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SUMMARY

In a context of heightened requirements for safety-critical embedded systems and

ever-increasing costs of verification and validation, this research proposes to advance the

state of formal analysis for control software. Formal methods are a field of computer science

that uses mathematical techniques and formalisms to rigorously analyze the behavior of

programs. This research develops a framework and tools to express and prove high level

properties of control law implementations. One goal is to bridge the gap between control

theory and computer science. An annotation language is extended with symbols and axioms

to describe control-related concepts at the code level. Libraries of theorems, along with

their proofs, are developed to enable an interactive proof assistant to verify control-related

properties. Through integration in a prototype tool, the process of verification is made

automatic, and applied to several example systems.

xii



Nomenclature

Symbol Description

B The set of booleans.

∨ Logical OR.

∧ Logical AND.

N The set of natural numbers.

N∗ The set of positive natural numbers.

F The set of floating-point numbers.

R The set of real numbers.

R+ The set of non-negative real numbers.

R+∗ The set of positive real numbers.

Rn The set of real vectors of size n.

Rn×m The set of real matrices of size n × m.

� Assuming A, B ∈ Rn×n, A � B ⇐⇒ ∀x ∈ Rn : xT(A− B)x ≤ 0.

≺ Assuming A, B ∈ Rn×n, A � B ⇐⇒ ∀x ∈ Rn : x , 0 ⇒
xT(A − B)x < 0.

� Assuming A, B ∈ Rn×n, A � B ⇐⇒ ∀x ∈ Rn : xT(A− B)x ≥ 0.

� Assuming A, B ∈ Rn×n, A � B ⇐⇒ ∀x ∈ Rn : x , 0 ⇒
xT(A − B)x > 0.

EP Assuming P ∈ Rn×n and P � 0, the set
{
x ∈ Rn

∣∣∣xTPx ≤ 1
}
.

EP,λ Assuming P ∈ Rn×n,P � 0 and λ > 0, the set{
x ∈ Rn

∣∣∣xTPx ≤ λ
}
.

GQ Assuming Q ∈ Rn×n and Q � 0, the set

x ∈ Rn

∣∣∣∣∣∣∣∣∣
1 xT

x Q

 � 0

.
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GQ,λ Assuming Q ∈ Rn×n,Q � 0 and λ > 0, the setx ∈ Rn

∣∣∣∣∣∣∣∣∣
λ xT

x Q

 � 0

.

ACSL

requires Introduces a precondition in a local contract or a function con-

tract.

ensures Introduces a postcondition in a local contract or a function

contract.

behavior Introduces a named contract and potential assumptions under

which the contract should hold.

assumes Within a behavior, introduces an assumption under which the

contract is expressed to hold.

\result Within a function contract, refers to the output of the function.

axiomatic Introduces a set of logic definitions and axioms.

type Introduces a new logic type, within an axiomatic.

logic Introduces a new logic constant, or function, within an ax-

iomatic.

axiom Introduces a property that is assumed always true, within an

axiomatic.

ghost Ghost code: has the same syntax as C code, but is not executed.

Used to introduce variables in the annotations without affecting

the code.

PROOF_TACTIC Within a contract, hints at the proof strategy that can be used to

discharge it.

Linear Algebra in ACSL
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vect_of_n_scalar A function of n arguments that returns a vector. For example,

vect_of_2_scalar(a,b) =

ab
.

mat_of_nxm_scalar A function of n×m arguments that returns a matrix. For example,

mat_of_2x2_scalar(a,b,c,d)=

a b

c d

.
mat_select Accessor function. Given a matrix A = (ai j)1≤i, j≤n, mat_select

(A,i,j)= ai j.

mat_row Returns the row-size of a matrix.

mat_col Returns the column-size of a matrix.

mat_mult Matrix multiplication. If A ∈ Rn×m and B ∈ Rm×p, mat_mult(

A,B) = AB.

block_m A 2 × 2 block matrix. Given 4 matrices A ∈ Rn1×m1 , B ∈
Rn1×m2 ,C ∈ Rn2×m1 ,D ∈ Rn2×m2 , block_m(A,B,C,D) =A B

C D

.
in_ellipsoidQ Ellipsoid predicate. Given a matrix Q ∈ Rn×n � 0 and a vector

x ∈ Rn, in_ellipsoidQ(Q,x) ⇐⇒ x ∈ GQ.

PVS

THEORY The basic unit of specification in PVS. Contains definitions,

axioms, lemmas and theorems.

LEMMA or THEOREM A property within a theory. Must be proven.

AXIOM A property within a theory, that is assumed to be always true.

Acronyms

ACSL ANSI/C Specification Language

CPS Cyber-Physical System

PVS Prototype Verification System
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TCC Type-Correctness Conditions

V&V Verification and Validation
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Chapter I

INTRODUCTION

Cyber-Physical Systems (CPS) are ubiquitous. They are systems that interact physically with

their environment, and are controlled, in part, by computers. They are called safety-critical

when their failure entails catastrophic consequences in terms of loss of life or significant

money amounts. The safety requirements for the computing part of such systems are very

high, and the increasing complexity of CPS has led to a considerable increase in the costs

of their Verification and Validation (V&V). The matter is made all the more urgent that,

as the Federal Aviation Administration (FAA) and other regulation authorities work on

defining the proper frame to open the airspace to Unmanned Aerial Systems (UAS), a major

market is about to bloom and will benefit from automated and simple tools to facilitate

product certification. In the medical world as well, examples abound of software failures

causing catastrophic damage [1, 2], and regulations are bound to become tighter [3, 4]. This

research proposes to advance the state of formal analysis techniques for these systems and,

in particular, for control systems.

The current certification process mostly involves a significant amount of simulations,

testing and reports, both to verify the input to output behavior of all implemented functions

(unit tests) and to validate the high level design choices made early in the development

process (integration tests). Formal methods offer to use rigorous mathematical techniques

to prove properties of code. They are well-suited for safety-critical systems since they

provide very high levels of assurance. They are a powerful tool to automatically prove the

correctness of code [5, 6, 7].

However, the computational part of CPS can ideally have a complex numerical core and

logic structure, making it difficult, if not impossible, for off-the-shelf formal analysis tools to

5



extract useful information beyond divide-by-zero errors and other low-level, non-functional

properties. One key idea this research is based upon, is that the domain-specific knowledge

that was used to design a CPS can prove very useful in the anlysis of its code.

This work proposes to develop libraries and tools to leverage domain-specific knowledge

in the verification of domain-specific code. In particular, focus is given to proving stability

and performance properties of control systems, at the level of the code.

1.1 The Credible Autocoding Framework

The credible autocoding framework is proposed as an alternative way of developing safety-

critical software. The current model for the development of such certifiable software is

process-based, that is, it relies on heavy documentation describing the various steps that

were taken to ensure compliance with the requirements. It is based on the traditional V-cycle

shown in Figure 1. High-level requirements are established, and validation activities are

described. They will need to be carried out once the final product has reached the other end

of the cycle. The high level requirements are then refined into a lower level description of the

software product, which includes specifications for each and every function required in the

final product. At this stage, unit tests are developed, to be carried out after the development

phase to verify the individual functionalities of each code function. The “bottom” of the V-

cycle is reached when the development phase is carried out. They are followed by the V&V

activities documented during design. One major drawback of this approach is the important

time separation between design and V&V. When an issue is exposed by a certain validation

simulation, the whole process must be worked through again: new high-level requirements

leading to new low-level specifications and new code. In addition, as systems become more

and more complex, and requirements from the certification authorities are more and more

stringent, the costs involved in the right part of the V-cycle become increasingly prohibitive.

The credible autocoding framework is presented in Figure 2. It proposes to use a combi-

nation of model-based development and formal methods, in order to automatically generate

6



Figure 1: Traditional V-shaped software development lifecycle.

Figure 2: The credible autocoding framework: using model-based development and formal
methods to bring about faster certification time and higher levels of assurance.
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Figure 3: From traditional autocoding framework to credible autocoding framework: a
change of paradigm.

the code implementing a safety-critical system, as well as a formal documentation describ-

ing its behavior. The paradigm shift introduced by this model is summarized in Figure 3:

because the software now comes with a formal description of its safety features, part of

the V&V process can be made automatic: a proof checker can be developed to provide

a certificate of correctness for the annotations. The work presented in this manuscript is

centered around the development of such a proof checker. Credible autocoding leverages

domain-specific knowledge in order to provide automation wherever possible for the de-

velopment and certification of safety-critical software. It promises to save time and money

while offering higher levels of assurance.

While control theorists are familiar with the notion of open and closed-loop stability,

and have developed various means to study it – e.g. the Routh-Hurwitz criterion, root locus

analyses, or the Nyquist stability criterion –, its evaluation or formal verification at code or

system level remains an open question.

At the computer science level, these control properties are rarely known and hard to

8



express or evaluate in the later stages of system development. In other words, these meaning-

ful requirements of the system tend to disappear when defining the software requirements.

This absence precludes a precise analysis of the interaction between the physical arithmetic

equations characterizing the dynamic of the plant and the actual implementation of the

controller in a computer, with all its associated limitations: bounded memory, real time

issues, floating point computations, etc.

Addressing these questions, i.e., evaluating control level properties at code level, would

allow for a clearer understanding of the behavior of the final system and could avoid detecting

issues too late in the development process.

An interesting outcome of this kind of analyses is the possibility to exhaustively evaluate

control-level properties, as usually evaluated through simulation on hybrid systems.

Research Questions The questions this research will endeavor to answer are as follows:

• How can domain-specific knowledge in control theory improve the state of V&V

techniques for safety-critical CPS?

• How can domain-specific, control theoretic properties be proven at the level of the

code?

• How can the gap between the high-level proof of these properties and their code-level

counterpart, introduced by implementation artefacts, be handled?

Contributions We argue that proper domain-knowledge, combined with formal methods,

make it possible to automatically verify control properties on source code, in a sound

manner. Specifically, we demonstrate the feasability of a verification backend for the

credible autocoding framework, in the case of stability properties for quasi-linear systems.

We draw from the fields of computer science and control theory, and show how their

collaboration can advance the state of verification and validation technology. The main

contributions are as follows.
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1. This work provides heuristics for the first extension of an abstract interpretation tool

to support closed-loop stability proofs for linear systems interacting with saturated

linear controllers (Section 2.3).

2. The first annotation language extension is developed that supports the expression of:

• linear algebra constructs;

• control properties;

• proof information;

at the level of C code (Chapter 3).

3. This work initiated the construction, and significantly contributed to the first library

of machine-proven linear algebra and control theory results (Chapter 4). Specifically,

fundamental results on matrices, quadratic forms defined by them, and ellipsoidal sets,

are established within a theorem prover.

4. The first tool that supports the automatic verification of stability properties from

annotated code was developed as part of this work (Chapter 5).

5. An approach to handling discrepancies beween model and code, introduced by floating-

point computations, is presented. (Chapter 5).

1.2 Scope of the Thesis and Related Work

This thesis does not seek to create new mathematical results in the field of control the-

ory. Neither does it claim to develop new static analysis methods in computer science.

Rather, the combination of results from these two fields which, in the past, have seen little

communication or collaboration, forms a meaningful contribution to the state-of-the-art in

verification and validation technologies. This work seeks to obtain sound measures of safety

on software with the help of control theory: rather than focus on complex classes of systems

or controllers, we instead make sure the properties that we prove are assuredly valid, robust
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to implementation artefacts, and come with a trace, a documented proof which constitutes a

safety case.

Although, to the author’s knowledge, the techniques and tools presented in this disserta-

tion are novel and rather unique. This research belongs to the field of formal methods and

cyber-physical systems verification, whose related literature is now reviewed.

Daniel Jackson [8] led early efforts to expose the need for trustworthy certificates on

safety-critical software. Initial attempts at formalizing control semantics in Simulink can be

attributed to Ursula Martin in [9]. Although limited to frequency responses of Single-Input,

Single-Output (SISO) systems in Simulink, this is the first suggestion of combining formal

tools from computer science with known results from control theory.

There are many modern techniques to analyze software. Model checking is one that

endeavors to automatically prove safety properties of finite-state systems [10]. It is widely

used in industry as recent developments have made boolean satisfiability problem solvers

(SAT solvers) and satisfiability modulo theories problem solvers (SMT solvers) much

more efficient and scalable [11, 12]. Unfortunately, control software remains subject to an

explosion of the state-space, making the use of these techniques difficult for this research.

In the process of verifying quadratic properties with SMT solvers, the work in [13] shows

promise, although it only solves the satisfiability problem on reals up to an error δ.

Abstract interpretation has proven to be a powerful, scalable technique to prove low-level

properties of code. It was successfully applied on the Airbus A380 code to prove the absence

of runtime errors caused by buffer overflow or index out-of-bound failures [14]. The choice

of a proper abstract domain and good widening/narrowing heuristics remains a difficult

one. In particular, there is no good lattice structure on the domain of ellipsoids, crucial

to many results of control theory. Finally, some control systems require highly non-linear

Lyapunov functions in their proof of stability, involving transcendental functions that no

current domain encompasses, to our knowledge. Feret’s work [15, 16] is a practical approach

to the problem of extracting quadratic invariants in an abstract interpretation framework.
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Its goal is to address the need by Astrée [17] to handle the linear filters present in Airbus

real time software. Work by Monniaux [18] addressed the same class of systems but not on

actual code. Both of these efforts address a strict subset of the systems we consider in this

work.

