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SUMMARY

The number of technology alternatives has lately grown to satisfy the in-

creasingly demanding goals in modern engineering. These technology alternatives are

handled in the design process as either concepts or categorical design inputs. Ad-

ditionally, designers desire to bring into early design more and more accurate, but

also computationally burdensome, simulation tools to obtain better performing initial

designs that are more valuable in subsequent design stages. It constrains the com-

putational budget to optimize the design space. These two factors unveil the need

of a conceptual design methodology to use more efficiently sophisticated tools for

engineering problems with several concept solutions and categorical design choices.

Enhanced initial designs and discrete alternative selection are pursued.

Advances in computational speed and the development of Bayesian adaptive sam-

pling techniques have enabled the industry to move from the use of look-up tables and

simplified models to complex physics-based tools in conceptual design. These tech-

niques focus computational resources on promising design areas. Nevertheless, the

vast majority of the work has been done on problems with continuous spaces, whereas

concepts and categories are treated independently. However, observations show that

engineering objectives experience similar topographical trends across many engineer-

ing alternatives.

In order to address these challenges, two meta-models are developed. The first one

borrows the Hamming distance and function space norms from machine learning and

functional analysis, respectively. These distances allow defining categorical metrics

that are used to build an unique probabilistic surrogate whose domain includes, not

xxiv



only continuous and integer variables, but also categorical ones. The second meta-

model is based on a multi-fidelity approach that enhances a concept prediction with

previous concept observations. These methodologies leverage similar trends seen from

observations and make a better use of sample points increasing the quality of the

output in the discrete alternative selection and initial designs for a given analysis

budget. An extension of stochastic mixed-integer optimization techniques to include

the categorical dimension is developed by adding appropriate generation, mutation,

and crossover operators. The resulted stochastic algorithm is employed to adaptively

sample mixed-integer-categorical design spaces.

The proposed surrogates are compared against traditional independent methods

for a set of canonical problems and a physics-based rotor-craft model on a screened

design space. Next, adaptive sampling algorithms on the developed surrogates are

applied to the same problems. These tests provide evidence of the merit of the

proposed methodologies. Finally, a multi-objective rotor-craft design application is

performed in a large domain space.

This thesis provides several novel academic contributions. The first contribution is

the development of new efficient surrogates for systems with categorical design choices.

Secondly, an adaptive sampling algorithm is proposed for systems with mixed-integer-

categorical design spaces. Finally, previously sampled concepts can be brought to

construct efficient surrogates of novel concepts. With engineering judgment, design

community could apply these contributions to discrete alternative selection and initial

design assessment when similar topographical trends are observed across different

categories and/or concepts. Also, it could be crucial to overcome the current cost

of carrying a set of concepts and wider design spaces in the categorical dimension

forward into preliminary design.

xxv



CHAPTER I

INTRODUCTION

1.1 Motivation

In recent times, the aerospace industry has searched for efficient designs and opti-

mization techniques that satisfy the more and more demanding system requirements.

This search emphasized on an increase in performance and reduction in cost. Much

of the work done focuses on continuous techniques. However, real aerospace design

problems normally engage not only continuous variables but also discrete ones, such

as materials, number of blades on a compressor disk, beam cross-sections, standard-

ized bolt diameters, commercially available plate thicknesses, and manufacturing pro-

cesses, among others. Also, different design configurations are developed to meet the

increasing system requirements and trade-offs in the form of several concepts. Typi-

cal concept examples are helicopter rotor configurations, airplane tail configurations,

gear-box configurations, and landing gear types, among others.

In the conceptual design phase, better discrete alternative selection and high per-

forming region bounds are pursued after the sizing of each alternative. There exists a

heavy computational load in current engineering problems because of the difficulty of

the phenomenon per se, iterations between different disciplines or the designers’ desire

of multi-objective optimization. Traditionally, cheap empirical design tools have been

used in conceptual design; however, they may wrongly select the best concept and

its high-performing design space region. Additionally, these tools cannot accurately

deal with new concepts and extreme geometries in the early design phase which is

the precise time of the process to study new concepts and extreme geometries. Other

option are simple models; however, they do not model complex physics, therefore,
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they provide poor concept choice and a poor identification of the high-performing

regions. Thus, the design community tends to employ more and more faithful models

with the drawback of more time-consuming evaluations: designers have to trade off

between cost and quality of the model.

Discrete alternatives are handled as either different concepts1 or categorical dis-

crete variables2. Discrete variable and concept selection are normally settled in early

design stages because their changes are large by nature so that the impact of these

choices in the design is important. Thus, they need to be correctly defined in early

phases. These key decisions fix a high percentage of the life cycle cost. Variable

changes in later stages of the design process could have a great enhancement in the

design performance but also in the whole design concept, making changes prohibitive

in many cases. Engineers prefer being aware of these desirable changes earlier in the

process where the impact of the change is lower; thus, more and more faithful codes

are used in conceptual design. As opposed to discrete variables, continuous changes

are sometimes small, allowing engineers to accept the change even in downstream

stages of the design process. Regarding discrete alternatives, there is little space for

major changes in these crucial decisions, such as concept and category selection, in

late stages of design. Therefore, this need of faithful codes in early design is even

more crucial when concepts have to be selected and discrete design parameters are

present.

Many engineering efforts attempt to bring computationally intense codes into early

design. These efforts focus on reducing two limitations stemming from the high com-

putational burden of the codes for concept evaluation and the multi-modality land-

scapes of typical objectives. The first limitation is the time taken to evaluate design

1The author means by concepts the possible solutions for a given need. Concepts normally have
different design space and sometimes have some design variables in common.

2A detailed classification of discrete variables can be found in Section 2.1.
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concepts, whereas the second one is the number of evaluations needed for the opti-

mization in conceptual design. These efforts have been done only in the continuous

world; currently, each discrete alternative is modeled and optimized independently.

In order to reduce the concept evaluation time, engineers employ cheap surrogate

models for each concept when the tool to model the concept is computationally in-

tense. These surrogate models are based on training points. The number of training

points increases dramatically with the dimensionality of the concept design space for

a given accuracy; it is called the curse of dimensionality. Thus, the successful utiliza-

tion of surrogates is restricted to a certain dimensionality of the design space. Design

spaces with high dimensionality require a large number of function calls to build an

accurate surrogate, which can be impractical when using high-fidelity tools. Thus,

more efficient manners to treat surrogate models are needed in these high dimen-

sionality cases. Engineers have developed independent surrogates for each discrete

alternative, so the design space they deal with is continuous. Less often surrogates

for concepts with discrete-quantitative variables have been built.

The second limitation is set because of the multi-modal nature of typical engineer-

ing objective functions. Local optimizers are efficient on smooth uni-modal objective

functions, but their results are not satisfactory when applying to functions with mul-

tiple local optima. Also, some of the engineering objective functions are non-smooth,

which represents another challenge for local solvers. Additionally, normally there is

no prior knowledge of the objective function landscape for each concept. Engineers

employ global optimization methods to find optimal performance in the design space

of each concept. As is well known, the global optimization methods lack convergence

speed because they need many more function evaluations than traditional local op-

timizers. Again, these techniques are mainly applied to concepts with continuous

variables; thus, it is desirable their extension to concepts with continuous, discrete-

quantitative, and discrete-categorical variables. These design spaces are known as
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mixed-integer-categorical ones.

In the case of modestly expensive functions, engineers opt for adaptive sampling

(also called on-line or infill sampling) over traditional design of experiments (DoE).

Adaptive sampling features two possible focuses or a combination of both: the global

accuracy of the model to assure global search (exploration), and the accuracy of the

model in the region of the optimum (exploitation). It allows bounding a region of

high performance that reduces the design time in later stages of the process.

Regarding global model accuracy, sampling in low performance design regions

misuses the resources, especially if design evaluations are costly. Nevertheless, these

evaluations in low performance regions are necessary to brand the regions as low per-

forming. A combination of both focuses, exploration and exploitation, is appropriate

in early design where a compromise solution between global trends search, interaction

between design space variables, and search for an optimum is desired. As a drawback

of the adaptive sampling, there exists a loss of precision in the optimum due to the

global exploration; however, it does not represent a big issue in early design. The ex-

tension of these adaptive sampling techniques to mixed-integer-categorical problems

would allow more efficient tools for scenarios with categorical variables.

Currently, high-fidelity codes like Computational Fluid Dynamic (CFD) are mainly

used in later design stages and rarely employed in early stages. Neither the great in-

crease of processor speed that looks to approach the limits of silicon, nor the blossom

of parallel machine, allows designers to extensively employ high-fidelity codes in early

design, even for single multi-objective design.

Also, some authors have pointed out that there are not only computational prob-

lems but also some profound problems in the use of high-fidelity codes due to uncer-

tainties inherent to the early design phase. In this phase many variables are simplified

or just not considered in the first analysis. These variables will be addressed in later

phases. Also, some variables come into the play in later stages once more details are
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known about the design.

As a result, analysis from these high-fidelity codes must be judged, specially in

these early design stages where uncertainties are higher. So, seeking for an accurate

numerical value of the optimum in the conceptual design stage is a waste of resources,

because there still exist some parameters left out from model reduction and uncer-

tainty due to unknowns in the design that are settled in the detailed design phase,

see Young et al. [208]. Therefore, using mid-fidelity codes in early design makes more

sense than high-fidelity ones.

Additional computational burden appears when dealing with not only high-fidelity

codes but also multi-objective and multi-disciplinary problems. These engineering

scenarios prompt the need of building surrogates and infill techniques as efficient as

possible. Pareto sets are desired in multi-objective optimization. Since a set of design

solutions is sought, as opposed to a single solution, more optimization effort is usually

required. Also, even coverage in the set of solutions is wished, which is neither simple

nor computationally cheap.

Sometimes engineers need to use multi-disciplinary tools to model complex engi-

neering problems where several disciplines are involved. Modeling these difficult engi-

neering problems require iterative processes that normally result in computationally

intense codes, even when simple physics-based models are utilized for each discipline.

In this case, discrete changes in late design stages are even more prohibitive due to

the interaction between disciplines. Therefore, it is critical to use mid-fidelity tools

to reliably choose a concept and successfully find regions of high performance across

the mixed-integer-categorical design space of the concept.

An example of design that involves several disciplines is rotor-craft design, where

interactions between aerodynamic, structural dynamics, and control occur. Addition-

ally, the rotor is a complex-physics problem, therefore, models used should represent
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the physics with at least some fidelity. Helicopter design include not only continu-

ous variables but also discrete ones (number of blades, type of airfoils, articulated

or hingeless blades, ...). Also, a choice of concepts is involved (rotor configuration,

anti-torque device, ...)

Nowadays, the techniques previously explained (surrogates and adaptive sampling

techniques) enable designers to use computationally intense models in the preliminary

and detailed design phases, where design spaces are small and continuous, and concept

and alternative selection is already made. Nevertheless, these techniques are not ready

for conceptual design stages where there are several alternatives to explore, increasing

the volume of the design space; in this case, the currently available surrogates and

adaptive sampling techniques provide poor accuracy for a given intense function call

budget or need too many function calls for the desired accuracy.

The main goal of the present work is to build surrogates and adaptive sampling

algorithms for a more efficient use of computationally expensive tools in scenarios

with discrete design alternative choices in early design. The work focuses on the part

of conceptual design after each alternative is sized, where it is pursued the exploration

of the alternative design space, the selection of the best concept and category, and the

search for design regions with high performance. An accurate numeric value of the

global optimum is not a priority in conceptual design. Knowing the best concepts and

bounding their regions of high performance allow the designer to narrow the search

in later design phases; it reduces the likelihood of major changes in preliminary and

detailed design, which is especially undesirable for discrete variables and concepts.

1.2 Meta-Modeling in Conceptual Design. State of the Art

Conceptual design is an iterative process where design requirements, trade-offs, and

analysis are used to guide and evaluate configuration arrangements. Conceptual de-

sign outcomes are discrete alternative selection and initial designs. Typical conceptual
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design spaces are large, so simple models have been used historically in this stage to

select concepts and initial designs. However, more and more attention is turning to-

wards physics-based tools to choose accurately the concept and initial designs. Two

kinds of discrete alternative selection techniques are utilized: qualitative and quanti-

tative.

Qualitative techniques typically rely on prior knowledge and designer experience.

They use simple mathematics. Examples of qualitative methods are group preference

and voting, such as feasibility screening [186], Pugh decision matrices [147], pairwise

comparison charts [48], and analytical hierarchy process [211]. These methods ignore

the potential for each concept to be a parameterization of its own design space, thus,

Pareto fronts are not captured. Also, they cannot properly manage revolutionary

concepts because there is no experience or historical trend about them as stated by

Choi et al. [28]. These setbacks motivate more rigorous methods of selection such as

quantitative ones.

Quantitative methods appear because of the desire of the designers for a more

effective utilization of modeling and simulation in the conceptual design stage, see

[72, 194]. They have a more solid mathematical basis and are based on quantitative

analysis after the sizing of each alternative. Comparison between concepts is replaced

by scalar quantities in the form of objectives that are evaluated with computer mod-

els. They are especially beneficial because more reliable tools could establish that a

concept must be ruled out over another one. Due to their computational expense,

trade-offs between development time and accuracy of the model must be done as

Sobieszczanski-Sobieski and Haftka [177] point out. Among these quantitative meth-

ods one can find: morphological matrix [216], sequential multi-objective optimization,

and simultaneous multi-objective optimization [7]. The design community’s focus is

turning to these quantitative methods [163]. Therefore, efficient concept evaluation is

a key factor in early design when quantitative discrete alternative selection techniques
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are utilized.

For many real world problems, a single simulation can take some time to com-

plete: from minutes to hours, or even days. Routine engineering tasks, such as con-

cept/category selection, design optimization, design space exploration, and sensitivity

analysis, could become too costly. Surrogate modeling appears to alleviate this com-

putational expense. They consist in constructing cheap approximation models to the

objective of a concept that intend to approximate the behavior of the real function.

The most common surrogate models are polynomial response surfaces, Gaussian ran-

dom field meta-model (GRFM), support vector machines (SVM), and artificial neural

networks (ANN). They have been widely used, as it can be seen in the literature. For

more detail see [171, 94, 170, 104].

Surrogates models are widely used together with DoE techniques. These tech-

niques sample the design space in order to get observations that are necessary for the

surrogate construction. DoE is a sampling method that chooses the sampling plan a

priori3. Once the DoE provides the sampling plan, the expensive function is evaluated

at the sampling plan points and the surrogate model is fitted. DoE puts the same

amount of effort in all areas of the design space exhausting sampling capabilities in

low performance regions. Another limitation is that surrogate models based on DoE

sampling plans suffer curse of dimensionality: the required number of sample points

for a given accuracy of the meta-model increases exponentially with the number of

design variables.

Regarding discrete-quantitative variables, surrogates have been utilized in mixed-

integer problems, especially in composite structure design. Rikards et al. [153] employ

response surfaces in the latter area. Jansson et al. [92] utilize a GRFM , also known as

3DoE is also called an offline sampling technique.
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Gaussian processes or Kriging4, combined with DoE sampling in the same field. How-

ever, as far as the author knows Kriging models of a concept integrating categorical

and discrete-quantitative design spaces have not been built yet.

Currently, objective functions dependent on continuous, integer and categorical

variables are treated independently for each value of the categorical parameter, i.e.,

a surrogate is fitted for each categorical member where the surrogate domain is made

of the remaining design variables (continuous and discrete-quantitative). An example

of this approach in the aerospace industry is provided by Keane [104]. Boukouvala

et al. [22] show a similar example in the pharmaceutical industry using polynomial

response surfaces and Gaussian random field meta-models as surrogates, where a

surrogate is fitted for each category. A technique to include all the possible kinds of

variables, including categorical ones, in the same surrogate would enable wider and

more efficient (more accuracy or fewer intense function evaluations) design searches

and concept/category selection.

Engineers first optimize each non-numeric category one at a time. Then, once

all the optimization problems for all the non-numeric categories are solved, the best

optimum across all the categories is selected by comparison. An instance of this

optimization approach is found by Keane [104]. This current method is clearly poor

for cases where design spaces along the categorical variables are too big to perform a

complete search (too many surrogates should be fitted). In these situations, only some

subset of the categories that is believed to be the best by experience is examined. So,

the accuracy of the obtained optima is constrained by the accuracy of the engineers’

guess.

Likewise, different concepts are treated independently from a surrogate point of

view. Therefore, after a concept evolves to a new one to try to meet some requirements

or trade-offs, the previous concept observations are used no longer. In conceptual

4Currently, Kriging methods are wide. They don’t necessarily assume Gaussian fields.
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design, concepts continuously evolve to new ones. Designers compare optimal values

and trends for the different concepts. Then, the concept with the most suitable

characteristics for the given requirements is chosen.

It is not rare that observed trends of objective functions for several categories

within the same concept are similar, so some resemblance between behaviors could

be taken advantage of. An example of this situation is the rotor figure of merit vs

the thrust coefficient for different blade airfoils.

Similarly, the trends of an objective function for different concepts along common

continuous and discrete-quantitative design parameters are usually similar. In con-

ceptual design, concepts continuously evolve to new ones, thus, it is common that the

topographical behavior of immediate concepts are very much alike. An example of

this behavior is the net thrust of several engines versus airspeed, shown in Figure 1.

Figure 1: Net Thrust vs Airspeed. Several Engines

Hence, advantage of this resemblance could be taken by designers. When sizing

engineering systems and estimating cost and weight, this similarity between several

concepts have been exploited in analogy-based techniques (see [169, 131, 112]) and

regression-based techniques (see [146, 185, 150, 97, 102]). However, none advantage
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of these similar trends has been taken of when predicting engineering objectives with

medium and high-fidelity models.

Wilson and Martinez [201] handle nominal input5 attributes in instance-based

learning techniques by making use of distance functions. Wilson and Martinez review

some of the more important distance functions: Euclidean, Manhattan, Minkowsky,

Camberra, Chebychev, Quadratic, and Mahalanobis, among others. In order to in-

clude the nominal inputs, the Hamming distance first introduced by Hamming [78], is

used. However, Wilson and Martinez’s work is in the field of statistical classification

techniques within machine learning far from engineering design. Li, Eggermont et al.

[126] make use of the Hamming distance to build their heterogeneous distance with

the purpose of developing evolutionary strategies for domain spaces with all kinds of

design variables.

Designers employ multi-fidelity techniques to build surrogates when models of

several fidelities are available for the concept to explore. A possible instance of this

situation is when a Reynolds Averaged Navier Stokes (RANS) model of a airfoil and

a Euler equations-based model of it are at the designers’ disposal. Alexander et al.

[5] use this example to test their first-order multi-fidelity algorithm. A large number

of observations of the lower fidelity model and fewer observations of the higher one

can be combined to augment the accuracy of the surrogate. A similar application for

structure design is tested by Alexander, Lewis et al. [4]. In this case the low-fidelity

model is a finite element model evaluated over a coarse mesh.

In some instances, the variable fidelity models are defined in different design

spaces. Robinson, Eldred et al. [155] present space mapping and corrected space map-

ping methods for variable fidelity models of the same concept with different design

spaces. However, this method is developed only for trust-region model-management,

5Categorical variables are also called nominal, non-numeric and symbolic variables.
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and it requires a large training set for the high-fidelity model to get accurate map-

pings. Also, an overhead calculations in each iteration is needed.

Regarding Bayesian multi-fidelity approaches, Journel and Huijbregts [101] present

an algorithm that combines two variable fidelity Gaussian models. El-Beltagy [51]

applies one-fidelity Gaussian approaches to the augmented training data-set that in-

cludes the low-fidelity approximations to a satellite beam problem (two fidelity models

are available). Hevesi et al. [86] apply it to predict the average annual precipitation

values using a sparse set of precipitation measurements from the site of interest; it

also uses information from additional elevations to improve the estimation accuracy.

Kennedy and O’Hagan [109] use an approach in which the variable fidelity codes

are modeled as Gaussian processes. Forrester, Bressloff et al. [63] propose partially

converged high-fidelity simulations as the low-fidelity model in a multi-level scenario.

Later, Forrester, Sóbester, and Keane [64] present the geo-statistical method of Krig-

ing to the multi-fidelity world in detail. Han, Zimmermann et al. [79] propose a new

co-Kriging method to study aerodynamic coefficients and drag polars. All the work

found in the literature about Bayesian multi-fidelity approaches deal with the same

concept or engineering configuration but with different levels of accuracy which stem

from model reduction, physics simplification, or variable discretization size.

1.3 Adaptive Sampling. State of the Art

The even distribution of DoE sampling plans wastes resources by placing samples

in poor performing regions of the design space. Also, large domains and the high

cost of function evaluations do not always make surrogates/DoE methods accurate

for optimization purposes. Adaptive sampling techniques represent an alternative to

the stiff nature of surrogate/DoE combination.

A very common adaptive technique builds surrogates on successive reductions of

the design space. These surrogates are then optimized. This technique is called
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adaptive approximation-based optimization (AABO). The surrogate optimization of

a concept on a wide design area permits to reduce the optimization area for the next

step, where a new surrogate is fitted on a smaller portion of design space. In this

technique the adaptive sampling is driven by performance and not by model uncer-

tainty. As a result, its performance is poor in problems where there are several local

optima with similar performance. It is especially targeted to reduce computational

expense in problems with large design domains. It would exploit a high performance

region, but other potential high performance regions would not be explored because

there exists little information about them. Recently Hao and Ying [80] implement

this adaptive approximation-based optimization method; however, categorical design

parameters are not included in their study. Also, Davis and Ierapetritou [37] propose

a hybrid methodology for mixed-integer nonlinear programs, where response surface

methods are locally applied at the most promising Kriging solutions.

More sophisticated adaptive procedures are called on-line, infill, or adaptive sam-

pling. The idea is to enhance the accuracy of the surrogate model using further

function calls, also known as infill or update points. Two focuses are possible: the

global accuracy of the model to assure global search (exploration), and the accuracy of

the model in the region of the optimum (exploitation). In early design, it is intended

to combine both exploration and exploitation. The idea is to sample low performance

regions enough to brand them as such and to densely sample high performing regions

of the concept design space.

Traditionally, discrete alternatives are adaptively sampled in an independent and

sequential way. Lately, two competing concepts are adaptively sampled simultane-

ously by Rousis [158]; however, he still uses independent surrogates, where there is no

cross-use or reuse of computationally expensive observations. It results in the need

of heavy sampling for each concept to start with accurate surrogates.

In order to carry adaptive sampling out, predictive distributions of the response
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are needed to guide the sampling. Therefore, Bayesian surrogate models like Kriging

must be used to approximate the objective function of a concept. Sampling points

are chosen according to an optimal probabilistic infill criterion that combines both

exploration and exploitation with certain weights.

Many infill criteria are found in the literature: Cox and John [33] use the statistical

lower bound, Kushner [120] first proposes probability of improvement (PoI), Mockus

[136] first introduces the expected improvement (ExI), Jones and Welch [100] work

with conditional lower bound, later Jones proposes the goal seeking infill criterion [98],

Sóbester et al. [176] present a parallel infill criterion where several infill points are

chosen, later Sóbester et al. [175] work on weighted expected improvement criterion...

These techniques are normally employed to overcome the budget limitation when

simulations require long run times. The next sample point is obtained by taking into

account not only the value of the predicted function but also the uncertainty due to

the reduction of the function evaluation cost.

Among Bayesian adaptive sampling techniques, expected improvement is widely

used. Jones et al. [99] build Efficient Global Optimization (EGO) algorithms that

combine Kriging with ExI for continuous variables. In his work, Jones points out some

monotonicity properties of the ExI landscapes. Up to date none adaptive sampling

algorithm is done on mixed-integer-categorical problems.

Bayesian adaptive sampling techniques require the optimization of the infill crite-

rion over the design space of the concept for finding the next sampling point. As a

result, optimization algorithms for continuous and discrete variables are required to

adaptively sample mixed-integer-categorical design spaces. Among the optimization

methods developed for continuous and discrete variables, the first and most straight

forward approach is to treat all discrete variables as continuous ones6; and then,

6If categorical discrete variable are present in the problem, a map is required to convert categorical
variables into discrete-quantitative ones

14



variables are truncated once a continuous optimization technique provides the design

point.

Li, Eggermont et al. [125] state the main drawback for this approach: the contin-

uous step size may reduce to a value that is too small to generate any improvement

in the discrete-quantitative variable treated as continuous. If the discrete design pa-

rameter is a ordinal or nominal value, the result is even worse, the implicit continuous

neighborhood and distance assumption could cause to converge to an artificial local

optimum.

A well-developed field called Mixed-Integer Optimization (MIO) intends to solve

this need for optimization problems, where both continuous and discrete-quantitative

variables are present. MIO is capable to deal with non-numeric variables by mapping

them into integer ones. Other option is to use a set of switches to convert the cat-

egories into binary variables that represent the rejection or selection of a category.

However, this conversion of categorical variables into binary variables increases the

dimensionality of the design space.

Duran and Grossmann [46] build an efficient outer approximation algorithm to

solve the problem of synthesis in chemical engineering, which involves binary and

continuous variables. Boukouvala et al. [21] also employ mixed-integer optimization

techniques for studying blending processes. In the last case, binary variables are

associated with units in the superstructure. These variables imply the existence or

absence of the system unit and differentiate between the alternatives [21]. Berman

and Ashrafi [14] also use binary variables to select the modules in order to optimize

software system structures. In heat exchanger synthesis, pump network synthesis, and

trim loss minimization same procedure is taken by Floudas et al. [61], Westerlund

et al. [198], and Harjunkoski [81], respectively. Davis and Ierapetritou [37] propose

a methodology for mixed-integer nonlinear programs based on a branch-and-bound

method that uses Kriging and response surfaces of the objective at each node of the
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binary tree.

Designers have worked on global optimization techniques for mixed-integer-categorical

problems. He and Prempain [82] use particle swarm methods to optimize design

spaces with continuous, integer, and discrete-quantitative variables but not nominal

variables. Wang and Yin [195] develop a particle swarm optimizer based on ranking

selection, where the ranking selection includes categorical variables.

Also, random searches that require mutation operators have been utilized to op-

timize design spaces with categorical variables by some authors. Bäck [8] proposes

to use a uniform distribution for the categorical variable. Other authors also opt for

the same mutation distribution for their random searches [57, 127]. Cao and Wu [26]

develop a mixed-variable evolutionary algorithm with different mutation operators

for each type of variables. Li, Eggermont et al. [126] build an heterogeneous distance

to enable the mutation in evolutionary strategies for mixed-integer problems.

1.4 Multi-Objective Optimization. State of the Art

Typical engineering system requirements are made of several objectives. If objec-

tive preferences were specified a priori only a single design point would be selected.

However, designers poorly understand the influences of objective preferences in early

design, so they would like to know how they affect the final decision before choos-

ing a single design [174]; so, designers rely on Pareto fronts. Once the Pareto set is

obtained, weighting between desired goals is decided to get to a trade-off solution.

Constructing Pareto fronts is difficult. Firstly, a set of solutions instead of a single

solution is wanted. It means that a large optimization effort is required. Secondly,

a wide and continual set is pursued in the objective space. Interpolating between

design parameters and goals is not usually efficient because of the highly nonlinear

relations among design parameters and goals. Therefore, obtaining an even coverage

of the Pareto front is difficult, especially if relatively long time computer runs are
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employed for each objective. These two reasons shape the current algorithms to

construct Pareto sets.

There exist two common ways to obtain the Pareto front for a concept. In the first

one, weighting functions to combine the objectives into a single objective problem are

chosen; in this case standard single-objective techniques can be brought. Then, the

weighting is varied to get different single objective solutions that form the Pareto

set approximation. This approach is slow, one Pareto optimal point per weighting.

Another drawback is that it is not straight-forward to choose the weighting to get to

different parts of the Pareto front.

The second methods are population-based schemes or evolutionary multi-objective

algorithms (EMOA). A set of designs is evolved according to dominance and spread

criterion towards the final Pareto set. Since population based-schemes deal with a

group of candidate solutions, it seems natural to use them in multi-objective optimiza-

tion problems to find the Pareto optimal solutions simultaneously. For more detail,

see [40, 31]. In this case no weighting function is needed. Instances of population-

based methods are NSGA-II developed by Deb [41], and SMS-EMOA developed by

Beume et al. [16], among others.

Adaptive sampling in multi-objective problems has been treated by several au-

thors. Mainly, the work done is on Bayesian adaptive sampling, concretely on the

statistical improvement criterion. Keane [106] extends the single-objective PoI and

ExI to the multi-objective world, the latter one based on the euclidean distance to

the nearest point of the Pareto front. Liu et al. [128] define a multi-objective ExI

with a weighted-sum over single-objective ExIs. However, Wagner et al. [192] define

necessary conditions that Keane’s work [106] and Liu’s work [128] do not satisfy.

The hyper-volume or Lebesgue measure7 has been an increasingly popular measure

to compare the quality of two Pareto set approximations. This Lebesgue measure

7Hyper-volume or Lebesgue measure is also known as S-metric
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maps a set of points to a scalar, and it is first introduced as a Pareto set quality

indicator by Zitzler [213]. It measures the size or volume of the objective space that

is dominated by a set of points. A nice feature of the Lebesgue measure is that it

captures the spread along the objective space and the accuracy of the set compared

to the optimal one. Zitzler, Thiele et al. [215] show that the hyper-volume has more

convenient properties than other possible metrics. Its main problem is that the direct

calculation of the Lebesgue measure is computationally expensive: its complexity

is exponential in the number of objectives. Other limitation is the requirement of

objective normalization to assure that the gains in all the objectives have the same

importance.

Several authors have developed algorithms to exactly calculate the Lebesgue mea-

sure [58, 200, 204, 199]. However, for large number of objectives, Monte Carlo inte-

gration is still preferred due to the exponential increase of the computational expense

of the direct algorithms. Additionally, a large number of points in the Pareto ap-

proximating set increases the computational cost of the direct calculation. The main

drawback of the Monte Carlo approximation is its lack of precision. Nevertheless,

While, Hingston et al. [200] carry out a survey in the literature that reveals that the

majority of authors who deal with multiple objectives study four or less objectives,

and none studied problems with more than 12 objectives. Thus, direct hyper-volume

calculation could be preferable for multi-objective problems with a few objectives.

Hyper-volume indicators are extensively employed together with EMOA, such as

genetic algorithms (GA) and evolutionary strategies, to identify Pareto sets for com-

putationally cheap objective functions or deterministic surrogates. Zitzler [213] first

proposes the hyper-volume indicator to compare the approximate sets that are output

by different EMOA; Knowles and Corne [115] compare the hyper-volume measure to

other metrics employed as outcomes of EMOA; Huband, Hingston et al. [89] suggest

a hyper-volume-based measure for resolving ties during the selection process of an
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evolutionary strategy; Beume et al. [16] first include the maximization of the dom-

inated hyper-volume as the primal selection operator of the genetic algorithm; Igel,

Hansen and Roth [90] employ the hyper-volume contribution as a sorting criterion for

their evolutionary strategy; Zitzler, Brockhoff et al. [214] employ the weighted ver-

sion of the hyper-volume to guide the search to desired points such as Pareto extreme

points; and Bader [9] trades off the accuracy of the hyper-volume indicator with the

computational resources in his evolutionary algorithm.

However, the interest herein is in Bayesian adaptive sampling of computation-

ally burdensome functions instead of the optimization of the cheap objective func-

tions or deterministic surrogates. Specifically, extensions of single-objective adaptive

sampling criterion to multidimensional spaces. Lately, the increment of dominated

hyper-volume of a set is a possible choice for the scalar to carry out this extension,

as suggested by Emmerich and Giannakoglou’s work [55]. Ponweiser [145] does it in

the form of Statistical Lower Bound. Emmerich and Giannakoglou [55] propose inde-

pendently the same multi-objective extension of the ExI criterion as Ponweiser. The

proposed ExI satisfies the necessary conditions set by Wagner [192]. Nevertheless,

the quadrature for the computation of the ExI measure is expensive: Monte Carlo

integration is employed by Emmerich and Giannakoglou [55] with the corresponding

low accuracy. Piecewise numerical integration over hyper-rectangles is a costly alter-

native. Lately, Emmerich [54] develops a direct computation procedure for the ExI

quadrature for two-objective problems that provides a more precise and quicker way

to calculate the multi-objective ExI than the numerical integration. Herein, the use

of the multi-objective ExI on problems with discrete design inputs is intended.

1.5 Rotor-craft Design

Conceptual design of rotor-craft includes the selection of concepts and categorical

variables, such as anti-torque device configurations, blade airfoil sections, materials,
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engines, and cross-sections of structural elements, among others [123, 68, 151]. Al-

ternative selection in helicopter design is normally determined in early design stages

and are usually not changed in later stages. It is because their changes are large by

nature so that the impact of these choices in the design process is significant, making

these changes prohibitive in latter stages. Once a blade airfoil section is selected,

it is aerodynamically optimized in later design stages; however, the possible airfoils

are limited to some similar in nature to the first selected. Engine choice changes in

later stages of the rotor-craft design process could greatly enhance the design perfor-

mance, but it also affects the entire design, resulting in excessive changing cost in the

majority of the cases.

Rotor-craft designers are aware of the importance of alternative choices. However,

the complexity and difficulty of the rotor physics, the multidisciplinary nature of

the rotor-craft, and the desire to include multi-objective optimization prevent design

team members from employing accurate tools for alternative selection. As in other

engineering fields, rotor-craft conceptual design teams are often left with dubiously

reliable traditional tools, such as empirical and/or simple models, that cannot model

complex physics and may dismiss choices that high-fidelity tools can brand as optimal.

Rotor-craft engineers prefer being aware of major design changes in earlier stages

where the impact of the change is lower. Therefore, it is intended a more efficient use

of computationally intense codes early in the design process to enhance the selection

of alternatives; it would make the rotor-craft design process better.

The two approaches to alternative selection, qualitative and quantitative ones,

have been used in rotor-craft design. In the qualitative approach, decisions are made

by design engineers. These choices are affected by experience and personal preference,

they may ”feel right” but there is no quantitative supporting evidence. Walsh et al.

[193] choose the airfoils by avoiding exceeding the maximum section lift coefficients

on the retreating side or exceeding the section drag divergence Mach number on the
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advancing side. In the quantitative approach, the exploration of different alternatives

is done one by one and with sizing tools. Coupling numerical optimization tools

to sizing codes is difficult [165] because of the low-fidelity of sizing codes, and the

complexity of the simultaneous handling of discrete, integer and continuous variables,

typical in rotor-craft design scenarios. Once each alternative has been explored,

the selection is made by comparison. The use of low-fidelity codes makes results of

quantitative approaches unreliable.

Within the quantitative methods, Crossley et al. [35] attempt to better address

categories in helicopter early design. They realize that binary-coded genetic algo-

rithms can properly handle discrete variables; GA searches simultaneously all the

candidate airfoils as opposed to traditional independent searches in each category.

Crossley et. al [34] later extend the same approach to select not only the airfoil sec-

tion but also the rotor-craft engine in the frame of conceptual design; they minimize

the gross weight. Wells et al. [196] use a similar approach in a more advanced design

phase to search for acoustically efficient rotor blades. Berry et al. [15] choose among

several candidate airfoils using a simple predictive tool coupled with a genetic algo-

rithm. However, these methods employ simple analysis tools that fail to capture the

complex physics by which categories could be accurately selected for initial designs.

Surrogates have been used in rotor-craft design to reduce the evaluation time. Sai-

jal et al. [162] use neural networks and polynomial meta-models to reduce helicopter

vibration. Sun et al. [180] fit response surfaces to design airfoils aerodynamically.

Another popular family of meta-models is approximation-based stochastic pro-

cesses [160]. These surrogates have been successfully employed in several rotor-craft-

related fields. One application of these meta-models predicts unsteady aerodynamic

responses when flow non-linearities are present [74, 75]. Many researchers apply this

stochastic techniques to rotor design [119, 19, 73, 188, 118, 91]. Vu et al. [191] apply

stochastic processes in rotor-craft design to minimize the rotor-craft power in hover.
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It is easy to find in the rotatory system literature examples of objective functions

with similar behavior for several blade airfoil sections, blade materials and configura-

tions [123, 151, 83, 29, 52]. The giromill performance experiences similar trends for

several airfoils, as shown in Figure 2 [52]. In rotor-craft design, again independent

meta-models are fitted for each alternative, see [209, 180, 140]. Therefore, current

approaches in rotor-craft design do not take advantage of similar trends across alter-

natives.
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Figure 2: Giromill CT vs Tip Speed Ratio for Several Airfoils [52]

Recently, optimization techniques have been extended to cope with surrogate mod-

eling in rotor-craft design. The most straight-forward approach is to directly optimize

the surrogate objective function without updating the surrogate during the process

[180, 141, 95, 162, 156]. These surrogate-based optimization techniques have been

applied to blade material and blade ply configuration selection. Murugan and Gan-

guli [141] optimize each material on the composite blade via response surfaces, and

then, they compare the best design of each material to select the optimum one. Mu-

rugan et al. [140] optimize several composite ply configurations using surrogates and

choose the best performing one by comparison. Yuan and Friedmann [209] optimize

independently stiff-in and soft-in blades and compare the results. Sun et al. [180]
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proceed similarly to airfoil comparison when optimizing their aerodynamic curves.

The described investigations on categorical comparison with surrogates based op-

timization have been done in the context of aeroelastic stability enhancement, vi-

bration suppression, and airfoil aerodynamic optimization that fall typically within

preliminary design stages. These techniques that include high-fidelity models via sur-

rogates can bring tremendous value if applied to early design stages where the choice

between categories is made. Nevertheless, the large conceptual design spaces due in

part to the presence of multiple alternatives hinders the application of this technique

to conceptual design.

In order to enhance the efficiency of optimization on meta-models, EGO algo-

rithms on stochastic process surrogates attempt to focus most of the expensive func-

tion observations in good performing areas. Rotor-craft engineers have applied EGO

algorithms to rotor vibration and noise, and performance optimization [119, 73, 118,

91]. EGO algorithms can explore large design spaces, typical in early design stages;

however, they have not been applied to alternative selection in rotor-craft design.

EGO algorithms are adequate candidates to implement conceptual design tools for

the more efficient use of computationally intense models with the purpose of improv-

ing the selection of categorical variables and initial designs in rotor-craft design.

1.6 Proposed Approach

The goal of this research is to build conceptual design tools for the more efficient use

of computationally intense codes in scenarios with discrete design alternative choices

in early design. It would lead to enhancements in the quality of the initial designs and

concept/category selection. The idea is to increase the tools (surrogate and adaptive

sampling) efficiency by getting more value of the learning on each discrete design

alternative. In order to achieve this goal, five paths are taken:
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1. Meta-models that cross-use computationally expensive observations across cat-

egories.

2. Adaptive sampling on meta-models that cross-use observations across cate-

gories.

3. Several types of mutation operators for the mixed-integer-categorical genetic

algorithm are proposed.

4. Meta-models that re-use computationally expensive observations from previ-

ously explored concepts.

5. Adaptive sampling on meta-models that re-use observations from previously

explored concepts.

Meta-models that cross-use computationally expensive observations across

categories. It has been previously mentioned that using intense computational

tools in early design stages constrains the function call budget. Thus, attention is

taken on designing accurate surrogates capable of leveraging the similarities across

categories, producing more accurate approximation for a given function call budget.

