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Mostafa, Mohammadreza (Ph.D., Civil Engineering)

A geometric nonlinear solid-shell element based on ANDES, ANS and EAS concepts

Thesis directed by Prof. Prof. Mettupalayam Sivaselvan

In this work, first, a computational approach suitable for combined material and geo-

metrically nonlinear analysis for 2D quadrilateral elements is explained. Its main advantage

is reuse: once a finite element has been developed with good performance in linear analysis,

extension to material and geometrically nonlinear problems is simplified. Extension to geo-

metrically nonlinear problems is enabled by a corotational kinematic description, and that

to material nonlinear problems by an optimization-based solution algorithm. The approach

thus comprises three ingredients — the development of high performance linear finite element

using the Assumed natural deviatoric strain (ANDES) concept, a corotational kinematic de-

scription for quadrilateral element, and an optimization algorithm. The work illustrates

the realization of the three ingredients on plane stress problems that exhibit elastoplastic

material behavior. Numerical examples are presented to illustrate the effectiveness of the

approach.

Second, an eight-node solid-shell element based on ANS, ANDES and EAS concepts is pre-

sented. The mechanical response of the element is split into three parts: 1) In-plane response,

which is also decomposed into membrane and bending, 2) Thickness response or normal

strains in thickness direction; and 3) Transverse shear response. This separation gives the

liberty of using any type of membrane quadrilateral formulation for the in-plane response.

In the present work, ANDES membrane element is used for the in-plane response. ANS

concept is implemented to account for the transverse shear and thickness strains, which has

proven to circumvent the curvature thickness and transverse shear locking problems. EAS

approach with one degree-of-freedom is applied on the thickness strain so as to alleviate the

Poisson thickness locking. The formulation yields exact solution for both membrane and
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bending patch tests.

Third, an eight-node solid-shell element based on ANS and EAS concepts is presented. Five

enhanced degrees-of-freedom are used to improve the in-plane response of the element and

one to alleviate the Poisson’s thickness locking problem.

Numerical results for some benchmarks show the robustness of both solid-shell formulations

in geometrically linear problems.

With the proposed linear element at hand, the corotational kinematic description is used

to add geometric nonlinearity to this work. Problems with small strains are addressed in

this work, however, EICR could be extended to large deformations. The Corotated frame is

defined such that it is independent of whether the mid-surface is warped or not. Numerical

results for geometric nonlinear solid-shell and the comparisons with other solid-shell and

shell formulations are presented in the end.
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Chapter 1

Introduction

1.1 Motivation

The final goal is to develop computational schemes to study failures of structures.

Clearly, it is important to represent degrading behavior. Often, this is done using softening

material models. Softening occurs due to processes at smaller scales. Of these, the focus is on

softening at a macro-scale due to geometric instabilities in the micro-scales. Two examples

could be considered:

(1) Thin-walled steel members that are used very often as structural components, when

loaded sufficiently, transition from a mode that can be described by the beam theory,

to a mode where the walls locally buckle plastically as shown in Fig. 1.1(a). This

irreversible transition leads to reduced engineering utility of system which is referred

to as ”Deterioration” and should be taken into account in the analysis procedure.

(2) Buckling of honeycomb cellular microstructures. Consider the 2D RVE (Represen-

tative Volume Element) shown in figure 1.1(b) which is under compressive in-plane

force. As can be seen in the deformed shape, the membranes buckle locally. This

phenomenon is analogous to the local buckling of the thin-walled columns under

compression. Table 1.1 summarizes the the two examples.

One approach to investigate the mentioned effect is fine-grained modeling with finite element

using shell elements (which is referred to as the micro-scale). This approach is impractical
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(a) (b)

Figure 1.1: Degradation examples;(a)plastic softening of a thin-walled column, (b)buckling
of membranes in honeycomb cellular microstructures .

Table 1.1: Summary of model examples

Node Beam model Cellular microstructures
Micro-scale Continuum. Walls can be considered as flex-

ural components.
Macro-scale Skeletal structure. Homogenized continuum.
Remarks Local buckling appears

as softening in moments-
rotation model.

Buckling in micro-scale appears
as softening in continuum strain-
stress model.
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Figure 1.2: Steps from micro-model to macro-model.

when modeling a structure with a large number of members in terms of the number of

degrees-of-freedom and analysis time.

The philosophy behind models of deterioration used in structural engineering practice, is to

modify constitutive equation to model the observed behavior [134, 75, 132, 51].

Strategy : ”Rationally include in macro-model states that represent modes
of instability in micro-model using model reduction.”

In order to develop a macro-scale model, it is required to start from describing the micro-scale

behavior and to obtain a similar description of the macro-scale behavior through structure-

preserving model reduction strategies. This will result, for example, in beam elements, shell

elements etc., which in addition to the usual degrees of freedom, will have the deterioration

modes built in. These elements can then be used to develop system scale models. Developing

the macro-scale model could be done by Proper Orthogonal Decomposition (POD) [81, 43]

and Galerkin Projection [85].

Figure 1.2 depicts the steps to develop a macro-model for Beam element as an structural

member:

In this research, the micro-model capable of modeling the nonlinear behavior of 3D thin

structures has been investigated. Shell elements are one of the most popular and versatile

tools that can model 3D structures. The application of shell elements ranges from aerospace

structures such as wing of an airplane to columns and slabs of a building. Many authors

have worked on different shell element formulations; each of which is suitable for a specific

problem.
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During the past decade, solid-shell has been introduced as a new class of finite elements which

has a three dimensional geometry (like solid element), but behaves similar to degenerated

or classical shell finite elements. The advantages of solid-shell to shell formulations are: the

capability of modeling the 3D geometry of the structure, modeling the boundaries without

any extra kinematic assumptions and avoiding the complicated updating of rotation vector

in nonlinear problems.

Corotational kinematic description is one of the approaches to address the geometric non-

linear behavior of the structure. It is based on splitting the motion of the element into

rigid-body and deformational displacements. The advantage of this approach is ”reusing”

the linear element library in developing the nonlinear element. This kinematic description

is not restricted to small strain problems and is extensible to finite deformations too.

1.2 Outline of the thesis

In chapter 2 of this research a computational approach suitable for combined material

and geometrically nonlinear analysis of 2D plane stress element is presented. Corotational

kinematic description is applied to take the geometric nonlinearity into account and an

optimization-based solution algorithm is used to address the material nonlinearity. ANDES

quadrilateral element is introduced (which is a hight performance 2D element) and used as

the linear formulation in this chapter.

In chapter 3, first the linear solid-shell element based on the ANDES, ANS and EAS schemes

is presented and in the end, the geometric nonlinearity of the element is investigated using

Corotational kinematic description.

In chapter 4, a linear solid-shell element based on the ANS and EAS schemes with six

enhanced degrees-of-freedom is presented.

In chapter 5 the nonlinear solution algorithm that is used in this work is reviewed and in

chapter 6 some numerical examples for both 2D and 3D elements are presented and the

results are compared to some other existing formulations.
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Finally in chapter 7 the achievements of this research are summarized and the topics for

further investigations are discussed.



Chapter 2

Material and geometrically nonlinear analysis Of 2D quadrilateral ANDES

element using the optimization scheme

2.1 Introduction

A computational approach suitable for combined material and geometrically nonlinear

analysis by the Finite Element Method is presented. Its main advantage is reuse: once a finite

element has been developed with good performance in linear analysis, extension to material

and geometrically nonlinear problems is simplified. Extension to geometrically nonlinear

problems is enabled by a corotational kinematic description, and that to material nonlinear

problems by an optimization-based solution algorithm. The approach thus comprises three

ingredients — the development of high performance linear finite element using the Assumed

Natural Deviatoric Strain (ANDES) concept, a corotational kinematic description, and an

optimization algorithm. The main constraint in the application of the corotational formula-

tion is restriction to small strains. The realization of the three ingredients on plane stress

problems that exhibit elastoplastic material behavior is illustrated. Numerical examples are

presented to illustrate the effectiveness of the approach. The ANDES linear quadrilateral

element passes the uniform strain patch test proposed by MacNeal [92], and shows excellent

convergence characteristics in other well-known benchmark problems. For nonlinear prob-

lems, comparison of results is made with respect to solutions provided by the commercial

nonlinear code ABAQUS as reference, which are presented in chapter 6.
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2.2 Templates and the ANDES Quadrilateral Element

It is well known that isoparametric displacement models of low order are susceptible

to various types of locking behavior (by “locking” we mean abnormally large stiffness in

response to some deformation patterns). Various remedies have been developed over the

past four decades to cure or alleviate such behavior. Of particular interest for the applica-

tions addressed here is the in-plane bending response of four-node quadrilateral membrane

(plane stress) elements. Remedies have included modifications in the formulation of the dis-

placement element proper such as reduced, selective reduced and directional integration, and

incompatible modes (example [74, 151]), assumed stress formulations (example [71, 107]),

assumed strain formulations (example [90, 17, 105, 130]), and the free formulation [28, 31].

It has been shown in [53] that many of these formulations, in fact all of those that satisfy the

Individual Element Test (IET) of Bergan [29], can be unified in the form of finite element

templates.

Templates represent an outgrowth and generalization of the key idea behind the Free

Formulation [28, 31]. The element stiffness behavior is decoupled into two portions: basic

and higher order. The basic stiffness component embodies the response to rigid body and

constant strain displacement patterns, which are collectively called basic modes. The

higher order stiffness responds to higher order deformational patterns, collectively

called higher order modes, which are orthogonal (in an energy sense) to basic modes.

Together these two components provide the correct element rank, thus guaranteeing sta-

bility. The orthogonality property means that an element derived this way automatically

satisfies the Individual Element Test of Bergan, which is a restricted form of the conventional

patch test, thus satisfying consistency and completeness.

The template approach can generate families of elements by including free parame-

ters in the basic and higher order stiffness matrices. Setting specific numerical values for

the parameters produces instances of the template. Instances may either reduce to existing
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elements, or provide new elements. The parametrized higher order stiffness may be formu-

lated by a wide spectrum of methods: assumed displacements, assumed strains, assumed

stresses, or combinations thereof. In this article, a variation of the assumed strain approach,

the so-called Assumed Natural DEviatoric Strain (ANDES) formulation, is used.

The ANDES formulation was introduced by Felippa and Militello [98, 58] for membrane

and bending components of shell elements. For the 2D quadrilateral, the ANDES formulation

proceeds as follows:

(1) Mixed variational principle: The ANDES approach starts from a two-field mixed

variational principle with displacement (u) and strain (e) as the independent fields.

The Tonti diagram shown in Figure 2.1 serves as a useful mnemonic to construct

such a principle (example, [54]). The weak form with the independent displacement

and strains fields is∫
V

(e− eu) · δσe dV +

∫
St

(tp − σen) · δu dS +

∫
V

(D∗σe + b) · δu dV = 0 (2.1)

Following a standard application of the divergence theorem, this can be recognized

as the stationarity condition of the two-field functional

Π(u, e) =

∫
V

1

2
(e− eu) · E · (e− eu) dV −

∫
V

1

2
eu · E · eu dV

+

∫
V

b · u dV +

∫
St

tp · u dS

(2.2)

Since the variations δu and δe are independent, we have the two separate conditions

∫
V

(e− eu) · E · δe dV = 0∫
V

σe · δeu dV =

∫
b · δu dV +

∫
St

tp · δu dS

(2.3)

The first equation of (2.3) could be interpreted as minimizing the following disloca-

tion energy resulting from incompatible strains (least squares strain fitting) [56].

J(e) =

∫
V

1

2
(e− eu) · E · (e− eu) dV (2.4)
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u p b
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uu = u p on boundary
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displacement (Su)

Strain field
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on boundary Body force
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Weak equilibrium:

( )* 0D b u dVσ δ+ ⋅ =∫
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derived from 
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Prescribed 
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on boundary
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V

e e E edVδ− ⋅ =∫
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V

D b u dVσ δ+ ⋅ =∫

Figure 2.1: Tonti diagram representing the two-field variational principle that is the basis
of the ANDES approach. Solid lines represent relations that apply pointwise, and dashed
lines those are enforced in weak form. D denotes the strain-displacement operator, and D∗

its adjoint.
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(2) Assumed strain field: The element kinematics may be visualized using “strain gages”

as shown in Figure 2.2. The assumed strain components, χ, can be thought of as

the strains in these gages. The gages at the intersection of the element medians

(χ1, χ2, χ3) represent the constant Cartesian strains (basic modes). The gages at

the edges (χ4, χ5) represent natural strains that are interpolated linearly to obtain

the bending (higher order) modes. The significance of this separation into Cartesian

and natural strains is that in elements with arbitrary geometry (i.e., where the Jaco-

bian of the transformation for natural to Cartesian coordinates is not constant), the

basic constant strains (corresponding to χ1, χ2, χ3) have to be defined in Cartesian

coordinates and the higher order strains in natural coordinates in order to pass the

patch test as discussed in [53]. The resulting assumed strain field is [55]:

e(ξ, η) =


exx

eyy

γxy

 (ξ, η) =


1 0 0 c2

m(η − ηc) c2
n(ξ − ξc)

0 1 0 s2
m(η − ηc) s2

n(ξ − ξc)

0 0 1 2cmsm(η − ηc) 2cnsn(ξ − ξc)


︸ ︷︷ ︸

Bn



χ1

χ2

χ3

χ4

χ5


(2.5)

where the higher order natural strain components have been transformed to Carte-

sian components. (cm, sm) and (cn, sn) are the direction cosines of the images of the

ξ and η axes, and (ξc, ηc) the coordinates of the pre-image of the the centroid of the

element, under the isoparametric map.

Substituting u(ξ, η) = N(ξ, η)uQ, eu(ξ, η) = Biso(ξ, η)uQ, e = Bn(ξ, η)χ into (2.3)

and writing the equations in matrix form, yields a system of equations of the form 0 K12

KT
12 K22


 uQ

χ

 =

 fQ

0

 (2.6)

K12K
−1
22 K

T
12u

Q = KQuQ = fQ

χ = K−1
22 K

T
12u

Q = TQuQ
(2.7)
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η
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χ

χ5
3

4

(χ1, χ2, χ3)
χ4

1

2

Figure 2.2: Element kinematics represented by “strain gages” (x, y indicate Cartesian coor-
dinates, ξ, η indicate isoparametric coordinates)

where uQ and fQ are the vectors of nodal displacements and internal forces of the

quadrilateral element, N(ξ, η) is the matrix of the usual isoparametric shape func-

tions and Biso the corresponding strain-displacement matrix, and e is the assumed

strain field and KQ is the stiffness matrix of the quadrilateral element.

For the linear higher order strain as used in equation (2.5), the second equation of

(2.7) takes the surprisingly simple form 1 [53]:

χ =

Biso(ξC , ηC)

WHh


︸ ︷︷ ︸

TQ(x,y)

uQ (2.8)

Here, Hh is a filter matrix that extracts from uQ the higher order modes, and is iden-

tical for all quadrilateral elements. Equation (2.8) is an instance of the quadrilateral

finite element template, parametrized by W . Expressions for the filter matrix Hh,

and for the matrix W in the ANDES instance, are given in [53] in terms of invariants

of the quadrilateral geometry.

1 Following reference [53], E is selected to be identity in calculating the χ in second of equation (2.7).
This assumption only affects the bending modes (WHh) and yields the simplified form shown in equation
(2.8).
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It is easy to check that the higher order modes are energy orthogonal to the basic

modes, which guarantees the convergence of the formulation as discussed in [28].

Considering the basic mode strain-displacement matrix BQ
b = BQ(ξC , ηC), and the

higher-order mode strain-displacement matrix BQ
h = BQ(ξ, η) − BQ

b , the energy-

orthogonality requirement between the basic and higher order modes is expressed as

∫
V

(BQ
h )TEBQ

b dV = 0 (2.9)

(3) Strain-displacement matrix: From equations (2.5) and (2.8), the strain-displacement

matrix, Be, can be obtained as

e(ξ, η) = Bn(ξ, η)

Biso(ξC , ηC)

WHh


︸ ︷︷ ︸

BQ(ξ,η)

uQ (2.10)

Equipped with this linear element, its extension to geometric and material nonlinearity

are discussed next.

2.3 Corotational kinematic description

The corotational kinematic description is based on decomposing the motion of an

element into rigid body and deformation components. Deformations are described with ref-

erence to a coordinate frame that translates and rotates with the element. For a plane

quadrilateral element, this is depicted in Figure 2.3. The idea is analogous to the right

polar decomposition (F = RU) of continuum mechanics. An attractive feature of the coro-

tational description, particularly for small strain problems, is that elements that perform

well in geometrically linear problems can be extended to nonlinear problems in an element

independent fashion. This approach referred to as an Element-Independent Corotational

formulation (EICR) was introduced by Rankine and Brogan [112]. Felippa and Haugen

[57, 68] present a unified formulation of the corotational approach for 3D elements with both
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translational and rotational degrees of freedom. In this article, a corotational formulation for

the plane quadrilateral element is considered. The formulation mirrors that of Battini [22].

However, it is presented in a manner that its relationship with the unified 3D formulation

of [57] is more readily apparent.

