
University of Colorado, Boulder
CU Scholar

Civil Engineering Graduate Theses & Dissertations Civil, Environmental, and Architectural Engineering

Spring 1-1-2011

Fault Detection and Diagnosis Using a Probabilistic
Modeling Approach
Jordan Mann
University of Colorado at Boulder, jordan.mann@colorado.edu

Follow this and additional works at: https://scholar.colorado.edu/cven_gradetds

Part of the Civil Engineering Commons

This Thesis is brought to you for free and open access by Civil, Environmental, and Architectural Engineering at CU Scholar. It has been accepted for
inclusion in Civil Engineering Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact
cuscholaradmin@colorado.edu.

Recommended Citation
Mann, Jordan, "Fault Detection and Diagnosis Using a Probabilistic Modeling Approach" (2011). Civil Engineering Graduate Theses &
Dissertations. 301.
https://scholar.colorado.edu/cven_gradetds/301

https://scholar.colorado.edu?utm_source=scholar.colorado.edu%2Fcven_gradetds%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/cven_gradetds?utm_source=scholar.colorado.edu%2Fcven_gradetds%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/cven?utm_source=scholar.colorado.edu%2Fcven_gradetds%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/cven_gradetds?utm_source=scholar.colorado.edu%2Fcven_gradetds%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=scholar.colorado.edu%2Fcven_gradetds%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/cven_gradetds/301?utm_source=scholar.colorado.edu%2Fcven_gradetds%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cuscholaradmin@colorado.edu


 

 

FAULT DETECTION AND DIAGNOSIS USING A PROBABILISTIC 

MODELING APPROACH 
by 

JORDAN MANN 

B.S.M.E, University of Colorado Boulder, 2009 

 

 

 

A thesis submitted to the 

 Faculty of the Graduate School of the  

University of Colorado in partial fulfillment 

of the requirement for the degree of 

Masters of Science 

Department of Civil Engineering  

2011 

 



This thesis entitled: 
Fault Detection and Diagnosis Using a Probabilistic Modeling Approach 

written by Jordan Mann 
has been approved for the Department of Civil Engineering 

 

 

       

Prof. Gregor Henze, Ph.D., P.E. 

 

       

Prof. Michael Brandemuehl, Ph.D., P.E. 

 

       

Prof. David Bortz, Ph.D. 

 

       

Prof. Moncef Krarti, Ph.D., P.E. 

 

Date Oct 10th 2011  

 

The final copy of this thesis has been examined by the signatories, and we 

find that both the content and the form meet acceptable presentation 

standards of scholarly work in the above mentioned discipline. 



 iii 

Mann, Jordan R. (M.S., Civil, Environmental and Architectural Engineering) 

Fault Detection and Diagnosis Using a Probabilistic Modeling Approach 

Thesis directed by Prof. Gregor Henze, PhD, P.E. 

 

Abstract  

 The building sector in the U.S. accounts for approximately 40% of the 

national primary energy usage, 37% of which comes from space heating.  

Faulty systems and control schemes can increase energy usage by 15% to 

20%.  Quick and accurate fault detection and diagnosis will play a key role in 

reducing building energy consumption.  

 This thesis explores potential Bayesian fault detection, diagnosis and 

correction methods in commercial buildings.  The first experiment 

investigated fault correction in a test building. A test-building model was 

calibrated to measured data.  It was then found, that by implementing a 

nighttime setback, energy savings of approximately 20 percent could be 

achieved.  

 Next, experiments were carried out using surrogate model data to 

investigate a number of hydraulic system faults, such as an inefficient boiler, 

high valve leakage, valves with high hysteresis and heat exchanger fouling.   

It was determined, that experimentally with surrogate data, Bayesian 

methods are effective for detecting hydraulic heating system faults.  
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 Bayesian methods were then used to examine heat exchanger fouling 

for two heat exchangers in a test building using measured data.  The amount 

of propagated model uncertainty and measurement noise present made fault 

detection in this case more difficult.  The heat transfer values in the heat 

exchangers were not determined to be low enough to be considered 

significantly faulty. 

 Lastly, an experiment was carried out to test if the number of models 

created could be minimized. The models were correct in predicting faults in 

many circumstances, however mischaracterized faults were not uncommon. 
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1 INTRODUCTION 

1.1 Project Background  

 The research presented in this thesis was carried out almost entirely 

in Freiburg, Germany at the Fraunhofer Institute for Solar Energy Systems.  

While in Freiburg, I worked in collaboration for 6 months on the ModQS 

project, and this thesis is a result of that research. ModQS is a project with 

the main goal of energy reduction for heating systems of commercial 

buildings in Europe achieved by ongoing commissioning and monitoring of at 

least 10 commercial buildings.   

 

1.2 Introduction 

 The building sector in the U.S. accounts for approximately 40% of the 

national primary energy consumption.  Space heating makes up the largest 

portion of this energy usage, accounting for 37% of the building energy usage 

(Buildings Energy Data Book). It is clear that in order to reduce global energy 

consumption, a reduction of building sector heating energy usage is necessary. 

Smarter building design, better control strategies and more energy efficient 

products will all play a key role in energy reduction. This thesis will focus on 
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potential energy savings that can be achieved through the detection of 

heating system faults in commercial buildings.    

Fault detection and diagnosis (FDD) is a crucial component for 

realizing potential energy savings in commercial buildings. Improper control 

schemes, faulty equipment or degraded equipment can increase energy usage 

by 15% to 30% energy usage (Katipamula and Brambley 2005A).  By quickly 

detecting, diagnosing and repairing potential faults energy savings are 

significant.  Another key issue when faults go undetected is a reduction of 

thermal comfort.  If a heating or cooling system is not functioning properly 

and the building temperature is not within the thermal comfort zone, the 

occupants may have decreased productivity.  A study from the Technical 

University of Denmark found that an increase of 5 Kelvin could result in a 

5% reduction of productivity (Technical University of Denmark 2009).  This 

makes fault detection crucial from a financial perspective both for energy 

savings and worker productivity.  

Typically, faults in commercial buildings are detected using rule-based 

methods (Katipamula and Brambley, Methods for Fault Detection, 

Diagnostics, and Prognostics for Building Systems- A Review, Part 2 2005B).  

With the use of monitored data from commercial buildings, a system is 

determined as faulty by passing data through a series of if-then statements 

or simply detecting when a measured value crosses a certain threshold.  If a 

condition is satisfied, for example a low level of heat exchange in a heat 
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exchanger, then the system is flagged as faulty.  When creating these rule-

sets a tolerance must be included to account for measurement error.  This 

process often results in late fault detection as systems often do not instantly 

change from a non-faulty to faulty state but rather degrade over time 

(Isermann 1984).  This thesis presents an alternative method for fault 

detection in which Bayesian inference is applied to yield a probability of a 

system state.  The faulty state is then presented as a probability, which, later, 

using decision theory, could give recommendations for system maintenance or 

repair based on fault probabilities as well as cost benefit analyses for a given 

action.  Using Bayesian fault detection leads to a deeper understanding of the 

system state being analyzed since it does not give simply a binary yes or no to 

a faulty state but rather a probability.  In addition, Bayesian methods may 

lead to a more automated approach that can be applied to a wider spectrum 

of buildings since a set of rules would not need to be created for each 

individual building. 

This thesis applies Bayesian fault detection methods to models and 

test buildings and thus expands the amount of current test cases in the 

building industry.  Thus far very few have applied Bayesian methods to 

building fault detection.  The Bayesian techniques applied to buildings thus 

far focus on parameter estimation to determine uncertain parameters which 

describe building physics such as (Booth et al 2011).  Parameter estimation 

can also be used to estimate parameters describing faults.  First a baseline is 
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established to test these methods using surrogate data.  These techniques are 

then also applied to a test building.  

1.3 Thesis Organization 

 The following thesis is organized into seven chapters that aim at giving 

insight into potential energy savings that can be realized by fault detection, 

diagnosis and correction with a heavy emphasis on Bayesian fault detection. 

 After the introduction, a literature review is presented that provides 

information on current fault detection methods in buildings as well as 

Bayesian fault detection in both the building industry as well as applications 

of Bayesian fault detection in other industries. 

 Then, a methodology section describing the basic background and 

procedure for the fault detection, diagnosis and correction methods is given.  

In this section, only introductory principles are introduced, more in depth 

descriptions of each method are given later in the chapter relating to the 

corresponding method.  

 The fourth section details the processes and methods used to analyze 

the fault of a missing nighttime zone temperature setback.  A model for a test 

building is developed and the procedure for model calibration and comparison 

to measured data is detailed. 

 Next, Bayesian fault detection methods are presented.  This section 

contains a variety of potential fault detection methods as well as offering 

examples that use surrogate data.  Once the methods are proven, effective 
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with surrogate data, a fault detection analysis for a heat exchanger using 

measured data is provided. 

 Section 6 presents the results obtained from the nighttime setback 

analyses as well as the Bayesian fault detection analyses.  The success of 

different methods, including shortcomings for surrogate and measured data 

is provided here. 

 The last section is the conclusions and future work section.  Here 

general conclusions for fault detection, diagnosis and correction are discussed.  

There is a wealth of potential future work that could be carried out and some 

of the opportunities for future work are presented here. 
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2 LITERATURE REVIEW 

2.1 FDD Overview 

 The automation of fault detection started in the 1960’s with analog 

controllers used for limit checking (Isermann, Fault-Diagnosis Systems 2006).  

Later in the 1970’s, with the advent of micro-controllers, automated fault 

detection gained popularity since model based fault detection involving more 

complex algorithms were made possible (Isermann 2006).  Peer reviewed 

papers on fault detection started appearing in the late 60’s and early 

seventies such as (Jones 1973) which produced a dissertation on fault 

detection for the aerospace industry, a fault is defined here as any failure 

reducing a systems effectiveness.  Other publications include (Cohn and Ott 

1972) where an algorithm for detecting a single fault, where a fault is 

considered to be any anomaly between an input vector and output vector, is 

developed and then connected with an estimated cost for finding the fault.  

Since these early developments, a broad body of literature has been 

developed including full books on fault detection and diagnosis methods.  One 

such book is (Isermann 2006) which gives a large overview of fault detection 

and tolerance specification.   Another, (Chen and Patton 1999), offers a 

comprehensive text that attempts to create a unified framework for model 
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based fault detection.  The application of fault detection and diagnosis with 

respect to building systems will be discussed further in the next section.  

 FDD can be separated into two categories; the first being the phase in 

which the fault is detected and the next being where the fault is diagnosed.  

From here techniques can be sorted into a variety of categories depending on 

how the fault is detected and diagnosed.  Figure 1 and Figure 2 taken from 

(Isermann 2006) show ways into which these processes can be separated and 

offer an overview of detection and diagnosis possibilities. For many of these 

processes, faults can be discovered in real time or by analysis of past data, 

although real time fault detection is preferable so that immediate action to 

repair the fault can be taken.   

 

Figure 1 Fault Detection Methods 
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Figure 2 Fault Diagnosis Methods 

For the process of fault detection, the most simple and common method 

is detection with single signals using limit checking and fixed thresholds, a 

method seen in Figure 1.  The general process consists of measurement of a 

signal, then, when the measurement crosses a certain threshold an alarm is 

triggered, notifying relevant personnel, or some sort of automatic correction 

is implemented.  The typical disadvantage of these systems are that they 

often detect faults late and that determining the correct threshold that 

specifies a fault can be difficult.  For simpler applications where tolerances 

are not particularly crucial this may be a useful and simple method to detect 

faults.     