In current methods, the training set for each category does not interact with that of

other. Thus, these current independent surrogates for each category are not effective

for cases where objective function trends resemble, which happens usually in engi-

neering scenarios. Including the non-numeric design variables in a unique surrogate

would allow cross-using information of dependence along design variables across cat-

egory members. It could result in surrogates that are more efficient than traditional

independent ones for each category. “Efficiency” means fewer observations are needed

for a given accuracy or more accuracy for the same number of expensive observations.

The first option to build the unique surrogate that includes not only continuous

24



and integer variables but also nominal ones is the Hamming distance. Sometimes, non-

numeric inputs could intrinsically have a distance provided by a measurable property

of the given category. This intrinsic nominal distance can be brought as the second

option to build the unique surrogate. When the nominal distance functions (Hamming

distance and the intrinsic nominal distance) are defined, categorical variables can

be included in the surrogate domain. The efficiency of these unique surrogates is

measured against the current independent surrogates. Also, the influence of the size

of the training set is studied. Gaussian surrogates are chosen since adaptive sampling

is intended. If this unique surrogate is successfully built, the available resources will

be better employed when dealing with computationally burdensome tools.

Adaptive sampling on meta-models that cross-use observations across cat-

egories. The first step to build tools for the more efficient use of computationally

intense codes is to develop meta-models that cross-use observations across categories.

The second step to achieve the research goal is to extend EGO algorithms to handle

the meta-models developed in the first step. The adaptive sampling algorithm chosen

in this work applies the expected improvement infill criterion on Kriging surrogates.

It allows designers to better explore the design space and exploit local optima in

potentially promising regions for restrictive function call budget.

However, the surrogate models that leverage similar trends across categories have

mixed-integer-categorical domains; thus, the infill criterion must be optimized in these

domains. An optimization algorithm capable to optimize design spaces with not only

continuous and integer variables but also categorical ones is developed. This genetic

algorithm is constructed out of a mixed-integer GA by conveniently including new

generation, mutation, and crossover operators for the non-numeric input parameters.

This genetic algorithm, if successful, allows designers to develop more efficient con-

ceptual design tools for intense multi-modal objective functions where there exists a
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choice of discrete alternatives.

Several types of mutation operators for the mixed-integer-categorical ge-

netic algorithm are proposed. The identification of the possible speed-up switches

for the optimization algorithm is pursued. The speed of this algorithm may increase

with certain mutation operators. Several categorical mutation distributions could

be obtained based on the two nominal distance functions: Hamming and intrinsic

distance. Therefore, it makes sense to carry out an study to see which categori-

cal mutation operators are more effective for some test problems. Also, as it was

previously mentioned, expected improvement landscapes have identical properties re-

gardless the problem. Due to the similar ExI characteristics (independent of the

objective function), it is reasonable to extrapolate the results of the case study to

other problems different from the tested ones.

Meta-models that re-use computationally expensive observations from pre-

viously explored concepts. Attention is on designing accurate surrogates capable

of leveraging similarities from previously explored concepts. Currently, surrogates are

fitted to each concept without reusing observations from previous concepts; however,

previous concepts usually experience similar trends to the new ones. The current ap-

proach is a strategy that provides poor surrogate accuracy if the function call budget

is limited (usual situation while using computationally expensive tools). A Gaussian

multi-fidelity approach is developed to reuse previous concept observations when fit-

ting a surrogate for a new concept. The efficiency of these multi-fidelity surrogates

is measured against the current independent surrogates. Also, the influence of the

size of the new and previous concept training sets is studied. If the resulting multi-

fidelity surrogate of the new concept is successful, the limited function call budget is

more conveniently exploited (more surrogate accuracy) when using computationally

expensive models.
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Adaptive sampling on meta-models that re-use observations from previ-

ously explored concepts. Once the meta-models that reuse computationally ex-

pensive observations from previously sampled concepts are implemented, the next step

is to apply EGO algorithms on these meta-models. Again, the expected improvement

is the infill criterion chosen to adaptively sample the Gaussian multi-fidelity surrogate.

The domain space of the surrogate that leverages similar trends from previously

sampled concepts could have continuous, integer and/or categorical design variables.

The most demanding case is when the surrogate domain is mixed-integer-categorical;

however, the adaptive sampling on this type of domain was already solved in the

second item of the above enumeration. Therefore, no technical challenges are ex-

pected when adaptively sampling meta-models that re-use observations if concepts

are explored one at a time.

1.6.1 Research Questions

Once the problem to tackle is defined, research questions help to guide the investiga-

tions herein. It is important to remember the goal of this research: build conceptual

design tools for the more efficient use of computationally intense codes with the pur-

pose of improving the quality of initial design and concept/category selection.

1.6.1.1 First Question

Is it possible to build efficient surrogates for design scenarios where there exists a

design categorical choice with similar trends?

a) Is it possible to build surrogates that cross-use computationally expensive ob-

servations across categorical choices with similar trends?

b) Which nominal distances allow building these efficient surrogates?

c) Does the MIC surrogate outperform independent surrogate modeling for each

category? How does the relative efficiency of MIC surrogates with respect to
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the independent ones (state-of-the-art) depend on the training set size?

1.6.1.2 Second Question

How could adaptive sampling approaches be efficiently extended to a choice of cate-

gories that experiments similar trends?

a) Can the MICGA extended from MIGA drive the ExI search while doing adaptive

sampling on MIC surrogates?

b) Is the adaptive sampling on MIC surrogates more efficient than simultaneous

adaptive sampling on independent surrogates (state-of-the-art) in some range

of training set sizes?

1.6.1.3 Third Question

Is it possible to build efficient surrogates for design scenarios where there exist com-

putationally expensive observations from a previous concept with similar trends?

a) Is it possible to build surrogates that re-use computationally expensive obser-

vations from previous concepts with similar trends?

b) Do ECMF surrogates outperform mono-fidelity surrogates? How does the rela-

tive efficiency of ECMF surrogates with respect to the mono-fidelity ones (state-

of-the-art) depend on the new concept training set size?

c) What is the influence of the old concept training set size in the performance of

ECMF surrogates?

1.7 Practical Applications

First of all, it is worth mentioning that computationally intense codes are not required

to better interpret canonical test results or further support the research hypothesis or

predictions. Also, the use of high-fidelity codes in conceptual design has philosophical

28



problems as mentioned in Section 1.1 due to model reduction and unknown unknowns.

However, tests on computationally burdensome models would support the practicality

of the engineering motivation.

In order to find a proper practical application of this research, it is recommended

to keep in mind its goal: develop tools for the more efficient use of computationally

intense tools early in the design process with the purpose of enhancing the initial

design and concept/category selection. Thus, the target is on engineering problems

where discrete variables and different configurations are possible. Tools with long

evaluation time are the ideal aim of this work, whereas heuristic models in the form

of look-up tables or really simple models must be ruled out for application purposes.

Rotor-craft design fulfills these two requirements: presence of design alternatives

and long concept evaluation times. Firstly, rotor and anti-torque configurations, num-

ber of blades, types of airfoil, types of articulation, gear box arrangement, and man-

ufacturing processes, among others, represent several concepts and discrete variables.

Also, some manufacturing constraints could convert some firstly thought continuous

variables into discrete ones, as it occurs with commercially available standardized

manufactured pieces. Secondly, the multidisciplinary nature of the design, where

there is interaction between aerodynamic, structure mechanics, control, and aeroa-

coutics, among other fields, makes function evaluations intense, even when not too

complex physics are used.

Additionally, rotor-craft design is usually intended to be multi-objective. Typical

objectives are fuel consumption and noise emissions at several flight conditions, and

system cost, among others. So, multi-objective optimization requires more evaluations

than single-objective scenarios; thus, even mid-fidelity tools become less manageable

in rotor-craft multi-objective design.

Therefore, the use of high-fidelity tools, such as CFDs, for the multi-objective

optimization of multi-disciplinary objectives would be an impractical task, so it is
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not considered in this work. Another reason that hinders the use of CFD codes is

the limited accessibility to rotatory CFD methods. The only available CFD code for

rotatory wing is a full Navier-Stokes solvers, whose running time makes it impractical

in conceptual design. The last but not least reason is the large amount of time

necessary to integrate CFD related set-ups into the tools to develop, especially when

the available time for the research is limited as in this case.

The finding of prohibitive high cost changes in late design stages (specially for dis-

crete variables) and the increase in computational efficiency have prompted helicopter

companies to be more and more interested in getting better sizing and predictions

tools in early design stages. This could shorten the design process and enhance the

product quality. These tools provide more accurate initial designs that, taken to later

design stages, reduce the likelihood of last-minute large design changes with their

corresponding high impact on the cost. Due to all these reasons, helicopter design is

a suitable application for the method developed in this thesis.

Regarding the choice of objective functions, interest is in power consumption and

noise reduction. The software PSU-WOPWOP done by Dr. Brentner is available to

the author. It implements the Ffowcs Williams Hawkings (FWH) analogy [25]. It is

well-known that in order to get reliable acoustics results, a high-fidelity aeroelastic

model is needed to properly catch the blade pressures and displacements. However,

CFD analysis were ruled out in favor of mid-fidelity models. Hence, the acoustic

results would not be accurate. Thus, the acoustic objective is not pursued in this

work. Only the optimization of the rotor-craft power consumption at several flight

conditions is pursued.

The software used to model the rotor-craft is FLIGHTLAB[1]. It is a rotor-craft

simulation tool capable of multidisciplinary support with selective fidelity modeling

options. FLIGHTLAB is not a conceptual design software per se, but other con-

ceptual design software, such as RCAS, is not available to the author. Conceptual
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design software, such as NDARC[97] and CIRADS[38], are available. They are used

for sizing, and parametric selection of alternatives and initial designs. NDARC and

CIRADS include very simple models where there are only a few design variables.

For instance, NDARC or CIRADS do not permit detailed aerodynamic curves. More

design variables and complex physics models can be added through interfaces with

other software. However, these complex software packages have distribution restric-

tions. Thus, FLIGHTLAB is chosen as the modeling tool; it allows more complex

physics and more design variables in the parametric selection of alternatives and

initial designs.

The first practical test carried out is the multi-objective optimization of the

UH60A power consumption at hover and cruise speed. For the given weight the

six degree of freedom rotor-craft must be trimmed, i.e., iterations between disciplines

are necessary till agreement is reached. So, even the use of mid-fidelity codes for

aerodynamics and structural dynamics result in computationally long function eval-

uations. The categorical variable in this work is the main rotor airfoil blade. The

UH60A power consumption is used to test the efficient surrogates that leverage similar

trends across categories and do multi-objective adaptive sampling on them.

A new “evolutionary incremental concept” from the conventional UH60A is tested:

UH60A with a fenestron tail. In this second practical experiment, the optimization

of the power consumption of the UH60A with fenestron tail is carried out at hover

and cruise speed. The considered previous concept is UH60A with conventional tail.

The UH60A with a fenestron tail power consumption is used to test the efficient

surrogates that leverage similar trends from previous concepts with similar trends

and do multi-objective adaptive sampling on them.
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1.8 Thesis Organization

Following the present chapter, the remaining chapters go in more details through the

research. Chapter 2 provides a literature review with a summary of the necessary

background and current available theory to develop the desired techniques. It begins

with a classification of types of discrete variables and the definition of order and dis-

tance. Then, distance functions are presented with focus on nominal distances used

in classification techniques Later, the typical estimates utilized by engineers to size

systems and evaluate objectives are reviewed. Emphasis is on the capability of reusing

observations of concepts with similar trends. Then, the framework of conceptual de-

sign is presented. It is followed by an introduction of the GRFM used in this work,

Kriging, to get familiar with it and its nomenclature. Kriging regression aimed to

noisy functions is also explained. After it, an overview of typical multi-fidelity tech-

niques, specifically Gaussian approaches, is presented. Again multi-fidelity regression

is explained.

Later, a description of adaptive sampling techniques centered on the single-objective

expected improvement infill criterion is provided. Then, a summary of the most

common mixed-integer optimization techniques is presented. These techniques are

classified according to convex problems and non-convex problems that, in turn, are

divided by deterministic and stochastic searches. It is followed by the discussion of a

multi-objective extension of the expected improvement criterion based on the incre-

ment of dominated hyper-volume. The last part of the chapter is devoted to a review

of fenestron tails.

Following this literature review chapter, a detailed description of the development

of the new techniques is provided in Chapter 3. Firstly, the chapter start with an

introduction. Secondly, the research questions that guide the investigations, their

hypothesis, and predictions are discussed. Thirdly, several nominal distance func-

tions are proposed to enable the development of a common Gaussian surrogate that
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leverages similar trends across categories.

Fourthly, the implementation of this common surrogate is explained together with

the definition of the success indicators; this meta-model is called mixed integer-

categorical surrogate (MIC). Then, it is presented the implementation of a new

concept surrogate that leverages observations from previously sampled concepts. A

multi-fidelity approach is developed to accomplish the meta-model; it is called evo-

lutionary concept multi-fidelity (ECMF) surrogate. Then, adaptive sampling on the

proposed surrogates is discussed with emphasis on the extension of mixed-integer ge-

netic algorithms to a mixed-integer-categorical ones. Later, a study is carried out

regarding the influence of the mutation operator on the performance of the mixed-

integer-categorical genetic algorithm. The principle of maximum entropy is employed

to come up with possible new mutation procedures. It is followed by the discussion

of the choice of the fenestron tail configuration as the new “evolutionary incremental

concept”. Emphasis is on the assessment of the fenestron baseline values and the

weight estimation. Finally, the methodology diagrams are presented.

Chapter 4 presents the FLIGHTLAB rotor-craft computational model employed

in this research. Firstly, the UH60A baseline characteristics and parameters are

reviewed. Then, the computational model is validated at hover and cruise speed.

Finally, the noisy nature of the computational model is shown.

The MIC surrogate experiments are presented in Chapter 5. MIC surrogate effi-

ciency is compared with that of independent surrogates for each category in terms of

the success indicators. Experiments to understand the influence of the training set

size and the nominal distance in the MIC performance are carried out. Results are

discussed. The tests are done on a noise-free function (disturbed Branin function)

and on a noisy function (UH60A hover power consumption). A screening of the gen-

eral UH60A hover power consumption is performed with the purpose of testing MIC

surrogate on a handy function with a few design variables.
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Chapter 6 presents the mixed-integer-categorical genetic algorithm (MICGA) as

the driver of EGO algorithms on MIC surrogates. Firstly, an intermediate mixed-

integer GA is validated for assuring appropriate further use. Then, EGO behavior

is shown when adaptively sampling the disturbed Branin function and the UH60A

hover power consumption.

The ECMF surrogate experiments are presented in Chapter 7. ECMF surrogate

efficiency is compared with that of surrogates where there is no reuse of observations

from previous concepts in terms of the success indicators. Experiments to understand

the influence of the new and old concept training set size are carried out. Results

are discussed. The tests are done on a noise-free canonical function (2-dimensional

Michalewicz function) and on a noisy function (UH60A with fenestron hover power

consumption).

Chapter 8 demonstrates MIC adaptive sampling on a rotor-craft practical scenario:

the multi-objective optimization of the UH60A power consumption at hover and cruise

speed. The objectives are optimized in two design spaces: a) the one with four design

variables resulted from the screening process presented in Chapter 5; and b) a design

space with seven design variables. The categorical variable is again the main rotor

airfoil blade. In the screened domain case, the Pareto front assessed with the adaptive

sampling on the MIC surrogate is compared with the one obtained from simultaneous

adaptive sampling on independent surrogates (current state-of-the-art).

The second practical conceptual design scenario is presented in Chapter 9: the

multi-objective optimization of the UH60A with fenestron power consumption at

hover and cruise speed. Again, two design spaces with different dimensionality are

tested. Also, a screened domain is employed to compare the quality of the Pareto front

obtained from adaptive sampling on ECMF surrogate and on a surrogate that does

not include observations from previous concepts. The considered previous concept is

UH60A with conventional tail.

34



The final part of the thesis, Chapter 10, summarizes the research and its contri-

butions. The recommendations on when to use the MIC and ECMF surrogates are

discussed. Finally, the future work is argued.
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CHAPTER II

BACKGROUND AND THEORY REVIEW

This Chapter contains a summary of the necessary background and current available

theory to develop the desired techniques. It covers the following topics: classification

of types of discrete variables; nominal distances and correlation functions in the con-

text of classification techniques; summary of typical estimates utilized by engineers;

review of the conceptual design stage; brief introduction of the GRFM with focus on

Kriging; multi-fidelity meta-models, specifically Gaussian approaches; description of

adaptive sampling techniques centered on the single-objective expected improvement

infill criterion; summary of the most common mixed-integer optimization techniques;

review of a multi-objective extension of the expected improvement infill criterion

based on the increment of dominated hyper-volume; and finally, a review of fenestron

tails is presented.

2.1 Discrete Variables

Discrete variables are those whose possible values are only distinct points on the scale,

as opposed to continuous ones that can take an uncountably infinite number of values.

Discrete variables can assume finite or countably infinite values. Any set which can

be put in a one-to-one correspondence with the natural numbers (or integers) so

that a prescription can be given for identifying its members one at a time is called

a countably infinite (or denumerably infinite) set. Discrete variables can be ordered

or unordered. The distance between set values can be equal, uneven or meaningless.

Herein, the distance between members of a discrete design variable is employed.

Discrete variables can be classified into several groups according to several char-

acteristics of the variable. In the literature, several classifications are found. The
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ones proposed in this work are based on the distance and order characteristics of the

variable. The classification is the following:

Categorical, nominal, or non-numeric variables Individual items can only be

measured in terms of whether they belong to a category or not. There is no

quantifiable distance or order for the categorical variable. No arithmetic or

logical operation can be performed on this data. Only qualitative classification is

possible and the category name is arbitrarily assigned. A categorical variable is

a generalization of the binary variable that has more than two states. Examples

of such variables in sociology are marital status (unmarried, married, divorce,

or widower) and gender (male or female). For aerospace design, possible non-

numeric variables can be the engine, material, and airfoil choice available for

the aircraft designer.

Ordinal variables The values of these variables are ordered in a meaningful way.

However, the intervals between members (the distance) are unquantifiable and

uneven. Consequently, arithmetic operations can not be realized; however, log-

ical operations are possible. A typical example of ordinal variable is the socio-

economic status of families (upper, upper-middle, middle, or low class). Middle

class income is higher than low class income, but one can not quantify what

the difference is between high and low class families. Engineering management

usually faces the decision of what qualification is required for a given job: B.Sc,

M.Sc. or Ph.D.. The possible qualifications represent a discrete-ordinal vari-

able.

Quantitative variables These variables can be ordered and the interval between

scale points is meaningful. Therefore, both logical and arithmetic operations

are possible. Integers are a special subgroup of quantitative variables where the

distance between points is the same and equal to one; however, it does not apply
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for all the discrete-quantitative variables. The number of children per family is

an example of discrete-quantitative variable in sociology. Also, the standardized

sizes of some engineering parts, the number of blades, the number of compressor

stages, and the screw diameters and pitches are discrete-quantitative variables.

The whole group of discrete-quantitative is sometimes referred as integer vari-

ables; however, in reality it is just a subgroup of it. It could create confusion.

For instance, mixed-integer programming and mixed-integer stochastic searches

can handle not only integer variables but also discrete-quantitative ones; how-

ever, from their name one can think that these techniques just handle integer

variables.

2.1.1 Definition of Order and Distance

Formal definitions of order and distance can be found in the topology literature [108].

Order is a relation < on a set X such that for each pair of points β1, and β2 of X ,

one and only one of the following holds:

β1 < β2, β1 = β2, β2 < β1

A metric or distance function is a measure d that satisfies the following properties for

all points β1, β2, and β3 of X :

d(β1, β2) ≥0 (1)

d(β1, β2) =d(β2, β1) (2)

if d(β1, β2) =0, then β1 = β2 (3)

d(β1, β2) + d(β2, β3) ≥d(β1, β3) (4)

2.2 Nominal Distance Functions

Distance functions for continuous and discrete-quantitative variables are frequently

used in engineering design. For instance, surrogates and mutations of mixed-integer
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evolutionary algorithms (ES and GA) are normally based on continuous and integer

distances. The euclidean distance is the most popular continuous distance between

points. It is defined as

decl
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=
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where x(i) and x(l) are two points in the k-dimensional design space.

Regarding distance functions for discrete-quantitative variables, a common choice

is the Manhattan distance

dmanh
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x(i),x(l)
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=
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∑
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|x(i)j − x
(l)
j | (6)

which is computationally cheaper than the Euclidean distance. None of the so far

presented distances, Equations 5 and 6, are appropriate for categorical attributes

because there is no possible order, so one can not place the categorical variable in a

coordinate.

2.2.1 Classification Techniques: Nominal Distances

Classification is a machine learning problem where a new observation is identified

with a class of a set of possible classes. It is done on the basis of a training set of

data containing observations whose category memberships are known. The observa-

tions are analyzed in terms of a set of quantifiable features. These features could be

categorical, ordinal, discrete-quantitative and/or real.

These classification techniques require the definition of nominal distances for cat-

egorical attributes. Researchers in machine learning and pattern recognition have

investigated possible choices of nominal distances. The simplest nominal distance is

an arbitrary mapping of the categorical variable to a subset of integer values whose

size is the same as the number of categories.
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A common nominal distance is the Hamming distance, also called overlap distance

in machine learning, where the distances between all the categorical attributes are

the same. For one categorical variable, it is defined as follows

dham (a, b) =











0 if a = b

1 if a 6= b

where a, and b are categories.

Also, it is common to employ the Value Difference Metric (VDM) for nominal

attributes, which was developed by Stanfill an Waltz[179]. It is defined as follows:

dvdm (a, b) =
C
∑

c=1

|Pa,c − Pb,c|2 (7)

where dvdm is the VDM distance, C is the number of possible classes, c is an index

that goes through the classes, Pa,c is the conditional probability that the output class

is c given that the attribute takes the categorical value a, and a and b are values of

the categorical attribute. The values of the conditional probabilities can be assessed

from the training set.

Additionally, more sophisticated nominal distance functions are found in ma-

chine learning literature: Minkowsky [13], Mahalanobis [142], Camberra, Chebychev,

Quadratic, Correlation, Chi-square [134], hyper-rectangle distance functions [164].

These distance functions for categorical variables have not been employed in engi-

neering design.

Typical classification scenarios have not only nominal attributes but also discrete-

quantitative, and continuous. In this cases, Aha et al. [2] develop a heterogeneous

euclidean-overlap metric not only for continuous and nominal variables but also for

discrete-quantitative variables. Without loss of generality, one can order the design

space so that the first nc dimensions host the continuous design variables, the following

nn dimensions contain the nominal ones, and the last nq the discrete-quantitative ones,

i.e.

x =
[

xcont,1, ..., xcont,nc, xnom,1, ..., xnom,nn , xquant,1, ..., xquant,nq

]
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where xcont, xnom, and xquant are the continuous, nominal and discrete-quantitative

design variables, respectively. The heterogeneous euclidean-overlap metric is given by

expression 8
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where dord
(

x(i), x(l)
)

=
x(i) − x(l)

range (xj)
, and range (xj) is the range for the variable xj .

Also, this heterogeneous euclidean-overlap distance has been used for evolutionary

strategies applied on dynamic niching, see Li et al.’s work[126]. In each population,

the niche radius is obtained making use of the heterogeneous distance function.

Classification techniques have normally two stages: inference in which the training

data is used to learn a probabilistic model, and decision in which the probability

distribution is used to make a class assignment. The techniques that solve the two

stages at the same time and simply provide a function that maps the new observation

directly to decision are called discriminant. For more details about classification

techniques, machine learning, and pattern recognition, see references [17, 135, 130, 18].

Common classification techniques that use distance functions are the following:

k Nearest Neighbors (k-NN) The technique consists in finding the k instances in

the training dataset that are the closest to the new observation. After, these

k instances vote to determine the class of the new observation [32]. In order

to determine the k closest instances, distance functions are needed. Hamming

distance and its improved version via attribute weighting are usually used when

dealing with categorical attributes[124].

Kernel Methods The classification outcome is based on kernel functions. These

kernel functions normally require a metric that measures the similarity of two

vectors in the design space. Several types of kernels are used in classification
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techniques. Among them, a popular one are the radial basis functions. Its main

limitation is that kernel functions have to be evaluated for all the members of

the training set, which can be computationally infeasible. For more details, see

reference[166].

Support Vector Machine Kernel-based algorithms that have sparse solutions, so

there is no need to evaluate kernel functions for all the training points. The

most common approach with nominal attributes is to assume equal distance

between nominal members, as explained in Tian and Deng’s work[183].

In other classification instances, the boundaries for classifying a member are not

sharp, i.e., the observation can belong to or not belong to the class. Fussy sets are

developed for these cases. Membership functions are introduced to deal with this

uncertainty of the classification. These functions are subjective as the boundaries

between members; also, these functions are generalizations of the indicator function

in classical sets [172]. Fuzzy sets and their corresponding membership functions are

employed in the context of control theory, and medical diagnosis. For more details,

see Zadeh’s work [210].

Herein, interest is on design, where no classification is needed. However, the nom-

inal distances employed in these classification techniques are useful for the purpose

of this research.

2.2.2 Correlation Functions: Categorical Variables

Correlation is the degree to which two or more variables are linearly associated. In

the case of a two-dimensional space, correlation coefficient quantifies the degree of

correlation between the values of the two variables. While calculating the correlation

coefficient, the numerical values of the variables are needed. For more details, see

[178, 110].
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Dependency and/or association is treated differently for categorical variables be-

cause there is no numerical value to input to the correlation coefficient. Their associ-

ation is normally done by the chi-square test [137]. It tests the null hypothesis that

there is no relationship between two categorical variables.

In order to account for the epistemic uncertainty of a function, Gaussian process

meta-models treat deterministic responses as outcomes of a stochastic process. Then,

correlation functions between the stochastic processes at different design locations are

used to quantify the influence of a sample point on its neighbor. The correlation func-

tions depend on the distance between sample points; then, the prediction is based on

observations from nearby locations[202]. Radial basis functions are a common choice

of correlation functions: their value is one for zero distance (very close correlation

between sample points), and their value tend to zero as the distance between sample

points becomes large (the sample points are not correlated)[65].

Categorical variables have not been modeled by surrogates in design. When it

comes to deal with categorical variables in classification techniques, some authors

have used nominal distances, such as Hamming and VDM, for classification using

k-NN[201] and SVM techniques[183], respectively. These techniques use nominal

distances as inputs for their kernel functions. Also, nominal distances have been used

as inputs for correlation functions when doing ranking learning [30], also known as

ordinal regression.

Herein, nominal distances allow bringing correlation functions based on distance

to build Bayesian meta-models for engineering design when there is a categorical

choice. Engineering observations of similar trends across several categories encourage

the use of approximating methods that employ neighboring solutions, such as cor-

relation functions based on distance. These correlation functions allow cross-using

computationally expensive observations across categories.
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2.3 Types of Estimates. Reuse of Data in Engineering

Sizing engineering systems and estimating/predicting engineering objectives are a

crucial part of the design process. Engineers want estimation tools that are fast,

accurate, and reliable in order to properly design systems. As explained in Section

1.2, some engineering objectives experience similar trends across different discrete

alternatives. Thus, the ability of reusing other alternative observations is included

and emphasized as a desired estimate quality in this research. The desired qualities

in this thesis for the estimating techniques are presented in the following description:

Reuse other alternative data The ability of reusing data from similar alterna-

tives makes the design process more efficient, especially when computationally

expensive observations are brought.

High-fidelity estimate The closer the estimation is to the actual value, the more

value the estimate holds.

Low computational effort Engineers want fast estimation tools to design quickly

and be able to explore large design spaces.

No experience needed It is desirable that the estimating process does not rely on

experts’ opinions, which are usually subjective.

Deal with revolutionary designs The increasing requirements make design teams

to look for completely new concepts to meet the new high standards. The

estimation tool should be able to accurately predict these revolutionary designs.

Include the effect of many significant variables The addition of many signifi-

cant design factors assures a more detailed parameterization of the design space.

Thus, more optimal designs are possible.
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Estimate typical engineering objectives Engineers want not only sizing tools

but also estimates of real and practical engineering objectives.

There exist several estimation methods in engineering. The first one is called

analogy-based prediction; it solves a new problem using and adapting solutions from

previously solved similar problems [131]. With the help of experience, similar previous

problems are chosen, relevant cost drivers are selected, and appropriate adjustments

to reflect technical differences are applied. It normally produces low-fidelity estimates

at low computational cost. The quality of the estimate depends on the availability

of a similar previous problem. The number of significant design variables included in

the estimate depends on the previous problem solution and the skills of the design

team. These techniques are normally used for cost and weight estimation in software

development [112] and engineering projects such as space missions [169].

The second estimating method is the regression-based prediction (also called

statistics-based predictions). It consists in developing an estimation relationship

based on sufficient historical data of similar systems and projects [169]. They are

easy, fast, and simple to use at the expense of obtaining a low-fidelity estimate.

However, some experience is needed to specify the fitting model. If the historical

database is not big enough the estimate loses value. Also, the fact it is based on his-

torical databases hinders the validity of the prediction when assessing revolutionary

alternatives. Normally, a few significant design factors are included, and it is mainly

used for sizing purposes. These regression-based methods have been widely used in

helicopter design [146, 185, 150, 97, 102].

The last prediction approach is modeling and simulation (M&S), where normally

high-fidelity tools are employed in the estimation. M&S provides virtual duplica-

tion of products and processes, and represents those products or processes in readily

available and operationally valid environments [143]. It uses models, including emu-

lators, prototypes, and simulators, to develop data as a basis for making managerial
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or technical decisions. The main drawback of these predicting techniques is the high

computational effort when modeling systems with high-fidelity. The labor effort to

set the modeling environment is high, but there is no need of experts’ subjective

opinion. As many as desired design variables can be added in the simulation, and

revolutionary designs can be explored with M&S techniques. Also, typical and prac-

tical engineering objectives can be output from these techniques. Multiple examples

of M&S on engineering systems can be found in the literature [129, 85]. So far, it

does not reuse observations from previous similar alternatives. This work focuses on

bringing to M&S techniques this new capability of reusing previous observations of

alternatives with similar trends.

Figure 3 summarizes the advantages and disadvantages of the these estimation

techniques.

Figure 3: Advantages and Disadvantages of Estimate Types
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2.4 Conceptual Design

The design process is broken into 3 main phases: conceptual design, preliminary

design, and detailed design. Conceptual design is an iterative process where design

requirements, trade-offs, and analysis are used to guide and evaluate configuration

arrangements. Basic questions of performance and configurations are answered in

the conceptual design stage. In this design stage, key decisions are made, fixing up

to 80% of the life cycle cost [190]. Several concepts and categorical alternatives are

studied during the conceptual design phase. Figure 4 shows the typical conceptual

design wheel.

Figure 4: Conceptual Design Wheel [151]

Concepts evolve incrementally to meet requirements, achieve satisfactory trade-

offs, and improve the performance of weak designs obtained from previous concepts.

The process is very fluid and the configuration incorporates changes that potentially

can make the design meet the requirements and produce satisfying trade-offs. In this

thesis, the new concept obtained from incremental changes on the previous concept

is called “evolutionary incremental concept”. The new and old concept are expected

to experience similar trends if these incremental changes are not too large.
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The conceptual design emphasis is normally on the crucial components interac-

tions instead of on deep details in each system configuration and geometry. Finding

these interactions normally requires a lot of experience and sharpness. As the process

goes on, the analysis sophistication keeps increasing. In the aircraft industry a typ-

ical conceptual design period to select the best concept is around six months. Good

conceptual design reviews, specifically for aircraft design, are provided by Raymer

[151], and Roskam [157].

2.5 Gaussian Meta-Models: Kriging

In science and engineering, researchers use computer simulation codes instead of ex-

pensive physical experiments in order to improve the quality and performance of

engineering products. Scientists look for more and more flexible and accurate models

to study a given phenomenon. Unfortunately, this tendency makes computer sim-

ulations to take a substantial computational time. One simulation may take many

minutes, hours, days or even weeks, rendering design studies uneconomical.

Normally, this issue is solved by the construction of simpler approximation models

that mimic and predict the expensive code output. The idea is to develop a cheaper

relationship between the system inputs and outputs. If the model is properly built,

these approximation models mimic the behavior of the intense simulation accurately,

and at the same time they can be evaluated faster. Several approximation methods

exist in the literature, each one with its pros and cons. Among the most popular

methods, one finds polynomial response surfaces [24], Gaussian random field meta-

models [160], support vector machines [187], and artificial neural networks [17].

An important class of surrogates are the Bayesian ones. As opposed to other sur-

rogates, they quantify the uncertainty due to the lack of knowledge about the function

to approximate. Instead of estimating unique values of the meta-model parameters,

Bayesian surrogates provide, according to the data already observed, a probability
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distribution that reflects the degree of certainty in the surrogate parameters, i.e., it

provides a measure of confidence for its parameters. Prediction-wise, the Bayesian

surrogate output is also a probabilistic distribution instead of a deterministic one.

Poorly sampled areas of the design space have more uncertainty in the predictive

distribution. The prediction uncertainty is necessary for the use of adaptive sampling

techniques, where the confidence in the prediction can drive the sampling plan, see

Section 2.7.

Figure 5 shows a predictive distribution for a given observed data. The 95%

confidence interval indicates the reliability of the estimate. Sparsely sampled regions

have a larger confidence interval than highly sampled regions.

Figure 5: Bayesian Predictive Distribution

A very prolific type of Bayesian surrogate is the GRFM. GRFM assumes that

the observed data is a noisy realization of a deterministic model. This realization is

modeled as a normally distributed random vector [104]. However, it must be clear

that GRFM builds surrogate models of deterministic computer functions, even though

the technique is based on stochastic processes. As a Bayesian surrogate, its prediction
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is a probabilistic distribution.

GRFM, also known as Kriging1, has become popular because of its capability of

predicting the uncertainty of the prediction while being able to cope with non-linear

problems. Much of the efforts in Bayesian modeling have been devoted to this type

of surrogates. Also, there exists a rich literature about it. These characteristics make

Kriging really appealing for engineering design problems. Krige first developed it for

mining problems [117]. Sacks et al. were the first ones, before many, to apply Kriging

to computer experiments[160].

The main Kriging drawback is the curse of dimensionality as shown by Koch et

al. [116], and Wang et al. [194]. As the dimension of the design space and number of

sample points increase, the Kriging tuning process becomes more and more resource-

demanding. The tuning process is done with the maximum likelihood estimation

(MLE), that is later explained. It requires the optimization of the observed data

likelihood, which is normally performed with a stochastic search. Each likelihood

evaluation needs the factorization of a matrix whose size is the number of sample

points. For large number of sample points, the cost of the MLE is driven by these

time-consuming matrix factorizations. Also, a large dimensionality of the design space

provokes that, when optimizing for tuning the surrogate, the search is in a large design

volume which makes the process even more resource-demanding.

In spite of the curse of dimensionality, the widespread use of Kriging in the litera-

ture and its robustness are enough benefits to choose it as the Bayesian surrogate. In

the following, a mathematical description of it is presented. There are many variations

of Kriging; the one presented herein is called ordinary Kriging.

Kriging bases its prediction on a training or observed set, X = {x(1),x(2), ...x(n)}.

Each input variable has k dimensions. The responses at the observed points are given

1Currently, Kriging methods are wide. They don’t necessarily assume Gaussian fields. However,
herein, the values of the exponents of the correlation or basis functions are 2, making the Kriging a
Gaussian process.
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by y = {y(1), y(2), ...y(n)}. Let Y be a noisy realization of the deterministic model

y (x)

Y = µ1+ ǫ

where 1 is a k-dimensional vector of ones; and ǫ is the error between the stochastic

process, Y, and a constant vector µ1. ǫi is normally distributed with uniform variance

σ2, i.e., ǫi = N (0, σ2) for i = 1, .., n. The constant value of the mean µ is a specific

characteristic of the ordinary Kriging.

The components of this vector are correlated according to Kriging basis functions

[65, 184] given by

Ψ
.
= cor

[

Y
(

x(i)
)

, Y
(

x(l)
)]

= exp

(

−
k
∑

j=1

θj |x(i)j − x
(l)
j |pj

)

(9)

Note that θ and p are free parameters. For simplicity, this work assumes pj = 2

for all j, making the meta-model a Gaussian one. The parameter θj controls how

much influence the design variable xj has on the objective function. Large values of

θj implies low correlations for the dimension j. Thus, by comparing different θj for a

fitted model one can tell which design attributes are more influential in the objective.

For instance, θj > θk implies that the input xk has a lower effect in the objective

function y (x) than xj .

Once Kriging basis functions have been introduced, one must estimate proper

values of hyperparameters2, θ, µ, and σ, that lead to an accurate surrogate model

given the training data, X and y. There are two main approaches to estimate the

unknown parameters: likelihood-based ones and fully Bayesian ones. The second ones

are ruled out in this investigation for their high computational expense and their need

of assigning a prior distribution.

The likelihood-based approaches are chosen to construct the surrogate model that

2Hyperparameters are the unknown parameters that are used to tune the model.
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interpolates the data; thus, the likelihood of the observed data is needed. The training

dataset is assumed to be generated independently. The likelihood of the observed data

is given by the product of their probabilities according the Gaussian distributed noisy

realization,

L
(

Y(1), ...Y(n)|µ, σ, θ
)

=
1

(2πσ2)n/2
exp

[

−
∑
(

Y(i) − µ
)2

2σ2

]

(10)

making use of the correlation matrix, Ψ, the likelihood takes the form of

L (y|µ, σ, θ) = 1

(2πσ2)n/2 |Ψ| 12
exp

[

−(y − 1µ)′ Ψ−1 (y − 1µ)

2σ2

]

(11)

The unknown parameters of the model are found by seeking for the values that

maximize the likelihood of the observed data, Equation 11. It is the MLE procedure.

MLE can be applied to not only Kriging hyperparameters tuning [65] but also any

general Bayesian inference parameter estimation as Tipping shows [184].

For simplicity’s sake, the natural logarithmic function, ln(x), is brought to the

analysis. It is a monotonic increasing function of x, so one can maximize the ln(L(.))

instead of the L(.). The natural logarithm of the training data likelihood is

lnL (y|µ, σ) = n

2
ln (2π)− n

2
ln
(

σ2
)

− 1

2
ln |Ψ| − (y − 1µ)′ Ψ−1 (y − 1µ)

2σ2
(12)

The hyperparemeters in the discussion are θ, µ, and σ. Derivatives respect to

µ and σ are relatively simple, so the maximization against these last two hyper-

paremeters can be analytically tackled. The optimization results in the optimal hy-

perparemeters given by Equations 13 and 14

µ̂ =
1′Ψ−1y

1′Ψ−11
(13)

σ̂2 =
(y − 1µ̂)′ Ψ−1 (y − 1µ̂)

n
(14)
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Note that the hat, ,̂ implies estimation for optimal values. Also, it is worth

realizing that the inverse of the correlation matrix shows up. It is the reason because

the previously mentioned matrix factorization is needed. Substituting optimal values

into the natural logarithm of the likelihood, and removing some constant terms that

are useless in the optimization process results in the following natural log of the

likelihood

ln (L) ≈ −n
2
ln
(

σ̂2
)

− 1

2
ln |Ψ| (15)

The hyper-parameter θ is still unknown and can further maximize the likelihood.