Let R be the matrix representation of the rotation shown in Figure 2.3. Let R =

diag(R,R,R,R). Denote by PT , the matrix that averages nodal quantities, so that for

example X̄e = (I − PT )Xe where I is the identity. It can be easily verified that PT is

symmetric, and commutes with rotations (this is true in 3D as well when only translational

degrees of freedom are considered). Furthermore, PT is a projection, so that (I − PT )2 =

(I − PT ), and (I − PT )X̄e = X̄e. In 2D, R is parametrized by a scalar angle of rotation,

θ. By direct calculation, R
(
dR
dθ

)T
= ι, where ι = diag(

[
0 1

−1 0

]
,
[

0 1

−1 0

]
,
[

0 1

−1 0

]
,
[

0 1

−1 0

]
). ι

commutes with rotations and with (I − PT ), and ι2 = −I. From Figure 2.3, it can be seen

that the deformational displacements ued are related to the total displacements ue by

ued = RT (I − PT )(Xe + ue)− X̄e

= (I − PT )RT (Xe + ue)− X̄e since PT commutes with rotations

(2.11)

Differentiating equation (2.11) (this may also be thought of as considering variations),

u̇ed = (I − PT )RT u̇e + (I − PT )RT ι(Xe + ue)θ̇ (2.12)

A number of choices exist for determining the rotated frame given the total displacements

at the nodes. Here, the strategy of Battini [22] is used where θ is chosen to minimize the

norm of the deformational displacements, 1
2
||ued||2. This gives

(X̄e)TR(θ)T ι(I − PT )(Xe + ue) = 0 (2.13)

which can be solved for θ (the resulting explicit formula for θ can be found in [22]). Differ-

entiating equation (2.13), and using the relationships between different matrices discussed

above gives the following expression for θ̇.

θ̇ =
1

(X̄e)TRT (I − PT )(Xe + ue)
(X̄e)TRT ι(Xe + ue) (2.14)
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Figure 2.3: Corotational kinematic description: It can be seen that Xc + uc + R(X̄2 +
ud2) = X2 + u2. This is the basis of equation (2.11). (Notation: ued = (uTd1, u
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Substituting in equation (2.12), and defining U = ιX̄e and V = ιRT (I−PT )(Xe+ue) results

in

u̇ed = (I − PT )

(
I − V UT

UTV

)
︸ ︷︷ ︸

P

RT u̇e (2.15)

It is recognized that the matrix P is a projector as well. If deformations within the coro-

tational frame are assumed small, then equation (2.10) can be differentiated and combined

with equation (2.15) to give

ė(ξ, η) = Be(ξ, η)PRT u̇e (2.16)

This equation describes the nonlinear kinematics of the element. Next, the strategy for

material nonlinear computations is presented.

2.4 Optimization algorithm for elastoplastic state update

In the presence of nonlinear material behavior, the displacements and other states

of a model are usually computed in a nested fashion. In each increment, a displacement

increment is computed from a linearized global equilibrium equation. This displacement

increment is then used to determine compatible strain increments at material points. The

strain increments are in turn used to compute increments of stresses and other states at

material points using constitutive equations. These updated stresses result in an imbalance

in the global equilibrium equation, as well as in a new linearization of this equation. A

Newton-type method is used to iteratively reduce this imbalance to within a tolerance.

In the present research , a different approach is used to compute the state of the model in

an increment. This computation is cast as a mathematical program. This approach was

first proposed by Maier [93]. Although in the present work only elastic ideal plastic behavior

is considered, the approach is applicable wherever the material model can be derived from

free energy and dissipation functions. Such models belong to the class of generalized

standard materials [66]. If the free energy and dissipation functions are convex, then the

mathematical program is one of convex minimization. For details, the reader is referred to
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[133, 84]. The approach obviates the need for a constitutive model-specific return mapping

algorithm.

For a hyperelastic material, the stress is related to the elastic strain by σ = ∇ψ(ee),

where ψ is the free energy and ee is the elastic strain. The dual consititutive relationship is

ee = ∇ψc(σ), where ψc is the complementary free energy. For ideal plasticity with yield

function φ, the inelastic part of the constitutive law can be stated in a similarly concise

manner as ėp = ∇ϕc(σ). Here, ϕc is the complementary dissipation function, which for ideal

plasticity is the indicator function of the elastic region. With the assumption of small strains

within the corotated frame, the additive decomposition of the strain rate into elastic and

plastic rates, ė = ėe + ėp, gives

d

dt
∇ψc(σ) +∇ϕc(σ)− ė = 0

for each material point. Collecting these equations for all material points,

d

dt
∇ψc(σ) +∇ϕc(σ)−B(u)u̇ = 0 (2.17)

where B is the collection of the matrices Be(ξ, η)PRT of equation (2.15) and σ, the collection

of stresses over all material points. u is the collection of displacements over all nodes. The

dependence of B on u is because P and R depend on ue. This equation discretized in time

together with the global equilibrium condition is

∇ψc(σn+1)−∇ψc(σn)

∆t
+∇ϕc(σn+1)−B(un)

un+1 − un
∆t

= 0

Bf (un)Tσn+1 = fn+1

(2.18)

where fn+1 is the vector of external nodal forces at time n+ 1. The fact that B(un) is used

in the discretization implies the geometry is updated in an explicit fashion. Further, the

matrix B is partitioned as B = [Bf Bp] corresponding to free DOF, and boundary DOF with

prescribed displacements respectively. The discrete equation can be rearranged to obtain
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the following convex minimization problem [133].

σn+1 = argmin
σ

ψ(σ)− bTσ

subject to Bf (un)Tσ = fn+1 (equilibrium equality constraints)

φ(σ) ≤ 0 (yield equality constraints)

(2.19)

where f is the vector of nodal forces, and b = Bp(un)∆up + ∇ψc(σn). In words, the opti-

mization problem reads “of all the stresses that satisfy equilibrium and the yield conditions,

find the one that minimizes the total complementary potential energy”. But for the yield

conditions, this statement can be recognized as the principle of complementary potential

energy from elementary mechanics. Displacement increments are computed as the Lagrange

multipliers corresponding to the equality (equilibrium) constraints of the optimization prob-

lem (2.19). Recently, efficient algorithms have been developed to solve large scale problems

of this type [133, 84], where a system of equations whose size is the number of free DOF

needs to be solved in each iteration.

In the present research, the function fmincon in the Matlab Optimization Toolbox [95] is

used to solve this problem.



Chapter 3

Solid-shell element based on ANDES, ANS and EAS concepts

3.1 Introduction

Shell finite elements are commonly used to model three dimensional structures in which

the dimension in one direction (referred to as the thickness direction) is much smaller than

the extents in the other two directions. Shell elements may be classified into three broad

categories — (i) classical shell elements, (ii) degenerate shell elements, and (iii) solid-shell

elements. Classical shell elements are built on the theory of plates and shells, and have

nodes with rotational degrees of freedom [32, 34, 76, 37, 89]. Degenerated shell elements

start from the continuum theory, but impose constraints to degenerate the kinematics to

the shell surface [24, 17, 126, 131, 128, 42]. These elements also have nodes that possess

rotational degrees of freedom. Solid-shell elements resemble solid elements in that their nodes

have only translational degrees of freedom. However, special measures are taken to overcome

problems arising from the thickness being much smaller than the other two dimensions of

the element.

In this chapter, a solid-shell formulation is developed using an assumed-strain approach.

Attractive features of a solid shell element include (i) simplification resulting from avoiding

3D rotational degrees of freedom (in fact, this work was motivated by an application in model

reduction, where the element configuration space with only translational degrees of freedom

has a simpler vector space structure), (ii) representation of 3D boundary conditions without

need for additional kinematic assumptions, and (iii) coupling with solid elements without



19

additional kinematic constraints. Examples of the early work on solid-shell are addressed

in references [104, 97, 69, 70]. Schwarze and Reese [119] present a comprehensive survey of

different solid-shell element formulations.

In modeling shell structures, shape functions of displacement-based solid elements are

not rich enough to capture kinematics associated with bending perpendicular to the shell

surface. As a result, solid-shell elements are susceptible to various locking phenomena.

(1) Membrane locking : happens when the element is subjected to in-plane longitudinal

or transverse(shear) loads and the low order shape functions are not capable of

modeling the physical behavior of the element.

(2) Transverse shear locking : occurs when the element thickness tends to zero or physi-

cally speaking the element has high aspect ratio in terms of length versus thickness.

EAS method is one way to reduce the effect of parasitic shear terms, see references

[6, 8] for small strains and [9, 59] for large strains. Another remedy is the ANS

concept, see references [72, 150, 50] for shell and [69, 142, 147, 82, 148, 55, 41, 119]

for solid-shell elements.

(3) Poisson thickness locking : happens when the displacement is assumed to vary lin-

early in the thickness direction and as a result the thickness strain becomes constant.

However, due to Poisson’s effect, the thickness strain is coupled with the in-plane

strains that vary linearly across the thickness. This discrepancy results in Poisson

thickness locking. The remedies to this defect could be: a) assuming a quadratic dis-

placement distribution in thickness direction, which produces linear thickness strain

in thickness direction [104]; b) using EAS degrees-of-freedoms and enhancing the

thickness strain to vary linearly across the thickness [119] or c) dividing the strain

in thickness direction into a membrane (constant) and bending (linear) part and

enforcing the bending stress to be zero [69].
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(4) Curvature or trapezoidal locking : This occurs when the element edges in thickness

direction are not perpendicular to the element mid-plane. This type of locking hap-

pens in modeling curved structures with solid-shell where the elements are thickness

tapered. ANS concept has shown to circumvent the mentioned defect as can be

found in references [33, 34, 119].

In the present work, an assumed strain approach is taken for the solid-shell element for-

mulation. The element kinematics is decomposed into in-plane (or membrane), transverse

shear and thickness components. The assumed natural deviatoric strain (ANDES) concept,

which represents an evolution of the free formulation (FF) [28] and of the assumed natural

strain (ANS) formulation, will be used to model the in-plane behavior of the solid-shell. The

ANDES approach helps to alleviate membrane locking. Assumed natural strain (ANS) fields

are constructed for the out-of-plane components, i.e. transverse shear and thickness compo-

nents, by computing compatible strains at collocation points and interpolating these strains.

This approach mitigates transverse shear locking and curvature locking. In addition, the

thickness strain is enhanced to represent linear variation associated with out-of-plane bend-

ing. This is necessary to avoid Poisson thickness locking. Gauss integration of full order is

used in the formulation. This combined approach is found to result in accurate numerical

solutions in challenging benchmark tests.

In general, the mid-surface of a generic solid-shell element is warped and applying the AN-

DES schme on that warped surface makes the in-plane stiffness polluted with respect to the

rigid body modes, i.e. rigid body motions produce nonzero in-plane strains. In order to

circumvent that the projection method introduced in reference [113] is used.

Various approaches have been taken in the literature to formulating solid-shell elements

with nonlinear kinematics. For example, Schwarze and Reese [120] developed a reduced

integration geometric nonlinear element based on total Lagrangian kinematics, while Meraim



21

and combescure [2, 3] used an updated Lagrangian approach. Other examples of geometric

nonlinear solid-shell formulations include [41, 7, 4, 140]. In the current work, the solid-

shell element formulation is extended to the geometric nonlinear regime using a corotational

kinematic description. The corotational kinematic description pioneered by Wempner [149]

and Belytschko and co-workers [23]. Among different CR formulations in the literature (as

example see [57] for the history of the formulations), the ’element independent’ approach

known as (EICR) is selected, which was first introduced by Rankin and Brogan [112]. This

approach is based on the use of projection operators. This approach has been widely used

on shells (as examples [68, 78, 138, 21]) and continua (as examples [49, 99]). The EICR

scheme is of interest since the linear element kernel is reused in developing the geometric

nonlinear element and the element library need not be drastically modified. It is noted that

EICR is not restricted to small strains and could be extended to address the peroblems with

large deformations (e.g. see [114]), but we only address problems with small strains in the

current work. The corotated coordinate is defined in such a way that it is independent of

whether or not the mid-surface is warped. The element internal force and consistent tangent

stiffness matrix are derived by taking variations of the internal energy with respect to nodal

degrees-of-freedom to preserve the consistency requirement.

The proposed solid-element is tested against several well-known benchmarks, the results of

which are presented in chapter 6.

3.2 Linear element formulation

In this section, a solid-shell element formulation based on linearized kinematics is

presented. The element geometry is shown in Figure 3.1. One of the directions is identified

as the shell-thickness direction. A node-numbering convention is adopted so that edges

between nodes (1, 2, 3, 4) and (5, 6, 7, 8) correspond to the thickness direction. Faces

1–2–3–4 and 5–6–7–8 thus constitute the bottom and top surfaces of the element, and the

remaining four faces are in-plane surfaces. In formulating the element, it proves convenient to
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Figure 3.1: The original solid-shell element, warped geometry

introduce different coordinate systems. First these coordinate systems are presented. Next a

kinematic decomposition of the element behavior is discussed, motivating the construction of

assumed-strain fields. This chapter is concluded by formulating the element stiffness matrix

assuming isotropic linear elastic material behavior.

We make a general note on the notation used in the remainder of the chapter. Vectors

are denoted by boldface letters, and their components by italicized letters with subscripts.

Boldface letters with superscript “e” denote collections of vector components over all the

nodes of the element. For the solid-shell element presented here, such vectors are of length

24. Boldface letters with superscript “C” denote averages over the nodes of the element.

Therefore, such vectors of length 3. Boldface letters with any other superscript represent

vector components at a specific node or point, the superscript being the label or index

of the node or point. Boldface letters with no superscripts denote vector fields over the

element. Components of vectors are denoted by the corresponding medium weight italicized

characters. Matrices and scalars are denoted by italicized letters. The following notation for
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a 3× 3 matrix M , and a 3-vector v are also found useful in the derivations that follow.

diag(M) =



1 ··· ne

1 M

...
. . .

ne M

; array(M) =



1 ··· ne

1 M · · · M

...
...

. . .
...

ne M · · · M

;

and stack(v) =



1

1 v

...
...

ne v


where ne is the number of nodes in the element (8 for the solid-shell element presented here),

and in each case the number of block row and column repetitions is shown on the border.

Other specific notation is described as it appears.

3.2.1 Coordinate systems

In the following, the coordinate systems used in the solid-shell element formulation are

presented in order. The base coordinate system in which equilibrium is considered is termed

the global coordinate system. Vectors in this coordinate system are denoted by boldface

uppercase letters. For example, the position of the all the nodes is denoted by Xe, and their

displacements Ue.

3.2.1.1 Local coordinate system

First a coordinate system local to the element is constructed. Vectors in this coordinate

system are denoted by boldface lowercase letters. The construction of the local coordinate

system is as follows.

Construction: Referring to Figure 3.2, midpoints of edges 1–5,. . . ,4–8 are labeled

1w,. . . ,4w respectively, and the midpoints of lines 1w–2w,. . . ,4w–1w are labeled 50,. . . ,80. In
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1w
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5 7

8

80

η
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ζ, z

y

70

1w

2w
1

2

3

6
50

ξ, x

C
60

Figure 3.2: Local and natural coordinate systems

general, the mid-surface 1w–2w–3w–3w is not plane, but is warped. However, the lines 50–70

and 80–60 intersect at a point C whose global coordinates XC are given by the average of the

nodal coordinates. This point C is chosen as the origin of the local coordinate system. The

plane defined by the lines 50–70 and 80–60 is taken as the local xy-plane with x-direction

defined along the line 80–60. The local z-direction is normal to this plane. The components

in global coordinates of the unit vectors in the local x, y and z directions are thus obtained

as1

αx =
X60 −X80

||X60 −X80||

αz =
αx × (X70 −X50)

||αx × (X70 −X50)||

αy = αz × αx

(3.1)

The rotation matrix

R =

[
αx αy αz

]
(3.2)

thus transforms components of vectors from local coordinates to global coordinates.

1 α is an exception to the general notation used for vectors — although it is a lowercase character and
does not have a superscript, it represents components in global coordinates, and is not a vector field over
the element.
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Transformation of positions and displacements: Node positions and displace-

ments are then transformed from global coordinates to local coordinates by

xn = RT (Xn −XC)

un = RTUn

(3.3)

3.2.1.2 Natural coordinate system

In approximating displacement and strain fields within the element in section 3.2.2, a

natural coordinate system is used where the region [−1, 1]× [−1, 1]× [−1, 1] is mapped to the

region occupied by the element. When positions and displacements need to be approximated,

for example in the computation of compatible strains, then the usual trilinear shape functions

are used. Thus

x(ξ, η, ζ) =
8∑

n=1

Nn(ξ, η, ζ)xn

u(ξ, η, ζ) =
8∑

n=1

Nn(ξ, η, ζ)un

(3.4)

where Nn(ξ, η, ζ) = 1
8
(1 + ξnξ)(1 + ηnη)(1 + ζnζ), (ξn, ηn, ζn) being the natural coordinates

of node n. The Jacobean matrix

J(ξ, η, ζ) =

[
∂x
∂ξ

∂x
∂η

∂x
∂ζ

]
(3.5)

is used in different occasions in what follows.

