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SUMMARY

A large direct numerical simulation database spanning a wide range of Reynolds and

Schmidt number is used to examine fundamental laws governing passive scalar mixing and

turbulence structure. Efficient parallel algorithms have been developed to calculate quanti-

ties useful in examining the Kolmogorov small-scale phenomenology. These new algorithms

are used to analyze data sets with Taylor scale Reyolds numbers (Rλ) as high as 650 with

grid-spacing as small as the Kolmogrov length scale.

Direct numerical simulation codes using pseudo-spectral methods typically use trans-

pose based three-dimensional (3D) Fast Fourier Transforms (FFT). The ALLTOALL type

routines to perform global transposes have a quadratic dependence on message size and

typically show limited scaling at very large problem sizes. A hybrid MPI/OpenMP 3D

FFT kernel has been developed that divides the work among the threads and schedules

them in a pipelined fashion. All threads perform the communication, although not concur-

rently, with the aim of minimizing thread-idling time and increasing the overlap between

communication and computation. The new algorithm is seen to give a 30% improvement

over pure-MPI based algorithms at higher core counts.

Turbulent mixing is important in a wide range of fields ranging from combustion to

cosmology. Schmidt numbers range from O(1) to O(0.01) in these applications. The Schmidt

number dependence of the second-order scalar structure function and the applicability of

the so-called Yaglom’s relation is examined in isotropic turbulence with a uniform mean

scalar gradient. At the moderate Reynolds numbers currently achievable, the dynamics of

strongly diffusive scalars is inherently different from moderately diffusive Schmidt numbers.

Results at Schmidt number as low as 1/2048 show that the range of scales in the scalar field

become quite narrow with the statistics of the small-scales approaching a Gaussian state. A

much weaker alignment between velocity gradients and principal strain rates and a strong
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departure from Yaglom’s relation have also been observed. Evaluation of different terms

in the scalar structure function budget equation assuming statistical stationarity in time

shows that with decreasing Schmidt number, the production and diffusion terms dominate

at the intermediate scales possibly leading to non-universal behavior for the low-to-moderate

Peclet number regime considered in this study.

One of the few exact, non-trivial results in hydrodynamic theory is the so-called Kol-

mogorov 4/5th law. Agreement for the third-order longitudinal structure function with the

4/5 plateau is used to measure the extent of the inertial range, both in experiments and

simulations. Direct numerical simulation techniques to obtain the third order structure

structure functions typically use component averaging, combined with time averaging over

multiple eddy-turnover times. However, anisotropic large scale effects tend to limit the

inertial range with significant variance in the components of the structure functions in the

intermediate scale ranges along the Cartesian directions. The net result is that the asymp-

totic 4/5 plateau is not well attained. Motivated by recent theoretical developments we

present an efficient parallel algorithm to compute spherical averages in a periodic domain.

The spherically averaged third-order structure function is shown to attain the K41 plateau

in time-local fashion, which reduces the need for running direct numerical simulations for

multiple eddy-turnover times.

It is well known that the intermittent character of the energy dissipation rate leads

to discrepancies between experiments and theory in calculating higher order moments of

velocity increments. As a correction, the use of three-dimensional local averages has been

proposed in the literature. Kolmogorov used the local 3D averaged dissipation rate to

propose a refined similarity theory. An algorithm to calculate 3D local averages has been

developed which is shown to scale well up to 32768 cores. The algorithm, computes local

averages over overlapping regions in space for a range of separation distances, resulting in

N3 samples of the locally averaged dissipation for each averaging length. In light of this

new calculation, the refined similarity theory of Kolmogorov is examined using the 3D local

averages at high Reynolds number and/or high resolution.
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CHAPTER I

INTRODUCTION

Turbulence is a commonly occurring state of fluid motion both in nature and engineering.

Pollutant dispersion in the atmosphere, weather patterns such as hurricanes, mixing inside

a combustor and astrophysical phenomena including cosmology and supernovae, all involve

turbulence. Despite its ubiquity, the “problem of turbulence” has been called the last

unsolved problem of classical physics. Turbulent flows are unsteady, irregular and are

characterized by seemingly random fluctuations that arise over a wide range of scales in

time and three-dimensional space. The resulting set of equations are highly non-linear in

nature and difficult to solve. Experiments and simulations have contributed to the physical

understanding of turbulence and advancements in turbulence theory (Warhaft 2009). In

particular, rapid advances in computing power and technology have facilitated substantial

progress in the study of turbulence through large-scale computations (Ishihara et al. 2009).

In the following, a brief review of the turbulence problem and its treatment is given.

A characteristic feature of all turbulent flows is a high Reynolds number (Rl ≡ Ul/ν,

where U and l are characteristic velocity and length scales of the flow and ν is the kine-

matic viscosity of the fluid), which is a measure of the range of scales in the flow. Energy

is transferred downscale locally via an energy cascade (Richardson 1922), in which energy

enters the turbulence at the largest scales of motion through the production mechanism

and is transferred to smaller and smaller scales until, at the smallest scales, the energy is

dissipated by viscosity. The resulting non-linear system of equations are acutely sensitive

to perturbations in initial conditions, boundary conditions and material properties. Exper-

iments in turbulence are thus non-repeatable and as such the flow variables in such flows,

such as the velocity, pressure etc. can be considered as “random” (even though equations

such as the Navier-Stokes equations are deterministic). Consequently a statistical descrip-

tion of the turbulent flow field is more natural. A convenient approach is to decompose
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the instantaneous flow field into its mean and fluctuating parts, such that the mean of the

fluctuation is zero. This method is known as the Reynolds decomposition and forms the

basis for many turbulence theories and models (for a review see Jackson & Launder 2007).

However in the resulting equations, the so-called “closure” problem in turbulence arises.

That is an equation for a moment of any order generated from the Navier-Stokes equa-

tion always contains higher-order moments resulting in more unknowns than the number

of available equations. In turbulence, higher-order moments cannot be explicitly expressed

as a function of lower-order moments as in a Gaussian process. Thus, some additional as-

sumptions are required to close the set of equations at any order. Various statistical models

(like Reynolds-stress models, subgrid scale models, spectral models and probability density

function models) have been used to overcome the closure problem with varying degrees

of success (Speziale 1991; Pope 1994). Alternatively, the Navier-Stokes equations can be

solved numerically to determine the instantaneous velocity field directly. This methodol-

ogy, known as Direct numerical simulations (DNS) avoids the closure problem arising out

of Reynolds decomposition and is unrivalled in accuracy and the level of description it can

provide. However, it is computationally very intensive with the computing cost increasing

roughly as the cube of the Reynolds number Rl. Because DNS of high Reynolds number

turbulence is expensive, it is often used to study simplified types of turbulent flows. One

such simplification is achieved using the concept of homogeneous, isotropic turbulence, that

is, turbulence that is statistically invariant under translation, rotation and reflection of co-

ordinate axes. The introduction of homogeneous, isotropic turbulence marked the beginning

of the use of of formal statistical methods involving correlations, Fourier transforms and

power spectra in the turbulence literature (Taylor 1935, 1938) and has served as a test-bed

for many analytical theories in turbulence.

Perhaps the best-known classical turbulence theory is that of Kolmogorov (1941a) [here-

after K41]. The first hypothesis of K41 states that, at sufficiently large Reynolds numbers,

the small scales of turbulence are statistically isotropic, regardless of how the turbulence

is produced. Stated differently, at sufficiently high Reynolds numbers, the small scales are

statistically de-coupled from the large scales (which are closely coupled to the mean flow
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and must differ appreciably from one turbulent flow to another) and hence universal. As

per the second K41 hypothesis, towards the upper end of the small-scale range (in the so-

called inertial range), the energy spectral density varies with the wavenumber k according

to E(k) = C〈ǫ〉2/3k−5/3. Here 〈ǫ〉 is the mean energy dissipation rate and C is a universal

constant. This theory is consistent with Richardson’s notion of an energy cascade in that,

it supposes energy injected at the large scales (from the mean flow) is transferred to the

small scales (where most of the dissipation occurs) through a series of (nearly) inviscid

steps, involving the interaction of neighbouring scales only. Experiments by many authors

(Grant et al. 1962; Saddoughi & Veeravalli 1994) have provided considerable support for

the Kolmogorov hypotheses, although deeper explorations have revealed that strong de-

partures from K41 universality exist. This is in part due to the oversimplified notion of

the energy cascade which assumes that the energy transfer results from the interaction be-

tween local scales only, instead of all possible triads of wavenumber interactions allowed

by the Navier-Stokes equations. Furthermore, the energy dissipation rate is characterized

by intense fluctuations in space and time, a phenomenon known as intermittency. The

unconditional mean of the dissipation rate 〈ǫ〉 in K41 does not account for the extreme

fluctuations of dissipation in space/time and in essence does not account for intermittency.

To address the shortcomings of K41, Oboukhov (1962) suggested examining the dissipa-

tion rate averaged over local regions of varying scale sizes. Using the idea of locally averaged

dissipation rate, Kolmogorov (1962) [hereafter K62] introduced the Refined Similarity Hy-

pothesis. One of its manifestations is that the various scaling exponents characterizing

small-scale statistics are anomalous, that is, exponents for each order of the moment have

to be determined individually and does not follow classical K41 arguments. The anomaly of

the scaling exponents is due to small scale intermittency, which means that intense events

are far more probable (in time and space) than that can be expected from a Gaussian field

and statistics of increasingly smaller scales are increasingly non-Gaussian. An understand-

ing of small-scale phenomena (such as intermittency) is essential, not only for turbulence

theory, but also for turbulence modelling purposes. A major effort in turbulence theory

aided by experiments and simulations has been the study of intermittency and anomaly of
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scaling exponents (Sreenivasan & Antonia 1997). However, testing of K62 has been ham-

pered by difficulties in laboratory measurement as well as in numerical simulations. In the

latter, calculations involving 3D averages require heavy computations and inter-processor

communications, making it prohibitively expensive to reach larger problem sizes (or higher

Reynolds numbers). Consequently, both experiments (Stolovitzky et al. 1992, 1995) and

simulations (Wang et al. 1996, 1999) so far have used local averages of dissipation rate

averaged over a one-dimensional (1D) region rather than a three-dimensional (3D) volume

in order to test K62. One of the objectives of the work reported in this thesis is to use a

large numerical simulation database to examine the behavior of local 3D averages of the

dissipation rate and related quantities.

An important consequence of turbulence is efficient mixing of scalar contaminants in the

fluid. The disorderly velocity fluctuations break up local inhomogeneities of a transported

substance like chemicals or other material properties such as heat into smaller and smaller

scales, where molecular diffusion becomes important. Turbulent mixing is important in a

broad range of situations, such as combustion, pollutant dispersion, underwater oil spills and

accidental radioactive releases. The basic physics of turbulent mixing can be represented

by the transport of a passive scalar (Sreenivasan 1991; Shraiman & Siggia 2000; Warhaft

2000), such as a small temperature fluctuation or a low solute concentration, which does

not alter the flow dynamics. Weakly heated flows and mixing of non-reacting tracers such

as pollutants and low-concentration dyes in a liquid offer typical examples of passive scalar

mixing. Turbulent mixing may also be coupled to the flow dynamics such as mixing of

different density fluids in an gravitational field, and in many cases the mixing produces

changes to the fluid itself as in most combustion phenomena, detonations and thermonuclear

supernova explosions. While such scenarios are clearly more complex (Dimotakis 2005), the

mixing of passive scalars can be considered as the rate-limiting process in phenomena such

as non-premixed combustion (Bilger 2004).

The efficiency of turbulent mixing is dependent upon the process by which large scale

inhomogeneities in the scalar field are broken down into smaller and smaller scales by the

turbulence, which in turn depends on how the velocity and scalar fluctuations interact at
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different scales. The range of scales in the velocity field, expressed as the ratio between

the integral length scale to the Kolmogorov length scale, can be expressed as a power of

the Reynolds number (Pope 2000), while for scalars an additional parameter required is

the ratio of the fluid kinematic viscosity to the molecular diffusivity, called the Schmidt

number (Sc). The value of Sc varies widely, from O(0.01) in liquid metals, to O(1) in

gas-phase combustion, to as high as O(1000) for organic dyes. Since turbulent mixing in

many fields (such as combustion) typically involve moderately diffusive scalars (Sc . 1),

this regime has received the most attention in the literature (Corrsin 1951; Warhaft 2000).

In particular, the smallest scale is the Obukhov-Corrsin scale, ηOC = ηSc−3/4, and in the

so-called inertial-convective range (Obukhov 1949; Corrsin 1951) at high Reynolds number

the spectrum is expected to scale as k−5/3. Indeed by contrast, the regimes of high Schmidt

numbers and low Schmidt numbers are much less understood. For Sc ≫ 1 the smallest scale

is the Batchelor scale, ηB = ηSc−1/2 which is smaller than the Kolmogorov length scale,

and leads to challenges in resolving the small scales. Recent numerical work (Donzis et al.

2010) has provided strong evidence of a k−1 spectrum in the so-called viscous-convective

scaling range, at intermediate scale sizes (1/k) such that diffusive effects are not important.

In contrast, the strongly diffusive case (of Sc ≪ 1) has received the least attention partly

due to the difficulty in handling liquid metals in experiments. The range of scales becomes

narrower (ηOC ≫ η for Sc ≪ 1) and spectral transfer can be significantly reduced with

increasing molecular diffusivity. Indeed, recent work with Sc as low as 1/2048 (Yeung &

Sreenivasan 2013, 2014) suggests that mixing at very low Sc is fundamentally different in

many aspects. The study of issues related to local isotropy in the case of low-Schmidt

number mixing is another objective of this thesis.

The behavior of the small scales in the scalar field is not only important from a theo-

retical standpoint, but also from a practical perspective, as they influence reaction rates,

dispersion and mixing of scalars. Traditionally, Kolmogorov (1941a) has been the basis for

phenomenology of passive scalars as well, with the Kolmogorov-Obukhov-Corrsin (KOC)

argument extending the theory of local isotropy to fluctuations of passive scalars (Obukhov
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1949; Corrsin 1951). However, most data sources suggest that there are substantial depar-

tures from local isotropy (Sreenivasan 1991; Warhaft 2000; Yeung et al. 2002). For example

a nontrivial skewness of scalar gradient fluctuations in the direction of an imposed uniform

(non-zero) mean gradient in the scalar field (Sreenivasan & Tavoularis 1980) suggests the

effects of the large scales may be felt directly at the small scales. Another aspect unac-

counted for in the KOC theory is the phenomenon of intermittency at the small scales in

the scalar field as evidenced by the large excursions from the mean of the scalar dissipation

rate at sufficiently high Reynolds number (Sreenivasan & Antonia 1997). Analogous to the

velocity field, scalar field intermittency leads to the anomalous scaling problem in the scalar

field, whereby higher order statistics of the small scales do not obey usual KOC arguments.

It is well known that scalar fields at Sc ∼ O(1) are more intermittent that the velocity

field (Prasad et al. 1988; Donzis & Yeung 2010). Scalar field intermittency is known to

occur even in the absence of velocity field intermittency (Kraichnan 1994; Holzer & Siggia

1994) and is closely related to the departure from local isotropy at the small scales (Warhaft

2000) indicating that the mechanisms for intermittency may be different in the scalar and

velocity fields. In spite of these differences, in order to account for the strong fluctuations

in the local rates of dissipation in the scalar field, K62 theory has been extended to passive

scalars (Stolovitzky et al. 1995). As for the velocity field, the testing of the refined simi-

larity theory for passive scalars has been restricted by challenges in the complexity of the

measurements involved. The local 1D average of dissipation rate has been used instead of

3D average, both in experiments and simulations (Sreenivasan & Kailasnath 1993; Wang

et al. 1996, 1999). Objectives of the work reported in this thesis include the examination

of intermittency characteristics of the scalar dissipation rate from the viewpoint of local 3D

averages.

Another measure of the spatial structure of turbulent flows is the statistics of products

of two-point differences of scalar and velocity fluctuations. The averages of such products

are called structure functions and are useful in theories of similarity scaling (Frisch 1995;

Sreenivasan & Antonia 1997). In the inertial range of a sufficiently high Reynolds number

turbulent flow, wherein scales are far smaller than the anisotropic large scales but far larger
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than the dissipative small scales, Kolmogorov (1941b) theory predicts that the m-th order

longitudinal velocity structure function, scales as (〈ǫ〉r)m/3, where 〈ǫ〉 is the mean energy

dissipation rate. For the case of m = 3 an exact equation (exact in the asymptotic sense)

can be derived from the Karman-Howarth equation as 〈(∆ru)3〉 = −(4/5)〈ǫ〉r (Kolmogorov

1941b), which is free from any intermittency corrections and is called the Kolmogorov’s

4/5-th law. Analogously, there exists an exact relation for the scalar field called Yaglom’s

relation in the inertial-convective range, 〈(∆ru)(∆rφ)2〉 = −(2/3)〈χ〉r (Yaglom 1949) where

〈χ〉 is the mean scalar dissipation rate. Previously, DNS data in both moderately diffusive

(Sc . 1) and weakly diffusive (Sc ≫ 1) regimes have been found to provide good support

for Yaglom’s relation. For Sc ∼ O(1) and higher, 〈χ〉 also follows the concept of dissipative

anamoly (Donzis et al. 2005), which means that 〈χ〉 is determined by the large scales through

a spectral cascade, independent of the molecular diffusivity. A strong spectral cascade,

which is increasingly clear with increasing Reynolds number and/or Schmidt number, is

also a requirement for Yaglom’s relation to be valid. However in the strongly diffusive case,

if the Schmidt number is very low, the range of scales becomes narrow leading to a weaking of

the spectral cascade (Yeung & Sreenivasan 2014). Thus, there are strong reasons to expect

that Yaglom’s relation may not hold in the decreasing Sc regime. To examine more carefully

the conditions required for Yaglom’s relation, we verify analytically and study numerically

the budget of the scalar structure function equation (Gotoh & Yeung 2013). Apart from

the moments of structure functions, we also focus on the probability distribution of scalar

increments as a function of scale size, as well as the joint distribution of velocity and scalar

increments. Thus, the study of structure functions (and mixed structure functions) which

provide important information about isotropy and intermittency at various scale sizes, is

another objective of this work.

In this work, we examine issues in intermittency and turbulent mixing using Direct

Numerical Simulations (DNS), where all relevant scales of motion are resolved according

to exact conservation equations (for a review see Moin & Mahesh 1998). The value of

DNS not only lies in the completeness of data they provide, but also in the opportunity

they provide for examining turbulence theories under controlled conditions. For instance,
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spectral energy transfer is difficult to measure experimentally, whereas it can be extracted

from DNS (Domaradzki & Rogallo 1990) with relative ease. Furthermore, DNS is invaluable

as a research tool for development of turbulence models (for example see Kadoch et al. 2011).

However, DNS is inherently computationally intensive as it solves for all relevant scales of

motion both spatially and temporally. The range of scales both in space and time increase

with Reynolds number (roughly as R
9/2
λ in 3D space and R

3/2
λ in time, where Rλ is the

Reynolds number based on the Taylor micro-scale), causing the number of floating-point

operations required to roughly vary as Rλ
6, thus imposing limitations on the time step

and grid spacing that can be used in the simulations. Thus, achieving realistic Reynolds

numbers in DNS is a major challenge. Historically, the DNS approach was infeasible until

the 1970s when computers of sufficient power became available, although the Reynolds

numbers (Orszag & Patterson 1972) that could be attained were significantly lower than the

Reynolds numbers that were achieved in wind-tunnel experiments. As the computing power

began to increase as predicted by Moore (Moore 1965), DNS started becoming more feasible

as a research tool. Besides increase in processor speeds, the advances in parallel computing

has made DNS more viable, capable of (today) reaching Reynolds numbers comparable to

those in laboratory measurements (Kaneda et al. 2003; Ishihara et al. 2007; Yeung et al.

2012). Typically, the solution domain is divided among multiple processors, such that each

processor computes data in its own memory. The processors synchronize and exchange data

as needed using a communication protocol such as the Message Passing Interface (Gropp

et al. 1999). Obviously, the manner in which the processors perform computations and

communicate data with each other has a bearing on the performance, thus determining the

complexity of the physical problem that can be addressed (for example, rotating flows, flows

with density stratification or reacting flows).

Our philosophy is to push the envelope of available computing power, which requires

us to delve into some current state-of-the-art issues in high performance computing. We

have been able to access several computers with theoretical peaks in excess of 1 Petaflops

(1015 floating point operations per second). In particular, we have the privilege of accessing

the Blue Waters supercomputer at the National Center for Supercomputing Applications
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(NCSA). Blue Waters is a Cray machine with over 700, 000 XE6 cores and is expected to

deliver a sustained performance of one Petaflops. To use such massive machines effectively,

we map the 3D solution domain onto a two-dimensional (2D) computational grid. This 2D

domain decomposition, in principle allows up to N2 central processing unit (CPU) cores for

a solution domain of N3 grid points (Donzis et al. 2008a). The cores communicate with one

another using MPI to pass messages across the network. The current production DNS code

has been tested up to 262144 cores on Cray XE6 (Blue Waters) with reasonable scalability.

In the last decade, two important developments in the computing industry have shaped

our efforts into experimenting with different programming paradigms, (1) symmetric multi-

processors (SMP) and (2) graphics processing unit (GPU). Almost all the supercomputers

today use SMPs, wherein a group of identical processors are connected to a single shared

main memory. This group of processors together with the main memory is commonly

referred to as a node. The trend towards SMP architectures is primarily due to energy

considerations which has limited single processor clock rates. Supercomputers generally

use NUMA (non-uniform memory access) architectures, which contains a memory hierar-

chy with processors accessing local memory quickly and remote memory (which is shared

among processors in a node) more slowly. Traditionally, our codes have used MPI to per-

form the inter-processor communication which send messages across the network even for

processors residing inside the same node (which share a main memory), thus treating the

whole system as a distributed memory machine. In order to use the shared memory charac-

teristics of multicore systems, we have developed a hybrid programming algorithm, which

uses MPI to communicate across nodes as before, but uses OpenMP threads (Chapman

et al. 2007) to share the memory within a node. In theory this obviates the exchange of

messages across the network between cores sharing the same main memory and thus helps

decrease communication costs. The light-weight threads also help with balancing the work

load among cores inside a node. The production DNS code is capable of using the shared

memory characteristics of multicore processors through a hybrid programming model that

uses OpenMP threads within each node and message-passing communication (per the stan-

dard MPI interface) across the nodes. We have also explored a modified strategy that
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allows overlapping between computation and communication. In particular, one approach

that will enable overlap at a fine-grained level is to divide work among OpenMP threads in

a pipelined fashion, so that only a single thread performs the MPI communication at any

given time. This has been implemented in a kernel for the most time-consuming computa-

tion in the DNS code, namely the 3D Discrete Fourier Transforms (DFT), but still needs

further optimization before eventual incorporation into our production DNS code.

In the past decade GPU’s have been used successfully in conjunction with CPU’s to

accelerate scientific computations (Kirk & Hwu 2010). This use of GPUs along with CPUs

is commonly referred to as heterogeneous computing. By offloading compute-intensive por-

tions of applications to the GPU, while running the remainder of the code on the CPU, the

GPU offers possible improvements in application performance, provided the data transfer

time from the CPU to the GPU (and back) can be efficiently managed. The launch of the

compute unified device architecture (CUDA) by NVIDIA in 2006, which is a software and

hardware architecture that enabled the GPU to be programmed with a variety of high level

programming languages was an important step in harnessing the power of the GPU for gen-

eral purpose computing (Sanders & Kandrot 2010). Today’s GPUs greatly outpace CPUs in

arithmetic throughput and memory bandwidth, making them well suited for data parallel

applications. We have attempted to offload the most computationally intensive portions

of the DNS algorithm (3D FFTs) to GPUs, while the CPUs performs the required inter-

processor communication. Tests conducted on NCSA’s (now retired) Lincoln cluster which

is a heterogeneous machine with NVIDIA Tesla accelerator units have shown a significant

decrease in the computation time, although the inter-processor communication (performed

by the CPUs) time remains unchanged. Because the 3D FFT algorithm is communica-

tion dominated, the use of GPUs has not yet proven beneficial to the overall performance,

although preliminary steps have been taken to enter the era of heterogeneous computing.

In summary, the study of small-scale turbulence and passive scalar mixing using DNS

can offer deeper insights into the flow physics. To this end we use the latest tools available

to us in the field of high performance computing. The development of new algorithms to

efficiently compute 3D FFTs and 3D local averages at the Petascale level are interesting
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problems in their own right. Furthermore, it offers impetus to rapid improvements in

parallel processing technologies like communication protocols and parallel system hardware.

The central theme of this work is to develop new algorithms using cutting-edge computing

resources to investigate some fundamental issues in turbulence research. In what follows,

we briefly outline the main objectives of this work.

1.1 Objectives

The general goals of this thesis are as follows.

1. To develop a hybrid DNS code that uses OpenMP threads inside processors while

using MPI processes for communication between threads across processing units in a

serialized manner. Overlap between communication and computation is to be achieved

by using a pipe-lined strategy, ensuring that the communication time is masked behind

other useful work.

2. To study the scalar field structure at very low Schmidt numbers with the aim of

understanding the dynamics behind the mixing process. Statistical properties as a

function of scale size are to be analyzed in order to test local isotropy assumptions.

Furthermore, the balance of the scalar structure function equation will be studied

with an emphasis towards low Schmidt number mixing.

3. To develop an efficient algorithm to compute local 3D averages, which can be used to

study the scaling properties of intermittent quantities such as the energy dissipation

rate. The intermittency of the scalar field is to be compared to that of the velocity field

and the results are to be contrasted against the often reported, local 1D averages. The

K62 hypotheses are to be tested using the existing database that spans a substantial

range of Reynolds numbers.

More details about these problems along with results are given in the remaining sections.

The rest of this thesis is organized as follows. Chapter 2 discusses the numerical and

computational issues including the equations solved, numerical methods employed and the

parallel algorithms developed. In chapter 3, a pipelined version of all-to-all data exchange
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is explained, that allows overlap between computation and communication using OpenMP

threads and MPI processes. In chapter 4 we discuss turbulent mixing of passive scalars

with a focus on the very low Schmidt number regime. In chapter 5, a new parallel al-

gorithm to compute spherical averages is presented. The results of spherical averaging

are contrasted with that of the usual techinique of component averaging. In chapter 6

we discuss current issues in the scaling properties of intermittent quantities (such as the

energy dissipation rate) in the context of local averages as postulated in K62 theory. A

detailed summary of the results and a discussion of future work is the subject of chapter

7.
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CHAPTER II

NUMERICAL ALGORITHM

A numerically exact solution to the Navier-Stokes equations is sought for all relevant length

and time scales considered, in the form of velocity fields represented as discrete Fourier

modes in wavenumber space. A pseudo-spectral method is employed in which bilinear

products are evaluated in physical space instead of using convolution in wavenumber space.

The aliasing errors thus incurred are controlled by a combination of truncation and phase

shifting techniques (Rogallo 1981). In addition, a scalar transport equation can be solved

for, in order to study how turbulence effects the mixing process. The main numerical

and computational aspects of the algorithm used are the time-stepping strategy, control of

aliasing errors and the implementation on distributed-memory parallel computers. After a

summary of the equations involved, each of these aspects is briefly explained in the following.

2.1 Velocity field

Assuming a constant density flow with no mean velocity, the fluctuating velocity field in

Cartesian tensor notation is governed by the following equations

∂uj

∂t
+

∂(ujuk)

∂xk
= −1

ρ

∂p

∂xj
+ ν

∂2uj

∂xk∂xk
, (2.1)

∂uk

∂xk
= 0 , (2.2)

where, (u1, u2, u3) denote the fluctuating velocity components in the Cartesian notation, p

is the fluctuating pressure, ρ is the density (assumed constant) and repeated indices imply

summation. The dependence of uj on 3D space and time (x, t) has been suppressed in

Eqs. 2.1 and 2.2 for brevity. The boundary conditions are periodic and are given as,

uj(x + nLoek, t) = uj(x, t) n = 1, 2, 3, . . . , (2.3)

where L0 denotes the box length, ek is a unit vector in the kth direction and x = (x1, x2, x3)

denotes a position vector in the domain. The use of periodic boundary condition enables
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the representation of the velocity field as a finite Fourier series,

uj(x, t) =
∑

k

ûj(k, t)eik·x , (2.4)

where k denotes a wavenumber vector, ûj is the Fourier coefficient (or a Fourier mode) of uj

and i ≡
√
−1. Typically we use a box of length L0 = 2π, although we use a larger domain

(such as L0 = 4π) for studying problems in which the large scales become larger. Typical

examples where the large scales grow include rotating flows and low Schmidt number mixing.

The choice of L0 as a multiple of 2π is made for convenience in the Fourier representation

of the velocity field.

