Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open Access) Dissertations and Theses

8-2015
Enabling real time in-situ context based
experimentation to observe user behaviour

Kartik MURALIDARAN
Singapore Management University, kartikm.2010@phdis.smu.edu.sg

Follow this and additional works at: http://ink library.smu.edu.sg/etd coll
b Part of the Numerical Analysis and Scientific Computing Commons, and the Software

Engineering Commons

Citation

MURALIDARAN, Kartik. Enabling real time in-situ context based experimentation to observe user behaviour. (2015). 1-161.
Dissertations and Theses Collection (Open Access).
Available at: http://ink library.smu.edu.sg/etd_coll/128

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection (Open Access) by an authorized administrator of Institutional

Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.


http://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Enabling Real-Time In Situ Context-Based
Experimentation to Observe User Behaviour

by
Kartik Muralidharan

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Rajesh Krishna BALAN (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Archan MISRA (Co-supervisor)
Associate Professor of Information Systems
Singapore Management University

Youngki LEE
Assistant Professor of Information Systems
Singapore Management University

Edward CUTRELL

Senior Researcher

Technology for Emerging Markets Group
Microsoft Research India

Singapore Management University
2015

Copyright (2015) Kartik Muralidharan



Enabling Real-Time In Situ Context-Based
Experimentation to Observe User Behaviour
Kartik Muralidharan

Abstract

Today’s mobile phones represent a rich and powerful computing platform, given
their sensing, processing and communication capabilities. These devices are also
part of the everyday life of millions of people, and coupled with the unprecedented
access to personal context, make them the ideal tool for conducting behavioural
experiments in an unobtrusive way.

Transforming the mobile device from a mere observer of human context to an
enabler of behavioural experiments however, requires not only providing experi-
menters access to the deep, near-real time human context (e.g., location, activity,
group dynamics) but also exposing a disciplined scientific experimentation service
that frees them from the many experimental chores such as subject selection and
mitigating biases.

This dissertation shows that it is possible to enable insitu real-time experimen-
tation that require context-specific triggers targeting real participants on their actual
mobile phones. I first developed a platform called Jarvis that allows experimenters
to easily, and quickly create a diverse range of observational and treatment stud-
ies, specify a variety of opportune moments for targeting participants, and support
multiple intervention (treatment) content types. Jarvis automates the process of par-
ticipant selection and the creation of experimental groups, and adheres to the well
known randomized controlled trial (RCT) experimental process.

Of the many possibilities, a use case I envision for Jarvis, is providing retailers
a platform to run lifestyle based experiments that investigate promotional strategies.
Such experiments might entail the platform to provide the experimenter with the ap-

propriate target population based on their preferences. To support this, I developed



a matching and scoring algorithm that accurately factors participants’ preferences
when matching experiment promotions and is capable of combining structured and
unstructured promotion information into a single score. Doing so, will allow the
experimentation system to target the right set of participants.

Finally, I developed techniques for capturing and handling context uncertainty
within Jarvis. As the opportune experiment-intervention moments are identified
from sources such as sensors and social media, which have inherent uncertainties as-
sociated with them, it is crucial that such information is recorded and/or processed.
More specifically, Jarvis defines a confidence metric for the location predicate as
well as dynamically computes the sample size for a given experiment under context
uncertainty. In doing so it provides adequate information to the experimenter to
process the results of an experiment in addition to maximizing the statistical power.

I validated my dissertation in the following way. Through a series of live ex-
periments I showcase the diversity of the system in supporting multiple experiment
designs, the ease of experiment specification, and the rich behavioural information
accessible to the experimenter in the form of a report. The matching and scoring
algorithm was evaluated in two different ways; First, an in-depth analytical eval-
uation of the ranking algorithm was conducted to understand the accuracy of the
algorithm. Second, I ran a user study with 43 undergraduate students to understand
the effectiveness of the algorithm. Finally, I validate the context-uncertainty han-
dling capabilities of Jarvis through simulations and show that using overlap ratios
to represent location confidence is reliable and that the algorithm to estimate the
number of false positives has minimal errors. Both these values are important in un-

derstanding the outcome of an experiment and in turn defining it’s success criteria.

Keywords: context aware computing, mobile computing, event processing,
context uncertainty, mobile application, natural language processing, behavioural

experimentation.
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Chapter 1

Introduction

In 1747 James Lind, whilst working as a surgeon on a ship, was appalled by the high
mortality of scurvy amongst the sailors. He planned a comparative trial of the most
promising cure for scurvy [64]. Lind selected 12 men from the ship, all suffering
from scurvy, and divided them into six pairs, giving each group different additions
to their basic diet. Some were given cider, others seawater, others a mixture of
garlic, mustard and horseradish. Another group of two were given spoonfuls of
vinegar, and the last two oranges and lemons. Those fed citrus fruits experienced a
remarkable recovery. While there was nothing new about his discovery - the benefits
of lime juice had been known for centuries - Lind had definitively established the
superiority of citrus fruits above all other ‘remedies’. Although Lind was not the
first to suggest citrus fruit as a cure for scurvy, he was the first to study their effect
by a systematic experiment that ranks as one of the first clinical experiments in the
history of medicine.

Since then, there have been several additions to improve the efficacy of the ex-
perimental process. Randomized controlled trials, placebo-controlled experiments,
all sought to strengthen the validity of an experiment. However, despite these im-
provements, the experimentation process has several limitations particularly in the
field of behavioural sciences. Consider the following scenario, of interest to the

marketing sciences, that aims to understand customer needs and behaviour: Infor-



mation about promotions or deals often reaches consumers at inconvenient times or
locations which prevents them from taking advantage of such offers. Today, how-
ever, due to technological advances, location has become dynamic and traceable to
a specific user. From a targeting perspective, the location-based mobile advertising
segment is especially interesting. In the classical location-based advertising sce-
nario, a coffee shop, usually Starbucks, issues coupons to consumers that are near
their retail establishments. Of course, any marketer using location-based advertis-
ing would prefer to target more accurately than just by location. They would prefer
to know more about the customer, including her current needs for the retailers prod-
ucts or services, her past history buying from the retailer and their competition, her
present schedule and whether it permits a visit to the retailer, and whether her cur-
rent context would permit her attention to be directed to an ad [115]. The question
therefore arises, is there a right time and right place for consumers to receive and re-
spond to such offers? More specifically, are advertisements, which are more person-
alized in terms of the customer location, more effective than considering additional
information such as the customer’s current activity? Current behavioural research
techniques to answer this question are quite restrictive. User research methods such
as shadowing, field interviews, and diary studies, although plausible, have several
limitations ranging from generalizability of the outcome to cost and scalability of
conducting the research.

An alternative to these techniques is to use the smartphone as a behavioural
research tool. These devices have additional sensors for location, motion, sound,
and lighting that make it possible for the phone to determine and provide details of
the user and the situation in which the phone is being used. This ability of smart-
phones to observe and interpret the users situations and activities over time means
that many of the elements of targeting can be fulfilled more extensively than other
technologies have been able to. A key construct that makes this possible is user
context.

Context is defined as any information that can be used to characterize the situa-



tion of an entity, where an entity can be a person, place, or physical or computational
object. Context-awareness or context-aware computing is the use of this context to
provide task-relevant information and/or services to a user [38]. Early discussion of
context-aware applications focused on mobile personal devices. Such devices are
highly contextual, monitoring personal surroundings (such as location, movement,
sound) using built-in sensors and employing applications designed to respond in
real time to changes in personal situation [48]. However, as mobile devices and
applications have become more advanced and more relevant for business, the in-
formation generated in these devices has become available to back-end business
applications. The personal context that was originally confined to a mobile device
becomes available as input to larger enterprise applications and tools. An example
of this in play is Google Now [57], an intelligent personal assistant (available for
Google’s Android operating system) that combines data from users’ accounts and
sensor data from mobile phones to provide suggestions. For example, it combines
the data from Google Calendar and other context such as the location of the user’s
next appointment along with the time, traffic data and current location to advise the
best time to travel. The future of mobile computing will therefore be context-aware
computing with mobile applications adjusting to the user’s location, identity and
past behaviours [80, 132, 137]. Contextual mobile applications will lead to new
user experiences that will be simple, visually attractive, compelling and interactive.
Additionally, given that mobile phones are part of the everyday life of millions of
people, they represent an ideal computing platform to monitor behaviour and move-
ment [3].

Thus, while user context aids personalization of services and content, it also
provides relevant information to support in situ behavioural experiments and an-
swer research questions posed earlier. For example, to answer the earlier question
of whether only location information is sufficient when targeting consumers, we
could send a promotion to a set of consumers whose only contextual relevance to

the promotion is their current location (i.e., they are passing the store offering the



promotion) and compare them against (in terms of coupon proneness) another set
of consumers who have additional relevant context predicates (for example, they’ve
been inside the store for more than 10 minutes).

What we therefore need is a system that facilitates a mapping (with ease) be-
tween the required context attributes and the content to be delivered for the different
scenarios, provide support for controlled experimentation, as well as capture user
reaction to the context-based content. Such a system could then facilitate a better
understanding of user behaviour through the process of experimentation - poten-
tially changing how behavioural scientists study human behaviour. The goal of this
system would then be to provide experimenters access to deeper, near-real time user
context (e.g., location, activity), handle the hassles of experimentation such as sub-
ject selection, information uncertainty and so on, as well as support multiple types
of controlled experiment design. In addition, by providing adequate information to
the experimenter to process the results of an experiment, should help them decide
whether to re-run the experiment (with new parameters and constraints), run a new
experiment, or declare success.

In the rest of this chapter, I first discuss previous approaches to supporting in
situ experimentation. I then briefly describe my solution. I next state the thesis
statement and describe the validation plan. Finally, I end with a roadmap describing

the rest of this dissertation.

1.1 Previous Approaches to Supporting In Situ Ex-
perimentation

Current research methods used in the behavioural sciences make little use of tech-
nology. In addition to traditional self-reports, researchers may also rely on one-time
behavioural observations of participants in laboratory settings. Such methods can

be useful, but the fact that they are based on behaviour in a lab raises concerns about



their generalizability to non-lab contexts. Recently, researchers have begun to use
new methods in an effort to examine behaviour in everyday life. For example, daily
diary methods [18] ask participants to report the social events and psychological
states they experienced either at the end of the day or periodically throughout the
day. Another method has used devices that take audio recordings (or snapshots) of
participants daily lives every few minutes, which are later transcribed and coded by
teams of researchers. These methods have advantages over the traditional survey
methods, but they nevertheless suffer from issues associated with forgetting events
that took place during the day, and carrying an additional obtrusive electronic de-
vice. Also, these techniques may lead to biased results since people are aware of
being constantly monitored.

Mobile phones offer an unobtrusive means of obtaining information about the
behaviour of individuals and their interactions. Mobile sensing technology has the
potential to bring a new perspective to the design of social psychology experiments,
both in terms of accuracy of the results of the study and from a practical point of
view. Mobile phones are already part of the daily life of people, so their presence is
likely to be forgotten by users, leading to accurate observation of spontaneous be-
haviour. Systems such as EmotionSense [123], Cenceme [98] and Betelgeuse [81]
have shown the potential of mobile phone sensing in providing information such as
user movement and activity for recreational and healthcare applications.

Unfortunately, to enable this computing paradigm of in situ experimentation,
there is a pertinent need to provide a mapping between the 3 Ws - What to send,
Whom to send it to and When to send it - and getting this right is not easy. Building
such a system poses several challenges; given the potential volume of user con-
text data that is produced by mobile devices, there is a need to build a strategy to
derive value from the information [63, 79], a need to support the process of exper-
imentation (enrolment, intervention allocation, follow-up and data analysis), and
the ability to create a diverse set of experiment scenarios. Attempts in the past has

shown the ability to create this mapping using a limited set of context sources and



build applications designed to respond to events (changes in personal situation) in
real time [40, 53, 84, 157, 158]. However, these studies are not representative of
reality as they are controlled, often with a limited set of users restricted to specific
campus/office environments and support only handful of triggering events. What is

missing is a forging of this mapping in real time.

1.2 Solution: Jarvis

To fill this missing gap, I propose a solution, called Jarvis, that is based on the
well-known randomized controlled trial (RCT) experimental process [26]. By rep-
resenting context predicates of an experiment as events, I create an event-driven
system that enables a real-time in situ participant enrolment phase. The underlying
behavioural experimentation system also provides the components necessary to au-
tomate the additional phases of the RCT - intervention allocation, follow-up, and
data analysis - with the goals of minimizing selection bias and allocation bias while
maximizing the statistical power.

Experiment specification in Jarvis is easy and quick and supports both observa-

tional and treatment type studies.

1.3 The Thesis

The thesis statement can thus be stated as follows:

It is possible to build a system that enables the observation of user behaviour,
through the process of experimentation, by specifying triggering events (a com-

bination of static and dynamic user-context attributes) to target real mobile

users in real environments with personalized content.

This dissertation establishes the thesis via the following steps [Figure 1.1]:

la. First, it designs the architecture of a context-based experimentation system.

This step involves clearly identifying the different modules of the system and
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Figure 1.1: Validation Roadmap.

what function they will perform. The architecture will need to support run-
ning experiments that can aid inferring what user-contexts are relevant for

different scenarios.

Define the ontology of a context-based experiment and database schema to
support the process of experimentation. This step involves defining the ex-
periment specification workflow and what user-context predicates and logical
operators will be supported. The ontology has to be powerful enough to sup-

port a wide range of experiment scenarios.

Develop a fully functional context-based experimentation system. This sys-
tem should demonstrate that it is possible to specify context predicates that
needs to be matched by participants and also send an intervention with the

experiment details (e.g., promotions) to the set of matched participants.

Design and develop an algorithm that can match and rank content with user
preferences and show that users receive relevant content with the help of this

algorithm.

Design and develop an algorithm to reliably represent the location confidence
for the set of matched participants and estimate the number of false positives

within this set with minimal errors.



3b. Design and develop an algorithm to determine the participant sample size

appropriate for an experiment subjected to context uncertainty.

4. Collect user feedback based on multiple modes of mobile user interaction,
within a context-based experiment, and generate an experiment outcome re-

port that captures the impact of the experiment on user behaviour.

1.4 Dissertation Roadmap

The rest of this dissertation is organized into six chapters and three appendixes as
follows:

Chapter 2 describes the characteristics of an in situ behavioural experimenta-
tion system. In particular, it describes the challenges in building such a system, the
key focus of this dissertation. It then details the requirements any solution geared
towards supporting context-based experimental studies as well as motivating exper-
iment scenarios highlighting the need for such a system.

Chapter 3 describes the architecture designed to support the running of context-
based experiments. I show how the system adheres to the traditional process of
experimentation while abstracting the complexities of participant selection and the
handling of experimental bias. Through a series of live experiments I showcase
the diversity of the system in supporting multiple experiment designs, the ease of
experiment specification, conformance to the traditional process of controlled ex-
perimentation, and the rich behavioural information accessible to the experimenter
in the form of a report.

Ensuring experiment validity requires getting the right sample for that experi-
ment. In Chapter 4 I describe how the system handles the requirement of targeting
the right sample by understanding user preferences. Through a user study I show
that my preference-based system is more accurate (users can find the most interest-

ing promotions better) and faster to use than two other common system designs.



Many context-aware services make the assumption that the context they use is
completely accurate. However, in reality, both sensed and interpreted context is
often ambiguous. In Chapter 5 I address how the system represents and handles
context uncertainty for an experiment. I show how the module defines a confidence
metric for the location predicate as well as how it stochastically estimates additional
information such as the number of false positives. I further demonstrate how the
module determines the appropriate sample size for a given experiment under the
purview of context uncertainty.

Finally, Chapters 6, and 7 present the related work and the dissertation con-
clusion (that summarizes the main contributions of the dissertation to the mobile

community and presents future work) respectively.



Chapter 2

Enabling In Situ Experimentation

Mobile phones represent an ideal computing platform to monitor behaviour and
movement, since they are part of the everyday life of millions of people [3]. Re-
cently, systems such as GruMon [143] and SocioPhone [85] have shown the po-
tential of mobile phone sensing in providing information such as group interaction
and activity for recreational and healthcare applications. One possible use of these
technologies is arguably the support to sociology experiments [95] which involve
studying peoples daily life and interactions. In the past, this analysis has been per-
formed with the help of cameras (in home/working environments or in laboratories),
by using voice recorders attached to people, and self reports using daily diaries or
PDAs [18]. However, these techniques may lead to biased results since people are
aware of being constantly monitored. Instead, mobile phones offer an unobtrusive
means of obtaining information about the behaviour of individuals and their inter-
actions.

A context-based experimentation platform could then provide the ability to ex-
periment, under varying event (behaviour and interaction) conditions, with real
users using their regular phones in real-world environments. Such a system will
transform the mobile device from being merely an observer of human context to an
enabler of behavioural/sociological experiments and provide greater insight into the

user.
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In this chapter, I describe what an in situ context-based experiment is. I then
describe the kinds of social experiments that this thesis is concerned with. I then
present some of the key requirements necessary to support in situ experimentation.
Finally, I list the characteristics of an event-driven architecture that can support

running such experiments.

2.1 What is an In Situ Context-Based Experiment?

An event is an occurrence within a particular system or domain; it is something
that has happened, or is contemplated as having happened in that domain [46]. The
event concept is simple yet powerful. Suppose you are working on your laptop in a
coffee shop, and since you entered this coffee shop several things have happened: a
customer walks up to the counter and asks for coffee and pastry; the person behind
the counter puts the pastry into the microwave, prepares the coffee, takes the pastry
out of the microwave, takes the payment, gives the tray to the customer, and then
turns to serve the next customer. These are all events.

Many of the events around us are outside the scope of our interest. Some events
are background noise and do not require any reaction, but some do require reaction,
and those are referred to as situations. A situation is an event occurrence that might
require a reaction [4]. These situations often present opportune moments for pro-
viding interventions to observe how personality is expressed and perceived in the
natural setting of everyday behaviour [95].

In this thesis I support experiments that require sending interventions as a re-
action to a situation. An in situ context-based experiment is therefore one, where
interventions are allocated to participants based on the situation (of the participant)
post any enrollment criteria defined by the experiment. Mobile context plays a key
role in detecting the situation (with some degree of certainty) as well as assessing
the eligibility of the participant for the experiment.

This leads to the central challenge of this dissertation: Is it possible to build a

11



system that allows specifying triggering events (situations) to target users in real
environments in real time with interventions? Can the system support the process
of experimentation while handling the inherent uncertainty of a situation and yet
effectively execute experimental studies and obtain meaningful conclusions? My
design must identify itself with the traditional experimental process allowing the
experimenter to specify (with ease) the different facets (participant eligibility crite-
ria, triggering situation, treatment, etc.) of an experiment design while adhering to

the principles of a controlled experiment (randomization, selection bias, blinding).

2.2 Motivating Scenarios

This thesis will help to enable the following scenarios. The scenarios are listed
along with some of the technology necessary to realize each scenario. In this work,
while I will be focussing on targeting consumers with promotional content in ur-
ban environments such as shopping malls and university campuses, the platform is

diverse enough to permit experimental studies beyond this narrow categorization.

2.2.1 Scenario 1

Paul is a coffee shop owner. He uses a location based advertising service that sends
coupons to people passing by his store everyday with the hope that it will improve
sales. He wonders whether offering discount coupons to people who have been
standing outside the coffee shop for 10 minutes would improve sales as opposed to
giving it when they pass by?

This scenario requires the system to be able to do the following things:
e capture the various mobile user-context attributes.

e create an event mapping experiment (with ease) between the required context

attributes and the content to be delivered for the different scenarios.
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analyse mobile user-context to identify when the required context-based event

occurs. In this case, the location of the participant as well as their activity.

deliver the content when the required context-based event occurs.

be able to estimate the number of coupons that were sent in error.

capture user reaction to context-based content for the different scenarios.

generate an experiment report.

2.2.2 Scenario 2

William is a social scientist. His area of research is studying personality traits,

particularly the dimension of introversion-extraversion. Introverts tend to be more

quiet, reserved, and introspective. Unlike extraverts who gain energy from social

interaction, introverts have to expend energy in social situations. He would like to

setup a study that sends a survey capturing the emotional state of his participants

everytime they have been in a social interaction for longer than 30 minutes.

This scenario requires the system to be able to do the following things:

capture the various mobile user-context attributes.

create an event mapping (with ease) between the context attributes and the

content to be delivered.

analyse mobile user-context to identify when the required context-based event
occurs. In this case, when the participant has initiated a social interaction as

well as the duration.

send the survey to matching users everytime the event occurs.

capture user reaction to context-based content.

generate an experiment report.

13



2.2.3 Scenario 3

Darshana is a professor of marketing. She would like to understand how the con-
sumer’s mindset works during the shopping process. Consumers are exposed to a
plethora of information (in the form of text, images) during the different decision-
making stages. Yet, it is unclear if the information is influencing how they navigate
the shopping environment. She would like to conduct an experiment (inside the
store of a mall) where the participants are primed to be in one of the mindsets that
characterize the two decision making stages (deliberative or implemental) using a
promotional offer and track/observe their navigational behaviour in addition to other
interaction.

This scenario requires the system to be able to do the following things:
e capture the various mobile user-context attributes.

e create an event mapping experiment (with ease) between the required context

attributes and the content to be delivered for the different scenarios.

e analyse mobile user-context to identify when the required context-based event

occurs. In this case, the location of the participant.

e create experiment groups and deliver the appropriate content to each group

when the required context-based event occurs.

e capture additional navigation behaviour after the intervention is sent.

e capture user reaction to context-based content for the different scenarios.

e generate an experiment report.

2.2.4 Scenario 4

Hai is a mobile games application developer. Like most developers he wants more

people downloading his app. In order to increase the click-through rate of the link
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to his game, Hai is wondering when would be the opportune moment to send it -
perhaps while waiting at the bus stand or maybe after checking email at home?

This scenario requires the system to be able to do the following things:

capture the various mobile user-context attributes.

e create an event mapping experiment (with ease) between the required context

attributes and the content to be delivered for the different scenarios.

e analyse mobile user-context to identify when the required context-based event
occurs. In this case, the location of the participant, activity as well as mobile

interactions.

e deliver the hyper-link when the required context-based event occurs.

e be able to capture the click-through-rate for the different scenarios.

e generate an experiment report.

2.2.5 Additional Scenarios

In addition to the above scenarios, there are other domains where this thesis can
facilitate an understanding of user behaviour. One such domain is healthcare. Prior
work such as Carrol et al. [21], Hicks et al. [62], Munson et al. [106], Pina et
al. [120] and Singh et al. [147] have employed mobile context to identify oppor-
tune moments for sending interventions such as appropriate reminders to counteract
stress for example.

However, similar to prior work in other domains these applications also work
with a limited set of context sources and are designed to send pre-determined re-
sponses to events. For example in Carrol et al., the authors rely only on self re-
porting information to send the appropriate interventions [21]. Such applications

can benefit from the additional context sources provided by the platform as well as
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the flexibility in sending interventions for other events (automatically), providing

greater insight into the user.

2.3 Building a Real-Time In Situ Context-Based Ex-
perimentation System

In the section I present some of the key functional capabilities the platform must

support in order to run context-based experiments.

2.3.1 Creating an Experiment

An experiment is an orderly procedure carried out with the goal of verifying, refut-
ing, or establishing the validity of a hypothesis. Experiments provide insight into
cause-and-effect by demonstrating what outcome occurs when a particular factor is
manipulated. Experiments vary greatly in their goal and scale, but always rely on
repeatable procedure and logical analysis of the results.

Experiments might be categorized according to a number of dimensions, de-
pending upon professional norms and standards in different fields of study. In some
disciplines (e.g., Psychology or Political Science), a ‘true experiment’ is a method
of social research in which there are two kinds of variables. The independent vari-
able is manipulated by the experimenter, and the dependent variable is measured.
The signifying characteristic of a true experiment is that it randomly allocates the
subjects in order to neutralize the potential for experimenter bias, and ensures, over
a large number of iterations of the experiment, that all confounding factors are con-
trolled for.

A controlled experiment often compares the results obtained from experimental
samples against control samples, which are practically identical to the experimen-
tal sample except for the one aspect whose effect is being tested (the independent

variable). A good example would be a drug trial. The sample or group receiving
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Figure 2.1: Randomized Control Trial

the drug would be the experimental group (treatment group); and the one receiving
the placebo or regular treatment would be the control one. A controlled experiment
where the people being studied are randomly allocated one or other of the different
treatments under study is referred to as a randomized controlled trial(RCT). RCTs
are often used to test the efficacy or effectiveness of various types of interventions
and may provide information about its effects. Random assignment of intervention
is done after subjects have been assessed for eligibility and recruited, but before
the intervention to be studied begins. Figure 2.1 shows a flowchart of four phases
(enrollment, intervention allocation, follow-up, and data analysis) of a parallel ran-
domized trial of two groups, modified from the CONSORT (Consolidated Standards
of Reporting Trials) 2010 Statement [142]).

The advantages of proper randomization in RCTs include [47]:

o [t eliminates bias in treatment assignment, specifically selection bias and con-

founding.

e [t facilitates blinding (masking) of the identity of treatments from investiga-

17



tors, participants, and assessors.

e [t permits the use of probability theory to express the likelihood that any dif-

ference in outcome between treatment groups merely indicates chance.

In addition to adhering to the methodological rigor set by RCT protocol, the
platform must also handle any complexity in experiment specification. Experiment
specification consist of three components - a trigger that specifies a set of contextual
predicates that must be matched, an intervention that specifies the resulting experi-
ment treatment, and inputs that specifies the design of the experiment (e.g. sample
size). While there are complex ontological models for context specification [154],
such specifications would clearly be lost on the non-technical personnel (e.g., be-
havioural scientists) who might be our primary experimenter base. A key challenge
is thus to develop an intuitive, yet sufficiently expressive, GUI that allows experi-
menters to perform differentiated experimentation.

In this thesis I build Jarvis, an experimentation platform that supports running in
situ realtime experiments, targeting real participants on their smart phones based on
multiple context-specific events. I show that specifying such triggering events using
the Jarvis interface is simple for a representative sample set of scenarios and that
Jarvis adheres to the traditional process of experimentation. The Jarvis architecture

is described in detail in Chapter 3.

2.3.2 Getting the Right Sample

There are various aspects to remember when constructing an experiment. Foremost,
the researcher must clearly define the target population. In research, population is a
precise group of people or objects that possesses the characteristic that is questioned
in a study. To be able to clearly define the target population, the researcher must
identify all the specific qualities that are common to all the people or objects in
focus. A population can be as simple as all the citizens of Singapore or it can be as

specific as all male 17-year old high school students who have been buying comic
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books since 12 years of age.

Of the many possibilities, a use case I envision for Jarvis, is providing retail-
ers a platform to run lifestyle based experiments, examples of which are listed in
Section 2.2. Such experiments might entail the platform to provide the experi-
menter with the right target population. For example, an experimenter might re-
quire sending coupons only to participants with high coupon usage. Identifying
consumer characteristics that indicate such behaviour also then become important.
For example, literature on coupon use suggests two consumer characteristics that
are strongly associated with coupon use: coupon proneness [87, 151] and price-
consciousness [9, 151]. Providing the right sample will ensure the population is
free of any sampling bias.

In the case of mobile advertising, an important factor contributing to its success
is being able to target audience preferences precisely [86]. Thus an experiment
involving sending promotions to participants, factoring in their preferences, will
require matching the promotion with participants’ needs and preferences to create
the best possible sample.

One option to ensure that the right participants are selected, given the experiment
promotional content, is to have them indicate their preferences to the system. They
could request promotions from a certain company or about a certain kind of product
or service. So, only participants that have the deal match with their preferences
could be considered as potential subjects, while those that have the deal with lower
priority could be ignored. Even if such preferences are not explicitly indicated,
it is still possible to guess what they may be interested in. Amazon, for instance
makes recommendations of books or music to buy based on your previous buying
habits [90].

The need for individual user preferences and their application in decision mak-
ing in a pervasive environment is now widely accepted. The process of creating,
maintaining and applying user preferences in decision making is sometimes re-

ferred to as personalization, since it has the effect of tailoring the systems behaviour
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to the individual needs and wishes of the user so that it appears or acts differently
for different users or for the same user under different circumstances. Although
most research on personalization has tended to focus on the problem of retrieving
Web information (e.g. by adapting user queries to improve the relevance of the an-
swers returned) or on controlling the layout and presentation of output from applica-
tions [111], within pervasive systems there is scope for a much wider interpretation
of the term.

While identifying a user’s deal preferences or intent dynamically is one part of
the challenge, matching and prioritizing these preferences with promotional content
is also challenging. Promotions typically come in two forms 1) promotions that
are offered by the store regardless of payment implement (50% off storewide sale
for example), and 2) promotions that are offered if specific payment or discount
implements are used (for example, 20% off when using a VISA card, or mileage
points if a frequent flyer card is shown, etc.). The key challenge in the matching and
ranking of such promotions arises from having to combine both structured (easy to
understand numeric discounts (5% off) etc.) and unstructured (free-form text (A
free teddy bear) etc.) promotion information with consumer preferences.

How can we combine multiple user contexts (e.g., preferences) with fairly un-
structured promotional content? This is a fundamental question that I address in this
thesis. My proposed solution adapts natural language semantic techniques and is
capable of combining structured and unstructured deal information with user pref-
erences to provide consumers with the most relevant promotions and in turn the
right participant sample for the experiment. The algorithm is explained further in

Chapter 4.

2.3.3 Capturing Experimental Errors

Many context-aware services make the assumption that the context they use is com-

pletely accurate. However, in reality, both sensed and interpreted context is often
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ambiguous. A challenge facing the development of realistic and deployable context-
aware services, therefore, is the ability to handle ambiguous context.