On a more abstract side, one can find work that targets similar properties. Roozbehani,

Feron and Megretski in [19], and Cousot in [20], introduced a Lagrangian relaxation

approach applied to program termination analysis. One can also cite the works of Adjé,

Gaubert and Goubault [21], and Gawlitza and Seidl [22] on policy iterations and non-linear

forms. The latter two aim at replacing a Kleene based fixpoint computation by a symbolic

reasoning based on semi-definite programming. They are more inspired by abstract results

leading to the analysis. The work in [21, 23] even cites the existence of Lyapunov based

invariant as a prerequisite for the method. These works address the analysis of a wider class

of systems than this thesis. However, they do not provide an automatic framework to carry

out the safety analysis: they assume to be given templates. One of the objectives of this

work is precisely to provide automation through domain-specific knowledge. Finally, these

works do not address floating point issues.

Our work should be considered as an in-between solution in terms of abstraction. It takes

ideas from control theory results but targets the analysis of specific, operational systems.

Furthermore, it addresses floating point errors as well as the validity analysis of the obtained

invariants.

To our knowledge, apart from the work in [24], which was the starting point for this

dissertation, no other research endeavor addresses the issue of proving in the C code the

high-level correctness properties of control systems such as closed loop stability.

Regarding the prover aspect of our framework, there already exists tools that support the

proof of properties in real arithmetic or real linear algebra. However these early development

do not cover the entire range of mathematics and are often restricted to specific sub-areas.

For example a recent project, Coquelicot, develops real functional analysis , Gaussian
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elimination and basic properties of matrices and determinants for the Coq proof assistant [25].

Generic design patterns were proposed to define algebraic structures [26]. Formalization

and instrumentation of Euclidean spaces also exist for Isabelle/HOL [27]. Automatic

decision procedures exist for floating point arithmetics, such as Gappa [28]. A formalization

of multivariate Bernstein polynomials for the Prototype Verification System (PVS) was

presented in [29]. None of these recent extensions of theorem provers are able to deal with

the properties of interest of this research. In addition, there was no equivalent effort in the

theorem prover used in this work, PVS.

Finally, there is a a very large body of work focusing on hybrid systems. It is difficult

to summarize these analyses in a few words. It can however be said that they usually

(1) address systems of a somewhat different nature with a central continuous behavior

described by differential equations and few discrete events (for instance a bouncing ball or

an overflowing water tank) whereas controllers perform discrete transitions on a periodical

basis, and (2) focus on bounded time properties rather than invariant generation. A lot of

the early work on hybrid systems involves classes of continuous dynamics which are not

expressive enough for our purposes, like linear hybrid automata in HyTech [30]. More

recent tools like SpaceEx [31] handle systems that are closer to those under consideration

in this research, however they remain focused on proving finite-time properties rather

than invariants (indeed, discovering invariants on hybrid systems is, more often than not,

undecidable). Such reachability analysis tools thus do not achieve the objectives of this

work. Guaranteed simulation strategies also enter in the category of powerful formal tools,

but are not suitable to the generation of invariant properties. Controller synthesis from

temporal logic formulas[32] can provide guarantees of controller behavior when it succeeds.

KeYmaera is a powerful software tool for model level verification of properties for hybrid

systems [33]. It combines automated strategies and heuristics to prove invariants on CPS.

However, these last two research directions focus on the model level and are not necessarily

sound. This research is focused on sound verification at code level, in order to provide
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guarantees that hold in spite of implementation artifacts.
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Chapter II

FINDING INVARIANT ELLIPSOIDS FOR DYNAMICAL

SYSTEMS

The credible autocoding process relies on the assumption that a control engineer designing a

control law can provide mathematical evidence of its stability. This chapter introduces some

of the fundamental control theory results used for the analysis of the type of systems under

consideration in this disseration. Ellipsoidal sets are first introduced, as they form the basis

of the subsequent proof work. Then, the concept of Lyapunov stability and bounded-input,

bounded-state stability is introduced for a variety of systems. Stability analysis problems are

formulated as matrix inequalities, whose solutions either provide a Lyapunov function or an

invariant ellipsoidal set for the state variables of a model. Linear Matrix Inequalities (LMI),

in which unknowns only appear linearly, can be solved efficiently using traditional SDP

solvers [34]. For stability analysis problems that cannot be formulated as a LMI, heuristics

are described that offer a possible approach, for lack of a systematic solution.

2.1 Ellipsoidal Sets and their Representation

Throughout this work, ellipsoidal sets, or ellipsoids, will be used to characterize various

properties in control system models and implementations. Two different representations are

introduced, their differences and case of equivalence discussed and proven in this section.

2.1.1 The Direct Form, or P-Form

An ellipsoid is typically described using a positive-definite or positive-semidefinite quadratic

form. Given a positive-semidefinite matrix P ∈ Rn×n, the ellipsoid EP is given by the set of

all vectors x ∈ Rn such that xTPx ≤ 1. Equivalently, the notation EP,λ = {x ∈ Rn : xTPx ≤ λ},
where λ > 0, will be used at times. This representation will be referred to as direct form or
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P-form. An example of ellipsoid in R3 is given in Figure 4, where P is full rank.
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Figure 4: Example of a full rank ellipsoid in R3.

If P is not full rank, the ellipsoid is said to be degenerate. Indeed, any vector in the

kernel of P belongs to the ellipsoid, which means that in some directions, it extends to

infinity: this type of degenerate ellipsoid is actually a lower dimension ellipsoid extended

cylindrically in the directions of the kernel of P. A three-dimensional example is shown in

Figure 5.

Figure 5: Example of a direct form degenerate ellipsoid in R3.

16



2.1.2 The Schur Form, or Q-Form

Another possible representation of ellipsoids, given a positive-semidefinite matrix Q ∈ Rn×n,

is denoted as GQ. GQ is the set of all vectors x ∈ Rn such that the matrix

1 xT

x Q

 is positive-

semidefinite. This description will be referred to as the Schur form, or Q-form of an ellipsoid.

When Q is full rank, it will be shown that this definition is no more, and no less expressive

than the full rank direct form.

Degenerate ellipsoids under this representation, however, differ from the P-form. Indeed,

if Q is not full rank, GQ represents an ellipsoid of lower dimension, in a given vector

subspace of Rn. Figure 6 shows an example of the kind of ellipsoid a rank two Q in R3

yields. Effectively, if Q has rank r, x ∈ GQ encodes two pieces of information: that some

projection of x on a subspace of dimension r belongs to a full-rank ellipsoid, and that there

exists n − r linear relationships between the elements of x.
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Figure 6: Example of a Schur form degenerate ellipsoid in R3.

2.1.3 Equivalence Case

Whenever P > 0, the following holds:

EP = GP−1 . (1)
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The proof of this statement relies on a well-known result based on Schur complement, given

here for the sake of completeness, and for which a proof can be found in [35]:

Lemma 1 Let X =

A BT

B C

 be a (n + m) × (n + m) symmetric matrix. Assume C � 0. Then:

X � 0 ⇐⇒ A − BTC−1B � 0. (2)

The proof of the equivalence between the two forms follows.

Proof 1 =⇒ Assume x ∈ EP. Apply Lemma 1 (in the⇐= direction) to A = 1, B = x, and

C = P−1 to conclude.

⇐= Assume x ∈ GP−1 . Apply Lemma 1 (in the =⇒ direction) to A = 1, B = x, and C = P−1

to conclude.�

2.2 Stability of Discrete Dynamical Systems
2.2.1 Lyapunov Stability of Discrete Unforced Systems

A dynamical system defined by xk+1 = f (xk), x(0) = x0, where f : Rn → Rn is continuous

and f (0) = 0, is Lyapunov stable if and only if

∀ε > 0,∃δ > 0, ‖x0‖ ≤ δ =⇒ ∀k ∈ N, ‖xk‖ ≤ ε.

This property is equivalent to the existence of a function V : Rn → R, such that:

• V(0) = 0;

• ∀x ∈ Rn : x , 0 =⇒ V(x) > 0;

• ∀x ∈ Rn : V( f (x)) ≤ V(x).

This fundamental result is the discrete equivalent of Lyapunov’s seminal result on continuous

differential equations [36]. A thorough treatment of the topic can be found in [37]. Within

this dissertation, we will focus our attention to quadratic Lyapunov functions, that is,

functions of the form V(x) = xTPx, where P ∈ Rn×n is a positive definite matrix. Note that

these functions verify the first two items of the above list by construction.
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2.2.2 Linear Unforced Systems

Unforced linear systems are the most well-studied and well-understood class of dynamical

systems. Locally, they can model a great number of engineering systems dynamics very

acurately. The dynamic equation for such systems is simply given by

xk+1 = Axk,x(0) = x0. (3)

where A ∈ Rn×n, with n a positive integer characterizing the dimension of the state of the

system. When studying their stability using a Lyapunov-based approach, one looks for a

matrix P � 0 such that

∀x ∈ Rn, (Ax)TP(Ax) ≤ xTPx,

or, equivalently

ATPA − P � 0.

This last equation is called the Lyapunov equation and is a special case of a Linear Matrix

Inequality (LMI) [34]. Efficient solvers for such inequalities exist, like SeDuMi [38]. If a

solution exists, then one can say that:

∀x ∈ Rn, xTPx ≤ xT
0 Px0,

which is equivalent to ∀x ∈ Rn, x ∈ EP′ , where P′ = P/(xT
0 Px0). Thus, solving the LMI

naturally provides an invariant ellipsoidal set for the system.

2.2.3 Bounded-Input, Bounded-State Stability of Linear Systems

Input-output linear systems are modeled with the following set of equations:

xk+1 = Axk + Buk, x(0) = x0, (4)

yk = Cxk + Duk, (5)

where uk ∈ Rm represents external inputs, yk ∈ Rl contains the outputs, and A, B, C, D, are

matrices of commensurate dimensions characterizing the dynamics of the system.
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One property of interest is whether the state variables of such a system remain bounded

under the assumption that its input is. If this result can be established, it naturally follows

from (5) that the system is Bounded Input, Bounded Output (BIBO)-stable. Control theory

dictates that, regardless of the actual value of a global bound on uk, the dynamical system

in (4), (5) is bounded-input, bounded-state stable if and only if there exists a matrix P � 0

such that

ATPA − P ≺ 0.

This LMI can be solved efficiently. However, in the developments that follow, we will

look for concrete, stable ellipsoids for all variables, given an actual bound on the input uk,

uT
k uk ≤ U. To achieve this, one can look for a matrix P � 0 such that, for all x ∈ Rn, u ∈ Rm:

xTPx ≤ 1 ∧ uTu ≤ U =⇒ (Ax + Bu)TP(Ax + Bu) ≤ 1. (6)

Equation (6) can be rewritten as:
x

u

1



T 
P 0 0

0 0 0

0 0 −1




x

u

1

 ≤ 0∧


x

u

1



T 
0 0 0

0 1 0

0 0 −U




x

u

1

 ≤ 0 =⇒


x

u

1



T 
ATPA ATPB 0

BTPA BTPB 0

0 0 −1




x

u

1

 ≤ 0.

(7)

The relaxation technique known as S-Procedure [39] provides a means to express (7) as

a single inequality. Indeed, Equation (7) is implied by the existence of nonnegative real

numbers λ and µ such that, for all x ∈ Rn, u ∈ Rm:
ATPA ATPB 0

BTPA BTPB 0

0 0 −1

 − λ

P 0 0

0 0 0

0 0 −1

 − µ

0 0 0

0 Im 0

0 0 −U

 � 0,

which is equivalent to:
ATPA − λP ATPB 0

BTPA BTPB − µIm 0

0 0 −1 + λ + µU

 � 0. (8)
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�(·)

xk+1 = Axk + Buk

yk = Cxk

yk

yd,kuk +�

Figure 7: Luré’s absolute stability problem setup.

Note that, because λ and P are both unknown, this matrix inequality is not linear. However,

the bottom right corner of the matrix in (8) indicates that 0 ≤ λ ≤ 1. A possible heuristic

consists in iterating on potential values of λ, proceeding, for example, with a dichotomy in

the [0, 1] segment, and attempting to solve the resulting LMI.

2.2.4 Non-Linear Systems in the Absolute Stability Framework

The most complex dynamical systems considered in this work are the discrete-time version

of those described in the absolute stability framework [40], as shown in Figure 7. They are

defined by the following set of equations:

xk+1 = Axk + Bφ(Cxk − yd,k), x0 = 0, (9)

yk = Cxk. (10)

where the vectors xk ∈ Rn, yd,k ∈ Rl and yk ∈ Rl are respectively the state of the system, its

inputs, and its outputs. φ : Rl 7→ Rm encapsulates the non-linearities of the system. A, B, C,

and D are matrices of commensurate dimmensions. In general, φ can be time-dependent,

however we will not consider this case here. The function φ is assumed to be sector-bounded,

that is, there exist matrices M1,M2 ∈ Rm×l such that:

∀y ∈ Rl : (φ(y) − M1y)T(φ(y) − M2y) ≤ 0, (11)
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or, equivalently:

∀y ∈ Rl :

 y

φ(y)


T  MT

1 M2 −1
2 (MT

1 + MT
2 )

−1
2 (M1 + M2) Im


 y

φ(y)

 ≤ 0. (12)

2.2.4.1 Stability analysis with yd,k = 0

A LMI formulation of the stability analysis problem for the system in (9), (10), in the case

yd,k = 0, is provided here. Looking for a quadratic Lyapunov function V(x) = xTPx, the

stability condition is

V(Axk + Bφ(Cxk)) ≤ V(x) ⇐⇒ xT
k ATPAxk + φ(Cxk)TBTPBφ(Cxk)

+ 2xT
k ATPBφ(Cxk) − xT

k Pxk ≤ 0.
(13)

⇐⇒
 xk

φ(Cxk)


T A

TPA − P ATPB

BTPA BTPB


 xk

φ(Cxk)

 ≤ 0 (14)

This condition must hold whenever, according to (12): xk

φ(Cxk)


T  CTMT

1 M2C −1
2CT(MT

1 + MT
2 )

−1
2 (M1 + M2)C Im


 xk

φ(Cxk)

 ≤ 0. (15)

Once again, the S-Procedure is used to relax this implication as follows. The system is

Lyapunov stable if there exist a matrix P � 0 and a nonnegative coefficient µ such that:A
TPA − P ATPB

BTPA BTPB

 − µ
 CTMT

1 M2C −1
2CT(MT

1 + MT
2 )

−1
2 (M1 + M2)C Im

 � 0,

which is a LMI in P and the scalar variable µ.