Taking derivative of ln (L) respect to θ is analytically tedious, see Equation 15. As

alternative a numerical optimization technique like a genetic algorithm can be used

to maximize the likelihood against θ.

Forrester, Sóbester, and Keane [65] point out the correlation matrix Ψ varies in

a logarithmic scale along θ. Hence, the optimization is done in terms of ln θk instead

of θk. Experience on typical engineering problems sets the search bound for optimal

values in the range of θ between 10−3 and 102. The optimal estimation obtained for

this last hyperparemeter is denoted as θ̂.

Once the hyperparemeters of the Gaussian meta-model are tuned, one can predict

the expensive function over the design space. Let us say that the prediction, ŷ (x),

at the point x is wanted. The correlation vector between the point x and the sample

points X is

ψ = {cor
[

Y
(

x(1)
)

, Y (x)
]

, ...cor
[

Y
(

x(n)
)

, Y (x)
]

}

where the cor [, ] is given by Kriging basis functions, see Equation 9.

The idea is to maximize the likelihood of the augmented data (now the new point

x, where the prediction is pursued, is included). The only free parameter is the

prediction value at the new point, ŷ (x). The natural log of the augmented data
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likelihood is

ln (L) ≈ −
(

y−1µ̂
ŷ−µ̂

)T (Ψ ψ
ψT 1

)T (y−1µ̂
ŷ−µ̂

)

2σ̂2
(16)

where the terms non-dependent on the only free parameter, ŷ, are not written. Once

the maximization is done, the prediction ŷ (x) that maximizes the likelihood of the

augmented data is given by

ŷ (x) = µ̂+ ψTΨ−1 (y − µ̂1) (17)

The GRFM also estimates the error or uncertainty in the model, permitting to find

new sample points not only in promising regions but also in sparsely sampled regions

where the uncertainty in the prediction is high. Hence, it enables the exploration

of the surrogate, while the prediction ŷ (x) enables the surrogate exploitation. This

error is called the mean squared error, ŝ2 (x). It is given by

ŝ2 (x) = σ̂2
[

1− ψTΨ−1ψ
]

(18)

The mean squared error is inversely related to the curvature of the augmented

ln (L). A proof of Equation 18 is given by Jones [98]. Note that ŝ2 (x) is zero at

sample points because the Kriging proposed method is an interpolation through the

sample points.

2.5.1 Kriging Regression

The Gaussian interpolating surrogate fails when dealing with noisy data. It is well

known that computer simulations, such as computational structural dynamics (CSD)

and CFD codes, contain numerical noise. When observations are sparse, interpolating

techniques can deal with small amplitude noise; however, when the optimization

technique starts to converge to an optimum, the data becomes more dense at good
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performing regions, and the interpolating model may fail to mimic the intense function

[66].

The regressive model is achieved by adding a regression constant, λ, to the diag-

onal of the Kriging correlation matrix

R+ λI (19)

λ is the regression constant that resolves the problem of approximating noisy func-

tions. This constant avoids that the prediction at an observed design point passes

through the observed objective value[66]. The Kriging correlation matrix, R, is again

chosen to be based on Gaussian radial basis functions

R = Ri,l

[

Y
(

x(i)
)

, Y
(

x(l)
)]

= exp

(

−
k
∑

j=1

θj |x(i)j − x
(l)
j |2
)

(20)

Note that the matrix R is the same as the one for the interpolating case, Ψ, defined

in Equation 9. The likelihood of the observed data in the Kriging regression is given

by

lnL (y|µ, σ) = −n
2
ln
(

σ2
)

− 1

2
ln |R+ λI| − (y − 1µ)′ (R+ λI)−1 (y − 1µ)

2σ2
(21)

The unknown Kriging hyper-parameters are not only the same ones as for the in-

terpolating Kriging, (θ, µ, σ), but also λ. These hyper-parameters are again obtained

from the MLE of the observed data [66]. Regression adds one extra variable to the

process of searching for the MLE; it increases the tuning computational cost. The

optimal hyper-parameters µ̂ and σ̂ are obtained similarly as in Section 2.5. The as-

sessment of the optimal hyper-parameters θ̂ and λ̂ is done by a GA since the process

is analytically intractable.

Similarly as in the interpolating case, the maximization of the likelihood of the

augmented data is used to find the regression predictor, ŷ. It is given by
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ŷr (x) = µ̂r + ψT
(

R+ λ̂I
)−1

(y − µ̂r1) (22)

where

µ̂r =
1′
(

R+ λ̂I
)−1

y

1′
(

R+ λ̂I
)−1

1

1 is a n-dimensional vector of ones. Notice that again the optimal hyper-parameter

values are denoted by a hat, .̂

ψ is the correlation vector between the point x where the prediction is wanted

and observed points x(i) for i = 1, 2, ..., n

ψ = {exp
(

−
k
∑

j=1

θj |x(1)j − xj |2
)

, exp

(

−
k
∑

j=1

θj |x(2)j − xj |2
)

, ... exp

(

−
k
∑

j=1

θj |x(n)j − xj |2
)

}

Kriging models permit not only to predict the function value in new sample points,

but also to estimate the uncertainty in the prediction. The uncertainty, ŝ2r (x) in the

regression case is given by Equation 23

ŝ2r (x) = σ̂2
r

[

1 + λ̂− ψT
(

R+ λ̂I
)−1

ψ

]

(23)

where

σ̂2
r =

(y− 1µ̂r)
′
(

R+ λ̂I
)−1

(y − 1µ̂r)

n
(24)

It is worth mentioning that the model error in the regressive case, ŝr, is not zero at

the observed points because the value of the regression constant, λ̂, differs from zero;

it produces a non-zero ExI. It can lead to optimizations trapped at sample points as

is explained in the Subsection 2.5.2.

2.5.2 Kriging Re-interpolation

The Kriging regression mean squared error is not zero at the observed points because

the value of λ̂ is different from zero, see Equation 23. Therefore, the ExI at these

points could differ from zero. It may result in maximum expected improvement at
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design points previously sampled. This is a plausible scenario for non-deterministic

experiments, where there is no repeatability. However, it stalls the EGO algorithm

for repeatable deterministic computer experiments (the ones in this work) because

the results of the observations at a given design point are always the same.

Forrester et al. [66] redefine the mean squared error when Kriging regression

is used on deterministic experiments. They build an interpolation of the regressive

Kriging surrogate through the values predicted by the regression meta-model at the

observed points. This surrogate is called re-interpolation. The re-interpolating pre-

dictor is the same as the regressive one, i.e. ŷri = ŷr∀x and µ̂ri = µ̂r.

The re-interpolation mean squared error, ŝ2ri, that Forrester et al. [66] derive is

given by

ŝ2ri (x) = σ̂2
ri

[

1− ψTR−1ψ
]

(25)

where

σ̂2
ri =

(y − 1µ̂r)
′
(

R+ λ̂I
)−1

R
(

R+ λ̂I
)−1

(y− 1µ̂r)

n
(26)

Equation 25 guarantees that the re-interpolating mean squared error ŝri is zero

at the sample locations, unlike what happens for the regression case, ŝr. Thus, the

ExIs (see Equation 46) at the observed points are zero in the re-interpolating case,

and consequently, EGO process does not stall in this case.

2.6 Multi-Fidelity Meta-Models: Gaussian Approach

In many engineering situations more information than a mere vector of function

values is available. It is not unusual to have access to several simulation models

with different fidelities. Multi-fidelity techniques merge all the objective function

information of varying fidelity with the purpose of constructing a surrogate model.

These techniques help to soften the effect of the curse of dimensionality while enabling
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the user to include high-fidelity tools. Techniques range from local approximations

to more general approaches that model objectives globally.

In the present discussion two fidelities models are used to construct the approxima-

tion without loss of generality: high-fidelity, ye, and low-fidelity, yc. The number of

samples of the high and low-fidelity model are ne and nc, respectively. The output of

the multi-fidelity analysis is a surrogate model, again denoted by ŷ. This surrogate is

a corrected low-fidelity approximation that takes into account high-fidelity objective

information. The low-fidelity correction is usually done by two methods: additive

scale factor ∆ (x) (the difference between fidelities is modeled) and multiplicative

scale factor ρ (x) (the ratio between fidelities is modeled). A general framework for

the correction is given by

ye (x) = ρ (x)yc (x) + ∆ (x)

Typical scenarios where designers find varying fidelity models are: a) governing

equations that capture different amount of physical details; b) fully converged versus

partially converged runs for iterative solvers, such as CFD and CSD simulations; c)

heuristic approximation models versus physics-based ones; and d) converged solutions

for different discretization sizes.

Within the local approximation techniques, Haftka [77] proposes zero order scaling

with both multiplicative and additive scaling. In the same work, Haftka also presents

a first-order scaling approach when the first-order derivatives of the varying fidelity

models are available. Eldred et al. [53] formulate an extension of Haftka’s work

to the second-order scaling. The applicability of the last extension is reduced to

models where the second-order derivative could be efficiently assessed. Same authors

[53] develop a hybrid approach that combines the multiplicative and the additive

correction. These methods improve the surrogate only in the neighborhood of single

points because of which these techniques are called local approximation techniques.

Global surrogate models improve the accuracy of the low-fidelity model globally
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by employing a training data-set. Global approaches allow improving the accuracy

of the models with respect to the ones that are built only out of high-fidelity training

data-sets. The reason is that the scale factors may behave better than the objective

itself, as is shown by Keane [105] and Leary et al. [122]. One can find response

surfaces, and Gaussian processes, among the typical multi-fidelity approaches.

Manson et al. [132] build response surfaces with two variable-fidelity aerodynamic

codes. Knill et al. [114] use Euler equations to construct response surfaces that

represent a correction to the linear theory, which reduces computational burden.

Vitali et al. [189] propose a correction response surface to relate the high-fidelity

models with the low-fidelity ones to study the crack propagation in the skin of the

stiffened panel. Keane and Pretruzzelli build a multi-level wing design environment

in the conceptual design of a commercial airliner wing [107]. However, the interest

herein is in the probabilistic multi-fidelity methods.

In what follows a derivation of a multi-fidelity Gaussian process approach is pre-

sented. The corrected Gaussian process could be written as

ye (x) = Zρ (x)yc (x) + Zd (x) (27)

where Zρ and Zd are the Gaussian process multiplicative and additive scale factor,

respectively. For simplicity, the multi-fidelity algorithm developed herein assumes

only the additive factor, i.e., Zρ = 1 and only Zd is to be modeled. Eldred, Giunta

et al. [53] show that the additive scale factor is appropriate in a wider variety of

problems. Let Xe and Xc be the expensive and the cheap sample points, respectively.

The values of the low and high-fidelity stochastic processes at the training set points

are Yc (Xc) and Ye (Xe), respectively. They are treated as noisy realizations of the

deterministic models yc and ye as in Section 2.5. The whole training data set could

be written as y (X) = {yc (Xc) ,ye (Xe)}

In order to build this multi-fidelity approach, cheap and expensive data must
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be correlated. Kennedy and O’Hagan [109] propose an auto-regressive model; it

assumes that nothing can be learned about the objective function from the low-

fidelity model provided that the high-fidelity model value ye at the point x
(i) is known.

Mathematically, this condition takes the form of cov
[

Ye
(

x(i)
)

, Yc (x) |Ye
(

x(i)
)]

= 0,

∀x 6= x(i).

Using the mentioned auto-regressive model and Zρ = 1, the expensive Gaussian

process surrogate, Ze, takes the form

Ze (x) = Zc (x) + Zd (x) (28)

where Zc is the low-fidelity Gaussian process.

The covariance matrix of the whole data is given by

cov [Y (X) , Y (X)] =







σ2
cΨc (Xc,Xc) σ2

cΨc (Xe,Xc)

σ2
cΨc (Xe,Xc) σ2

cΨc (Xe,Xe) + σ2
dΨd (Xe,Xe)






(29)

More details about the derivation of Equation 29 are found in Forrester, Sóbester,

and Keane’s work [64]. For compactness’ sake, the covariance matrix of the whole

data, cov [Y (X) , Y (X)], is denoted as C.

Now, there are two correlation matrices as opposed to Section 2.5 where there is

only one. The free parameters are µc, µd, σc, σd θc, and θd. The low-fidelity data is

assumed to be independent of the high-fidelity one. So, MLE for µc, and σc can be

assessed with Equations 13, and 14, respectively. Optimal values of θc, according to

the MLE, are obtained with the same numerical process explained in Section 2.5. In

such manner the low-fidelity surrogate ŷc can be built.

In order to estimate µd, σd, and θd, the variable d is defined as the difference be-

tween the expensive observations and the cheap surrogate prediction in the expensive

sample points Xe, i.e., d = ye − ŷc (Xe)
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Ignoring terms that are already defined, and therefore constant, such as µc, σc,

and θc, the likelihood of the expensive data can be written as

−ne
2
ln
(

σ2
d

)

− 1

2
ln |Ψd (Xe,Xe) | −

(d− 1µd)
′ Ψd (Xe,Xe)

−1 (d− 1µd)

2σ2
d

(30)

The MLEs for µd, σd are obtained by taking the partial derivatives of Equation

30 respect to µd, and σd.

µ̂d =
1′Ψd (Xe,Xe)

−1 d

1′Ψd (Xe,Xe)
−1 1

(31)

σ̂2
d =

(d− 1µd)
′ Ψd (Xe,Xe)

−1 (d− 1µd)

ne
(32)

Taking the partial derivative of the likelihood respect to the hyper-parameter θd

is analytically tedious. As in Section 2.5, a GA is used to maximize the likelihood

against θd. The optimal estimation obtained for this last hyper-parameter is denoted

as θ̂d.

The multi-fidelity surrogate prediction and mean squared error at a point x can be

assessed once the Gaussian process hyper-parameters are tuned. Forrester, Sóbester,

and Keane [64] provide a detailed derivation via augmented training data-set.

ŷe (x) = µ̂+ cTC−1 (y − µ̂1) (33)

ŝe
2 (x) = σ̂2

c + σ̂2
d − cTC−1c (34)

where µ̂ =
1′C−1y

1′C−11
and

c =







σ̂2
cψc (Xc,x)

σ̂2
cψc (Xe,x) + σ̂2

dψd (Xe,x)






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2.6.1 Multi-Fidelity Regression

As explained in Subsection 2.5.1, the multi-fidelity interpolation method fails when

dealing with noisy data from computer simulations, such as CSD and CFD codes [64].

The regressive model is achieved by adding a regression constant for the expensive

model, λe, to the diagonal of the high-fidelity block that contains the correlation

matrix Ψd (Xe,Xe). Forrester et al. [64] propose also to add a regression constant,

λc, to the diagonal of the low-fidelity block that contains the correlation matrix

Ψc (Xc,Xc). However, in the present work sparse sampling is expected on the low-

fidelity model, so there is no need of the regression constant λc. For this case the

covariance matrix takes the form

cov [Y (X) , Y (X)] =







σ2
cΨc (Xc,Xc) σ2

cΨc (Xe,Xc)

σ2
cΨc (Xe,Xc) σ2

cΨc (Xe,Xe) + σ2
d

(

Ψd (Xe,Xe) + λeI(ne,ne)

)







(35)

The regression constant, λe, resolves the problem of approximating noisy func-

tions. Notice that the covariance matrix could be written as C+λ. Again, Gaussian

radial basis functions are employed.

The unknown hyper-parameters of the multi-fidelity approach are not only the

same ones as for the interpolating case, (µc, σc, θc, µd, σd, θd), but also λe. These

hyper-parameters are again obtained from the MLE of the observed data [66]. λe

adds one extra variable to the MLE process; it increases the tuning computational

cost.

MLE for µc, and σc can be assessed with Equations 13, and 14, respectively. MLE

for θc are obtained with the same numerical process as the one explained in Section

2.5. In such manner the low-fidelity surrogate, ŷc, can be built.

The estimations for µd and for σd are assessed similarly as in Section 2.6. The

assessment of the optimal hyper-parameters θ̂d and λ̂e is done by a GA since the
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process is analytically intractable.

The resulting predictor, ŷe,r, is given by

ŷe,r (x) = µ̂r + cT
(

C+ λ̂
)−1

(y − µ̂1) (36)

where

µ̂r =
1′
(

C+ λ̂
)−1

y

1′
(

C + λ̂
)−1

1

1 is a ne + nc-dimensional vector of ones. Notice that again the optimal hyper-

parameter values are denoted by a hat, .̂

c is the correlation vector between the point x where the prediction is pursued

and the observed points Xc and Xe

c =







σ̂2
cψc (Xc,x)

σ̂2
cψc (Xe,x) + σ̂2

dψd (Xe,x)







where the ψ [, ] is given by Gaussian radial basis functions, see Equation 9.

The multi-fidelity approach permits not only to predict the function value in new

sample points, but also to estimate the uncertainty in the prediction ŝ2e,r (x). In the

regressive case it is given by Equation 37

ŝ2e,r (x) = σ̂2
c,r + σ̂2

d,r

(

1 + λ̂e

)

− cT
(

C + λ̂
)−1

c (37)

where

σ̂2
c,r =

(yc − 1µ̂c,r)
′Ψc (Xc,Xc)

−1 (yc − 1µ̂c,r)

nc

σ̂2
d,r =

(d− 1 ˆµd,r)
′
(

Ψd (Xe,Xe) + λ̂eI(ne,ne)

)−1

(d− 1 ˆµd,r)

ne

µ̂c,r =
1′Ψc (Xc,Xc)

−1 yc

1′Ψc (Xc,Xc)
−1 1
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µ̂d,r =
1′
(

Ψd (Xe,Xe) + λ̂eI(ne,ne)

)−1

d

1′
(

Ψd (Xe,Xe) + λ̂eI(ne,ne)

)−1

1

It is worth mentioning that the model error for the regressive case ŝe,r is not zero

at the observed points because the value of the regression constant λ̂e differs from

zero. It can produce a non-zero value of the ExI at the observed points, which can

lead to optimizations trapped at sample points as explained in the Subsection 2.5.2.

2.6.2 Multi-Fidelity Re-interpolation

The multi-fidelity regression mean squared error, Equation 37, is not zero at the ob-

served points because the value of λ̂e is different from zero. It may result in maximum

ExI at design points previously sampled, which would stall the EGO algorithm on

deterministic experiments.

Forrester et al. [64] redefine the mean squared error when regressive multi-fidelity

approaches are used on deterministic experiments. They build an interpolation of

the regressive multi-fidelity surrogate through the values predicted by the regression

meta-model at the observed points. It is called re-interpolation. The re-interpolating

predictor is the same as the regressive one, i.e., ŷe,ri = ŷe,r∀x and µ̂ri = µ̂r.

The re-interpolation mean squared error, ŝ2e,ri, that Forrester et al. [64] derive is

given by

ŝ2e,ri (x) = σ̂2
c,ri + σ̂2

d,ri − cTC−1c (38)

where σ̂c,ri = σ̂c,r because λc = 0 and

σ̂d,ri = (dri − 1µ̂d,r)Ψd (Xe,Xe)
−1 (dri − 1µ̂d,r) /ne (39)

dri =1µ̂r + {c
(

x(1)
e

)

, ..., c
(

x(ne)
e

)

}T
(

C+ λ̂
)−1

(y − 1µ̂r)− ŷc (Xe) (40)
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It is important to realize that in Equation 38 c and C depend on σ̂c,ri and σ̂d,ri.

Equation 38 guarantees that the re-interpolating mean squared error ŝe,ri is zero

at the sample locations unlike what happens for the regression case ŝr. Thus, the

ExIs (see Equation 46) at the observed points are zero in the re-interpolating case,

and then, the EGO process does not stall.

2.7 Adaptive Sampling

In Section 2.5 it is pointed out the engineers’ desire of using computationally burden-

some objective functions in design. A possible solution to these impractical simula-

tions is the construction of simpler and cheaper approximation models of the objective

function called surrogate models.

Suppose that due to long function evaluation times, there is a limit on the number

of function calls that can be done; where should one sample the intense function to

make the most out of the limited function call budget? A possible option is to choose

sample points iteratively, in places where the information gained in previous steps is

maximized according to a specific criterion. The reason to select this iterative process

is that the function is unknown.

No proactive strategy can be relied on when the intense function is unknown.

Therefore, traditional DoE space filling techniques do not provide efficient outcomes

for limited function call budgets. When a surrogate is available, the only available

data are the current function values on the points already sampled and the surrogate

prediction built out of them. Thus, it is crucial to use a reactive strategy that is based

on previously observed data (as opposed to the blind strategies of conventional DoE)

and therefore cleverly samples the function in new designs. This reactive strategy is

carried out by an infill criterion. This reactive procedure is usually called adaptive,

on-line, or infill sampling.

The infill criterion of an adaptive sampling technique is based on the following
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two aims or a weighted combination of them: 1) accurate optimal value or 2) enhance

the global accuracy of the model. The first aim is called exploitation, whereas the

second is called exploration. Exploitation focuses on the good performing areas using

the surrogate prediction, whereas exploration focuses on areas with high uncertainty

where there exists a lack of sampling. Therefore, Bayesian surrogate models, such as

GRFMs, are brought to provide a predictive distribution to the adaptive sampling

algorithm.

When a surrogate is available, new data points3 are evaluated with the purpose of

updating the surrogate and gaining information about the unknown objective. It is

done by the optimization of the infill criterion according to the desired balance of the

two previous aims. An infill criterion is a function that measures how interesting a

design point is. While offline DoE sampling methods use the same sample density in

regions of both low and high performance, adaptive sampling distributes the samples

according to exploitation, exploration or a combination of both to make the most out

of the limited objective function call budget.

The simplest infill criteria fully focus on either of the two possible goals: ex-

ploitation or exploration. Other more advanced criteria combine both. Infill criterion

examples are statistical lower bound, probability of improvement, expected improve-

ment, goal seeking, and conditional lower bound. Each of these methods has a dif-

ferent balance between exploitation and exploration. Since the present research is

interested in early design phases, a good balance between the aims is pursued. The

expected improvement (ExI) is a well-known infill criterion that can effectively solve

this trade-off; it has been popularized by Jones [99].

ExI is chosen in this work to drive the adaptive sampling algorithm. This criterion

has been extensively employed in conceptual design. Also, there exists a wide litera-

ture about it that makes it a really attractive criterion to extend adaptive sampling

3also known as infill or update points.
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techniques to domains with categorical and discrete-quantitative design variables.

Subsection 2.7.1 explains ExI in detail.

The adaptive sampling process is iterative. First, a warm-up sampling plan is

needed to first initialize the Bayesian surrogate. Normally space filling techniques

serve for this purpose. Then, the first infill point (or update) is obtained from the

infill criterion optimization, and the surrogate model is updated with the first infill

point. Again, the infill criterion searches the new surrogate for a new infill point.

This iterative process is continued until a specified convergence criterion is satisfied.

2.7.1 Towards the Expected Improvement Infill Criterion

The expected improvement has been previously branded as an adaptive sampling

criterion. It uses the predictive distribution of the probabilistic meta-model to find a

new point to sample according to a balance between exploration and exploitation.

The idea of ExI was first introduced by Mockus et al. [136]. ExI compares the

current best sample point, ymin, with the surrogate prediction over the design space.

Note that objective minimization is supposed in the next derivation without loss of

generality.

The Bayesian surrogate brands the function’s value, y (x), as a random variable,

Y (x). The probability distribution of Y (x) could be seen in Figure 6 (even though

the function y (x) is deterministic, the surrogate output is a probability distribution).

If a Gaussian surrogate is used, Y (x) is a normally distributed random variable

with a prediction ŷ (x) and a mean squared error ŝ (x) around the prediction. The

improvement with respect to the current best sample point of a design concept is a

random variable which is defined as

I (x) = max (ymin − Y (x) , 0) (41)
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If Kriging is the chosen Bayesian surrogate, the probability of the random variable

Y (x) is given by a Gaussian distribution
1

ŝ (x)
√
2π

exp

(

− [Y (x)− ŷ (x)]2

2ŝ2 (x)

)

. The

probability of improvement, being the probability of I > 0, is given by

P [I (x)] =
1

ŝ (x)
√
2π

∫ ymin

−∞

exp

(

− [Y (x)− ŷ (x)]2

2ŝ2 (x)

)

dY (42)

Doing a change of variables from Y (x) to I (x), carrying out the integration, and

making use of the error function erf (.), the probability of improvement could be

written as

P [I (x)] =
1

2

[

1 + erf

(

ymin − ŷ (x)

ŝ (x)
√
2

)]

(43)

The probability of improvement just quantifies the likelihood of an improvement

with respect to the current best sample solution ymin. The amount of improvement

is not taken into account in the probability of improvement criterion. Nevertheless,

it is obvious that points in the bottom tail of the predictive distribution, far below

from ymin, represent a large amount of improvements, whereas the probability dis-

tribution close to ymin does not bring large improvements. However, the tail points

have low values of probability density. In order to consider these different amounts

of improvement according to their probability, a weighted sum could be employed to

get the expected value of the improvement; it is called expected improvement. The

first moment of area of the improvement is used for this purpose, which is the red

area of the probability distribution in Figure 6.

E [I (x)] = E [max (ymin − Y (x) , 0)]

which particularized for the Kriging predictor, N (ŷ (x) , ŝ (x)), takes the form of

E [I (x)] =
1

ŝ (x)
√
2π

∫ ymin

−∞

(ymin − Y (x)) exp

(

− [ŷ (x)− Y (x)]2

2ŝ2 (x)

)

dY (x) (44)
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Figure 6: Expected Improvement

If one changes the variables according to I (x) = ymin−Y (x), Equation 44 trans-

forms to

E [I (x)] =
1

ŝ (x)
√
2π

∫ ∞

0

I (x) exp

(

− [ŷ (x) + I (x)− ymin]
2

2ŝ2 (x)

)

dI (x) (45)

adding and subtracting
ŷ (x)− ymin

ŝ (x)
√
2π

exp

(

− [ŷ (x) + I (x)− ymin]
2

2ŝ2 (x)

)

leads to two sim-

pler immediate integrals that can be easily evaluated. So, E [I (x)] can be written

as

E [I] =











ŝφ

(

ymin − ŷ

ŝ

)

+ (ymin − ŷ)Φ

(

ymin − ŷ

ŝ

)

if ŝ > 0

0 if ŝ = 0

(46)

where φ (.), and Φ (.) are the standard normal probability and cumulative distribution

function, respectively.

There exist two main explanations for a large value of E [I (x)] in regions of the

design space. Firstly, the points already sampled hint that the expected value at x

is likely to be smaller than the current best sample point. Secondly, the deviation of

the distribution is spread because not many samples have been taken in the design

region where x seats. The first reason supports exploitation, whereas the second does

exploration. Hence, E [I (x)] represents a balance between the two phenomena, and

the maximum value of E [I (x)] is a solid choice to pick the next sample point. Usual
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stopping criteria for the infilling iterative process are: 1) reaching certain number

of updates given by the limited function budget or 2) when E [I (x)] is less than a

certain percentage of the current best sample point.

Landscapes of the expected improvement possess similar characteristics. Their

values are zero at the sample points and are positive between them. The ExI land-

scapes are multi-modal. They usually feature several flat regions where the ExI

values are close to zero because of the high concentration of sample points. These

characteristics make the optimization of the expected improvement rather difficult.

Specifically, gradient techniques are not normally used due to this multi-modality

nature of the ExI function.

Jones [99] points out that E [I (x)] is decreasingly and increasingly monotonic in

ŷ, and ŝ, respectively. These properties allow setting an E [I (x)] upper bound on the

design space. This bound could be employed by a branch and bound (BB) method

to guarantee optimality. Herein, the focus is to explore and exploit the design space;

therefore, guarantee of optimality and high accuracy in the successive new sample

points are not strictly necessary. Hence, the E [I (x)] maximization is done by well-

known methods like GA where a trade between precision and speed can be easily set

by the user.

2.8 Mixed-Integer Optimization

Many engineering, scientific, and management applications involve both discrete and

continuous decisions. Also linear and/or nonlinear relationships define the feasibility

and optimality of the solutions. These kind of problems are solved with mixed-integer

optimization (MIO) techniques. Possible application fields are management science,

process industry, finance, optical filter design [167], portfolio selection, chemical en-

gineering [56], machine learning [125], optimal design of gas and water distribution

70



networks, automobile engineering, aircraft design, and integrated circuit manufactur-

ing, among others.

Examples of discrete-quantitative variables in mechanical engineering are number

of items of one type, size of standard manufactured items, ... In aerospace engineering

these integer variables can be the number of engines, helicopter blades, stages in

compressor and turbine, and number of composite layers and their orientation, among

others.

The general MIO problem could be laid down as follows

min f (xcont,xint) (47)

subjected to:

gj (xcont,xint) ≤ 0, j = 1, ..ri

hj (xcont,xint) = 0 j = ri + 1, ..ri + re

xLcont ≤ xcont ≤ xUcont

xLint ≤ xint ≤ xUint

xint ∈ Z (48)

xcont = [xcont,1, xcont,2, ...xcont,n1]

xint = [xint,1, xint,2, ...xint,n2]

where xcont and xint represent the set of continuous and integer variables, respectively;

gj and hj the inequality and equality constraints; xLcont and xUcont the lower and upper

continuous bounds; and xLint and xUint the lower and upper integer bounds. The number

of continuous and integer decisions are n1 and n2, respectively, whereas the number

of inequalities and equalities are ri and re.

MIO algorithms can be classified into two main ones: mixed-integer programming

(MIP), and stochastic searches. A MIP can deal with linear problems (MILP) or

nonlinear ones (MINLP). MIP can also deal with constraints by which some or all
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decision variables are restricted to certain values. A popular MIP technique, called

branch and bound (BB), were developed only for linear problems MILP. Later, new

techniques were implemented to handle nonlinear convex problems. These techniques

are outer approximation (OA), generalized bender decomposition (GBD), and ex-

tended cutting plane technique (ECP). Also, extensions of BB were developed to

tackle not only convex but also non-convex problems. The convex extensions guaran-

tee local optima convergence. However, for non-convex problems these programming

techniques may provide the wrong global optimum.

MINLP are hard to solve because they have all the difficulties of both the integer

programming (IP) and non-convex programming (NLP). IP problems are of combi-

natorial nature that provokes a great increase of the possible integer combinations

as the dimension and density of the integer space, y, grows. For example, in an IP

problem with k dimensions with nd points each dimension, the possible combinations

are nkd. The idea is to arrange the problem such that one can get information that

can be used to exclude large numbers of solutions from further consideration. This

is the philosophy of the Balas method for IP problems [11], and branch and bound

methods for MIP problems [36].

For non-convex and highly nonlinear problems, stochastic searches have been pro-

posed in the literature with more successful results than the ones of programming

techniques. Among the stochastic searches, one can find: particle swarm optimiza-

tion, line-up competition algorithm, simulated annealing techniques, and genetic al-

gorithms.

In this section, a brief review of the mixed-integer convex programming techniques

is presented (it includes the techniques for linear problems). It is followed by the

discussion of the extensions of the convex programming to non-convex scenarios.

Finally, an introduction to the MIO stochastic algorithms is presented.
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2.8.1 Convex Programming

The following approaches are explained: branch and bound, outer approximation,

generalized benders decomposition, and extended cutting plane. The target problem

is the one described by Equations 47 and 48 when f (·) and g (·) are convex. The

approaches that are described in this Subsection only guarantee global optimality

under convexity conditions.

2.8.1.1 Branch and Bound Algorithms

It was introduced by Balas [11] for binary linear programming problems with k vari-

ables. It sets all the variable to zero for a maximization problem; then, successively

assigns the value 1 to certain variables, in such a manner that a smaller subset of

all possible combinations, 2k, is sufficient to obtain an optimal solution or conclude

that no feasible solution exists. In order to do it, branching and bounding techniques

are employed. Branching refers to the fact that throughout the process a tree is

branched to assign possible values (0 and 1 for the binary case) to the variables. The

bounding technique groups a subset of the possible decision variable combinations,

assign a lower bound to this subset, and assess whether the set is impossible or not.

The lower bound might permit comparing subsets to rule out some of them, reducing

the number of design combination evaluations, therefore it speeds-up the process.

Also, impossible sets are ruled out because none of the containing designs satisfies

the restrictions, reducing again the number of evaluations.

Dakin [36] developed a branch and bound method for MILP. It ignores the integer

restrictions and solves the problem as if all the variables were continuous (using LP).

This relaxation provides a good lower bound for maximization problems. One of the

integer variables, xint,j, is chosen for branching the current node into two child nodes.

The parental node relaxation problem has directly been solved and the value of the

variable j for the optimal solution is between l and l + 1. These values are used to

73



impose bounds to each of the new child node problems:

Child Problem 1. Parental node constraints plus a new bound xint,j ≤ l.

Child Problem 2. Parental node constraints plus a new bound xint,j ≥ l + 1.

The same process is repeated until the linear relaxation solution has integer values

in all the integer variables and the solution is feasible, then non-improvement can be

achieved by the expansion of the node. This reminds of the bound obtained by Balas

for the node descendant subset. Again, comparison between feasible nodes leads to

the discard of nodes and their descendant subsets. It is noticeable that solving MILP

problems generally needs quite longer than its continuous counterpart, LP problems,

due to the mentioned combinatorial nature of the MILP problems.

Gupta and Ravidran [76] study the computational feasibility of branch and bound

methods in solving convex nonlinear programming problems. Quesada and Gross-

mann [148] apply the BB method to convex problems. The idea is to solve a NLP

subproblem by linearizations similar as in OA method, then a BB algorithm solves

the mentioned NLP subproblem at the nodes where integer feasible solutions are

found. Later, Borchers and Mitchell [20] describe a branch and bound method for

mixed-integer nonlinear programs with convex objective functions and constraints.

The BB method is usually attractive when NLP problems are inexpensive and only

few of them are to be solved. This conditions normally occur when a few discrete

variables are present in the problem.

2.8.1.2 Outer Approximation and Generalized Benders Decomposition

The MINLP problems are solved with successive solutions of related MIP problems.

The methods divide the MINLP problem into a subproblem that has fixed discrete

variables, converting it into a NLP problem and a linear master problem MILP, as

Duran and Grossmann [47] demonstrate in their OA algorithm. Another OA solver
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is presented by Fletcher and Leyffer [59]. Geoffrion [71] presents Bender’s approach

and generalizes it to a wider class of programming techniques in which subproblems

do not need to be linear.

The difference between OA and GBD resides in the definition of the MILP mas-

ter problem. The GBD master problem only considers active inequalities and the

continuous bounds are disregarded, whereas OA methods use tangential hyperplanes

(or linearizations) to set the feasible space in the master problems. These feasible

space linearizations provide a successively shrinking space for the master problem

that represents convergence to the solution.

2.8.1.3 Extended Cutting Plane

Unlike other methods previously explained in this Section (BB, OA, and GBD), ECP

does not make use of NLP subproblems. It relies on an iterative solution of the master

linear problem, which is a MILP problem, by successively adding linearizations; see

Westerlund and Pettersson [197]. The chosen linearization is the one of the constraint

that is the most disrespected at the previous solution point in the iteration process.

Since the functions f (x,y) and g (x,y) are convex, the nonlinear feasible region

defined by g (x,y) is outer-approximated. So, the addition of hyperplanes throughout

the iterative process provides a non-decreasing bound for the minimization problems.

2.8.2 Non-Convex Programming

Some programming algorithms are implemented to solve non-convex and multi-modal

MINLP problems. These global deterministic optimization methods for mixed-integer

non-convex problems normally rely on a branch and bound procedure. The manner

to perform the branching on the variables is the main difference across these methods.

Convex relaxation is successfully employed to obtain solutions as demonstrated by

Tawarmalani and Sahidinis [182], and Floudas [60]. Smith and Pantelides [173] refor-

mulate the problem and apply convex relaxation. Then, they use an spatial branch
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and bound search. Kesevan and Barton [111] propose their branch and cut method.

Other methods branch a tree on both discrete and continuous variables. Others

perform the BB on the continuous variables and solve each node problem, a MINLP,

by any of the methods explained previously. Other ones branch on the discrete vari-

ables and then use BB on nodes where feasibility on discrete variables is found. The

existing methods are not explained in details because they are not used in this work.

These deterministic non-convex programming methods are generally outperformed

by stochastic or random mixed-integer searches.

2.8.3 Stochastic or Random Search

In the last two decades many random search algorithms are developed for MINLP.

Among them, one can find the following ones: particle swarm optimization by Yiqing

et al. [206] , line-up competition algorithm by Yan et al. [203], differential evolution

by Regulwar [152], simulated annealing techniques, evolution strategies (ES) by Li

et al. [125], and GA by Yokota [207] and Deep et al. [44]. Stochastic methods

are more powerful than the methods introduces in Subsection 2.8.2. As opposed to

programming methods, stochastic methods do not rely on gradient calculations after

continuous relaxation of the integer set. Gradients are not meaningful in the discrete

world. Also, the gradient information is not always useful towards global optimum

in multi-modal functions. There is a enormous literature available for stochastic

processes, but only GAs are employed in this research.

Genetic algorithms are stochastic algorithms that copy the principles of genetics

and natural selection. Holland [88] introduced the concept of GA as a search method;

De-Jong [39] was the first one in using it to solve an optimization problem. The set

of candidate solutions or individuals is called population. The first population is ran-

domly chosen and it evolves toward better solutions. In each generation, individuals

are assigned a fitness and rank according to their fitness value. A new population is
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formed from the current population based on the best ranked individuals and new

individuals obtained by crossover and mutation. The same process is repeated for

new generations until satisfactory fitness levels are achieved or a maximum number

of generations is reached.

The random search philosophy of MINLP methods is similar to the one of their

continuous counterparts. The fitness assignment and ranking techniques are usually

the same. However, the main differences for the GAs lie on the handling of integer

restriction, population mutation, and population crossover functions.

Generation techniques to initialize the first population of a mixed-integer problem

are usually performed by using discrete techniques, such as full factorial techniques, or

just rounding-off available continuous generation techniques, such as random Latin

hypercube and space-filling Latin hypercubes[113]. Forrester, Sóbester and Keane

[65] explain in detail these techniques.

Regarding mutation and crossover techniques the simplest way to deal with integer

variables is to utilize continuous mutation and crossover functions pretending that the

integer variables are continuous. Then, simple truncation can convert the crossover

and mutation children back into the discrete world. Nevertheless, there exists a clear

drawback for this truncation: the step-size could be diminished to a so small value

that the necessary leap between two consecutive discrete points is not reached with

the consequent catastrophic results, as Li [125] and Deep [45] point out. It is because

in discrete spaces the smallest distance in l1-norm between two points is greater than

zero as opposed to what happens in continuous spaces. Hence, when the step size is

smaller than the smallest distance between discrete values, search stagnation occurs.

The situation is worse for categorical variables where a possible continuous relaxation

assumes neighboring values that may produce convergence to a local optima instead

of a global one.

Several mutation and crossover functions have been proposed in the literature for
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the integer case. The principle of maximum entropy expresses maximum uncertainty

with respect to everything but the given information, as Jaynes [93] shows. Rudolph

[159] proposes a mutation algorithm for unbounded integer search spaces by using

this principle of maximum entropy: the resulting mutation distribution obtained

by Rudolph is a geometric distribution. Then, he applies the resulting distribution

to GA and ES. The latter distribution is extensively employed when dealing with

integer design variables. For the non-numeric variables, Li et al. [127] follow the

same maximum entropy principle to get to the conclusion that a uniform probability

mutation distribution is the most convenient. They apply this uniform mutative

distribution in an ES.