In physical space, the solution domain is a cube of side L0 with N3 grid points which

are located at x, where x is defined as (l1∆x, l2∆y, l3∆z), l1, l2, l3, are integers between 0

and N − 1, inclusive and ∆x = ∆y = ∆z = L0/N . In wavenumber space there are N3

discrete wavenumbers, (m1k0,m2k0,m3k0), where m1,m2,m3, are integers between 1−N/2

and N/2, both inclusive and k0 is the lowest non-zero wavenumber magnitude, and is equal

to 2π/L0. The flow field variables like u(x, t) are real valued and hence their Fourier

coefficients obey conjugate symmetry, û(−k, t) = û∗(k, t), where the asterisk denotes a

complex conjugate, due to which only half the modes need to be stored in memory. Thus

we use the same memory location to alternatively store the velocity field in Fourier space

(N3/2 complex modes) and physical space (N3 real space grid values).

The numerical scheme is a Fourier pseudo-spectral algorithm based on Rogallo (1981)

which advances the Fourier modes in time according to the Navier-Stokes equations (Eqs. 2.1

and 2.2) in wavenumber space. The equations for the time evolution of ûj(k, t) can be

obtained by taking the Fourier transform of Eqs. 2.1 and 2.2 and eliminating the pressure

term using the incompressiblity condition (Eq. 2.2) and are as follows,

( d

dt
+ νk2

)
ûj(k, t) = −

(
δjl −

kjkl

k2

)
N̂l(k, t) , (2.5)

kkûk = 0 , (2.6)

where δjl is the Kronecker delta function defined as δjl = 1 if j = l and δjl = 0 if j 6= l.

The right-hand-side term in Eq. 2.5, N̂l(k, t) denotes the Fourier transform of the nonlinear
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term in Eq. 2.1 and is given by the following convolution sum,

N̂l(k, t) = ikm

∑

k′

ûl(k
′, t)ûm(k − k′, t) , (2.7)

where, i ≡
√
−1. The term on the right hand side of Eq. 2.5 denotes the component of N

perpendicular to k. It can be seen in wavenumber space (from Eq. 2.7) that the convection

term is nonlinear and non-local, involving the interaction of wavenumber triads, k, k′ and

k”, such that k′ + k” = k. Thus, the partial differential equations (Eqs. 2.1 and 2.2) are

transformed into a set of coupled ordinary differential equations (Eqs. 2.5 and 2.6) which

can be integrated in time to obtain the velocity field uj(x, t). The computation of the

non-linear terms (N̂l(k, t) in Eq. 2.5) and the time integration are the main aspects of the

algorithm and are briefly discussed in the following.

A direct calculation of N̂l(k, t) using Eq. 2.7 is prohibitively expensive since it requires

on the order of N6 operations. To avoid this large cost, the variables are transformed into

physical space where the nonlinear terms are computed and are then transformed back to

wavenumber space. Hence the algorithm is classified as pseudo-spectral. The non-linear

term N̂l(k, t) in Eq. 2.5 is computed as

N̂l(k, t) =
∂̂ujul

∂xj
, (2.8)

where, (̂ ) denotes a backward transform from physical space to Fourier space. Thus the

pseudo-spectral method requires a forward transform from Fourier space to physical space

where the non-linear terms are formed and a backward transform to get the non-linear terms

back into Fourier space. The transforms are computed using the Fast Fourier transform

algorithm (Cooley & Tukey 1965) and require on the order of (15/2)N3 log2 N operations.

The factor of 1/2 in the flop count arises due to conjugate symmetry, because of which

only half the modes need to be transformed. As a result of computing the nonlinear terms

by forming products in physical space and transforming back to Fourier space, aliasing

errors are introduced which are controlled by a combination of phase shifts and spherical

truncation (Rogallo 1981). The spherical truncation involves neglecting all Fourier modes

outside the sphere,

k2
1 + k2

2 + k2
3 ≤ k2

max , (2.9)
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where, kmax =
√

2Nk0/3 is the magnitude of the highest resolvable wavenumber (Canuto

et al. 1987). Since only the truncated modes with magnitudes inside the sphere of radius

kmax are considered, savings in both communication and computation costs in the parallel

algorithm are possible (as discussed later).

The time integration in the set of coupled ordinary differential equations (Eqs. 2.5 and

2.6) is done using an explicit second-order Runge-Kutta method (Canuto et al. 1987). At

time step tn, Eq. 2.5 can be written as

d(Fûj(k, tn))

dt
= F ĉj(k, tn) , (2.10)

where ĉj(k, tn) denotes the right hand side of Eq. 2.5 at time step tn and F (t) = exp
(∫ t

tn
νk2dt

)
,

represents an integrating factor with F (tn) = 1. We first compute a first-order estimate of

ûj(k, tn+1) in the predictor step as

F (tn+1)û
p
j = ûj(k, tn) + ĉj(k, tn)∆t (2.11)

where ∆t = tn+1 − tn is the integration time step. A second-order estimate of uj(tn+1) can

then be obtained in the corrector step as

F (tn+1)ûj(k, tn+1) = ûj(k, tn) +
∆t

2
[ĉj(k, t) + F (tn+1)ĉ

p
j ] , (2.12)

where ĉp
j is the convective term computed using ûp

j (or the predictor field). For the time

advancement to be accurate, it is necessary that a fluid particle move only a fraction of the

grid spacing ∆x in time ∆t. In practice, the time step ∆t is governed by Courant number

restrictions. For a 3D problem, the Courant number is defined as

C ≡ ∆t

∆x
(|u| + |v| + |w|)max , (2.13)

where u, v and w are the Cartesian components of velocity at a grid point and the maxima

is taken over the entire domain. For finite-difference schemes, numerical stability considera-

tions usually require C ≤ 1. For spectral methods, stability analysis is not so well established

(Peyret & Taylor 1983), but it is common to follow the same criterion. As demonstrated by

Eswaran & Pope (1988), using a Courant number greater than unity produces large errors

in the calculation. A small value of C can improve accuracy in time but it also increases
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the simulation time and thereby the computational cost. Typically, in our simulations we

use C = 0.6, although smaller values of C are required for simulations involving scalars of

low Sc , where the time scales are limited by the strong molecular diffusion.

The non-dimensional parameter kmaxη is a convenient parameter for resolution of the

simulation ((kmaxη)(∆x/η) = 2
√

2π/3). Typically a value of kmaxη between 1.0 and 2.0

is used in simulations (Yeung & Pope 1989; Kaneda et al. 2003; Ishihara et al. 2009),with

kmaxη ≈ 1.4 (or ∆x/η ≈ 2.1) being a popular choice. However, a higher resolution is

required for studying small scale statistics reliably (Ishihara et al. 2007). The work by

Donzis et al. (2008b) shows that a kmaxη of at least 3 is needed to determine accurately

the moments of dissipation and enstrophy up to order four and that the constraint becomes

stronger with increasing order of the moment. Apart from resolving the small scales ac-

curately, it is important to have a sufficiently large domain to minimize the effects of the

periodic boundary conditions (Eq. 2.3) on the integral scales. Typically the ratio of the box

size to the integral scale is between 5-6, although larger box sizes are used in simulations

involving low Schmidt number mixing (as discussed later) as the scalar integral length scales

are known to grow with decreasing Schmidt number (Donzis et al. 2005).

In our simulations, we extend the time integration over several large eddy turnover

times TE ≡ L/u′ where u′ is the root mean square (rms) velocity fluctuation, since long-

time averages are consistent with ensemble averages of the original K41 theory due to

ergodicity (Frisch 1995; Galanti & Tsinober 2004). However Eqs. 2.1 and 2.5 correspond to

the case of decaying turbulence due to zero mean velocity, such that time averages may not

be very meaningful. In order to generate a statistically stationary velocity field we “force”

the low wavenumber (i.e. large scale) velocity components in the simulation by artificially

adding energy using the forcing scheme of Eswaran & Pope (1988). The velocity field is

stochastically forced by adding acceleration increments to the largest scales only, such that

continuity is satisfied and on an average dissipation equals the artificial production. Only

the wavenumbers inside a sphere of radius kF are forced (excluding the zero wavenumber

mode). In most of our simulations kF = 2.1. The inherent assumption in low wavenumber

forcing is that the small scales only depend on the energy transfer from the large scales, but
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not on the details of the production mechanism. This is increasingly valid as the range of

scales increases, as suggested by Kolmogorov (1941a) hypotheses and is well supported by

data in the literature (Sreenivasan 1998). The resulting velocity fields are stationary and

isotropic, to a good approximation (Eswaran & Pope 1988).

An estimate for the computational cost of a DNS of 3D homogeneous, isotropic turbu-

lence can be obtained from classical scaling estimates (Kolmogorov 1941a). The number

of grid points required to resolve all scales varies as (Pope 2000) N3 ∼ (L/η)3 ∼ R
9/2
λ ,

where Rλ is the Taylor-scale Reynolds number. If Rλ is increased by (say) decreasing ν,

then the grid spacing ∆x should also be correspondingly decreased in order to resolve the

small scales fully, otherwise the quality of the simulation will degrade. A decrease in grid

spacing leads to a decrease in the time step as ∆t ∼ ∆x/u′ (from Eq. 2.13). As mentioned

previously, the duration of the simulation (T ) needs to be large enough to span several large

eddy turnover times. This gives the estimate for the number of time-steps (M = T/∆t)

as M ∼ TEu′/∆x ∼ L/∆x. Because the grid spacing should be of the order of the Kol-

mogorov length scale ∆x ∼ η, we finally obtain the estimate for the number of time steps

as M ∼ L/η ∼ R
3/2
λ (Pope 2000). Hence the CPU cost for DNS of turbulent flows roughly

scales as

N3M ∼ R6
λ . (2.14)

The work by Yakhot & Sreenivasan (2005) points to an even stricter requirement (N3M ∼

R8
λ) for studies of intermittency. Since the computational resources needed increases rapidly

with Reynolds number, DNS of high Reynolds number turbulence is a major challenge in

parallel computing.

2.2 Scalar transport

In addition to the velocity field we consider a passive scalar denoted by φ(x, t). Assuming

Fickian diffusion with constant molecular diffusivity Dφ, the basic transport equation is

∂φ

∂t
+ ui

∂φ

∂xi
= −ui

∂〈Φ〉
∂xi

+ Dφ
∂2φ

∂xi∂xi
, (2.15)

which governs the evolution of the fluctuation φ(x, t) of a passive scalar Φ (with mean 〈Φ〉)

in an incompressible fluid velocity field u(x, t) that satisfies the Navier-Stokes equations
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(Eqs. 2.1 and 2.2). The mean scalar gradient term in Eq. 2.15 represents a source term as

in Overholt & Pope (1996), hence no external forcing of the scalar field is necessary. For

simplicity, we let the mean scalar gradient be spatially uniform, which is compatible with

statistical homogeneity of scalar fluctuations in space. If the velocity field is statistically

isotropic, the orientation of ∇〈Φ〉 is arbitrary and it is sufficient to take it to be aligned with

(any) of the three Cartesian coordinate axes. Hence we arbitrarily choose ∇〈Φ〉 = (G, 0, 0)

where G is a constant. The boundary and initial conditions for the mixing problem are as

follows,

φ(x + nLoek, t) = φ(x, t) n = 1, 2, 3, . . . , (2.16)

φ(x, 0) = 0 . (2.17)

The periodic boundary conditions make it convenient to represent the scalar field as a finite

Fourier series. Since Eq. 2.15 is linear in the mean gradient and the calculations are started

with zero initial conditions (Eq. 2.17), the resulting scalar fluctuations are proportional to

the magnitude of the mean gradient (G) everywhere and at all times. Consequently, the

scalar variance 〈φ2〉, the scalar flux 〈uφ〉 and the mean scalar dissipation 〈χ〉 are proportional

to G2, G and G2 respectively, while (in contrast) statistics of the normalized quantities such

as χ/〈χ〉 which are considered in this study are independent of the magnitude of G.

The Fourier space representation of Eq. 2.15 can be written as

( ∂

∂t
+ Dφk2

)
φ̂ = −

̂
ui

∂φ

∂xi
− Gû1 . (2.18)

In this case we form the products such ui∂φ/∂xi in physical space and then transform to

Fourier space in order to avoid the expensive convolution sum. The aliasing errors are

treated as with the velocity field by a combination of phase shifts and spherical truncation.

The number of scalars in the simulation (Nc) typically ranges from 1 to 4, representing

scalars with different molecular diffusivities. In our experience each scalar requires roughly

30-40% more CPU time than the velocity field itself.

The simulation parameters such as the grid spacing (∆x), the time step (∆t) and the

box length (L0), may depend on the choice of the Schmidt number of the passive scalar.
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For weakly diffusive scalars (Sc ≫ 1) the smallest scale in the scalar field ηB is smaller

than the Kolmogorov length scale η. Hence the relevant resolution parameter is kmaxηB or

equivalently ∆x/ηB . A smaller grid spacing also implies a smaller time step ∆t (Eq. 2.13)

which in turn can increase the CPU hours needed to run the simulation for multiple large

eddy turnover times. Hence the spatial and temporal resolution are the main limiting

factors on how high a Schmidt number can be simulated reliably using a given amount of

computing resources.

In the the case of strongly diffusive scalars (Sc ≪ 1), the smallest scale ηOC is larger

than the Kolmogorov length scale, hence kmaxη is still the relevant resolution parameter

for the simulation. However, since the scalar integral scales (Lφ) grow with decreasing

Schmidt number (Donzis et al. 2005; Yeung & Sreenivasan 2014), a larger solution domain

is required to minimize the possible constraining effects of periodic boundary conditions.

Accordingly a solution domain of larger length (L0 = 4π) is used (verses the usual L0 = 2π),

while keeping the grid spacing unchanged. This requires eight times as many grid points for

(nominally) the same Reynolds number, but also results in improved sampling for the large-

scale statistics of the velocity field, whose motions are maintained by stochastic forcing.

A more demanding aspect of low Schmidt number simulations is that the fast molecular

diffusion results in very small time scales (∆t ∼ ∆x2/Dφ) which requires the time step

∆t to be much smaller than that required by numerical stability constraints (Yeung &

Sreenivasan 2013). For the lowest Schmidt numbers that have been studied in this work,

this constraint requires ∆t to be an order of magnitude smaller than that usually chosen

based on the Courant number associated with convective transport, which in turn increases

the CPU time taken to reach a statistically stationary state. In addition, the use of very

small ∆t’s makes the use of double precision arithmetic important in preventing round-

off errors accumulating over tens of thousands of time steps. The time step ∆t in such

computations corresponds to Courant numbers lower than 0.075 and is only about 1% of

a Kolmogorov time scale. At such small ∆t’s it is reasonable to expect the velocity field

to change very little, or to follow a linear variation closely. Consequently, to reduce the

overall CPU expense, in some of the larger runs involving low Schmidt number scalars
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(performed by the lead author of the group), the velocity field is linearly interpolated over

four consecutive time steps and is only then updated according to the exact equations. This

strategy reduces the CPU time by about 25% from not having to take Fourier transforms

of the velocity field at every time step.

2.3 Parallel algorithm

We use a parallel implementation of the pseudo-spectral algorithm of Rogallo (1981) in

which the most time-consuming task is the computation of the 3D FFT. A transpose-based

method, in which the FFT is computed locally, along a single dimension at a time, with

global data exchanges done in between, is used (as described in Pekurovsky 2012). Given

the stringent computational requirements (see Eq. 2.14) it is evident that the DNS of high

Reynolds number turbulence requires the most powerful state-of-the-art computational re-

sources that are available (www .top500 .org ). We have access to computing resources on

machines at five supercomputing centers, namely Blue Waters at the National Center for

Supercomputing Applications (NCSA), Edison at National Energy Research Scientific Com-

puting Center (NERSC), Titan at National Center for Computational Sciences (NCCS),

Kraken at National Institute of Computational Sciences (NICS) and Stampede at Texas

Advanced Computing Center (TACC). Each of these machines consists of tens of thousands

of processors, with a theoretical flop count in the Petaflop range. In this section, we give

a brief description of the domain decomposition technique used, which attempts to uti-

lize the massive computational resources at our disposal, followed by a discussion of the

computation and communication characteristics of the parallel algorithm.

A two-dimensional (2D) domain decomposition technique (Donzis et al. 2008a) is used

to map the 3D physical domain onto a 2D computational grid. The use of 2D computational

grid allows the use of a maximum of N2 processors in theory, for an N3 domain with N

points along each direction, thus enabling the use higher core counts. Decomposition of the

grid among more processors decreases the memory required per processor, which is especially

beneficial for larger simulations such as 40963 and beyond. A schematic of the mapping of

the N3 domain onto a 2D processor grid with P = Prow × Pcol MPI processes (hereafter, a
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Figure 2.1: Mapping the N3 domain into a 2D computational grid with P = Prow × Pcol

processors. Here Prow = Pcol = 4.

MPI process is referred to as a process), is shown in Fig. 2.1. The actual mapping of the

physical grid onto the 2D computational grid containing P processors is done using an MPI

intrinsic function (MPI CART CREATE) which assigns a column (pencil) of data of size

N × (N/Prow) × (N/Pcol) to each process as shown in Fig. 2.1. The grid parameters Prow

and Pcol can be specified by the user to get optimal performance. As a result of the 2D

decomposition, only data along a single direction is local to each process at any given time.

Thus in order to perform a serial FFT along the three orthogonal directions, two global

data transposes are required.

As mentioned previously, the 3D FFT computations which is the most time-consuming part

of the algorithm is performed using a transpose-based FFT as opposed to a distributed

FFT (Dubey & Tessera 2001). Distributed FFT relies on a parallel implementation of the

1D-FFT with each process communicating the necessary data with the other processes.

Transpose-based FFT, on the other hand relies on a sequential version of 1D-FFT that

performs the transform on one dimension at a time, transposing the data when needed and

is generally considered to be faster than the distributed FFT strategy (Foster & Worley

1997; Dubey & Tessera 2001). In this work a “transpose” refers to (global) data exchange

between processors, whereas an internal data movement (within a processor) is designated
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as a “local transpose” to avoid confusion. Since the algorithm uses a 2D data decomposition

pattern, each process first performs a 1D-FFT along the direction local to the process (say x-

axis). Then a global transpose is carried out to align the pencils in the z-direction, followed

by a local 1D-FFT along the z-axis. Finally, the data are transposed to pencils in the y-

direction, followed by a 1D-FFT in this direction. A schematic of this procedure is shown in

Fig. 2.2. Two transposes are taken, one on each of the two orthogonal sub-communicators

namely, row and col. For example, in Fig 2.1, processes P0, P4, P8 and P12 belong to the

row sub-communicator, while P0, P1, P2 and P3 belong to the col sub-communicator. Each

process belongs to one row sub-communicator and one col sub-communicator. Thus the

algorithm confines the communication to processes in small local sub-communicators instead

of communicating with all processes in the system.

The all-to-all operation requires exchange of non-contiguous data between all process-

pairs involved in the communication. Hence we re-arrange the data into chunks (the number

of chunks are equal to the number of processes taking part in the all-to-all) such that a given

chunk contains all the data that is required to be sent to a particular process. Internal array

transposes are required to perform this re-arrangement and the procedure is designated as

packing. Packing the data manually as opposed to using a MPI intrinsic function such as

MPI PACK or using MPI’s derived datatypes, allows us to optimize the packing operation

by using loop blocking/tilling techniques. Loop blocking is an optimization technique which

breaks down a given number of iterations into smaller blocks, such that the data required

for a given block of iterations can completely fit into the cache (a memory space assigned

to each core that has very fast access times as compared to the main memory access time),

thus speeding up the operations. After the completion of the all-to-all we again have to

unpack the data at each process to ensure that data corresponding to each variable (such

as u1, u2, u3) has unit stride. Stride is the number of memory locations between array

elements that are successively accessed in the algorithm. Using a unit stride helps speed up

the computations (such as FFTs) due to a decrease in the number of cache-misses. Both

packing and unpacking operations require additional memory. An all-to-all on a given array

requires temporary storage with count at least equal to that of the array being transposed.

23



Figure 2.2: 1D FFT in each direction followed by a transpose for a 2D computational grid.
Two global transposes are needed to complete a 3D FFT in this case. Here Prow = Pcol = 2.

The local 1D-FFT performed within each pencil uses FFTW (Frigo & Johnson 2005) and is

of O(N log N) complexity for a transform of length N . For a N3 grid, N2 such transforms

are required resulting in a computational complexity ∼ O(N3 log N). The FFT computa-

tions are highly optimized partly because the arrays being transformed are of unit stride.

The main bottleneck is the inter-processor communication required to perform the data

transposes, in between local Fourier transforms, which are typically done using all-to-all

type MPI routines. The scalability of global data transposes is known to degrade with

increasing problem size and core count, especially at the Petascale level where hundreds

of thousands of cores are involved in the communication (Kumar et al. 2008; Pekurovsky

2012). For most MPI implementations the all-to-all routines are implemented as a series

of point-to-point communications operations, with each process sending and receiving data

to/from every other process in the communicator. The number of messages that need to

traverse the same network link in the interconnect increases quadratically with the com-

municator size (the number of processes involved in the communication) causing network

congestion resulting in poor scalability with increasing problem size (Chan et al. 2008).

Furthermore, the all-to-all performance is sensitive to the topology of the interconnect used

in the parallel system, network latency, placement of the processes in the network (which

cannot be ordinarily controlled for most Cray systems like Blue Waters) and other network

traffic present in the system during run-time. While it is difficult to influence external

factors such as network traffic, latencies and job placements, the communicator sizes can

be controlled by changing the Prow parameter for a N3 grid using P processes, such that
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Pcol = P/Prow. We have found that a small value of Prow (typically less than or equal to

the number of cores within a node) to be optimal.

In order to understand the impact of the 2D computational grid parameters such as

Prow on the communication characteristics of the algorithm, it is instructive to quantify

the communication workload. In the following we give estimates for message sizes involved

in the all-to-all communications in both the row and col transposes for a N3 grid using

P = Prow × Pcol processes. The communication characteristics of both the forward and

backward transposes are the same and do not require any distinction. The message count

per process for the row transpose is N3/P . This transpose consists of N/Pcol MPI alltoall’s

over the row sub-communicator with the message count per process-pair mrow being defined

as,

mrow =
N2

P 2
row

. (2.19)

Breaking down the all-to-all into N/Pcol stages is primarily done to minimize memory

requirements that arise due to the need for allocating temporary buffers for the transposes

as explained earlier. Using a small Prow (or equivalently a large Pcol) ensures that as few

all-to-all’s as possible are performed with as large a message size as possible being sent

across the network in each all-to-all, thus saturating the network bandwidth and leading

to better performance. The col communicator transpose consists of a single MPI alltoall

with the message count per process being N3/P , which is the same as that for the row

transpose. The corresponding message count per process-pair is mcol, where

mcol =
N3

P 2
Prow . (2.20)

The message count for the col communicator is less than the total message count for the

row all-to-all which is equal to (N3/P 2)Pcol, since Prow ≪ Pcol and hence the col com-

munication is done in a single all-to-all. In contrast to the row communication, the col

communication is seen to improve with larger Prow (Eq. 2.20), due to an increase in mes-

sage size, thereby enabling the all-to-all to achieve peak bandwidth. However, a change

in Prow has a milder effect on the col communication than the row communication due to

the quadratic dependence of mrow on Prow as opposed to the linear variation of mcol with
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Prow (see Eqs. 2.19 and 2.20). Furthermore, the improvement in the col communication

gained by using a large Prow is offset by the worsening load imbalance that a large Prow

leads to (as explained below). Hence we use a small Prow (less than or slightly greater than

the number of cores in a node) for optimal performance. This means that the processes in-

volved in the col communication are not topologically adjacent in the network, which means

that the messages have to travel more links to reach their destination, leading to network

contention. Alternatively, the col communicator processes exchange smaller messages per

pair (see Eq. 2.20) and exchange such short messages with a large number of processes

(since Pcol is large) leading to an under-utilization of the network bandwidth. Hence the

col communicator transposes are the chief bottleneck in the algorithm.

The all-to-alls in the col sub-communicator are the main bottleneck in the algorithm.

Dealiasing presents an oppurtunity to decrease the message sizes in the col communicator

transpose. A necessary condition for the spherical truncation relation (see Eq. 2.9) to hold

is given by the following inequality,

(kx/N)2 + (kz/N)2 ≤ 2/9 , (2.21)

since, if this condition is not satisfied, then the spherical truncation condition (Eq. 2.9)

will not be satisfied for any ky. The Fourier modes that do not satisfy this conditions need

not be considered, thus enabling a reduction in both the computation and communication

workload.

Figure 2.3 shows a slice of the kx-kz plane where the cylindrical truncation (Eq. 2.21) is

enforced (in Fourier space). All points outside the half-cylinder are skipped leading to a

decrease in the messages sizes of the col-communicator alltoall, the number of computations

performed in Fourier space and the memory sizes of the temporary buffers needed for the

transposes. This technique was developed and implemented in the parallel algorithm by

Dr. Dmitry Pekurovsky, a consultant at San Diego Supercomputer Center (SDSC). With the

use of the cylindrical truncation, the message count per process in the col communicator all-

to-all decreases from N3/P to approximately (
√

2/3)N3/P which is almost a 53% decrease
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Figure 2.3: Schematic showing the cylindrical truncation in the kx-kz plane. Only points
inside the half-cylinder with radius kmax =

√
2N/3 are considered. The left half-plane

(shown with dashed lines) is not considered due to conjugate symmetry. Points in the kx

direction are local to each process, while points in the ±kz direction within the cylinder are
global. The shaded region shows the data contained by a typical process and is approximated
as kmaxN/Prow. Processes containing points outside the cylinder remain idle causing a load
imbalance.
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in the volume of data sent across the network. Furthermore, the message count per process-

pair in the col communicator can be approximated as,

mtr
col =

√
2

3

N3

P 2
Prow , (2.22)

which is less than mcol (see Eq. 2.20) by 53%. The cylindrical truncation also leads to a

30% decrease in the number of computations required in Fourier space. However, a load

imbalance is created with the cylindrical truncation strategy as each process operates on a

different number of Fourier modes. From Fig. 2.3 it can be seen that the number of points

inside the cylinder, contained by different processors can be different, with processes that

contain points in the region bounded by lines kx = kmax and kx = N/2 containing no points

inside the half-cylinder. In the algorithm such processes do not take part both in compu-

tations (in Fourier space) and the all-to-all communications in the col sub-communicator.

The load imbalance increases with increasing Prow as more number of processes will con-

tain data points outside the cylinder. On the other hand, using a small Prow ensures that

this load imbalance is minimum thus giving a better overall performance, in spite of the

persistent load imbalance present.

As mentioned previously the extent of performance gains obtained by using a small

Prow strongly depends on the topology of the interconnect used by the parallel system. A

small Prow has a favorable impact on the performance on the Blue Waters system which

implements a 3D torus topology with wrap around links. Performance gains in similar

algorithms, using a small Prow has been reported on other systems such as the Blue Gene/L

supercomputer which also uses a 3D torus network (Chan et al. 2008). On the other hand,

the dependence on a small Prow seems to be weaker on machines such as Stampede which

employs a fat-tree topology. Another factor that influences the performance characteristics

of the algorithm is the network traffic caused by other jobs running on the system. Tests

conducted by other researchers in our group on closed sub-domains of the Blue Waters

machine so as to avoid network contention due to external traffic also find that a small Prow

is beneficial.

28



An important feature of the parallel DNS algorithm which also influences the commu-

nicator sizes is that the number of FFT transforms (and therefore the number of all-to-alls)

in the row and col sub-communicators are not equal. As explained below, 7 + 3Nc and

8 + 5Nc transposes are required along the two orthogonal sub-communicators respectively

in each step of the Runge-Kutta scheme for the three velocity field components and Nc

scalars. Hence the communicator along which a greater number of transposes are required,

is designated as the row communicator. Thus using a small Prow ensures that a majority of

the transposes are performed among topologically adjacent cores, resulting in best possible

performance. The unequal number of transposes required along the two communicators

is designed with the aim of performing as few transposes as possible in the algorithm. In

the following, a brief account on how a particular non-linear term is formed in physical

space and transformed back into Fourier space so as to minimize the number of transposes

required, is given.

To explain the reasons behind the unequal number of transposes performed along the

row and col communicators we follow the computation of a typical non-linear term such

as Ĝ1 (see Eq. 2.8). We start with y pencils in Fourier space, in which the variables

are functions of (ky, kz , kx) where the data along y direction is local to each process. We

transform û1, û2 and û3 along the y direction into functions of (y, kz , kx). Next we transpose

the data to obtain z pencils along (say) the col communicator, followed by a transform in

z direction. We then perform the second transpose along the row communicator in order

to do the final transform along the x direction to transform û1, û2 and û3 into u1, u2, u3

which are functions of (x, z, y). In total we require three transposes each in the col and row

communicator for the forward transform of variables û1, û2 and û3. We now form terms

u2
1, u1u2 and u1u3 that are needed to calculate Ĝ1.

After forming the non-linear terms in physical space, we perform a backward transform

along the x direction followed by three row communicator transposes to obtain the data as

z pencils. The z pencils are now transformed back to Fourier space along the z direction, to

obtain the non-linear terms as functions of (kz , kx, y). At this stage, we multiply the partial

transforms of u2
1 and and u1u3 with ikx and ikz respectively, sum them up and transpose
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the resulting sum along with the partial transform of u1u2 in a col communicator transpose

to eventually compute Ĝ1. In essence we need six transposes in the row communicator and

five transposes in the column communicator. The mixed terms (such as ui∂φ/∂xi needed

in the evaluation of the advective term in Eq. 2.18) are similarly computed by combining

terms and transposing as few variables as possible.