Once a fault is detected the next step is diagnosis.  This becomes 

exceedingly difficult when analyzing multiple faults, as the states in which 

the faults exist may overlap.  The goal of fault diagnosis is to determine a 

fault with as much detail as possible; this could include the fault type, 
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severity, location or time.  The typical method for fault diagnosis is to use 

prior knowledge of a physical system to reconstruct a system state based on 

measured data.  As shown in Figure 2, diagnosis can be split into 2 general 

categories, classification and inference.  Classification methods consist of 

comparing measured data to expected values.  A common method of this is to 

use Bayesian or geometric classifiers that relate the difference between 

measured and expected values.  Inference methods use fault trees or if-then 

statements to determine the likely cause of events.  A review on fault 

diagnosis from (Leonhardt and Ayoubi 1997) compared classification, 

inference and hybrid systems. A typical issue found with classification 

methods is they require many data points.  Inference systems can perform 

well for fault diagnosis but the binary nature of using decision trees or if-then 

statements often leads to delayed fault detection.  The delayed reaction time 

is a result of the fault not being shown as an increasing probability but only 

being shown once a threshold has been completely crossed.  With any fault 

diagnosis system, there is always the risk that an unexpected or 

underspecified fault may lead to data that is not previously considered by the 

fault detection system; therefore, for any fault diagnosis problem, specifying 

the faults that will be diagnosed is a challenge.  

With the availability of inexpensive microprocessors, the ability to use 

models for FDD is common (Isermann, Fault-Diagnosis Systems 2006).  By 

using models, it is possible to determine system states that are difficult or 
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expensive to measure, this leads to a larger amount of faults that can be 

detected.  In model based fault detection, a model predicted value is typically 

compared to a measured value.  If the measured value is outside an expected 

range then the system is considered faulty.  The benefit of model-based 

systems is the ability to detect faults quicker and more precisely compared to 

simpler limit checking methods.   

An example of model based FDD is given by an experiment from 

(Isermann 1984), where a leakage in a pipe is considered.  With 

measurements of pressure and mass flow rate at the inlet and outlet of a pipe 

one could determine a leakage by simply comparing the in and out mass flow 

rate; when the outlet mass flow rate is smaller than the inlet mass flow rate 

it could be assumed a leak is present.  However, because of dynamic effects 

and signal noise only large leaks of approximately 2% or more for liquids and 

10% or more for gases can be found.  Furthermore, even when a fault is 

detected, the location of the fault is unknown.  However, with the use of a 

model, a fault signature in the residuals of the mass and momentum balances 

can be obtained.  Using such a model the experiment carried out by 

(Isermann 1984) resulted in the ability to detect a leakage of only 0.2% for a 

liquid and 2% for a gas.  For a liquid system, the location of the leak was 

found within 0.7% of the total pipe length.  This example clearly 

demonstrates the power of model based fault detection.  
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2.2 Fault Detection in Buildings 

Fault detection and diagnosis in the building sector, despite growing 

research efforts, is still an area where much work is needed.  FDD has been 

actively researched in other fields such as aerospace, process controls, 

automotive industries, manufacturing, nuclear, and national defense but the 

building industry has lagged these other industries by about a decade 

(Katipamula and Brambley 2005A).  Of the developments from the HVAC 

industry, a survey of building system fault detection methods conducted by 

(Katipamula and Brambley 2005A) found no fault detection system that was 

commercialized and widely used.  Most of the current research remains in 

universities and laboratories and focuses on chillers, air handling units and 

refrigerators (Katipamula and Brambley 2005B).  Of the methods being used 

in buildings, FDD expert rule based approaches are most common.  Although 

Bayesian fault detection is used in other industries such as aerospace, a 

literature survey shows that HVAC applications using this method are 

undeveloped.  

The most comprehensive review on FDD for building systems is a two-

part study from (Katipamula and Brambley 2005A).  In the first part of this 

review, major studies such as the Annex 25 study are presented (Hyvärinen 

and Käarki 1996). In the Annex 25 study, many major faults are listed for a 

wide array of systems, detection and diagnosis methods are discussed, and a 

background for FDD is presented The second part of this survey focuses on 
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research specific applications in the HVAC industry focusing on a large 

number of individual studies.  Key findings from these reviews were, that 

although progress is being made, the state of current research doesn’t allow 

for the development of commercial products.  Main problems preventing 

commercial development are the cost of developing customized systems for 

each individual building, a lack of research around the decision support 

systems when a failure is detected, the high cost of reliable sensors and lack 

of methods for predictive fault detection as opposed to corrective fault 

detection.  

Since this literature review performed by (Katipamula and Brambley 

2005A), most studies for FDD in building systems focus on fault detection for 

AHU’s such as (H. Wang et al. 2011; Du and Jin 2007b; Du, Jin, and Wu 

2007; Du, Jin, and Yang 2009).  Common analyzed faults include errors in 

sensor readings, damper failure, excessive air supply, high supply 

temperature, incorrectly sized components and inappropriate flow rates of 

water and air.  Many current studies for fault detection also analyze the 

potential of sensor faults that can lead to non-functioning control schemes 

(Chen and Lan 2010; Du and Jin 2007a; S. Wang, Zhou, and Xiao 2010).  

Studies focusing primarily on heating system secondary circuits fault 

detection were not found; however, some of the studies that focus on AHU or 

cooling systems deal with similar principles such as incorrect outlet water 
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temperature cooling coil fouling or heating coil fouling (Liang and Du 2007; 

Lalot and Pálsson 2010; Persin and Tovornik 2005). 

2.3 Bayesian Fault Detection 

  Fault detection using a Bayes classifier is one of the most well known 

fault classification schemes (Isermann 2006).  Typically the likelihood of a 

certain parameter is determined by comparing a fault free state with 

measurement data.  A Gaussian distribution is typically assumed in 

determining the likelihood of a measured point being outside of an acceptable 

range.  From here, a probability of a fault given an observation can be 

determined.  In a study by (House, Lee,  and Shin 1999) it was found that for 

fault detection of AHU’s a Bayesian classifier outperformed all other 

classifiers tested.  However, for fault diagnosis all methods performed 

approximately the same. An experiment from (Xu and Tang 2011) analyzes 

the time to failure rate of industrial heaters and compares the effect of the 

prior on posterior distributions, finding that good choice of prior distributions 

outperformed the use of likelihood functions alone.   

 Although, not directly used for fault detection, (Booth et al 2011) uses 

Bayesian parameter estimation do determine uncertain building physics 

parameters.  In this study uncertain parameters are given prior distributions 

then with the use of typical parameter estimation techniques posterior 

distributions for parameters such as internal heating set point, air leakage 

and window to wall ratio are determined.  This results in a better model fit 
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when determining daily energy consumption than the pre-calibration model 

prediction. 

 Another paper that exemplifies the scalability of a Bayesian approach 

is a parameter estimation problem for non-domestic buildings in London 

(Choudhary 2011).  This paper focuses using building stock models and other 

available information such as mapping databases and floor space statistics to 

estimate energy consumption.  One could imagine a similar study being 

performed on similar but non-identical potential faults.  With a rule based 

method unique rules would have to be developed for each non-unique system.  

With a Bayesian approach parameters describing a system could be 

estimated with measurement data.  Then potential faults in this sustem 

could be determined.  

 Currently, there is a lack of application of Bayesian methods to the 

building sector.  Quick and accurate fault detection can lead to large energy 

savings, equipment failure avoidance and provide the additional incentive of 

increased worker productivity due to room temperature remaining within an 

acceptable thermal comfort range.  The goal of this thesis is to further 

develop and test Bayesian inference methods for the building environment 

 

 

 

 



 15 

 

 

3 METHODOLOGY 

3.1 Model Development for an Example Building  

The focus of this research in terms of experimental data source and 

validation lies on a government building in Germany. The purpose of 

investigating the Bezirksregierung Düsseldorf (BZRD) is to analyze the 

consequences of the fault of missing nighttime and weekend temperature 

setback on the heating temperature setpoint.  The procedure for analyzing 

this fault will include development of a building model, calibration of the 

latter model using Bayesian parameter estimation, and finally an analysis of 

the potential savings available by implementing a nighttime setback. 

 The building model developed was created in the Matlab Simulink 

environment.  The room is modeled as a thermal network model using two 

capacitors and three resistors for each wall.  The model inputs are solar 

radiation, outside air temperature and temperature of hot water for the 

circuit, which produce the outputs; resulting zone temperature and energy 

consumption.  The model constructed for this experiment consists of a single 

zone. This is adequate model complexity to estimate total potential nighttime 

and weekend temperature setback energy saving potential.  
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 The method used for determining uncertain parameters for this 

building model is a Monte Carlo simulation with Bayesian parameter 

estimation, again using the Matlab Simulink environment.  The simulation is 

run 5000 times, each time with a different set of input parameters.  The 

varied parameters chosen included air change rate, thermal capacity of walls, 

thermal capacity of floors, thermal resistance of walls and thermal resistance 

of windows.  For each simulation, each parameter value is chosen from a 

normal distribution for that parameter with a mean value of the expected 

value and a standard deviation that spans the most likely values for that 

parameter.  After running all 5000 simulations with these parameter sets, 

code developed by Anthony Florita was used to post-process this data and 

determine the most likely parameter values by comparing the residuals of the 

measurement values to the model output for monthly data.  Following this 

comparison, the best set of parameters was chosen for further analysis. 

 To analyze the available savings, the model with the best matching 

parameters was used for a yearly simulation.  The simulation was run with 

nighttime, nighttime plus weekend setbacks and with no setbacks.  The 

model predicted energy is validated with the actual energy consumption and 

the overall energy savings with setbacks is analyzed. 
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3.2 Bayesian Fault Analysis 

To analyze a variety of potential building faults using the Bayesian 

method, a group of three models were constructed: a model for boiler energy 

consumption and a leaky valve, one for the heat exchanger from the BZRD 

and a model of a more complex hydronic network.  Different Bayesian 

inference methods are developed and explored for each of these three models. 

3.2.1 Boiler Model 

The first Bayesian fault detection is the analysis of boiler efficiency in 

a simple hydraulic network.  The model consists of a single zone and an 

HVAC plant to distribute heating energy.  The zone modeled is for 

demonstrative purposes only and is therefore modeled as a simple single 

lumped resistance capacitance zone.  The zone has internal heat gains and 

heat losses to the environment through building surfaces.  In this model the 

heat from the plant into the zone is calculated over a one-week period; the 

overall heat consumption is determined by changing the boiler efficiency.  To 

test these methods, surrogate data was first produced for a given boiler 

efficiency.  The most likely boiler efficiency was then calculated by running 

Monte Carlo simulations as part of Bayesian parameter estimation.  In 

addition to calculating the most likely boiler efficiency, a probability 

distribution can be generated showing the certainty of the estimate.  The 

probability distribution is then used to determine the likelihood of the system 

being in a faulty state.   
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After analyzing a single fault, multiple faults are analyzed.  The 

addition of a potentially leaky valve is added to the possible faults.  The 

leakiness of the valve is represented by the let-by in the valve, which is the 

amount of flow that passes when the valve is in the closed position.  Valve 

let-by also has an effect on energy consumption since the room is still heated 

even when the valve should be closed.  This results in both an overheating of 

the room and additional energy consumption.  The two faults are first 

compared to one measurement series, thermal power, and then to two 

measurement series, thermal power and hot water mass flow rate.   

3.2.2 Heat Exchanger Fouling 

 After validating the Bayesian methods for fault detection using 

surrogate data, an experiment using the model of a real system with 

measured data was performed.  The BZRD heat exchanger model was 

adapted from Max Schmidt (Schmidt 2011).  Again, by running Monte Carlo 

based Bayesian analysis techniques, the heat transfer coefficient for the heat 

exchanger is analyzed.  When the value for heat transfer degrades to a value 

that is lower than acceptable, then the heat exchanger is experiencing fouling 

and can be considered to be faulty.   

For this portion of the analysis, a closer look at the uncertainty is 

performed.  To determine the model uncertainty an analytical solution for 

uncertainty is calculated.  Then, a Monte Carlo model output uncertainty 

analysis is performed.  This is done to test whether model uncertainty can be 
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determined using a Monte Carlo approach when an analytical solution is no 

longer possible.   