3.2.2 Assumed-strain fields

The solid-shell element in this work is developed using an assumed-strain approach.

The kinematics of the element are decomposed into three parts, and the assumed-strain field

in each part is constructed using a different principle.

(1) In-plane deformation: The in-plane assumed-strain field is built using the Assumed

Natural Deviatoric Strain (ANDES) concept described in section 2.2. In-plane de-
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formation may be thought of as in turn consisting of membrane and bending com-

ponents.

(2) Transverse shear deformation: Assumed transverse shear strains are derived by the

ANS approach.

(3) Deformation in the thickness direction: The assumed-strain field in the thickness

direction is assembled by a combination of the Assumed Natural Strain (ANS) idea

and strain enhancement.

The development of the assumed-strain field is summarized in Figure 3.3. This is elaborated

in the following. It is noted that besides the use of the assumed-strain field, no other

techniques such as reduced integration and the ensuant hourglass stabilization etc. are used

in the element development.

In terms of notation,

eC = (exx, eyy, γxy, ezz, γyz, γxz)
T

denotes the vector strain components in the (Cartesian) local coordinate system, and

en = (eξξ, eηη, γξη, eζζ , γηζ , γξζ)
T

the vector of strain components in natural coordinates. Both vectors, however, are ex-

pressed as functions of the natural coordinates to facilitate numerical integration using Gauss

quadrature. Furthermore, the subscripts “in-plane” and “out-of-plane” are used to denote

collections of the in-plane and out-of-plane parts of these strain vectors. The transformation

of natural strain components to Cartesian strain components in local coordinates in given

by

eC(ξ, η, ζ) = T nC(ξ, η, ζ)en(ξ, η, ζ) (3.6)
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where

T nC =



j2
11 j2

21 j11j21 j2
31 j21j31 j11j31

j2
12 j2

22 j12j22 j2
32 j22j32 j12j32

2j11j12 2j21j22 j12j21 + j11j22 2j31j32 j22j31 + j21j32 j12j31 + j11j32

j2
13 j2

23 j13j23 j2
33 j23j33 j13j33

2j12j13 2j22j23 j13j22 + j12j23 2j32j33 j23j32 + j22j33 j13j32 + j12j33

2j11j13 2j21j23 j13j21 + j11j23 2j31j33 j23j31 + j21j33 j13j31 + j11j33


(3.7)

with jpq, p, q = 1, . . . , 3 being the components of the inverse of the jacobian matrix (3.5).

This can also be written in a partitioned format as eC
in-plane

eC
out-of-plane

 =

T nC
11 T nC

12

T nC
21 T nC

22


 en

in-plane

en
out-of-plane

 (3.8)

3.2.2.1 In-plane strains

The in-plane strain field is constructed by applying the ANDES formulation of sec-

tion 2.2 to each quadrilateral cross-section of the solid-shell element in the thickness direc-

tion. When applied to highly warped elements, this is found to result in non-zero in-plane

Cartesian strains for rigid body displacements of the element, i.e. rigid body motions pro-

duce nonzero in-plane strains. To avoid this problem, rigid body components are projected

out of the displacement vector using a projection matrix P rigid, before applying the strain-

displacement operator. The approach is similar to that used by Rankin and Nour-Omid

Rankin and Nour-omid in [113, 100]. The x and y components of the displacement at the
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corners of a quadrilateral are then approximated by2

uQ(ζ) =
1

2
(1 + ζ)LtopP rigidue +

1

2
(1− ζ)LbotP rigidue

with

P rigid = I−Λ
(
ΛTΛ

)−1
Λ

and

Λ =



1 0 0 . . . 1 0 0

0 1 0 . . . 0 1 0

0 0 1 . . . 0 0 1

y1 −x1 0 . . . y8 −x8 0

0 z1 −y1 . . . 0 z8 −y8

−z1 0 x1 . . . −z8 0 x8



(3.9)

where Ltop and Lbot are matrices consisting of ones and zeros that extract the x and y

displacement components of nodes (1, 2, 3, 4) and nodes (5, 6, 7, 8) respectively and Λ is

the matrix containing the first six columns of GRC introduced by Bergan in [28, 31].

Applying the strain-displacement operator from equation (2.10) gives the in-plane strain

field and the corresponding strain-displacement operator.

eC
in-plane(ξ, η, ζ) = BQ(ξ, η)uQ(ζ)

= BQ(ξ, η)
1

2
(Ltop + Lbot)P rigidue︸ ︷︷ ︸
membrane

+BQ(ξ, η)
1

2
(Ltop − Lbot)ζP rigidue︸ ︷︷ ︸

bending

= BC
in-plane(ξ, η, ζ)ue

(3.10)

The in-plane strain field thus consists of membrane and bending parts, the former being

constant and the latter varying linearly over the element thickness.

2 uQ(ζ) is an exception to the general vector notation used in this work. It denotes the collection of x
and y components of the displacements at the corners of the quadrilateral cross-section of constant natural
coordinate ζ
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Figure 3.4: Collocation points of the ANS approach

3.2.2.2 Transverse shear strains

Transverse shear strains are approximated using the Assumed Natural Strain (ANS) concept.

Compatible natural strain components corresponding to transverse shear are obtained as

γξζ(ξ, η, ζ) =

(
∂x

∂ζ

)T (
∂u

∂ξ

)
+

(
∂x

∂ξ

)T (
∂u

∂ζ

)
γηζ(ξ, η, ζ) =

(
∂x

∂ζ

)T (
∂u

∂η

)
+

(
∂x

∂η

)T (
∂u

∂ζ

) (3.11)

Each of these strain components is evaluated at four collocation points (shown in Figure

3.4), and the four values are interpolated bilinearly to obtain the assumed-strain field. The

assumed transverse shear strain field is thus given by

γANS
ηζ =

H∑
i=E

N i
γηζ

(ξ, ζ)γηζ(ξ
i, ζ i), N i

γηζ
(ξ, ζ) =

1

4
(1 + ξiξ)(1 + ζ iζ), i = E, . . . ,H

γANS
ξζ =

M∑
i=J

N i
γξζ

(η, ζ)γξζ(η
i, ζ i), N i

γξζ
(η, ζ) =

1

4
(1 + ηiη)(1 + ζ iζ), i = J, . . . ,M

(3.12)

Cardoso et. al. [41] have shown that this approach to constructing the transverse shear

strain field is effective in alleviating transverse shear locking in the element behavior. In

full-integration solid-shell elements, many authors have used only two collocation points

per transverse shear term (for example, [147, 55, 70]). However, it is found that such an

element is still susceptible to curvature locking in the presence of inextensional bending.

Furthermore, in reduced-integration elements, the use of two collocation points leads to a

rank deficient stiffness matrix [41, 119].
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3.2.2.3 Thickness strain

The thickness strain field is constructed by a combination of the ANS approach and strain

enhancement. These are discussed in order.

The ANS approach for the thickness strain field follows along the same lines as for transverse

shear strains. First the natural strain component corresponding to the thickness direction is

obtained using

eζζ(ξ, η, ζ) =

(
∂x

∂ζ

)T (
∂u

∂ζ

)
(3.13)

This is evaluated at the collocation points (A, B, C, D) shown in Figure 3.4 and interpolated

bilinearly.

eANS
ζζ (ξ, η) =

A∑
i=A

N i
eζζ

(ξ, η)γηζ(ξ
i, ηi), N i

eζζ
(ξ, η) =

1

4
(1 + ξiξ)(1 + ηiη), i = A, . . . ,D

(3.14)

It has been shown by Schwarze et. al. [119], as well as can be seen from the the numerical

solutions in this work (6) involving curved shells, that for thickness tapered elements, this

assumed strain is a good remedy to alleviate thickness curvature locking.

Cartesian strain components: It is recognized that equation (3.10) gives Carte-

sian components of in-plane strains while equations (3.11) and (3.13) give natural components

of out-of-plane strains. The Cartesian components of the out-of-plane strains are obtained

using equation (3.8) as follows.

eC
out-of-plane(ξ, η, ζ) =

(
T nC

22 − T nC
21 (T nC

11 )−1T nC
12

)
en

out-of-plane(ξ, η, ζ)

+T nC
21 (T nC

11 )−1eC
in-plane(ξ, η, ζ)

(3.15)

which in turn can be written as

eC
out-of-plane(ξ, η, ζ) = BC

out-of-plane(ξ, η, ζ)ue (3.16)

Thus the strain-displacement matrix for the element is

(BANS(ξ, η, ζ))C =

 BC
in-plane(ξ, η, ζ)

BC
out-of-plane(ξ, η, ζ)

 (3.17)
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where B(ξ, η, ζ)ANS is a 6×24 matrix.

Strain enhancement: The assumed natural thickness strain eANS
ζζ is independent

of ζ. This causes thickness locking, particularly in thick elements. In order to mitigate

thickness locking, motivated by the fact that Poisson’s effect would cause the thickness

strain accompanying bending to vary linearly, the assumed natural strain is enhanced by the

following thickness-dependent component.

(eenhanced
ζζ (ζ))n = αeζ (3.18)

where αe is an element degree-of-freedom resulting from the enhancement of the strain field.

Thus the total strain field for the element is given by

eCelem =

[
(BANS(ξ, η, ζ))C (Benhanced(ζ))C

] ue

αe

 = Belem

 ue

αe


with (Benhanced(ζ))C = T nC0 (Benhanced(ζ))n

and (Benhanced(ζ))n =

[
0 0 0 ζ 0 0

]T
(3.19)

where the last column of Belem, which is a 6×25 matrix, corresponds to the enhanced-strain

degree-of-freedom in the thickness direction. T nC0 is the transformation matrix (3.7) evalu-

ated at ξ = η = ζ = 0. It is noted that the enhanced strain is constant in the shell plane.

The element stiffness matrix in local coordinates, Kl, is obtained by computing
∫
V

BT
elemEBelemdV

and eliminating the enhanced-strain degree-of-freedom by static condensation. This can be

transformed to the representation in global coordinates in the usual manner.

3.3 Geometric nonlinear formulation using corotational kinematics

3.3.1 Kinematic description

In this section, the solid-shell element formulation is extended to the geometric nonlin-

ear regime using a corotational kinematic description. The corotational description is based

on decomposing the motion of an element into rigid body and deformation components.
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Deformations are described with reference to a coordinate frame that translates and rotates

with the element as shown in Figure 3.5. An attractive feature of the corotational descrip-

tion is that, elements that perform well in geometrically linear problems can be extended

to nonlinear problems in an element independent fashion. This approach, referred to as

an Element-Independent Corotational formulation (EICR), was introduced by Rankine and

Brogan [112]. Felippa and Haugen [57, 68] present a unified formulation of the corotational

approach for 3D elements with both translational and rotational degrees of freedom. In the

current work, this unified formulation is adopted, and proofs of some results are presented

in greater detail.

For a given deformed configuration, i.e., node positions with respect to the global frame, there

are a number of strategies for constructing a corotated reference frame. In the formulation

presented here, the origin of the corotational frame, C, is established by simply averaging

the positions of the element nodes. The orientation R of the corotational frame depends

on the positions of the nodes Xe. The specific construction of R(Xe) used in this work is

described in section 3.3.2. In the remainder of this section, some generic relationships are

derived assuming only the following invariance properties of R(Xe).

(1) Rotation invariance: If all the nodes are subject to a rigid-body rotation Q, then

the resulting corotated frame is also rotated by Q.

R(diag(Q)Xe) = QR(Xe) for any rotation matrix Q (3.20)

(2) Translation invariance: A uniform translation of all the nodes by v does not alter

the orientation of the corotated frame.

R(Xe + stack(v)) = R(Xe) for any 3-vector v (3.21)

From Figure 3.5, it can be deduced that for node A,

R(Xe(t))(xA + uA
d (t)) = XA(t)−XC(t)
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Figure 3.5: Corotational element kinematics highlighting the motion of a point A. For clarity,
a two dimensional setting is shown the figure. XC is the average of the positions of the
element nodes. Vectors represented by components in a local frame (xA and uA

d ) are shown
in solid arrows, and those represented by components in the global frame by dash-dot arrows.
It can be seen that ΞA(t) = XA(t)−XC(t) = R(Xe(t))(xA + uA

d (t)).
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or rewriting,

uA
d (t) = R(Xe(t))T (XA(t)−XC(t))−R(Xe(0))T (XA(0)−XC(0))

This can be collected for all the nodes of the element, giving the element deformational

displacement

ue
d(t) = R(Xe(t))T (Xe(t)− stack(XC(t)))−R(Xe(0))T (Xe(0)− stack(XC(0))) (3.22)

where R = diag(R). Further, defining PT = 1
ne array(I3×3), stack(XC) can be written as

stack(XC) = PTXe, Defining Ξe = (I−PT )Xe and using the translation invariance property

(3.21) of R, equation (3.22) becomes

ue
d(t) = R(Ξe(t))TΞe(t)−R(Ξe(0))TΞe(0) (3.23)

To obtain a relationship between change in displacement and change in deformational

displacement, equation (3.23) is differentiated with respect to time.

u̇e
d = R(Ξe(t))T Ξ̇e + (DR(Ξe(t))Ξ̇ee)TΞe(t) (3.24)

whereD denotes the derivative. It follows from the fact thatR(Ξe(t))R(Ξee(t))T = I for all t,

that (DR(Ξe(t))Ξ̇e)R(Ξe(t))T is a skew-symmetric matrix. Furthermore, (DR(Ξe(t))Ξ̇e)R(Ξe(t))T

is linear in Ξ̇e. Consequently, this term can be written as

(DR(Ξe(t))Ξ̇e)R(Ξe(t))T = spin(G(Ξee(t))Ξ̇e) (3.25)

where

spin(v) =


0 −v3 v2

v3 0 −v1

−v2 v1 0


It is also noted that spin(v)u = v×u. The matrix G(Ξe) can be interpreted as the operation

of extracting the spatial angular velocity from an instantaneous motion starting from the

configuration Ξe.
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Using (3.25), equation (3.24) can be written as

u̇e
d = R(Ξe(t))T Ξ̇e −R(Ξe(t))T diag(spin(G(Ξe(t))Ξ̇e))Ξe(t) (3.26)

Moreover corresponding to a node n,

spin(G(Ξe(t))Ξ̇e)Ξn(t) = (G(Ξe(t))Ξ̇e)×Ξn(t)

= −Ξn(t)× (G(Ξe(t))Ξ̇e) = − spin(Ξn(t))G(Ξe(t))Ξ̇e

Therefore, setting

S(Ξe) =
[
− spin(Ξ1)T ,− spin(Ξ2)T , . . . ,− spin(Ξne

)T
]T

and

PR(Ξe) = S(Ξe)G(Ξe)

and using the fact that Ξ̇e = (I − PT )U̇e, equation (3.26) can be written as

u̇e
d = R(Ξe(t))T (I − PR(Ξe(t)))(I − PT )U̇e (3.27)

In the following, some results concerning the matrices PT and PR(Ξe) are derived.

(i) PT is a projector : It can be verified by direct calculation that P 2
T = PT . Thus PT is a

projector.

(ii) PR(Xe) is a projector : PR(Ξe)2 = S(Ξe)G(Ξe)S(Ξe)G(Ξe). To show that PR(Ξe)

is a projector, it is sufficient to show that G(Ξe)S(Ξe) = I, or equivalently that

G(Ξe)S(Ξe)ω = ω for any ω.

S(Ξe)ω = diag(spin(ω))Ξe. Therefore, S(Ξe)ω is the velocity of the nodes when the

element is subject to a rigid-body rotation with spatial angular velocity ω. From the

interpretation of G(Ξe) as the operation of extracting the angular velocity, it can be

conjectured that G(Ξe)S(Ξe)ω = ω. However, a formal proof is as follows.
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Let Ξ̃e(τ) represent the position relative to XC at time τ of the ne nodes of the element,

starting at Ξ̃e(0) = Ξe and undergoing rigid-body rotation about XC with constant

angular velocity ω. The motion is described by the differential equation

˙̃Ξe(τ) = diag(spin(ω))Ξ̃e(τ) (3.28)

The solution of this differential equation is Ξ̃e(τ) = diag(Q̄(τ))Ξ̃e(0) where Q̄(τ) and

is a rotation matrix given by Q̄(τ) = exp(spin(ω)τ), exp being the matrix exponential.

Q̄ satisfies ˙̄Q(τ)Q̄(τ)T = spin(ω) for all τ . Then:

spin(G(Ξ̃e(τ))S(Ξ̃e(τ))ω)

=(DR̂(Ξ̃e(τ))S(Ξ̃e(τ))ω)R̂(Ξ̃e(τ)) by the definition of G, equation (3.25)

=(DR̂(Ξ̃e(τ)) diag(spin(ω))Ξ̃e(τ))R̂(Ξ̃e(τ))

=(DR̂(Ξ̃e(τ)) ˙̃Ξe)R̂(Ξ̃e(τ)) by equation (3.28)

=

(
d

dt
R̂(Ξ̃e(τ))

)
R̂(Ξ̃e(τ))T

=

(
d

dt
R̂(diag(Q̄(τ))Ξ̃e(0))

)
R̂(diag(Q̄(τ))Ξ̃e(0))T

=

(
d

dt
Q̄(τ)R̂(Ξ̃e(0))

)(
Q̄(τ)R̂(Ξ̃e(0))

)T
by the rotation invariance property (3.20)

= ˙̄Q(τ)R̂(Ξ̃e(0))R̂(Ξ̃e(0))T Q̄(τ)T

= ˙̄Q(τ)Q̄(τ)T

= spin(ω)

ThusG(Ξ̃e(τ))S(Ξ̃e(τ))ω = ω for all τ , in particular for τ = 0. HenceG(Ξe)S(Ξe)ω =

ω, and PR(Ξe) is a projector.