As mentioned previously, of the many possibilities, a use case I envision for
Jarvis, is providing retailers a platform to run lifestyle based experiments. For ex-
ample, a coffee shop owner may want to test whether offering discount coupons to
people who have been waiting outside the coffee shop for at least 10 minutes, will
improve sales. However, a key challenge in running such experiments is that the
trigger events are derived from context collected using built-in sensors on the mo-
bile device. These sensors have inherent uncertainties associated with them and as
a result can include people who do not satisfy the experiment criteria [6]. Contin-
uing with the previous example, discount coupons could be sent to people who are
in fact not outside the coffee store but are reported to be by the system as a result
of localization error. It is therefore pertinent to arm experimenters with sufficient
information of the possible impact of context uncertainty on the outcome of their
experiment. For example, informing the experimenter that 2% of the subjects might
have falsely satisfied the event conditions will assist them in defining the success
criteria of their test. Further, defining a confidence metric for each individual sub-
ject, who satisfies the experiment requirements, provides a better understanding of
the relationship between the experiment parameters. For example, if subjects con-
sidered to have a high context-confidence redeem the discount coupon, we can con-
clude a strong correlation between the event attributes (standing outside the shop for
10 minutes) and the content delivered. This information is important, not only for
understanding user behaviour towards context-based interventions, but also towards
building better context-aware systems and applications.

Providing such information unfortunately, is not trivial. The challenges are two
fold: 1) Not all context generators provide the necessary information directly. In-
door localization systems such as Radar [11] and EZ [29] for example, do not mea-
sure how often the system incorrectly estimates users’ location to a given landmark

(false positives) and 2) Context uncertainty is highly dynamic and individual. For
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example, activity classification accuracy is dependent on the activity being classified
as well the device being used. It would therefore be incorrect to have a static inter-
pretation of error for a given context source. While techniques of increasing context
confidence through redundancy or sensor fusion exist, they do not completely elim-
inate the need to handle context uncertainty. Given that indoor location is perhaps
the single-most important context whilst running such experiments, in my thesis I
address the uncertainty-handling capability within Jarvis. In particular, I show how
the module defines a confidence metric for the location predicate as well as how it
estimates additional information such as the number of false positives. Details of

this module is explained further in Chapter 5.

2.3.4 Generating an Experiment Report

Context-aware services provide its users content that is deemed appropriate to the
users current environment. People will adopt and use such applications in sev-
eral settings and for potentially different tasks, so appropriate evaluation techniques
must take place in those settings and explore those different tasks. Moreover, many
context-aware services make the assumption that the context they use is completely
accurate. However, in reality, both sensed and interpreted context is often ambigu-
ous. A challenge facing the development of realistic and deployable context-aware
services, therefore, is the ability to handle ambiguous context.

Although some of this uncertainty may be resolved using automatic tech-
niques [23, 58, 108, 126], I argue that the correct handling of uncertain context
will often need to involve the user. A de-facto technique from the field of psychol-
ogy, called the Experience Sampling Method, is found to be effective for learning
about person-situation interactions as well as any ambiguity in the situation. The
technique compares most closely with recall-based self-reporting techniques such
as interviews, traditional surveys, and diaries

The term mediation is commonly used to refer to the dialogue that ensues be-
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tween the user and the system. Mediation techniques are interface elements that
help the user to identify and fix system actions that are incorrect, or potentially
involve the user in helping the system to avoid making those mistakes in the first
place. Further, in addition to resolving any context ambiguity, user mediation can
also provide researchers with the possibility to ask usage behaviour specific ques-
tions [15, 22, 53, 65]. For example, a user indicating that a location based coupon
was sent based on incorrect location can provide feedback to the localization sys-
tem as well as indicate why the coupon was not used. Thus, explicitly asking users
whether the triggering context matched the context in reality will leave no room for
ambiguity - which is not the case when using automated techniques.

The need for this explicit interaction however, can often burden the user. As a
result, current research effort is towards finding the right balance of user effort in
providing feedback and the information needed by the system [14, 88, 121]. One
such information source, that can potentially reduce user fatigue, is implicit feed-
back in the form of user interactions with a device. I claim that users interact with
their device differently based on the degree of affinity towards a notification con-
tent. For example, users that like a coupon may interact with their device differently
(they might view the coupon for longer durations, scroll the content several times)
as opposed to those that do not like it (delete the notification within a short span of
receiving it).

In my thesis I concentrate solely on identifying and collecting the multiple
dimensions of user mobile interaction as a potential source of user reaction to a
context-based experiment. I am not tackling the problem of resolving context ambi-
guity through user mediation. Interpreting user reaction is however, a step towards
this goal. User reaction, coupled with the confidence of the experiment context
predicates, can be used to generate the experiment report necessary to draw a con-
clusion as well as create an optimum dialogue required for explicit user mediation
which in turn reduces any response bias. Details of this module is explained further

in Section 3.5.
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Figure 2.2: Basic concept of an event processing system

2.4 Event-driven Architecture

Event-driven architecture(EDA) [46, 153] is an architectural style in which one or
more components in a software system execute in response to receiving one or more
event notifications. This architectural pattern may be applied to the design and
implementation of applications and systems which transmit events among loosely
coupled software components and services [103]. An event-driven system typi-
cally consists of event producers (or agents), event consumers (or sinks), and event
channels. Producers have the responsibility to detect, gather, and transfer events.
Consumers have the responsibility of applying a reaction as soon as an event is
presented. Event channels are conduits in which events are transmitted from event
producers to event consumers. Figure 2.2 shows the major architectural components
of event processing, showing the logical separation of event processing logic from
the event producers and event consumers.

As in situ experimentation is naturally centered around events, with the need
to identify and react to certain situations as they occur, following an event pro-
cessing approach is appropriate. An event-driven approach, where changes in state
are monitored as they happen, lets an application respond in a much more timely
fashion than a batch approach where the detection process runs only intermittently.
Further, there are potential scalability and fault tolerance benefits to be gained by

using an event-driven approach. An event-driven approach allows processing to
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be performed asynchronously, and so is well suited to applications where events

happen in an irregular manner.

2.5 Summary

Mobile sensing technology has the potential to bring a new perspective to the design
of social experiments, both in terms of accuracy of the results of the study and from
a practical point of view. However, to facilitate this novel experimentation process
there are several requirements and challenges. In this chapter I describe what it
means to run a real-time in situ context based experiment. I then list some of the
example experiments that this thesis will support. I then present some of the key
building blocks necessary for such a system: Foremost the system must ensure
the validity of the experiment. This means selecting the right sample, handling
the multiple sources of bias, capturing and representing any experimental errors
and finally provide sufficient information to the experimenter to draw a conclusion.
Additionally, as the system is designed to be used by non-technical experimenters
(e.g., sales managers, marketing executives etc.) there must be an intuitive, yet
sufficiently powerful way for these nontechnical experimenters to easily specify the

kinds of experiment designs that they are interested in.
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Chapter 3

Real Time Context-Based

Experimentation

In this chapter, I describe the goals and the implementation of Jarvis, a platform that
supports running in situ context-based experiments. I first describe the life-cycle of
a context-based experiment and present the architecture of Jarvis. I then describe the
various modules of the system that conforms to the traditional process of controlled
experimentation, while abstracting the complexities of handling the multiple types
of bias. Through a series of live experiments I showcase the diversity of the system
in supporting multiple experiment designs, the ease of experiment specification,
and the rich behavioural information accessible to the experimenter in the form of
a report. Note, Jarvis is part of the larger LiveLabs [13] ecosystem and requires
integration with other production grade systems built by my colleagues. Where
appropriate, I make clear which is my work and which is work that [ am integrating

as part of the system.

3.1 The Experiment Life-Cycle

Figure 3.1 shows the sequence of steps necessary to run such above experiments.

The sequence is:
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The figure is based on the original "How LiveLabs Works” figure from Ra-
jesh et al. [13]

Figure 3.1: An Experiment life-cycle.

1. A context collector application needs to be installed on participant smart-

phones. We currently support iOS 6+, and Android 3+ smartphones.

2. The collector application collects sensor and context data from the phone and
sends it to our real-time Event Processing Agent (EPA) where it is processed
to obtain the required context triggers such as location, current activity, group

status etc.

3. Experimenters specify their experiments using Jarvis, our Behavioural Ex-
perimentation Platform (BEP). Section 3.2 provides more details about the

BEP.

4. Jarvis registers the required context triggers with the EPA. For example, “in-
form me when you find people standing outside the coffee shop for the past
10 minutes”. The EPA server will keep track of all these events and call back

the BEP when the triggers match the current context.

5. When a callback is received with the list of matched participants, Jarvis will

pick a subset and send a notification with the experiment details to each se-
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Figure 3.2: System Architecture

lected participant. An experiment could be a discount, a request to run an
application, a survey etc. Note that this subset can include participants that
in reality have not matched all context predicates specified in the experiment
but are deemed to have, as a result of error in the context collected. Chapter 5

talks more about how I capture and handle this context uncertainty.

. Jarvis will monitor the selected participants for a set period of time and record
what they did in response to the experiment stimulus. This data is then pack-
aged, in a privacy preserving way, and reported to the experimenter. The
ability to observe the entire experimental effect (both positive and negative)

is a key unique property and selling point.

. The experimenter processes the results and determines how to change their

experiment (if required).

3.2 Jarvis Architecture

Figure 3.2 shows the various modules of Jarvis needed to support context-based

experiments. A web Ul allows experimenters to specify a wide variety of predi-

cates consisting of context variables (location, time, gender etc.,) that needs to be
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matched by the participants. The Context Information module provides historical
data (if available and applicable) of that context attribute. For example, if the ex-
perimenter chooses Starbucks as a target location the module displays the average
population density, using a heat map, observed at that location. This information al-
lows the experimenter to make a better judgement of the selected context attribute.
Once the experiment is defined the Experiment Validation module ensures that the
experiment is safe and valid for the participant pool. Events, such as “deliver a spe-
cific targeted discount to people at the mall who are moving around in groups of
27, are captured using an SQL-based syntax. The predicates are defined as a set of
logical rules, with the context variables chained together using explicit AND opera-
tors similar to the Where clause of SQL (with each context variable appearing only
once). This query is generated and processed by the Query Generator and Optimizer
module that bears many similarities to that of the Amit event processing tool [4].
When the experiment conditions are satisfied by a participant(s), the Context Un-
certainty Handler computes the corresponding confidence metric for each of the
event attributes. We use an uncertainty model based on a predicate representation
of contexts and associated confidence values [125]. In Chapter 5 we will see how
this confidence metric is computed for the location attribute. The Participant Selec-
tion module picks a subset of participants based on a confidence threshold specified
by the experimenter in addition to other rules. A further filtering of participants
are done through the Context-Content Mapping module to ensure that the content
to be delivered to participants as part of the experiment (e.g discount coupon) reach
the right set of people. Finally, once the participant’s response to the experiment
has been collected via the User Feedback module, the Report Generator provides
a summary of the experiment that includes an overview of the impact of the dif-
ferent event attributes on the experiment outcome. The complete database schema
supporting this architecture is captured in Appendix A.

Jarvis also relies on external systems (built by my colleagues) for its functioning.

Primarily these are:
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e LiveLabs Context Collector: A mobile sensing software, installed on par-
ticipants personal devices, that collects detailed real-time (or near real-time)
context data. The app also provides a channel for sending notifications to

participants.

e SMUddy/EVA: SMUddy and EVA are in-house built mobile applications
catering to our university students. These applications provide students with
a host of services such as viewing and subscribing to events happening on
campus as well view study room occupancies and heat maps. SMUddy and
EVA are also channels for experimenters to send context-based interventions

(e.g., promotions, reminder to events) as part of an experiment.

Note: There are iOS and Android versions of the above three mobile apps.
Details of the mobile context and interactions captured by the LiveLabs Con-

text Collector, for each version, is listed in Appendix B.

e Event Processing Agent (EPA):Applies advanced analytics on incoming raw
data streams to infer a variety of interesting individual and collective context.
Jarvis registers the required context triggers with the EPA. The EPA server
will keep track of all these events and call back Jarvis when the triggers match

the current context.

e LiveLabs Indoor Localization Service: Computes the current location of all
LiveLabs participants. The EPA uses this service to identify participants sat-

isfying the location context criteria of an experiment.

e LiveLabs Notification Service: Provides an API that handles the sending of

experiment interventions to the participants’ mobile devices.

e Content Management Portal: An interface for creating the experiment inter-

vention (Promotion, Event).

Acknowledgement: Given the deployment nature of LiveLabs - which includes
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Experiment List Experiment Creation Template List User Pools Statistics My Profile

Experiment template No template v

Experiment type Single ControlTreatment Group ~

ingle Control/Treatment Group
Experiment name Multi-Treatment Groups

Experiment description

By checking this box you are agreeing that this experiment has the necessary
IRB approval

IRB number

No additional participant consent is required for this experiment

Experimenters are required to obtain the necessary IRB approval prior to
creating an experiment.

Figure 3.3: Step 1: Experiment Specification

building and operating a large-scale mobile services experimentation testbed, in-
volving members of the general public at multiple public spaces - several personnel
were involved in the design of the look and feel of Jarvis. Besides the members of
my thesis committee, Swetha Gottipati, the project manager overseeing the develop-
ment of the various LiveLabs components, assisted me in the design of the database
schema that supports running in-situ experiments as well as interfacing Jarvis with

the other LiveLabs’ systems.

3.3 The Experimental Process

While experiment expressiveness is one aspect of the system design, the ability to
input the experiment into the system without any loss of experiment semantics is
equally important. Given that the system will eventually be used by non-technical
personnel (e.g., psychologists), a key challenge is to develop an intuitive, yet suffi-
ciently expressive, user interface that allow experimenters to perform differentiated
experimentation.

Creating an experiment is a four step process done via a web portal':

I'The web interface was built by my colleague NGUYEN Vu Nhat Minh

31



‘.. Experiment Creation ;Kanik Muralidharan | [

experiment

B
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Target Location Demographics Dynamic Preferences
SMU - SIS - Level 1 Target group: Students Group type: = Friends v
# Edit
School: SIS v
CveLans Group Size: | 2 v
[
Year: 2014 ~
Activities: < Add activity (Coming
Gender: Both v soon)
Age: Any Interests Any v | (Coming soon)
Nationality: Any v
Time constraint User pool
Lunch time: 11:45:00-14:00:00
ST None v
# Edit
Phone type
Android v w

Step 1

Step 2

Figure 3.4: Step 2: Participant Specification

Experiment Specification The first step in creating an experiment requires
the experimenter to select the type of experiment to run as well as key in
additional information such as the experiment name and description (Fig-
ure 3.3). Currently we support running 3 types of experiments - Single Con-
trol/ Treatment experiment, Multi-treatment experiments and Chained exper-

iments. The next section provide more details on these experiment types.

Participant Specification

A key feature of the platform is the ability to target participants based on their
current context. Figure 3.4 shows the set of static and dynamic context criteria
available to the experimenter. The location context is currently restricted to
our University campus and be selected up to a room level granularity. The ex-
perimenter can either specify a custom time range, or can select from a set of
pre-set time ranges. Participants can be sent an intervention only within this
time range. Besides specifying location and time as conditions, the experi-
menter can also filter participants on basic demographics such as gender, age

and nationality. Future context predicates include targeting groups of a cer-
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Experiment List Experiment Creation Template List User Pools Statistics Profile

Intervention type i Promotion v i | New v |

Running type | Continuous v |

Validity: Startday: |03/18/2015 End day: ;_D3J25J‘2D15

Control group: 50%  Treatment group: 50%

ControlTreatment groups — X Remove

Minimum subsample size |1 |

Total sample size |2DD |

Exclude participants from these experiments:

Exclusion parameters: m

Enable data collection policy ¥ Collects additional mobile sensar information for 10 minutes post sending the intervention [available
only for android users]

Include Experimenter #  Send me the treatment.
Notification header PastaMania Cash Voucher # change promotion
Send sample
Survey fitle |F'rumcmc|n Feedback |
Survey description |Please give your feedback on the promation sent| |
Survey URL |htlps:h'docs.guogle.comﬁormsfdﬁ egFKEtIMCm\3ngR5|
Append user id: #| (This option will append the user id to the survey url)
Send sample

Figure 3.5: Step 3: Experiment Details

tain size as well as activity based triggering. For example, the experimenter

could send a promotion to groups of four, sitting in the coffee shop.

Clicking on the preview button provides experimenters a glimpse of how
many participants satisfied the context constraints in the past week (Fig-
ure 3.7). The goal of this feature is to assist in estimating the reasonable

sample size for that experiment.

User Pool: Experimenters often have an enrollment process to recruit par-
ticipants. For these cases, they would prefer to run their experiments on this
hand picked participant pool, rather than have Jarvis select random partici-
pants from the LiveLabs subject pool. To facilitate this Jarvis allows exper-
imenters to create their own custom user pool. Figure 3.8 shows the list of

participants in a custom user pool titled ‘Test Account’. Experimenters can
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Experiment List Experiment Creation Template List User Pools Statistics Profile

Experiment type: Single ControlTreatment Group

Experiment name: Demo Experiment

Experiment description: Sending a sample promotion.

IRE Approval: Yes IRB Number: IRB-15-010-AD0T(215)

s
Participant No additional participant consent: Yes

Specifications

P

Target Location: SMU - SIS - Level 1 Time constraint: Any

Phone type: Any

Group type: Any

Experiment Details

Intervention type: Promotion - New Running type: Continuous
Validity: 03/18/2015 08:30 to 03/25/2015 23:59 Treatment group: 50%
Minimum subsample size: 1 Total sample size: 200

Enable policy: Yes

Include experimenter: Yes

Treatment

Gender: Both Age: Any Occupation: Student Nationality: Any

‘; Experiment Creation 3 Kartic Muraidnaran

Notification header: PastaMania Cash “Joucher

Intervention type: Survey

Survey title: Promotion Feedback

Survey description: Please give your feedback on the prometion sent.

Survey URL: hitps:/idocs google.comiforms/d/ egF KEHIMC mi3gbPRs4Z _08-DgB420gHUEmvKINT X 3Mshviewform

Append user id: Yes

m Update cumrent template | Save as new template

Figure 3.6: Step 4: Review and Submit

add users through their email id and Jarvis will indicate which LiveLabs’ ap-

plications these users have currently installed on their device. This will allow

experimenters to contact the respective participants to install the required app.

Once a user pool is created it can be selected in Step 2 (Figure 3.4). If a user

pool is selected, experiment subscription will also include the participant ids

of the user pool, in which case the EPA will return to Jarvis only those partic-

ipants within the pool that satisfy the context constraints.

Step 3 Experiment Details This step captures additional details such as the duration

of the experiment (how long the experiment should run) as well as the tar-

get sample size. Experimenters can also specify if they want to partition the
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The total number of participants shown the figure is cumulative over the
past one week.

Figure 3.7: Matching Participants

participant sample into control and treatment groups as well indicate the pro-

portion of this breakup (Figure 3.5).

This step also captures the intervention that needs to be sent to participants
satisfying context constraints. Details of the supported intervention types is

listed in Section 3.3.2.

Step 4 Review and Submit In the final step the experimenter can review the experi-

ment specification and submit it for approval.

Subscribing for an Experiment: Once an experiment is submitted (and ap-
proved), it is registered with the EPA using JSON. The JSON request shown in
Figure 3.9 captures the context constraints for that experiment. The request also
includes additional POST parameters specifying the time constraints of the experi-
ment. All participants matching the context criteria within the time range are sent to

Jarvis for further processing. When an experiment has completed it is unregistered

with the EPA.
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Figure 3.8: Creating a custom participant pool

3.3.1 Experiment Design

A key requirement of the BEP is to support a variety of hypotheses testing. I am

currently supporting the running of 3 types controlled experiment designs:

1. Single Control/ Treatment experiment refers to the traditional A/B testing - a

randomized experiment with two variants, A and B, which are the control and

treatment in the controlled experiment.

. Multi-Treatment experiment is an extension of the two-sample hypothesis
testing to support the inclusion of multiple samples. This type of controlled
experiment was designed for testing marketing strategies where all groups
are essentially treatment groups and the presence of a control group (where
no treatment is given) is optional. Currently the system supports up to 8
treatment groups where each treatment can be any one of the intervention
types specified in Section 3.3.2 thereby supporting multivariate testing. Ex-
perimenters are given the option of including additional treatment groups and
selecting the corresponding intervention type at Step 3 of experiment creation.

Figure 3.10 shows a multi-treatment experiment with three treatment groups.
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"location": [

"location_type": "location",
"location™: 1,

"pid": 177,

“filter™: [

"id": "Any",
"time_constraint™: “Any",
"group_type": "Any",
"occupation™: "Student”,
"school™: "Any",
"maxage": "6@",
"phone_type": "Any",
"interests": "{}7,
“gender”: "Both",
“yearT: "B,
"group_size": @7,
"minage”: "18"

Figure 3.9: Experiment Subscription with the EPA.

3. Chained Experiment supports running multiple experiments over a selected
participant sample. The participant sample is created on running the first ex-
periment in the chain. Subsequent experiments in the chain target participants
from the same pool (control and treatment partition is maintained). The par-
ticipants are triggered with the same context criteria for all experiments within
the chain. However, the intervention type as well as the duration of each
experiment within the chain can be different. Figure 3.11 shows a chained-

experiment containing three experiments of different intervention types.

The decision to support these three designs were taken after informal discus-
sions with faculty from the School of Business and School of Social Sciences, our
primary users of the experimentation system. Note that in supporting these exper-
iment designs we inherently restrict the complexity of the context predicates that
can be expressed by the system. The need to support multiple experiment groups
relegates the predicate to simple SQL statements with the context variables chained
together using only AND operators, with each context variable appearing only once.
Using logical rules such as the OR operator between context variables can create
confounding experiment groups. To support such operations we would need to cre-

ate an additional design that targets only a single group. Events, such as “deliver
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Intervention type Promotion + | New T

Select a promotion <= Create promotion

H
Intervention type Event v | | New v
Select an event == Create event
X
Intervention type Survey v
Survey title
Survey description
Survey URL
Append user id: (This option will append the user id to the survey url)

== Add treatment

Figure 3.10: A Multi-Treatment Experiment with 3 treatment groups with different
intervention types.

a survey to people at the mall who are moving around in groups of 2 or standing”
could then be supported. However, this will require a more intuitive interface that

allows the experimenter to create such a mapping with minimal cognitive load.

3.3.2 Intervention Type

On matching the triggering context criteria, participants are sent an intervention.
The system supports 7 intervention types, each linked to one of the three mobile
applications, LiveLabs Context Collector, SMUddy and Eva, described at the start
of this chapter. Table 3.1 lists the intervention types as well as the target mobile ap-
plication wherein the intervention will be visible. Interventions of type Promotion-
New and Event-New can also have a survey associated with the intervention to col-
lect additional self-reporting data. The survey is however sent only when the par-
ticipant views the promotion or event. Reminder interventions can only be sent as
a followup to an Promotion-New or Event-New type experiment. Further these re-

minders are sent only to those participants that have received the promotion or event
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Intervention type Promotion v | | New v

Select a promotion == Create promotion

validity Start day: End day:

Enable data collection policy Collects additional mobile sensor information for 10 minutes post sending the intervention [available

only for android users]

i
Intervention type Event v | | New v
Select an event §= Create event
Validity Start day: End day:
Enable data collection policy Collects additional mobile sensor information for 10 minutes post sending the intervention [available
only for android users]
A
Intervention type Survey v
Survey title
Survey description
Survey URL
Append user id: (This option will append the user id to the survey url)
Validity Start day: End day:
Enable data collection policy Collects additional mobile sensor information for 10 minutes post sending the intervention [available

only for android users]

== Add experiment

Figure 3.11: A Chained Experiment containing 3 experiments with different inter-
vention types.

respectively. Note, only links to an external survey (hosted by Qualtrics or Google
Docs for example) can be associated with the intervention.

For every intervention type the experimenter can also specify the contents of
the notification that participants will first see on the notification bar of their mo-
bile device. Clicking the notification opens the corresponding mobile application
and displays the intervention. Participants can click on the intervention to further
view the details. Figure 3.12 shows the interface for creating a new promotion.
Figure 3.13a captures a screen shot of the promotion notification on a mobile de-
vice, Figure 3.13b and Figure 3.13c show the promotion tab on SMUddy displaying

the intervention and details of the promotion respectively. Figure 3.13d and Fig-

39



Ca
s

User Account

Update Promotion

al st gapore
eat The Queue & Get
Open Ticket Valid

imum 250 character)

7N el

Figure 3.12: Creating a Promotion Intervention

ure 3.13e show the notification requesting feedback for the promotion as well as
details of the survey.

Notifications are sent using the LiveLabs notification service that provides pro-
gramming abstractions for sending messages to both Apple devices via the Apple
Push Notification Service (APNS) and Android devices via the Google Cloud Mes-

saging (GCM) service.

3.3.3 Administrative and Housekeeping Options

Once an experiment is submitted it needs to be approved. This due diligence process
is to verify that the experiment has been approved by the IRB and does not send
any spam content to participants. Administrators are notified when an experiment
has been submitted and can approve (or reject) the experiment through the online
interface. When an approved experiment runs, administrators also have the option
of receiving the intervention sent to participants. This is to ensure there has been no
change in content since the approval process.

The web portal also provides several housekeeping options for managing experi-
ments (Figure 3.14). Experimenters can view the list of experiments created by them
as well as their details. They can delete an experiment before it has started or stop

an experiment once it is running. Frequently used experiment specifications can be
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d)
Figure 3.13: The different stages of a Promotion Intervention

saved as a template to reduce turn around time in experiment creation. The portal
also indicates the current status of the experiment, whether it is pending approval,
if it is running and has completed. In case the experiment is running, experimenters
can also view the current number of selected participants for that experiment (Fig-
ure 3.15). Log files capture every aspect of the experimentation process for any

error handling.

3.3.4 Implementation Details

Jarvis was implemented in about 7000 lines of Java. The web interface is written in
PHP and javascript®. The database consists of 24 tables created using the postgresql

DBMS. Details of the sequence of database access can be found in Appendix A.

>The web interface was built by my colleague NGUYEN Vu Nhat Minh

41



Intervention | Description Target Options

Type Mobile App

Promotion- Send a Promotion SMUddy Optional survey to

New collect self report-
ing data.

Promotion Send a reminder message for a | SMUddy

Reminder promotion sent as part of an ear-

lier experiment.

Event-New Send details of an event EVA Optional survey to
collect self report-
ing data.

Event Send a reminder message for an | EVA

Reminder event sent as part of an earlier

experiment.

Survey Send a link to an external survey. | LiveLabs

Context
Collector
Link Send a link to external content. | LiveLabs
Context
Collector

General Send a message as an interven- | LiveLabs

tion. Context
Collector

Table 3.1: Intervention Types.

3.4 Participant Enrollment

Research on mobile advertising [138] stresses the danger of irrelevance and inap-

propriateness of messages towards a consumer’s willingness to receive mobile ad-

vertisements. Consumers are particularly wary on issues such as who sends them

mobile coupons, how many they will receive, and when they will receive them [86].

Selecting the wrong participant, for a mobile coupon, can in turn have a negative

impact on coupon adoption as well as perceived usefulness and subsequently on the

internal validity of an experiment. For example, sending a coupon to a participant,

who in the last hour had already received five, may likely consider the next coupon

sent as spam. It is therefore imperative that we reduce the impact of selection bias -

an error in choosing the individuals or groups to take part in a scientific study.

One such technique of reducing selection bias is using the RFM (recency, fre-
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Figure 3.14: List of Experiments created, their details and their current status.

quency, monetary) model [20]. RFM analysis, is a marketing technique typically
used to determine quantitatively which customers are the best ones by examining
how recently a customer has purchased (recency), how often they purchase (fre-
quency), and how much the customer spends (monetary). Alternatively, the same
model can be used to reduce selection bias by ensuring a balance of participants
with high and low RFM ranking. While guaranteeing optimum participant selection
is beyond the scope of this work, I include additional experiment parameters that
can be used for participant selection. I create a variant of the RFM model replacing
the monetary term with similarity. The new RFS model quantitatively determines
which participants are appropriate for an experiment by examining how recently
was the participant part of an experiment (recency), how often has the participant
been part of an experiment (frequency) and does the participant have any bias as the
result of being part of a similar prior experiment (similarity).

Participants satisfying the context constraints are sent to Jarvis by the EPA. It is
at this point participants who are to be sent the intervention are selected. Participants

are then selected by Jarvis in 4 stages:
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c Experiment List . Kartik Muralidharan .

Experiment List Experiment Creation Template List User Pools  Statistics My Profile

All experiments

e R .
Single Control/Treatment Group Experimenting with Reminders 2015-02-06 08:30:00 Pending [ Details & Edit 3¢ Delete
29 Single Control/Treatment Group Testing Smuddy T6 2015-02-05 11:30:00 IRSICUCT [JDetails (5 Reports 3¢ Delete
28 Single ControlTreatment Group Testing Smuddy T5 2015-02-05 10:30:00 [ Details | [ Reports
Participants so far. 7

27 Single Control/Treatment Group Include: n [ Details  [i] Reports

Installed LiveLabs application list{Comming soon)
26 Slng\e Control/Treatment Gmup ﬂ [ Details (1) Reports

Group specification(Comming soon)
25 Single Gontrol/Treatment Group | ! [ Details | [ui] Reports

Generate report

24 Single Control/Treatment Group ﬂ [ Details (1] Reports

n2345>

Figure 3.15: Number of participants selected so far.