Regarding crossover functions for integer and categorical variables, less instances

are found in the literature. Laplace crossover is proposed by Deep and Thakur [45],

although later truncation is needed to get integer values for the children. Some

crossover techniques from continuous GA can be employed in the discrete case. The

main crossover techniques could be divided into two main groups:

1) Scattered Crossover. Genes are chosen with equal probability from the parents.

Thus, it combines the parental genes to form the children.

2) Intermediate or Blending Crossover. An arithmetic or weighted sum of the

parental chromosomes is used to produce the children.

Note that crossover techniques can be based on not only two parents but also

more than two parents.

The scattered crossover can be easily applied to all kinds of discrete variables. The

intermediate technique can also be applied to discrete-quantitative variables, however

intermediate crossover is not useful for non-numeric variables due their lack of order

and intermediate values.

The main limitation of the GA for mixed-integer optimization is that none of

78



the freely available software provides open access to the generation, mutation, and

crossover functions. For instance, a mixed-integer GA is available in MATLABR©

2011b, but the access to the MATLABR© files is restricted by encryption, therefore

variations of the code in the mutation, generation, and crossover functions are not

possible.

2.9 Multi-Objective Expected Improvement

Optimization techniques search for the best solution among all possible. However,

many engineering problems require the simultaneous optimization of two or more con-

flicting objectives: these scenarios are called multi-objective optimization problems.

Satisfactory trade-offs between these conflicting objectives have to be reached in the

final design.

Typical fields where multi-objective optimization problems can be found are fi-

nance, process design, aircraft and automobile design, robust design, or wherever

trade-offs between two or more conflicting objectives exist. Within the aerospace

industry, typical objectives are lightweight, high-performance, low-cost, robustness,...

Common instances of multi-objective optimization are the maximization of the air-

craft performance while minimizing engine fuel consumption; the minimization of the

weight while maximizing the strength of a particular aircraft component; and robust

design of a aircraft wing where the six-sigma objective function is included.

In mathematical terms, the general multi-objective optimization problem can be

written as follows:

minxcont,xquant,xnom
[f1 (xcont,xquant,xnom) , ..., fm (xcont,xquant,xnom)]

T (49)
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subjected to,

g (xcont,xquant,xnom) ≤ 0 (50)

h (xcont,xquant,xnom) = 0 (51)

xLcont ≤ xcont ≤ xUcont (52)

xLquant ≤ xquant ≤ xUquant (53)

xLnom ≤ xnom ≤ xUnom (54)

xquant ∈ Dquant (55)

xnom ∈ Dnom (56)

where xcont, xquant, and xnom represent the set of continuous, discrete-quantitative,

and nominal variables, respectively; [f1, ..fm] the m-component objective vector; g

and h the inequality and equality constraint vector; xLcont and xUcont the lower and

upper continuous bound vector; xLquant and xUquant the lower and upper discrete-

quantitative bound vector; and xLnom and xUnom the lower and upper nominal bound

vector. Finally, Dquant and Dnom represent the discrete subsets at which the discrete-

quantitative and nominal variables are restricted, respectively.

When dealing with more than one objective that are in conflict with each other, it

is usually not possible to find a feasible solution which is optimal for all the conflicting

objectives. A subset of solutions must be considered optimal in terms of trade-offs. It

means that it is not possible to improve one of the objectives without degrading one

or more of the others within this optimal family. No point of this optimal family of

solutions could be said to be better than other one, unless a given importance weight

of the objectives is known a priori. This optimal family is called Pareto optimal set

in honor to the economist Pareto [144] who introduced this concept within the field

of welfare economics. Later, it has been extended to engineering and social sciences.

Before defining formally a Pareto set, the concept of domination is presented. Let

us assume that two points y and z are in the solution space, i.e., y, z ∈ Rm. The
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point y strictly dominates z if and only if ∀i ∈ 1, .., m : yi ≤ zi and y 6= z. A usual

shorthand notation of strict domination is y ≺ z. If a point y strictly dominates or

equals other point z, then the following notation is used y � z. A finite set of points

P ⊂ Rm dominates or equal a point z, in mathematical terms P � z, if and only if

∃y ∈ P : y � z. A set of points P is a non-dominated set if and only if all the points

in the set P are mutually non-dominant.

A feasible point y is Pareto optimal or Pareto efficient if and only if there is no

other feasible point that dominates it

y is a Pareto-optimal ∄z ∈ S : z � y (57)

where S is the feasible objective space. In other words, for a Pareto optimal point

there exists no feasible solution point which would decrease some objectives without

provoking an increase in at least one of the other objectives. Generally, this concept

provides a set of points instead of a single solution. The Pareto front or Pareto set is

the set of points that are Pareto efficient, see Equation 57; consequently, it is a non-

dominated front. Thus, a Pareto front includes designs which are so optimized that, in

order to improve one goal of any of its members, its performance in at least one of the

other goals diminishes. A Pareto front does not assume any specific relative weighting

between opposing goals. However, once the Pareto front is obtained engineers can

make a better compromise decision by weighting the conflicting goals.

Many multi-objective algorithms are developed to assess Pareto fronts, but in the

research herein, interest is in obtaining Pareto fronts when a precise evaluation of the

design is not available, but a prediction with a measure of the uncertainty is. The

prediction takes the form of a duple made of m-dimensional vectors: the mean µ and

the standard deviation σ of the prediction vector.

Typical quality indicators for finding Pareto fronts are the epsilon and hyper-

volume indicators. Deb, Mohan, and Mishra [42] select the next generation based on

81



f1

f2

Pareto Front

Objective 2 Minimized

Objective 1 Minimized

Figure 7: Pareto Front Example

the concept of epsilon-dominance. Friedrich, Horoba et al. [67] compare the efficiency

of the hyper-volume indicator with that of the epsilon based EMOA.

Emmerich [55] proposes the quality indicator hyper-volume, introduced by Zit-

zler [213] for comparing Pareto outcomes from different EMOA, as an improvement

measure for extending the single-objective improvement to the multi-objective space.

The difficulty of the extension resides in the fact that the best found solution is not

clearly defined in multi-objective problems. However, the increment of dominated

hyper-volume is a reduced scalar for the Pareto set with appropriate features as is

explained in Subsection 2.9.2.

Within this Bayesian scope, a survey in the literature shows that the two most

common criteria for multi-objective adaptive sampling are the statistical improvement

criterion proposed by Keane [106] and the hyper-volume based ExI by Emmerich [55].

The multi-objective adaptive sampling criterion used in this research is based on

the increment of dominated hyper-volume or Lebesgue measure, i.e., the one proposed

by Emmerich [55]. A study done by Wagner et al. [192] shows that this method based

on the Lebesgue measure satisfies the proposed necessary conditions, which justifies

its use.
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In Subsection 2.9.1 a formal definition of the hyper-volume of a set of points is

explained. Also, Fleisher’s approach, that exactly calculates the Lebesgue measure,

is presented. Later, in Subsection 2.9.2 the hyper-volume increment of a Pareto set

due to a new point is postulated as the improvement scalar needed to extend the ExI

criterion from uni-dimensional objective spaces to multi-dimensional ones.

2.9.1 Hyper-Volume Definition and its Calculation

Let V ol (U) be the m-dimensional volume of a space U ∈ Rm. Then, the Lebesgue

measure or hyper-volume of a set of solutions P , H (P ), quantifies the size of the goal

space which is dominated by P , it could be written as

H (P ) = V ol
(

y ∈ Rm : P � y � yref
)

(58)

where yref is a reference point to bound the infinite domain dominated by the set of

points P .

If F is the set of non-dominated solutions of P , i.e., the Pareto front of P , then

H (P ) = H (F )

A common and efficient way to calculate the hyper-volume of a set of points P is

presented by Fleischer [58]. The algorithm he proposes trims off hypercubes that are

dominated by P and adds their hyper-volume to the Lebesgue measure. The original

set of points is stored in a list denoted by List. In each step, a point of List is taken

and removed. Then, bound values, b, for this removed point are obtained based on

the remaining points in List. The contribution of the removed point is added to the

partial Lebesgue sum. Later, “’spawned points” are generated with the help of b. A

filter compares the remaining points in List with the “’spawned points”; then, the

non-dominated “’spawned points” are included in List. A more detailed discussion

is presented in Fleisher’s work [58].
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2.9.2 Expected Improvement Based on Dominated Hyper-Volume

Similarly to the single-objective case, a statistical distribution [µ, σ] in the solution

space for each design space point, x, is given by the GRFM. The main challenge is

to generalize the single-objective best solution concept to the multi-objective Pareto

front idea. An improvement scalar similar to the one defined in Equation 41 (see

Subsection 2.7.1) is searched for in order to generalize from one to multiple objectives.

The increment of the dominated hyper-volume of the Pareto front has been proved as

an appropriate scalar function for this purpose because of some of its characteristics.

Fleisher [58] proves that the dominated hyper-volume measure of a set is maximum

if the set is on the true Pareto front. Another attractive features is its behavior when a

new point, ynew, is added to the Pareto front F . The hyper-volume of the augmented

set H (F ∪ ynew) increases if and only if no point in F dominates ynew. Hence, the

augmented set, F ∪ ynew, could be branded as a better approximation to the Pareto

set than F .

As a drawback, normalization of the objective space is required to assure that

equal gains in objectives are equally reflected by the dominated hyper-volume mea-

sure. Finding crude bounds for the objective space is not normally hard, so a rude

normalization should not be really difficult to perform. However, the bias of the im-

provement towards some objectives increases when only rough objective bounds are

available. Therefore, in these cases some care should be taken of when interpreting

the value of the improvement.

The improvement due to a new solution point y (x) is given by Equation 59

I (y (x)) =











H (F ∪ y (x))−H (F ) if no point of F dominates y (x)

0 otherwise
(59)

Once the improvement for multiple-objectives is defined, the expectation of im-

provement has to be obtained in a similar way as is done in Subsection 2.7.1. The
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main difference is that now the integration is on a multi-dimensional space Rm, where

m is the dimension of the objective space. The multi-objective E [I (x)] can be written

as

E [I (x)] =

∫

V

I (y)PDF (y) dy (60)

where V represents the solution space. The integral is over the objective space, which

is assumed continuous in this research regardless the nature of the design space.

The integrand in Equation 60 is intended to be computed with a multi-objective

meta-model [µ, σ]. Monte Carlo integration of Equation 60 could be done, but it is

time consuming and not accurate. Emmerich [54] proposes a direct computation for

Equation 60 for the case of two objectives; it is explained in this Subsection with a

notation similar to the one utilized by Emmerich.

The idea to direct integrate Equation 60 is to divide the integration region into

boxes, where piecewise integration can be directly done, converting the integral into a

sum over the boxes. Let us assume that the current Pareto front consists in q points

y1, ...,yq.

A sorted list of all the i-components of the Pareto front points is b
(1)
i , ..., b

(q)
i . The

coordinates bi for i = 1, ..., m are called the grid coordinates. The coordinates bi are

augmented with b
(0)
i = −∞, b

(q+1)
i = yrefi , and b

(q+2)
i = ∞ for i = 1, ..., m.

The grid cells are named C (i1, i2, ..., im). Grid cells are defined by their upper

and lower bound vectors: l (i1, i2, ..., im) and u (i1, i2, ..., im)

u (i1, i2, ..., im) =
(

b
(i1+1)
1 , b

(i2+1)
2 , ..., b(im+1)

m

)T

l (i1, i2, ..., im) =
(

b
(i1)
1 , b

(i2)
2 , ..., b(im)

m

)T

Another auxiliary variable required to directly integrate the expected improvement

in multi-objective problems is the vector v (i1, i2, ..., im) ∈ Rm. The jth-component

of v (i1, i2, ..., im) is the jth-component of the intersection point between the Pareto
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surface and a j coordinate line4 that passes through the lower bound of the given cell,

l (i1, i2, ..., im). v (i1, i2, ..., im) is called the cell reference point vector.

Cells are classified into active and inactive cells. The former ones are those where

the contribution to the integral is different from zero, whereas the latter are those for

which the contribution is null. If a cell meets one of the following criteria, the cell is

branded as inactive

1) Cell lower bound is dominated or equal to points in the Pareto front F , i.e.

F � l (i1, i2, ..., im).

2) Cell upper bound does not dominate the reference point, i.e., u (i1, i2, ..., im) �

yref .

Hence, active cells, denoted by C+, are those whose upper corner dominates the

reference point and whose lower bound dominates at least one point of the Pareto

front F .

The expected improvement could be written in terms of a sum throughout all the

active cells,

E [I (x)] =
∑

C(i1,i2,...,im)∈C+

δ (i1, i2, ..., im) (61)

where the active cell contribution δ (i1, i2, ..., im) is given by

δ (i1, i2, ..., im) =

∫

y∈C(i1,i2,...,im)

I (y)PDF (y) dy (62)

Once the integration of Equation 60 has been divided, active cell contributions

are discussed. For clarity and compactness’ sake, cell indexes are omitted. The

improvement in a cell, I (y), can be divided into the contribution of the hyper-volume

of the non-dominated part in the hypercube [u,v], denoted by L+ (see Figure 8), and

4In this report, a j coordinate line refers to a line parallel to the jth coordinate axes
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the “boundary contribution”, denoted by B+ (see Figure 8), given by [y,v]−[u,v] for

the two-objective case. For more than two objectives, the “boundary contribution”

has a more complex form. Then, in the two-objective case, the I (y) takes the form

I (y) = V ol ([y,v]− [u,v] + L+)

The reference point for the increment of the dominated hyper-volume of each cell

is given by the vector v. The improvement expression can be simplified by realizing

that S− = [u,v] − L+, where S− is the fraction of dominated hyper-volume inside

the hypercube [u,v], see Figure 8. Then, I (y) can be written as,

I (y) = V ol
(

[y,v]− S−
)

(63)

Note that correction terms must be added for more than two dimensions.

Therefore, in order to calculate cell contribution to I (y), two volumes should be

obtained,

1) V ol ([y,v]) which is y dependent.

2) V ol (S−) which is independent for all y within the same cell.

In order to calculate the volume S− for the two-objective case, it is enough to

obtain the Pareto points that are dominated by the upper point of the cell, i.e.,

∀y ∈ F : u � y. For higher dimensions, the assessment of S− is more difficult.

By plugging 63 into 62 one gets two terms for the cell contribution δ (i1, i2, ..., im) =

δ1 (i1, i2, ..., im) + δ2 (i1, i2, ..., im)

δ1 (i1, i2, ..., im) =

∫

y∈C(i1,i2,...,im)

m
∏

i=1

(vi − yi) · PDF (y) dy1dy2 (64)

δ2 (i1, i2, ..., im) = V ol
(

S−
)

∫

y∈C(i1,i2,...,im)

m
∏

i=1

PDF (y) dy1dy2 (65)

Equations 64 and 65 could be analytically integrated as follows
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Figure 8: Expected Improvement Integration Area for Two-Objective Case

δ1 (i1, i2, ..., im) = V ol
(

S−
)

m
∏

i=1

(

Φ

(

ui − µi
σi

)

− Φ

(

li − µi
σi

))

(66)

δ2 (i1, i2, ..., im) =

m
∏

i=1

(Ψ (vi, ui, µi, σi)−Ψ (vi, li, µi, σi)) (67)

where Ψ (a, b, µ, σ) = σφ
(

b−µ
σ

)

+(a− µ)Φ
(

b−µ
σ

)

, and φ (.) and Φ (.) are the standard

normal probability and cumulative distribution function, respectively. It is necessary

to remember that in this Subsection just the two-objective extension of expected

improvement has been presented. Correction terms must be included for more than

two objectives.
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2.10 Fenestron Tail Rotors

Fenestron tail rotors5 have been frequently used as anti-torque devices. They are

normally used in light and medium size helicopters. The main advantage of fenestron

tails is the lower power requirements than conventional open tail rotors to obtain a

given thrust. The ducting increases the anti-torque device efficiency by reducing blade

tip losses and adding some extra thrust. In order to obtain this efficiency enhance-

ment, flow separation has to be avoided due to a proper inlet lip design. Additionally,

the fin protects the anti-torque device from the main rotor wake, reducing the inter-

ference effect of the conventional rotor-craft [138]. It also reduces the fin interference

with the tail rotor [154].

Other significant advantage is the reduction of noise, which makes military rotor-

crafts more difficult to detect and civil rotor-crafts less disturbing for heliport com-

munities. Edwards et al. [50] obtain a dramatic improvement in the sound quality:

the total helicopter noise is reduced up to 6 dBA during hover and forward flight with

reductions in tail rotor harmonics of 5 to 20 dBA. The helicopter noise spectrum is

extended over higher ranges of frequencies as the number of blades increases. Un-

fortunately, humans are more sensitive to these high frequencies. Nevertheless, this

high part of the spectrum is better absorbed by the atmosphere.

Other pros are the protection of the anti-torque device by the fin, which reduces

the risk of any object impact and leads to safer ground approaching and landing [138].

Mouille [139] argues that more than 20% of helicopters crashes are due to a fail or

impact on tail rotors, so the increase in reliability and the improvement in security

provided by the fenestron rotors are important.

The main fenestron rotor drawback is the increase in anti-torque device weight.

The structural requirements of the hub are larger than for a conventional tail rotor

5Also called shrouded tail rotor or fan-in-fin.
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configuration. Since centrifugal forces are inversely proportional to the rotor diameter

for the same rotor angular speed, fenestron centrifugal forces tend to be higher than

in the conventional tail case[154]; hence, more structural requirements are needed.

Normally fan-in-fin rotors have more blades than conventional tail rotors. How-

ever, fenestron blade spans are shorter than in the conventional case. The rotational

speed of the ducted tail rotors is higher than that of conventional rotors with the

purpose of keeping a same order of magnitude tip speed. Also, typical blade root

cut-offs are located in more outboard sections for fenestron configurations than for

conventional cases.
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CHAPTER III

RESEARCH METHODOLOGY

3.1 Introduction

The aim of this research is on modifying available techniques and developing new

ones to build approaches for the more efficient use of computationally intense tools

for initial design assessment and discrete alternative selection. Using computationally

high-cost tools in conceptual design represents still a challenge for not only high-

fidelity codes, such as CFD and CSD, but also mid-fidelity tools.

Long evaluation times could have different origins: complete physics-based models

for single-objective problems, iterative tools in multidisciplinary problems, and the

increase of design evaluations featured in multi-objective problems.

Taking a glance at the current literature, surrogate and adaptive sampling tech-

niques handle inefficiently design alternatives. These design alternatives, generated

by the iterative process of conceptual design, normally experience similar trends; how-

ever, surrogate and adaptive sampling techniques do not leverage these similarities.

Similar trends can be identified in scenarios of “Evolutionary Incremental Concepts”,

where changes from one concept to another are small, and other scenarios where

designers are aware of similar behavior across alternatives by experience.

As mentioned in Chapter 1.1, an improvement in the computational efficiency of

concept surrogates where there is a choice of design alternatives could be crucial to

use more efficiently intense tools in conceptual design. Certain objective functions

show similar trends across all categories and concepts. Raymer [151] argues that in

the conceptual phase designers normally rely on existing airfoils. Then, airfoils could

be considered as a non-numeric variable in early design. For instance, while designing
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a helicopter rotor, different blade airfoils result in similar figure of merit versus thrust

coefficient curves. Therefore, it is reasonable to think that surrogates that cross-use

computationally intense observations across lifting sections can provide more accurate

surrogates than fitting a surrogate for each airfoil (current state-of-the-art) for a given

function call budget.

In order to build this surrogate that leverages similar trends across categories, a

distance function for categorical variables has to be defined. The Hamming distance,

employed to handle nominal input attributes in instance-based learning techniques,

can be one of the candidates to accomplish this task.

Furthermore, some design variables that are usually treated as categorical can

have some natural distance due to underlying parameterizations that are not visible

in the conceptual design stage. This intrinsic distance can be used to build the target

surrogate. Measurable properties of the non-numeric input relevant for the pursued

objective are combined to construct an intrinsic distance function for the categorical

variables. Therefore, different objective functions hint different intrinsic distance

functions for the same categorical set.

This intrinsic distance enables the handling of categorical design variable as a

discrete-quantitative ones, which eases the surrogate building. An intrinsic distance

function can be defined on a choice of materials when studying their structural re-

sistance. A ductile material is expected to have similar behavior than other ductile

material. However, its behavior compared to a brittle one is expected to be different.

Thus, the intrinsic distance between the two ductile materials should be smaller than

that between a ductile and a brittle material.

Distinct solutions for the same engineering problem, especially when immediate

in the iterative conceptual design phase, usually experience landscapes very much

alike. Multi-fidelity techniques are brought to re-use intense observations of previously

sampled concepts while building a surrogate of a new concept whose objective function
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is unknown. Current methods do not re-use observations from previous concepts while

fitting new concept surrogates.

Accuracy of the optima in early stages is usually traded for interactions between

design parameters, and sensitivity studies, among others. The combination of explo-

ration and exploitation provided by Bayesian adaptive sampling methods is appro-

priate to study these interactions and sensitivities. Much research has been done in

continuous adaptive sampling; however, no focus on discrete alternatives is found in

the literature.

Among the Bayesian adaptive sampling techniques, the use of Kriging surrogates

together with the expected improvement criterion gives an appropriate trade-off be-

tween the exploration and exploitation. Also, Kriging is a well-documented technique

as a quick glance in the literature shows. The next sample in each step is determined

by the maximization of the expected improvement in the design space.

The extension of this Kriging/ExI technique to explore and exploit surrogates that

leverage similar trends across categories would use more efficiently computationally

intense tools in conceptual design stages. Also, optimization/sampling techniques

that can deal with not only continuous but also discrete variables would increase the

efficiency in the use of these intense tools. MIO provides algorithms to optimize prob-

lems that possess both continuous and integer variables. Mixed-integer optimization

techniques can be adapted to include more efficiently non-numeric variables. This

adaptation is achieved by developing generation, cross-over and mutation functions

suited to deal with categorical variables.

Later, the development of adaptive sampling techniques for surrogates that lever-

age similar trends from previously sampled concepts would help in making the most

out of the limited function call budget on multi-modal and intense functions.

It is worth noticing that ExI functions have some same characteristics regardless

the objective functions: the value is always greater or equal than zero in the whole
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space, the value is zero in design points already sampled, and monotonicity properties

in the mean prediction value and the mean squared error. This similarity between

ExI landscapes allows extrapolating efficient mutation functions from one problem

to another. It prompts to study the efficiency of several mutation operators while

optimizing the expected improvement in a mixed-integer-categorical domain.

Then, the UH60A with fenestron tail is presented as the new concept for the

ECMF surrogate practical test. It represents an incremental concept, which is built

out of the UH60A with conventional tail, so they are expected to experience similar

trends. The fenestron baseline values and its weight estimation are discussed.

Finally, the diagrams that review and summarize the research methodologies for

categories and concepts are presented.

3.2 Research Questions: Hypothesis and Predictions

Research questions guide the investigations that are carried out in this thesis. It is

important to remark that the proposed algorithms herein have a practical engineering

purpose: develop tools for the more efficient use of computationally intense models

that enhance the initial design assessment and discrete alternative selection.

The scientific method is not ruled out when performing the investigations. Even

though no knowledge of physical phenomenon is pursued, efficient methods for con-

ceptual design are pursued. Once the problem to tackle has been defined, a set of

research questions are formulated. Then, their corresponding hypothesis to be further

tested (with computational experiments) are discussed. Answers for these questions

need a deep understanding of the current design tools and their limitations. Finally,

results of the computational experiments are predicted.

3.2.1 First Question

Is it possible to build efficient surrogates for design scenarios where there exists a

design categorical choice with similar trends?
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a) Is it possible to build surrogates that cross-use computationally expensive ob-

servations across categorical choices with similar trends?

b) Which nominal distances allow building these efficient surrogates?

c) Does the MIC surrogate outperform independent surrogate modeling for each

category (state-of-the-art)? How does the relative efficiency of these surrogates

with respect to the independent ones depend on the training set size?

3.2.1.1 Hypothesis

Nominal distances permit building a Bayesian surrogate that includes not only con-

tinuous and integer design inputs but also categorical. This surrogate is called mixed-

integer-categorical (MIC) surrogate. MIC surrogates cross-use observations across all

categories.

Hamming distance is a possible nominal distance that allows building MIC surro-

gates. For certain engineering objectives, intrinsic distance measures can be obtained

from functional dependence of the objective. MIC surrogates can also be based on

this intrinsic distance.

The cross-use of observations in MIC surrogates is efficient for small training

set sizes where only global trends are shared across categories. This cross-use of

observations is not exploited by traditional independent surrogates fitted for each

category.

The size of the training set affects the surrogate accuracy. The benefit obtained

from other category observations becomes a rigidity when the training set becomes

large. Above a large training set size, observations from other categories can capture

high frequency information, which normally goes beyond common trends, and there-

fore can mislead the MIC surrogate, affecting its accuracy. So, for large training sets,

independent surrogates, which have available enough information, can outperform

MIC surrogates.
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3.2.1.2 Prediction

A proof of concept can substantiate the hypothesis.

In terms of the performance metrics, MIC surrogates outperform the traditional in-

dependent surrogates (one surrogate for each category) for the small range of training

sets. However, as the training set becomes larger, traditional methods gain efficiency

up to a point where its performance metric surpasses that of MIC surrogates.

A working definition of performance metrics will be presented later. “Efficiency”

means fewer observations are needed for a given accuracy or more accuracy for the

same number of computationally expensive observations.

The resulting MIC surrogate is appropriate to be employed in conceptual design

when a design categorical choice has to be made and objective functions are compu-

tationally intense.

3.2.2 Second Question

How could adaptive sampling approaches be efficiently extended to a choice of cate-

gories that experiments similar trends?

a) Can the MICGA extended from MIGA drive the ExI search while doing adaptive

sampling on MIC surrogates?

b) Is the adaptive sampling on MIC surrogates more efficient than simultaneous

adaptive sampling on independent surrogates (state-of-the-art) in some range

of training set sizes?

3.2.2.1 Hypothesis

A set of categories can be adaptively sampled by applying the ExI criterion on MIC

surrogates. The use of more accurate surrogates results in more efficient adaptive

sampling processes. Therefore, the MIC surrogate, proposed in R.Q. 1, is chosen as

the surrogate for the efficient extension of the adaptive sampling techniques.
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Adaptive sampling approaches on surrogates like the ones proposed in R.Q. 1

needs of the extension of mixed-integer stochastic search techniques to spaces that

contain non-numeric variables. This extension is possible by modifying the generation,

crossover, and mutation functions of a mixed-integer genetic algorithm (MIGA). The

MIGA extension to mixed-integer-categorical design spaces is called mixed-integer-

categorical genetic algorithm (MICGA). MICGA can drive the adaptive sampling

algorithm on MIC surrogates via ExI infill criterion.

While finding Pareto fronts with small warm-up training sets, the adaptive sam-

pling on MIC surrogates via MICGA is more efficient than the state-of-the-art (si-

multaneous adaptive sampling on independent surrogates).

3.2.2.2 Prediction

A proof of concept can substantiate the hypothesis.

When a one-objective function is adaptively sampled using a MIC surrogate, the

regions of high sampling density are the globally best performing areas but not the in-

dividual best performing regions for each category. It is an evidence that the MICGA

can adequately drive the expected improvement search on MIC domains.

The quality of the Pareto frontier is the performance metric for multi-objective

optimization. The adaptive sampling on MIC surrogates via MICGA outperforms the

simultaneous adaptive sampling on traditional surrogates in terms of the quality of

the Pareto frontier. It happens for small warm-up training sets. A working definition

of the quality of the Pareto frontier will be presented later.

The resulting adaptive sampling approach is appropriate to be employed in con-

ceptual design when a design categorical choice has to be made and objective functions

are computationally intense and multi-modal.
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3.2.3 Third Question

Is it possible to build efficient surrogates for design scenarios where there exist com-

putationally expensive observations from a previous concept with similar trends?

a) Is it possible to build surrogates that re-use computationally expensive obser-

vations from previous concepts with similar trends?

b) Do ECMF surrogates outperform mono-fidelity surrogates (state-of-the-art)?

How does the relative efficiency of ECMF surrogates with respect to the mono-

fidelity ones depend on the new concept training set size?

c) What is the influence of the old concept training set size in the performance of

ECMF surrogates?

3.2.3.1 Hypothesis

A multi-fidelity approach allows reusing observations from a previously sampled con-

cept while building a new concept surrogate, these surrogates are called Evolutionary

Concept Multi-Fidelity (ECMF) surrogates.

The re-use of observations in ECMF surrogates is efficient for small new concept

training set sizes because supplementary information is useful in these cases. It is

assumed that the new and old concept experience similar trends. This re-use of

observations is not exploited by traditional mono-fidelity surrogates.

Training sets sizes for both concepts affect the ECMF accuracy.

a) The size of the new concept training set size affects the ECMF performance.

Above a large new concept training set size, observations available from the new

concept provide high frequency detail. In this case observations of the previ-

ously sampled concept are less needed and can only pollute this high frequency

information degrading the ECMF accuracy. It does not happen to mono-fidelity

surrogates, which have no observations from the previous concept.
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b) The similar trends benefit obtained from previously sampled concept obser-

vations becomes a rigidity when the old concept training set becomes large.

Above a large old concept training set size, high frequency information, which

normally goes beyond common trends, is captured, so it can mislead the ECMF

surrogate and reduce its accuracy. Thus, for large old concept training set sizes,

the performance of the ECMF surrogate saturates or even degrades as the old

concept training set becomes bigger.

3.2.3.2 Prediction

A proof of concept can substantiate the hypothesis.

In terms of the performance metrics, the ECMF surrogates outperform the tradi-

tional mono-fidelity surrogates for small ranges of new and old concept training set

sizes. However, as the new concept training set size increases, mono-fidelity surro-

gates gain efficiency with respect to ECMF ones in terms of the performance metrics.

Also, for large old concept training sets, the ECMF surrogate error does not decrease

as the old concept training set becomes larger. A working definition of performance

metrics will be presented later.

The resulting ECMF surrogate is appropriate to be employed in conceptual design

when there exist evolutionary concepts with similar trends and objective functions

are computationally intense.

3.3 Nominal Distance for Cross-Using Observations

As discussed in Section 2.5, the distance between design points is the input to tune

Kriging surrogates. In order to include categories in the same meta-model, it is

necessary to define a categorical distance, which is also called nominal distance.

3.3.1 Requirements for Nominal Distance

The desired requirements for the nominal distance are the following:
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Lack of order As explained in Section 2.1, non-numeric variables are characterized

for the lack of order.

Definition to keep radial basis functions meaningful Since Kriging meta-models

are employed in this work, the nominal distance should result in positive definite

covariance matrices. If two categories are too close (distance-wise), these matri-

ces may be non-positive definite. It would bring bias in the Kriging parameters,

which has consequent numerical problems.

Versatility to different objectives Designers would like to have a nominal dis-

tance that is useful for many objective functions.

Once the desired characteristics of the nominal distance are defined, the search for

the nominal distance function can begin. Three possible nominal distance functions

are presented:

1) Integer Nominal Distance.

2) Hamming Nominal Distance.

3) Intrinsic Nominal Distance.

3.3.2 Integer Nominal Distance

The nominal variable is arbitrarily mapped to a set of integer values. Each category

of the non-numeric variable is mapped to an integer in the interval [1, |xnom|], where

|xnom| is the number of points in the categorical input xnom. Then, the distance that

is input to the Kriging surrogate is based on this new arrangement of xnom in the

integer line.

It is the simplest nominal distance function. The first disadvantage is that it

implicitly defines an order between categories. Another drawback is that the random

mapping to the integer set does not take into account the relation objective-category.
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For a large number of categories, the distance between two integers could be too

close which may produce non-positive definite covariance matrices. However, it does

not happen for a small number of categories. It is versatile which is useless since

the integer distance implicitly defines an order and the covariance matrices can be

non-positive.

3.3.3 Hamming Nominal Distance

The most popular nominal distance is the Hamming distance proposed by Hamming

[78],

dham
(

x(i),x(l)
)

=
k
∑

j=1

Ih
(

x
(i)
j , x

(j)
j

)

(68)

where a, and b are categories and

Ih (a, b) =











0 if a = b

1 if a 6= b
(69)

It is noticeable that Equation 68 assumes that the distance between points is the

same and no order is established. The Hamming distance permits building metric

spaces in information theory and general topology as is shown by Ash [6] and Kelley

[108], respectively. Also, Aha et al. [2] combine the Hamming and Euclidean distance

to include together categorical and continuous variables in instance-based learning

algorithms.

The Hamming distance respects the nature of non-numeric variables by not defin-

ing an order between categories. It is versatile since the same distance can be used

for all the objectives. The main drawback is that the Hamming distance just com-

pares categories of design points without taking into account the objective function.

Finally, the Hamming distance keeps radial basis functions meaningful since the dis-

tance between points is always one, which avoids having two categories too close.
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3.3.4 Intrinsic Nominal Distance

In some instances there is some intrinsic metric for a given objective; so, it may be

possible to define other efficient nominal distances. This intrinsic distance can be

given by an underlying parameterization or properties of the categorical members.

Many categorical choices have an underlying parameterization that is not explored

in conceptual design. For instance, in preliminary or detailed design phases, airfoils

can be parametrized into continuous spaces; these parameterizations can only be

fully exploited by high-fidelity tools such as CFD codes. However, it does not make

sense to use these parameterizations in conceptual design stages, where only the

most important system factors are studied and the tools do not include physics with

the required details to make the most out of the parameterization. Additionally, in

conceptual design, engineers cannot afford these time-consuming parametric studies.

Therefore, design teams treat airfoils as categorical variables in conceptual design

ignoring their underlying parameterization.

In conceptual design, variables with an underlying continuous space could usu-

ally be simplified in terms of categorical properties instead of the hidden continuous

parameterization. For instance, in the case of airfoil choices the difference between

airfoils is given in terms of aerodynamic curves, which is considered a categorical

property. So, these properties can be used to build the intrinsic distance. Categorical

properties can be scalar properties or function properties.

A possible example of scalar properties is found when there is a set of materials

to study in homogeneous and isotropic elasticity. Each material’s Hooke’s law in 3D

is defined by two scalar parameters. Two possible material defining parameters are

the modulus of elasticity and Poisson’s ratio. It is reasonable to define a distance

between two materials using the value of these defining parameters when the elastic

material behavior is pursued. However, for analysis different from elasticity, other

parameters turn to be important: fatigue limit for fatigue analysis, ultimate strength
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and ductility for plasticity analysis,...

An example of function properties is taken from helicopter design, which is an

application of this investigation. Let us assume that the designer has to study the

aerodynamic efficiency of a helicopter rotor in hover and is given a set of airfoils.

In this problem, the set of airfoils is seen as a non-numeric design input. A simple

rotor model using Blade Element Momentum (BEM) theory, details explained by

Leishman [123], hints that the influence of the airfoils on the rotor aerodynamic

efficiency is introduced by the airfoil aerodynamic characteristic curves: Cl(α), Cd(α),

or Cd(Cl), a.k.a. polar curve (the combination of Cl(α) and Cd(α) by removing the

angle of attack as parameter). Therefore, it makes sense to base the distance function

between two airfoils in terms of these characteristic curves if the rotor aerodynamic

efficiency is pursued. Note that the airfoil aerodynamic curves are the properties that

influence the objective. These properties are functions unlike in the first example

about materials, where the properties were scalars.

In the what follows, a discussion for the assessment of the intrinsic distance func-

tion is presented. xnom is a categorical design input whose values have J properties

that could define the possible intrinsic distance between category members. For

scalar properties, the intrinsic nominal distance between two categories, x
(i)
nom and

x
(l)
nom, could be given by

dintr
(

x(i)nom, x
(l)
nom

)

=
J
∑

j=1

wj |propj
(

x(i)nom
)

− propj
(

x(l)nom
)

| (70)

where propj

(

x
(l)
nom

)

is the j-th categorical property of the l-th categorical member,

and wj is the weight for the jth property of the categorical design input. wj weights

the relative importance of the jth property compared to other properties. If a sole

property defines the intrinsic distance, then, it can be written as

dintr
(

x(i)nom, x
(l)
nom

)

= |prop
(

x(i)nom
)

− prop
(

x(l)nom
)

| (71)
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Clearly the above metric cannot be applied when the property is a function in-

stead of a scalar. A simple alternative is to choose a representative point of the

function via averaging or experts’ guess. Specifically for the helicopter instance pre-

viously discussed, a desired operating point like αopt can be chosen, so aerodynamic

characteristic curve values at αopt are possible scalars to feed to Equation 70, and 71.

As is well-known, helicopters usually have different angles of attack in different blade

span locations because of not only blade twist, but also different rotational velocity

and induced velocity in each span location. As a result, the scalar approach is poor,

unless one deals with the unlikely case of an optimal rotor in its optimal design point

(in this case all blade sections operate at the optimum angle of attack). For further

reference, see[123].

Then, the goal is to look for a distance measure where the properties are in

function spaces. Function spaces are the base of “Calculus of variations”, see Sagan’s

work [161] and Gelfand et al.’s work [70]). The space of continuous functions of one

variable between points a and b is denoted as S,

S ∈ C[a, b]

A more detailed explanation about functional analysis and function spaces is pro-

vided by Balakrishnan [10] and Zeidler [212].

There exist several function space metrics based on different norms. Sutherland

[181] presents them with examples. Let f and g be two functions. Among the

most important metrics, one finds infinity metric based on infinity norm d (f, g) =‖

f −g ‖∞, metrics over Lp integrable spaces d (f, g) =‖ f −g ‖Lp, and metrics over H1

Sobolev spaces d (f, g) =‖ f − g ‖H1. Equation 72 represents the L1 metric between

elements in S.

dintr
(

x(i)nom (z) , x(l)nom (z)
)

=

∫ b

a

|prop
(

x(i)nom (z)
)

− prop
(

x(l)nom (z)
)

|dz (72)
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where z is the independent variable of the categorical input property prop (.).

The definition of the distance for the space of continuous functions of one vari-

able, Equation 72, brings up the issue: the choice of the integration limits. Their

definition depends on the expected bounds of the categorical design input property.

If one hypothesizes that, for the helicopter problem, Cd(α) is the curve with the

major influence in the rotor aerodynamic efficiency, then prop
(

x
(i)
nom (z)

)

turns into

Cd
(

air(i) (α)
)

(or C
(i)
d (α) for notation’s simplicity). Post-stall angles of attack are

not expected to happen because the rotor aerodynamic efficiency is pursued. So, an

upper limit for b can be αstall. For the lower limit, αinf , a negative angle of attack,

small in magnitude, seems to be a reasonable value. Particularizing Equation 72 to

the helicopter problem

dintr
(

air(i) (α) , air(l) (α)
)

=

∫ αstall

αinf

|C(i)
d (α)− C

(l)
d (α) |dα (73)

Similarly as in the scalar property case, weighting could generalize Equation 72

when more than one function property is involved in the intrinsic distance. For

the sake of brevity, di,l denotes from now on the nominal intrinsic distance between

categorical members i and l unless otherwise said.