3.2.3 Hydraulic Network 

 Finally, fault detection of a more complex six-zone hydraulic network 

is analyzed.  First, two separate modeling methods are compared and cross-

validated.  Then the faster of the two approaches is used for further analyses.  

Sets of fault combinations are detected using a model selection approach.  For 

model selection, as few models as are determined necessary to accurately 

detect faults are created.  Each model corresponds to a fault combination and 

the most likely fault combination is determined using Bayesian analyses.  In 

this way the most likely fault set is determined instead of the most likely 

parameter set.  So instead of a valve let by, for example, being determined as 

a discrete value, it is instead classified as faulty or non faulty.  
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4 TEST BUILDING MODEL DEVELOPMENT AND 

ANALYSIS 

4.1 Building Description 

The first issue investigated for the Bezirksregierung Düsseldorf (BZRD) 

building is the potential energy savings and feasibility of a nighttime setback.  

A nighttime setback for the BZRD would be achieved by turning off the 

heating system.  Since users in individual offices control the heating with 

manually controlled radiators, it is not practical to do a temperature setback 

by adjusting the room setpoint temperatures.  To achieve a nighttime setback 

either the pump must be shut off or the heating curve for the system must be 

adjusted.   

 The building chosen to model is the BZRD, a government building and 

ModQS demo building located in Düsseldorf, Germany.  The building is 

approximately 16 meters tall and has a footprint of 7,000 square meters.  The 

heating system is a hot water system using district heating as a heat source. 

Table 1 and Table 2 give further information on the building characteristics.  

 

Table 1 BZRD Location and Usage 

Location, Climate and Building Use 
City Düsseldorf 
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Table 2 BZRD 

Building 

Description 

 

Error! 

Reference source not found. 

shows a model of the buildings 

footprint and isometric view, 

Figure 4 shows a photo of the 

building. 

 

Figure 3 BZRD Isometric View 

 

Latitude 51°13' 
Longitude 6°46' 
Elevation 38 m 
Heating days 269 d 
Heating degree days 3058 Kd 
Average Temperature 8.8°C 
Monthly average max Temperature 12.9°C 
Monthly average min Temperature 6.4°C 
Use Office 
Occupied hours 8:00am to 6:00pm 
Offices 480 people 

Building Physics and Heating 
Floors 5 
Footprint 7000 m2 
Total floor area 19500 m2 

Shading Venetian Blinds, 
Shutters 

Blind position Outside 
Blind operation Manuel 
Outer wall U 
value 1 W/m2K 

Inside wall U 
value 1.31 W/m2K 

Roof U value 1.6 W/m2K 
Window U value 2.3 W/m2K 
Energy  District Heating 
Heat generation Gas 
Heat transfer Radiators 
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Figure 4 BZRD Photo 

4.2 Zone Modeling 

To analyze the possibility of a nighttime setback, a simple single-zone 

model was constructed in Matlab. This model analyzes a winter month in 

Düsseldorf.  District heating water temperature, ambient temperature and 

solar data are measured; the resulting heating energy needed and indoor 

temperature can be calculated.   

The zone constructed is modeled as a 2nd order resistance capacitance 

equivalent circuit, adapted from a model developed by Gregor Henze.  Solar 

gains are calculated using a simple transmission model and processing of 
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solar data from a customized solar function that translates global horizontal 

radiation into components striking a particular surface.  

Figure 5 (Henze) shows the equivalent RC circuit representing a 

construction element in the zone such as a wall, ceiling, floor or internal 

partition.   

 

 

Figure 5 Equivalent R-C Circuit 

The percentage of each resistance and capacitance element from the 

total resistance (RT ) is shown below.  The chosen percentages are typical 

values when describing construction elements (Henze).     

 Ri = 0.1RT ; Rm = 0.4RT ;Ro = 0.5RT  

Ci = 0.15CT ;Co = 0.85CT  
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 By solving the energy balances at the nodes it is possible to solve for 

the internal temperature values. The state variable derivatives  
!TS and  

!T'S are 

described in equations [4-1] and [4-2].   

  
 
!TS =

qr
0.15CT

+ Ti
0.015RTCT

! 0.075TS
0.0009RTCT

+ T'S
0.06RTCT

 [4-1] 

 
 
!T'S =

TS
0.34RTCT

! 0.765T'S
0.1445RTCT

+ To
0.425RTCT

 [4-2] 

It is often useful to express equations in state space notation when 

using Matlab Simulink.  State space notation allows the equations to be 

expressed by matrices. By arranging these equations in state space notation 

the output variables TS  and T'S  are solved for in the Matlab Simulink 

environment.  With the construction elements fully defined it is now possible 

to determine the inside surface temperature given an outside temperature, 

inside temperature and incident solar radiation as input variables.  The 

initial condition for the room temperature is also needed and is fixed as the 

setpoint for the control system. 

To determine the temperature inside the room it is necessary to 

perform an energy balance that includes the heat transfer through 

construction elements as previously developed as well as internal gains, solar 

transmission gains through windows, infiltration, and heating gains from the 

HVAC system.  
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The solar transmission into the room, q
.

r , is given in equation [4-3] 

where Ag, τg, and qr-surf, are the surface area of the glass, transmissivity and 

incident solar radiation respectively.  

 
 
Q
.

r = A
g
!

g
Q
.

r"surf  [4-3] 

 The infiltration into the space is determined by equation [4-4] where N, 

the total air change rate, is influenced by Ns (air change per hour), the 

standard air change rate, and vw, To and Ti which are the wind speed velocity 

(m/s), external temperature and internal temperature (degrees C) 

respectively.  Since the BZRD also has operable windows, an additional term 

was added to equation [4-4] that increased the total air change rate during 

occupied hours.  

 N = NS[0.15 + (0.013)(2.2369)vw + (0.005)(1.8)! | To " Ti |]
0.695

 [4-4] 

 The air temperature rate of change can now be determined by 

performing an energy balance as described in equation [4-5] where Ci is the 

thermal capacity of the air in the room, q
.

cc  is the convective heat gain, q
.

cp  is 

the convective plant heat inputs which will be further described in section 4.3, 

A is surface area, T is temperature, RT  is overall thermal resistance, V is the 

room volume, and U is the U-value.  The subscripts ew, iw, f, r, g and o 

represent the external wall, internal wall, floor, roof, glass and external 

respectively. 
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Ci
dTi
dt

= qcc + qcp !
Aew(Ti ! Tsew )
0.1RTew

+ Aiw(Ti ! Tsiw )
0.1RTiw

+ Af (Ti ! Tsf )
0.1RTf

+ ...
"

#
$

...Ar (Ti ! Tsr )
0.1RTr

+ NV(Ti ! To )
3

+AgUg(Ti ! To )
%

&
'

 [4-5] 

 

4.3 Plant Modeling 

 To model heating input into the zone, a third-order model is used to 

model the heat emitted from a hot water radiator.  In this approach, the heat 

exchanger is analyzed in three lumped capacitance segments that are 

connected in series.  The heat transfer in each section is related to the 

difference between water and air temperature raised to a constant exponent, 

which for convective radiators is chosen as 1.3.  Equations [4-6], [4-7] and 

[4-8] describe the energy balance at each of the three nodes.  Cw, m
.
w , cp, K 

and n refer to the overall water and material thermal capacity, flow rate of 

water, thermal capacity of water, emission constant, and emission index.  Twi, 

Tw1, Tw2, Twr, are the inlet water temperatures for input, section one, section 

two and section three respectively, the water temperature at section three is 

the output water temperature.  Ti is the internal zone air temperature.  

 Cw
dTw1
dt

= 3mwcp(Twi ! Tw1)!K(Tw1 ! Ti)
n  [4-6] 

 Cw
dTw2
dt

= 3mwcp(Tw1 ! Tw2 )!K(Tw2 ! Ti)
n  [4-7] 

 Cw
dTwr
dt

= 3mwcp(Tw2 ! Twr )!K(Twr ! Ti)
n  [4-8] 
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 In order to determine the mass flow rate a control system that 

measures internal temperature and gives a response signal to a valve 

actuator is needed.  A temperature sensor in the room is a first order model 

having a rate of change determined by a time constant.  The controller is 

then modeled using Matlab’s built in proportional-integral-derivative 

controller. The ouput signal from the controller is sent to the valve having 

characteristics that result in a mass flow mw described by equation [4-9].  mwd 

is the design mass flow, fo is the let by, p is the stem position, and A is the 

valve authority. 

 mw = mwdfo
(1!p) (fo

(1!p) )2 (1!A)+A"# $%
!1
2  [4-9] 

 The last term needed to determine the room air temperature is the 

heat input from the HVAC plant. The heat output of the heat exchanger is 

shown in equation [4-10] where the water temperature at each node is solved 

for using a Simulink integrator block to integrate equations [4-6], [4-7] 

and[4-8]. 

 qcp =
K
3
(Tw1 ! Ti)

n + (Tw2 ! Ti)
n + (Twr ! Ti)

n"# $%  [4-10] 

 With all of the zone components adequately described, simulation of 

resulting zone temperature and heat use is possible with measured input 

data for input water temperature, outside air temperature and solar 

radiation.  
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4.4 Calibration 

 In order to calibrate the model, a combination of manual adjustment, 

given building construction information, and Bayesian parameter inference 

was used. Resistances of walls and windows were taken from construction 

data sheets for the building.  Other parameters such as air change rate and 

thermal capacitance were adjusted manually or with parameter estimation 

techniques to try to minimize the root mean square difference between the 

measured and simulated data. 

 Since measurements for inside air temperature were unavailable, the 

model was calibrated to measured heating input into the zone.  

Measurements of supply temperature, return temperature and mass flow for 

the main circuit allow for the total heat into the building to be easily 

calculated, these values are then compared instantaneously and cumulatively 

to the model output.   

At first, parameters were adjusted from expected values to reduce the root 

mean square of the measurement and model differences. It was then decided 

that a more sophisticated approach might lead to better model parameter 

classification.  To better estimate uncertain parameters, code developed by 

Anthony Florita for Bayesian parameter estimation was applied to the 

existing zone model.  The zone simulation was run 5000 times using Monte 

Carlo techniques, which sampled five parameters, each from a normal 

distribution.  Then, each of these simulations is compared to the 
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measurement and the best resulting parameter set can be used for further 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

 

 

5 BAYESIAN ANALYSIS 

5.1 Background 

 Bayesian analysis is used for fault detection in this thesis by the 

method of parameter estimation.  The idea behind Bayesian statistical 

methods is to combine prior knowledge and current knowledge to determine 

the most likely state of a system.  A Bayesian application that helps to 

exemplify its usage is the use of Bayesian statistics to examine if a person 

carriers a certain disease.  Let’s assume that one out of every 5000 people is a 

carrier of the disease.  Our prior assumption would be that a random person 

would have a 1/5000 chance of being a carrier, or a 0.02% chance of being a 

carrier.  Now let us assume the probability of a test correctly predicting the 

disease is 99.9% true positives and 99.9% true negatives. If we want to 

determine the probability of someone who has tested positive of having the 

disease we apply Bayes theorem.  The prior is multiplied by the likelihood 

and then divided by all possibilities, the two possibilities is the person is a 

carrier and tested positive or the person is not a carrier and tested positive.  

The equation below shows how even someone who tested positive is still only 

17% likely to be a carrier. 
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P(Disease|Positive) =

1
5000

!
"#

$
%&

(0.999)

1
5000

!
"#

$
%&

(0.999)+ 4999
5000

!
"#

$
%&

(0.001)

=17% [5-1] 

 The value describing the assumption for the system state is called the 

posterior, which is described by equation [5-2] for a continuous state or [5-3]	  

for	   a	   discrete	   state.	  !  is the parameter being examined and D is the data set.  

