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Abstract 

The aim of this study is to apply computed order tracking with subsequent 

rotation domain averaging and statistical analysis to typical mining 

environments. Computed order tracking is a fault detection method that is 

unaffected by varying speed conditions often found in industry and has been 

proven effective in laboratory conditions. 

However in the controlled environment of a laboratory it is difficult to 

test the robustness of the order-tracking procedure. The need thus exists to 

adjust the order tracking procedure so that it will be effective in the mining 

environment. The procedure needs to be adjusted to function with a two pulse 

per revolution speed input. The drag gear aboard a dragline rotates in two 

directions. This gives the unique opportunity to observe the performance of 

the order tracking method in a bi-directional rotating environment allowing 

relationships between the results of each operating direction to be 

investigated. 

A monitoring station was set up aboard a dragline and data was 

captured twice daily for a period spanning one year. The data captured 

consisted of accelerometer and proximity sensor data. The key on the shaft 

triggers the proximity sensors allowing speed and direction to be measured. 

The rudimentary measured speed is interpolated using various documented 

speed interpolation techniques and by a newly developed speed interpolation 

technique. The interpolated speed is then used to complete the order tracking 

procedure that re-samples the vibration data with reference to the speed. 
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The results indicate that computed order tracking can be successfully 

implemented in typical mining environments. Furthermore there is a distinct 

relationship between vibration data taken in both rotational directions: one 

direction provides a better indication of incipient failure. It is thus important not 

to choose a direction randomly when monitoring rotating machinery of this 

kind. 

 

Keywords: Computed order tracking, gear condition monitoring, varying 

speed, rotation domain averaging. 

 
 
 



 v 

Acknowledgments 

• SASOL Mining for the access and use of the dragline. 

• Johann Swart and Wollie Wolhuther for their assistance in setting up 

the monitoring system and keeping it running. 

 
 
 



 vii 

CONTENTS 
 

CHAPTER 1 INTRODUCTION......................................................................... 1 

1.1  Background ........................................................................................ 1 

1.2  Literature review................................................................................. 2 

1.2.1  Statistical methods...................................................................... 3 

1.2.2  Synchronous averaging .............................................................. 4 

1.2.3  Demodulation techniques ........................................................... 6 

1.2.4  Autoregressive modelling............................................................ 9 

1.2.5  Order tracking ........................................................................... 10 

1.2.6  Short-time Fourier transforms................................................... 12 

1.2.7  Time-frequency analysis ........................................................... 13 

1.2.8  Wavelet transforms ................................................................... 15 

1.2.9  Neural networks ........................................................................ 18 

1.3  Scope of the work............................................................................. 19 

1.4 Summary .......................................................................................... 21 

1.5  Dissertation overview ....................................................................... 21 

CHAPTER 2 ONLINE MONITORING HARDWARE ...................................... 23 

2.1  The hardware employed .................................................................. 24 

2.1.1  The sensors .............................................................................. 24 

2.1.2  The low pass filter ..................................................................... 28 

2.1.3  The analogue to digital (A/D) conversion card ......................... 31 

2.1.4  The computer ............................................................................ 33 

2.1.5  Hardware housing..................................................................... 35 

2.2  Software development...................................................................... 37 

2.2.1  The programming language...................................................... 37 

2.2.2  The operating system ............................................................... 37 

2.2.3  The capturing program.............................................................. 37 

2.3  Pre-operative testing ........................................................................ 39 

2.3.1  The sample length .................................................................... 39 

2.3.2  The low-pass filter test .............................................................. 42 

2.3.3  The system test......................................................................... 42 

2.4 Summary .......................................................................................... 43 

 
 
 



 viii 

CHAPTER 3 ORDER TRACKING METHODS............................................... 45 

3.1  Relating the dragline activity to sensor data .................................... 45 

3.1.1  Relating captured data with video footage................................ 46 

3.2  Reviewing existing and developing new processing programs ....... 49 

3.2.1  The speed estimation program ................................................. 49 

3.2.2  The order tracking program ...................................................... 51 

3.3  Introducing existing interpolation techniques................................... 51 

3.3.1  Constant interpolation ............................................................... 51 

3.3.2  Linear interpolation ................................................................... 52 

3.3.3  Cubic interpolation .................................................................... 53 

3.4  Development of a new speed interpolation technique ..................... 54 

3.4.1  Numerical integration optimisation............................................ 54 

3.4.1.1 Model construction................................................................... 55 

3.4.1.2 R-squared optimisation............................................................ 56 

3.4.2  Filter optimisation...................................................................... 59 

3.4.3  Moving window speed determination........................................ 60 

3.4.4  Displacement driven velocity interpolation, a speed adjustment 

algorithm.................................................................................................. 64 

3.5 Summary .......................................................................................... 69 

CHAPTER 4 RESULTS .................................................................................. 71 

4.1  The effect of number of averages taken .......................................... 71 

4.2  The effect of window size in MWOT ................................................ 75 

4.3  Convergence in the rotational domain ............................................. 77 

4.4  Inspection of defective gears ........................................................... 80 

4.5  Rotation domain averaging .............................................................. 83 

4.6  Fast Fourier transforms and cascade plots...................................... 86 

4.6.1  Cascade plots using 200 RDA.................................................. 87 

4.6.2  FFT based deterioration graph ................................................. 90 

4.7 Summary .......................................................................................... 94 

CHAPTER 5 CONCLUSION........................................................................... 97 

5.1 Recommendations ......................................................................... 101 

 
 
 



 ix 

LIST OF TABLES 
 

Table 3.1: R-squared optimisation result........................................................ 58 

Table 4.1: Indication of the capturing date and time of data sets used.......... 86 

Table 4.2: Comparing the four interpolation methods using three different 

deterioration graph techniques................................................................ 94 

 
 
 



 x 
 

 
 



 xi 

LIST OF FIGURES 
 

Figure 1.1: (a) The carrier signal, (b)The modulating signal, (c) The modulated 

signal. ........................................................................................................ 7 

Figure 2.1: The Marion 1 dragline on location at the Syferfontein colliery. .... 23 

Figure 2.2: The positioning of the accelerometers against the pinion housing 

as seen from below ................................................................................. 25 

Figure 2.3: A view inside the dragline............................................................. 26 

Figure 2.4: The instrumented DC motor aboard the dragline......................... 26 

Figure 2.5: The situation of the two proximity sensors at the non-drive end of 

the motor.................................................................................................. 28 

Figure 2.6: The position of the low pass filter in the hardware set-up............ 29 

Figure 2.7: The characteristics of an 8th order Butterworth filter showing 

attenuation and phase response. ............................................................ 30 

Figure 2.8: Group delay data of 8th order Bessel, Butterworth, Constant Delay 

and Eliptic filters. ..................................................................................... 31 

Figure 2.9: The computer as situated in the control room aboard the Marion 1.

................................................................................................................. 36 

Figure 2.10: The compartment housing the signal conditioners, the low pass 

filter and the power supplies.................................................................... 36 

Figure 2.11: The flowchart of the capturing program aboard the dragline. .... 38 

Figure 2.12: Comparing the loading performance of a 550MHz and 1.8GHz 

computer.................................................................................................. 41 

Figure 3.1: Layout of a dragline. ..................................................................... 45 

Figure 3.2: A series of stills taken from the dragline operation video. ........... 47 

Figure 3.3: (a)The RMS fluctuation of a vibration sample. (b)The speed 

fluctuation of one sample......................................................................... 47 

Figure 3.4: The processing progression. ( a)  Pulse signal, (b) Differentiated 

pulse signal and (c) Speed signal. .......................................................... 50 

Figure 3.5: The constant speed interpolation technique. ............................... 52 

Figure 3.6: The linear speed interpolation technique. .................................... 53 

Figure 3.7: A flowchart to demonstrate the numerical integration optimisation 

method..................................................................................................... 55 

 
 
 



 xii 

Figure 3.8: The torque variation used as input into the optimisation model... 58 

Figure 3.9: The filter optimisation flowchart.................................................... 59 

Figure 3.10: An overview of the MWOT method to calculate shaft speed. .... 62 

Figure 3.11: Showing the difference between sigspd.m data and MWOT data 

using segments with a length of 4096 points. ......................................... 63 

Figure 3.12: Showing the difference between sigspd.m data and MWOT data 

using segments with a length of 1024 points. ......................................... 64 

Figure 3.13: (a) Depicting the deviations in area beneath each velocity 

segment.(b) Depicting the concurrent speed of the data set. ................. 65 

Figure 3.14: (a) A closer view of the rotation angle between pulses. (b) The 

corresponding speed graph..................................................................... 66 

Figure 3.15: A flowchart of the DDVI process ................................................ 67 

Figure 3.16: Illustrating the effect of DDVI when applied to a cubic 

interpolation of the shaft speed. .............................................................. 68 

Figure 4.1: Available data sets as a function of required averages. .............. 72 

Figure 4.2: The effect of number of averages on the FFT of vibration from a 

single shaft rotation. ................................................................................ 73 

Figure 4.3: The change in gear mesh frequency as a function of number of 

averages. ................................................................................................. 74 

Figure 4.4: Comparing the speed generated by MWOT using four different 

window sizes............................................................................................ 75 

Figure 4.5: Taking a closer view at the differences between MWOT window 

size. ......................................................................................................... 76 

Figure 4.6: The convergence results of all four methods in the inward bucket 

motion direction with no gear damage present. ...................................... 78 

Figure 4.7:The convergence results of all four methods in the outward bucket 

motion direction with no gear damage present. ...................................... 78 

Figure 4.8: The convergence results of all four methods in the inward bucket 

motion direction with gear damage present. ........................................... 79 

Figure 4.9: The convergence results of all four methods in the outward bucket 

motion direction with gear damage present. ........................................... 79 

Figure 4.10: Tooth damage on the left gear set of the monitored pinion. ...... 80 

Figure 4.11: Pitting damage on the right set of the monitored pinion. ........... 81 

Figure 4.12:Bull gear showing pitting on one set of teeth. ............................. 81 

 
 
 



 xiii 

Figure 4.13: Spalling damage on unmonitored pinion.................................... 82 

Figure 4.14: The rotational domain average using constant, linear, cubic and 

MWOT interpolations. (a) without and (b) with damage. Dragline bucket 

motion is inward....................................................................................... 84 

Figure 4.15: The rotational domain average using constant, linear, cubic and 

MWOT interpolations. (a) without and(b) with damage. The dragline 

bucket motion is outward......................................................................... 84 

Figure 4.16: The cascade plot of the vibration data emanating from the 

gearbox during one revolution whilst the dragline bucket is moving 

inward. ..................................................................................................... 87 

Figure 4.17: The cascade plot of the vibration data emanating from the 

gearbox during one revolution whilst the dragline bucket is moving 

outward. ................................................................................................... 87 

Figure 4.18: The cascade plot of 200 RDAs that were generated using MWOT 

speed interpolation. The bucket motion is inward. .................................. 88 

Figure 4.19: The cascade plot of 200 RDAs that were generated using MWOT 

speed interpolation. The bucket motion is outward................................. 88 

Figure 4.20: The maximum amplitude of the FFT taken from all four methods 

in the inward bucket direction.................................................................. 90 

Figure 4.21: The maximum amplitude of the FFT taken from all four methods 

in the outward bucket direction................................................................ 91 

Figure 4.22: The gear deterioration graph derived from the sum of the 1st 

GMF sidebands in the inward bucket direction. ...................................... 91 

Figure 4.23: The gear deterioration graph derived from the sum of the 1st 

GMF sidebands in the outward bucket direction. .................................... 92 

Figure 4.24: The deterioration graph constructed from the sideband 

amplitudes surrounding the 2nd GMF with the bucket moving inwards. 92 

Figure 4.25: The deterioration graph constructed from the sideband 

amplitudes surrounding the 2nd GMF with the bucket moving outwards.

................................................................................................................. 93 

 
 
 



 xiv 
 

 
 



 xv 

LIST OF SYMBOLS 

 
θ   Angular displacement 

θ�   Angular velocity 

θ��   Angular acceleration 

Θ   Matrix formed of angular- displacement and velocity vectors 

Θ�   Matrix formed of angular- velocity and acceleration vectors 

I   Moment of inertia 

TC   Angular damping coefficient 

TK   Angular spring coefficient 

t   Time 

j,n,η   Integers 

L  Length 

f   Force 

Y   Data set 
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CHAPTER 1 INTRODUCTION 

1.1  Background 

Condition Monitoring (CM) has become popular in modern industry to improve 

reliability, plant availability, to reduce maintenance cost and increase plant 

efficiency. According to Poste (2001), companies in the United Kingdom that 

have introduced a CM program on average spend 25% less on maintenance 

than those that had no CM program in place.  This considerable decrease in 

expense is due to a number of factors: 

• CM allows for planned plant shut down, pre-ordering of parts and 

allows time to get the right personnel in place to carry out shut down 

work.  

• CM lowers labour costs since the work can be focussed on identified 

problem areas.   

• CM prevents secondary damage caused by unforeseen break down, 

thus decreasing down time. 

• CM can reduce or eliminate routine machine shut down, depending on 

the maintenance strategy employed. 

 

CM usually employs vibration, temperature and sound measurements as well 

as thermal imaging and oil-debris analysis. Of these, vibration is most 

commonly used to detect changes in the operating condition of rotating 

machinery. In the case of critical machinery, online monitoring is often done. 

This provides the opportunity to keep a close eye on the machine’s condition 

at all times. 

 

However, many of the vibration analysis techniques require that the machine 

cycles at a constant speed in order to be effective. This means that the 

machine must either break from its normal routine so that measurements can 

be taken, or the measurements must be taken at a time when the machine is 

cycling relatively constantly. This creates a niche for improvement as breaking 

the operating routine of the machine entails losing production and timing the 

measurements requires human intervention and does not necessarily yield a 
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constant cycle sample. Thus it becomes necessary for a vibration analysis 

procedure to be developed that can indicate deterioration under varying 

speed conditions.  

 

A method to do this, entailing order tracking, rotational domain averaging, 

load normalisation, pseudo Wigner-Ville distribution with extracted statistical 

parameters and fault recognition by neural networks, was developed by 

Stander et al. (2002). Order tracking entails the re-sampling of the vibration 

data with reference to the cycling speed of the machinery. It is the aim of this 

dissertation to modify the method so that it can be implemented in a mining 

environment aboard a dragline, where the challenge is to overcome the 

limited speed data from a once per revolution key phasor. 

1.2  Literature review 

Since the development of the computer, rapid strides have been made in the 

creation of new methods to approach and analyse mechanical failure. The 

computer is capable of performing rapid calculations allowing sophisticated 

fault-detection techniques to become viable. As the computer industry 

develops faster computers, so a large variety of more complex vibration 

based CM techniques are being implemented. To get a global view of the 

methods being used, a structured approach is necessary to avoid confusion. 

 

A good approach to the literature review is to group the myriads of different 

techniques that have been developed into families of related work. Statistical 

methods, synchronous averaging, demodulation techniques, autoregressive 

modelling, order tracking, short-time Fourier transforms, time-frequency 

analysis, wavelet transforms and neural networks are all fault-detection 

families in which varying levels of activity have taken place. Each group will 

be introduced and work that falls within the group will be discussed. Any 

shortfalls within each group will be discussed so that the niche into which this 

research fits is clearly highlighted. 
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1.2.1  Statistical methods 

Statistical methods are often used in conjunction with Time Domain Averaging 

(TDA). Typical methods include techniques such as kurtosis, skewness, form- 

and crest-factor. Often a comparison is made between a reference signal and 

the measured signal to detect the presence of a fault. These methods have 

however only recently taken a hold in gear tooth failure detection. 

 

A conventional statistical method seeks to fit a statistical distribution to the 

recorded data. The kurtosis is then calculated to predict the system’s health. 

Oguamanam et al. (1995) investigate the effectiveness of the Method of 

Moments (MM) and the Maximum Likelihood Estimation (MLE) techniques 

when determining the shape parameters of the beta distribution. On a healthy 

gear, MM and MLE produce the same kurtosis. However the MLE technique 

is superior to the MM technique when damage is present even though it is 

computationally more expensive. 

 

Parker et al. (2000) introduce a technique using bispectral analysis. After the 

vibration data is phase synchronised, the statistical change in the bispectral 

domain is shown to be capable of detecting faults in bearings and gears. 

 

Andrade et al. (2001) introduce the Kolmogorov-Smirnov test, which can be 

used to detect early signs of spur gear fatigue cracks.  This test uses the 

cumulative density function to compare two signals. A change can then be 

linked to the presence of a fatigue crack. The vibration signature of the signal 

can then be compared to template signatures allowing the condition of the 

gear to be estimated. 

 

Baydar et al. (2001) state that although methods such as TDA, spectrum and 

modulation techniques are capable of indicating a faulty condition, they do not 

provide much information about the location or severity of faults. However 

they suggest that a multivariate statistical approach based on Principal 

Component Analysis (PCA) will be capable of relaying such information. PCA 

is a method in which a new set of variables that represent the maximal 
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variability in the data is gleaned from the data with minimal loss of information. 