Regarding desired nominal distance requirements, the intrinsic distance respects

the nature of non-numeric variables by not defining an order between members. By

definition, it is in agreement with the relation category-objective. However, it has to

be changed for a different objective, so there is no versatility. Finally, the intrinsic

distance may result in non-positive covariance matrices in cases where categorical

properties of two members are too close.

Finally, a modified intrinsic distance is presented to avoid non-positive covariance

matrices. So, this modification of the intrinsic nominal distance targets cases where

two categorical members, i and l, are too close, which produces non-positive covari-

ance matrices. In order to avoid this effect, the minimum categorical distance of the
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set of categories is increased in value. Let dmin denote the minimum nominal distance

of the set of categories Scat

dmin = min (di,l) ∀i, l ∈ Scat

where di,l = dintr

(

x
(i)
nom (z) , x

(l)
nom (z)

)

is assessed by Equations 70 or 72 (the non-

modified intrinsic nominal distance).

The minimum distance can be adjusted to a desired value d⋆. It is done by trans-

lating and scaling di,l so that a new minimum distance and the maximum distance

are set to d⋆ and 1, respectively.

d′i,l = d⋆ +
1− d⋆

1− dmin
(di,l − dmin) (74)

where d′i,l is the new nominal distances for avoiding non-positive covariance matrices.

3.4 MIC Surrogate: Leveraging Similar Trends across Cat-

egories

As stated in Section 1.6, one of the main goals of this thesis is to build surrogates

that leverage similar trends across categories. The current state-of-the-art constructs

an independent surrogate for each category. If the proposed surrogate is successful,

a better use of the limited computational budget can be done resulting in more

optimal and reliable initial designs and categorical selection. As in any usual scientific

research, a set of computational experiments is used to test the efficiency of the

proposed surrogate.

Surrogates usually cope with continuous and/or integer (or discrete-quantitative)

variables. In the presence of categorical inputs, independent surrogates are fitted

for each category. The proposed surrogate herein includes not only continuous and

discrete-quantitative variables but also non-numeric ones; it is called mixed-integer-

categorical (MIC) surrogate. The addition of the categorical variables is done with the

idea of cross-using useful observations across categories. It would lead to more efficient
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surrogates than the ones currently employed. The Hamming distance is a perfect

candidate by which to include the categorical design inputs in the surrogate domain,

in a similar manner that Wilson and Martinez [201] do for statistical classification.

In order to build a MIC surrogate it is necessary to have a training set. They are

obtained with regular Latin hypercube sampling[96]. The categorical and discrete-

quantitative variables are treated as continuous when getting the training set. Specif-

ically, the categorical ones are first mapped to integer variables and later handled as

continuous. Once the Latin hypercube sampling produces the set, the categorical and

discrete-quantitative variables are rounded-off such that samples are evenly divided

among categories and discrete-quantitative values. It is important to emphasize the

selection of continuous Latin hypercube techniques that make the most out of the

training set; there are different training points in each category, so the cross-use of

observations is more efficient than in the case of same training points in each cate-

gory. In the case of the same training set in each category, observations from other

categories are not that much valuable for a given category (the objective values at

the sample points of the given category are already known).

The type of surrogate chosen to build the MIC surrogate is Kriging, discussed

in Section 2.5, because eventually adaptive sampling techniques are pursued, which

requires the surrogate prediction uncertainty. Kriging bases its estimates on its cor-

relation function, given in Equation 9, that needs the distance between the prediction

point x and the sample points. So, the prediction is made according to the proximity

to sample points: when the design point x, at which the objective value is pursued, is

close to a sample point, then the objective value at this sample point influences the

prediction at the design point x.

When dealing with continuous and discrete-quantitative variables, Kriging uses

the Manhattan distance between points to assess proximity. The reason for prefer-

ring the Manhattan over the Euclidean distance, even in cases with only continuous
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design inputs, is to decouple design variables. It allows taking into account that some

variables affect more the objective function than others. It is highly recommended to

normalize the bounds of the design space in a hypercube {0, 1}k, if possible, in order

to avoid a misleading dependence of the objective function on the design variables.1

This work claims that for categorical variables the Hamming distance, defined

in Equation 68, is appropriate to be inputted to the Kriging correlation matrix, see

Equation 9. Other alternative, if possible, is to use the intrinsic distance for the given

objective function, defined either by Equation 70 or 72 depending if the categorical

property is a scalar or a function. It is worth reminding that this intrinsic distance

is defined with the use of relevant properties of the categorical variable to the given

pursued objective function.

3.4.1 Performance Indicators for MIC Surrogates

The MIC surrogate is considered successful if it predicts more accurately the objec-

tive function than the current multiple independent surrogates (one for category) in

a given range of training points. Also, MIC surrogates based on several nominal

distances are to be compared. The comparisons are done in terms of some success

indicators2. A straight-forward measure of accuracy of a model is the “standardized

validation error” between the real and predicted value

error (x) =
|y (x)− ŷ (x) |

y⋆ch
(75)

where y (x) and ŷ (x) are the real model and its approximation, respectively, and y∗ch

is the characteristic change of the function in the studied domain. This last value is

brought to normalize the error.

1It is a good practice to normalize the design space because, as it could be seen, if one of the
design inputs xi has a very large range, it could artificially overpower other design inputs.

2Also called performance indicators.
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Probabilistic surrogates such as Gaussian processes provide the epistemic uncer-

tainty of the prediction. In Kriging, it is given by the mean squared error, ŝ (x);

Equation 18 shows it in the interpolating case. Other success indicator is the number

of mean squared errors that the predicted value is off the actual value. This indicator

called “standardized validation residual” could be written as follows

res (x) =
|y (x)− ŷ (x) |

ŝ (x)
(76)

It is known that 99.7% of values drawn from a normal distribution, N (µ, σ2),

are within the interval [µ− 3σ, µ+ 3σ]. Thus, the “standardized validation residual”

represents the confidence interval in the accuracy of the prediction.

In order to assess the accuracy of the meta-model in its entire domain, a possible

option is to calculate the root mean squared (rms) of the error (x) and res (x) over

the whole domain as follows

errorrms,global =

√

1

V

∫

V

|y (x)− ŷ (x) |2
y⋆2ch

dV (77)

resrms,global =

√

1

V

∫

V

|y (x)− ŷ (x) |2
ŝ2 (x)

dV (78)

where V is the design space.

Expressions 77 and 78 are easily evaluated for cheap functions but not for com-

putationally intense objective functions due to the need of assessing the real function

value, y (x). The main point of a surrogate is to predict a computationally intense

objective function with few real function evaluations. So, an alternative method to

assess the success indicators is needed.

Other alternative is to select a few additional points as validation or test points

and compare the true and predicted values, but it is still a loss of resources because
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it requires sampling beyond the points used to fit the surrogate. A better option is

called “cross-validation” that permits to evaluate model accuracy without losing any

computational resources.

Jones [99] et al. propose this cross-validation technique. It consists in removing

the point i out of the training set; later, the surrogate is built based only on the

remaining N − 1 points; and then, the value of the objective at the point that has

been left out is predicted, ŷ−i (x
i) (the subscript −i highlights that the training point

xi has not been used as a training point in the prediction of ŷ−i (x
i)). Instead of tuning

over and over again the model hyper-parameters for each reduced training set, the

values of the hyperparameters when tuning the whole training set (point xi included)

are used. It is because little changes are expected in those unless few observations

exist. In the Kriging surrogate, the i-th column and row of the correlation matrix Ψ

are removed, and so is the i-th component of the vectors ψ and y. Similarly, cross-

validated mean squared error, ŝ−i (x
i), is assessed at the i-th point. Cross validation

has been employed as well by other authors, see Kleijnen et al.’s work [113].

New local success indicators are defined: “standardized cross-validation error” by

Equation 79, and “standardized cross-validation residual” by Equation 80,

errorcvi,i =
|y (xi)− ŷ−i (x

i) |
y⋆ch

(79)

rescvi,i =
|y (xi)− ŷ−i (x

i) |
ŝ−i (xi)

(80)

In order to get global success indicators, the rms of all the sample points are added

errorrms,cvi =

√

√

√

√

1

N

N
∑

i=1

error2cvi,i (81)

resrms,cvi =

√

√

√

√

1

N

N
∑

i=1

res2cvi,i (82)
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Also, the influence of the size of the training set on the surrogate performance is

sought, see Section 3.2. Specifically, how quickly the rms of the surrogate “standard-

ized error” converges to zero as the training set becomes larger and larger. A power

relationship is fitted to the predicted rms of the “standardized validation error” for

analyzing this convergence behavior.

errorrms =
errorrms (Ntr.set = 0)

Nα
tr.set

(83)

where N is the number of training set samples, and α tells how quickly the rms of

the error converges to zero. The value of α enables to see the effect of an increase in

the training set size on the rms of the error.

Note that the MIC surrogate and its performance indicators explained so far in

this section assume a noise-free function. However, a similar procedure for noisy

functions is developed, where just the values of ŷ and ŝ are taken from Subsections

2.5.1 and 2.5.2, respectively.

3.5 ECMF Surrogate: Leveraging Similar Trends from Pre-

vious Concepts

Section 2.6 explains in details multi-fidelity Gaussian random field meta-models that

combine two different fidelities. The multi-fidelity framework to be presented in this

Section re-uses observations of previously sampled concepts in new ones when there

exist similar trends. Nonetheless, current surrogates are fitted independently for each

concept. Concepts with similar trends are common in conceptual design stages, where

the iterative process keeps incrementally evolving the configuration of the solution

(“evolutionary incremental concept”). The multi-fidelity surrogate presented herein

is targeted to these evolutionary concepts; thus, it is called evolutionary multi-fidelity

(ECMF) surrogate.

The addition of previous concept observations via multi-fidelity approach is done
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with the idea that the reuse of the observations results in more efficient surrogates

than the ones that just use observations of the concept itself. It allows designers to

make a better use of the limited computational budget. Again, computer experiments

are used to test the efficiency of reusing computationally intense observations from

previous concepts. The concept previously sampled is called concept 1, whereas the

new concept is called concept 2. Two main assumptions are made while building the

ECMF surrogate: 1) concept 1 design space is included in concept 2 design space;

and 2) there is a constant behavior in the concept 1 training set extension along

the concept 2 exclusive design variables. They are discussed in more detailed in this

Section.

Traditional multi-fidelity methods deal with variable-fidelity codes that have the

same design space. However, concepts have different design spaces: dimensionalities

and design variables may differ across concepts. Space mapping, which is developed

in the microwave circuit community [12] [155], is a method of linking variable-fidelity

models. This technique is capable of linking different design spaces of the same

concept from variable fidelities that may or may not share design variables.

For simplicity’s sake, it is assumed herein that the new concept has all the design

variables of the previous concept plus some new ones exclusive for the new concept.

It matches with the conceptual design iterative scenarios, where concepts evolve from

one to the other incrementally (which is previously called “evolutionary incremental

concepts”). The reason for the previous assumption is that the main purpose is to

study the effectiveness of reusing computationally intense observations from previous

concepts; thus, the applicability of the ECMF surrogate to a wider range of design

spaces is left as a secondary factor to study in the future. Good candidates for this

extension to a wider range of design spaces are space mapping techniques [12]

Firstly, a Gaussian surrogate is fitted to the concept 1, ŷ
(D1)
c , in its designed

space, denoted as D1. It means that the hyper-parameters µ
(D1)
c , σ

(D1)
c , and θ(D1)

c are
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found. Note that the super-index indicates the design space of the hyper-parameter

or training data-sets.

Then, the concept 1 training set is extended from D1 to the concept 2 design

space, denoted by D2. There are two possible ways for carrying this extension out.

The first one is to assume a constant behavior of the training set along the concept

2 exclusive design variables. The second option is to use known data to assume a

given behavior along these concept 2 exclusive design variables. The present work

assumes that the only information available on the new concept is the following: a)

its observations (y
(D2)
e ), and b) its similar trends to concept 1 (about which some

observations y
(D1)
c are known); thus, the constant behavior for the concept 1 training

set extension to D2 seems to be the best option. Also, it is important to realize

that the incremental changes from one concept to another are likely to produce small

changes in the response compared to those of the main design factors, which are

present in both concepts.

In order to carry out this concept 1 training data-set extension to D2, X
(D1)
c

and y
(D1)
c are placed at the ends of the concept 2 exclusive design variables, i.e.,

X
(D2)
c = {

[

X
(D1)
c 0(exclD2)

]

,
[

X
(D1)
c 1(exclD2)

]

}, and y
(D2)
c = {y(D1)

c ,y
(D1)
c }.

Then, a new mono-fidelity surrogate for concept 1, ŷ
(D2)
c , can be calculated in the

new concept design space D2. A surrogate computation from scratch is a waste of re-

sources because the surrogate is just a constant extension from the one in D1 to a new

one inD2. The hyper-parameters of the surrogate ŷ
(D2)
c can be obtained from the ones

for ŷ
(D1)
c , specifically µ

(D2)
c = µ

(D1)
c , θ(D2)

c = {θ(D1)
c , θ(exclD2)

c }; once µ(D2)
c and θ(D2)

c

are obtained, σ
(D2)
c is given by Equation 14 for the interpolating case. Since the new

surrogate is a constant extension along concept 2 exclusive design variables, denoted

by exclD2, θ(exclD2)
c should be set to 0(exclD2). However, this option produces numeri-

cal problems such as singularities in the covariance matrices Ψc

(

X
(exclD2)
c ,X

(exclD2)
c

)

,

and Ψc

(

X
(exclD2)
e ,X

(exclD2)
e

)

, see Equation 29. In order to solve this problem, the
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zero values are substituted for a fraction of the minimum component of the vector

θ(D1)
c , i.e., θ(D2)

c = {θ(D1)
c ,

min θ(D1)
c 1(exclD2)

30
} where min θ(D1)

c is the minimum value

of the vector θ(D1)
c .

Once the hyper-parameters of the cheap model in D2 are tuned, Equations 31

and 32 provide the value of the surrogate hyper-parameters µ
(D2)
d and σ

(D2)
d for the

concept 2 surrogate, ŷ
(D2)
e . The hyper-parameter θ

(D2)
d is obtained by a GA search as

explained in Section 2.6. Figure 9 shows a diagram with the proposed multi-fidelity

approach.

Figure 9: Process for ECMF Surrogate

Finally, the prediction and the mean squared error of the multi-fidelity surrogate

for concept 2 could be assessed with Equations 33 and 34, respectively.

Note that the multi-fidelity approach explained so far in this section assumes the

objective function is noise-free. However, a similar procedure for noisy functions is
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developed with the addition of the hyper-parameter λe. Also, equations for µ̂ and σ̂

are taken from Subsections 2.6.1 and 2.6.2.

3.5.1 Performance Indicators for ECMF Surrogates

The method is considered successful if the ECMF surrogate predicts more accurately

the objective function of the new concept than the current mono-fidelity surrogate

for a given range of concept 1 and 2 training data-set sizes. The success indicators

employed to measure success are the same ones as in Subsection 3.4.1: rms of the

“standardized validation error”, and “standardized validation residual”.

If the objective function is available in the design space, the rms of the “standard-

ized validation error” and “standardized validation residual” are given by

errorrms,global =

√

1

V

∫

V

|ye (x)− ŷe (x) |2
y⋆2e,ch

dV (84)

resrms,global =

√

1

V

∫

V

|ye (x)− ŷe (x) |2
ŝe

2 (x)
dV (85)

If the cross-validation technique is used (see Subsection 3.4.1), the rms of the

“standardized validation error” and “standardized validation residual” are given by

errorrms,cvi =

√

√

√

√

1

N2,tr.set

N2,tr.set
∑

i=1

(

|ye (xi)− ŷe,−i (xi) |
y⋆e,ch

)2

(86)

resrms,cvi =

√

√

√

√

1

N2,tr.set

N2,tr.set
∑

i=1

( |ye (xi)− ŷe,−i (xi) |
ŝe,−i (xi)

)2

(87)

3.6 Adaptive Sampling of MIC and ECMF Surrogates

One of the goals of this work is to develop adaptive sampling techniques for surro-

gates that leverage similar trends. The ExI, explained in Subsection 2.7.1, is the

infill criterion chosen herein to adaptively sample design spaces. Typical objective
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functions in design are unknown and likely to be multi-modal and non-convex. ExI

permits exploring regions of the design domain with high uncertainty and exploiting

potentially good performing regions.

As previously said, the ExI is optimized throughout the whole domain. For a mod-

est size of training datasets, multiple valleys are expected in ExI functions; therefore,

gradient techniques are useless and are ruled out. Instead global search techniques

are needed to look for the maximum ExI. This investigation chooses a GA as a global

ExI optimizer due to its high popularity and easy availability. The adaptive sampling

algorithm is halted in this research when a given number of updates is reached.

A MICGA is developed to adaptively sample MIC surrogates whose domains have

continuous, discrete-quantitative, and non-numeric variables. The current state-of-

the-art EGO algorithm to compare with is the simultaneous adaptive sampling of

independent surrogates.

Also, adaptive sampling on ECMF surrogates is performed. However, it is not

a technical challenge because only one concept is handled at a time and its domain

is at most MIC. In the last case, a new concept with a MIC domain, the adaptive

sampling algorithm gets reduced to the same problem, adaptively sampling a MIC

surrogate.

Regarding the adaptive sampling of MIC surrogates, the first step is to make sure

that the optimizer MICGA can drive the adaptive sampling in MIC domains. So,

computer experiments are done to see if there is EGO behavior in the sampling pro-

cess. EGO behavior means that there is a higher concentration of updates in globally

high-performing areas and not just in high performing regions of each category.

3.6.1 Performance Indicators for Adaptive Sampling

The second step is to define success indicators for multi-objective adaptive sampling

on MIC and ECMF surrogates. Optimal solutions for multi-objective scenarios are
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Pareto fronts. So, the success indicators are given by the quality of Pareto fronts. The

adaptive sampling algorithms provide a non-dominated set that intends to approach

the ‘ “real” Pareto set. Two performance indicators are used for this purpose:

Number of points in the non-dominated set It measures the level of detail of

the non-dominated set.

The average distance between the non-dominated set and “real” Pareto front

It quantifies the proximity between the approximating non-dominated set and

the real Pareto front. The average distance d̄ (F, PF ) is given by

d̄ (F, PF ) =

qreal
∑

i=1

min (yi, PF ) (88)

where yi is the i-th point of the approximating non-dominated set, PF the

“real” Pareto front which is assessed by the method NSGA-II developed by

Deb [41], and qreal is the number of Pareto members of PF .

Once the performance indicators of the adaptive sampling experiments are defined,

the MICGA that would search mixed-integer-categorical design spaces is presented.

3.6.2 Mixed-Integer-Categorical Genetic Algorithm

The ExI infill criterion drives the adaptive sampling of MIC surrogates. The next

sample point is obtained from the solution of an optimization problem in the MIC de-

sign space, which is composed with attributes of several nature: continuous, discrete-

quantitative, and categorical. Section 2.8 reviews the MIO techniques: mixed-integer

programming, and stochastic MIO searches. The desired qualities for the optimizer

of the ExI in the MIC domain are:

1) Global search. ExI function is multi-modal.

2) Non-linear functions. ExI is non-linear.
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3) Category handling.

4) Availability and open source.

5) Low computational expense.

The first three qualities are crucial due to the nature of the optimization problem

to solve (the ExI optimization in a MIC domain). Figure 10 shows the qualities

satisfied by mixed-integer programming and stochastic MIO searches. Stochastic

MIO searches satisfy two of the three crucial qualities; therefore, they are chosen to

optimize the ExI, specifically a mixed-integer genetic algorithm is selected. However,

the optimization tool needs to deal with categories, i.e., a mixed-integer-categorical

optimizer is needed. The question is: how can a MIGA be extended to search mixed-

integer-categorical design spaces?

Figure 10: Qualities of the MIO Methods

Note that in Figure 10, the symbol ≈ means that the tools are available but they

are restricted-source.

First of all, it is explained the conversion from continuous GA to MIGA. The first

possible option to obtain a MIGA is to treat all the variables as continuous; then,
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once the optimal solution is obtained, it is rounded-off. Also Karoui et al. [103]

propose a progressive rounding-off of discrete variables. Capitanescu and Wehenkel

[27] point out the problems for these two approaches: a) a likely deterioration of the

objective value, and b) to ensure feasibility a method to restore it is necessary, which

results in additional coding. These approaches are ruled out due to these downsides.

Better suited generation, crossover, and mutation functions are developed to properly

treat the integer variables. These functions have led to good performing MIGA [44].

Several modification on MIGA will be proposed in this section to convert them into

mixed-integer-categorical GA.

Deep et al. [44] develop a GA to solve mixed-integer problems. However, its access

is strictly limited. MATLABR© 2011b provides a GA with mixed-integer capabilities

based on Deep et al.’s work. Again, the functions to carry out the optimization process

are encrypted in private files, so no modifications can be done to build a MICGA out

of the MATLABR© MIGA. On the other hand, all the MATLABR© functions that are

called by the MATLABR© continuous GA solver are accessible. Therefore, the first

step towards MICGA is to build a MIGA out of the MATLABR© continuous GA, and

later the MICGA will be implemented.

Modifications on the generation, mutations, and crossover functions are carried

out to convert the continuous GA into MIGA according to the literature available.

The initial population of continuous and integer variables are uniformly randomly

generated. Gaussian and geometric mutation distributions are used for continuous

and integer variables, respectively. Regarding crossovers, both continuous and integer

values are crossovered intermediately. If the resulting integer crossover value is not

integer, rounding is applied with equal probability for ceiling and flooring. As a re-

minder the mutation and crossover functions are briefly classified in Subsection 2.8.3.

The resulting solver is tested against typical mixed-integer problems and compared

with the source-restricted MATLABR© 2011b MIGA.
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MIGAs can be used to pursue the global optimum on a MIC domain. The MIGA

can optimize the ExI of one category at a time. Later, a comparison between cate-

gorical optimum selects the global optimum. However, a more efficient handling of

the categorical variable is to modify the generation, cross-over, and mutation of the

categorical part of the population genome. In such a way, just one optimizer call is

needed, and the population is expected to focus on the best categories and, therefore,

save ExI calls in categories with low ExI.

Once the MIGA is available, modifications are performed to turn it into a MICGA.

Regarding the initial population generation, the categorical part of the genomes is

produced using full factorial techniques with as many levels as members in the cat-

egorical variable. Then, the resulting sampling plan in the categorical dimension

is repeated to obtain the desired number of sample points for each combination of

categories. It assures that all categories are present in the initial population evenly,

i.e., similar number of initial population members for all points in the non-numeric

subset domain, denoted by D1 × D2 × ... × Dnn
. Di represents the set of possible

members for the non-numeric variable i. The choice of full factorial techniques for

categorical inputs is made due to the lack of proper distance between members of

the same categorical variable. It is also made sure that the size of the population is

bigger than the number of members in the non-numeric subset |D1×D2 × ...×Dnn
|.

|A| represents the number of members in the set A.

Nominal values are scatteredly crossovered because intermediate points can not

be defined when there is no order between points. Mutation-wise, uniform distribu-

tions are utilized, which agrees with the Hamming distance: the distance between all

categories is the same.
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3.6.3 Mutation Study

Once the MICGA has been built, a possible spin-off question is the following: is there

any categorical mutation operator that outperforms others for the optimization of the

ExI functions?

Mutation is the process that genetically alters chromosomes. ESs use mutations

as search operators to look for a better solution. An usual method to implement

mutation operators involves generating a random variable for each chromosome. This

random variable determines which value the chromosome will take after the mutation

process. The ES user can modify the mutation operator by defining a mutation

probability over the possible set of values.

Authors have implemented numerous mutation strategies for continuous and discrete-

quantitative design variables [44, 69]. Popular choices are the normal and geometrical

distributions for continuous and integer variables, respectively. These last mutation

distributions are obtained from “Principle of Maximum Entropy” [159, 127]. Uniform

distributions for the non-numeric variables are commonly employed.

Several mutation techniques are developed herein for categorical variables. It

enables the study of the influence of several mutation operators in the performance of

the MICGA when optimizing the ExI over a MIC domain. The mutation distributions

to study are:

1) Uniform Distribution. When a non-numeric variable is to mutate, the likelihood

of the child value is uniformly distributed, i.e., all the other categories have equal

chance to appear in the genome of the child.3

2) Inverse Distance Distribution. The nominal part of the child genome follows a

distribution inversely proportional to the intrinsic distances between the father

3This technique could be considered a maximum entropy technique for categorical variables whose
metric is given by the Hamming distance.
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categorical member and the remaining members.

3) Maximum Entropy. The nominal part of the child genome follows the maximum

entropy distribution given the intrinsic distances between the father categorical

member and the remaining members.

The concept of neighborhood between nominal points could be laid out thanks to

the intrinsic distance of some non-numeric variables, as explained in Subsection 3.3.4.

In this case, distances from one point to others in the categorical dimension is given

by a discrete set of real numbers. The second and third mutation distributions of the

above enumeration, “Inverse Distance Distribution” and “Maximum Entropy”, are

based on this discrete set of real numbers. In the following, a discussion about these

two mutation distributions is presented. Finally, a discussion is presented regarding

the performance indicators while testing the mutation distributions of all types of

variables on functions with MIC domains.

3.6.3.1 Inverse Distance Distribution

It represents a simple and straight-forward method to build a mutation operator

based on the intrinsic distance of a categorical set given a objective function.

Without loss of generality a problem with only one categorical variable is sup-

posed. Let pj be the probability mutation distribution for a parent whose nominal

chromosome takes the j-th value of the nd possible chromosome values, i.e., the non-

numeric variable can take on nd categories and the parent takes the j-th category.

Notice that the super-index j emphasizes the fact that each discrete point in the

categorical dimension has a different mutation distribution. Also, let pjk be the prob-

ability that the mutation child gets the k-th category given the parent takes the j-th

category.

For the parental category j, the inverse distance distribution assigns mutation

122



probabilities, pjk, proportionally to the distance between the j-th and k-th categories

pjk ∝
1

dj,k

where dj,k represents the intrinsic distance between the j-th and k-th categories in

the given categorical variable.

Normalization is required for probability distributions4. The normalization con-

dition is given by Equation 89

nd\j
∑

k=1

pjk = 1 (89)

Taking into account the normalization condition, the probability distribution for

a parent that belongs to the j-th category could be written as

pjk =
1

∑nd\j
l=1

1
dj,l

1

dj,k
for k = 1...nd \ j pjj = 0 (90)

This method clearly makes more likely mutations to categories k that are close to

the parental category j. It represents a simple way to build the mutation distribution.

However, there exist more sophisticated mutation distributions.

3.6.3.2 Maximum Entropy Distribution

As mentioned in Subsection 2.8.3, Rudolph proposes that the mutation distribution

should maximize the entropy if no additional knowledge about the objective function

is known [159].

As is well-known from statistical thermodynamics and information theory, the

entropy definition for a discrete probabilistic distribution pj is

H
(

pj
)

= −
nd\j
∑

k=1

pjk log
(

pjk
)

for j = 1...nd (91)

4It is necessary for a probability distribution that the sum of the probabilities over all the possible
states is equal to one.
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where the index k goes through all the categorical points different from j.

As a probability distribution, normalization is again required. Also, the mean of

the pj distribution, µj , is to be specified to control the shape of the distribution.

These two conditions are written as follows

nd\j
∑

k=1

pjk = 1 for j = 1...nd (92)

nd\j
∑

k=1

dj,kp
j
k = µj for j = 1...nd

The values dj,k can be better arranged by performing a translation, setting the

minimum distance to other categories to zero,

d̂j,k = dj,k −min
k

(dj,k)

where mink is the minimum distance to the category j (in this minimization the value

of k = j is excluded). Notice that the entropy function, see Equation 91, is invariable

to translation in the sample space, which is the set of all possible outcomes for the

random process. It is because the entropy definition only involves the probability and

not the sample space as Equation 91 shows. Only the value of the mean gets affected.

The maximization of the entropy leads to solve a nonlinear constrained optimiza-

tion problems, one per category j = 1, 2, ...nd. Constraints are treated with the help

of Lagrangian multipliers. For a given j, the optimal values can be obtained by partial

differentiation of the objective function. The entropy, augmented with the constraints

given by Equations 92, can be written as

L
(

pjk, λ
j
1, λ

j
2

)

= −
nd\j
∑

k=1

pjk log
(

pjk
)

+λj1





nd\j
∑

k=1

pjk − 1



+λj2





nd\j
∑

k=1

d̂j,kp
j
k − µj



 for j = 1...nd

(93)

where λj1 and λ
j
2 are the Lagrange multipliers for the normalization, and the mean µj
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constraints, respectively. Notice that there is no coupling of the mutation probability

distribution between different parental points j of the categorical design variable.

The main details of the derivation are omitted for compactness’ sake. Finally, a

non-analytically tractable equation is found.

µj =

∑nd\j
k=1 d̂j,k exp

(

λj2d̂j,k

)

∑nd\j
k=1 exp

(

λj2d̂j,k

) for j = 1...nd (94)

If µj is chosen, Equation 94 is solved numerically for λj2. Once λj2 is obtained,

the other Lagrange multiplier λj1 and the probability distribution pj for the parental

category j are

λj1 = 1− log





nd\j
∑

k=1

exp
(

λj2d̂j,k

)



 for j = 1...nd (95)

pjk = exp(−1 + λj1 + λj2d̂j,k) for k = 1...nd \ j for j = 1...nd (96)

It is worth realizing that, for each pj , the mean parameter µj is still free. Several

remarks should be stated regarding the choice of this last parameter.

1) In order to guarantee that the mutation probability distribution, pjk, decays

with djk, the maximum value of the distribution mean, µj, has to be smaller

than the center of mass of the translated distance set to the j-th category, d̂j,k,

µjlimit =
1

nd − 1

nd\j
∑

k=1

d̂j,k

2) The parameter µj controls the shape and mean of the distribution, smaller

values provides a mutation distribution that highly benefits categories close to

the j-th categorical member.
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With the previous remarks being said, the mutation distribution is controlled by

a mutation parameter, νmut ∈ [0, 1], that sets the value of the probability distribution

mean as follows,

µj = νmutµ
j
limit (97)

Therefore, mutation distributions that are wished to highly benefit categories close

to the parental one have values of νmut close to 0, whereas those intended not to take

into account the distance between categorical points have values of νmut close to 1.

The limit νmut −→ 1 represents an uniform mutation probability distribution; the

same one obtained with the Hamming distance. It is convenient for non-numeric

variables where there is no a clear intrinsic distance between values.

3.6.3.3 Performance Indicators Mutation Study

Interest is in the combined mutation strategies for continuous, discrete-quantitative,

and categorical variables. Two performance indicators measure the success of the

method. The first one is the error of the maximization process given by

error = | log10 (max (E [I (x)])est)− log10 (max (E [I (x)])real) | (98)

where the sub-indexes {.}est and {.}real represent the estimated and real value of the

maximization process, respectively.

The error is given in terms of the negative log10 of the maximum E [I (x)]. The

second indicator is the generation at which the last successful improvement larger than

1% is produced in the optimization process. These parameters indicate the accuracy of

the solution and the efficiency of each mutation strategy in the optimization process,

respectively.

The mean and standard deviation of the two indicators are assessed because of

the statistical nature of the GA outputs.
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3.7 Fenestron Configuration as the New Concept

The choice of the fenestron tail as the new concept to test the ECMF surrogate is

made due to several constraints on the author. A possible new concept is a coax-

ial rotor. However, the author could not find a coaxial control routine for rotors in

FLIGHTLAB, the commercial software employed to model the helicopter. The re-

maining options are to include a weapon as a external load in the basic UH60A model

or to substitute the conventional tail with a fenestron one.

Both possibilities have some drawbacks. The first option could be seen more a

new flight condition or mission for the helicopter than a new concept. The second

option is a new concept, but the UH60A is heavier than the largest helicopter that

has been equipped with the shrouded fan. On the other side, the fenestron tail option

allows the study of the trade-off between the increase in weight due to the new tail

configuration and the increase in anti-torque device efficiency because of the ducted

fan.

The fan-in-fin tail is chosen as the new concept for two reasons. First, it is

interesting and practical to study the previously mentioned trade-off between the

weight increase and the enhancement of tail rotor efficiency[123]. The second reason

is the expected proximity between the old concept (UH60A with conventional tail)

and the new concept (UH60A with fenestron tail); it is reasonable to think that they

would experience similar trends.

The main challenge on building a UH60A with fenestron tail FLIGHTLAB model

is the estimation of the fenestron baseline parameters and its overall weight. These

estimations are assessed in the following Subsections.

3.7.1 Fenestron Baseline Values

Rand et al. [150] perform a statistical analysis on a helicopter database. The aim

of the study is to estimate geometry parameters, weight of components, preliminary
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power, and flight performance. Among the targeted geometry parameters, one finds

the rotor diameter, rotor angular speed, horizontal tail surface area, and vertical tail

average chord. The useful part of Rand et al.’s research to the present work is that

in the database some helicopters have a fenestron configuration. Thus, the regression

fits can be used to estimate the fenestron baseline parameters.

The desired fenestron parameters to assess are: Rfen
tr , bfenvt , cfenvt , Ωfentr , Nfen

b,tr , and

cfentr . Rand et al. [150] find that the fenestron rotor diameter is correlated with the

gross weight W0 as follows

DFen
tr = 0.3081W 0.154

0 (99)

The resulting fenestron diameter is 1.2852 m, where W0 = 10660 kg is assumed.

This value is too small compared with Super Puma SA330, one of the heaviest heli-

copter with fenestron. Super Puma diameter is 1.6 m with a gross weight ofW0 = 7000

kg. Therefore, a more reliable estimation, according to the author, could be assessed

by a parallel fit to the one in Equation 99 that passes through the Super Puma point

(DFen
tr = 1.6 m and W0 = 7000 kg). The resulting UH60A diameter for the fenestron

tail configuration is DFen
tr = 1.7071 m.

The addition of the fenestron tail usually results in an increase in the vertical tail

span bfenvt . No correlation has been found, but herein it is assumed that the vertical

tail span is increased one fenestron radius with respect to that of the UH60A with

conventional tail. So, for the baseline case one obtains bfenvt = bConvvt +
DFen
tr

2
= 3.14

m.

The correlation found by Rand et al. [150] for the fenestron vertical tail average

chord is

cfenvt = 0.909Dfen
tr

0.927

that results in cfenvt = 1.4923 m, which is 13.6% larger than that of the UH60A with

the conventional tail.
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Regarding the fenestron angular speed, Rand et al.’s study does not provide a

statistical fitting for the fenestron case. However, the two fenestron helicopters seem

to validate the regressive fit calculated for the angular velocity of the conventional tail

rotor-crafts. Therefore, the conventional tail angular velocity correlation is applied

to estimate the fenestron angular velocity

Ωtr =
364

Dfen
tr

0.828

that leads to a rotor angular speed of Ωfentr = 233.77 rad/s.

Neither is a sizing correlation for the number of fenestron blades found. Normally,

the number of blades go from 7 to 14. In this study it is assumed the lowest range,

i.e., from 7 to 9 fenestron blades, being Nfen
b,tr = 8 the baseline value for the fenestron

case.

The tail rotor blade chord correlation presented by Rand et al. [150] does not

include fenestron information either. However, it is used in the estimation of cfentr

because it is assessed for a situation that also applies to fenestron rotors: the ability

of the tail rotor to balance the torque of the main rotor in a full power vertical climb

at a specified altitude [150]. The correlation formula is

ctr = 0.0058
W 0.506

0

N0.72
b,tr

using the previous values of Nfen
b,tr = 8 and W0 = 10660 kg, the resulting chord is

cfentr = 0.1417 m.

Table 1 shows the baseline values for the UH60A with fenestron tail rotor.

3.7.2 Weight Estimation

There exist several models for rotor-craft weight estimation. Among them, one can

find investigations on weight estimation for preliminary sizing of rotor-craft by Prouty

[146], Rand et al. [150], Tishchenko et al. [185], NASA design and analysis of rotor-

craft (NDARC) [97], and Kalra et al. [102]. These references provide formulas for the
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Table 1: Fenestron Baseline Values
Fenestron Baseline Parameters Values

Rfen
tr 1.7071 m

bfenvt 3.140 m

cfenvt 1.4923 m

Ωfentr 2333.77 rad/s

Nfen
b,tr 8

cfentr 0.1417 m

weight estimation of several parts of the rotor-craft in terms of some basic preliminary

information, such as empty weight, rotor diameter, number of blades, ...

However, not much sizing information is available for the fenestron weight esti-

mation; the main reference for this purpose is Rand et al.’s work [150]. Nevertheless,

the fenestron data is for rotor-craft gross weights up to 8000 kg. The UH60A config-

uration is heavier than the information in the database, but it is assumed that the

statistical correlations and weight estimation formulas still apply.

The change in rotor-craft weight due to the fenestron is broken down in 3 main

contributions:

1) Vertical fin weight

2) Blades weight

3) Hub weight

In the above three contributions, the same procedure is used to calculate the

change in weight of the fenestron tail with respect to the conventional case. The item

contributions of the conventional tail can be known or estimated based on the basic

UH60A information. Also, the item contributions of the fenestron configuration are

estimated with Rand et al.’s work[150].
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3.7.2.1 Vertical Fin Weight Estimation

First, the weight of the conventional vertical tail, WConv
vt , is assessed with the formula

provided by NDARC [97]

WConv
vt = 1.05A0.94

v AR0.53
v N0.71

tr,gb (100)

where Av is the vertical fin area, ARv the vertical fin aspect ratio, and Ntr,gb the

number of tail rotor gearboxes.

The resulted vertical tail weight for the conventional UH60A obtained isWConv
vt =

61.0287 lb. With the Prouty’s equivalent formula one gets a similar weight WConv
vt =

60.4474 lb.

The next step is to estimate the vertical fin weight for the fenestron configuration.

The fenestron diameter and vertical fin chord, estimated in Subsection 3.7.1, are

brought to the weight estimation process: DFen
tr = 1.7071 m and cFenvt = 1.4923 m.

It is convenient to remember that the vertical fin chord is around 13.6% larger than

that of the conventional tail configuration, i.e., ∆cvt = 13.6%.

Finally, the estimation of the fenestron vertical fin is done assuming that the

relative thickness of the fin is kept constant. Also, as previously explained, the length

of the fenestron configuration fin, bFenvt , is one fan radius longer than the UH60A

conventional tail, bConvvt = 7.5 ft

W Fen
vt = WConv

vt ∆c2vt
bConvvt + 0.5DFen

tr

bConvvt

(101)

W Fen
vt , given by Equation 101, is in general a function of the value of DFen

tr . For

the baseline case (DFen
tr = 1.7071 m), its value is W Fen

vt = 49.047 kg.

3.7.2.2 Blades Weight Estimation

Kalra et al. [102] propose a detailed equation for the weight of main rotor blades

that is used in this work for the conventional and fenestron tail rotor blade weight
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estimation, Wtr,bl.

Wtr,bl = ktr,bl

(

Nb

4

)0.5348
σsolR

2.7

(

AR
18

)0.7 (102)

where σsol is the rotor solidity, and ktr,bl is a constant of value 15.

