses the 

interpolation polynomials that are used to form the finite element method in terms of strain 

quantities, the quantities that produce the displacements in the continuum.  That is to say, this 

physically based notation provides a transparency to the finite element method that is not 

                                                        
2 At the element level, the new ability to analyze the element formulation process eliminates the need to use the 
isoparametric formulation process [30], eliminates the need to consider spurious zero energy modes, provides a way 
to eliminate shear locking, and explains aspect ratio stiffening.  These ideas and others for improving element 
development are presented in detail in Reference 1. 
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available with the standard notation.  This self-referential notation was related to the arbitrary 

coefficients of the standard interpolation polynomials in Section 3.3. 

It was shown that this notation allows the improvement of every facet of the finite 

element method.  In Sections 3.4, 3.8, 3.9 and 3.10, this self-referential notation was used to 

evaluate the strain modeling capabilities of individual finite elements during the formulation 

process.  In Sections 3.5, 3.7 and 3.8, the ability to evaluate the in-situ performance of individual 

elements was developed and applied. 

In Section 3.6, it was shown that there is a direct relationship between the finite element 

and the finite difference methods.  As is seen in later Chapters, the identification of this 

relationship provides the theoretical foundation and practical basis for pointwise error measures, 

termination and refinement guides. 

This paragraph contains a disclaimer concerning the self-referential notation presented in 

this Chapter.  It should be noted that an understanding of the self-referential notation is only 

mandatory for researchers and practitioners who seek to understand the finite element method in 

depth.  Once the insights provided by the physically based notation are embedded in the code 

used in application programs, the casual user never need know what errors have been eliminated 

from the analysis procedure as a result of using the techniques introduced here and developed in 

depth in Ref. 1.  However, the understanding and appreciation of this notation opens the door for 

research in the application of the finite difference method to solid mechanics problems, in the 

development of mesh refinement strategies and in the development of error estimators. 
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CHAPTER 4 

THE SOURCE AND QUANTIFICATION OF DISCRETIZATION ERRORS 

4.1 – Introduction 
 
 When a finite element model cannot capture the 

exact solution, inter-element jumps or discontinuities 

exist in the approximate strain representation.  As 

shown in Fig. 4.1, the inter-element jumps are reduced 

as the finite element model is improved and approaches 

the exact solution.  In this figure, the uniformly refined 

results are contrasted to the exact solution. 

 The results shown in Fig. 4.1 imply that 

differences between the exact solution and the finite 

element result are correlated to the inter-element jumps 

in the strains.  These differences between the exact 

solution and the finite element result are called 

discretization errors. 

These errors get their name from the fact that 

differences between the exact and the finite element 

solution are produced when the polynomial 

approximations in the discrete number of finite 

elements cannot capture the exact result. 

The objective of this Chapter is to show that the 

 
(a) Five Element Model 

 
(b) Ten Element Model 

 
(c) Twenty Element Model 

Figure 4.1 – A Uniformly Refined Model 
vs. The Exact Solution 
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inter-element jumps in the strain are directly related to the inability of the finite element model to 

capture the exact solution. 

This objective will be accomplished by showing that the inter-element jumps in the 

strains are directly related to the differences between the exact solution and the finite element 

result for four-node bar elements.  The result is extendible to higher-dimension elements. 

The errors in the finite element result are produced by the failure of the finite element 

solution to satisfy the governing differential equation at every point on the domain of an 

individual element, i.e., equilibrium is not satisfied. 

When these failures to satisfy equilibrium are treated as fictitious distributed loads on the 

individual elements, it can be shown that the inter-element jumps are, indeed, a quantification of 

the discretization errors. 

In a later Chapter, the inter-element jumps are used as an a posteriori error estimator to 

introduce the adaptive refinement process.  After the introduction to adaptive refinement, it is 

shown that more efficient and practical error estimators exist for identifying discretization errors.  

However, the results developed in this Chapter provide the theoretical basis and/or intuition for 

the more efficient and practical error estimators. 

4.2 – Background Concepts 

This Section contains an overview of an approach to error analysis that was developed by 

Kelly et al. [3].  Kelly’s work provides a point of view for identifying the source of discretization 

errors and shows that the inter-element jumps in the stresses and/or strains quantify the 

discretization errors.  The objective of this Section is to outline this point of view so the 

individual steps that are presented in later Sections to demonstrate Kelly’s contention can be seen 

in context. 
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It is clearly understood that discrete finite element models cannot represent the exact 

solutions for each of the infinite number of loading conditions that can be applied to a given 

continuous physical system.  The innovation in Kelly’s work consists of turning this point of 

view on its head.  Kelly postulates that an approximate finite element solution with its inter-

element jumps is the exact solution to an auxiliary problem that is closely related to the original 

problem.  The auxiliary problem is identified as the original problem with the addition of a set of 

applied loads that are introduced on the boundaries between the elements.  Furthermore, these 

additional loads are directly related to the inter-element jumps in the stresses or strains in the 

original finite element result. 

 This idea is demonstrated with an example.  The auxiliary problem for the finite element 

model shown in Fig. 4.2a is formed.  The problem consists of the five-element bar model with 

the symmetric load that was discussed in Chapter 2.  The strain distribution produced by this 

finite element model is shown in Fig. 4.2b along with the exact solution.   

 
 
 
 
 

As can be seen, this finite element solution contains jumps in the strains between 

elements.  It is important to note that the jumps are larger in the regions of high error.  The errors 

are, of course, quantified by the differences between the approximate finite element result and 

the exact solution. 

 
 

(a) Applied Load (b) Finite Element and Exact Strain Distributions 
Figure 4.2 – A Finite Element Model and Its Strain Result 
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 Figure 4.3 shows the auxiliary problem for which the finite element result shown in Fig. 

4.2b is the exact solution.  It consists of the original problem presented in Fig. 4.2a to which a set 

of auxiliary nodal forces has been added.   

The additional forces are derived from the jumps in 

the strains that exist in the example problem.  The 

auxiliary forces are equal to Fadded = AEΔstrain .  In this 

case, the forces are equal to the following:    -12.9414, 

-294.7040, -294.7040 and -12.9414, respectively.  As 

is apparent in Fig. 4.2b, the jumps in the strains are 

proportional to the errors in the approximate solution. 

In the next Section, it is shown that these inter-element point loads result from the failure 

of the individual elements to satisfy pointwise equilibrium on the individual elements.  The inter-

element forces are required to produce equilibrium at the nodes in the finite element model 

because of the modeling failure of the individual elements.  As a result, the inter-element jumps 

decrease as the model is refined and the individual elements better represent the exact solution.  

Thus, the inter-element jumps can serve as a posteriori (after the fact) error measures.  It should 

be noted that the inter-element jumps in strains for two-dimensional problems consists of three 

components on the boundaries between the elements and not just at the nodes. 

In addition to identifying the magnitudes and locations of the discretization errors, the 

inter-element jumps in the strains can serve as termination criteria.  This is the case because of 

the physical nature of the error measure.  The jumps measure quantities that are directly related 

to the failure of the material in the continuum being modeled, e.g., steel or aluminum.  That is to 

say, if the jumps are relatively small with respect to the stresses on the interface or small with 

 
Figure 4.3 – Finite Element Model 

with the Augmented Load 
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respect to the failure criterion, the model need not be refined further because the approximate 

results can be considered as accurate representations of the exact result. 

4.3 – Quantifying the Failure to Satisfy Pointwise Equilibrium 

In this Section, it is demonstrated that the inter-element jumps in the finite element 

solutions are due to the failure of the approximate solution to satisfy pointwise equilibrium over 

the domains of the individual finite elements.  This is accomplished with the following three 

steps: 

a) Form a residual function that quantifies the pointwise failure of the finite element 

solution to satisfy the governing differential equation over the domain of the 

individual elements. 

b) Form equivalent elemental nodal residuals by treating the elemental residual 

functions as fictitious or auxiliary distributed loads. 

c) Form a global nodal residual vector by assembling the elemental nodal residuals into 

an auxiliary global load vector and compare it to the fictitious loads that are produced 

by the jumps in the inter-element strains. 

It is shown in this demonstration that the equivalent nodal loads formed from the residual 

quantities are identical to the loads formed from the jumps in the inter-element strains.  This 

allows the conclusion to be made that the inter-element jumps are produced by the failure of the 

finite element solution to satisfy pointwise equilibrium over the domain of the problem. 

This process is now demonstrated for the problem shown in Fig. 4.2a by computing the 

auxiliary loads shown in Fig. 4.3 using the step-by-step process just presented. 

Step 1 – Residual Function Formulation: The failure of an approximate solution to satisfy 

pointwise equilibrium will be quantified as a residual quantity.  The residual computes the 
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amount by which the finite element solution fails to satisfy the governing differential equation.  

The governing differential equation for a uniform bar is the following: 

         (Eq. 4.1) 

where u is the displacement along the bar and f (x) is the applied load. 

 If the approximate solution produced by the finite element model, , is substituted into 

Eq. 4.1, the equation may not be satisfied identically because the finite element result is not 

necessarily the exact solution.  The amount by which the approximate solution fails to satisfy 

pointwise equilibrium is quantified with the following relationship: 

     (Eq. 4.2) 

where r (x) is called the residual.  The computation of the residual can be extended to 

higher dimensions. 

 Note that the residual has units that are identical to the applied force.  Because of this 

similarity in units, the residual will be treated as a distributed force.  That is to say, the residual is 

considered as an auxiliary or a fictitious 

force in the remainder of this Section. 

 An example of a residual formed 

with Eq. 4.2 for the problem shown in Fig. 

4.2a is shown in Fig. 4.4.  The residual, 

which is shown as the solid (blue) line, is 

discontinuous on the full domain of the 

problem, but continuous over the  
Figure 4.4 – The Elemental Pointwise Residuals 

and Their Components 
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individual elements.  This is to be expected when the two components of Eq. 4.2 are considered.  

These two components are also shown in Fig. 4.4.  Both components are continuous over the 

individual elements, but the contributions of the individual finite elements are discontinuous at 

the inter-element nodes. 

Step 2 – Elemental Nodal Residual Formulation: In this step, the residual functions for the 

individual elements are transformed into equivalent nodal quantities for the separate elements.  

The equivalent nodal residuals are formed by using the standard finite element approach for 

including distributed loads into a finite element model.  This procedure is applied because, as 

was noted in the previous step, the residual function has the same units as a distributed load. 

The formulation of these nodal quantities proceeds as follows.  First, a function is formed 

that is equivalent to the work function that is part of the potential energy expression for a bar 

element.  That is to say, an integrand is formed that consists of the residual function for a bar that 

is multiplied by the displacement interpolation function for the bar.  Then, this result is 

integrated over the domain of the element.  Finally, the derivatives are taken that are required in 

the application of the principle of minimum potential energy to form the equivalent nodal 

residuals.  The formulation of these elemental nodal residuals for this example is presented next. 

 The fictitious work done by the residual identified in Eq. 4.2 is produced when it is 

moved by the displacement along the domain of the bar.  The fictitious work function for the i-th 

element is given as follows: 

        (Eq. 4.3) 

When Eq. 4.2 and the displacement interpolation polynomial for a four-node bar are introduced 

into Eq. 4.3, the following is obtained: 
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    (Eq. 4.4) 

 When the necessary derivatives are taken to form the equivalent nodal loads, the 

following is obtained: 

  (Eq.4.5) 

The components of this row vector are the equivalent nodal residuals for the i-th element. 

 When this operation is performed for the five elements contained in the problem shown 

in Fig. 4.2a using the residuals shown in Fig. 4.4, the results are presented in Tables 4.1 – 4.3. 

 Table 4.1 contains the contribution of the first term of Eq. 4.2 or Eq. 4.4 to the equivalent 

nodal loads, namely, the portion of the residual due to the internal loads in the finite element 

solution for the five individual elements of the model.  Table 4.2 contains the contribution of the 

second term of Eq. 4.2 or Eq. 4.4 to the equivalent nodal loads for the five individual elements of 

the model.  Note that the quantities in Table 4.2 are equal to the negative of the distributed loads 

applied to the original problem. 

Table 4.1 – Internal Load Component of the Nodal Residuals,  
El. No. F1 F2 F3 F4 

1 -0.4951 -2.1016 -7.6494 -2.7553 
2 2.5747 -5.8890 -128.4081 -47.3405 
3 126.0909 378.2728 378.2728 126.0909 
4 -47.3405 -128.4081 -5.8890 2.5747 
5 -2.7553 -7.6494 -2.1016 -0.4951 

 
Table 4.2 – Applied Load Component of the Nodal Residuals (-1*Applied Load) 
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El. No. F1 F2 F3 F4 
1 0.8959 2.1016 7.6494 3.3529 
2 9.7690 5.8890 128.4081 67.2726 
3 148.6809 -378.2728 -378.2728 148.6809 
4 67.2726 128.4081 5.8890 9.7690 
5 3.3529 7.6494 2.1016 0.8959 

 
Table 4.3 contains the sum of Tables 4.1 and 4.2.  These quantities are the equivalent 

nodal residuals for the individual elements produced by Eqs. 4.3 – 4.5.  These residual quantities 

will be treated as auxiliary forces in the analysis that follows. 

Table 4.3 – Elemental Equivalent Nodal Residuals 
El. No. F1 F2 F3 F4 

1 -0.4008 0.0 0.0 -0.5976 
2 -12.3438 0.0 0.0 -19.9321 
3 -274.7718 0.0 0.0 -274.7718 
4 -19.9321 0.0 0.0 2.5747 
5 -0.5976 0.0 0.0 -0.4951 

 
When Table 4.3 is examined, it is seen that the residuals associated with the interior 

nodes of the individual elements are equal to zero.  This result is consistent with the fact that that 

there are no discontinuities in the finite element strains on the interior of the element.  As a result 

of this continuity, there is no mechanism available for correcting any failure of the element to 

satisfy pointwise equilibrium except at the inter-element nodes. 

Step 3 – Global Nodal Residual Formulation and Comparison: In this step, the elemental 

nodal residuals contained in Table 4.3 are assembled into the vector of global residual nodal 

loads that are applicable to the bar problem with two fixed ends.  This is accomplished by 

assembling the global vector using the standard finite element procedure.  Next, the two end 

loads are eliminated because of the fixed boundary conditions.  These results are shown in Table 

4.4.  The zero loads on the interior of the bar are eliminated in order to highlight the non-zero 
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elements.  The columns labeled FLeft and FRight are the two elemental components that are summed 

to give the global result contained in the final column of Table 4.4. 

Table 4.4 – Global Nodal Residuals 
 FLeft FRight FTotal 

Load 1 -0.5976 -12.3438 -12.9414 
Load 2 -19.9321 -274.7718 -294.7040 
Load 3 -274.7718 -19.9321 -294.7040 
Load 4 -12.3438 -0.5976 -12.9414 

 
When the quantities in the last column of Table 4.4 are compared to the equivalent loads 

computed in Section 3.2 and shown in Fig. 4.3, they are found to be identical.  This means that 

the jumps in the inter-element strains do, indeed, quantify the failure of the individual finite 

element models to satisfy pointwise equilibrium. 

In Chapter 2, it was shown that as the finite element model is refined, either by uniform 

or adaptive refinement, two changes occurred in the approximate solutions.  The finite element 

representation better approximates the exact solution and the inter-element jumps in the strain 

are reduced. 

This combination of results is consistent with Kelly’s contention that the inter-element 

jumps quantify the discretization errors in finite element models.  The demonstration just 

presented shows that the inter-element jumps are equivalent to the failure of the finite element 

model to satisfy pointwise equilibrium.  This example explains Kelly’s contention and gives it a 

solid theoretical foundation. 

Since the residual quantities are related to quantities of interest in continuum mechanics, 

such as strains, the residuals can serve as both an error measure and as a termination criterion.  