Multivariate statistics then detect any deviation when comparing PCA data to 

a reference set. 

 

Roan et al. (2002) present a Blind Source Separation (BSS) approach. This 

entails measuring the output of an unknown system, and by assuming some 

characteristics of the input, learn the system and find the input. It is shown 

that BSS performs best when compared to previous methods but can be 

effective without comparison. This method was tested on a test rig and 

showed the capability to detect single, adjacent and non-adjacent tooth 

failure. 

 

Since most statistical methods entail TDA they are also suspect when it 

comes to performing under varying load and speed conditions. Parker et al. 

(2000) however correct for shaft speed variations by re-sampling time-series 

data to achieve phase-synchronous samples. Andrade et al. (2001) mention 

that the Kolmogorov-Smirnov test is strongly dependent on the gear loading 

and rotational speed variations. Baydar et al. (2001) state that in CM the 

speed and load should remain constant so that a change in the vibration 

signal can be attributed to fault conditions. Roan et al. (2002) claim that the 

BSS approach detects a fault regardless of how the gear is being driven. 

1.2.2  Synchronous averaging 

Synchronous averaging or TDA, a pre-processing method, runs hand in hand 

with most vibration analysis techniques. It is capable of removing noise 

elements out of a periodic signal typically encountered in rotating machinery, 

thus improving the signal to noise ratio. In TDA successive samples of a 

repetitive signal such as a gear mesh frequency (GMF) are ensemble 

averaged. This method has a similar effect as that of a comb filter that has 

pass bands at multiples of the rotation frequency of the gear of interest. The 

estimate of the desired signal is improved as more averages are taken. In 

itself TDA can only detect severe fault conditions. 
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McFadden (1987i) however points out that the existing comb filter model is 

flawed due to the assumption that the signal is known over an infinite period 

of time when in reality it is finite. A revised model is presented which only 

requires finite knowledge of the signal. It is also shown that the number of 

averages need not be a power of two to optimise noise rejection. Rather the 

number of averages should be chosen so that the nodes of the comb filter 

coincide with the frequency of the noise. McFadden however acknowledges 

that this will not always be possible. 

 

It is possible to improve on the analysis of TDA if all tooth meshing vibrations 

and its harmonics are removed from the TDA leaving the ‘residual’ signal. 

This signal often shows evidence of a defect before it can be detected on 

TDA. The eliminated components are known as the ‘regular’ signal. 

McFadden (1987ii) states that though this technique has been used for many 

years, there had been no satisfactory explanation of what regular and residual 

signals actually represent. It is then shown that the regular signal defines the 

TDA of the meshing vibration of a single gear tooth. The residual however 

gives the departure of the vibration from the average, indicating a fault. 

McFadden (1987ii) however mentions that the amplitude modulation is 

affected by a change in loading conditions and thus complicates the fault 

identification process. 

 

After TDA and subsequent comb filtering, diagnostic parameters are often 

used to quantify the damage on a gear. Threshold values are determined and 

decisions to overhaul or inspect the gear are based on these values. 

Dempsey (2000) investigated two such parameters applied to the residual of 

the TDA signal, NA4 and FM4. FM4 is the ratio of the kurtosis to the standard 

deviation of the difference signal. NA4 is similar to FM4 but takes the first 

order sidebands into account when calculating the regular meshing 

components of the signal. After extensive testing FM4 indicated pitting 

damage sooner than NA4. It was also noted that NA4 is very sensitive to load 

changes that occurred during testing causing false alarms. 
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Hongxing et al. (2000) note that care must be taken when cutting samples 

from the vibration data for TDA.  They state that often a period cutting error is 

incorporated into the TDA procedure. This period cutting error is cumulative 

over the number of periods removed from the vibration signal. An improved 

method to avoid this error is suggested and tested using 28 averages. A 

significant improvement in the clarity of the meshing frequency and its 

harmonics is shown.   

 

McFadden (2000) introduces a new approach whereby subsequent TDAs are 

compared and matched by making small adjustments to amplitude and phase 

after the largest difference between the two TDAs is removed. The removed 

part, called the difference signal, is deemed indicative of a gear tooth fault. 

The difference signal is then decomposed into known transient components. 

A selection of these components is then put through a simple scoring system 

to give a clear indication of gear fault. 

 

Since TDA is designed to filter out noise it is not effective in removing the 

amplitude and phase modulation produced by a varying load and speed 

condition. The TDA is likely to produce a slight smear of the frequency 

spectrum around the meshing frequency and its harmonics. McFadden 

(1987ii) assumes that constant speed and load conditions apply, leaving the 

problem of varying conditions largely ignored. McFadden (2000) matched 

difference approach could possibly be successful for small variations in speed 

and load.   

1.2.3  Demodulation techniques 

Two types of modulations typically occur within the realm of vibration analysis, 

amplitude and phase modulation. Both have relevance in determining fault 

conditions on gears. Fatigue cracks at the root of the gear teeth reduce the 

gear meshing stiffness. This leads to an increased amplitude and phase 

modulation in the measured vibration signal. The modulation appears as 

sidebands of the meshing frequency in the spectrum of the measured signal. 

Analysing modulation and demodulating signals is thus a commonly used CM 
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method. To understand the principles of demodulation it is first necessary to 

consider modulation. 

 

Amplitude modulation is most effectively demonstrated when two signals of 

similar amplitude but with different frequencies are multiplied. The low 

frequency signal is called the modulating signal and the high frequency signal 

is called the modulated frequency or the 'carrier' signal. When a fast Fourier 

transform (FFT) is computed from the modulated signal, the amplitude 

modulation is represented by sidebands around the carrier frequency. The 

frequency difference between the carrier and either one of the sidebands is 

equivalent to the frequency of the modulating signal. A typical carrier, 

modulating and modulated signal are shown in Figure 1.1. 
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-1

0

1
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Figure 1.1: (a) The carrier signal, (b)The modulating signal, (c) The modulated signal. 

The process of separating these two signals from one another is called 

demodulation. To be able to recover the modulating frequency from the 

carrier, the carrier’s frequency must first be determined. Once it is determined 

then all that is necessary is to full-wave rectify the modulated waveform and 

pass it through a low-pass filter, removing the high frequency carrier signal. 

The dc component produced by the rectification process is easily negated, 

making the resulting modulating signal clearly visible. Other ways and 

methods also exist to demodulate a signal. 
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According to White (1991) frequency modulation of the tooth mesh frequency 

in gears can occur due to a gear that is eccentric on its shaft causing it to 

drive the other gear at varying speeds. When driving a load the varying speed 

also causes variations in the tooth forces, resulting in amplitude modulation. A 

gearbox driving a varying load will cause a fluctuation in the rotation speed 

with the resulting modulation. If the load varies significantly but the speed 

remains relatively constant then amplitude modulation will be more 

pronounced than frequency modulation. 

 

McFadden and Smith (1985) state that in complicated gear systems the 

identification of modulation sidebands is more difficult and requires the 

resolution of the spectrum to be increased. Even then the severity of the 

defect is not always apparent. To improve detection the samples are 

synchronised with the rotation of the gear. Multiple samples are then 

averaged. This technique removes all signals that are asynchronous with the 

rotation of the gear. The data is then band pass filtered around the dominant 

meshing harmonics, eliminating the harmonics. An envelope is calculated 

from the residual signal and kurtosis is applied to detect faults. 

 

McFadden (1986) introduces another approach whereby the data around a 

dominant harmonic of the meshing frequency is band pass filtered, after 

applying signal averaging, removing every signal that is not part of the 

dominant harmonic. He shows that each time a tooth meshes with the other 

gear a phase lag is incurred. As the damage severity increases, the phase 

and amplitude modulations become more pronounced demonstrating that 

both phase and amplitude modulation give clear indications of a fatigue crack. 

 

Ma and Li (1996) however point out that using only a single tooth meshing 

harmonic and its sidebands to find the modulation signal, blunts the 

effectiveness of the procedure, since all meshing harmonics carry information 

about modulation signals. They propose a procedure whereby a mathematical 

model is set up describing the vibration of a damaged gear. An iterative 

approach to the model together with signal-averaged data captured from an 
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experimental set-up yields an estimation of the phase and amplitude 

modulations. The results of this procedure was compared to that of McFadden 

(1986) and yielded better sensitivity to gear damage. 

 

Wang (2001) investigates another feasible demodulation approach. This 

approach is based upon the fact that structural resonance will be excited by 

impacts caused by gear tooth cracks. The modulation of this structural 

resonance will therefore carry information related to gear tooth fault. Again the 

GMF and its harmonics are removed from the synchronous averaged signal 

and the residual signal is band pass filtered around a structural harmonic. The 

band passed residual signal is then demodulated. Wang (2001) suggests that 

McFadden’s (1986) approach works better if the harmonic that is analysed 

happens to coincide with a structural resonance. 

 

Although it is abundantly clear that there are applications in which amplitude 

and phase demodulation techniques will be successful, the fact that both load 

and speed fluctuations also cause modulations is largely ignored. The closest 

to mentioning this problem is the assumption that load and speed should be 

constant. McFadden and Smith (1985), McFadden (1986), and Ma and Li 

(1996) made this assumption. Only Wang (2001) tested a method under 

varying load, constant speed conditions. Though this is an improvement, the 

effects of varying speeds on the success of demodulation techniques are not 

investigated.  

1.2.4  Autoregressive modelling 

Wang and Wong (2000) have proposed the use of a stationary Autoregressive 

(AR) process to detect and diagnose gear faults. A TDA signal is modelled 

using AR. This model is then used to predict the next point in a time signal 

given a number of previous points; the error between the predicted point and 

a signal from an unhealthy gear will be significant. In this way a change in the 

signal is detected. The advantage of this method of fault detection is that no 

knowledge of the number of teeth on the monitored gear is required. Wang 

and Wong (2000) also showed that the AR model based on an already faulty 

signal was also effective in detecting a fault condition. 

 
 
 



 10 

 

Padovese (2004) introduces four hybrid time-frequency methods based on the 

AR model to calculate the time-frequency coordinates of the signal spectral 

pattern and the Capon method to estimate the power density associated with 

each coordinate. These hybrids are constructed by calculating the frequencies 

present at each time instant, leading to a time-frequency distribution and then 

to calculate the amplitudes associated with each time-frequency point. Four 

hybrid time-frequency methods are then reached depending on how the time-

frequency distribution and amplitude calculation is achieved. These hybrid 

methods present excellent high-frequency resolution and better time and 

frequency resolution than the Wigner-Ville methods. 

 

Though Wang and Wong (2000) indicate that AR models could perform under 

varying load conditions, their tests were performed in constant speed 

conditions. The testing done by Padovese (2004) was also conducted in 

constant speed conditions. Neither addressed effects of varying speeds on 

AR. 

1.2.5  Order tracking 

Order tracking is a method that uses special analogue hardware to sample 

vibration data at a rate proportional to the shaft speed. This then allows 

frequency analysis based on multiples of the running speed (orders), instead 

of frequency. According to Fyfe and Munck (1997) this approach is prone to 

have problems following rapidly changing shaft speeds. Computed Order 

Tracking (COT) samples at a constant rate and then uses software to 

resample the data at constant angular increments. This cuts the cost and 

complexity of the equipment required. Order tracking is useful in machine CM 

because it can easily identify speed-related vibrations and eliminates the 

deleterious effect of speed on almost all of the vibration methods mentioned in 

this chapter. 

 

Gade et al. (1995) give an overview of order tracking theory as implemented 

by certain Brüel & Kjær instrumentation. They present the use of the 

instrumentation in four examples. The examples serve to highlight the 
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superiority of COT in certain applications. Gade et al. (1995) indicated the use 

of combining TDA and COT and make use of gated tracking, whereby COT is 

done on a particular angular fraction of a revolution, for complex rotating 

equipment such as reciprocating machinery. 

 

Fyfe and Munck (1997) investigate the factors influencing the accuracy of the 

COT method. They found that higher sampling rates on the keyphasor and 

data signals and the use of higher-order interpolation techniques in the 

resampling process resulted in improved accuracy. 

 

Saavedra and Rodriguez (2006) assessed the accuracy of the COT method 

using simulated data. They specifically looked at the influence of the signal 

and tachometer pulse sampling frequency, the amplitude interpolation method 

and the number of tachometric pulses per revolution. From their study they 

recommend multiple tachometer pulses per revolution for situations where the 

acceleration changes sign periodically. A higher sampling rate of the signal 

and pulse was also shown to decrease commonly occurring errors in the COT 

method. 

 

Apart from extensively investigating approaches for producing synchronously 

sampled vibrations, Bossley et al. (1999) also introduce a hybrid order 

tracking method. This method makes use of hardware to measure the 

keyphasors, found in the traditional order tracking technique and uses 

interpolation techniques to resample the vibration data as used in COT. They 

show that this hybrid COT method is superior to both previous methods based 

on simulated data. 

 

Groover et al. (2003) make use of the fact that a fixed frequency component 

such as a resonance vibration will change orders as the running speed varies. 

It is thus possible to eliminate rotational related components in the order 

domain, transform back into the frequency domain and retain an excellent 

resonance vibration devoid of any high-level rotational components that can 

make harvesting of smaller signals associated with blade vibrations in the 
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torsional domain easier. Groover et al. (2003) make use of the COT method 

as a kind of rotation component filter. 

 

To address the high frequency sampling necessary to have good resolution 

for the key phasor, Bonnardot et al. (2004) suggest the use of only the 

vibration signals in the COT method thereby eliminating the use of the 

conventional key phasor signal. Investigating the location of the GMF and its 

harmonics, and given the number of teeth on the gear of interest the shaft 

speed can be estimated. The cost of analysis is reduced with this method but 

its drawback is that only a very small speed variation is tolerated. This 

drawback becomes even more pronounced when the harmonics of the GMF 

are used for speed estimation. 

 

The order tracking method is a conventional vibration analysis method that 

directly seeks to address the effect of speed on the performance of fault 

detection methods. 

1.2.6  Short-time Fourier transforms 

The Short-Time Fourier Transform (STFT) is another time-frequency 

transform that represents a local spectrum of a signal. The signal is pre-

windowed around a chosen time and its Fourier transform is calculated, this is 

repeated for each instant. This overcomes the drawbacks of the conventional 

Fourier transform namely its tendency to output an averaged representation of 

the frequency components in a signal, losing the time information essential to 

locate any transient signals. In comparison to the Wigner-Ville distribution, the 

STFT is almost free from cross-terms but does not stress the auto-terms well. 

 

The choice of a suitable window with regards to efficiency and time-frequency 

resolution is a major issue concerning STFTs. Tomazic (1996) introduces a 

STFT with a single-sided exponential window and shows that it exhibits good 

time-frequency resolution. 

 

The square of the modulus of the STFT is called a spectrogram. For each 

position of the window, another spectrum is obtained. Instead of totalling 
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these to form a time-frequency distribution, Staszewski and Tomlinson (1997) 

suggest a diagnosis based on the visual inspection of these spectra. Different 

window configurations are also used to determine the effect of different 

window parameters on the spectra.  

 

No mention of speed or load related issues were found in the above articles. 

Once again the use of TDA could lead to errors that are not addressed. 

1.2.7  Time-frequency analysis 

Time frequency distributions give an account of how the energies associated 

with frequencies change over a period of time. This creates a very good visual 

representation of possible gear fault and is well suited to the analysis of non-

stationary signals. 

 

Wang and McFadden (1993i) show that the spectrogram when applied to the 

time domain averaged signal, gives a very clear time-frequency distribution. 

The window function chosen can have a significant effect on the clarity of the 

time-frequency distribution. Working with the residual signal produces even 

better results as it improves the clarity of the spectrogram. Wang and 

McFadden (1993ii) then further introduce a method whereby image 

processing is used to interpret the spectrogram. This could replace an 

operator, automating the process. The ‘blobs’ on the spectrogram are 

analysed by looking at their position, height, width, area, intensity and 

kurtosis. These factors are then used to determine whether a fault condition is 

present. Successful tests were done on a helicopter gearbox demonstrating 

the ability to detect early gear faults. 

 

After developing a model to simulate the dynamics of a faulty gear system, 

Choy et al. (1996) showed the ability of the Wigner-Ville time-frequency 

distribution together with TDA and spectrum analysis to effectively 

characterize the vibration signal from a gear system.   

 

The Wigner-Ville distribution is a bilinear distribution used initially in quantum 

mechanics in the 1930s. According to Hammond and White (1996) it has 
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however only been implemented in time-frequency analysis since the 1980s. 

It has good resolution capabilities but also contains interference terms when 

the input signal contains several components. These interference terms could 

lead to incorrect inferences. The pseudo-Wigner-Ville distribution is simply the 

Wigner-Ville distribution that is adapted to finite data lengths and employs 

windowing functions. Lee and White (1997) show that Wigner higher-order 

spectra are effective in the CM environment. 

 

Staszewski et al. (1997) note that no effective method exists for an automatic 

fault detection procedure based on the Wigner-Ville distribution. Statistical 

and neural pattern recognition techniques were then implemented to detect 

different spur gear fault conditions. The weighted Wigner-Ville distribution is 

also tested and together with the removal of the meshing vibrations is found to 

simplify the result. However Staszewski et al. (1997) acknowledge that, when 

applied to a mining gearbox, these methods could prove less successful. 