The posterior p(! | D)  is calculated as the probability for a system state based 

on prior information about the parameter p(!) , and the likelihood of the 

system state p(D |!) .  The denominator is used to normalize the function so 

that all possible posteriors integrate to one in a continuous case or add to one 

in a discrete case.    

 p(! | D) = p(D |!)p(!)
p(D |!)p(!)"

 [5-2] 

  

 p(! | D) = p(D |!)p(!)
p(D |!)p(!)"  [5-3] 

 The posterior will always be a combination of prior assumptions as 

well as the likelihood function; thus, it is crucial to use correct prior 

information.  When no or little prior information is available, an 

uninformative prior is used.  An uninformative prior can still give 

information about the system; for example, that the number is positive or 

between certain intervals.  A uniform prior is a type of uninformative prior in 
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which all possibilities between certain intervals are considered equally likely.  

An example of this could be the unknown efficiency of some system.  If no 

information about the system is available a priori, then a good prior would be 

equal probabilities between the interval of 0 to 1. 

 The likelihood of a measurement given a parameter !  is determined 

by equation [5-4] when assuming a normal model.  This model determines 

how likely it is that a single measurement matches a model prediction.  When 

determining likelihoods, it is useful to compute the likelihood of an entire 

time series instead of only a single point.  In case the data points are 

independent of each other, the likelihood of a series of data points is the 

product of the likelihoods of each point in the time series where n is the 

number of data points [5-5].   

 p(Di |!) =
1

" 2#
exp $ (Di $µ)

2

2"2

%

&
'

(

)
*  [5-4] 

 p(D |!) = 1
" 2#

exp $ (Di $µ)
2

2"2

%

&
'

(

)
*

i

n

+  [5-5] 

 The variable !  is the standard deviation of the normal distribution 

and was determined as the measurement and model uncertainty.  

Development of this variable is further discussed in section 5.3.2. 

 To combine the likelihood function as a product the error of 

measurement is considered to be independent.  This helps to simplify math 

and is a fare assumption in most circumstances.  Another form of 

measurement error is bias.  Having a bias or auto correlated errors are also 



 33 

treated much in the same way, and measurements are just adjusted 

according to there bias and likelihoods can be combined still as a product of 

individual likelihoods.  

5.2 Boiler Model 

5.2.1 Model Description 

 The zone and heat plant model used for this analysis are the same as 

those described in sections 4.2 and 4.3 respectively.  Figure 6 shows a layout 

of the model in the Simulink environment.  

 

 

Figure 6 Simulink Diagram of Zone Model with a Boiler 

This is the model at its most outer level and the plant, zone, and heating 

curve blocks can all be explored further. 
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5.2.2 Single Parameter 

 Consider a boiler supplying heat to a one-zone building.  The efficiency 

of the boiler can be determined as the heat supplied to the zone, Pout, divided 

by the power consumption of the boiler, Pin as seen in equation [5-6]. 

   

 ! = Pout
Pin

 [5-6] 

 Using the power input as a measured variable, a model can be 

constructed which compares the modeled power input and the measured 

power input as a function of the parameter η.  To generate the “measured 

data”, a set of surrogate data is constructed by entering a known efficiency 

into the model.  The model is then run with this efficiency and the value is 

determined using Bayesian parameter estimation. 

  The first step to estimating the parameter η is constructing a number 

of models with different η values, which are generated by performing a Monte 

Carlo simulation.  It is assumed that the boiler is operating in accordance 

with the second law of thermodynamics and therefore the parameter space 

that is sampled is from zero to unity.  It is also likely that the boiler is 

operating somewhere around normal conditions so it is best to have a higher 

sampling density around the more likely efficiencies.  Other parameter 

values are also sampled, but by having a higher sampling rate near expected 

values the resolution can be increased.  To perform the Monte Carlo 
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simulation, an efficiency is taken at random from the beta distribution shown 

in Figure 7.   

 

Figure 7 Efficiency Beta Distribution 

 This process of using a randomly chosen efficiency is carried out 100 

times, resulting in 100 data sets containing power inputs for a one-week 

period for different values of η.  The likelihood of the modeled η value is given 

in equation [5-7].  The prior needed for Bayesian inference is first tested as a 

normal distribution around an expected value then is assumed to be a 

uniform prior between the intervals 0 to 1.  The posterior can be determined 

using equation [5-3]. 
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 p(D | !) = 1
" 2#

exp $ (Di $µ i )
2

2"2

%

&
'

(

)
*

i

n

+  [5-7] 

 

5.2.3 Multi Parameter with a Single Measurement 

 The next problem investigated deals with the potential for multiple 

faults within a system, still using the power output as the data source.  The 

two potential faults analyzed here are a leaky valve and the efficiency of the 

boiler.  Both faults will have an effect on the power consumption of the boiler.  

The leaky valve will result in an increase in energy consumption and 

overheating of the room since heated water will still be circulated when the 

valve should be closed.  An inefficient boiler will also result in increased 

energy consumption.  Investigating multiple faults can become difficult 

because of the possibility of tradeoff effects, i.e., an increase in power 

consumption could be a result of either of these faults.  Since the Bayesian 

analysis is looking at many points in a discrete time period, it is still possible 

that the correct parameter values can be determined since a fault signature 

can be detected.  The most closely fitting parameters should result in a 

response that matches the surrogate data.  

 Another issue that arises when detecting multiple faults is adequately 

defining the parameter space for the Monte Carlo simulation.  More 

parameters result in a larger space that needs to be sampled, which means 

more Monte Carlo simulations and more comparisons between the generated 
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models and surrogate data are necessary.  This inevitably leads to higher 

computational costs. 

 The procedure for multiple parameter estimation is the same as for a 

single parameter except that each data series is now connected to a pair of 

parameters η and Kv, the valve let by as a percentage of the design mass flow 

rate.  The parameter space is now sampled with 1000 Monte Carlo runs. η is 

sampled the same as in the single fault example.  The valve let by is sampled 

as a log normal distribution as shown in Figure 8.  A log normal distribution 

was chosen, as the valve let by cannot be negative. 

 

Figure 8 Valve Let By 
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5.2.4 Multi Parameter with Multiple Measurements 

 Since tradeoff effects often present themselves when examining 

multiple parameters, it is useful to compare the models to the surrogate data 

using multiple measurements.  With more information available it becomes 

easier to define the system being investigated.  Preferably the measurements 

being chosen should aim to isolate the investigated faults.  For this example a 

good second measurement is the flow rate, as this isolates the valve let-by.   

 To perform Bayesian parameter estimation with multiple 

measurements, the analysis is first run comparing one of the measurement 

time series with model output.  The posterior from this initial analysis 

becomes the prior for the proceeding analysis with the other measurement 

series.  In this way all of the knowledge of the system can be used to estimate 

the faults that are being investigated.  This could be repeated for any number 

of measurements and the more faults being investigated the more important 

this process of sequential prior updating will become.  

 The parameter space investigated for this problem was the same as in 

section 5.2.3, however, this time both power consumption and mass flow rate 

of water was recorded for both surrogate data and the model data, which 

results in 1000 data sets, each with two modeled predicted data series and 

two parameters. 



 39 

5.3 Heat Exchanger Fouling 

 The next step with parameter estimation was to extend the previous 

developed techniques to estimate faults with measured data instead of 

surrogate data.  There are two heat exchangers, one of which is suspected to 

have fouling.  The goal is to estimate the heat transfer coefficient to 

determine if fouling is present.   

 

5.3.1 Model Description 

The heat exchanger model is a steady-state effectiveness NTU model.  The 

term k, used as a measurement heat transfer, is defined as 1/U where U is 

the standard heat transfer coefficient.  The value k is determined through 

equation [5-8] where m2 is a mass flow rate, T is temperature, cp is the 

specific heat of water, and !Tm is the log mean temperature difference [5-9]. 

 k =
cp

A!Tm
(m
.
2 T2,out "m

.
2(T2,in " T2,out )) [5-8] 

 !Tm =
(T2,out " T2,in )" (T1,in " T1,out )

ln
(T1,out " T2,in )
(T1,in " T2,out )

 [5-9] 

 Figure 9 shows a diagram of the two heat exchangers in the BZRD, 

note that the subscript “ein” is in and the subscript “aus” is out.  
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Figure 9 BZRD heat exchanger (Schmidt 2011) 

 The mass flow rate and inlet temperatures are known and used in equations 

[5-10] and [5-11] to solve for the outlet temperatures.  

 T2,out = (T2,in!T1,in )
1! C1
C2

1! C1
C2

"
+ T1,in  [5-10] 

 

 

T
1,out

= (T
2,in!

T
1,in

)
1! "

1!
C

1

C
2

"
+T

1,in
 [5-11] 

The variables ! , C1  and C2  are defined by equations [5-12], [5-13] and [5-14] 

respectively.  

 ! = exp 1
C2

" 1
C1

#
$%

&
'(
kA

)

*
+

,

-
.  [5-12] 

 C1 = cp m1

.
 [5-13] 

 C2 = cp m2

.
 [5-14] 
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5.3.2 Uncertainty Analysis 

 An issue that has not yet received extensive attention is the 

determination of the parameter ! .  At each point in a time series, the 

measured data is compared to model data.  How closely the data matches the 

model is determined by the probability of the model being the “true” value.  

The certainty of the true value is based on a normal distribution around the 

true value.  The width of the normal distribution is defined by the variance, 

! .  When is large, the distribution is wide, and certain model values are 

not particularly more likely than other model values even when they are far 

apart numerically.  When the true value is more certain the distribution is 

narrow and small numerical value differences in the model can create large 

differences in probability.  Figure 10 shows a potential comparison of 

different sigma values.  The lines represent the distribution surrounding the 

measured true value of 22.5 degrees Celsius.   The two points represent a 

model output.  So far, the way in which the sigma epsilon value is determined 

is by the measurement error.  Errors are considered to be distributed 

normally and without bias.  

 An issue that this creates is that model error is not considered.  

Measurement values are used as inputs for a model, these measurement 

values are not exact but normally distributed around a true value.  Therefore 

model output contains these measurement values that are propagated 

through the model.  When model output is compared to measurements it was 

!
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assumed previously to be a correct value when actually it is a value with 

uncertainty. Therefore, reported results are reported as more certain than 

they actually are when model uncertainty is not included.  

 

 

Figure 10 Certainty of Simulated Value Being the “True” Value 

 A proposed solution to this underestimated uncertainty is to determine 

the sigma value as a combination of model error and measurement error.   

There were two methods in which this revised uncertainty was calculated for 

the BZRD heat exchanger: Kline-McClintock uncertainty analysis and a 

Monte Carlo uncertainty analysis.  The uncertainty in the model output in 

both of these analyses is the result of uncertainty propagation from the 

measurements rather than a result of the model structure or underlying 

physical assumptions. 
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 For the Kline-McClintock uncertainty analysis, the partial derivatives 

are taken for both of the model outputs which were defined previously in 

equations [5-10] and [5-11].  The resulting partial derivatives for [5-10] are 

shown in equations [5-15] through [5-18]. 
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 After taking the partial derivatives the uncertainty can be calculated 

with equation [5-19] using the measurement uncertainties for mass flow rate 

as well as temperature in combination with the partial derivatives.  
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 The uncertainty of T1,out is calculated in a similar fashion as described 

by equations [5-20] through [5-24].  
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 The total combined model and measurement uncertainty is then 

described by equations [5-25] and [5-26], where !c denotes the combined 

measurement uncertainty and !T is the measurement uncertainty.   

 !cT2,out
= !T2,out

2 + !T
2  [5-25] 

 !cT1,out
= !T1,out

2 + !T
2  [5-26] 

 For this particular problem there is an analytical solution and taking 

partial derivatives is possible.  However, this is not always the case for more 

complex models.  Another approach to determine the model uncertainty from 

propagation of errors is a Monte Carlo propagation of errors uncertainty 

analysis. 