(iii) The product PTPR(Ξe) = 0: It can be verified by direct calculation that PTS(Ξe) = 0.

Thus PTPR(Ξe) = PTS(Ξe)G(Ξe) = 0.

(iv) The product PR(Ξe)PT = 0: Each column of PT is of the form stack(v) for v =

(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T . Therefore to show that PR(Ξe)PT = 0, it is sufficient to
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show that G(Ξe) stack(v) = 0 for any v.

stack(v) is the velocity of the nodes when the element is subject to a uniform rigid-

body motion with velocity v. Again from the interpretation of G(Ξe) as extracting

the angular velocity, it can be supposed that G(Ξe) stack(v) = 0. The following is the

complete proof.

Let Ξ̃e(τ) represent the position relative to XC at time τ of the ne nodes of the element,

starting at Ξ̃e(0) = Ξe and undergoing rigid-body motion with constant velocity v.

Then Ξ̃e(τ) = Ξe + stack(v)τ .

G(Ξ̃e(t)) stack(v)

=(DR̂(Ξ̃e(τ)) stack(v))R̂(Ξ̃e(τ)) by the definition of G, equation (3.25)

=(DR̂(Ξ̃e(τ)) ˙̃Ξe)R̂(Ξ̃e(τ))

=

(
d

dt
R̂(Ξ̃e(τ))

)
R̂(Ξ̃e(τ))T

=

(
d

dt
R̂(Ξe)

)
R̂(Ξe)Tby the translation invariance property (3.21)

=0

Using property (iv), equation (3.27) can be written as

u̇e
d = R(Ξe(t))T (I − PT − PR(Ξe(t)))U̇e

or defining P(Ξe) = I − PT − PR(Ξe) as

u̇e
d = R(Ξe(t))TP(Ξe(t))U̇e (3.29)

Furthermore, it can be checked using properties (i)–(iv) that P(Ξe)2 = P(Ξe), i.e., that

P(Ξe) is a projector. It can be seen in equation (3.29) that the corotated deformational

velocity u̇e
d is obtained from the global velocity vector U̇e by a project-and-rotate operation,

first a projection P(Ξe), and then a rotation R(Ξe)T . Alternatively, a rotate-and-project

approach is also possible [68]. Next, the specific strategy used in this work to construct the
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corotated frame orientation, R(Ξe) is described.

It is noted that the kinematic description explained in chapter 2 is a special case for the 3D

version. The major difference is that in 2D case, the rotation matrix R is parameterized

by a scalar θ, which is the angle between the global and corotated frame. In 2D case, the

spatial angular velocity ω, which is a psuedo-vector, is simplified to the derivative of scalar

θ and as it is shown in Equation (2.14), θ̇ has a closed form.

3.3.2 Construction of the corotated frame

Different methods have been proposed in the literature for constructing the corotated

frame R for quadrilateral shell elements (see for example [112, 101, 68]). Veubeke defined the

orientation by minimizing the mean square of relative displacements [60]. Belytschko and

Bindeman [27] and Moita and Crisfield [99] obtained it by computing the polar decomposition

of the deformation gradient tensor at the element centroid. This approach was also followed

by Farid-Combescure in the context of a solid-shell element in their recent paper [3].

In the present work, the corotated frame is constructed in the same manner as the local

frame in section 3.2.1.1, however current coordinates Ξe(t) are used in equation (3.1).

The partial derivatives ∂
∂Ξe

j
R(Ξe) can be obtained from equation (3.1) by noting that

D||v|| = 1

||v||
vT

for v 6= 0, and using the chain rule. Then from equation (3.25), it follows that the jth column

of the matrix G(Ξe) is given by

axial

((
∂

∂Ξe
j

R(Ξe)

)
R(Ξe)T

)
(3.30)
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3.3.3 Tangent stiffness matrix

The internal force vector with components referred to the global and local coordinate

systems respectively is given by

f e = Klu
e
d

Fe = P(Ξe)TR(Ξe)f e

(3.31)

The tangent stiffness matrix needed for Newton’s method can be obtained by considering

the rate of change of the internal force vector.

Ḟe = P(Ξe)TR(Ξe)ḟ e

+ (I − PT )T
d

dt
R(Ξe)f e −G(Ξe)T

d

dt
S(Ξe)TR(Ξe)f e

−G(Ξe)TS(Ξe)T
d

dt
R(Ξe)f e

− d

dt
G(Ξe)TS(Ξe)TR(Ξe)f e

(3.32)

Each of these terms is considered in order. The first term,

P(Ξe)TR(Ξe)ḟ e

=P(Ξe)TR(Ξe)Klu̇
e
d

=P(Ξe)TR(Ξe)Klu̇
e
dR(Ξe)TP(Ξe)U̇e

=KMU̇e
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gives rise to the “material” stiffness matrix KM. The second and third terms combine as

follows.

(I − PT )T
d

dt
R(Ξe)f e −G(Ξe)T

d

dt
S(Ξe)TR(Ξe)f e

=(I − PT )T (DR(Ξe)Ξ̇e)R(Ξe)TR(Ξe)f e −G(Ξe)TS(Ξ̇e)TR(Ξe)f e

=(I − PT )T diag(spin(G(Ξe)Ξ̇e))R(Ξe)f e −G(Ξe)TS(Ξ̇e)TR(Ξe)f e

=(I − PT )TS(R(Ξe)f e)G(Ξe)Ξ̇e +G(Ξe)TS(R(Ξe)f e)T Ξ̇e

=(I − PT )TS(R(Ξe)f e)G(Ξe)(I − PT )U̇e +G(Ξe)TS(R(Ξe)f e)T (I − PT )U̇e

=
(
S(R(Ξe)f e)G(Ξe) + (S(R(Ξe)f e)G(Ξe))T

)
U̇e (from results (iii) and (iv) above)

=KI
GU̇e

KI
G is one part of the geometric stiffness matrix. Clearly, KI

G is symmetric.

In considering the last two terms of (3.32), the arguments developed by Nour-Omid and

Rankin [100] are used. For any 3-vectors u and v, and rotation matrix R, it can be verified

by direct calculation that

spin(Ru) = R spin(u)RT

u× (Rv) = R
(
(RTu)× v

) (3.33)

and3

spin(u) spin(v)− spin(v) spin(u) = spin(u× v) (3.34)

Furthermore, for moment-equilibrium of an element (expressed in local coordinates),

0

=
ne∑
n=1

(R(Ξe)TΞn)× fn

=R(Ξe)T
ne∑
n=1

Ξn × (R(Ξe)fn)

=R(Ξe)TS(Ξe)TR(Ξe)f e

(3.35)

Thus it can also be concluded that S(Ξe)TR(Ξe)f e = 0.

3 for result (3.34), it is helpful to use index notation and the alternating tensor-kronecker delta identity
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Now considering the fourth term of (3.32),

−G(Ξe)TS(Ξe)T
d

dt
R(Ξe)f e

=−G(Ξe)TS(Ξe)T (DR(Ξe)Ξ̇e)R(Ξe)TR(Ξe)f e

=−G(Ξe)TS(Ξe)T diag(spin(G(Ξe)Ξ̇e))R(Ξe)f e

=−G(Ξe)TS(Ξe)TS(R(Ξe)f e)G(Ξe)Ξ̇e

=−G(Ξe)TS(Ξe)TS(R(Ξe)f e)G(Ξe)U̇e

=KII
GU̇e

where KII
G is the second part of the stiffness matrix. While it is not immediately apparent

that KII
G is symmetric, this fact can be concluded by verifying that the antisymmetric part

of KII
G is zero at equilibrium.

S(Ξe)TS(R(Ξe)f e)− S(R(Ξe)f e)TS(Ξe)

=
ne∑
n=1

spin(R(Ξe)fn) spin(Ξn)− spin(Ξn) spin(R(Ξe)fn)

=
ne∑
n=1

spin ((R(Ξe)fn)×Ξn)

=−
ne∑
n=1

spin
(
R(Ξe)

(
(R(Ξe)TΞn)× fn

))
=−R(Ξe)

(
ne∑
n=1

(R(Ξe)TΞn)× fn

)
R(Ξe)T

=0

By virtue of the fact that S(Ξe)TR(Ξe)f e = 0 at equilibrium, the fifth term in (3.32) is also

zero.

Thus the tangent stiffness matrix is given by K = KM + KI
G + KII

G , and is symmetric at

equilibrium. It is noteworthy that following references [99, 100], the computation of the

second derivative of R(Ξe) does not become necessary.



Chapter 4

Solid-shell element based on ANS and EAS concepts

4.1 Introduction

In this chapter, an eight-node solid-shell element based on ANS and EAS approaches

is presented. ANS concept is implemented to account for the transverse shear and thickness

strains, which has proven to circumvent the curvature thickness and transverse shear lock-

ing problems. EAS approach based on the Hu-washizu variational principle with six EAS

degrees-of-freedom is applied. Five extra degrees-of-freedom are applied on the in-plane

strains (exx,eyy and γxy) to improve the element response for in-plane loadings and one on

the thickness strain so as to alleviate the Poisson’s thickness locking. Following the work

done in chapter 3, all nodal coordinates are transformed to a local coordinate to make the fi-

nite element independent of node numbering. Formulation yields exact solutions for both the

membrane and bending patch tests. Following Schwarze’s reduced-integration formulation

in [119], in this chapter, a full-integration formulation is presented which has an improved

response to in-plane loads.

4.2 Review of EAS concept

This concept was first introduced by Simo and Rifai [130]. The method is based on

Hu-Washizu variational principle in terms of stress, displacement and enhanced strain fields.

A review of this concept along with a comparison to ANDES scheme is presented below:
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4.2.1 EAS weak form

The Tonti diagram shown in Figure 4.1, illustrates the weak form of the three-field

variational principle.

The EAS formulation is described within the following steps:

(1) Writing the weak form using Figure 4.1 yields:∫
V

(eu − e) δσdV +

∫
V

(σe − σ) δedV +

∫
st

(σ.n− tp) δudS

−
∫
V

(D∗σ + b) δudV +

∫
su

(u− up)nδσdS = 0

(4.1)

(2) Doing the integration by parts on the fourth term of (4.1) and doing some simplifi-

cations produces:

δ

∫
V

[σ (eu − e)] dV + δ

∫
V

1

2
eEedV − δ

∫
V

ubdV − δ
∫
st

utpdS

− δ
∫
su

(u− up)σ.ndS = 0

(4.2)

Assumed strain and stress fields: The Following relations exist for the as-

sumed stress and strain fields:

e = eC + (eenh)C = Bisou +Benhα

σ = GσΣ

(4.3)

where α is the vector of enhaced degrees-of-freedom, Biso is obtained by taking the

derivatives of the tri-linear shape functions with respect to the degrees-of-freedom

and superscript �C denotes the Cartesian coordinates. Benh is a matrix of prescribed

functions with linearly independent columns, which define the enhanced strain in-

terpolation, Gσ is a matrix of functions whose columns and rows are linearly inde-

pendent and Σ is the vector of element stress parameters.

(3) Substituting (4.3) into (4.2) gives:

−δ
∫
V

σT (eenh)CdV + δ

∫
V

(
eC + (eenh)C

)T
E
(
eC + (eenh)C

)
dV

− δ
∫
V

uTfdV = 0

(4.4)
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b 

σe e 

σ 

Kinematic equation 

Constitutive  

equation 

Balance equation 

Figure 4.1: Tonti diagram representing the three-field variational principle that is the basis
of the EAS approach. Solid lines represent relations that apply pointwise, and dashed lines
those are enforced in weak form. D denotes the strain-displacement operator, and D∗ its
adjoint.
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(4) Requiring that the first term of (4.4), and the sum of the second and third terms be

separately zero yields the following equations.1

δ

∫
V

σT (eenh)CdV = 0

δ

∫
V

(
eC + (eenh)C

)T
E
(
eC + (eenh)C

)
dV − δ

∫
V

uTfdV = 0

(4.5)

(5) substituting eC = Bisou and (eenh)C = Benhα in equation (4.5) gives:

∫
V

BT
isoEBisodV

∫
V

BT
isoEB

enhdV 0∫
V

BT
isoEB

enhdV

∫
V

(Benh)TEBenhdV 0∫
V

(Benh)TEBisodV

∫
V

(Benh)TEBenhdV −
∫
V

(Benh)TGσdV




u

α

Σ



=


K11 K12 0

K21 K22 0

K31 K32 K33




u

α

Σ

 =


f

0

0


(4.6)

The third row of (4.6) comes from the the second term of equation (4.1) to recover

the stress in EAS approach. After doing the static condensation, the followings are

obtained:

α = K−1
22 K

T
12u = Tu

Kelement = K11 −K12K
−1
22 K21

(4.7)

In order that the EAS element passes the Patch test, two conditions are required to

be satisfied as follows:

condition 1: The enhanced strain interpolation and the standard strain interpolation

must be independent.

condition 2: The assumed discrete stress field must include at least piece-wise con-

stant functions after enforcing the orthogonality condition.

1 The orthogonality of independent stress (σ) to the enhanced strain((eenh)C) eliminates the stress field
from the finite element equations.
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4.2.2 Parallel between EAS and ANDES

The followings are analogous issues between ANDES and EAS element:

(1) In EAS approach, the independent stress should be orthogonal to the incompatible

strains, while in ANDES, the strain-derived stress is orthogonal to the incompatible

strain.

(2) In EAS the stress is a master field and the orthogonality condition eliminates the

stress from the FEM calculations while in ANDES method, the stress is a slave vari-

able which is derived from the independent strain through the constitutive relation.

(3) In EAS method, the requirement for passing the patch test is fulfilled by the two

conditions mentioned in previous subsection,while in ANDES element, passing of

the patch test requirement is guaranteed by decomposing the strains into basic and

higher order modes and enforcing the energy orthogonality of the higher order terms

to the basic ones.

4.3 Linear Element formulation

4.3.1 Global to local coordinates transformation (R)

In order to keep the finite element independent of the nodal numbering, all calculations

will be done in the local frame. This process is done similar to 3.2.1.1.

4.3.2 Stiffness matrix computation

The derivation of the strain-displacement operator based on assumed-strain and EAS con-

cepts is summarized in Figure 4.2. This is elaborated in the following. The Cartesian position

vectors (x) and displacement vectors (u) are approximated using tri-linear shape functions.

The natural (contravariant) base, descrbed in 3, is chosen to approximate the displacement

and (covariant) compatible strains. The assumed natural out-of-plane strains are computed
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similar to the approach explained in 3.2.2.2.

The natural in-plane strains are computed as follows:

en
ξξ(ξ, η, γ) =

∂x

∂ξ

T ∂u

∂ξ

en
ηη(ξ, η, γ) =

∂x

∂η

T ∂u

∂η

γn
ξη(ξ, η, γ) =

∂x

∂η

T ∂u

∂ξ
+
∂x

∂ξ

T ∂u

∂η

(4.8)

where the superscript �n corresponds to the natural coordinates.

Stacking up the natural in-plane strains (from Equation (4.8)) and natural out-of-plane

strains (from 3.2.2.2), the strain-displacement relation for the element is obtained as follows:

(eANS(ξ, η, ζ))C = T nC

 en
in-plane(ξ, η, ζ)

en
out-of-plane(ξ, η, ζ)

 = (BANS(ξ, η, ζ))Cu (4.9)

where T nC is the transformation matrix defined in (3.7).

Strain enhancement: In order to alleviate the thickness locking, the assumed nat-

ural thickness strain eANS
ζζ is enhanced by one extra degree-of-freedom. Five extra degrees-of-

freedom are used to the improve the in-plane response of the element. Thus the total strain
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field for the element is given by

eC
elem =

[
(BANS(ξ, η, ζ))C (Benh(ζ))C

] ue

αe

 = Belem

 ue

αe


with (Benh(ξ, η, ζ))C = T nC

0 (Benh(ξ, η, ζ))n

and (Benh(ξ, η, ζ))n =



ξ 0 0 0 ξη 0

0 η 0 0 −ξη 0

0 0 ξ η ξ2 − η2 0

0 0 0 0 0 ζ

0 0 0 0 0 0

0 0 0 0 0 0



(4.10)

where α(e) is the vector containing the six extra degrees-of-freedom. The last six columns of

Belem, which is a 6×31 matrix, corresponds to the enhanced-strain degrees-of-freedom. T nC
0

is the transformation matrix of Equation (3.7) evaluated at ξ = η = ζ = 0. It is noted that

the enhanced strain is constant in the shell plane.