 

The research done in time-frequency methods has however to a large extent 

ignored the effect that load and speed can have on these techniques. 

Furthermore the majority of the research was done on spur gears. This raises 

doubts concerning the ability of these methods to work in a mining 

environment on high contact ratio helical or even double helical gears. In an 

attempt to remedy this, Baydar and Ball (2000) present the instantaneous 

power spectrum, which has a limited ability to detect fault conditions under 

varying load conditions. 

 

Stander et al. (2001) present a load demodulation technique that is capable of 

monitoring the condition of a spur gear that is run on an experimental rig 

under varying load conditions. Furthermore Stander et al. (2002) presents a 

vibration waveform normalisation approach, which enables the use of a 

pseudo-Wigner-Ville distribution to indicate gear fault under fluctuating load 

conditions. Statistical parameters extracted from the distribution were then 

used to indicate linear separation for various fault conditions, which was 

calculated after load demodulation. Feature vectors for various fault 

conditions were then compiled and compared to an average vector compiled 
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from measured data using Mahalanobis distances. It was shown that the 

Mahalanobis distance could be monotonically trended to indicate fault 

progression. A neural network was also used to distinguish fault severity. 

1.2.8  Wavelet transforms 

The wavelet transform is an example of a linear time-scale decomposition of 

the signal and originated in the 1980s. Wavelet analysis is the localised 

equivalent of the Fourier transform. Where the Fourier transform moves data 

from a time domain to a frequency domain using sines and cosines as basis 

functions giving the average features of a signal, the wavelet transform 

decomposes the given data into a superposition of elementary wavelet 

functions giving localised characteristics of the signal. Because it is a linear 

representation of a signal, wavelets are useful for the analysis of multi-

component signals. The wavelet transform provides good resolution in high 

frequencies offering a different time-frequency resolution compared to the 

Wigner-Ville distribution. 

 

Staszewski and Tomlinson (1994) apply the wavelets to the problem of 

detecting a broken tooth in a spur gear and suggest that with further 

investigation it offers a means of fault detection. Pattern recognition and the 

Mahalanobis distance were used to detect fault severity. They indicate that a 

visual inspection of the wavelet transform can be used to localise the fault. 

 

Wang and McFadden (1995) demonstrated that the orthogonal wavelet 

families are useful for detecting vibration transients, especially those 

transients in the meshing vibration caused by tooth fault. It was found that, 

due to a limited number of scales, a single wavelet map could not describe all 

details of the signal. Wang and McFadden suggest the use of non-orthogonal 

wavelet families to overcome this shortcoming. 

 

Wang and McFadden (1996) investigated and showed that the time-scale 

distribution of the wavelet transform can analyse the local features of a signal, 

displaying both the large and small sizes in a signal simultaneously. This 

enables the detection of both distributed and local faults. In this respect the 
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wavelet transform is superior to time-frequency distributions that incorporate 

constant time and frequency resolutions. 

 

The liner wavelet transform using B-spline wavelets was used to monitor 

crack growth by Lin and McFadden (1997). They indicate the ability of the 

linear wavelet transform to detect the location of a fatigue crack in a helicopter 

gear. They also compared the spectrum of the original time domain signal to 

the spectrum recovered by the B-spline wavelets after the time domain signal 

had been decimated by a factor of four. They thus demonstrated that the B-

spline wavelet based linear wavelet transformation can successfully 

decompose a signal exactly.  

 

An interesting use of wavelets was proposed by Staszewski (1998), who 

proposed that wavelets could be used to compress data, being especially 

effective for non-stationary data. He also mentioned that the compression of 

data could be useful for feature selection, since features are often 

represented by wavelet coefficients with high amplitudes. 

 

Boulahbal et al. (1999) state that the wavelet transform is complex valued, 

and thus employs the phase as well as the amplitude maps of the wavelet 

transform to assess gear condition. They show that if both amplitude and 

phase maps are used in conjunction, a more positive assessment of tooth 

condition is accomplished. They also introduce a polar representation of the 

wavelet map, making the maps very intuitive. 

 

McFadden et al. (1999) proposed that a variant to the wavelet transform, the 

generalised s-transform be used to decompose vibration signals. The 

advantage of the s-transform is that phase information about the components 

is easily retrieved. McFadden et al. (1999), as did Boulahbal et al. (1999), 

state that it is desirable to obtain local phase information in the interest of a 

more complete description of changes in vibrations.  Given well-separated 

components, it is shown that near-perfect signal composition can be 

achieved.  
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Sung et al. (2000) properly verify the superiority of the wavelet transform over 

the short-time Fourier transform. When applying both techniques to 

synchronous averages of an experimental signal, and simulated signal data 

consisting of multi-frequency harmonics with small abrupt changes, wavelet 

transforms are shown to be more effective. Sung et al. (2000) mention that, 

based on the simulated signal performance of the wavelet transform, the 

gears within a gearbox should rotate close to the same speeds to facilitate 

fault detection. 

 

Wavelets are also useful in improving the signal to noise ratio of vibration 

signals. Lin and Qu (2000) describe the use of Mortlet wavelets to de-noise a 

signal, thus facilitating feature extraction. 

 

Luo et al. (2000) propose the use of the time-frequency localization of the 

wavelet transform in filter design. The wavelet filter together with 

autocorrelation enhancement allows monitoring to occur in real time due to its 

very short processing time. Furthermore Luo et al. (2000) state that TDA is 

superfluous when this method is used. Observing the natural frequencies, in 

time or frequency domain, the peak ratio and peak value are indicators 

capable of detecting a fault at an early stage.   

 

To detect the transients from a signal with a high sensitivity, Wang (2001i) 

proposes a joint time-frequency-scale distribution. He suggests that due to the 

problem that the wavelet transform only matches time instant and length of a 

mother wavelet and the STFT only matches the time instant and wave shape, 

a fusion of the two would give full capacity to match the mother wavelet to all 

possible segments of the signal. Wang (2001i) demonstrates the usefulness 

of this transform but accedes that further research is necessary to interpret 

the ensuing 3D images. 

 

The effect of speed and load variations on the Wavelet transform, being a 

very high-level detection technique, depends largely on the pre-processing 

used. Lin and McFadden (1997) consider a gear running under constant load 

and speed and also make use of TDA thus acknowledging a possible 
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problem. Boulahbal et al. (1999) mention that the change in phase modulation 

is a direct measure of the fluctuations of a gear’s angular speed and resample 

the signal at constant angular positions to avoid the effect of speed variations. 

1.2.9  Neural networks 

The human brain, and its ability to think and solve problems, has inspired 

many researchers to mimic it. A result of these attempts is the artificial neural 

network. These Neural Networks (NNs) have then often been utilised to 

classify data thus eliminating the need of an operator to interpret analysed 

vibration data. 

 

Paya et al. (1997) used multi-layer artificial NNs to distinguish between 

varieties of faults that were seeded on a model driveline. The raw data was 

first pre-processed by wavelet transforms before being used to train the NN. 

The NN was then set the task to classify the wavelet data. The NN performed 

well when detecting gear faults but not as well when detecting bearing faults. 

 

Meesad and Yen (2000) mention that classical offline iterative learning 

classifiers require long training times and are often stuck at local minima, 

preventing the achievement of the optimum solution. Also, to train new data 

both old and new data must be used to prevent loss of the old data.  A self-

organising neurofuzzy network is proposed that should be able to tolerate 

noise, as a NN can, and deal with imprecise situations, which the fuzzy set 

theory can deal with. When tested on vibration data from a helicopter, the 

network achieved 100% correct classification. 

 

Chen and Wang (2002) make use of multi-layer perceptrons fed with 

instantaneous scale-distribution patterns to detect gear faults. They state that 

the width of a peak pattern is not conducive to fault detection in CM, and 

therefore take a cross-section of a time-scale map at a specific time and refer 

to it as an instantaneous scale-distribution pattern. The NNs are then set to 

classify these instantaneous scale-distribution patterns. Chen and Wang 

(2002) report that this method provides adequate performance. 
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Samanta (2004) presents a comparative study between the performance of 

NN and Support Vector Machines (SVM). SVM is a statistical learning theory 

introduced in the 1960s.  Genetic algorithms were used to extract the features 

for the NN and SVM. When compared the performance of the SVM is better 

than the NN and has a substantially shorter training time. 

 

Since NNs are often in the final step in the vibration analysis procedure, 

problems linked to speed and load variations are mostly due to the analysis 

methods used before NNs are applied. Paya et al. (1997) do however mention 

that speed and load would only affect the intensity level of the signal. They do 

however keep load and speed constant in their testing. 

 

1.3  Scope of the work 

Vibration has in the past frequently been used to determine the condition of 

gears. Statistical methods, time domain averaging, phase and amplitude 

demodulation and a multitude of other methods have been employed. 

However these methods have to a large extent been based on the 

assumption that the gear speed is constant. If the data capture is well 

coordinated, then this would be a fair assumption, but errors due to fluctuating 

speed conditions would still occur. Recently however Stander et al. (2002) 

developed a method to measure the condition of gears operating under 

varying speed conditions, thus avoiding these errors. Effectively this allows 

measurements to be taken at any time during a machine’s work period 

regardless of speed fluctuations. 

 

In the methodology of Stander et al. (2002), gear speed data is acquired by 

means of a shaft encoder. Vibration data is then measured synchronous with 

the speed data.  The angular position data then allows the acceleration data 

to be broken up into blocks corresponding to one revolution. A block of data is 

then converted to 1024 points, by interpolation. These blocks are then 

averaged. This technique is very similar to TDA except that angle of rotation is 

used and not time. Since rotation domain averaging is not time dependent, it 

is also independent of gear speed fluctuations. The averaged signal is then 
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analysed using a pseudo Wigner-Ville distribution. This allows the 

visualization of any gear defect that has occurred. The number of points that 

exceed a defect threshold during the pseudo Wigner-Ville analysis are 

counted and noted. These numbers are then plotted on a regular base to give 

a two-dimensional impression of the gear deterioration.  

 

This methodology has been proven to be effective in detecting seeded gear 

damage when tested under laboratory conditions. These tests were 

conducted under different loading conditions, which influenced the rotational 

speed of the gear. 

 

Having proved the relevance of this methodology under laboratory conditions 

it was necessary to apply it to a mining environment to ensure that similar 

results are achievable in the field. It was decided to apply the method to a 

dragline operating at Syferfontein, one of SASOL’s open cast collieries.  

 

However certain problems occur when this is attempted. Firstly it is not 

possible to install a shaft encoder on the pinion shaft, due to excessive axial 

motion, which would destroy the encoder. Instead two proximity sensors are 

used that sense the passing of the key. These proximity sensors are situated 

close to each other so that a change in direction can also be picked up. Using 

the proximity sensors instead of the shaft encoder will however significantly 

decrease the shaft position resolution. This would not have an effect on the 

method currently used by Stander et al. (2002) since it assumes constant 

velocity across a single revolution, but will mar any attempts to gain more 

precise speed information by using other interpolation techniques.  

 

The shaft encoder is not suited to run at the mine on a permanent basis. The 

systems used in the laboratory would therefore need to be replaced by a 

capturing system suited to the electro-magnetically noisy and dusty 

environment aboard a dragline. The system would therefore be electro-

magnetically shielded and contain air filters to remove dust from critical 

components such as the computer. It is difficult to inspect the gear visually 

and thus a comparison with currently used early detection methods is 
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necessary to determine whether order tracking is successful in early gear 

detection. Lastly data sets from 276 shaft rotations were averaged to remove 

noise whilst testing the order tracking methodology of Stander et al. (2002) in 

the laboratory, due to the change in direction occurring in the dragline data 

fewer shaft rotations will be useable. 

 

The dragline is often cut from power whilst walking from one point of operation 

to another. It is also not operational whilst a shift rotation is in progress or 

whilst the caterpillar is cleaning the site. These interruptions would render the 

data block taken useless. Thus, as soon as data is attained from the dragline 

it would be necessary to check whether it is suitable. The data would be 

broken up into smaller blocks spanning only one revolution and sorted into 

forward and reverse rotating directions. Using current interpolation techniques 

as well as new methods of determining the speed fluctuation within one 

revolution, the acceleration data would be manipulated so that it is 

independent of speed. Order domain averaging would then be applied 

followed by FFT analysis to interpret the results. Finally a link between 

forward and reverse results will be investigated. 

1.4 Summary 

Ever since vibration monitoring was used for condition monitoring, many 

different methods and approaches have been utilised. Very few of these 

approaches deal with condition monitoring of varying speed components, 

such as gears, as well as those methods based on order tracking. 

1.5  Dissertation overview 

This dissertation is broken up into 5 chapters dealing with the literature, the 

setting up of the monitoring station, the order tracking methods and their 

development, the data analysis and the conclusion. 

 

The first chapter dealt mainly with the literature pertaining to vibration 

monitoring. It covered many approaches to vibration monitoring and 

highlighted the niche into which the order tracking techniques fall. The order 

tracking techniques were also discussed in depth. 
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The second chapter deals with the development and implementation of the 

monitoring station aboard the dragline at the Syferfontein colliery. It discusses 

the hardware used and justifies the choice of equipment in light of the 

environment aboard the dragline. The acquisition software developed to 

capture data is introduced and the testing that was done prior to installing the 

station on the dragline is described. 

 

The third chapter deals with the order tracking methods that are already 

established and relate the development of a new approach. The data from the 

dragline is also analysed to ascertain whether the captured data can be 

related to the dragline activity. 

 

The fourth chapter covers the data processing and analysis of the captured 

data. The different order tracking approaches are compared and a gear 

deterioration graph is constructed. Correlation between forward and reverse 

rotating directions are also deliberated. 

 

The fifth and final chapter concludes the dissertation and discusses 

accomplishments, shortcomings and recommendations. 
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CHAPTER 2 ONLINE MONITORING HARDWARE 

 

In order to begin with the research, it was of paramount importance that the 

monitoring station at SASOL’s Syferfontein colliery be implemented as soon 

as possible. The data acquired would be necessary to adjust and modify 

existing theoretical speed estimation techniques so that they would work 

successfully on the dragline data. The captured data would also provide 

insight into the development of a new speed estimation technique. This was 

thus the first major step en route to completion of the research. 

 

The monitoring station was to work aboard the largest dragline in the southern 

hemisphere, a Dresser 8200 Marion dragline. Three of these draglines are in 

operation at the Syferfontein colliery. Figure 2.1 shows the Marion 1, aboard 

which the monitoring station was placed. This dragline has a bucket capacity 

of 150 tons. 

 

Figure 2.1: The Marion 1 dragline on location at the Syferfontein colliery. 

To operate successfully in the mining environment the monitoring station 

would have to comply with a number of specifications. The station should be 

robust enough to handle the opencast mining environment; this includes 

shock, dust and high electro-magnetic interference fields. It should be capable 

of sampling at a high frequency so that no relevant information is lost; this 
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applies especially to the vibration readings. Finally it should be able to detect 

the direction of rotation of the pinion of interest. 

 

The activity of setting up the monitoring station is classified into three 

sections: hardware employed, software development and preliminary testing. 

The following subsections will cover these three aspects in depth. 

 

2.1  The hardware employed 

The hardware part of the monitoring station encompasses all mechanical and 

electrical components necessary to support the operation of the data 

acquisition software. The software requires adequate sensory input and 

significant storage space.  

 

To be able to run the software, a number of hardware units were acquired or 

built. Sensors capable of relaying speed, direction and vibration data were 

required. A low pass filter would have been indispensable to prevent aliasing 

of the measured data. An analogue to digital (A/D) conversion card capable of 

a sufficiently high sampling frequency would have been vital to accept the 

data relayed by the sensors. And a computer capable of housing and 

protecting the A/D card and supplying an interface between the software and 

the A/D card would have been necessary. 

2.1.1  The sensors 

The main role of the sensors is to relay speed, directional and vibration 

information to the A/D card. Two types of sensors would be capable of 

meeting the requirements of this research. Typically an accelerometer would 

be sufficient to measure the vibration data and a proximity sensor would be 

capable of supplying speed data. 

 

The accelerometer is preferred to velocity and displacement sensors since it 

is capable of measuring higher frequencies typically encountered when 

monitoring machinery. Commonly a radial as well as an axial reading are 

taken when monitoring rotating machinery. Thus two 100mV/g Integrated 
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Circuit Piezoelectric (ICP) accelerometers were selected for the task. Each 

accelerometer needs a signal-conditioning box to amplify the output of the 

accelerometers. 

 

According to McFadden (1986) it is usual to mount a transducer on the 

exterior housing of the gearbox, since direct measurement on the gear itself is 

not practical. At the Syferfontein colliery the accelerometers were mounted 

with studs onto aluminium platelets that were bonded to the pinion housing on 

the drive end of the drag motor in radial and axial directions as shown in 

Figure 2.2. A galvanised steel plate box was also constructed and glued in 

place over the accelerometers to prevent accidental damage to the sensors. 