 A Monte Carlo propagation of errors uncertainty analysis is performed 

by running the simulation many times while varying the inputs values, then 

recording the distribution of the output values.  Again, the measurement 

uncertainty is considered to be normally distributed.  For each run, input 

parameters are selected randomly from a normal distribution centered 
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around the measured value.  After each run the output is recorded and !T2,out

and !T1,out are determined as the variance from the resulting distribution of 

output values.  

5.3.3 Single Parameter Analysis 

 The goal of this experiment is to analyze a fault as a continuously. The 

previous analyses used time series calibration, where entire time series 

where compared all at once, instead of at each time step.  When analyzing 

faults in a real hydraulic heating circuit, it is useful to detect a fault as it 

occurs.  The way that this problem was analyzed was by using equation [5-4] 

to determine the likelihood that a model matches the measurement at a 

single point.  Since the fault being analyzed is an effect of  degradation and 

not instantaneous, the previously determined k value distribution is used as 

the prior distribution.  The aim of this is to help reduce measurement noise 

between short time steps. 

 The process was developed and tested first using surrogate data with a 

linearly decreasing heat transfer coefficient.  Surrogate data was altered by 

introducing normally distributed measurement noise centered around the 

model output values.  

 After testing and confirming the process using surrogate data, 

measurements from the BZRD for a three-year period were used to attempt 

to detect faults in the heat exchangers.  
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5.4 Hydraulic Network 

5.4.1 Model Selection 

 In order to have the ability to investigate a more in-depth set of faults, 

a more complex Simulink model was used. Gregor Henze developed this 

model, which applies the physics described in section 4.2 and 4.3.  Another 

model investigating the same set of faults was created using the French 

SIMBAD toolbox, which also utilizes the Matlab Simulink environment.  The 

purpose of this was to cross-validate the Henze model and to explore the 

possibility of using the SIMBAD toolbox. 

 The SIMBAD toolbox is a library of HVAC components created for the 

Simulink environment, with capabilities of modeling complex hydronic 

systems with pressure dependent components.  When modeling hydronic 

systems in the Simulink environment, SIMBAD components are arranged in 

a way that approximately corresponds to the layout of an actual physical 

system.  This approach is not more or less valid than other arrangements, but 

the systems were arranged in this way to create ease of understanding when 

sharing models.  Properties of water are always carried in a 3 element vector 

with temperature, pressure and mass flow rate.  Describing the water flow 

this way is useful because it can then easily be checked with the 

measurements in demo buildings.   

 Calculating the pressure in a hydronic system is not a simple task, 

especially when considering complex dynamics involving many branches and 
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heating system control valves. A “check” element is implemented at every 

diverting and corresponding converging “t branch” in the hydraulic network.  

The purpose of this check vector is to ensure the pressure is balanced 

throughout the system by using a check and iterate method with the 

diverting and converging element to ensure the pressure values are correct.  

If the pressures are balanced then the corresponding mass flow rates through 

each branch can be determined. 

 The model created is a six-zone model with one pump and air 

terminals with reheat coils placed in each zone.  Each zone contains a 

hydraulic circuit consisting of a control valve, heat exchanger and balancing 

valve.  The overall hydraulic circuit resistance consists of these six zone 

resistances as well as supply piping, return piping and pump resistance.  The 

hot water supply temperature is given as the negative of the external 

temperature in Celsius plus 50 degrees, as this is a typical control scheme for 

hot water heating temperature.   

 The SIMBAD model created attempts to match the results from Gregor 

Henze’s six-zone model, also developed in the Matlab Simulink environment.  

The zone models used were identical but the way in which the hydraulic 

system behavior is determined is different. 

 Henze’s model uses Kirchhoff’s 1st and 2nd laws to determine the 

overall pressure drop of the system by adding series components first.  Then, 

starting with the outermost circuit, the parallel resistances are added.  This 
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information is given to the pump, which then determines the corresponding 

total flow rate.  The resistances of each individual circuit in relation to the 

total combined resistance weights the flow rate and flow rates through each 

corresponding circuit are determined.   

 Results between both modeling approaches were compared for steady 

state and non steady state external conditions, constant set point 

temperature and nighttime setback, situations with internal gains from 8:00 

am to 6:00 pm, correct/incorrect valve sizing and valve characteristics.  

Examples of the results are shown in Figure 11.  Results were found to be 

nearly identical with the largest variations occurring with the combination of 

non-steady state, large internal gains and linear valve characteristics.  This 

caused longer lasting fluctuations in the supply and return temperature of 

the water in the SIMBAD models.  
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Figure 11 SIMBAD (left) and Henze (right) Comparison for 6000 W Internal 

Gain 

 Moving forward, it was decided to use Henze’s model for further 

analysis of hydraulic systems.  This was based on the computational speed 

being considerably faster for this model.  For future work SIMBAD may 

prove a useful tool because of its high level of adaptability. 

5.4.2 Bayesian Model Selection Analysis 

 Using the Henze model, a group of binary faults was analyzed.  The set 

of faults analyzed were valve type, valve let-by and high valve hysteresis.  

Each fault is considered to be binary, either in a faulty state or a fault-free 
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state or in the case of valve type linear or proportional.  This results in 8 

possible states for each valve as shown below in Table 3.  

 

Table 3 Fault Combinations 

 

 All 8 models are created and time series results are stored for all of 

them for a one-week period for measurements of mass flow, zone temperature 

and return water temperature.  The models are then tested with 8 sets of 

surrogate data using the exact values as described by the model to ensure 

functionality.  Next, 1000 sets of surrogate data were generated using 

random values for input parameters. Valve let by and valve hysteresis were 

both uniformly sampled on the intervals of 0 to 0.1 and valve type was 

selected randomly as linear or proportional.  Noise is then added to the 

Fault 
Combination 

Number 

Valve Type Valve Let-By (%) Valve Hysteresis  

1 Linear 0.025 0.025 

2 Linear 0.025 0.075 

3 Linear 0.075 0.025 

4 Linear 0.075 0.075 

5 Proportional 0.025 0.025 

6 Proportional 0.025 0.075 

7 Proportional 0.075 0.025 

8 Proportional 0.075 0.075 
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surrogate data by selecting a value from a normal distribution centered on 

the model-produced value. 

 The advantage of this method is the reduction in total models.  If a 

fault can be detected with only 8 simulations as opposed to before when 1000 

simulations were run, simulation time is greatly reduced.  One disadvantage 

is that the result in this case is binary.  That is, the system is either faulty or 

not, but the value is not determined, whereas with parameter estimation 

values of the fault parameters were determined.  The system does not have to 

be binary, however; any number of models could be created, but as the 

number of faults and fault states increases, the amount of models grows 

exponentially.  The goal is to determine faulty system states with as few 

models as is necessary.  
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6 RESULTS 

6.1 Test Building 

 To determine how well the model created matched the measured 

values, measured heating energy was plotted against the simulated heating 

energy.  Ideally this should result in a linear relationship with a slope of 

unity going through the origin without much variance on either side of this 

line.  As shown in Figure 12, the relationship between measured and 

simulated data is close to expected.  However, the slope is slightly less than 1 

and the variance is somewhat consistent.  A more analytical way to 

determine how well the data fits is the coefficient of determination, which 

compares the sum of the squares of the error and the total.  A coefficient of 

determination of 1.0 would mean the data matches perfectly, while a value of 

0 means the data is completely uncorrelated.  The coefficient of 

determination for this data was determined to be 0.84. 

 Figure 13 and Figure 14 shows the simulated and measured 

instantaneous and cumulative heat use, respectively.  The measured and 

simulated data are somewhat consistent, however, the simulated data does 

have larger dips when large amounts of solar energy are present and slightly 

over predicts heat usage during times of very cold weather.  A possible 
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explanation for this could be the model uses an air change rate (ACH) that 

predicts ventilation based on wind speed and infiltration and not the 

likelihood of occupants using operable windows.  Users may be less likely to 

open windows when the weather is cold.  Therefore, the model may 

overpredict the ACH for cold weather resulting in a higher prediction of 

heating energy for cold temperatures.   

 

Figure 12 Simulated vs. Measured Heat Usage 
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Figure 13 Simulated and Measured Heat Use 

 

 

Figure 14 Cumulative Heat Use 

 After validating the model, the next step that was performed was to 

analyze the energy savings available from creating a nighttime shutoff.  In 
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order for a nighttime shutoff to be effective, the temperature of the zone must 

be within the thermal comfort zone during occupied hours.  In order to ensure 

the zone is always warm enough, the heating system is shut off at 6pm and 

turned back on at 5am.  Figure 15 and Figure 16 show the instantaneous and 

cumulative heating energy, respectively, for both simulated and measured 

data.  Over the 4-week period, a nighttime shutoff reduces the total energy 

consumption by about 20%, saving approximately 93,000 kWh of heating 

energy.   

 

Figure 15 Heating with Nighttime Setoff 
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Figure 16 Cumulative Energy with Nighttime setoff 

 

 One reason a building operator may choose not to implement a 

nighttime shutoff is fear of pipes freezing and breaking.  However, in a 

building with such high thermal mass, this is highly unlikely even with a 

window left open or with very cold ambient temperatures.  Figure 17 shows a 

comparison between the zone temperature and outside temperature.  As 

shown the temperature in the zone never drops below 14°C even when the 

ambient temperature goes as low as -4°C. 
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Figure 17 Inside and Ambient Temperatures 

 

6.2 Bayesian Fault Detection 

6.2.1 Boiler 

6.2.1.1 Single Parameter 

 The results from the first test performed with a non-uniform prior are 

shown in Figure 18, Figure 19 and Figure 20.  It is revealed that the posterior 

distribution is always a combination of the likelihood and prior functions.  

Since the fault explored here is only using surrogate data, the likelihood 

function is a very narrow distribution centered around the actual value.  This 

means when it is combined with a wide prior distribution the posterior 

distribution is more heavily influenced by the likelihood function.  The use of 

a prior distribution can be useful when there is a fairly high certainty of a 

certain parameter and multiple parameters are being estimated as shown in 
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the next section.  However, for this test case it becomes inappropriate 

because it skews the results without any added benefit.  

 

 

Figure 18 Boiler Efficiency of 0.3 With a Non-Uniform Prior 
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Figure 19 Boiler Efficiency of 0.5 with a Non-Uniform Prior 
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Figure 20 Boiler Efficiency of 0.9 with a Non-Uniform Prior 

 Next, the test was performed using a uniform prior as would be 

expected when all of the priors are considered to be equally likely and the 

posterior function is normalized the likelihood function becomes the posterior.  

Figure 21 shows that the program is capable of correctly detecting the 

surrogate data’s efficiency.   
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Figure 21 Boiler Efficiency of 0.8 with a Uniform Prior 

 

6.2.1.2 Multiple Parameters with a Single Measurement 

 This section investigates the ability to determine the values of multiple 

parameters, still using the same measurements as before.  This becomes 

more difficult since tradeoff effects make it difficult to isolate and determine 

the fault.  Figure 22, Figure 23 and Figure 24 exemplify the tradeoff effects 

that emerges in this scenario.  In both figures, there are two areas with 

higher probabilities or a long area where posterior probabilities are 

essentially equal and determining the true value can be difficult.  It should 
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also be noted that none of the values are much more likely than the others 

presented as can be seen by the scale of the figures.  

 

Figure 22 Multiple Parameters with a Single Measurement 
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Figure 23 Multiple Parameters with a Single Measurement in Winter 
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Figure 24 Multiple Parameters with a Single Measurement in Spring 

 A possible solution to isolate one of the faults and thus gain certainty 

is to establish a prior distribution as more information becomes available.  If, 

for example, a building owner had installed a new boiler and was fairly 

certain it was operating at nominal conditions that assumption could be 

added as prior information.  If it is assumed that the boiler is likely to be 

operating at 90 percent efficiency a prior distribution can be created as shown 

in Figure 25.  The prior distribution for the valve let by is still considered 

uniform.  This results in Figure 26, revealing that there is now only one 

region clear region where the fault exists.  This is a result of a high prior 
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probability in the region where there is a higher likelihood of a fault being 

present.  