The first three rows of (Benh(ξ, η, ζ))n, which correspond to the in-plane response, are picked

from Simo’s EAS qudrilateral element in [130]. Following Simo’s work, the formulation is

stable since the columns of (Benh(ξ, η, ζ))n are linearly independent and the formulation

passes the constant strain patch test since the following relation is satisfied:∫
�

(Benh(ξ, η, ζ))ndξ = 0 (4.11)

Equation (4.11) guarantees that the subspace of approxiamtion contains piece-wise constant

stress fields which insures the satisfaction of constant strain patch test [130].

The element stiffness matrix in local coordinates, Kl, is obtained by computing
∫
V

BT
elemEBelemdV

and eliminating the enhanced-strain degree-of-freedom by static condensation.
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4.3.3 Local to Global stiffness matrix

In this part the local stiffness matrix (Kl) is transformed to the global stiffness matrix

by:

Ke
G = RKe

lR
T (4.12)

4.4 Conclusion

In this chapter, a solid-shell element based on ANS and EAS with six enahnaced

degrees-of-freedom is presented. In order to circumvent the transverse shear locking and

curvature locking in thickness direction, the ANS concept has been used.

EAS concept with six extra degrees-of-freedom has been used in the element; One to alleviate

the Poisson’s thickness locking problem and five to improve the in-plane response of the

element.

In the numerical examples chapter, the linear element formulation has been assessed by a

number of famous benchmarks, proposed for shell-like finite elements. The element passes

both membrane and bending patch tests. Moreover, the element’s performance has been

tested for mesh distortion, warped mesh arrangement, single and doubly curved structures.

The response of the element to various well-known benchmarks are compared to the ANDES

solid-shell formulation explained in 3.

In summery, the numerical examples proved that the proposed solid-shell formulation has a

satisfactory performance for shell problems including linear-elastic materials. In numerical

examples chapter, only the linear elastic problems have been addressed.

The proposed element can be extended to address the geometric and material nonlinearities

using any type of kinematic descriptions such as Total Lagrangian, Updated Lagrangian or

Corotational kinematic.



Chapter 5

Nonlinear solution algorithm

5.1 Background

Haugen [68] has collected a detailed explanation of the solution algorithms in his thesis

and this chapter is an excerpt of his report with some minor changes. The early solution

algorithms for nonlinear problems were based on the purely incremental methods considering

the load control. In those methods the disadvantage of drifting away from the equilibrium

path (which is step-size dependent) requires a very fine step-size for accurate analysis.

Due to the mentioned shortcomings the development of incremental/iterative methods in-

cluding equilibrium-correcting iterations came into the play. The corrector step has the

advantage that the drift error is removed and the computed equilibrium path becomes inde-

pendent of the increment step-size as long as the iterative step converges.

Geometrically non-linear structures usually undergo a maximum load level in which they are

incapable of withstanding further load increases until an abrupt change in geometry occurs.

A load control approach can detect a limit point but generally fails to traverse it. Traversal

is desirable since it checks whether the structure has the load carrying capabilities after the

localized instabilities [68].

Several methods for traversing the equilibrium path beyond limit points have been addressed

in literature, such as the displacement control techniques first introduced by Argyris [10],

the method of artificial springs [122] and the method based on controlling the load increment

with the ”current stiffness parameter” and suppressing iterations around limit points [30].



53

During the past three decades significant improvements have been made by allowing loads

and displacements to be varied together in each increment. The most practically impor-

tant examples of these methods are the arc-length methods originally proposed by Riks and

Wempner [116] and later refined by many authors (as examples: Bathe et al [20, 16], Crisfield

[48] and Riks [117]. Each of these algorithms are suitable for some specific problems. But

in general, the arc-length type algorithms are most robust tools in terms of the variety of

problems they can handle.

In this research, the Arc length method including the corrector step is used to solve the

nonlinear problem. Orthogonal-trajectory method proposed by Fried [62] is used for the

corrector phase.

5.2 Review of the Arc length algorithm

In arc length control method there are N+1 equations to be solved, N corresponding to

the number of degrees-of-freedom and 1 related to the loading parameter λ. The augmented

displacement vector is written as:

∆ũ =

 ∆u

∆λ

 (5.1)

∆ accounts for the increments for the predictor step. The (N + 1)th equation corre-

sponds to the equation for the arc length [48].

For the corrector step the augmented displacement vector is as:

δũ =

 δu

δλ

 (5.2)

where δ stands for the changes for the corrector phase.
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5.2.1 Arc length algorithm

In order to avoid solving the N+1 simoultaneous equations, the algorithm summarized

in Table 5.1 is used to solve the nonlinear problem [68].

where q is the incremental load vector, Wq is the incremental velocity, r(U, λ) is the force

residual vector and K is the tangent stiffness matrix. It is noteworthy that since the solid-

shell element carries only translational degrees-of-freedom the displacement vector is updated

in an algebraic fashion.
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Predictor phase with arc length ∆s

Set V0 = K(U)−1q(λ)

For n = 1 to number of increments

Solve for Wq, Wq = K−1q(λ)

Set z =
√

1 +W T
q Wq

If W T
q V0 > 0 =⇒ ∆λ = ∆s

z

Else =⇒ ∆λ = −∆s
z

Set V0 = ∆λWq

Update λ = λ+ ∆λ and U = U + ∆λWq

Corrector phase

For i = 1 to max iteration number for correction

Set Wq = K(U)−1q(λ)

Set Wr = −K(U)−1r(U, λ)

Set δλ = − WT
q Wr

1+WT
q Wq

(considering the orthogonal trajectory iterations [62])

Update λ = λ+ δλ and U = U + (Wr + δλWq)

Until ‖ r(U, λ) ‖< ε , where ε is the force residual convergence criterion
End

End

Table 5.1: Arc length algorithm



Chapter 6

Numerical examples

6.1 2D Quadrilateral element

In this subsection, seven numerical examples are presented. The first four examples

illustrate the performance of the ANDES quadrilateral element in linear elastic problems.

In the fifth example, the accuracy of the corotational kinematic description is shown using

a model with linear elastic material behavior. Both elastoplastic (material nonlinear) and

geometrically nonlinear behavior are considered in the sixth and seventh examples. For

linear problems, results are compared with well-known benchmarks, and for nonlinear prob-

lems with solutions from ABAQUS [1]. In geometrically nonlinear problems, the ABAQUS

solutions are based on the Total Lagrangian (TL) kinematic description.

6.1.1 Example 1: Constant strain patch test

The ANDES element is first evaluated in the context of a constant strain/stress patch

test as shown in Fig 6.1. The material behavior is modeled as isotropic linear elastic with

Young’s modulus E = 1000.0N/mm2 and Poisson’s ratio ν = 0.25 and the patch thickness is

1.0m. As can be seen in Table 6.1, the numerical results obtained using the ANDES element

are in exact agreement with the analytical solutions, indicating that the element passes the

patch test. Also shown in Table 6.1 are results obtained using three other elements: CPS4

(4-node isoparametric element of ABAQUS [1]), AGQ6-I and AGQ6-II (elements derived

using quadrilateral area coordinate method [152]).
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Figure 6.1: Example 1 — Patch test

Table 6.1: Example 1 — Patch test results for ANDES Quad element

DOFs v2 v3 u4 v4 u5 v5 u6 v6 u7 v7

CPS4 -0.2500 -0.5000 2.0000 -0.1250 2.5000 0.0000 4.0000 0.0000 4.0000 -0.5000
AGQ6-I -0.2787 -0.4291 2.0758 -0.4211 2.4946 -0.9491 5.4819 -0.8051 4.9589 -1.6375
AGQ6-II -0.3010 -0.5017 1.7560 -0.8383 2.0800 -1.4505 5.0614 -2.1764 5.6885 -3.3179
ANDES -0.2500 -0.5000 2.0000 -0.1250 2.5000 0.0000 4.0000 0.0000 4.0000 -0.5000
Exact -0.2500 -0.5000 2.0000 -0.1250 2.5000 0.0000 4.0000 0.0000 4.0000 -0.5000
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Figure 6.2: Example 2 — Cook’s skew beam problem

The fact that the ANDES element passes the patch test comes as no surprise since this

is set as a priori requirement in the construction of the element. We recall from chapter

2 that this is accomplished by decomposing the basic modes from higher order ones, and

enforcing that the higher order modes be energy orthogonal to the basic modes. We also

note that other elements such as AGQ6-I and AGQ6-II that have been shown to have good

performance under distortion ([152], see also Example 3 below) do not pass the patch test.

6.1.2 Example 2: Cook’s skew beam problem

In this example, convergence with mesh refinement is explored using a skew cantilever

model proposed by Cook et. al. [45] (Figure 6.2). The material behavior is modeled as

isotropic linear elastic with Young’s modulus E = 1.0 and Poisson’s ratio ν = 1/3. The

beam is fixed at the left end, and subjected to a shear force F = 1/16 distributed uniformly

over the depth at the right end.

The computed vertical displacement of node C (vC), the maximum principal stress at

node A (σA,max), and the minimum principal stress at point B (σB,min) are listed in Table

6.2. In this table, the results obtained using the ANDES element are compared with those

using other elements: CPS4 (4-node isoparametric element of ABAQUS [1]), P-S (hybrid

element [109]), Q6 (4-node isoparametric element with internal parameters [151]), QE-2
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Table 6.2: Example 2 — Convergence results for Cook’s skew beam problem

vC σA,max σB,min

Mesh size 2× 2 4× 4 8× 8 16× 16 2× 2 4× 4 8× 8 16× 16 2× 2 4× 4 8× 8 16× 16
CPS4 11.80 18.29 22.08 23.43 0.1217 0.1873 0.2242 0.2311 -0.0960 -0.1524 -0.1869 -0.1966
P-S 21.13 23.02 – 23.88 0.1854 0.2241 – 0.2364 – – – –
Q6 22.94 23.48 23.80 23.91 0.2029 0.2258 0.2334 0.2361 -0.1734 -0.1915 -0.1997 -0.2028
QE-2 21.35 23.04 – 23.88 0.1956 0.2261 – 0.2364 – – – –
B̄-Q4E 21.35 23.04 – 23.88 0.1956 0.2261 – 0.2364 – – – –
AGQ6-I 23.07 23.68 23.87 23.93 0.2023 0.2275 0.2351 0.2365 -0.1758 -0.1972 -0.2016 -0.2033
AGQ6-II 25.92 24.37 24.04 23.97 0.2169 0.2286 0.2352 0.2365 -0.1999 -0.2014 -0.2027 -0.2035
ANDES 21.46 22.84 23.64 23.89 0.1866 0.2268 0.2366 0.2375 -0.1591 -0.1926 -0.2023 -0.2034
Reference 23.94 0.2361 -0.2025

(assumed strain element [111]), B̄-Q4E (assumed strain element [111]), AGQ6-I and AGQ6-

II (elements derived using quadrilateral area coordinate method [152]). A reference solution

is also obtained using the CPS8 element of ABAQUS (higher order eight node quadrilateral

element) using 64× 64 mesh. The results show that the rate of convergence obtained using

the ANDES element is comparable to other high-performance elements.

6.1.3 Example 3: Cantilever beam with imposed tip lateral displacement

A cantilever beam of length 10.0m, depth 0.5m and thickness 1m is considered. The ma-

terial behavior is modeled as isotropic linear elastic with Young’s modulusE = 200, 000N/mm2

and Poisson’s ratio ν = 0.3. A vertical displacement of 0.2m is imposed at the tip. Figures

6.4(a) and 6.4(b) show meshes with different element aspect ratios and extents of distortion.

In Figure 6.4(c), the strain energies from the finite element solutions are compared with the

strain energy from the analytical solution based on Euler-Bernoulli beam theory. The plot

shows that the solutions obtained with the ANDES element converge quickly with mesh re-

finement, even with large aspect ratios and distortion. On the other hand, as is well known,

the corresponding solutions obtained using the displacement-based CPS4 element converge

much more slowly eventhough CPS4 is among those elements which pass the patch test. A

result closer to the analytical solution may be obtained using the ANDES element with more

elements in the depth direction.
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Figure 6.3: Example 3 — Cantilever beam with imposed tip lateral displacement

(a) Mesh with high aspect ratio

(b) Randomly distorted mesh
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Figure 6.4: Example 4 — MacNeal’s thin beam

6.1.4 Example 4: MacNeal’s cantilever beam with distorted mesh

This example is a benchmark proposed by MacNeal and Harder [92] to check the sen-

sitivity of the 4-node quadrilateral plane element to mesh distortion. As can be seen in

Figure 6.4, three types of mesh arrangements are investigated: (a) rectangular elements

with high aspect ratio, (b) elements with high aspect ratio together with distortion in the

form of a parallelogram, and (c) elements with high aspect ratio together with distortion in

the form of a trapezium. Two load cases are considered: pure bending and shear force at

the end. The material behavior is modeled as isotropic linear elastic with Young’s modulus

E = 107N/mm2 and Poisson’s ratio ν = 0.3. The depth of the beam is d = 0.1m.

Numerical solutions obtained using different elements are presented in Table 6.3. Dis-

placements have been normalized with respect to those from the exact analytical solution.

It is seen that results using the ANDES element, especially in cases (b) and (c), deviate

substantially from analytical results for the mesh arrangements in Figure 6.4 suggested in

reference [92]. This example shows that the ANDES element is sensitive to mesh distortion



62

Table 6.3: Example 4 — Tip deflection for MacNeal’s beam problem normalized with respect
to the exact analytical solution

Elements Shear (P ) Moment (M)
Mesh(a) Mesh(b) Mesh(c) Mesh(a) Mesh(b) Mesh(c)

CPS4 0.093 0.035 0.003 0.093 0.031 0.022
P-S 0.993 0.798 0.221 1.000 0.852 0.167
ANSYS 0.979 0.624 0.047 – – –
Q6 0.993 0.677 0.106 1.000 0.759 0.093
AGQ6-I 0.993 0.994 0.994 1.000 1.000 1.000
AGQ6-II 0.993 0.994 0.994 1.000 1.000 1.000
ANDES 0.907 0.575 0.500 0.910 0.666 0.046

in in-plane bending. From Table 6.3, it is seen that the AGQ6-I and AGQ6-II elements

perform well in MacNeal’s beam test, but as noted earlier, do not pass the patch test. On

the other hand, the ANDES element passes the patch test, but does not work satisfactorily

in in-plane bending. This result is consistent with the finding by MacNeal [91] that a 4-node

quadrilateral element with two degrees of freedom per node either fails to pass the constant

strain/stress patch test, or locks in in-plane bending in case of distorted mesh.

6.1.5 Example 5: Axially loaded cantilever beam — geometric nonlinearity

In this example, the goal is to explore the accuracy of the corotational kinematic

description. A cantilever beam of length 5.0m, depth 0.1m, and thickness 1.0m is considered.

The geometry is perturbed to reflect an initial imperfection. A displacement is imposed at

the tip in the axial direction. The material is again modeled as isotropic linear elastic with

the same properties as in Example 1. First, a very small initial imperfection of 0.01m is

considered at the tip, to represent Euler buckling closely. Next, a larger imperfection of

0.2m is considered. Analysis cases including different element types, discretizations and

solution algorithms are summarized in Table 6.4. The cases that use the displacement-based

algorithm and total Lagrangian kinematics are performed using ABAQUS. The solutions

obtained using a higher order displacement-based element (CPS8) and total Lagrangian

kinematic descrption are considered the reference. The standard displacement-based 4-node
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quadrilateral (CPS4) element is included in the study so that the CR and TL kinematic

descriptions can be compared with all other parameters held fixed.

For the small imperfection of 0.01m, numerical results are shown in Figure 6.5(b). It

can be seen that the solutions obtained using the ANDES element and the CPS8 element are

very close to the analytical Euler buckling load, π2EI/L2 = 6579.74kN. Furthermore, the

solutions obtained using the ABAQUS CPS4 element with TL kinematic description and the

displacement element with CR kinematic descriptions, while far away from the analytical

solution, are identical to each other. This indicates the agreement between the TL and CR

kinematic descriptions. For the larger imperfection of 0.2m, results are shown in Figures 6.6

and 6.7. In both the coarse and fine meshes, the CPS4 element TL and CR solutions agree.

With the fine mesh, the ANDES element CR solution agrees with the CPS8 TL reference

solution. It can also be observed that the ANDES coarse mesh solution is more accurate

than the CPS4 counterpart. This example illustrates the adequacy of the CR description for

this type of problem.

6.1.6 Example 6: Axially loaded cantilever — combined elastoplasticity and

geometric nonlinearity

The goal in this example is to examine the optimization algorithm for elastoplasticity, in

addition to the CR kinematic description. The cantilever beam of Example 2 with the larger

imperfection of 0.2m is again considered. The material is now modeled as elastic-ideal plastic

with von Mises yield criterion. The elastic material properties are the same as in Example 2,

and the uniaxial yield stress, σy = 250N/mm2. The finite element discretizations are shown

in Figures 6.6(a) and 6.7(a), and the different analysis cases are summarized in Table 6.5.