For example, if the residuals everywhere in the model are small with respect to the critical strain 

level, the approximate solution can be considered sufficiently accurate, and the analysis can be 
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terminated.  This is the case because the addition of a sufficiently small change in the strain level 

will not be responsible for the failure of material. 

4.4 – Every Finite Element Solution is an Exact Solution to Some Problem 
  

Although it has been demonstrated that the inter-element jumps are equivalent to the 

failure of the finite element model to satisfy pointwise equilibrium, Kelly’s interpretation that 

every finite element solution is the exact solution to some problem has not been explicitly 

demonstrated.  The validity of this idea is demonstrated here by inverting Kelly’s point of view.  

That is to say, the loads applied to a finite element model that has a result that contains inter-

element jumps are modified so that the solution of the modified finite element model contains no 

inter-element jumps.  The result can be  

considered an exact result at the inter-element nodes 

of the model.  The new model is formed by adding a 

set of concentrated loads that are the negative of the 

“fictitious” loads shown in Fig 4.3.  This situation is 

shown in Fig. 4.5. 

 The rationale for this approach is the 

following.  If the fictitious loads in Fig. 4.3 produce 

the inter-element jumps shown in Fig. 4.2b, then the 

opposite set of loads should eliminate these inter-

element jumps in the strains.  When this modified 

problem is solved, the finite element strain 

representation is shown in Fig. 4.6 along with the 

exact solution.  As can be seen, the additional loads 

 
Figure 4.5 – Finite Element Model with 

“Strain Smooth” Loads 

 
Figure 4.6 – A Smoothed Strain Result 

Compared to the Exact Result 
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have eliminated the inter-element jumps in the strain representation for this modified problem. 

 The elimination of the inter-element jumps by the introduction of these fictitious point 

loads shows that the inter-element jumps are caused by the failure of the finite element solution 

to satisfy the governing differential equations on a pointwise basis.  This is demonstrated by the 

results shown in Fig. 4.6 because the added point loads are exactly equal to this failure to satisfy 

the pointwise equilibrium and they are applied in a direction that compensates for this 

deficiency. 

4.5 - Summary and Conclusion 

 This Chapter has introduced and validated Kelly’s approach for identifying the errors in 

finite element solutions.  It was shown that the inter-element jumps quantify the discretization 

errors in the finite element result and that the discretization errors are due to the inability of the 

individual finite elements to satisfy pointwise equilibrium. 

In Chapter 5, the inter-element jumps are used as an error measure to drive an adaptive 

refinement process.  It is demonstrated there that it works well.  However, the approach that uses 

the inter-element jumps as an error measure and a termination criterion has two deficiencies. 

The primary deficiency is one of computational efficiency in the higher dimensions.  

Other approaches exist that are easier to compute that give equal or better results.  The second 

deficiency is the fact that the errors are aggregated in this process.  That is to say, positive 

pointwise errors can cancel negative pointwise errors in the integration used to compute the 

nodal residuals.  This idea is discussed in detail in Chapter 6, which develops and applies energy-

based error estimators. 

 However, the demonstration that the discretization errors are due to the failure to satisfy 

pointwise equilibrium and the fact that this failure is responsible for the inter-element jumps in 
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the strains provides the insight for guiding the development of other error estimators and 

termination criterion.  Pointwise error measures that are easy to compute, have a higher 

resolution than the aggregated measures, such as those based on strain energy, and have a solid 

theoretical foundation are presented in later Chapters. 
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CHAPTER 5 

INTRODUCTION TO ADAPTIVE REFINEMENT 

5.1 - Introduction 

 The initial finite element model for a problem rarely provides a solution that is accurate 

enough for use in the design process.  The obvious strategy for improving the model is to 

repeatedly subdivide every element in the model until the change in two successive results is 

acceptably small.  However, this brute force approach for reaching a converged solution leads to 

finite element models that are unmanageably large because elements are needlessly introduced 

into regions containing little or no error. 

 The excessive growth produced by uniformly refining a finite element model can be 

eliminated by selectively improving the model only in regions containing high levels of error.  A 

procedure for identifying regions of unacceptable error and improving the model in these regions 

is shown schematically in Fig. 5.1. 

This procedure, known as adaptive 

refinement, begins by forming an initial finite 

element model.  The errors in the solution of the 

initial finite model are then estimated.  If the 

specified level of accuracy is not achieved, the 

model is improved by refining the mesh in 

regions of unacceptable error.  The process is repeated, starting with the improved model, until 

an acceptable solution is obtained. 

 

Figure 5.1 – Adaptive Refinement Schematic 

START 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Refinement  Evaluate Solution 

STOP 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The primary objective of this Chapter is to demonstrate the effectiveness of the adaptive 

refinement process.  The secondary objective is to show that error estimators can be designed to 

produce finite element results with specified characteristics.   

These objectives are achieved by developing error estimators based on physically 

interpretable quantities, namely, the inter-element jumps in the strain.  Since strains are 

quantities of direct interest to the analyst, error estimators can be given a specialized, strain 

dependent focus.  For example, the error estimators can be based on a specific failure criterion, 

such as introducing a bias on shear strains for a brittle material. 

In the first demonstration, an error estimator that focuses the refinements of the finite 

element model on regions containing stress concentrations guides the adaptive refinement 

process.  The second demonstration produces a final result with a uniform level of error over the 

domain of the finite element problem. 

5.2 – Physically Interpretable Error Estimators 

 This Chapter demonstrates that error estimators can be designed to produce finite element 

results with given characteristics.  The ability to specialize the error estimators is possible 

because they are based on physically interpretable quantities that are sought in the analysis [24].  

In this case, the errors are based on the jumps in the inter-element strains, i.e., metrics that 

quantify the failure of the finite element result to satisfy the governing differential equation(s). 

Two error estimators are applied to problems modeled with three-node bar elements to 

demonstrate that error estimators can be designed to produce results with specified 

characteristics.  The first error estimator focuses on improving the model in regions of high strain 

and the second is designed to produce a uniform level of error everywhere in the problem. 

The two error estimators demonstrated here have the following general form: 
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        (Eq. 5.1) 

 where    percent of estimated error at the i-th node. 

 

the normalizing factor that focuses the model refinement. 

The error estimator defined by Eq. 5.1 estimates the error given by the inter-element jumps in the 

strain at the i-th node as a percentage of the normalizing factor. 

The numerator of Eq. 5.1, (Δε)i , is equal to the jump in the inter-element strain at the i-th 

inter-element node.  This jump is directly related to the errors in the two elements adjacent to the 

node.  The choice of the normalizing factor, (ε)Normalizing , defines the focus of the error estimator 

and, ultimately, the characteristics of the final finite element model. 

The first error estimator demonstrated here is designed to focus on regions containing 

stress concentrations.  This focus is provided by choosing a normalizing factor, the denominator 

of Eq. 5.1, that has a constant value.  As a result, regions of high error are highlighted. 

This globally normalized error estimator focuses on stress concentrations for the 

following two reasons: 1) stress concentrations are characterized by rapidly changing strain 

distributions and 2) finite element models based on low-order polynomials contain large errors 

when they are attempting to represent complex functions unless they are highly refined.  This 

version of the error estimator is demonstrated in Section 5.5. 

 On the other hand, if a normalizing factor is chosen that is closely related to the 

strain levels in the elements adjacent to i-th node, the errors in the final model are equally 

distributed over the domain of the problem regardless of the variations in the strain levels.  That 

is to say, this locally normalized error estimator produces results in which the errors in regions of 
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low strains and in regions of high strain are nearly equal. This version of the error estimator is 

demonstrated in Section 5.6. 

5.3 – A Model Refinement Strategy 

With the development of an error estimator, a strategy must be implemented for 

improving the finite element model based on these error estimates.  In the demonstrations of 

adaptive refinement presented in Sections 5.5 and 5.6, the decision on whether to subdivide an 

element is based on the average of the error estimates at the two ends of the finite element.  If 

this average value for an element exceeds some threshold value, the element is divided into two 

equal sized elements. 

This simple strategy is chosen because the purpose of these demonstrations is to present 

the efficacy of the adaptive refinement process, not to optimize the process.  The issue of 

refinement strategies is revisited in later Chapters.  It is shown in later discussions that the 

possibilities of refinement strategies are limited only by our imaginations. 

5.4 – A Demonstration of Uniform Refinement 

In preparation for demonstrating the adaptive refinement process, a sequence of uniform 

refinements is applied to a sample problem in this Section.  The models that result from these 

uniform refinements serve two purposes: 1) they show the explosive growth in the number of 

elements in a uniformly refined model that necessitates the use of adaptive refinement and 2) the 

approximate strain distributions produced by these models provide a baseline against which to 

compare the results of the adaptive refinement process. 

 The finite element strain approximations and the associated error estimates associated 

with the initial five-element model are shown in Fig. 5.2.  Figure 5.2a compares the strains in the 

finite element model to the exact solution.  Figure 5.2b contains the error estimates at the nodes 
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of this model.  The error estimate at each node is normalized with the magnitude of the largest 

strain in the finite element model.  The error estimates at the nodes are connected by straight 

lines for visual convenience.  The lines have no significance. 

The error estimates at the two fixed ends of the finite element model are taken to be zero.  

These estimates are close to the actual error for this problem.  The treatment of the boundary 

errors is postponed until Chapter 8 because the estimation of the errors on the boundaries is 

closely related to the pointwise error measures presented in Chapter 8. 

  
(a) Five Element Strain Results (b) Relative Nodal Errors 

Figure 5.2 – Initial Mesh for Both Uniform Refinement and Adaptive Refinement 
 
When the error estimates shown in Fig. 5.2b are compared to the actual errors that can be 

seen in Fig. 5.2a, that the error estimates are shown to correlate well with and the actual errors in 

the finite element strain distribution.  The large errors exist where an attempt is being made to 

represent a complex strain distribution with a small number of elements that are, at most, capable 

of representing linear strain. 

The finite element representation of the exact result will be improved by adding elements 

to the regions showing high error.  This means that the error estimator given by Eq. 5.1 will 

successfully guide the adaptive refinement process.  This contention is validated in the next 

Section. 
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 The results of the first uniform refinement of the initial model are shown in Fig. 5.3.  As 

can be seen in Fig. 5.3a, the strain distribution for the uniformly refined finite element model 

more closely resembles the exact solution than does the result shown in Fig. 5.2a.  The finite 

element approximation is smoother and the strain representations in the regions of the stress 

concentrations, while still discontinuous, are located near the points of maximum absolute 

magnitudes in the exact solution. 

Figure 5.3– First Uniformly Refined Finite Element Model 
  

The error estimator captures these improvements in the finite element representation, as 

shown in Fig. 5.3b.  When Fig. 5.3b is compared to Fig. 5.2b, it is seen that the error estimates 

over the whole model are reduced.  The maximum error estimate has been reduced to 

approximately 35 percent from the previous estimate of approximately 80 percent.  Again, the 

highest levels of error exist in regions of the exact strain distribution that are too complex to be 

captured by the linear strain representation of a single finite element. 

 The results of the second uniform refinement are shown in Fig. 5.4.  The resulting error 

estimates contains an interesting result.  The maximum error estimate has not changed much 

from the maximum estimate in the previous refinement.  It is approximately 33 percent versus 

the approximate value of 35 percent in the previous refinement.  However, the nature of the 

  
(a) Ten Element Strain Results (b) Relative Nodal Errors 
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strain in the location of the maximum error estimate has changed markedly.  Instead of being 

associated with a maximum point in the strain distribution, the maximum error estimate occurs at 

an inflection point in a region with a very small strain value in the exact solution.  That is to say, 

the maximum error exists in a region of a stress concentration with a rapidly changing strain 

distribution.  Again, the error estimator has identified a region in a strain distribution that cannot 

be easily represented by a linear strain representation. 

  
(a) Twenty Element Strain Results (b) Relative Nodal Errors 

 Figure 5.4– Second Uniformly Refined Finite Element Model 
  

Figure 5.5 presents the result of the third uniform refinement.  In this refinement, the 

maximum error estimate has been significantly reduced from approximately 33 percent to 

approximately seven percent.  However, the error estimate in the region of the inflection point 

still exceeds the estimated error at the stress concentration. 
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(a) Forty Element Strain Results (b) Relative Nodal Errors 

Figure 5.5 – Third Uniformly Refined Finite Element Model 
  

The primary deficiency with uniform refinement is seen when Figs. 5.4 and 5.5 are 

compared.  In Fig. 5.4b, it is seen that the error estimates are close to zero on the two outside 

portions of the model.  In the uniform refinement shown in Fig. 5.5, the majority of the new 

elements are introduced into these regions of low error.  That is to say, most of the new elements 

are introduced into regions where they are not needed. 

The introduction of these unneeded elements characterizes the inefficiency found in the 

process of uniform refinement.  It should be noted that the inefficiency seen in this one-

dimensional case is minor when compared to the unneeded elements that can be introduced into 

two- and three-dimensional problems. 

Figure 5.6 presents the results of the fourth uniform refinement of the model.   
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Eighty Element Strain Results (b) Relative Nodal Errors 

Figure 5.6 – Fourth Uniformly Refined Finite Element Model 
 

In this refinement, the errors have the same general distribution as that seen in the 

previous refinement shown in Fig. 5.5b.  However, the magnitudes of the errors have been 

significantly reduced.  In fact, they are reduced to a level that would be considered accurate 

enough for practically any design process.  The inefficiency of the uniform refinement process is 

demonstrated again.  Most of the new elements are introduced in regions of low error where no 

refinement is needed. 

5.5 – A Demonstration of Adaptive Refinement 

 In this Section, the effectiveness of the adaptive refinement process is demonstrated.  The 

initial finite element model used in Fig. 5.2 is adaptively refined under the guidance of the error 

estimator defined in Eq. 5.1.  This error estimator is normalized with respect to the maximum 

strain in the finite element model.  This is the same error estimator that was used in the previous 

Section to evaluate the results of the uniformly refined models.  This choice for the normalizing 

factor means that the error estimator will focus on the stress concentrations. 

The elemental error threshold for dividing an element in half is chosen as four percent.  

The demonstration will show that there are significantly fewer elements needed in the adaptively 

refined model to satisfy the termination criterion of four percent error or less at each node. 
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 The adaptive refinement process achieved the desired level of accuracy after four 

iterations.  The nodal error estimates for these 

five models are superimposed in Fig. 5.7.   

The most significant result shown in Fig. 5.7 is 

that the termination criterion was satisfied with 

only nineteen elements.  This compares to the 

eighty elements that were contained in the 

uniformly refined model that was required to 

achieve the same level of accuracy. 

In order to better see how the finite element model formed by the adaptive refinement 

process compares to the final model produced by uniform refinement, the result of the final 

iteration of adaptive refinement is shown in Fig. 5.8.   

  
(a) Nineteen Element Strain Result (b) Relative Nodal Errors 

Figure 5.8 – Fourth Adaptively Refined Finite Element Model 
 

As can be seen, there are fewer elements in the regions of low error at either end of the 

model when Fig. 5.8a is compared to Fig. 5.6a.  This is as would be expected.  The elements 

added by the adaptive refinement process are located where they do the most good, namely, in 

the regions of high error.  In other words, the adaptive refinement process adds elements to the 

 
Figure 5.7 – Nodal Errors for Four Iterations 

of Adaptive Refinement 
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region where the actual strain distribution is complex until there are enough elements to capture 

this complex strain distribution with linear strain representations. 

 Just to see what it takes in the way of adaptive refinement to reduce the estimated errors 

in the problem to a level below those in the final uniformly refined model, the problem is 

adaptively refined with a lowered value for the criteria for subdividing an element and for the 

termination of the adaptive refinement process.  The result for a threshold value of 1.5 percent is 

shown in Fig. 5.9. 