 

Figure 25 Efficiency Prior Distribution 
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Figure 26 Multiple Parameters with a Single Measurement and Prior 

 

6.2.1.3 Multiple Parameters with Multiple Measurements 

 If multiple measurements are available, then isolating a fault becomes 

much simpler, especially if interaction between the measurements is low.  

For this case, adding a flow rate measurement helps to isolate the valve let-

by.  Figure 27 and Figure 28 show how much more accurate the faults are 

detected with the second measurement available.  It should be noted that the 

scale is now 10-3 as opposed to the figures in the previous section where the 

scale is 10-4, with both showing the normalized posterior probability.    
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Figure 27 Multiple Parameters with Multiple Measurements 
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Figure 28 Multiple Parameters with Multiple Measurements 

6.2.2 Heat Exchanger 

6.2.2.1 Uncertainty Analysis 

 Both methods of uncertainty analyses result in a higher sigma value 

than just measurement error, as they are a combination of both measurement 

and propagated model uncertainty.  Figure 29 and Figure 30 show an 

uncertainty comparison for a three-year period between the Kline-McClintock 

method and Monte Carlo method for measured data.  The largest 

discrepancies between the two methods occur in the summer time when the 

flow rate through the heat exchanger approaches zero.  
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Figure 29 Uncertainty Analyses for T1, out 
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Figure 30 Uncertainty Analyses for T2,out 

 Although both methods show similar results, issues do arise with the 

Bayesian analysis.  As shown in equations [5-15] through [5-23], the 

uncertainty of the output is dependent on the UA value.  This means that 

different k values have different sigma values and all k values are not being 

compared equally.  Even if one k value were to produce better matching data 

to the surrogate or measured data, it may end up with a lower likelihood if it 

belongs to a wider distribution.  Figure 31 shows how one point is closer to 

the true value but because it belongs to a wider distribution, it has a lower 

likelihood. 
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Figure 31 Sigma Uncertainty Analysis	  

 A possible solution to this could be to take a single k value and 

calculate the sigma value using this and have that be the only sigma value 

used during the corresponding time step.  Another solution could be to 

calculate the k value using a constant sigma value and simply report the 

uncertainty of the detected k value at that time-step.  

6.2.2.2 Single Parameter Analysis 

 The first test performed was a comparison using surrogate data and 

parameter estimation with a uniform prior and two measurements.  A k 

value that is declining linearly is used to model fouling in the heat exchanger.   

The parameter is accurately determined, as shown in Figure 32, during 

winter months, where the green line is the actual value that was used as an 

input for the surrogate data and the blue line is the k value determined with 

parameter estimation.  
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Figure 32 Parameter Estimation with Uniform Prior 

 Next, the prior was changed from being uniform to being the posterior 

from the previous time step to eliminate measurement noise.  This method, 

at first, was somewhat ineffective.  One key issue is that Matlab can only 

work with numbers greater than 1*10^-308.  Often the likelihood function 

has extremely small numbers and when these are multiplied together each 

time step they can become zero.  With this method, once a prior becomes zero, 

the corresponding k value will remain at zero even if it has a high likelihood.  

This results in certain k values no longer being anything but zero and 

therefore the k value can get stuck as a constant value especially at later 

points in the time series.  To remedy this issue, the prior value became a 
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combination of the normalized posterior function and a uniform prior.  This 

ensured that all k values could still be most likely.  Figure 33 shows the 

analyses of parameter estimation with a posterior becoming the next time 

steps prior.  This method was found to be effective at reducing noise from the 

previous analyses with a constant and uniform prior. 

 

Figure 33 Parameter Estimation with Updated Prior 

 To try and explain the noise present, the determined k value is plotted 

with propagated measurement output uncertainty, as shown in Figure 34.  In 

summer months when the heat exchanger is less likely to be used low flow 

rates cause relatively high uncertainty.  This makes the heat transfer 

coefficient unpredictable.  The importance of uncertainty analyses is 
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highlighted here, as a building manager may interpret the heat exchanger as 

crossing into faulty states as the k value determined drops to very low values.  

This however, is not because the k value is actually low, but rather almost all 

likelihoods become equally probable and a k value is undeterminable.  

 

Figure 34 Uncertainty and Determined k Values 

 Next, the Bayesian methods developed with surrogate data were 

applied to measured data for the BZRD heat exchanger.   

Figure 35 and Figure 36 show the k value for a three-year period for the first 

heat exchanger and second heat exchanger respectively.  The figures clearly 
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show that the amount of noise present makes fault detection difficult for this 

system.  

 

Figure 35 k Value Without Updating Prior 1st Heat Exchanger 
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Figure 36 k Value Without Updating Prior for 2nd Heat Exchanger 

 Next, an updating prior is applied to reduce measurement noise.  

Figure 37 and Figure 38 show a three-year period for the first heat exchanger 

and second heat exchanger respectively. The prior is set at the previous time 

steps posterior, again combined with a uniform prior to ensure posteriors do 

not become fixed at zero.  
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Figure 37 k Value With Updating Prior 1st Heat Exchanger 
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Figure 38 k Value With Updating Prior 2nd Heat Exchanger 

 To better analyze the heat exchange rate the heat exchangers are 

looked at only during times when the mass flow rate is high enough that 

uncertainty allows for k value detection.  This is the case in winter months.  

K values are determined for each year from October to March for both heat 

exchangers as shown in  
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 Both heat exchangers have a fluctuating k value during winter months, 

which makes it difficult to say that a fault clearly exists.  Both heat 

exchangers operate at a level that is lower in the second and third year as 

compared with the first and cleaning them could be a possible solution for 

increased heat transfer.  

6.2.3 Hydraulic Network 

6.2.3.1 Bayesian Model Selection Analysis 

 For this analysis, eight models were compared to surrogate data sets to 

examine the capability of model selection.  Figure 39 and Figure 40 display 

the results found for this analysis for linear and proportional valves 
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respectively.  The four lines in the graph break the space into separate fault 

regions, a fault model was created at each intersection.  The blue markers 

represent a fault free state; the green markers are for a high hysteresis and 

fault free state; the black markers represent both faults; and the red markers 

represent a high valve let by with low hysteresis.  These parameters occupy a 

three-dimensional space existing on two separate planes, one for each valve 

type, however, to make the plot more easily readable values are plotted on 

two separate graphs.  If the marker is solid this signifies that the valve type 

was correctly determined, where as a hollow marker represents the incorrect 

valve type being detected.  

 

Figure 39 Model Selection for Linear Valve 
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Figure 40 Model Selection for Proportional Valve 

 As shown in the previous figures, the most difficult detection is for 

high hysteresis.  Ideally the plot would have points centered on each of the 

faults radiating out occupying ¼ of the parameter space.   
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7 CONCLUSIONS AND FURTHER WORK 

7.1 Conclusions  

 The building sector is responsible for a large portion of energy 

consumption.  The motivation of this thesis is potential energy reduction and 

increased thermal comfort of commercial buildings by detecting and 

diagnosing operational faults in hydronic heating systems. The goal of energy 

reduction and increased thermal comfort is examined with the help of models 

created in the Matlab Simulink environment to detect, diagnose and correct 

faults in the heating systems of commercial buildings.   

 A combination of surrogate data generated from building models, and 

measurements for a test building provided by the German ModQS project 

were used for this investigation.   

 Analysis of the Bezirksregierung Düsseldorf (BZRD) showed that often 

simple first steps such as using a nighttime and weekend temperature result 

in significant energy savings.  A nighttime setback at the BZRD would result 

in a 20% energy savings during winter months.  Model based analysis 

provides insight such as this, which can help show building managers 

quantitatively, potential energy and financial savings. 
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 Many faults are much more difficult to detect and diagnose than 

improper control schemes, which can be sometimes detected by simply 

looking at measurements of room temperature.  Current methods for fault 

detection systems in buildings are typically rule based.  Creating rule based 

fault detection systems in commercial buildings is typically cost prohibitive, 

as it is time intensive and not scalable.  This motivated research for Bayesian 

fault detection methods, which could be potentially scalable and take less 

time to develop a fault detection scheme for an individual building.   

 When detecting faults using surrogate data, Bayesian fault detection 

proved effective for a variety of examples including boiler efficiency, heat 

exchanger fouling and hydraulic valve faults.  The effectiveness of fault 

detection was found to increase when more measurements were available and 

with more models to compare to.  When only a single, or insufficient 

measurement values are available tradeoff effects become apparent and fault 

detection becomes difficult.  Possible faults should be isolated using 

measurement values such as temperature and mass flow rate, which both 

offer unique information about the system.   

 Although Bayesian fault detection in the building sector has some 

promising results, many complications still exist.  One such example is 

determining the certainty of a fault correctly: The posterior distribution may 

allow a user to determine the most likely parameter value or model, but 

describing the certainty of the most likely value can be challenging.  The 
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posterior distribution is shaped by the likelihood function as well as the prior 

distribution.  The width of likelihood function will define how likely one 

parameter is compared to another.  Having this as accurate as possible is 

critical because it informs the user of the certainty of the detected parameter 

or model.  This is also important when decision theory is applied since the 

course of action may differ if a building manager is informed that a fault is 

10% certain or 80% certain.  In this thesis, a method of combining model and 

measurement uncertainty to determine the width of the likelihood function 

was developed.  This method was found to be unsuccessful for parameter 

estimation as the varying distribution width, caused by a varying sigma 

value, resulted in the values with the least model uncertainty to be predicted 

even if they were not the most likely.   

 Bayesian model selection was also found to be somewhat successful, 

although some faults where mischaracterized.  The advantage of this method 

is model speed, both in developing the models, which are compared to 

measured or surrogate data and in computing the associated posterior values.    

7.2 Future Work 

 Currently, this work helps provide a background for some of the 

potential methods for Bayesian fault detection applied to commercial 

buildings.  However, there is still much work that is necessary for this to 

advance from pure research to something that could be useful in the field. 
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 One key area of interest is developing a more automated and accurate 

way of determining sigma, the standard deviation for the likelihood 

distribution.  Research of the uncertainty associated with a detected fault 

will be critical in making Bayesian parameter estimation and model selection 

a useful fault detection method. 

 Another area that should be further explored is which measurements 

are most useful for determining different faults.  This is important because 

the cost purchasing of installing measurement equipment in buildings should 

be reduced as much as possible.  Only installing measurement devices that 

are necessary will help make this technology cost effective.  Certain fault sets 

may require different measurement sets to be correctly detected.  On future 

test buildings, experiments could be set up to ensure adequate but not 

extraneous measurements are taken for the faults being investigated. 

 Another issue that could be investigated further is model selection.  In 

this thesis model complexity vs. computational resource was not addressed 

systematically.  It is possible to alter model complexity or model structure 

then, with Bayesian analyses, determine which model best fits measurement 

data.  This is called calculating the model odds.  The basic process consists of 

running each model, calculating the posterior for each model, and then 

comparing the posteriors for each different model structure or complexity.  

This addresses how well a model represents measured data but does not take 

into account computational resource.  To address computational resource one 



 88 

could apply methods from Akaike information criterion(AIC).  Here the 

number of parameters is combined with the likelihood function to include 

model complexity as well as goodness of fit.   

 Numerical issues can also be an obstacle to fault detection.  When 

analyzing large time series data sets it is often the case that Matlab does not 

have adequate memory to store all necessary values or values become very 

small and approach zero.  Enhancing the numerical techniques and coding 

used to make a more robust system is still a high priority. 

 Once the code is made more robust, and some of the techniques used 

are further refined, then it will be necessary to apply this to more test 

buildings.  The building analyzed for this thesis, the BZRD, gave some useful 

insight, but may have lacked measurements that could lead to a more in-

depth investigation of faults. 