2.2.4.2 Searching for an invariant ellipsoid with bounded yd,k

A bounded, non-zero input yd,k is now assumed:

yT
d,kyd,k ≤ U. (16)
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In addition, tu support further developments in this work, we search for an invariant ellipsoid,

that is, P � 0 such that, assuming

xT
k Pxk ≤ 1, (17)

then xT
k+1Pxk+1 ≤ 1, in other words: xk

φ(Cxk − yd,k)


T A

TPA − P ATPB

BTPA BTPB

︸                   ︷︷                   ︸
T

 xk

φ(Cxk − yd,k)

 ≤ 1. (18)

Equation (15) can be rewritten, taking yd,k into account, as:
xk

φ(Cxk − yd,k)

yd,k



T 
CTMT

1 M2C −1
2CT(MT

1 + MT
2 ) CTMT

1 M2

−1
2 (M1 + M2)C Im

1
2 (M1 + M2)

MT
2 M1C 1

2 (MT
1 + MT

2 ) MT
1 M2

︸                                                             ︷︷                                                             ︸
S


xk

φ(Cxk − yd,k)

yd,k

 ≤ 0.

(19)

A sufficient condition for the invariance of the ellipsoid defined by P is then (19) ∧ (17) ∧
(16) =⇒ (18), which can once more be recast in a single matrix inequality: if one can find

λ, µ, and ν, positive coefficients such that


T 0 0

0 0 0

0 0 −1

 − λ


P 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1


− µ

S 0

0 0

 − ν


0 0 0 0

0 0 0 0

0 0 Il 0

0 0 0 −U


� 0, (20)

then the ellipsoid defined by P is invariant. Once again, this inequality is not linear in the

unknowns, and a heuristic similar as that described in Section 2.2.3 can be used.

2.2.4.3 A Heuristic in the Saturation Case

When the system is single-input, single-output (SISO), and the non-linearity is a saturation,

without additional information, the best sector-bound choice is the [0, 1] sector. In this

section, we develop a heuristic on the example of a controlled spring-mass system, still in
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Figure 8: Motivating example: a spring-mass system.

the purpose of finding an invariant ellipsoid. Indeed, on the chosen example, the heuristic

described in Section 2.2.4.2 fails.

System Model The spring-mass system in Figure 8 can be modeled with the continuous

differential equation ẍ = −x + u, where x is the displacement of the spring from its resting

position, in meters, and u is the external force applied to the mass, in Newtons. A sensor

observes the position of the mass, so that y = x. A 100 Hz first-order Euler discretized

version of these dynamics is given, in state-space form, by:

xp,k+1 = Apxp,k + Bpuk, (21)

yk = Cpxk, (22)

with

Ap =

 1.00 0.01

−0.01 1.00

 , Bp =

5 · 10−5

0.01

 , and Cp =

[
1 0

]
. (23)

Given a desired position yd, with |yd| ≤ 0.5, one possible lead-lag controller is given here.

It reacts to the saturated error yc = SAT(y − yd), where SAT is the unit saturation operator:

SAT(x) = max (min (x, 1),−1). Its transfer function is given by:

u(s) = −128
s + 1

s + 0.1s
s/5 + 1
s/50 + 1

yc(s).
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A digital filter implementing a discretization of this controller, running at 100 Hz, can be

obtained with the following state-space equations:

xc,k+1 = Acxk + Bcyc,k, xc,0 = 0, (24)

uk = Ccxk + Dcyc,k, (25)

where

Ac =

.4990 −0.05

0.01 1.0

 , Bc =

10
 ,Cc =

[
564.48 0

]
, and Dc = −1280. (26)

The interaction of the spring-mass system and this digital controller fit the systems descrip-

tion in Figure 7 with

φ = SAT, xk =

, xc,k

xp,k

 A =

 Ac 0

BpCc Ap

 , B =

 Bc

BpDc

 , and C =

[
0 Cp

]
. (27)

Finding an Invariant Ellipsoid Assuming xT
k Pxk ≤ 1, a bound on |Cxk| is given by

γ :=
√

CP−1CT. Since |yd,k| ≤ 0.5, the constant γ̃ := γ+ 0.5 is an upper bound on |Cxk − yd,k|.
Letting yc,k := SAT(Cxk − yd,k), the following sector bound holds:(

yc,k − 1
γ̃

(Cxk − yd,k)
)

(yc,k − (Cxk − yd,k)) ≤ 0. (28)

Figure 9 illustrates the reason for this inequality. yc,k = SAT(Cxk − yd,k) is represented as a

thick line. With the added bound γ̃ on |Cxk − yd,k|, one sees that yc,k necessarily lies between

Cxk − yd,k and 1
γ̃

(
Cxk − yd,k

)
. Then yc,k − 1

γ̃
(Cxk − yd,k) and yc,k − (Cxk − yd,k) must be of

opposite signs, hence the inequality.

Thus, one looks for a matrix P such that

√
CP−1CT ≤ γ, (29)

and (
xT

k Pxk ≤ 1 ∧ y2
d,k ≤ 0.52 ∧ (28)

)
=⇒ xT

k+1Pxk+1 ≤ 1. (30)
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(Cx − yd)/γ̃

SAT(Cx − yd)
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γ̃

−γ̃

Figure 9: Illustration of the sector bound relationship between yc (in the grey sector) and
Cx − yd.

Defining an extended state vector εk :=
[
xk yc,k yd,k 1

]T and the matrices

U :=



ATPA ATPB 04×1 04×1

BTPA BTPB 0 0

01×4 0 0 0

01×4 0 0 −1


,V :=



P 04×1 04×1 04×1

01×4 0 0 0

01×4 0 0 0

01×4 0 0 −1


,

W :=



2
γ̃
CTC −

(
1 + 1

γ̃

)
CT − 2

γ̃
CT 04×1

−
(
1 + 1

γ̃

)
C 2 1 + 1

γ̃
0

− 2
γ̃
C 1 + 1

γ̃
2
γ̃

0

01×4 0 0 0


,Y :=



04×4 04×1 04×1 04×1

01×4 0 0 0

01×4 0 1 0

01×4 0 0 −0.52


.

Equation (30) is rewritten as(
εT

kVεk � 0 ∧ εT
kYεk � 0 ∧ εT

kWεk � 0
)

=⇒ εT
kUεk � 0.

Equation (30) can then be relaxed by S-procedure: it will hold if there exists nonnegative

coefficients λ, µ, and ν, such that

U − λV − µW− νY � 0. (31)

Equation (29) can be rewritten using Schur complement:γ
2 C

CT P

 � 0. (32)
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Note that for fixed λ and γ, Equations (31) and (32) form a Linear Matrix Inequality (LMI) in

P, µ and ν, which means it can be solved thanks to a semidefinite programming solver [34].

γ̃ = γ+ 0.5 is expected to be larger than 1 (otherwise the saturation would never be activated,

and one could revert to simpler analysis methods). Moreover, since the saturation should

somewhat “bound” this value, it is expected not to span over multiple orders of magnitude.

Also, the bottom right coefficient of the LMI in (31) indicates that λ ∈ [0, 1]. One possible

strategy is then to iterate on potential values of λ and γ, and solving the corresponding LMI

at each iteration. If a solution exists, it will provide the invariant xT Px ≤ 1 for the system

with saturation. For our running example, we generated a suitable template in 279s on an

Intel Core2 @ 2.4GHz. Values for λ are chosen by exploring (0, 1) with numbers of the

form k
2i for increasing values of i ≥ 1, and k < 2i. For each choice of λ, the LMI is solved

with values of γ̃ ranging from 1 to 5 by increments of .1. The solution is found for λ = 63
64

and γ̃ = 3.1, which amounts to 2605 calls to the LMI solver. The solution is given by:

P = 103



0.0494 −0.0010 0.0086 −0.5781

−0.0010 0.0003 −0.0006 0.0068

0.0086 −0.0006 0.0066 −0.0733

−0.5781 0.0068 −0.0733 7.0279


, λ = 0.9844, µ = 0.0235, ν = 0.0601.

Variations of this example will be used throughout this disseration to illustrate different

points and methods.

2.3 Application: Extension of an Abstract Interpreter for Closed-Loop
Stability Proofs

The methods and heuristics presented in Section 2.2 are just a few examples of the array of

analysis techniques available to the control engineer for the analysis of a given design. They

will be used in the rest of this dissertation. They were also provided as input to a parallel

work on a tool attempting to automatically extract ellipsoidal invariants on control code,

which is briefly introduced in this section. This section is not intended to be a thorough
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st 1

true ,

xc1 := 0
xc2 := 0
xp1 := 0
xp2 := 0

−0.5 ≤ yd ≤ 0.5
xp1 − yd > 1 ,

xc1 := 0.499 xc1 − 0.05 xc2 + 1
xc2 := 0.01 xc1 + xc2
xp1 := 0.028224 xc1 + xp1 + 0.01 xp2 − 0.064 × 1
xp2 := 5.6448 xc1 − 0.01 xp1 + xp2 − 12.8 × 1

−0.5 ≤ yd ≤ 0.5
−1 ≤ xp1 − yd ≤ 1 ,

xc1 := 0.499 xc1 − 0.05 xc2 + xp1 − yd
xc2 := 0.01 xc1 + xc2
xp1 := 0.028224 xc1 + xp1 + 0.01 xp2 − 0.064 (xp1 − yd)
xp2 := 5.6448 xc1 − 0.01 xp1 + xp2 − 12.8 (xp1 − yd)

−0.5 ≤ yd ≤ 0.5
xp1 − yd < −1 ,

xc1 := 0.499 xc1 − 0.05 xc2 − 1
xc2 := 0.01 xc1 + xc2
xp1 := 0.028224 xc1 + xp1 + 0.01 xp2 − 0.064 × (−1)
xp2 := 5.6448 xc1 − 0.01 xp1 + xp2 − 12.8 × (−1)

Figure 10: Control flow graph for the system with a saturation.

presentation of the tool, but rather an overview that emphasizes how this dissertation can

contribute to bridge the gap between control theorists and computer scientists.

The tool, called smt-ai [41], works on objects called control flow graphs, which are used

to represent the switching structure of a program, based on loops and branches. The control-

flow graph for a program implementing the example closed-loop system in Section 2.2.4.3,

is given in Figure 10.

Smt-ai uses the static analysis technique known as abstract interpretation [42], which

has been very successful in automatically extracting invariants from programs. However,

traditional static analyzers are scarcely concerned with the physical system interacting

with the code they analyze, while smt-ai is. In addition, until recently, linear controllers,

and particularly high-order ones, were out of reach for such analysis techniques, which

often search for “box” invariants, the kind of which do not exist for linear systems. Policy

iteration [43] offers to search for more exotic invariants. It works best, however, with an

external input in order to have a sense of promising “shapes”, or templates, of invariants.

The heurisitics developed in the present chapter, based on domain-specific knowledge in

control theory, were used to provide input to smt-ai. The focus was on proving the closed

loop stability of a linear controller with a saturated input, interacting with a linear plant.

The tool is able to successfully extract an invariant ellipsoid for our running example. In
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addition, the guarantees offered are sound with respect to floating-point computation, an

issue which is discussed furter in subsequent developments.

2.4 Conclusion

This chapter introduced some of the traditional concepts of control theory that are relevant

to this research. The notion of ellipsoid, and different notations and results for these sets,

were presented. Some heuristics were developed in order to obtain invariant ellipsoids on a

variety of system models. These ellipsoids will be used in the following developments to

enable an automatic code-level analysis of the implementation of a control law. They were

also used as an input to enhance smt-ai, an existing static analyzer that, as a result, became,

concurrently with the tool presented in this work, one of the first analyzers able to extract

closed-loop properties of control systems.
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Chapter III

A FORMAL FRAMEWORK TO EXPRESS CONTROL

SEMANTICS AT THE LEVEL OF THE CODE

Current regulations for the certification of safety-critical software are mostly based on

thorough documentation of the development life cycle, and heavy reliance on simulation and

test. Although codified, these documents are, for the most part, generated by humans, to be

read by humans. In this chapter, we explore the possibility of a formal annotation language

supporting the description of control properties evinced by code implementations, and

their automatic verification by a machine. To our knowledge, few formal code annotation

languages exist, none of which were expressive enough to assert, for instance, the closed-

loop stability of a piece of code in its interaction with a plant. A lot of the work in this

thesis is based on the Hoare Logic framework, which will be introduced in Section 3.1. A

high-level example of how to use the framework to express control properties on C code,

first suggested in [24], is given in Section 3.2. Then, in Section 3.3, we choose an existing

annotation language and describe a library of symbols we developed to meet a given set of

expressivity needs. Finally, Section 3.4 gives examples of how the library can be used to

assert that various control properties of interest hold for a given piece of code.

3.1 Deductive Methods and Hoare Logic

Hoare Logic was introduced in 1969 [44], following work by Floyd [45]. It is a method of

annotation to describe a program’s behavior, along with a set of rules, or axioms, that define

what a correct annotation is. A Hoare triple {P} S {Q} is composed of:

• a statement S , which is actual code.

• a precondition P, which is a predicate on the state of the program prior to statement S
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being executed.

• a postcondition Q, which is another predicate on the state of the program following

the execution of S .