Applying Equation 102 to the conventional tail configuration results in aWConv
tr,bl =

22.45 kg (WConv
tr,1bl = 5.6125 kg per blade). Regarding the fenestron case, the value of

W Fen
tr,bl is determined by fenestron parameters, specifically DFen

tr , cFentr , and NFen
b,tr . For

the baseline case (parameters are given by Table 1), the resulting weight is WConv
tr,bl =

21.529 kg.

3.7.2.3 Hub Weight Estimation

Tishchenko et al. [185] propose the following tail rotor hub weight estimation Wtr,hub

Wtr,hub = ktr,hubNb,trfz,tr,blN
1.35
cf,tr,bl (103)

where ktr,hub is a constant weight coefficient for the tail rotor hub equals to 0.5, Nb,tr

the number of tail rotor blades, fz,tr,bl a factor to account the influence of the number

of blades in the hub weight, and Ncf,tr,bl the centrifugal force on the tail rotor blades.

The value of Ncf,tr,bl is assessed by the integration of the centrifugal force along

the blade

Ncf,tr,bl =

∫ Rtr

rcut

ρtr,blΩ
2rdr

where ρtr,bl =
Wtr,1bl

Rtr
is the blade weight per unit of length, and rcut the root cut-off,

which is set to 1
3
for the fenestron case in this work.

The value of fz,tr,bl is to be determined. The helicopter example provided in

Appendix A in Prouty’s work [146] is used to estimate its value. The parameter

values of this helicopter example are NProu
b,tr = 3, cProutr = 1 ft, ΩProutr = 100 rad/sec,

and RProu
tr = 6.5 ft. In order to calculate the blade weight, Equation 102 is used,

which provides W Prou
tr,bl = 24.4 kg.
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It is known that the total weight of the whole tail rotor assembly in the Prouty’s

example is 82.1 kg. Thus, the difference between the rotor assembly and the blade

weight is the weight of the tail rotor hub, which is W Prou
tr,hub = 57.7 kg. Now all the

factors in Equation 103 are known except fz,tr,bl, so one can solve for it, obtaining a

value of fz,tr,bl = 9.15 · 10−6.

Once the value of fz,tr,bl is obtained, Equation 103 provides WConv
tr,hub = 67.36 kg.

Also, Equation 103 is employed to obtain W Fen
tr,hub; it is a function of DFen

tr , cFentr , and

NFen
b,tr . For the baseline case the resulting weight is WConv

tr,hub = 90.058 kg.

Finally, the total change in weight, ∆W , due to the fenestron tail is given by

Equation 104

∆W =W Fen
vt −WConv

vt +W Fen
tr,bl −WConv

tr,bl +W Fen
tr,hub −WConv

tr,hub (104)

which in general is a function of the fenestron design variables. When particularized

to the the baseline case, its value is ∆W = 43.143 kg.

3.8 Research Methodology Diagrams

Once the methods and the desired studies have been explained, it is helpful to plot

the adaptive sampling algorithms, that include the developed surrogates as well, for

categories and concepts. Adaptive sampling on MIC and ECMF surrogates are shown

in Figures 11, and 12, respectively. These Figures also contain the studies on the

influence of training set sizes, nominal distances, and mutation strategies.

Figure 11: Diagram of Adaptive Sampling on MIC Surrogates
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Figure 12: Diagram of Adaptive Sampling on ECMF Surrogates

Figures 13 and 14 show the whole methodology diagrams for the categories and

concepts, respectively. They contain the motivation, technical challenges, research

questions, hypothesis, and experiments to achieve the purpose of this thesis.
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Figure 13: MIC Methodology Review
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Figure 14: ECMF Methodology Review
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CHAPTER IV

FLIGHTLAB UH60A MODEL

A practical computational model is pursued to measure in the following Chapters the

efficiency of the proposed surrogates, MIC and ECMF. They are intended as tools

in conceptual design of engineering systems where there exists a choice of discrete

alternatives. The targeted application is helicopter design.

Also, the proposed methods are aimed to computationally expensive functions. A

possible example of these functions is the performance of a helicopter; the assessment

of the performance requires to combine several disciplines such as aerodynamics,

structural mechanics, and controls. Thus, even mid-fidelity codes for each discipline

produce intense function calls due to the necessary iterations between disciplines. The

author has no access to the mid and high-fidelity commercial software for helicopters

RCAS or OVERFLOW. However, the software FLIGHTLAB [1] is available.

Typical performance measures used in conceptual design of helicopters are the

engine shaft horsepower in hover and forward flight. Herein, these two measures are

the objective functions to optimize the helicopter design.

The choice of the helicopter to model has to satisfy two conditions: availability

of a reliable FLIGHTLAB model and some experimental information to validate

the model. These restrictions lead the author to pick the UH60A as the baseline

helicopter.

In the remaining part of the Chapter, a review of the UH60A parameters is pre-

sented. Followed by the validation of the hover and forward flight models. The noisy

nature of the FLIGHTLAB output is discussed. Finally, the FLIGHTLAB fenestron

modeling is presented.
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Table 2: Parameters of the UH60A Baseline Model [23]

W = 17252.17 lb
V elhov = 0 knots
V elfor = 139 knots (Adv. Ratio = 0.3218)
UH60A Fuselage
Positionfus,c.g.

1= [345.5, 234.0, 0] in
2 Horizontal Stabilizers
Surface Each Hor. Stab. = 22.5 ft2

AR = 4.6
Airfoils=NACA 0014
Positionattach,hs = [700.1, 244, 0] in
Surface Vert. Stab. = 32.3 ft2

AR = 1.92
Airfoils=NACA 0021
Positionattach,vs = [695, 273, 0] in
T700-GE-700 Engine
Neng = 2
Nominal Engine Torque = 355 lbf · ft
Main Rotor to Engine Gear Ratio = 0.012336
UH60A Landing Gear

1Position = {Fuselage,Waterline,Buttline}

4.1 UH60A Parameters

The FLIGHTLAB commercial package includes a example helicopter which is really

close to the UH60A helicopter. Taking a look at the literature, one can find ex-

perimental data on UH60A hover and forward flight performance, see Bousman and

Kufeld [23], Yeo et al. [205] Lawrence et al. [121], and Shinoda et al. [168]. The

baseline helicopter and rotor configurations are given in Tables 2, and 3, respectively.

4.2 Hover Model Validation

The hover model consists of:

1) Main Rotor. Articulated rigid rotor. Flapping and lead-lag dynamics are in-

cluded. The aerodynamics is brought by a quasi-steady aerodynamic model with

look-up tables for the blade sections (“SC 1095” and “SC 1094R8”). Aerody-

namic tables obtained from JAVAFOIL[84], assuming the Re of the 75% of the
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Table 3: Parameters of the UH60A Baseline Rotors [23]

R = 26.83 ft
Ω = 27 rad/sec
Nb = 4
c̄ = 1.73 ft. Rectangular blade
Blade Twist of the UH60A Blade
Airfoils = {SC 1095, SC 1094R8, SC 1095}
Airfoil boundary = [0.0; 0.485; 0.835; 1.0]R
Hinge Offset = 1.25 ft
Rotor Position = [342.215, 315, 0] in
Weight One Blade = 256.91 lb
Blade Moment Inertia About Hinge = 1512.6 slug · ft2
Longitudinal Shaft Tilt = −3 degrees
Articulated rotor: Flap and lead-lag hinge
Rtr = 5.5 ft
Ωtr = 124.62 rad/sec
Nb,tr = 4
c̄tr = 0.81 ft. Rectangular blade
θtr = −18 degrees
cl,α,tr = 5.73
cd0,tr = 0.0087
cd1,tr = −0.0216
cd2,tr = 0.4
Tail Rotor Position = [732, 324.7,−14] in
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blade span at hover. A blade tip loss factor of 0.97 is assumed. The Peters-He

three states inflow computes the induced velocity. Interference between main

rotor and fuselage is allowed. Regarding discretization, there are a set of 20

aerodynamic segments and another of 6 structural segments, which are both

distributed by an equal annuli area.

2) Tail Rotor. It is a Bailey rotor with blade tip loss factor of 0.92. It is modeled

with a quadratic airfoil drag polar and a linear lift curve.

3) A rigid fuselage with empirical airloads.

4) Aerodynamic surfaces. Rigid surfaces with aerodynamic look-up tables for the

surface section.

5) Propulsion. Two ideal engines without power losses.

6) Control. Standard flight control unit with a longitudinal, lateral and collective

stick, and pedals. Also, two attitudes as pseudo-controls.

This model is compared with the experimental data from “UH60A Airloads Pro-

gram”, specifically the “UH60A Airloads Catalog” by Bousman and Kufeld [23]. They

measured the UH60A hover performance in terms of the total helicopter CP for sev-

eral CW . Figure 15 shows the “UH60A Airloads Program” experimental results and

the corresponding FLIGHTLAB model simulations. The FLIGHTLAB model does

not take into account power losses like transmission, interference between rotors, elec-

trical or operation losses; thus, the FLIGHTLAB model has been corrected with a

helicopter efficiency, η, of 90%.

According to the results in Figure 15, the UH60A model represents decently the

hover performance of the UH60A.

140



 

 

Airloads Program

Flight Lab

CW

C
P

×10−3
4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

×10−4

3

4

5

6

7

8

9

10

Figure 15: Total CP vs CW . Validation of UH60A Hover Shaft Power. FLIGHTLAB
Model

4.2.1 Fenestron Modeling in FLIGHTLAB

FLIGHTLAB features a ducted fan airload model [1]. It is derived from momen-

tum theory combined with blade element analysis. Enhancement features are present

in the model, such as duct-fan interference, and fan wake contraction. These en-

hancements require the use of empirical corrections obtained either by experimental

measurements or advance CFD. However, the author does not have access to these

data; therefore, the ducted fan is kept in the most simple way: the fan wake contrac-

tion and the duct-fan interference are considered negligible. A proper duct lip design

for specific flight conditions can diminish the fan wake contraction effect.
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4.3 Forward Model Validation

The forward model consists of:

1) Main Rotor. Articulated rigid rotor. Flapping and lead-lag dynamics are in-

cluded. The aerodynamics is brought by a quasi-steady aerodynamic model

with look-up tables for the blade section (“SC 1095” and “SC 1094R8”). Aero-

dynamic tables obtained from JAVAFOIL[84], assuming the Re of the 75% of

the blade span at hover. A blade tip loss factor of 0.97 is assumed. The inflow

model is a Glauert one with a nonuniform correction of 15%. No interference

between main rotor and fuselage is allowed. Regarding discretization there are

a set of 20 aerodynamic segments and another of 6 structural segments, which

are both distributed by an equal annuli area.

2) Tail Rotor. It is a Bailey rotor with blade tip loss factor of 0.92. It is modeled

with a quadratic airfoil drag polar and a linear lift curve.

3) A rigid fuselage with empirical airloads.

4) Aerodynamic surfaces. Rigid surfaces with aerodynamic look-up tables for the

surface section.

5) Propulsion. Two ideal engines without power losses.

6) Control. Standard flight control unit with a longitudinal, lateral and collective

stick, and pedals. Also, two attitudes as pseudo-controls.

Once again, the model is compared with the experimental data from “UH60A Air-

loads Program”, specifically the “UH60A Airloads Catalog” by Bousman and Kufeld

[23]. They measured the UH60A forward flight performance in terms of the total

helicopter CP vs advance ratio for several CW . In this work the weight coefficient

chosen to validate the forward flight model is CW = 0.0074. Figure 16 shows both
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the “UH60A Airloads Program” experimental results and the FLIGHTLAB model

simulations. As in the hover case, see Section 4.2, the FLIGHTLAB model does not

take into account power losses. The losses are the same as in hover, but the rotors

interference is supposed to be larger for forward flight.

The FLIGHTLAB model has been corrected with a helicopter efficiency, η, of 83%.

It could be thought as a slightly low helicopter efficiency; however, it is convenient

to mimic the experiment measures from the “UH60A Airloads Program”. Figure 16

shows some confidence in the UH60A forward flight FLIGHTLAB model.
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Figure 16: Total CP vs Advance Ratio. Validation of UH60A Forward Flight Shaft
Power. FLIGHTLAB Model

Notice that this forward flight validation was carried out with a weight different

from the baseline, see Table 2. It is done because no experimental data was found

for the exact baseline weight.

Also, the fenestron modeling in forward flight is similar as the one in the hover

case, see Subsection 4.2.1.
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4.4 UH60A Power Consumption as a Noisy Function

It is well known that numerical solvers require discretization and iterative methods.

The resulting solutions are noisy, which represents a problem for design teams when

exploring and exploiting objective functions [66]. The noisy nature of FLIGHTLAB

solutions are shown in this Section.

In order to demonstrate the existence of noise in the UH60A hover power con-

sumption, the landscape of the function is shown in some part of the domain space,

specifically along the main rotor linear twist design variables: θ1 and θ2. The function

is computationally expensive, so a detailed sweep in a large design space is not practi-

cal. Thus, a reduced design space is chosen to evaluate the hover power consumption.

The reduced domain where the function is evaluated is:

θ1 = −3.5 + 3L◦
x1/m θ2 = −1.75 + 2.25L◦

x2/m

where Lx1 = Lx2 = 10−2.

Evaluations of the UH60A hover power consumption are performed on a grid of

this two-dimensional domain space. The samples on the grid are given by parameters

Nsampl,x1 = 101, and Nsampl,x2 = 101. Figure 17 exhibits the contours of the function.

It can be seen the noisy nature of the function.

In order to get a better insight of the noise of the FLIGHTLAB simulation, the

fast Fourier transform (FFT) of the function, FT (fx1, fx2), is carried out to see which

frequencies are present in the hover power consumption. The values of fx1 and fx2

are given by the spacing of the evaluation grid.

fx1 =
1

∆x1
{0, 1, 2, ..., f loor

(

Nsampl,x1

2

)

− 1}

fx2 =
1

∆x2
{0, 1, 2, ..., f loor

(

Nsampl,x2

2

)

− 1}

where ∆x1 and ∆x2 are the separation between the grid evaluation points in the

dimensions x1 and x2, respectively.
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Figure 17: Noise on UH60A shphov. Lx1 = Lx2 = 10−2

The amplitude of the FFT, |FT (fx1, fx2) |, is plotted in Figure 18. It is seen that

the constant term is the dominating one. However, when zooming in high frequency

areas of the FT (fx1, fx2), non-zero values are seen, see Figure 19. Even though the

values of the amplitude are much smaller than that of the zero frequency, the ExI

criterion is expected to set points close to one other when a local optimum is found.

Interpolating surrogates cannot deal with noisy observations. Therefore, this high

frequency noise can result in flawed surrogates when the adaptive sampling process

finds a local optimum.
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Figure 18: Fast Fourier Transform UH60A shphov
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Figure 19: Fast Fourier Transform UH60A shphov. Close-Up to Large Frequency
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CHAPTER V

MIC EXPERIMENTS: TRAINING SIZE AND NOMINAL

DISTANCE

As mentioned in previous sections, one of the goals of this research is to develop

surrogates that take advantage of similar trends across categorical alternatives. Two

Kriging surrogates are brought in this Chapter:

MIC Surrogates They are developed to leverage similar trends across categories.

They include categorical variables in its domain, so it hosts all kinds of design

attributes: continuous, discrete-quantitative and non-numeric. The definition

of a nominal distance is necessary to include the categorical variables in the

surrogate domain. A study is carried out to see the influence of several nominal

distances in the surrogate performance. However, the MIC surrogate that is

compared against the current state-of-the-art is based on the Hamming distance.

Independent Surrogates It is the current state-of-the-art method. A surrogate is

fitted independently for each category.

Both surrogates, the independent surrogate and the MIC surrogate, are compared

to assess the MIC surrogate efficiency. The quality of these surrogates is expected to

increase as the number of the training set size does. Two functions are tested: the

noise-free and cheap disturbed Branin function; and the noisy and intense UH60A

hover shp. As was mentioned in Section 1.7, tests on computationally expensive mod-

els will not help to better interpret the canonical test results or support the research

hypothesis or predictions; however, it supports the practicality of the application.
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The surrogate comparison is given in terms of the success indicators introduced

in Subsection 3.4.1: rms of the “standardized validation error”, and rms of the “stan-

dardized validation residual”, see Equations 77 and 78, respectively.

5.1 Disturbed Branin Function

The first function tested is the disturbed Branin function. Some disturbances are

applied on the first Fourier modes of the Branin function to obtain an objective

function that has similar categorical trends. Also, the second variable of the original

Branin function, x2, is transformed into a discrete-quantitative one by discretizing it

into 11 equally distanced discrete points. Appendix A provides a detailed explanation

on the generation of the disturbed Branin function. The landscape of the function is

plotted in Figure 20. For clarity’s sake, the variable x2 is shown as continuous, but it

is necessary to remind the reader that it is a discrete-quantitative one whose possible

values are

[

0,
1

10
,
2

10
, ...1

]

.
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Figure 20: Contours of Disturbed Branin Function
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5.1.1 Influence of Training Size on Performance

The two meta-models are compared in a range of training set sizes from 20 to 400

points. When building the independent surrogates, the training set is equally divided

among the categories. Since both meta-models are probabilistic, two performance

indicators are used for the comparison: rms of the surrogate “standardized validation

error”, and rms of surrogate “standard validation residual”. A set of validation points

are evaluated to assess the performance indicators.

Curves are fitted to try to understand the tendency of the results for each type of

surrogate. For the rms of the “standardized surrogate error” the fitting curve chosen

is of the form

B

Nα
tr.set

(105)

it asymptotically tends to zero since the r.m.s. of the “standardized surrogate error”

is expected to do so. The curve fit for the rms of the standardized surrogate residual

is

A +
B

Nα
tr.set

(106)

it asymptotically tends to A since the r.m.s. of the “standardized surrogate residual”

is expected to tend to a number, specifically to one. A, B, and α are constants.

Note that, as explained in Subsection 3.4.1, the value of the constant α determines

how quickly performance indicators converge to their final value; thus, α enables the

study of the convergence as the training set size increases.

The success indicator rms of the “standardized validation error” is plotted in

Figure 21. It shows the comparison between the MIC Hamming surrogate versus the

current state-of-the-art (one independent surrogate for category).

Figure 21 shows that the MIC Hamming surrogate results in more accurate meta-

models than fitting independent surrogates for each category for the small range of

sampling sizes. The reason is that, in the case of low number of points, only a few
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Figure 21: Surrogate “Standardized Validation Error”. MIC vs Independent Surro-
gate. Disturbed Branin Function

points are sampled for each category; thus, the rms of the “standardized validation

error” for the independent surrogate has little information, resulting in a poorer

performance than the MIC Hamming surrogate, where observations are cross-used

across categories. Specifically, for 24 sample points and six categories, only four

points are used for building the two-dimensional surrogate of each category.

For high training set sizes, independent surrogates gain performance up to a point

where they produce a better surrogate than the MIC Hamming one. It implies that

when the training set is large enough, the cross-use of observations matters less. This

cross-use of observations at this high range of sample points are even disadvantageous,

producing surrogates less accurate than the ones that do not cross-use observations.

The reason could be that, in this large training set case, observations hold not only

similar trend information but also high frequency information for each category which

is different across categories. Figure 21 shows that, for training sets larger than 280

samples, the current state-of-the-art outperforms the proposed MIC surrogate.
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Table 4: Values of Constant α for the Fitting Curves of Rms of the “Standardized
Validation Error”. Independent vs MIC Surrogate. Disturbed Branin Function

Low Ntr.set Large Ntr.set

Independent Surr. 0.7122 3.533
MIC Hamming Surr. 0.553 1.156

The gain in performance of the independent surrogate with respect to the MIC

Hamming surrogate is quantified by the values of the constant α in the fitting curve of

the rms of the surrogate error (See Equation 105). Table 4 contains the values of αs.

It is seen that independent surrogates converge more quickly than the MIC Hamming

ones. Also, it is seen that if two fitting curves are used (one for small and another

for large training sets), then the gain in performance of the independent surrogate in

large training sets is higher than in small ones.

Finally the “standard validation residual” is plotted in Figure 22 for the indepen-

dent surrogate and the MIC Hamming one. The independent surrogate “standardized

validation residual” is higher than one for small training sets, which implies that the

uncertainty estimated from the surrogate is lower than the real error, i.e., the surro-

gate uncertainty is underestimated. However, the “standardized validation residual”

for the MIC Hamming surrogate is around one for the whole studied range of training

set sizes.

Results are similar to the ones obtained for the “standardized validation error”:

the MIC Hamming surrogate outperforms the state-of-the-art for small training set

sizes while applied on the disturbed Branin function. For more details about the

tested function, see Appendix A.

5.1.2 Influence of Nominal Distance on Performance

MIC surrogates can be based on several nominal distances. The influence of these

distances in the performance of the MIC surrogate is studied in this Subsection. The

key to include the categorical input into the meta-model is the definition of a distance
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Figure 22: Surrogate “Standardized Validation Residual”. MIC vs Independent
Surrogate. Disturbed Branin Function

between categories that allows interpolating and regressing techniques, as is explained

in Section 3.4.

Several distance functions were presented in Section 3.3 to include the categorical

inputs into the Gaussian process meta-model. They were the following: integer,

Hamming, and intrinsic. The intrinsic-based nominal distances for the disturbed

Branin function are based on phases and amplitudes of the first nine Fourier modes of

the disturbed Branin function. The possible nominal distances (four of them intrinsic-

distances) are the following:

Hamming distance The Hamming distance is employed for the categorical vari-

ables.

Integer distance The nominal variable is arbitrarily mapped to a set of integer

values. Each category of a non-numeric variable is mapped to an integer in the

interval [1, |xnom|], where |xnom| is the number of points in the input xnom. Then,
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the distance brought to the Kriging surrogate is based on this new arrangement

of xnom in the integer line.

Phase-based distance 1 The distance between categorical members i and l is given

by the phase difference in the first nine Fourier modes.

d
(

x(i)nom, x
(l)
nom

)

=

9
∑

j=1

|∠FT
x
(i)
nom

(n1j , n2j)− ∠FT
x
(l)
nom

(n1j , n2j) | (107)

Then, distances given by Equation 107 are normalized to set the largest distance

between categories to 1.

Phase-based distance 2 As “phase-based distance 1” but with an adjustment to

set the minimum distance between categories, d⋆, to 0.5 according to Equation

74.

Amplitude-based distance 1 The distance between categorical members i and l

is given by the amplitude difference in the first nine Fourier modes.

d
(

x(i)nom, x
(l)
nom

)

=
9
∑

j=1

||FT
x
(i)
nom

(n1j , n2j) | − |FT
x
(l)
nom

(n1j , n2j) || (108)

Then, distances given by Equation 108 are normalized to set the largest distance

between categories to 1.

Amplitude-based distance 2 As “amplitude-based distance 1” but with an ad-

justment to set the minimum distance between categories, d⋆, to 0.5 according

to Equation 74.

In Equations 107 and 108 FT
x
(i)
nom

is the Fourier transform of the i-th category of the

disturbed Branin function; n1j and n2j are the frequencies for the jth mode in the

first and second coordinate, respectively.

The rms of the “standardized validation error” is plotted in Figure 23. It shows the

comparison between MIC surrogates based on the previously listed nominal distances.
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Figure 23: Surrogate “Standardized Validation Error”. Comparison Several MIC
surrogates. Disturbed Branin Function

Once it has been shown that for small ranges of training set sizes the MIC surrogate

is convenient (see Subsection 5.1.1), interest is in the performance of MIC surrogates

based on several nominal distances, see Figure 23. This Figure immediate shows

that the MIC integer performs badly in comparison with the other nominal distance-

based MIC surrogates. The performance of the Hamming and the intrinsic models

are similar according to “standardized validation error”. It is noticeable that models

that adjust the minimum distance (MIC intrinsic amplitude 2 and phase 2) behave

better than their non-adapted counterparts (MIC intrinsic amplitude 1 and phase 1).

Also, MIC surrogates based on the Fourier amplitude distance provide slightly poorer

rms of the “standardized validation error” than the ones based on Hamming and the

Fourier phase distances.

Table 5 contains the values of αs for all the MIC surrogates. It is seen that all

the MIC surrogates gain performance with the same speed, except the MIC integer

that is the slowest in both small and large training set sizes. It is important to realize
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Table 5: Values of Constant α for the Fitting Curves of Rms of the “Standardized
Validation Error”. All MIC Surrogates. Disturbed Branin Function

Low Ntr.set Large Ntr.set

MIC Hamming 0.553 1.156
MIC Ampl. 1 0.389 1.393
MIC Ampl. 2 0.433 1.326
MIC Phase 1 0.488 1.174
MIC Phase 2 0.481 1.318
MIC Integer 0.268 1.017

that the exact values of αs depend on where the splitting point between the large and

small training seats. Thus, a different choice of the splitting point would change the

values of αs; however, these changes are expected to be small.

Regarding the “standardized validation residual”, its behavior for several nominal

distance-based MIC surrogates are similar to the one of MIC Hamming surrogate.

5.2 UH60A Hover Shaft Power. Screened Model

Once the ”MIC Surrogate” has been successfully tested on a noise-free canonical

function, the next step is to test it in a practical application. Rotor-craft design

is the selected application to apply the meta-modeling and adaptive sampling tech-

niques. The multidisciplinary nature of the rotor-craft, the complexity of the rotor-

craft physics, and the multi-objective desire of design teams make typical function

evaluations time-consuming. Physics based rotor-craft models are noisy due to itera-

tions, discretizations, ... Therefore, rotor-craft objective functions are a great scenario

to test MIC surrogates on noisy functions. In order to learn the MIC characteristics

when applied to noisy functions, the first rotor-craft design tests are done in screened

domains that are more manageable for testing purposes.

5.2.1 Screening of UH60A Hover Shaft Power

In order to better understand the nature of the objective function, a screening of the

function is done to reduce the number of design variables. The objective function is
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the power consumption of the whole UH60A helicopter, shphov. For further details of

the model, see Section 4.2. Typical design variables are inner θ1 and outer θ2 main

rotor twists, main rotor chord c, radial position of the twist change rtw, main rotor

airfoil, tail rotor radius Rtr, and tail rotor chord ctr. The design limits of the full

design space are shown in Figure 24.

Figure 24: Limits of the Design Space to Screen

In order to reduce the domain, a full factorial DoE of 2 levels is carried out in

JMPR©. Note that the main rotor airfoil is not included in the screening because it is

the categorical variable chosen to later test MIC surrogates. The full factorial DoE

of 2 levels is done for the airfoil “SC 2110”. Figure 25 shows the screening results:

the main features of the functions are captured by keeping the inner θ1 and outer θ2

main rotor twists; the main rotor chord c; and the interactions between θ1, θ2, and c.

Fitting a regressive model in JMPR© with θ1, θ2, and c as independent variables

results in a RSquare = 0.9852. The value of RSquare measures the proportion of

the function variation around the mean explained by the model rather than random

errors. The remaining variation is not explained by the model and is attributed to

random error. Therefore, the screened model that keeps θ1, θ2, and c catches much

of the function behavior (98.52% of the function variation).
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Figure 25: Screening Results of the UH60A Hover Power Consumption

5.2.2 Landscapes of Screened Domain

The design variables are: the inner blade twist θ1 (continuous variable), the outer

blade twist θ2 (continuous variable), the chord length c (discrete-quantitative vari-

able), and the type of airfoil (categorical variable). Four possible airfoils are available:

“NACA 0012”, “SC 2110”, “NACA 23012”, and “SC 1095”. The objective function

is summarized as follows:

shphov (θ1, θ2, c, airfoil) (109)

subjected to

θ1 ∈ [−3.5◦/m,−0.5◦/m] ∈ R θ2 ∈ [−1.75◦/m, 0.5◦/m] ∈ R (110)
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c

c̄
∈ 0.75 +

[

0,
1

3
,
2

3
, 1

]

· 0.5 airfoil ∈ [NACA 0012, ..., SC 1095] (111)

where c̄ = 1.73ft is the baseline chord.

The remaining parameters are W = 16994lb (CT = 5.99 · 10−3), R = 26.83ft,

Ω = 27.0063 rad
sec

, and rcut-off
R

= 0.047. As a numerical function this function is noisy. A

regression model is fitted to visualize and understand its landscapes better. Figures

26, 27, 28, and 29 show the regression of the objective function for different chord

values. The four airfoils clearly experience similar trends. It is seen that the regression

of shphov looks smoother than the Branin function studied in Section 5.1; however,

it is important to remember that shphov is a noisy function, and the Figures show a

regression fit that absorbs the noise.
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Figure 26: UH60A Total shphov versus θ1 and θ2. c = 0.750c̄
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Figure 27: UH60A Total shphov versus θ1 and θ2. c = 0.917c̄
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Figure 28: UH60A Total shphov versus θ1 and θ2. c = 1.083c̄
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Figure 29: UH60A Total shphov versus θ1 and θ2. c = 1.250c̄
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5.2.3 Influence of Training Size on Performance

The goal of this section is to see the efficiency of MIC surrogates with respect to

independent surrogates (one for each categorical alternative). The objective to test

these surrogates is the UH60A hover power in the screened domain. The two meta-

models are compared in a range of training set sizes from 36 to 380 points. When

building the independent surrogates, the training set is equally divided among the

four airfoil surrogates. Since both meta-models are probabilistic, two performance

indicators are used for the comparison: rms of the surrogate “standardized validation

error”, and rms of surrogate “standard validation residual” given by Equations 77,

and 78, respectively. A set of 1024 validation points, 256 for each airfoil, are evaluated

to assess the mentioned performance indicators.

Again, curves are fitted to try to understand the tendency of the results for each

type of surrogate. For the rms of the “standardized validation error”, the curve chosen

is Equation 105, and for the rms of the “standardized validation residual” Equation

106.
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Figure 30: Surrogate “Standardized Validation Error”. MIC vs Independent Surro-
gate. UH60A shphov Screened Domain

Figure 30 shows that the MIC Hamming surrogate produces a more accurate
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surrogate than fitting an independent surrogate for each airfoil in the small range of

sampling sizes, specifically from 36 to 125 points. The independent surrogate gains

performance, as training set size increases, up to a point where it produces a better

surrogate than the MIC one. It appears to reflect that, when the training set is large,

the cross-use of observations matters less, as experienced in Subsection 5.1.1.

The reason is that, for low number of points, only a few points are sampled for

each category; thus, the rms of the “standardized validation error” for the indepen-

dent surrogate has a poor performance. Specifically for 36 training points, only nine

points are used to build a surrogate in the remaining three design variables: θ1, θ2,

and c. Nine points are not enough to construct an accurate three dimensional sur-

rogate. However, the MIC surrogate, although it also has only nine observations

for airfoil, successfully cross-uses observations from other airfoils, producing more

accurate surrogates.

For large training set sizes, the independent surrogate gains in performance until

it produces a better surrogate than the MIC Hamming one; this occurs with training

sets of approximately 125 points. The reason could be that, in this large training set

case, observations hold not only similar trend information but also high frequency

information for each airfoil which are different across airfoils. This share of obser-

vations at this large range of points even produces surrogates less accurate than the

ones that do not share observations.

The gain in performance of independent surrogates with respect to the MIC Ham-

ming surrogates is again quantified by the values of the constant α in the fitting curve

of the rms error, see Equation 105. Table 6 contains the values of αs. For small train-

ing sets (see “low Ntr.set” column in Table 6), the independent surrogate converges

more quickly than the MIC Hamming one as Ntr.set increases. For large training sets,

both surrogates converge at a similar speed (similar values of α).

Figure 31 exhibits the rms of the “standardized validation residual” of the UH60A
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Table 6: Values of Constant α for the Fitting Curves of Rms of the “Standardized
Validation Error”. Independent vs MIC Surrogate. UH60A shphov Screened Domain

Low Ntr.set Large Ntr.set

Independent Surrogate 1.876 2.993
MIC Hamming 1.11 2.78
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Figure 31: Surrogate “Standardized Validation Residual”. MIC vs Independent
Surrogate. UH60A shphov Screened Domain

shphov for the independent surrogate and the MIC Hamming one. The independent

surrogate “standardized validation residual” is higher than one for small training sets.

It implies that the uncertainty estimated with the independent surrogate is lower than

the real error, i.e., the surrogate uncertainty is underestimated.

When the training set becomes larger, the behavior of the independent surrogate

is the opposite: the rms of the “standardized validation residual” is lower than one,

implying that the uncertainty estimated from the surrogate is higher than the real

error. It is worth noticing that the curve fit shown in Figure 31 is decreasing; however,

a closer look into large training set sizes shows that the local tendency of the inde-

pendent surrogate residual is to increase towards one. One can explain the erroneous

behavior of the fitting curve at large training sets with the choice of the fitting curve,

A+
B

xα
,that only allows for monotonicity.

The rms of the “standardized validation residual” of the MIC Hamming surrogate
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is also higher than one for the small range of Ntr.set. It also tends to one as the

training set increases. Compared with the independent surrogate case, the MIC

Hamming residual is closer to one for the majority of the studied range of training

set sizes, so the MIC surrogate estimates the uncertainty of the UH60A shphov better

than the independent surrogate.

Both performance indicators demonstrate that the MIC Hamming surrogate out-

performs the state-of-the-art for small training set sizes when applied on the noisy

UH60A shphov.

5.2.4 Influence of Nominal Distance on Performance

MIC surrogates can be based on several nominal distances. The influence of these

nominal distances in the performance of the MIC surrogate is studied in this Sub-

section. A similar studied was done in Subsection 5.1.2 for the case of the noise-free

disturbed Branin function. For the noisy UH60A shphov, three nominal distances are

tested:

Hamming distance The Hamming distance is employed for the categorical vari-

ables.

Integer distance The nominal variable is arbitrarily mapped to a set of integer

values. Each category of a non-numeric variable is mapped to an integer in the

interval [1, |xnom|], where |xnom| is the number of points in the categorical input

xnom. Then, the distance brought to the Kriging surrogate is based on this new

arrangement of xnom in the integer line.

Cd-based distance The distance between airfoils i and l is based on the drag co-

efficient. Since the aerodynamic drag curves are functions, the L1 distance is

brought, see Section 3.3. The distance takes the form of

d
(

air(i) (α) , air(l) (α)
)

=

∫ αstall

αinf

|C(i)
d (α)− C

(l)
d (α) |dα (112)
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Then, distances given by Equation 112 are normalized to set the largest distance

between categories to one.

Results on the performance of MIC surrogates based on several nominal distances

are shown in Figure 32. This figure exposes similar results as in the free-noise dis-

turbed Branin function studied in Subsection 5.1.2. Again, the MIC integer performs

badly in comparison with the other nominal distance-based MIC surrogates. The

reason could be that the integer distance sets the distance randomly and an order

among categories, which is not in the nature of nominal variables.

The performance of the MIC Hamming and MIC intrinsic models are quite close

according to “standardized validation error”. The MIC intrinsic provides only slightly

better performance than the MIC Hamming surrogate. However, as mentioned in

Section 3.3, the intrinsic distance is not versatile, because it is based in the relation-

ship category-objective function. Also, the intrinsic nominal distance could produce

ill-defined Kriging covariance matrix unlike the Hamming distance. Therefore, the

Hamming distance is the one used to build MIC surrogates for practical problems.

For blade airfoils there is an underlying space that is materialized in terms of

aerodynamic curves at the fidelity level used in the FLIGHTLAB analysis. An intrin-

sic distance based on these curves provides a similar result to just modeling airfoils

as purely categorical variables (using the Hamming distance). The intrinsic distance

based on the underlying continuous parameterization for the airfoil choice may be

effective while doing CFD analysis. However, it is not the purpose of the research

because the multi-disciplinary nature of rotor-crafts makes unaffordable the use of

high-fidelity tools like CFD in conceptual design.

Table 7 contains the values of αs for all the MIC surrogates. It is seen that all

MIC surrogates gain performance at similar speed. However, the MIC integer has a

larger value of the rms of the surrogate “standardized validation error”, as shown in

Figure 32.
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Figure 32: Surrogate “Standardized Validation Error”. Comparison Several MIC
surrogates. UH60A shphov Screened Domain

Table 7: Values of Constant α for the Fitting Curves of Rms of the “Standardized
Validation Error”. All MIC Surrogates. UH60A shphov Screened Domain

Low Ntr.set Large Ntr.set

MIC Hamming 1.11 2.78
MIC Cd 1.051 2.498

MIC Integer 1.002 2.653

Regarding the “standardized validation residual”, the behaviors for different nom-

inal distance-based MIC surrogates are similar to the one of the MIC Hamming sur-

rogate, as happened with noise-free functions (see Subsection 5.1.2).
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CHAPTER VI

MICGA AS THE EGO INFILL CRITERION SOLVER

The goal is to check if the stochastic search algorithm MICGA, developed in Subsec-

tion 3.6.2, can drive the adaptive sampling process on a MIC surrogate, which has a

mixed-integer-categorical domain. A proper behavior of the “Expected Improvement”

criterion is characterized by adaptive sampling updates behaving as EGO optimizers:

explore and exploit the MIC surrogate. For more details, see Subsection 2.7.1.

First the validation of the modified MIGA is done to get confidence on the solver

before building the MICGA. Several mixed-integer canonical functions from the lit-

erature are brought to test the modified MIGA.

Later, the MICGA is tested to see its capability to drive the adaptive sampling

process on MIC surrogates. Performance of MIC surrogates with respect to indepen-

dent ones was tested in Chapter 5. Results showed evidence that, for small training

set sizes, modeling a function dependent on non-numeric variables by MIC surrogate

is more efficient than building an independent surrogate for each category. Also, ex-

periments on MIC surrogates showed that the Hamming distance is an appropriate

nominal distance to build MIC surrogates. Therefore, adaptive sampling algorithms

are run on MIC surrogates, which are based on the Hamming distance and whose

warm-up sampling plans are in the efficient range of training set sizes pointed out in

Chapter 5.

Runs on MIC surrogates with a fixed number of updates are performed to see

where the adaptive sampling algorithm places the updates. The goal is to see if the

layout of the updates corresponds to a typical EGO pattern: high density of updates

located in globally good performing regions. The layout of updates is compared for
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MIC Hamming and MIC integer surrogates of the disturbed Branin function (see

Appendix A).

Later, the UH60A hover shp is adaptively sampled for several warm-up sampling

plans. EGO behavior is again searched by looking at the layout of updates.

6.1 Validation Mixed-Integer Genetic Algorithm

Subsection 3.6.2 proposes an algorithm to optimize the ExI criterion on a design space

composed of continuous, integer, and categorical design inputs. In order to get to this

MICGA, an intermediate step is needed: a MIGA. MIGA stems from the MATLABR©

continuous GA by properly adjusting generation, mutation, and crossover functions,

as explained in Subsection 3.6.2. Several canonical mixed-integer problems are found

in the literature; see Floudas, Pardalos et al. [62], and Himmelblau [87], among others.

The tested optimization problems are provided in detail in Appendix C. Results for

the proposed MIGA are compared with those given by the source-restricted MIGA

provided by MATLABR© 2011b.

Each problem is optimized 100 times with the two algorithms in order to marginal-

ize the intrinsic randomness of GA. Three parameters measure the success of the run:

the percentage of success, the average number of function evaluations, and the aver-

age time (in seconds) on obtaining the optimal solution. The last two measures are

computed only for successful runs.