3.4.1 Selection based on Experiment Details

From the EPA participant pool, the number of participants required for the experi-
ment, or remaining, are randomly selected. Note while subsequent stages will fur-
ther reduce this number, doing this step at this point eliminates the need to perform
additional processing on all participants from the EPA pool.

Next, participants who do not have the target application (SMUddy, Eva, Live-
Labs) currently installed on their mobile device or have not uploaded any data to
the server in the past week are removed. Note, for multi-treatment experiments,
this step can only be performed after participants have been assigned to treatment
groups since the target application for each treatment group can be different. The

RF'S model is then applied on these participants in the next stage.

3.4.2 Participant Fatigue

Respondent fatigue is a well-documented phenomenon that occurs with survey par-
ticipants when they become tired of the survey task and the quality of the data they
provide begins to deteriorate. It occurs when survey participants’ attention and
motivation drop toward later sections of a questionnaire. Tired or bored respon-

dents may more often answer “don’t know,” engage in ‘“‘straight-line” responding
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(i.e. choosing answers down the same column on a page), give more perfunctory
answers, or give up answering the questionnaire altogether [82]. Thus, the causes
for, and consequences of, respondent fatigue, and possible ways of measuring and
controlling for it, should be taken into account when deciding on the length of the
questionnaire, question ordering, survey design, and interviewer training.
Therefore, to counter respondent fatigue, the total number of experiments each
participant from the previous step was selected for, in the past week, is computed.
Participants who were selected for an experiment within the day as well as those
who have been selected for more than 6 experiments in the past week are removed
from the pool of eligible participants. The time range and the total number of ex-
periments that a participant has been selected for (within the specified time range)
are modifiable options in a config file. The optimum values for these numbers is left

for future work.

3.4.3 Additional Exclusion Parameters

Another source of selection bias is recruiting participants that have been part of
a similar prior experiment. It is possible that these participants may not react
favourably to interventions of similar nature or content. This is particularly true
of experiments that are run in phases. An experiment in its second phase, should
not select participants that were part of phase one of the experiment. Jarvis allow ex-
perimenters to select previous experiments whose participants must not be included
in the current run (Figure 3.5). Note, since the content type of the intervention is not
captured, the system cannot currently automate the exclusion of participants from
similar prior experiments. For example, if the intervention type was specified as
‘sports’ related, participants who have recently received sports related interventions

can be removed from the participant pool.
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3.4.4 Creating Control/Treatment Groups

Randomised controlled trials are the most rigorous way of determining whether a
cause-effect relation exists between treatment and outcome and for assessing the

cost effectiveness of a treatment. They have several important features:

e Random allocation to intervention groups.

e Participants and experimenters should remain unaware of which treatment

was given until the study is completed.

e All intervention groups are treated identically except for the experimental

treatment.

e Participants are normally analysed within the group to which they were allo-

cated, irrespective of whether they experienced the intended intervention.

e The analysis is focused on estimating the size of the difference in predefined

outcomes between intervention groups.

Other study designs, including non-randomised controlled trials, can detect as-
sociations between an intervention and an outcome. But they cannot rule out the
possibility that the association was caused by a third factor linked to both interven-
tion and outcome. Random allocation ensures no systematic differences between
intervention groups in factors, known and unknown, that may affect outcome. Dou-
ble blinding ensures that the preconceived views of participants and experimenters
cannot systematically bias the assessment of outcomes. Intention to treat analysis
maintains the advantages of random allocation, which may be lost if subjects are ex-
cluded from analysis through, for example, withdrawal or failure to comply. Meta-
analysis of controlled trials shows that failure to conceal random allocation and the
absence of double blinding yield exaggerated estimates of treatment effects [145].

Once the participant pool is devoid of any selection bias Jarvis randomly assigns

participants into an experimental group or a control group to achieve a randomized
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Algorithm Control_Treatment

Input set of selected participants.

Input the treatment percent.

Control percent = 100 - treatment percent.

Get the current size of the control and treatment group for the experiment so far.

Select a new random seed. Shuffle set of selected participants; //To ensure participants are not
always assigned to the same group

N Q) Redies

6. For each participant in the set of selected participants
a. Compute the current control/treatment participant ratio

current_control_ratio = control_group.size / (control_group.size + treatment_group.size)
current_treatment_ratio = treatment_group.size / (control_group.size +treatment_group.size)

b. If treatment percent > control percent
i. If (treatment percent > current_treatment_ratio)
Add participant to treatment group
else
Add participant to control group
c. Else If control percent > treatment percent
i. If (control percent > current_control_ratio)
Add participant to control group
else
Add participant to treatment group

7. Return Control-Treatment group

Figure 3.16: Pseudo code for partitioning selected participants into Control and
Treatment Groups for Experiments of type Single/ Chain
control trial>. The assignment of participants into groups is done differently de-

pending on the type of experiment:
Experiment Type: Single, Chain

For experiments of type ‘single’ and ‘chain’, experimenters can specify the ratio in
which participants are to be divided between control and treatment groups. There-
fore, as participants stream into Jarvis, participants are randomly assigned to groups
whilst maintaining this ratio. Figure 3.16 shows the pseudo code that performs this
partitioning.

For experiments of type chain, initial group partitions are maintained for subse-
quent experiments in the chain i.e. participants who were assigned to the treatment

group for the first experiment in the chain. will continue to remain in the treatment

3 Although participants are randomly assigned to an experimental group or a control group to
reduce sampling bias, our current sample is still a convenience sample (given that our participants
are only students at SMU)

47



Algorithm Control_Treatment (For Multi)
1. Input set of selected participants.
2. Input number of treatment groups.
3. Retrieve current treatment groups for that experiment.
4. Determine the current minimun treatment group size
a. lterate through the treatment groups
I. Initialize min= size of first treatment group.
ii. if (freatment group size <= min)
min=treatment group size
else
Next treatment group

5. Select a new random seed. Shuffle set of selected participants; //To ensure participants are not
always assigned to the same group.

6. Insert selected participants in a round robin fashion starting with the group with minimum size.

7. Return Treatment groups.

Figure 3.17: Pseudo code for partitioning selected participants into Treatment
Groups for Experiments of type Multi

group for subsequent experiments in the ‘chained’ experiment.
Experiment Type: Multi

For experiments of type ‘multi’, experimenters can choose to create up to 8 treat-
ment groups in addition to one control group. Here. Jarvis ensures all groups are
of equal size. To do this, participants are assigned to groups in a round robin fash-
ion. Figure 3.17 shows the pseudo code that performs the group assignment for

multi-treatment experiments.

3.5 Implicit Participant Feedback

The true power of the experimentation system is in running in situ experiments col-
lecting both qualitative and quantitative data. The rich and varied data that can be
obtained in situ provides different insights into peoples perceptions and their expe-
riences of using, interacting and reacting to context-based services. Such data can
also provide answers to the why, such as user motivation, perception, and satisfac-
tion.

However, collecting carefully considered feedback is difficult owing to a num-
ber of constraints ranging from user fatigue (a rule of thumb is to ensure participants

can complete the questionnaire in less than 2 minutes [112]) to environmental con-
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straints (e.g., a user is unlikely to answer a questionnaire when shopping). Hence,
Jarvis was designed to collect user feedback with minimal user participation and yet
provide rich and informative user reaction to a context based intervention.

From the point the intervention is sent, every interaction on the mobile device
with regards to the intervention is captured - Notification click time, Notification
click location, intervention click time, intervention viewing duration and plenty
more. In addition to physical interactions, fine grained sensor data can also be
turned on the moment the intervention is received by the participant. Experimenters
can select this option during Step 3 of experiment creation 3.3. Currently all avail-
able sensors are toggled on (only on Android devices) for a duration of 10 minutes
(configurable option by the admin). However, future work includes allowing the
experimenter to decide which sensors to turn on and perhaps also for the duration.
This rich sensor data can be used not only to correlate intervention type to user ac-
tivity - participants who are seated react to notifications faster, but also provides
additional data to improve context confidence - sampling wi-fi signal at a higher
frequency can improve location confidence. Details of the mobile context and inter-

actions captured by LiveLabs suite of application are listed in Appendix B.

3.6 Experiment Report

Objective judgement on the contribution of a particular research work can only be
achieved on the basis of reproducible experiments. As a result, it becomes important
to ensure the reliability and validity of an experiment [152]. Reliability occurs when
an experiment measures the same thing more than once and results in the same
outcome. Validity is ensuring that the experiment actually measures what needs to
be measured.

Given that the experimentation system automates a large part of the experiment
life-cycle, it becomes important to capture every decision that the system makes

as well as the veracity of the user-context, in order to validate the experiment as
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Figure 3.18: An Experiment Report.

well provide sufficient information to verify the reliability. However, instead of
providing raw metrics, a report that includes a statistical analysis of these values
will perhaps be more readable by an experimenter.

Jarvis therefore provides experimenters detailed experiment output data in ad-
dition to some basic statistics in the form of a report. Figure 3.18 shows a screen
shot of an experiment report. Experimenters can generate the report on completion
of the experiment and can download the report in a pdf format as well download
the raw CSV data. Currently the CSV captures a static set of user interactions high-
lighted in Section 3.5. Information also included are basic demographics details,
the time and location of the participant when the intervention was sent as well as
which group (control or treatment) they belonged to. Future iterations will allow
creating a customizable report where experimenters can select the data fields they

require in the output file.

3.7 Validation Plan

A more fine-grained categorization of contextual factors is needed when we want

to understand how context affects user behaviour. The goal of the experimentation
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system is to provide this understanding through the process of experimentation.
However, it is necessary to validate the effectiveness of the system in supporting
behaviour observation.

I validate the system by executing experiments for known observable social phe-
nomenon and verify whether the system can observe the same. For example, when
sending a promotion for ‘ladies handbag’, the system should observe a statistically
significant positive response from female participants as compared to male partic-
ipants (with all other factors being same). Note, marketing researchers have ob-
served that demographics are generally poor predictors of consumer behaviour and
coupon redemption, and that other factors such as coupon proneness and redemp-
tion effort are more strongly associated with coupon use [41, 100]. However, since
I only consider perceived usefulness for the current system I hope to observe the
intended consumer response for the given promotion-based experiment.

Also, the USP (Unique Selling Proposition) of Jarvis is its ability to run in situ
context-based experiments. This feature alone sets it apart from all social lab ex-
periments where the participants are aware of being subjects of an experiment. The
experiments* for system validation are therefore selected based on two criteria: one,
highlight the ability of Jarvis in supporting a diverse range of experiments and in
doing so test the different aspects of the system and two, showcase it’s ability to
capture additional ‘useful’ social phenomenon within the experimentation process
that wasn’t possible thus far.

In this section, I describe the four experiments run on Jarvis followed by the
results. For each experiment I capture a breakdown of the participant demographics,
notification statistics, statistics on how the participants reacted to the intervention

and finally the data corresponding to the main hypothesis of the experiment.

4SMU-IRB Approval Number: IRB-15-010-A007(215)
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3.7.1 Experiment 1: ‘Sending a promotion reminder does not
increase view count’

Questionnaires are widely used to collect data in research and are often the only
financially viable option when collecting information from large, geographically
dispersed populations. Non-response to questionnaires reduces the effective sample
size and can introduce bias [155]. As non-response can affect the validity of the
study, assessment of response is important in the critical appraisal of any research.
For the same reason,the identification of effective strategies to increase response to
questionnaires could improve the quality of research. To identify such strategies
Edward et al. [43] conducted a systematic review of 75 randomised controlled trials
strategies for influencing response to postal questionnaires. of the multiple strate-
gies employed, the authors observed the odds of response were more than doubled
when a monetary incentive was used and almost doubled when incentives were not
conditional on response.

Analogous to the above study, I recreated the experiment on Jarvis, replacing
the questionnaire with a promotion and observing the effect of sending a promotion
reminder (independent variable) on the view count (dependent variable). The ex-
periment was executed in the two phases. In the first phase a promotion was sent
out to LiveLabs participants. No contextual constraints was specified for this ex-
periment. Figure 3.19 shows a screenshot of the experiment design of phase 1 as
captured on Jarvis.

In the second phase, the set of participants that received the promotion (in phase
1) were divided equally into a control and treatment group, with the treatment group
receiving a reminder to view the promotion (the reminder was sent three days after
sending the promotion). We then observed how many participants viewed the pro-
motion as a result of the reminder. Figure 3.20 shows a screenshot of the experiment
details of phase 2 as captured on Jarvis.

This experiment showcases the ability to run a simple control/treatment experi-

ment using Jarvis. A useful feature of the platform, that this experiment highlights,
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Experiment type: Single Control/Treatment Group

Experiment name: Promotion Reminder

Experiment description: Sending a reminder to a Promotion does not increase view count.
IRB Approval: Yes IRB Number: IRB-15-010-A007(215)

No additional participant consent: Yes

Participant Specifications

Target Location: SMU Time constraint: Any
Gender: Both Age: Any Occupation: Student Nationality: Any
Phone type: Any

Group type: Any Group Size: 0

Experiment Details

Intervention type: Promotion - New Running type: Continuous
Validity: 03/16/2015 10:00 to 03/17/2015 17:00

Minimum subsample size: 1 Total sample size: 100
Enable policy: No

Include experimenter: Yes

Intervention type: Promotion - New

Notification header: Polo T-Shirt for 510

Figure 3.19: Experiment 1: Sending the Promotion.

is the sending of the reminder only to those participants that received the promo-
tion thereby eliminating any information bias. Details of the promotion sent is in

Appendix C.1.
Results

A total of 100 participants were sent the promotion for phase one of the experiment.
Of these participants 8 were inaccessible for the second phase resulting in only 92
participants. Of these 92 participants, half (46 participants) were part of the treat-
ment group receiving a reminder for the promotion while the other half, the control
group, did not. Table 3.2 shows a breakdown of the participant demographics for
both phases of the experiment.

While the system selects and sends participants’ the experiment intervention,
not all of them will receive it for multiple reasons - the LiveLabs service has been
turned off, notifications has been disabled and so on. While iOS does not provide

any additional information on mobile notifications, the system is able to capture
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Experiment type: Single Control/Treatment Group

Experiment name: Promotion Reminder (Part 2)

Experiment description: Sending a reminder to a promotion does not increase view count.
IRB Approval: Yes IRB Number: IRB-15-010-A007(215)

No additional participant consent: Yes

Participant Specifications

Target Location: SMU Time constraint: Any
Phone type: Any
User pool: Pool from "Polo T-Shirt for 510"

Group type: Any Group Size: 0

Experiment Details

Intervention type: Promotion - Reminder Running type: Continuous
Validity: 03/19/2015 08:30 to 03/20/2015 23:59

Minimum subsample size: 1 Total sample size: 101
Enable policy: No

Include experimenter: Yes

Intervention type: Promotion - Reminder

Notification header: Have you checked out the promotion from The SMU Shop? Click on the promotion tab for more details.

Figure 3.20: Experiment 1: Sending the Promotion Reminder.

whether the notification was received for Android users. Table 3.3 shows how many
of the selected participants eventually received the notification in phase 1.

Table 3.4 captures the set of experiment-intervention interactions such as how
long after the notification was sent did the participant click on the notification and
for how long did the participant view the promotion. Although 86 participants are
considered to have received the notification, only 26 clicked on the promotion.

Finally, the contingency table 3.5 captures the 2x2 frequency distribution matrix
of the experiment variables - the number of participants that viewed the promotion
as a result of the reminder. Fisher’s exact test is used to compute the statistical sig-
nificance of the contingency table given the small sample size. Since the statistical
analysis shows that the significance level is above the cut-off value (a=0.05) we fail

to reject the null hypothesis.
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Promotion Reminder

Sample Size 100 92

Male 55 51

Gender Female 37 34
Not Specified | 8 7

Android 70 67

Phone Type 05 30 75

SOA 14 14

SOB 33 30

SOE 15 13

School SIS 19 13
SOL 7 6

SoSS 12 11

SOA-School of Accountancy, SOB-School of Business, SOE-School of
Economics, SIS-School of Information Systems, SOL-School of Law,
S0SS-School of Social Sciences

Table 3.2: Experiment 1: Participant Demographics

Reminder Notification

Promotion Notification
(Treatment Group)

Total Sent 100 46
., | Received (Confirmed) | 56 24

Android Not Received 14 8

i0S N.A. 30 14

iOS does not provide access to mobile notification information.

Table 3.3: Experiment 1: Notification Statistics

3.7.2 Experiment 2: ‘The time spent viewing a promotion is in-
dependent of any affinity towards the content’

With the rapid growth of the Internet, online advertising channels, such as spon-
sored search [4], contextual ads [110], and Behavioural Targeting (BT) [68], are
showing great market potentials. However, in contrast to the widely studied general
sponsored search, BT, which refers to the delivery of ads to targeted users based on
information collected on each individual users web search and browsing behaviours,
is still underexplored [159]. To encourage more research on BT and possibly to fur-
ther develop this market, Yan et al. [159] provide an empirical study on the click-
through log of advertisements collected from a commercial search engine to seek

the answer to the question: how much can BT help online advertising? From their
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Promotion Notification
Total Notifications Received (Android + iOS) | 86
Clicked on Notification 23
Clicked on Notification & Promotion 16
Median Notification Response Time (min) 5.73
Promotion
Total Promotion Views 46 (26 Participants)
Median Promotion Click Time (min) 62.6
Mean Promotion View Time (s) 22.13
Mean View Count 1.77
Liked the Promotion 4
Transition Type
Soft Back 26
Hardware Back 12
Other 8
Promotion Reminder
Total Notifications Received (Android + iOS) | 38
Clicked on Notification
Median Notification Response Time (min) 1.63
Clicked on Reminder Message
Clicked on Notification & Reminder Message | 6

Transition type captures the way the participant exits the promotion page,
either by pressing the back button within the mobile app (soft) or by press-
ing mobile hardware back button.

Table 3.4: Experiment 1: Intervention Statistics

experiment results, run over a period of seven days, the authors draw three important
conclusions: (1) Users who clicked the same ad will truly have similar behaviours
on the Web; (2) Click-Through Rate (CTR) of an ad can be averagely improved as
high as 670% by properly segmenting users for behavioural targeted advertising in
a sponsored search; (3) Using short term user behaviours to represent users is more
effective than using long term user behaviours for BT.

Influenced by the above study, I created an experiment on Jarvis to observe the
behaviour of participants towards different kinds of promotions - more specifically
is there a relationship between the amount of time spent viewing a promotion and
one’s affinity towards that promotion. To do this, I created a ‘chained’ experiment
consisting of three experiments. Each experiment sends a promotion (independent

variable) and observes user behaviour in terms of amount of time spent viewing the
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Viewed the Promotion | Did not View
With Promotion Reminder 7 31
Without Promotion Reminder 4 42

Fisher exact test statistic value is 0.2119 («=0.05)

Table 3.5: Hy: Sending a reminder to a promotion does not increase view count.

promotion (dependent variable). Participants provide self-reporting data through a
survey (sent automatically when the promotion is viewed) that captures how much
the participant liked the promotion on a 5-point Likert scale. Figure 3.21 shows
details of the first experiment in the chain.

Note, in creating a ‘chained’ experiment, only those participants that received
the first promotion will receive the subsequent promotions in the experiment. This
provides insight into the promotion viewing behaviour within participants in ad-
dition to capturing the viewing behaviour between participants. However, for the
purpose of verifying the above hypothesis, three independent experiments of type
‘single’ would also suffice.

This experiment showcases the ability to run a longitudinal study over a given
set of participants, capture user behaviour as well self reporting scores through an
external survey. Note while this experiment observes user behaviour in terms of
promotion viewing time, other behavioural aspects are also captured such as loca-
tion, sensor data and so on allowing multiple correlations to be drawn. Details of

the promotion and survey sent to participants are in Appendix C.2.
Results

Experiment 2 attempts to capture the correlation between promotion affinity and the
time spent viewing the promotion. Table 3.6 shows the number of participants that
were selected for each experiment intervention while Table 3.7 captures the number
of participants that received the experiment notification.

Similar to the previous experiment, the ratio of the number of participants that

received the notification to the number of participants that viewed the promotion
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Experiment type: Chained Experiment

Experiment name: Promotion view time vs like

Experiment description: The time spent viewing a promotion is independent of any affinity towards the promotional content.
IRB Approval: Yes IRB Number: IRB-15-010-A007(215)

No additional participant consent: Yes

Participant Specifications

Target Location: SMU Time constraint: Any
Gender: Both Age: Any QOccupation: Student Nationality: Any
Phone type: Any

Group type: Any Group Size: 0
Experiment Details
Minimum subsample size: 1 Total sample size: 100

Include experimenter: Yes

Intervention type: Promotion - New

Notification header: undefined
Validity: 04/01/2015 10:00 to 04/01/2015 18:00
Enable policy: No

Intervention type: Survey

Survey title: MegaFash Promotion Feedback
Survey description: Please give feedback on the promotion sent by clicking on the button below.

Survey URL: https //docs google com/fforms/d/1ksBGv_9RtZsmcilMBSESiaH4d9MwoMymSQGDWa_osciviewform?
entry. 1229730881=

Append user id: Yes

Figure 3.21: Experiment 2: Observing promotion viewing behaviour.

is small. Surveys are sent only to those participants that viewed the promotion.
Table 3.8 shows the intervention interaction statistics.

Finally, Table 3.9 captures the self reported data of the participants that viewed
the promotion and the time they spent viewing that promotion. While the data is
insufficient to draw any significant conclusion, the one participant that did like the
promotion viewed it for the longest time as compared to the other two participants

that did not like the promotion.
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Promotion 1 Promotion 2 Promotion 3
Sample Size 85 68 43
Male 47 39 26
Gender Female 31 22 14
Not Specified | 7 7 3
Android 66 55 35
Phone Type 1553 19 3 8
School SOA 12 9 6
SOB 26 21 13
SOE 12 10 8
SIS 19 15 12
SOL 8 5 2
SoSS 8 8 2

SOA-School of Accountancy, SOB-School of Business, SOE-School of
Economics, SIS-School of Information Systems, SOL-School of Law,
S0SS-School of Social Sciences

Table 3.6: Experiment 2: Participant Demographics

Promotion 1 Promotion 2 Promotion 3
Total Sent 85 68 43
. . | Received (Confirmed) | 50 42 27
Android =0 R eceived 16 13 8
10S N.A. 19 13 8

iOS does not provide access to mobile notification information.

Table 3.7: Experiment 2: Notification Statistics

3.7.3 Experiment 3: ‘Response to mobile notifications are inde-
pendent of activity’

Today’s smartphones often use notifications to attract a user’s attentionwhen there’s
an incoming text message or upcoming event, for example. Although some notifi-
cations, such as a newly available application update, can be delayed, others require
immediate user attention and action. For this reason, most notifications are pre-
sented in an obtrusive waywith an on-screen visual, a short vibration, or a flashing
LED. If the user doesn’t attend to the notification, the phone might continually send
reminders.

Although it is valuable to have notifications quickly reach the user, the existing
“issue and repeat” strategy can be obtrusive and annoying, given that notifications

can occur (repeatedly) in inconvenient situations, such as at night or when the user is
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| Promo 1 | Promo 2 | Promo 3
Promotion Notification
Total Notifications Received (Android + iOS) 69 55 35
Clicked on Notification 19 11 9
Clicked on Notification & Promotion 12 7 4
Median Notification Response Time (min) 6.4 6.3 75
Promotion
Total Promotion Views 17 10 6
Median Promotion Click Time (min) 93.58 7.19 100
Mean Promotion View Time (s) 3.68 43.27 6.43
Mean View Count 1 1.3 1
Liked the Promotion 1 1 1
Transition Type
Soft Back 5 6 1
Hardware Back 5 5 3
Other 7 2 2
Survey

Total Survey Sent 17 10 6
Clicked on Notification 2 1 2
Clicked on Survey Details 3 2 1
Clicked on Survey Link 2 2 1
Responded to the Survey 2 2 1
Median Notification Response Time (min) 48.32 0.1 23.03

Transition type captures the way the participant exits the promotion page,
either by pressing the back button within the mobile app (soft) or by press-
ing hardware back button. Transition Type & Promotion view time is un-
available for participants who exit the the promotion page any other way.

Table 3.8: Experiment 2: Intervention Statistics

driving. These unwanted notifications often lead to stress and increased frustration,
because users feel pressured to address the alerts [93]. One proposed solution is
to develop a context-aware phone that could identify whether it is appropriate to
trigger a notification [51].

To investigate the contexts in which users typically attend to (or ignore) mo-
bile notifications, Poppinga et al. design MoodDiary, a mobile diary application
for mood tracking [121]. After collecting 6,581 notifications from 79 users, the
authors developed a model that predicts opportune moments to issue notifications
with 77.85 percent accuracy.

Predicting such opportune moments to send notifications is not easy. Several
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Participant ID | View Time (s) | Promotion Response Promotion ID
10061196 N.A. Somewhat agree 1
10057655 1.72 Strongly disagree 1
10057655 9.02 Neither agree or disagree 2
10028869 N.A. Somewhat agree 2
10028869 16.29 Somewhat agree 3

Insufficient data to draw a conclusion.

Table 3.9: Hj: The time spent viewing a promotion is independent of any affinity
towards that promotion.

studies [49, 50, 44, 83, 118, 119, 133] in the recent past have attempted to do just
that. However, a key limitation with these studies is that they do not alter the op-
portune moments, but instead chose to collect user responsiveness for all possible
situations and later build a prediction model. This data-driven approach can lead
to participant fatigue. In this experiment I recreated a similar study, of observing a
participant’s response to a notification (or lack of it) and correlate it with his/ her
physical activity. With this experiment [ showcase the ability of the system not only
to recreate a complex study with ease, but also highlight the ability to alter the ‘mo-
ments’ when the notifications are sent to users - something that was not possible
with previous studies.

In this 2-part-experiment I observed the notification response time for two
time-related opportune moments: Morning (8:30am to 11:45am) and Afternoon
(12:00pm to 3:15pm), while capturing the participant’s physical activity at the time
of receiving the mobile notification. Details of the notification and experiment spec-

ification, of the first part, are shown in Figure 3.22.
Results

In the third experiment, I hypothesize that the response time to a mobile notification
is independent of the participant’s physical activity. Since this involves capturing
additional sensor data, the system selects only participants that have an Android
device. Two messages were sent at different times to a total of 78 participants. The

demographics breakup and the number of participants that received the notification
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Experiment type: Single ControlTreatment Group

Experiment name: Notification Response Time (Part 1)

Experiment description: Response time to notifications are independent of activity.
IRB Approval: Yes IRE Number: IRB-15-010-A007(215)

No additional participant consent: Yes

Target Location: SMU - SIS Time constraint: Morning
Gender: Both Age: Any Occupation: Student Nationality: Any
Phone type: Android

Group type: Any Group Size: 0

Experiment Details

Intervention type: General Running type: Continuous
Validity: 04/13/2015 058:30 to 04/16/2015 11:45

Minimum subsample size: 1 Total sample size: 100
Enable policy: Yes

Include experimenter: Yes

Intervention type: General
Notification header: Wishing you all the best for your exams - SMU LiveLabs

Notification detail: Livelabs wishes all students the very best of luck with their exams and project submissions.

Figure 3.22: Experiment 3: Notification Response Time vs. Activity.

are captured in Table 3.10 and 3.11 respectively.

Like the previous experiments, the response rate is again low with only ten par-
ticipants clicking the notification and five viewing the message out of 57 participants
that received the experiment intervention. The interaction statistics are captured in
Table 3.12.

Finally, the contingency table 3.13 captures the 2x3 frequency distribution ma-
trix of the experiment variables - the number of participants that responded to the
mobile notification and their activity. Here, I consider only those participants that
clicked on the notification within 2 minutes of receiving it. I employ an activity
recognition model that uses the accelerometer signals from the smartphone to de-
tect the participants locomotive activity such as siting, standing and walking. The
signals are collected over a 2 second sliding window and several discriminative fea-

tures are calculated from the raw signals as mentioned in Yan et al. [160]. These
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Message 1 Message 2
Sample Size 29 49
Male 24 35
Gender Female 1 9
Not Specified | 4 5
Android 29 49
Phone Type 0S 0 0
SOA 4 4
SOB 7 16
SOE 1 3
School SIS 7 9
SOL 4 1
SoSS 3 6

SOA-School of Accountancy, SOB-School of Business, SOE-School of
Economics, SIS-School of Information Systems, SOL-School of Law,
S0SS-School of Social Sciences

Table 3.10: Experiment 3: Participant Demographics

Message 1 Message 2
Total Sent 29 49
.. | Received (Confirmed) | 21 38
Android Not Received 8 11

Table 3.11: Experiment 3: Notification Statistics

features vectors are used for classification using a J48 decision tree classifier’.

I also attempt to observe if there is a relationship between response to the mobile
notification and time of day (Table 3.14).

Fisher’s exact test is used to compute the statistical significance of the contin-
gency table given the small sample size. Since the statistical analysis shows that
the significance level is above the cut-off value (a=0.05) we fail to reject the null

hypothesis in both cases.