The different locations of the drag and hoist drums are indicated in Figure 2.3. 

The position of the drive end and non-drive end of the motor is illustrated in 

Figure 2.4. 

 

Axial 
Sensor 

Radial 
Sensor 

 

Figure 2.2: The positioning of the accelerometers against the pinion housing as seen from 

below 
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Figure 2.3: A view inside the dragline. 

. 
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Figure 2.4: The instrumented DC motor aboard the dragline. 
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The pinion housing, indicated in Figure 2.4, also houses another gear 

assembly and this could lead to an increase in the complexity of the 

measured signal. This problem however is minimised by the use of signal 

averaging in the order domain when processing the data. 

 

The measurement of the speed of the pinion requires the use of a proximity 

sensor. A key is present on the pinion shaft, which is employed to trigger the 

proximity sensor once per revolution. The square signal received from a 

sensor can easily be converted into speed information since the distance 

travelled between pulses is constant and an indication of average speed is 

obtainable by simply dividing the time taken between pulses into the distance 

travelled. This average speed over one revolution is however not accurate, 

and suggests the use of interpolation techniques to gain more precise 

information about speed fluctuations within one revolution. The positioning of 

the proximity sensors for speed-readings is arbitrary and would be dictated by 

the requirement to determine rotational direction. 

 

To determine the rotating direction of the pinion it is necessary to have 

another proximity sensor additional to the one used to determine speed. Each 

proximity sensor will be measured on a different A/D channel. The two 

proximity sensors should be mounted next to each other. As the key triggers 

the two adjacent sensors it is possible to identify which sensor was triggered 

first and thus a direction is obtainable. If the proximity sensors were placed 

180° apart from one another it would be impossible to determine in which 

direction the shaft is moving. The sensors were thus placed approximately 9° 

apart from each other, this was partly due to the ease with which the sensors 

could be attached to a single bracket. 

 

To measure both direction and speed two M18 Pulsotronic inductive sensors 

capable of switching at 1 kHz were acquired. It has been observed, from 

preliminary data acquisitioning on the dragline at the Syferfontein colliery, that 

the pinion rarely rotates faster than 20 Hz, thus the switching frequency of 

these sensors are adequate. 
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At Syferfontein the proximity sensors were mounted on a mild steel bracket at 

the non-drive end of the motor between the motor and the brake as shown in 

Figure 2.5. 

 

Figure 2.5: The situation of the two proximity sensors at the non-drive end of the motor. 

The operating temperature of the proximity sensors is in the region of 50 °C 

since heat from the motor is conducted to the sensor. These operating 

conditions are acceptable as the proximity sensors are rated to working in an 

environment where temperature fluctuations of –25 to 70 °C occur. 

2.1.2  The low pass filter 

The purpose of the low pass filter is to avoid amplitude and frequency errors 

due to aliasing.  Aliasing occurs when frequencies higher than half the 

sampling frequency are present in the analogue time history of the captured 

signal. Aliasing causes the signal to appear to be of a much lower frequency 

than it actually is. This will create false readings at lower frequencies in a FFT. 

This scenario must be avoided and thus the low pass filter is indispensable. 

 

The low pass filter is only necessary for the vibration data relayed by the 

accelerometers since the data received from the proximity sensors has a very 

low frequency range and will not be analysed by a FFT. The low pass filter is 

positioned between the accelerometers and the A/D card as illustrated in 

Figure 2.6. 
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Figure 2.6: The position of the low pass filter in the hardware set-up. 

The cut off frequency is determined by the frequency of interest and the 

number of higher harmonics of this frequency that are required. For the set-up 

at the Syferfontein colliery the GMF of the pinion is being investigated to 

detect fault conditions. The GMF is a function of rotation speed and number of 

teeth on the pinion as shown in equation 2.1. 

TeethSpeedGearmesh ×=     (2.1) 

The speed of the pinion on the dragline will rarely exceed 20 Hz and it has 25 

teeth. Thus the frequency of interest is 500 Hz. To include the first four 

harmonics the cut off frequency of the low pass filter was chosen at 2500 Hz. 

 

Several filter types with different characteristics can be used. Two commonly 

used filter types are the Chebyshev and Butterworth filters. The Chebyshev 

filter has a steeper roll off at the cut off frequency than the Butterworth filter 

but does not have such a flat characteristic within the pass band, as does the 

Butterworth filter. The choice of the filter order is a trade off between pass 

band flatness and steeper roll off. With increasing order there appears an 

increasing disturbance in the flatness of the pass band along with a steeper 

roll off at the cut off frequency. The steeper roll off is laudable but comes at an 

increasing cost of pass band accuracy. 

 

Another factor that plays a role in the choice of filters is phase distortion. All 

non-ideal filters introduce a time delay between the input and output 

terminals. This delay can be represented as a phase shift if a sine wave is 

passed through the filter. The phase shift typically alters with the input 

frequency; it would thus be desirable to have a linear phase response so that 
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all frequencies are similarly delayed. The Butterworth filter’s phase response 

is more linear than that of the Chebyshev filter and is thus a better choice in 

this regard. To uphold the integrity of the data and avoid introducing any 

amplitude modulating effects, an 8th order Butterworth filter was chosen. 

Figure 2.7 shows the characteristics of the filter used, as designed with 

Microchip’s FilterLab program, available at www.microchip.com. 

 

Figure 2.7: The characteristics of an 8th order Butterworth filter showing attenuation and 

phase response. 

However, the effect of the phase distortion on the signal must still be 

quantified. The change in phase is normally represented through the group 

delay concept. Group delay is the derivative of the phase shift through the 

filter with respect to frequency. The normalised group delay response of 

various 8th order filters is indicated in Figure 2.8. It was retrieved from 

www.freqdev.com. 
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Figure 2.8: Group delay data of 8th order Bessel, Butterworth, Constant Delay and Eliptic 

filters. 

The actual delay for a point on Figure 2.8 through the filter is the normalised 

group delay divided by the cut off frequency. The worst delay for an 8th order 

Butterworth filter typically occurs close to the cut off frequency and is 

approximately 1.5 seconds. The actual delay can thus be determined: 

  Hzs
Hz
s

yActualDela /0006.0
2500

5.1 ==   (2.2) 

At top speed the pinion rotates at approximately 20 Hz. This represents a 

period of 0.05 seconds between speed pulses received from the proximity 

sensors. The delay due to phase distortion will thus have a negligible effect on 

the outcome of this dissertation.  Furthermore the first 1000 Hz, 0-0.4 f/fC on 

Figure 2.8, where the first two GMF will be found has a very similar delay, 

thus further limiting the effect of phase distortion in the context of this 

dissertation. 

2.1.3  The analogue to digital (A/D) conversion card 

The most common modern vibration analysis techniques rely heavily on digital 

data processing. Thus it is imperative that the analogue signal supplied by the 
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accelerometers and proximity sensors be converted to digital values. The 

accuracy of the conversion is dependent on the sampling rate and the A/D 

card’s quantification of the amplitude. 

 

The sampling frequency that the A/D card should comply with depends on the 

signal to be captured. Since the sampling frequency is more critical in the 

case of the accelerometer data than in the proximity sensor data, the vibration 

data will be the limiting factor. The low pass filter will cut off at 2500 Hz 

encompassing the first 4 harmonics of the gear mesh signal. Since filters are 

far from perfect it is recommended that the sampling frequency should be 

from 2.56 to 4 times higher than the –72 dB frequency point on the filter 

transfer function, which is 7050 Hz. Thus the sampling frequency should be at 

least 18 050 kHz, ensuring that the frequency analyses are not compromised. 

However if the waveform itself is of interest, so that time domain parameters 

can be accurately determined, it is recommended that the sampling frequency 

be much higher. Thus a sampling frequency of 50 kHz should suffice. The A/D 

card should therefore be able to control four inputs, of which two should be 

sampled at a rate of at least 50 kHz. 

 

The quantification of the analogue amplitude depends on the resolution 

capability of the A/D card. For example if a 12 bit A/D card is set for an input 

range of –10 V to 10 V then the smallest increment quantifiable is 4.88 mV as 

calculated in equation 2.3. 

     mV
VV

88.4
2

)10(10
12 =−−

      (2.3) 

If the resolution of the A/D card is too low, the amplitude of the digital signal 

can be significantly distorted hampering fault detection. This is due to the fact 

that a range of fixed integer steps, the size of which is the smallest increment 

quantifiable, represents the analogue signal. The analogue amplitude could 

thus be distorted by as much as one quantifiable step. Thus the higher the 

resolution of the A/D card, the better the digital quantification of the signal. 

 

The A/D card chosen was a National Instruments PCI 6023E card. This card 

has a resolution of 12 bits, is capable of controlling 16 analogue inputs and 
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has an aggregate sampling rate of 200 kHz. Thus if four input channels are 

required, two for the accelerometers and two for the proximity sensors, the 

sampling rate of each channel is 50 kHz. This is equal to the required 

sampling frequency needed to obtain quality vibration data. 

 

However the Bayonet Neill Concelman (BNC) cables from the sensors cannot 

be directly linked to the A/D card. For this a BNC adapter is necessary. The 

BNC adapter also serves to simplify the connection between the sensors and 

the A/D card. The BNC-2110 was chosen to be the linking device between the 

sensors and the A/D card. This device provides BNC connectors for up to 

eight analogue input channels. The BNC-2110 is capable of operating over a 

temperature range from 0 to 70 °C and will thus have no problem in the warm 

environment aboard the dragline. The BNC adapter cannot handle an input 

voltage larger than 42 V. This will not occur since the largest output will be 

received from the proximity switches and will not exceed 12 V. 

2.1.4  The computer 

The computer has two basic functions to fulfil as part of the online monitoring 

station; it serves as a housing unit for the A/D card and as an interface 

between the A/D card and its controlling software. The main components of a 

computer comprise a case, the motherboard and central processing unit 

(CPU), random access memory (RAM) and a storage device. An 

uninterrupted power supply (UPS) and screen are also necessary. 

 

To be able to provide sufficient protection to the internal components and to 

the A/D card, the computer case must be able to withstand shock loading, it 

should be well ventilated and allow as little as possible dust to enter and 

contaminate the internal components. It was decided that an industrial rack 

mounted case would be sufficient to the task. This case provides additional 

clamps to keep cards secure to the motherboard of the computer and thus 

provides shock resistance. The case also has an air filter mounted in front of 

the chassis fan to prevent dust build up within the computer. The fan also 

provides air circulation to cool down the internal components. The case has a 

rugged exterior, which serves as an adequate shield against impact. The 
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power and reset buttons as well as the CDROM drive are situated in a recess 

in the case that is covered by a lockable-hinged plate. This prevents the 

computer from being switched on or off by an accidental contact. 

 

A 1.8 GHz CPU was selected to handle the functions needed to acquire and 

store data. An INTEL Celeron processor runs at a low temperature and was 

thus deemed the best CPU suited to the mining environment. A suitable 

motherboard with on-board graphics onto which the CPU and A/D card could 

be mounted was then chosen. 

 

RAM acts as a buffer between the storage device and the CPU. Thus the 

operation time of any program running on the computer is affected by the 

amount of RAM that it has at its disposal. The number of RAM modules 

installable on the motherboard is limited and too much RAM is not cost 

effective. 256Mb of RAM were installed onto the motherboard for the data 

acquisition. 

 

A storage device is necessary to store information required by the operating 

system and by all programs running within the operating system. It is also 

necessary to store the recently acquired data until such time as it can be 

written to compact disk for more permanent storage. It also serves well as a 

transportation device in the event that large and/or numerous files need to be 

transferred. No connection to a local area network or Internet was available. 

This is due to the dragline roaming around the mine during operation. 

Transferring the data by radio was also infeasible. From preliminary 

measurements it is known that a single 2-minute data sample will be 48 Mb 

large. A simple calculation can be made to determine the number of samples 

that can be stored. 

  1706
48

/102480 =×
Mb

GbMbGb
     (2.4) 

From equation 2.4 an 80 Gb will last for 28 months if two samples per day are 

taken and stored. This is more than enough. Two 80 Gb hard drives were 

bought as well as two removable hard drive slots. Whilst one hard drive would 

be aboard the dragline storing, the other would be useful for data 
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manipulation. This also allows for short visits to the mine when all that is 

necessary is to switch the onboard hard drive with the spare hard drive when 

the latest data is required. This means that the data can be written to compact 

disks on regular occasions.  A 20 Gb hard drive, to store the information 

required by the operating system and any installed programs, was bought. 

 

The electricity supply aboard the dragline is not constant due to frequent 

power cuts when the umbilical cable supplying power to the dragline is 

severed during relocation. The large direct current (DC) motors aboard the 

dragline also cause power fluctuations. An uninterrupted power supply (UPS) 

is thus a prudent precaution. The 1 kW UPS acquired will supply power to the 

computer and the screen for at least 20 minutes. This would span the minor 

power interruptions and smooth out any spikes and troughs in the supplied 

power. The UPS will however not supply sufficient power for lengthy 

interruptions. 

 

Due to the environment a new screen was not utilised aboard the dragline. 

The DC motors aboard the dragline emit large amounts of electromagnetic 

interference, large enough to distort the image seen on the screen by 

deflecting the electrons within the tube of the screen. The screen was thus 

placed within a metal cupboard that serves as a faraday cage. An additional 

screen was also kept at the mine in the event that the one aboard the dragline 

failed. Simple 14” video graphic array (VGA) monitors were used. 

2.1.5  Hardware housing 

Almost all the hardware, excluding the sensors, was housed in the control 

room aboard the dragline. Figure 2.9 depicts the screen, the rack mountable 

computer case and the UPS. 
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Figure 2.9: The computer as situated in the control room aboard the Marion 1. 

In the compartment just left of the one housing the computer, the signal 

conditioners for the accelerometers, the low pass filter and the power supply 

for the proximity sensors and the signal conditioners were housed. As shown 

in Figure 2.10, the two boxes taped together with red duct tape are the signal 

conditioners, and the black box to the rear houses the low pass filter. 

 

Low-pass 
Filter 
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Figure 2.10: The compartment housing the signal conditioners, the low pass filter and the 

power supplies. 
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2.2  Software development 

Having attained all the hardware requirements for the dragline online 

monitoring station, the next step is to select and develop suitable software to 

complement the hardware. Firstly the programming language must be chosen 

with which the capturing programmes will be written. Secondly the operating 

system of the computer must be selected and lastly the capturing 

programmes must be written. 

2.2.1  The programming language 

This research project was conducted within the DSG (Dynamic Systems 

Group) at the University of Pretoria, where there is a wealth of Matlab 

knowledge available, allowing research to proceed efficiently. Matlab has 

proven to be an effective platform to develop mechanical signal processing 

methodologies. Signal capturing and processing algorithms can thus be 

implemented with ease. 

 

Matlab’s data acquisition toolbox is also compatible with the National 

Instruments A/D card that is utilised for this research project, thus no 

compatibility problems will arise.  

2.2.2  The operating system 

Windows 2000 was chosen as the operating system to be installed on the 

computer aboard the dragline, as it does not have memory leakage. Memory 

leakage is the term used to describe the lack of available RAM space when 

the operating system does not delete unused data stored in the RAM, causing 

lethargic system operation. Windows 2000 was also deemed the most stable 

platform available at the time and has the added advantage that a critical error 

does not result in system wide inoperativeness. 

2.2.3  The capturing program 

The capturing program to be installed and used must meet certain 

requirements. It must be capable of sustained data capturing over an 

indefinite period of time. It must be capable of capturing a fixed amount of 
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data at specific times, and it should be able to store the data with informative 

file names. 

 

To be able to capture data over an indefinite period of time it is necessary to 

make use of an ‘if’ loop. Increasing or decreasing the time span used to 

capture data controls the amount of data to be captured. To capture at 

specific times, the program makes use of the system clock. The timing is 

simplified by keeping the time period between captures constant, i.e. if 

capturing occurs at 6 am then a second capture should occur at 6 pm. The 

logic behind the capturing program aboard the dragline is illustrated in Figure 

2.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: The flowchart of the capturing program aboard the dragline. 

Start 

1. Set capturing time 

2. Initiate user 
defined variables. 

3. Set the working 
directory. 

4. Initiate the A/D 
card. 

5. Program the A/D 
card. 

6. always = 2 

7. While 
always > 0 

8. While 
time > now 9. time = time + period 

10. Call initiate 

11. always = always - 1 
End 
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At the start of the program the initial time of capturing and the period between 

captures is set. Other user-defined variables such as the time span are also 

defined. The working directory is then set, ensuring that the captured data is 

stored in an assigned location on the hard drive. The NI 6023E A/D card is 

then activated and the range of channel inputs is programmed. To ensure an 

infinite loop a variable ‘always’ is assigned the value 2. A ‘while’ loop is then 

engaged which can only be broken by user intervention. This is due to the fact 

that the variable ‘always’ will continue to be larger than zero, keeping the 

while loop in tact. A second ‘while’ loop, that will loop continuously until the 

time for capture is reached, is then engaged. When the time of capture is 

reached, the next time of capture is defined by adding the user-defined period 

to the time of capture. A subprogram named ‘initiate’ is then called, which 

captures data of the four channels for the assigned time span. To satisfy 

Matlab’s requirement that the ‘while’ loop should be breakable, the variable 

‘always’ is reduced by 1. This completes the indefinite capturing loop. 