 Within the scope of this project, only faults related to hydronic heating 

systems were analyzed.  Bayesian methods should also be tested and 

developed for other building faults related to cooling and ventilation.   

  

 

 

  



 89 

8 WORKS CITED 
 

A.T. Booth, R. Choudhary, D.J. Spiegelhalter, Handling uncertainty in 
housing stock models, Building and Environment, Volume 48, February 2012, 
Pages 35-47, ISSN 0360-1323, 10.1016/j.buildenv.2011.08.016. 
(http://www.sciencedirect.com/science/article/pii/S0360132311002599) 
Keywords: Uncertainty; Energy; Housing; Stock; Bayesian; Calibration 

“Buildings Energy Data Book”, n.d., 
http://buildingsdatabook.eere.energy.gov/ChapterIntro1.aspx?1#1. 

D&R International, Ltd. . 2010 Buildings Energy Data Book. U.S. 
Department of Energy, 2011. 
 
Chen, Jie, and R.J. Patton. Robust Model-Based Fault Diagnosis for Dynamic 
Systems. Norwell: Kluwer Acedemic Publishers, 1999. 
 
Cohn, Martin, and Gene Ott. "Design of Adaptive Procedures for Fault 
Detection and Isolation ." Microelectronics Reliability , April 1972: 115. 
 
Isermann, Rolf. Fault-Diagnosis Systems. Darmstadt, 2006. 
 
Isermann, Rolf. "Process Fault Detection Based on Modeling and Estimation 
Method-A Survey." Automatica, 1984: 387-404. 
 
Hyvärinen, J., and S. Käarki. Final Report Vol 1: Building Optimization and 
Fault Diagnosis Source Book. Finland, Technical Research Centre of Finland, 
Building Technology, 1996. 
 
Jones, Harold Lee. Failure detection in linear systems. Boston: Massachusetts 
Institute of Technology, 1973. 
 
Katipamula, Srinivas, and Michael R. Brambley. "Methods for Fault 
Detection, Diagnostics, and Prognostics for Building Systems - A Review, 
Part 1." HVAC&R Research 11, no. 2 (January 2005A). 
 
Katipamula, Srinivas, and Michael R. Brambley. "Methods for Fault 
Detection, Diagnostics, and Prognostics for Building Systems- A Review, Part 
2." HVAC&R Research 11, no. 2 (April 2005B). 
 
Leonhardt, S., and M. Ayoubi. "Methods of Fault Diagnosis ." Control Eng. 
Practice 5, no. 5 (1997): 683-692. 
 



 90 

Li, Shun. "A Model-Based Fault Detection and Diagnostic Methodology for 
Secondary HVAC Systems." 2009. 

  

 Choudhary, Ruchi. 2011. “Energy Analysis of the Non-Domestic Building 
Stock of Greater London.” Building and Environment (September 15). 
 
Schmidt, Max. "Modellierung des Wärmetauschers des 
Bezirksregierungsgebäudes in Düsseldorf." 2011. 
Technical University of Denmark. "Thermal Comfort in Buildings with Low-
Energy Cooling." 2009. 
 
Haitao Wang et al., “A robust fault detection and diagnosis strategy for 
pressure-independent VAV terminals of real office buildings,” Energy and 
Buildings 43, no. 7 (July 2011): 1774-1783. 
 
Haitao Wang et al., “A robust fault detection and diagnosis strategy for 
pressure-independent VAV terminals of real office buildings,” Energy and 
Buildings 43, no. 7 (July 2011): 1774-1783. 
 
House, John M., Lee, Won Yong, and Shin, Dong Ryul, “Classification 
Techniques for Fault Detection and Diagnosis of an Air-Handling Unit” 
(ASHRAE AMERICAN SOCIETY HEATING REFRIGERATING, 1999). 
 
Zhimin Du and Xinqiao Jin, “Detection and diagnosis for multiple faults in 
VAV systems,” Energy and Buildings 39, no. 8 (August 2007): 923-934. 
 
Zhimin Du and Xinqiao Jin, “Detection and diagnosis for multiple faults in 
VAV systems,” Energy and Buildings 39, no. 8 (August 2007): 923-934. 
 
Sylvain Lalot and Halldór Pálsson, “Detection of fouling in a cross-flow heat 
exchanger using a neural network based technique,” International Journal of 
Thermal Sciences 49, no. 4 (April 2010): 675-679. 
 
Zhimin Du and Xinqiao Jin, “Detection and diagnosis for multiple faults in 
VAV systems,” Energy and Buildings 39, no. 8 (August 2007): 923-934. 
 
Youming Chen and Lili Lan, “Fault detection, diagnosis and data recovery for 
a real building heating/cooling billing system,” Energy Conversion and 
Management 51, no. 5 (May 2010): 1015-1024. 
 
Zhimin Du and Xinqiao Jin, “Detection and diagnosis for multiple faults in 
VAV systems,” Energy and Buildings 39, no. 8 (August 2007): 923-934. 
 



 91 

Zhimin Du and Xinqiao Jin, “Detection and diagnosis for multiple faults in 
VAV systems,” Energy and Buildings 39, no. 8 (August 2007): 923-934. 
 
Ancha Xu and Yincai Tang, “Objective Bayesian analysis of accelerated 
competing failure models under Type-I censoring,” Computational Statistics 
& Data Analysis 55, no. 10 (October 1, 2011): 2830-2839. 
 
Stojan Persin and Boris Tovornik, “Real-time implementation of fault 
diagnosis to a heat exchanger,” Control Engineering Practice 13, no. 8 
(August 2005): 1061-1069. 
 

 
 



 92 

 
 

9 APPENDIX A 

9.1 Model Selection Matlab 

Code 

OuterModel.m 

clear all 
clc 
global i 
% run the parameter definition script to 
initialize parameter values 
param_def_model 
% run thermdat to initialize the model 
geometry and description of model 
% parameters 
thermdat 
  
  
  
%run through varying model paremters to 
generate models 
for i = 1:8 
    i 
     
    % run the parameter definition script to 
determine model number, valve 
    % type, valve let by and valve 
hysterisis.  the global i variable 
    % causes these to change as described 
by "param_def_model" 
    param_def_model 
     
    %store values in a vector 
    samps=[M Vt1 Vlb1 Vh1]; 
     
     
     
    %call the bmodel function and take the 
samples and run the simulation 
    [mdl_out] = bmodel(samps); 
     
    % store sample information with the 
model out 

     
    mdl_out.samps = samps; 
     
     
     
    % save the data as the output 
contianing all info on parameters and 
    % measurement values from the model 
    output(i) = mdl_out; 
     
     
end 
  
  
%Generate the surrogate data to compare 
with 
for i=1:1000 
    i 
    %run the surrogate data generator 
    surrogate_data_generator 
     
    %Store the original measurement 
values here along with the randomly 
    %sampled parameters that describe the 
model 
    Parameter(i,:)={Vt1 Vlb1 Vh1 
data_surrogate}; 
    %Store measurement values centered 
around a normal distribution for the 
    %three chosen methods 
    Parameternew(i,:)={Vt1 Vlb1 Vh1 
dataalt(:,1) dataalt(:,2) dataalt(:,3)}; 
end 
  
%Manually save Parameter, 
Parameternew and output  



 93 

 

param_def_model.m 
 

global i 
% the number of models? 
num_models = 8; 
  
%Define the other valves in the hydraulic 
system 
Vt2=2; 
Vlb2=.01; 
Vh2=.01; 
  
Vt3=2; 
Vlb3=.01; 
Vh3=.01; 
  
Vt4=2; 
Vlb4=.01; 
Vh4=.01; 
  
Vt5=2; 
Vlb5=.01; 
Vh5=.01; 
  
Vt6=2; 
Vlb6=.01; 
Vh6=.01; 
  
     
%Cycle through pre defined models 
  
if i==1 
    %000 
    % model 1 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=1; 
    Vt1=1; 
    Vlb1=.025; 
    Vh1=.025; 
     
     
elseif i==2 
    %001 
    % model 2 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=2; 

    Vt1=1; 
    Vlb1=.025; 
    Vh1=.075; 
     
     
     
     
elseif i==3 
    %010 
    % model 3 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=3; 
    Vt1=1; 
    Vlb1=.075; 
    Vh1=.025; 
     
     
     
elseif i==4 
    %011 
    % model 4 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=4; 
    Vt1=1; 
    Vlb1=.075; 
    Vh1=.075; 
     
     
     
elseif i==5 
    %100 
    % model 5 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=5; 
    Vt1=2; 
    Vlb1=.025; 
    Vh1=.025; 
     
     
     
elseif i==6 
    %101 
    % model 6 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=6; 
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    Vt1=2; 
    Vlb1=.025; 
    Vh1=.075; 
     
     
     
elseif i==7 
    %110 
    % model 7 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=7; 
    Vt1=2; 
    Vlb1=.075; 
    Vh1=.025; 
     
     
     
else 
    %111 
    % model 8 
    %Vt1=1 
    %Vlb1=.01 
    %Vh1=.005 
    M=8; 
    Vt1=2; 
    Vlb1=.075; 
    Vh1=.075; 
  
     
end 
 

 

 

 

 

 

 

 

 

 

 

bmodel.m 

function [mdl_out]=bmodel(samps)  
  
  
  
%initialize valves for the other circuits 
Vt2=2; 
Vlb2=.01; 
Vh2=.01; 
  
Vt3=2; 
Vlb3=.01; 
Vh3=.01; 
  
Vt4=2; 
Vlb4=.01; 
Vh4=.01; 
  
Vt5=2; 
Vlb5=.01; 
Vh5=.01; 
  
Vt6=2; 
Vlb6=.01; 
Vh6=.01; 
  
     
  
%define the necessary parameters for the 
first circuit 
  
 M = samps(1) 
  
 Vt1=samps(2) 
  
 Vlb1=samps(3) 
  
 Vh1=samps(4) 
  
  
  
  
  % options to take simulation parameters 
from function workspace 
  options = 
simset('SrcWorkspace','current'); 
  % run the simulink model  
  
sim('HydSim_1_DeltaTDegr_2_HydVar_R
2008b_model',[],options); 
  % function output becomes necessary 
measurements from model out block in 
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  % simulink 
  mdl_out = Measurements; 
  
end 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SurrogateData.m 

%%%Create Surrogate Data 
  
  
%Determine valve values for surrogate 
data using rand 
%valve type can be 1 or 2 
Vt1=round(rand)+1; 
%valve let by is in the interval 0 to .01 
Vlb1=rand/10; 
%valve hysteris is on the interval .005 to 1 
Vh1=.005 + (.1-.005) * rand; 
  
%initialize valves  
Vt2=2; 
Vlb2=.01; 
Vh2=.01; 
  
Vt3=2; 
Vlb3=.01; 
Vh3=.01; 
  
Vt4=2; 
Vlb4=.01; 
Vh4=.01; 
  
Vt5=2; 
Vlb5=.01; 
Vh5=.01; 
  
Vt6=2; 
Vlb6=.01; 
Vh6=.01; 
  
  
%options to take simulation parameters 
from workspace 
options = simset('SrcWorkspace','current'); 
% run the simulink model 
sim('HydSim_1_DeltaTDegr_2_HydVar_R
2008b_model',[],options); 
%store the data from the simulation 
data_surrogate = Measurements; 
  
%store variable data 
data=data_surrogate.signals.values; 
  
%create an empty matrix for data alt 
dataalt(1:length(data),1:3)=zeros; 
  
%create new surrogate values by sampling 
from a normal distribution, data 
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%stored her is for room temp, circuit mass 
flow rate, and combined  
%return temperature from all zones, 
values are only allowed to be positive 
%since it is assumed the flow is not ever 
backwards through the circuit 
  
dataalt(1:length(data),1)=abs(randn(lengt
h(data),1)*.1+data(:,1)); 
dataalt(1:length(data),2)=abs(randn(lengt
h(data),1)*.1+data(:,7)); 
dataalt(1:length(data),3)=abs(randn(lengt
h(data),1)*.05+data(:,8)); 
 

surrogate_data_generator.m 

 