  
(a) Twenty-Nine Element Strain Result (b) Relative Nodal Errors 

Figure 5.9 – Adaptively Refined Finite Element Model – 1.5% Threshold 
  

When Fig. 5.9b is compared to Fig. 5.6b, it is seen that the error estimates in the central 

portion of the two figures are nearly identical.  This result shows definitively that adaptive 

refinement produces finite element models that represent problems as well as a uniformly refined 

model with significantly fewer elements. 

5.6 – An Application of an Absolute Error Estimator 

 In this Section, the example problem is adaptively refined under the guidance of an error 

estimator that estimates the “absolute” error at an inter-element node.  That is to say, the error 

estimator defined by Eq. 5.1 is normalized with respect to a local value of the strain instead of 

with a large constant value of strain.  The use of a local normalization of the error estimator is 
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designed to distribute the absolute errors more uniformly over the domain of the problem.  

Specifically, the normalizing factor used in Eq. 5.1 is the following: 

     (Eq. 5.2) 

This normalizing factor is the local average of the strains at the i-th node. 

When the normalizing factor given by Eq. 5.2 is used, care must be taken that the average 

strain is not close to zero.  If this is the case, division by zero can cause computational 

difficulties.  In order to avoid this problem, a small value of strain is added to the denominator if 

the average of the two strains is close to zero.  In the demonstration presented here, a small 

percentage of the maximum strain in the overall problem is added to the denominator if the 

existing average is close to zero. 

The progression of the nodal error estimates is presented in Figs. 5.10 – 5.12.  A 

sequence of figures is used to present the error 

estimates because the nodal errors do not decrease 

monotonically so it would be difficult to identify the 

progression of error estimates if they were all 

presented at once.  In Fig. 5.10, the nodal error 

estimates for the initial finite element model and the 

first adaptively refined model are shown.   

As can be seen, the first application of adaptive refinement produces a model with ten 

elements.  This is equivalent to a uniform refinement.  Each element in the initial five-element 

model had an estimated error that was larger than the threshold value of four percent.  As a 

result, every element was subdivided. 

 
Figure 5.10 - Nodal Error Estimate for the 

First Two Models 
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In Fig. 5.11, the nodal error estimate for the 

second adaptively refined model is superimposed on 

the error estimates for the previous two models.  The 

primary significance of this figure is that it clearly 

shows that the error estimates based on the locally 

normalized inter-element jumps are not monotonic.  In 

general, the error estimates for this third model are 

reduced, but the nodal error estimate for one point exceeds the maximum error estimate 

contained in the previous refinement. 

 The nodal error estimates for three more iterations of the adaptive refinement process are 

introduced in Fig. 5.12.  As can be seen, thirty-two 

elements are required to satisfy the termination 

criterion of four percent used in this analysis.  This 

contrasts to the nineteen elements required with the 

error measure normalized with the maximum strain 

in the finite element model.  This implies that the 

absolute error is equalized over the domain of the 

problems. 

 More detailed results for the final adaptively refined model are shown in Fig. 5.13.   
 

 
Fig. 5.11 – Nodal Error Estimate for the 

First Three Models 

 
Fig. 5.12 – A Sequence of Nodal 

            Error Estimates 
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(a) Thirty-Two Element Strain Result (b) Absolute Nodal Errors 

Figure 5.13 – Sixth Adaptively Refined Finite Element Model 
 
The finite element approximation is superimposed on the exact solution in Fig. 5.13a.   

As can be seen, the strain representation is a good match.  This conclusion is confirmed in Fig. 

5.13b where the nodal errors are significantly below the threshold of the termination criterion. 

 When Fig. 5.13a is compared to Fig. 5.8a, it is observed that the number of elements in 

the region of the stress concentration is equal for both cases.  However, in Fig. 5.13a, it is seen 

that the finite element representation is smoother and there are more elements in the regions of 

low strain.  In other words, the error estimator normalized with a local strain value did the job it 

is designed to do.  It distributed the “absolute” errors more uniformly over the domain of the 

problem being solved. 

5.7 – Summary and Conclusion 

 The idea of the adaptive refinement process has been introduced and its effectiveness has 

been demonstrated.  It has been shown that by refining a finite element model in regions of high 

error that the adaptive refinement process creates models that produce accurate representations of 

the exact result more efficiently than does uniform refinement. 

In addition, it has been shown that the adaptive refinement process can be designed to 

produce a result with given characteristics.  In one demonstration, the adaptive refinement 



79 

process focused on regions of critical strain.  In another demonstration, the model was refined so 

the errors where more uniformly distributed over the domain of the problem. 

The use of the inter-element jumps as the basis to the error estimates allows the errors to 

be interpreted in terms of quantities of interest to an analyst.  Specifically, the errors are related 

to strain quantities so the termination criterion can be specified in terms of critical strain levels 

for the material being used. 

 Although, the error estimators based on the inter-element jumps are effective, they have 

the following deficiencies: 

1. The inter-element jumps disguise the level of errors in individual elements when 

negative and positive errors exist in an element they cancel each other in the 

integration process. 

2. The inter-element jumps aggregate the errors in adjacent elements so the errors in 

critical elements are diluted, i.e., the error resolution is reduced. 

3. The inter-element jumps submerge the severity of the errors at critical points because 

the jumps depend on the sum of integrated quantities. 

4. The inter-element jumps do not exist naturally on fixed boundaries so errors on these 

boundaries must be assessed differently. 

In the following Chapters, error estimators are developed based on different theoretical bases that 

correct the deficiencies identified for the error estimators presented in this Chapter. 
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CHAPTER 6 

STRAIN ENERGY BASED ERROR ESTIMATORS – THE ZZ ERROR ESTIMATOR 

6.1 – Introduction 

 In the previous Chapter, the adaptive refinement procedure was introduced.  As can be 

seen in the schematic diagram of the process shown in Fig.6.1, the critical component is the 

error estimator.  After the initial and subsequent models are formed, the errors in the finite 

element solution are quantified with an error estimator.  Then, on the basis of the error analysis, 

the finite element solution is found acceptable or the model is refined and the process is repeated. 

Zienkiewicz and Zhu (ZZ) 

developed the first practical error estimator 

[2, 33].  This error estimator computes the 

strain energy in the difference between the 

discontinuous finite element strain 

distribution and a smoothed strain distribution formed using an average of the inter-element 

nodal strains.  The ZZ approach does not have the resolution or the computational efficiency of 

the pointwise approaches that are the focus of this work, such as the error estimator developed in 

the previous Chapter. 

 The primary objectives of this Chapter are to present the development of the ZZ error 

estimator and to demonstrate the behavior of this error estimator in the adaptive refinement 

process. 

 The key step in the ZZ approach is the assumption that a smoothed strain distribution 

formed from the finite element result is closer to the exact solution than the discontinuous finite 

 
Figure 6.1 – Adaptive Refinement Schematic 
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element solution.  This assumption is justified from an intuitive point of view by recognizing that 

the smoothed solution is continuous instead of discontinuous.  However, this assumption is given 

a solid theoretical foundation by the results presented in Chapter 4 – The Source and 

Quantification of Discretization Errors. 

In Chapter 4, it is shown that the inter-element jumps in the strains in a finite element 

result are due to the failure of the finite element solution to satisfy the governing differential 

equation being solved.  In the smoothing process, a portion of the inter-element jump is added to 

the discontinuous finite element solution on the domain of the individual elements.  As a 

consequence, the resulting strain representation is closer to the exact solution than the 

discontinuous finite element solution.  The understanding that the inter-element jumps in the 

strain quantifies the discretization errors and the understanding of the role of the inter-element 

jumps in the smoothing process is exploited in Chapter 8 to propose a rational approach for 

forming refinement guides. 

Figure 6.2 illustrates how the smoothed strain 

distribution is formed.  The discontinuous finite 

element strains at the inter-element nodes are 

averaged.  The smoothed strain representation is formed by fitting a polynomial to the resulting 

nodal strains and to the strains at any internal nodes. 

The error in the finite element strain representation is taken as the difference between the 

smoothed strain and the discontinuous finite element representation.  Then, the estimated error in 

the strain energy is computed by integrating a function of the estimated error over the domain of 

the element.  Since the integrand for this strain energy quantity contains the square of the 

 
Figure 6.2 – Smoothed vs. Finite Element Strain 
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difference between the two strain distributions, the pointwise magnitude of the integrand is 

always positive regardless of the sign of the estimated error in the strain. 

The evolution of the procedure for forming the smoothed solution is presented in the next 

Section.  Then the procedure for estimating the error in the strain energy is presented.  In the next 

two Sections, versions of metrics used as error estimators are presented.  The characteristics of 

an error estimator and its use in the adaptive refinement process are presented in the following 

Sections. 

6.2 – The Basis of the ZZ Error Estimator – The Smoothed Strain Representation 

At the heart of the ZZ approach to error estimation is the use of a smoothed solution 

formed from the finite element result that is a better approximation of the exact solution than is 

the discontinuous finite element solution.  The inability of an individual element to represent the 

exact solution is taken as the difference between the smoothed strain representation and the finite 

element strain distribution.  As shown in the next section, this estimated error is quantified as 

being the strain energy contained in the difference between these two strain representations. 

In the original version of the ZZ approach, a smoothed solution was constructed for the 

total problem being evaluated.  The smoothed solution was formed using a least squares 

approach with the following two constraints: 1) the smoothed solution was forced of have the 

same amount of strain energy as the finite element result and 2) the errors in the finite element 

result were distributed so the total error was minimized. 

The computational effort for this process is of the same magnitude as the solution of the 

finite element model.  In later developments, the smoothed solution was formed on an element-

by-element basis that reduced this effort and did not compromise the results. 
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An overview of the first version of the ZZ error estimator that formed a smoothed 

solution on an element-by-element basis is shown in Fig. 6.3.  In Fig. 6.3a, the strain 

distribution over a representative patch of three-node bar elements is shown along with the 

average of the inter-element nodal strains. 

In Fig. 6.3b, the smoothed strain distribution formed by interpolating between the 

average of the inter-element jumps is overlaid on the strain contained in Element (n).  In Fig. 

6.3c, the estimated pointwise error in the finite element strain distribution is shown as the 

difference between the finite element and the 

smoothed strain representations. 

 As can be seen in Fig. 6.3c, the estimated 

errors can be either positive or negative depending 

on whether the finite element strain is larger or 

smaller than the smoothed strain.  In order to 

eliminate the possibility of underestimating the 

error in the finite element strain representation by 

having positive differences cancel negative 

differences, the error measure is computed as the 

strain energy contained in the difference between these two strain representations.  Since strain 

energy is a function of the square of the strain, the magnitude of the error estimator is unaffected 

by the sign of the differences in the strains. 

 Procedures for forming the locally smoothed strain representations were refined in later 

versions of the ZZ approach.  These changes produced incremental improvements to the error 

estimates without changing the overall concept. 

 
(a) Average Strains at Inter-Element Nodes 

 
(b) Smoothed Strain for a Representative 

Element 

 
(c) Pointwise Error Distribution 

in a Representative Element 
Figure 6.3 – The Basis of the ZZ Error Measure 
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One modification developed the locally smoothed solution from the strains at the Gauss 

points of the element being evaluated and a patch of surrounding elements.  This change was 

made because the finite element strains at the Gauss points may be closer to the actual strains 

than at other points on the domain of an element.  However, when adaptive refinement is being 

used, it is not clear if this subtlety needs to be considered. 

6.3 – The ZZ Elemental Strain Energy Error Estimator 

 As shown in Fig. 6.3c, the pointwise error in the finite element strain result for 

Element(n) is assumed to be the difference between the finite element and the “smoothed” strain 

representations.  This idea is given in equation form as: 

      (Eq. 6.1) 

where 

  the estimated pointwise strain error in Element (n). 

  the finite element strain distribution. 

  the improved or smoothed strain distribution over Element (n). 

The estimated error in the strain energy of Element (n), ΔSEn , with a constant cross 

section is given as: 

       (Eq. 6.2) 

 where Δ SEn = the estimated strain energy error in Element n. 

In mathematical terms, the error measure given by Eq. 6.2 is called a weighted L2 norm. 

6.4 – The ZZ Error Estimator 

 The ZZ error estimator is formed by normalizing the error measure given by Eq. 6.2 as 

follows: 
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    x 100     (Eq. 6.3) 

 where    ηn = the ZZ elemental error measure as a percentage. 

                        Δ SEn = the estimated strain energy error in Element (n). 

                      (SE)Normalizing = the normalizing factor that focuses the error estimator. 

The numerator of the elemental error estimator is the square root of the estimate of the 

error in the strain energy of an individual element given by Eq. 6.2.  The denominator can be 

chosen to make the error estimator perform in different ways. 

In the first form of the ZZ approach, the normalizing factor was identified as being equal 

to the total strain energy in the problem.  Since the total strain energy depended on the size of the 

particular problem and the level of loading, this error estimator provided little, if any, physical 

insight into the accuracy of the result. 

In order to provide some physical insight into the meaning of the error estimator, a 

normalizing factor based on the strain energy content of the element being analyzed can be used.  

The most obvious candidate for a localized normalizing factor is an estimate of the total strain 

energy in the element.  This estimate is taken as the sum of the actual strain energy in the 

element plus the estimated error in the strain energy content of the element.  This quantity is 

given as: 

       (Eq. 6.4) 

 where    the strain energy content of Element (n). 

   Δ SEn = the estimated strain energy error in Element (n). 

When the error estimator is normalized with Eq. 6.4, the result can be interpreted as a percentage 

of the total error in the Element (n). 
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However, this normalizing factor can cause the adaptive refinement process to diverge.  

The divergent behavior can occur because the numerator and the denominator of Eq. 6.3 have a 

different nature.  The numerator of Eq. 6.3 contains contributions from the errors in the adjacent 

elements as well as from the element being analyzed.  However, the denominator contains only 

contributions from the element being analyzed. 

As a result of these different characteristics, a low error strain element adjacent to a high 

error element will have an error estimate that is excessive.  This in turn may cause the unneeded 

refinement of this low error element.  The refinement of this low error element exacerbates the 

problem and the refinement can diverge. 

6.5 – A Modified Locally Normalized ZZ Error Estimator 

 The divergent behavior identified in the previous Section is eliminated by modifying the 

denominator of Eq. 6.3 so that it has the same characteristics as the numerator.  This change is 

accomplished by including strain energy contributions from the elements adjacent to the element 

being evaluated into the denominator of the error estimator.  When this is done, the modified 

version of the locally normalized ZZ error estimator becomes: 

x 100     (Eq. 6.5) 

 where    ηn = the ZZ elemental error measure as a percentage. 

                        Δ SEn = the estimated strain energy error in Element (n). 

                      (SE)Normalizing = SEn+ΔSEn+ C(SEn-1 + SEn+1). 

  C = A participation factor for the elements adjacent to Element (n). 

When the denominator of Eq. 6.5 is compared to the denominator given by Eq. 6.4, it can 

be seen that it contains a contribution due to the strain energy content from the elements adjacent 
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to the element being evaluated.  The amount of strain energy added to the denominator is 

controlled by the participation factor, C.  The participation factor for these strain energy 

quantities is arbitrarily chosen as 0.5 for the examples presented in Sections 6.6 and 6.7. 

6.6 – A Demonstration of the ZZ Error Estimator 

 In this Section, the ZZ error estimator defined by Eq. 6.5 is applied to a sequence of 

uniform refinements beginning with the five-element control problem.  The result of analyzing 

the same problem with the residual approach developed in Chapter 4 is also presented.  This is 

done to show that the two approaches have the same characteristics. 

 The results for the initial five-element model are shown in Fig. 6.4.  Figure 6.4a 

compares the strains in the finite element model to the exact solution.  Figure 6.4b contains the 

ZZ error estimates for the individual elements.  Figure 6.4c contains the nodal error estimates 

produced by the residual approach. 