 

2.3  Pre-operative testing 

Before taking the hardware to the Syferfontein colliery it was necessary to run 

several tests to highlight any possible problems that could compromise 

reliable operation of the system aboard the dragline. The length of data to be 

taken had to be chosen based upon tests and dragline observation. This is 

necessary to determine the largest possible sample length that can be 

captured, whilst retaining the ability to effectively manipulate the captured 

data. The low-pass filter needed testing to ensure that the correct cut off 

frequency was present and then the system needed to be tested as a whole. 

2.3.1  The sample length 

The length of the sample is measured in seconds. The longer the sample the 

larger the space it requires for storage and the more RAM is required to load 

and manipulate the sample. Loading is the process whereby the data 

acquisition format is rewritten so that Matlab can identify the variables 

contained within the data. Thus the longer the data sample the longer the 

period required to manipulate the data. If the captured data sample is too 
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large then the computer becomes unresponsive and the data cannot be 

analysed. 

 

Two computers were available for this research, the office computer and the 

data acquisition computer. The office data processing computer had a 550 

MHz CPU with 128 Mb of RAM. The data acquisition computer had a 1.8 GHz 

CPU with 256 Mb of RAM. The ability of both machines was tested using 

various sample lengths. 

 

A random signal generator fed two channels of the A/D card, simulating the 

accelerometer data. Another signal generator fed another two channels of the 

A/D card with a square wave. The sampling frequency of the A/D card was set 

at 50 kHz, precisely as it would be set when aboard the dragline at 

Syferfontein. This was done to simulate the data that would be received from 

the dragline. Starting with an initial sample length of 5 seconds, 32 data sets 

were captured each lasting 5 seconds longer than the previous one. This 

gave a time range from 5 to 175 seconds and a data size ranging from 7830 

kB to 64554 kB. 

 

Both machines were set to load and plot the data in its entirety whilst the time 

taken to do so was noted. Plotting all the data points at once is a sufficiently 

intensive task that would simulate the data manipulation to take place once 

the data capturing at Syferfontein was completed. 

 

The ability of the available computers to load and manipulate the captured 

data is critical in attaining the ability to detect gear fault, thus a system crash 

due to data loading must be avoided. Figure 2.12 shows the time taken for 

each computer to load varying periods of data successfully. 
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Figure 2.12: Comparing the loading performance of a 550 MHz and 1.8 GHz computer. 

For both machines a dramatic increase in the computation time occurs for 

samples longer than 120 seconds, thus 120-second samples are a good trade 

off point between sample length and loading time. 

 

A complete cycle of the dragline was observed to be typically 69 seconds. 

This was taken when the angle between the pick up point and the drop off 

point was 148°. In other words the boom of the dragline moved through 148° 

when viewed from above during one cycle. The vibration technicians at the 

colliery were confident that 120 seconds would be more than sufficient to 

capture at least one cycle of the dragline, i.e. pick up, drop and pick up again. 

 

It was thus decided to take 120-second data samples. This period of data 

would encompass a complete cycle of the dragline, ensuring that no dynamics 

might be missed, and is optimal when considering loading times. 
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2.3.2  The low-pass filter test 

Having constructed the low-pass filter to cut off at 2 500 Hz it was also 

necessary to test whether the filter does indeed cut off at this frequency. 

Incorrect assembly of the components making up the filter and flawed or 

damaged components could cause discrepancies affecting the cut off 

frequency. 

 

A signal generator was used to generate a chirp signal ranging up to 20 kHz. 

This signal was then split and put through both channels of the filter. The 

outputs were inputted into an FFT analyser. From the captured transfer 

function it was clear that both filter channels were functioning as designed. 

2.3.3  The system test 

The final test to be performed before implementing the online monitoring 

station on the dragline was a system wide test. This encompassed the 

observation of the entire system, as it would be working on the dragline, and 

the fixing of any unforeseen errors. 

 

A large motorised metal wheel with a diameter of approximately 2m, which 

was available in the lab, was used to test the entire system. A piece of metal 

was bonded to the shaft of the wheel to simulate a key. The two proximity 

sensors where then held in position to detect the key by a simple metal 

harness.  The proximity cables where attached to the BNC-2110, which 

relayed the signal to the A/D card. The accelerometers were attached to the 

bearing housing of the shaft in the axial and radial directions. The 

accelerometer cables where attached to the input of the low-pass filter, which 

was in turn also attached to the BNC-2110 relaying the signal to the A/D card. 

All power supplies where activated and the data acquisition program was 

initialised. 

 

The system was kept running for approximately 18 hours taking 120-second 

data samples every five minutes. This intensive use of the system did not 

highlight any large technical difficulties or malfunctions and apart from fine-

tuning the capturing program, nothing was changed to the set-up.  The data 
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samples that were captured where plotted and found to be coherent. The 

system was thus ready to be implemented aboard the Marion 1 dragline at the 

Syferfontein colliery. 

2.4 Summary 

The establishment of a monitoring station aboard a dragline is critical to the 

completion of this research. The individual hardware and software 

components that make up the monitoring station such as the computer, the 

sensors, the analogue filter, the data acquisition hardware, the operating 

system and the capturing program were selected and/or developed. 

 

The system was then tested and a suitable sample size of 120 seconds was 

chosen based on these tests. 
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CHAPTER 3 ORDER TRACKING METHODS 

3.1  Relating the dragline activity to sensor data 

To successfully develop methods for a specific environment it is beneficial to 

fully understand the environment. It is important to be able to derive the 

dragline activity from the captured sample, as it will enable quicker error 

detection in the process of developing a new method. Fluent interpretation of 

the data will also aid in detecting a monitoring station system error aboard the 

dragline. This detection capability is critical in assuring captured data quality. 

To better understand the data received from the dragline, the 120-second 

sample block was captured and related to the mining activity of the dragline. 

 

Dragline 
Bucket 

Drag 
Cables 

Hoist 
Cables 

Figure 3.1: Layout of a dragline. 

As seen in Figure 3.1, the dragline has two pairs of cables. Each pair is 

connected to one of two drums aboard the dragline. Each pair of cables from 

the two drums is also attached to the dragline bucket. One pair of cables is 

attached to the top of the bucket and controls the vertical motion of the 

bucket. This drum and the gearbox controlling it are given the prefix: hoist. 

The other pair of cables is attached to the front of the bucket and controls the 
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buckets horizontal traversing. This drum and gearbox is given the prefix: drag. 

The accelerometers were capturing data from one of the six motors driving 

the drag-gearbox. Thus the information captured is related to the horizontal 

traverse of the bucket. 

 

Video footage was taken and compared to the captured signals to be able to 

determine what the dragline is doing during the daily capture times. 

3.1.1  Relating captured data with video footage 

A Hi-8 digital video camera was used to take video footage of the Dragline 

during operation at the Syferfontein Colliery. A wristwatch was synchronised 

with the timer aboard the monitoring station and the data acquisition software 

written in Matlab was set to take data once off at a specified time. Then video 

footage was taken of the bucket for the two-minute duration of the sample. 

Four such data sets were taken. 

 

Using a video capturing and editing program the video footage was captured 

and converted into .mpeg format. This allows the video to be played by any 

computer that has access to the correct compression-decompression 

algorithms. Playing the video on a computer allows faster jumps to specific 

intervals allowing easier comparison between the video footage and the 

measured vibration data. 

 

To aid in comparison it is necessary to present the vibration signal in a short-

time RMS (root mean square) representation. The 120-second vibration signal 

is broken up into 556 smaller pieces and the RMS is calculated for each 

segment. Then these 556 RMS points are plotted yielding an uncluttered view 

of the vibration intensity. 
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Figure 3.2: A series of stills taken from the dragline operation video. 

Figure 3.2 illustrates a common cycle of the dragline consisting of dropping 

the bucket and dragging it through the ground to shovel dirt into the bucket (A-

C in Figures 3.2 and 3.3). Then the bucket is hoisted and the dragline swings 

to the dumping position where the drag-cables are paid out to dump the dirt 

(D-G in Figures 3.2 and 3.3). The dragline then returns to the pick up point to 

restart the cycle (H in Figures 3.2 and 3.3). On occasions the dragline does 

deviate from this basic cycle. 
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Figure 3.3: (a)The RMS fluctuation of a vibration sample. (b)The speed fluctuation of one 

sample. 

The RMS fluctuation plot, shown in Figure 3.3(a), illustrates the vibration 

intensity levels. The vibration intensity levels of both vibration channels are so 
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similar that differentiating between them does not contribute to this evaluation. 

Specific dragline actions are identifiable by the different peaks. The peak 

occurring between point A and C and the peak occurring immediately after 

point H in Figure 3.3(a) are diagnostic of the pick up process since a gradual 

increase of the vibration intensity levels occurs and the negative speed in 

Figure 3.3(b) indicates that the bucket is being pulled towards the dragline. 

 

The peak occurring at point D and again at 100-103s in Figure 3.3(a) is 

diagnostic of dirt transport between the pick up and drop off areas. This is due 

to the fact that it occurs after the peak identified as the pick up point and that 

the positive speed in Figure 3.3(b) indicates that the bucket is moving away 

from the dragline. The intensity level of the vibration during this phase 

indicates that the bucket is loaded with dirt. 

 

The peaks occurring at 4-18s, and again between points E and G and at 108-

117s in Figure 3.3(a) are diagnostic of dropping dirt. This can be seen due to 

the ‘bull horns’ on these peaks caused by increased vibration intensity at the 

start and end of each peak. The first ‘horn’ occurs when the drag cable is 

panned out, thus dropping the dirt. The second ‘horn’ occurs when the drag 

cable is again retracted to level the bucket after the dirt has been dropped. 

The dip in between the two ‘horns’ is due to the relatively inactive state of the 

drag cable whilst the operator is waiting for the dirt to completely evacuate the 

bucket. This phase is also identified due to the positive speed peak, as seen 

at 18s, 68s and 117s in Figure 3.3(b), shortly before dropping to a negative 

speed peak. This change from positive to negative speed is always 

associated with the second ‘horn’ on the RMS peak representing the dropping 

of dirt. 

 

The lack of vibration intensity between point G and H and after every dropping 

peak in Figure 3.3(a) is associated with moving the empty bucket from the 

dropping point to the pick up point. The vibration levels are low due to the fact 

that the bucket is empty. 
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Understanding the dragline cycle and its constituents significantly aids in the 

development of an online monitoring technique and also enhances the ability 

to detect flaws and inconsistencies within the captured data sets. 

 

3.2  Reviewing existing and developing new processing 

programs 

Having developed an understanding of the dragline, its functions and 

environment, the next step involves developing programming that aids in the 

assessment of gear damage aboard the dragline. The Dynamic Systems 

Group (DSG) at the University of Pretoria has done work in the field of order 

tracking and existing programs are available for review and editing to suit the 

requirements of this research. The reviewing and subsequent editing is 

described in this section. 

3.2.1  The speed estimation program 

Stander wrote the existing program used to convert pulse to speed data in the 

Matlab environment called Puls2SpeedDragline.m. The program was used in 

the investigation that led to the article published by Stander et al. (2002). The 

program required the sampling frequency and the number of pulses per 

revolution along with the pulse signal as input. It cycles through the pulse 

vector and detects amplitude changes denoting a pulse. The time taken from 

one pulse to the next is then used to calculate the average speed between the 

pulses. The disadvantage is that this program has long processing times. 

 

A new program called sigspd.m was developed to improve on 

Puls2SpeedDragline.m. As with Puls2SpeedDragline.m it starts off with the 

pulse vector shown in Figure 3.4(a). Sigspd.m then differentiates the pulse 

data giving a signal with clear spikes to indicate the start and end of a pulse 

as illustrated in Figure 3.4(b). The beginning of each pulse is thus transformed 

into a positive spike, and the end of each pulse into a negative spike. The 

time taken between two positive spikes is then divided into the traversed 

rotational angle between the spikes yielding the constant speed between the 

start of one pulse and the start of the next pulse. The same process is 
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repeated with the spikes in the negative direction in Figure 3.4(b) yielding a 

second set of speed data. The two sets are then combined as shown in 

Figure 3.4(c). As there is little difference between the two speed sets, only 

one was used in the pre-COT procedure. This further reduces the processing 

time and the reduced program complexity enables quicker faultfinding. 

 

Figure 3.4: The processing progression. ( a)  Pulse signal, (b) Differentiated pulse signal and 

(c) Speed signal. 

The processing time required by sigspd.m to obtain a speed signal from a 

pulse on an Athlon XP 2.6+ CPU computer is 5 seconds for a pulse vector 

with 6 million data points. The traversed angle between consecutive pulses is 
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easily modified thus giving sigspd.m the flexibility to process pulse data 

originating from multiple, equally spaced, proximity sensors. 

3.2.2  The order tracking program 

Several interlinking programs were also written by Stander to complete the 

Stander et al. (2002) article. These programs did COT by assuming that the 

speed variation between pulses remains constant. This assumption was 

acceptable due to the fact that 1024 pulses per revolution were utilised. 

However the monitoring station aboard the dragline only receives one point 

per revolution, thus interpolation techniques become critical. This program 

was rewritten to be able to do COT using linear, cubic and moving window 

order tracking (MWOT) interpolations. Displacement driven velocity 

interpolation (DDVI), a speed correction subroutine was also added. 

 

3.3  Introducing existing interpolation techniques 

COT is a method whereby the speed signal is used to re-sample the vibration 

data acquired from the rotating machine. The accuracy of the speed is thus of 

paramount importance. However since there are always a fixed number of 

pulses per revolution when using digital encoders for angular measurement, 

interpolation techniques have been implemented. 

 

In the case of this study only a single pulse per revolution is available. This 

suggests the use of interpolation techniques to ensure accurate speed 

estimation. Constant, linear and cubic interpolation methods have been used 

in the past and will be presented and discussed in this section. 

3.3.1  Constant interpolation 

This is the simplest form of interpolation; it assumes that the shaft speed 

remains constant over each revolution. The time taken to complete one shaft 

revolution is converted to the average speed. This average shaft speed is 

then assumed to hold true for the entire revolution. Figure 3.5 illustrates the 

constant speed interpolation technique as used in this dissertation, where it is 
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used to interpolate one of the sample sets received from a single proximity 

sensor. 

 

 7 rad/s 

 

Figure 3.5: The constant speed interpolation technique. 

The biggest shortcoming of this method however is that it disregards any 

intra-revolutionary speed fluctuation. In the case of the dragline this is 

unacceptable since, as indicated in Figure 3.5, the speed change from one 

revolution to the next can be as large as 7 rad/s. This represents a change in 

speed of 9%. The information contained within one revolution could be vital to 

the implementation of COT to the dragline. This prompts the use of more 

sophisticated interpolation techniques 

3.3.2  Linear interpolation 

This interpolation method assumes that shaft acceleration is constant. Given 

constant acceleration, speed can only vary linearly. Bossley et al. (1999) state 

that linear interpolation is the simplest, cheapest and one of the most popular 

signal interpolation methods. 
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To implement linear interpolation a series of discrete points describing the 

pinion shaft motion must be attained. In the case of this research two 

proximity sensors, which are triggered by a key, captured the discrete points. 

A linear connecting line is now inserted between two adjacent points to form a 

continuous estimation of the shaft speed. Figure 3.6 is constructed using the 

same data used to construct Figure 3.5. It exhibits the effect of the linear 

interpolation method in that the graph is much smoother. However the 

discontinuity at 15.5 seconds and 81 rad/s hints that a higher order 

interpolation would better suit the data. 

 

 

Figure 3.6: The linear speed interpolation technique. 

 

3.3.3  Cubic interpolation 

There are two approaches to cubic interpolation. Piecewise cubic interpolation 

considers a local and block-wise cubic spline interpolation a holistic approach.  
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Piecewise cubic interpolation makes use of two points on either side of the 

interpolation point and fit a curve. This is done for successive interpolation 

points. This technique is significantly more accurate than linear interpolation. 

 

Block-wise cubic spline interpolation mentioned by Fyfe and Munck (1997) 

considers a large block of data and fits a series of cubic splines to it. This 

ensures that the first and second derivatives of the interpolated curve are 

continuous. Within this research the piecewise cubic interpolation was used. 

 

3.4  Development of a new speed interpolation technique 

The task of developing a speed interpolation technique that would allow 

sufficient accuracy for the successful application of order tracking was 

approached from three viewpoints, numerical integration optimisation, filter 

optimisation and moving window speed determination. 

3.4.1  Numerical integration optimisation 

Assuming that the dragline and all its components, that affect the inertia of the 

system, can be represented as a simple single degree of freedom model, 

such a model might then be refined and used to predict the speed fluctuation 

of the system accurately enough that computed order tracking (COT) can be 

successfully implemented. 