Thus by using a small Prow, we can place the processes in the row communicator inside

a single node or topologically adjacent to each other in the network causing the majority of

the transposes to be completed quickly. Intra-node MPI communication does not require

the messages to travel through the network links thus easing network congestion, resulting

in fast transposes. Using a small Prow, typically less than or equal to the number of cores

in a node is seen to give the best performance. A small Prow results in a large Pcol for

a fixed number of processes, causing the the col communicator processes to be spread

out in the network. As a result, the all-to-alls in the col communicator are the main

communication bottleneck in the algorithm. Furthermore, the 2D processor decomposition

and the conjugate symmetry requirement of the real-to-complex 3D-FFT together require

the following conditions on the Prow and Pcol parameters,

Prow × Pcol = P, 2P/N ≤ Pcol ≤ N, P/N ≤ Prow ≤ N/2 , (2.23)

for a N3 grid using P processes. A value of Prow = 1 (possible only when P ≤ N)

corresponds to a slab decomposition and requires only one transpose. A 1D slab domain

decomposition gives better performance for P < N , with the difference between 1D and 2D

versions becoming smaller as P is increased up to P = N , beyond which the 1D case does

scale (Pekurovsky 2012). The smallest value that Prow can take is P/N since Pcol cannot

exceed N . In practice we use Prow = 4 as a lower bound for Prow.

To summarize, we use an algorithm that uses a 2D grid decomposition technique which

decomposes the N3 domain into as many as N2 processors, with the aim of running larger

and larger simulations on massively parallel machines. The algorithm uses a transpose based

FFT strategy in order to perform the 3D FFTs which continues to be the main bottleneck,

taking up as much as 80% of the overall run-time for very large problem sizes. A number
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of strategies such as optimal communicator sizes, unit stride array operations, loop block-

ing/tilling and cylindrical truncation techniques have been developed with active help from

consultants at supercomputing centers to make the algorithm more efficient. However, one

strategy that has not yet been adequately tested is the use of OpenMP threads (Chapman

et al. 2007) in conjunction with MPI processes. The use of OpenMP threads along with

MPI processes is popularly known as hybrid programming and has been widely reported in

the literature (Tsuji & Sato 2009). The use OpenMP threads results in a reduction in the

number of processes (for a fixed number of processors) and can potentially help ameliorate

both memory and network latency issues. More importantly, such a programming model

may help overlapping a part of the communication with the computation, with the aim of

masking at least some of the communication time. A discussion on such an attempt is the

subject of the next chapter.
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CHAPTER III

HYBRID MPI/OPENMP ALGORITHM

3.1 Introduction

The number of processing units (or cores) in a given computing unit (or node) has seen

a steady increase over the past decade, accompanied by a decrease in the memory exclu-

sive to each core. This trend towards symmetric multi-processor (SMP) systems, where

multiple processors share a centralized shared main memory in addition to possessing a

secondary memory that is private to each core (also called “cache”), is mainly due to power

considerations. The advent of SMP systems has been accompanied by the rise of shared

memory programming protocols like openMP (Chapman et al. 2007) in which threads use

the same main memory thus avoiding the need to communicate with one another. Conse-

quently a hybrid programming paradigm that uses MPI to communicate across nodes and

openMP threads to share work within a node has been gaining popularity (Tsuji & Sato

2009). In particular, openMP used in conjunction with MPI can be used to overlap com-

putation with communication resulting in better scalability of communication dominated,

all-to-all type algorithms (Doi & Negishi 2010). We have attempted to implement the hy-

brid MPI/openMP strategy in our parallel algorithm with the aim of improving the code’s

scalability at very large problem sizes and very high core counts by masking a part of the

communication time behind the computation time. This chapter gives a detailed account of

the various hybridization strategies attempted in this study along with the scaling results

comparing the MPI/openMP hybrid model with other communication paradigms.

3.2 Memory locality in Hybrid MPI/openMP implementations

In order to obtain significant performance improvement using threads, it is important that

the threads be allowed to work independent of each other as much as possible. Thread

synchronization which is typically achieved in openMP using barriers and locks, increases
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both the overhead costs and the time spent by threads idling. Another thread synchroniza-

tion construct in openMP is the flush construct which when encountered forces threads to

update their copy of the shared variables from/to the main memory. Although the use of

the flush construct at times is essential to ensure correctness of the program, it can lead

to performance degradation due to the time spent in reading from or writing to the main

memory which is slower than the write and read times for the cache (Chapman et al. 2007).

Thus the use of flush statements has to be done judiciously to ensure memory locality and

optimal performance. Memory locality can also be preserved by using the “principle of first

touch”. That is, whenever a shared array is allocated, it is not written to the cache space

of a thread, until the thread writes some data to it. Once a shared array is allocated, the

threads can initialize that portion of the array on which they will be working, merely by

assigning the respective portions of the array to some arbitrary value. This initialization

will ensure that copies of the concerned portions of the shared array are written into the

cache-space of the respective threads enabling the threads to work with their local copies.

Now the threads can work with these temporary copies and write them back to the main

memory only when needed. Hence maintaining memory locality is essential to avoiding

slow read and write times from and to the main memory. In general, lesser thread synchro-

nization and greater locality are key features that govern the way in which good openMP

algorithms are designed.

3.3 Hybrid MPI/openMP paradigms

Since we are interested in using both MPI processes and openMP threads, we are concerned

with how the processes and threads interface with each other. The main thread that initiates

the MPI program is called the master thread, while the other threads spawned by the master

thread in the thread parallel region are called the worker threads. The MPI standard allows

four levels of thread-safety which specify the interaction between MPI processes and user-

defined threads (Gropp & Thakur 2006) and are as follows, (i) thread-single: only one thread

will execute (ii) thread-funneled: a process can spawn multiple threads but only the master

thread performs the MPI communication, (iii) thread-serialized: any thread can perform
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MPI communication although two distinct threads cannot make MPI calls concurrently,

(iv) thread-multiple: multiple threads can make MPI calls with no restrictions. The thread-

single model is the same as the MPI-only model and is designated as “pure MPI” in the

following.

The thread-funneled model allows each process to be multi-threaded but limits the MPI

communication only to the master thread. As a result of using threads, the number of MPI

processes decreases for a given core count, which can potentially decrease the communi-

cation latency and help maximize the communication bandwidth. Since only the master

thread performs the MPI communication, thread synchronization can be achieved easily

achieved using a barrier. However, obtaining performance improvements using overlap be-

tween communication and computation is tough since it entails data copy to and from the

main memory by the master and worker threads which disrupts memory locality. Hence,

we let the worker threads idle while the master thread performs the MPI communication.

In the thread-serial model all threads can perform MPI communication, although not

simultaneously. Similar to the thread-funneled model, the thread-serial model benefits from

the decrease in the number of MPI processes taking part in the communication at any given

time, thus ameliorating latency issues. In addition, the thread-serial model lends itself to

overlapping communication with computation in a way so as to preserve memory locality

and avoid shared memory access to a much greater extent than in the thread-funneled

case. When using the thread-serial model, it is the user’s responsibility to ensure that

only one thread participates in the MPI communication at any given time. Furthermore,

in the all-to-all calls needed in our algorithms, the thread with the same thread-id across

all processes has to participate in the all-to-all communication to preserve correctness. In

order to ensure that the threads enter the region in an orderly fashion, we use simple locks

constructed using flush and go to statements to ensure an orderly entry into the all-to-all

region.

The thread-multiple model is the most general of the threaded hybrid models with no

restrictions on the communication patterns of the threads. The advantage with this model

is that the user does not have to deal with thread synchronization as is the case with the
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Figure 3.1: Pipelining of all-to-all (A2A) communication using four threads. To pack the
appropriate data into send and receive buffers, two internal array transposes are performed,
denoted here and henceforth as tr1 and tr2.

other two models, but the drawback is that, while doing MPI communication all the threads

simultaneously contend for the same MPI resources since the MPI buffer size for each node

is fixed. Thus, the thread-multiple model suffers from the same latency issues as the pure

MPI model and is generally not considered to be a high performance option. Furthermore,

the threads in the thread-multiple model communicate simultaneously, thus leaving little

room for overlapping communication with computation.

3.4 Hybrid MPI/openMP thread-serialized implementation

Figure 3.1 shows scheduling of the threads in the the thread-serial model, done in order

to obtain overlap between communication and computation for a case using four threads.

The data is divided among the threads in order to obtain a pipe-lined procedure as shown

in Fig. 3.1 so as to process the independent messages sequentially. Here, tr1 and tr2 refer

to internal array transposes, which are needed to pack and unpack data from send and

receive buffers, before and after the all-to-all region, respectively. The inter thread atomic

synchronization in Fig. 3.1 refers to the thread synchronization that is needed to ensure an

orderly entry into the all-to-all region. The threads are scheduled so that only one thread at

a time performs the all-to-all communication with the help of simple locks constructed from

flush and go to statements. The first thread starts its all-to-all as soon as it is done packing

its outgoing message. Once this is completed it can proceed with other operations such as

unpacking data and computations while another thread performs its all-to-all and similarly
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Table 3.1: 40963, 32768 cores - timing data (in seconds) for the best Prow × Pcol values.
The timing data (Blue Waters) correspond to the MPI process that takes the maximum
time. Number of variables transformed is 5. Repeat count of four is used.

Prow × Pcol no. of threads FFT internal transposes all-to-all total

pure MPI 16 × 2048 1 0.4 0.3 6.2 6.9
thread-serial 8 × 2048 2 0.4 0.4 4.7 5.5
thread-serial 8 × 1024 4 0.3 0.1 5.7 6.5

thread-multiple 16 × 1024 2 0.3 0.1 7.6 8.1
thread-funneled 8 × 1024 4 0.5 0.4 6.5 7.4

proceeds with other operations thus enabling another thread to continue the sequence. This

leads to a pipe-lined procedure where the main idle time for all the threads is the time taken

for the first all-to-all by the master thread.

3.5 Weak scaling analysis of 3D FFT

In order to study the effect of various communication paradigms on our parallel algorithm,

we have isolated the main communication characteristics of the algorithm in the form of

a 3D FFT kernel. The 3D FFT kernel performs the backward and forward transform

of a 3D signal in a fashion similar to that in the DNS algorithm and is called the FFT

kernel. We have developed implementations of the FFT kernel for each of the three thread-

hybrid models. The goal is to compare the performance of the FFT kernel for the hybrid

MPI/openMP models with that of pure MPI and Co-Array Fortran models. The data in

Tables 3.1-3.3 below report times for the Blue Waters machine taken for the main operations

involved in the 3D FFT operations which are the serial FFT (using FFTW), all-to-all global

transpose and internal data transposes required for packing and unpacking buffers for the

all-to-all operation. The “total” time taken in Tables 3.1-3.3 is the maximum time taken

among all the MPI processes for executing a 3D FFT from physical space to Fourier space

and back. The data corresponding to all-to-all, FFT and internal transposes give the

breakdown of the time spent by the MPI process which takes the maximum “total” time in

each of these operations.

From Tables 3.1-3.3 it can be seen that the thread-serial model seems to be faster than
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Table 3.2: 20483, 4096 cores - timing data (in seconds) for the best Prow ×Pcol values. The
timing data (Blue Waters) correspond to the MPI process that takes the maximum time.
Number of variables transformed is 5. Repeat count of five is used.

Prow × Pcol no. of threads FFT internal transposes all-to-all total

pure MPI 32 × 128 1 0.3 0.3 2.1 2.7
thread-serial 4 × 512 2 0.3 0.2 1.6 2.3
thread-serial 8 × 128 4 0.3 0.1 1.9 2.6

thread-multiple 16 × 128 2 0.3 0.1 2.1 2.6
thread-funneled 16 × 128 2 0.4 0.3 2.3 3.0

Table 3.3: 10243, 512 cores - timing data (in seconds) for the best Prow × Pcol values. The
timing data (Blue Waters) correspond to the MPI process that takes the maximum time.
Number of variables transformed is 5. Repeat count of five is used.

Prow × Pcol no. of threads FFT internal transposes all-to-all total

pure MPI 8 × 64 1 0.3 0.3 1.2 1.8
thread-serial 4 × 64 2 0.2 0.2 0.9 1.5
thread-serial 2 × 64 4 0.3 0.2 1.2 2.0

thread-multiple 4 × 64 2 0.3 0.2 1.1 1.6
thread-funneled 4 × 64 2 0.4 0.4 1.2 2.0

the others. The thread-serialized model appears to out perform the pure MPI code by

roughly 20% for the 40963 problem size with a significant reduction in the all-to-all time.

While the thread-multiple and thread-funneled models seem to fare worse than the pure MPI

model with increasing problem size. The difference between the “total” column and the sum

of the all-to-all, FFT and internal transposes columns is greatest for the thread-serial and

thread-multiple versions. This is because all the threads have to wait until the master thread

initiates the pipeline communication for the thread-serial case. In the thread-multiple case

this may be due to the use of barriers needed to ensure correctness. Furthermore, in both

the thread-serial and thread-multiple models, at the end of the algorithm, all threads have

to wait for the last thread to complete its work. In spite of this idle time, the thread-serial

model seems to be giving better results than the other models.
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3.6 Discussion

In this work, results from weak scaling experiments where the ratio of the grid size to the

number of MPI processes (N3/P ) is held constant, have been reported. The data show

that the thread-serialized MPI implementation improves the weak scaling results by as

much as 30% when compared to the pure MPI version. However, it is also clear that the

performance of the alltoall degrades significantly with increasing core count for any given

implementation. It should be noted that global communication patterns such as the alltoall

are bound by the bisection bandwidth of the interconnect (Czechowski et al. 2012). The

bisection bandwidth can be defined as the lowest bandwidth through any cross-sectional

area of the network. The bisection bandwidth for a 3D torus network (the interconnect on

Blue Waters) is O(P 2/3βlink) where βlink is the link bandwidth of the interconnect. The

weak scaling of the 3D FFT kernel as a function of P 2/3 has been analyzed (although not

shown) and the results do not show any appreciable difference. The time required to perform

the alltoall exchange for a 3D FFT on a 3D torus network can be written as (Czechowski

et al. 2012)

Tcomm ≈ 2
N3

P 2/3βlink
, (3.1)

where the factor two accounts for the alltoall in the two orthogonal sub-communicators.

Although, this equation provides an estimate of the theoretical alltoall time, it has not been

used in the analysis given in this work. Clearly, a more rigorous approach to the alltoall

problem should consider the bisection bandwidth of the nodes. The results given in this

chapter can be considered as the near-ideal weak scaling limit of the alltoall since it requires

a constant bisection bandwidth per node. Alternatively the present analysis requires the

bisection bandwidth ∼ P . Noting these limitations and the near-idealness of the weak

scaling analysis presented here, a more rigorous analysis of the performance of the alltoall

communication paradigm is deferred for the future.
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CHAPTER IV

TURBULENT MIXING

It is well known that turbulence expedites scalar mixing through the advection process,

but the exact mechanics of this process is still less than clear. Several issues such as

the status of local isotropy and small-scale universality of the scalar field remaining less

unequivocal than that for the velocity field (Sreenivasan 1991; Sreenivasan & Antonia 1997).

A systematic study of the scalar mixing warrants the classification of passive scalars on the

basis of the Schmidt number (Sc = ν/Dφ, where ν is the kinematic viscosity and Dφ is the

diffusivity of scalar φ), being low (Sc < 1), moderate (Sc ∼ O(1)) or large (Sc > 1). There

exists little available data in the literature on turbulent mixing in the low Schmidt number

regime as compared to the other two, partly due to difficulties in experiments involving

liquid metals. The study of the effects of turbulence on strongly diffusive scalars is not

only important from a theoretical standpoint (to obtain a unified theory of scalar mixing)

but also has applications in areas such as solar-wind MHD turbulence and electrostatic

turbulence (Sorriso-Valvo et al. 2007; Lepreti et al. 2009).

Our group has conducted numerical simulations of mixing at Schmidt numbers as low as

1/2048 at Taylor-scale Reynolds numbers up to 390. Results in the case of decaying scalar

fields without mean gradient (Yeung & Sreenivasan 2013) have provided strong support for

the classical theory of Batchelor et al. (1959) that the scalar spectrum displays a k−17/3

behavior under inertial-diffusive conditions. Examination of simulations with a uniform

mean gradient (Yeung & Sreenivasan 2014) also suggests a −17/3 power law, but with a

different prefactor, which can be traced to a reduction in spectral transfer as the range of

scales in the scalar field becomes substantially narrower due to decreasing Schmidt number

at a finite Reynolds number. On the basis of the above-mentioned findings differences can

be expected between the low Schmidt number regime and the moderate-to-high Schmidt

number regimes in issues such as local isotropy, small-scale universality and intermittency.
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Computationally, for a given grid spacing, a low Schmidt number simulation has much

stricter temporal resolution requirements than that in the other two regimes as fast molec-

ular diffusion results in very small time scales. This requires the time step to be much

smaller than that required by numerical stability constraints (Yeung & Sreenivasan 2013).

The use of very small time steps makes the use of double precision arithmetic important

in preventing round-off errors accumulating over time, which in turn increases both com-

putation and inter-processor communication times. Spatially we require a larger solution

domain to minimize the possible constraining effects of boundary conditions since the scalar

integral scales grow with decreasing Schmidt number (Donzis et al. 2005). This gives the

auxiliary benefit of improved statistical sampling for the scalar field, which is affected by

the stochastic forcing of the velocity field (Eswaran & Pope 1988) and the imposed mean

gradient in the scalar field (Overholt & Pope 1996), that are used to sustain the scalar

fluctuations.

We focus on the scalar field structure by investigating the statistics of the spatial in-

crements of velocity and scalar fluctuations with an emphasis towards the low Schmidt

number regime. A two point equation which describes the scale separation in the scalar

field is examined in detail with an analysis of the different mechanisms involved at various

scale sizes, for a range of Schmidt and Reynolds numbers. The study of (joint) statistics of

the scalar and velocity field fluctuations provides important information on local isotropy

and intermittency as a function of scale size. The coupling between scalar gradients and

velocity gradients (or the strain rates) which determines the rate at which the scalar gra-

dients and hence the scalar dissipation fluctuations may become amplified by turbulence is

also of interest. While this coupling as been studied in DNS before (Ashurst et al. 1987;

Vedula & Yeung 1999), if spectral transfer is suppressed at low Schmidt number, then it

is likely that nonlinear amplification would be weaker, thus attenuating the instantaneous

scalar dissipation rate. Accordingly, the balance of terms in the scalar dissipation equation

is studied in the low Schmidt number limit along with the geometric alignment between

scalar gradients and strain rates.

In this chapter issues noted above are addressed by drawing upon a large DNS database
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of passive scalar mixing in isotropic turbulence. Results from simulations of stationary

mixing with scalar fluctuations maintained by a uniform mean gradient are reported. The

work described in this chapter forms the core of a newly submitted journal article (Iyer

& Yeung 2014). The rest of this chapter is organized as follows. In Sec. 2 we give a brief

discussion about the intermediate and small scale ranges in the velocity and scalar fields. We

also introduce the scalar structure function equation. In Sec. 3 we consider the procedures

necessary to compute the balance of terms in the scalar structure function equation. In

Sec. 4 we give a short summary of the characteristics of the simulation data sets analyzed

in this chapter. In Sec. 5 we present statistics of scalar increments and scalar gradients,

and of couplings between scalar gradients and principal strain rates, at different Reynolds

number and Schmidt number combinations. In Sec. 6 we return to our analysis of the

structure function budget, along with the validity conditions for obtaining a simpler form

in the intermediate scale range. In particular, we study how individual terms in the structure

function equation vary with Reynolds number and Schmidt number, and in comparison with

one another. Appropriate discussion is given for challenges in resolution Donzis & Yeung

(2010) for scalars of moderate and high Sc, and in sampling for scalars of very low Sc. The

conclusions of this chapter are summarized in Sec.7.

4.1 Scalar field structure

Spatial structure of the scalar field in turbulence can be described by using the products of

two-point differences of a scalar quantity and those differences multiplied with the difference

of velocity and other quantities. Indeed, many theories of similarity scaling (see eg. Frisch

1995; Sreenivasan & Antonia 1997) have focused on the averages of such products called

structure functions. For turbulence at sufficiently high Reynolds number it is well known

that Kolmogorov (1941a) theory predicts the m-th order structure function of the longitu-

dinal velocity increment over a distance r in the inertial range (η ≪ r ≪ L1, where η is

the Kolmogorov length scale and L1 is the integral scale) would scale as (〈ǫ〉r)m/3 where 〈ǫ〉

is the mean energy dissipation rate. Although results of K41 are subject to intermittency

corrections related to intense fluctuations of the energy dissipation rate, the third order

41



moment (m = 3) has special significance. In particular,

〈(∆uL(r))3〉 = −4

5
〈ǫ〉r , (4.1)

where ∆uL(r) = ∆uj(r)rj/r is the longitudinal velocity increment. Equation 4.1 is also

known as the four-fifths law and can be derived from the Karman-Howarth equation that

governs the second-order velocity structure function. Equation 4.1 is free of any unspec-

ified scaling constants and is devoid of any intermittency corrections (since it is linear in

dissipation). As a result it is often used as a criterion in assessing the presence and width

of an inertial range in physical space in both experiments and simulations. Figure 4.1

shows the third order velocity structure function as a function of spatial separation for a

20483, Rλ ∼ 390 simulation. The third order velocity structure function is strictly negative

for the range of scales shown indicating a net transfer of energy down the cascade. The

non-zero value of the third moment of the velocity structure function is indicative of the

non-Gaussianity of the turbulent velocity fluctuations. The range of r satisfying the in-

equality η ≪ r ≪ L and Eq. 4.1 corresponds to 30η < r < 200η, which can be considered as

the width of the inertial range for this particular simulation. The inertial range is expected

to become wider with increasing Reynolds number.

The scalar field analog of Eq. 4.1 is the so-called Yaglom (1949) relation for the mixed

velocity-scalar third order structure function, namely

〈∆uL(r)(∆φ(r))2〉 = −2〈χ〉r/3 , (4.2)

where 〈χ〉 ≡ 2Dφ〈∇φ · ∇φ〉 is the mean scalar dissipation rate and scale size r is in the

inertial-convective range (Obukhov 1949; Corrsin 1951). Similar to the four-fifths law,

Yaglom’s relation suggests that the velocity and scalar fields are jointly non-Gaussian.

Previously, DNS data (Yeung et al. 2002) for both moderately diffusive (Sc ∼ O(1)) and

weakly diffusive (Sc ≫ 1) scalars have provided good support for Yaglom’s relation as

written above. For scalars of Sc ∼ O(1) or higher, the concept of dissipative anomaly also

appears to hold well (Donzis et al. 2005) which means that 〈χ〉 is determined by the large

scales through a spectral cascade, with little dependence on molecular diffusivity. Since the

presence of a wide range of scales is a prerequisite for a strong spectral cascade, Eq. 4.2 is
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Figure 4.1: Component averaged third order velocity structure function for 20483, Rλ ∼
390, (4π)3 simulation. The dashed line is drawn at 4/5 for comparison with Eq. 4.1. The
ratio of the largest to the smallest scales is L1/η ≈ 446.98. The inertial range (η ≪ r ≪ L1)
can be taken as 30η < r < 200η.

expected to hold well with increase in Reynolds and/or Schmidt number. However in the

strongly-diffusive case if the Schmidt number is very low and the Reynolds number is not

high enough (such that the Peclet number Pe ≡ RλSc is low ) the range of scales becomes

narrow and a strong spectral cascade is difficult to sustain. Consequently the validity of

Eq. 4.2 in the limit of low Sc is uncertain. Indeed, recent work (Yeung & Sreenivasan 2013,

2014) at Sc as low as 1/2048 with emphasis on spectral aspects shows that mixing at very

low Sc is fundamentally different in many aspects.

To obtain new insights into the scaling properties of structure functions and to examine

more carefully the conditions required for Yaglom’s relation it is useful to consider the scalar

structure function budget in some detail. For homogeneous turbulence with a uniform

mean scalar gradient the budget equation for scalar fluctuation (φ) advected by velocity

fluctuation component (ui, i = 1, 2, 3) can be written as (Gotoh & Yeung 2013)

∂

∂t
〈∆φ(r, t)2〉 +

∂

∂ri
〈∆ui(r, t)∆φ(r, t)2〉 =

−2〈∆ui(r, t)∆φ(r, t)〉 dΦ

dxi
+ 2Dφ

∂2〈∆φ(r, t)2〉
∂ri∂ri

− 2〈χ〉 , (4.3)
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where all terms are functions of a separation vector (r) and time (t). The first and the second

terms on the left hand side represent unsteadiness and advection respectively. While terms

on the right hand side represent production, molecular diffusion and dissipation. Yaglom’s

relation can be derived from this equation by integration if unsteadiness, production and

molecular diffusion are all negligible over a suitable range of scales, and if the budget

becomes dominated by a balance between advection and dissipation terms. If the Yaglom’s

relation (see Eq. 4.2) does not hold in the low Schmidt number regime, then an important

question is, how the balance of terms in Eq. 4.3 depend on Reynolds number and Schmidt

number.

Yaglom’s relation may also be taken as a specific statement on the joint statistics of

velocity and scalar increments in space . More complete information on the properties of

these increments can be obtained from the probability distribution of scalar increments at

various scale sizes, as well as the joint distribution of velocity and scalar increments. If the

distance r is sufficiently small, standard Taylor-series arguments relate two-point statistics

of the spatial increments to one-point statistics of the gradients. Consequently the study

of structure functions (and mixed structure functions) also provides important information

on local isotropy and intermittency at small and intermediate scales.

In the following sections we address the issues noted above by drawing upon a large

DNS database of passive scalar mixing in isotropic turbulence, which has been extended to

very low Schmidt numbers. The computation of individual terms in the scalar structure

function equation (Eq. 4.3) requires substantial care, which we also discuss. For scalars

of very low Sc, at intermediate scales the mixed structure function is found to be much

smaller in magnitude than predicted by Yaglom’s relation. Scalar gradient fluctuations are

found to become poorly correlated with velocity gradients and principal strain rates, while

the structure function budget equation becomes dominated by production and dissipation.

The importance of production even at intermediate and smaller scales is consistent with

the non-universality observed in spectral quantities (Yeung & Sreenivasan 2014), even as

the spectrum follows a power law with the same exponent as predicted by classical the-

ory Batchelor et al. (1959). Furthermore, the assumption of local isotropy becomes less
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valid with decreasing Peclet number.

4.2 Simulation database

We provide a brief summary of the Reynolds and Schmidt number ranges reached in past

simulations of turbulent mixing that are analyzed in the following sections. These simula-

tions include those which were intended to (i) reach as high a Reynolds number as possible

with Sc held fixed at O(1) (Donzis et al. 2005), (ii) reach as high a Schmidt number as

possible at moderate Reynolds number (Donzis et al. 2010), or (iii) reach as low a Schmidt

number as possible at moderate Reynolds number (Yeung & Sreenivasan 2014). Scalar fields

in the first two of these three categories of simulations generally follow classical spectral

cascade concepts quite closely, but may be limited in resolution at the small scales. In

contrast, scalar fields of the third (low Schmidt number) type deviate substantially from

classical cascade concepts, and are well resolved the small scales but limited by the finite

size of the periodic domain employed.

Table 4.1: Summary of Reynolds number (Rλ), number of grid points (N3), box length
(L0), Schmidt number (Sc) and resolution (kmaxη,kmaxηB) for scalar fields studied in this
work.

Rλ N kmaxη L0 Sc kmaxηB

140 512 1.4 4π 1/8 -
140 512 1.4 4π 1/32 -
140 512 1.4 4π 1/128 -
140 512 1.4 4π 1/512 -
240 1024 1.4 4π 1/128 -
240 1024 1.4 4π 1/512 -
240 1024 1.4 4π 1/2048 -
390 2048 1.4 4π 1/2048 -
650 4096 2.7 2π 1/8 -
650 4096 2.7 2π 1 2.7
140 2048 11.2 2π 4 5.59
140 2048 11.2 2π 64 1.4
240 2048 5.14 2π 1 5.14
240 2048 5.14 2π 8 1.82

Table 4.1 gives a list of basic parameters of the simulation data sets analyzed in this

work. Resolution of the velocity field is presented by the dimensionless parameter kmaxη

where kmax = (
√

2N/3)k0 is the highest resolved wavenumber and k0 = 2π/L0 is the lowest
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wavenumber represented in a domain of length L0 on each side. The ratio of grid spacing ∆x

to the Kolmogorov length scale η is approximately 2.96/(kmaxη). For Schmidt numbers less

than or equal to unity, the smallest scales in the scalar field, denoted by the Obukhov-Corrsin

scale ηOC (Obukhov 1949; Corrsin 1951) is larger than, or equal to the Kolmogorov length

scale (η), since ηOC = ηSc−3/4. Hence kmaxη serves as the relevant resolution parameter

for the small scales in the case of Sc ≤ 1. The most expensive aspect of low Schmidt

number simulations is the very small time steps which is required to capture the effects of

fast molecular diffusion properly (∆t ∼ (∆x)2/Dφ). A small time step necessities the use

of higher precision arithmetic (to prevent round-off errors accumulating) and also results

in longer simulation times since significantly more time-steps are needed to reach steady

state. In addition, low Schmidt number simulations are expensive because of the need to

accommodate larger length scales through a larger domain (Donzis et al. 2005). Increasing

the box size requires a proportional increase in the number of grid points such that the

resolution remains the same. In contrast, simulations with very high Schmidt number are

more demanding because of the need to resolve the Batchelor scale ηB = ηSc−1/2 (Batchelor

1959) which (when Sc > 1) is smaller than the Kolmogorov scale for the velocity field. Here,

kmaxηB is the appropriate resolution parameter. Because of these challenges, results on

mixing at high Reynolds number are available only for scalars of Schmidt number equal to

or slightly less than unity. Nevertheless, trends for high Reynolds number turbulent mixing

at high and low Schmidt numbers can be deduced using results from high and low Schmidt

number simulations at moderate Reynolds numbers.