The triple is valid if, assuming P holds before the execution of S , then Q holds after the

execution of S . In order to present the various rules that compose Hoare axiomatic, the

notion of axiom schema is defined: an axiom schema is given in the following form:

{Preq,1} S req,1 {Qreq,1}, {Preq,2} S req,2 {Qreq,2}, ..., {Preq,m} S req,m {Qreq,m}
{Pimpl,1} S impl,1 {Qimpl,1}, {Pimpl,2} S impl,2 {Qimpl,2}, ..., {Pimpl,n} S impl,n {Qimpl,n}.

Axiom schemas describe patterns which, if followed, produce valid Hoare triples. In

the above schema, each {Preq,i} S req,i {Qreq,i} describes a pattern of Hoare triples, poten-

tially parameterized by variables. If there exists a choice of variables such that for all i,

{Preq,i} S req,i {Qreq,i} holds, then the schema (or rule) expresses that each {Pimpl, j} S impl, j {Qimpl, j}
must also hold for the same choice of variables. The top part of the schema can be left

empty, indicating that the patterns in the bottom part of the schema hold for any variable

choice.

Examples of the rules that define valid triples include:

• The assignment rule:

{P[E/x]} x := E {P},
which expresses that given a postcondition P, a valid precondition for the assignment

of variable x to expression E is P[E/x], that is, a rewriting of P where all free instances

of variable x are replaced by E. For example, the triples in Figure 11 are valid.

• The sequencing rule,

{P} S {Q}, {Q} T {R}
{P} S ; T {R},
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{i + 1 + j = 10}
i := i + 1
{i + j = 10}

{i + j − 1 = 9}
j := j − 1
{i + j = 9}

Figure 11: Valid Hoare triples under the assignment rule.

which expresses that, if two statements are run sequentially, and the postcondition for

the first is the precondition for the second, then the triples can be combined so that

the precondition of the first is the precondition of the sequence, and the postcondition

of the second is the postcondition for the sequence. Using the previous two examples

and this rule, one can conclude on the validity of the following triple:

{i + j = 9}
i := i + 1; j := j − 1

{i + j = 9}.
(33)

• The more elaborate loop rule, which involves an important element called an inductive

invariant I:
{I ∧ B} S {I}

{I} while B do S {I ∧ ¬B}.

It expresses that, if one execution of the body of the loop preserves property I – that is,

for any possible state of the variables where I holds before executing S , then I holds

after executing S – then executing the whole loop preserves I as well. Using this rule

and the previous example, it can be shown that the following triple is valid:

{i + j = 9}

while i < 10 do

i := i + 1;

j := j − 1

{i + j = 9 ∧ i ≥ 10}.

(34)
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More often than not, one is more intested in finding the ’minimal’ precondition required

to achieve a target postcondition Q after the execution of a program. This concept of weakest

precondition was introduced by Dijsktra in 1976 [46]. It is a mechanized way of extracting

a first order property P which, if checked, proves that Q will hold after execution. The

difficulty lies in the loop rule, where a relevant invariant must be found. Indeed, consider

a simple linear system xk+1 = Axk. As discussed in Chapter 2, looking for a matrix P

such that ATPA − P � 0 can yield an invariant ellipsoid for the system. However, the

typical postconditions that are of interest to computer science are, for example, bounds on

the variables. This leap from a postcondition like ||xk||∞ < b, which is not an inductive

invariant for the update loop of the system, to the invariant xT
k Pxk < b′, which implies

the first postcondition with a proper choice of values for b and b′, is one example of how

domain-specific knowledge can contribute to program analysis.

3.2 Using Hoare Logic to Express a Simple Control Property on Code

It was suggested in [24] how to use an invariant set derived from a Lyapunov function, as a

loop invariant for the implementation of the controller. In this section, a walkthrough of this

process is given for a very simple 2-state system with no inputs. While this is not realistic

in practice, it gives an idea of the more general technique. Start with the Lyapunov stable

system in (35):

xk+1 =

−0.1 0.1

−0.3 −0.2

 xk, x0 =

12
 . (35)

The control theory results in Section 2.2.1 enable the discovery of

P =

0.2009 0.0093

0.0093 0.1904

 ,
such that the following holds:

∀n ∈ N : xT
n Pxn ≤ 1. (36)

A simple pseudo-algorithm to implement the system is shown in Figure 12. All it takes
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x0 := 1
x1 := 2
while TRUE do

x0c := x0

x0 := −0.1x0 + 0.1x1

x1 := −0.3x0c − 0.2x1

end while

Figure 12: Pseudo-code describing a simple linear system.

x0 := 1
x1 := 2{[

x0 x1

]
∈ EP

}
while TRUE do

x0c := x0

x0 := −0.1x0 + 0.1x1

x1 := −0.3x0c − 0.2x1

end while
{FALS E}

Figure 13: Simple linear system annotated with valid loop invariant.

to express the quadratic invariant in (36) is the annotation seen in Figure 13. However,

in the interest of making the proof of this annotation easier to discharge automatically,

local contracts are added within the loop body. The line-by-line annotations are shown in

Figure 14, with:

Q1 =


1 0

0 1

1 0

 P−1


1 0

0 1

1 0



T

,Q2 =


−0.1 0.1 0

0 1 0

0 0 1

 Q1


−0.1 0.1 0

0 1 0

0 0 1



T

,

and:

Q3 =

1 0 0

0 −0.2 −0.3

 Q2

1 0 0

0 −0.2 −0.3


T

= AP−1AT.

All that was used is the following property which holds for any positive semidefinite matrix

Q, and is proven in Chapter 4:

∀x ∈ Rn, y ∈ Rm,M ∈ Rmxn : x ∈ GQ ∧ y = Mx =⇒ y ∈ GMQMT . (37)
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x0 := 1
x1 := 2{[

x0 x1

]T ∈ EP

}
while TRUE do{[

x0 x1

]T ∈ GP−1

}
x0c := x0{[

x0 x1 x0c

]T ∈ GQ1

}
x0 := −0.1x0 + 0.1x1{[

x0 x1 x0c

]T ∈ GQ2

}
x1 := −0.3x0c − 0.2x1{[

x0 x1

]T ∈ GQ3

}
skip{[

x0 x1

]T ∈ EP

}
end while
{FALS E}

Figure 14: Fully annotated linear system.

While this example illustrates the process by which manual annotation of control code

can be performed using results from control theory, it is missing one key element: in order

to perform automatic verification activities on this code, the Hoare triples must be written in

a machine-readable and, consequently, formal language.

3.3 A Formal Library for the Expression of Control Semantics on Code

We now seek to define a machine-readable language able to support the expression of control

properties at code level. In order to obtain an actionable prototype in a reasonable amount of

time, the choice was made to turn to an existing annotation language for the C programming

language, called the ANSI/ISO C Specification Language (ACSL) [47]. ACSL is a formal

annotation language which is tooled, that is, there exists a platform, called Frama-C [48],

which can read both C code and ACSL annotations and provides an Application Program

Interface (API) to perform analysis on annotated code. In addition, two Frama-C plugins,

WP and Jessie, can handle Hoare Logic and weakest-precondition calculus. Finally, both

tools can use a wide array of solvers, both automatic and manual theorem provers, in order to
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//@ requires i+j == 9;
//@ ensures i+j == 9;
{
i= i+1;
j= j-1;
}

C+ACSL

Figure 15: Writing the Hoare triple of (33) in ACSL.

assess the validity of the analyzed code. The problem of proving the validity of annotations

is studied in Chapter 5. Few similarly developed annotation languages exist. The closest

would be JML [49] for Java,which also provides multiple tools for analysis. However, C

remains more widely used in the area of embedded control systems.

A brief introduction of ACSL semantics is given in Section 3.3.1. Then, a library of

ACSL symbols and axioms, which we developed to express and define a number of control

theoretic concepts of interest, is described in Section 3.3.2

3.3.1 ACSL Syntax and Semantics

ACSL is closely connected to Hoare logic. The following introduces basic ACSL notations

for the purpose of writing specific types of Hoare triples that will be used in subsequent

developments.

3.3.1.1 Function and code contracts

A construct used pervasively in this work, and the basic specification tool of ACSL, is the

function or code contract. A contract is a way to describe a pre- and post- condition, in the

sense of Hoare (c.f. Section 3.1), for a piece of code or function. The keyword requires

introduces a precondition, while the keyword ensures introduces a postcondition. For

example, Figure 15 shows how the Hoare triple in (33) can be written in ACSL.
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//@ loop invariant i+j == 9;
while (i<10){
i= i+1;
j= j-1;
}

C+ACSL

Figure 16: Writing the loop invariant of (34) in ACSL

3.3.1.2 Loop annotations

Before a loop, the keyword loop invariant specifies an inductive loop invariant, that

is, a property which is true when first entering the loop, and which is preserved by any

execution of the loop. For example, Figure 16 shows how the inductive invariant in (34)

can be written in ACSL. The keyword loop variant enables the user to provide a positive

integer quantity that strictly decreases at every iteration of the loop. This concept was not

part of the original Hoare logic, as it pertains to termination: indeed the existence of such a

quantity, if proven, will show that the loop is entered a finite number of times.

3.3.1.3 Behaviors

Some function outputs are expected to be significantly different depending on particular

characteristics of their input. The keyword behavior enables to split contracts according

to predicates on the input. For example, a contract describing the behavior of a saturation

function is shown in Figure 17. The keyword assumes introduces the hypotheses that

separate the various behaviors. Note that the keyword \result was also used in this

example. It refers to the output of the function under consideration by the contract.

In this work, behaviors are also used in a simpler way: in the absence of assumes clause,

behaviors can be used as a way of labelling contracts to keep track of them throughout the

program.
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/*@ behavior above:
@ assumes x > 1.;
@ ensures \result == 1.;
@ behavior below:
@ assumes x < -1. ;
@ ensures \result == -1.;
@ behavior between:
@ assumes x <= 1. && x >= -1.;
@ ensures \result == x; */

float sat(float x){
return (x>1.)?1.:((x<-1.)?-1.:x);

}

C+ACSL

Figure 17: Using named behaviors to describe the semantics of the saturation function.

3.3.1.4 Axiomatic definitions of logic types, predicates and functions

In order to expand the range of properties that can be expressed within contracts and

invariants, ACSL offers the possiblity to define axiomatized types, predicates and functions.

This was used extensively in the development of the library that is presented in the next

section. Such an axiomatization is preceded by the keyword axiomatic. Within it, the

keyword type is used to introduce a new type. The keyword logic precedes functions and

predicates, which can be introduced simply with their names and the types of their input

and outputs. The semantics of such symbols can then be refined using the keyword axiom,

which is followed by their properties of interest. Figure 18 shows the ACSL syntax for the

expression of the Peano axioms defining natural numbers [50].

3.3.1.5 Ghost code

Ghost code is a way to introduce variables and operations on these variables without affecting

the semantics of the code. Any valid C code can be written in ghost code as long it does

not affect the actual variables, and thus change the semantics of the program. For example,

one may want to use a loop counter for the unique purpose of expressing an upper bound on

the number of times a specific loop is entered, without needing this counter to appear in the
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/*@ axiomatic peano {
@ type axiomatic_integer;
@ logic axiomatic_integer zero;
@ logic axiomatic_integer successor(axiomatic_integer n);
@ axiom successor_injection:
@ \forall axiomatic_integer n, m;
@ n == m <==> successor(n) == successor(m);
@ axiom no_successor_is_zero:
@ \forall axiomatic_integer n;
@ successor(n) != zero;
@ } */

ACSL

Figure 18: Peano axioms for natural numbers in ACSL.

//@ ghost int i = 0 ;
while ( ... ) {
//@ ghost i = i + 1 ;
...
}
//@ assert i <= 12 ;

C+ACSL

Figure 19: Using ghost code to express a bound on the number of times a loop is run.

actual code. This can be achieved by using the ACSL code shown in Figure 19.

3.3.1.6 Floating-Point arithmetic

Computations in embedded applications are usually carried-out in the floating point domain,

F. This subset of R enables the representation of a wide array of real numbers in a fixed-

length memory location, and most programming languages are equipped to efficiently

perform the basic arithmetic operations, +,−,×, /. However, F does not evince some of the

most basic properties of R, making reasoning on floating-point numbers difficult. Indeed, for

example, F is not stable by any of the operations mentioned above. This leads to a semantic

gap between the model analyses described in Chapter 2 and the code-level analysis. In this

chapter and the next, we temporarily ignore this gap by assuming all variables and their
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results are computed exactly. Although this treatment is unsound a priori, i.e., one could

prove wrong results on the program, it is not vain: the developments in this chapter can be

re-used in a framework that does take floating point computation errors into account. The

approach is described in Chapter 5. Here some ACSL constructs used to distinguish between

floating-point results and exact results of computations, introduced in [51], are defined.

Given a program variable x, the term \exact(x) refers to the value of x had all compu-

tations been done in R, and were all decimal numbers machine-representable. For example,

even though the number 0.1 is not machine representable (infinite binary representation),

\exact(0.1) denotes the real number 0.1, and \exact(2*0.1) denotes the real number

0.2. More generally, the \exact value of an expression is obtained by replacing constants

by their real value, variables by their \exact value, and operators by their real counterparts.

In addition, the keyword \error(x) denotes the quantity \abs(x - \exact(x)), where

\abs is the traditional absolute value function.

In some cases, a variable x is known at design time to approximate a certain desired

quantity. For example, when estimating \cos(x) with a Taylor expansion 1-x*x/2, one

is more interested in the error \abs(1-x*x/2 - \cos(x)), which encompasses both the

floating point error and the approximation error. Two ACSL keywords and a command

exist to express this error. The command //@ \set_model x e; defines expression e as

the quantity x is meant to approximate or model. From there on, one can use \model(x)

to refer to e, and total_error(x) to refer to \abs(x-\model(x)). These keywords are

used in Chapter 5 to propose an approach that leverages results in R and an approximation

scheme to ensure that the semantic gap does not “break” the proofs, i.e. that the proposed

framework is sound with respect to floating-point computations.