3.7.4 Experiment 4: ‘Impulsive people prefer tasks that provide
instant rewards as opposed to a delayed one’

Monetary incentives are used to encourage people to perform a variety of different

actions. Increasingly, they are used to encourage actions that are directly beneficial

3T use the model and source code built by Yan et al. [160] to calculate the features and classify
the participants’ activity.
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Message 1 | Message 2

Message Notification
Total Notifications Received 21 38
Clicked on Notification 4 6
Clicked on Notification (within 2 minutes of receiving) 1
Clicked on Notification & Message 3 1
Mean Notification Response Time (min) 393.52 28.7

Message

Total Message Views 4 1
Mean Message Click Time (min) 528.18 0.1
Mean Message View Count 1.5 1

Table 3.12: Experiment 3: Intervention Statistics

Responded to Notification | Did not Respond
Sit 6 33
Stand 0 11
Walk 0 9

Fisher exact test statistic value is 0.2825 («=0.05)

Table 3.13: H,: Response to mobile notifications are independent of activity.

to individuals, such as engaging in healthy behaviours or quitting addictive drugs.
Interestingly, however, there is little research comparing the effectiveness of differ-
ent types of incentive schemes. Mullen et al. [104] compares the effectiveness of
incentive schemes that offer sure payments versus lotteries of equal expected value.
Specifically, two studies examine whether people are more likely to participate in
a task if they are offered: (1) a fixed sure payment, (2) a lottery of equal expected
value, or (3) a choice between the sure payment and lottery. The author hypothe-
sizes that lotteries will be the most effective incentive and that a choice between a
lottery and a fixed payment will be least effective.

However, in order to get a refined understanding of incentive preference it is
important to examine some of the characteristics and related behaviours of the in-
dividuals. Personality is one of the prominent factors influencing preference in a
given situation [56]. For the final experiment we therefore designed a novel study

linking personality and incentive preference®.

This experiment was designed along with Dr.William Tov, a faculty member of the School of
Social Sciences in SMU.
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Responded to Notification | Did not Respond
Morning 1 20
Afternoon 5 33

Fisher exact test statistic value is 0.4069 («=0.05)

Table 3.14: Hj,: Response to mobile notifications are independent of time of day.

As part of the experiment design, participants would randomly get one of two
incentives for completing a survey aimed at capturing the impulsiveness of the in-
dividual. The first incentive is a coupon for a SUBWAY Cookie which can be col-
lected immediately on completing the task. The second incentive is also a coupon
for a SUBWAY Cookie, however with the additional clause of having to waiting
at least one week before collecting the coupon. We hypothesize that the first ex-
periment group will include significantly more individuals that exhibit a personality
high on the ABIS (ABbreviated Impulsiveness Scale) as compared to the second
group. Figure 3.23 captures the experiment design on Jarvis. Details of the survey

can be found in Appendix C.3.

Results

Sample Size 100
Male 51

Gender Female 43
Not Specified | 6
Android 40

Phone Type 05 60
SOA 14
SOB 45
SOE 12

School SIS 13
SOL 4
SoSS 7

SOA-School of Accountancy, SOB-School of Business, SOE-School of
Economics, SIS-School of Information Systems, SOL-School of Law,
S0SS-School of Social Sciences

Table 3.15: Experiment 4: Participant Demographics

The final experiment attempts to understand how personality influences incen-

tive preference. A total of 100 participants were sent one of two interventions,

65



Total Sent 100

. . | Received (Confirmed) | 15
Android Not Received 25
10S N.A. 60

iOS does not provide access to mobile notification information.

Table 3.16: Experiment 4: Notification Statistics

offering either an immediate incentive or a delayed one for completing a survey.
The survey in turn captures the impulsiveness level of the participant. Table 3.15
show details of the participants selected for this experiment. Table 3.16 shows how

many of these participants are considered to have received the task notification.

Survey Notification
Total Notifications Received (Android +i0OS) | 75
Clicked on Notification 3
Clicked on Notification & Survey 3
Mean Notification Response Time (min) 36.3

Survey

T1 (Immediate Incentive) 43
T2 (Delayed Incentive) 32
Clicked on Survey Details 12
Clicked on Survey Link 8
Responded to the Survey 7[T1:6 T2:1]
Mean Survey Response Time (min) 22.4

Table 3.17: Experiment 4: Intervention Statistics

The 75 participants, considered to have received the intervention, were split
into two experimental groups. 43 participants received a notification offering an
immediate payment for completing the survey while 32 participants received a no-
tification offering a delayed incentive for the same task. Only twelve participants
clicked on either of these notifications with seven proceeding to complete the sur-
vey. Table 3.17 captures these details.

Table 3.18 captures the ABIS score of the eight participants that completed the
survey. Since there is only one participant in the second experimental group, it is

not possible to draw a significant conclusion from this experiment.
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Participant ID | Treatment Group | ABIS Score
10012979 1 27
10057655 1 29
10076674 1 33
10070561 1 29
10069489 1 22
10060966 1 31
10056829 2 45

Insufficient data to draw a conclusion.

Table 3.18: Hy: The level of impulsiveness has no influence on the choice of incen-
tive (immediate vs. delayed) for completing a task.

3.7.5 Summary of Results

The live experiments have shown the ability of the system to target and capture
participant behaviour in real time. The set of experiments also display the diversity
of the platform in supporting a range of experiments with a multitude of triggering
conditions. Further, these tests highlight the ease with which an experiment can be
created, leaving most of the heavy lifting of participant selection and bias handling
to the platform.

While these live experiments with “uncontrolled” participants have the benefit
of the results being generated from real participants engaging in real activities in
real environments, these experiments have also shown a downside to running in
situ studies - low response rate. As the participant is oblivious of the fact that
he/she is part of a behavioural experiment there is no compulsion to respond to the
experiment stimuli (notification, promotion etc.) - a problem that is not faced by
experiments in a lab setting.

While ignoring the experiment intervention is a response in itself, it could also
indicate a bias towards notifications received from certain mobile apps, including
those provided by LiveLabs.

Notifications are a core feature of mobile phones. They inform users about a
variety of events. Users may take immediate action or ignore them depending on

the importance of a notification as well as their current context [133]. It therefore
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becomes necessary to understand a Livelabs participants’ subjective perception of
mobile notifications and in particular to notifications sent by the LiveLabs mobile
apps.

I therefore conduct an online survey to gain greater insight into the perception of
and stance towards different mobile notifications in absolute terms and by weighing
them against parameters including their related timeframe, application category and
social connections. The survey’ (Appendix C.4) was distributed, via email, to 75
students randomly chosen from the pool of participants selected for at least one of
the four live experiments. The participants were compensated at a flat rate of $5

SGD for completing the survey.
Survey Discussion

Although the survey did not benefit from a decent sized sample (16 respondents),
we none the less observed several differences in the usage and perception of mobile
notifications, attributable to parameters we can link to the user, the system or the
message.

75% of the respondents receive up to 30 mobile notifications in a day with
more than 40% checking the notification immediately. Most respondents (75%)
do not follow through the notification if it isn’t important enough. A further look
into the the influence of application category on notification response reveals that
most smartphone users do not deem promotion-based notifications to be important
(62.5%) as compared to notifications regarding calls and SMS (0%). With regards
to notifications sent by the LiveLabs mobile applications (Section 3.2), more than
50% have turned off notifications or dismiss them upon receiving.

While the results of this survey cannot be generalized to the larger population
it none the less provides insight as to why the validation experiments experienced
a poor response rate. The results also suggest that for the given sample population

alternate intervention types (non-promotion) might be better suited to observe user

"SMU-IRB Approval Number: IRB-15-032-A025(415)
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behaviour. The detailed summary of responses can be found in C.4.2.
Limitations of System Validation

The four experiments were intended to showcase the ability of Jarvis in targeting
participants in real environments under varying context criteria. While this goal was
met, there are several known limitations, primarily related to experiment design.

The experiments evaluated the various aspects of the system without consider-
ing the finer details of experiment design. For example, I did not take into account
aspects such as the design and selection of the promotions for the given target popu-
lation and environment. A more appropriate evaluation would involve experiments
that take these design elements into careful consideration. For example, promotion-
based experiments might be more suited in a conducive environment like a shopping
mall as opposed to a university campus. Further, working professionals might be
a more appropriate target population for such experiments compared to students.
Failure to consider these attributes might have also contributed towards the low-
response rate.

Also, the validation plan did not include experiments created by external exper-
imenters. Given that the system is intended to be used by non-technical personnel
(e.g., behavioural scientists, marketing researchers) it is important to verify the us-
ability and usefulness of the system by these members. This evaluation would also
provide insight into potential system improvements.

Finally, while the system functionality was verified, it is also important to eval-
uate the system performance under varying load. This is particularly crucial when

running a large number of concurrent experiments.

3.8 Summary

In this chapter I present the architecture of Jarvis and list the components needed
to support running in situ context-based experiments. I then describe the process

of creating an experiment and explain in detail the role of the different components
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that are part of this process. Of these, a key module is the participant selection
module that is responsible for minimizing the multiple sources of experiment bias.
Finally, I present the validation plan, and its results, for evaluating the efficacy and
effectiveness of the system through a set of live experiments.

While the experiments showcase the diversity of the platform in specifying a
range of experiments, the results were largely inconclusive due to a low response
rate. A followup survey indicated that the low response was due to the sample pop-
ulation being non-receptive to LiveLabs mobile app notifications. Although these
results do not diminish the potential utility or functioning of Jarvis, it does raise
an issue largely faced by the mobile application developer community - a need to
understand the target audience. Building trust in users is imperative before estab-
lishing loyalty in them. And, to do so, the app must deliver content, information or
entertainment in ways the target audience wants them. I believe with the right app,
participants will respond to notifications in the way that will be useful for experi-

menters.
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Experiment type: Multi-Treatment Groups

Experiment name: Rewards & Personality

Experiment description: Impulsive people prefer tasks that provide instant rewards as opposed to a delayed one.
IRB Approval: Yes IRB Number: IRB-15-010-A007(215)

No additional participant consent: Yes

Target Location: SMU Time constraint: Any

Gender: Both Age: Any Occupation: Student Nationality: Any
Phone type: null

Group type: Any

Experiment Details

Running type: Confinuous

Validity: 03/02/2015 10:00 to 03/03/2015 16:00 Control group: No
Minimum subsample size: 1 Treatment size: 50
Enable policy: No

Include experimenter: Yes

Treatment 1

Intervention type: Survey

Survey title: Get a free SUBWAY Cookie voucher.

Survey description: Fill out this quick 5 min survey and collect your SUBWAY Cookie voucher from LiveLabs SIS L2.

Survey URL: hitps //docs google com/forms/d/1ih5SLXvsPHB 1mpwvaBlaO9gYap8GrDEnBHpN_7NtFmc/viewform?
entry_1826166991=

Append user id: Yes

Treatment 2

Intervention type: Survey

Survey title: Get a free SUBWAY Cookie voucher.

Survey description: Fill out this quick 5 min survey and get a SUBWAY Cookie voucher. Vouchers must be collected after
March Sth from LiveLabs SIS L2

Survey URL: hitps://docs.google com/forms/d/1jwWQhrgbFOWYjzVOgOTFdaldC33viahVUCiQgkmfe-8/viewform?
entry 1826166991=

Append user id: Yes

The difference in treatments are underlined in red.

Figure 3.23: Experiment 4: Personality vs. Incentive Preference
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Chapter 4

Mapping Content to Context

Several factors make it incredibly hard for consumers to identify stores of interest to
them in any particular mall. However, it is not sufficient to just identify interesting
stores by name as consumers also want to identify stores that are having deals of
specific interest to them [102].

Existing representative mobile advertising i.e., location-based advertising, is
limited in effective targeting. This is mainly because it delivers promotions based
on just the user’s current location without considering any other user context [17].
For example, deals for a nearby restaurant promoting group dining offers do not
attract people who are dining alone. Thus in order to target consumers more effec-
tively, mobile advertising will need to consider additional user context, promotion
preferences being one [86].

Similar to mobile advertising, promotion-based experiments may also entail tar-
geting the right set of participants for that experiment. For example, an experimenter
may want to send a promotion offering discount on coffee to participants that not
only like coffee but also prefer discount-based promotions. Thus, in addition to
using contextual triggers to actuate specified experiment interventions on matching
subjects, Jarvis might also need to match the experiment promotional content with
user preferences in order to get the best sample. This requirement of targeting the
right sample can be done by understanding user preferences as well as prioritizing
deals [135].

The key challenge in this preferences-to-promotion matching algorithm how-
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ever, arises from having to combine both structured (easy to understand numeric
discounts (“5% off”) etc.) and unstructured (free-form text (“A free teddy bear”)
etc.) promotion information (1). The algorithm also needs to factor in consumer
preferences such as “prefer discounts over free gifts” etc (2). Also, most consumers
own multiple payment and discount cards and this multiplies the complexity as each
individual card (and combinations of) has its own set of promotions and deals (3).
Our final algorithm adapts natural language semantic techniques and combines all
three factors to provide experimenters with the most relevant participants for a pro-
motion.

An additional challenge arises in evaluating the matching algorithm. To mea-
sure the accuracy of the algorithm we need to match experiment-promotions with
participant-preferences and verify whether the participant received a promotion
appropriate with their preference. This requires knowledge of the promotion-
preferences of our participants - which we are yet to learn. Alternatively, we could
perform an analytical evaluation of the matching algorithm to understand its accu-
racy, devoid of any participants.

To get around this challenge of evaluating the algorithm accuracy whilst still
incorporating users, I build a mobile application that takes promotion preferences as
input. This provides the necessary information to perform the matching. However,
instead of providing a single promotion matching the preferences I provide the user
with a ranked list of relevant promotions (similar to a search engine). Building such
a system serves two purposes: 1) the matching algorithm can be evaluated without
prior knowledge of participant promotion-preferences and 2) the application allows
us to learn user preferences (over time) and serves as an additional channel for
sending in situ interventions similar to the apps listed in Section 3.2.

Building such a mobile application also introduces an additional challenge from
having to display hundreds of promotions and store information on a small mo-
bile screen without burdening the user. This challenge is the main reason why the

ranking algorithm is so vital; as a good algorithm allows us to immediately identify
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the most relevant promotions. I therefore focus on an innovative solution for the
matching and ranking aspects.

In this chapter I illustrate how Jarvis handles the requirement of mapping pref-
erences to content through myDeal [107], a context-based mobile shopping applica-
tion. In the myDeal system, in addition to factoring the user’s current location, we
allow the user to specify other context such as preferences as well as payment cards
owned; all important pieces of information needed to improve promotion relevance.

myDeal was evaluated in two different ways; First, an in-depth analytical eval-
uation of the ranking algorithm was conducted to understand the accuracy of the
algorithm. Second, we ran a user study with 43 undergraduate students to under-
stand the effectiveness of the myDeal system. The user study results show that our
preference-based system is more accurate (users can find the most interesting pro-
motions better) and faster to use than two other common system designs (1. all
promotions just listed alphabetically, and 2. promotional information hidden under
various categories) for these types of shopping applications.

Note that although the process of matching promotions to participants - to get
the right participant sample - is different from ranking promotions based on user
preferences, the individual components of understanding the different parts of a
deal as well as factoring user preferences are still necessary. In this thesis I build

and evaluate the latter process, with the former as future work.

4.1 The myDeal Shopping Assistant

The system architecture is shown in Figure 4.1. I first explain our design decisions

followed by the solution details of each component of the system.

4.1.1 Design Considerations

Factor in User Preferences

“I prefer discount deals over vouchers” “Is there a lunch promotion with free

dessert?” “I’m looking for group discount deals” - the list goes on. Understand-
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Figure 4.1: myDeal System Architecture.

ing promotion details is not enough — we also have to factor in the consumer’s
preferences. Does she want immediate discounts over vouchers? or does she prefer
frequent flyer points over everything else?

A major limitation with all existing shopping assistance programs (that I know
of) is that they do not really take into account user preferences. At best, the user is
allowed to specify categories or keywords and the programs sort the results based
on that. However, a single mall can have hundreds of stores with many hundreds of
deals between them. As such, even keyword searches and categories break down in
this type of rich data environment (this claim is validated in the user study presented
later). This problem is made worse when we consider that there are multiple malls
usually within walking distance and that the consumer has multiple payment imple-
ments (which usually offer promotions on top of those already offered by the stores
themselves). A pre-study demographics survey showed that several users carried
between 4-6 cards in order to avail such offers.

A key consideration was to therefore integrate user preference into the system
so that only the most relevant promotions and stores are brought to the consumer’s
immediate attention. However, this is a non-trivial process as promotions are stated

using a combination of structured (easy to understand numeric discounts. e.g.“5%
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off””) and unstructured (free-form text. e.g.“Free teddy bear””) components. A naive
approach would be to just rank promotions based on the easy to sort structured
components. This is not good as many promotion details, of high interest to the

consumer, tend to be located in the unstructured components.
Has to be a Mobile Application

A fast growing smart phone market suggests that consumers really want to have this
capability on their mobile phones allowing them to plan their shopping experience
anytime and anywhere they wanted to.

However, the smart phone is not without its limitations; chief of which is their
small display screen (at most 4-5 inches). This makes it important to design an ap-
plication that only shows users the promotions and stores that are of highest value
to them (hiding the rest away for the user to browse through manually if so de-
sired). This is particularly important when we factor in the hundreds of possible

store/deal/card combinations that could be applicable to any given consumer.

4.1.2 Building myDeal

Keeping in mind the design considerations discussed in Section 4.1.1, building my-
Deal requires the following three components:

An electronic representation of deals: Currently, most deals are not stored in
an electronic form. The first task (Deal Representation) was thus to devise a schema
that could capture both stores deals and promotions as well as deals and promotions
offered by the various payment and discount cards from Deal Database.

Finding top deals: Given a set of cards carried by the user, the user’s prefer-
ences, and the deals offered by retailers and card issuers, Deal Matching and Scoring
components find the “best deals” for that user.

Presenting deals to the user: Ultimately, it is the user who has to decide which
deal is the best for them. Hence, it is crucial that relevant information is presented

to the user in a way that makes it easy for them to find the deal that maximizes their
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<Deals> <!-- Repeats -->
<ID>RDSC008</ID>
<Range>
<Desc>20% Discount on bill</Desc>
<Amount>
<Type>Percentage D</Type>
<Value>20</Value>
<Amount Spend></Amount Spend>
<Card>American Express</Card>
<Retailer>Walmart</Retailer>
</Amount>
</Range>
<Day>
<Date>any</Date>
<Time>any</Time>
</Day>
<isStackable> <!-- Repeats -->
<CardName>any</CardName>
<Retailer>any</Retailer>
<ProductCategory>any</ProductCategory>
</isStackable>
</Deals>

Figure 4.2: XML Schema for Describing Deals

needs. In addition, users must also be able to specify their shopping preferences

easily on the myDeal mobile application.

4.1.3 Representation of Deals

Deals are offered by two main entities; retailers and payment/discount card opera-
tors. In the retailers case, the deal is likely to be valid only at that specific retailer
whereas payment/discount card deals are likely to be valid across many retailers.
For example, a supermarket could offer a 50% deal on laundry detergent. That deal
is likely to only be valid at that supermarket and possibly its branches. On the other
hand, a bank could offer a 2% cash rebate on its premium VISA credit card on all
purchases. This cash rebate would apply no matter where the detergent was bought.
Note: it is also possible for deals to be constrained to a particular retailer and a
particular card. Our schema, described below, can handle this case as well.

I manually inspected a few hundred deals, from various retailers and payment
cards, and identified four components that were used to create all deals - every deal
encountered was some combination of these four components with different values

and attributes assigned to each component. The four components are:

1. Cash back: These are specific cash refund. For example, 3% cash back of
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entire bill. These discounts are in the form of percentages or fixed values ($5

cash back).

2. Discounts: These are specific cash discounts. For example, 5% cash discount
of entire bill. These discounts are in the form of percentages or fixed values

($10 discount).

3. Vouchers: These are vouchers that can be accrued and then exchanged later
for either cash or products. Frequent flyer miles, store loyalty points, etc. are

some examples.

4. Rewards: These are deals in the form of real products. For example, get a

teddy bear free with every $10 purchase.

An XML-based schema (Figure 4.2) is used to describe deals comprising of
these four components. In addition to capturing basic deal information, a Stackable
tag specifies whether this deal can be combined with other deals. For example, a
deal offered by a loyalty card may only be usable with a deal offered by a credit
card issued by a specific bank. I describe just the main parts below, omitting the
rest for brevity:

< Range >: This block is used to specify the exact deals offered by this dis-

count. It consists of the following tags:

e < Desc >: This tag contains the full description of any applicable reward.
This will be shown to the user to help them understand exactly what products

they will receive.

e < Amount >: This is the amount of the deal. It consists of < T'ype > and
< Value >. < Type > can be set to Percentage (for 5% total discounts etc.),
Fixed (for $10 discounts etc.), Cumulative (for loyalty points type deals), or
One Time (used to provide the “cash” value of rewards. The < Value > tag

contains the actual amount of the deal.
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< Stackable >: This tag group specifies whether this deal can be combined
with other deals. For example, a deal offered by a loyalty card may only be usable
with a deal offered by a credit card issued by a specific bank. The any keyword can
be used to match every possibility. In addition, the anycc keyword (that matches
any credit/debit card and nothing else) can also be used for the < C'ardName >
field. This simplifies the common case where reward cards can only be stacked with

payment cards and not with other reward cards.

4.1.4 Finding the Best Promotion

The matching and scoring subsystem rank orders the best deals available for the
user. These ranks determine how good a deal the user would get if they shopped at
a particular retailer, possibly for a particular product, using particular payment and
discount cards. Rank ordering the best deals involves two major steps: 1) Matching
deals preferred by the user to those offered by the retailer and card issuers and 2)

assigning scores for each of these valid combinations.
Matching algorithm

The matching algorithm is dependent on the parameters of four entities involved
in most shopping scenarios; namely the deals, the cards carried by the user, user
preferences and location. The four entities are mapped in two steps. First, users are
mapped to retailers based on their location and the kind of deals they are looking for
(e.g., Dining) and their deal preference. Second, retailers are mapped to the cards
carried by the user. The matching algorithm filters out those retail outlets that do

not match the above criteria.
Scoring algorithm

Deals are generally a combination of structured and unstructured content. Those
that only consist of simple numerical values can be scored easily and ranked. The

real challenge however is in how we score the following type of deals:
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Deals with multiple numeric values (e.g., Get a complimentary S$30 gift

voucher and additional 3% rebate).

Deals with non-numeric values(e.g., 1-for-1 free lunch)

Deals with multiple non-numeric values.

Deals with numeric and non-numeric values.

Deals with multiple numeric and non-numeric values.

In order to score any deal, we first need to extract values for the following four
categories from the deal description: Discount, CashBack, Voucher and Reward.
For each category we use regular expressions to match and extract the corresponding
values. For example, if the deal description is “Get a 20% Discount on the Total
Bill and enjoy a complimentary Voucher of $10” we extract the following values
Discount = 20 and Voucher = 10.

The following formula is then used to score a deal:

Score = « - Discount + (8- CashBack + -y - Voucher + 6 - Reward,

where «, 3, v and 0 are weights to adjust the importance of each deal category.

The value of these weights are specified by the user as deal preferences.
Deriving a value for rewards

Consider the following deal description: “Enjoy a Free Ice Cream or Cake with
every meal purchased”. To apply a score to this deal we must effectively assign
a value to both reward items Ice Cream and Cake. We! propose a 2-step machine
learning algorithm that uses semantics to determine the corresponding value of the

reward.

IThis part of the work was done in collaboration with Swapna Gottipati, a PhD candidate from
the Data Management & Analytics group at SMU.
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Step 1: Get a list of all reward items and their corresponding value (if specified)
from all deals. This is done using standard NLP techniques such as part of speech
(POS) tagging. For our system we use the Brill POS tagger from CST [24]. In our
example, the rewards Ice Cream and Cake are extracted and added to the list.

Step 2: Using a semantic similarity method described by Lin et al. [89] and
Pedersen et al. [117], we cluster rewards in the list into a semantic space in which
rewards that are closely associated are placed in the same cluster. Several existing
algorithms compute relatedness only by traversing the hypernymy taxonomy and
find that Ice Cream and Cake are relatively unrelated. However, WordNet provides
other types of semantic links in addition to hypernymy, such as meronymy (part/w-
hole relationships), antonymy, and verb entailment, as well as implicit links defined
by overlap in the text of definitional glosses. These links can provide valuable relat-
edness information. If we assume that relatedness is transitive across a wide variety
of such links, then it is natural to follow paths such as ice cream-frozen dessert-
dessert, sweet-dessert and find a higher degree of relatedness between Ice Cream
and Cake.

Lin’s similarity measure uses the information content (IC) of the words/con-
cepts, and the least common subsumer (LCS) of the concepts in the WordNet tax-
onomy. LCS is the common ancestor of two concepts which has the maximum
information content. The similarity measure between concepts w;, w; is defined as
follows.

2 x IC(LCS(w;,wy))

Sim(w;, w;) = 1C(ws) T 1C(w,) 4.1)

where

IC(¢) = —log(P(c)) 4.2)

LCS(w;, w;) is acommon subsumer of w;, w; , IC|(c) is the information content
of the concept ¢ and P(c) is the probability of c¢. In our example, the rewards

Ice Cream and Cake are likely to be clustered together as ’Dessert’. The median
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value of the cluster is then assigned to rewards that currently do not have any value
associated with them. Going ahead with our example, if the median value of the
cluster "Dessert’ is $5, the rewards Ice Cream and Cake are also assigned the same

value.
Where to perform the match and scoring

A question that arose when building myDeal was deciding where to perform the
ranking. In particular, the matching and scoring could be performed on the user’s
mobile phone or using an external service. Each of these options had its strengths
and weaknesses.

Rank ordering on the user’s mobile phone provides the highest amount of pri-
vacy — no card information is sent anywhere. However, the user’s mobile phone
is computationally limited and requires access to deal information across multiple
retailers and card issuers. While resource utilization and privacy are a concern, as
these issues were not the primary focus of this work, it was decided to use a backend
service to perform the filtering and scoring, at the risk of users card information(only

card name) revealed to the hosting site.

4.1.5 Integrating the User

The final component of the system is the user interface for presenting deals to users.

It was designed to satisfy the following key properties:

e Clear indication of combination of cards: Many deals require combining
multiple cards together to attain them. It is thus crucial to point out to the
user which cards need to be used. This was achieved by using colour coding

to distinguish the different pieces of information.

e Display deal breakdowns: This was achieved by showing the complete de-

scription of discount percentage, cash back, vouchers and rewards.
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myDeal myDeal myDeal
myDeal Catego ries Keyword I:l Global Kitchen(International)
Budget POSB Debit Card&NTUC Smile Card
.. uadge |:| Complimentary $30 return voucher
> Select Category Dlnlng > with min.$300 nett spend.1-for-1
Choose from a list . What deal type you prefer? | weekday dinner(Min 4 dinners,
» View All Deals Shopplng > CashBack ~— | max 10 dinners) 1-for-1 Saturday
See offers at this location . Di t — high tea(Min 4 dinners, max 10
» Card Details IT& L|festy|e > V::::; ———i dinners) Cardholders dine for free
for Sunday lunch.
Add the cards data Healthcare N Rewards — eom—
X . Spinelli(International)
Leisure > | Areyou eating..... DBS Debit Card& COURTS Card
. .Single 10% off of large signature
Essentlals > .Couple beverages/Gourmet sandwiches/
whole cake orders. Complimentary
.G roup $100 voucher with every purchase
of Rancolio Silvia coffee machine.
Find Deals Original Sin(Western)
UOB One Card (ID837)
a) b) c) d)

Figure 4.3: myDeal Usage Sequence on the Window Phone

e Ordering/positioning deals: This was achieved by applying a score to each

deal and displaying deals in order of this score.

4.1.6 End-to-End System

The system works as follows: The user enters a shopping mall and loads the myDeal
application (Figure 4.3a). myDeal presents several options that the user can navigate
through. The user can either choose to view all deals offered at that location or may
choose to specify a particular category of interest (e.g.Dining, Healthcare, etc.) as
shown in (Figure 4.3b). The user then proceeds to input additional optional details
like type of deal preferred, keywords if any, and desired amount to spend and so on
as shown in (Figure 4.3c).

myDeal will extract user’s card details from the secure storage area of the phone,
append any additional user input and location, and send them to the backend ser-
vice over an existing wireless communication channel. The ranking service will
compute a score which are then ordered and sent to the user’s mobile application

(Figure 4.3d).

4.2 Validation Plan

In this section, I describe the validation approach used to evaluate myDeal.
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4.2.1 Success Criteria

The goal of the validation was to test if myDeal was successful at presenting ap-
propriate deal information to end users in an easy to use manner. To focus the
validation, the following criteria were identified as being crucial for myDeal’s suc-

CEsS:

1. The scoring algorithm is accurate.
2. Users can make deal decisions quickly.

3. Users can find the best deal accurately.

4.2.2 Dataset

The dataset for the algorithm evaluation consisted of real-world dining related deals
manually extracted from multiple sources (10 shopping malls and 4 major credit
card providers). A total of 842 deals from 610 restaurant covering 7 cuisine types
were used in the user study. Also, it was observed from a detailed breakdown of
deal component combinations (cash back, discount, vouchers and rewards) 5% of
the deals offered cash deals while 25% of the deals offered rewards— validating
the decision to specifically handle unstructured free-form rewards in the ranking

algorithm.

4.2.3 Participants and setup

The participants were a mix of Accountancy,Business, Economics and Information
Systems students. Their demographics are shown in Table 4.1.

The participants were compensated at a flat rate of $20 SGD (= $17 USD)for
completion of the entire set of tasks. The participants were compensated for com-
pletion of the entire set of tasks. It was emphasised that they were not under time
pressure, and could take as long as they needed to complete the task. This was a

deliberate bias against the goal of fast transaction times.
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Total Number 43

Gender Male (18), Female (25)
Major Accountancy(4),Economics(3),
Business(20),

Information Systems(12),
Social Science(4)

To what extent do you browse for promotions/deals | Not at All(17),

on the Internet from your phone?

Rarely (9),
Sometimes (12),
Very Often (5)
To what extent do you use applications that show | Not at All(22),
you promotions/deals near you on the phone?