4.3 Statistics of scalar increments and gradients

4.3.1 Scaling of scalar increments and dissipation

The statistics of scalar increments at any scale size r depends on the range of scales present

which in turn depends on the Reynolds number and the Schmidt number, and how r itself

is located within this range of scales. In this section we examine the statistics of scalar

increments and scalar gradients, specifically the scalar dissipation rate.

If the Reynolds number is sufficiently high then classical theory predicts the presence of
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Figure 4.2: Second-order scalar structure function compensated by Obukhov-Corrsin scal-
ing. Frames in the left, middle and right columns are for Rλ ∼ 140, 240 and 390 respectively.
Each choice of symbol on the curves denote a different value of Sc: 1/8 (△), 1/32 (©),
1/128 (2), 1/512 (3) and 1/2048 (•). Arrows point in the direction of decreasing Schmidt
number in each frame. Dashed lines indicate slope 4/3 at small scales (Eq. 4.5) and value
of the Obukhov-Corrsin constant C2 ≈ 1.608 (Eq. 4.4).

an inertial-convective range (Obukhov 1949; Corrsin 1951). The inertial-convective range

is the intersection of the convective and inertial subranges and is given by max(η, ηOC) ≪

r ≪ min(L1, Lφ), with η and ηOC = ηSc−3/4 being the Kolmogorov and Obukhov-Corrsin

scales, and L1 and Lφ being the integral length scales of the velocity and scalar fields

respectively. The classical result for spatial separations in this range is given by

〈(∆φ(r))2〉 = C2〈χ〉〈ǫ〉−1/3r2/3 , (4.4)

where C2 = 4.02 Cφ with Cφ being the Obukhov-Corrsin constant in the one-dimensional

scalar spectrum in the inertial-convective range. In previous work (Yeung et al. 2005),

inertial-convective range behavior has been observed in the scalar spectrum, with a value of

Cφ close to 0.4 as suggested by a survey of data from laboratory experiments (Sreenivasan

1996). Data on structure functions presented in (Yeung et al. 2002) also show a scaling

range consistent with where C2 = 4.02 Cφ with Cφ taken as 0.4. Unless the Reynolds

number are extremely high, ηOC may be so large it approaches L1, such that conditions for

inertial-convective scaling cannot be satisfied.

Figure 4.2 shows second-order structure functions normalized by Obukhov-Corrsin scal-

ing variables in the low-Schmidt-number simulations. Each frame of this figure represents

a different Reynolds number (increasing from left to right) while each curve represents a
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Figure 4.3: Second-order scalar structure function compensated by KOC variables as func-
tion of r/η using same choice of symbols as Fig. 4.2 . Arrows point in the direction of
decreasing tendency towards an inertial-convective plateau. Solid line in each frame repre-
sents the longitudinal third order velocity structure function compensated by K41 variables
(see Eq. 4.1). Horizontal line (long dashes) shows value of the Obukhov-Corrsin constant
C2 ≈ 1.608 (Eq. 4.4), while horizontal line (small dashes) at 4/5 for determining inertial
range extent.

different Schmidt number (decreasing in the direction of the arrow). As the Schmidt num-

ber is reduced to very low values (1/512 for Rλ 140 on the left, and 1/2048 for Rλ 240

and 390) it can be seen that the second-order structure function deviates increasingly from

inertial-convective scaling. It can also be seen that the data collapse on an universal line

at slope 4/3 for r/ηOC ≤ 1. This collapse is related to the result Dφφ(r) ≈ (〈χ〉/6D)r2 at

small r, derived using Taylor series arguments, which implies

〈(∆φ(r))2〉
〈χ〉〈ǫ〉−1/3r2/3

=
1

6

( r

ηOC

)4/3
, r ≪ ηOC . (4.5)

Because ηOC becomes considerably larger than both the Kolmogorov scale and the grid

spacing the small scales for low Sc scalars are well-resolved.

In order to examine the KOC scaling result more carefully, it is instructive to determine

the extent of the inertial range in the flow field using Eq. 4.1. The inertial convective range is

a sub-range within the inertial range and hence its limits can be obtained from the four-fifth’s

scaling (Eq. 4.1). Figure 4.3 shows the KOC normalized second order structure function

plotted as a function of the spatial separation, normalized by the Kolmogorov length scale

η. Also shown is the normalized third order velocity structure function (Eq. 4.1) to gauge

the extent of the inertial range. We see that an inertial range just about begins to develop

at Rλ ∼ 140, which is consistent with the conclusions of Yeung & Zhou (1997). With
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Figure 4.4: Standardized PDFs of scalar increments ∆φ(r) with distance r taken over
parallel (left) and perpendicular (right) to the mean gradient, for scalars with Sc = 1/8
(top) and 1/512 (bottom) in Rλ ∼ 140, 5123 simulation on a (4π)3 domain. Triangles,
circles and squares correspond to r/∆x = 2, 16, 128 respectively. Dashed parabolic curves
show a standard Gaussian distribution for comparison. (Note the difference in the range of
x-axis between the top and bottom frames.)

decreasing Schmidt number at a given Reynolds number, we see a decreasing tendency

towards a plateau in the inertial-convective range. due to the decreasing extent of the

inertial-convective range. The decrease in the extent of the inertial-convective range with

decreasing Schmidt number at a fixed Reynolds number is due to the fact that ηOC is growing

faster than the scalar integral scale Lφ. Alternatively, as the Peclet number (Pe ≡ RλSc)

drops, ηOC grows and can even become comparable to the integral length scales in the

velocity (L1) and scalar fields (Lφ). In such a scenario we do not have a well defined inertial

convective range. Also from Fig. 4.3 we can see that as the Reynolds number is increased

at a fixed Schmidt number there is a tendency towards the inertial-convective plateau,

suggesting that in the limit of infinite Peclet number, Eq. 4.4 may yet be satisfied.

For more information on the statistics of the scalar increments, we consider statistics of
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one-dimensional (1D) increments of scalar fluctuations (∆φ(r)) as a function of scale size r.

Because of anisotropy induced by the mean gradient, the statistics of ∆φ(r) are expected

to differ between increments of r taken parallel or perpendicular to the mean gradient.

Accordingly, we decompose ∆φ(r) into components parallel and perpendicular to the mean

gradient based on the direction of the separation distance r as

∆‖φ(r) = φ(x + re‖) − φ(x) , (4.6)

∆⊥φ(r) = φ(x + re⊥) − φ(x) , (4.7)

where, e‖ and e⊥ are unit vectors parallel and perpendicular to the mean scalar gradient

respectively. The probability density function (PDF) of ∆‖φ(r) and ∆⊥φ(r) can be useful

in studying intermittency and anisotropy as functions of scale size. In the small r limit, the

PDF of scalar increments parallel and perpendicular to the mean gradient is expected to

resemble that of the longitudinal and transverse scalar gradients respectively. Whereas, in

the limit of large r, the PDF are expected to resemble that of the scalar fluctuation itself.

Figure 4.4 shows the PDF of these increments, normalized by the root-mean-square (r.m.s)

fluctuation in each case. For emphasis on low Schmidt number behavior we show data at

Sc = 1/8 and 1/512 at Rλ 140. For dependence on scale size we have chosen values of r that

correspond closely to the Kolmogorov scale and the integral length scale as well as an inter-

mediate r equal to the geometric mean of the two. The PDF at the smallest r in Fig. 4.4

are consistent with PDF of the corresponding scalar gradients reported in Yeung & Sreeni-

vasan (2014). For small separation distances, it is clear from Fig. 4.4 that the PDF for the

higher Schmidt number has longer tails than that for lower Schmidt number. This strongly

indicates that the probability of intense fluctuations decreases with decrease in Schmidt

number, owing to stronger diffusivity. The PDF of scalar increments perpendicular to the

mean gradient has a vanishing skewness (for all separation distances) due to reflectional

symmetry. However, for PDF of increments along the mean gradient, a non-zero skewness

at small-r indicates that the assumption of local isotropy is weak. In Fig. 4.4, the PDF

of ∆‖φ(r) at small-r, for both the Schmidt numbers are non-symmetric, indicating that

the assumption of local isotropy is dubious at best. As the scale size increases the PDF of
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∆‖φ(r) tends to approach the Gaussian form for both scalars. These observations indicate

that strong molecular diffusivity causes the scalar field to become less intermittent, with

anisotropy persisting at the small scales. As the scale size increases, the fluctuations tend

towards a normal distribution. The closeness between curves for different r at Sc = 1/512

also reflects the lack of scale separation when the Schmidt number is very low at a finite

Reynolds number.

To quantify the shape of the PDF of scalar increments, it is useful to consider the

normalized third and fourth order moments as a function of scale size r. We can define

such moments both parallel and perpendicular to the mean gradient due to Eqs. 4.6 and4.7.

The normalized third order structure function known as the “skewness structure function”,

is given as

µ3(r) ≡
〈[∆‖φ(r)]3〉

〈[∆‖φ(r)]2〉3/2
, (4.8)

where r is in the direction of the mean gradient. The component of the skewness structure

function perpendicular to the mean gradient is trivially zero due to reflection symmetry.

The normalized fourth order structure functions known as the flatness structure functions

can be defined for increments parallel and perpendicular to the mean gradient as

µ
‖
4(r) ≡

〈[∆‖φ(r)]4〉
〈[∆‖φ(r)]2〉2 , (4.9)

µ⊥
4 (r) ≡ 〈[∆⊥φ(r)]4〉

〈[∆⊥φ(r)]2〉2 . (4.10)

In Fig. 4.5 we show the skewness structure function along the mean gradient and flatness

structure functions both parallel and perpendicular to the mean gradient. The skewness

structure function is non-negative for all scale sizes r. Moreover, contrary to local isotropy

µ3(r) becomes larger as r becomes smaller, for all Schmidt numbers. This is consistent

with the asymmetric PDF of scalar increments parallel to the mean gradient at small r. At

large r the skewness decreases towards zero as a result of homogeneity, while the flatness

factors approach 3.0 since the large scales are approximately Gaussian. In the limit of

r → 0 the function µ3(r) is expected to approach a constant equal to the (single-point)

skewness of scalar gradient fluctuations in the direction of the mean gradient, while µ
‖
4(r)

and µ⊥
4 (r) are expected to approach the longitudinal and transverse flatness factors of the
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r/ηOC r/ηOC r/ηOC

µ3(r)

µ
‖
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µ⊥
4 (r)

Figure 4.5: Normalized moments of two-point increments of scalars function versus
Obukhov-Corrsin scaled separation at different Reynolds numbers and Schmidt numbers.
Each choice of symbol on the curves denote a different value of Sc: 1/8 (△), 1/32 (©),
1/128 (2), 1/512 (3), and 1/2048 (•). The top, middle and bottom rows represent, re-

spectively, the skewness structure function, µ3(r) and the flatness structure functions µ
‖
4(r),

µ⊥
4 (r), in directions parallel and perpendicular to the mean gradient. Frames in the left,

middle and right columns are for Rλ = 140, 240 and 390 respectively. Vertical dashed lines
are at r/ηOC = 1/2 and 1.
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χ/〈χ〉 χ/〈χ〉 χ/〈χ〉

PDF

Figure 4.6: PDF of normalized scalar dissipation rate χ/〈χ〉, using the same choice of
symbols as in Fig. 4.5 for (a) (left) Rλ ∼ 140, (b) (center) Rλ ∼ 240 and (c) (right)
Rλ ∼ 390. Dashed lines show the PDF of normalized energy dissipation rate (ǫ/〈ǫ〉) at
each given Reynolds number. (Note that the ranges on the χ/〈χ〉 axis are different for each
frame in this figure.)

scalar gradients, respectively. It can be seen that data for r smaller than 1/2 of ηOC are

nearly constant. This suggests a spacing close to 1/2 of ηOC may be sufficiently small for

the scalar gradients to be reasonably well-resolved. The asymptotic values at small r are

in very good agreement with the scalar gradient statistics reported in Yeung & Sreenivasan

(2014) (Table III therein). On the other hand, comparison between different frames of this

figure shows that an increase in Reynolds number with Schmidt number held fixed causes

a mild increase in the skewness values. Flatness structure functions in the middle and

bottom rows of this figure also follow similar trends. As Schmidt number decreases all of

the flatness values become smaller, while the parallel direction still shows values higher than

the perpendicular direction, which is indicative of anisotropy at scale r.

While the statistics of scalar increments focus on intermediate scale sizes, statistics of

scalar gradients are more indicative of small-scale properties of the scalar field. In particular,

the scalar dissipation rate, defined as

χ = 2Dφ
∂φ

∂xi

∂φ

∂xi
. (4.11)

is an important parameter of the small scales, since it is proportional to the scalar gradient

fluctuations. The first moment of the scalar dissipation rate, 〈χ〉 = 2Dφ〈(∂φ/∂xi)
2〉, is the

mean dissipation rate of the scalar variance 〈φ2〉. Although the scalar dissipation rate is a

small scale quantity, the mean scalar dissipation rate is controlled by the large scales through
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the advection-diffusion equation. The ratio of the scalar variance to the scalar dissipation

rate (〈φ2〉/〈χ〉), yields a time-scale that can be used to quantify the mixing efficiency.

Smaller this ratio, faster (or more efficient) is the mixing process. Table 4.2 reports the

ratio 〈φ2〉/〈χ〉 for various Reynolds and Schmidt number combinations considered in this

work. As the Schmidt number decreases at a given Reynolds number the mixing time scale

decreases, indicating a faster mixing process.

Table 4.2: Mixing efficiency quantified as the time scale 〈φ2〉/〈χ〉
N 512 512 512 512 1024 1024 1024 2048
Rλ 140 140 140 140 240 240 240 390
Sc 1/8 1/32 1/128 1/512 1/128 1/512 1/2048 1/2048
〈φ2〉/〈χ〉 0.98 0.82 0.59 0.33 0.71 0.44 0.22 0.51

A number of studies in the literature (Pumir 1994; Overholt & Pope 1996; Yeung et al.

2005) suggest that small-scale intermittency is stronger for passive scalars than for the

velocity field. For example the flatness values at small r seen in data at Sc = 1/8 and

Rλ ∼ 140 in Fig. 4.5 are larger than those for the velocity gradients at the same Reynolds

number (5.4 and 8.0 for longitudinal and transverse gradients respectively). It is also clear

that at any Reynolds number, scalars of some sufficiently low Schmidt number will be less

intermittent than the velocity. For both velocity and scalar fields the form of the PDF of

the dissipation rates contain useful information on the likelihood of extreme events in local

deformation and property gradients in the flow.

In Fig. 4.6 we compare the PDFs of energy and scalar dissipation rates, normalized

by their mean values, at the same Reynolds and Schmidt number combinations as in the

preceding figures. As reported previously else where (Donzis et al. 2008b), the PDF of

energy dissipation is well described by a stretched-exponential form, with tails that become

wider at higher Reynolds number. It has also been reported that (Yeung et al. 2005), for

Sc = O(1) the PDF of scalar dissipation has even wider tails than that of energy dissipation.

In Fig. 4.6(a) it can be seen that, at Rλ ∼ 140, the the PDF of χ at Sc = 1/8 also has a

well-defined stretched-exponential shape, and even at Sc = 1/32 the PDF of χ has wider

tails than the PDF of ǫ. However, as the Schmidt number is reduced towards very low
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values the tails become narrower, and the PDF resembles more nearly a simple exponential.

In part (c) of the figure the PDF of χ at Sc = 1/2048 is much narrower than that of ǫ at

the same Reynolds number.

Table 4.3: Moments up to fourth order for scalar dissipation and its logarithm.
N 512 512 512 512 1024 1024 1024 2048
Rλ 140 140 140 140 240 240 240 390
Sc 1/8 1/32 1/128 1/512 1/128 1/512 1/2048 1/2048
〈χ〉 2.98 2.75 2.11 1.03 2.06 1.55 0.77 1.20

〈χ3〉/〈χ〉3 211.9 86.7 22.3 6.4 39.8 10.0 4.9 6.6

〈χ4〉/〈χ〉4 10683 2797 302 31 686 64 17 30
Var(ln χ) 2.92 2.09 1.45 1.06 1.80 1.25 0.99 1.15
µ3(ln χ) 0.01 -0.06 -0.32 -0.67 -0.18 -0.48 -0.77 -0.65
µ4(ln χ) 2.86 3.10 3.53 4.15 3.25 3.70 4.33 3.98

To provide more information on the statistical properties of scalar dissipation rate we

show a number of statistical moments in Tab. 4.3 of χ and its logarithm. The mean scalar

dissipation rate (〈χ〉) decreases with Schmidt number (at fixed Rλ) due to substantial

reduction in the range of scales due to increasing molecular diffusivity. This is a departure

from the the classical concept of dissipative anomaly (Donzis et al. 2005) in the low Schmidt

number limit, and is consistent with previous work on this topic (Yeung & Sreenivasan

2014). The normalized third and fourth moments of χ, as well as the variance of ln χ,

are all measures of intermittency, dominated by large values of χ. It can seen that all of

these quantities become smaller when Sc is reduced to very low values at a fixed Reynolds

number. Conversely as the Reynolds number is increased for a given Schmidt number, the

normalized moments of χ increase, due to a wider range of scales. These observations are

consistent with those from Fig. 4.6 and can be summarized by stating that intermittency

decreases with an decrease in the Peclet number. Table 4.3 also shows that the skewness

and flatness factors of ln χ appear to move away from Gaussian values, thus showing that

the log-normal hypothesis is less accurate at very low Sc at a finite Reynolds number. With

increase in Reynolds number at a fixed Schmidt number, the skewness and flatness factors

are closer to the Gaussian values, although the variance appears to deviate further away

from unity.

The statistics of χ as presented above strongly suggest that any mechanism that tends
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to generate extreme fluctuations of χ are suppressed when the Schmidt number is much

lower than unity at least at moderate Reynolds numbers. In the section below we address

this issue in greater detail.

4.3.2 Amplification by alignment with principal strain rates

In order to investigate the mechanisms that control extreme scalar gradient fluctuations,

we investigate the dynamics of the instantaneous scalar dissipation rate fluctuations by

analyzing its evolution equation (Vedula et al. 2001)

Dχ

Dt
= Dφ

∂2χ

∂xi∂xi
− 4Dφ

∂φ

∂xj

∂ui

∂xj

∂Φ

∂xi
− 4Dφ

∂φ

∂xi

∂φ

∂xj
sij − 4D2

φ

(
∂2φ

∂xi∂xj

)2

, (4.12)

where D/Dt denotes the material derivative, and the four terms on the right-hand side

represent, respectively: (i) transport by molecular diffusion, (ii) production by mean scalar

gradient, (iii) nonlinear amplification or stretching by strain rate fluctuations (sij), and (iv)

destruction of dissipation fluctuations by molecular diffusivity. The transport term has zero

spatial average due to homogeneity, in which case the mean dissipation 〈χ〉 is given by

d〈χ〉
dt

= −4Dφ

〈
∂φ

∂xj

∂ui

∂xj

〉
∂Φ

∂xi
− 4Dφ

〈
∂φ

∂xi

∂φ

∂xj
sij

〉
− 4D2

φ

〈(
∂2φ

∂xi∂xj

)2
〉

. (4.13)

The unsteady term on the LHS vanishes in statistically stationary turbulence. In practice,

the unsteady term can be taken as zero when ensemble averaging is performed over a

sufficiently large number of realizations covering a sufficiently long time span. The classical

scenario is that the nonlinear amplification and molecular destruction terms dominate,

especially when the Reynolds number is large. The mechanism of nonlinear amplification is

itself the result of preferential alignment between scalar gradient and the most compressive

principal strain rate Ashurst et al. (1987), although the degree of alignment depends only

weakly on the Reynolds number Vedula et al. (2001).

Table 4.4 shows the individual terms in Eq. 4.13. The mean of the nonlinear amplifica-

tion (which is positive) decreases in magnitude with decreasing Schmidt number at a fixed

Reynolds number, while the mean gradient and the dissipation terms balance each other

out. The increasingly dominant role of the mean gradient term with decreasing Schmidt

number at a given Reynolds number, points to increasing non-universality in the scalar field
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Table 4.4: Mean gradient, nonlinear amplification and molecular destruction terms (un-
normalized) in equation for the mean scalar dissipation rate (see Eq. 4.13). Average of the
transport term is zero due to homogeneity.
N 512 512 512 512 1024 1024 1024 2048
Rλ 140 140 140 140 240 240 240 390
Sc 1/8 1/32 1/128 1/512 1/128 1/512 1/2048 1/2048
Mean Gradient 1.86 4.36 7.32 9.16 5.29 7.88 9.29 7.29
Amplification 41.7 30.1 13.1 2.78 25.9 8.52 1.45 3.72
Destruction -43.6 34.4 -20.5 -12.0 -31.1 -16.4 -10.8 -10.9

P
D

F

| cos(∇φ, ek)| | cos(∇φ, ek)| | cos(∇φ, ek)|
Figure 4.7: PDFs of direction cosines between fluctuating scalar gradient and principal
strain axes. Triangles, circles and squares represent alignment with the axes eα, eβ, eγ

respectively. In (a) open and closed symbols are for Sc = 1/8 and 1/512 respectively. In
(b) closed and open symbols are for Sc = 1/512 and Sc = 1/2048. In (c) open symbols are
for Sc = 1/2048.

dynamics. Due to the large diffusivity, the small scales in the scalar field are large enough

to be directly effected by the large scales. In contrast, as the Reynolds number increases at

a fixed Schmidt number, the reverse is true and the mean amplification term increases in

magnitude while the mean gradient term becomes smaller. Furthermore, since the mean of

the nonlinear amplification is directly related to the scalar transfer spectrum, we conclude

that the spectral transfer is suppressed by the strong molecular diffusivity in the case of

Sc ≪ 1, at a fixed Reynolds number. This is consistent with the findings presented in

Yeung & Sreenivasan (2014).

The nonlinear amplification term in Eq. 4.12 is of interest because it contains the cou-

pling between velocity and scalar fields whereby scalar gradients are amplified by association

with the local straining of fluid elements. The magnitude as well as the sign, of this term

depends on the geometric alignment between scalar gradients and strain rates. Because of
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Table 4.5: Statistical measures of the degree of alignment between fluctuating scalar gra-
dients and principal strain rates. The symbols Gα,Gβ and Gγ denote the normalized mean
square gradients projected along the eigenvectors eα,eβ and eγ .

Grid 5123 5123 5123 5123 10243 10243 10243 20483

Rλ 140 140 140 140 240 240 240 390
Sc 1/8 1/32 1/128 1/512 1/128 1/512 1/2048 1/2048
Gα 0.1983 0.2236 0.2702 0.3090 0.2623 0.3030 0.3238 0.3210
Gβ 0.1303 0.1685 0.2338 0.2847 0.2236 0.2778 0.3099 0.3060
Gγ 0.6714 0.6079 0.4960 0.4064 0.5140 0.4192 0.3662 0.3730

the tensorial structure involved, this alignment is best studied in the coordinate frame de-

fined by the principal axes of the strain-rate tensor. In this coordinate frame the strain-rate

tensor is purely diagonal, with diagonal elements denoted by α ≥ β ≥ γ, subject to the

constraint α + β + γ = 0 due to incompressibility. Previous work involving scalars with

Sc = 0(1) or higher Ashurst et al. (1987); Vedula et al. (2001) show that the scalar gradient

fluctuations are likely to be aligned most strongly with the eigenvector corresponding to

the most compressive strain rate and least so with that corresponding to the intermediate

strain rate. An assessment of the alignment between scalar gradients (∇φ) and principal

strain axes is made in Fig. 4.7, which shows the PDFs of the direction cosines of the angles

between ∇φ and unit vectors eα, eβ and eγ along the principal axes corresponding to each

principal strain rate. Preferential alignment with the most compressive strain rate is seen

in the PDF of the alignment angle between ∇φ and eγ showing a strong peak near the value

1.0. It is clear that this effect becomes much weaker as the Schmidt number is reduced.

The lack of significant alignment at Sc ≪ 1 is indicated by all three curves for the Rλ and

Sc combination in part (c) of this figure becoming nearly flat.

The preferential alignment noted above can be further characterized by comparing the

mean squares of scalar gradient fluctuations projected along each of the principal strain

eigen vectors. For example, for each of k = α, β, γ, we can define

Gk ≡ 〈(∇φ · ek)
2〉

〈|∇φ|2〉 , (4.14)

such that Gα + Gβ + Gγ = 1. Table 4.5 reports Gk (k = α, β, γ) for a range of Reynolds

and Schmidt numbers considered. As the Schmidt number decreases at a fixed Reynolds
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Figure 4.8: Conditional expectation of scalar dissipation given the energy dissipation. (a)
(top left) Rλ ∼ 140, (b) (top right) Rλ ∼ 240, (c) (bottom) Rλ ∼ 390. Symbols in each
frame correspond to same as that in Fig. 4.5.

number we see that Gα, Gβ and Gγ are closer to each other, indicating that the scalar

gradient vector is equally likely to be aligned with any of the principal strain rate vectors

in the low Schmidt number limit. The data in Tab. 4.5 appear insensitive to the increase

in Reynolds numbers considered in the present work.

The reduced degree of alignment seen above also suggests that the likelihood of large

scalar gradient and large strain rate occurring together is correspondingly reduced. In other

words, the connection between local fluctuations of energy dissipation and scalar dissipation

rates is also weakened in the low Sc limit. This is demonstrated in Fig. 4.8, which shows

the conditional expectation of scalar dissipation given the energy dissipation. As expected

there is some uncertainty in the results at large ǫ since the number of samples becomes

limited. However it is clear that as the Schmidt number is reduced, the conditional mean

becomes uniformly closer to the unconditional mean at all values of ǫ/〈ǫ〉. In the lowest
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Schmidt number case in all three simulations in this figure it is seen that, although, on

average, a large ǫ still tends to lead to a larger χ, even an instantaneous ǫ at 100 times the

mean produces a conditionally averaged χ merely of order 2〈χ〉.

4.4 Two-point scalar structure function equation

In the previous sections the similarity scaling properties derived from the spatial structure

of scalar fluctuations in the low Schmidt number limit have been shown to differ strongly

from the classical picture in turbulent mixing. In this section, we focus our attention on

the properties of mixed moments of the velocity and scalar increments in space. We begin

by deriving the second order two-point scalar equation which relates the scalar fluctuations

between two points in space. We provide theoretical limits for the various terms involved

in this equation, following which we derive the Yaglom’s relation. Finally we show results

for the Yaglom’s relation and the structure function budget and give asymptotic relations

that are expected to hold for decreasing Schmidt number scalars.

The second order scalar structure function equation governs the the second moment of

the differences in scalar fluctuations between two points in space. The two-point equation

focuses on the scale separation, thus providing insights on scale similarity in the scalar field.

In this section we derive the second order structure function equation from the advection-

diffusion equation. We provide analytical expressions for the terms involved in forms that

are amenable to numerical computations. As consistency checks, we also give the theoretical

limits for the various terms in the structure function budget for the extreme cases of very

small and very large separation distances.

Consider a passive scalar Φ(x, t) with mean 〈Φ(x, t)〉 and fluctuation φ(x, t) such that

〈φ(x, t)〉 = 0 (here 〈·〉 denotes a space average). The equation for the scalar fluctuation

φ(x, t) advected by the fluctuating velocity component ui(x, t) (for i = 1, 2, 3) is

∂tφ(x, t) + ∂xm
[um(x, t)φ(x, t)] = −um(x, t)∂xm

〈Φ(x, t)〉 + Dφ∂xm
∂xm

φ(x, t) , (4.15)

where ∂ denotes partial differentiation with respect to its subscript variable and Dφ is the

diffusivity. Summation is implied by repeated indices, for example, ∂xm
∂xm

is the Laplacian

operator. The velocity field is incompressible so that the velocity fluctuation is divergence
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free, i.e. ∂xm
um = 0. The scalar variance evolution equation in the presence of a uniform

mean gradient G in the x1 direction, can be derived by multiplying Eq. 4.15 by 2φ, averaging

and invoking homogeneity and incompressibility to give,

∂t〈φ2〉 = −2〈u1φ〉G − 〈χ〉 , (4.16)

where terms on the right hand side represent production and dissipation of the scalar

variance respectively.