Numerical results are shown in Figures 6.8 and 6.9. The analysis cases using the CPS4

element on one hand with TL kinematic description and displacement-based algorithm, and

on the other hand with CR kinematic description and the optimization algorithm produce

identical results. This demonstrates the correctness of the CR description and the optimiza-
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Table 6.4: Example 5 — Summary of analysis cases

(a) Analysis cases with small imperfection (0.01m)

Case 1(a) 1(b) 1(c) 1(d)

Imperfection (m) 0.01 0.01 0.01 0.01
Elem along length 100 100 100 100
Elem along depth 2 2 2 2
Element type ANDES CPS8 CPS4 CPS4
Kinematics3 CR TL CR TL
Algorithm Opt1 Disp2 Opt Disp

1 Displacement-based solution algorithm
2 Optimization algorithm described in chapter 2
3 Analysis cases using Disp and TL are performed
using ABAQUS

(b) Analysis cases with larger imperfection (0.02m)

Case 2(a) 2(b) 2(c) 2(d) 3(a) 3(b) 3(c) 3(d)

Imperfection (m) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Elem along length 50 50 50 50 200 200 200 200
Elem along depth 1 1 1 1 4 4 4 4
Element type ANDES CPS8 CPS4 CPS4 ANDES CPS8 CPS4 CPS4
Kinematics CR TL CR TL CR TL CR TL
Algorithm Opt Disp Opt Disp Opt Disp Opt Disp

Table 6.5: Example 6 — Summary of analysis cases

Case 4(a) 4(b) 4(c) 4(d) 5(a) 5(b) 5(c) 5(d)

Imperfection (m) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Elem along length 50 50 50 50 200 200 200 200
Elem along depth 1 1 1 1 4 4 4 4
Element type ANDES CPS8 CPS4 CPS4 ANDES CPS8 CPS4 CPS4
Kinematics CR TL CR TL CR TL CR TL
Algorithm Opt Disp Opt Disp Opt Disp Opt Disp
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Figure 6.5: Example 5 — Axially loaded cantilever with 0.01m imperfection (Euler buckling)
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(a) 50 elements × 1 element mesh
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(b) Tip displacement for 50× 1 mesh
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Figure 6.6: Example 5 (geometric nonlinearity) — Coarse mesh results for axially loaded
cantilever with 0.2m imperfection
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(a) 200 elements × 4 elements mesh
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(b) Tip displacement for 200× 4 mesh
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(c) Axial force-displacement plot for 200× 4 mesh

Figure 6.7: Example 5 (geometric nonlinearity) — Fine mesh results for axially loaded
cantilever with 0.2m imperfection
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(a) Tip displacement for 50× 1 mesh
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(b) Axial force-displacement plot for 50× 1 mesh

Figure 6.8: Example 6 (combined elastoplasticity and geometric nonlinearity) — Coarse
mesh results for axially loaded cantilever with 0.2m imperfection
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(a) Tip displacement for 200× 4 mesh

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

500

1000

1500

2000

2500

3000

3500

Axial displacement of tip (m)

A
xi

al
 fo

rc
e 

(k
N

)

 

 

Case 5(a)
Case 5(b)
Case 5(c)
Case 5(d)

(b) Axial force-displacement plot for 200× 4 mesh

Figure 6.9: Example 6 (combined elastoplasticity and geometric nonlinearity) — Fine mesh
results for axially loaded cantilever with 0.2m imperfection
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tion algorithm. With the finer mesh, the solution obtained using the (low order) ANDES

element with CR kinematics and the optimization algorithm is very close to the reference

solution with the (higher order) CPS8 element with TL kinematics and a displacement-based

algorithm. Due to the explicit update of the geometry (equation (2.19)), it is found that

smaller increments are necessary near the peak force.

6.1.7 Example 7: Elastoplastic bending of a thin circular arch

In this example, a very thin circular arch of mean radius 10.1m and thickness 0.2m is

considered. The material properties are the same as in Example 3. The model is subjected

to tip displacements of -1.0m each in horizontal and vertical directions. The purpose of this

example is to show the limitation of CR kinematics when the structure experiences finite

deformation. The finite element mesh and the numerical results are shown in figure 6.10. It is

observed that both kinematic descriptions and both solution algorithms give close results up

to the vertical displacement of 0.5m. After this, the reaction-displacement curves diverge.

This is due to the fact that large strain develop in the plastic zone in the post-buckling

behavior. (The kink in figure 6.10(c)) The softening behavior shown in figure 6.10(b) is due

to nonlinear geometric effect. The maximum value of displacement of the interior edge is

ux = −1.41m and uy = 0.3m.

6.2 ANS-ANDES-EAS Solid-shell element

In this section, numerical benchmarks are analyzed to investigate the performance of

the first proposed solid-shell element formulation (based on ANS,ANDES and EAS concepts)

in both geometrically linear and nonlinear cases. Results are compared with those from other

formulations in the literature (Table 6.7). Since some cited formulations have been normal-

ized to different reference values, some of the results from the literature are re-normalized in

this work.
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(a) Finite element mesh
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(c) Horizontal vs vertical displacement of the interior edge in the
last increment

Figure 6.10: Example 7 — Elastoplastic bending of a thin circular arch
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Table 6.6: References used to compare solutions in numerical examples

Abbreviation Reference Description

Full-integration solid and solid-shell elements

Kli06 Klinkel et. al. [148] mixed ANS solid-shell (HSEE).

Kim05 Kim et. al. [82] ANS solid-shell with plane stress assump-
tion for thickness strains (XSolid85).

Alv03 Alves de Sousa et. al. [6] eight-node EAS solid-shell with twelve en-
hanced variables (HCis12).

Are03 Areias et. al. [9] EAS solid element with penalty stabiliza-
tion.

Sze00 Sze et. al. [142] Hybrid stress ANS solid-shell (ANSγε and
ANSγε-HS).

Kas00 Kasper et. al. [80] Mixed Enhanced strain element with nine
enhanced variables (H1/ME9).

Reduced-integration solid and solid-shell elements

Schw09 Schwarze and Reese [119, 120] ANS/EAS solid shell with one EAS vari-
able and using the Taylor expansion of the
inverse Jacobian with respect to the ele-
ment center (Q1ST).

Abed09 Abed and Combescure [3] Assumed strain solid shell with physical
stabilization (SHB8PS).

Car08 Cardoso et. al. [41] ANS/EAS solid-shell with one EAS vari-
able (MRESS).

Ree07 Reese[115] EAS Solid-shell (Q1SPs).

Alv05 Alves de Sousa et. al. [5] EAS/SRI solid-shell with one EAS vari-
able and SRI technique for transverse
shear locking (RESS).

SC8R ABAQUS continuum solid [1] Reduced integration continuum solid ele-
ment of ABAQUS.
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Table 6.7: References used to compare solutions in numerical examples (Continued)

Abbreviation Reference Description

Full- and reduced-integration conventional shell elements

CYSE Cardoso et. al. [40] one-point quadrature shell element with
stabilization of spurious energy modes.

Gru05 Gruttmann and Wagner [65] ANS mixed stress element with reduced
integration.

iCYSE-E4 Cardoso et. al. [38] Four-node reduced integration shell ele-
ment with four enhancing variables for
membrane strains.

Car02 Cardoso et. al. [39] ANS element with reduced integration.

ANSγ-EAS Bischoff and Ram [35] Full-integration EAS shell, which takes
the thickness stretch into account.

ANDES3 Militello and Felippa [98] Full-integration triangular shell element
with drilling degrees of freedom based on
ANDES approach.

ANDES4 Haugen and Felippa[68] Full-integration quadrilateral shell ele-
ment with drilling degrees of freedom
based on ANDES approach.

Parisch91 Parisch [103] Full-integration ANS element.

Simo89 Simo and Fox [126] Full-integration mixed ANS Stress ele-
ment.

Stander89 Stander et. al. [137] Full-integration quadrilateral ANS ele-
ment.

Bat85 Bathe and Dvorkin [17] Full-integration quadrilateral ANS ele-
ment.

S4R ABAQUS shell element[1] Four-node reduced-integration shell ele-
ment with hourglass stabilization.
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Geometrically linear elastic solid-shell:

In this section the numerical examples of several well-known benchmarks for linear elastic

materials are presented. The numerical examples for geomterically linear element and the

challenging features of each are presented in Table 6.8.

6.2.1 Example 8: Patch tests

The patch test is a standard approach for evaluating the completeness of an element

formulation [18, 74]. Each element is subject to specific nodal displacements that analytically

correspond to a state of constant strain within the element. If the finite element produces

exactly the same strain state as the analytical, the patch test is passed. It is explained by

Taylor et. al in [144] that the patch test is a condition to assess the convergence of the fi-

nite element approximations, which is equivalent to consistency condition. This test is more

significant in evaluating the convergence of elements employing nonstandard features (as ex-

amples: selective integrations, incompatible interpolations or EAS elements) [153]. MacNeal

and Harder [92] proposed the membrane and bending patch tests for 3D elements (solid,

shell). The membrane patch test has a higher significance since it assesses the completness

and convergence of the element assemblage. But in the context of the shell and solid-shell

elements, the bending patch test is also of great importance to evaluate the bending behavior

of the formulation with only one element across the thickness. This issue is directly related

to the number of elements and the calculation costs.

Referring to Macneal and Harder [92], a solid element of length L = 0.24mm, widthB = 0.12mm

and thickness t = 0.001mm shown in Figure 6.11 is meshed with five distorted elements.

Membrane patch test: A displacement state is applied on the structure that leads

to a constant in-plane strain distribution. The material behavior is modeled as isotropic

linear elastic with material properties as E= 106 N/mm2 and ν = 0.25. The displcaments of

the exterior nodes are prescribed by linear functions:
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Table 6.8: Numerical examples for the geometrically linear element:

Numerical example Challenging feature

Membrane patch test Evaluating the completeness of the finite element formu-
lation.

Bending patch test Ability of the element to reproduce a constant bending
stress state.

Pinched cylinder with end di-
aphragms

Performance of the element for inextensional bending and
complex membrane modes.

Scordelis-Lo roof The membrane and bending behavior of the element for-
mulation.

Hemispherical shell with 18o

hole
The ability of the element to represent inextensional
membrane and bending modes.

Full hemispherical shell The ability of the element to represent inextensional
membrane and bending modes when the bending is about
the diagonal plane.

Twisted beam Performance of the element in case of warping geometry.

Clamped square plate The element sensitivity to distorted mesh in out-of-plane
bending problems.

Cook’s skew plate Membrane behavior of the element in inplane bending
problems.
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Figure 6.11: Example 8 — Patch test geometry
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Table 6.9: Example 8 — Membrane Patch test, The finite element solution results

Node UX(mm) UY (mm)

1 5.000e-5 4.000e-5
2 1.950e-4 1.200e-4
3 2.000e-4 1.600e-4
4 1.200e-4 1.200e-4

UX = 10−3

(
X +

Y

2

)
, UY = 10−3

(
Y +

X

2

)
(6.1)

and the UZ = 0 is prescribed for the bottom layer of nodes. Assuming the above displace-

ments at exterior nodes, a constant strain distribution leading to a plane stress state is

obtained. The displacements of the nodes are shown on Table 6.9. The results agree exactly

with the solution of equation (6.1) and the stresses at Gauss points are:

σXX = σY Y = 1333.33N/mm2, σXY = 400.0N/mm2 (6.2)

which agrees with the analytical solution. All other stresses are zero in this plane stress

problem. Hence, the membrane patch test is passed.

Bending patch test: In this test the patch shown in Figure 6.11 is tested to repro-

duce a constant bending stress state. The displacements of exterior nodes are:

UX = ∓t10−3

2

(
X +

Y

2

)
, UY = ∓t10−3

2

(
Y +

X

2

)
, UZ =

10−3

2

(
X2 +XY + Y 2

)
(6.3)

which shows a linear strain distribution in thickness direction. The displacement of

the internal nodes are shown in Table 6.10. The numerical results produce the analytical

solutions exactly. In order to analyze the stresses at top and bottom surfaces, the values at

Gauss points are exterpolated across the thickness. The resulting stresses at top and bottom
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Table 6.10: Example 8 — Bending Patch test, The finite element solution results

Node UX(mm) UY (mm) UZ(mm)

1 -2.500e-8 -2.000e-8 1.400e-6
2 -9.750e-8 -6.000e-8 1.935e-5
3 -1.000e-7 -8.000e-8 2.240e-5
4 -6.000e-8 -6.000e-8 9.600e-6

surfaces are as follows:

σXX = σY Y = ±0.6667N/mm2, σXY = ±0.200N/mm2 (6.4)

which conforms with the analytical solution. Hence the bending patch test is also passed.

This example shows that the ANDES approach has an excellent performance to account for

the membrane response of the solid-shell formulation.

6.2.2 Example 9: Pinched cylinder with end diaphragms

This test is one of the three “obstacle course” problems proposed by Belytschko for shell

elements [25]. The test assesses the performance of the element for inextensional bending

and complex membrane modes. This is one of the most demanding tests for the solid-shell

formulation since it involves both the membrane and bending responses of the element. An-

other aspect of this test is that the solid-shell formulation is checked for trapezoidal locking

that could occur when modeling curved shells.

Two mesh types are investigated in this example — a regular mesh and a distorted mesh.

The distorted mesh also causes the mid-surface to be warped.

The cylinder is pinched by two diametrically opposite point loads with the magnitude of

P = 1.0N. The material behavior is modeled as isotropic linear elastic with material prop-

erties as: Young’s modulus E = 3× 106N/mm2, Poisson’s ratio ν = 0.3. The geometry of

the model is defined as: radius, R = 300mm, length L = 600mm and thickness t = 3.0mm.

Owing to symmetry, only one-eighth of the cylinder is modeled. The analytical solution for
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Table 6.11: pinched cylinder(distorted mesh),Normalized displacement of the point under
the load

Distortion angle θ = 0o θ = 10o θ = 20o θ = 30o θ = 40o

Normalized displacement(r) 0.970 0.963 0.926 0.925 0.924

the vertical displacement under the point load is UY =−1.8248× 10−5mm [25].

–Regular mesh

In this model, the mesh arrangement is as shown in Figure 6.12(a). In Figure 6.12(c),

the vertical displacements under the point load are normalized to the analytical solution and

compared with some cited solid-shell (MRESS, H1/ME9, RESS, HCiS12, ANSγε, ANSγε-HS)

and shell(ANSγ-EAS) formulations.

As it can be seen in the figure, all the elements show poor convergence for coarse meshes.

Comparing with other existing solid-shell and shell elements, the current element has a bet-

ter rate of convergence followed by MRESS, which is an ANS element.

–Distorted mesh

In this model,the mesh arrangement is selected as 20× 20. The mesh is given an increasing

distortion angle θ as shown in Fig 6.12(b). As θ increases, the mid-surfaces of the elements

are no longer flat and the element is with warped mid-surface. This induced warping, which

increases with the increase in θ, changes the normalized displacement of the node under the

load from r = 0.97 for θ = 0.0(regular mesh) to r = 0.924 for θ = 40.0 (very distorted mesh)

as can be seen in table 6.2.2.

In the pinched cylinder test the distorted mesh arrangement causes the membrane

locking problem, but using the ANDES scheme for the membrane response of the element

alleviates the membrane locking and the results are very slightly sensitive to the mesh dis-

tortion.



79

P Rigid 
diaphragm

Rigid 
diaphragm

X

Y

Z

P

R

L

(a) Regular mesh

P Rigid 
diaphragm

θ

Rigid 
diaphragm

X

Y

Z

P

R

(b) Distorted mesh

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Elements across the edge

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t [
−

]

 

 

Current work
MRESS
RESS
ANSγε
ANSγε−HS

ANSγ−EAS

H1ME9
HCis12

(c) Convergence study considering regular mesh

Figure 6.12: Example 9 — Pinched Cylinder with end diaphragms
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6.2.3 Example10: Scordelis-Lo Roof

This benchmark is another obstacle course problem for single curved shell elements

originally proposed by Scordelis and Lo [121]. The goal of this test is to assess the mem-

brane and bending behavior of the shell element formulation. As shown in Figure 6.13,the

Y

Z

X Symmetry

Rigid 
diaphragm

ρ

Free edge

ρ

Figure 6.13: Example 10 — Scordelis-Lo roof,geometry

roof is mounted on two rigid diaphragms at two curved edges and loaded under its own

weight. The material behavior is modeled as isotropic linear elastic with material properties

as: Young’s modulus E = 4.32× 108 N/mm2, Poisson’s ratio ν = 0.0. The geometry of the

model is defined as: radius, R = 25.0mm, length L = 50mm and thickness t = 0.25mm. The

volume force is ρ = 360 N/mm3 and owing to symmetry, only a quarter of the cylinder is

modeled.

The boundary conditions of the rigid diaphragms are defined by UX = UY = 0. The analyti-

cal solution for the vertical displacement of point A under the volume load is UY = −0.3024mm.

The vertical displacements of point A are normalized to the reference analytical value and

presented in Table 6.12 along with the results for some existing solid-shell formulations

(Q1STs, RESS, XSolid85, Are03 and ANSγε).