Rarely (10),

Sometimes (8),

Very Often (3),

How important is your phone to you? Not very Important (2),
Somewhat Important(18),
Very Important (23),

Table 4.1: Demographic Statistics
4.2.4 System Variants

Three variants were used in order to effectively validate the system. The first vari-
ant (Base) displays the deals alphabetically (Figure 4.4a) by the retail name. An
exact keyword search option is also provided. This baseline is representative of the
options available with current state of art applications such as CitiShopper [31] and
Mobiqgpons [101].

The second variant (myDeal CAT) builds on top of the first and allows users to
view deals categorically by the deal components (e.g view deals that offer discounts,
deals that offer vouchers etc.) (Figure 4.4b). Further, within each category deals are
sorted according to the numerical value of the deal using only one particular deal
component (e.g deals offering 50% discounts will appear higher then those offering
20%). Note that in the myDeal CAT system we do not calculate aggregate deal
score of any kind. Deals that do not include any numerical value would appear be-
low those that do. This variant represents a natural transitional progression between
the baseline and the full myDeal system.

The third variant (myDeal ONE) displays deals (Figure 4.4c) ordered by the
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Base myDeal_CAT myDeal_ONE
10 at Claymore (International) @ cah O Discount Global Kitchen {International)
DBS Credit (ID:1) @ Voucher @ Frechies POSB Debit Card & NTUC Smile Card

15% savings on a la carte menu Complimentary 5330 return voucher with
min. $$300 nett spendPromoticn Period: 14
June until 30 Nov. 1-for-1 weekday dinner

{Min 4 diners, max 10 diners) 1-for-1

Cross Keys Wine Bar &

13 Sisters (Bars & Entertainment) Restaurant (Westarn)

DBS Credit (ID:2 ; i in 4 di

- ( ) _ DBS Credit Card & Shell Loyalty Card Saturday high tea {Min 4 diners, max 10
15% off all Drinks during Happy Hour 50% off main course (Dinner only) diners) Cardholder dines free for Sunday
(6-8pm) V) Lunch

Dallas Restaurant and Bar
(Western)

SMU-OCBC Debit Card (ID:79)

50% Off Baby Back Pork Ribs 50% Off
Dallas Fajitas (Valid on Monday-Wednesday
and Saturday)

211 Roof Terrace Cafe (Western)
DBS Credit (ID:3)
1-for-1 Pizza/Pasta

Spinelli (International)

DBS Debit Card & COURTS Card

10% off the large Signature beverages/
Gourmet Sandwiches/ Whole cake orders -
Complimentary $100 voucher with every

211 Roof Terrace Cafe (Western) purchase of Rancolia Silvia Coffee Machine.

DBS Debit (1D:821)

3% cash back and 1-for-1 Pizza/Pasta . :
Hokkaido Sushi Restaurant

(Japanese)

Original Sin (Western)

Al'c | iva Raafand Nlactarn) UOB One Credit Card (ID:837)

a) b) c)

Figure 4.4: System Variants

aggregate deal score calculated by the algorithm. In addition to a keyword search
option users can also input their preferences on the deal components they prefer
(e.g., they prefer discounts twice as much as vouchers etc.) as well as provide other
information such as their budget. The purpose of the myDeal CAT variant was
to evaluate whether a total rank-ordered scoring of deals was necessary or just a

categorical ordering of views was sufficient.

4.2.5 Experimental Procedure

A total of 43 undergraduate students were recruited for the tests. The participants
worked alone in a lab for the duration of the study. They were provided a Windows
Phone containing all three of our system variants. Each participant was then given
the instructions for the study? and provided with basic training in how to use the
phone. The training period lasted for at most 5 minutes, and consisted of having the
participant start the baseline application on the phone and understand the various
navigation options.

All 43 students completed the same set of tasks (shown in Table 4.2). Their goal

in all tasks was to select the best deal in terms of the overall savings achievable. The

2SMU-IRB Approval Number: IRB-10-0088-A0087
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Expt Description Effect Studied

Code

Single Going for lunch alone. No choice of | Ability to identify the most rewarding
cuisine. deal.

Couple | Going for lunch with a friend. No | Ability to identify the most rewarding
choice of cuisine. deal for a couple.

S-Focus | Going for lunch alone. Choice of cui- | Ability to identify the most rewarding
sine is “Western’. Looking for deals | deal with semi-focused options.
offering rewards.

V-Focus | Going for lunch in a group. Choice | Ability to identify most rewarding
of cuisine is ‘Chinese’. Looking for | deal when the social setting is a
deals offering discount and voucher | group, with very focused options.
and prefer voucher value over dis-
count.

T-Time | Going for lunch alone. No choice of | Ability to identify the most rewarding
cuisine. Time constraint of 1 minute. | deal in a time constrained situation

Table 4.2: myDeal User Study Experiments

participants were told that they should take into account each component of the deal
when calculating the overall savings possible for that deal. The procedure for each
task was as follows; first, the participant was given a scenario that they had to follow
(e.g., you are eating lunch alone and feel like having chinese food and perhaps an
ice-cream cone afterwards). They were then provided with deal information (for
several cards and retailers) and were asked to pick the best deal in their opinion.
They were free to select any deal (I noted down their final selection) and they were
not allowed to ask for any help in the selection process. Also, the overall deal scores
computed by the algorithm for each deal were not available to the user. The overall
score was intentionally omitted as we did not want to bias the user’s perception.
Instead, I wanted to test if the deals that the users thought were the best matched
what the algorithm considered to be the best.

During each task, I observed the time taken for selecting a deal for the presented
scenario. It was emphasised that they were not under any time pressure, and could
take as long as they needed to complete the task. This was a deliberate bias against
the goal of fast transaction times. The experiments were first performed on the base
system and then followed up with myDeal CAT and myDeal ONE. Any learning

effect was minimized by randomising between myDeal CAT and myDeal ONE.
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After each task was completed, participants were presented with a brief question-
naire (that used an easy 5-point Likert scale) that captured their perceived ease of
use and accuracy of the completed task. After completing all tasks, users filled an
end of experiment questionnaire (Appendix C.5).

Note that in a real scenario, the number of deals presented to the user will be
significantly less than that displayed for each of the above test scenarios. Recall
that in a real scenario deals are first filtered based on location and would typically
correspond to those available in a single mall. For the study however, it was de-
liberately chosen to ignore location and present the participant with all deals that
matched the test scenario. This was done to increase task complexity and test the
ranking algorithm for a larger subset of deals. Ignoring location also allows us
to effectively benchmark our system against applications (such as the Base variant

described earlier) that show all available deals irrespective of location.

4.3 Experimental Results

In this section, I present the results of our evaluation. The goal of the evaluation

was to determine if myDeal satisfied the success criteria.

4.3.1 Results: The Algorithm is Accurate

The ranking algorithm was evaluated by comparing its scores for the top 10 deals
versus the scores of 3 experts using twelve different scenarios. In each scenario,
the weights allocated to each of the four deal components was changed . Table 4.3
shows the average difference in rank position and the average error magnitude (for
all the errors that were made, what was the average error) for the top 10 deals
ordered by the experts with that of the algorithm for all twelve scenarios. The total
time taken by the algorithm to score all 842 deals used in the user study was 312ms
- well within reasonable limits.

The values in the “Rank Difference” columns indicate the average difference in

the score ranks assigned by each entity for each set of deals while the numbers in
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Scenario Weights (%) Rank Error

No. C D V | R Diff. Mag.
1 100 | 0 0 0 [ 0.00.0 [ 0.0(0.0)
2 0 | 100] 0 0 [[1.201.03)] 2020
3 0 0 100 0 0.1 (0.0) 1.0 (0.0)
4 33.3 | 33.3 | 33.3 0 1.0 (1.05) | 2.0 (0.0)
5 50 50 0 0 1.0 (1.05) | 2.0(0.0)
6 50 | 0 [ 50 [ 0 [ 0.00.0 [ 0.00.0
7 0 [ 50 |50 ] 0 [[ 0507 | 1705
8 0 0 0 [100 [ 2520 | 3.6(.3)
9 25 | 25 [ 25 | 25 [ 1.6 (1.26) | 2.0 (1.07)
10 25 | 25 0 |50 || 1.8(1.8) | 2.6(1.6)
11 25 0 | 25 [ 50 [ 5142 | 5142
12 0 [ 25 [ 25 [50 || 1.004 | 20014

C=Cash Back, D=Discount, V=Vouchers, R=Rewards. Values in parentheses are standard deviations.

Table 4.3: Accuracy of Algorithm Relative to Expert

the second column show that in the event of a rank variation what the average differ-
ence would. A lower number in both columns indicate a higher level of agreement
between the two entities in terms of scoring.

The first seven scenarios were evaluated without considering the unstructured
data part of the deal (Rewards in the form of free text). The results show that the
algorithm was effectively able to extract values from the structured data part of
the deal. In particular, the largest average difference between the experts and the
algorithm was just 1.2 (scenario 2) and even in that case, the average magnitude
of the error was just 2 scoring positions (i.e., if the expert ranked a deal 3rd, if the
algorithm made a mistake, it would, on average, rank that deal 1st or 5th).

In the last 5 scenarios (scenarios 8 to 12), the deal scores included the free-form
text of the deal. The average rank difference and error magnitude in this case is rel-
atively higher. This result was expected as scoring would involve assigning a value
to the free text which is subjective. The algorithm uses similarity matching to as-
sign this value while the expert uses heuristics to do the same. Overall however, the

average difference is not large enough to invalidate the accuracy of the algorithm.
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Figure 4.5: Is myDeal Perceived to be Easy to Use?

Base myDeal CAT myDeal ONE
Mean (s) 129.35 85.78 110.16
Variance 5034.65 1406.59 1944.76
myDeal_CAT,
Base, myDeal CAT | Base, myDeal ONE myDeal ONE
] P[two-tail] 1.06158E-11 0.00282825 6.73423E-08

t-Test: Two-Sample Assuming Unequal Variances («=0.05)

Table 4.4: Mean Time taken to select a deal across all Experiments for each system
variant.

4.3.2 Results: myDeal is Easy to Use

Figure 4.5 shows the perceived ease of use of the two myDeal variants and the
baseline system. The graph shows the averages of the self-reported Likert score.
From the Figure, we see that all three systems are perceived to be easy to use with
myDeal CAT being slightly better than the other two. This is perhaps indicative
from the fact that all participants were undergraduate students who are quite mobile

savvy and thus quite likely to be comfortable using these types of applications.

4.3.3 Results: myDeal is Fast to Use

Figure 4.6 shows the measured times taken for users to finish each experiment. We

observe that the myDeal CAT times are always lower than the corresponding times
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Figure 4.6: Measured Task Time.

Base myDeal CAT myDeal ONE

Mean 35.22965116 36.76744186 44.80813953
Variance 458.6443203 517.1034952 636.9161907
myDeal CAT,

Base, myDeal CAT | Base, myDeal ONE myDeal ONE

] P[two-tail] 0.518944585 0.000175179 0.002068973

t-Test: Two-Sample Assuming Unequal Variances («=0.05)

Table 4.5: Mean of the deal scores selected across all Experiments for each system
variant.

taken for the other two systems; with myDeal CAT being significantly lower than
the baseline system and myDeal ONE (Table 4.4). The significant time differences
between the myDeal CAT variant and the myDeal ONE variant can be explained by
the time needed for users to input additional information such as deal preferences

in myDeal ONE.

4.3.4 Results: myDeal is Accurate

The accuracy of each system was measured by comparing the score of the deal
chosen by each user for each experiment. Figure 4.7 shows the results of that com-
parison. These results show that user perception and reality can be very different.

In particular, we see that overall the average deal scores of myDeal ONE are
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Figure 4.7: Measured Accuracy.

significantly higher than myDeal CAT and the baseline (Table 4.5)— indicating
that the users obtained better deals (higher value overall deals) using myDeal ONE
than the other two systems.

Note that the absolute accuracy of myDeal ONE is low in certain experiments
(S-Focus and V-Focus) as a few users chose alternate, poor scoring deals, to the best
deal shown on the mobile device for reasons unknown to us. This is further shown
by the histogram in Figure 4.8 that shows that almost 70% of the deals chosen
in myDeal ONE were within the top 20 deals overall. The lower than expected
accuracy was due to just a few tragically bad choices where the chosen deals were

more than 200 positions away from the best deal.

4.3.5 Results: Best Deal is on Top

A key decision taken was not to display the deal score in myDeal ONE. This was
to prevent any bias in the selection of deals. As the user was free to select any
deal that matched the given experiment scenario, the position of the selected deal is
compared to the top deals chosen by the algorithm. This provided the second phase
evaluation of the algorithm.

Figure 4.9 shows the absolute difference in position of the deal selected by the
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Figure 4.8: Rank Distribution of Deals.

participant from from the top ranked deal for that experiment and Figure 4.10 shows
the relative distance between the deal selected by the user and the top ranked deal
as displayed on the screen. Clearly most users selected the deals closest to the top
most deal (within top 20) in myDeal ONE.

I analysed the results to understand why most users were only able to pick the
20" or so top deal relative to the algorithm’s top choice and identified two main
factors; First the users did not really know how to extract the various components of
the deal and assign scores to them. Many users were assigning values for Vouchers
to Rewards for example. This was a result of our intentional decision to not train
users in deal ranking methods and to not show the overall score of myDeal. Second,
users frequently picked deals that they thought were good even if the deal itself
was not that good. This was to be expected as without an objective guide (like our
overall score), humans are quite likely to go with a “gut” feel over what seems to
be better. I believe that each of these issues will be corrected when using the full
version of myDeal that shows the actual scored ranks with a detailed breakdown of

the score components.
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Figure 4.9: Absolute Positioning of Deals.

4.3.6 Summary of Results

Overall, the user study demonstrated that users preferred a combination of the my-
Deal ONE and myDeal CAT UI variants to obtain the best deal information. This is
reinforced by the self-reported user scores, shown in Figure 4.11, where every user
indicated that both myDeal ONE and myDeal CAT were useful systems to have —
with most users having an overall positive opinion of myDeal ONE. This inclina-
tion towards myDeal ONE, as stated by users, was more to do with the additional
preference inputs provided, giving a perception of improved performance over the
other two variants. Those who preferred myDeal CAT, preferred the simpler inter-

face over the myDeal ONE variant.

4.4 Discussion

4.4.1 Time Pressure

In addition to the experiments listed in Table 4.2 each participant was asked to
repeat the baseline experiment “Single”. However, this time, they were given a hard
time limit of 1 minute. This was to test the system variants in a real-world situation

where users do not have much time to look for deals. Figure 4.12 shows the average
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Figure 4.11: Overall Usefulness of myDeal.

score of the deals selected by the participants for each Ul variant under this time
pressure. It is clear that myDeal ONE works very well under a time constrained
scenario as compared to the other two variants.

Figure 4.13 validates this in terms of the absolute and relative position of the
selected deal as compared with the absolute best deal. Figure 4.13 shows that deals
selected using myDeal ONE in a time constrained environment are far more likely

to be closer to the best possible deal as compared to the other two systems.
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Figure 4.12: Accuracy in a Time Constrained Scenario

4.4.2 Limitations of the Ranking Algorithm

A key part of the algorithm complexity lies in extracting both the structured and
unstructured information parts of the deal. As description of deals are not standard,
extraction algorithms are limited by the current state-of-the-art in natural language
processing rules and technologies. The current prototype, currently cannot handle
deals that include elaborate free-form conditions to satisfy the deal requirement.
For example, several deals require purchasing additional items in order to redeem
the primary offer. Any additional purchase should effectively reduce the overall
score and the algorithm would need to determine the value of this additional item
and reduce the overall score by the appropriate factor. My system currently cannot
handle these types of deals in a general way.

Secondly, there are several instances where deals are assigned the exact same
score. This is obvious as payments card issuers and retailers tend to offer similar
deals through a joint promotion (similar to code-sharing in airlines). In this case,
deals within the same score cluster are listed alphabetically. This ordering could
perhaps bias the user. I propose in subsequent versions to collapse deals with the

same score in a manner that would allow the user to make a more informed decision.
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4.4.3 Real World Deployment Issues

Deployment of myDeal in real world situations is likely to face several challenges.
First, a successful deployment of myDeal depends on the extent to which issuers of
payment and reward cards along with retailers are willing to share accurate informa-
tion about their individual promotions. Because myDeal is designed to reduce end
user deal searching costs, it is likely that competing agencies might withhold sensi-
tive information rather than willingly share them; creating an operational hindrance
for myDeal — an effect observed by previous empirical studies [12]. Next, there is
a need for efficient dispute resolution mechanisms between users and retailers when
there is a mismatch in the deal information they possess. Such overheads are likely
to be a deterrent for the deployment of myDeal.

On the other hand, myDeal can also have potential positive effects on businesses.
For example, the positive experience of getting the best deal might boost consumer’s
satisfaction — possibly resulting in repeat purchases. Similar to the use of other
online recommendation systems [5, 129], retailers can utilise myDeal, to improve
customer loyalty and differentiate themselves in the market place through customer

empowerment.
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Figure 4.14: Will Users Share Personal Information?

4.4.4 Improving the System

It was intentionally decided not to show the final deal value (as scored by the ranking
algorithm) to the participants in the user study. This was an intentional bias against
the system as we did not want to influence the user’s final deal choice (in ways other
than the position of the deal in the system variants). The omission of the final score
was particularly noticeable when free-text deal components had to be accounted for
as different users assigned very different values to these free-text elements (many
users reported not having a basis to assign the values; hence they just made up
something). However, the final deployed version of myDeal will present the score
values and we believe that will make myDeal significantly better in practice than
the results obtained from the user study. The final version will also allow the user to
see the detailed breakdown of the final score to determine which parts of the score
was provide by which components of the deal in question.

Also, the current prototype only asks users for their weights in relation to the
four deal components used in the algorithm (Cash Back, etc.). However, it is possi-
ble to improve the accuracy of the algorithm if the user is willing to provide addi-

tional information such as their past shopping history, club memberships, frequent
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flyer preferences, etc. At the end of our user study, we asked each user if they would
be willing to provide additional personal information if the deals they received were
better for them. The results [Figure 4.14] of the survey indicated that most users
were willing as long as they obtained tangible benefits. However, this additional
information must be balanced with the need to build a simple to use interface that

does not require the user to spend a long time configuring their choices.

4.4.5 Other Limitations

This work has a number of limitations that I am aware of. First, the card descrip-
tions have only been validated qualitatively with a number of real-world cards. It is
quite possible that I will need to edit the schema to support deals from a previously
unknown real card. However, I feel that the schema is quite complete and is capable
of handling most of the deals available today.

Finally, the user study used 43 undergraduates in a controlled lab environment.
This leads to a clear bias as a) the sample size is small from a social science per-
spective, and b) undergraduates tend to be more tech-savvy than the general older
population. However, I feel that the results will still be fairly indicative of a large
slice of the shopping public. In addition, as the study was performed in a controlled
environment it is possible that a real field study will generate different trends and

results.

4.5 Summary

A common conundrum in pervasive computing is deciding how to present infor-
mation to users of these systems. On one hand, users should be provided as much
information as possible so that they can make better decisions. However, provid-
ing this much information tends to overload the user and have negative usability
impacts.

A common technique to reduce this information overload is to use automation

(in the form of Al or similar techniques) to process the data and then provide the
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user with only the pertinent information.

In this Chapter, I attempted to find the sweet spot between automation and user
intervention in the specific context of finding the best deal that matched the user’s
criterion. Within the purview of the experimentation process, this matching algo-
rithm will ensure obtaining the best participant sample given a promotion based
intervention. To evaluate this technique, I created myDeal, a system that automat-
ically ranked deals according to user preferences and presented to the user in an
efficient way on their mobile device. I first created a XML schema to describe deals
and then performed a matching and scoring between the deals preferred by the user
and the deals offered by the retailer. The results of this algorithm were then pre-
sented to the user on their mobile device. The user was able to scan the deals and
pick the one they actually wanted — possibly choosing an option other than the top
ranked deal. The results of the user study were very promising and showed that
users liked myDeal and were more accurate in picking the best deal when using the

system.
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Chapter 5

Handling Context Uncertainty

A Gartner report [17] stated that customers and not marketers are driving demand
for context-enriched content. Context-enriched content is nothing but the informa-
tion, data and other content, ranging from articles to advertising to applications, that
is based on the user’s context. The context here being, relevant facts about current
conditions that are true in the moment but may not be in the future.

Early discussion of context-aware applications has shown the ability to use mo-
bile sensing to infer a variety of context and build applications designed to respond
in real time to changes in personal situation [48, 53, 84, 158]. However, these stud-
ies are not representative of reality as they are controlled, often with a limited set of
users restricted to specific campus/office environments. To bridge this gap I build
Jarvis, a platform that facilitates a better understanding of user needs through large-
scale, in situ, real-time experimentation that require context-specific triggers. The
goal of Jarvis is to provide experimenters access to deeper, near-real time user con-
text (e.g., location, activity) without the hassles of experimentation such as subject
selection, bias and so on.

Of the many possibilities, a use case I envision for Jarvis, is providing retailers
a platform to run lifestyle based experiments. For example, a coffee shop owner
may want to test whether offering discount coupons to people who have been wait-
ing outside the coffee shop for at least 10 minutes, will improve sales. However,
a key challenge in running such experiments is that the trigger events are derived

from context collected using built-in sensors on the mobile device. These sensors
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have inherent uncertainties associated with them and as a result can include peo-
ple who do not satisfy the experiment criteria [6]. Continuing with the previous
example, discount coupons could be sent to people who are in fact not outside the
coffee store but are reported to be by the system as a result of localization error. It is
therefore pertinent to arm experimenters with sufficient information of the possible
impact of context uncertainty on the outcome of their experiment. For example,
informing the experimenter that 2% of the subjects might have falsely satisfied the
event conditions will assist them in defining the success criteria of their test. Further,
defining a confidence metric for each individual subject, who satisfies the experi-
ment requirements, provides a better understanding of the relationship between the
experiment parameters. For example, if subjects considered to have a high context-
confidence redeem the discount coupon, we can conclude a strong correlation be-
tween the event attributes (standing outside the shop for 10 minutes) and the content
delivered. This information is important, not only for understanding user behaviour
towards context-based interventions, but also towards building better context-aware
systems and applications.

Providing such information unfortunately, is not trivial. The challenges are two
fold: 1) Not all context generators provide the necessary information directly. In-
door localization systems such as Radar [11] and EZ [29] for example, do not mea-
sure how often the system incorrectly estimates users’ location to a given landmark
(false positives) and 2) Context uncertainty is highly dynamic and individual. For
example, activity classification accuracy is dependent on the activity being classi-
fied as well the device being used. It would therefore be incorrect to have a static
interpretation of error for a given context source. While techniques of increasing
context confidence through redundancy or sensor fusion exist, they do not com-
pletely eliminate the need to handle context uncertainty.

In this chapter, I describe the design of the Uncertainty-Handling module within
Jarvis (Figure 5.1) and show how it handles context uncertainty at the different

stages of an experiment. First, I show how the module defines a confidence metric
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Uncertainty Sample Size Verification

(U 4

Handling context uncertainty at the different stages of the experimental pro-
cess

1. Capture & Represent: A location context confidence metric is de-
fined for every participant returned by the Event Processing Agent
(Section 5.1).

2. Propagate: During an experiment run, the context confidence met-
ric is used to ensure no statistical bias exists between experiment
groups with regards to context confidence. Participants are selected
till this goal is reached, impacting the experiment sample size (Sec-
tion 5.3).

3. Process: Once the experiment is completed, the experiment hypoth-
esis is verified incorporating the context uncertainty information (Sec-
tion 5.5).

Figure 5.1: Sub-components of the Uncertainty Handling module.

for the location predicate as well as how it stochastically estimates additional in-
formation such as the number of false positives. Next I describe how the module
uses this confidence metric to determine the appropriate sample size for an exper-
iment, ensuring that there is no statistical bias between experiment groups with
regards to context uncertainty. Finally, I show how the module verifies the experi-
ment hypothesis given the additional context uncertainty information. In doing so,
I provide adequate information to the experimenter to process the results of an ex-
periment - allowing them to either re-run the experiment (with new parameters and

constraints), run a new experiment, or declare success.

5.1 Handling Location Uncertainty

Event processing systems often have to deal with various types of uncertainty, such

as the following [7, 8]:

e Incomplete event streams: Consider, for example, the case in which an activ-
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ity recognition system fails to detect a human activity at some point in time

(say, due to occlusion).

Insufficient event dictionary: The recognition of a composite event may re-
quire the detection of some other events that cannot be detected by the event
producers or EPAs available at an application domain. Continuing with the
previous example, the activity recognition system may not be able to detect

all types of activity necessary for detecting a cooking activity.

Erroneous event recognition: For example, a persons current location may be
approximated, and as a result the interpretation of a situation may be mis-

taken.

Inconsistent event annotation: Inconsistencies in the annotation of composite

events in the training dataset used for machine learning.

Imprecise event patterns: In many application domains, we only have an im-
precise account of the pattern of a composite event. For instance, it may not
be possible to precisely identify all conditions in which an activity of a par-

ticular type is said to take place (For example, when do you eat popcorn?).

As a result, traditional event processing systems need to be enhanced to handle

these uncertainties. Uncertainty handling methods can be roughly divided into two

main approaches - the first approach is uncertainty propagation, according to which

the uncertainty of the input events is propagated to the derived events in a coherent

way from a mathematical (probabilistic) perspective. In contrast, the second ap-

proach is to eliminate the uncertainty, whenever it arises, before the derivation is

carried out (This process should not be confused with data cleansing.). Uncertain

attributes are replaced by deterministic equivalents, and uncertain events may be

screened out, according to some predefined policy. An exemplary policy is to apply

a threshold, such that any event with a certainty smaller than this threshold should
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A floor map of our building overlayed with the location of two participants
that are potential targets for a coupon from Ice Cold Beer. The inner dot
represents the system detected coordinates of the participants while the
outer ring represents the location error radius.

Figure 5.2: Individual location confidence.

be discarded, or otherwise treated as certain. When the uncertainty is removed, the
events can be processed regularly.

The first step in handling uncertainty is to therefore represent context attributes
by probabilities and distributions rather than standard native types. Replacing un-
certain context attributes by deterministic equivalents provides for a more efficient
handling of event uncertainty. In this section, I describe how I associate a probabil-

ity (in terms of a confidence metric) with the location context attribute.

5.1.1 An overview of the LiveLabs Indoor Localization system

As part of LiveLabs, we currently (or aim to) track participant location indoors at
four venues - an international airport, a university campus, a resort island and a
convention centre. In order to support multiple mobile OS platforms, our local-
ization system employs a ‘reverse fingerprinting’ technique by Khan [74]. In their
approach, rather than relying on the Wi-Fi AP signal strength readings reported by
a mobile device, they use an infrastructure-assisted solution based on querying the
commercial Wi-Fi controller infrastructure.

Every floor is divided into multiple zones (e.g., Shops, Classrooms) and each
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zone contains multiple landmarks. Identifying a participant’s location means asso-
ciating the participant to a landmark and in turn to a zone. Participants are con-
sidered to have satisfied the event location condition if their location is contained
in or touches the zone defined in the experiment [46]. The inter-landmark distance
is approximately 3 meters for the university campus and 6 meters for the shopping
mall.

Using this localization technique, we observe an average location error radius
of two landmarks approximately 70% of the time. There is however a caveat when
computing the confidence of the location attribute. We observe that the location
error distribution depends not only on the venue (and zone), but also varies with
time of day and day of week. As a result, using the static system defined accuracy
1s not sufficient. Further, each individual has a certain location confidence based on
their current position and error radius as reported by the system. For example in
Figure 5.2, participant A reported to be at the center of a store, should have a higher
probability of actually being within the experiment defined location area (even with
location error) as opposed to participant B reported to be at the edges. It therefore
becomes necessary to compute individual location confidence based on realtime
observations and environment conditions. In the next section I will describe how
my algorithm defines the location confidence for each participant as well as how it
estimates the number of false positives within the set of participants that satisfy the

location condition.

5.1.2 Capture & Represent Location Uncertainty

When generating a report, there are two pieces of information needed to process the

outcome of an experiment. For every participant satisfying the event we need:

1. The confidence of each event attribute specified as part of an experiment.

2. The number of cases in which the event did not occur in reality (false posi-

tives).
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In particular when dealing with the location attribute, we want to know the loca-
tion confidence of each participant as well as the number of participants that might
not have satisfied the location requirement i.e, their location is reported incorrectly
to be within the event location. Note, it is not possible to infer the set of false posi-
tives based on the confidence value alone i.e, participants whose location confidence
is low does not necessarily imply that the participant is originally from outside the
event location. The number of false positives depends on several factors such as the
area of the event location, the population density of participants within and outside
the event location, the distribution of these participants as well as the location error
distribution.

The input to the algorithm is sensor data about the location of people that satisfy
the location condition. This data is in a (X,y) co-ordinate format, with respect to
the given building, along with the error radius detected at that location. Similar to
Ranganathan et al. [126] all locations are expressed by the algorithm as minimum
bounding rectangles. While approximating sensor regions with minimum bounding
rectangles decreases the accuracy of location detection, the advantages in terms of
performance and simplicity far outweigh the loss in accuracy. We then compute
for each participant, what fraction of their minimum bounding rectangle intersects
with the event location. We define this overlap ratio (ranging between 0 and 1) as
the location confidence of the participant with the intuition that, larger the overlap,
more likely is the participant to have satisfied the location condition specified in the
experiment. Thus Participant A in Figure 5.3 has a location confidence of one, as
the bounding rectangle is fully contained within the event location. This confidence
value also serves as a first step to filter participants that do not meet the confidence
requirement set by the experimenter. Note that the algorithm does not compute
the location confidence for Participant B in Figure 5.3 as it is not within the set of
participants that satisfy the event location condition.