Figure 6.4 – A Five-Element Model 
 
In the plots of the ZZ elemental error estimates, the estimates are arbitrarily presented as 

if they apply at the center points of the elements.  The errors are presented in a continuous curve 

by connecting the error values with straight lines and by taking the errors at the ends of the bar to 

be zero.  For this problem the errors are close to zero at the end points.  The lines have no real 

meaning.  They are presented for visual convenience. 

   
(a) Five Element Strain Result (b) ZZ Error Estimator (c) Residual Error Estimator 
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 The error estimates produced by the residual approach in Fig. 6.4c are nodal quantities.  

Since the ZZ error estimates are elemental quantities, the two error estimates do not have an 

exact one-to-one correspondence.  However, when Fig. 6.4b and Fig. 6.4c are compared, it can 

be seen that the two error estimators identify the same regions as having large values of error.  

However, the residual result has a higher maximum value for the error estimator.  This difference 

in magnitude is not significant for this discussion because the objective of this Chapter is to 

demonstrate the characteristics of the ZZ approach and to, ultimately, show that it successfully 

guides the adaptive refinement process. 

 When the five-element model is modified with two uniform refinements, the results for 

the ten- and twenty- element models are shown in Figs. 6.5 and 6.6, respectively. 

Figure 6.5 – A Ten-Element Model 
 

Figure 6.6 – A Twenty-Element Model 
  

As can be seen in Figs. 6.5 and 6.6, the qualitative characteristics of the two error 

estimators are similar.  That is to say, both error estimators identified the same region as having 

   
(a) Ten-Element Strain Result (b) ZZ Error Estimator (c) Residual Error Estimator 

   
(a) Twenty-Element Strain Result (b) ZZ Error Estimator (c) Residual Error Estimator 
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the maximum error in the first refinement.  In the second refinement shown in Fig. 6.6, both 

approaches identified the same new location as having the maximum error.  Furthermore, the 

regions identified with the highest level of error correspond to the regions actually containing the 

maximum error. 

When the magnitudes of the error estimates are compared, both of the error estimates are 

reduced in a similar manner by the uniform refinements.  In addition, the differences between the 

maximum and the minimum estimated errors were similar in the two error estimators.  That is to 

say, they had approximately the same resolution between high and low errors.  These results 

indicate that both approaches will successfully identify regions in the finite element model where 

the model must be refined in order to improve the results. 

The results for uniformly refining the model two more times are shown in Figs. 6.7 and 

6.8, respectively.  As can be seen, both of these uniform refinements significantly reduce the 

maximum error for both approaches to error analysis.  Furthermore, the shapes of the plots 

representing the error estimates for both approaches correlate well with the errors seen as the 

difference between the finite element results and the exact solution, which are shown in Fig. 6.7a 

and 6.8a, respectively. 

Figure 6.7 – A Forty-Element Model 
 
 
 

 

   
(a) Forty-Element Strain Result (b) ZZ Error Estimator (c) Residual Error Estimator 



90 

 

Figure 6.8 – An Eighty-Element Model 
 
Furthermore, this result validates the desirability of using adaptive refinement to improve 

finite element models instead of uniform refinement.  That is to say, in uniform refinement, a 

majority of the elements added to the model are introduced in regions of low error. 

6.7 – A Demonstration of Adaptive Refinement 

 The ZZ error estimator defined by Eq. 6.5 is used to guide the adaptive refinement of the 

five-element demonstration problem in this Section.  In this demonstration, an element is 

subdivided into two equal length elements if the refinement guide given by Eq. 6.5 is greater 

than or equal to a value of four percent. 

 Figure 6.9 presents the results of solving the five-element model and its corresponding 

error analysis.  As can be seen in Fig. 6.9a, the three lightly strained elements, Elements (1), (4) 

and (5), represent the exact solution reasonably well.  In contrast, the two elements with the 

highest rates of change in strain (high strain gradients) and relatively high magnitudes of strains 

that are attempting to represent the regions of rapidly changing strains do not closely represent 

the exact solution. 

 The approximate error estimates presented in Fig. 6.9b do not totally agree with the 

observations just made about the accuracy of the strain representations of the individual 

elements.  The element with the highest estimated error represents the exact solution reasonably 

   
(a) Eighty-Element Strain Result (b) ZZ Error Estimator (c) Residual Error Estimator 
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well.  The error estimate for this element does not coincide with the actual error for two reasons: 

1) it is next to an element that is incapable of capturing the shape of the exact result with any 

accuracy so the inter-element jump between the two elements is large and 2) this element and the 

element to its right are low strain elements. 

As a result, the numerator of the error estimator is overly large and the denominator is 

relatively small.  This leads to an error estimate that is not a good match with the actual error in 

the element.  However, it does not affect the refinement of the model because the error estimates 

exceed the threshold value for refinement. 

 
 
 

 

Since the error estimate for every element in this model exceeds the refinement threshold 

of four percent, every element in the model will be subdivided to form the new model.  As a 

result, the initial refinement is equivalent to a uniform refinement.  It is worth noting that the 

error estimate for every element is also larger than ten percent.  This means that if the refinement 

threshold is relaxed, the refined model would not possess fewer elements. 

The results of the first refinement are shown in Fig. 6.10.  As can be seen, the maximum 

error has been reduced from approximately 55 percent to approximately 19 percent and the error 

estimates have been significantly reduced for every element.  The error estimates for three of the 

  
(a) Five-Element Strain Result (b) ZZ Error Estimates 

Figure 6.9 – The Initial Five-Element Mesh 
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ten elements exceed the threshold level of four percent.  All three of these elements either 

encompass the region of actual maximum error or are adjacent to this region.  That is to say, this 

set of error estimates will refine the model where it needs refining. 

  
(a) Ten-Element Strain Model (b) ZZ Error Estimates 

Figure 6.10 – The First Adaptively Refined Mesh of Ten Elements 
  

Figures 6.11 - 6.13 contain the subsequent three adaptive refinements that are required to 

satisfy the termination criterion of four percent.  The only feature of these refinements that might 

be unexpected is the fact that the maximum error increased in the second refinement as shown in 

Fig. 6.11b.  The maximum error increased from approximately 18 percent in the first refinement 

to approximately 21 percent in the second refinement. 

  
(a) Thirteen-Element Strain Model (b) ZZ Error Estimates 

Figure 6.11 – The Second Adaptively Refined Mesh of Thirteen Elements 
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The reason for this increase can be seen by comparing Figs. 6.10a and 6.11a.  The single 

element that is attempting to represent the two critical stresses and the inflection point between 

the positive and negative stress concentrations in Fig. 6.10a has been subdivided in the second 

refinement.  As can be seen in Fig. 6.11a, there has been a significant inter-element jump 

introduced by subdividing the element in the region of the inflection point.  That is to say, a 

modeling deficiency that was submerged on the interior of a single element has been made 

explicit on the boundary between two elements. 

The refinements shown in Fig. 6.12a and 6.13a introduce elements into the regions where 

the error estimates exceed the refinement threshold and the finite element model fails to 

represent the exact solution with accuracy.  Thus, it can be concluded that the locally normalized 

ZZ error estimator given by Eq. 6.5 produces a convergent result as it is designed to do. 

 

  
(a) Seventeen-Element Strain Model (b) ZZ Error Estimates 

Figure 6.12 – The Third Adaptively Refined Mesh of Seventeen Elements 
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(a) Nineteen-Element Strain Model (b) ZZ Error Estimates 

Figure 6.13 – The Fourth Adaptively Refined Mesh of Nineteen Elements 
 
6.8 – Summary and Conclusion 

 This Chapter has presented and demonstrated the ZZ approach to error estimation.  This 

intuitive approach estimates the error in the strain energy content of an individual element by 

comparing the discontinuous finite element strain results to a smoothed solution over the domain 

of an individual element. 

The rationale behind this error estimator when it was originally developed was the 

assumption that the smoothed solution is closer to the exact result than the discontinuous finite 

element result because it is continuous.  As discussed in the introduction of this Chapter, this 

assumption is given a solid theoretical foundation in Chapter 4 – The Source and Quantification 

of Discretization Errors, where it is shown that the inter-element jumps in the strains in a finite 

element result are due to the failure of the finite element solution to satisfy the governing 

differential equation being solved.  In the smoothing process, a portion of the inter-element jump 

is added to the discontinuous finite element solution on the domain of the individual elements.  

As a consequence, the resulting strain representation is closer to the exact solution than the 

discontinuous finite element solution. 
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The smoothed solution used in this presentation is formed by interpolating the average of 

the inter-element strains over the element.  This approach is shown to be effective in guiding the 

adaptive refinement process to convergent results starting with a five-element demonstration 

problem. 
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CHAPTER 7 

CONVERGENCE OF INTER-ELEMENT JUMPS IN TWO-DIMENSIONAL FINITE 

ELEMENT MODELS 

7.1 - Introduction 

 In the previous Chapters, it has been shown for the case of a one-dimensional bar element 

that the inter-element jumps are a direct measure of the inability of a finite element model to 

satisfy the governing differential equation being solved.  As a result of this characteristic, the 

inter-element jump in the strain can serve as a direct measure of the discretization errors in a 

finite element model.   

 The objective of this Chapter is to extend the demonstration of the ability of the inter-

element jumps in the strain components to serve as an error estimator to two-dimensional finite 

element models.  This objective is accomplished by demonstrating that as the finite element 

result approaches the exact solution the inter-element jumps in the three strain components 

diminish.   

 The following two-dimensional physical system is used in this demonstration.  A 6x6 unit 

in-plane shear panel, or membrane, with fixed boundaries is analyzed.  The initial finite element 

model consists of 64 elements with 226 active degrees-of-freedom, i.e., degrees-of-freedom not 

associated with the fixed nodes on the boundaries.  The initial model is shown in Fig. 7.1a.   

 The model is uniformly refined twice to produce the second and third models used in this 

demonstration.  The first refinement contains 256 elements and 962 active degrees-of-freedom.  

The second uniform refinement contains 1024 elements and 3970 active degrees-of-freedom.  

These two models are shown in Fig. 7.1b and 7.1c, respectively. 
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 Two different loading conditions are 

applied to the physical system for this 

demonstration.  The first loading condition is 

a constant distributed load.  This load is 

chosen because the resulting strain 

distribution is simple and, therefore, easy for 

the finite element model to represent.  As a 

result, the third model will produce a nearly 

exact solution.  The associated inter-element 

jumps will be seen to approach zero.   

 The second loading condition is 

designed to produce displacements and an 

associated strain distribution that are Runge 

functions [26, 27, 28].  The loading condition 

is shown in Fig. 7.2.  It is the second 

integration of a displacement that is a Runge 

function.  This load is a planar version of the 

load used in the one-dimensional 

demonstrations presented earlier.  This 

loading condition is chosen because a Runge 

function is difficult for a polynomial 

representation to capture.  This difficulty exists because a Runge function is a rational 

polynomial.  This means that it can only be approximated as an infinite polynomial.  Therefore, a 

 
(a) Initial model 

 
(b) Second model 

 
(c) Third model 

Figure 7.1 – Three Models of the Physical System 
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finite element model cannot capture the strain distribution exactly.  As a result, this loading 

condition is a severe test for the finite element model and, consequently, for the error estimator. 

The inter-element jumps used in the 

error estimator demonstrated here are taken 

as the maximum absolute difference between 

the finite element nodal strains and the 

average of these strains at the node.  The 

error estimator demonstrated here for the 

three strain components are the inter-element 

jumps divided by the maximum absolute 

strain in the finite element model.  This normalization is performed so the error estimator has 

units of percent of the maximum strain.  In problems solved in practice, the normalizing factor 

could be associated, for example, with some failure criteria or allowable strain. 

 The smoothed strain representation is used as the baseline for the error estimator because 

it is an improvement on the discontinuous finite element strain distribution.  The smoothed strain 

is an improvement because the inter-element jumps are a direct measure of the inability of the 

individual finite elements to satisfy the governing differential equation.  Thus, the smoothed 

solution consists of the finite element result plus a component of the error.  Therefore, it is an 

improvement on the finite element solution.   

 The reduction of the inter-element jumps as the model is improved is demonstrated 

through uniform refinement.  The improvement of the model occurs, by definition, because the 

uniform refinements produce child meshes.  That is to say, a child mesh can represent any strain 

distribution that the parent mesh can represent because it contains the same nodes as the parent 

 
Figure 7.2 - The Second Loading Condition 

 Applied to the Physical System 
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mesh as a subset.  The solution is improved because the basis set of the child mesh is an 

augmentation of the parent mesh basis set.  

 The improvement to the model can also be seen by tracking the strain energy content of 

the overall model because of the Rayleigh-Ritz criterion.  The Rayleigh-Ritz criterion states that 

the model with the most strain energy is the better model.  The Rayleigh-Ritz criterion can be 

interpreted to mean that the model with the most energy has fewer constraints than the model 

with lower energy.  In other words, the model is allowed to deform in more complex shapes.  

The increase in the strain energy is not a guarantee that the strain representation is better in the 

higher energy model, but it is implicit when uniform refinement is used. 

 In this demonstration, the relative capabilities of the models are quantified by comparing 

the magnitude of the strain energy and the maximum percent error in each model to demonstrate 

convergence and improved modeling capacity.  The strain energy comparison is a gross measure 

of the modeling improvement.  The nodal error estimates are a local measure of model 

improvement.   

 The results of these analyses are presented as follows.  The discontinuous finite element 

strain distribution and a measure of the inter-element jumps are presented for each model along 

two lines of nodes.  The location of the first line of nodes presented is off of center, at y=1.5.  

The line of nodes across the center of the model, at y=3, is the second line that will be 

considered.   The strain energy content for each of the models is presented.   

 In the next two Sections, the inter-element jumps in the strain at interior nodes are seen to 

be zero in some cases.  This is observed only at interior nodes along lines of nodes composed of 

both interior nodes and corner nodes.  This result occurs when the finite element strain at the 

interior node is observed to be the same in the two elements of the model associated with that 
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node.  Thus, the smoothed strain, found by averaging the finite element strains at the node, is 

also the same as the finite element strain at the node.  Therefore, the resulting inter-element jump 

at the node is zero.   

7.2 - Model with Constant Distributed Load 

 In this demonstration, a constant distributed load is applied over the entire domain of the 

physical system.  For this example, the distributed load is applied in the x direction.  The 

equivalent nodal loads are found for this loading condition and the model is analyzed.  The nodal 

loads for a uniform load on a six-node linear strain triangle occur only at the interior node on 

each side of the individual elements.  Conversely, this means that the equivalent nodal loads on 

the corner nodes are zero. 

The following subsections demonstrate the reduction of the error estimator as the finite 

element model is improved.  The three strain components will be examined sequentially.   

Modeling the x-direction strain component, εx  

 In this subsection, the ability of the three successive models of the physical system to 

better represent the strain distribution in the x direction is examined.  It is noted that the load is 

applied in this direction, thus the strains are larger in this direction.  The capability of each model 

to represent this strain is observed by comparing the maximum and minimum strains that occur 

at the nodes from the finite element solution of the model to the smoothed strain representation.  

In the case of the inter-element jumps at the interior nodes of the six-node element, there are only 

two finite element strain values at the node.  At the corner nodes, there are eight different finite 

element strain values.   

 The analysis of the initial model of the physical system at the off-center line of nodes is 

shown in Fig. 7.3.  The first model captures a maximum strain of 0.1583 units.  This value of 



101 

maximum strain does not appear in the figures presented for either line of nodes, as it occurs at a 

node elsewhere in the model.  This model has an overall strain energy content of 7.9262 units.  

  
(a) Strain representation (b) Percent error 

Figure 7.3 – Simple Load Case: Analysis of εx at Off-Center Line in Model 1 
 
Figure 7.3a shows the strain representation at the off-center line of nodes for the first 

model.  The minimum and maximum strains at each node are plotted against the smoothed strain 

result.  The difference observed shows the modeling errors in the current model as inter-element 

jumps that occur at the nodes.  The maximum absolute percent error at each of the nodes is 

shown in Fig. 7.3b.  The maximum percent error along this line of nodes is approximately 5.2 

percent in this model.   