 

The procedure to implement the numerical integration optimisation method 

starts at the same point as the interpolation methods described in section 3.3 

namely with the captured pulse signal. As with the interpolation methods the 

pulse signal is converted to a velocity signal using sigspd.m, the Matlab 

program specifically developed for this purpose. However the numerical 

integration optimisation procedure differs in that the velocity signal is 

differentiated to obtain an acceleration signal. This acceleration signal is then 

inputted into the proposed single degree of freedom system. After having 

optimised the other unknown components in the system such as mass, 

damping constant and spring constant, the system outputs an interpolated 

velocity signal. A flowchart of this procedure is presented in Figure 3.7. 

 
 
 



 55 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.7: A flowchart to demonstrate the numerical integration optimisation method. 

This was the first attempted approach to an interpolation method. 

3.4.1.1 Model construction 

The equation of motion of this single degree of freedom model can be 

expressed as: 

)()()()( tftKtCtI TT =++ θθθ ���      (3.1) 

To facilitate numerical integration equation 3.1 must be rewritten in first order 

form. By defining the velocity and displacement as part of a single unknown 

quantity, this is achievable. 
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Rewriting equation 3.1 as: 
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and using the identity: 

 θθ �� =          (3.4) 

equation 3.1 can then be written in a first order, state space form: 
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The angular speed output of the model is the angular velocity vector that 

forms part of Θ� in equation 3.5.  

1. Position data is captured from the proximity sensors in the form of 
a pulse signal. 

2. The pulse positional data is converted to velocity and then to 
acceleration data by double differentiation. 

3. The acceleration data is fed into the numerical optimization model, 
which outputs an interpolated version of the dragline gear velocity. 

4. The interpolated velocity is then used to perform computed order 
tracking (COT). 
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The unknown system characteristics KT, I and CT must however first be 

determined before numerical integration, to find the interpolated angular 

speed, can commence. This is achieved by mimicking the data gathering 

process in use on the dragline, which allows the estimation of the system 

characteristics. An arbitrary angular speed vector representing the speed of a 

simple flywheel under varying torque is created. This represents the actual 

speed of the gear system on the dragline. This speed is then sampled at a 

lower frequency than the frequency used to create the ‘actual’ speed vector. 

The sampled speed is then linearly interpolated and fed to the model as input. 

The sampled speed is interpolated to provide the same number of points as 

the ‘actual’ speed. The unknown system characteristics are then adjusted 

using an optimisation technique until the output of the model closely 

resembles the ‘actual’ speed created. 

 

When the unknown system characteristics have been found they would be 

inserted into equation 3.5, which would subsequently be numerically 

integrated so that the interpolated angular speed is outputted. Paragraphs 

3.4.1.2 and 3.4.1.3 describe the attempts to find the system characteristics 

using different optimisation approaches. 

3.4.1.2 R-squared optimisation 

In this attempt the generated ‘actual’ speed and the speed outputted by the 

model are compared, to gauge the accuracy of the characteristic estimation 

process, by making use of optimisation. The function value, which is to be 

minimized by optimisation, is defined using the R-squared value. 

 

The R-squared value is a measure of the relative predictive capability of a 

model and is expressed as a fraction between 0 and 1. The closer the R-

squared value is to 1, the better the model fits the data. The R-squared value 

is determined by calculating two variables, the sum of squares due to error (S) 

and the sum of squares about the mean (T). S is the variability of the data set 

with respect to the predicted model and T is the variability of the data set with 

respect to its own mean. Microsoft� Excel 2000 utilises R-squared value to 
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determine the goodness of some trend line fits. Microsoft� Excel Help 

indicates that given a data set jY  and its fit jY
^

 with n  elements, the R-

squared value is defined as: 
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The function value described in equation 3.6 was minimised using Matlab’s 

unbounded optimisation function fminsearch.m. This program requires initial 

characteristic values and another sub-program that runs in parallel with it and 

supplies the function value for a given set of characteristic values. The 

function value is the R-squared value and compares the current model output 

to the known ‘actual’ value. 

 

The initial characteristic values and system state values were required. The 

data that will be captured from the operating dragline goes through a pre-

processing period where it is separated into unidirectional segments so that 

each segment starts at an initial velocity of zero. The starting position for each 

segment is also selected to be zero. This is an arbitrary choice since the gear 

fault detection method proposed in this document relies on change in speed 

and is thus independent of the number of shaft revolution. The system state 

values, position and speed, were thus always set to zero. 

 

The ‘actual’ speed, from which a sampled set will be used as input to the 

model, was generated using the torque variation over 200 seconds as 

presented in Figure 3.8. This torque variation was also applied to the system, 

which was created using characteristics calculated by the optimisation 

program, to determine speed which would then be compared to the ‘actual’ 

speed using the R-squared function value. This process would then be 

repeated until an optimised value for the function value is achieved. 
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Figure 3.8: The torque variation used as input into the optimisation model. 

Having defined the function value and the initial characteristics of the model 

optimisation can commence. The optimisation was started using three initial 

characteristic values. The choice of these values does have an effect on the 

ability of the optimisation program to find a global minimum for the function 

value. Three of the initial characteristic value sets with the corresponding 

optimised characteristic values and function value are shown in Table 3.1. 

Table 3.1: R-squared optimisation result. 

Initial Characteristic Value Optimised Characteristic 

Value 

Function 

Value 

m c k m c k  

0 0 0 0.171 0.053 0.157 0.999 

1 1 1 0.999 1.031 1.001 0.999 

1 1 100 1.049 1.000 100.307 0.999 

 

Immediately apparent is the fact that the optimised function value did not vary 

with varying initial characteristic values. This could be due to poor initial 

characteristic value choice, but this suggestion is disputed by the large 
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variation in k, shown in Table 3.1, as well as similar function values achieved 

when large changes are made to m, c and k. 

 

It is possible that the insensitivity of the function value to the initial 

characteristic values is due to too many constraints, which restrict the 

optimising algorithm to a domain in which no minimum is present. Filter 

optimisation is possibly a method that would allow a sufficiently large search 

domain to find a minimum. 

3.4.2  Filter optimisation 

Due to the lack of success described in the previous section, the state space 

model approach was abandoned. Instead a straightforward filter was used. 

 

As depicted in Figure 3.9 below, the initial procedures remain the same as 

those used for the state space optimisation method. The generated ‘actual’ 

data is again sampled at a lower frequency and linearly interpolated before 

the filter is applied to it. The filter output is then compared to the ‘actual’ data. 

Figure 3.9: The filter optimisation flowchart. 

Using Matlab’s filter.m for the filter which is described by the following 

equation: 

)()1()()1( nxbnya ×=×  + ( ) ( )12 −× nxb  + ( ) ( )23 −× nxb  + … (3.8) 

 

Once again Matlab’s fminsearch.m was used. The initial values where the 

filter’s coefficients, a and b . The modified R-squared value was again used to 

compare the output to the ‘actual’ value. 

 

1. Generate ‘actual’ data. Resample it at a lower frequency and 
linearly interpolate so that the interpolated data has the same 
length as the ‘actual’ data. 

2. Apply a model consisting of a filter to the interpolated data. The 
coefficients describing the filter are optimized until the filtered data 
compares favorably with the ‘actual’ data. 
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Having run the filter optimisation method it became evident that the function 

value diverged repeatedly. Thus after the optimisation was completed, no 

perceptible change had occurred when comparing the input to the output. 

 

This method likely fails due to the fact that the filter input is so close to the 

desired output, that the optimisation does not find any characteristic values 

that are essentially sensitive to sampling rate. Any method utilising 

optimisation in this manner is thus unlikely to succeed. A totally different 

approach is required. 

3.4.3  Moving window speed determination 

All methods employed so far in this section, used only the proximity sensors’ 

data converted to continuous real speed values as primary input. However a 

part of the vibration data can also be a valuable source of rotational speed 

information. 

 

When a gear runs on a shaft at a constant speed, noticeable energy levels will 

be seen in the frequency domain at the shaft speed, even more so at the 

GMF. The GMF is found by multiplying the shaft running speed with the 

number of teeth on the gear of interest as shown in equation 3.9. 

 TeethSpeedGMF ×=       (3.9) 

Thus if the shaft rotates at 15 Hz and the gear of interest has 25 teeth, then 

there will be significant energy seen in the frequency domain at 375 Hz. This 

occurrence will be tested to see if it can be of use in determining sufficiently 

accurate speed so that computed order tracking can be successfully 

implemented. 

 

Bonnardot et al. (2004) report attempting to use purely the acceleration signal 

in performing COT, they process the contact shocks that gears make whilst 

rotating, in order to locate the position of the gear with respect to time. 

Interpolation is then used to estimate the angular acceleration required to 

perform COT. However they mention that although this approach is cheap, 

lacking the hardware required by traditional order tracking methods, it is 

vulnerable to high fluctuations in angular speed. The shaft of interest on the 
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dragline at the Syferfontein colliery however has large speed fluctuations 

ranging from about 0 to 20 Hz. This exceeds the capability of the method 

proposed by Bonnardot et al. (2004). 

 

A major obstacle to overcome is the speed fluctuation. The location of the 

GMF within the frequency domain, given a fixed shaft speed, remains 

constant. However with large fluctuations, as those observed on the dragline, 

a method must be developed to determine the location within the frequency 

domain of the GMF. From observation of data retrieved from the dragline, a 

precise frequency is not required since the GMF should be the dominant 

phenomenon for a bandwidth of at least 50 Hz. Thus an approximate 

frequency band is required within which a search can be made for the 

dominant peak in the frequency domain. This should then yield the GMF. 

 

Once the GMF is determined it is then substituted into equation 3.9 along with 

the number of teeth of the gear of interest. The equation is then solved for the 

unknown shaft speed required by the COT method. 

 

Having two proximity sensors attached to the motor, a rough indication of the 

speed is fortunately easily obtainable. Using the sigspd.m program, an 

approximation of the speed is calculated. This program however can only 

return one point per revolution. This is insufficient since speed fluctuations 

from one revolution to the next frequently exceed 1.9 Hz. Using equation 3.9 

and taking into account that the gear of interest has 25 teeth it can be shown 

that this speed fluctuation represents a shift in the GMF of 47.5 Hz. This is too 

large a frequency band within which to search for the GMF as it could easily 

lead to the identification of another, incorrect peak in the frequency domain as 

being the GMF. Thus the speed attained by the sigspd.m program must be 

interpolated to give an indication of the shaft speed between pulses. In this 

case a cubic interpolation was used. 

 

Once a satisfactory speed approximation has been achieved, the next step is 

to window the available acceleration data into segments small enough so that 

the speed variation across the segment is insignificant. This avoids the 
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smearing of the GMF across several frequencies making it considerably 

harder to get any meaningful speed related data. Smaller windowed sections 

will also lead to a higher resolution in determining the speed. However it must 

be noted that if the segment is too small there are not enough tooth on tooth 

impacts causing the amplitude of the GMF to dwindle when compared to 

resonance frequencies, resulting in an inaccurate pinpoint of the GMF. 

 

To minimise the effect of detecting a false GMF, the first, second and third 

GMF are identified using the above-described method and the average shaft 

speed calculated and used in the COT method. Figure 3.10 gives an overview 

of the proposed method, which shall be referred to as the Moving Window 

Order Tracking (MWOT) method. 

Figure 3.10: An overview of the MWOT method to calculate shaft speed. 

By applying the MWOT method it becomes clear that the resulting speed is 

similar to the speed calculated by sigspd.m from the proximity sensors as is to 

be expected, however smaller fluctuations in speed become visible which 

could be significant when applying computed order tracking. Figure 3.11 

shows a section of about 3 seconds of the speed as calculated by MWOT and 

sigspd.m respectively, clearly highlighting the difference. 

1. The proximity signal is captured and converted to a speed signal, which is 
interpolated using a cubic spline to give a better approximation. 

2. The vibration signal is captured. A small segment is removed and a FFT 
analysis is done. The corresponding average speed highlights a bandwidth in 
which the largest peak is the GMF. 

3. From the GMF it is possible to determine the average speed over the 
vibration acceleration segment. 

4. Steps 2 and 3 are repeated until speed data is available for the entire 
vibration acceleration set. 

5. The resulting shaft speed is then used to perform COT. 
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Figure 3.11: Showing the difference between sigspd.m data and MWOT data using segments 

with a length of 4096 points. 

The MWOT method adds a facet of information to the speed that is otherwise 

lacking with the normal interpolation techniques. Although the cubic spline 

interpolation technique smoothes out the speed, it is essentially generated 

data. With MWOT however every fluctuation in speed can be traced back to 

the measured data giving it higher credibility when compared to the other 

interpolation techniques. 

 

The segment length chosen for MWOT however has a profound effect on the 

accuracy. This is demonstrated in Figure 3.12 where a 1 024-point segment 

size was used to calculate the GMF and subsequently the speed. 
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Figure 3.12: Showing the difference between sigspd.m data and MWOT data using segments 

with a length of 1024 points. 

Even the relatively good speed approximation, achieved if 4 096-point 

segments are used as in Figure 3.11, is not accurate enough as it is possible 

that a non-GMF peak is chosen. However the amplitude of a non-GMF peak 

would still fluctuate with the speed, thus even though the speed itself may not 

be accurate, the speed profile will contain valuable data. 

 

It is thus necessary to add an additional process to the pre-COT procedure 

that will capture the speed profile whilst ensuring accurate speed. This is 

possible if Displacement Driven Velocity Interpolation (DDVI) is used. 

3.4.4  Displacement driven velocity interpolation, a speed 

adjustment algorithm 

Given the limited amount of information available from the proximity and 

vibration sensors and the uncertainty inherent in the lack of sufficient 

rotational speed resolution, it is wise to exploit all concrete facts to ensure that 

the highest possible accuracy is achieved. One such fact is that the angle 
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rotated by the shaft between two consecutive pulses from the proximity 

sensor is precisely 6.2832 radians or 360 degrees. 

 

To determine whether the velocity data attained after processing holds true to 

this fact, it is necessary to graphically represent the angle between each pulse 

received from the proximity sensor. Integrating the area beneath the speed 

graph between two adjacent pulses does this. This exercise was applied to a 

dragline data set after it had been converted to speed and cubically 

interpolated. The results are depicted in Figure 3.13. 

 

Figure 3.13: (a) Depicting the deviations in area beneath each velocity segment.(b) Depicting 

the concurrent speed of the data set. 

 From Figure 3.13 it is clear that there are distinct segments of the speed 

graph where 6.2832 radians is not the result of the integral of speed between 

adjacent pulses. From careful observation it becomes clear that the largest 

deviations occur when the speed approaches 0 rad/s. This is due to the fact 

that the motor aboard the dragline may become motionless between pulses 

indicating one revolution. It may even cycle back and forth within one 
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revolution, thus the angle traversed between pulses at low speeds is not 

necessarily 6.2832 radians. It is thus important that the speeds approaching 0 

rad/s within the data sample are not used to do COT as it would compromise 

accuracy. 

 

If unreliable speed data only occurs at low speeds then no further processing, 

apart from excluding low speeds in the COT analysis, need be done. 

However, when a closer view is taken of Figure 3.13 it becomes clear that 

further processing would be advisable. Figure 3.14 clearly indicates that there 

are rotation angle fluctuations from pulse to pulse even at higher speeds. 

 

Figure 3.14: (a) A closer view of the rotation angle between pulses. (b) The corresponding 

speed graph. 

This is mainly due to the interpolation scheme that is used to give a closer 

approximation of the real speed, which often estimates the real speed 

incorrectly. The need for a suitable algorithm thus exists to ensure that the 

speed used for COT reflects 6.2832 radians between adjacent pulses. DDVI 

is an algorithm that was developed to address this shortcoming of the applied 
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interpolation schemes. The basic steps taken in applying DDVI are outlined in 

Figure 3.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: A flowchart of the DDVI process 

The raw data received from the sensors, 2 channels of vibration data and 2 

channels of pulse data, is necessary to complete the first step. To be able to 

work through every revolution of the interpolated velocity, obtained by 

applying MWOT or one of the traditional interpolation techniques to a data set, 

it is required to know where every revolution begins and ends. One of the 

channels containing raw pulse data, received from a proximity probe, must be 

differentiated marking the start and end time of each pulse with a distinct 

spike (Refer to Figure 3.4). This method is identical to that used in the 

sigspd.m program. These spikes are easily found using Matlab’s ‘find’ function 

resulting in a vector containing time instants that relate the start and end of 

each pulse in the data set. 

 

Using a ‘for’ loop, each consecutive time segment of the velocity is integrated. 

The integration result is compared to the ideal result, namely 2π  or 6.283 

radians. A deviation value is then calculated by subtracting the integration 

result from the ideal result as seen in equation 3.10. 

 Deviation = abs(2π  - Integration result)    (3.10) 

A boxcar windowing function normally used to split vibration data is now 

employed to adjust the velocity vector by making use of addition. This window 

1. Calculate a vector containing the time steps associated with the start of 
every pulse contained within the data captured form the proximity probe. 

2. Calculate the area beneath the velocity vector for a time span stretching 
from the first to the second entry of the time step vector calculated in 1. 