3.3.2 Linear Algebra in ACSL

An axiomatic library of ACSL symbols has been developed to express concepts and proper-

ties pertaining to linear algebra. Note that a more thorough and, arguably, more elegant linera
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/*@ type matrix;
@ type vector; */

ACSL

Figure 20: Vector and matrix types in ACSL.

/*@ logic real mat_select(matrix A, integer i, integer j);
@ logic real vect_select(vector x,integer i);
@ logic integer vect_length(vector x);
@ logic integer mat_row(matrix A);
@ logic integer mat_col(matrix A);*/

ACSL

Figure 21: Accessor functions in ACSL.

algebra library is described in Chapter 4 in PVS. Indeed PVS is a more expressive logic

language than ACSL, as the latter only allows first-order logic. It is shown throughout this

subsection how this limitation was circumvented, at the price of a sometimes cumbersome

axiomatization.

3.3.2.1 Basic types, constructor and accessor functions

A matrix and a vector types are first introduced (Figure 20). Then, accessor functions can

return the characteristics of a given structure, that is, the row-size (mat_row) or column-size

(mat_col) of a matrix, the length of vector (vect_length), or an element at a certain

position (Figure 21). ACSL does not support the use of arrays. This limitation makes the

expression of a generic constructor for matrices impossible. Thus, for each matrix dimension

n × m required in the annotated program, a constructor function mat_of_nxm_scalar

(real a_00,real a_01,...,real a_0m,real a_10,..., real a_nm); is defined.

For each such constructor, the functions mat_select, mat_row and mat_col must be

axiomatized. The process of defining these multiple functions and axioms, a very tedious

one, was itself automated as part of the development of the tool described in Chapter 5.
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/*@ axiom mat_of_1x2_scalar_select:
@ \forall matrix A, real x0000, x0001 ;
@ A == mat_of_1x2_scalar(x0000, x0001) ==>
@
@ mat_select(A, 0, 0) == x0000 \&\&
@ mat_select(A, 0, 1) == x0001 ;
@
@ axiom mat_of_1x2_scalar_row:
@ \forall matrix A, real x0000, x0001;
@ A == mat_of_1x2_scalar(x0000, x0001) ==>
@ mat_row(A) == 1;
@
@ axiom mat_of_1x2_scalar_col:
@ \forall matrix A, real x0000, x0001;
@ A == mat_of_1x2_scalar(x0000, x0001) ==>
@ mat_col(A) == 2; */

ACSL

Figure 22: Axiomatization of accessor functions for the constructor mat_of_1x2_scalar.

/*@ logic matrix mat_add(matrix A, matrix B);
@ logic matrix mat_mult(matrix A, matrix B);
@ logic matrix mat_scalar_mult (real a, matrix A);
@ logic matrix transpose(matrix A);
@ logic matrix block_m(matrix a11, matrix a12, matrix a21, matrix

a22);*/

ACSL

Figure 23: Main matrix operators in ACSL.

These axioms are shown for a 1 × 2 matrix in Figure 22, for the sake of completeness.

3.3.2.2 Operators

Operators are introduced in order to express matrix addition, multiplication, scaling, trans-

position, and block matrix construction (Figure 23).

Each of these operators can be axiomatized using the accessor functions presented in

the previous paragraph. The mat_add axiomatization is described here, as it is illustrative

of the general process. The full library can be found in Appendix A. When two matrices

have the same dimensions, the element of their sum at index i, j is simply the sum of their
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/*@ axiom mat_add_select:
@ \forall matrix A, B;
@ mat_row(A) == mat_row(B) ==>
@ mat_col(A) == mat_col(B) ==>
@ \forall integer i, j;
@ 0 <= i < mat_row(mat_add(A,B)) ==>
@ 0 <= j < mat_col(mat_add(A, B)) ==>
@ mat_select(mat_add(A,B), i, j) ==
@ mat_select(A, i, j) + mat_select(B, i, j);*/

ACSL

Figure 24: Axiomatization of element accessor for the matrix addition function.

/*@ axiom mat_add_row:
@ \forall matrix A, B;
@ mat_row(A) == mat_row(B) ==>
@ mat_col(A) == mat_col(B) ==>
@ mat_row(mat_add(A, B)) == mat_row(A);
@ axiom mat_add_col:
@ \forall matrix A, B;
@ mat_row(A) == mat_row(B) ==>
@ mat_col(A) == mat_col(B) ==>
@ mat_col(mat_add(A, B)) == mat_col(A);

ACSL

Figure 25: Axiomatization of dimension accessors for matrix addition function.

elements at i, j (see Figure 24).

When two matrices have the same dimensions, the dimension of the sum are those of

either one (see Figure 25). One limitation of ACSL is that it does not allow one to define

subtypes. As a consequence one cannot prevent, syntactically, the validity of the expression

mat_add(A,B) where A and B do not have compatible dimensions. While this is not an

issue for expressivity, it becomes one when trying to match the definition of matrix addition

with that of the theorem prover used in Chapter 4. For this, and for all other symbols, we

created a “throw-away axiom”, which specifies that if compatible dimension conditions

are not met, then the result of the operator has no meaning (see Figure 26). The symbol

mat_add_ext has no semantics and is not axiomatized. As such, nothing can be proved
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/*@ logic matrix mat_add_ext(matrix A, matrix B);
@ axiom mat_add_ext:
@ \forall matrix A, matrix B;
@ mat_row(A) != mat_row(B) ||
@ mat_col(A) != mat_col(B) ==>
@ mat_add(A,B) == mat_add_ext(A,B);*/

ACSL

Figure 26: Axiomatizing the unspecified nature of matrix addition when dimensions are
incompatible.

about it.

3.3.2.3 Quadratic inequality predicates

One crucial expressivity need in this work, which can encode numerous control properties

of interest, is a predicate expressing that a given vector belongs to a certain ellipsoid. When

a copy of a variable is made in a C program (as is necessary to perform an in-place matrix

multiplication, for example), the Q-form of an ellipsoid as presented in Section 2.1.2 conve-

niently offers a way to store both the underlying ellipsoid invariant and linear dependencies

between variables. Thus, we choose to use the so-called Q-form throughout this work.

In order to axiomatize a predicate expressing x ∈ GQ (recall this is true if and only

if Q is positive semidefinite and

1 xT

x Q

 � 0), we introduced and axiomatized predicates

expressing that a matrix is symmetric (predicate symmetric(matrix A);) and positive

semidefinite (predicate semidefpos (matrix P);). The definition and axiomatization

of predicate in_ellipsoidQ is given in Figure 27. Note the presence of a converting

symbol V2Ml used to convert a vector to a row-matrix.

3.3.3 Including Proof Elements

The contracts and annotations written in this work are often non-trivial, and the underlying

mathematical reason for their validity is unlikely to be found by existing automatic tools

such as SAT and SMT solvers. Indeed in all cases presented in this work, the solvers present
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/*@ predicate in_ellipsoidQ(matrix Q, vector x);
@ predicate in_ellipsoidQ_ext(matrix Q, vector x);
@ axiom in_ellipsoidQ_ext:
@ \forall matrix Q, vector x;
@ vect_length(x)!=mat_col(Q) ||
@ mat_col(Q)!=mat_row(Q) ==>
@ (in_ellipsoidQ(Q,x) <==> in_ellipsoidQ_ext( Q, x));
@ axiom in_ellipsoidQ:
@ \forall matrix Q, vector x;
@ vect_length(x)==mat_col(Q) &&
@ mat_col(Q)==mat_row(Q) ==>
@ ((symmetric(Q) && semidefpos(Q) &&
@ semidefpos(block_m(eye(1),V2Ml(x),transpose(V2Ml(x)),Q))) <==>
@ in_ellipsoidQ(Q, x));*/

ACSL

Figure 27: Axiomatization of predicate in_ellipsoidQ

within Frama-C were unable to discharge the proof obligations automatically.

ACSL is an extensible language: plugins can be developed to describe new keywords

added to its grammar. We used this feature in the development of a plug-in to Frama-C,

called wp-local-tactic.The plugin introduces the keyword PROOF_TACTIC as a grammar

extension within a contract. It enables to specify, for a given contract, an indication of a

strategy to use in order to prove its validity.

This seemingly simple feature is of major value to the effort at hand: bringing domain-

specific knowledge down to the code requires to be able to express facts, but also to provide

reasons for these facts, especially if one intends to make the subsequent verification process

automatic.

For example, the syntax in Figure 28 signals Frama-C to use the strategy AffineEllipsoid

to prove the correctness of the local contract considered. This strategy refers to the useful

result of (37), which makes the contract in question all but trivial.
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/*@ requires in_ellipsoidQ(Q1,vect_of_2_scalar(v_1,v_2));
@ ensures in_ellipsoidQ(Q2,vect_of_3_scalar(v_1,v_2,v_3));
@ PROOF_TACTIC(use_strategy (AffineEllipsoid)); */

{ // assignment of v_3
}

C+ACSL

Figure 28: Example of the ACSL extension for proof strategies.

/*@ logic matrix Q = mat_of_2x2_scalar(1.53,10.0,10.0,507);
@ assert in_ellipsoidQ(Q,vect_of_2_scalar(v_1,v_2)); */

ACSL

Figure 29: Annotation asserting that a vector is in an ellipsoid.

3.4 Using the Library

In order to illustrate the expressivity power of the ACSL symbols presented, a number

of examples of their use in the expression of key control properties, for various types of

systems is now presented.

3.4.1 Key Constructs in the Annotation Process

Equipped with the axiomatized library, one can now express that the vector composed of

program variables v1 and v2 is in the set GQ where Q =

1.53 10.0

10.0 507

, using annotations in

Figure 29.

The invariance of ellipsoid GQ throughout any program execution can be expressed by

the loop invariant in Figure 30. Within the loop, each line of code is annotated with a local

contract, as in Figure 31.

3.4.2 Lyapunov Stability of a Linear System

We begin once again with an unforced system which, although unrealistic in an embedded

setting, will give the reader a feel of how the ACSL linear algebra library can be used to
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//@ loop invariant in_ellipsoidQ(Q,vect_of_2_scalar(v_1,v_2));
while (true){
//loop body
}

C+ACSL

Figure 30: Example of an ACSL annotation expressing an ellipsoidal invariant.

/*@ requires in_ellipsoidQ(Q,vect_of_2_scalar(v_1,v_2));
@ ensures in_ellipsoid(Q’,vect_of_3_scalar(v_1,v_2,v_3));*/

{
// assignment of v_3
}

C+ACSL

Figure 31: Example of a local ACSL contract, or Hoare triple.

annotate a program with its control semantics. The program computes the update for the

discrete linear system xk+1 =

.4990 −0.05

0.01 1.0

 xk, for which a valid invariant ellipsoid GQ,

found using a method described in Section 2.2.1, is given by Q = 103

 1.4849 −0.0258

−0.0258 0.4061

.
The fully annotated version can be seen in Figures 32 and 33.

Remarks Note that this is only the update function, and it needs to be called within a

loop in order to implement the discrete system. We focus, in this work, on showing the

preservation of properties by the update function of the controller, as this is equivalent

to showing that these properties will be inductive invariants on a loop calling the update

function.

Note also, that as the dimension of the state-space increases, the number of annotations

rapidly explodes. Some fully annotated examples of actual controllers are shown in Ap-

pendix B, but within this section and in subsequent examples the focus will be on showing

how to use specific features of ACSL and the linear algebra library to handle the expression
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#include "base.h"

/*@ logic matrix QMat_0 =mat_of_2x2_scalar(1.4849e3,-.0258e3,-.0258e3,
0.4061e3);

@ logic matrix QMat_1 = mat_mult(
mat_mult(
mat_of_3x2_scalar(1.,0.,0.,1.,1.,0.),
QMat_0),
transpose(mat_of_3x2_scalar(1.,0.,0

.,1.,1.,0.)));
@ logic matrix QMat_2 = mat_mult(

mat_mult(
mat_of_3x3_scalar(0.,-0.05,0.499,
0.,1.,0.,0.,0.,1.),

QMat_1),
transpose(mat_of_3x3_scalar(0.,-0.05,0
.499,

0.,1.,0.,0.,0.,1.)));
@ logic matrix QMat_3 = mat_mult(

mat_mult(mat_of_2x3_scalar(1.,0.,0.,
0.,1.,0.01),

QMat_2),
transpose(mat_of_2x3_scalar(1.,0.,0.,

0.,1.,0.01)));*/

C+ACSL

Figure 32: Annotated program describing the linear update of state variables (Part 1).

of various control properties.

Finally, it is important to remember that the process shown here is not meant to be a

manual one: this expressivity framework has been developed with the specific purpose of

being used within an autocoding environment. As such, readability is at times sacrificed for

functionality.