 The analysis at the center line of nodes for the model is shown in Fig. 7.4. 

  
(a) Strain representation (b) Percent error 

Figure 7.4 – Simple Load Case: Analysis of εx at Center Line in Model 1 
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As the center line of nodes is farther from the boundaries, the effects of the boundaries 

are reduced.  Thus, the capability of the finite element solution to satisfy the governing 

differential equation at every point on the domain of an individual element, i.e., satisfy pointwise 

equilibrium, is more accurately represented.  The finite element solution is closer to the 

smoothed strain representation for this line of nodes in the model, as shown in Fig. 7.4a, than for 

the off-center line of nodes.  This is verified by observing that there is a reduction in the 

magnitude of the inter-element jumps along this line of nodes.  The corresponding percent error 

has a maximum value of approximately 1.3 percent, as shown in Fig. 7.4b. 

 The analysis of the second model of the physical system at the off-center line of nodes is 

shown in Figure 7.5.  This model captures a maximum absolute strain of 0.1594 units.  Again, 

this maximum strain is not represented in the associated figures as it occurs elsewhere in the 

model.  This model contains an overall strain energy content of 7.9381 units.  This satisfies the 

Rayleigh-Ritz criterion because the total strain energy for the model is larger than for the initial 

model.   

  
(a) Strain representation (b) Percent error 

Figure 7.5 – Simple Load Case: Analysis of εx at Off-Center Line in Model 2 
 

Figure 7.5a shows the strain representation at the off-center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 
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component are closer along the off-center line of nodes in the current model than in the initial 

model of this loading condition.  This is verified by observing that the magnitudes of the inter-

element jumps in this line of nodes are reduced in the current model.  The maximum absolute 

percent error is decreased to approximately 1.1 percent along this line of nodes, as shown in Fig. 

7.5b.   

 Figure 7.6 shows the analysis of the second model at the center line of nodes. 

  
(a) Strain representation (b) Percent error 

Figure 7.6 – Simple Load Case: Analysis of εx at Center Line in Model 2 
 
 Figure 7.6a shows the strain representation at the center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the center line of nodes in the current model than in the initial model 

of this loading condition.  This is verified by observing that the magnitude of the inter-element 

jumps in this line of nodes is reduced in this model.  The corresponding percent error has a 

maximum of approximately 0.22 percent in this model, as shown in Fig. 7.6b.   

 The analysis of the third model of the physical system at the off-center line of nodes is 

shown in Fig. 7.7.  The third model applied to the physical system captures a maximum strain of 

0.1596 units.  This maximum strain is not represented in the associated figures as it occurs 

elsewhere in the model.  This model contains an overall strain energy content of 7.9396 units.  
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Again, the Rayleigh-Ritz criterion is satisfied because the total strain energy has increased for 

this refined model.  

  
(a) Strain representation (b) Percent error 

Figure 7.7 – Simple Load Case: Analysis of εx at Off-Center Line in Model 3 
 

Figure 7.7a shows the strain representation at the off-center line of nodes for the third 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the off-center line of nodes in the current model than in the two 

previous models of this loading condition.  This is verified by observing that the magnitude of 

the inter-element jumps in this line of nodes is reduced in this model.  The maximum absolute 

percent error is reduced to approximately 0.25 percent along this line of nodes, as shown in Fig. 

7.7b.   

 Figure 7.8 shows the analysis of the third model at the center line of nodes. 
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(a) Strain representation (b) Percent error 

Figure 7.8 – Simple Load Case: Analysis of εx at Center Line in Model 3 
  

Figure 7.8a shows the strain representation at the center line of nodes for the third model.  

The finite element solution and the smoothed strain representation of this strain component are 

closer along the center line of nodes in the current model than in the two previous models of this 

loading condition.  This is verified by observing that the magnitude of the inter-element jumps in 

this line of nodes is reduced in this model and is approaching zero.  The corresponding percent 

error has a maximum of approximately 0.044 percent in this model, as shown in Fig. 7.8b.   

 It is shown in this Section that the inter-element jumps decrease in magnitude as the 

model is improved for the strain in the x direction, εx.  This result shows convergence in the 

strain representation for this strain component.  In the next subsection, the capability of the three 

models to represent the behavior of the strain component in the y direction, εy, is presented. 

Modeling the y-direction strain component, εy  

 In this subsection, the ability of the three successive models of the physical system to 

better represent the strain distribution in the y direction is examined.  The capability of each 

model to capture this strain is observed by comparing the maximum and minimum strains that 

occur at the nodes from the finite element solution of the model to the smoothed strain 

representation.  The maximum absolute strain in each model is restated, since this quantity is the 
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normalizing factor of the error estimator used in this work.  The overall strain energy content in 

each model of this loading condition is not restated, as the model improvement is shown by the 

Rayleigh-Ritz criterion in the εx subsection. 

 The analysis of the first model of the physical system at the off-center line of nodes is 

shown in Fig. 7.9.  The first model captures a maximum absolute strain of 0.1583 units.  This 

value of maximum strain does not appear in the figures presented for either line of nodes, as it 

occurs at a node located elsewhere in the model.   

  
(a) Strain representation (b) Percent error 

Figure 7.9 – Simple Load Case: Analysis of εy at Off-Center Line in Model 1 
  

Figure 7.9a shows the strain representation at the off-center line of nodes for the first 

model.  The minimum and maximum strains at each node are plotted against the smoothed strain 

result.  The difference observed shows the modeling errors in the current model as inter-element 

jumps that occur at the nodes.  The maximum absolute percent error at the nodes is shown in Fig. 

7.9b.  The maximum percent error along this line of nodes is approximately 4.0 percent in this 

model.   

 The analysis at the center line of nodes is shown in Fig. 7.10. 
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(a) Strain representation (b) Percent error 

Figure 7.10 – Simple Load Case: Analysis of εy at Center Line in Model 1 
 
 As the center line of nodes is farther from the boundaries, the effects of the boundaries 

are reduced.  Thus, the capability of the finite element solution to satisfy the governing 

differential equation at every point on the domain of an individual element, i.e., satisfy pointwise 

equilibrium, is more accurately represented.  The finite element solution is closer to the 

smoothed strain representation for this line of nodes in the model, as shown in Fig. 7.10a, than 

for the off-center line of nodes.  This is verified by observing that there is a reduction in the 

magnitude of the inter-element jumps along this line of nodes.  The corresponding percent error 

has a maximum absolute value of approximately 1.04 percent, as shown in Fig. 7.10b. 

 The analysis of the second model of the physical system at the off-center line of nodes is 

shown in Figure 7.11.  This model captures a maximum strain of 0.1594 units.  Again, this 

maximum strain is not represented in the associated figures as it occurs at a node located 

elsewhere in the model.   
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(a) Strain representation (b) Percent error 

Figure 7.11 – Simple Load Case: Analysis of εy at Off-Center Line in Model 2 
 
 Figure 7.11a shows the strain representation at the off-center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the off-center line of nodes in the current model than in the initial 

model of this loading condition.  This is verified through observing that the magnitudes of the 

inter-element jumps in this line of nodes are reduced in the current model.  The corresponding 

percent error is reduced to approximately 0.96 percent along this line of nodes, as shown in Fig. 

7.11b.   

 Figure 7.12 shows the analysis of the second model at the center line of nodes. 

  
(a) Strain representation (b) Percent error 

Figure 7.12 – Simple Load Case: Analysis of εy at Center Line in Model 2 
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Figure 7.12a shows the strain representation at the center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the center line of nodes in the current model than in the initial model 

of this loading condition.  This is verified by observing that the magnitude of the inter-element 

jumps in this line of nodes is reduced in this model.  The maximum absolute percent error has 

decreased to approximately 0.28 percent in this model, as shown in Fig. 7.12b.   

 The analysis of the third model of the physical system at the off-center line of nodes is 

shown in Fig. 7.13.  The third model applied to the physical system captures a maximum strain 

of 0.1596 units.  Again, this maximum strain is not represented in the associated figures as it 

occurs at a node located elsewhere in the model.  

  
(a) Strain representation (b) Percent error 

Figure 7.13 – Simple Load Case: Analysis of εy at Off-Center Line in Model 3 
  

Figure 7.13a shows the strain representation at the off-center line of nodes for the third 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the off-center line of nodes in the current model than in the two 

previous models of this loading condition.  This is verified by observing that the magnitude of 

the inter-element jumps in this line of nodes is reduced in this model.  The maximum percent 
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error has decreased to approximately 0.22 percent along this line of nodes, as shown in Fig. 

7.13b.   

 Figure 7.14 shows the analysis of the third model at the center line of nodes. 

  
(a) Strain representation (b) Percent error 

Figure 7.14 – Simple Load Case: Analysis of εy at Center Line in Model 3 
 
 Figure 7.14a shows the strain representation at the center line of nodes for the third 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the center line of nodes in the current model than in the two previous 

models of this loading condition.  This is verified by observing that the magnitude of the inter-

element jumps in this line of nodes is reduced in this model and is approaching zero.  The 

corresponding percent error has a maximum value of approximately 0.072 percent in this model, 

as shown in Fig. 7.14b.   

 It is shown in this subsection that the inter-element jumps decrease in magnitude as the 

model is improved for the strain in the y direction, εy.  This result shows convergence in the 

strain representation for this strain component.  In the next subsection, the capability of the three 

models to represent the behavior of the strain component in shear, γxy, is presented. 

Modeling the shear strain component, γxy  
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 In this subsection, the ability of the three successive models of the physical system to 

better represent the strain distribution in the shear direction, γxy, is examined.  The capability of 

each model to capture this strain is observed by comparing the maximum and minimum strains 

that occur at the nodes from the finite element solution of the model to the smoothed strain 

representation.  Again, the maximum absolute strain in each model is restated, since this quantity 

is the normalizing factor of the error estimator used in this work.  The overall strain energy 

content in each model of this loading condition is not restated, as the model improvement is 

shown by the Rayleigh-Ritz criterion in the εx subsection. 

 The analysis of the first model of the physical system at the off-center line of nodes is 

shown in Fig. 7.15.  The first model captures a maximum strain of 0.1583 units.  This value of 

maximum strain does not appear in the figures presented for either line of nodes, as it occurs at a 

node located elsewhere in the model.   

  
(a) Strain representation (b) Percent Error 
Figure 7.15 – Simple Load Case: Analysis of γxy at Off-Center Line in Model 1 

 
 Figure 7.15a shows the strain representation at the off-center line of nodes for the first 

model.  The minimum and maximum strains at each node are plotted against the smoothed strain 

result.  The difference observed shows the modeling errors in the current model as inter-element 

jumps that occur at the nodes.  The maximum absolute percent error at the nodes is shown in Fig. 
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7.15b.  The maximum absolute percent error along this line of nodes is approximately 5.05 

percent in this model.   

 The results at the center line of nodes are shown in Fig. 7.16. 

  
(a) Strain representation (b) Percent Error 

Figure 7.16 – Simple Load Case: Analysis of γxy at Center Line in Model 1 
 
 As the center line of nodes is farther from the boundaries, the effects of the boundaries 

are reduced.  Thus, the capability of the finite element solution to satisfy the governing 

differential equation at every point on the domain of an individual element, i.e., satisfy pointwise 

equilibrium, is more accurately represented.  The finite element solution is closer to the 

smoothed strain representation for this line of nodes in the model, as shown in Fig. 7.16a, than 

for the off-center line of nodes.  This is verified by observing that there is a reduction in the 

magnitude of the inter-element jumps along this line of nodes.  The corresponding percent error 

has a maximum value of approximately 2.1 percent, as shown in Fig. 7.16b. 

 The analysis of the second model of the physical system at the off-center line of nodes is 

shown in Figure 7.17.  This model captures a maximum strain of 0.1594 units.  Again, this 

maximum strain is not represented in the associated figures as it occurs at a node located 

elsewhere in the model.   
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(a) Strain representation (b) Percent Error 
Figure 7.17 – Simple Load Case: Analysis of γxy at Off-Center Line in Model 2 

 
 Figure 7.17a shows the strain representation at the off-center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the off-center line of nodes in the current model than in the initial 

model of this loading condition.  This is verified through observing that the magnitudes of the 

inter-element jumps in this line of nodes are reduced in the current model.  The maximum 

absolute percent error is reduced to approximately 1.2 percent along this line of nodes, as shown 

in Fig. 7.17b.   

 Figure 7.18 shows the analysis of the second model at the center line of nodes. 

  
(a) Strain representation (b) Percent Error 

Figure 7.18 – Simple Load Case: Analysis of γxy at Center Line in Model 2 
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 Figure 7.18a shows the strain representation at the center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the center line of nodes in the current model than in the initial model 

of this loading condition.  This is verified by observing that the magnitude of the inter-element 

jumps in this line of nodes is reduced in this model.  The corresponding percent error has a 

maximum value of approximately 0.57 percent in this model, as shown in Fig. 7.18b.   

 The analysis of the third model of the physical system at the off-center line of nodes is 

shown in Fig. 7.19.  The third model applied to the physical system captures a maximum strain 

of 0.1596 units.  Again, this maximum strain is not represented in the associated figures as it 

occurs at a node located elsewhere in the model.   

  
(a) Strain representation (b) Percent Error 
Figure 7.19 – Simple Load Case: Analysis of γxy at Off-Center Line in Model 3 

 
 Figure 7.19a shows the strain representation at the off-center line of nodes for the third 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the off-center line of nodes in the current model than in the two 

previous models of this loading condition.  This is verified by observing that the magnitude of 

the inter-element jumps in this line of nodes is reduced in this model.  The maximum absolute 



115 

percent error decreased to approximately 0.3 percent along this line of nodes, as shown in Fig. 

7.19b.   

 Figure 7.20 shows the analysis of the third model at the center line of nodes. 

  
(a) Strain representation (b) Percent Error 

Figure 7.20 – Simple Load Case: Analysis of γxy at Center Line in Model 3 
 
 Figure 7.20a shows the strain representation at the center line of nodes for the third 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the center line of nodes in the current model than in the two previous 

models of this loading condition.  This is verified by observing that the magnitude of the inter-

element jumps in this line of nodes is reduced in this model and is approaching zero.  The 

corresponding percent error has a maximum value of approximately 0.144 percent in this model, 

as shown in Fig. 7.20b.   

 It is shown in this subsection that the inter-element jumps decrease in magnitude as the 

model is improved for the strain in the strain direction, γxy.  This result shows convergence in the 

strain representation for this strain component. 

 In the preceding subsections, the convergence of the finite element solution to the 

smoothed strain representation has been demonstrated for each of the three strain components.  
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The inter-element jumps were observed to decrease in magnitude as the model is improved.  The 

corresponding percent error in each model was also mitigated.   

7.3 - Model with Distributed Load and Runge Function Strain Distribution 

 The second loading condition in this demonstration is designed to produce displacements 

and an associated strain distribution that are Runge functions.  This loading is chosen because a 

Runge function is difficult for a polynomial representation to capture.  Thus, it is a severe test for 

the finite element model and the error estimator.  For this example, the distributed load is applied 

in the x direction.  The equivalent nodal loads are found for this loading condition and the model 

is analyzed.  Again, it is noted that the interior nodes along the lines presented have an inter-

element jump of zero.   

 The following subsection demonstrates the capability of the successive models to better 

represent the strain distribution of the component in the x direction, εx.  It was shown in the 

previous Section that the inter-element jumps converge in each of the three strain components as 

the model is improved.  It is for this reason that only the strain component in the x direction is 

presented here for this loading condition.      

Modeling the x-direction strain component, εx  

 In this subsection, the ability of the three successive models of the physical system to 

better represent the strain distribution in the x direction is examined.  The capability of each 

model to capture this strain is observed by comparing the maximum and minimum strains that 

occur at the nodes from the finite element solution of the model to the smoothed strain 

representation. 