Equation 4.15 applies at every point x and in particular at a point x′, which can be

varied independently of x. For brevity, let φ = φ(x, t), φ′ = φ(x′, t), ui = ui(x, t) and

u′
i = ui(x

′, t). The evolution equation ∂t(φ − φ′)2 = 2φ∂tφ − 2φ∂tφ − 2φ∂tφ
′ + 2φ′∂tφ

′ can

be obtained by multiplying Eq. 4.15 by 2φ and by 2φ′ and the analogous operations on

Eq. 4.15 written at x′, then adding and subtracting the resultant equations to obtain

∂t(φ − φ′)2 + ∂xm
[um(φ2 − 2φφ′)] + ∂x′

m
(u′

m(φ′2 − 2φφ′)] = −2[(φ − φ′)um]∂xm
〈Φ〉

−2[(φ′ − φ)u′
m]∂x′

m
〈Φ′〉Dφ[∂xm

∂xm
(φ2 − 2φφ′) + ∂x′

m
∂x′

m
(φ′2 − 2φφ′)

−2(∂xm
φ)(∂xm

φ) − 2(∂x′
m

φ′)(∂x′
m

φ′)] ,(4.17)

where the identity f∂xm
∂xm

g + g∂xm
∂xm

f = ∂xm
∂xm

(fg) − 2(∂xm
f)(∂xm

g) was used on

the right-hand side. We use a constant mean scalar gradient ∇〈Φ(x, t)〉 = (G, 0, 0), which

implies ∂xm
〈Φ(x, t)〉 = ∂x′

m
〈Φ(x, t)〉′ = Gδ1m, where δij is the Kronecker-Delta function.

Since x and x′ are independent variables, we have ∂xi
φ′ = 0, ∂x′

i
φ = 0, which allows

Eq. 4.17 to be written as

∂t∆φ2 + ∂xm
(um∆φ2) + ∂x′

m
(u′

m∆φ2) =

−2[∆φ∆um]Gδm1 + Dφ(∂xm
∂xm

∆φ2 + ∂x′
m

∂x′
m

∆φ2) − 2n , (4.18)

where the following notation has been used for convenience:

∆φ ≡ φ − φ′ ,

∆ui ≡ ui − u′
i ,

n ≡ Dφ[(∂xm
φ)(∂xm

φ) + (∂x′
m

φ′)(∂x′
m

φ′)] . (4.19)
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The motivation for the definition of n is that, the average of n is the dissipation rate of the

average of (φ2 + φ′2)/2, i.e. the dissipation rate of the scalar variance (〈φ2〉).

Now we change the independent variables from x and x′ to their sum and difference,

using

X ≡ (x + x′)/2 , r ≡ x− x′ and r = |r| . (4.20)

Since x and x′ are independent, ∂xi
and ∂x′

i
are related to ∂ri

and ∂Xi
by

∂xi
= ∂ri

+
1

2
∂Xi

, ∂x′
i
= −∂ri

+
1

2
∂Xi

,

∂Xi
= ∂xi

+ ∂x′
i
, ∂ri

=
1

2
(∂xi

− ∂x′
i
) . (4.21)

The use of equations 4.21 in 4.18 gives

∂t∆φ2 + ∂Xm
[(um + u′

m)∆φ2/2]+ ∂rm
[∆um∆φ2] =

−2[∆φ∆um]Gδm1+ 2Dφ(∂rm
∂rm

∆φ2 +
1

4
∂Xm

∂Xm
∆φ2) − 2n . (4.22)

We are interested in the statistics of the fluctuations, hence we average (in space) the

individual terms. Homogeneity implies that the spatial derivatives ∂Xm
〈·〉 vanish, and that

〈n〉 = 〈χ〉. Since x is statistically immaterial due to homogeneity, we denote the two-point

differences of the scalar and velocity component fluctuations as ∆φ(r, t) = φ(x, t)− φ(x′, t)

and ∆ui(r, t) = ui(x, t) − ui(x
′, t), to emphasize the dependence on the spatial separation

vector r = x − x′. We use the fact that the mean gradient is non-zero only in the x1

direction, and average the above equation, to get the final form of the equation, which is

given as

∂

∂t
〈∆φ(r)2〉+ ∂

∂ri
〈∆ui(r)∆φ(r)2〉 = −2〈∆u1(r)∆φ(r)〉G+2Dφ

∂2〈∆φ(r)2〉
∂ri∂ri

−2〈χ〉 , (4.23)

where for simplicity we have suppressed time dependence in the notation. The terms on

left hand side represent unsteadiness (if nontrivial) and convection, while terms on the

right hand side represent production by mean gradient, molecular diffusion and dissipation

respectively. The term 〈∆ui(r)∆φ(r)2〉, whose divergence in r-space is the convection term

in Eq. 4.23 is called the mixed velocity-scalar structure function. In the following, we

describe the large and small separation limits for the individual terms in Eq. 4.23.
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4.5 Scalar structure function budget

We derive expressions to asses the various terms involved in the evolution of the second

order scalar structure function 〈∆φ(r)2〉 (Eq. 4.23). The final form of the analytical ex-

pressions is partly guided by computational considerations. The limiting behavior of large

and small separation distances for each of the terms involved in the budget equation is

discussed. Such an analysis is not only useful for a theoretical understanding of the various

phenomena involved in the scalar structure function budget, but also serves as a check for

the computations performed.

4.5.1 Statistical stationarity

If the scalar field is statistically stationarity, the unsteady term in Eq. 4.23 can be considered

negligible, that is

∂

∂t
〈∆φ(r)2〉 = 0 . (4.24)

From Eq. 4.16 it follows that −2〈u1φ〉G = 〈χ〉 if the scalar fluctuations reach a statistically

steady state. The departure of 2〈u1φ〉G/〈χ〉 from unity can be used to quantify the extent

to which a statistically stationary state is achieved. In the event that the scalar field has

not achieved the desired level of stationarity, it is still possible to test the data at small

and large separation distances using analytic expressions. Using homogeneity, the unsteady

term can be written as

∂〈(∆φ(r))2〉
∂t

= 2

[
∂〈φ2〉

∂t
− ∂〈φ(x)φ(x + r)〉

∂t

]
. (4.25)

We are interested in the limiting cases of small separation distances (r → 0) and large spatial

separation (r → ∞) of the above equation. The time derivative for the first term on the

right hand side of above equation can be substituted directly from Eq. 4.16, while the limit

and the derivative for the second term can be interchanged to evaluate the limiting behavior.

Noting that, 〈φ(x)φ(x + r)〉 → 〈φ2〉 as r → 0 and 〈φ(x)φ(x + r)〉 → 〈φ(x)〉〈φ(x + r)〉 = 0

as r → ∞, in in the small-r limit we have

lim
r→0

∂

∂t
〈∆φ(r)2〉 = 0 . (4.26)
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Whereas, in the large-r limit we have from Eq. 4.16,

lim
r→∞

∂

∂t
〈∆φ(r)2〉 = 2

∂〈φ2〉
∂t

− ∂

∂t
[ lim
r→∞

〈φ(x)φ(x + r)〉] = −4〈u1φ〉G − 2〈χ〉 . (4.27)

4.5.2 Production by mean gradient

The mean gradient contribution to the evolution of the second order scalar structure is given

by P (r) = −2G[2〈φ(x)u1(x)〉−〈φ(x+r)u1(x)〉−〈φ(x)u1(x+r)〉]. Since 〈φ(x+r)u1(x)〉 →

〈φ(x)〉〈u1(x)〉 = 0 as r → ∞, P (r) is constant for large r and approaches monotonically to

zero as r decreases. Using the velocity-scalar two-point correlation, ρuφ(r) ≡ 〈u(x)φ(x +

r)〉/(σuσφ), the production term can be expressed as

P (r) = −2G[2〈u1φ〉 − σuσφ(ρuφ(r) + ρuφ(−r))] , (4.28)

where σu and σφ denote root-mean-square fluctuations. In general, two-point cross-correlations

are not even functions: i.e. ρuφ(r) 6= ρuφ(−r). However, ensemble-averaged results from

multiple realizations suggest that, even in the direction of the mean gradient, the differ-

ence between ρuφ(r) and ρuφ(−r) is quite small. The mean gradient in the x direction

also suggests some mild differences at intermediate r among ρuφ(r, 0, 0), ρuφ(0, r, 0), and

ρuφ(0, 0, r) are expected, with the latter two closer to each other. Nevertheless, component

averaging over results for r = (r, 0, 0), (0, r, 0) and (0, 0, r) is still applicable. Thus using

the approximation ρuφ(r) = ρuφ(−r), the mean gradient contribution to 〈∆rφ)2〉 can be

written as

P1(r) = −4G[〈u1φ〉 − σuσφρuφ(r)] . (4.29)

As consistency checks, it is useful to derive analytical expressions for P1(r) in the small-r

and large-r limits.

lim
r→0

P1(r) = 0 , (4.30)

lim
r→∞

P1(r) = −4G〈u1φ〉 . (4.31)

Figure 4.9 shows the production calculated using Eqs. 4.28 and 4.29 for two different Schmidt

numbers using long-time averages. The plots suggest that P1(r) (Eq. 4.29) can be used to

evaluate the production term reliably. From Eqs. 4.16 and 4.31, the ratio P1(r)/2〈χ〉 → 1
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Figure 4.9: Production by mean scalar gradient in the scalar structure function equation
for 2563, Rλ ∼ 140 simulation on a (2π)3 domain using 21 snapshots, using two different
expressions (Eqs. 4.28 and 4.29). Symbols (△) and (©) correspond to P (r) and P1(r) for
Sc = 1/8 while (2) and (3) are for Sc = 1. Dashed line at 1.0 shows large-r limit for a
stationary state.

as r → ∞ if the scalar field is statistically stationary. From Fig. 4.9 we see that the large-r

limit for both scalars satisfy this limit approximately.

4.5.3 Molecular diffusion

In order to convert the molecular diffusion term (second term in right hand side of Eq. 4.23)

into a form which is readily amenable to analytical and computational analysis, we use the

following facts (i) φ depends on x only and φ′ depends on x′ = x+r only; and (ii) ∇x = −∇r

whereas ∇x′ = ∇r (such that both ∇2
x and ∇2

x′ are equivalent to the Laplacian operator

∇2
r, i.e. ∂2/∂ri∂ri in r-space). We first consider the differentiation of 〈∆rφ

2〉 with respect

to r, noting that only x′ depends on r,

∂

∂ri
〈(∆φ(r)2〉 = 2〈∆φ(r)

∂φ

∂ri
(x′)〉 . (4.32)
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Differentiating again and making use of the fact that ∇r = ∇x′ and ∇2
r = ∇2

x as noted

above, we get

∂2〈(∆φ(r))2〉
∂ri∂ri

= 2

〈
∂φ′

∂x′
i

∂φ′

∂x′
i

〉
+ 2

〈
∆φ(r)

∂2φ

∂x2
i

(x′)

〉
. (4.33)

Finally, invoking homogeneity, summing over the choices i = 1, 2, 3 and multiplying by the

factor 2Dφ gives the result

2Dφ
∂2〈(∆φ)2〉

∂ri∂ri
= 2〈χ〉 + 4Dφ〈∆φ(r)∇2φ(x′)〉 . (4.34)

The above expression for the diffusion term can be readily computed using parallel codes

based on a pencil decomposition. In order to check the behavior of the diffusion term for

both small and large separation distances, we require the following analysis.

In the limit as r → 0, ∆φ(r) → 0, hence we get

lim
r→0

2Dφ
∂2〈(∆φ)2〉

∂ri∂ri
= 2〈χ〉 . (4.35)

In order to get the large-r limit, we can use homogeneity and the product rule to show that

4Dφ〈∆φ(r)∇2φ(x′)〉 = −2〈χ〉 − 4Dφ〈φ(x)∇2φ(x′)〉 . (4.36)

Substituting the above result into Eq. 4.34 and taking the large-r limit, noting that 〈φ(x)∇2φ(x′)〉 →

〈φ(x)〉〈∇2φ(x′)〉 → 0 as r → ∞ we get

lim
r→∞

2Dφ
∂2〈(∆φ)2〉

∂ri∂ri
= 0 . (4.37)

4.5.4 Advective transport

The convective terms in Eq. 4.23 appear as the divergence of the vector g(r) = 〈∆u(r)∆φ(r)2〉

and is expected to dominate with increasing Reynolds number. For the case when r =

(r, 0, 0), the divergence can be written as

∇·g(r) =
∂

∂r1
g1(r)


r=(r1=r,r2=0,r3=0)

+
∂

∂r2
g1(r)


r=(r1=r,r2=0,r3=0)

∂

∂r3
g1(r)


r=(r1=r,r2=0,r3=0)

.

(4.38)

The first term on the right hand side constitutes the longitudinal term while the other

two correspond to the transverse contributions to the divergence. Care must be taken

66



to carry out the differentiation before substituting the value of r = (r, 0, 0) in the above

expression, as shown below

∇ · g(r) =
∂

∂r1
〈∆u1(r, 0, 0)∆φ(r, 0, 0)2〉


r=(r1=r,r2=0,r3=0)

+
∂

∂r2
〈∆u2(r, r2, 0)∆φ(r, r2, 0)

2〉


r=(r1=r,r2=0,r3=0)

+
∂

∂r3
〈∆u3(r, 0, r3)∆φ(r, 0, r3)

2〉


r=(r1=r,r2=0,r3=0)

. (4.39)

The first term on the right hand side of Eq. 4.39 is the longitudinal contribution to the

divergence term. Since the differentiation and the averaging operations commute, their

order can be interchanged. Noting that ∆u1(r, 0, 0) = u1(x + r, y, z) − u1(x, y, z) with

∂u1(x + r, y, z)/∂r = ∂u1(x + r, y, z)/∂x and ∂u1(x, y, z)/∂r = 0 etc., we get

∂

∂r1
〈∆u1(r, 0, 0)∆φ(r, 0, 0)2〉


r1=r

=

=

〈
∂u1(x + r, y, z)

∂x
∆φ(r, 0, 0)2

〉
+ 2

〈
∆u1(r, 0, 0)∆φ(r, 0, 0)

∂φ(x + r, y, z)

∂x

〉
.(4.40)

The second term on the right hand side of Eq. 4.39 is evaluated as

∂

∂r2
〈∆u2(r, r2, 0)∆φ(r, r2, 0)

2〉


r2=0

=

〈(
∂

∂r2
∆u2(r, r2, 0)

)
∆φ(r, r2, 0)

2

〉
r2=0

+

〈
∆u2(r, r2, 0)

(
∂

∂r2
∆φ(r, r2, 0)

2

)〉
r2=0

.(4.41)

Noting that ∆u2(r, r2, 0) = u2(x + r, y + r2, z) − u2(x, y, z) and ∆φ(r, r2, 0) = φ(x + r, y +

r2, z) − φ(x, y, z) and that u2(x, y, z), φ(x, y, z) are independent of r2, we get

∂

∂r2
〈∆u2(r, r2, 0)∆φ(r, r2, z)2〉


r2=0

=

〈
∂u2(x + r, y + r2, 0)

∂r2


r2=0

∆φ(r, 0, 0)2

〉

+ 2

〈
∆u2(r, 0, 0)∆φ(r, 0, 0)

∂φ(x + r, y + r2, z)

∂r2


r2=0

〉

=

〈
∂u2(x + r, y, z)

∂y
∆φ(r, 0, 0)2

〉
+ 2

〈
∆u2(r, 0, 0)∆φ(r, 0, 0)

∂φ(x + r, y, z)

∂y

〉
. (4.42)
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Similarly, the third term on the right hand side of Eq. 4.39 is

∂

∂r3
〈∆u3(r, 0, r3)∆φ(r, 0, r3)

2〉


r3=0

=

〈
∂u3(x + r, y, z)

∂z
∆φ(r, 0, 0)2

〉
+ 2

〈
∆u3(r, 0, 0)∆φ(r, 0, 0)∂φ(x+r,y,z)

∂z

〉
(4.43)

Thus the expression in Eq. 4.40 is the longitudinal part of ∇ · g(r) along r = (r, 0, 0), while

those in Eqs. 4.42 and 4.43 constitute the transverse contributions. Similar expressions hold

for r = (0, r, 0) and (0, 0, r). The motivation behind decomposing the advective terms into

longitudinal and transverse parts is that the integration of the longitudinal contribution to

∇ · g(r) that potentially leads to the Yaglom relation (refer Eq. 4.2). The small-r limit of

∇ · g(r) is trivially zero, while in the large-r limit, we have for instance,

lim
r→∞

〈
∂u1(x + r, y, z)

∂x
∆φ(r, 0, 0)2

〉
→
〈
〈∂u1(x + r, y, z)

∂x

〉〈
∆φ(r, 0, 0)2

〉
= 0 (4.44)

Similar argument holds for other contributions to the convective term which results in

∇ · g(r) → 0 as r → ∞.

We retain the constant dissipation term of −2〈χ〉 in Eq. 4.23 without any change,

since it appears in the Yaglom relation (see Eq. 4.2). The unsteady term is negligible in

our simulations, since the ensemble average is taken over sufficiently many instantaneous

snapshots covering a sufficiently long time span, such that the statistics tend to reach a

steady state. The convective term on the left hand side of Eq. 4.23 is computed using

expressions such as Eqs. 4.40,4.42 and 4.43. We compute terms on the right hand side

representing production, and molecular diffusivity according to the formulations given by

4.29 and 4.34.

4.6 Yaglom’s relation

In this section we derive the Yaglom’s relation from the two-point scalar equation (Eq. 4.23)

for both isotropic and non-isotropic scalar fields. We present results for the Yaglom’s relation

for a range of Reynolds numbers and Schmidt numbers, with a focus on the low Schmidt

number regime.
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For a stationary scalar field, if there exists a range of scales where the diffusive and

mean gradient effects can be neglected then from Eq. 4.23 we have

∂

∂ri
〈∆ui(r)∆φ(r)2〉 = −2〈χ〉 . (4.45)

For weakly diffusive scalars (Sc > 1), neglect of the production and diffusive terms is

appropriate in both the inertial-convective (η ≪ r ≪ Lφ) and viscous convective ranges

(ηB ≪ r ≪ η), if such ranges are well-formed. In the strongly diffusive case (Sc < 1), we

can expect the production and diffusive terms to be negligible only in the inertial convective

range (ηOC ≪ r ≪ L), if such a range indeed exists. If isotropy applies in these scale

ranges, then the dependence on r reduces to the dependence on r = |r| only, and only the

longitudinal velocity increment ∆uL(r) = ∆ui(r)ri/r is important. Consequently, if there

exists a scale range where isotropy applies and such that the diffusive and production terms

become negligible, then a straight forward integration of Eq. 4.45 with respect to r gives

Yaglom’s relation,

〈∆uL(r)∆φ(r)2〉 = −2〈χ〉r/3 . (4.46)

This is also known as the two-thirds law. Note that in Yaglom (1949), the definition 〈χ〉 was

a factor of 2 smaller, hence he obtained a factor of 4/3 in the right hand side of the above

equation. If isotropy does not apply in the relevant range of scales where Eq. 4.45 holds, as

is the case for a scalar field driven by a uniform mean gradient, then we have to integrate

Eq. 4.45 in three-dimensional r space. Integrating Eq. 4.45 over a sphere of radius-r (Vr)

with volume V (Hill 2002; Gotoh & Yeung 2013), we get

∫

Vr

∂

∂ri
〈∆ui(r)∆φ(r)2〉dV = −2〈χ〉

∫

Vr

dV . (4.47)

We apply Gauss’s theorem to convert the divergence term in Eq. 4.47 into an integral over

the surface of a sphere (∂Vr) of radius r as

∫

∂Vr

〈∆ui(r)∆φ(r)2〉ri

r
dS = −2〈χ〉

∫

Vr

dV , (4.48)

where r/r is a unit vector normal to the surface of the sphere and dS represents an ele-

mental area on the sphere with radius r. The term 〈∆ui(r)∆φ(r)2〉ri/r is the longitudinal
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component (〈∆uL(r)∆φ(r)2〉) of the mixed structure function 〈∆ui(r)∆φ(r)2〉. We define

the spherical average of the longitudinal mixed structure function as

〈∆uL(r)∆φ(r)2〉sp =
1

4πr2

∫

∂Vr

〈∆uL(r)∆φ(r)2〉dS . (4.49)

Substituting Eq. 4.49 into Eq. 4.48 and noting that the integral on the right-hand-side is

the volume of a sphere (4πr3/3), we finally get

〈∆uL(r)(∆φ(r))2〉sp = −2〈χ〉r/3 , (4.50)

Hence, in non-isotropic turbulence, Yaglom’s relation is still valid with the proviso that the

integral in Eq. 4.46 be replaced by a spherical average as given in Eq. 4.50. However, for the

purpose of examining the linear scaling of the mixed velocity-scalar structure function with

respect to spatial separation in Eq. 4.46, component averaging is still relevant. Figure 4.10

shows a direct test of Yaglom’s relation, with a focus on more recent datasets at either

higher Reynolds number or higher Schmidt number. It can be seen clearly that both an

increase in Reynolds number and increase in Schmidt number produce improved agreement

with Yaglom’s relation, which is indicated by a plateau at height 2/3 at intermediate scale

sizes.

Figure 4.11 shows a test of Yaglom’s relation as computed from Eq. 4.46 for scalars with

Sc ≤ 1, which if valid, should lead to a plateau at height 2/3 in the inertial-convective range

where the anisotropic large-scale effects and diffusion can be neglected. It is clear that as

the Schmidt number is dropped to very low values, the data falls much lower than the level

predicted by Yaglom’s relation. This is perhaps not a surprise, since Yaglom’s relation is in

part based on the existence of a wide range of scales, which does not occur if the Schmidt

number is very low, so low that even the Peclet number is small. In the limit of small r,

using Taylor series approximation and assuming local isotropy holds for both the scalar and

velocity fields, the mixed structure function can be written as (Yeung et al. 2002)

〈∆ru(∆rφ)2〉
〈χ〉r ≈ Suφ

6
√

15

( r

ηB

)2
, (4.51)

where Suφ is known as the mixed derivative skewness and is given as

Suφ =

〈(
∂u

∂x

)(
∂φ

∂x

)2
〉/〈(

∂u

∂x

)2
〉1/2〈(

∂φ

∂x

)2
〉

(4.52)
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Figure 4.10: Test of Yaglom’s relation based on the (component-averaged) mixed velocity-
scalar third-order structure function, versus separation scaled by the Batchelor scale.
Reynolds and Schmidt number combinations shown are: (i) Rλ ≈ 650 and Sc = 1/8 (△),
(ii) Rλ ≈ 650 and Sc = 1 (©), (iii) Rλ ≈ 140 and Sc = 4 (•), (iv) Rλ ≈ 140 and Sc = 64
(N). The dashed horizontal line is at height 2/3. The dotted line of slope 2 shows the small
r limit assuming S̃uφ = −0.5 (see Table 4.6), which holds approximately for Sc = O(1) or
higher.

A match between the lines corresponding to the mixed velocity-scalar structure functions

and dashed lines (with positive slope) corresponding to Eq. 4.51 in Fig. 4.11 indicates that

the small scales are adequately resolved in the low Schmidt number limit. Past studies (Kerr

1985; Yeung et al. 2002) show that Suφ converges approximately to −0.5 with increasing

Rλ for Sc ∼ O(1). Table 4.6 shows the values of Suφ as well as the corresponding quantities

Svφ and Swφ in the other coordinate directions. Because the mean gradient is in the x

direction, Suφ is systematically larger in magnitude than the other two, indicating non-

isotropy. However the difference between the three components decreases with decreasing

Schmidt number, indicating that local isotropy may be a valid assumption at low enough

Peclet numbers. The component averaged value S̃uφ is also shown in the last line of this

table. At each given Reynolds number, the mixed derivative skewness is seen to become

much weaker in magnitude when the Schmidt number is made very small (with magnitude

less than 0.5). It may be noted that the numerators in the definitions of Suφ, Svφ and Swφ

appear, presumably as dominant terms, in the nonlinear amplification term in the scalar

dissipation transport equation (Eq. 4.13). Accordingly, the decrease in mixed derivative

skewness at low Sc is consistent with the weakening of alignment between scalar gradients

71



r/ηB r/ηB r/ηB

−
〈∆

r
u
(∆

r
φ
)2
〉/
〈χ

〉r

Figure 4.11: Scaling of mixed third-order velocity-scalar structure function for strongly
diffusive scalars. Frames and symbols correspond to notation used in Fig. 4.5. The dashed
horizontal line is at height 2/3 for comparison with Yaglom’s result (Eq. 4.2). Dashed lines
(with positive slope) is to check small-r behavior (Eq. 4.51)

and strain rate fluctuations observed earlier.

Table 4.6: Mixed gradient skewness along the three orthogonal directions, and their com-
ponent average, S̃uφ = (Suφ + Svφ + Swφ)/3.

N3 5123 5123 5123 5123 10243 10243 10243 20483

Rλ 140 140 140 140 240 240 240 390
Sc 1/8 1/32 1/128 1/512 1/128 1/512 1/2048 1/2048
Suφ -0.642 -0.528 -0.331 -0.178 -0.324 -0.174 -0.092 -0.083
Svφ -0.404 -0.300 -0.162 -0.067 -0.208 -0.086 -0.030 -0.043
Swφ -0.423 -0.322 -0.175 -0.069 -0.248 -0.091 -0.031 -0.040

S̃uφ -0.490 -0.383 -0.223 -0.105 -0.260 -0.117 -0.051 -0.055

4.7 Scalar structure function budget - balance of terms

In this section we show results for the two-point scalar structure function budget (Eq. 4.23).

The formulae used to compute the production, diffusion, longitudinal convection and trans-

verse convection are given by Eqs. 4.29, 4.34, 4.40 and 4.42. The smallest spatial separation

possible in the computations is restricted by the grid spacing while the largest spatial sep-

aration is limited by the length of the finite domain. We compare the results with the

theoretical limits given in previous section. In view of the Yaglom’s relation not holding in

the low Schmidt number limit, we propose an alternative scaling law in the inertial-diffusive

limit.
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Figure 4.12: Balance of terms in the scalar structure function budget, for (left) Rλ=650,
Sc = 1; (right) Rλ=140, Sc = 64. Each type of term in the equation is represented by a
different symbol: longitudinal convection (3), transverse convection (∇), production (△),
molecular diffusion (2), dissipation (©), all normalized by 2〈χ〉. Closed circles and triangles
represent the total of terms on the l.h.s and r.h.s respectively of Eq. 4.23.

Figure 4.12 shows the balance of terms for the cases of highest Reynolds number and

highest Schmidt number presented earlier in Fig. 4.10. The sums of terms on each side of

the budget equation are seen to follow each other closely, while some mild discrepancies

are evident at the large scales. If the calculations are accurate then these discrepancies are

an indication that the unsteady term in the structure function budget has not completely

vanished through ensemble averaging performed over a number of instantaneous snapshots

in the simulation. This effect is more substantial at the large scales since the large scales

evolve slowly in time and only a limited number of samples of them exist in a finite solu-

tion domain at any given time. If a very long simulation with the scalar fluctuations in a

stationary state were available this imperfection in the data can certainly be reduced. Nev-

ertheless the present data in this figure show clearly that an intermediate scale range exists

where both production and molecular diffusion terms are weak compared to advection and

dissipation.

Figure 4.13 shows the budget plots for a range of Schmidt numbers and Reynolds num-

bers at low-to-moderate Peclet numbers. As Schmidt number decreases the longitudinal

and transverse convective terms decrease in magnitude. At Schmidt number 1/2048 at

73



Rλ ∼ 240 (bottom left in Fig. 4.13), the convective terms are vanishingly small at all sep-

aration distances. The inertial-convective range for this case is almost non-existent with

the Obukhov-Corrsin scale being larger than the velocity integral scale (L1/ηOC ≈ 0.76).

For the same Schmidt number at Rλ ∼ 390 (bottom right in Fig. 4.13), the convective

terms are greater in magnitude at intermediate-to-large spatial separations due to a wider

range of scales (L1/ηOC ≈ 1.47). This is consistent with Fig. 4.11, which shows that the

validity of Yaglom’s relation decreases with decreasing Peclet number. Diffusion is dom-

inant at the small scales and becomes negligible at the large scales. The range of scales

at which diffusion is important appears to increase with decreasing Peclet number in Fig.

4.23 with diffusive effects prominent even at intermediate-to-large scales for low Schmidt

numbers. On the other hand the production mechanism compensates for the dissipation at

large scales and monotonically decreases to zero at the small scales. With decreasing Peclet

number (Fig. 4.13), production appears to be significant even at the small-to-intermediate

scale ranges. This is mainly due to the fact that the range of scales decreases with in-

creasing diffusivity at a fixed Reynolds number. The production term represents large scale

effects and is influenced by non-universal factors such as boundary conditions and initial

conditions. Hence if the production mechanism was dominant in a given scale range, then

universal scaling laws may not hold for such a range. In all cases, we see that both sides

of the budget equation are well balanced, possibly except at the largest-r where finite box

size and sampling effects can contaminate the results.