An optimization is considered successful if all these conditions are satisfied: a) the

optimal objective function is within 2% of the known optimal value; b) the average

cumulative change in value of the fitness function over “StallGenLimit” generations

is less than “TolFun”; and c) the constraint violation is less than “TolCon”. In case

the optimal value of the objective is zero, an optimization whose optimum absolute

value is less than 0.02 is branded as a success. The value of the GA parameters

for both MIGA are: TolFun = 10−6, TolCon = 10−6, StallGenLimit = 50, and
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Table 8: Solutions Obtained by Using Modified MATLABR© GA and Restricted-
Source MATLABR© Mixed-Integer GA

MATLABR© Modified MIGA MATLABR© Restricted-Source MIGA
Problem % Success ave Calls time % Success ave Calls time
1 0.94 5459.7 1.5977 0.56 3004.6 0.7664
2 1 4022.5 1.3054 0.93 1310.1 0.3773
3 1 1561.5 0.3074 1 1561 0.3855
4 1 4258.2 1.4002 0.91 1302.9 0.3951

PopulationSize = 25 and 30 for problems of 2 and 3 independent variables, respec-

tively. The optimization results for the canonical problems are given in Table 8.

Table 8 shows that the percentage of success is better for the modified MIGA,

whereas the time consumption is generally lower for the MATLABR© restricted-source

MIGA. However, for the test problem 3, the time consumption is lower for the mod-

ified MIGA. MIGA parameters have not been tuned because of the corresponding

high cost. It is worth noting that the intention of this Section is just to show that

the modified MIGA can successfully be used to solve mixed-integer problems; it is

a sanity check before building the desired MICGA out of this modified MIGA. An

advantage of the modified MIGA is the accessibility to change the mutation, gen-

eration, and crossover functions unlike in the restricted-source MIGA provided by

MATLABR© where it is not possible due to privacy issues. This freedom is necessary

to convert the modified MIGA into a MICGA. This accessibility also allows a case

study about the influence of possible categorical mutations in the optimization of the

ExI functions on MIC domains.
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6.2 Adaptive Sampling of the Disturbed Branin Function

The adaptive sampling algorithm is run for 40 updates starting with initial warm-up

sampling plans of 30, 54, and 78 points. The adaptive sampling technique is run for

the MIC Hamming, MIC integer and MIC phase-based 1. The problem chosen is the

disturbed Branin function explained in Appendix A. The update points are plotted

to see if the layout of the update points follows the typical pattern of EGO type

optimizer, see Subsection 2.7.1.

An example of update points for a MIC Hamming with 54 warm-up observations

is shown in Figure 33. The updates, green circumferences filled with black, are plotted

together with contours for each nominal variable; however, it is important to remark

that the variable x2 is discrete-quantitative even though the contour plots are filled.

It could be seen that all updates are on tenth values of the x2 design input.
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Figure 33: Adaptive Sampling Disturbed Branin Function. Warm-up Size 54. Up-
dates 40. MIC Nominal Metric Hamming.

Figure 33 shows EGO type optimizer’s behavior, i.e., samples are concentrated in

globally optimal areas of design (categories 2, 4, 5 and 6 as discussed in Appendix A).
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So, one can conclude that the MICGA can successfully drive the adaptive sampling

process on MIC surrogates.

The 40 updates of the adaptive sampling algorithm on the MIC Integer surrogate

are plotted in Figure 34. Compared with the MIC Hamming one, Figure 33, the

adaptive sampling on the MIC integer surrogate places less updates than that on the

MIC Hamming one in interesting regions of the domain. The former surrogate invests

too many resources in category 1 that has a worse performance than other disturbed

Branin function categories such as two and four. Also, in the integer metric case, up-

dates are located in useless corners; it does not happen in the Hamming case. Figures

33 and 34 provide evidence that the Hamming metric is more appropriate than the

integer one for building a surrogate of the Branin disturbed problem; similar results

were found in Subsection 5.1.2 while comparing the efficiency of MIC surrogates based

on several nominal distances.
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Figure 34: Disturbed Branin Function. Warm-up Size 54. Updates 40. MIC Nominal
Metric Integer.
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6.3 Adaptive Sampling of the UH60A Hover Shaft Power

In the present example the UH60A hover power consumption is adaptively sampled.

Also, the resulting best sample is compared with the baseline case (given by Tables

2, and 3). The optimal solution is searched by adaptive sampling the MIC surrogate.

The MICGA optimizes the ExI to search for the next update. The baseline value of

the objective function is

shphov = 1901.7hp

The optimization problem is defined by

shphov (θ1, θ2, c, airfoil) (113)

and subjected to

θ1 ∈ [−3.4◦/m,−0.5◦/m] θ1 ∈ R

θ2 ∈ [−1.5◦/m, 0.5◦/m] θ2 ∈ R

c

c̄
∈ {0.9 +

[

0,
1

3
,
2

3
, 1

]

· 0.85}

airfoil ∈ {NACA 0012, ..., SC 1095}

(114)

The adaptive sampling algorithm is run on MIC surrogates with the following

warm-up sampling sizes: 36, 48, 60, 72, 84 and 96. Table 9 contains the results

of the adaptive sampling runs. The indicators of the results are: the percentage of

function samples in the best 3%, the optimal design (θ1,opt, θ2,opt, copt,Airfoilopt), and

the optimal objective (yopt).

Results in Table 9 demonstrate that the MICGA can drive the EGO algorithm

on a MIC meta-model of the UH60A hover shp. All the runs provide similar optimal
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Table 9: Solution EGO Runs on UH60A shphov. MIC Surrogate

Warm-up Size Updates % in Best 3% θ∗1,opt θ∗2,opt c∗opt Airfoil∗opt yopt

36

5 1 0.3352 0.08208 0 SC 1095 1709.0356
20 0.45 0.3352 0.08208 0 SC 1095 1709.0356
40 0.275 0.3352 0.08208 0 SC 1095 1709.0356
60 0.35 0.2743 0.3454 0 SC 1095 1708.1737

48

5 0.8 0.2106 0.0002473 0 SC 1095 1711.4107
20 0.7 0.229 0.4948 0 SC 1095 1708.1578
40 0.525 0.241 0.4743 0 SC 1095 1708.0969
60 0.3667 0.241 0.4743 0 SC 1095 1708.0969

60

5 1 0.295 0.2788 0 SC 1095 1708.3896
20 0.5 0.2837 0.2942 0 SC 1095 1708.3214
40 0.425 0.2837 0.2942 0 SC 1095 1708.3214
60 0.3833 0.2837 0.2942 0 SC 1095 1708.3214

72

5 1 0.301 0.1717 0 SC 1095 1708.7405
20 0.7 0.2847 0.2591 0 SC 1095 1708.4440
40 0.525 0.2782 0.3248 0 SC 1095 1708.2285
60 0.45 0.2782 0.3248 0 SC 1095 1708.2285

84

5 1 0.2 0.55 0 SC 1095 1708.7854
20 0.7 0.2283 0.4658 0 SC 1095 1708.1822
40 0.525 0.2437 0.4174 0 SC 1095 1708.0962
60 0.4 0.2437 0.4174 0 SC 1095 1708.0962

96

5 1 0.3302 0.097 0 SC 1095 1708.9790
20 0.7 0.3302 0.097 0 SC 1095 1708.9790
40 0.4 0.3302 0.097 0 SC 1095 1708.9790
60 0.35 0.2525 0.3803 0 SC 1095 1708.1316

results, which represent an improvement of around 10% with respect to the baseline

case. A large subset of the updates lands in globally high-performing areas as the

indicator “% in Best 3%” demonstrates. Also, once a good approximation to the

optimal value is obtained, the value of “% in Best 3%” begins to decrease indicating

that the adaptive sampling algorithm starts to explore the unknown parts of the

domain. This is again a typical EGO behavior.

6.3.1 EGO Update Location

Once it has been demonstrated that updates are located on globally good performing

areas instead of on good performing areas of each category, the adaptive sampling

technique is run for 30 updates on MIC Hamming surrogates with several warm-up
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sampling sizes: 32, 52, 66, 84, and 136. The purpose is to actually plot the updates

and see their location instead of relying on the indicator “% in Best 3%”. Layouts of

the adaptive sampling updates are shown in Figures 35, 36, 37, 38, 39, and 40. It is

worth noticing that the globally best performing areas are designs in c = 0.9c̄, and

airfoils “SC 1095” and “NACA 0012”.

A 32 warm-up sampling plan is adaptively sampled 30 times. Figure 35 shows

the 26 updates at c = 0.9c̄. The remaining updates are two at c = 1.183c̄, and two

at c = 1.75c̄. It is seen that some of the updates explore bad performing categories,

whereas the majority of them are in “SC 1095”, the best performing category.
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Figure 35: Adaptive Sampling of the UH60A shphov. Warm-up Size 32. Updates 30.
c = 0.9c̄. MIC Surrogate

For an initial sampling plan of 52 observations, Figures 36 and 37 show the first

20 and 30 updates that seat on c = 0.9c̄, respectively. It is interesting to see that

all the 20 first updates are at c = 0.9c̄, see Figure 36, i.e., the adaptive sampling

algorithm focuses in a globally good performing area, c = 0.9c̄.

As the number of updates increases, there is less uncertainty in the globally good
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Figure 36: Adaptive Sampling of the UH60A shphov. Warm-up Size 52. Updates 20.
c = 0.9c̄. MIC Surrogate
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Figure 37: Adaptive Sampling of the UH60A shphov. Warm-up Size 52. Updates 30.
c = 0.9c̄. MIC Surrogate
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performing regions, such as c = 0.9c̄, because of the high density of updates. Conse-

quently, two updates out of the next 10 are in chord values different from c = 0.9c̄

(one at c = 1.183c̄ and another at c = 1.75c̄). Figure 37 exhibits the 28 updates out

of the 30 that lay on c = 0.9c̄.

19 out of the first 20 updates for a MIC surrogate with 66 warm-up samples are

at c = 0.9c̄, as Figure 38 depicts. The remaining update is at c = 1.183c̄.
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Figure 38: Adaptive Sampling of the UH60A shphov. Warm-up Size 66. Updates 20.
c = 0.9c̄. MIC Surrogate

Figure 39 exhibits the updates at c = 0.9c̄ starting with 84 warm-up samples. It

is seen that, out of the first 10 updates, nine are in the smallest chord. The remaining

one is at c = 1.183c̄.

The last adaptive sampling algorithm is run on a MIC Hamming surrogate starting

with 136 warm-up observations. Figure 40 shows that the 10 first updates are all at

c = 0.9c̄. There exist enough warm-up points to disregard bad performing areas and

fully focus on exploitation.
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Figure 39: Adaptive Sampling of the UH60A shphov. Warm-up Size 84. Updates 10.
c = 0.9c̄. MIC Surrogate
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Figure 40: Adaptive Sampling of the UH60A shphov. Warm-up Size 136. Updates
10. c = 0.9c̄. MIC Surrogate
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In all the shown cases, the EGO type behavior occurs: the samples are concen-

trated in the best performing areas across the whole design space, which are c = 0.9c̄,

and airfoils “SC 1095” and “NACA 0012”.
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6.4 Study of Mutation Strategies

Once new nominal distance measures have been tested for building MIC surrogates,

see Chapter 5, new questions come up: could the distance metrics be efficiently used

in the mutation functions of MICGA when optimizing ExI on MIC domains? which

combination of mutation strategies for all types of variables provides best optimization

results?

Herein, MICGA, presented in Subsection 3.6.2, maximizes the ExI over the MIC

design space for obtaining the next update point. Normally, expected improvement

landscapes have a characteristic multi-modality with hills between points already sam-

pled as pointed out by Jones [99]. These characteristics make possible to extrapolate

the results of ExI optimization tests on canonical objectives to other objectives.

As explained in Subsection 3.6.3, several possibilities can be chosen for the cat-

egorical mutation function of the MICGA: uniform, inverse distance, and maximum

entropy. The following overall mutation strategies for each type of variable are tested:

1) Normal, Geometrical, and Uniform. Normal, geometrical, and uniform distri-

butions for continuous, integer, and categorical variables, respectively.

2) Normal, Geometrical, and Inverse Distance. Normal, geometrical, and inverse

distance distributions for continuous, integer, and categorical variables, respec-

tively. Subsection 3.6.3 explains the inverse distance distribution for categorical

variables.

3) Normal, Geometrical, and Maximum Entropy. Normal, geometrical and max-

imum entropy distributions for continuous, integer, and categorical variables,

respectively. Subsection 3.6.3 explains the maximum entropy distribution for

categorical variables.

4) Uniform, Uniform, and Uniform. Uniform distributions for all kinds of variables.
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5) Uniform, Uniform, and Inverse Distance. Uniform distributions for continuous,

and integer variables; and inverse distance distribution for categorical ones.

6) Uniform, Uniform, and Maximum Entropy. Uniform distributions for contin-

uous, and integer variables; and maximum entropy distribution for categorical

ones.

The success of the method is given in terms of the error of the maximization

process, and the generation at which the last improvement larger than 1% is achieved

in the optimization process, defined in Subsection 3.6.3.3. These parameters express

the precision of the solution, and the efficiency of each overall mutation strategy in

the optimization process.

The ultimate goal of this Subsection is to figure out which mutation strategy is

the most appropriate for the maximization of the ExI. However, before dealing with

it, an study of the performance of each mutation strategy in the maximization of

a canonical function is carried out. The canonical function chosen is the disturbed

Branin function, see Appendix A. Five distinct disturbed Branin functions are mini-

mized with the MICGA 150 times. This is done to marginalize the intrinsic random

nature of stochastic search. The success parameters are presented in Figures 41, and

42.

According to Figures 41 and 42 normal and geometrical distributions seem gener-

ally to provide better results than constant distributions for continuous and integer

variables, respectively, i.e., the mean and standard deviation of the success parame-

ters are generally smaller for normal and geometrical distributions than for uniform

distributions. Also, it is noticeable that the difference between the mutation strategies

with different categorical mutations are not large.

The next step is to study the mutation strategies in the maximization of a ExI

on MIC domains. Several ExI landscapes have been generated at different stages of
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Figure 41: Statistics of Solution Error for Five Disturbed Branin Problems. MICGA
Mutation Study
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Figure 42: Statistics of Generation of the Last Improvement Larger than 1% for Five
Disturbed Branin Problems. MICGA Mutation Study
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the adaptive sampling process on the disturbed Branin function plotted in Figure

20. Again, the optimization is run 150 times to marginalize the randomness of the

MICGA.

Figures 43 and 44 exhibit the error of the maximization process and the genera-

tions at which the last improvement larger than 1% is achieved in the optimization

process, respectively.
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Figure 43: Statistics of Solution Error for ExI Optimization with Several Updates.
MICGA Mutation Study

Results in Figure 43 and 44 reveal again that normal and geometrical mutation

strategies for continuous and integer variables perform normally slightly better than

uniform mutation strategies in terms of both success parameters. Also, little perfor-

mance differences are found across the categorical mutation strategies, as experienced

in the direct optimization of the disturbed Branin function.
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CHAPTER VII

ECMF EXPERIMENTS: NEW CONCEPT AND OLD

TRAINING SIZE

One of the goals of this research is to leverage similar trends between concepts to en-

hance the current poor strategy of fitting a surrogate independently for each concept.

Two Gaussian surrogates are brought in this Chapter:

ECMF Surrogates Surrogates that are developed to leverage similar trends on in-

crementally evolved concepts. A multi-fidelity framework reuses observations of

previously sampled concepts when building a new concept surrogate, see Section

3.5.

Mono-fidelity Surrogates It is the current state-of-the-art method. A surrogate is

fitted for the new concept with no reuse of observations from previous concepts.

It is expected that the multi-fidelity surrogate provides better results than the

independent surrogate for some range of the training set sizes of concept 1 and 2. A

case study is carried out to compare concept 2 ECMF surrogates with concept 2 mono-

fidelity surrogates for several sizes of the training sets. In order to take advantage

of the similar trends, concept 1 has to be already sampled, so a concept 1 surrogate

with certain accuracy is available. Thus, the size of the concept 1 training data-set

must be chosen above a certain size to assure that a precise concept 1 surrogate is

available.

A canonical set of concepts is tested to see the efficiency of the proposed ECMF

method. The canonical set of functions is the Michalewicz one, which is a noise-free

set of functions. Appendix B explains in more detail the construction of this canonical
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set of functions. Then, a test on a more practical scenario is done: the UH60A with

fenestron hover power when observations from the conventional tail UH60A hover

power are available. Both hover power simulations are noisy and computationally

intense functions. As it was mentioned in Section 1.7, tests on computationally

expensive models do not help to better interpret the canonical test results or support

the research hypothesis or predictions; however, they support the practicality of the

application.

The comparison of the ECMF surrogate with the current state-of-the-art is made

in terms of the success indicators introduced in Subsection 3.5.1: rms of the “stan-

dardized validation error”, and rms of the “standardized validation residual”, see

Equations 84, and 85, respectively.

7.1 Michalewicz Canonical Function

7.1.1 Influence of New Concept Training Size on Performance

The concept 1 Michalewicz canonical function has one independent variable; its land-

scapes can be seen in Figure 76 in Appendix B. An old concept training set of seven

observations produces a decent old concept surrogate. The concept 2 training dataset

studied in this Subsection ranges in the interval N2,tr.set ∈ [6, 30]. The success indica-

tors are: concept 2 rms of the “standardized validation error”, and concept 2 rms of

the “standardized validation residual” are plotted in Figures 45 and 46, respectively.

Both success indicators show that, in the small range of N2,tr.set, the proposed

concept 2 ECMF surrogate outperforms the concept 2 surrogate with no reuse of

information (mono-fidelity surrogate). The range in which the ECMF surrogate pro-

vides better rms of the “standardized validation error” is smaller than that range

in the rms of the “standardized validation residual” case. It is worth realizing that

there is a value of N2,tr.set above which the mono-fidelity surrogate outperforms the

ECMF one; thus, the observations from previous concepts must not be used beyond
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Figure 45: Concept 2 Surrogate “Standardized Validation Error”. ECMFN1,tr.set = 7
vs Mono-Fidelity Surrogate. Michalewicz Function.
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Figure 46: Concept 2 Surrogate “Standardized Validation Residual”. ECMF
N1,tr.set = 7 vs Mono-Fidelity Surrogate. Michalewicz Function.

186



Table 10: Values of Constant α for the Fitting Curves of Rms of the “Standardized
Validation Error”. Mono-fidelity vs ECMF Surrogate. Michalewicz Function.

Low N2,tr.set Large N2,tr.set

Mono-fidelity Surr. 0.9231 2.0357
ECMF N1,tr.set = 7 Surr. 0.7218 1.1092

this value of N2,tr.set.

The gain in performance of the mono-fidelity surrogate with respect to the ECMF

one is quantified by the values of the constant α in the fitting curves of the rms of

the “standardized validation error”, similarly as in Subsection 5.1.1 (see Equation

105). Table 10 contains the values of α. It is seen that the mono-fidelity surrogate

converges more quickly to zero than the ECMF with N1,tr.set = 7 as the size of the

new concept training set. Also, it is seen that if two fitting curves are used (one for

small and another for large N2,tr.set), the gain in performance of the mono-fidelity

surrogate in large training sets is higher than in the small ones (see Table 10).

7.1.2 Influence of Previous Concept Training Size on Performance

Also, it is interesting to see the influence of the N1,tr.set on the ECMF surrogate

performance. The studied range for N1,tr.set is [5, 11]. Figure 47 exhibits the rms

of the “standardized validation error” for ECMF surrogates with several values of

N1,tr.set.

For small values of N2,tr.set, the success indicator performance increases as N1,tr.set

does. It is noticeable that the rms of the “standardized validation error” for ECMF

surrogates with N1,tr.set = 9 and N1,tr.set = 11 are quite similar in this small range of

N2,tr.set.

On the high range of N2,tr.set, it seems to be a tendency that as N1,tr.set increases,

the surrogate rms of the “standardized validation error” becomes larger. Figure 47

demonstrates that around N2,tr.set ≈ 100, the ECMF surrogate with N1,tr.set = 9 out-

performs the ECMF surrogate with N1,tr.set = 11. Thus, the rms of the “standardized
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validation error” dependence on N1,tr.set seems to reverse for large values of N2,tr.set.

It appears to reflect that, when the new concept training set is large, the re-use of

observations matters less. It is because the new concept sampling plan provides the

necessary features to fit an accurate surrogate.

Also, as the number of previous concept observations, N1,tr.set, increases, the con-

cept 1 (low-fidelity) surrogate captures features beyond common trends. This high

frequency features can mislead the new concept ECMF surrogate, specially for high

N2,tr.set where new concept high frequency information is already captured by the new

concept sampling plan.
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Figure 47: Concept 2 Surrogate “Standardized Validation Error”. ECMF Several
N1,tr.set. Michalewicz Function.

Table 11 contains the values of α for ECMF surrogates built with several values

of N1,tr.set. It is seen that all the ECMF surrogates gain performance with more or

less similar speed. Looking carefully, one can see the previously discussed rms of the

error dependence on N1,tr.set for the low and high ranges of N2,tr.set.
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Table 11: Values of Constant α for the Fitting Curves of the Rms of the “Standard-
ized Validation Error”. All ECMF Surrogates. Michalewicz Function

Low N2,tr.set Large N2,tr.set

ECMF N1,tr.set = 5 0.5290 1.4988
ECMF N1,tr.set = 7 0.7218 1.1092
ECMF N1,tr.set = 9 0.7517 1.5479
ECMF N1,tr.set = 11 0.9773 0.7891
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7.2 UH60A with Fenestron Tail Hover Shaft Power. Screened

Domain

Before testing the ECMF surrogate on a UH60A model with a large design space,

some tests are done in a screened design space to better understand the ECMF sur-

rogate performance on noisy functions with manageable design spaces. The objective

function is the power consumption of the whole UH60A helicopter with a fenestron

tail, denoted by shpfenhov . The previous or old concept is the UH60A with a conventional

tail.

The design variables are: the inner blade twist (continuous variable), the outer

blade twist (continuous variable), the number of fan blades (discrete-quantitative

variable), and the chord length (discrete-quantitative variable). One can see that the

new concept design variables are the ones obtained in the screening done in Subsection

5.2.1, plus the number of fan blades. This last variable is included to make the new

concept design space different from that of the old concept.

The objective function is summarized as follows:

shpfenhov (θ1, θ2, Nb,tr, c) (115)

subjected to

θ1 ∈ [−3.5◦/m,−0.5◦/m] θ1 ∈ R

θ2 ∈ [−1.75◦/m, 0.5◦/m] θ2 ∈ R

Nb,tr ∈7, 8, 9
c

c̄
∈0.75 +

[

0,
1

3
,
2

3
, 1

]

· 0.5

(116)

where c̄ = 1.73ft is the baseline chord.

The remaining parameters are W = 16994lb (CT = 5.99 · 10−3), R = 26.83ft,

Ω = 27.0063 rad
sec

, and rcut-off
R

= 0.047. The main rotor blade section is “NACA 0012”.
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The numerical and iterative nature of the shpfenhov make it a noisy function. Thus,

a regression model is fitted to plot its landscapes. Figures 48, 49, 50, and 51 show

the regression of the objective function for the feasible chords. The regression of the

function looks less multi-modal than the Michalewicz function studied in Section 7.1.

However, it is worth realizing that the noise is not seen in Figures 48, 49, 50, and 51

because they are regressing meta-models, but the function is noisy.
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Figure 48: UH60A with Fenestron Total shpfenhov versus θ1 and θ2. c = 0.750c̄

The previous concept from which observations are reused is the UH60A with

conventional tail shpconvhov . It is defined in Equations 109, 110, and 111 with the only

change that just the airfoil “NACA 0012” is allowed.

Notice that each concept design space for the power consumption (shpfenhov and

shpconvhov ) is different. The UH60A with the conventional tail has one less design vari-

able, Nb,tr, than the UH60A with fenestron. Therefore, when building the fenestron

concept ECMF surrogate, the previous concept behavior along Nb,tr is assumed to be

constant, as explained in Section 3.5.
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Figure 49: UH60A with Fenestron Total shpfenhov versus θ1 and θ2. c = 0.917c̄
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Figure 50: UH60A with Fenestron Total shpfenhov versus θ1 and θ2. c = 1.083c̄

The landscape of shpconvhov were shown in Figures 26, 27, 28, and 29. One can see

that the power consumptions of the two concepts experience similar trends along their
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Figure 51: UH60A with Fenestron Total shpfenhov versus θ1 and θ2. c = 1.250c̄

common design variables.

7.2.1 Influence of New Concept Training Size on Performance

The goal of this Subsection is to see the efficiency of the ECMF surrogate compared

with that of the mono-fidelity surrogate in a range of the new concept training set

size, specifically from 24 to 288 points. Since both meta-models are probabilistic,

two performance indicators are used for the comparison: rms of the concept 2 surro-

gate “standardized validation error”, and rms of concept 2 surrogate “standardized

validation residual” given by Equations 84, and 85, respectively. A set of 768 val-

idation points are evaluated to assess the performance indicators. The number of

observations from the previous concept is taken to be 20. Figures 52 and 53 show the

rms of the concept 2 surrogate “standardized validation error”, and rms of concept 2

surrogate “standardized validation residual”, respectively.

Again curves are fitted to try to understand the tendency of the results for each
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surrogate. For the rms of the concept 2 “standardized validation error” and “stan-

dardized validation residual”, the fitting curves chosen are Equation 105 and 106,

respectively, see Section 5.1.
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Figure 52: Concept 2 Surrogate “Standardized Validation Error”. ECMF vs Mono-
Fidelity Surrogate. UH60A with Fenestron shpfenhov

Figure 52 shows that the fenestron concept ECMF surrogate (using 20 previous

concept observations) produces a more accurate surrogate than the mono-fidelity

surrogate for the small range of new concept sampling sizes.

The reason is that, for low number of new concept points, observations from the

previous concept complement the incomplete information from the new concept sam-

pling plan. The ECMF surrogate successfully reuses observations from the previous

concept, UH60A with conventional tail, enabling more accurate surrogates.

However, as the new concept training set size becomes larger, the mono-fidelity

surrogate gains in performance until it produces a similar accuracy surrogate as the

ECMF one; this occurs with new concept training sets of approximately 100 points.

It appears to reflect that, when the new concept training set is large, the re-use of

observations matters less. It is because the new concept sampling plan provides the

necessary features to fit a good surrogate, i.e., previous concept observations could
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Table 12: Values of Constant α for the Fitting Curves of the Rms of the “Standard-
ized Validation Error”. Mono vs ECMF Surrogate. UH60A with Fenestron shpfenhov

Screened Domain
Low N2,tr.set Large N2,tr.set

Mono-fidelity 1.1256 0.3647
ECMF 20 0.7308 0.2927

be useless when the new concept training set is large enough to properly capture the

new concept landscape.

The gain in performance of the mono-fidelity surrogate with respect to the ECMF

surrogate is again quantified by the values of the constant α in the fitting curves of

the rms of the error , see Equation 105. Table 12 contains the values of αs. The

mono-fidelity surrogate built with a few new concept observations converges more

quickly than the ECMF one. For large N2,tr.set, both surrogates converge at a similar

speed.
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Figure 53: Concept 2 Surrogate “Standardized Validation Residual”. UH60A with
Fenestron shpfenhov

Figure 53 exhibits the rms of the “standardized validation residual” of the UH60A

shpfenhov for the mono-fidelity and the ECMF surrogate. For both surrogates, the fitted

curve is close to one. The residual of the ECMF surrogate built with 20 conventional

tail UH60A observations is slightly off the ideal value of one.

195



The “standardized validation error” indicator demonstrates that the ECMF sur-

rogate outperforms the state-of-the-art for small new concept training set sizes when

applied on the noisy shpfenhov of the UH60A with fenestron tail.

7.2.2 Influence of Previous Concept Training Size on Performance

The influence of the number of previous concept observations, N1,tr.set, in the perfor-

mance of the ECMF surrogate is studied in this Subsection. A similar study was done

in Subsection 7.1.2 for the noise-free function “Michalewicz”. For the noisy shpfenhov ,

the UH60A with conventional tail training sizes tested, N1,tr.set, are 12 to 20, 28, and

36.

Figure 54 exhibits shpfenhov rms of the “standardized validation error” for ECMF

surrogates built with several values of N1,tr.set. This figure exposes similar results as

the ones obtained in the free-noise Michalewicz function studied in Section 7.1.

For small values of N2,tr.set, the rms of the error decreases as N1,tr.set gets larger.

However, this tendency reverses for the high range of N2,tr.set, i.e., there exists a

tendency that, as N1,tr.set increases, the performance of the surrogate according to

the rms of the error is poorer. The ECMF surrogate with N1,tr.set = 36 has a poorer

performance than the one of the ECMF surrogate with N1,tr.set = 28. Same behavior

was seen in Subsection 7.1.2.

The reason could be that, as the number of previous concept observations, N1,tr.set,

increases, the low-fidelity surrogate captures features beyond common trends. This

high frequency features can mislead the new concept ECMF surrogate, specially for

high values of N2,tr.set where new concept high frequency information is already cap-

tured. It results in a decrease in the ECMF performance as old concept observations

are added to the ECMF (it occurs for a large N1,tr.set). When there are many old

concept observations at the designer’s disposal, a possible remedy is to build the

ECMF surrogate only with a subset of the old concept observations that captures
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only similar trends.
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Figure 54: Concept 2 Surrogate “Standardized Validation Error”. ECMF Several
N1,tr.set. UH60A with Fenestron shpfenhov

Table 13 contains the values of αs for all the ECMF surrogates. All the ECMF

surrogates gain performance at the same speed for large N2,tr.set. It is worth men-

tioning that for ECMF surrogates with N1,tr.set = 36 (the largest previous concept

training set) the gain in performance is slower than for other ECMF surrogates with

lower N1,tr.set as shown in Table 13, and Figure 54. It reflects that at low N2,tr.set

ECMF surrogates with high N1,tr.set are better than their counterpart ECMF with

low N1,tr.set; however, this tendency reverses when N2,tr.set becomes larger.
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Table 13: Values of Constant α for the Fitting Curves of the Rms of the “Stan-
dardized Validation Error”. All ECMF Surrogates. UH60A with Fenestron shpfenhov

Screened Domain
Low N2,tr.set Large N2,tr.set

ECMF N1,tr.set = 12 1.0718 0.2975
ECMF N1,tr.set = 20 0.7308 0.2927
ECMF N1,tr.set = 28 0.6957 0.3719
ECMF N1,tr.set = 36 0.5025 0.3813
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CHAPTER VIII

DEMONSTRATING MIC ADAPTIVE SAMPLING ON

ROTOR-CRAFT PRACTICAL SCENARIO

In this Chapter, the multi-objective adaptive sampling of MIC surrogates is carried

out. The purpose is to understand the characteristics of adaptive sampling techniques

applied on surrogates that leverage similar trends across categories. The adaptive

sampling algorithm is applied to optimize the UH60A power consumption at two

flight conditions. The optimization is performed in two design spaces with different

dimensionalities.

8.1 Multi-objective Adaptive Sampling of the UH60A Shaft

Power. Screened Domain

Before testing the UH60A model on a large design space, some tests are done in a

minor design space to better understand the characteristics of the adaptive sampling

algorithm on MIC surrogates. The example in these Sections aims to reduce the

UH60A power consumption at hover and forward flight with respect to the baseline

(for further details of the model, see Section 4.2). The baseline case is presented in

Tables 2, and 3, its objective function values are

shphov = 1901.7hp shpfwd = 1673.9hp

.

The design variables are the ones obtained in the screening process, see Subsection

5.2.1: the inner blade twist (continuous variable), the outer blade twist (continuous

variable), the chord length (discrete-quantitative variable), and the type of airfoil

(categorical variable). Four possible airfoils are available: “NACA 0012”, “SC 2110”,
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“NACA 23012”, and “SC 1095”. The objective function is summarized as follows:

shphov (θ1, θ2, c, airfoil)

shpfwd (θ1, θ2, c, airfoil)

(117)

subjected to

θ1 ∈ [−3.4◦/m,−0.5◦/m] θ1 ∈ R

θ2 ∈ [−1.5◦/m, 0.5◦/m] θ2 ∈ R

c

c̄
∈ {0.9 +

[

0,
1

3
,
2

3
, 1

]

· 0.85}

airfoil ∈ {NACA 0012, ..., SC 1095}

(118)

The remaining parameters are W = 16994lb (CT = 5.99 · 10−3), R = 26.83ft,

Ω = 27.0063 rad
sec

, and rcut-off
R

= 0.047. Figures 26, 27, 28, and 29 show a regressive

meta-model of the hover power consumption for the feasible chords. A meta-model

is shown instead of the real function because of the computational expense of the

model. The original function is noisy due to the numerical and iterative nature of the

software FLIGHTLAB.

In order to find the optimal solutions for both flight conditions, multi-objective

optimization is applied. Optimal solutions are given by Pareto optimal points, a set

of points that include designs which are so optimized that in order to improve one

goal of any of the Pareto members, its performance in at least one of the other goals

has to diminish.

First, a good approximation of the Pareto front is calculated by the well-known

evolutionary multi-objective algorithm NSGA-II developed by Deb [43]. This non-

dominated set is considered herein as the “real” Pareto front. In order to obtain it,

the expensive helicopter models have been evaluated 7280 times. The computational

intensity of the objective functions limits the number of evaluations and, consequently,

the quality of the assessment of the real Pareto front.
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The Pareto front obtained with the NSGA-II algorithm is plotted in Figure 55,

and 56. The Pareto front is formed of two disconnected fronts as Figure 55 shows.

The larger front corresponds to the airfoil “SC 1095”, whereas the small one belongs

to the airfoil “NACA 0012”. Also, the obtained Pareto front from this optimization

study is better performing in the two objectives than the baseline, as shown in Figure

55.

The EGO algorithm is applied to two surrogates to determine the non-dominated

set that approaches the Pareto front. These surrogates are the following:

MIC Surrogates Surrogates that are developed to leverage similar trends across

categories, see Section 3.4.

Independent Surrogates It is the current state-of-the-art method. A surrogate is

fitted for each category. The adaptive sampling algorithm is applied simultane-

ously to these independent surrogates.

The resulting Pareto fronts from both methods are compared with the “real”

Pareto front obtained from the evolutionary multi-objective genetic algorithm NSGA-

II.

The Pareto fronts after ten updates of the EGO algorithm on surrogates with

warm-up training sets of 38 expensive observations are plotted in Figure 55. It shows

that after ten updates, the EGO algorithm applied on the MIC meta-model estimates

a better approximation to the “real” UH60A Pareto front than the EGO algorithm

applied to independent surrogates simultaneously.

After 25 updates, see Figure 56, both EGO processes approach better the “real”

Pareto front, but there are twelve non-dominated points in the adaptive sampling

on the MIC surrogate over the six in the case of simultaneous adaptive sampling on

independent surrogates.
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Figure 55: Non-Dominated Set Obtained from EGO Algorithm Applied on MIC and
Independent Surrogates. UH60A shp. Warm-Up Size 38
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Figure 56: Evolution Non-Dominated Set Obtained from EGO Algorithm Applied
on MIC and Independent Surrogates. UH60A shp. Warm-Up Size 38

In order to more formally quantify the quality of the non-dominated set for each

adaptive sampling method, two performance indicators are employed: the number of

points in the non-dominated set, and the average distance between the non-dominated

set and “real” Pareto front, see Equation 88. For more details, see Subsection 3.6.1.

These two performance indicators are assessed for warm-up datasets of 36, 48, and

66. Figures 57, 58, 59, 60, 61, and 62 show the results.
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Figure 57: Average Distance to Pareto Set UH60A shp. EGO Algorithm Applied
on MIC and Independent Surrogates. Warm-Up Size 36. Updates 40
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Figure 58: Number Points Non-Dominated Set UH60A shp. EGO Algorithm Applied
on MIC and Independent Surrogates. Warm-Up Size 36. Updates 40

The EGO runs on a starting surrogate with 36 warm-up observations, results are

in Figures 57 and 58, show evidence that the sampling on MIC surrogates provide a

much better Pareto approximation for both indicators: the average distance to the

“real” Pareto front for MIC surrogates is ten times smaller than in the independent

case at five updates; and the number of points in the non-dominated set is around

two times larger in the MIC case throughout the whole updating process.
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Figure 59: Average Distance to Pareto Set UH60A shp. EGO Algorithm Applied
on MIC and Independent Surrogates. Warm-Up Size 48. Updates 40
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Figure 60: Number Points Non-Dominated Set UH60A shp. EGO Algorithm Applied
on MIC and Independent Surrogates. Warm-Up Size 48. Updates 40

When the warm-up size is increased to 48, see Figures 59 and 60, results are

similar to the ones obtained in the smaller warm-up dataset case. Even though there

are more non-dominated points in the independent surrogate case after 23 updates,

the average distance to the “real” Pareto set for the independent surrogate case is

much larger than for the MIC case throughout the whole updating process (around

30 times larger above 23 updates).
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Figure 61: Average Distance to Pareto Set UH60A shp. EGO Algorithm Applied
on MIC and Independent Surrogates. Warm-Up Size 66. Updates 40

 

 

MIC
Indep

N
u
m
b
er

P
o
in
ts

N
o
n
-D

o
m
in
a
te
d
S
et

Updates
0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Figure 62: Number Points Non-Dominated Set UH60A shp. EGO Algorithm Applied
on MIC and Independent Surrogates. Warm-Up Size 66. Updates 40

The final warm-up sets have 66 points. Figure 61 illustrates that the average

distance is slightly smaller for the MIC case in the large part of the studied range.

However, when it comes to the number of non-dominated points (see Figure 62) the

simultaneous EGO on independent surrogates outperforms the EGO on the MIC

surrogate beyond 4 updates.
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When calculating UH60A Pareto front for hover and forward flight, results demon-

strate that EGO algorithm applied on MIC surrogates are more efficient than on

independent surrogates for small warm-up training sets. As happened with the sur-

rogate efficiency, the performance of EGO algorithms on MIC surrogates degrades

with respect to that of the EGO applied simultaneously on independent surrogates

when the training set becomes large.
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8.2 Multi-objective Adaptive Sampling of the UH60A Shaft

Power. Full Domain

The example in this Section aims to reduce the UH60A power consumption in hover

and forward flight even further than in Section 8.1. In order to find even more optimal

solutions for both flight conditions, multi-objective adaptive sampling is applied in

a larger design space. The MIC surrogate is used. The new variables are: the main

rotor radial position where the twist changes rtw, the tail rotor radius Rtr, and the

tail rotor chord ctr.

The objective functions to optimize are

shphov (θ1, θ2, rtw, Rtr, ctr, c, airfoil)

shpfwd (θ1, θ2, rtw, Rtr, ctr, c, airfoil)

(119)

subjected to the full domain constraints given by

θ1 ∈ [−3.4◦/m,−0.5◦/m] θ1 ∈ R

θ2 ∈ [−1.5◦/m, 0◦/m] θ2 ∈ R

rtw
R

∈ [0.72, 0.85]
rtw
R

∈ R

Rtr

R̄tr

∈ [0.98, 1.18] Rtr ∈ R

ctr
c̄tr

∈ [0.93, 1.11] ctr ∈ R

c

c̄
∈ {0.9 +

[

0,
1

3
,
2

3
, 1

]

· 0.85}

airfoil ∈ {NACA 0012, ..., SC 1095}

(120)

where R̄tr, c̄tr, c̄ are the baseline values, see Table 3.