 The analysis of the initial model of the physical system at the off-center line of nodes is 

shown in Fig. 7.21.  This model captures a maximum strain of 0.0091 units.  This value of 
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maximum strain does not appear in the figures presented for either line of nodes, as it occurs at a 

node located elsewhere in the model.  The initial model has an overall strain energy content of 

0.0168 units.   

  
(a) Strain representation (b) Percent error 
Figure 7.21 – Complex Load Case: Analysis of εx at Off-Center Line in Model 1 

 
 Figure 7.21a shows the strain representation at the off-center line of nodes for the first 

model.  The minimum and maximum strains at each node are plotted against the smoothed strain 

representation.  The difference observed shows the modeling errors in the current model as inter-

element jumps that occur at the nodes.  The maximum absolute percent error at the nodes is 

shown in Fig. 7.21b.  The maximum percent error along this line of nodes is approximately 28 

percent in this model.  The errors contained in this model are higher than those for the model that 

is uniformly loaded.  This is expected because this load produces large variation in the strain on 

the domain of the model.   

 The results at the center line of nodes of the model are shown in Fig. 7.22. 
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(a) Strain representation (b) Percent error 

Figure 7.22 – Complex Load Case: Analysis of εx at Center Line in Model 1 
 

The strain representation along the center line of nodes is shown in Fig. 7.22a.  As this 

line of nodes is farther from the boundaries, the effects of the boundaries are reduced. Thus, the 

capability of the finite element solution to satisfy the governing differential equation at every 

point on the domain of an individual element, i.e., satisfy pointwise equilibrium, is more 

accurately represented.  It is for this reason that a slight increase in the maximum absolute 

percent error, from approximately 28 percent at the off-center line of nodes to approximately 30 

percent, as shown in Fig. 7.22b, at the center line of nodes is seen in the initial model of this 

loading condition. 

 The analysis of the second model of the physical system at the off-center line of nodes is 

shown in Figure 7.23.  This model captures a maximum strain of 0.0130 units.  Again, this 

maximum strain is not represented in the associated figures as it occurs at a node located 

elsewhere in the model.  This model contains an overall strain energy content of 0.017350 units.  

This amount of strain energy is larger than that contained in the previous model, so the Rayleigh-

Ritz criterion is satisfied.  
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(a) Strain representation (b) Percent error 
Figure 7.23 – Complex Load Case: Analysis of εx at Off-Center Line in Model 2 

  
Figure 7.23a shows the strain representation at the off-center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the off-center line of nodes in the current model than in the initial 

model of this loading condition.  This is verified through observing that the magnitudes of the 

inter-element jumps in this line of nodes are reduced in the current model.  The maximum 

absolute percent error along this line of nodes is decreased to approximately 13 percent in this 

model, as shown in Fig. 7.23b.   

 Figure 7.24 shows the analysis of the second model at the center line of nodes. 

  
(a) Strain representation (b) Percent error 

Figure 7.24 – Complex Load Case: Analysis of εx at Center Line in Model 2 
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Figure 7.24a shows the strain representation at the center line of nodes for the second 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the center line of nodes in the current model than in the initial model 

of this loading condition.  This is verified by observing that the magnitudes of the inter-element 

jumps in this line of nodes are reduced in the current model.  The corresponding percent error 

has a maximum value of approximately 13 percent in this model, as shown in Fig. 7.24b.   

 The analysis of the third model of the physical system at the off-center line of nodes is 

shown in Fig. 7.25.  The third model applied to the physical system captures a maximum strain 

of 0.0137 units.  This maximum strain is not represented in the associated figures as it occurs at a 

node located elsewhere in the model.  This model contains an overall strain energy content of 

0.017433 units.  Again, the Rayleigh-Ritz criterion is satisfied.   

  
(a) Strain representation (b) Percent error 
Figure 7.25 – Complex Load Case: Analysis of εx at Off-Center Line in Model 3 

 
 Figure 7.25a shows the strain representation at the off-center line of nodes for the third 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the off-center line of nodes in the current model than in the two 

previous models of this loading condition.  This is verified by observing that the magnitudes of 

the inter-element jumps in this line of nodes are reduced in the current model.  The maximum 
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absolute percent error along this line of nodes is decreased to approximately 2.6 percent in this 

model, as shown in Fig. 7.25b.   

 Figure 7.26 shows the analysis of the third model at the center line of nodes. 

  
(a) Strain representation (b) Percent error 

Figure 7.26 – Complex Load Case: Analysis of εx at Center Line in Model 3 
 
 Figure 7.26a shows the strain representation at the center line of nodes for the third 

model.  The finite element solution and the smoothed strain representation of this strain 

component are closer along the center line of nodes in the current model than in the two previous 

models of this loading condition.  This is verified by observing that the magnitudes of the inter-

element jumps in this line of nodes are reduced in the current model.  The corresponding percent 

error has a maximum value of approximately 2.6 percent in this model, as shown in Fig. 7.26b.   

 It is shown in this Section that the inter-element jumps decrease in magnitude as the 

model is improved for the strain component in the x direction, εx.  This result shows convergence 

in the strain representation for this strain component.   

7.4 - Summary and Conclusion 

 In Chapter 4, the failure of the finite element result to satisfy the governing differential 

equation was quantified by substituting the finite element result into the governing differential 

equation to form a residual for the one-dimensional case.  This residual is a continuous function 
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over the domain of the element that can be treated as a distributed load.  When this pseudo-

distributed load is converted to nodal loads using the same process used to form the actual nodal 

loads, it quantifies the failure of the finite element result to satisfy the governing differential 

equation as nodal quantities.   

 When the nodal values of the residuals are assembled in the same manner as the 

equivalent nodal loads for the individual elements, the result is found to be equal to the inter-

element jumps in the strains in the finite element solution.  This means that an aggregated 

measure of the errors in the finite element model is available from the finite element solution 

itself.  That is to say, the residuals for the individual elements, the equivalent nodal residuals, and 

the assembled residuals need not be computed.   

 The pointwise error estimator developed in Chapter 5 for one-dimensional problems was 

extended to a two-dimensional physical system in this Chapter.  It was shown that this error 

estimator decreased as the finite element model was improved for two cases.   

 The first case modeled a constant distributed load.  This loading condition was chosen 

because it produces a strain distribution that is simple for the finite element model to represent.  

The inter-element jumps were shown to converge in each of the three strain components, as the 

model was uniformly refined. 

 In the second case, the physical system was modeled under a more complex loading 

condition, which produces displacements and a strain distribution in the form of a Runge 

function.  The inter-element jumps were demonstrated to converge for the strain component in 

the x direction, εx.  As the inter-element jumps in the other strain components were shown to 

converge in the case of the constant distributed load, only the convergence of the strain 
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component in the x direction was presented in this demonstration.  Convergence of the inter-

element jumps also occurs in the other two strain components.   

 This convergence was shown through the reduction of the inter-element jumps in the 

finite element strain distribution with respect to the smoothed strain distribution.  The reduction 

of the inter-element jumps occurs because the elements are more capable of satisfying the 

governing differential equation as the model is improved.  The error estimator was shown to 

converge in each of the three strain components. 

 The key constituent of the adaptive refinement process centers on the error estimator 

driving the refinement.  The error estimator presented in this Chapter was shown as being 

capable of determining locations of high and low levels of error in the finite element model.  

Thus, it can be concluded that a rational approach to the adaptive refinement of finite element 

models can be developed using this error estimator as a basis.  

 The results presented in this Chapter indicate that a metric found from the inter-element 

jumps can serve as an adequate termination criterion for the adaptive refinement process.  There 

are two main advantages of this metric.  The first advantage is that this metric is a physically 

useful measure.  In other words, it is in terms of a quantity that is sought in the analysis and is 

meaningful to the analyst.  The second advantage is that it is a pointwise error estimator.  

Therefore, there is no integration that is required in estimating the error. 
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CHAPTER 8 

PERFORMANCE BASED REFINEMENT GUIDES 

8.1 - Introduction 

 Two refinement guides that identify a level of refinement for individual elements that 

produce rapid convergence of finite element models are developed in this Chapter from first 

principles.  The level of refinement for the individual elements is identified by first estimating 

the modeling deficiencies in the element and then finding the number of subdivisions needed to 

reduce the estimated errors in the smaller elements so that they satisfy the termination criterion.  

These approaches differ from the refinement guides presented earlier that are simply correlated 

to the error estimators that serve as termination criterion. 

The two refinement guides developed here compute the in situ estimates of the modeling 

deficiencies using similar, but theoretically different, approaches.  Both refinement guides first 

form smoothed strain distributions that are closer to the exact solution than is the 

discontinuous strain distribution produced by the finite element model.  The smoothed strain 

distributions that serve as the basis for both refinement guides are formed by eliminating the 

inter-element jumps in the finite element strain representation. The theoretical difference in the 

two refinement guides is contained in the way in which the inter-element strain values are 

computed. 

In the first approach, the discontinuous strain distribution is smoothed by forming an 

inter-element strain value by applying a central difference template to a set of displacements 

taken from the elements adjacent to the inter-element node.  In the second approach, the 

smoothed solution is formed by averaging the elemental strain values that exist at the inter-
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element nodes.  This form of smoothing is used to create the smoothed solution used in the 

Zienkiewicz and Zhu (ZZ) error estimator presented in Chapter 6. 

The objective of this Chapter is to develop and demonstrate the two refinement guides 

just described.   

The rationale behind the two refinement guides developed here is shown graphically in 

Fig. 8.1.  The smoothed solution contained in these figures is formed by applying finite 

difference templates to the augmented displacements of the individual elements.  If nodal 

averaging were used to form the smoothed solution, the figures would contain the same ideas. 

  

a) Initial Model b) Refined Model 
Figure 8.1 – Finite Element, Exact and Smoothed Strain Representations 

 
Figure 8.1a presents the finite element strain distribution for an inaccurate initial model 

of the control problem.  The exact solution and the smoothed strain distribution are 

superimposed on the finite element result.  As can be seen, the structure or shape of the 

smoothed strain distribution on the domain of the individual elements is more complex than the 

discontinuous finite element solution. 

For the three-node elements shown in Fig. 8.1, the smoothed strain contains curvature, a 

complexity that does not exist in the finite element representation.  It is this difference in 
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complexity between the smoothed solution and the finite element strain representation that is 

exploited in the refinement guides developed here. 

The differences between the two strain representations approximate the modeling 

deficiency in the individual elements.  The level of refinement is identified by determining the 

number of subdivisions of an element that are needed to represent the higher complexity of the 

smoothed solution with a finite representation that will satisfy the termination criterion. 

The result of adaptively refining the initial model is shown in Fig. 8.1b.  As can be seen, 

the three strain representations are nearly identical.  That is to say, the higher complexity of the 

exact solution is closely represented by the additional elements introduced by the adaptive 

refinement process. 

The two refinement guides developed here have three significant advantages over 

existing approaches.  The level of refinement is directly related to the cause of the modeling 

errors.  That is to say, an element is refined sufficiently so that the polynomial basis of the 

element is capable of representing the portion of the exact strain distribution that exists on the 

shortened element to the specified level of accuracy.  The refinement guides are computed from 

pointwise quantities, so no integrals are involved in their formulation.  Finally, the refinement 

guides are expressed in terms of quantities that are the focus of the analysis, namely, strains or 

stresses.  This contrasts to other approaches where the refinements are related to the error 

estimators in terms of strain energy or an equivalent distributed load quantity [2, 3, 34, 35]. 

An overview of the development of the finite difference approach to smoothing is 

presented in the next Section.  The theoretical background that provides the basis of this 

development is presented in the following two Sections.  The development of the procedure for 
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quantifying the discretization errors and forming the refinement guides follows.  Finally, the 

results for a series of illustrative examples are presented. 

In Section 8.6, a refinement guide found from a higher-order strain distribution formed 

from the average nodal strains is demonstrated with the same set of examples used to 

demonstrate the finite difference approach.  The procedures are identical except for the source of 

the nodal strain quantities that produce the smoothed solution.  This approach has the additional 

advantage that it is computationally more efficient than the approach based on the finite 

difference approximation. 

8.2 – Theoretical Overview for Finite Difference Smoothing 

Modeling errors exist in finite element solutions when the polynomial basis for an 

individual finite element cannot capture the complexity of the exact result that exists on its 

domain.  The refinement guide developed here compares the modeling capabilities of a single 

element to a higher-order smoothed strain approximation derived from the current finite element 

results.  This refinement guide identifies the number of subdivisions an element needs to capture 

the higher-order strain approximation that exists on its domain to within the desired level of 

accuracy. 

The most direct approach for extracting the higher-order strain representation is to place a 

higher-order finite difference template at the center of the element being evaluated.  Then, the 

displacements for the element being evaluated and the displacements for selected interior nodes 

of the adjacent elements are introduced into the template in order to extract the higher-order 

strain terms.  However, in this presentation a two-step process is used to find the higher-order 

strain quantities instead of this direct approach.  This is done so the procedure for forming two 

refinement guides developed here are nearly identical. 
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In the examples presented here, the first step is to compute the inter-element strains by 

inserting the appropriate displacements into a three-node central difference template.  Then, the 

nodal strains for the smoothed solution on the domain of the element being evaluated are inserted 

into a central difference template to estimate the higher-order strain terms for the finite element. 

The estimates of the modeling deficiencies in the individual finite elements are computed 

as the differences between the smoothed and the finite element strain distributions.  These 

differences are computed by subtracting the Taylor series representations of the two approximate 

strain representations from each other.  In the three-node bar elements used in the examples 

presented here, the first three terms of the smoothed strain representation are subtracted from the 

two-term finite element strain representation over the domain of an individual finite element. 

The strain representation contained in a three-node bar element consists of the following 

two Taylor series terms, namely, εx and dεx/dx.  The finite difference representation of the 

smoothed strain used in these examples also contains the next term in the Taylor series 

expansion, namely, d2εx/dx2.  This higher-order term represents the curvature that exists in the 

smoothed solution on the domain of the element being evaluated. 

When this subtraction is performed, the estimated error in the finite element being 

evaluated is the following: 

 (Eq. 8.1) 

The derivative terms in Eq. 8.1 are expressed in the compact strain gradient notation where 

. 

The constant strain terms are the same for both approximate representations because both 

expansions use the interior node of the three-node element as the local reference.  The equality of 
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the strains at the local origin in the center of an element for the two approximate strain 

representations can be seen in Fig. 8.1. 

As a result, the constant strain terms are eliminated when Eq. 8.1 is simplified.  This 

reduces the difference between the two representations to the following: 

 (Eq. 8.2) 

The strain difference identified in Eq. 8.2 consists of the difference between the 

smoothed and the finite element slope representations and a term that the linear strain element 

cannot represent, namely, the curvature of the strain in the smoothed strain representation. 

The three components of Eq. 8.2 are shown visually in Fig. 8.2 for the fourth element 

from the left in the finite element model.  In this figure, 

the slopes of the finite element and the smoothed strain 

representation are identified for this element.  The 

difference between these slopes is the coefficient of the 

linear term in Eq. 8.2.  As can be seen in Fig. 8.2, there 

is a significant difference between the two slopes. 

An approximation of the curvature in the 

smoothed strain representation is also shown for this element in Fig. 8.2.  This approximation 

consists of the two heavy lines labeled as the finite difference curvature.  Since curvature is 

related to the rate of change of the slope, the finite difference curvature for the finite element is 

computed as a function of the difference between the slopes of the two segments of the heavy 

line shown in Fig. 8.2. 

 
Figure 8.2 – Finite Difference Parameters 
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The level of refinement given to an individual element is identified by relating the 

maximum difference between the two approximate solutions given by Eq. 8.2 to the termination 

criterion.  This maximum difference is given by the following relationship: 

 (Eq. 8.3) 

where "h" is equal to one-half of the maximum length element that satisfies the 

termination criterion. 