The convergence is satisfactory and occurs from above. Unlike the pinched cylinder
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Table 6.12: Example 10 — Scordelis-Lo roof,Normalized displacement of point A

ne Current
work

Schw09
(Q1STs)

Alv05
(RESS)

Kim05
(XSolid85)

Are03 Sze00
(ANSγε)

4× 4 1.047 0.997 0.995 0.960 1.029 0.938
8× 8 1.011 0.994 0.986 0.984 1.001 0.962
16× 16 0.996 1.000 0.993 0.999 0.992 -
32× 32 0.997 1.003 0.996 - 0.991 -

test, in this problem, the free edge deflection is dominated by the membrane-bending coupling

along the Z direction (bending about the X axis) and the elements are not tapered in that

direction.

6.2.4 Exaple 11: Hemispherical shell with 18o hole

This is the third obstacle course problem for doubly-curved shells, which assesses the

ability of the element to represent inextensional membrane and bending modes. The geome-

try of the model is shown in Figure 6.14. The radius of the curved shell is R = 10.0mm and

the thickness is t = 0.04mm. Due to symmetry, only a quadrant of the hemisphere is mod-

eled. The equator represents a free edge and the XZ and YZ planes are the symmetry planes.

The structure is subjected to two pairs of diametrically opposite loads along the X and Y

axes respectively. A hole is designed by angle θ = 18o with respect to the Z axis to sim-

plify the mesh generation. The load value is F = 1.0N. The material behavior is modeled as

isotropic linear elastic with material properties as: Young’s modulus E = 6.825×107 N/mm2

and Poisson’s ratio ν = 0.3.

The displacements of node A are normalized to the reference value UX = 0.0940mm [92]

and presented in Table 6.13 along with some other existing solid-shell formulations(Q1STs,

Q1SPs, XSolid85, Are03, H1/ME9, ANSγε-HS). Comparing the convergence ratio of different

formulations, it can be deduced that the ANS approach is more effective in circumventing

the shear locking problem in thin shells rather than the EAS method. The proposed element

formulation has the best convergence among the existing solid-shell elements.
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Figure 6.14: Example 11 — Hemisphere with 18◦ hole, geometry

Table 6.13: Example 11 — Hemispherical shell with 18o hole,Normalized displacement of
point A

ne Current
work

Schw09
(Q1STs)

Ree07
(Q1SPs)

Kim05
(XSolid85)

Are03 Kas00
(H1/ME9)

Sze00
(ANSγε-
HS)

4× 4 1.018 1.043 0.062 1.058 0.040 0.039 1.062
8× 8 0.997 1.002 0.723 1.005 0.756 0.732 1.006
16× 16 0.986 0.993 0.919 - 0.991 0.989 -
32× 32 0.990 0.994 0.969 - 0.999 0.998 -
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6.2.5 Example 12: Full hemispherical shell (linear elastic)

In this example, the previous test is investigated without the 18o hole as shown in

Figure 6.15. This is a more demanding test on the formulation because the element is bending

about the diagonal plane. In Table 6.14, the displacements of point A are normalized to

the reference value UX = 0.0924mm [92] along with some other existing solid-shell (Q1STs,

Q1SPs, XSolid85, Are03) and shell (Gru05 and Car02) formulations.

YX

Z

F F

A

Free

Sym.

U
X
=0.0

Sym.

U
Y
=0.0

Figure 6.15: Example 12 — Full Hemisphere problem, geometry

The results show that the proposed element has the best convergence rate among the

cited solid-shell elements but Car02 shell element exhibits slightly better result for the coarse

mesh arrangement.

6.2.6 Example 13: Twisted Beam

The twisted beam benchmark proposed by MacNeal and Harder is to assess the warping

performance of the element [92]. The twisted beam has length L = 12mm, widthW = 1.1mm

and thickness t = 0.32mm as shown in Figure 6.16(a). Another version of the twisted beam

problem was proposed by Simo in reference [126] with thickness of t = 0.05mm, which is a
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Table 6.14: Example 12 — Full hemispherical shell, Normalized displacement of point A

ne Current
work

Schw09
(Q1STs)

Ree07
(Q1SPs)

Kim05
(XSolid85)

Gru05 Are03 Car02

4 0.663 0.418 0.104 - 0.573 0.029 0.680
8 0.962 0.956 0.630 1.079 0.971 0.583 0.980
16 0.997 0.996 0.907 1.014 1.002 0.978 0.990
32 1.002 0.999 0.970 1.000 1.000 0.999 -

more-demanding problem involving a very thin twisted beam as shown in Figure 6.16(b).

In both problems, considering two different load cases, the structure is subjected to in-

plane and out-of-plane loads at the tip with the magnitude F = 1.0N. The material be-

havior is modeled as isotropic linear elastic with material properties as: Young’s modulus

E = 29.0× 106 N/mm2, Poisson’s ratio ν = 0.22.

The tip displacements in loading direction are normalized to the reference analytical values

and presented in Tables 6.15 through 6.18 along with the results for some existing solid-shell

(Q1STs, MRESS, RESS, ANSγε, ANSγε-HS) and shell (Simo89) formulations.

Numerical results show the excellent performance of all quoted formulations for both

thick and thin beams. The current solid-shell formulation has an excellent performance for

too warped thin beam.

Table 6.15: Example 13 — Twisted thin beam (reference solution for in-plane load
= 1.387mm)

ne Current
work

Schw09
(Q1STs)

Car08
(MRESS)

Alv05
(RESS)

Simo89

6× 1 1.005 1.002 - - 0.993
12× 2 1.001 0.998 0.965 0.998 1.000
24× 4 1.000 0.999 1.000 1.000 1.001
48× 8 1.000 1.000 1.001 1.000 1.002
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Figure 6.16: Example 13 — Twisted Beam, Geometry.

Table 6.16: Example 13 — Twisted thin beam (reference solution for out-of-plane load
= 0.343mm)

ne Current
work

Schw09
(Q1STs)

Car08
(MRESS)

Alv05
(RESS)

Simo89

6× 1 0.953 0.942 - - 0.951
12× 2 0.988 0.983 0.958 0.985 0.986
24× 4 0.995 0.995 0.995 0.996 0.997
48× 8 1.000 0.999 0.999 0.998 1.000

Table 6.17: Example 13 — Twisted thick beam (reference solution for in-plane load
= 0.005424mm)

ne Current
work

Car08
(MRESS)

Alv05
(RESS)

Sze00
(ANSγε)

Sze00
(ANSγε)-HS

6× 1 0.996 - - 0.934 0.998
12× 2 0.997 1.002 0.994 0.945 1.001
24× 4 0.999 1.000 0.996 - -
48× 8 1.000 1.000 0.997 - -
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Table 6.18: Example 13 — Twisted thick beam (reference solution for out-of-plane load
= 0.001754mm)

ne Current
work

Car08
(MRESS)

Alv05
(RESS)

Sze00
(ANSγε)

Sze00
(ANSγε)-HS

6× 1 0.946 - - 0.780 0.957
12× 2 0.987 1.022 0.935 0.887 0.990
24× 4 0.995 1.006 0.979 - -
48× 8 0.999 1.002 0.992 - -

6.2.7 Exaple 14: Clamped square plate

This test is to assess the element sensitivity to distorted mesh. The geometry is shown

in Figure 6.17(a). The side length is L = 100mm and the thickness is t = 1mm. The material

behavior is modeled as isotropic linear elastic with material properties as: Young’s modulus

E = 1.0× 104 N/mm2, Poisson’s ratio ν = 0.30. A concentrated force with magnitude F =

16.3527N is applied at the center of the plate in the negative Z direction. Owing to symmetry,

only a quarter of the plate is modeled. Point A is moved by e (0 6 e 6 12mm) as depicted

in the figure 6.17(a). In this example, the model is discretized by 2× 2 elements. The

analytical solution corresponding to the explained geometry and applied load is provided in

[146] as:

Uz = 0.00560FL2 12(1− ν2)

Et3
= −1.000mm (6.5)

The center displacements are normalized with respective to the analytical solution and

are plotted versus the e values along with some existing solid-shell (Q1STs and HSEE) and

shell (Bat85) formulations in Figure 6.17(b). As it is seen in the figure, all elements have

satisfactory response for highly distorted meshes and that is due to the fact that the quoted

elements use the ANS approach to circumvent the shear locking problem. It is noticeable

that among the reported elements, the element proposed in reference [119] behaves slightly

better for very distorted mesh arrangement.
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(b) Sensitivity study on distorted mesh

Figure 6.17: Example 14 — Clamped Square Plate
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6.2.8 Example 15: Cook’s skew plate

This test was first proposed by Cook [45] and applied on shell formulation by Simo in

reference [126]. The goal is to assess the membrane behavior of the element. As it is shown

in Figure 6.18(a), the trapezoidal beam is clamped at one end and subjected to distributed

shear force F= 1/16 at the tip. The material behavior is modeled as isotropic linear elastic

with material properties as E= 1.0 and ν = 1/3. The thickness of the model is th= 1.0.

The analytical solution for this problem is UA
y = 23.91. In Figure 6.18(b), the vertical

displacements of point A are presented along with some existing solid-shell (MRESS and

RESS) and shell (CYSE, iCYSE-E4) formulations. For coarse mesh arrangement the current

work has better performance than other cited solid-shell formulations, but iCYSE-E4 shell

formulation with four enhanced strain variables [40] has better convergence rate even though

it does not pass the membrane patch test.

Geometrically nonlinear elastic Solid-shell:

In this subsection some geometrically nonlinear problems are investigated. The arc length

method originally proposed by Riks [116] with orthogonal trajectory iterations [62] for

the correction phase is used as the solution algorithm. In all the numerical examples, the

unsymmetric stiffness matrices are chosen except the last example in which both symmetrized

and unsymmetric stiffness matrices are investigated to compare the results and also the

convergence tolerance for the Euclidean norm of the force residual vector is 1.0× 10−7. The

numerical examples for geometrically nonlinear element and the challenging features of each

are presented in Table 6.19.
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Figure 6.18: Example 15 — Cook’s skew plate
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Table 6.19: Numerical examples for the geometrically nonlinear element:

Numerical example Challenging feature

Buckling analysis of square plate
compressed in one direction

The abality of the formulation in capturing the buckling
load and the post-buckling regime.

Pinching of a clamped cylinder Geometric nonlinear behavior of the element against in-
extensional bending.

Stretching of a cylinder with free
ends

Geometric nonlinear behavior of the element against
bending and membrane modes.

Clamped-hinged deep circular
arch subjected to a concentrated
load

Geometric nonlinear response of the element against non-
symmetric buckling.

Twisted beam under out-of-
plane loading

Nonlinear performance of the element in case of warped
geometry.

Slit annular plate subjected to
lifting line force

Performance of the thin solid-shell structures under finite
rotations.

Hinged cylindrical shell under
concentrated load

Performance of the formulation in capturing the back-
snap response.
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6.2.9 Example 16: Buckling analysis of square plate compressed in one

direction

In this example, the goal is to compute the buckling and post-buckling behavior of a

plate subjected to in-plane uniaxial compression. The plate dimensions are 508× 508× 3.175mm

as shown in Figure 6.19(a). The material behavior is modeled as isotropic linear elastic with

Young’s modulus E = 2.062× 105N/mm2 and Poisson’s ratio ν = 0.30. The plate is simply

supported at all edges but the in-plane deformations are not constrained. Due to symmetry

only a quarter of the plate is modeled.

The plate is compressed in its middle plane by uniform load NX along edge X = 0 and

X = L. The reference solution for the analytical critical value of the compressive force per

unit length is given by Timoshenko in [145] as:

(NX)cr =
π2D

L2

(
m+

1

m

)2

where D =
Et3

12(1− ν2)
(6.6)

m is the number of half-waves in the compressive direction and is one for the first buckling

mode. In Table 6.20, the numerical results are normalized to the analytical solution, which is

(NX)cr = 92.455 N/mm and are compared with some existing shell formulations (ANDES3

and ANDES4).

It is noted that the corotational kinematic description has been applied on cited elements in

Table 6.20 to take the geometric nonlinearity into account as explained in [68]. In order to

capture the buckling load, point A is perturbed by a load in Z direction with magnitude of

0.0003% of the critical load value.

It is observed that the triangular ANDES3 is slightly better than the proposed element

for the coarse mesh because meshes of N×N elements contains twice as many triangular

elements as quadrilateral elements, but the proposed solid-shell element converges faster

than the quadrilateral ANDES4 element.

Post-buckling analysis is also performed to evaluate the stiffness properties of the square
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Table 6.20: Example 16 — Buckling load for square plate subjected to compres-
sion,Normalized critical loads

Element type Number of elements
4× 4 8× 8 16× 16 32× 32

Curent work 1.022 1.003 1.000 1.000
ANDES3 1.008 1.002 1.000 1.000
ANDES4 1.043 1.011 1.002 1.001

plate after the bifurcation is encountered. Mesh arrangement of 8×8 is chosen to discretize

one quarter of the plate. In Figure 6.19(c), the incremental load is normalized to the reference

critical load and plotted versus the displacement of point A in Z direction. The results are

compared with the ANDES4 of reference [68]. It is observed that the structure exhibits

a stable post-buckling response and is able to undergo increased load after the bifurcation.

The deformed shape of the finite element mesh for the first buckling mode is shown in Figure

6.19(b).

6.2.10 Example 17: Pinching of a clamped cylinder

In this test a cantilevered cylinder is subjected to two opposite loads at its open end.

Owing to symmetry, only a quarter of the structure is modeled as shown in Figure 6.20(a).

The radius of the structure is R = 1.016mm, the length is L = 3.048mm and the thickness

is t = 0.03mm. This is a demanding test for the solid-shell elements since they suffer from

trapezoidal locking in modeling the curved structures. The material behavior is modeled as

isotropic linear elastic with Young’s modulus E = 2.0685× 107 N/mm2 and Poisson’s ratio

ν = 0.30.

The total Load P = λP0 (load multiplier λ and P0 = 1600N) is applied in 20 equal increments

and the tip displacement is controlled up to a total displacement of 1.6 times the radius of

the cylinder. On average 6 to 12 iterations are required at each corrector step. It is noted

that in this problem, the largest physically possible displacements of the points under the

load is equal to the radius of the shell.
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Figure 6.19: Example 16 — Buckling analysis of square plate compressed in one direction
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The results of current work are compared to some existing shell formulations(ANDES3,

ANDES4, Stander89, Parisch91) in Figure 6.20(c). The results show that the ANDES3 with

16 elements diverges before the analysis finishes, they also show that the solid-shell produces

slightly stiffer solution than other shell formulations for 16 elements and this is due to the

trapezoidal locking that exists in developing the solid-shell formulation. A regular 24× 24

mesh arrangement shows a very good agreement with the published solutions, especially

with those from Stander et. al. with regular 32× 32 meshes.

The deformed finite element mesh at the maximum load value is shown in Figure 6.20(b).

6.2.11 Example 18: Stretching of a cylinder with free ends

In this test, an open cylinder with free ends is subjected to two diametrically oppo-

site forces at the half-length. Due to symmetry only one octant of the cylinder is mod-

eled as shown in Figure 6.21(a). The radius of the structure is R = 4.935mm, the length

is L = 10.35mm and the thickness is t = 0.094mm. The material behavior is modeled as

isotropic linear elastic with Young’s modulus E = 10.5× 106 N/mm2 and Poisson’s ratio

ν = 0.3125. Both single loads are F = 40.0KN. Due to the specific boundary conditions the

structure undergoes large rotations, involving both membrane and bending responses. Some

authors have investigated this problem on solid-shell and shell elements with different mesh

arrangements (8×12, 16×24, 20×30, 24×36). As examples, see references [120, 3, 140] for

solid-shell and [141, 67] for shells. All cited references have addressed large deformation.

In the current work, meshes of 8×12, 16×24 are used to model one octant of the cylinder.

The displacements UA
Z , UB

X and UC
X are plotted in Figure 6.21(c). SC8R element of ABAQUS

with 64×64 elements, which is a 3D continuum element, is used as the reference solutions.

The reason of this selection is the 3D geometry of SC8R, which is analogous to the solid-shell

of the current work.

The results in Figure 6.21(c) show that the response has two regimes: a) a primary stage

dominated by bending effects and characterized by large rotations. At this stage, the struc-
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Table 6.21: Example 18 — Stretching of a cylinder, Iterations for the first 10 increments

No of Increments No. of Iterations
7 5 6 6 8 8 11 14 - - -
60 3 3 3 3 3 3 3 4 4 3

ture is stretched uniformly until the load reaches the value of F = 21.0KN. b) secondary

phase dominated by membrane effects characterized by large deformational displacements.

At this phase a snap through takes place and the structures exhibits an abrupt increase of

the displacements. Using coarse mesh (8×12), the snap through occurs at the same load level

as the reference solution and the displacement of point A at load F = 40.0KN is 0.950 of the

reference displacement, which proves that ANDES is performing satisfactorily to alleviate

the membrane locking. Using a mesh arrangement of 16×24, the displacement of point A

at load level F = 40.0KN is 0.994 of the reference solution. As reported in reference [140],

the computed Green strains at the maximum load level are in order of 10%, which fall in

the context of large deformations.