Walking through the example We turn our attention to the first part of the linear system

under consideration. In Figure 32, the file “base.h” is first included. It contains the linear

algebra library described in Section 3.3.2. Then, 4 matrices describing 4 ellipsoids at various

stages of the update function are defined. The actual code of the function is shown in

Figure 33. There, an outer function contract describes how the state of the system remains in
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/*@ requires (\valid(xc + (0..1)));
@ requires in_ellipsoidQ(QMat_0,vect_of_2_scalar(xc[0],xc[1]));
@ ensures in_ellipsoidQ(QMat_0,vect_of_2_scalar(xc[0],xc[1]));

*/
void inst_compute(float* xc){
float xc_0;
/*@
behavior EllipsoidMain_1:
requires in_ellipsoidQ(QMat_0,vect_of_2_scalar(xc[0],xc[1]));
ensures in_ellipsoidQ(QMat_1,vect_of_3_scalar(xc[0],xc[1],xc_0));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/
{
xc_0= xc[0];
}
/*@
behavior EllipsoidMain_2:
requires in_ellipsoidQ(QMat_1,vect_of_3_scalar(xc[0],xc[1],xc_0));
ensures in_ellipsoidQ(QMat_2,vect_of_3_scalar(xc[0],xc[1],xc_0));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/
{
xc[0]= .4990*xc_0 - 0.05*xc[1];

}
/*@
behavior EllipsoidMain_3:
requires in_ellipsoidQ(QMat_2,vect_of_3_scalar(xc[0],xc[1],xc_0));
ensures in_ellipsoidQ(QMat_3,vect_of_2_scalar(xc[0],xc[1]));
PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/
{
xc[1]= 0.01*xc_0 + 1.0*xc[1];

}
/*@
behavior EllipsoidMain_4:
requires in_ellipsoidQ(QMat_3,vect_of_2_scalar(xc[0],xc[1]));
ensures in_ellipsoidQ(QMat_0,vect_of_2_scalar(xc[0],xc[1]));
PROOF_TACTIC (use_strategy (PosDef));

*/
{

}
}

C+ACSL

Figure 33: Annotated program describing the linear update of state variables (Part 2).
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the ellipsoid GQMat0 . The keyword \valid simply indicates that the pointer xc is correctly

allocated and points to an array of size 2. Note that the body of the function only contains

allocations of linear combinations of the variables. Equation (37) describes how to transform

each ellipsoid into the next, thus the tactic AffineEllipsoid can be used for most of the

contracts. Only the final contract, which stipulates that the propagated ellipsoid GQMat_3 is

included in the initial ellipsoid GQMat_0, uses a different tactic. Indeed, to perform this check,

one can look at the positive-semidefiniteness of matrix QMat_0 − QMat_3. This is what the

tactic PosDef suggests our proving mechanism to do.

3.4.3 Bounded-Input, Bounded-State Stability of a Linear Controller

We now gradually introduce more and more complex properties and systems handled by

this expressivity framework. In this section, the expression of a useful result on an actual

controller with inputs and outputs is discussed. The example system under consideration

is the lead-lag controller introduced in Section 2.2.4.3. Using the method suggested in

Section 2.2.3, nonnegative numbers λ and µ, and a positive definite matrix P are found such

that, for all x ∈ R2, u ∈ R:
AT

c PAc − λP AT
c PBc 0

BT
c PAc BT

c PBc − µIm 0

0 0 1 − λ − µ

 � 0.

For the running example, λ = 0.9991, µ = 1 − λ, and P = 103

0.6742 0.0428

0.0428 2.4651

 are

appropriate. If such values exist, one can not only conclude on the input-to-state (and thus

BIBO) stability of the controller, but also use Q = P−1 and λ to annotate its implementation

with the inductive invariant xk ∈ GQ. For this, the following formulation of the S-Procedure

result, adapted to the Q-form of an ellipsoid, is used: given 2 vectors x and y in Rn and

Rm respectively, 2 positive coefficients λ1, λ2 such that λ1 + λ2 ≤ 1, and 2 matrices Q1,Q2,
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positive semidefinite, and of appropriate dimension:

x ∈ GQ1 ∧ y ∈ GQ2 =⇒
x

y

 ∈ GQ,Q =

Q1/λ1 0

0 Q2/λ2

. (38)

The proof of this known result is recalled in Chapter 4. This relaxation technique enables the

combination of 2 ellipsoids. It is typically used here to combine the ellipsoid information on

the input with that of the state. The fully annotated code of the controller given here is shown

in Appendix B. In Figure 34, only the Hoare triple where this combination operation occurs

is shown: indeed the rest of the program is annotated similarly as the one in Section 3.4.2.

Note that the contract is written for an empty block of code: recall that this is a simple trick

in order to weaken a precondition (i.e., replace it with a precondition that is implied by it).

Note also, that this relaxation occurs just before the control output is computed, that is, the

first time in the program that a linear combination involving input and state appears (the

controller state update occurs later).

3.4.4 Closed-Loop Stability of a Linear Controller Interacting with a Linear System

In order to go beyond BIBO-stability, and into the realm of closed-loop properties, that is,

properties pertaining to the behavior of a controller in its interaction with a plant whose

mode is known, it is necessary to introduce this model into the annotations. The most

accurate way to do so would require a hybrid system representation, given that the plant

is commonly a continuous system, while the digital controller is a discrete one. A large

body of work is devoted to proving meaningful properties of hybrid systems. It is a very

difficult task, because even simple properties have been shown to be undecidable on a large

class of hybrid systems. In order to obtain actionable results, on which proof can be carried

out, we made the choice of representing the plant as a linear system, discretized at the same

period as the controller. To achieve this, we use ACSL ghost code feature. For each state

variable in the plant, a global ghost variable is introduced. Within the update function of the

controller, ghost code describing the state update resulting from the control output is added.
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/*@logic matrix QMat_20 = block_m(mat_scalar_mult(1.00090082,QMat_19),
@ zeros(6,2),zeros(2,6),mat_scalar_mult(1111.1,QMat_18)); */

...

/*@ behavior EllipsoidMain_9:
@ requires in_ellipsoidQ(QMat_18,vect_of_2_scalar(Sum4,D11));
@ requires in_ellipsoidQ(QMat_19,vect_of_6_scalar(xc_1,xc_2,
@ Integrator_1,C11,Integrator_2,Sum3));
@ ensures in_ellipsoidQ(QMat_20,vect_of_8_scalar(xc_1,xc_2,

Integrator_1,C11,Integrator_2,Sum3,Sum4,D11));
@ PROOF_TACTIC (use_strategy (SProcedure)); */

{

}
/*@ behavior EllipsoidMain_10:
@ requires in_ellipsoidQ(QMat_20,vect_of_8_scalar(xc_1,xc_2,
@ Integrator_1,C11,Integrator_2,Sum3,Sum4,D11));
@ ensures in_ellipsoidQ(QMat_21,vect_of_9_scalar(xc_1,xc_2,
@ Integrator_1,C11,Integrator_2,Sum3,
@ Sum4,D11,control_output));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid)); */

{
control_output = D11 + C11;

}

C+ACSL

Figure 34: Program step using the S-procedure to obtain a relaxed combination of 2
ellipsoids in order to keep the propagation possible. Variable names have been changed for
the sake of readability. The definition of matrix QMat_20 is also given for completeness.
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A template of the structure of the code is given in Figure 35. Note that, since the resulting

system remains linear (of a higher order), the annotation procedure described in the previous

subsection is unchanged. Simply, some variables in the ellipsoids are now ghost variables,

and others are actual code variables.

3.4.5 Closed-Loop Stability of a Non-Linear Controller Interacting with a Linear
System under the Absolute Stability Framework

The culmination of this expressivity work, is the expression of the stability of a system

with a sector-bounded non-linearity. In order to show stability of such a system under the

framework, one needs to be able to annotate the non-linearity with a sector bound. We

present an example where the non-linearity is a simple unit saturation. In general, individual

tactics are required for different types of non-linearities.

Recall the example closed-loop system given in Section 2.2.4.3:

xk+1 = Axk + BSAT(yk − yd,k), (39)

yk = Cxk, (40)

where A, B, and C were defined in (27), yd,k is an external command input, and yk is

the output of the plant interacting with the controller. Recall from Section 2.2.4.3 that

nonnegative coefficients λ, µ, and ν, as well as a positive definite matrix P were obtained,

such that, as in (38):

U − λV − µW− νY � 0,

where

U :=



ATPA ATPB 04×1 04×1

BTPA BTPB 0 0

01×4 0 0 0

01×4 0 0 −1


,V :=



P 04×1 04×1 04×1

01×4 0 0 0

01×4 0 0 0

01×4 0 0 −1


,
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/*@ ghost REAL xp_0;
@ ghost REAL xp_1;
@ ...
@ ghost REAL xp_0_tmp;
@ ghost REAL xp_1_tmp;
@ ...*/

/*@ requires in_ellipsoidQ(Q,vect_of_n_scalar(xc[0],
xc[1],...,xp_0,xp_1,...));

@ ensures in_ellipsoidQ(Q,vect_of_n_scalar(xc[0],
xc[1],...,xp_0,xp_1,...));

*/
void update_fun(t_example_io *_io_, t_example_state *xc){
...
/*@ requires pre_i
@ ensures post_i
@ PROOF_TACTIC (use_strategy ( strategy_i ) )*/

{
// instruction i;
}
...
/*@ behavior Plant_N:

requires in_ellipsoidQ(QMat_N,vect_of_m_scalar(xc[0],xc[1],
...,xp_0,xp_1,...,u));

ensures in_ellipsoidQ(QMat_{N+1},vect_of_n_scalar(xc[0],xc[1],
...,xp_0,xp_1,...));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));*/
{

/*@
ghost xp_0_tmp = xp_0;;
ghost xp_1_tmp = xp_1;;
... */

/*@
ghost xp_0 = a_11 * xp_0_tmp + a_12*xp_1_tmp +.. + b1*u;;
ghost xp_1 = a_21 * xp_0_tmp + a_22*xp_1_tmp +.. + b2*u;;
...*/

}
/*@ behavior Plant_{N+1}:
requires in_ellipsoidQ(QMat_{N+1},vect_of_n_scalar(xc[0],xc[1],

...,xp_0,xp_1,...));
ensures in_ellipsoidQ(Q,vect_of_n_scalar(xc[0],xc[1],

...,xp_0,xp_1,...));
@ PROOF_TACTIC (use_strategy (PosDef));

*/
{

}
}

C+ACSL

Figure 35: Template of the update function with added plant semantics in ghost code.
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W :=



2
γ̃
CTC −

(
1 + 1

γ̃

)
CT − 2

γ̃
CT 04×1

−
(
1 + 1

γ̃

)
C 2 1 + 1

γ̃
0

− 2
γ̃
C 1 + 1

γ̃
2
γ̃

0

01×4 0 0 0


,Y :=



04×4 04×1 04×1 04×1

01×4 0 0 0

01×4 0 1 0

01×4 0 0 −0.52


.

which implies xT
k Pxk ≤ 1 for all k ∈ N. To understand the following annotation process

better, note the following.

• The inequality V � 0 encodes the fact that xk is initially in EP, and its associated

coefficient is λ.

• The inequalityW � 0 encodes the sector-bounded non-linearity information on SAT,

and its associated coefficient is µ.

• The inequality Y � 0 encodes the bound on yd,k, and its associated coefficient is ν.

We can now use Q = P−1 to proceed with the annotation process. We begin from x ∈ GQ

and can immediately use the fact that y = Cpx to write
[
x y

]T
∈ GR with

R =

 I4[
01×2 Cp

]
 Q

 I4[
01×2 Cp

]


T

.

This being a direct consequence of (37). We can also use a relaxation with the coefficients

given by λ and ν to combine the resulting ellipsoid with the constraint on yd, y2
d ≤ 0.25 or,

in Q-form, yd ∈ G0.25, according to (38):
xT

y

yd

 ∈ GS , S =

R/λ 0

0 0.25/ν

 .
We are now ready to annotate the non-linear part of the code: a postcondition for y_c = sat

(y-y_d); is the sector bound obtained as follows: with y − yd being a linear combination

of the states in GS , the following useful result holds:

∀c ∈ Rn, x ∈ GS =⇒ |cTx| ≤
√

cTS c. (41)
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Indeed,

y − yd =

[
0 0 0 0 1 −1

] [
xT y yd

]T
,

and thus, letting c =

[
0 0 0 0 1 −1

]T
, and d =

√
cTS c, the following valid sector

bound involving yc = SAT(y − yd) holds:

(yc − (y − yd))(yc − 1
d

(y − yd) ≤ 0.

or, in matrix form,

x

y

yd

yc



T

G



x

y

yd

yc


≤ 0,G =


ccT

d −1+ 1
d

2 cT

−1+ 1
d

2 c 1

 =

c 0

0 1




1
d −1

2
d+1

d

−1
2

d+1
d 1

︸              ︷︷              ︸
g

c 0

0 1


T

.

The ACSL predicate neg_quad(matrix G, vector x) is introduced for the occasion

and simply represents the quadratic inequality xTGx ≤ 0. Finally, one more relaxation step

enables the combination of said inequality with the current ellipsoid. It stems from the

following lemma:

Lemma 2 Let c, x ∈ Rm be two vectors, z ∈ R a number, Q ∈ Rm×m a positive semidefinite

matrix, and µ a positive coefficient. Assume cTQc > 0. Define:

d =
√

cTQc, g =


1
d −1

2
d+1

d

−1
2

d+1
d 1

 .
Then, if 4 − µ(d − 1)2︸          ︷︷          ︸

D

> 0, the following holds.

• The matrix


1
d2 0

0 0

 + µg is invertible. Denote its inverse h.

• The implication x ∈ GQ ∧
x

z


T c 0

0 1

 g

c 0

0 1


T x

z

 ≤ 0 =⇒
x

z

 ∈ GH holds, where
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/*@ logic matrix QMat_3 = block_m(mat_scalar_mult(1/0.9844,QMat_2),
@ zeros(5,1),zeros(1,5),mat_scalar_mult(1/0.0601,QMat_0));
@ logic vector c = vect_of_6_scalar(0.0,0.0,0.0,-1.,1.);
@ logic real d = \sqrt(dot_prod(c,vect_mult(Q,c)));
@ logic matrix GMat_0 =
@ mat_mult(block_m(v2ml(c,6),zeros(6,1),zeros(1,1),eye(1)),
@ mat_mult(mat_of_2x2_scalar(1/d,-(d+1)/(2*d),-(d+1)/(2*d),1),
@ transpose(block_m(v2ml(c,6),zeros(6,1),zeros(1,1),eye(1)))
@ logic matrix QMat_4 = ell_neg_quad_comb(QMat3,c,0.0235);*/

...