8.3 - Development of the Refinement Guide 

 The refinement guide developed here estimates the number of elements needed to reduce 

the difference between the smoothed and the finite element strain approximations to below the 

magnitude of the termination criterion.  This level of refinement is designed to satisfy the 

termination criterion in a small number of iterations. 

 This refinement guide is very conservative.  It is designed to verify the efficacy of this 

approach to model refinement.  It has a rational basis and is not based on a correlation that is 

related to the termination criterion.  A less conservative approach based on the same idea is 

developed and applied in a later Chapter.  The later development is applied to models formed 

from four-node elements. 

Equation 8.3 predicts the difference in the approximate representations as a function of 

the distance from the origin of the element.  The refinement guide formed here identifies 

maximum length that will keep the difference between the two approximate solutions below the 

desired level of acceptable error, i.e., below the termination criteria. 

That is to say, the refinement guide is formed as follows.  The distance h from the origin 

for which the following relationship holds is found: 
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       (Eq. 8.4) 

That is to say 2h is the largest length of an element for which the error will not exceed the 

termination criterion. 

Thus, the number of elements that replaces the existing element is found by dividing the 

length of the nth element by the length of an element that will possess an acceptable error for the 

polynomial that must be represented.  That is to say, the element being evaluated is subdivided 

into the following number of elements: 

          (Eq. 8.5) 

 For example, let us say that Eq. 8.3 is satisfied when h is equal to one-fifth of the original 

length of the element.  This means that the element being evaluated must be divided into N = Ln/ 

2 (Ln/5) elements.  Since N for this case is equal to 2.5, this element will be divided into 3 

elements in the refined model. 

In this analysis, the termination criterion requires that the jumps in the inter-element 

strains be less than a specified percentage of the maximum absolute stress in the current finite 

element model.  In the examples presented here, the termination criteria will be either two or four 

percent. 

An example of the results produced by this refinement guide is presented in Table 8.1.  

This table contains the refinements applied to the initial model shown in Fig. 8.1a and Fig. 8.2, 

which is an augmented version of Fig. 8.1a.  The contents of this table show that five elements 

are not subdivided and that two of the elements are divided into two elements.  The element used 

as an illustration in Fig. 8.2 is subdivided into seven elements.  As will be shown in the next 

Section, this element is spanning a region that contains one inflection point and the minimum 

point for the strain distribution.  The linear strain element that is subdivided into ten elements 
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covers a region that contains two inflection points and the maximum point for the strain 

distribution. 

Table 8.1 – Element Subdivisions for Initial Nine-Element Model 
El. No. 1 2 3 4 5 6 7 8 9 

No. Divisions 1 1 2 7 10 2 1 1 1 
 
As can be seen in Fig. 8.1b, these refinements produced a new model with twenty-six 

elements that represent the exact solution very well.  This model satisfied the termination 

criterion of four percent of the maximum absolute strain in the finite element model.  That is to 

say, the performance of this refinement guide exceeded expectations.  The initial model was 

sufficiently refined in regions with excessive discretization error so that a second iteration was 

not needed to get a result with an acceptable level of error. 

8.4 - Problem Description 

This Section describes the longitudinal bar problem with fixed ends being approximated 

in this Chapter.  As can be seen in Fig. 8.1, the loading is such that the strains are nearly zero at 

the two ends of the bar.  This loading condition is chosen so the boundary conditions have little 

if any affect on this problem. 

In order to further reduce any boundary effects two very small elements are included in 

the model at both ends to absorb any small errors.  As can be seen in Table 8.1, the small 

elements on the boundaries are performing as expected.  None of the small elements have been 

subdivided.  The presence of the elements designed to reduce any boundary effect make this 

model different from the control problem used in earlier Chapters.  Three-node linear strain 

elements are used in all of the models presented here. 

The problem is loaded with a distributed load that produces a displacement in the exact 

solution that is a Runge function.  This loading condition is chosen because Runge functions are 
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difficult for polynomial representations to capture [36].  This difficulty results from the fact that 

Runge functions are rational polynomials, i.e., one polynomial divided by another polynomial.  

As such, these functions cannot be represented exactly by a finite number of polynomial terms. 

The displacement in the exact solution is based on the 

following Runge function which is shown in Fig. 8.3: f(x) = 

300/(x + 30.0 / 2.0)2.  As can be seen, this function is 

symmetric about the center of the domain.  In order to make 

the problem a bit more complex, the symmetry in the 

displacement function is eliminated by moving the 

displacement slightly away from the center of the bar.  The off-center displacement function is 

the following: f(x) = 300/(x + 30.0/ 2.2)2. 

The loading condition that produces the displacement given by this Runge function is 

found by integrating this displacement function twice.  When these two integrations are 

performed, the “high-demand” loading condition is shown in Fig. 8.4a.  The strain distribution 

produced by this loading is presented in Fig. 8.4b. 

  
a) Load Shifted to the Left b) Resulting Strain Distribution 

Figure 8.4 – A “High-Demand” Loading Condition and Resulting Strain Distribution 
 
As can be seen in Fig. 8.4b, this complex strain distribution presents a difficult task for 

linear strain elements.  This strain distribution contains three inflection points, a maximum point 

 
Figure 8. 3 – A Runge Function 
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and a minimum point.  The inflection points are indicated by the "x’s" in Fig. 8.4b.  These 

modeling complexities are the reasons for choosing this problem to demonstrate this approach to 

adaptive refinement. 

8.5 - Examples of Adaptive Refinement 

This Section contains three examples of problems refined under the guidance of the 

approach developed here.  The first objective of these examples is to demonstrate the 

effectiveness of this refinement guide.  The second objective is to demonstrate the sensitivity of 

the refinement guide to the size of the discretization errors in a model and to the restriction 

imposed by the termination criterion. 

The first example is the problem used in the Introduction to give an overview of this 

development.  Figure 8.1 is reproduced here as Fig. 8.5 for the convenience of the reader.  Figure 

8.5a presents the finite element and the smoothed solution formed with finite difference strain 

approximations extracted from the finite element displacements for the initial nine-element 

model along with the exact strain distribution.  As can be seen, there is a significant difference 

between these two approximate strain representations where they both vary greatly from the 

exact solution. 

  
a) Initial Model b) Refined Model 

Figure 8.5 – Initial and Refined Finite Element Models 
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The differences between the two approximate solutions computed with Eq. 8.3 and a 

termination criterion of four percent of the maximum strain in the finite element model are used 

in this example to form the refinement guides for the individual finite elements.  The refinements 

for the individual elements for this problem are shown in Table 8.2.  This table is identical to 

Table 8.1.  It is reproduced here for the convenience of the reader. 

Table 8.2 – Element Subdivisions for Initial Nine-Element Model 
El. No. 1 2 3 4 5 6 7 8 9 

No. Divisions 1 1 2 7 10 2 1 1 1 
 
The contents of Table 8.2 indicate that five of the elements in the initial model satisfy the 

termination criterion and will not be subdivided.  Two of the original elements will be 

subdivided into two elements.  However, the two elements in the center of the model that have 

the most complex region to represent are subdivided into seven and ten elements, respectively. 

Figure 8.5b contains the same three strain representations as Fig. 8.2b.  As can be seen, 

the three strain representations are close to each other.  That is to say, there are no significant 

differences between the finite element and the smoothed approximations and the exact result.  

The finite element strains in Fig. 8.5b satisfy the specified termination criterion of 4.0 percent. 

The similarity of the three strain distributions is shown in detail for the regions of 

maximum and minimum strains in Fig. 8.6.  Note that the structures of the two approximate 

solutions for both the maximum and the minimum points are similar in this close-up view.  The 

slopes of the two approximate solutions are significantly different and the curvature in the finite 

difference representation is high.  However, the inter-element jumps in the strain are small, so 

the finite element solution satisfies the termination criterion. 
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a) Minimum Strain Detail b) Maximum Strain Detail 

Figure 8.6 – Strain Representations at the Extreme Points – 25-Element Model 
 
The refinement guide will now be applied to an initial model that better represents the 

exact solution than the initial model for the first example.  This model has 15 elements instead of 

the nine elements contained in the initial model for the previous example.   

This example is designed to show the sensitivity of the refinement guides to the level of 

error in the elements being evaluated.  The strain representations for the initial model are shown 

in Fig. 8.7a. 

  
a) Initial Mesh b) First Iteration and Last 

Figure 8.7 – Initial and Refined Finite Element Models 
 
The refinements identified by the refinement procedure for this model are shown in Table 

8.3.  In this case, the refinement guide added ten new elements to the initial model.  This 

contrasts to the seventeen elements that were added to the previous example. 

Table 8.3 – Refinements for 15-Element Model, Termination Criterion of 4% 
El. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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No. Divisions 1 1 1 1 1 2 5 5 2 1 1 1 1 1 1 
 
The strain results for the final model are shown in Fig. 8.7b.  As can be seen when Fig. 

8.7a is compared to Fig.8.7b, the elements were added in the regions that needed refinement.  

This model satisfies the termination criterion. 

In the final example, the previous model with the fifteen elements in the initial model is 

evaluated with a more restrictive termination criterion.  The termination criterion is reduced from 

4 percent to 2 percent of the max absolute strain in the finite element model.  The objective of 

this example is to demonstrate the sensitivity of the refinement guides to the termination 

criterion.  The refinements identified for this case are presented in Table 8.4. 

Table 8.4 – Refinements for 15-Element Model, Termination Criterion of 2% 
El. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No. Divisions 1 1 1 1 1 2 9 9 2 1 1 1 1 1 1 
 
The initial strain distribution is, of course, the same as that shown in Fig. 8.7a.  The final 

strain distribution for the model with 33 elements is presented in Fig. 8.8a.  As can be seen, 

elements are added only in the critical regions of the maximum and minimum strains.  This final 

result is contrasted to the final result for the same initial model with the 4 percent termination 

criterion, which is presented in Fig. 8.8b. 

  
a) First Iteration and Last – 2% Error b) First Iteration and Last – 4% Error 

Figure 8.8 – Refined Finite Element Models – Initially 15 Elements 
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The strain models for the critical points are shown with close-ups in Fig. 8.9.  When these 

close-ups are compared to the magnified strains in the critical regions for the 25-element model 

shown in Fig. 8.6, the strain distributions in these regions more closely match the exact result 

than do the distributions for the coarser model shown in Fig. 8.6.  This example has 

demonstrated that the refinement guides are sensitive to the termination criterion. 

  
a) Minimum Strain Detail b) Maximum Strain Detail 

Figure 8.9 – Strain Representations at the Extreme Points - 33 Element Model 
 
8.6 – An Efficient Refinement Guide Based on Nodal Averaging 

 This Section presents and demonstrates a refinement guide that forms the smoothed 

solution using a simpler approach than that used in the refinement guide developed earlier.  The 

smoothed strain representation is formed by averaging the strains at the inter-element nodes.  

This approach to smoothing is identical to that used in the Zienkiewicz and Zhu error estimator.  

Once the smoothed solution is formed, the procedure for generating this refinement guide is 

identical to the procedures presented in Section 8.2 and 8.3 for the refinement guide just 

demonstrated. 

 The approach presented in this Section has significant practical advantages, particularly 

in the case of multi-dimensional problems.  When the nodal strains are found by applying a finite 

difference template to the nodal displacements, the locations of the nodes surrounding the point 



139 

of interest must be identified in order to form the necessary finite difference template.  In the 

multi-dimensional case, this is not a minor bookkeeping problem. 

 In contrast, when the higher-order strain representations are formed from the average 

nodal strains, no such topological information is required.  The nodal strain quantities for the 

individual elements are readily available.  Similarly, the nodal coordinates of the individual 

elements needed to form the finite difference template at the local origin of the individual 

elements are part of the finite element model.  As a result, the higher-order strain representation 

for the individual elements are readily available. 

 The efficacy of this approach is demonstrated by applying the refinement guide 

developed in this Section to the examples used earlier in the Chapter. 

 The strain distribution formed by connecting the averages of the nodal strain for the nine-

element model evaluated earlier with straight lines is shown in Fig. 8.10a.  The strain distribution 

formed using the finite difference templates is shown in Fig. 8.10b.  As can be seen when Figs. 

8.10a and 8.10b are compared, the two approaches have similarities and differences. 

 The two strain distributions are nearly identical when the finite element model accurately 

represents the exact solution.  This is to be expected since both approximate solutions will 

converge to the exact solution in the limit.  However, the averaged and the finite difference 

solutions can be very different when the finite element solution is highly inaccurate.  The effect 

of this difference will be seen in the examples that follow. 



140 

  
a) Averaged Nodal Strains b) Finite Difference Representation 

Figure 8.10 – Smoothed Strain Comparison 
  

When the refinement guide for the nine-element model is formed using the averaged 

nodal strain approach, the refinements produced by this approach are identified in Table 8.5.  

When the sub-divisions identified in row 2 of this table are summed, it is seen see that the 

refined model will contain 18 elements. 

Table 8.5 – Element Subdivisions for Initial Nine-Element Model 
El. No. 1 2 3 4 5 6 7 8 9 

No. Divisions 1 1 2 2 4 5 1 1 1 
  

When the results contained in Table 8.5 are compared to the refinements identified by the 

finite difference approach to smoothing contained in Table 8.2, which is reproduced here for the 

convenience of the reader, the similarities and differences just discussed can be seen. 

The elements that are closely representing the exact solution at the two ends of the model 

are not refined or are only subdivided once.  However, the elements in the center of the model 

that produce strain distributions that bear no resemblance to the exact solution are more highly 

refined with the refinement guide formed using finite difference smoothing.  This iteration of the 

adaptive refinement process produces a model with 26 elements that satisfies the termination 

criterion. 

Table 8.2 – Element Subdivisions for Initial Nine-Element Model 
El. No. 1 2 3 4 5 6 7 8 9 
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No. Divisions 1 1 2 7 10 2 1 1 1 
 
When the 18-element model identified by the refinements contained in Table 8.5 is 

solved, the strain distribution produced by this model is shown in Fig. 8.11a.  As can be seen, 

there are significant inter-element jumps in the strain distribution.  This model does not satisfy 

the termination criterion.  This means that the adaptive refinement process must be applied again. 

When the 18-element model is evaluated, the refinements are identified in Table 8.6.  

This produces a model with 22 elements.  The strain distribution for this refined model is shown 

in Fig. 8.11b.  This model does satisfy the convergence criterion.  As can be seen, this refinement 

guide introduced new elements where they were needed.   

When Fig. 8.11b is compared to Fig. 8.5b, it is seen that, although the smoothing formed 

using nodal averaging required two iterations of adaptive refinement, it produced an acceptable 

model with fewer elements. 

Table 8.6 – Element Subdivisions for Initial 18-Element Model 
El. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

No. Divisions 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 
 

  
a) Initial Refinement of 9 Element Model b) Second Refinement 

Figure 8.11 – Refinements of the Nine Element Model – 4% Termination Criterion 
 
8.7 – Further Examples of the Efficient Refinement Guide 
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 The results for refining the initial model with fifteen elements with two different 

termination criteria will now be presented for completeness.  The initial models will be refined 

with termination criteria of four percent and two percent. 

 The strain distribution formed using the averaging approach and the finite difference 

approach are presented in Figs. 8.12a and 8.12b, respectively.  In this case, the curvatures for the 

center three elements are seen to be larger for the averaged result than for the finite difference 

result.  This observation will be verified by the difference in refinements that will be seen for the 

two refinement guides. 

  
a) Averaged Nodal Strains b) Finite Difference Smoothing 

Figure 8.12 – Smoothed Strain Comparison 
  

When this initial model is refined with the nodal averaging approach and a termination 

criterion of 4 percent, the refinements identified for the individual elements are presented in 

Table 8.7.  This produces a final model containing 29 elements.  The strain distribution for this 

case is shown in Fig. 8.13a. 