Using the present formulation, the accurate results are achieved by only 7 equal in-

crements, nonetheless, in order to display smooth curves, 60 equal increments are applied

for plotting. The number of corrector iterations for the first ten increments are presented

in Table 6.21. The deformed finite element mesh at the maximum load value is shown in

Figure 6.21(b).

6.2.12 Example 19: Clamped-hinged deep circular arch subjected to a

concentrated load

In this problem a deep circular arch undergoes a point load at its apex as is shown

in Figure 6.22(a). The radius of the arch is R = 100mm, the thickness is t = 1mm and the

width is w = 24mm. The structure is hinged at one end and fixed at the other end, this

allows for non-symmetric buckling. The material behavior is modeled as isotropic linear
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elastic with Young’s modulus E = 0.5× 105 N/mm2 and Poisson’s ratio ν = 0.0. The total

load value applied on the apex is F = 1000N. This example has been addressed in references

[3, 83]. Due to the lack of symmetry, the entire structure is modeled with mesh of 40× 1

following the cited references. In Figure 6.22(c), the horizontal (UX) and vertical (UY )

displacements of the point under the load is plotted versus the incremental load and the

results are compared with SHB8PS in reference [3]. For this problem, 50 equal increments

are used to produce the response curve. The schematic deformed shape of the arch is shown

in Figure 6.22(b).

The response of current solid-shell element with corotational kinematics conforms with

that of cited element with Updated-Lagrangian kinematic description, however, the plot

shows that the post-buckling regime starts slightly later than the cited element (at load

value of F= 990N compared to F= 950N for SHB8PC in [3]).

6.2.13 Example 20: Twisted beam under out-of-plane loading

In this test, the performance of the nonlinear formulation is assessed in case of warped

geometry. The geometric and material parameters as well as the boundary conditions are

the same as example 5.1.6. The geometry is shown in Figure 6.16(b). An out-of-plane load

with magnitude of F = 60N is applied at the free end of the beam (point A). The version

of this problem with t = 0.032mm has been investigated in the literature ([3, 136]). In this

example, the twisted beam with thickness t = 0.05mm is investigated since the convergence

study of the linear formulation is presented for the beam with the same thickness.

Different mesh arrangements have been used by authors such as 12×2, 24×4 and 48×4.

Here, a 24×4 mesh is considered. The SC8R of ABAQUS with mesh of 96×8 is chosen as

the reference solution. The maximum load is applied in 15 equal increments.

The displacements UX , UY and UZ of the point A are plotted versus the load in Figure

6.23(b) along with the reference solution. The solid-shell with intermediate mesh refine-

ment, considering the CR kinematics, has an excellent agreement with the reference solution
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(SC8R) considering UL kinematics with a fine mesh arrangement. The deformed shape of

the twisted beam is shown in Figure 6.23(a).

It is noted that, in case of a coarse mesh arrangement (6×1), the structure becomes stiff

and the results diverge from the reference solution for large displacements, even though the

linear problem shows an excellent agreement with the analytical solution for coarse mesh.

This locking problem in gemotrically nonlinear example is due to the fact that when the

solid-shell element is too warped, the corotational frame is not optimum, i.e. considering a

frame that travels with the mid-surface is not an optimum frame.

6.2.14 Example 21: Slit annular plate subjected to lifting line force

This test is another benchmark to assess the performance of the thin shell structures

under finite rotations. It was first proposed in [13, 14] and then adopted by many other

authors [3, 141, 136]. The internal and external radii of the structure are Ri = 6mm and

Re = 10mm respectively. The shell thickness is t = 0.03mm. The material behavior is mod-

eled as isotropic linear elastic with Young’s modulus E = 21× 106 N/mm2 and Poisson’s

ratio ν = 0.0.

The undeformed geometry of the structure is shown in Figure 6.24(a). The circular ring has

a slit cut along the radial direction A-B, where a vertical lifting line force F = 0.8N/mm is

applied on one edge of the slit, and the other edge is fully clamped. Different mesh arrange-

ments have been used in literature such as 6×48, 8×64 and 10×80 with only one element

across the thickness. In reference [141] this problem has been investigated with two meshes

of 6×30 and 10×80 using S4R shell element, hence, this reference is selected to compare

the results. Following reference [3], in the current work, the intermediate mesh of 8×64 is

used. 20 equal increments are used to plot the response curve, however, the same results are

achieved by only 10 increments.

The vertical displacements of points A and B are plotted versus the load multiplier λ in

Figure 6.24(c) along with the results for the reference solution. The results of solid-shell
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formulation with CR kinematics conform with the reference solution of ABAQUS with UL

kinematic description. The deformed shape of the ring is also shown in Figure 6.24(b), which

shows the large displacement and rotation of the free edge.

6.2.15 Example 22: Hinged cylindrical shell under concentrated load

The hinged cylindrical shell subjected to a concentrated load is another common test

to assess the path following algorithm. The geometric data are as: Radius R = 2540mm,

the length L = 508mm and the angle θ = 0.1rad. Due to symmetry only a quarter of the

structure is modeled as shown in Figure 6.25(a).

Two versions of the problem are investigated in the literature. References [9, 4, 41] analyzed

a thin shell with the thickness of t = 6.35mm and reference [86] considered a thick shell with

the thickness of t = 12.70mm. Some authors investigated both cases [120, 82, 141, 130]. In

this work the thin shell is taken into account, which is a more challenging problem.

The material behavior is modeled as isotropic linear elastic with Young’s modulus E = 3102.75 N/mm2

and Poisson’s ratio ν = 0.3. The total load applied on point A reaches the value of F = 800N.

In reference [141], this problem has been investigated with S4R shell of ABAQUS with meshes

of 16×16 and 24×24 elements. The coarsest mesh that has been used for this example in

literature is 4×4 as could be found in references [119, 130]. In this work, the model is dis-

cretized by the same mesh arrangement. The results are compared with S4R with 64×64

elements (reference solution) and Q1STs with 4×4 elements. Following the cited references

for solid-shells, in order to simulate the hinged support, the thickness is discretized with two

elements, which allows to fix the nodes of the mid-plane at the edge (UX=UY =UZ=0).

The vertical displacements of points A and B versus the incremental load is plotted in Figure

6.25(c). The current solid-shell is slightly more flexible than the reference solution after the

snap-back occurs, however, in general, the results have good agreements with the reference

solutions. The maximum load is reached by 15 equal increments, however, to produce the

results in Figure 6.25(c), 50 increments are used. In this example both symmetrized and
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Table 6.22: Example 22 — Hinged cylinder problem case 2 layers, Euclidean norm of the
force residual vector for corrector iterations, unsymmetric stiffness matrix (Arc length=15)

Unsymmetric Increments
Iteration 1 4 7 11 15
1 23216.743 9761.246 14231.813 18395.300 15945.004
2 77.696 545.538 121.114 568.035 33.166
3 7.113 69.277 17.690 368.732 0.726
4 1.862×10−4 0.266 5.152×10−3 3.243 7.241×10−7

5 1.823×10−8 2.586×10−5 3.368×10−8 3.896×10−3 4.213×10−10

6 2.424×10−8 3.180×10−8

unsymmetric stiffness matrices are taken into account and the results are compared. Consid-

ering 15 increments, the convergence of the Euclidean norm of the force residual vector are

listed in Tables 6.22 and 6.23 for unsymmetric and symmetrized stiffness matrices respec-

tively. It is observed in these tables that the results are identical for both symmetrized and

unsymmetric stiffness matrices and whether or not the stiffness matrix is symmetric does

not affect the convergence of the solution.

Following the work of Legay and Combesure [86] who investigated the sensitivity of

the results to the boundary conditions for the thick shell (t= 12.70mm), in this work, the

lower side edge of the thin shell (t= 6.35mm) is hinged to investigate the sensitivity of the

results to the boundary conditionas as shown in Figure 6.25(b). The model is discretized

by 4×4×1 elements. In Figure 6.25(d), the displacements of point A versus the incremental

load is plotted along with the results for SC8R of ABAQUS with the mesh of 32×32×1

(as reference solution). The snap-back response vanishes and the structure undergoes larger

deformations comparing to when the mid-plane is hinged. In general, the results of current

work reasonably conforms with the reference solution.

6.3 ANS-EAS Solid-shell element

In this section, the performance of the second proposed geometrically linear solid-shell

element formulation is assessed against some of the well-known benchmarks and the results
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Table 6.23: Example 22 — Hinged cylinder problem case 2 layers, Euclidean norm of the
force residual vector for corrector iterations, symmetric stiffness matrix (Arc length=15)

Symmetric Increments
Iteration 1 4 7 11 15
1 23216.743 9761.058 14231.762 18395.189 15944.914
2 77.695 545.185 121.084 568.091 33.176
3 7.113 69.245 17.685 368.787 0.726
4 1.869×10−4 0.266 5.138×10−3 3.243 7.621×10−7

5 2.408×10−8 2.630×10−5 5.471×10−8 3.905×10−3 5.128×10−10

6 2.317×10−8 4.077×10−8

are compared to those of the first proposed formulation. It is noted that in many numerical

examples presened before, both elements produce similar results, thus only the examples for

which the two formulations yield different results are presented here.

6.3.1 Example 23: Pinched cylinder with end diaphragms

Table 6.24 represents the convergence of both solid-shell formulations with regular mesh

arrangements as shown in example 6.2.2.

Sensitivity to mesh distortion: Using the same mesh arrangment as 6.2.2, the sensi-

tivity of the results to the mesh distortion is presented in Table 6.25.

It is seen that the first solid-shell element is less sensitive to mesh distortion and converges

slightly faster than the second proposed formulation.

Table 6.24: Example 23 — Pinched cylinder with end diaphragms, normalized displacement
of point under the load.

Element ne
Type 4× 4 8× 8 12× 12 16× 6 20× 20 32× 32
ANS-ANDES-EAS 0.393 0.763 0.905 0.949 0.970 0.999
ANS-EAS 0.360 0.698 0.898 0.938 0.965 0.998



107

Table 6.25: Example 23 —pinched cylinder(distorted mesh), Normalized displacement of the
point under the load

Element Angle
Type θ = 0o θ = 10o θ = 20o θ = 30o θ = 40o

ANS-ANDES-EAS 0.970 0.963 0.926 0.925 0.924
ANS-EAS 0.965 0.962 0.924 0.925 0.915

6.3.2 Example 24: Cook’s skew beam problem

Table 6.26 illustrates the convergence of both solid-shell formulations for cook’s skew plate

problem as described in 6.2.8.

It is observed tht the second solid-shell formulation converges to the analytical solution faster

than the first proposed formulation.

6.3.3 Example 25: Clamped square plate

Table 6.27 illustrates the sensitivty of the results to mesh distortion for clamped square plate

examlpe as described in 6.2.7.

It can be seen that the first proposed solid-shell formulation is less sensitive to the mesh

distortion.

Other numerical examples for geometric linear problems were also tested on the second

proposed formulation, but the results are not presented here since they are similar to those

of the first solid-shell formulation.

Table 6.26: Example 24 — Cook’s skew beam problem, vertical displacement of point A.

Element ne
Type 2× 2 4× 4 8× 8 16× 6
ANS-ANDES-EAS 21.46 22.84 23.64 23.89
ANS-EAS 22.84 23.43 23.79 23.91
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Table 6.27: Example 25 — Clamped square plate, Normalized displacement of point A.

Element e
Type 0 2 4 6 8 10 12
ANS-ANDES-EAS 0.881 0.871 0.861 0.841 0.811 0.771 0.711
ANS-EAS 0.857 0.854 0.844 0.826 0.797 0.754 0.688



Chapter 7

Conclusions

7.1 Summary of the work

In chapter 2, a computational approach has been described for combined material and

geometrically nonlinear analysis by the Finite Element Method. Its main advantage is reuse:

once a finite element has been developed with good performance in linear analysis, extension

to material and geometrically nonlinear problems is simplified. Extension to geometrically

nonlinear problems is enabled by a corotational kinematic description, and that to material

nonlinear problems by an optimization-based solution algorithm. The corotational formula-

tions allows elements that perform well in geometrically linear problems to be extended to

nonlinear problems in an element independent manner. The optimization-based approach

removes the need for the implementation of a model-specific return mapping scheme. In this

work plane stress problems in the large displacement-small strain regime are considered, as

is the case in elasto-plastic buckling problems.

The ANDES linear quadrilateral element, chosen here as the linear element passes the uni-

form strain patch test and shows excellent convergence characteristics in other well-known

benchmark problems. Furthermore, numerical results obtained using the linear ANDES ele-

ment are consistent with the proof by MacNeal [91] that a 4-node quadrilateral element with

two degrees of freedom per node either fails to pass the constant strain/stress patch test, or

locks in in-plane bending in case of distorted mesh. In nonlinear problems, the low order

element developed here has comparable performance to a higher order displacement element
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with total Lagrangian kinematics.

In chapter 3, an eight-node solid-shell formulation based on ANS, ANDES and EAS

concepts is presented. The in-plane response is separated from the out-of-plane response.

This separation gives the freedom of selecting any type of membrane quadrilateral element

for the in-plane response. The element geometry is transformed into a local frame to make

the finite elements independent of the node numbering.

ANDES concept is used to model the in-plane response. Since the ANDES scheme is applied

on the warped mid-surface, rigid body modes produce nonzero in-plane strains. The projec-

tion method has been used to depollute the in-plane stiffness matrix and make the internal

forces self equilibrating.

In order to circumvent the transverse shear locking and curvature locking in thickness di-

rection, the ANS concept has been used. ANS concept has proven to be more effective in

alleviating the shear locking problem than other methods introduced in literature, such as

EAS.

EAS concept with only one extra degree of freedom has been used to alleviate the volumetric

and Poisson thickness locking problems at the element level.

In chapter 4, an eight-node solid-shell element based on ANS and EAS approaches is pre-

sented. ANS concept is implemented to account for the transverse shear and thickness

strains, which has proven to circumvent the curvature thickness and transverse shear lock-

ing problems. EAS approach based on the Hu-washizu variational principle with six EAS

degrees-of-freedom is applied. Five extra Degrees-of-freedom are applied on the in-plane

strains (exx,eyy and γxy) to improve the element response for in-plane loadings and one on

the thickness strain so as to alleviate the Poisson’s thickness locking. In the numerical ex-

amples chapter, both linear element formulations have been assessed by a number of famous

benchmarks proposed for shell-like finite elements. Both element formulations pass the patch

test. Moreover, both elements’ performances have been tested for mesh distortion, warped
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mesh arrangement, single and doubly curved structures. It was evident from the pinched

cylinder example with end diaphragms that the thickness tapered element has poor conver-

gence rate for inextensional bending problems, however, the pinched cylinder example shows

that both linear element formulations have higher convergence rates compared to other cited

shell and solid-shell formulations.

EICR approach, which was also used in 2D formulation, is used to take the geometric

nonlinearity into account. Rigid body rotations are filtered out by projectors. The coro-

tated frame is defined such that it is independent of whether the mid-surface is warped or

not. It is noted that the proposed nonlinear formulation has all the requirements of the

CR formulation such as: equilibrium, consistency, invariance, symmetrizability and element

independence as explained in the text.

The nonlinear element has been subjected to different benchmarks involving geometric non-

linear effects, bifurcation-type, snap-through and snap-back instabilities. The numerical

results prove that in the context of small strains, considering similar mesh arrangements,

the present formulation with CR kinematic description works as well as the other nonlinear

elements with UL or TL kinematic descriptions in terms of the rate of convergence to the

reference solutions.

7.2 Directions for further research

7.2.1 Computational approach for the combined material and geometrically

nonlinear analysis

The explicit update of the geometry in equation (2.19) results in the need for small time

increments near the peak. For instance, in the buckling problem 6.1.5, since the geometry is

updated explicitly, there is a jump in the force-displacement curve at the buckling threshold,
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when the time increments are large. Improving this issue is a topic for further research.

ANDES element, which is an instance of the Templates, introduced by Professor Felippa,

passes the constant-strain patch test, but still requires to be improved in terms of sensitiv-

ity to mesh distortion when it is subjected to in-plane shear loads (MacNeal’s thin beam

problem).

7.2.2 Solid-shell formulation

The two presented solid-shell elements, which are suitable for problems with small strains,

could be extended to address large deformations. There are two possibilities as to extend

them to problems with large deformations as below:

• Keeping the linear element libraries and extend the EICR approach to large defor-

mations following the work of Rankin [114].

• Extending the element formulations to large deformations using TL or UL kinematic

descriptions, which have been addressed by some authors in different ways.

The first method, mentioned above, has the advantage of using the linear element library as

explained for the small strain case. This method could be applied to both proposed linear

formulations described in chapters 3 and 4. The second method is more suitable for the

second proposed element formulation of chapter 4.

Extension of both presented solid-shell formulations to materially nonlinear behavior

such as elasto-plasticity, fracture mechanics, multi-scale and multi-physics problems, are also

possible and the subjects for further research.
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