C+ACSL

Figure 36: Relevant part of annotated code for closed loop stability in the absolute sta-
bility problem. Names of variables have been changed for the sake of readability. Part 1:
introduction of variables.

matrix H is defined by

H =

Q −
QccTQ
cTQc 0

0 0

 +


Qc

cTQc 0

0 1

 h


Qc

cTQc 0

0 1


T

The proof of this lemma is given in Chapter 4. Thus the coefficient µ computed earlier

can be used, and the lemma applied with S standing for Q to obtain a single ellipsoid after

the non-linearity. Figures 36 and 37 show the relevant parts of the annotated code. The H

construct is axiomatized in ACSL with the symbol matrix ell_neg_quad_comb(matrix

Q, vector c, real mu).

3.4.6 Application to Fault Detection and Gain-Scheduled Controllers

The library can be used to express properties other than pure control. For example, it is

well suited for use in a fault detection context. The premise is as follows: a linear dynamic

system to control is given, for which 2 models exist: a faulty one, and a nominal one. the

code for a controller in such a setting can be annotated to show that both the faulty plant and

the nominal plant cannot destabilize a given observer. We will not show examples of code in

this section, as the resulted annotated code (recall we are working in an autocoding context)

becomes quickly unreadable by a human. However, the basic ACSL features that enable the
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/*@ requires y == 1.0 * xp_0;
@ requires in_ellipsoidQ(Q_Mat_0,vect_of_1_scalar(yd));
@ requires in_ellipsoidQ(Q_Mat_1,vect_of_4_scalar(xc_0,xc_1,
@ xp_0,xp_1));
@ ensures in_ellipsoidQ(Q_Mat_1,vect_of_4_scalar(xc_0,xc_1,
@ xp_0,xp_1));
*/
void update_fun(REAL* xc_0, REAL* xc_1, REAL* yd, REAL* y){
/*@ behavior Plant_0:
@ requires in_ellipsoidQ(QMat_1,vect_of_4_scalar(xc_0,xc_1,
@ xp_0,xp_1));
@ ensures in_ellipsoidQ(QMat_2,vect_of_5_scalar(xc_0,xc_1,
@ xp_0,xp_1,y));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid)); */
{ }
/*@ behavior Plant_1:
@ requires in_ellipsoidQ(QMat_0,vect_of_1_scalar(yd));
@ requires in_ellipsoidQ(QMat_2,vect_of_5_scalar(xc_0,xc_1,
@ xp_0,xp_1,y));
@ ensures in_ellipsoidQ(QMat_3,vect_of_6_scalar(xc_0,xc_1,
@ xp_0,xp_1,y,yd));
@ PROOF_TACTIC (use_strategy (SProcedure)); */
{ }
...
/*@ behavior Plant_10:
@ requires in_ellipsoidQ(QMat_3,vect_of_6_scalar(xc_0,xc_1,
@ xp_0,xp_1,y,yd));
@ ensures in_ellipsoidQ(QMat_3,vect_of_6_scalar(xc_0,xc_1,
@ xp_0,xp_1,y,yd));
@ ensures neg_quad(GMat_0,vect_of_7_scalar(xc_0,xc_1,xp_0,
@ xp_1,y,yd,yc));
@ PROOF_TACTIC(use_strategy(SatSectBound)); */
yc = sat(y-y_d);
/*@ behavior Plant_11:
@ requires in_ellipsoidQ(QMat_3,vect_of_6_scalar(xc_0,xc_1,
@ xp_0,xp_1,y,yd));
@ requires neg_quad(GMat_0,vect_of_7_scalar(xc_0,xc_1,
@ xp_0,xp_1,y,yd,yc));
@ ensures in_ellipsoidQ(QMat_4,vect_of_7_scalar(xc_0,xc_1,
@ xp_0,xp_1,y,yd,yc));
@ PROOF_TACTIC(use_strategy(EllNegQuadComb)); */
{}

C+ACSL

Figure 37: Relevant part of annotated code for closed loop stability in the absolute stability
problem. Names of variables have been changed for the sake of readability. Part 2: code
structure.
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expression and propagation of 2 sets of ellipsoids for the 2 plant models are the behaviors:

indeed we can use 2 behaviors in the function contract to express the 2 stable ellipsoids

under the different plant models. Within the function, in order to distinguish between these 2

propagations, the keyword for followed by the name of a function behavior will specifically

express that the following contract only holds under the assumptions made for the specified

behavior.

Similarly, a gain scheduled linear controller can be represented using a different behavior

for each underlying linear system. Should a common Lyapunov function exist for such a

system, the ellipsoid propagation can be carried out independantly for each possible value

of the gains. Once again, the process generates n contracts for each line of code, where n is

the number of linear systems the gain scheduled controller can switch between. This makes

the size of the annotated file explode quickly.

3.5 Conclusion and Perspectives

We have defined a library of ACSL symbols which can be used to express the stability

of a number of different types of systems. It can be extended in many directions: in the

problem of absolute stability, there is no generic way to extract a sector bound from an

unknown non-linearity: more work is needed to support more non-linearities of interest. The

choice of ACSL was made because of the existence of tools which enabled the subsequent

developments of this work, but there are many possible developments of the tools to create a

more expressive ACSL. In particular the lack of support for arrays makes the annotation

process considerably heavier than it could be. The first-order logic limitation creates issues

when working with more expressive backends such as theorem provers. Nevertheless, this

is, to our knowledge, the first formal annotation environment supporting the expression of

control properties at the level of the code. Combined with an appropriate proof backend,

which can soundly decide on the validity of the annotations shown throughout this chapter,

it demonstrates the feasability of the credible autocoding framework and offers the promise
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of a faster safety-critical software development cycle with higher safety guarantees.
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Chapter IV

A LIBRARY OF MACHINE-PROVEN LINEAR ALGEBRA AND

CONTROLS RESULTS

Verification and Validation (V&V) activities for safety-critical software currently involve

a great deal of manual proof-reading of their documentation, cross-checking it against the

code, and heavy amounts of simulations. As regulations become tighter and aircraft designs

become more and more complex, the costs involved in this approach to V&V have become

prohibitive, and already represent more than 50% of a whole aircraft development cost.

In this chapter, we discuss ways of machine-verifying the formal annotations presented

in Chapter 3. We introduce the notion of theorem prover in Section 4.1. We present our

approach to extending one such theorem prover, PVS, with results from linear algebra in

Section 4.2, and results from control theory, in Section 4.3.

4.1 Interactive Theorem Provers

Interactive theorem provers, also named proof assistants, are software tools that usually

consist of a language to express mathematical constructs and properties, and an environment

to interactively prove theorems. Based on existing axioms and definitions, the interactive

prover checks the validity of the proof steps provided by a human user. Their automated

counterparts, SAT and SMT solvers, use heuristics to attempt to automatically discharge

proofs, but are not guaranteed to succeed in finite time, especially for the type of domain-

specific, high-level, functional properties this research is invested in proving. The power of

theorem provers lie in their soundness: proofs can only be made using the axioms provided

by the system. As long as the axiom basis is a widely accepted, minimal set of mathematical

results, any new result is assured to be valid. Theorem provers usually provide a high level
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of expressivity, in the form of higher-order logic: unlike in ACSL and most SAT and SMT

solvers languages, one can write quantified formulas over sets and functions.

PVS is one such proof assistant [52, 53], and the one used in this research. PVS is a

specification language. A specification consists of a collection of theories, which contain

type definitions, operations on these types, axioms, and theorems. Axioms are considered

defining features and do not require a proof. Thus, they must be introduced with care in

order not to break the proof system. Theorems have the same syntax as an axiom, but PVS

expects a proof for them, using existing, proven results, and axioms. The language has a

powerful type checker, which generates verification conditions anywhere a function is called

to make sure its arguments are of the proper type. An interactive mode enables the user to

provide proof for these verification conditions, as well as all theorems. In the following, we

present the language features and the interactive proof environment.

4.1.1 The Prototype Verification System: Syntax and Semantics

Some of the most commonly used PVS symbols are now introduced. This section is in no

way an exhaustive presentation of the PVS grammar and semantics, simply an introduction

for following developments. PVS specifications are organized in theories introduced by the

keyword THEORY.

4.1.1.1 Types and dependent types

In ACSL, and generally in commonly used programming languages, type systems do not

permit dependent types. That is, one cannot define a type T that would vary according to a

parameter. The reason programming languages do not allow this is because it makes the

problem of deciding the type of all variables undecidable. In PVS, it is accepted that the

user can provide input, including in the typechecking process. Thus, dependent types are

allowed.

Within a theory, types can be defined using the keyword TYPE. PVS has a rich set of

options for introducing new types, of which here are a few examples:
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• B,R,R+,R+∗,N,N∗ are all defined by default (respectively as bool, real, posreal,

nnreal, nat, posnat).

• If T1 and T2 are types, then [T1 ->T2] is the set of functions from T1 to T2

• if f? : T1 7→ B is a predicate on T1 (predicate names are traditionally followed by a ?

in PVS), then (f?) is the subtype of T1 of those elements which verify f?.

• The natural mathematical notation, { x : T1 | f?(x)} is also available.

• Records are the equivalent of C structures: they group together named variables of

potentially different types into a single one. For example, [\# length : posnat

, vect : [below(length)->real] \#] could be one way of defining a vector,

with one value of the record being its length, and the other a function returning a given

element.

When it is unable to decide on the correctness or consistency of types in a theory, PVS

creates what are called Type-Correctness Conditions (TCC). They are small theorems which

must be proven, before anything else in the theory, to ensure it is consistent and properly

expressed.

Theories can be parameterized by a type or constant to make them generic: for example,

a theory on vector spaces could be parameterized by the underlying scalar field. Several

results that apply for generic fields can then be expressed together at once. The theory of

real vectors in the NASA library, for example, is parameterized by the length of the vector,

simply by introducing it like this: vectors[n: posnat] : THEORY.

4.1.1.2 Defining functions and constants

A declaration follows the pattern Name(T1 arg1, T2 arg2,...):TYPE(=definition)

; There can be uninterpreted symbols and types, hence the optional nature of the definition.

Functions can be defined using the classic lambda abstraction [54]. For example a squaring

function can be defined in both of these equivalent ways:
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square1(x: real) : real = x*x;
square2 : [real -> real] = LAMBDA (x:real) : x*x

PVS

4.1.1.3 Axioms, Lemmas and Theorems

The keyword AXIOM introduces a boolean formula that is assumed to be true, to be used as a

basis for other developments. The theories developed in this chapter are devoid of axioms,

since they only use some fundamental axioms already available in the PVS standard library.

The keywords LEMMA and THEOREM interchangeably introduce a boolean formula, which

is claimed by the user to be true. PVS requires proof of such claims. For example, one could

write the following (and would be in for some trouble):

Fermat: THEOREM FORALL (x,y,z : nzreal, n:posnat):
n>2 IMPLIES NOT z^n = x^n + y^n ;

PVS

Note the introduction of nzreal, the type of non-zero reals, as well as the self explana-

tory FORALL (∀), IMPLIES ( =⇒ ) and IFF (⇐⇒ ).

4.1.2 The PVS Proof Environment

A PVS proof consists in the manipulation of a sequent of formulas, as shown in Figure 38.

The horizontal line separates the hypotheses (on top) from the proof objectives (at the

bottom). The sequent is considered valid when it is established that A1 ∧ A2 ∧ A3 =⇒
B1 ∨ B2 ∨ B3. The initial sequent, when trying to prove formula A, is simply:

| − − − −

[1] A

The whole proof process consists in manipulating the sequent, either by invoking existing

lemmas to add to the hypotheses, or by manipulating the formula (instantiating quantifiers,
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[−1] A1

[−2] A2

[−3] A3

...

| − − − −
[1] B1

[2] B2

[3] B3

...

Figure 38: A typical PVS proof sequent.

splitting multiple proof objectives,...) until its truth is made trivial. For example, if one Ai

equals one B j, the sequent is trivially valid.This is also true if one of the proof objectives

is TRUE or one of the hypotheses is FALSE. This fact exacerbates the need for care when

creating axioms: an axiom that can be proven false will make it possible to validate any

sequent. Note that there are, embedded in PVS, complex decision procedures that enable it to

conclude on the validity of a sequent for more elaborate cases than the ones just mentioned.

4.2 Linear Algebra Library in PVS

In this section, we introduce the linear algebra theories that were developed in PVS to

support the proof of the annotated programs shown in Chapter 3.

4.2.1 Types and Constructors

The Matrix type is introduced as a record type containing the dimensions of the matrix,

and a function which returns its elements, given a row and column index:

Matrix: TYPE = [# rows: posnat, cols: posnat,
matrix: [below(rows), below(cols) -> real] #]

PVS
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M2Block(m,n,p,q)(A: Mat(m,p),B: Mat(n,p),C: Mat(m,q),D: Mat(n,q)):
Block_Matrix =
(# rows1 := A‘rows,rows2 := B‘rows,
cols1 := A‘cols,cols2 := C‘cols,

matrix :=
LAMBDA (i: below(A‘rows + B‘rows), j: below(A‘cols + C‘
cols)):

IF i < A‘rows THEN
IF j < A‘cols THEN A‘matrix(i,j)
ELSE C‘matrix(i,j - A‘cols)

ENDIF

ELSE IF j < A‘cols THEN B‘matrix (i - A‘rows,j)
ELSE D‘matrix(i - A‘rows,j - A‘cols)

ENDIF
ENDIF
#)

PVS

Figure 39: Block matrix definition in PVS.