3. If the area is not equivalent to 6.2832 radians, then a suitable adjustment is 
made to the velocity vector spanning the current time step. 

4. Steps 2 and 3 respectively are repeated, with each repetition adjusting the 
time step to the next entries in the time step vector, until the final entry in the 
time step vector is reached to conclude the DDVI algorithm. 
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has the same number of entries as the velocity vector of each segment and is 

adjusted every time a new segment is being analysed. However the area 

underneath the windowing function must also be adjusted so that it coincides 

with the deviation calculated in equation 3.10. An adjustment factor must 

therefore be obtained which will result in the correct area beneath the window 

function if it is multiplied by the window function. This adjustment factor is 

simply the deviation divided by the area underneath the window function as 

shown in equation 3.11. 

 Adjustment Factor = 
� dtfunctionWindow

Deviation

)(
   (3.11) 

Finally the velocity segment in consideration is adjusted up or down, as 

required, by adding the product obtained by multiplying the boxcar window 

function with the adjustment factor. This process is then repeated until the 

entire velocity vector has been analysed and suitably altered. Figure 3.16 

depicts the changes that DDVI made to the speed signal after it underwent 

cubic interpolation. 

 

Figure 3.16: Illustrating the effect of DDVI when applied to a cubic interpolation of the shaft 

speed. 
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The smallest data size that DDVI analyses and adjusts is one revolution. The 

speed segment corresponding to each revolution is adjusted as a whole, 

independently to other segments. It is thus possible that DDVI adjusts one 

speed segment upwards and the next downwards as is clearly displayed in 

Figure 3.16. The border between these two speed segments thus shows a 

clear discontinuity. 

 

The discontinuities do not affect the following COT process as it re-samples 

the vibration data per revolution. This means that only the data between the 

discontinuities is used for the COT evaluation ensuring accurate results. 

3.5 Summary 

To aid in fluent interpretation of subsequently captured data an investigation 

was launched. During the investigation video footage of the dragline activity 

was captured in conjunction with vibration signals from the drag gearbox. The 

vibration intensity levels were successfully linked to specific dragline activities. 

 

Having developed an understanding of the dragline a review of existing and 

development of new programming within the Matlab environment was 

undertaken. Programs that were developed included a pulse to speed 

conversion program and a COT program. A review of existing speed 

interpolation methods was also done. 

 

A new speed interpolation technique was then developed. Initial attempts 

included numerical integration optimisation and filter optimisation. These 

attempts were unsuccessful due to the insensitivity of the function value to the 

initial characteristic values. Subsequently MWOT was successfully developed. 

This method makes use of both the pulse as well as the vibration data to 

interpolate the speed between two pulses. To improve the accuracy of the 

method an additional algorithm, DDVI, was developed. DDVI determines 

whether the area beneath the determined speed between two pulses 

corresponds to 360 degrees, as it should, and adjusts the speed to suit if 

necessary. 
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CHAPTER 4 RESULTS 

The results derived from the completed analysis of the data captured aboard 

the dragline for approximately one year are presented in this chapter. The 

chapter covers four major sections: convergence, inspection of the damaged 

gears, rotational domain averaging and the spectrum results. Within this 

chapter the 4 methods described in chapter 3 will be examined and their 

effects estimated. The performance of the methods in both rotating directions 

will also be investigated. Furthermore the effect of the number of averages 

and the MWOT window size will also be discussed. 

 

4.1  The effect of number of averages taken 

Determining the number of pinion shaft revolutions available within the 

captured data sets is important since it determines the number of rotation 

domain averages (RDA) that can be taken during COT. The higher the 

number of rotations present in a mono-directional segment, the more 

averages can be achieved improving the coherency of the results. 

 

Each 120-second data set captured contains speed information of the 

gearbox running in two directions. Each data set segment with only mono-

directional speed can thus be isolated. To shorten the time spend searching 

through the data captured for a suitable set, a Matlab program was written 

that analysed the data sets and then determined how many revolutions were 

available within each mono-directional segment of each data set. This now 

allowed sets with a certain number of mono-directional rotations to be easily 

identified. 

 

Figure 4.1 indicates the largest number of rotations available in both 

directions for each data set. Clearly the higher the number of rotations 

required the smaller the number of data sets available for analysis. This graph 

shows that if an indicator of gear deterioration was required then it would be 

difficult to use more than 200 rotational averages once RDA has been 
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completed since very few data sets have been captured containing more than 

200 rotations in both operating directions. 

 

Figure 4.1: Available data sets as a function of required averages. 

Only 36 data sets are available if 200 averages are required, furthermore 

these 36 data sets are not spread uniformly throughout the year of monitoring. 

Certain months are better represented than others, thus to get a good 

indication of wear progression the data sets available must be normalised with 

reference to the month with the fewest data sets. In other words if a month is 

represented by only one data set, then only one data set per month is used. 

Due to this elimination procedure the largest number of rotational averages 

that can be considered when working with both directions is 200. In months 

where more than one data set was available, a data set was chosen so that 

the time between the adjacent chosen data sets was as close as possible to 

30 days. 

 

Although it has been established that, given the captured data sets, it would 

be difficult to do COT with more than 200 averages it has yet to be 

determined whether 200 averages are good enough. This can be established 
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by plotting successive spectra of a single mono-directional segment. Each 

successive spectrum is calculated using a different number of averages. 

 

Figure 4.2 presents such a mono-directional data segment taken on 30 May 

2003, and will indicate graphically whether 200 averages are enough. The 

mono-directional segment was also selected such that the speed variance 

stays approximately between 12.4 and 14.6 Hz to avoid GMF smearing. The 

data segment was broken up into revolutions. These were then averaged a 

varying number of times ranging from 10 to 250 averages. From Figure 4.2 it 

is clearly seen that as the number of averages increase, the frequency 

content that is synchronous to the shaft revolution is emphasised as the noise 

or non-synchronous signal is eliminated. It is clear that averaging more than 

100 times would be a waste, as stability of the GMF located between 310 and 

365 Hz is reached at approximately this point. 

 

Figure 4.2: The effect of number of averages on the FFT of vibration from a single shaft 

rotation. 

The initial general amplitude increase of the peaks up to 60 averages and the 

subsequent drop from 200 averages is due to speed fluctuating between 12.4 

and 14.6 Hz during the 20 s sample period. 
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Another approach is to determine the response present around the GMF. This 

is done by calculating the area beneath the GMF present within each 

spectrum that forms part of the cascade plot in Figure 4.2. From the raw data 

used to generate Figure 4.2 it is known that the first GMF will range between 

310 and 365 Hz since there are 25 teeth present on the pinion. This area 

beneath the individual FFTs in this frequency range can now be plotted and 

presented as in Figure 4.3. The initial exponential increase highlights the 

effectiveness of averaging but is also partially due to the speed fluctuations 

present in the sample. Figure 4.3 also indicates that if only the first GMF were 

to be taken into consideration, approximately 70 averages would be sufficient 

to obtain trustworthy COT results. 

 

Figure 4.3: The change in gear mesh frequency as a function of number of averages. 

The fluctuation in the GMF response after the initial rise is due to the fact that 

the data used to present Figures 4.2 and 4.3 was raw data. This means that 

although a relatively constant speed, mono-directional section was used, the 

slight variations in speed of approximately 2 Hz is enough to hinder perfect 

convergence to a single response level. 
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4.2  The effect of window size in MWOT 

The MWOT method determines shaft rotational speed by calculating the GMF 

of consecutive windows or segments of the vibration data. The size of this 

window affects MWOT accuracy by determining sensitivity to speed changes 

and affecting spectrum resolution, which is vital to the functioning of the 

MWOT method. These two factors are in conflict with one another. If window 

size is increased, a better spectrum for finding the GMF is achieved but the 

ability of the method to pinpoint small speed changes for the COT analysis 

can be compromised. 

 

To begin this investigation, several spectra were generated from the captured 

data. From these spectra it became clear that the GMF is difficult to pinpoint if 

a spectrum of less than 1 024 points was generated. Thus the window sizes 

to be investigated should be larger than 1 024 points. Four different window 

sizes were chosen ranging from 1 024 up to 8 192 points. The points were 

deliberately chosen as powers of two so that the FFT process inherent to 

MWOT can be completed efficiently. Figure 4.4 shows the speed over the 

entire data set captured on the morning of 30 May 2003. 

 

Figure 4.4: Comparing the speed generated by MWOT using four different window sizes. 
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Globally there is no discernible difference between the four window sizes, but 

if one were to zoom in closer, as was done in Figure 4.5, a separation 

between window sizes becomes evident. 

 

Figure 4.5: Taking a closer view at the differences between MWOT window size. 

From this Figure it becomes clear that larger window sizes have a similar 

effect as a low pass filters. Due to the speed being averaged over a longer 

period, speed fluctuations are smoothing out. The distance between the 

starting positions of each window is 1 000 points. Thus if the window size 

increases, every segment of data will be evaluated more often. The amount of 

fresh data evaluated for each window is thus decreased, creating the evident 

smoothing effect. It is evident that 4 096-point spectra perform as well as 8 

192-point spectra, thus eliminating the use of 8 192-point spectra due to an 

increase in processing time with little or no gain in accuracy. 

 

The sensitivity to change in speed is affected in another way, namely, the 

smaller the window size the higher the resolution of the velocity vector. If the 

shaft were to be rotating at a maximum speed of 20 Hz, then a revolution 

occurs once every 0.05 s. If the window has 1 024 points then it analyses 

every 0.02 s, which is 2.5 times per revolution at top speed. Whilst this is 

advantageous the FFT resolution drops significantly to the extent that it 
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becomes difficult to clearly distinguish the GMF to be able to estimate speed.  

A window size of 4 096 points was thus chosen when estimating shaft speed 

using MWOT. This determination can now be used to effectively analyse and 

interpolate the shaft speed by implement MWOT. 

 

4.3  Convergence in the rotational domain 

The test for convergence indicates how fast the order tracking method 

implemented settles down to a stable RDA. 

 

If a data set containing 240 rotations were averaged, convergence is applied 

by splitting these into two daughter sets of 120 sets apiece. The daughter sets 

are then incrementally averaged, that is to say first two are averaged then 

three and so forth. After each incremental average the resulting RDA from 

each daughter set is subtracted from the other. The answer is evaluated using 

RMS to get a single value that makes up the convergence graph. 

 

Figures 4.6 to 4.9 show how the captured data fares when a convergence test 

is undertaken. Each Figure shows all four methods in a specific direction with 

either damage or no damage to the gear at the time the data was captured. 

The two data sets used, captured on the evening of 4 June 2003 and the 

morning of 24 February 2004, had 240 rotations in both inward and outward 

bucket motion. In June 2003 the pinion was still relatively new whilst the 

pinion failed shortly after February 2004, thus ensuring that convergence is 

tested on data from both the non-damaged and the damaged pinion. 
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Figure 4.6: The convergence results of all four methods in the inward bucket motion direction 

with no gear damage present. 

 

Figure 4.7:The convergence results of all four methods in the outward bucket motion direction 

with no gear damage present. 
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Figure 4.8: The convergence results of all four methods in the inward bucket motion direction 

with gear damage present. 

 

Figure 4.9: The convergence results of all four methods in the outward bucket motion 

direction with gear damage present. 
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In all four cases all four methods successfully converge to a stable RDA. It is 

difficult to discern individual method performance as they perform similarly. At 

arbitrary points during the number of averages taken any method could be 

seen as performing best. The only method that could be said to have 

performed worse than the others is the Constant interpolation method and 

that only in the outward bucket motion with no damage as indicated in Figure 

4.7. Interestingly Linear and Cubic interpolation yield almost identical 

convergence graphs indicating the suitability of linear interpolation as a 

candidate that is reasonably accurate and computationally inexpensive. 

Having established that all methods converge satisfactorily, it is possible to 

carry on to the RDA with confidence that any results achieved are not marred 

by incompetent implementation of interpolation methods. 

 

4.4  Inspection of defective gears 

On 14 May 2004 two pinions, one of which was monitored, and a bull gear 

were removed and inspected. These three gears formed part of a single gear 

system where the two pinions drove the larger bull gear. Figures 4.10 to 4.13 

show pertinent pictures indicating the damage found on these three gears. 

 

Tooth 
damage 

 

Figure 4.10: Tooth damage on the left gear set of the monitored pinion. 
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 Pitting 

 

Figure 4.11: Pitting damage on the right set of the monitored pinion. 

 

 Pitting 

 

Figure 4.12:Bull gear showing pitting on one set of teeth. 
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 Spalling damage 

 

Figure 4.13: Spalling damage on unmonitored pinion. 

Two gear defects occurring on the inspected gears are spalling and pitting. 

Kuhnell (2004) mentions that no common definitions have been established to 

distinguish between pitting and spalling, it is however generally accepted that 

pitting is caused by surface contact fatigue cracks and spalling by subsurface 

cracks propagating under the work hardened surface. 

 

Pitting tends to occur on high spots of gear faces that are subjected to 

excessive contact stress. Both pitting and spalling can be due to the 

manufactured geometry of the gears since high points are subject to high 

stresses; furthermore the surface roughness of the gear has a significant 

impact on the gear life. Kuhnell (2004) also mentions that misalignment has 

the same severe impact as improper gear geometry. The damage seen in 

Figures 4.10 to 4.13 is thus caused by improper geometry, misalignment or a 

combination of these two factors. 

 

The monitored pinion shown in Figures 4.10 and 4.11 shows severe spalling 

on two adjacent teeth on the left set of teeth. The right set showed minimal 

pitting damage. This indicates that the left set of teeth was subjected to higher 

stresses than those on the right. The bull gear showed severe pitting on only 
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one set whilst the other remained relatively unscathed. The unmonitored 

pinion also showed more severe spalling damage on only one set of teeth. 

 

The bull gear and both pinion gears showed preferential damage to one set 

only. This is a strong indicator that misalignment is the root cause of the 

damage to the gears in this system. The bull gear shows less severe damage 

because each of the 235 teeth mesh less frequently than the 25 teeth on each 

pinion. The damage on the two pinions is more severe than that on the bull 

gear indicating the higher workload of the pinions. The cursory gear 

inspection thus indicates that gear misalignment is the cause of pinion failure. 

 

4.5  Rotation domain averaging 

Once the convergence of the methods is proven, the next step is to have a 

look at the rotation domain average that is produced using the four different 

speed interpolation techniques. As with the convergence, damage- and no 

damage scenario will be presented in both operational directions. 

 

The rotation domain averages shown in Figures 4.14 and 4.15 are a result of 

240 averages. Two data sets were used; the first set was captured on 4 June 

2003 when there was relatively little gear damage. The second set of data 

was taken on 24 February 2004 and certainly had damage since slightly more 

than a month later on the 14 May 2004 the pinion was removed from the 

dragline with two broken teeth, as shown in Figures 4.10 and 4.11. 
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Figure 4.14: The rotational domain average using constant, linear, cubic and MWOT 

interpolations. (a) without and (b) with damage. Dragline bucket motion is inward. 

 

Figure 4.15: The rotational domain average using constant, linear, cubic and MWOT 

interpolations. (a) without and(b) with damage. The dragline bucket motion is outward. 

The regular signal that is evident in Figures 4.14(a) and 4.15(a) has 25 peaks 

corresponding to the tooth impacts of the pinion. These impacts are also 

visible in Figures 4.14(b) and 4.15(b) but are slightly distorted due to the 
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damaged condition of the pinion, as illustrated in Figures 4.10 and 4.11. This 

was expected and is a further indication, apart from convergence, that 

computed order tracking has been successfully implemented aboard the 

dragline. 

 

In both cases, damaged and undamaged, the slight distortion of the tooth 

impact peaks is likely due to the fact that the pinion is a double helix gear. 

This means that the manufacturing tolerances of the gear could affect the 

RDA especially if the teeth from the two sides do not mesh in complete 

unison. RDA would not filter out this type of distortion since it is periodically 

synchronous with the shaft rotation. The slight amplitude modulation seen in 

the undamaged cases is probably caused by gear misalignment. The 

presence of misalignment is also supported by the inspection of the damaged 

gears. 

 

Figures 4.14(b) and 4.15(b) indicate the data taken with damage present. The 

effect of the damage is clearly visible as the RDA has increased in amplitude 

and shows clear amplitude modulation. The increased amplitude is likely 

caused by increased overall surface wear of the pinion teeth, leading to larger 

meshing tolerances. Higher tooth impact energies would result as evident in 

Figures 4.14(b) and 4.15(b). The amplitude modulation seen is accentuated 

by local tooth defects. The amplitude modulation has a period of 1/5 

revolution and should thus be seen on a COT FFT at 5 orders. Furthermore, 

according to White (1991), the sidebands developing due to this amplitude 

modulation should be seen at 5 orders either side of the GMF. The four 

methods used are all depicted in Figures 4.14 and 4.15. 