%%%Create Surrogate Data 
  
  
  
  
%Determine valve values for surrogate 
data using rand 
%valve type can be 1 or 2 
Vt1=round(rand)+1; 
%valve let by is in the interval 0 to .01 
Vlb1=rand/10; 
%valve hysteris is on the interval .005 to 1 
Vh1=.005 + (.1-.005) * rand; 
  
%initialize valves  
Vt2=2; 
Vlb2=.01; 
Vh2=.01; 
  
Vt3=2; 
Vlb3=.01; 
Vh3=.01; 
  
Vt4=2; 
Vlb4=.01; 
Vh4=.01; 
  
Vt5=2; 
Vlb5=.01; 
Vh5=.01; 
  
Vt6=2; 
Vlb6=.01; 
Vh6=.01; 
  
     
  
%options to take simulation parameters 
from workspace 
options = simset('SrcWorkspace','current'); 
% run the simulink model 
sim('HydSim_1_DeltaTDegr_2_HydVar_R
2008b_model',[],options); 
%store the data from the simulation 
data_surrogate = Measurements; 
  
%store variable data 
data=data_surrogate.signals.values; 
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%create an empty matrix for data alt 
dataalt(1:length(data),1:3)=zeros; 
  
%create new surrogate values by sampling 
from a normal distribution, data 
%stored her is for room temp, circuit mass 
flow rate, and combined  
%return temperature from all zones, 
values are only allowed to be positive 
%since it is assumed the flow is not ever 
backwards through the circuit 
  
dataalt(1:length(data),1)=abs(randn(lengt
h(data),1)*.1+data(:,1)); 
dataalt(1:length(data),2)=abs(randn(lengt
h(data),1)*.1+data(:,7)); 
dataalt(1:length(data),3)=abs(randn(lengt
h(data),1)*.05+data(:,8)); 
 

Bayes_a_model.m 
 
clear all 
clc 
% initialization information 
bayes_def_model 
  
% load necessary measurements and 
model 
load output 
load Parameter 
  
%determine desired timestep to compare 
values 
t2=(0:15:2*24*3600); 
  
%initialize normalization factor 
normlikelihood(1:4)=0; 
  
%create derivative matrix one digit longer 
to make it the same length as 
%other vectors 
dydxmod(length(t2),1)=zeros; 
dydxmeas(length(t2),1)=zeros; 
  
  
  
% loop through all surrogate data 
for k=1:1000 
    k 
    %loop through each model to compare 
with surrogate data 
    for i = 1:n_models 
         
         
        %loop through the desired number of 
measurements 
        for j=1:n_measurements 
             
             
             
            %run a interpolation function to 
adjust model to desired time 
            %step from output values which 
are variable time step 
            
tseries=interp1(output(1,i).time,output(1,i
).signals.values,t2); 
             
            %adjust surrogate data to the same 
time step as in the model 
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M=interp1(Parameter{k,4}.time,Paramete
r{k,4}.signals.values,t2); 
             
             
            % calculate the squared-difference 
between time series and the  
            % calibration target 
            % a variety of measurement values 
are stored, the vector B 
            % allows the user to decide which 
measurements to compare 
            % 1 7 and 8 correspond to zone 
temperature, circuit flow rate 
            % and total return flow 
temperature 
            B=[1 7 8]; 
  
            diff_sq = (M(:,B) - tseries(:,B)).^2; 
             
            % a fourth measurement, the 
derivative approximation of the  
            % mass flow rate is added as an 
attempt to better capture valve 
            %characteristics  
            dydxmod(1:length(t2)-
1,1)=diff(tseries(:,8)); 
            dydxmeas(1:length(t2)-
1,1)=diff(M(:,8)); 
             
            %calculate diff of squares for this  
            diff_sq(:,4) = (dydxmod - 
dydxmeas).^2; 
             
  
           
            %measurements are available for a 
two day period, however only 
            %one day is analyzed as new 
information is not available from 
            %the first day.  
             
            %Determine the likelihood from 
this function: 
            
%likelihood(i,j)=(1/(sigma_eps(j)*sqrt(2*pi)
)^n)... 
            %*exp(-
0.5*(1/sigma_eps(j)^2)*sum(diff_sq(1440:2
880,j))); 
            %the 
(1/(sigma_eps(j)*sqrt(2*pi))^n) term can 
be removed since 
            %the likelihood function is 

normalized and this value is 
            %constant  
            likelihood(i,j)= exp(-
0.5*(1/sigma_eps(j)^2)*sum(diff_sq((round
(length(t2)/2)):length(t2),j))); 
             
            %prior is uniform and in this case 
doesn't effect the 
            %posterior, however it is left in so 
it can be adjusted if 
            %desired 
            prior(i,j)=1/n_models; 
             
            %normalization factor is 
determined for each measurement set  
            
normlikelihood(j)=likelihood(i,j)+normlikel
ihood(j); 
             
        end 
  
         
         
    end 
     
    %the simulations are run through again 
for comparison now that they are 
    % normalized 
    for i = 1:n_models 
        for j=1:n_measurements 
             
            %the normalized likelihood 
function can have Nan values if the 
            %differnce of the squares is large, 
if an entire measurement 
            %set is Nan values it is ignored by 
setting all of the values 
            %equal to 1/n_models  
            
likelihood(i,j)=likelihood(i,j)/normlikelihoo
d(j); 
            if  isnan(likelihood(:,j)) ==1 
                likelihood(:,j)=1/n_models;   
            end 
             
        end 
         
        %posterior values are determined for 
each measurement 
        
posterior1(i,1)=likelihood(i,1).*(prior(i,1)); 
        
posterior2(i,1)=likelihood(i,2).*(prior(i,2)); 
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posterior3(i,1)=likelihood(i,3).*(prior(i,3)); 
        
posterior4(i,1)=likelihood(i,4).*(prior(i,4)); 
         
         
        %the posterior values are then 
combined,the various posterior 
        %values are used to compare which 
method best descibes the system 
        
posteriora(i,1)=posterior3(i,1)*posterior1(i,
1)*posterior4(i,1)*posterior2(i,1); 
        
posteriorb(i,1)=posterior3(i,1)*posterior1(i,
1)*posterior4(i,1); 
        
posteriorc(i,1)=posterior3(i,1)*posterior1(i,
1)*posterior2(i,1); 
        p(1:4,i)=([posterior1(i,1), 
posterior2(i,1), posterior3(i,1), 
posterior4(i,1)]); 
        posteriord(i,1)=mean(p(:,i)); 
         
    end 
    %the maximum posterior is found to 
decide which model best represents  
    %the surrogate data 
    [r1 
c1]=find(max(posteriora)==posteriora); 
    [r2 
c2]=find(max(posteriorb)==posteriorb); 
    [r3 
c3]=find(max(posteriorc)==posteriorc); 
    [r4 
c4]=find(max(posteriord)==posteriord); 
     
    Most_likely_model(1,k)=r1; 
    Most_likely_model(2,k)=r2; 
    Most_likely_model(3,k)=r3; 
    Most_likely_model(4,k)=r4; 
     
    %normalization constant is reset here 
    normlikelihood(1:4)=0; 
end 
 
 
 

Plotfunction.m 

%plot function  
clc 
clear all 
clear figures 
count(:,8)=zeros; 
load Parameter 
load most_likely_matrix 
  
%extract values from cell 
for i=1:1000 
    P(i,1)=Parameter{i,1}; 
    P(i,2)=Parameter{i,2}; 
    P(i,3)=Parameter{i,3}; 
end 
  
%compare different Posterior methods 
for m=1:4 
    Most_likely_model = 
Most_likely_matrix(m,:); 
     
     
%cycle through all models and sort the 
paremter values with the connected 
%predicted model 
for i=1:1000 
if Most_likely_model(i)==1 
count(1)=count(1)+1; 
M1(count(1),1:3)=P(i,1:3);     
     
     
elseif Most_likely_model(i)==2 
count(2)=count(2)+1;         
M2(count(2),1:3)=P(i,1:3);     
  
  
elseif Most_likely_model(i)==3 
count(3)=count(3)+1;             
M3(count(3),1:3)=P(i,1:3);              
  
  
elseif Most_likely_model(i)==4 
count(4)=count(4)+1;                 
M4(count(4),1:3)=P(i,1:3);                     
  
  
elseif Most_likely_model(i)==5 
count(5)=count(5)+1;                     
M5(count(5),1:3)=P(i,1:3);                         
  
  
elseif Most_likely_model(i)==6 
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count(6)=count(6)+1;                         
M6(count(6),1:3)=P(i,1:3);                             
  
  
elseif Most_likely_model(i)==7 
count(7)=count(7)+1;                             
M7(count(7),1:3)=P(i,1:3);                                 
                             
                             
elseif Most_likely_model(i)==8 
count(8)=count(8)+1;     
M8(count(8),1:3)=P(i,1:3);         
     
end 
end 
  
%plot scatter points for predicted model 
with a filled marker when the 
%valve type prediction is correct 
for i =1:length(M1) 
if M1(i,1)==1 
scatter(M1(i,2),M1(i,3),'b','filled') 
axis([0 .1 0 .1]) 
  
hold on 
else 
scatter(M1(i,2),M1(i,3),'b') 
axis([0 .1 0 .1])     
hold on 
end 
end 
  
% 
for i =1:length(M2) 
if M2(i,1)==1 
scatter(M2(i,2),M2(i,3),'g','s','filled') 
axis([0 .1 0 .1]) 
  
hold on 
else 
scatter(M2(i,2),M2(i,3),'g','s') 
axis([0 .1 0 .1])     
hold on 
end 
end 
  
% 
for i =1:length(M3) 
if M3(i,1)==1 
scatter(M3(i,2),M3(i,3),'r','^','filled') 
axis([0 .1 0 .1]) 
  
hold on 

else 
scatter(M3(i,2),M3(i,3),'r','^') 
axis([0 .1 0 .1])     
hold on 
end 
end 
  
% 
for i =1:length(M4) 
if M4(i,1)==1 
scatter(M4(i,2),M4(i,3),'k','d','filled') 
axis([0 .1 0 .1]) 
  
hold on 
else 
scatter(M4(i,2),M4(i,3),'k','d') 
axis([0 .1 0 .1])   
ylabel('hysteresis') 
xlabel('valve let by') 
hold on 
end 
end 
  
%% 
figure() 
for i =1:length(M5) 
if M5(i,1)==2 
scatter(M5(i,2),M5(i,3),'b','filled') 
axis([0 .1 0 .1]) 
  
hold on 
else 
scatter(M5(i,2),M5(i,3),'b') 
axis([0 .1 0 .1])     
hold on 
end 
end 
  
% 
for i =1:length(M6) 
if M6(i,1)==2 
scatter(M6(i,2),M6(i,3),'g','s','filled') 
axis([0 .1 0 .1]) 
  
hold on 
else 
scatter(M6(i,2),M6(i,3),'g','s') 
axis([0 .1 0 .1])     
hold on 
end 
end 
  
% 
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for i =1:length(M7) 
if M7(i,1)==2 
scatter(M7(i,2),M7(i,3),'r','^','filled') 
axis([0 .1 0 .1]) 
  
hold on 
else 
scatter(M7(i,2),M7(i,3),'r','^') 
axis([0 .1 0 .1])     
hold on 
end 
end 
  
% 
for i =1:length(M8) 
if M8(i,1)==2 
scatter(M8(i,2),M8(i,3),'k','d','filled') 
axis([0 .1 0 .1]) 
  
hold on 
else 
scatter(M8(i,2),M8(i,3),'k','d') 
axis([0 .1 0 .1])    
ylabel('hysteresis') 
xlabel('valve let by') 
hold on 
end 
end 
figure() 
clear Most_likely_model 
end 
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