The second part of the algorithm uses Monte-Carlo methods to estimate the

number of false positives - the number of participants that in reality were not within
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R is the maximum error radius observed at that location. e; and e; are the
respective location error radius of Participant A and Participant B such that
e1 <es<R.

Figure 5.3: Setting up the environment to compute the location confidence and the
false positives of an event.

the event location. This is done through the following steps:

1. Define a region outside the event location. This is shown as a dotted line in
Figure 5.3 surrounding the event location. The dimensions of this region is
proportional to the maximum error radius R observed at that location by our

indoor localization system.

2. Retrieve the system location of all participants within these two regions.

3. Apply a location error with a given error distribution, across all participants,
thereby shifting the participants from their system location. As a result of
this location shift, participants that were outside the event location can now
be within. This is shown in Figure 5.3 with Participant B moving into the
event location as a result of this shift. Such participants constitute the false

positives of the system.

The number of false positives are estimated by emulating the test environment
and observing all possible permutations of participants’ location, under the given
conditions. To do this, The third step is repeated 1000 times, each time shifting a

participant from their system location and capturing the number of false positives

108



%w. |[¢——— Eventlocation

16
|
19 ;‘23

N ',,5"’“1';-_174'
L V18520 = 2

«<——— Outer Region

The arrow indicates the transition of a participant from their true location to
the system location as a result of error. The length of the arrow represents
the location error magnitude.

Figure 5.4: Recreating the event environment using a simulator.

as a result of this shift. For a given event location, error distribution and partici-
pant spread within and outside this region, the algorithm estimates the number of
false positives as the average across these iterations. Thus if the system reports ten
participants to be within the event location and the algorithm estimates two as the
average number of false positives, I report that 20% of the participants were likely
not within the event location. Note, as this step does not filter any participants, it
is done post the experiment (e.g., after the coupon has been sent to participants and

the behaviour is observed) when generating the final report for the experimenter.

5.2 Experimental Results

5.2.1 Experiment Setup

To evaluate the algorithm I require the ground truth information of each participant
i.e, was the participant within the event location in reality. To get around this re-
quirement I built a simulator to recreate the experiment environment. To do this, the
simulator takes multiple inputs such as the event location dimensions, the number
of participants, population density as well as the location error distribution.

Based on these inputs a set of participants are generated and placed uniformly

across the simulated environment. The current position of each participant consti-
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Figure 5.5: Box Plot capturing the distribution of overlap ratio across the four loca-
tion classes of participants.

tutes the true location or ground truth of that participant. A given error distribution
is then applied across all participants shifting them from their true location. The
resulting position of each participant now constitutes the system location of that
participant. Figure 5.4 shows a screenshot of the simulator. The arrow captures the
shift of each participant from their true location to their system defined location.
The length of the arrow represents the magnitude of the location error. Given the
(true location, system location) pair, we can evaluate the accuracy of the algorithm
in estimating the number of false positives in a given event as well as measuring the

reliability of using overlap ratio to represent location confidence.

5.2.2 Results: Using overlap ratio to represent location confi-
dence

To evaluate the accuracy of using overlap ratio as our location confidence metric,
participants are divided into four classes: 1) Truelnside-Participants whose true lo-
cation and system location coordinates are inside the event location, 2) TrueQut-
side-Participants whose true location and system location coordinates are outside
the event location, 3) Falselnside-Participants whose true location is outside the
event location but the system location is within the region and 4) FalseOutside-

Participants whose true location is within the event location but the system location
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is outside the region.

Note, we are truly only interested in two classes of participants, Truelnside and
Falselnside, as these are the set of participants considered to have satisfied the
event location condition. We however include all four classes in our observation
of whether overlap ratio - area of intersection with the event location by the area
of the minimum bounding rectangle as defined by the system location- is a good
indicator of location confidence.

The overlap ratio was captured for ten different scenarios. The location error
radius (0 to R) was uniformly distributed (discrete) across the participants, with
the maximum location error radius R, ranging from 3 to 12 meters for each sce-
nario. Each scenario was repeated 100 times, randomly generating the number of
participants (min. 20, max. 100) during each run. The event location dimensions
remained constant for the complete experiment, while the dimensions of the region
outside the event location varied based on the maximum error radius for the given
location error distribution scenario.

Figure 5.5 captures the distribution of the overlap ratio across all four location
classes. We observe that the box plot for each class does not overlap significantly,
suggesting the use of the overlap ratio to differentiate between the different classes
of participants. Thus participants with a higher overlap ratio are more likely to be
within the event location than participants with a lower ratio. I further evaluate its
classification capability by building a Naive Bayes model in Weka using overlap ra-
tio as the feature . The resulting model provides an accuracy of 84.6% in classifying
a participant’s true location based on the overlap ratio. Unfortunately, classification
errors do still exist - Table 5.1 captures the confusion matrix. Of interest are those
participants classified as Truelnside when in reality they should be classified as
Falselnside - which is the reason why we attempt to estimate the number of false
positives. However, despite these errors, we still consider overlap ratio to be a good
representation of location confidence. Table 5.2 summarizes the mean and standard

deviation of each class observed during the simulation run.
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Truelnside | FalseOutside | TrueOutside | Falselnside
Truelnside 5054 191 2 956
FalseOutside 0 991 2370 436
TrueOutside 0 1558 34172 456
Falselnside 811 717 62 1324

Table 5.1: Confusion Matrix: Using overlap ratio to classify a participants true
location.

’ Class \ Mean \ SD \ SE ‘
Falselnside | 0.4848 | 0.1724 | 0.0032
FalseOutside | 0.2049 | 0.1177 | 0.0019
Truelnside | 0.8315 | 0.2171 | 0.0027
TrueOutside | 0.0391 | 0.0857 | 0.0004

All differences are significant (using student’s t-test with
p = 0.05).

Table 5.2: Mean and Standard Deviation of overlap ratio across the different loca-
tion classes.

5.2.3 Results: Accuracy in estimating the number of False Posi-
tives

Given that the simulator captures both the true location and system location of each
participant, we can compare the frue number of false positives with the value es-
timated by the algorithm. We run the simulator for ten different uniform location
error distribution scenarios (R=3 to 12 meters), with each scenario repeated 100
times. The number of participants (min. 20, max. 100) were randomly generated
during each run. For each run, the number of false positives was then computed
using the algorithm described in Section 5.1. Table 5.3 captures the output of the
simulator for a single run.

Figure 5.6 shows a cdf plot of the percentage error in estimating the number of
false positives by the algorithm. We observe that 80% of the time the algorithm can
accurately estimate the number of false positives in an event with an error less than

£25%.
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Where P(N) is the total number of participants during the simulation run,
P(E) is the number of participants that satisfied the Event Location condi-
tion and FP() is the number of false positives.

Table 5.3: Simulator Output for a single run with maximum error radius R=3m.
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Figure 5.6: CDF of the % error in estimating the number of participants that did not
satisfy the event conditions (false positives).

5.2.4 Discussion

In order to represent the location confidence metric, with respect to the given event
location, the above algorithm requires as input the error radius detected at that loca-
tion. This value is then used to construct the minimum bounding rectangle. How-
ever, several indoor localization systems [10, 11, 29], including the one used by
LiveLabs does not directly provide the location error. RADAR [11], for example,
creates a radio map of the indoor environment to estimate the users location. Here,
the system instead, provides a probability vector of the likely location across dif-
ferent (nearest) landmark points. Using this information we can then derive the
location error. For example, the error radius can be computed as the euclidean dis-
tance between the user’s most likely and second most likely location, as estimated
by the system.

This need to derive the necessary information raises an important requirement
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of handling uncertainty - the need to provide an interface that translates information
across different context providers to that required by the system. Further, the current
algorithm explores only two pieces of information, location confidence and estimat-
ing the number of false positives, required in handling event-based uncertainty. It
would be wortwhile to understand other such metrics that can aid reasoning under
context uncertainty.

Also, while this work explores handling uncertainty of the location attribute,
similar effort is needed in representing the uncertainty of other context attributes

supported by the experimentation system.

5.3 Handling Sample Size under Uncertainty

In Section 5.1, 1 introduced the Uncertainty-Handling module within Jarvis. 1
showed how the module defines a confidence metric for the location predicate as
well as how it stochastically estimates additional information such as the number
of false positives. However, while the module represented location uncertainty it
failed to act upon it. Instead, the system relied on the experimenter to evaluate the
impact of uncertainty on the experiment hypothesis.

I now extend the Uncertainty-Handling module within Jarvis to act on context
uncertainty in addition to providing context confidence (uncertainty) information.
In particular, I look into how we can dynamically compute the sample size for a
given experiment under context uncertainty. Traditionally, sample size is computed
under the assumption that the samples obtained are not tainted in any way. For
example, a survey of 300 students assumes that all participants surveyed are indeed
students. However, when automating subject selection for experiments, for example
using mechanical turk [113], subjects can often be misrepresented, having an impact
on the validity of the experiment [76]. As a result of such tainted samples, the
sample size specified for the experiment may not be sufficient. Hence it becomes

imperative to handle sample size selection under uncertainty and continue running
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the experiment till valid samples are obtained.

5.3.1 Why is Experiment Sample Size important?

Sample size determination is the act of choosing the number of observations or
replicates to include in a statistical sample. The sample size is an important feature
of any empirical study in which the goal is to make inferences about a population
from a sample. In practice, the sample size used in a study is determined based
on the expense of data collection, and the need to have sufficient statistical power.
In complicated studies there may be several different sample sizes involved in the
study: for example, in a survey sampling involving stratified sampling there would
be different sample sizes for each population. In a census, data are collected on
the entire population, hence the sample size is equal to the population size. In
experimental design, where a study may be divided into different treatment groups,
there may be different sample sizes for each group.

Sample sizes may be chosen in several different ways:

1. expedience - For example, include those subjects readily available or conve-
nient to collect. A choice of small sample sizes, though sometimes necessary,
can result in wide confidence intervals or risks of errors in statistical hypoth-

esis testing.

2. target variance - standard deviation is the measure of dispersion or variabil-
ity in the data. While calculating the sample size an investigator needs to
anticipate the required variation in the measures that are being studied. For
example, a smaller sample is sufficient if the population is more homogenous

and therefore has a smaller variance or standard deviation.

3. target power - statistical power is the likelihood that a study will detect an
effect when there is an effect there to be detected. Sample size can there-

fore be calculated so that enough subjects can be recruited to give the results
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adequate power. However this may require making assumptions about the

desired effect size and variance within the data.

5.3.2 Computing Sample Size

In addition to the purpose of the study and population size, three criteria usually will
need to be specified to determine the appropriate sample size: the level of precision,
the level of confidence or risk, and the degree of variability in the attributes being

measured [97].

e The Level of Precision: The level of precision or sampling error, is the range
in which the true value of the population is estimated to be. Thus, if a re-
searcher finds that 60% of students in the sample have adopted a recom-
mended practice with a precision rate of 5%, then he or she can conclude
that between 55% and 65% of students in the population have adopted the

practice.

e The Confidence Level: The confidence or risk level is based on concepts
captured in the Central Limit Theorem. The key idea in the Central Limit
Theorem is that when a population is repeatedly sampled, the average value of
the attribute obtained by those samples is equal to the true population value.
Furthermore, the values obtained by these samples are distributed normally
about the true value, with some samples having a higher value and some ob-
taining a lower score than the true population value. In a normal distribution,
approximately 95% of the sample values are within two standard deviations
of the true population value [33]. In other words, this means that if a 95%
confidence level is selected, 95 out of 100 samples will have the true popula-
tion value within the range of precision specified earlier (Figure 5.7). There
is always a chance that the sample you obtain does not represent the true
population value. Such samples with extreme values are represented by the

shaded areas in Figure 5.7. This risk is reduced for 99% confidence levels and
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Figure 5.7: Distribution of Means for Repeated Samples
increased for 90% (or lower) confidence levels.

e Degree of Variability: The degree of variability refers to the distribution
of attributes in the population. The more heterogeneous a population, the
larger the sample size required to obtain a given level of precision. The less
variable (more homogeneous) a population, the smaller the sample size. Note
that a proportion of 50% indicates a greater level of variability than either
20%or 80%. This is because 20% and 80% indicate that a large majority do
not or do, respectively, have the attribute of interest. Because a proportion
of 0.5 indicates the maximum variability in a population, it is often used in
determining a more conservative sample size, that is, the sample size may be

larger than if the true variability of the population attribute were used [94].

There are several approaches to determining the sample size. These include us-
ing a census for small populations, imitating a sample size of similar studies, using
published tables, and applying formulas to calculate a sample size [66]. For popu-
lations that are large, Cochran [32] developed an equation to give a representative

sample for proportions.
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Where n is the sample size, Z 2 is the abscissa of the normal curve that cuts off
an area « at the tails (1 - o equals the desired confidence level, e.g., 95%), e is the
desired level of precision, p is the estimated proportion of an attribute that is present
in the population, and q is 1-p. The value for Z is found in statistical tables which
contain the area under the normal curve.

For example, suppose we wish to evaluate a program in which students were
encouraged to adopt a new practice. Assuming we do not know the variability in
the proportion that will adopt the practice: therefore, p=0.5 (maximum variabil-
ity). Furthermore, suppose we want a 95% confidence level and 5% precision. The

resulting sample size is computed as:

Z*pq  1.96%(0.5)(0.5)
e 0.52

= 38bStudents (5.2)

Ng =

5.3.3 Computing Sample Size under Uncertainty

Note that handling sample size selection under uncertainty becomes important when
considering experiments with more than one group. For experiments with a single
population (100% treatment) using a certainty threshold, such that any event with a
certainty smaller than this threshold will be discarded, or otherwise treated as certain
is sufficient. For two sample experiments the degree of uncertainty within each
population should be comparable in order to test the experiment hypothesis. This
rules out any confounding effects between the two groups due to context confidence.

To do this we compute the confidence interval on the difference between means.
The difference of means is traditionally used for hypothesis testing. A confidence
interval for the difference between two means specifies a range of values within
which the difference between the means of the two populations may lie. These
intervals may be calculated by, for example, a producer who wishes to estimate
the difference in mean daily output from two machines; a medical researcher who
wishes to estimate the difference in mean response by patients who are receiving

two different drugs; etc. The confidence interval for the difference between two
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means contains all the values of (u1-12) (the difference between the two population

means) which would not be rejected in the two-sided hypothesis test of:

Hy: pii=pip against Hy: pi1 # g i.e, Ho: py-p2 = 0 against Hy: piy-pio # 0

If the confidence interval contains zero (more precisely, the parameter value
specified in the null hypothesis), then we can say that there is no significant dif-
ference between the means of the two populations at the given level of confidence.
Whenever an effect is significant, all values in the confidence interval will be on
the same side of zero (either all positive or all negative). Therefore, a significant
finding allows the researcher to specify the direction of the effect. We use this value
to dynamically verify whether the current samples of the two populations are com-
parable and if not continue sampling till it is. Note the verification process will start
when the initial target sample size is reached and will thereafter be re-computed
after a participant has been added to each of the population groups with a context
confidence metric below a given threshold. For example, if one group has a mean
context confidence of 80% and the second group has a mean context confidence of
60%, participants are added only to the latter group (if the threshold set is 80%). As

a result, the groups may not be of equal size.
Difference between means

Suppose we have two populations with means equal to p; and po. Suppose further
that we take all possible samples of size n; and ny. And finally, suppose that the

following assumptions are valid:

e The size of each population is large relative to the sample drawn from the
population. That is, N is large relative to ny, and NV, is large relative to no.
(In this context, populations are considered to be large if they are at least 10

times bigger than their sample.)

e The samples are independent; that is, observations in population 1 are not

affected by observations in population 2, and vice versa.
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e The set of differences between sample means is normally distributed. This
will be true if each population is normal or if the sample sizes are large

(n>30).

Given these assumptions, we know the following. The expected value of the
difference between all possible sample means is equal to the difference between
population means. Thus, E(xy - x3) = ptg = p1 - p2. The standard deviation of the

difference between sample means (o) is approximately equal to:

2 2
ag (02
o=/ L+ 2 (5.3)
ni no

Confidence Interval on the Difference Between Means

When the population variances are known, the 100(1-«) percent confidence interval

for pi1-p19 18 given by

2 2
(01 —22) £ 24| L+ 22 (5.4)
nq N9

where z is the z-statistic and x; and x5 are the sample means.
Statistical Power

There are two main reasons why a study may not show a significant difference
between groups being studied (e.g. in a randomized trial of a new drug, or a case-

control study testing the effect of location proximity on coupon redemption).

1. There really was no significant difference (hence a true negative result).

2. There was a difference but the study failed to detect it (false negative result).
This may arise because the study was poorly designed (e.g. used imprecise
measurements) or because the study was too small (in statistical jargon, it

“lacked power”).

The power of a study is therefore its ability to detect a difference, if the difference

in reality exists.
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Statistical power is affected chiefly by the size of the effect and the size of the
sample used to detect it. Bigger effects are easier to detect than smaller effects,
while large samples offer greater test sensitivity than small samples. Thus in ad-
dition to ensuring that the experiment groups are comparable in terms of context
confidence, we must also ensure that this process does not impact the power of the
study. This means adding additional participants to groups with a lower sample
size. A tradeoff for increasing the statistical power of the study is the possibility
of decreasing the mean confidence of a group. To illustrate, in Section 5.3.3, we
stated that participants will be added to each of the population groups with a con-
text confidence metric below a given threshold. This step can result in uneven group
sizes which in turn will impact the power of the study. However, to counteract this
effect, adding participants to a group with a current high mean context confidence,
but low sample size, can decrease the overall confidence mean - a tradeoff we need
to accept. Note, we chose a power of 80%; hence a true difference will be missed

20% of the time.

5.4 Experimental Results
5.4.1 Experiment Setup

I evaluated the algorithm for computing sample size, under the effect of context
uncertainty as follows. The algorithm takes as input the number of experiment
groups and the target sample size. Participants, with a context confidence follow-
ing a normal sampling distribution with ©=0.5, are added to each group. One of
the experiment groups include participants with a low context confidence (<30%
confidence). For the evaluation, the starting sample size is varied between 10 and
100 (in increments of 10) and the percentage of participants with low context confi-
dence (uncertainty factor) is varied between 10% and 90% (in increments of 10%)
thereby increasing the group uncertainty. Thus a trial with a sample size of 50 and

an uncertainty factor of 70% will include 35 participants with a context confidence
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Figure 5.8: Computing sample size under context uncertainty for two groups. Orig-
inal target sample size range N=10 to 100.
of 30%. For a given starting sample size and uncertainty factor, the final sample

size is computed as an average of 100 trials.

5.4.2 Results: Using difference between means to compute sam-
ple size under Context Uncertainty

Figures 5.8 and 5.9 show the final sample size computed for an experiment with

two and three groups respectively. As expected, when the uncertainty factor is high

additional participants need to be included in the experimental group to ensure the

different groups are comparable in terms of the context confidence.

5.5 Drawing an Experiment Conclusion under Un-
certainty

An important goal of our system is to provide a platform that facilitates getting a
better understanding of user behaviour towards context-based systems, through a
process of experimentation. To answer questions such as “Does sending a coupon

to consumers standing outside a coffee shop improve sales?”” would require sending
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Figure 5.9: Computing sample size under context uncertainty for three groups.
Original target sample size range N=10 to 100.

coupons to participants outside a coffee shop as well as other locations. In order to
validate the outcome of that experiment, knowing the location confidence of the par-
ticipants involved as well as the confidence of other event attributes are important.
A high location confidence among the set of participants who were in front of the
coffee shop and adopt the coupon can suggest a strong correlation between coupon
adoption and location. It therefore becomes pertinent to provide such confidence
information to experimenters. But the question arises as to how the experimenter

should interpret this context confidence data?

5.5.1 Non-manipulated independent variable

In many experiment designs, one of the independent variables is a non-manipulated
independent variable. The researcher measures it but does not manipulate it. A
study by Schnall and colleagues [141] is a good example. One independent variable
was disgust, which the researchers manipulated by testing participants in a clean
room or a messy room. The other was private body consciousness, which the re-

searchers simply measured.
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Such studies are extremely common, and there are several points worth making
about them. First, non-manipulated independent variables are usually participant
variables (private body consciousness, hypochondriasis, self-esteem, and so on),
and as such they are by definition between-subjects factors. For example, people
are either low in hypochondriasis or high in hypochondriasis; they cannot be tested
in both of these conditions. Second, such studies are generally considered to be ex-
periments as long as at least one independent variable is manipulated, regardless of
how many non-manipulated independent variables are included. Third, it is impor-
tant to remember that causal conclusions can only be drawn about the manipulated
independent variable.

For example, Schnall and her colleagues were justified in concluding that dis-
gust affected the harshness of their participants moral judgments because they ma-
nipulated that variable and randomly assigned participants to the clean or messy
room. But they would not have been justified in concluding that participants private
body consciousness affected the harshness of their participants moral judgments be-
cause they did not manipulate that variable. It could be, for example, that having
a strict moral code and a heightened awareness of ones body are both caused by
some third variable (e.g., neuroticism). Thus it is important to be aware of which

variables in a study are manipulated and which are not.

5.5.2 Context Confidence as a non-manipulated independent
variable

Thus in running experiments where there exists a certain degree of uncertainty in
the input contextual triggers, the context confidence metric can be considered as
a non-manipulated independent variable. For example, consider the data gathered
for an experiment capturing the relationship between proximity of the consumer
to the store offering discount coupons and coupon adoption. Traditional methods
involving handing the coupons physically, will ensure no ambiguity as to the loca-

tion of the consumer. The relationship between variables would then be captured as
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shown in Table 5.4. However, when relying on the experimentation system to send
the coupon based on the consumer’s location, we will need to consider the location

confidence as an additional independent variable (Table 5.5).

Location Coupon Adoption
Iv) (DV)
In front of Store Adopted
In front of Store Adopted
In front of Store Adopted
In front of Store Adopted
In front of Store Adopted

Away from Store Not Adopted
Away from Store Not Adopted
Away from Store Not Adopted
Away from Store Not Adopted
Away from Store Not Adopted

Table 5.4: Single Predictor Variable

Location Location Confidence | Coupon Adoption
av) (Non Manipulated IV) (DV)
In front of Store 0.7 Adopted
In front of Store 0.8 Adopted
In front of Store 0.7 Adopted
In front of Store 0.7 Adopted
In front of Store 0.9 Adopted
Away from Store 0.9 Not Adopted
Away from Store 0.7 Not Adopted
Away from Store 0.8 Not Adopted
Away from Store 0.7 Not Adopted
Away from Store 0.7 Not Adopted

The confidence metric captures how sure the system is that the triggering
context condition was satisfied by the participant. For example, row 6 in
this table indicates that the system was 90% confident that the participant
was at a location away from the store.

Table 5.5: Context Confidence as an additional Predictor Variable

Drawing the experiment conclusion under uncertainty will then follow the nor-

mal evaluation process [105]:

1. Assess each variable separately first (obtain measures of central tendency
and dispersion; frequency distributions; graphs); is the variable normally dis-

tributed?
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2. Assess the relationship of each independent variable, one at a time, with the
dependent variable (calculate the correlation coefficient; obtain a scatter plot);

are the two variables linearly related?

3. Assess the relationships between all of the independent variables with each
other (obtain a correlation coefficient matrix for all the independent vari-

ables); are the independent variables too highly correlated with one another?

4. Calculate the regression equation from the data.

5. Calculate and examine appropriate measures of association and tests of sta-

tistical significance for each coefficient and for the equation as a whole.

6. Accept or reject the null hypothesis.
Example

Consider an experiment attempting to verify the following hypothesis: ”Does lo-
cation proximity impact coupon adoption?”. Validating such an experiment would
involve sending coupons to participants both near and away from a given establish-
ment (e.g., Subway) and verifying whether a statistical difference exists in terms of
coupon adoption between the two experiment groups.

Let the 2x2 frequency distribution matrix of coupon adoption between the two

groups be as shown in Table 5.6.

Take the Coupon | Do not take the Coupon
Near Subway 80 20
Away from Subway 20 80

Chi-square statistic is 72. The P value is 0.(«=0.05)

Table 5.6: Hy: Location proximity does not impact coupon adoption.

The chi-square test statistic shows that the result is significant, indicating that
location proximity does indeed play a role in coupon adoption - in this case partici-
pants are more likely to take the coupon when they are close to the establishment of-

fering the coupon. However, to verify that this significance holds, we need to factor
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in the relationship between participant location-confidence and coupon adoption.

This is done through the following steps below (Figure 5.10 captures the pseudo

code). The goal of these steps is to understand whether the context confidence sup-

ports (or not) the observed effect of the main hypothesis.

Step 1.

Step 2.

Assess the relationship between the location confidence and coupon adoption.
This can be done using logistic regression (since the dependent variable is

categorical).

If the relationship is insignificant and the mean of the context confidence of all

participants is above a set threshold we can safely reject the null hypothesis.

However, if the relationship is insignificant and the mean of the con-
text confidence of all participants is below a set threshold we need to

redo the experiment. For example, if the the mean of the context confidence

is 80% we can conclude that the observed coupon adoption effect is likely to
be the ground truth. On the other hand, if the mean of the context confidence

was 20%, the observed coupon adoption effect may be due to pure chance.

If the relationship is significant then we proceed to Step 2.

Study the association between context confidence and coupon adoption within
each experiment group. This will help answer questions such as: Is there a

difference in coupon adoption across high and low location confidence?

To do this we first need to define the range for high and low location con-
fidence. For example, high confidence can be defined as to be within the
range 51% to 100% while low confidence is in the range of 0% to 50%. Once
this range is defined we can construct the contingency table (for each ex-
periment group) to capture the association between context confidence and

coupon adoption.

For the above example let the contingency table for each experiment group be

as shown in Table 5.7 and Table 5.8.
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Take the Coupon | Do not take the Coupon
High Location Confidence 70 10
Low Location Confidence 10 10

The Chi-square statistic is 14.0625. The P value is 0.000177. This result
is significant at p < 0.05

Table 5.7: Experiment Group 1: Near Subway.

Take the Coupon | Do not take the Coupon
High Location Confidence 20 60
Low Location Confidence 0 20

The Chi-square statistic is 6.25. The P value is 0.012419. This result is
significant at p < 0.05.

Table 5.8: Experiment Group 2: Away from Subway.

For each experiment group, if the relationship between the confidence range
and coupon adoption is significant, we then identify the component con-
tributing the most to the chi-square statistic. For the experiment group Near
Subway we are concerned with participants that take up the coupon while
for the experiment group Away from Subway we are more concerned with
the participants that do not take the coupon. If the contributing compo-
nent is (High Location Confidence, Take the Coupon) for the Near Sub-
way group AND if the contributing component is (High Location Con-
fidence, Do not take the Coupon) for the Away from Subway group we

can safely reject the null hypothesis. For all other conditions we need to

redo the experiment. For example, from the above tables the contributing

components of the chi-square statistic is 70 for the Near Subway group and 60
for the Away from Subway group. As both these components have a high lo-
cation confidence it is very likely that the observed effect of coupon adoption

was not due to chance.

Similarly, if the observed effect of the main hypothesis was insignificant, the
context confidence can be used to determine whether it supports the failure to reject

the null hypothesis or whether we need to redo the experiment.
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5.6 Summary

The Behavioural Experimentation Platform, attempts to gain insight into consumer
behaviour towards context based advertising, through event based experimentation.
As these experiments rely on uncertain context, there is a need to identify as well as
quantify this uncertainty. In this Chapter I describe how the platform defines a confi-
dence metric for the location attribute as well as how it derives information, such as
the number of false positives. The evaluation shows using overlap ratio to represent
location confidence is reliable and that the algorithm to estimate the number of false
positives has minimal errors. Both these values are important in understanding the
outcome of an experiment and in turn defining it’s success criteria. I also describe
how context uncertainty impacts the experiment sample size as well as how verify

the experiment hypothesis with additional context confidence information.
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If ¥*{IV, Coupon aﬂu:lo-p'cion}5 J/Relationship between the independent and dependant variable is significant
If - (logit(p) = Po+ P1 * Context 'Com‘idem:e]s then
If x{Context Confidence)>Threshold then
Reject Hg
Else
Redo Experiment
Else
Measure Association (Context Confidence, Coupon Adoption)
* Define High/Low Context Confidence Range
*  For each Independent Variable create contingency table (High/Low Context Confidence, Coupon
Adoption)

If x..,_nz{High,fLow Context Confidence, Coupon Ac:lo[:xticm]S
If xw_nz[H igh/Low Context Confidence, Coupon Adoptio r‘r]5
IfC {)(,-V_Az] = (High Context Confidence, Take the Coupon) &&
C {xW_EzJ = (High Context Confidence, Do not take the Coupon)
Reject Hg
Else
Redo Experiment
Else
Redo Experiment
Else
Redo Experiment

Else //Relationship between the independent and dependent variable is *not™ significant
If = (logit(p) = Pg+ By * Context '[30r1fidence:|s then
If %{Context Confidence)>Threshold then
Accept Hg
Else
Redo Experiment
Else
Measure Association (Context Confidence, Coupon Adoption)
* Define High/Low Context Confidence Range
* Foreach Independent Variable create contingency table (High/Low Context Confidence, Coupon
Adoption)

If x.v_,az{High,fLow Context Confidence, Coupon Ji\dﬂ-ptl'c:»njs
If xN_n‘j'tHl'gh,FLow Context Confidence, Coupon Adoptl‘on]s
IfC {)(W_nz:l = (High Context Confidence, Take the Coupon) &&
C {xw_ﬂzj = (High Context Confidence, Take the Coupon)
Accept Hy
Else
Redo Experiment
Else
Redo Experiment
Else
Redo Experiment

logit-logistic regression.

p is the probability of the binary outcome variable (coupon adoption) indi-
cating failure/success to be 1.