In order to contrast the Schmidt number dependence, we report the various terms in-

volved in the structure function budget for different Schmidt numbers in Fig. 4.14. The

convective terms decrease in magnitude with decreasing Schmidt number. The magnitude

of the transverse convection term is larger than that of the longitudinal part, at moderately

low Schmidt numbers. It is worth noting that it is the integration of the longitudinal part

that potentially leads to Yaglom’s relation (see Eq. 4.11). The decrease in the longitudinal

convection term with Schmidt number is the primary reason for Yaglom’s relation not hold-

ing in the very low Schmidt number regime. Production is increasingly prominent at smaller

scales with decreasing Schmidt number as seen in Fig. 4.14. This is due to a decrease in the
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r/ηOCr/ηOC

Figure 4.13: Balance of terms in the structure function budget, for (a) Top left: Rλ=140,
Sc = 1/8; (b) Top right Rλ=140, Sc = 1/512; (c) Bottom left: Rλ=240, Sc = 1/2048;
(d) Bottom right: Rλ=390, Sc = 1/2048. Each term is represented by a different symbol:
production (△), dissipation (©), longitudinal convection (3), transverse convection (∇),
molecular diffusion (2). Sum of the production, diffusion and dissipation terms (R.H.S of
Eq. 4.23) by ( ), sum of longitudinal and transverse convection (L.H.S of Eq. 4.23) by (�).
All terms normalized by 2〈χ〉.
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r/ηOCr/ηOC

Figure 4.14: Schmidt number dependence of different terms in the scalar structure function
budget, normalized by 2〈χ〉, in the Rλ ∼ 140 simulation, at Schmidt numbers 1/8 (△), 1/32
(©), 1/128 (2), and 1/512 (3). Upper-left: negative of advection (longitudinal); Upper-
right: negative of advection (transverse); Lower-left: production; Lower-right: molecular
diffusion.

76



range of scales with decreasing Schmidt number and is indicative of non-universal effects

influencing the dynamics in the moderate-to-low Peclet number regime. The diffusive term

increases in magnitude with decreasing Schmidt number. Diffusive effects increasingly dom-

inate over a wider range of scales with decreasing Schmidt number and lead to a shrinking

of the inertial convective range.

4.7.1 Inertial-Diffusive regime

As seen from the structure function budget plots, the diffusive effects become increasingly

dominant over a wider range of scales with decreasing Schmidt number. The increasing diffu-

sivity causes the inertial-convective range to shrink, where the Yaglom’s relation is expected

to hold. The growth of the small scales in the scalar field can lead to a inertial-diffusive

regime if the Reynolds number is sufficiently high and the Schmidt number, sufficiently low.

That is if, η ≪ r ≪ ηOC ≪ (L1, Lφ), then both inertial and diffusive effects are important,

whereas the viscous and scalar production mechanisms are negligible in such a scale range.

In particular, the mean scalar gradient term in Eq. 4.23 can be expected to be small, in

the inertial-diffusive regime. Neglecting the production and unsteady terms in Eq. 4.23,

assuming isotropy at the relevant scale range (η ≪ r ≪ ηOC) and integrating twice we get,

−〈∆ru(∆rφ)2〉
〈χ〉r + 2Dφ

〈∆φ(r)2〉
〈χ〉r2

=
1

3
, (4.53)

where the first term represents the inertial effects while the second term corresponds to the

diffusive effects. For convenience we use the following notation,

A(r) = −〈∆ru(∆rφ)2〉
〈χ〉r , (4.54)

B(r) = 2Dφ
〈∆φ(r)2〉
〈χ〉r2

. (4.55)

such that A(r) + B(r) = 1/3 in the inertial-diffusive range. If isotropy does not hold in the

inertial-diffusive range, such as in the case of a non-zero mean gradient, the neglect of the

production and unsteady terms in Eq. 4.23 leads to

−∂〈∆ui(r)∆φ(r)2〉
∂ri

+ 2Dφ
∂2〈∆φ(r)2〉

∂rj∂rj
= 2〈χ〉 (4.56)
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Consider a volume integral of above equation over a sphere of radius r. The first term on the

left-hand-side of this equation is the divergence term. As before, we use Gauss’s theorem

to convert it into an integral over the sphere of the vector 〈∆u(r)∆φ(r)2〉 projected onto r,

which is in the outward normal direction. The surface integral yields 〈∆uL(r)∆φ(r)2〉sp as

before. The second term on the left-hand-side is the Laplacian of the second-order scalar

structure function whose volume integral can be evaluated using Gauss’s theorem as follows,

∫

Vr

∇ · ∇〈∆φ(r)〉dV =

∫

∂Vr

∇〈∆φ(r)〉 · dS

=

∫

∂Vr

∇〈∆φ(r)〉 · r2r̂dΩ

= r2

∫

∂Vr

∂〈∆φ(r)2〉
∂r

dΩ

= 4πr2 d

dr

1

4π

∫
〈∆φ(r)2〉dΩ (4.57)

Where the subscript ∂Vr denotes integration on the surface of a sphere of radius r and Ω

is the solid angle subtended at the center of the sphere such that
∫

dΩ = 4π. Defining the

spherical average for the scalar structure function as

〈∆φ(r)2〉sp =
1

4π

∫
〈∆φ(r)2〉dΩ , (4.58)

substituting the spherical average definition into Eq. 4.57, using this result in the volume

integration of Eq. 4.56, we get

−〈∆uL(r)∆φ(r)2〉sp + 2Dφ
d

dr
〈∆φ(r)2〉sp =

2

3
〈χ〉r (4.59)

Integrating again with respect to r and rearranging, we get

−〈∆uL(r)∆φ(r)2〉sp
〈χ〉r + 2Dφ

〈∆φ(r)2〉sp
〈χ〉r2

=
1

3
(4.60)

The above equation is similar in form to the inertial-diffusive relation obtained using isotropy

(Eq. 4.53).

Figure 4.15 shows Eq. 4.53 as a function of spatial separation for a range of Schmidt

numbers considered at two different Reynolds numbers. At the higher Reynolds number,

we see a tendency towards a plateau in the range 10η < r < 40η. These simulations do not

have a well-defined inertial diffusive regime because of a lack of sufficient scale separation.
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Figure 4.15: Inertial-diffusive scaling for (a) (left) Rλ ∼ 140, (b) (right) Rλ ∼ 240. Each
choice of symbol on the curves denote a different value of Sc: 1/8 (△), 1/32 (©), 1/128
(2) and 1/512 (3) and 1/2048 (•). Horizontal line at 1/3 for comparison with Eq. 4.53.

Nevertheless, we see the emergence of a plateau like behavior. for the higher Reynolds

number case in Fig. 4.15.

Based on the above analysis, an inertial-diffusive result can be postulated for the asymp-

totic case of infinite Reynolds number and vanishing Schmidt number. The magnitude of

the advection term, A(r) increases with increasing spatial separation at small-r, as seen in

Figs. 4.13 and 4.14. In contrast, the diffusion term B(r) is largest at the smallest scales

and monotonically decreases with increasing spatial separation. It follows that, in the

inertial-diffusive range, the magnitudes of the advection and diffusion terms are roughly

the same, that is A(r) ≈ B(r). Hence, in the limit, Rλ → ∞ and Sc → 0, Eq. 4.53 can be

approximated as

−〈∆ru(∆rφ)2〉
〈χ〉r =

1

6
(4.61)

The above equation is a scaling result in the inertial-diffusive range, η ≪ r ≪ ηOC ≪

(L1, Lφ). Due to the low-to-moderate Peclet number simulations in our DNS database,

this equation has not been tested yet. A rigorous test of this scaling relationship may also

require a DNS simulation without a mean scalar gradient to ensure that the largest scales

and the dissipative scales in the scalar field are well separated in space.
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4.7.2 Diffusive limit

For the smallest scales in the flow, r ≪ (η, ηOC) ≪ (L1, Lφ), diffusive effects are important.

If the Reynolds number is not sufficiently high and the Schmidt number is sufficiently low

(such that the Peclet number is low), a sufficient scale separation may not exist for a well-

defined inertial-diffusive range. In such a scenario, the diffusive effects dominate at the

small scales such that A(r) ≪ B(r) for r ≪ ηOC (see Eqs. 4.53, 4.54 and 4.55). Thus in the

low Peclet number limit, the diffusive range (r ≪ ηOC) relation,

B(r) = 2Dφ
〈∆φ(r)2〉
〈χ〉r2

=
1

3
(4.62)

is obtained. As before if isotropy does not hold then, 〈∆φ(r)2〉 can be replaced with

〈∆φ(r)2〉sp. The diffusive range relation is consistent with Taylor series result in the ballistic

limit r ≪ ηOC given in Eq. 4.5.
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CHAPTER V

EXTRACTING ISOTROPIC STATISTICS IN TURBULENCE

SIMULATIONS

Scaling laws in turbulence theory are important partly because they help overcome the clo-

sure problem, at least in the relevant scale-range. The Kolmogorov (1941b) theory gives an

explicit relation for the isotropic component of the third-order velocity structure function in

the intermediate scale range, in the infinite Reynolds number limit. The analogous relation

for the scalar field is the Yaglom (1949) relation for the isotropic part of the third-order

mixed velocity-scalar structure function in the infinite Peclet number limit. Such scaling

laws are said to be “exact”, which means that they hold in the asymptotic case of very

large Reynolds and/or Schmidt number. Empirical validation of such laws is naturally

curtailed by the finite Reynolds and Schmidt numbers that are possible in practice. Both

experiments and direct numerical simulations(DNS) have striven to obtain isotropic statis-

tics by time-averaging structure functions calculated along a few directions, over multiple

eddy-turnover times. In the case of DNS, forcing schemes carefully constructed to generate

isotropic data have been used (Eswaran & Pope 1988). However large scale effects still

persist in the intermediate and small scale ranges to varying degrees both in experiments

and simulations (Sreenivasan & Antonia 1997). Finite sampling further compounds the

problem of flow field anisotropy. In the case of the scalar field, the presence of a non-zero

mean gradient results in a systematic difference in statistics parallel and perpendicular to

the mean gradient, making it even harder to extract isotropic statistics (Warhaft 2000). In

such a scenario, it is difficult to objectively assess scaling laws involving isotropic statistics.

Theoretical work by Nie & Tanveer (1999) and Eyink (2003) show that the local isotropy

requirements can be relaxed by spherically averaging structure functions over all directions.

Such averages do not seem to require at least in theory, homogeneity or isotropy. In light of

these theories, spherical averaging can be interpreted as a technique to extract the isotropic
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component of a given quantity from anisotropic fields. Taylor et al. (2003) have given a

numerical recipe that calculates such spherical averages by approximating them as angle

averages. With the aim of reducing effects of anisotropy and finite sampling on isotropic

statistics we have implemented the numerical procedure given in Taylor et al. (2003). We

have developed a parallel algorithm to compute spherical averages, that is particularly

suited for very large data sets. We have used the latest computational techniques in hybrid

(MPI/OpenMP) and OpenACC programming to achieve scalability on different parallel

machines.

We have calculated isotropic statistics in both the velocity and scalar fields using the

angle averaging technique given in Taylor et al. (2003). We find that subject to Reynolds

limitations, the spherical averaging technique gives a wider scaling range in the velocity

field. Because of better statistical convergence, we also require fewer snapshots of data

when using this method. We also test the local laws of Nie & Tanveer (1999) and Eyink

(2003) using the spherical averaging algorithm on our DNS database. For the scalar field,

we find that we require greater resolution when using the spherical averaging process. We

conjecture that we require both high resolution and high Peclet numbers to realize the

asymptotic scaling laws for passive scalar mixing.

5.1 Kolmogorov 4/5th law

An exact result for the incompressible Navier-Stokes equations was derived by Kolmogorov

(1941b) in the infinite Reynolds number limit under the conditions of statistical homogeneity

and local isotropy and is given as

〈[∆uL(r)]3〉 = −4

5
〈ǫ〉r , (5.1)

∆uL(r,x) = [u(x + r) − u(x)] · r̂ ,

r̂ = r/r ,

where, 〈·〉 denotes ensemble averaging. The left hand side of Eq. 5.1 is the third-order

longitudinal structure function. The length scale r must lie in the inertial range η ≪ r ≪ L,

sufficiently far from the large scales L and the dissipation scales given by the Kolmogorov
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scale η. The mean energy dissipation rate per unit mass is given by 〈ǫ〉. Equation 5.1 is

commonly known as the “4/5 law” and is one of the few exact, nontrivial results in the

theory of statistical hydrodynamics. The derivation of Eq. 5.1 has an unproven assumption

that the energy dissipation rate has a strictly positive limit as viscosity tends to zero.

Using the incompressibility constraint (Monin & Yaglom 1975) Eq. 5.1 can be restated

as the “4/15 law” and the ”4/3 law”. For completeness we provide these equations:

〈∆uL(r)(∆uT (r))2〉 = − 4

15
〈ǫ〉r , (5.2)

〈∆uL(r)|∆uT (r)|2〉 = −4

3
〈ǫ〉r , (5.3)

where |∆u| is the magnitude of the velocity difference across separation vector r and

∆uT (r) = t̂ · ∆u(r) is a transverse velocity increment,with t̂ any unit vector orthogonal to

r. Equations 5.1, 5.2 and 5.3 are referred to hereafter as K41-3.

Both experiments and numerical simulations use the K41-3 results as a measure to

assess the width of the inertial range. The validity of these equations also constitutes

as an important test for the boundedness property of the dissipation rate (Frisch 1995).

Experiments in high Reynolds number turbulence in general support the linear scaling of

the third-order structure function in the inertial range (Yeung et al. 2005). However, the

convergence to the asymptotic coefficient of 4/5 in Eq. 5.1 has been quite slow (Gotoh et al.

2002; Antonia & Burattini 2006). In both experiments and numerical simulations, large

volumes of data extending over many eddy-turnover time and/or integral length scales is

required to obtain these isotropic statistics.

A modified version of the 4/5 law which does not assume local isotropy exists. Nie &

Tanveer (1999) proved that the 4/3 and hence the 4/5 law can be recovered in homogeneous,

but not necessarily isotropic flows:

〈(∆uL(r))3〉 = lim
T→∞

1

T

∫ T

0
dt

∫
dΩ

4π

∫
dx

L3
[∆uL(r,x, t)]3 (5.4)

= −4

5
〈ǫ〉r . (5.5)

The integration over x is over the entire volume L3 =
∫

dx. The angle integration in r is

over the sphere of radius r with
∫

dΩ = 4π being the solid angle subtended at the center of
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a unit sphere.For each point x the vector increment r is allowed to vary over all angles, and

the resulting longitudinal moments are considered. The integration over time t extends over

long times (T ). The integration over long-times is consistent with the ensemble averages

used in K41 theory (Eq. 5.1) due to ergodicity (Frisch 1995).

A local version of the 4/3 law was derived by Duchon & Robert (2000). Subsequently

Eyink (2003) derived the corresponding versions of the 4/5 and 4/15 laws. Following Taylor

et al. (2003), we state the local law as follows: Given any local region B of size R, for r ≪ R,

and in the limits ν → 0, then r → 0, and finally δ → 0,

〈(∆uL(r))3〉Ω,B = lim
δ→0

1

δ

∫ t+δ

t
dτ

∫
Ω

4π

∫

R

dx

R3
[∆uL(r;x, τ)]3

= −4

5
〈ǫB〉r , (5.6)

for almost every (Lebesgue) point t in time, where 〈ǫB〉 is the instantaneous (in time) mean

energy dissipation rate over the local region B. Equation 5.6 does not require stationarity,

homogeneity, or isotropy of the flow. Long-time or ensemble averages are also not required.

The Duchon & Robert (2000) and Eyink (2003) versions are truly local in space and time.

Our velocity fields are nominally isotropic. Individual snapshots are not necessarily

isotropic, only the ensemble of all snapshots is guaranteed to be isotropic. Hence we rely

on long-time averages of data spanning multiple eddy-turnover times to obtain isotropic

statistics. This invariably leads to longer simulation times, which can be prohibitively

expensive at higher Reynolds number. Furthermore, saving the velocity and scalar fields at

every checkpoint and having to read the data again accrues significant I/O time. The finite

length of the solution domain is also a limitation. Large scale isotropic forcing schemes

such as Eswaran & Pope (1988) can also cause some anisotropy at the smaller scales.

Increasing the length of the domain does improve statistical sampling, but at a considerable

computational expense. Figure 5.1 shows the left hand side of Eq. 5.1 along the three

orthogonal directions for the highest Reynolds number in this study. The structure functions

differ at the intermediate scale range possibly due to anisotropy at this scale size.

We are motivated by the desire to extract isotropic statistics particularly in the inter-

mediate flow ranges, where anisotropic effects can be significant. We wish to differentiate
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Figure 5.1: Third order longitudinal velocity structure function (Eq. 5.1) averaged over 7
snapshots for Rλ ∼ 650,40963, simulation. Lines A,B,C correspond to the Cartesian direc-
tions (1, 0, 0),(0, 1, 0) and (0, 0, 1) respectively. Horizontal line at 4/5 shows the asymptotic
K41 constant (Eq. 5.1).

between the effects of finite Reynolds number and anisotropy on the width of the inertial

range. This will enable a more systematic study of the Reynolds number dependence of the

small-scale phenomenology.

The concept of averaging over a sphere to extract isotropic data has existed for some

time. Present high-Reynolds number experiments only enable data measurements at a few

spatial locations. Taylor’s hypothesis is typically used to convert spatial derivatives into

time derivatives. Such methods are not suitable to spherical averaging. Numerical methods

such as direct numerical simulations provide complete space-time information of the flow.

The new spherical- averaged and local laws (Nie & Tanveer 1999; Eyink 2003) provide us

with the theoretical impetus to extract isotropic components of the flow in high Reynolds

number turbulence. The interpolation of square grid data onto spherical shells is very

expensive (Nie & Tanveer 1999). We use a method of taking averages over angles which

avoids the expense of interpolating square-grid data over spherical shells.
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Taylor et al. (2003) have proposed a numerical scheme to approximate a spherical average

by averaging over a finite number of angles. This method has been shown to be a good

approximation to a true spherical average. We have adapted the numerical scheme given

in Taylor et al. (2003) with a different parallel implementation suited towards very large

problem sizes.

5.2 Angle-averaging technique

We would like to extract the isotropic component by a suitable average of the of the two-

point structure function u(x + r) − u(x), as defined by Eqs. 5.4 and 5.6. Following Taylor

et al. (2003) we approximate the spherically averaged third-order longitudinal structure

function by the following average over Nd directions:

〈[∆uL(r)]3〉 =
1

Nd

1

N3

Nd∑

j=1

N3∑

i=1

wj [∆uL(rj ;xi)]
3 , (5.7)

where xi denotes grid points, rj denotes the increment vector in the jth direction, r = |rj |

is fixed and wj are quadrature weights.

We choose vectors rj (j = 1, . . . , Nd) from among those that are natural to a square

computational grid. We restrict ourselves to the set of all unique directions which can be

expressed with integer components with length less than or equal to
√

11. Each vector rj

(j = 1, . . . , Nd) is the minimum grid-point separation distance in the jth direction. This

set is generated by vectors

B =
{

(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 0), (2, 1, 1), (2, 2, 1), (3, 1, 0), (3, 1, 1)
}

, (5.8)

by taking all index and sign permutations of the three coordinates. Vectors that are positive

or negative multiples of any other vector in this set are removed. This procedure generates

a total of Nd = 73 unique directions. For convenience, we consider the set B̂ whose elements

have the same direction as those in B, but with unit magnitude,

B̂ =

{
(1, 0, 0), (

1√
2
,

1√
2
, 0),

( 1√
3
,

1√
3
,

1√
3

)
,
( 2√

5
,

1√
5
, 0
)
,

( 2√
6
,

1√
6
,

1√
6

)
,
(2

3
,
2

3
,
1

3

)
,
( 3√

10
,

1√
10

, 0
)
,
( 3√

11
,

1√
11

,
1√
11

)}
. (5.9)
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The elements of the set B̂ and the vectors formed by permuting the indices and sign of

elements in B̂, removing any linearly dependent redundant vectors, together are referred to

as generator points. We get Nd = 73 generator points in total. We refer to the collection of

all generator points as the generator set and introduce the following notation for later use:

G = {r̂1, r̂2, . . . , r̂Nd
}, |r̂i| = 1, i = 1, . . . , Nd . (5.10)

Figure 5.2 shows the elements G(r̂j) (j = 1, . . . , Nd) of the generator set G on the unit

sphere in a Cartesian grid. Both r̂j and −r̂j, are shown in Fig. 5.2. But we do not consider

−r̂j directions, since they give the same contributions as r̂j when averaged. To see this, let

us denote the normalized third-order velocity structure function for a fixed rj = rr̂j as:

f(r) =

〈
[u(x + r) − u(x)]3

〉

〈ǫ〉r (5.11)

Then,

f(−r) = −

〈
[u(x − r) − u(x)]3

〉

〈ǫ〉r (5.12)

Using the translation x − r = k and invoking homogeneity, we get

f(−r) = −

〈
[u(k) − u(k + r)]3

〉

〈ǫ〉r = f(r) . (5.13)

Hence we do not consider the directions −r̂j (where r̂j ∈ G), in the following analysis.

The magnitude |rj| of the minimum grid spacing in the jth direction for a N3 domain

of length L0 is gives as

|rj | = λj
L0

N
, j = 1, . . . , Nd, (5.14)

where λj is the magnitude of a given element in the set B. It can be seen from the above

equation that the grid spacing along the non-orthogonal directions is greater than ∆x =

L0/N . For instance, for the body diagonal vector (1, 1, 1) we have λ =
√

3. This gives the

minimum grid spacing along (1, 1, 1) as
√

3∆x.

For each of the Nd directions we form a set of l = 1, . . . , Nr separation vectors xi + lrj .

Since rj is the minimum separation distance of grid points in the jth direction and l is an

integer, all the xi + lrj points lie on our computational grid. This is illustrated (in two
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Figure 5.2: Unit sphere in Cartesian coordinate grid showing some of the Nd = 73 directions
considered.

dimensions) in Fig. 5.3, where the black dots represent x + lrj for the case of xi at the

origin.

We can now compute structure functions along Nd directions at Nr separation distances

as

〈[∆uL(lrj)]
3〉 =

1

N3

N3∑

i=1

[∆uL(lrj ;xi)]
3. (5.15)

For each direction, we get a one-dimensional curve as a function of lrj, where l = 1, . . . , Nr.

For a N3 grid with length L0, the non-trivial separation distances expressed as a multi-

ple of the grid spacing ∆x = L0/N are r = 1, . . . , N/2 because of periodicity. This implies

that Nr = N/2 for any vector rj (j = 1, . . . , Nd). In the forced simulations considered in

this study, all Fourier modes with magnitude |kF | ≤ 2.1 excluding |kF | = 0 are forced. This

implies that all scales with magnitude r ≥ L0/2.1 are directly energized by the numerical

forcing. The largest scales are also affected by finite box length and periodicity constraints

to a greater extent than the smaller scales. These effects can often times have unpredictable

behavior in the statistics of the largest scales in the flow. Figure 5.4 shows that the third

order velocity structure function 〈[∆uL(r)]3〉 becomes positive at the largest separation dis-

tances for the non-Cartesian direction. Scale separation along the non-Cartesian directions

are larger than those along the Cartesian directions. Hence a greater range of scales along

88



X

Y

Figure 5.3: Two-dimensional example in the X-Y plane for the angle averaging procedure.
Seven directions (in counter-clockwise direction) are shown: (1, 0), (3, 1), (2, 1), (1, 1), (2, 4),
(1, 3) and (0, 1). Closed circles show grid points where structure functions for a particu-
lar direction can be computed with no interpolation. Structure functions at open circles
(required for angle average) can then be obtained using interpolation.

these directions come under the direct influence of the numerical forcing. For computa-

tional efficiency we only consider those separation distances that are not directly impacted

by forcing. Hence we force Nr to be a function of |rj |, and take Nr = Nr(j) as

Nr(j) =

[
L0/2

|rj |

]
=

[
N/2

λj

]
, (5.16)

where
[
(·)
]

denotes the integer part of (·), |rj| is given by Eq. 5.14 and λj is the magnitude

of the vector in set B along the jth direction.

We compute the structure functions along the Nd directions at Nr(j) (j = 1, . . . , Nd)

separation distances for each direction:

〈〈[∆uL(lrj)]
3〉 =

1

N3

N3∑

i=1

[∆uL(lrj ;xi)]
3 . (5.17)

The evaluation of the right hand side of Eq. 5.17 scales as N4 for each direction r̂j (j =
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Figure 5.4: Third order velocity structure function computed at all non-trivial sep-
aration distances Nr = 1, . . . , N/2 for 2563,Rλ ∼ 140. Curves A-F correspond to
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) and (1, 1, 1) directions respectively. Horizontal dashed line
(bottom) at zero to show unpredictable behavior of 〈[∆uL(r)]3〉 for scales that are forced
in the DNS (see line F for r > 200η).

1, . . . , Nd). Hence we use a parallel algorithm, the details of which are given in the next

section.

The structure functions calculated from Eq. 5.17 cannot be angle-averaged directly, as

they are computed at different spatial separations r, for different directions. We use cubic

splines to interpolate the structure functions so that we obtain the structure functions at

the same spatial separation for all Nd directions. To calculate the end slopes, we compute

slopes of f(r) (Eq. 5.11), at small and large separation distances. At small-r, using Taylor

series expansion we can write:

f(r) ≈ r2

〈(
∂u/∂x

)3〉

〈ǫ〉 (5.18)

Differentiating with respect to r we get (at small-r)

d

dr
f(r) = f ′(r) ≈ 2r

〈(
∂u/∂x

)3〉

〈ǫ〉 (5.19)
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Hence, we get f ′(0) = 0. For the slope in the large-r limit, we note that f(r) → 0 as

r → L0/2 (L0 is the length of the domain) because of periodicity and furthermore, this

approach to zero is monotonic. Hence we have f ′(L0/2) = 0. We use these clamp conditions

to interpolate the structure functions over all directions. Figure 5.5 shows only some of the

interpolated curves for visual clarity. We see that the cubic spline interpolation is an

excellent interpolant. The structure functions along different directions agree with Eq. 5.18

at small spatial separations, while they diverge from each other at intermediate and large

separations.
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Figure 5.5: The third-order structure function nondimensionalized by 〈ǫ〉r for Rλ ∼ 140,
kmaxη ∼ 1.4. The dots indicate values of the structure function computed at various lrj .
Each curve connecting the dots is the cubic-spline interpolation through all computed values
of the structure function in a given direction. Only a few of the 73 curves are shown for
clarity. The horizontal solid line indicates the asymptotic constant 4/5 (Eq. 5.1). The
dashed line shows the small-r asymptote (Eq. 5.18).

Once the data for each structure function has been interpolated to a common separation

distance, we can approximate the angle average over the Nd different directions as

〈[∆uL(r)]3〉 =
1

N3
d

Nd∑

j=1

wj〈[∆uL(rr̂j)]
3〉 . (5.20)

The quadrature weight wj is the solid angle subtended by the spherical Voronoi polygon

(Renka 1984) associated with the jth element G(r̂j) of the generator set G (j = 1, . . . , Nd).

The spherical Voronoi polygon V (r̂i) associated with generator point r̂i on the unit sphere
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S is defined as (Okabe et al. 1992)

V (r̂i) =
{
r̂ : dgc(r̂, r̂i) ≤ dgc(r̂, r̂j), j ∈ G\{i}, r̂ ∈ S

}
(5.21)

where dgc(r̂, r̂i) is the shortest distance from r̂ to r̂i on S. Figure 5.6 shows the Voronoi tiling

generated by the generator set G (see Eq. 5.10). We use the software package STRIPACK

(Renka 1997) to compute the Voronoi quadrature weights. It is useful to note that

Nd∑

j=1

wj = 4π , (5.22)

where, the right hand side corresponds to the solid angle subtended by a unit sphere.

The angle-averaging procedure described above has been implemented on parallel com-

puters. In the following section we give details of the parallel implementation. Some scaling

results are provided and performance assessments are made.

X

Y

Z

Figure 5.6: Voronoi polygons V (r̂i) generated by G =
⋃i=Nd

i=1 {r̂i} on the unit sphere. Open
circles show the generator points r̂i.

5.3 Parallel algorithm

The structure function calculation for a given spatial separation and direction, rj = rr̂j can

be expressed as

〈[∆uL(r)]3〉 = 〈[uL(x + rr̂j) − uL(x)]3〉 , (5.23)

where uL = uiri/r is the longitudinal velocity component along r̂j. For a N3 grid, there are

N/2 non-trivial spatial separations along any given direction due to periodicity. This means
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that the calculation of Eq. 5.23 requires N4 flops along a given direction. Furthermore, we

want to compute the structure functions along Nd = 73 different directions to calculate an

angle average (see Eq. 5.15).

As a simplification, we divide the N3 grid among MPI processes in only one direction.