Table 8.7 – Element Subdivisions for Initial 15-Element Model – 4% 
El. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No. Divisions 1 1 1 1 1 3 6 6 3 1 1 1 1 1 1 
  

The adaptively refined model found using the finite difference refinement guide is 

presented in Fig. 8.13b.  This model has 25 elements vs. 29 elements contained in the model 
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formed with the refinement guide based on the nodal average strains.  This result is consistent 

with the observation made concerning the difference in the curvatures discussed with respect to 

Fig. 8.12, i.e., the discrete curvatures are larger for the averaged results. 

 
 

a) First and Final Refinement - Averaged b) First and Final Refinement – Finite Difference 
Figure 8.13 – Refinement of the 15-Element Model – 4% Termination Criterion 

  
When this initial model is refined with the nodal averaging approach and a termination 

criterion of 2%, the refinements identified for the individual elements are presented in Table 8.8.  

This produces a final model containing 43 elements.  The strain distribution for this case is 

shown in Fig. 8.14a. 

Table 8.8 – Element Subdivisions for Initial 15-Element Model – 2% 
El. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No. Divisions 1 1 1 1 1 5 11 11 5 1 1 1 1 1 1 
  

The adaptively refined model found using the finite difference refinement guide is 

presented in Fig. 8.14b.  This model has 33 elements vs. 43 elements contained in the model 

formed with the refinement guide based on the nodal average strains.  This result is consistent 

with the observation made concerning the difference in the curvatures discussed with respect to 

Fig. 8.12. 
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a) First and Final Refinement - Averaged b) First and Final Refinement – Finite Difference 

Figure 8.14 – Refinement of the 15-Element Model – 2% Termination Criterion 
 
8.8 - Summary and Conclusion 

The development presented here forms refinement guides in a totally new way.  This 

approach compares the modeling capability of an individual element to an approximation of a 

higher-order strain representation on the domain of the individual elements.  The level of 

refinement depends on the differences between the finite element and the higher-order strain 

representation in the element and the termination criterion.  The refinement guide attempts to 

identify the level of refinement needed to produce a model that satisfies the termination criterion. 

This refinement guide is designed to provide a rational alternative to refinement guides 

that are correlated to the magnitude of the error estimator.  In other words, the refinement guides 

developed here are based on the causes of the modeling errors and not on the effect of the errors.  

This, of course, means that the new approach opens the door to further developments, as is 

usually the case when the basic understanding of a problem emerges. 

The higher-order strain representation is formed by applying finite difference templates 

to nodal strain quantities that differ from the strains in the finite element being evaluated.  The 

alternate form of the nodal strains is formed in two different ways.  In one approach, the nodal 

strains are found by applying finite difference templates to the nodal displacements of the 
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surrounding nodes.  In the second approach, the alternate nodal strains are found by averaging 

the finite element strains at the nodes. 

Both approaches produce rapidly converging results.  The use of the averaging approach 

is computationally simpler, particularly for higher-dimension models. 

The development of this refinement guide utilizes many of the improvements to 

computational mechanics that result from the use of physically interpretable notation: 

1. The notation eliminates the separation between the solution technique and the 

problem being solved because the problem is expressed in terms of the quantities 

being sought in the analysis. 

2. The modeling capabilities of individual elements can be identified during the 

formulation process. 

3. The finite element and the finite difference methods can be formulated from the same 

basis so the finite difference method can be used to evaluate any finite element 

model; i.e., the finite difference method can be used to solve any problem that the 

finite element method can solve. 
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CHAPTER 9 

CONCLUSION 

 The finite element method has evolved into a widely used and powerful technique for 

finding approximate solutions to the differential equations that occur in solid mechanics.  In this 

method, a continuous problem is broken into a discrete physical representation consisting of a 

finite number of regions or finite elements.  The equations for the discrete representation are 

formed by combining the stiffness matrices and the load vectors for the individual finite 

elements. 

 The process of breaking the continuum into finite regions introduces errors into the finite 

element approximation.  These errors are called discretization errors.  Discretization errors occur 

when the exact solution is too complex for the basis functions of the individual finite elements to 

represent.  These errors are seen in the finite element result as inter-element jumps in the strain 

representation. 

 The objective of adaptive refinement is to iteratively reduce the level of the discretization 

errors below a specified limit.  This is accomplished by evaluating the result for errors, by 

identifying any needed refinement to the finite element model if the model does not possess the 

desired level of accuracy and, then, modifying the finite element model in preparation for 

another cycle, if it is needed. 

 The key elements in the adaptive refinement process are the error estimator and the 

refinement guide.  This work has developed and demonstrated improvements to both of these 

components of the adaptive refinement process. 
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 The error estimator presented here is an improvement on the error estimator used in the 

Zienkiewicz and Zhu (ZZ) approach to adaptive refinement in two ways.  The improved error 

estimator presented here is a pointwise quantity so its computation does not require integration, 

as is the case for the ZZ approach.  In addition, the error estimator developed here is expressed in 

terms of strain components instead of strain energy.  This means that the termination criterion 

can be expressed in terms that have specific meaning in solid mechanics.  For example, this 

means that the termination criterion can be specified in terms of a failure criterion. 

 The refinement guide presented here changes the whole texture of adaptive refinement.  

The error estimator developed here does not define the level of refinement heuristically.  That is 

to say, the refinement guide does not depend directly on the estimated error that is used as a 

termination criterion.   

The refinement guide developed here is based on first principles.  The modeling 

deficiencies in the individual elements are found by comparing an improved strain distribution to 

the strain distribution that actually exists in the finite element being evaluated.  Then, the 

modeling deficiencies are related to the modeling capabilities of the element and the termination 

criterion to identify the level of refinement that will improve the existing finite element model. 

In the case where the improved strain distribution is formed by averaging the inter-

element nodal strains, the resulting error estimator can be viewed as integrating the two basic 

approaches to error estimation, the residual and the recovery approaches.  This is the case 

because it is shown in this work that the inter-element jumps are directly due to the failure of the 

finite element solution to satisfy the governing differential equation being solved.  This failure is 

quantified as a residual over the domain of the element.  The smoothed solution, itself, can be 
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viewed as a component of the recovery approach.  It is improved because a quantity that is 

directly related to the residuals in the individual elements is used to produce this improvement. 

There are two distinct areas presented here that can fruitfully be extended.  The rational, 

as opposed to heuristic, refinement guide that is developed here for one dimension can be 

extended to two dimensions.  This work must investigate several possibilities.  Can the 

refinement in the two directions be analyzed separately?  What is a good metric for defining the 

refinement since three strain components are available in two dimensions? 

The demonstration that the residuals and the inter-element jumps are directly related was 

presented for one dimension.  This could be extended to two dimensions.  This would be 

somewhat more involved for the two dimensional case.  The displacements in the two directions 

found by the finite element analysis would have to be substituted into the governing differential 

equations to produce the residual quantities.  The residuals must then be treated as distributed 

loads to form a set of equivalent nodal loads.  These loads would then have to be applied to the 

existing finite element model.  Finally, the resulting strains would have to be related to the inter-

element jumps in the original problem.  This result would insure that a smoothed solution formed 

by averaging the nodal strains would be an improved solution for the two dimensional problem. 

 

 

 

 

 

 



149 

 

BIBLIOGRAPHY 

1. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z., The Finite Element Method: Its Basis and 
Fundamentals, 6th ed., Elsevier, New York, 2005. 

2. Zienkiewicz, O. C. and Zhu, J. Z., “A Simple Error Estimator and Adaptive Procedure for 
Practical Engineering Analysis,” International Journal for Numerical Methods in 
Engineering, Vol. 24, 1988, pp. 337-357. 

3. Kelly, D. W., “The Self-Equilibration of Residuals and Complementary A-Posteriori 
Error Estimates in the Finite Element Method,” International Journal for Numerical 
Methods in Engineering, Vol. 20, pp. 1491-1506, 1984. 

4. Dow, J.O., Bodley, C.S. and Feng, C. C., “An Equivalent Continuum Representation of 
Structures Composed of Repeated Elements,” AIAA/ASME/ASCE/AHS 24th Structures, 
Structural Dynamics and Materials Conference Proceedings, May 2-4, 1983, Lake Tahoe, 
Nevada, pp. 630-640. 

5. Dow, J.O. and Huyer, S.A., “An Equivalent Continuum Modal Analysis Procedure for 
Space Station Lattice Structures,” 5th International Modal Analysis Conference 
Proceedings, April 6-9, 1987, Imperial College of Science and Technology, London, 
England, Vol. II, pp.1060-1068. 

6. Dow, J.O. and Huyer, S.A., “An Equivalent Continuum Analysis Procedure for Space 
Station Lattice Structures,” AIAA/ASME/ASCE/AHS 28th Structures, Structural 
Dynamics and Materials Conference Proceedings, April 6-8, 1987, Monterey, Calif., Part 
1, pp. 110-122. 

7. Dow, J.O. and Huyer, S.A., “Continuum Models of Space Station Structures,” ASCE 
Journal of Aerospace Engineering, Vol. 2, No. 4, Oct. 1989, pp. 212-230. 

8. Dow, J.O. and Byrd, D.E., “The Identification and Elimination of Artificial Stiffening 
Errors in Finite Elements,” International Journal for Numerical Methods in Engineering, 
Vol. 26, March 1988, pp. 743-762. 

9. Dow, J.O. and Byrd, D.E., “The Elimination of Artificial Stiffening in Plate Elements,” 
ASCE Engineering Mechanics Division Specialty Conference Proceedings, May 22-25, 
1988, Blacksburg, VA. 

10. Dow, J.O. and Byrd, D.E., “An Error Estimation Procedure for Plate Bending Problems,” 
AIAA/ASME/ASCE/AHS 29th Structures, Structural Dynamics and Materials 
Conference Proceedings, April 18-20, 1988, Williamsburg, VA, Part II, pp. 901-910. 

11. Dow, J.O., Harwood, S.A., Jones, M.S. and Stevenson, I., “A Finite Difference Error 
Analysis Procedure,” AIAA/ASME/ASCE/AHS 31st Structures, Structural Dynamics 



150 

and Materials Conference Proceedings, April 2-4, 1990, Long Beach, CA, Part II, pp. 
1010-1022. 

12. Dow, J.O. and Byrd, D.E., “Error Estimation Procedure for Plate Bending Elements,” 
AIAA Journal, Vol. 28, No. 4, April 1990, pp. 685-693. 

13. Dow, J.O., Jones, M.S. and Harwood, S.A., “A Generalized Finite Difference Method for 
Solid Mechanics,” International Journal of Numerical Methods for Partial Differential 
Equations, Vol. 6, No. 2, Summer 1990, pp. 137-152. 

14. Dow, J.O., Jones, M.S. and Harwood, S.A., “A New Approach to Boundary Modeling for 
Finite Difference Applications in Solid Mechanics,” International Journal for Numerical 
Methods in Engineering, Vol. 30, No. 1, July 1990, pp. 99-113. 

15. Dow J.O., Harwood, S.A., Jones, M.S. and Stevenson, I., “Validation of a Finite Element 
Error Estimator,” AIAA Journal, Vol. 29, No. 10, October 1991, pp. 1736-1742. 

16. Dow, J.O., Hardaway, J.L., and Hamernik, J.D., “Combined Application of the Finite 
Element/Finite Difference Methods,” AIAA/ASME/ ASCE/AHS 33rd Structures, 
Structural Dynamics and Materials Conference Proceedings, April 13-15, 1992, Dallas, 
TX, pp. 129-134. 

17. Dow, J.O. and Hamernik, J.D., “A Point-Wise Error Estimator for Finite Element 
Stresses,” AIAA/ASME/ASCE/AHS 33rd Structures, Structural Dynamics and Materials 
Conference Proceedings, April 13- 15, 1992, Dallas, TX, pp. 355-359. 

18. Dow, J.O. and Hardaway, J.L., “The Validation of Finite Difference Boundary Condition 
Models for Solid Mechanics Applications,” AIAA Journal, Vol. 30, No. 4, July 1992, pp. 
1864-1869. 

19. Dow, J.O. and Hardaway, J.L., “The Modeling of Multi-Material Interfaces in the Finite 
Difference Method,” International Journal of Numerical Methods for Partial Differential 
Equations, Vol. 8, No. 5, Sept. 1992, pp. 493-503. 

20. Dow, J.O. and Stevenson, I., “An Adaptive Refinement Procedure for the Finite 
Difference Method,” International Journal of Numerical Methods for Partial Differential 
Equations, Vol. 8, No. 6, Nov. 1992, pp. 537-550. 

21. Abdalla, J.E. and Dow, J.O., “An Error Analysis Approach for Laminated Plate Finite 
Element Models,” Computers and Structures, Vol. 52, No. 4, August 1994, pp. 611-616. 

22. Dow, J.O. and Abdalla, J.E., “Qualitative Errors in Laminated Composite Plate Models,” 
International Journal for Numerical Methods in Engineering, Vol. 37, 1994, pp. 1215-
1230. 

23. Dow, J.O. and Sandor, M.J., “A Sub-Modeling Approach to Adaptive Mesh 
Refinement,” AIAA Journal, Vol. 33, No. 8, August 1995, pp. 1550-1553. 



151 

24. Dow, J.O., A Unified Approach to the Finite Element Method and Error Analysis 
Procedures, Academic Press, New York, 1999. 

25. Budynas, Richard G., Advanced Strength and Applied Stress Analysis, 2nd ed., 
WCB/McGraw-Hill, New York, 1999, pp. 235-238. 

26. Scheid, Francis, Numerical Analysis, 2nd ed., McGraw-Hill, Inc, Schaum’s Outline Series, 
1989, p. 267. 

27. Madson, J.C. and Handscomb, D.C., Chebyshev Polynomials, Chapman and Hall/CRC, 
Boca Raton, FL, 2003, p. 45. 

28.  Van Loan, C.F., Introduction to Scientific Computing, 2nd ed., Prentice-Hall, Upper 
Saddle River, NJ, 2000, pp. 90 – 91. 

29. Siegfried, Amy K., Point-Wise Discretization Error Measures for Finite Difference 
Solutions, Master’s Thesis, University of Colorado, 2003. 

30. Hughes, Thomas, R. J., The Finite Element Method, Dover Publications, Mineola, NY, 
2000, p. 112. 

31. Argyris, J. H. and Kelsey, S., Energy Theorems and Structural Analysis, Butterworth, 
London, 1960 (originally published in a series of articles in Aircraft Engineering, 1954-
55). 

32. Taig, I. C., Structural Analysis by the Matrix Displacement Method, English Electric 
Aviation Report No. S017, 1961. 

33. Zienkiewicz, O. C. and Zhu, J. Z., “The Superconvergent Patch Recovery and A-
Posteriori Error Estimates, Parts I and II,” International Journal for Numerical Methods 
in Engineering, Vol. 33, 1992, pp. 1331-1382. 

34. Akin, J. E., Finite Element Analysis with Error Estimators, Elsevier, Oxford, 2005, 
Chapter 5. 

35. Dow, J.O., Ho, T. H. and Cabiness, H. D., “A Generalized Finite Element Evaluation 
Procedure,” Journal of Structural Engineering, ASCE, Vol. 111, No. ST2, pp. 435-452, 
February, 1985. 

36. Van Loan, C.F., Introduction to Scientific Computing, 2nd ed., Prentice-Hall, Upper 
Saddle River, NJ, 2000, Chapter 2. 

 

 


	University of Colorado, Boulder
	CU Scholar
	Spring 1-1-2010

	Pointwise Extensions to the Zienkiewicz-Zhu Adaptive Refinement Procedure
	Ryan Clarke Anderson
	Recommended Citation


	Microsoft Word - Pointwise Extensions to the Zienkiewicz-Zhu Adaptive Refinement Procedure.doc