$-significant at p<0.05.

x2-chisquare test.

C(x?)-Contributing cell.

IV-independent variable. Near Subway(A), Away from Subway(B).

Figure 5.10: Pseudo code for drawing an experiment conclusion under uncertainty

130




Chapter 6
Related Work

In this chapter, I present the related work relevant to this dissertation. My work
spans context-aware computing, behavioural science and human-computer interac-
tion (HCI). At their juncture lies the opportunity to create a suitable tool for con-
ducting social experiments in an unobtrusive way. To the best of my knowledge, this
is the first work that enables real-time experimentation using context-based triggers
to select participants for sending interventions to their mobile device.

Section 6.1 presents the work related to incorporating context in system design
to make them more responsive to the different social settings in which they might be
used. I show that even though user context has been used in many different scenar-
ios before, very little knowledge exists on how the different contextual factors in-
fluence user experience in a certain situation, motivating the need for a behavioural
experimentation platform.

One of the key challenges of ubiquitous advertising is reaching the right peo-
ple with the right ads. In Section 6.2, I describe prior research that uses context
to provide consumers with relevant content and explain how I used those ideas in
targeting the right participant sample for experiments involving promotions as the
intervention.

Due to the complex nature of information sources, input events almost always
carry a certain degree of uncertainty and/or ambiguity. Until recently, most systems
did not make any effort to handle uncertainty in information sources. In Section 6.3

I present an overview of existing approaches for handling context uncertainty.
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Finally, in Section 6.4, I present the work relevant to understanding mobile us-
age. In particular, I discuss previous research that employ simple features extracted
from the phone, such as user interaction with the notification center and screen ac-

tivity as predictors of user behaviour.

6.1 Context and User Experience

User experience (UX) is a concept established during the past decade to describe
the holistic nature of users’ interaction with information technology products and
the associated services. Many user experience models and frameworks have been
proposed which explain aspects that affect the overall UX of a product [52, 60,
72]. One common trait in these models and frameworks is that they recognize the
importance of context as a central aspect influencing user experience.

There are multiple definitions of what context is and how it influences the use of
interactive products [25, 38, 39, 42]. Especially in user experience studies involving
mobile products, understanding contextual factors is important because they are
used in greatly varying contexts.

Although the importance of context has been acknowledged in UX research,
very little knowledge exists on how the different contextual factors influence user
experience in a certain situation. One of the reasons is that context is often defined
as a single influencing factor, such as car context or mobile context [71]. Social and
physical contexts have been the most commonly studied factors (66% and 61% of
the studies, respectively) with other contextual factors less frequently involved [78].
Wigelius et al. showed that multiple contextual factors are usually present in the
mobile context [156], and therefore, it would be important to study context holisti-
cally to determine which factors are influencing the user experience in a particular
situation.

Understanding how context affects the interaction or user experiences of a mo-

bile system is very important for system development. There are countless amounts
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of studies which report how mobile devices, applications and services have been
evaluated in different contexts of use. The studies have ranged from specific do-
mains (e.g., museums, hospitals) and different user groups (e.g., teenagers, visually
impaired) to studying various tasks (e.g., writing messages while driving, navigating
in an urban environment) that users perform with these systems.

The objective of these studies has usually been to understand individual contex-
tual factors and overcome challenges that the contextual factors set for interaction
design. For example, Barnard et al. have studied how changes in contextual fac-
tors (task type, motion and lighting level) affect the performance of mobile device
users [16]. In their study, the users were operating a PDA and performed read-
ing comprehension and word search tasks. The results indicate that changes in the
contextual factors will also affect the interaction with a mobile device.

Jones et al. argue that the evaluation of a mobile system should take place in an
actual context [69]. However, it is sometimes difficult to access the context of use
or to include all relevant contextual factors to the evaluation. For example, Kjeld-
skov et al. reported a study in which they developed a mobile system to support
safety-critical collaboration tasks on board a container ship [149]. In this study,
the evaluations were arranged in a laboratory setting, because it was not possible to
use the actual context, that is, a real container ship. For these kinds of evaluations,
it would be beneficial to recognize which contextual factors are essential for the
evaluation and might have significant influence of user experience.

Although it has been acknowledged that context affects the user experience of a
product, which contextual factors among the all possible factors are actually affect-
ing the user experience of mobile products has not been studied extensively. Mallat
et al. have studied the acceptance of a mobile ticketing service and concluded that
context was a significant determinant for consumer intention of using a service [91].
They reported that the service was found useful when users were in a hurry or the
need for a ticket was unexpected, other alternatives for purchasing tickets were not

available, or there was a queue at the sales point. All these reasons imply that there
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are different contextual factors which drive the use of the service, but the contextual
factors were not identified in the study.

While previous studies provide valuable information on what kinds of contextual
factors are involved in the mobile context or the user experience of mobile systems,
they do not describe in detail the relationship between these two aspects. After re-
viewing an extensive amount of previous studies of mobile devices, Jumisko-Pyykk
stated that, in most of the studies, context of use is mainly understood as a relatively
static phenomenon and the studies consider only few contextual factors, such as the
social and physical context. Other relevant factors are less explored [71].

By building a context-based experimentation system that target real people on
their devices in real-time using a multitude of triggering contexts we overcome the
limitations of prior work. Through this process of experimentation we seek out the
context that affects user experience in a specific situation. The triggering context
facilitates identifying the most meaningful experience, i.e. the core experience, for
a user in an episode of usage. Understanding the influence of context is key for
designing services that take into account how changes in the context strengthen or

distract positive user experience.

6.2 Context-based Advertising

At one end we have stores with promotions for their products and services. At the
other end are consumers with their needs. Ubiquitous advertising [80] attempts to
match the two to create the greatest possible impact on the customers. However,
such a service is riddled with many challenges [45, 127] the foremost being ad
relevancy.

While a number of researchers [27, 96, 109, 134, 159, 162] have suggested the
use of user context to provide a higher degree of ad personalization, most research
has focused on using only location to increase the relevancy of advertisements de-

livered. Alto et al. proposed a location-based advertising (LBA) system that proac-
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tively sends ads to mobile phones when a user passes by a certain store, using Blue-
tooth for localization [2]. In the AdNext system [75], the authors propose to use
mobility patterns to predict which store the user is likely to visit next, and show him
advertisements related to that store. Hardt et al., consider using various physical
contexts such as location and user activities to serve ads [59]. Commercial LBAs
such as Shopkick [144] and PROMO [114] also exploit current user location to
push relevant advertisements. More recently SmartAds [110] deliver contextual ads
to mobile apps by taking into account the content of the page the ads are displayed
on.

Other competitors fall into two broad categories. In the first category, appli-
cations like Froogle [54], LiveCompare [36], CompareEverywhere [67] and Shop-
Savvy [122] cater towards on-the-fly price comparisons for mobile users. In the
second category are deal information services, like Citibank’s Card Information
Service [31] and mobile applications like Mobigpons [101], that attempt to inform
consumers about the best deals available. However, these applications fail in two
main areas; first, they are usually targeted to just certain malls and/or certain pay-
ment cards (only Citibank cards for example), and second, they do not take into
consideration user preferences - factors that are important in getting the best deal!
In all the cases we observe that the burden of finding the best deal is left to the con-
sumers — the applications just provide different ways to find lists of deals matching
certain broad criteria (such as all restaurant deals etc.).

Collaborative filtering(CF) techniques have also been used for targeted advertis-
ing [30, 128, 136]. CF requires users to actively participate and express his or her
preference by rating items in the system. These inputs are used to build user-item
(or user-rating) matrices and recommend similar promotions for users with simi-
lar taste. We believe however, that user interests are highly situational and hence
require users to explicitly state their preference every time the system is used. How-
ever, we could incorporate such additional signals to further increase promotion

relevance.
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Delivering relevant ads to web pages has been well studied. While the usage
scenarios are inherently different from mine, I will discuss representative papers for
sake of completeness. Ribeiro et al. [130], propose a series of strategies to match
ads with web pages, based on keywords extracted from both the ad body and the
web page content. Beyond keywords several other features have been employed for
delivering relevant ads, including semantics mined from web pages (e.g, topics) [19]
and user interactions in browsing [35].

Natural language processing(NLP) techniques are gaining prominence in mobile
applications. NLP helps to greatly facilitate access and use of applications, encour-
aging greater adoption. Siri [148], a personal assistant mobile application uses NLP
to answer questions and make recommendations. The application adapts to a user’s
individual preferences over time and personalizes results, and performs tasks such
as making dinner reservations while trying to catch a cab. Maluuba designed an
API based on NLP and other machine learning techniques that aids in processing
the natural human language [92]. In our model, we applied NLP techniques for

estimating the semantic similarity of deal items.

6.3 Context Uncertainty

Context-aware systems can’t always identify the current context precisely, hence
they need support for handling uncertainty. Various mechanisms such as probabilis-
tic logic, fuzzy logic and Bayesian networks are used for reasoning about uncer-
tainty [23, 58, 126]. MiddleWhere [126] uses probabilistic reasoning techniques to
deduce a person’s location confidence. However, this technique assumes the avail-
ability of precise information associated with the location sensing technology, such
as the probability of a false positive. In contrast, we assume no such information is
readily available and instead attempt to estimate the number of false positives for a
given scenario.

There is also considerable work in reducing context uncertainty using sensor fu-
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sion [77, 146] as well as through user mediation [37, 53]. These efforts are orthog-
onal to our work, where we focus on representing location uncertainty, as opposed
to reducing it, and associating this uncertainty with the outcome of an event.
Finally, while uncertainty is a significant problem for many other ubiquitous
computing applications, it is not as problematic for advertising. From the adver-
tiser’s perspective, any reduction in uncertainty is welcome. Taking this view-
point, current context based advertising applications (commercial and research
driven) [144, 75, 158] do not handle or represent uncertainty in their context stream.
As a result, any visibility as to why a consumer did not react to a given stimulus is

ignored - something which our platform intends on correcting.

6.4 User Feedback

Current approaches to capturing mobile usage can be categorized into four classes:
direct observation, lab-based evaluation, self- report, and automatic loggingeach
offering different, limited visibility into human behaviour and user experience.
Automatic tracing typically records usage information passively without re-
quiring user intervention (from the infrastructure [161] or directly from the de-
vice [124]). This technique scales well across users and collects large amounts
of data; however, important information such as user intention and perception is
lost. In contrast, in situ self-reports such as the Diary Method [112, 131] and the
Experience Sampling Method (ESM) [34, 65] offer insight in to these otherwise
imperceptible details, but at a cost of user involvement. Thus, the sampling rate
is much lower than in automatic logging and the method does not scale as well
(e.g., participant compliance diminishes over time). Direct observation methods
like shadowing [73] can provide rich qualitative accounts of device usage and hu-
man behaviour; however, the method can only be applied to a small number of
participants at a time and not all contexts are conducive to being studied (e.g., a

formal business meeting) [131]. In addition, it is subject to observer bias, and the
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small form factors of mobile devices make it difficult to observe both the partici-
pant and their device screens. Finally, laboratory methods offer an environment to
rigidly control device and context parameters for experimentation; however, usage
is artificial and removed from its natural setting.

One common approach in combining logging and qualitative feedback is
through the use of interviews. Logs can be used to cue a participant’s memory dur-
ing interviews, thereby reducing recall biases [40, 116, 163]. However, interviews
do not scale well across large numbers of participants. In addition, participants may
still suffer from some form of recall bias or memory lapse even with cueing.

SenseCam [55] offers an entirely different approach in collecting qualitative
and quantitative data; digital photographs are automatically captured and annotated
with sensor data via a pendant worn around the neck. The photographs allow for
qualitative assessments of ground truth (e.g., user appears to be indoors) and provide
good cue points for interviews; however, they do not collect user feedback in situ
and the continuous photography raises privacy concerns. Moreover, participants are

required to wear an additional device.
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Chapter 7

Conclusion

In this chapter, I summarize, in Section 7.1, the research contributions made by
this dissertation. I then describe possible future work in Section 7.2 . Finally, Sec-
tion 7.3 places this dissertation in perspective with the current state of mobile sens-

ing research.

7.1 Contribution

Imagine that you receive an advertisement on your mobile phone while you are busy
with some important work. How will you react if it is an attractive offer promot-
ing one of your favourite products at a nearby store? Will you take advantage of
this opportunity as soon as possible? What if the advertisement had appeared while
you were relaxing at home with family and friends? Answers to these questions
are important for mobile marketing academicians and researchers, marketing man-
agers who are likely to reach customers through mobile phones for promoting their
products and curious to know the impact of mobile advertising. With the advent of
smartphones the reach of advertisements and promotions have been extended even
further. The question remains however, if there is a right time and right place for
consumers to receive and respond such offers. Can we develop a system for helping
experimenters answer such questions about user behaviour?

This thesis shows that it is possible to build Jarvis, an experimentation system

that can assist in running in situ realtime experiments, targeting real participants on
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their smart phones based on multiple context-specific events. I show that through
this process of context-based experimentation, it is possible to observe the contex-
tual factors that have an influence on user behaviour. I also show that the system
supports a diverse range of experiment predicates and controlled experiment designs
and that the experiment specification can be done with ease.

At one end we have advertisers (experimenters) with ads for their products and
services while at the other end are consumers (participants) with their needs. In
running context-based advertising experiments there is (often) a need for the exper-
imentation system to match the two to create the greatest possible impact on the
customers and in turn get the right experiment sample. In this thesis I demonstrate
a matching and scoring algorithm that accurately factors user’s preferences when
matching deals and is capable of combining structured and unstructured deal infor-
mation into a single score. Doing so, will allow the experimentation system to target
the right set of participants.

Furthermore, though sensing has becoming more cost-effective and ubiquitous,
the interpretation of sensed data as context is still imperfect and will likely remain
so for some time. A challenge facing the development of realistic and deployable
context-aware services, therefore, is the ability to handle imperfect, or ambiguous,
context. However, unlike most applications that ignore any uncertainty in the sensed
data and its interpretations in this thesis I show how Jarvis handles context uncer-
tainty. More specifically, [ show how the module defines a confidence metric for the
location predicate as well as how it stochastically estimates additional information
such as the number of false positives. In doing so, I provide adequate information
to the experimenter to process the results of an experiment.

Finally, the true power of the experimentation system is not only in running
in situ experiments but also collecting both qualitative and quantitative data that
provide a feedback of that experiment. Jarvis monitors the selected participants (for
a given experiment) for a set period of time and records what they did in response to

the experiment stimulus. In my thesis I show how user mobile interaction can act as
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a potential source of user reaction to a context-based experiment. Such data could
perhaps provide insight into user motivation, perception, and satisfaction towards

the context-driven intervention.

7.2 Future Work

In this section, I present avenues for future work on Jarvis.

7.2.1 More Context Categories, Experiment Designs & Partici-
pant Selection Techniques

Context Categories

Location was one of the first contextual factors to be studied in the development of
context-aware systems [139]. In addition to location, researchers have also recog-
nized that there are other factors that influence how users experience mobile sys-
tems. Schmidt et al. [140] presented that context could be divided into two main
categories: human factors and physical environment. Under these main categories,
there would be several subcategories. Subcategories of the Human Factors category
include user, social environment and task. Subcategories of the Physical Environ-
ment category include condition, infrastructure, and location.

Further, Forlizzi et al. [52] noted that interaction with a product is a constant
stream of interaction sequences and emotions, and it causes emotional and be-
havioural changes in a user. Contextual factors play an important role in these
changes, and they can amplify previous negative or positive experience, alter pos-
itive experience into negative experience, or vice versa. It therefore becomes nec-
essary to extend Jarvis to support these context categories not only as experiment
triggering conditions but also capturing context in terms of how it changes user
experience during the experiment life-cycle.

Experiment Designs
Experience sampling method (ESM) is a systematic way of having participants pro-

vide samples of their ongoing behaviour [61]. Participants’ reports are dependent
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upon either a signal, pre-established intervals, or the occurrence of some event.

1. Signal contingent: The participant is signaled with a beeper, cell phone call,
or programmed watch at random times within a fixed time period (e.g., be-
tween 8 AM and 9 PM). At the signal, the participant records the behaviour

of interest (e.g., activity, location, mood, thoughts).

2. Interval contingent: The participant is assigned pre-set intervals for reporting
events. For example, before going to bed at night, the participant fills out a

checklist of the day’s activities.

3. Event contingent: The event is determined by the research project, for exam-
ple, watching a movie, or phoning a friend. The participant makes a record
whenever the key event occurs. The recording of the event depends upon (is

contingent) on its occurrence.

Although currently not supported, ESM is one type of experiment design that
could easily be supported by Jarvis. It is important that other such treatment and ob-
servational study designs are identified to increase the experiment-design handling
capabilities of the system.

Participant Selection: Support for Stratified Randomization

Stratified randomization [150] refers to the situation in which strata are constructed
based on values of prognostic variables and a randomization scheme is performed
separately within each stratum. For example, suppose that there are two prognostic

variables, age and gender, such that four strata are constructed (Table 7.1:

Treatment A | Treatment B
male, age <18 12 12
male, age > 18 36 37
female, age <18 13 12
female, age > 18 40 40

Table 7.1: Stratified Randomization

The strata size usually vary (maybe there are relatively fewer young males and

young females within the sample population). From the purview of the experimen-
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tation system, the objective of stratified randomization is to ensure balance of the
treatment groups with respect to the various combinations of the context variables.
Simple randomization will not ensure that these groups are balanced within these
strata so permuted blocks are used within each stratum are used to achieve balance.

However, if there are too many strata in relation to the target sample size, then
some of the strata will be empty or sparse. This can be taken to the extreme such
that each stratum consists of only one participant each, which in effect would yield
a similar result as simple randomization. Support for stratified randomization will

need to ensure the number of strata used to a minimum for good effect.

7.2.2 Infer Context Rules

Advertising in pervasive computing environments presents some unique challenges.
One of the challenges is figuring out the best possible time for and the best possible
way of delivering the ad. Here is where user context information can help us figure
out the best time and the best delivery mechanism.

Pervasive environments can monitor the user’s activities using a variety of tech-
niques like looking at his schedule, looking at what applications he is running, see-
ing whether any other people are in the same room as him, etc. Also, certain types
of ads may have greater impact when the user is in a particular context. For exam-
ple, a beer ad or a pizza delivery ad may gain better mileage when it is played to a
group of men who are watching a football game. At the same time, some other ads
may be inappropriate when a person is with a certain company.

The decision of when and how to deliver the ad (intervention) could be made
by the experimentation system, the experimenter (advertiser) or both. The experi-
menter could define some rules as to how and when it wants certain types of ads to
be presented. It could also give the system some flexibility to choose the best time
and mechanism depending on context. Jarvis would then need to have mechanisms
that allow experimenters to define rules for delivering advertisements. An experi-

menter could also indicate that it would like it’s ads to be delivered in a serendipitous
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manner too [45]. The system could also have it’s own rules on how and when ad-
vertisements can be delivered. For example, ads should definitely not be delivered
when the participant is in a meeting or is driving. However, identifying such rules is
not always trivial. For example, it is not known whether offering discount coupons
to people who have been standing outside a coffee shop for 10 minutes will improve
sales as opposed to sending it when they pass by? One possibility of inferring such

rules is by analysing outcomes of similar previous experiments.

7.2.3 Longer Term Research

The previous sections discussed shorter term research relevant to Jarvis. In
this section, I discuss longer term research in the general area of context-aware

computing.

The falling cost of adding sensing and communications to consumer prod-
ucts will mean that a typical family home, in a mature affluent market, could
contain several hundred smart objects by 2022, according to Gartner [70]. This
additional context information will not only aid a better understanding of the user,
but will also lead to additional business opportunities and challenges in collecting
and managing the context information.

Business Opportunities

Events emanating from mobile personal devices are only one source of event-driven
context. If context is the information about the current situation, events generated
from relevant applications, websites, cloud services, social platforms, databases and
devices can all supply context to a context-aware application. The future of mobile
computing will therefore be context-aware computing with mobile applications
adjusting to the user’s location, identity and past behaviours [132]. Contextual
mobile applications will lead to new user experiences that will be simple, visually

attractive, compelling and interactive, such as:

e Exploring: Providing information in an exploratory form, for example when
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a user wants to know what’s potentially interesting and nearby.

e Refining: A user is seeking more information about something which might
be a place, and object, a physical product or even another person.

e Suggesting: Context will be proactive, but suggestions must be delivered in
ways that are themselves contextual and appropriate. For example, receiving
an audio message through a Bluetooth headset might be best for a user who
is driving.

e Controlling: Sometimes a user will need to specify their requirements. This
can be done by typing text but, increasingly, will use new experiences such as
pointing at something to indicate “I want one like that.”

e Directing: Contextual systems will frequently involve location and will need
to direct a user to a destination. This might be done through maps or by

unobtrusive directions.

Information will be at the core of enabling such personalized used of devices.
The information will include sensor-based data available and collected from mobile
devices such as temperature, speed or location. Other sources of information will
come from both corporate and external sites such as social media or public data.
Enabling such use cases will require new ways of collecting, managing, delivering
and rendering information to users that takes into consideration personalization but
also the variety of devices.

Impact on Data Collection

Given the potential volume of data produced by mobile devices, organizations need
to build a strategy to deliver value from the information. The need to collect this
information in a cost-effective way, and the use cases that it will support will be

very diverse. This will affect the following aspects of big data:

1. Volume of data generated by the devices.

2. Velocity of the data. Data is collected at very different rates. It can be sensor-

145



generated data that is constantly being collected (such as location informa-

tion) or it can be user-generated data (such as making a call) that is infrequent.

3. Variety. Mobile devices produce different data types. Data can be images,

audio or sensor data.

Managing Data and Adding Value

For sensor data, the major challenge resides in the cost-benefit analysis of managing
the data. The collection of sensor data is not free and unless value is delivered from
it, the value of collecting this data should be carefully considered. Managing the
data collected from sensors is not just about potential storage challenges. A number

of other requirements need to be addressed, including:

1. Privacy protection

2. Perishability The data collected might only be valid for a limited amount
of time. Some of it may be worth storing for further pattern analysis. For
example, wi-fi data collected for location analysis can be stored to perform

offline pattern analysis.

3. Fidelity This applies to the level of trust required for the use case. How
complete and accurate the data collection needs to be will be depend on the
use case. For example, incomplete location data only affects the precision and
calculation of the best route, whereas incomplete call detail records collection

affects directly the ability to process accurately the bills.

4. Linking Enabling the data collection is often only valid when the data col-
lected can be related to other data. This means that the application can recog-
nize pertinent events from within the data stream and quickly analyse all of
the available information assets to determine the best course of action. This
is about more than just data collection. For example, for retailers to per-

form promotional offerings for clients while in the store, they must combine

146



customer-relationship management data, social data to refine their preferences

and in-store location information.

7.3 Closing Remarks

Behavioural sciences have for long provided a systematic analysis and investigation
of human behaviour through controlled and naturalistic observation, and disciplined
scientific experimentation. However, these investigations are often subjected to the
limitations of laboratory settings and the cost overhead of observational studies.

In 2012 a consumer insight report quipped “The smartphone is perceived as a
second brain or a best friend, and apps are becoming an emotionally important and
integral part of people’s daily lives” [1]. They weren’t too far off! Today smart
devices can infer your mood [88], tell whether you liked the movie or not [14], keep
a check of your fitness and eating patterns [28] and much more. These devices give
us unprecedented access to everyday life helping us better understand the individual.

An obvious partnership is to therefore employ mobile sensing technology to pro-
vide unobtrusive access to human social behaviour. What is needed then is a plat-
form that provides experimenters access to this deep, fine-grained, near-real time
human context while exposing an experimentation service that frees experimenters
from many experimental chores. This dissertation aims to provide just that.

Jarvis, is based on the well-known randomized controlled trial (RCT) exper-
imental process. By representing context predicates of an experiment as events,
I create an event-driven system that enables a real-time in situ participant enrol-
ment phase. The underlying behavioural experimentation system also provides the
components necessary to automate the additional phases of the RCT - intervention
allocation, follow-up, and data analysis - with the goals of minimizing selection bias

and allocation bias while maximizing the statistical power.
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Appendix A

Database Schema

In this Appendix, I describe some of the key tables from the database schema sup-
porting in situ experimentation. The database consists of 24 tables, as shown in
Figure A.1, created using the postgresql DBMS. The database design meets the
requirements of second normal form.

Details of a new experiment are stored in the following tables:

e cxperiment: The master table containing the key design specifications of the

experiment such as the sample size and experiment duration.

e experiment_chain: In the case of a "chained’ experiment, details of the main
experiment are stored in the experiment table while subsequent experiments

in the chain are stored here.

e participant_spec: Stores triggering context information as well as demo-

graphic constraints of participants that need to be targeted.

Information from these two tables are combined when registering with

the Event Processing Agent (EPA).

The experiment intervention details are stored in the following tables:

e promotion, event: Interventions of type promotion and event are created
through the content management portal and stored in the promotion and event

table respectively.

162



e notices: Stores information on interventions of type survey, link and general.
Details of the survey associated with a promotion or event (if created) are also

stored in this table.

e system_message: Stores details of the reminder message associated with a

promotion or event.

The following tables are used to store state information regarding selected par-

ticipants of an experiment:

e exp-_users_list: Contains IDs of participants selected for an experiment. These
IDs map to details of the registered LivelLabs participants stored in the

user_info table.

e promotion_view, event_view, system_message_view, promotion_like: Cap-

tures participant interaction with the experiment intervention.

e livelabs_tracking: Captures participant interaction with the LiveLabs mobile

apps (clicking the notification, opening the application etc.)

Other tables such as bep_user, vendor_details, survey_sent are used for adminis-

trative and housekeeping purposes.
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791

participant_spec

chain

notices

vendor_details

vendor_id: INTEGER [ PK ]

vendor_name: VARCHAR(100)
vendor_pwd: VARCHAR(40)
category: VARCHAR(100)
total_promos_run: INTEGER
last_promo_timestamp: TIMESTAMP
approved: BOOLEAN
organization_name: VARCHAR(100)
VARCHAR(40)

VARCHAR(40)

phone: VARCHAR(20)

lemail: VARCHAR(100)
mailverified: BOOLEAN

mailkey: VARCHAR(128)
vendor_logo: VARCHAR(100)
display_name: VARCHAR(100)
terms_agreed: BOOLEAN
terms_agreed_time: TIMESTAMP
parent_id: INTEGER

last_event_update_time: TIMESTAMP

bep_tracking id: INTEGER [PK] id: INTEGER [PK ] notice_id: INTEGER [PK]
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eligible_users: ARRAY I Jage_min: INTEGER end_time: TIMESTAMP status: VARCHAR(15) \me. TIMESTAMP
coloctod usere: ARRAY | |ogeman: INTEGER minimum_user: INTEGER scheduled_time: TIMESTAMP : BOOLEAN
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nationality: VARCHAR(45) | r T —— W**e"d,dﬂ‘e DATE — — —<<{location: BIGINT pe— promo_end_date: DATE lemail: VARCHAR(50)
imei: VARCHAR(50) [AK ] _ | | |1 | | start_time: TIME | promo_start_time: TIME logo: VARCHAR(50)
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network_preference: VARCHAR(15) p_flag
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Figure A.1: Database Schema supporting the Behavioural Experimentation System




Appendix B

LiveLabs Context Collector

Context Type Android 10S
Location GPS & Wi-Fi scans Location API
Attached celltowers,
.. Battery level,calendar,
battery levels, network statistics, .
Phone M ) contacts, settings,
website visited,calendar, settings, )
States . media states
contacts, media state
Apps installed, Apps in use,
Phone Screen interactions, App state
Events call & texting events
Activity accelerometer accelerometer (only in
foreground)
accel, compass, gyro,
Raw accel, compass, gyro, barometer, | .. pass, £y
. light (only in foreground)
Sensors light

Table B.1: Context Collected

The Context Collector run as a background service in the user space on both

Android and iOS platforms. For Android, the Collector can be configured to collect

sensor data, phone events, client-side indoor location coordinates, etc. Table B.1

details the various key events that are collected. For i10S, a background application

gets a foreground processing timeslice once every 10 minutes; at that point, our

collector can collect sensor data, limited location information and a much smaller

set of phone events (see Table B.1). The collection policies of the Context Collector

(what subset of sensors and events to collect, and frequently) are configurable by the

LiveLabs server infrastructure, through a set of XML-based policies. Such policy-

based collection allows us the flexibility of continuously adapting the granularity

and fidelity of the sensor collection (with corresponding impact on the power drain)
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for each individual sensor. The current version of the Context Collector does not
upload the collected data continuously; while the upload interval is configurable,
it is currently set to 3 hours by default (implying a total of 8 collection episodes a
day). Moreover, uploading happens only if the participant is on the SMU campus
and connected to the SMU Wi-Fi network, so as to alleviate concerns about cellular

data usage costs.!

IThe text and table are an excerpt from a paper about LiveLabs [99]. Additional details of the
LiveLabs platform can be found in the same paper.
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Appendix C

User Study Documentation

In this Appendix, I list details of the artifacts used in validating this thesis. These
primarily include details of the promotions and other interventions sent as part of
an experiment as well as questionnaires assigned to participants to collect self-

reporting information.

C.1 Experiment 1
Refer to Section 3.7.1 for details of the experiment.