The starting MIC surrogate warm-up dataset has 1000 observations. Figure 63

contains the Pareto front of the full domain (seven variables) after 600 updates,

Pareto front of the reduced domain (four variables), and the baseline values. The
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Pareto front of the full domain dominates the Pareto front of the reduced domain

as expected. The number of points in the non-dominated set is 200, one third of

the number of updates. A close-up of the Pareto front is shown in Figure 64. It is

noticeable that the Pareto front corresponding to the airfoil “NACA 0012” is much

larger in the full domain than in the domain with lower dimensionality.
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Figure 63: Pareto Fronts of the UH60A with Conventional Tail for the Large and
Screened Domain. EGO Algorithm on MIC Surrogates
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Figure 64: Close-Up of the Pareto Fronts of the UH60A with Conventional Tail for
the Large and Screened Domain. EGO Algorithm on MIC Surrogates.
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CHAPTER IX

DEMONSTRATING ECMF ADAPTIVE SAMPLING ON

ROTOR-CRAFT PRACTICAL SCENARIO

In this Chapter, the multi-objective adaptive sampling of ECMF surrogates is carried

out. The one-objective optimization of the ECMF surrogate is skipped because it is

not a technical challenge. This is because the ECMF is a stochastic surrogate whose

domain can be made of continuous, integer and/or categorical. The most demanding

scenario is the adaptive sampling of a meta-model with a mixed-integer-categorical

domain that was already carried out in Chapter 6. Thus, this work moves directly to

practical conceptual design applications without looking at canonical problems.

The research purpose of this Chapter is to understand the characteristics of the

adaptive sampling process on the ECMF surrogates; thus, for simplicity’s sake the

design domain is made of just continuous and discrete-quantitative variables but

not categorical ones. The idea is to avoid mixing the two different methodologies

that are present in this work: the cross-use of intense observations across categorical

alternatives and the reuse of intense observations from a previous concept.

The adaptive sampling algorithm is applied to optimize the UH60A with fenestron

tail power consumption at two flight conditions. The optimization is performed in

two design spaces with different dimensionalities.

9.1 Multi-objective Adaptive Sampling of the UH60A with

Fenestron Shaft Power. Screened Domain

The example in these Sections aims to find optimal UH60A power consumption in

hover and forward flight for the fenestron configuration case. Optimal designs of the

UH60A fenestron configuration are compared with baseline values and the optimal
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designs of the UH60A with regular tail configuration (explored in Chapter 8). The

baseline case is presented in Tables 2, and 3. As proceeded in previous sections, the

optimal solution is given in terms of Pareto fronts. The baseline objective function

values are

shphov = 1901.7hp shpfwd = 1673.9hp

The objective functions to optimize are given by Equations 121

shpfenhov (θ1, θ2, Nb,tr, c)

shpfenfwd (θ1, θ2, Nb,tr, c)

(121)

subjected to constraints given by Equations 122.

θ1 ∈ [−3.4◦/m,−0.5◦/m] ∈ R

θ2 ∈ [−1.5◦/m, 0.5◦/m] ∈ R

Nb,tr ∈7, 8, 9
c

c̄
∈0.9 +

[

0,
1

3
,
2

3
, 1

]

0.85

(122)

The remaining parameters are W = 16994lb (CT = 5.99 · 10−3), R = 26.83ft,

Ω = 27.0063 rad
sec

, and rcut-off
R

= 0.047. The main rotor blade section is “SC 1095”.

The previous concept that will help to capture the functions shpfenhov and shpfenfwd is

the UH60A with conventional tail. Its corresponding objectives shpconvhov and shpconvfwd

are defined in Equations 117; and subjected to Equations 118 with the only difference

that the airfoil “SC 1095” is the only one available for the designer.

Notice that the design space of the two concepts,
(

shpfenhov , shp
fen
fwd

)

and
(

shpconvhov , shp
conv
fwd

)

,

are different. The UH60A with the conventional tail has one less design variable than

the UH60A with fenestron tail. When building the ECMF surrogate, the previous

concept behavior along the variable Nb,tr is assumed to be constant, as explained in

Section 3.5.
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As done for multi-objective adaptive sampling on MIC surrogates, see Section 8.1,

a good approximation of the Pareto front is calculated by the well-known evolutionary

multi-objective algorithm NSGA-II developed by Deb [43]. This approximation set is

considered herein as the “real” Pareto front. In order to obtain it, the computationally

expensive helicopter model has been evaluated 3380 times. The computational in-

tensity of the objective functions limits the number of evaluations and, consequently,

the quality of the assessment of the real Pareto front.

The Pareto front obtained with the NSGA-II algorithm is plotted in Figure 65. It is

seen that the obtained Pareto front from this optimization study is better performing

in the two objectives than the baseline. Also, the Pareto front for the new concept,

UH60A with fenestron tail, dominates the one obtained for the conventional tail

configuration.
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Figure 65: “Real” Pareto Front Obtained from NSGA-II. UH60A with Fenestron
shp. Airfoil “SC 1095”

The EGO algorithm is applied to two surrogates to determine the non-dominated

set that approaches the Pareto front. These two surrogates are the following:

ECMF Surrogates Surrogates that are developed to leverage similar trends of in-

crementally evolved concepts, see Section 3.5.
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Mono-fidelity Surrogates It is the current state-of-the-art method. A surrogate is

fitted for the new concept with no reuse of observations from previous concepts.

The resulting Pareto fronts from both methods are compared with the “real”

Pareto front obtained from the evolutionary multi-objective genetic algorithm NSGA-

II.

The Pareto fronts after 15 updates of the EGO on warm-up training sets of 66

new concept observations and 20 old concept observations are plotted in Figure 66.

It shows that, after 15 updates, the adaptive sampling algorithm on the ECMF meta-

model estimates a better approximation to the “real” fenestron UH60A Pareto front

than the adaptive sampling algorithm applied on the mono-fidelity surrogate.
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Figure 66: Non-Dominated Set Obtained from EGO Algorithm Applied on ECMF
and Mono-Fidelity Surrogates. UH60A with Fenestron shp. New Concept Warm-Up
Size 66. Reuse of 20 Old Concept Observations

After 30 updates, see Figure 67, both EGO processes approach better the “real”

Pareto front, but there are still more points and closer to the “real” Pareto front in

the ECMF case than in the state-of-the-art case.

Again, the number of points in the non-dominated set, and the average distance

between the non-dominated set and the “real” Pareto front, see Equation 88, are
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Figure 67: Evolution Non-Dominated Set Obtained from EGO Algorithm Applied
on ECMF and Mono-Fidelity Surrogates. UH60A with Fenestron shp. New Concept
Warm-Up Size 66. Reuse of 20 Old Concept Observations

brought to quantify the quality of the non-dominated set for each method, as done in

Section 8.1. These two performance indicators are assessed for warm-up sets of 66,

120, and 180 observations; they are shown in Figures 68, 69, 70, 71, 72, and 73.
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Figure 68: Average Distance to Pareto set UH60A with Fenestron shp. EGO Al-
gorithm Applied on ECMF and Mono-Fidelity Surrogates. New Concept Warm-Up
Size 66. Reuse of 20 Old Concept Observations. Updates 40

The EGO runs on starting surrogates with 66 warm-up points, Figures 68 and 69,
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Figure 69: Number Points Non-Dominated Set UH60A with Fenestron shp. EGO
Algorithm Applied on ECMF and Mono-Fidelity Surrogates. New Concept Warm-Up
Size 66. Reuse of 20 Old Concept Observations. Updates 40
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Figure 70: Average Distance to Pareto set UH60A with Fenestron shp. EGO Al-
gorithm Applied on ECMF and Mono-Fidelity Surrogates. New Concept Warm-Up
Size 120. Reuse of 20 Old Concept Observations. Updates 40

show evidence that ECMF surrogates provide a much better Pareto front approxima-

tion for both indicators: the average distance is up to eight times smaller for ECMF

surrogates at 11 updates, and the number of points in the non-dominated is close to

twice as large above the 25th update.

When the warm-up size is increased to 120, see Figures 70 and 71, results are
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Figure 71: Number Points Non-Dominated Set UH60A with Fenestron shp. EGO
Algorithm Applied on ECMF and Mono-Fidelity Surrogates. New Concept Warm-Up
Size 120. Reuse of 20 Old Concept Observations. Updates 40
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Figure 72: Average Distance to Pareto set UH60A with Fenestron shp. EGO Al-
gorithm Applied on ECMF and Mono-Fidelity Surrogates. New Concept Warm-Up
Size 180. Reuse of 20 Old Concept Observations. Updates 40

similar to the ones obtained in the warm-up training sets with 66 observations. How-

ever, one can see that the quality of the Pareto front obtained from the mono-fidelity

surrogate is competitive with the ECMF one during the first updates.

Results for the largest warm-up training sets, 180 observations, are shown in

Figures 72 and 73. They demonstrate that the two Pareto fronts have similar quality.
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Figure 73: Number Points Non-Dominated Set UH60A with Fenestron shp. EGO
Algorithm Applied on ECMF and Mono-Fidelity Surrogates. New Concept Warm-Up
Size 180. Reuse of 20 Old Concept Observations. Updates 40

It shows evidence that the performance of EGO algorithms on ECMF surrogates

degrades with respect to that of EGO algorithm applied on mono-fidelity surrogates

when the new concept training set becomes large, as happened with the surrogate

efficiency (see Chapter 7).

When calculating the UH60A Pareto front for hover and forward flight, results

show evidence that EGO algorithms applied on ECMF surrogates are more efficient

than on mono-fidelity surrogates for the small range of new concept warm-up training

sets.
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9.2 Multi-objective Adaptive Sampling of the UH60A with

Fenestron Shaft Power. Full Domain

The example in this Section aims to reduce the power consumption in hover and

forward flight of the UH60A with fenestron tail even further than in Section 9.1. The

ECMF surrogate is used. A large design space is explored where the new variables

are: the radial position of the twist change, the fenestron radius, and the fenestron

chord.

The objective functions to optimize are

shpfenhov (θ1, θ2, rtw, Rtr, ctr, Nb,tr, c)

shpfenfwd (θ1, θ2, rtw, Rtr, ctr, Nb,tr, c)

(123)

subjected to the full domain constraints given by Equations 126.

θ1 ∈ [−3.4◦/m,−0.5◦/m] θ1 ∈ R

θ2 ∈ [−1.5◦/m, 0◦/m] θ2 ∈ R

rtw
R

∈ [0.72, 0.85]
rtw
R

∈ R

Rtr ∈ [0.8m, 1m] Rtr ∈ R

ctr ∈ [0.14m, 0.2m] ctr ∈ R

Nb,tr ∈ 7, 8, 9

c

c̄
∈ {0.9 +

[

0,
1

3
,
2

3
, 1

]

· 0.85}

(124)

The remaining parameters are W = 16994lb (CT = 5.99 · 10−3), R = 26.83ft,

Ω = 27.0063
rad

sec
, and

rcut-off
R

=
1

3
. The main rotor blade section is again “SC 1095”.

The previous concept that helps to capture the functions shpfenhov and shpfenfwd is the

UH60A with conventional tail. Its corresponding objectives shpconvhov and shpconvfwd are

defined as
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shpconvhov (θ1, θ2, rtw, c)

shpconvfwd (θ1, θ2, rtw, c)

(125)

subjected to

θ1 ∈ [−3.4◦/m,−0.5◦/m] θ1 ∈ R

θ2 ∈ [−1.5◦/m, 0◦/m] θ2 ∈ R

rtw
R

∈ [0.72, 0.85]
rtw
R

∈ R

c

c̄
∈ {0.9 +

[

0,
1

3
,
2

3
, 1

]

· 0.85}

(126)

The same blade section, “SC 1095”, is used for the previous concept. The remaining

previous concept parameters are the same as for the UH60A with fenestron tail:

W = 16994lb (CT = 5.99 · 10−3), R = 26.83ft, Ω = 27.0063
rad

sec
, and

rcut-off
R

= 0.047.

Notice that the design space of the two concepts,
(

shpfenhov , shp
fen
fwd

)

and
(

shpconvhov , shp
conv
fwd

)

,

are different. The UH60A with fenestron tail has three more design variables than

the UH60A with conventional tail. These variables are Rtr, ctr, and Nb,tr. Therefore,

when building the ECMF surrogate, the previous concept behavior along these three

variables is assumed to be constant, as discussed in Section 3.5.

The starting ECMF surrogate warm-up size has 1000 observations and 40 obser-

vations of the UH60A with conventional tail are reused when building the ECMF

surrogate. Figure 74 contains the Pareto front of the full domain (seven variables)

after 400 updates, the Pareto front of the screened domain (four variables), and the

Pareto front of the UH60A with conventional tail (seven variables) calculated in Sec-

tion 8.2.

The seven variable domain Pareto front of the UH60A with fenestron tail dom-

inates the Pareto front of the reduced domain as expected. The number of points

in the non-dominated set is 60, around one seventh of the 400 updates. The seven

variable domain Pareto front of the UH60A with fenestron tail also dominates the
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counterpart Pareto front of the UH60A with conventional tail. It means that the

fenestron tail provides a better design than that of the conventional tail according

to the power consumption at hover and cruise speed. In other words, the benefits

obtained from the increase in efficiency of the fenestron tail are more important than

the weight penalty of the fenestron tail with respect to the conventional tail.
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Figure 74: Pareto Front of the UH60A with Fenestron for the Large and Screened
Domain. EGO Algorithm Applied on ECMF Surrogates
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CHAPTER X

SUMMARY, CONTRIBUTIONS, AND

RECOMMENDATIONS

This final Chapter first summarizes the methodologies and experiments carried out to

test the proposed methods. Then, a review of the contributions is made, comparing

them with the current state-of-the art. It is followed by a list of recommendations to

use the surrogates MIC and ECMF, and the presented adaptive sampling algorithms

on them. Finally, the possible future work is proposed with the purpose of widening

the scenarios where the developed methodologies can be used and making them more

suitable for real engineering design situations.

10.1 Summary

Meta-models that identify and apply similar trends across categories and concepts

have been constructed. They are intended to accomplish the purpose of the present

research: developing new conceptual design tools for the more efficient use of compu-

tationally expensive codes with the purpose of improving the quality of initial designs

and concept/alternative selection. Results on noise-free canonical problems and noisy

UH60A models indicate that, for surrogate modeling and surrogate based-sampling,

the surrogates MIC and ECMF are more efficient than traditional independent sur-

rogates in the low range of training set sizes. The principal conclusions of this work

are:

1) New meta-models, called MIC, are proposed to approximate computationally

expensive models when there is a choice of categories. MIC surrogates aim

to leverage similar trends across categories and apply them in the early design
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phase. These meta-models contain not only continuous and integer variables but

also non-numeric ones. They use a nominal distance to include the categories

as a new variable in their domain. MIC surrogates can be constructed with two

nominal distances: Hamming distance and intrinsic distance when its definition

is possible. These meta-models are an alternative to the current state-of-the-art

that uses independent surrogates, one for each category.

2) When modeling the UH60A hover power consumption, MIC surrogates are

shown to be more “efficient” for small training sets than independent modeling

of the rotor-craft for each airfoil. Same results are obtained for the canonical

disturbed Branin function. ”Efficiency” means fewer observations are needed for

a given accuracy or more accuracy for the same number of intense observations.

The second interpretation leads to the conclusion that MIC surrogates are a

major step in order to better use computationally intense codes in early design

of problems with a categorical choice. In other words, MIC surrogate is a con-

ceptual design tool that, for a given intense function call budget, provides better

accuracy than the current state-of-the-art surrogates. MIC meta-modeling is

shown to be a tool capable of identifying and leveraging the similarities across

categories, leading to better initial designs and categorical selection.

3) In the UH60A hover power consumption example, MIC efficiency degrades with

respect to that of the independent UH60A surrogate for each airfoil as the

training set becomes large. This behavior can be explained by the fact that

as the number of expensive observations increases, high frequency information

for each category is available. These high frequency features are different for

each airfoil, so the cross-use of observations across airfoils, done by MIC, is no

longer efficient. Similar results are found in the test on the canonical disturbed

Branin function. The small range of the training set where the MIC surrogate is
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more efficient than the independent surrogate depends on how similar the trends

are between categories, the dimension of the design space, and the number of

categories. For the specific tested problems, these ranges are plotted in Figures

21, and 30.

4) A MICGA is developed to search a domain with continuous, integer, and cate-

gorical variables. This stochastic algorithm is used to drive the adaptive sam-

pling process on the MIC surrogate.

5) An EGO algorithm is run on the MIC surrogate via MICGA to adaptively

sample the UH60A hover performance. Several EGO processes are performed

and it is observed that in all cases a large subset of the updates are in the globally

high-performing areas (best designs of best airfoils). It is a characteristic of

EGO optimizers. All the EGO runs show an increase in hover performance of

around 10% respect the baseline case.

6) New meta-models, called ECMF, are proposed to approximate computationally

expensive models when there are sequential concepts. ECMF surrogates aim

to leverage similar trends from previously sampled concepts and apply them in

the early design phase. “Evolutionary incremental concepts” are assumed; they

result from the small changes in concepts done by designers while trying to meet

requirements in conceptual design. Multi-fidelity techniques are brought to feed

observations from one concept to another in an innovative way. These meta-

models are an alternative to the current state-of-the-art that uses independent

surrogates for each concept.

7) When modeling the hover power consumption of the UH60A with fenestron

tail, ECMF surrogates are shown to be more “efficient” than the mono-fidelity

surrogates for small new concept training sets, where no reuse of expensive ob-

servations is done. Same results are obtained for the canonical Michalewicz
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function. ECMF surrogates are a major step in order to better use the compu-

tationally intense codes in early design of problems where there is a sequence

of concepts. ECMF meta-modeling is shown to be a tool capable of identifying

and leveraging the similarities from previous concepts, leading to better initial

designs and concept selection.

8) In the example of the hover power consumption of the UH60A with fenestron

tail, ECMF loses efficiency compared to the mono-fidelity surrogate as the new

concept training set becomes large. The reason could be that previous concept

observations could be useless or misleading when the new concept training set

is large enough to properly capture the new concept landscape.

Also, ECMF efficiency saturates or even decreases as the old concept training

set becomes large. This behavior could be explained by the fact that, as the

number of old concept expensive observations increases, high frequency infor-

mation from the previous concept is available. These high frequency features

could be different from one concept to another. So, the reuse of observations

across concepts, done by ECMF, is no longer efficient. Similar results are found

in the test on the canonical Michalewicz function.

The small range of the new concept training set where the ECMF surrogate

is more efficient than the mono-fidelity surrogate depends on how similar the

trends between concepts are, the dimension of the design space, and the number

of old concept observations reused. For the specific tested problems, these

ranges are plotted in Figures 52, and 45.

9) A multi-objective EGO algorithm is run on the MIC surrogate via MICGA

to optimize the UH60A hover and forward flight power consumption. The re-

sulting Pareto front is compared with that obtained from the simultaneous
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multi-objective EGO algorithm on independent surrogates, one for each air-

foil section. The indicators demonstrate again that EGO algorithms on MIC

meta-models are more “efficient” to assess the Pareto front of the UH60A in the

low training set range. The updates in the MIC case are located in the high-

performing areas of the best airfoils earlier than in the current state-of-the-art

case. Multi-objective adaptive sampling on MIC surrogates allows a better use

of the computationally intense tools in rotor-craft conceptual design because

they provide more accurate Pareto fronts given a intense function call budget,

which again leads to better initial designs and airfoil selection.

10) A multi-objective EGO algorithm is run on the ECMF surrogate to optimize

the hover and forward flight power consumption of the UH60A with a fenestron

tail. The resulting Pareto front is compared with that obtained from the multi-

objective EGO algorithm on mono-fidelity surrogates. The indicators demon-

strate again that EGO algorithms on ECMF meta-models are more “efficient”

to assess the Pareto front of the UH60A with fenestron tail in the low training

set range. The updates in the ECMF case are located in the high-performing de-

signs earlier than in the current state-of-the-art case. Multi-objective adaptive

sampling on ECMF surrogates allows a better use of computationally intense

tools in rotor-craft conceptual design because they provide more accurate Pareto

fronts given a intense function call budget, which again leads to better initial

designs and concept selection.

10.2 Contributions

The MIC and ECMF surrogates and their adaptive sampling algorithms provide new

scholarly contributions. Firstly, a new efficient treatment is proposed for building

surrogates of concepts when observations show similar trends across several categories.

In the literature one can only find surrogates for mixed-integer variables [153, 92].
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The use of these proposed meta-models results in more accurate surrogates for a given

number of function calls. It represents an alternative to the current independent

surrogates, one for each category. This alternative is more efficient for small training

sets. It is a major step in order to better use computationally burdensome codes in

early design of problems with categorical choices.

The second novelty is the adaptive sampling of MIC surrogates, the ones of the first

contribution. A mixed-variable genetic algorithm, MICGA, that searches a mixed-

integer-categorical design space at one algorithm call is developed to perform this

task. Adaptive Kriging on mixed-integer domains is done [113]; however, no adaptive

sampling on MIC domains is found in the literature. This contribution allows adap-

tive sampling on the whole design space of a surrogate that cross-uses observations

across categories, whereas currently, all the independent surrogates (with no cross-

use of observations) are adaptively sampled simultaneously that results in a waste

of resources when sampling in poor performing categories occurs. Also, the MICGA

could be considered as a minor contribution: it successfully optimizes the expected

improvement in a mixed-integer-categorical domain. However, one can find in the

literature evolutionary strategies capable of searching MIC domains in the field of

medical image analysis [127].

The third contribution is a methodology that leverages computationally expensive

observations from a previously sampled concept in the construction of a new concept

surrogate. In the literature one can find Gaussian meta-models of concepts using

variable-fidelities that lay on the same design space [79]. Also, trust-region model

management for variable parameterization design spaces has been implemented but

only for the same concept [155]. However, the proposed ECMF surrogate deals with

two different concepts with different design space. With this third contribution, ob-

servations from each concept are employed to build, not only their own concept sur-

rogate, but also other concept surrogates that experience similar trends. It opposes
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to the current state-of-the-art that fits independent surrogates for each concept with

no reuse of the previous concept intense observations. Again, ECMF meta-models for

a given number of function calls are more accurate than mono-fidelity surrogates for

small training sets. It is due to the useful information brought from previously sam-

pled concepts. It is a major step in order to better use computationally burdensome

codes in early design of problems with sequential concepts.

10.3 Recommendations

In this Section recommendations of the proposed methodologies are discussed.

10.3.1 MIC Surrogate

MIC surrogates are a great tool to make a better use of computationally expensive

tools in conceptual design. The recommendations for their use are based on the

assumptions and the results obtained in the computer experiments carried out in

Chapters 5, 6, and 8. The recommendations are presented in the following enumera-

tion:

1) Designers must choose between several categorical alternatives for the same

concept.

2) There are similar trends across the categories along the design variables.

3) Desire of a parametric study of each category design space. It is pursued the

exploration of the each category design space and comparison of optimal designs

across categories.

4) MIC surrogates must be used in early design when the designers’ focus is to

reveal important trends, interactions, and sensitivities.

5) MIC surrogates must be employed when the function budget is limited due

to: the use of computationally expensive tools, presence of many categorical
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alternatives, or existence of large design spaces to explore.

10.3.2 ECMF Surrogate

ECMF surrogates are a great tool to better use of computationally expensive tools in

conceptual design. The recommendations for their use are based on the assumptions

and the results obtained in the computer experiments carried out in Chapters 7, and

9. The recommendations are presented in the following enumeration:

1) Sequential concepts where observations from previous concepts are available.

2) The new concept is an incremental change of the previous one. So similar trends

are expected for the previous and new concept.

3) Desire of a parametric study of each concept. It is pursued by the exploration

of the each concept design space and comparison with other concept optimal

designs.

4) ECMF surrogates must be used in early design when the designers’ focus is to

reveal important, trends, interactions and sensitivities.

5) ECMF surrogates must be employed when the function budget is limited due

to: the use of computationally expensive tools, presence of many concepts, or

existence of large design spaces to explore.

6) Do not use many previous concept observations because it can capture high

frequency information that usually differs across concepts.

10.4 Future Work

The future work aims to extend the developed techniques to scenarios broader than

the research motivation. Also, the proposed methodologies can spin-off new scenarios

that are not directly related to the main research motivation, but where the method-

ologies can be applied. The next enumeration proposes possible future paths:
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1) Take the idea of the cross-use and reuse of computationally expensive observa-

tions to deterministic surrogates. See how effective the cross-use and reuse of

information are in the deterministic case.

2) Investigate on possible methods to select the number and location of the samples

to cross-use and reuse. It would help to increase the performance of the MIC

and ECMF surrogates.

3) Build surrogates that cross-use computationally expensive observations across

concepts (the proposed ECMF surrogate only reuses observations from previ-

ously sampled concepts).

4) Extend ECMF surrogates to less stiff design space assumptions. Space mapping

could be a perfect candidate to build ECMF surrogates where the concept 1

design space is not necessarily included in the concept 2 design space.

5) Extend ECMF surrogates to scenarios where observations from two or more

previous concepts are available.

6) Do a sensitivity study to understand the influence of the number of categories

on the MIC surrogate performance (scalability).

7) Combine ECMF and MIC surrogates and see how the cross-use of observations

across categories and the reuse of observations from previous concepts affect

each other.

8) Formally develop the MICGA optimizer. Perform tests on canonical problems

of different modality.
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APPENDIX A

DISTURBED BRANIN FUNCTION

The Branin function is a two-variable function given by Equation 127

f (X1, X2) =

(

X2 −
5.1

4π2
X2 +

5

π
X1 − 6

)2

+

[(

1− 1

8π

)

cos (X1) + 1

]

+ 5X1 (127)

where the domain is X1 ∈ [−5, 10] and X2 ∈ [0, 15].

First of all, the original function is made dimensionless so that non-bias is pro-

duced when the Kriging surrogate is fitted. The new independent variables are

x1 =
X1 + 5

15
x2 =

X2

15
(128)

The intention is to transform it to a test function on a mixed-integer-categorical

design space, called disturbed Branin function. The purpose of this function is to test

MIC surrogates. While including a new categorical variable to the Branin function

some requirements must be present. MIC surrogates are intended for functions with

similar trends across categories, so the modality of the all disturbed Branin function

categories must be similar to the original Branin function.

The method proposed to obtain disturbed Branin function consists in calculating

the Fourier series of the original Branin function and alter randomly the 9 first Fourier

coefficients. Dym and McKean [49], among many others, provide information about

the Fourier transform.

The amplitudes and phases of the 9 highest modes of the Fourier transform are

randomly modified by two normal distributions according to the following formula:

f̂ ′ (n1, n2) = f̂ (n1, n2) exp{i · rnd1} (1 + 0.05 · rnd2) (129)
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where f̂ and f̂ ′ are the Fourier coefficient of the original Branin function and a

category of the disturbed Branin function, respectively; ni is the Fourier frequency in

the i coordinate dimension; and rndi is a standardized normally distributed random

number N (µ = 0, σ2 = 1). The second factor of the right hand side, exp{i · rnd1}, is

a change of phase of
rnd1
2π

radians in the Fourier coefficient, whereas the last factor

(1 + 0.05 · rnd2) represents a change of 0.05 ·rnd2 in the Fourier coefficient amplitude.

Notice that to avoid large changes in the trends of the Branin function, the amplitude

of the Fourier coefficient is limited to a typical change of 5%, and that of the phase

is 9.11 degrees.

Several disturbed Branin function categories could be built by generating sev-

eral sets of random variables (rnd1, rnd2). Each pair of (rnd1, rnd2) is considered a

category.

Five pairs of random numbers are produced and their corresponding disturbed

Branin function categories are compared with the original Branin function in Figure

75. Contours in Figure 75 show that there are similar trends in the disturbed Branin

function categories, but the depth and location of the valleys varies.

Once the six categories are created (the first category is the original Branin func-

tion, i.e., rnd1 = 0, and rnd2 = 0), a further modification is made to finally convert

the design space into a mixed-integer-categorical one. The x2 coordinate is divided

into 11 equally spaced points

[

0,
1

10
,
2

10
, ...1

]

. It makes the x2 a discrete-quantitative

design input. x1 is kept as a continuous variable.

Table 14 compares the value of the global minimum and its location for the dis-

turbed Branin function categories. Notice that the original Branin function is con-

sidered category 1 of the disturbed Branin function.

Location and value of categorical minimum changes across disturbed Branin func-

tion categories; however, they experience similar trends as depicted in Figure 75.
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Figure 75: Example of Contours of Disturbed Branin Function. 6 Categories

Table 14: Categorical Minimum Values and their Location for the Disturbed Branin
Function

Problem x1 x2 Min Value
Dist Branin 1 (original) 0.1036 0.9 1.5892
Dist Branin 2 0.9921 0.2 -24.8723
Dist Branin 3 0.9893 0.2 4.0047
Dist Branin 4 0.9847 0.3 -21.0302
Dist Branin 5 0.5952 0.1 -13.4278
Dist Branin 6 0.1338 0.7 -15.1981
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APPENDIX B

CANONICAL CONCEPTS WITH SIMILAR TRENDS

A canonical set of functions is needed to test ECMF surrogates. It is obtained out

of the two-dimensional function proposed by Michalewicz [133]. Concept 2 is the

original two-dimensional Michalewicz function whereas concept 1 is a modified spline

of a coordinate plane slice of the original two dimensional Michalewicz’s function. A

quadratic function has been added to the coordinate plane slice of the original two-

dimensional Michalewicz’s function to build the modified spline. Figure 76 shows the

two concepts of the Michalewicz canonical set.
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Figure 76: The Two Concepts of the Michalewicz Function
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APPENDIX C

MIXED-INTEGER CANONICAL PROBLEMS

1) Test Problem 1. Taken from Floudas, Pardalos et al. [62]. It is the example

12.2.2.

minx,y − 0.7y + 5 (x1 − 0.5)2 + 0.8 (130)

− exp (x1 − 0.2)− x2 ≤ 0 (131)

x2 + 1.1y ≤ −1 (132)

x1 − 1.2y ≤ 0.2 (133)

0.2 ≤ x1 ≤ 1 (134)

−2.22554 ≤ x2 ≤ −1 (135)

y ∈ {0, 1} (136)

The known global optimum is (x1, x2, y, f) = (0.9419,−2.1, 1, 1.0765).

2) Test Problem 2. Taken from Floudas, Pardalos et al. [62]. It is the example

12.2.6.

minx,y3y − 5x (137)
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2y2 − 2y0.5 − 2x0.5y2 + 11y + 8x ≤ 39 (138)

−y + x ≤ 3 (139)

2y + 3x ≤ 24 (140)

1 ≤ x ≤ 10 (141)

y ∈ [1, 6] ∩ N (142)

The known global optimum is (x, y, f) = (4, 1,−17).

3) Test Problem 3. Taken from Appendix A of Ref. [87]. It is the example 21.

minx,y

9
∑

i=1

[

exp

(

−(ui − y2)
x

y1
− 0.01i

)]

(143)

where ui = 25 + (−50 log (0.01i))
2
3

0 ≤ x ≤ 5 (144)

y1 ∈ [1, 100] ∩ N (145)

y2 ∈ [0, 25] ∩ Z (146)

The known global optimum is (x, y1, y2, f) = (1.5, 50, 25, 0).

4) Test Problem 4. Constrained Branin function with the second variable discrete.

minx,y

(

y − 5.1

4π2
y +

5

π
x− 6

)2

+ 10

[(

1− 1

8π

)

cosx+ 1

]

+ 5x (147)

−xy < −0.2 (148)

−5 ≤ x ≤ 10 (149)

y ∈
{

0,
3

2
, 3,

9

2
, 6, ...15

}

(150)

The known global optimum is (x, y, f) =
(

9.7315, 9
2
, 8.833

)

.

235



REFERENCES

[1] “FLIGHTLAB model editor manual,” manual, Advanced Rotorcraft Technolo-
gies, May 2006.

[2] Aha, D. W., Kibler, D., and Albert, M. K., “Instance-Based learning
algorithms,” Machine Learning, vol. 6, pp. 37–66, Jan. 1991.

[3] Aha, D. W., Kibler, D., and Albert, M. K., “Instance-Based learning
algorithms,” Machine Learning, vol. 6, p. 3766, 1991.

[4] Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L.,
and Newman, P. A., “Approximation and model management in aerody-
namic optimization with Variable-Fidelity models,” Journal of Aircraft, vol. 38,
pp. 1093–1101, Dec. 2001.

[5] Alexandrov, N. M., Nielsen, E. J., Lewis, R. M., and Anderson,

W. K., “First-Order model management with Variable-Fidelity physics applied
to Multi-Element airfoil optimization,” in 8th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis & Optimization, (Long Beach, CA),
Sept. 2000.

[6] Ash, R. B., Information Theory. New York, NY: Interscience Publishers, 1965.

[7] Avigad, G. and Moshaiov, A., “Simultaneous Concept-Based evolution-
ary Multi-Objective optimization,” Applied Soft Computing Journal, vol. 11,
pp. 193–207, Jan. 2011.
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Gümüs, Z. H., Harding, S. T., Klepeis, J. L., Meyer, C. A., and
Schweiger, C. A., Handbook of Test Problems in Local and Global Optimiza-
tion: Nonconvex Optimization and Its Applications. Dordrecht, The Nether-
lands: Kluwer Academic Publishers, 1st ed., June 1999.

[63] Forrester, A., Bressloff, N. W., and Keane, A., “Optimization us-
ing surrogate models and partially converged computational fluid dynamics
simulations,” Proceedings of the Royal Society of London, Series A, vol. 462,
pp. 2177–2204, July 2006.

[64] Forrester, A., Sobester, A., and Keane, A., “Multi-fidelity optimization
via surrogate modelling,” Proceedings of the Royal Society of London, Series A,
vol. 463, pp. 3251–69, Dec. 2007.

[65] Forrester, A., Sobester, A., and Keane, A., Engineering Design Via
Surrogate Modelling: A Practical Guide. Chichester, UK: John Wiley & Sons,
Sept. 2008.

[66] Forrester, A. I. J., Keane, A. J., and Bressloff, N. W., “Design and
analysis of ”Noisy” computer experiments,” AIAA Journal, vol. 44, pp. 2331–
2339, Oct. 2006.

[67] Friedrich, T., Horoba, C., and Neumann, F., “Multiplicative approxima-
tions and the hypervolume indicator,” in 11th Annual Genetic and Evolutionary
Computation Conference, (Montreal, Canada), pp. 571–578, July 2009.

[68] Ganguli, R., “Survey of recent developments in rotorcraft design optimiza-
tion,” Journal of Aircraft, vol. 41, pp. 493–510, June 2004.

[69] Gao, Y., Ren, Z., and Gao, Y., “Modified differential evolution algorithm
of constrained nonlinear mixed integer programming problems,” Information
Technology Journal, vol. 10, no. 11, pp. 2068–2075, 2011.

241



[70] Gelfand, I. M., Fomin, S. V., and Silverman, R. A., Calculus of Varia-
tions. Mineola, NY: Dover Publications, 2000.

[71] Geoffrion, A. M., “Generalized benders decomposition,” Journal of Opti-
mization Theory and Applications, vol. 10, no. 4, pp. 237–260, 1972.

[72] Giesing, J. and Barthelemy, J. F., “A summary of industry MDO appli-
cations and needs,” in AIAA/USAF/NASA/ISSMO Symposium of Multidisci-
plinary Analysis and Optimization, (St. Louis, MO), Sept. 1998.

[73] Glaz, B., Friedmann, P. P., and Liu, L., “Helicopter vibration reduc-
tion throughout the entire flight envelope using surrogate-based optimization,”
Journal of the American Helicopter Society, vol. 54, pp. 1–15, Jan. 2009.

[74] Glaz, B., Liu, L., and Friedmann, P. P., “Reduced-Order nonlinear un-
steady aerodynamic modeling using a Surrogate-Based recurrence framework,”
AIAA Journal, vol. 48, pp. 2418–2429, Oct. 2010.

[75] Glaz, B., Liu, L., Friedmann, P. P., Bain, J., and Sankar, L. N., “A
Surrogate-Based approach to Reduced-Order dynamic stall modeling,” Journal
of the American Helicopter Society, vol. 57, Apr. 2012.

[76] Gupta, O. K. and Ravindran, A., “Branch and bound experiments in con-
vex nonlinear integer programming,” Management Science, vol. 31, pp. 1533–
1546, Dec. 1985.

[77] Haftka, R. T., “Combining global and local approximations,” AIAA Journal,
vol. 29, pp. 1523–1525, Sept. 1991.

[78] Hamming, R. W., “Error detecting and error correcting codes,” Bell System
Technical Journal, vol. 29, pp. 147–160, Apr. 1950.

[79] Han, Z. H., Zimmermann, R., and Gortz, S., “A new cokriging method
for Variable-Fidelity surrogate modeling of aerodynamic data,” in 48th AIAA
Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition, (Orlando, FL), Jan. 2010. Compendex.

[80] Hao, W., Ying, Y., Wei, Y., and Baohua, L., “Adaptive Approximation-
Based optimization of composite advanced grid-stiffened cylinder,” Chinese
Journal of Aeronautics, vol. 23, pp. 423–429, Aug. 2010.

[81] Harjunkoski, I., Application Of MINLP Methods On A Scheduling Problem
In The Paper Converting Industry. Ph.D. thesis, Ab̊o Akademi University, Ab̊o,
Finland, 1997.

[82] He, S., Prempain, E., and Wu, Q. H., “An improved particle swarm opti-
mizer for mechanical design optimization problems,” Engineering Optimization,
vol. 36, pp. 585–605, Oct. 2004.

242



[83] Hein, B. R. and Chopra, I., “Hover performance of a micro air vehicle:
Rotors at low reynolds number,” Journal of the American Helicopter Society,
vol. 52, pp. 254–262, July 2007.

[84] Hepperle, H., “JAVAFOIL user’s guide,” Tech. Rep. Manual, Dec. 2011.

[85] Hess, R. A., Zeyada, Y., and Heffley, R., “Modeling and simulation for
helicopter task analysis,” Journal of the American Helicopter Society, vol. 47,
pp. 243–252, Oct. 2002.

[86] Hevesi, J. A., Flint, A. L., and Istok, J. D., “Precipitation estimation in
mountainous terrain using multivariate geostatistics, part II: isohyetal maps,”
Journal of Applied Meteorology, vol. 31, pp. 677–688, July 1992.

[87] Himmelblau, D. M., Applied Nonlinear Programming. New York, NY:
McGraw-Hill, 1972.

[88] Holland, J. H., Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence.
Ann Arbor, MI: University of Michigan Press, 1975.

[89] Huband, S., Hingston, P., While, L., and Barone, L., “An evolution
strategy with probabilistic mutation for multi-objective optimisation,” in 2003
Congress on Evolutionary Computation, vol. 4, (Piscataway, NJ), pp. 2284–91,
Dec. 2003.

[90] Igel, C., Hansen, N., and Roth, S., “Covariance matrix adaptation for
multi-objective optimization,” Evolutionary Computation, vol. 15, no. 1, pp. 1–
28, 2007.

[91] Imiela, M., “High-Fidelity optimization framework for helicopter rotors,”
Aerospace Science and Technology, vol. 23, pp. 2–16, Dec. 2012.

[92] Jansson, N., Wakeman, W. D., and Månson, J. A., “Optimization of
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