We refer to this decomposition as (MPI) slab/1D decomposition. In order to utilize more

cores, we divide the orthogonal direction among OpenMP threads. In theory, this hybrid

MPI/OpenMP method allows the use of N × k cores, where k is the number of cores in

a given node. The number of cores in a given node varies typically from 12 to 32 cores.

Figure 5.7 shows the mapping of the physical domain into the computational grid. Three

different data configuration (a) X-Z slabs (b) X-Y slabs and (c) Y -Z slabs are used in

the computations. The data are transposed using MPI ALLTOALL in between the three

configurations. In the hybrid MPI/OpenMP implementation, we use the thread-funneled

approach, which means that only the main thread (the thread that initiates the MPI) does

the communication. The structure functions in all the Nd = 73 directions are calculated in

any one of the three slab configurations (Fig. 5.7) as explained in the following.

The slab decomposition makes it easy to calculate structure functions along directions

in a given plane since all the required data is within a processor’s memory. For instance

the direction (1, 1, 0) can readily be computed with data in X-Y slabs, whereas the X-Z

configuration is utilized for the (1, 0, 1) direction. Directions that do not lie on a single

plane and hence are spread among the various MPI processes require a different strategy.

We give a detailed account of a sample calculation in the (1, 1, 1) direction for a 163 box,

divided equally among four MPI processes. Since we are using a 1D slab decomposition, the

domain is divided into four slabs. Consider the data in the X-Z slab configuration. Since

we require the longitudinal structure function, we consider the projection of the velocity

vector in the (1, 1, 1) direction. Let this quantity be denoted as V , with Vi being the velocity

vector projection in the (1, 1, 1) direction at the ith grid point. Figure 5.8 shows the initial

setup for this calculation.

For convenience, we refer to spatial separation in terms of integer multiples of the grid-

spacing, ∆x = L0/N . Thus r = 1 corresponds to r/∆x = 1 and so on. We require
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(a) (b) (c)

Figure 5.7: Schematic of the hybrid MPI/OpenMP decomposition for a N3 box for the
angle-averaging algorithm. The solid lines denote division among MPI processes, threaded
lines represent OpenMP decomposition. (a) X-Z slabs (b) X-Y slabs and (c) Y -Z slabs.
Global transposes between slabs are done using MPI ALLTOALL.
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0 1 2P                                    P                                      P                                      P3

Figure 5.8: Initial setup for the structure function calculation in the (1, 1, 1) direction
for 163 grid divided into slabs by four MPI processes, P0, P1, P2 and P3. Here, Vi is the
projection of the velocity vector along (1, 1, 1) direction at the ith grid point. Note that the
distance along adjacent grid points along (1, 1, 1) is

√
3∆x where ∆x = L0/N is the grid

spacing in the Cartesian directions.

the right hand side of Eq. 5.23 for r = 1, 2, 3 and so on at every point x in the domain.

In the case of r = 1, each MPI process only requires the first element in the adjacent

process to complete the calculation (see Fig. 5.8). The algorithm consists of three stages

for every spatial separation r. In stage-1, we start the data transfer of the first element of

each process to its “left neighbor”. The initiation of the MPI communication is shown in

Fig. 5.9(a). We define the computational grid to be periodic in the direction of the MPI

decomposition. This identifies P3 as the left neighbor of P0. Thus P0 sends data to P3 and

P3 receives this data. The neighboring grid points at the boundaries is shown in Fig. 5.9(a)

along with the communication pattern at the boundaries. We use non-blocking persistent

MPI communication for the transfers. While the communication proceeds, we perform the

computations local to each process as shown in stage-2 of Fig. 5.9. Once we are done

with local computations, we complete the communication using MPI WAIT. Finally we
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perform the remaining computation using the transferred data, represented as closed circles

in Fig. 5.9. Now, Eq. 5.23 can be computed for r = 1 in the (1, 1, 1) direction at every

x. This procedure overlaps communication with computation,provided that the number of

MPI processes be less than N , the box length.
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(b) stage 2
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Figure 5.9: Schematic of the different stages in the parallel algorithm for computing Eq. 5.23
for r = 1 along (1, 1, 1) direction. (a)(Top) Stage-1: Initiate the MPI transfer using non-
blocking calls (b) (Center): Stage-2: perform local computations while the communication
is taking place in order to overlap communication and computation, (c) (Bottom): Stage-3:
after the communication is completed, compute velocity differences at grid point at the
boundaries of each process (shown as solid closed circles).

For the r = 2 calculation, we require data points spaced two grid spacings away from

each other. From Fig. 5.9(c), we see that the only missing data point for process P0 is

V6 which is available at the first grid point in process P1 at the end of r = 1 calculation.

Similarly, process P1 requires V10 which is available at the first grid point of P2. Hence,

transfer of data from the first grid point of the “right” MPI neighbor to its ”left neighbor”

is initiated in stage-1 of the r = 2 calculation. The rest of the procedure for r = 2 is

identical to r = 1 calculation. Figure 5.10 shows the result at the end of stage-3 for the
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r = 2, r = 3 and r = 8 calculations. A essential feature of this scheme is that the data

transfer is always from the first grid point of any process to its “left neighbor”. Thus each

process is receiving data from the first grid point of its “right neighbor” and sending data

again from its first grid point to its “left neighbor”. This ensures a highly structured and

localized communication pattern. Comparing Fig. 5.8 and 5.10 (r = 8) case, we see that

V9 has moved from process P2 to P0. Thus, information propagates “upstream” in this

algorithm, while the communication remains localized in the network.
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(a) r = 2

(b) r = 3
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Figure 5.10: Result of the iterative structure function calculation (end of stage-3) for
r = 2, 3, 8 for 163 grid, using four MPI processes. The solid grid points denote the data
values calculated as a result of the communication process. Open circles represent grid
point values calculated using only local computations. Comparing r = 8 case with Fig. 5.8
we see that V9 which was local to process P2 is now available in P0.

A limitation of this iterative approach is that the structure function calculation be

carried out at consecutive r. This requires that the calculation be carried out at all N/2
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spatial separations for every direction, which can be expensive. However, we only compute

Eq. 5.23 for r = 1, 2, . . . , Nr(j) along r̂j (Eq. 5.16). This means that the number of spatial

separations considered in non-planar directions is lesser than those that lie on a plane.

For example, we need to compute Eq. 5.15 along (3, 1, 1) at only one-third of the spatial

separations considered for (1, 0, 0) direction.

To efficiently mask the communication time, we perform local computations for multiple

directions simultaneously wherever possible. Consider the data in the X-Z slabs configura-

tion. For performing the (1, 1, 1) calculation data is exchanged in the Y direction among the

MPI processes as explained above. Now direction (1, 1,−1) requires the same data in the

Y -direction as the (1, 1, 1) calculation. Hence we perform these two calculations together.

All the directions of the form (α, 1, β) where α,β are non-zero integers can be obtained

from the data in X-Z slabs. For directions of the form (α, β, 1) we use the X-Y slab configu-

ration, while for (1, α, β) we use Y-Z slabs. The data is transposed using MPI ALLTOALL.

Thus two global data transposes are required. The time for the ALLTOALL is insignificant

compared to the time required for the structure function calculations.

5.4 Parallel performance

The parallel algorithm uses a 1D slab decomposition to divide the domain among multiple

processors. For a N3 grid, the 1D domain decomposition limits the number of MPI processes

to N . This limitation on the number of MPI processors is partly overcome by dividing the

orthogonal direction of the domain among OpenMP threads (see Fig. 5.7). Decreasing

the MPI processes and increasing the OpenMP threads makes the domain decomposition

more coarse grained. Since each process now has more data in the local node memory, the

communication time is reduced. Furthermore, using less than N MPI processes allows (at

least in principle) a part of the communication to be overlapped with the computation.

Figure 5.11 shows the effect of increasing the number of threads on Stampede (Texas

Advanced Computing Center) for a fixed problem size and core count. Each Stampede node

contains two Xeon Intel 8-Core 64-bit E5-processors (16 cores in all) on a single board, as an

symmetric multi-processor unit. Hence, the maximum number of threads allowed is equal
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Figure 5.11: Scaling of the angle-averaging code with respect to number of OpenMP threads
on Stampede (TACC) for (a) (top) 10243 using 2048 cores, (b) (bottom) 20483 using 4096
cores. Symbols (△) and (©) correspond to the communication and total times respectively.
The difference between the ordinates of the two curves in each frame gives the computation
time which is roughly a constant.
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Figure 5.12: Strong scaling for 20483 on Stampede (TACC) on logarithmic scales. The
number of OpenMP threads used is 16. The number of cores is given by the product of
MPI processes and OpenMP threads. Symbol (▽) corresponds to total time, while dashed
line shows perfect scaling result.

to 16. As the number of threads increase (accompanied by a decrease in MPI processes) for

a fixed problem size and core count, the communication time and hence the total time taken

decreases. In Fig. 5.11, the vertical distance between the curves corresponding to total and

communication times gives the computation time. The computation time is approximately

a constant since the workload per core remains the same. The computation time for the

20483 case increases slightly as the number of threads is increased (especially when going

from 8 to 16 threads). This is possibility because of the penalty incurred when threads

migrate across sockets to access data. Regardless, the overall time is the least when 16

threads are used on Stampede. Similar trends have been observed on other machines such

as Blue Waters and Titan onto which the code was ported.

Figure 5.12 shows the strong scaling result for 20483 box on Stampede. The number of

threads was fixed at 16. The strong scaling trend is seen to deviate from the perfect scaling

result at larger core counts. This is due to the fact that the number of MPI processes

increases with increasing core count for a fixed number of OpenMP threads. The domain

decomposition among processes tends to become more fine grained with increase in MPI

processes, leading to greater communication time.
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5.5 Angle-averaging results

Figure 5.13 compares the angle-averaged third order velocity structure function with the

component-averaged version at two different Reynolds numbers. Even at the lower Reynolds

number (Rλ ∼ 140) differences are seen between the angle-averaged and component aver-

aged curves. The angle-averaged result appears to have a higher plateau than the component

averaged result. At Rλ ∼ 650 the angle-averaged result is seen to converge to the asymp-

totic K41 constant of 4/5. Whereas the component averaged curve has not yet reached the

4/5 plateau.

The structure function results in Fig. 5.13 have been averaged in time using seven

instantaneous snap shots. Hence the 4/5 plateau for the 40963 case can also be taken as a

numerical validation of Eq. 5.4.
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Figure 5.13: Angle-averaged third-order velocity structure function (red), component aver-
aged third-order velocity structure function (black) for (a) (left) 2563, Rλ ∼ 140, (b) (right)
40963, Rλ ∼ 650. Horizontal line at 4/5 shows the asymptotic K41 constant (Eq. 5.1). The
structure functions have been averaged in time using seven instantaneous snap shots.

To examine Eq. 5.6 which is the time-local result of Eyink (2003), the maximum instan-

taneous values of the angle-averaged normalized third order structure function are plot-

ted against time (see Fig. 5.14). The time-axis is normalized by the eddy-turnover time

TE = l/u′, where l is the integral scale and u′ is the r.m.s velocity fluctuation. In our DNS

simulations, TE ≈ 0.8 time units. The maximum value of the curves converge well to the

constant of 0.8 with very little spread (if any). Velocity field snap shots both close to each
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other in time and far apart in time have been checked to converge to the K41 constant. The

mean of the data shown in Fig. 5.14 is equal to 0.7998 and its dispersion is almost zero.
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Figure 5.14: The peak of the angle-averaged non-dimensionalized third-order structure
function as a function of non-dimensionalized time t/TE , where TE = l/u′ is the eddy-
turnover time, l is the integral scale and u′ is the r.m.s velocity fluctuation. The dashed line
is the asymptotic constant of 0.8 (Eq. 5.1). The mean of the data is 0.7998 and variance is
7.5 × 10−5.
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CHAPTER VI

LOCAL AVERAGES AND THE REFINED SIMILARITY

HYPOTHESIS

6.1 Introduction

A statistical description of the local flow structure in high-Reynolds number turbulence

was given by Kolmogorov (1941a). In its simplified version, the first hypothesis relates

the probability density function (PDF) of the longitudinal velocity increments ∆u(r) =

[u(x + r) − u(x)].r/|r| to the mean energy dissipation rate 〈ǫ〉 and the fluid viscosity (ν),

for spatial separations r = |r| ≪ L, L being the integral scale of the turbulence. The

second hypothesis is that if the Reynolds number is very large, there exists a range of scales

(in the so-called inertial range) for which ν becomes irrelevant, so that the PDF of ∆u(r)

depends only on 〈ǫ〉, apart from r itself. An implicit assumption in the Kolmogorov (1941a)

theory is that the rate of transfer of energy from the large to the small scales is a constant

everywhere in the flow and is equal to 〈ǫ〉. However, the energy dissipation rate per unit

mass of a turbulent fluid is given by

ǫ(x, t) =
ν

2

∑

i,j

(∂ui

∂xj
+

∂uj

∂xi

)2
, (6.1)

which fluctuates in space and time and can be considered as a random function. The

fluctuations of ǫ(x, t) may depend on large-scale properties which can be non-universal

(Monin & Yaglom 1975).

Kolmogorov (1962) introduced the refined similarity theory, which introduced more

restrictive alternatives and abandoned universality. It postulated that one of the most

important factors determining the statistics of ∆u(r) for r ≪ L, is the dissipation rate

averaged over a local volume V(r) of linear dimension r, i.e., the quantity

ǫr(x, t) =
1

r3

∫

V(r)
ǫ(x + r′, t)dr′ . (6.2)
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Following Kolmogorov (1962), the quantities r and ǫr(x, t) can be used to construct a

velocity scale at the point (x, t) as Ur = (rǫr)
1/3, and a local Reynolds number can be

formed as

Rer =
Urr

ν
=

(rǫr)
1/3r

ν
=
( r

ηr

)4/3
, ηr =

(ν3

ǫr

)1/4
, (6.3)

where ηr is the local Kolmogorov length scale. The first refined similarity hypothesis can

be stated as the following (Stolovitzky et al. 1992), for r ≪ L,

∆u(r) = V (rǫr)
1/3 , (6.4)

where V is a non-dimensionless stochastic variable whose PDF only depends on Rer.

The second refined hypothesis states that if Rer ≫ 1, the PDF of V becomes indepen-

dent of Rer, i.e. it is universal.

The third hypothesis is that the PDF of ǫr is log-normal with a variance given by

(Kolmogorov 1962)

Var(log ǫr) = A(x, t) + κlog(L/r) (6.5)

where κ is a universal constant and A(x, t) depends on the flow macrostructure. Thus by

knowing the PDF of ǫr and V , the PDF (and hence all other statistical moments) of ∆u(r)

can be obtained in the appropriate scale range.

Previous work on this topic (Stolovitzky et al. 1992; Wang et al. 1996) have examined

the refined similarity hypothesis using one-dimensional (1D) averages of the local dissipation

rate ǫ̂r(x, t), averaged over a line L of length r as,

ǫ̂r(x, t) =
1

r

∫

L
ǫ(x + r′, t)dr′, (6.6)

The use of 1D averages over 3D averages in experiments, is partly because of difficulties

in obtaining measurements in 3D space, especially for small spatial separations r ≪ L.

Computationally, 1D averages are easier to calculate than 3D averages, since the latter

require heavy communication between different processors in a parallel network, especially

when the spatial separation r is large.

In this chapter a new algorithm to calculate local 3D averages is presented. The statis-

tics of 3D averaged dissipation are compared and contrasted with those of the 1D averaged
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dissipation rate. Significant differences in the scaling laws for the local 1D and 3D aver-

aged dissipation are observed in the intermediate scale ranges. The 3D local averages of

dissipation are used to examine the first and the second hypotheses of the refined similarity

theory. Results for the K62 theory is presented for the 40963 simulation at Rλ ∼ 650.

6.2 Numerical procedure

The local average of a scalar quantity such as the energy dissipation rate (ǫ) over a volume,

V ∼ O(r3) is defined as

ǫr(x, t) =
1

r3

∫

V
ǫ(x + r, t)dr . (6.7)

A sample of ǫr is calculated at the point (x1, y1, z1) over a cube with edge length of r grid

spacings using the formula,

ǫr(x1, y1, z1) =
1

(r + 1)3

zr+1∑

z=z1

yr+1∑

y=y1

xr+1∑

x=x1

ǫ(x, y, z) . (6.8)

In order to obtain adequately converged statistics of ǫr, Eq. 6.8 needs to be calculated at

every point (x, y, z) in a N3 grid. The examination of the statistics of ǫr at various scale

sizes, requires Eq. 6.8 to be calculated at all non-trivial spatial separations, which spans

r = 1, 2, . . . , N/2 grid spacings. To save computer time, we typically compute Eq. 6.8

only at selected multiples of grid spacing, at the larger spatial separations. In spite of

this simplification, the computational complexity of Eq. 6.8 can be taken as ∼ O(N2)

flops. Added to the computational complexity, the domain decomposition in a parallel code,

requires significant inter-processor communication, especially when the averaging length

r is large. The non-linear dependence of the computational complexity on N and the

inter-processor communication required at every averaging length, makes the problem of

computing local averages challenging.

The right-hand-side of Eq. 6.8 is calculated using three one-dimensional (1D) prefix sums

(Blelloch 1990) for each spatial separation r, expressed as a multiple of the grid spacing.

The algorithm that has been developed for computing Eq. 6.8 is referred to as the “3D

local averages” algorithm. The 3D local averages algorithm uses a two-dimensional (2D)

domain decomposition (Donzis et al. 2008a) to map the 3D physical domain onto a 2D
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computational grid. The use of a 2D computational grid allows the use of a maximum of

N2 processors in theory, for a N3 domain with N points along each direction. The main

advantages of 2D computational grids over 1D grids is that they decrease memory required

per processor by enabling the use of higher core counts. A schematic of the mapping of

the N3 domain onto a 2D processor grid with P = Prow × Pcol MPI processes is shown in

Fig. 6.1.
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P3
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P6

P7
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P10

P11

P14
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P15

P E N C I L

X

Z

Y

N/Pcol

grid points

{

N/Prow grid points

}

Figure 6.1: Mapping the N3 domain into a 2D computational grid with P = Prow × Pcol

processors for the 3D prefix sum algorithm. Here Prow = Pcol = 4.

The 3D local averages algorithm computes local sums for a given spatial separation

along the three orthogonal directions, in successive fashion to calculate the right-hand-side

of Eq. 6.8. In what follows, a 1D local sum calculation along the X-direction (see Fig. 6.1)

which is local to each processor’s memory, is presented. Apart from being used in the 3D

local averages algorithm, the 1D local sum calculation is used to calculate 1D local averages.

The extension of the 1D case to the 3D local averages algorithm is then discussed.

Consider a line segment of length (L0) equally divided among N points (say) in the X

direction. Assume, all the N points are contained within a single processor’s memory. Let

the value of a scalar (denoted by ǫ) be ǫk at the kth grid point. Periodicity is assumed along

the X-direction with a period of L0, that is ǫL0+k = ǫk for 1 ≤ k ≤ N . Figure 6.2 (top)

shows the setup for the N = 8 case. The prefix sum σk at the kth grid point is calculated
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ǫ1 ǫ2 ǫ3 ǫ4 ǫ5 ǫ6 ǫ7 ǫ8

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

X

Y

Figure 6.2: Schematic for the 1D local sums algorithm for N = 8 case. Here ǫk denotes the
value of a scalar quantity at the kth grid point, while σk denotes its prefix sum (see Eqs. 6.9
and 6.10). The former can be overwritten by the latter using Eqs. 6.9 and 6.10.

as

σ1 = ǫ1 (6.9)

σk = σk−1 + ǫk , 2 ≤ k ≤ N . (6.10)

The result is shown in Fig. 6.2 (bottom) for the N = 8 case. The computational complexity

of calculating Eq. 6.9 and 6.10 is O(N). The 1D local sum for separation distance of r

grid spacings, denoted as Σr(k) at the kth grid point (k = 1, 2, . . . , N) is then evaluated

according to the following formula:

Σr(k) =





σr+1 if k = 1

σk+r − σk−1 if 2 ≤ k ≤ N − r

σN + σN−k−r − σk−1 if N − r < k ≤ N

(6.11)

In the above formulae, the last case of N −r < k ≤ N accounts for the periodicity along

the X-direction. The computation of Eq. 6.11 in the single processor case considered here

is trivial since at the most only two or three data points are required for a given spatial

separation. Hence the computational complexity of the local 1D sum calculation is ∼ O(N),

i.e. an O(N2) problem is now reduced to an O(N) problem with the use of prefix sums.

For the case when the N points are distributed among multiple processors, inter-processor

communication may be required.
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The 3D local averages algorithm uses the procedure explained above to calculate three

successive 1D sums at each of the N3 grid points for a given spatial separation r. The data

are contained in X-pencils in each processor. The corresponding 2D computational grid is

shown is Fig 6.3. Two orthogonal sub-communicators are created using MPI COMM CREATE

since each process is only going to be communicating with processes in the same column

or same row. For the case with Prow = Pcol = 4 shown in Fig. 6.3, there are four non-

overlapping column communicators and four non-overlapping row communicators.

Z

Y

P0

P1

P2

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15P3

Figure 6.3: Mapping the N3 domain into a 2D computational grid with P = Prow × Pcol

processors for the 3D prefix sum algorithm. Here Prow = Pcol = 4. MPI COMM CREATE
is used to divide MPI COMM WORLD into orthogonal sub-communicators. Processes
P0, P1, P2, P3 form a column communicator; processes P0, P4, P8, P12 form a row commu-
nicator. The communication in the 3D local average algorithm is restricted to these sub-
communicators.

The first local sum calculation is carried out in the Y -direction (see Fig. 6.3). The local

prefix sums are calculated using Eqs. 6.9 and 6.10. Then, MPI SCAN (Gropp et al. 1999)

is used to form the global prefix sums. If ǫp0
, ǫp1

etc. are the local prefix sums in the

processes P0, P1 etc. which belong to the same column communicator (see Fig. 6.3), then

an inclusive SCAN results in ǫp0
in the process P0, ǫp0

+ ǫp1
in process P1 etc. The SCAN

is a blocking collective operation provided by MPI and works similarly as the reduction

collectives (reduce/all-reduce etc.). Thus the result from the scan operation is used to form

the global prefix sums along the Y direction.
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The data are now in the form of σk (see Eq. 6.9,6.10 and Fig. 6.2), where k = 1, 2, . . . , N

is a global index. Now Eq. 6.11 is used to calculate the 1D local sums in the Y direction.

Since the data in Y direction are spread among Pcol processes, a given processor may need

to communicate with another processor in its column sub-communicator, to access the

appropriate σk. For a given r, each process needs to communicate with at the most three

other processes to access the required global sums. Whether the point that contains σk+r or

σN−k−r etc that is required by point k (as per Eq. 6.11) is contained in a different pencil or

resides in the same pencil as point k, depends on the values of r, N and the grid parameters

Prow and Pcol. Since for every point in the domain and for every spatial separation r, this

relationship is fixed, we ascertain if global points k + r, N − k − r etc. are contained in

the same pencil as point k for every point k in the domain (k = 1, 2, . . . , N in the Y -

direction) as a one-time initialization step. This one-time initialization procedure is not

repeated again. Then, if a inter-processor communication is required, an MPI SENDRECV

is used to complete the communication. If the other point resides in the same pencil, then

a MPI PROC NULL message is passed which means that the MPI call return immediately

with no action. In this way, using Eq. 6.11 Σr(k) for every point k is calculated in the

Y -direction at a given spatial separation.

Now that the 1D local sums in the Y direction is calculated, we do a local 1D sum in the

X-direction using Eqs. 6.9, 6.10 and 6.11 as explained above. Since all the data required, is

contained within a processor’s memory, no communication is required.

After the 2D sums are formed by summing in the Y and X direction, the final summation

along the Z direction is performed. The 1D local sum in the Z-direction is carried out

in the row communicator (see Fig. 6.3). As with the column communicator, a one-time

initialization step to determine which k (now in the Z direction) requires which other points

to form the 1D local sums is done at the beginning. This information is used to determine

which processes need to communicate with each other. If the two points belong to the same

process then the process sends a MPI PROC NULL message and returns immediately. This

completes the 3D local sums for the given spatial separation of r grid spacings.

Finally the 3D local average for the averaging volume ∼ O(r3) is calculated using Eq. 6.8.
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The same process is repeated for every spatial separation for which the local averages are

required. The advantage of this method is that the calculations at a given spatial separation

is independent of results from any other spatial separation. This fact is used to skip over

many spatial separations in the large-r regime to save computer time.

6.3 Local 1D and local 3D averages of dissipation

Consider the stochastic variable V defined as (Kolmogorov 1962)

V (r) =
∆u(r)

(rǫr)1/3
, (6.12)

where ∆u(r) = [u(x+r)−u(x)]·r/|r| is the longitudinal velocity increment along separation

vector r and ǫr is the three-dimensional (3D) local average of the dissipation rate over a

volume O(r3). The 3D local dissipation rate ǫr(x, t) is defined over a volume ∼ O(r3) as

ǫr(x, t) =
1

r3

∫

V
ǫ(x + r′, t)dr′ , (6.13)

where V is the volume of integration. In Cartesian coordinates it is convenient to consider a

cube of edge length r grid spacings as the volume over which dissipation is locally averaged.

Figure 6.4 shows a sample cube of edge length r grid spacings that is considered in this

work.

There is considerable ambiguity in the precise definition of V when 3D averages are

considered. Since a cube such as that in Fig. 6.4 has twelve edges over which a longitu-

dinal velocity increments can be defined, we can have twelve different samples of variable

V . Presumably in isotropic homogeneous turbulence the statistics of V over these twelve

directions can be considered as different samples which can then be averaged.

In this work we calculate V (r) along the three edges marked in red in Fig. 6.4 as

V1(r) =
uD

1 − uA
1

(rǫr)1/3
, (6.14)

V2(r) =
uE

2 − uA
2

(rǫr)1/3
, (6.15)

V3(r) =
uB

3 − uA
3

(rǫr)1/3
, (6.16)

where (uA
1 , uA

2 , uA
3 ) represent the Cartesian velocity components at point A. The statistics

of Vα (α = 1, 2, 3) can be considered as different realizations of the statistics of V and can
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Figure 6.4: Cube of edge length equal to r grid spacings. Red lines show edges along which
V (see Eqs. 6.12, 6.14, 6.15 and 6.16) is calculated.

be averaged accordingly. For example, the third moment of V is calculated as

〈V 3〉 =
1

3
[〈V 3

1 〉 + 〈V 3
2 〉 + 〈V 3

3 〉] , (6.17)

where 〈·〉 denote space averages over the entire domain.

As a preliminary step, some statistical information on the single point dissipation and

the corresponding 3D and 1D local averages of dissipation is presented. The 1D local average

of dissipation rate ǫ̂r is defined as

ǫ̂r(x, t) =
1

L

∫

L
ǫ(x + r′, t)dr′. (6.18)

In the small-r limit, we have

lim
r→0

〈ǫr
q〉

〈ǫr〉q
=

〈ǫq〉
〈ǫ〉q , (6.19)

lim
r→0

〈ǫ̂q
r〉

〈ǫ̂r〉q
=

〈ǫq〉
〈ǫ〉q , (6.20)

where q = 1, 2, 3, . . .. At large spatial separations, we can write

lim
r→∞

〈ǫr
q〉

〈ǫr〉q
= 1 , (6.21)

lim
r→∞

〈ǫ̂q
r〉

〈ǫ̂r〉q
= 1 . (6.22)
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Figure 6.5 shows the second moments of local 3D and 1D averaged dissipation as a

function of spatial separation for two different resolutions at the same Reynolds numbers.

It is clear that the 3D local averages are more resolution limited than the 1D averages. The

intermediate slope range for the curves is different. The 1D averaged dissipation moments

are greater than the 3D averaged dissipation moments at a given spatial separation. This

is because 3D averages encompass more spatial information than the 1D averages, and are

hence likely to be smaller. Whereas the 1D averages are closer to the point-wise dissipation

and hence have better resolution at small separations. At the largest spatial separations,

3D averages satisfy Eq. 6.21 while the 1D case does not satisfy Eq. 6.22. This is because, for

any order (greater than 1), 3D moments have a smaller dispersion than the corresponding

1D moments due to increased statistical stability. Periodic boundary conditions seem to

have a decreased effect on 3D averages at large r due to increased spatial sampling.

Figure 6.6 shows the higher order moments for the dissipation. As the order of the

moment increases, the resolution requirements for the 3D case seem to be more stricter

than that for the 1D case. Consider local averages over a volume of characteristic length

∆x, which is the grid spacing. A sample of the 1D average represents the dissipation at

the midpoint of an edge in the cube. Whereas the 3D average represents the dissipation at

the centroid of the cube, which is
√

3 times further away from the given grid point than

the corresponding 1D average. Hence 1D averages are closer (spatially) to the point-wise

averages than their 3D counterparts and hence are numerically closer. The moments of 3D

averaged dissipation are smaller than that of 1D averaged dissipation, indicating that ǫr

may be less intermittent than ǫ̂r. For a given averaging length r, we can write

〈ǫr
q〉 ≤ 〈ǫ̂q

r〉 ≤ 〈ǫq〉 , q = 1, 2, 3, . . . , (6.23)

equality occurring when q = 1.