C.1.1 Intervention Details

Figure C.1 shows the promotion used as an intervention for the experiment.

Polo T-Shirt for 10

By: smu_shop

From: 2015-03-16 10:00:00
To: 2015-04-30 17:00:00

Polo T-shirt for $10 (U.P. $19.90) at The SMU

Shop. 2 for only $15. Offer ends 30th April

Figure C.1: Promotion used for Experiment 1
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C.2 Experiment 2

Refer to Section 3.7.2 for details of the experiment.

C.2.1 Intervention Details

Figure C.2 shows the three promotions used as interventions for the experiment.

Exclusive offer from MegaFash Interesting deals from Justss

By: MegaFash By: JustSs

From: 2015-04-01 10:00:00 From: 2015-04-02 10:00:00

To: 2015-04-10 18:00:00 To: 2015-04-10 18:00:00

Use the code "MFLIVELABS" and enjoy 10% Check out www.facebook.com/Just5s for many
discount with every on-line purchase on interesting offers. To order, please email
MegaFash. https://megafash.com/ enquiries@just5s.com and we'll send you the

payment, delivery and collection details. Promo
end date: 10th April

Product advantage

Special offer from Momolato
By: Momolato

From: 2015-04-06 10:00:00
To: 2015-04-10 18:00:00

2 x Double Scoop @ $9.90 (U.P. $11)
B =

Pt % ;

-

$9.90 w:.c.co

each double seoop per cup

classic flavors
momolao

c)

Figure C.2: Promotions used for Experiment 2
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C.2.2 Self-Report Questionnaire

Promotion Feedback Survey

User ID:*Require
Do not modify.

ponotmedt

| liked the promotion that was sent.
Ref: Exclusive offer from MegaFash

Strongly agree
Somewhat agree
Neither agree or disagree

Somewhat disagree

0 0O 0 0 0O

Strongly disagree

C.3 Experiment 4

Refer to Section 3.7.4 for details of the experiment.
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C.3.1 ABIS Questionnaire

0 @

Rarely/Never Occasionally

©)
Often

DIRECTIONS: People differ in the ways they act and think in different situations.
This is a test to measure some of the ways in which you act and think. Read each
statement and put an X on the appropriate circle on the right side of this page. Do not
spend too much time on any statement. Answer quickly and honestly.

@

Almost Always/Always

| am a careful thinker.

I plan trips well ahead of time.

I do things without thinking.

I concentrate easily.

I plan for job security.

I act “on impulse.”

I am self controlled.

I say things without thinking.

I don’t “pay attention.”

I act on the spur of the moment.

I plan tasks carefully.

| am a steady thinker.

I am future oriented.

I am the life of the party.

| feel comfortable around people.

| start conversations.

| talk to a lot of different people at parties.

I don't mind being the center of attention.

| don't talk a lot.

I keep in the background.

I have little to say.

I don't like to draw attention to myself.

I am quiet around strangers.

SISlSISISISISISISISISISISISISISISHSISISISIS)S]

OEEPEEOREPEPEEEEROEEOEE®

PVUOLLEELVPLLEEEELLLLEEL®

SlclClClSClCISCISISHSISHSICSISHSICHSISICHC]
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ABIS (ABbreviated Impulsiveness Scale) Administration and Scoring

The Abbreviated Impulsiveness Scale (ABIS) provides an efficient, reliable, valid,
and generalizable measure of attentional, motor, and non-planning impulsiveness.
The ABIS can be used as a brief alternative to the BIS-11 or as a model for
reanalyzing previously collected BIS-11 questionnaire responses.

12 I am a careful thinker. (Reverse Scored)

7 1plan trips well ahead of time. (Reverse
Scored)

2 1 do things without thinking.

9 I concentrate easily. (Reverse Scored)

13 I plan for job security. (Reverse Scored)

17 Tact “on impulse.”

8 lam self controlled. (Reverse Scored)

14 1 say things without thinking.

5 Idon’t “pay attention.”

19 | act on the spur of the moment.

1 I plan tasks carefully. (Reverse Scored)

20 1am a steady thinker. (Reverse Scored)

SISISISISISISHSISISISIMSHS)
PERPECEP PP OO O
PLULLLeRVLEE Ve
PEPPPE®IBR® &

30 | am future oriented. (Reverse Scored)

ABIS item order (using BIS-11 item numbering): 12, 7, 2, 9, 13, 17, 8, 14,5, 19, 1,
20, 30

ABIS Scales:

Attention (5 items): 12, 9, 8, 5, 20
Motor (4 items): 2, 17, 14, 19
Nonplanning (4 items): 7, 13, 1, 30

Reverse-scored items (4, 3,2, 1): 12,7,9, 13,8, 1, 20, 30
Standard-scored items (1, 2, 3, 4): 2, 17, 14,5, 19

To score each scale, take the average of the scores for each item on that scale (after
reverse-scoring the specified items). Do not average across separate scales to produce
combined scores.

References:

Coutlee, C.G., Politzer, C.S., Hoyle, R.H., Huettel, S.A. (Under Review). An
Abbreviated Impulsiveness Scale Constructed Through Confirmatory Factor
Analysis of the BIS-11.

The BIS-11 items used as the basis for the ABIS can be found at:
http://www.impulsivity.org/




C.4 Assessment of Mobile Notifications

Refer to Section 3.7.5 for details of the study.
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C.4.1 User Study Questionnaire

Research Participant Information and Consent/Authorization form
for assessment of mobile notifications with minimal risk

a.) This user study has been commissioned for surveying amongst smartphone owners
into the use and perception of mobile notifications.

b.) You will be asked to: Fill up a questionnaire on your usage patterns and perception
on mobile notifications. The questionnaire should not take more than 5 minutes to
complete.

c.) Your participation in the study is voluntary. You will be paid an amount of 5 SGD as a
token of appreciation of completing the survey. You will need to provide your Name and
NRIC/FIN number to receive the payment.

d.) There is no anticipated risk of injury or discomfort from participating in the study.
e.) You will not incur any monetary costs in participating in this study
Confidentiality

By participating in the study, you understand and agree that Singapore Management
University may be required to disclose your consent form, data and other personally
identifiable information as required by law, regulation, subpoena or court order.
Otherwise, your confidentiality will be maintained in the following manner:

Your data, consent form and payment receipt will be kept separate. Your consent form
will be stored in a secure location and will not be disclosed to third parties — in this
manner, the data/information is stripped of any personally identifiable elements and
becomes “anonymised”. By participating, you understand and agree that the
anonymised data and information gathered during this study may be used by Singapore
Management University and published and/or disclosed by Singapore Management
University to others outside of Singapore Management University. However, your name
in your consent form, and contact information obtained during registration will not be
mentioned in any such publication or dissemination of the anonymised research data
and/or results by Singapore Management University.

Your confidentiality will be maintained during data analysis and publication/presentation
of results using the following means: (1) You will be assigned a number, and your name
will not be recorded with the number. The identity of the participants cannot be traced
from the assigned numbers. (2) The researchers will save the data file by your number,
not by name. (3) Only members of the research group will view any data unless you give
them the optional permission to release them. (4) Any files will be stored in a secured
location accessed only by authorized researchers.

Voluntary Participation

I understand that participation is voluntary. Refusal to participate will involve no penalty.
| understand that | may discontinue participation at any time without penalty or loss of
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accrued benefits (Benefits are accrued in proportion to the amount of study completed
or as otherwise stated by the researcher) to which | am otherwise entitled.

Age

Please note that you must be at least 18 years of age in order to participate in this study.
If you agree to participate in this study you shall be taken to have declared that you are
at least 18 years of age.

Right to Ask Questions & Contact Information

If you have questions about the study, desire additional information, or wish to
withdraw your participation please contact:

Kartik Muralidharan

School of Information Systems

80 Stamford Road Singapore 178902
Email: kartikm.2010@smu.edu.sg
Phone: + (65) 83368909

If you have questions pertaining to your rights as a research participant; or to report
objections to this study, you should contact:

IRB Secretariat
Singapore Management University
81 Victoria Street Singapore 188065

Email: irb@smu.edu.sg
Phone: 65-6828-1925

AGREEMENT

| have read the above terms and understand the nature of this study and give my consent to
participate in it. | consent to the collection and use of my personal data in respect of the
abovementioned research and agree that my consent has been reasonably obtained and is given
in the manner required by the Personal Data Protection Act (“PDPA”). | further approve of the
use and disclosure of the anonymised data and information that | give in this study for SMU’s
research purposes, including the sharing and dissemination of the anonymised data and
information with external research collaborators, and also any other use or disclosure permitted
under the PDPA and give SMU permission to reproduce the same in written or oral form where
appropriate. | understand that the confidentiality of my personal information will be preserved
with regard to the above.

Name *

pame*_

Date *

e

Please click on the box below if you consent to participate in this research study.
Otherwise, please close the browser now to exit. *

| certify that | accept the above terms and that | am above the age of 18



Part A: Mobile Notifications

Today’s smartphones often use notifications to attract a user’s attention— when there’s an
incoming text message or upcoming event, for example. We wish to understand the kind of
notifications you receive on your mobile device and how you choose to address the alerts. Read
each statement and select the appropriate response. Please answer honestly.

What is the OS of your current mobile device? *

Android

r
i0S

How important is your phone to you? *

—

Not very important. | can go for a day or more without it.
Somewhat important. A few hours without it probably won’t do any harm.

Very important. | have to have it with me all the time.

How would you rate your level of phone expertise? *

Novice - | use only the basic settings on my phone
Intermediate - | use some of the advanced setting on my phone

Expert - | know how to root the phone if | wanted to.

Do you know how to turn off notifications for selected apps on your phone? *

-
Yes

-
No

C | didn't know | could do that!

—

Not sure what you are talking about.

How many notifications do you receive on your phone in a day? *

O <10
© 10- 20
C 20-30
c 30-40
© > 40

How frequently do you check your phone for notifications? *

O Only when my phone indicates that there is a notification (Blinking Light / Sound)
O Once every few minutes.

C Once every 10 minutes.

O Once every 30 minutues

© Once every 60 minutes

-

At most few times a day



What are the reasons for checking your phone? *
I specifically check for missed notifications.

Checking the time.

O Out of boredom.
O Force of habit.
O Other:

What are the reasons for not taking action on receiving a notification? *
For example when you receive an email notification, for what reason would you ignore
the message.

The notification isnt important enough.

The notification looks like spam.

O Not enough time.
C | do not know the sender of the notification.
O Other:

Part B: Influence of Application Category
For each of the below application categories please give your notification preference.

Importance *
How relatively important are notifications related to the following application categories
to you?

Somewhat Not

Very Important  Important
yimpe P Important Important

Calls & SMS s C C C
Social

applications I r r ‘e
(WhatsApp,

Facebook)

Reminders I I r '
(Calendar)

Promotions C C e s
News C C C C
App Updates C e s C
Other app

notifications ~ I s 'S
(games,

weather etc)



Action *
What action do you generally take upon receiving a notification related to the following
application categories?

Click through

immediately. Click through later. Ignore
Calls & SMS . . o
Social
applications r c c
(WhatsApp,
Facebook)
Reminders . o o
(Calendar)
Promotions o - o
News . r‘ O
App Updates . 'l“ (“
Other app
notifications r c c
(games,

weather etc)

Timing *
Do you prefer receiving real-time or periodical notifications given the following
application categories?

Real-time Periodical Not sure

notifications. notifications. ’
Calls & SMS o o .
Social
applications c c -
(WhatsApp,
Facebook)
Reminders c c r
(Calendar)
Promotions & & i
News C C o
App Updates T . -
Other app
notifications I I r
(games,

weather etc)



Selection *
Do you elect receiving all or only important notifications for the following application
categories?

Only important

All notifications. e .. Not sure.
notifications.

Calls & SMS o o r
Social
applications - - P
(WhatsApp,
Facebook)
Reminders o o e
(Calendar)
Promotions . . C
News r‘ r‘ .
App Updates C C .
Other app
notifications c - r
(games,

weather etc)

Vibrations *
How often do you prefer notifications in the following applications categories to be
accompanied by vibrations?

Only when | switch
Always. vibrations for Never
notifications on.

Calls & SMS o o C
Social

applications I I -
(WhatsApp,

Facebook)

Reminders I I I
(Calendar)

Promotions O o .
News F O .
App Updates F O .
Other app

notifications I I ~
(games,

weather etc)



Sound *

How often do you elect notifications in the following categories to be accompanied by

sound of any kind?

Only when | switch
Always. the sound for
notifications on.

Calls & SMS C C
Social

applications r I
(WhatsApp,

Facebook)

Reminders - -
(Calendar)

Promotions . .
News ”h o
App Updates o o
Other app

notifications - -
(games,

weather etc)

Part C: LiveLabs App Notifications

Never

~

D

]

Which of the following applications do you have installed on your mobile device? *

LiveLabs
I Smuddy
I Eva

What are the reasons for not having the above apps on your phone? *

—

I did not find them useful
| was receiving too many notifications

=

| needed some space on my smartphone.

© Other:

Have you turned off notifications for any of the following applications *

Turned On ! dct)hr;o;c have
but | dismiss  Turned Off Not sure . PP
installed on
them
my phone
LiveLabs . . . e
Smuddy r . o C

Eva . T . '

I always click
on the
notifications
from this app.



How useful are the promotions you receive from LiveLabs? *

.
Very Useful
-
Somewhat Useful
¢ Not Useful at all.
- . .
| consider it as spam
-

I never knew promotions were sent.

Would you like to give us any feedback about our mobile applications or any
additional opinion on mobile notifications? *




C.4.2 Summary of Responses

Part A: Mobile Notifications

What is the OS of your current mobile device?

i0S [9]

Android 7 43.8%

i0S 9 56.3%
Android [7]
How important is your phone to you?
Very importan [7]
‘— Mot wery impo [1]
Somewhat impo [8]
1 6.3%

Not very important. | can go for a day or more without it.

Somewhat important. A few hours without it probably won’t do any harm. 8 50%

Very important. | have to have it with me all the time. 7 43.8%

How would you rate your level of phone expertise?

~— Expert - | kn [3]

Intermediate [8]

—— Nowice - 1 us [5]

Novice - | use only the basic settings on my phone 5 31.3%
Intermediate - | use some of the advanced setting on my phone 8 50%
3 18.8%

Expert - | know how to root the phone if | wanted to.
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Do you know how to turn off notifications for selected apps on your
phone?

No [2]

| didn't know [0]
Mot sure what [0]
Yes [14]

Yes 14 87.5%
No 2 12.5%
| didn't know | could do that! 0 0%
Not sure what you are talking about. 0 0%

How many notifications do you receive on your phone in a day?

30 - 40 [1]

20 - 30 [4] o
—— =40

10 - 20 [4] = 10 [4]

<10

25%

10-20 25%

30-40

4
4

20-30 4 25%
1 6.3%
3

> 40 18.8%

How frequently do you check your phone for notifications?

Only when my phone indicates that there is a 7 43.83%
notification (Blinking Light / Sound)

Once every few minutes. 1 6.3%
Once every 10 minutes. 4 25%
Once every 30 minutues 2 12.5%
Once every 60 minutes 0 0%
At most few times a day 2 12.5%



What are the reasons for checking your phone?

Force of habi [B]

—Other [1]

— | specificall [4]

Checking the [2]————

| specifically check for missed notifications. 4 25%
Checking the time. 2 12.5%
Out of boredom. 3 18.83%
Force of habit. 6 37.5%
Other 1 6.3%

What are the reasons for not taking action on receiving a notification?

The notificat [2]

Mot enough ti [1]
— | do not know [1]

Other [0]

The notifica [12)

The notification isnt important enough. 12 75%
The notification looks like spam. 2 12.5%
Not enough time. 1 6.3%
| do not know the sender of the notification. 1 6.3%
Other 0 0%



Part B: Influence of Application Category

Calls & SMS [Importance]

Very Important 7 43.8%
Important 9 56.3%
Somewhat Important 0 0%
Not Important 0 0%

Social applications (WhatsApp, Facebook) [Importance]
Very Important 3 18.8%
Important 11 68.8%
Somewhat Important 2 12.5%
Not Important 0 0%

Reminders (Calendar) [Importance]

Very Important 4 25%

Important 8 50%

Somewhat Important 3  18.8%
1

Not Important 6.3%

Promotions [Importance]

Very Important 1 6.3%
Important 1 6.3%
Somewhat Important 4 25%
Not Important 10 62.5%

News [Importance]

Very Important 0 0%
Important 0 0%
Somewhat Important 8 50%
Not Important 8 50%



App Updates [Importance]

Very Important 0 0%
Important 2 12.5%
Somewhat Important 0 0%
Not Important 14 87.5%

Other app notifications (games, weather etc) [Importance]
Very Important 0 0%
Important 1 6.3%
Somewhat Important 1 6.3%
Not Important 14 87.5%

Calls & SMS [Action]

Click through immediately. 15 93.8%
Click through later. 1 6.3%
Ignore 0 0%

Social applications (WhatsApp, Facebook) [Action]
Click through immediately. 12 75%
Click through later. 4 25%
Ignore 0 0%

Reminders (Calendar) [Action]

Click through immediately. 11 68.8%
Click through later. 4 25%
Ignore 1 6.3%

Promotions [Action]

Click through immediately. 1 6.3%
Click through later. 8 50%
Ignore 7 43.8%



News [Action]

Click through immediately. 1 6.3%
Click through later. 7 43.8%
Ignore 8 50%

App Updates [Action]

Click through immediately. 1 6.3%
Click through later. 6 37.5%
Ignore 9 56.3%

Other app notifications (games, weather etc) [Action]

Click through immediately. 0 0%
Click through later. 5 31.3%
Ignore 11  68.8%
Calls & SMS [Timing]

Real-time notifications. 15  93.8%
Periodical notifications. 1 6.3%
Not sure. 0 0%

Social applications (WhatsApp, Facebook) [Timing]
Real-time notifications. 16  100%
Periodical notifications. 0 0%

Not sure. 0 0%

Reminders (Calendar) [Timing]
Real-time notifications. 11  68.8%
Periodical notifications. 4 25%

Not sure. 1 6.3%



Promotions [Timing]

Real-time notifications. 4 25%
Periodical notifications. 10 62.5%
Not sure. 2 12.5%

News [Timing]
Real-time notifications. 2 12.5%
Periodical notifications. 12 75%

Not sure. 2 12.5%

App Updates [Timing]

Real-time notifications. 2 12.5%
Periodical notifications. 11  68.8%
Not sure. 3 18.8%

Other app notifications (games, weather etc) [Timing]
Real-time notifications. 1 6.3%

Periodical notifications. 10 62.5%

Not sure. 5 31.3%
Calls & SMS [Selection]
All notifications. 14 87.5%

Only important notifications. 2 12.5%
Not sure. 0 0%

Social applications (WhatsApp, Facebook) [Selection]
All notifications. 8 50%
Only important notifications. 8  50%
Not sure. 0 0%



Reminders (Calendar) [Selection]

All notifications. 6 37.5%
Only important notifications. 9  56.3%
Not sure. 1 6.3%

Promotions [Selection]

All notifications. 0 0%
Only important notifications. 13  81.3%
Not sure. 3 18.8%

News [Selection]

All notifications. 2 125%
Only important notifications. 10 62.5%
Not sure. 4 25%

App Updates [Selection]

All notifications. 2 12.5%
Only important notifications. 10 62.5%
Not sure. 4 25%

Other app notifications (games, weather etc) [Selection]
All notifications. 0 0%
Only important notifications. 10 62.5%
Not sure. 6 37.5%

Calls & SMS [Vibrations]
Always. 8 50%
Only when | switch vibrations for notificationson. 8 50%

Never 0 0%



Social applications (WhatsApp, Facebook) [Vibrations]
Always. 4 25%

Only when | switch vibrations for notificationson. 11  68.8%

Never 1 6.3%

Reminders (Calendar) [Vibrations]
Always. 4 25%
Only when | switch vibrations for notificationson. 11  68.8%

Never 1 6.3%

Promotions [Vibrations]

Always. 1 6.3%
Only when | switch vibrations for notificationson. 7  43.8%
Never 8 50%
News [Vibrations]

Always. 1 6.3%

Only when | switch vibrations for notificationson. 7  43.8%

Never 8 50%
App Updates [Vibrations]

Always. 1 6.3%
Only when | switch vibrations for notificationson. 7  43.8%
Never 8 50%

Other app notifications (games, weather etc) [Vibrations]
Always. 1 6.3%
Only when | switch vibrations for notificationson. 6  37.5%

Never 9 56.3%



Calls & SMS [Sound]
Always. 5 31.3%

Only when | switch the sound for notificationson. 7  43.8%

Never 4 25%

Social applications (WhatsApp, Facebook) [Sound]
Always. 1 6.3%

Only when | switch the sound for notificationson. 10 62.5%

Never 5 31.3%

Reminders (Calendar) [Sound]

Always. 2 12.5%
Only when | switch the sound for notificationson. 7  43.8%

Never 7 43.8%

Promotions [Sound]

Always. 0 0%
Only when | switch the sound for notifications on. 6 37.5%
Never 10 62.5%

News [Sound]

Always. 0 0%
Only when | switch the sound for notifications on. 6 37.5%
Never 10 62.5%

App Updates [Sound]

Always. 0 0%
Only when | switch the sound for notifications on. 6 37.5%

Never 10 62.5%



Other app notifications (games, weather etc) [Sound]

Always. 0 0%
Only when | switch the sound for notifications on. 6 37.5%
Never 10 62.5%

Part C: LiveLabs App Notifications

Which of the following applications do you have installed on your
mobile device?

LivelLabs
Smuddy
Eva
0 3 6 a 12 15
LiveLabs 15 93.8%
Smuddy 15 93.8%
Eva 8 50%

What are the reasons for not having the above apps on your phone?

Other [5]
| needed some [4] —
| was receivi [0] | did nat fin [5]
I did not find them useful 5 357%
| was receiving too many notifications 0 0%
| needed some space on my smartphone. 4 28.6%
Other 5 357%



LiveLabs [Have you turned off notifications for any of the following
applications]

Turned On but I dismiss them 6 37.5%
Turned Off 2 125%
Not sure 4 25%
| do not have the app installed on my phone 0 0%
| always click on the notifications from thisapp. 2  12.5%

Smuddy [Have you turned off notifications for any of the following
applications]

Turned On but | dismiss them 6 37.5%
Turned Off 3 18.8%
Not sure 4 25%
| do not have the app installed on my phone 0 0%
| always click on the notifications from thisapp. 2  12.5%

Eva [Have you turned off notifications for any of the following
applications]

Turned On but | dismiss them 3 18.8%
Turned Off 3 18.8%
Not sure 4 25%
| do not have the app installed on my phone 4 25%
I always click on the notifications from this app. 1 6.3%

How useful are the promotions you receive from LivelLabs?

Very Useful 0 0%
Somewhat Useful 8 50%
Not Useful at all. 3 18.8%
| consider it as spam 3 18.8%
I never knew promotions were sent. 2 12.5%



C.5 myDeal

Refer to Section 4.2.5 for details of the study.
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C.5.1 User Study Questionnaire

Research Participant Information and Consent/Authorization form

for minimal risk studies

a.)

b.)

c.)

d.)

e.)

f.)

k.)

This user study has been commissioned for testing a novel mobile shopping assistant
application.

You will be asked to:
1. Take part in a lab study and perform several tasks (at most 30) in our simulated
environment using our new application.

2. Fill out questionnaires about the shopping assistant application.

The total time taken to engage in the lab-study part of this experiment, inclusive of
training, will not exceed 1 hour.

Your participation in the study is voluntary

There will be no significant risk of injury or discomfort from participating in the
study.

You will not incur any monetary costs in participating in this study

Your actions and opinions may be recorded for academic purposes at any time
during the study. Any personal information divulged will be kept strictly confidential

Your participation in this study may not result in any personal benefit to the
initiators, but will contribute to ongoing research on the case for a digital wallet

This study is completely funded by the Singapore Management University

You will receive S$ 20 for successfully completing the study as a payment for your
participation time and related efforts. The amount must be collected as directed
from the Office of Finance in the university

| understand that participation is voluntary. Refusal to participate will involve no
penalty. | understand that | may discontinue participation at any time without
penalty or loss of accrued benefits (Benefits are accrued in proportion to the
amount of study completed or as otherwise stated by the researcher) to which | am
otherwise entitled. | declare that | am at least 18 years of age.

Confidentiality

By participating in the study, you understand and agree that Singapore Management
University may be required to disclose your consent form, data and other personally
identifiable information as required by law, regulation, subpoena or court order.
Otherwise, your confidentiality will be maintained in the following manner:
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Your data and consent form will be kept separate. Your consent form will be stored in a
secure location and will not be disclosed to third parties. By participating, you understand
and agree that the data and information gathered during this study may be used by
Singapore Management University and published and/or disclosed by Singapore
Management University to others outside of Singapore Management University. However,
your name, address, contact information and other direct personal identifiers in your
consent form will not be mentioned in any such publication or dissemination of the
research data and/or results by Singapore Management University.

Your confidentiality will be maintained during data analysis and publication/presentation
of results using the following means: (1) You will be assigned a number, and your name
will not be recorded with the number. The identity of the participants cannot be traced
from the assigned numbers. (2) The researchers will save the data file by your number, not
by name. (3) Only members of the research group will view the collected data. (4) All data
will be stored in a secured location accessed only by authorized researchers.

Right to Ask Questions & Contact Information

If you have any questions about this study, you should feel free to ask them now. If you
have questions later, desire additional information, or wish to withdraw your
participation please contact:

Assistant Professor Rajesh Krishna BALAN
School of Information Systems

80 Stamford Road

Singapore 178902

Email: rajesh@smu.edu.sg

Phone: + (65) 6828 0879

Fax: + (65) 6828 0919

If you have questions pertaining to your rights as a research participant; or to report
objections to this study, you should contact:

IRB Secretariat, Ms Stephanie Tan
Singapore Management University
81 Victoria Street

Singapore 188065

Email: irb@smu.edu.sg
Phone: 65-6828-1925



AGREEMENT

| have read the above terms and understood the nature of this study and give my
consent to participate in it. | approve of the usage if the information that | give in this
study for research purposes, and give the supervisors and their associates’ permission to
reproduce the same in written or oral form where appropriate. | understand that the
confidentiality of my personal information will be preserved with regard to the above.

SIGNATURE OF PARTICIPANT DATE

FULL NAME OF PARTICIPANT

| have explained and defined in detail the research procedures in which the subject
(legal representative has given consent) has consented to participate.

SIGNATURE OF PRINCIPAL INVESTIGATO_R DATE

FULL NAME OF PRINCIPAL INVESTIGATOR



Pre-Testing User Questionnaire
Please circle one option for the following questions:

a.) Have you used a touch phone?

Yes
No

b.) To what extent do you use the following features on your mobile phone (if any)

Calendar Very Often Sometimes Rarely Not at All
Maps Very Often Sometimes Rarely Not at All
Email Very Often Sometimes Rarely Not at All
Video Recording Very Often Sometimes Rarely Not at All
Taking Pictures Very Often Sometimes Rarely Not at All
Playing Games Very Often Sometimes Rarely Not at All
Music Very Often Sometimes Rarely Not at All
Data Synchronization  Very Often Sometimes Rarely Not at All
Bluetooth Pair Very Often Sometimes Rarely Not at All
Installing Apps Very Often Sometimes Rarely Not at All
Rooting / Jail-break Very Often Sometimes Rarely Not at All
Browsing Internet Very Often Sometimes Rarely Not at All
Watch TV Very Often Sometimes Rarely Not at All

c.) To what extent do you browse for promotions/deals on the Internet from your
phone?

Very Often Sometimes Rarely Not at All

d.) To what extent do you use applications that show you promotions/deals near you on
the phone?

Very Often Sometimes Rarely Not at All

e.) How important is your phone to you? (Please tick one option)

1. Notvery important. | can go for a day or more without it. [ ]

2. Somewhat important. A few hours without it probably [ ]
won’t do any harm.

3. Veryimportant. | have to have it with me all the time. [ ]



PARTICIPANT CODE:

End of Task Questionnaire

a.) This task was quick to complete. [Please circle one of the options below]

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

b.) This task was easy to perform. [Please circle one of the options below]

Strongly Somewhat Neutral Somewhat Strongly

Agree Agree Disagree Disagree

c.) I am confident that the deal | chose was the best. [Please circle one of the options

below]

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree



End of Study Questionnaire

1. According to you which system rank ordered the deals in the best possible way?
[Please circle one of the options below]

System1l System2 System 3 No preference | don’t know
2. Which system was the easiest to perform the task set on?
System 1 System 2 System 3
3. Overall which system did you prefer? [Please circle one of the options below]
System 1 System 2 System 3

Why?

4. What type of deals do you generally prefer? [Please circle one of the options below]

Cash Back Discount Vouchers Free
Stuff

5. (a)How important is location of the deal as opposed to savings? For example would
you travel further if it meant getting a better offer?

4. Very important. | rather go to someplace close to my current location.

[ ]

5. Somewhat important. An hour of travel won’t do any harm.

[ ]
6. Not very important. | do not mind traveling longer distances if the saving is
more. [ ]

(b) Is this true for all types of products/activities?
Yes No

(c) If your answer was No, which type of products/activities are you referring to?

6. Would you be willing to pay for a system that provides a ranking of deals?
Yes No



Would you prefer if the system showed deals based on your personal preferences,
calendar, and time of year and so on?
Yes No

What other category of deals, besides dining, would you like to see?

Your comments/suggestions on the myDeal application, or this study on a whole.
Please highlight aspects of the tasks that you found challenging or areas that could
be improved further.
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