 

Once again there is little difference between the methods. This lack of 

variation in results obtained from using the different interpolation schemes is 

likely due to the meagre 2 pulse per revolution speed information obtained 

from the proximity sensors. This trend continued throughout the research. All 

subsequent graphs will thus only present results as obtained by using MWOT. 
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4.6  Fast Fourier transforms and cascade plots 

To be able to see the performance of the computed order tracking method the 

resulting RDAs are transformed into the frequency domain. The FFTs of 

RDAs stretching over the one-year monitoring period are then presented as a 

cascade plot. 

 

The data sets were chosen according to suitability; only those samples were 

chosen that contained 200 or more revolutions in both rotating directions. The 

data sets used were captured at the dates and times indicated in Table 4.1. 

Table 4.1: Indication of the capturing date and time of data sets used. 

Sample Number Date of Capture Time of Capture 

1 30 May 2003 06:02 

2 09 June 2003 06:02 

3 17 August 2003 18:02 

4 11 September 2003 05:02 

5 11 October 2003 18:02 

6 18 December 2003 05:02 

7 31 January 2004 17:02 

8 13 February 2004 05:02 

9 24 February 2004 05:02 

10 06 March 2004 17:02 

11 23 March 2004 05:02 

12 11 April 2004 17:02 

13 13 April 2004 17:02 

The rotating directions are described with reference to the dragline bucket 

motion, which either moves outwards, away from the dragline, or inwards, 

towards the dragline. 

 

To serve as comparison, Figures 4.16 and 4.17 show the precise same data 

sets that are to be analysed using COT. They depict the vibration emanating 

from the gearbox during a single revolution. In general the overall noise levels 

are high and no discernible deterioration trend is visible, especially in the case 
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of an outward moving bucket. However with some of the sets, in both 

directions, the GMF at 25 orders is discernible. 

 

Figure 4.16: The cascade plot of the vibration data emanating from the gearbox during one 

revolution whilst the dragline bucket is moving inward. 

 

Figure 4.17: The cascade plot of the vibration data emanating from the gearbox during one 

revolution whilst the dragline bucket is moving outward. 

4.6.1  Cascade plots using 200 RDA 

Figure 4.18 and 4.19 show the cascade plots generated using MWOT with 

200 RDAs. 
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Figure 4.18: The cascade plot of 200 RDAs that were generated using MWOT speed 

interpolation. The bucket motion is inward. 

 

Figure 4.19: The cascade plot of 200 RDAs that were generated using MWOT speed 

interpolation. The bucket motion is outward. 

When compared to the non-averaged signal presented in Figure 4.17, a 

noticeable decrease in noise and an improvement in amplitude is present. 

Furthermore the outward moving signal shown in Figure 4.19 is less erratic 

and shows clear increase in amplitude indicating pinion fault advancement. 
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There is a considerable difference between the results from COT and the 

vibration data emanating from the gear over one revolution, as shown in 

Figure 4.14 and 4.15. All methods produced results similar to Figures 4.18 

and 4.19. All methods showed an overall increase in vibration levels across 

the order spectrum indicating gear fault. The GMF at 25 orders is clearly 

visible throughout the cascade plots in both directions. 

 

The sidebands however show a significant increase in all cascade plots giving 

a clear indication of fault progression. The sidebands are visible at 5 orders 

either side of the 1st and 2nd gear mesh frequencies. There is thus a 

modulating frequency of 5 orders, which is clearly visible in the advanced 

wear RDA graph depicted in Figures 4.14(b) and 4.15(b). Modulation is 

typically caused by local tooth defect, misalignment or load variation. Loading 

is not a likely cause since the load profile of the dragline is not consistent 

across one shaft revolution. Local tooth defect would certainly increase the 

extent of the modulation but can not account for the slight modulation seen 

early in the pinion life span as shown in Figures 4.14(a) and 4.15(a). 

Misalignment of the pinion is a more likely root cause for the modulation. 

 

It is probable that initial misalignment caused high stress on a small number 

of teeth causing them to break. In turn the broken teeth accentuated the 

modulation.  This chain of events is supported by the assessment of the 

removed gears earlier in this chapter, which showed strong indications of 

misalignment. The root cause of the pinion failure is thus initial misalignment 

rather than defective gear components. 

 

The inward bucket motion vibration has approximately half the amplitude of 

that from the outward bucket motion. This is due to the fact that for the inward 

bucket motion no load is present in the bucket except for a short period when 

the bucket is dragged through the dirt to load it. Since the sampling process 

was not synchronised with the dragline operation, it stands to reason that 

most inward bucket motion samples would not have been captured whilst the 

pinion was subjected to high loading conditions. Furthermore the same gear 

face that is subjected to high loads whist loading the bucked also sees load in 
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the outward bucket motion. This is due to the fact that gravity and not the 

dragline motor moves the bucket in the outward bucket motion direction. Thus 

the motor acts as a brake controlling the speed at which the bucket moves. 

The braking force would thus act on the same tooth faces as the dragging 

force produced by the motor in the inward bucket motion. Thus the direction in 

which the defects would be most clearly identifiable would be the outward 

bucket motion, since the outward bucket motion is always under load, not just 

periodically. 

4.6.2  FFT based deterioration graph 

Although the cascade plots in the previous section are interpretable, a more 

intuitive portrayal of the gear wear progression is necessary. This is achieved 

by trending a number of components in the cascade plot and plotting these 

separately. The following two graphs show the trend of the maximum 

amplitude peak in the spectrum in both directions. 

 

Figure 4.20: The maximum amplitude of the FFT taken from all four methods in the inward 

bucket direction. 
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Figure 4.21: The maximum amplitude of the FFT taken from all four methods in the outward 

bucket direction 

Neither Figure 4.20 or 4.21 shows much of a trend although the outward 

bucket motion data shows a marked amplitude increase over the last 4 data 

points. The lack of significant amplitude in the inward bucket motion is due to 

the fact that for the most part this direction of motion is under no load. The 

maximum peak in the FFT could vary with load, rendering this manner of 

deterioration determination unreliable. The first GMF sideband amplitude 

shown in Figures 4.22 and 4.23 is a better indication of damage 

advancement. 

 

Figure 4.22: The gear deterioration graph derived from the sum of the 1st GMF sidebands in 

the inward bucket direction. 
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Figure 4.23: The gear deterioration graph derived from the sum of the 1st GMF sidebands in 

the outward bucket direction. 

Again the deterioration in the outward bucket motion is better defined 

compared to that of the inward bucket motion. In both cases the 1st GMF 

sideband amplitude gives a better indication than overall maximum amplitude. 

Figure 4.23 clearly shows the exponential increase in wear towards the end of 

the gear lifespan. The second GMF sidebands are shown Figures 4.24 and 

4.25. 

 

Figure 4.24: The deterioration graph constructed from the sideband amplitudes surrounding 

the 2nd GMF with the bucket moving inwards. 
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Figure 4.25: The deterioration graph constructed from the sideband amplitudes surrounding 

the 2nd GMF with the bucket moving outwards. 

The 2nd GMF sidebands amplitudes are comparable to those generated from 

the 1st GMF sidebands. The peak observed at set number 7 could possibly 

indicate the spalling effect of one tooth. This assumption is supported by the 

fact that the sideband levels are higher for sets 8 to ten than those from sets 

prior to set 7. The drop in sideband amplitude from set 7 to set 8 could be due 

to the break ‘wearing in’, thus lowering vibration levels. 

 

There is higher amplitude present at the 1st GMF than at the second, making 

the deterioration graph composed from the 1st GMF sideband amplitude in the 

outward bucket motion the premier fault propagation indicator. All four 

methods performed uniformly, small differences are however shown by 

summing all the points in the above 6 Figures for each method. The result is 

tabulated in Table 4.2. 
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Table 4.2: Comparing the four interpolation methods using three different deterioration graph 

techniques. 

 Max FFT Amplitude 1st GMF Sidebands 2nd GMF Sidebands 

Bucket 

Direction 

Inward Outward Inward Outward Inward Outward 

Constant  83.19 263.92 27.89 109.93 19.54 50.63 

Linear 86.36 264.93 28.68 108.82 21.08 50.08 

Cubic 86.40 264.92 28.71 108.85 21.31 50.07 

MWOT 85.64 263.84 28.34 107.88 19.91 48.16 

 

From Table 4.2 it could be concluded that MWOT performs the worst 

compared to the other three methods. However it should be noted that the 

performance difference between the methods is so small that it is 

inconsequential. 

 

The lack of significant difference between the methods could be attributed to 

the meagre twice per revolution speed information. All interpolation methods 

considered made use of the speed captured from the proximity sensors. It is 

possible that the small changes made by the interpolation techniques are 

overshadowed by the lack of sufficient speed information. In the application of 

COT to the dragline with the equipment used it is possibly most efficient to 

use the basic constant speed interpolation technique. 

4.7 Summary 

Before obtaining the final results it was necessary to determine an appropriate 

number of RDAs to be taken. The captured data was analysed to determine 

the number of sets available with sufficient mono-directional rotations to 

present an indication of pinion wear progression over time. It was determined 

that sufficient data sets were available if the number of averages were 

restricted to 200. It was subsequently shown that 200 averages would be 

good enough to obtain trustworthy COT results by plotting successive spectra 

of a single mono-directional segment, each successive spectrum being 

calculated using a different number of averages. 
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Furthermore the vibration data window size used to interpolate between two 

pulses was chosen. This was done by investigating the speed resolution and 

accuracy obtained by using various window sizes. The chosen optimum 

window size was 4096 points. 

 

Next a test for convergence in the rotational domain was done. Four methods, 

including MWOT, were tested. All methods successfully converged to stable 

RDAs proving that the rotational domain averaging was implemented correctly 

and that the pending results are believable. The actual RDAs produced at 

different stages of wear progression by using the four different speed 

interpolation techniques showed very little difference between the RDAs 

produced by each method. Visual inspection of the RDAs also indicated clear 

signs of wear progression in the form of amplitude modulation and distorted 

tooth impact peaks. 

 

13 data sets captured at relatively regular intervals throughout the lifetime of 

the pinion were used to create RDAs. These RDAs were then transformed 

into the frequency domain using FFTs. The successive FFTs were depicted 

as a whole using a cascade plot. From a visual inspection of the cascade plot 

indications of wear progression were observable. A clear difference was also 

noted between the cascade plots originating from different pinion rotating 

directions. 

 

To present a more intuitive portrayal of the wear progression a number of 

components were extracted from the cascade plots and trended individually. 

The trends giving the best indication of wear progression were those of the 1st 

and 2nd GMF amplitudes. 
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CHAPTER 5 CONCLUSION 

It has been shown that computed order tracking can be successfully 

employed to detect fault progression of a pinion gear in the drag gearbox of a 

dragline. The work done to verify the above statement was broken up and 

spread over four chapters. Each chapter dealt with a different aspect of the 

work namely the literature study, the preparation of a monitoring station, the 

development of order tracking methods and the analysis of the data. 

 

Overviews of numerous fault-detecting methods were introduced in the first 

chapter.  These methods were ordered into families of related work. Statistical 

methods, neural networks, time-frequency analysis, short-time Fourier 

transforms, wavelet transforms and autoregressive modelling are all fault 

finding methods that were discussed. Method groups that are more relevant to 

the research done include synchronous averaging, demodulation techniques 

and order tracking. 

 

Demodulation techniques were used to check the data after order tracking 

was completed. Fatigue cracks often manifest themselves in the measured 

vibration signal as amplitude and phase modulation; these modulations were 

used to determine whether gear damage was present. Synchronous 

averaging is a process whereby a data set is averaged to filter out any noise 

and to highlight periodic disturbances related to faults in the rotating 

machinery. Synchronous averaging is usually done with regard to time, in this 

dissertation however it was done with regard to rotational position, this 

method is called order domain averaging. Due to the fluctuating nature of the 

rotational speed, orthodox as well as new order tracking methods were used 

and evaluated. 

 

To be able to exclude human error and acquire reliable vibration data, an 

automated on-line monitoring station was set up. This equipment was 

stationed on the dragline for the approximate lifetime of the drag pinion. The 

hardware employed consisted of proximity sensors, accelerometers, a low-
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pass filter, an analogue to digital conversion card and an industrial computer. 

The merits and uses of each hardware component utilised were discussed in 

the second chapter. Software developed to acquire vibration data was also 

introduced. The ideal sample size to be captured with the available system 

was determined to be 120 s. The ability of the low-pass filter to cut off 

frequencies higher than 2500 Hz and a general system test were all 

performed prior to the monitoring station being employed. 

 

Having set up the monitoring station and acquired the first data sets, the 

development of tools to analyse the data was described in the third chapter. 

To facilitate understanding of the specific environment and to enable quicker 

error detection during the development process it was necessary to relate the 

acquired data to the dragline activity. To this end video footage was taken 

synchronous to several 120 s sampling periods. The data block was then 

divided into a number of finite time periods. The RMS of each finite time 

period was then taken. The RMS values where then plotted and compared to 

the video footage enabling identification of periodic increases in vibration 

intensity to be related to physical dragline actions. 

 

The next development step was to improve existing order tracking programs 

available by modifying them to suit the data captured. An efficient speed 

estimation program was also developed. This program supplied the basic 

speed information that would be interpolated and adjusted so that order 

tracking could be performed. 

 

In the case of this study only a single pulse per revolution is available to 

derive angular speed. Interpolation techniques were thus critical to facilitate 

accurate speed estimation. Orthodox methods such as constant, linear and 

cubic interpolation techniques were introduced and the merits of each were 

discussed. In the pursuit of a new speed interpolation technique, numerical 

integration optimisation and filter optimisation were investigated without 

success. However by making use of the speed information inherent in the 

vibration data coupled with the limited information of the shaft rotation, moving 

window speed determination was developed. This speed interpolation 
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technique makes used of the shaft pulse to locate the likely position of the 

GMF in the FFT of a small part of the captured vibration data. The GMF is 

then pinpointed and reverted back to speed information. 

 

Displacement driven velocity interpolation is another method that was 

developed to aid the interpolation techniques. DDVI makes use of the fact that 

granted that the motion of the pinion is in one direction, the angular 

displacement between two pulses is precisely 2π  rad. Thus the integration of 

the speed-time graph, between two time instances related to two pulses, 

should be a multiple of 2π . If this is not the case then DDVI adjusts the speed 

accordingly. 

 

The results derived from the completed analysis of the data captured aboard 

the dragline for approximately one year were presented in the fourth chapter. 

It was necessary to determine the minimum number of rotation domain 

averages that would still yield satisfactory results since the experimental data 

did not allow for a large number of averages to be taken. To this end a single 

data set was averaged a number of times, each time using a different number 

of averages. The power of the GMF achieved in the FFT for each situation 

was then evaluated. It was found that approximately 70 averages would be 

sufficient to obtain trustworthy COT results. 

 

The window size used in the MWOT method was determined to be 4096 data 

points large. This determination was necessary since the window size affects 

the spectrum used to find the GMF and the ability to detect small changes in 

the speed. Since an increase in window size improves the spectrum to the 

detriment of the ability to detect small speed changes a golden middle path 

had to be found. 

 

Prior to implementing order tracking, the ability of the interpolation techniques 

to yield stable results was tested by splitting a single data set into two 

daughter sets. Each daughter set is then incrementally averaged and the 

average of one daughter set is subtracted from the corresponding average of 
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the other. All implemented methods performed satisfactorily, constant 

interpolation was the only method to have performed worse than the others. 

 

Rotation domain averaging was then applied to a number of data sets that 

were chosen for their abundance of suitable data ranges. The data sets were 

also chosen to ensure an even spread of samples throughout the monitoring 

time. This was done so that a progression in fault severity could be spotted. A 

sample of the averaged data was shown which clearly indicated the amplitude 

modulation caused by each of the 25 teeth on the pinion. 

 

Cascade plots were then drawn up to show changes in the FFT of the RDA 

data over the lifetime of the pinion. It was clearly visible that the vibration 

power of the GMF increased indicating fault progression. It was also noted 

that the outward bucket motion was a better indication of gear fault due to the 

fatigue cracks being opened wider by the meshing action of the gears whilst 

subjected to load. It was shown that the most likely cause of pinion failure was 

due to misalignment. The misalignment would cause to uneven load 

distribution and subsequent spalling of the drag pinion. 

 

Although the cascade plots were interpretable, a clearer portrayal of the 

pinion wear progression was necessary. To this end a number of components 

of each set in the cascade plot were plotted separately. Maximum amplitude 

was less sensitive to the fault than the power at the 1st and 2nd GMFs. 

 

In this dissertation the suitability of COT to detect fault progression aboard a 

dragline has been demonstrated. Furthermore a relationship between the 

different rotating directions has been established, although it was clear that 

one direction is more sensitive to fault progression. 

 

The lack of distinction between the four interpolation techniques can be 

assigned to the meagre speed data available. 
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5.1 Recommendations 

Based on this study the following should be noted with regard to any work in 

this field or could be investigated additionally: 

• The effect of vibration data interpolation on COT could be investigated. 

• Care should be taken when choosing vibration segments for analysis of 

gears rotating in two directions since the early detection of gear faults 

could be hampered if the insensitive direction is chosen. 

• To yield better differentiation between interpolation methods future 

work done under similar circumstances should be based on more 

substantial speed information. 
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