Figure 6.7 shows the probability density function for the single-point, 3D and 1D av-

eraged dissipation at two different resolutions at the same Reynolds number. The tails of

the PDF get wider with increased resolution as more scales in the large wavenumber regime

contribute to the dissipation spectrum. The PDF of ǫ̂r has longer tails than that of ǫr (see
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Figure 6.5: Second order moments of 3D local averages (line A) and 1D local averages (line
B) of dissipation for (a) (left) kmaxη = 1.4, (b) kmaxη = 5.7, both at Rλ ∼ 240. Dashed
lines indicate second order moment of point-wise dissipation (〈ǫ2〉/〈ǫ〉2).
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Figure 6.6: Higher order moments of 3D local averages (lines A-D correspond to q =
3, 4, 5, 6) and 1D local averages (lines E-H correspond to q = 3, 4, 5, 6) of dissipation for (a)
(left) kmaxη = 1.4, (b) kmaxη = 5.7, both at Rλ ∼ 240. Dashed lines indicate corresponding
moment of point-wise dissipation (〈ǫq〉/〈ǫ〉q, q = 3, 4, 5, 6).
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Figure 6.7: PDF of dissipation rate at Rλ ∼ 240 for (left) single-point, (center) local 3D
averages, (right) local 1D averages. Plots on the top row correspond to kmaxη = 1.4, while
bottom row is for kmaxη = 5.7. Curves A, B, C etc. correspond to different averaging
lengths r/∆x = 1, 2, 4, . . ., increasing in the direction shown.

Fig. 6.7), which indicates that the likelihood of the 1D dissipation taking extreme values

is greater than that of 3D dissipation. This is consistent with the trends for the absolute

moments of dissipation shown in Fig. 6.6 and Eq. 6.23.

6.4 K62 related statistics

Following Stolovitzky et al. (1992), the correlation coefficient between velocity increments

and (rǫr)
1/3 is plotted in Fig. 6.8 (line A). The two quantities appear poorly correlated

at all r except possibly at largest r (in the kmaxηB ≈ 5.7 case). The vanishing correlation

between ∆u and (rǫr)
1/3 is a consequence of homogeneity. At large r there seems to be some

variation which may be due to effects of forcing and/or decreased sampling due to finite

box considerations. Furthermore, as a means to save computer time, the computations

at some spatial separations in the large-r regime are not performed. Neglecting some

spatial separations at large-r might also be adding to the variability in this scale range.
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Figure 6.8: Correlation coefficient as a function of spatial separation between (rǫr)
1/3 and

the quantity β where β is (a) ∆u(r) (line A) and (b) |∆u(r)| (line B) for (left) Rλ ∼ 240,
kmaxη = 1.4, (center) Rλ ∼ 240, kmaxη = 5.7, and (right) Rλ ∼ 650, kmaxη = 2.7

Line B shows that the correlation coefficient between |∆u(r)| and (rǫr)
1/3 is stronger at

the small and intermediate scale range. For both these plots, the correlation along the

three Cartesian directions, that is the correlation between ∆u1(r) and (rǫr)
1/3, ∆u2(r) and

(rǫr)
1/3 and ∆u3(r) and , (rǫr)

1/3 are calculated. The component averaged results are then

calculated by averaging over the three Cartesian directions. The correlation coefficients

between |∆u(r)| and (rǫr)
1/3 are calculated in a similar manner.

To investigate the effects of different choices of ∆u(r) that are possible in a cube (see

Eqs. 6.14, 6.15 and 6.16), the correlation between (|∆u(r)|, (rǫr)
1/3) are plotted in the

three orthogonal directions in Fig. 6.9. The correlations along X, Y and Z direction are

similar to each other as can be expected in isotropic turbulence. The correlations are also

in qualitative agreement with that in Fig. 2 of Stolovitzky et al. (1992), accounting for the

fact that the Reynolds number in the present case in smaller than that in Stolovitzky et al.

(1992).

Next the correlation coefficients of V (r) (Eq. 6.12) with (rǫr)
1/3 are shown in Fig. 6.10

(line A). The correlation between V and (rǫr)
1/3 is almost zero at all spatial separations

(except possibly at largest r). In contrast, |V (r)| and (rǫr)
1/3 are positively (although

weakly) correlated at Rλ ∼ 240.

Figure 6.11 shows the correlation of |V | with (rǫr)
1/3 along the three Cartesian direc-

tions. The correlation in the X, Y , Z directions are close to each other as can be expected
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Figure 6.9: Correlation coefficient between |∆u(r)| and (rǫr)
1/3 along three Cartesian

directions (lines X,Y and Z) as a function of spatial separation for (left) Rλ ∼ 240, kmaxη =
1.4, (center) Rλ ∼ 240, kmaxη = 5.7, and (right) Rλ ∼ 650, kmaxη = 2.7. The component
average is given by line B which is the same as line B in Fig. 6.8.
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Figure 6.10: Correlation coefficient as a function of spatial separation between (rǫr)
1/3 and

the quantity γ where γ is (a) V (r) (line A) and (b) |V (r)| (line B) for (left) Rλ ∼ 240,
kmaxη = 1.4, (center) Rλ ∼ 240, kmaxη = 5.7, and (right) Rλ ∼ 650, kmaxη = 2.7

in isotropic turbulence.

Next, the third moment of V (r) (see Eq. 6.12) is considered. Raising Eq. 6.12 to third

power and averaging, we get

〈(V (r))3〉 =
〈(∆u(r))3

rǫr

〉
(6.24)

In the large-r limit, 〈(V (r))3〉 tends to zero. In the small r limit, Taylor series arguments

can be used for r ≤ η, to write,

〈(V (r))3〉 ≈
〈(∂uα/∂xα)3

ǫ

〉
r2 (6.25)

where ∂uα/∂xα is a longitudinal velocity component derivative (α = 1, 2, 3), with no sum-

mation implied and ǫ is the point-wise dissipation. Figure 6.12 shows the variation of
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Figure 6.11: Correlation coefficient between |V | and (rǫr)
1/3 along three Cartesian direc-

tions (lines X,Y and Z) as a function of spatial separation for (left) Rλ ∼ 240, kmaxη = 1.4,
(center) Rλ ∼ 240, kmaxη = 5.7, and (right) Rλ ∼ 650, kmaxη = 2.7. The component
average is given by line B which is the same as line B in Fig. 6.10.

〈(V (r))3〉 with spatial separation on logarithmic axes. The dashed lines represent a r2

behavior to check the small-r asymptote. All the four curves corresponding to the three

Cartesian directions and the resulting component average satisfy Eq. 6.25 even for the lower

resolution case. As expected, the small-r behavior is more pronounced for the higher reso-

lution case. The third moment of V (r) are plotted on linear scales to show the intermediate

r/ηr/η

〈(
V

(r
))

3
〉

Figure 6.12: Third moment of V along three different Cartesian directions X,Y and Z
(lines A,B and C) along with the component averaged plot (line D) at Rλ ∼ 240 for (a)
(left) kmaxη = 1.4, (b) kmaxη = 5.7. Dashed lines (positive slope) to check the small-r slope
(see Eq. 6.25) while dashed line (zero slope) at 0.8 shows the K41 plateau.

range behavior. Figure 6.13 shows the variation of 〈(V (r))3〉 with spatial separation. The

third moment 〈(V (r))3〉 is expected to reach the K41 plateau of 4/5 at a sufficiently high
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Figure 6.13: Third moment of V along three different Cartesian directions X,Y and Z
(lines A,B and C) along with the component averaged plot (line D) at Rλ ∼ 240 for (a)
(left) kmaxη = 1.4, (b) kmaxη = 5.7. Dashed lines (positive slope) to check the small-r slope
(see Eq. 6.25) while dashed line (zero slope) at 0.8 shows the K41 plateau.

Reynolds number (Stolovitzky et al. 1992).

6.5 K62 results

In the following, the first and the second postulates of the refined similarity theory (Kol-

mogorov 1962) are examined at a Reynolds number Rλ ∼ 650, 40963. This is currently

the highest Reynolds number in our DNS database at the resolution of kmaxη ∼ 2.7. As a

prelude to the K62 results some statistical information on the 3D averaged dissipation for

the Rλ ∼ 650 is provided.

Figure 6.14 shows the moments of 3D averaged dissipation rate. The results are quali-

tatively similar to the 3D dissipation results for Rλ ∼ 240 case (Figs. 6.5 and 6.6), noting

that the resolution for the 40963 case is midway between those for Rλ ∼ 240 cases. Figure

6.15 shows the PDF of point-wise dissipation and 3D averaged dissipation at Rλ ∼ 650,

with a focus on the tail behavior. At such a high Reynolds number, the dissipation is as

high as 10000 times its mean value. The tail behavior of the 3D averaged dissipation is

similar to that of the point-wise dissipation even when the averaging length is over four

times the Kolmogorov length scale.

Figure 6.16 shows the normalized third-order longitudinal velocity structure function at

Rλ ∼ 650. The structure functions along the three Cartesian directions along with their
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Figure 6.14: (Top) Second order moments of 3D local average of dissipation and (Bottom)
higher order moments (q = 3, 4, 5, 6, increasing in the direction shown) of 3D local average of
dissipation for Rλ ∼ 650, 40963. Dashed lines indicate corresponding point-wise dissipation
moments.
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Figure 6.15: PDF of dissipation rate at Rλ ∼ 650 for (left) single-point, (right) local 3D
averages. Curves A, B, C etc. correspond to different averaging lengths r/η = 1.1, 2.2, 4.4
etc. The PDF for r/η = 1.1, 2.2, 4.4 seem to collapse onto each other.

average is given. The component averaged quantity is used to determined the extent of the

inertial range in the following analysis.
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Figure 6.16: Normalized third-order velocity structure function for 40963, Rλ ∼ 650.
Curves A,B and C are correspond to the three Cartesian directions. Curves D is the
component averaged result.

119



6.5.1 K62: second postulate

The second K62 hypothesis is that if the local Reynolds number Rer ≫ 1, the PDF of V (r)

for η ≪ r ≪ L, becomes independent of Rer and hence universal. In our simulations, the

viscosity is a constant. Hence it suffices to check for the dependence of V only on the local

velocity scale (rǫr)
1/3.

Figure 6.17 shows the PDFs of V conditioned on (rǫr)
1/3 for r/η ≈ 70 and 139, both in

the inertial range (see Fig. 6.16). The PDFs coalesce for a range of values of (rǫr)
1/3 and the

shape is preserved in going from r/η = 70 to 139, indicating an approximate independence

of V from ǫr and r.
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Figure 6.17: Conditional PDF of V (r) in the inertial range for a given spatial separation.
The separation distance r (fixed for each frame), the number of curves and the minimum
and maximum values of Rer are as follows: (a) (Left): r/η = 70, 10 curves with Rer ranging
from 71.4 (curve A) to 247.4 (curve J). (b) (Right): r/η = 139, 6 curves, with Rer ranging
from 248.0 (curve A) to 494.9 (curve F ). In each frame, lines A,B,C, . . . are in increasing
order of Rer (Eq. 6.3). For example, curve A in each frame corresponds to smallest Rer,
followed by curve B and so on. Dashed curve is the Gaussian distribution with zero mean
and unity variance.

In order to further test the correspondence of the data with the second postulate, con-

sider the following equation,

∆u(r) = V (rǫr)
1/3 (6.26)

Following Stolovitzky et al. (1992), the conditional mean of the magnitude of the velocity
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increment can be written as,

〈|∆u(r)|
∣∣(rǫr)

1/3〉 = 〈|V |(rǫr)
1/3
∣∣(rǫr)

1/3〉 (6.27)

= (rǫr)
1/3〈|V |

∣∣(rǫr)
1/3〉 (6.28)

Now if r is in the inertial range, Fig. 6.17 suggests that V may be independent of (rǫr)
1/3,

in which case the above equation becomes

〈|∆u(r)|
∣∣(rǫr)

1/3〉 = (rǫr)
1/3〈|V |〉 (6.29)

Hence, if the second postulate holds then, 〈|∆u(r)|
∣∣(rǫr)

1/3〉 is a linear function of (rǫr)
1/3 in

the inertial range. Figure 6.18 shows the logarithm of the conditional mean 〈|∆u(r)|
∣∣(rǫr)

1/3〉

as a function of the logarithm of (rǫr)
1/3. The curves corresponding to different spatial sep-

arations (in the inertial range) collapse onto a line with slope 1 in Fig. 6.18, except possibly

at the tails where the sampling uncertainty can be large. This confirms that Eq. 6.29 ap-

proximately holds in the inertial range, and thereby provides further confirmation that at

Rλ ∼ 650, the second K62 postulate is approximately valid.

Since it has been shown the stochastic variable V , in the inertial range is independent

of r and ǫr it is approximately universal in the inertial range. It then follows from Eq. 6.4

that the mth-order structure function is given by

〈[∆u(r)]m〉 = 〈V m〉〈(rǫr)
(m/3)〉 . (6.30)

In particular, 〈V (r)〉 = 0 in the inertial range. The second and third moments of V in

the inertial range are as follows,

〈V 2〉 =
〈(∆u(r))2〉
r2/3〈ǫr

2/3〉 , (6.31)

〈V 3〉 =
〈(∆u(r))3〉

r〈ǫr〉
(6.32)

Figure 6.19 shows the second moment of V (Eq. 6.31) as a function of spatial separation.

In the inertial range, 〈V 2〉 ≈ 2.1 (see left panel in Fig. 6.31), which is comparable to

the accepted estimates of the Kolmogorov constant in second-order structure functions

(Saddoughi & Veeravalli 1994). In the small-r limit, a Taylor expansion shows that 〈V 2〉

varies as r4/3. This is also confirmed in Fig. 6.19 (right panel).
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Figure 6.18: Logarithm of the mean of |∆u(r)| conditioned on (rǫr)
1/3 as a function of

the logarithm of (rǫr)
1/3. The lines A,B,C,D correspond to r/η = 35, 70, 139 and 279

respectively. Dashed line has slope 1.

r/ηr/η

〈(
V

(r
))

2
〉

Figure 6.19: Second moment of V along three different Cartesian directions X,Y and Z
(lines A,B and C) along with the component averaged plot (line D), for 40963, Rλ ∼ 650.
(a) (left) log-linear scales to check inertial range behavior (b) (right) log-log scales to check
small-r behavior. Dashed lines (positive slope) corresponds to r4/3 to check small-r slope.
Dashed line (zero slope) at 2.0 for comparison with corresponding K41 result.

Figure 6.20 shows the third moment (Eq. 6.32) at Rλ ∼ 650. It can be seen from the left

panel of Fig. 6.20 that the skewness of V in the three Cartesian directions differ slightly in
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the inertial range. The component averaged skewness (line D) in Fig. 6.20 gives 〈V 3〉 = 0.8

in the inertial range which is consistent with the corresponding K41 result. The right panel

in Fig. 6.20 confirms that the slope of 〈V 3〉 at small-r follows Eq. 6.25. A comparison of

Fig. 6.20 (left panel) with the lower Reynolds number case of Fig. 6.13, shows that 〈V 3〉

indeed approaches the 4/5th plateau with increasing Reynolds number.

r/ηr/η

〈(
V

(r
))

3
〉

Figure 6.20: Third moment of V along three different Cartesian directions X,Y and Z
(lines A,B and C) along with the component averaged plot (line D), for 40963, Rλ ∼ 650.
(a) (left) log-linear scales to check inertial range behavior (b) (right) log-log scales to check
small-r behavior. Dashed lines (positive slope) to check the small-r slope (see Eq. 6.25)
while dashed line (zero slope) at 0.8 shows the K41 plateau.

6.5.2 K62: first postulate

The statement of the first K62 postulate is that for r ≪ L, the PDF of V depends only on

Rer. For the constant viscosity case, it is enough to check the dependence of V on r(rǫr)
1/3.

Figure 6.21 presents the PDF of V for r/η = 4 and 9, respectively. Each curve corre-

sponds to a different value of (rǫr)
1/3. The uncertainty in the data is appreciably higher

than in the corresponding inertial range PDFs (Fig. 6.17), because the averaging intervals

are smaller. Regardless, the conclusion from Fig. 6.21 is that the PDF of V depends on

(rǫr)
1/3 and r.

Figure 6.22 reports the PDFs of V conditioned on (rǫr)
1/3 for Rer ≈ 27 (left panel)

and 39 (right panel), each at three different spatial separations r/η = 4, 8, 17. The PDFs
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Figure 6.21: Conditional PDF of V (r) in the small-scale range for a given spatial separation.
The separation distance r (fixed for each frame), the number of curves and the minimum
and maximum values of Rer are as follows: (a) (Left): r/η = 4, 13 curves with Rer ranging
from 0.5 (curve A) to 38.8 (curve M). (b) (Right): r/η = 9, 12 curves, with Rer ranging
from 1.4 (curve A) to 77.7 (curve L). In each frame, lines A,B,C, . . . are in increasing order
of Rer (Eq. 6.3). For example, curve A in each frame corresponds to smallest Rer, followed
by curve B and so on. Dashed curve is the Gaussian distribution with zero mean and unity
variance.

in each frame correspond to different spatial separations and (rǫr)
1/3 such that the local

Reynolds number Rer is approximately the same. Since ǫr is a random variable, exact

correspondence in the values of Rer is difficult, hence Rer that are within 12% of each other

are considered as approximately equal in this analysis. The PDFs collapse onto each other

with some differences at the tails which can be attributed to the differences in the exact

values of Rer for the curves. From Fig. 6.22, it can be concluded that the PDFs of V for

r ≪ L, only depend on the local Reynolds number Rer.

Figure 6.23 shows the logarithm of the conditional mean of |V |, conditioned on the local

velocity (rǫr)
1/3 for the small-r range. Evidently the curves for different spatial separations

(at small-r) do not collapse indicating a dependence on (rǫr)
1/3 and r.

Consider the conditional mean of r|∆u(r)|, conditioned on r(rǫr)
1/3,

〈r|∆u(r)|
∣∣r(rǫr)

1/3〉 = r(rǫr)
1/3〈|V |

∣∣r(rǫr)
1/3〉 (6.33)

If V is only a function of Rer (or r(rǫr)
1/3) for r ≪ L, then 〈|V |

∣∣r(rǫr)
1/3〉 = |V |, and

the above equation becomes,
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Figure 6.22: Conditional PDF of V (r) in the small-scale range for a given local Reynolds
number Rer, for different spatial separations. (a) (Left): Rer ≈ 27, curves A, B, C corre-
spond to spatial separations r/η = 4, 8 and 17 respectively. (b) (Right): Rer ≈ 39, curves
A, B, C correspond to spatial separations r/η = 4, 8 and 17 respectively. The exact values
of Rer are within 12% of each other in each panel. Dashed curve is the Gaussian distribution
with zero mean and unity variance.
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Figure 6.23: Expectation of the logarithm of |∆u(r)| conditioned on (rǫr)
1/3, for dif-

ferent spatial separations in the small-r range as a function of the logarithm of (rǫr)
1/3.

Curves A,B,C,D and E correspond to spatial separations r/η = 1, 2, 4, 8 and 16 respectively.
Dashed line has slope of 1.5.

〈r|∆u(r)|
∣∣r(rǫr)

1/3〉 = |V |r(rǫr)
1/3 (6.34)
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It follows that the left-hand-side of the Eq. 6.34 is only a function of r(rǫr)
1/3 if the

first postulate is valid. Figure 6.24 shows the logarithm of the left-hand-side of 6.34 plotted

against the logarithm of r(rǫr)
1/3 for different spatial separations in the small-r range. The

curves collapse on to one another except possibly at the tails where statistical uncertainty

can be large, indicating that the first hypothesis is approximately valid at Rλ ∼ 650.

log10 r(rǫr)
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/
3
〉

Figure 6.24: Expectation of logarithm of r|∆u(r)| in the small-r range conditioned on
(rǫr)

1/3 for different spatial separations as a function of the logarithm of r(rǫr)
1/3. Curves

A,B,C,D and E correspond to spatial separations r/η = 1, 2, 4, 8 and 16 respectively.

6.6 Summary

A new algorithm to calculate local 1D and 3D averages is presented. At small separation

distances, local 3D averages appear to have a stricter resolution requirement than local

1D averages. At large-r, boundary conditions seem to influence 1D averages to a greater

extent. Local 3D averages of dissipation have smaller moments than the corresponding

local 1D averages of dissipation for orders two and above. The scaling in the intermediate

scale-range also appears to be different for local 3D and 1D averages of dissipation. The

tails of PDFs of 3D dissipation are also narrower than those of 1D dissipation for a given

averaging length. In general, the data suggest that the local 3D averages of dissipation are

less intermittent than the local 1D averages of dissipation.
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The local 3D averaged dissipation has been used to examine the first and second pos-

tulates of K62 for a 40963 data set at Rλ ∼ 650. The variance and skewness of V in the

inertial range is shown to be consistent with corresponding K41 predictions. The basic

tenets of the first and second K62 postulates have been found to be approximately true at

this Reynolds number.
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CHAPTER VII

CONCLUSIONS

Direct Numerical Simulations (DNS) have been used to study passive scalar mixing and

turbulence structure over a range of Reynolds and/or Schmidt numbers. The DNS algorithm

uses three-dimensional (3D) Fast Fourier Transforms (FFT) which are known to scale poorly

with increasing problem size. A hybrid (MPI/OpenMP) FFT algorithm has been developed

which is shown to be faster than the pure MPI version at very large problem sizes. Parallel

algorithms have been developed to calculate spherical averages and 3D local averages at

Reynolds numbers as high as 650. These statistics have provided deeper insights into the

small-scale phenomenological picture of turbulence. In light of recent studies (Yakhot &

Sreenivasan 2005; Donzis et al. 2008b; Donzis & Yeung 2010), adequate attention has been

given to small-scale resolution wherever appropriate. In the following, the conclusions for

the main topics undertaken in this thesis are summarized. This is followed by some remarks

about possible future work.

7.1 Summary of the main conclusions

7.1.1 Transpose-based 3D FFT

Parallel 3D FFT algorithms are critical to pseudo-spectral simulations in a number of fields

including turbulence. Their performance is closely linked to the communication charac-

teristics of the network topology of the interconnect used in the parallel system. As end

users it is not always possible to have control on the job placements and traffic in the net-

work topology. In such a scenario it is important to maximize the algorithmic efficiency

in scheduling the computations and communications in a synergistic manner. A hybrid

MPI/OpenMP model has been developed where the OpenMP threads can communicate

sequentially with other threads. The communication and computation has been divided

among the threads using a pipeline approach to mask some of the communication behind
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the computation. Overlapping communication and computation has been shown to de-

crease the communication time by as much as 30% for a 40963 problem on the Blue Waters

machine (NCSA).

The all-to-all communication is shown to consume as much as 80% of the total time for a

40963 box using 32768 cores. An important point of consideration is how this trend is going

to extrapolate to larger problem sizes for exascale computing (1018 floating point operations

per second). Greater attention has to be given to the network bisection bandwidth, as the

algorithm becomes more communication dominated. New and improved communication

protocols have to be developed to alleviate the communication characteristics of the 3D

FFT. Of special interest is the use of asynchronous communication, which allows (partial)

data that is sent across the network to be used as soon as it reaches the receiving process.

7.1.2 Low Schmidt number turbulent mixing

Chapter 4 presents numerical results for scaling properties of structure functions of passive

scalar mixing in turbulence. The emphasis in this work has been on the highly diffusive

(very low Schmidt number) regime. Data from DNS at Schmidt numbers as low as 1/2048

show that as Schmidt number decreases for a fixed Reynolds number, the range of scales

decreases with the distribution of the small-scales approaching a Gaussian character. This

is consistent with the fact that intermittency becomes weaker for strongly diffusive scalars.

However, local isotropy is not recovered in the low Schmidt number limit and substantial

differences in the statistics along different directions exist. Agreement with the Yaglom’s

relation is seen to be substantially closer with an increase in Reynolds number and/or

Schmidt number due to a wider range of scales, but clear departures have been observed in

the low Schmidt number regime. Examination of the structure function budget shows that

an extended diffusive regime which is characteristic of low Schmidt number scalars tends to

limit the inertial-convective behavior resulting in a deviation from the Yaglom’s 2/3 plateau.

A new scaling law for the inertial-diffusive range has been proposed for the low Schmidt

number regime. However due to limitations in Reynolds numbers and Schmidt number

choices presently available, the inertial-diffusive scaling behavior has not been examined.
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7.1.3 Assessing K41 laws for finite Reynolds number simulations

One of the main benchmarks in DNS of three-dimensional turbulence is the Kolmogorov

prediction for third-order structure function, involving isotropic statistics in the infinite

Reynolds number limit. Typically, DNS techniques to obtain isotropic statistics have relied

on time-averaging structure functions in a few directions over many eddy-turnover times,

using isotropic forcing schemes. As the Reynolds number and the problem size increase, long

simulation times, and the I/O time incurred in saving the Petabytes of data generated can

become expensive. Motivated by recent theoretical and numerical work (Eyink 2003; Taylor

et al. 2003), a new parallel algorithm to compute spherical averages has been developed. The

parallel algorithm avoids the expensive ALLTOALL type communication, which has been

previously used to calculate such quantities. Consequently, the parallel scheme developed in

this thesis has been shown to scale well up to 16384 cores on Stampede (TACC). An extended

inertial range is obtained by using the angle-averaging technique which extracts the isotropic

component of the data by isolating the flow anisotropy. The local laws proposed by Nie &

Tanveer (1999) and Eyink (2003) have also been examined using DNS data. In particular,

the time local result of Eyink (2003) has been shown to hold well. The angle averaging

technique has also been used to test the Yaglom’s relation in the scalar field. The scalar

field in our simulations is forced by the presence of a non-zero mean gradient. The non-zero

mean gradient in one direction renders the scalar field strongly anisotropic, resulting in

systematic differences in statistics parallel and perpendicular to it. The hope is that using

angle averaging techniques, we can isolate the anisotropy to recover isotropic statistics as

was done for the velocity field. However, greater care is required for the scalar field, since a

high Reynolds number and a high Schmidt number are required, while sufficiently resolving

the small and intermediate scales. More generator points on the Voronoi sphere may also

be required to adequately resolve the small and intermediate scales in the scalar field. This

is still an ongoing work and results will be reported elsewhere.
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7.1.4 Local 3D averages and the Refined Similarity Hypothesis

Locally averaged quantities are less intermittent than the single-point quantities. The 3D

local average of dissipation was used by Kolmogorov in the refined similarity theory (Kol-

mogorov 1962) to account for intermittency. However stringent testing of this theory using

computer simulations has eluded researchers so far, partly due to difficulties in calculating

3D local averages. An efficient algorithm to calculate 3D local averages has been developed.

The algorithm computes three 1D local sums in the three Cartesian directions by construct-

ing prefix sums in each of the three directions. This code is seen to scale well up to 32768

cores on Kraken. Using the 3D averaged local dissipation, the first two postulates of the

Refined similarity theory have been examined. Numerical results at a high Reynolds num-

ber (Rλ ∼ 650) have been reported. Results show that the first and the second hypothesis

(Kolmogorov 1962) are approximately valid.

7.2 Future work

The study of high Schmidt number passive scalar mixing is important not only from a

theoretical perspective, but also from an engineering point of view. Pseudo-spectral schemes

which are highly efficient in capturing the relevant flow physics are very expensive at large

Peclet numbers. There has been considerable interest in the DNS community regarding

hybrid numerical methods (Gotoh et al. 2012) involving a spectral scheme for the velocity

field and a compact difference scheme for the passive scalar evolution. Such hybrid schemes

do not exhaustively depend on global ALLTOALL type data exchanges and hence are more

suited to run on Graphical Processing Units (GPU). Using GPU based codes may be not

only more affordable, but also faster than regular CPU computations.

The spherical averaging technique presented in this work can be used to isolate the

anisotropic contributions (Biferale et al. 2002) themselves by subtracting from the full

structure function, its angle-averaged value. Individual moments in a spherical harmon-

ics expansion of structure functions can be computed by using basis functions of interest

to the angle-averaging integrand. Dominant scaling in anisotropic regions can then be

determined which is important to determine the rate of return to isotropy at small scales.
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To conclude, this thesis has developed parallel numerical algorithms to calculate statis-

tics such as spherical averages and local averages at Reynolds numbers, that previously

have not been undertaken. Passive scalar mixing for a range of Schmidt numbers has been

examined to study appropriate scaling behavior in physical space. A thread-serialized hy-

brid MPI/OpenMP FFT algorithm has been developed which is shown to perform better at

very large problem sizes. All this has only been made possible due to increased interaction

between experts in computational sciences and those interested in physics. The quest for

reaching higher Reynolds numbers may be a never ending one. But even at the Reynolds

numbers currently feasible in computer simulations, detailed statistics can be extracted

leading to deeper insights into the physics of turbulence. It is important to develop theories

and numerical techniques that are suited to finite Reynolds number flows which are almost

surely limited by finite sampling and finite resolution considerations. This thesis is one such

attempt in this direction.
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