The subtype Mat(m,n) represents matrices of given dimensions:

Mat(m, n): TYPE = {M: Matrix | M‘rows = m and M‘cols = n}

PVS

Similarly, the Block_Matrix type, which implements 2 × 2 block matrices, is defined as a

record containing the 4 necessary dimensions, and an access function:

Block_Matrix: TYPE = [# rows1: posnat,rows2: posnat,cols1: posnat,
cols2: posnat,matrix: [below(rows1 + rows2),

below(cols1 + cols2) -> real] #]

PVS

Naturally, the constructor of interest for block matrices is one that takes 4 matrices and

returns the resulting block matrix shown in Figure 39. Typical matrix constructors are

defined, such as the identity matrix (I(n:posnat)), the zero matrix (Zero_mat(m,n:

posnat)), and conversion symbols are introduced to make the link between block matrices
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and matrices. The reader should be aware of a possible confusion: while in ACSL, block_m

(A,B,C,D) corresponds to

A B

C D

, in PVS, M2Block(m,n,p,q)(A,B,C,D) corresponds

to

A C

B D

.
4.2.2 Operators and Subtypes

The traditional matrix operations are introduced: transposition (transpose(Matrix A)),

sum (+(A: Matrix, B:(sameDim?(A)))), multiplication by a scalar (*(A:matrix, r:

real)), matrix product (*(A:Matrix, B: { M:Matrix | M‘rows =A‘cols}), etc.

Note the fundamentally more powerful expressiveness available here: these operators

are defined on subtypes, so that trying to add matrices of different dimensions is not just

undefined: it would constitute a type error that would be caught by PVS. This removes

some of the difficulties encountered in ACSL.

Some useful subtypes are defined based on predicates: square matrices ((square?)),

square matrices of a given dimension ((SquareMat?(n:posnat))), symmetric matrices

((symmetric?)), positive semidefinite matrices ((semidef_pos?)), etc.

It should be mentionned that this library is built on top the NASA PVS library, which

contained a number of useful preliminaries. In particular, a very complete theory on vectors,

and one on summation symbols, were used heavily.

4.2.3 Some Useful Results

More than 100 lemmas were written to facilitate the proving process of theorems of interest.

They establish the associativity, commutativity, and distributivity among the various opera-

tors. They express results on matrix dimensions in a simple form, which enables PVS to

automatically solve a number of typechecking issues regarding proper dimensions. They

provide simplification strategies when identity and zero matrices are involved. Appendix C
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lists them all. Some notable results on positive semidefinite matrices are given here:

∀m, n ∈ N∗A ∈ Rn×n,N ∈ Rm×n, A � 0 =⇒ NANT � 0, (42)

or, in PVS:

semidef_qua_trans:LEMMA FORALL(A:(square?),
N:{M:Matrix|M‘cols=A‘rows}):

semidef_pos?(A) IMPLIES semidef_pos?(N*A*transpose(N))

PVS

The convex conicity properties of the set of positive semidefinite matrices:

∀n ∈ N∗, A ∈ Rn×n, a ∈ R+, A � 0 =⇒ aA � 0, (43)

and

∀n ∈ N∗, A, B ∈ Rn×n, A � 0 ∧ B � 0 =⇒ A + B � 0, (44)

or, in PVS:

semidef_scal: LEMMA FORALL (a:posreal, A:(semidef_pos?)):
semidef_pos?(a*A);

semidef_sum: LEMMA FORALL (A:(square?), B:(same_dim?(A))):
semidef_pos?(A) AND semidef_pos?(B)
IMPLIES semidef_pos?(A+B);

PVS

4.3 Control Semantics in PVS

In Chapter 3, we introduced the notion of proof tactic. These keywords, added to ACSL

contracts, can give clues as to the way of proving the validity of a Hoare triple. In this

section, we introduce the major theorems, proven in PVS, which support the application of

each tactic.

Note the introduction of the in_ellipsoid_Q? predicate, expressing that a vector x

belongs to an ellipsoid GQ and defined as in Figure 40.
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in_ellipsoid_Q?(n:posnat, Q:SquareMat(n), x:Vector[n]): bool =
semidef_pos?(Q) AND
symmetric?(Q) AND
semidef_pos?(Block2M(M2Block(1,n,1,n)

(I(1),transpose(V2Ml(n,x)),V2Ml(n,x),Q)))

PVS

Figure 40: Definition of in_ellipsoid_Q? in PVS.

ellipsoid_general: THEOREM
FORALL (n:posnat,m:posnat, Q:SquareMat(n),

M: Mat(m,n), x:Vector[n], y:Vector[m]):
in_ellipsoid_Q?(n,Q,x)
AND y = M*x

IMPLIES
in_ellipsoid_Q?(m,M*Q*transpose(M),y)

PVS

Figure 41: Theorem describing the transformation of an ellipsoid by a linear map in PVS.

4.3.1 Affine Ellipsoid Combination

Recall the result in Equation (37), valid for any positive semidefinite matrix X:

∀x ∈ Rn, y ∈ Rm,M ∈ Rmxn : x ∈ GX ∧ y = Mx =⇒ y ∈ GMXMT .

Its equivalent in PVS is shown in Figure 41. Note that the paper proof of this result is quite

simple: it results from applying Equation (42) to A =

1 xT

x X

 and N =

1 0

0 M

. However,

many underlying assumptions are made when writing this mathematical statement, and PVS

must be given a very detailed, step-by-step walkthrough of this proof. Overall, above 300

proof steps were used to prove this result.

This theorem is the main necessary result to prove the validity of contracts annotated

with the proof tactic AffineEllipsoid.
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4.3.2 Ellipsoid Combination through S-Procedure Relaxation

Recall the result in Equation (38), valid for any x ∈ Rn, y ∈ Rm, λ1, λ2 ∈ R+∗ such that

λ1 + λ2 ≤ 1, Q1 and Q2 positive semidefinite matrices of appropriate dimensions:

x ∈ GQ1 ∧ y ∈ GQ2 =⇒
x

y

 ∈ GQ,Q =

Q1/λ1 0

0 Q2/λ2

.
This theorem proves the validity of the relaxation step known as S-Procedure for ellipsoids

in the Q-form. Its PVS equivalent is shown in Figure 42. An outline of the proof is given in

the following, however we begin with a lemma:

Lemma 3 Given a vector x ∈ Rn, a positive semidefinite matrix Q ∈ Rn×n, and a real

number µ ≥ 1, the following holds:

x ∈ GQ =⇒ x ∈ GµQ.

Proof 2 The proof is obtained by using the definition of positive semidefiniteness: by

hypothesis, x ∈ GQ, i.e.,

1 xT

x Q

 � 0, or:

∀z ∈ R, t ∈ Rn, z2 + 2ztTx + tTQt ≥ 0. (45)

We are trying to show x ∈ GµQ, in other words:

∀z ∈ R, t ∈ Rn, z2 + 2ztTx + µtTQt ≥ 0. (46)

This is an obvious consequence of Equation (45), since µ ≥ 1 combined with Q � 0 makes

the left hand side of Equation (46) always greater than or equal to the left hand side of

Equation (45).

The proof of this lemma was also entered in PVS, and required about 500 proof steps. We

now prove the main result as follows:
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ellipsoid_combination: THEOREM
FORALL (n,m:posnat, lambda_1, lambda_2: posreal, Q_1: Mat(n,n),

Q_2: Mat(m,m), x:Vector[n], y:Vector[m], z:Vector[m+n]):
in_ellipsoid_Q?(n,Q_1,x)
AND in_ellipsoid_Q?(m,Q_2,y)
AND lambda_1+ lambda_2 <= 1
AND z = Block2V(V2Block(n,m)(x,y))

IMPLIES
in_ellipsoid_Q?(n+m,Block2M(M2Block(n,m,n,m)(1/lambda_1*Q_1,

Zero_mat(m,n),Zero_mat(n,m),1/lambda_2*Q_2)),z)

PVS

Figure 42: PVS theorem describing how two ellipsoids can be combined with proper
multipliers.

Proof 3 We first establish the result in the special case where λ1 + λ2 = 1. Apply Equa-

tion (42) to A =

1 xT

x Q1

 and N =


√
λ1 01×n 01×m

0n×1 I/
√
λ1 0n×m


T

to obtain the positive semidefi-

niteness of R1 = NANT =


λ1 xT 01×m

x Q1/λ1 0n×m

0m×1 0m×n 0m×m

. Through a similar argument, obtain the

positive semidefiniteness of R2 =


λ2 01×n yT

0n×1 0n×n 0n×m

y 0m×n Q2/λ2

. Now, using Equation (44), we have

R1 + R2 � 0, which is by definition equivalent to

x

y

 ∈ GQ.

Now, if λ1 + λ2 < 1, let ε = 1 − λ1 − λ2, λ′2 = λ2 + ε, and µ = λ′2/λ2. Apply Lemma 3 to y,

Q2 and µ, to obtain y ∈ GµQ2 . To conclude, use the result when λ1 + λ2 = 1 by substituting

λ2 with λ′2 and Q2 with µQ2.

The lack of native support in the linear algebra library, for arbitrary sizes of block matrices

made the PVS proof to this theorem particularly tedious, requiring around 1200 proof steps.

This theorem is at the heart of the proof tactic SProcedure used in Chapter 3.
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ellipsoid_bound : THEOREM
forall(n:posnat, Q:SquareMat(n), c,x:Vector[n]):
in_ellipsoid_Q?(n,Q,x) IMPLIES abs(c*x)<= sqrt(c*(Q*c))

PVS

Figure 43: PVS Lemma for bound extraction on linear combination of variables in an
ellipsoid.

4.3.3 Ellipsoid Combinations Using Sector-Bounds

Three useful results, used in Chapters 2 and 3, are mentioned here, and have been proven

in PVS. The first one describes how to extract bounds on linear combination of variables,

when these variables belong to a given ellipsoid. With Q a positive semidefinite matrix, the

following holds:

Lemma 4

∀x, c ∈ Rn : x ∈ GQ =⇒ |cTx| ≤
√

cTQc.

Lemma 4 can be expressed in PVS with the code in Figure 43.

Proof 4 By hypothesis, x ∈ GQ, i.e.,

1 xT

x Q

 � 0. So, ∀z ∈ Rn+1 : zT

1 xT

x Q

 z ≥ 0. In

particular, for z =

−cTx

c

:
(−cTx)2 + 2(−cTx)cTx + cTQc ≥ 0,

which simplifies to

cTQc ≥ (cTx)2.

The conclusion comes by taking the square root of this last inequality.

Next, we mention the result on the specific sector-bound obtained in the case of a saturation

applied to a variable for which a bound is known:

∀x ∈ R, d ∈ R+, |x| ≤ d =⇒ (SAT(x) − x)(SAT(x) − (1/d)x) ≤ 0.
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sat_sect_bound_step: LEMMA FORALL (n:posnat, Q:SquareMat(n),
c,x: Vector[n], d:posreal):
in_ellipsoid_Q?(n,Q,x) AND d >= sqrt(c*(Q*c))
IMPLIES
(sat(c*x)-(c*x))*(sat(c*x)-(1/d)*(c*x))<=0

PVS

Figure 44: PVS lemma expressing the sector-bound on a saturation.

In PVS, the lemma is tailored to its use with a bound stemming from an ellipsoidal set, as

shown in Figure 44.

Proof 5 The graphical proof in Figure 9 is probably the most telling. In PVS, the proof is

obtained by a case-splitting on the various possible outcomes of the saturation function.

In each subcase the result comes immediately. Indeed if SAT(x) = x, the left hand side of

the inequality is zero, making it true. If SAT(x) = 1, then it must be that x ≥ 1, making

SAT(x) − x nonpositive. On the other hand, SAT(x) − (1/d)x = 1 − (1/d)x = d−x
d must

be nonnegative, since x ≤ d. Hence the inequality. A similar argument can be made if

SAT(x) = −1.

Finally, the lemma describing a valid ellipsoid combination obtained from a sector bound is

given here.

Lemma 5 Let c, x ∈ Rm be two vectors, z ∈ R a number, Q ∈ Rm×m a positive semidefinite

matrix, and µ, d1, and d2 positive coefficients. Assume cTQc > 0. Define:

g =


1

d1d2
−1

2
d1+d2
d1d2

−1
2

d1+d2
d1d2

1

 .
Then, if 4(d1d2)2 − µcTQc(d1 − d2)2︸                             ︷︷                             ︸

D

> 0, the following holds.

• The matrix


1

cTQc 0

0 0

 + µg is invertible. Denote its inverse h.

73



• The implication x ∈ GQ ∧
x

z


T c 0

0 1

 g

c 0

0 1


T x

z

 ≤ 0 =⇒
x

z

 ∈ GH holds, where

matrix H is defined by

H =

Q −
QccTQ
cTQc 0

0 0

 +


Qc

cTQc 0

0 1

 h


Qc

cTQc 0

0 1


T

The PVS equivalent to this lemma is not shown here, as it is split in multiple intermediate

lemmas, but can be found in Appendix C. Note that Lemma 2 from Chapter 3 is but a

consequence of Lemma 5 for d1 =
√

cTQc and d2 = 1. The proof follows.

Proof 6 Let G denote


1

cTQc 0

0 0

+µg. The fact that G is invertible comes from its determinant

being D, which is, by assumption, non-zero. Since determinants were not available in PVS

at the time of this proving, the explicit inverse of the matrix, using Cramer’s formulas, was

used instead to prove this invertibility.

Notice that

c
Tx

z

 ∈ EG,(cT x)2/(cTQc). This comes as a straight-forward consequence of

x

z


T c 0

0 1

 g

c 0

0 1


T x

z

 ≤ 0 (hypothesis), combined with (cTx)2 ≤ cTQc (true by Lemma 4).

In addition, since G is invertible, EG,(cT x)2/(cTQc) = Gh,(cT x)2/(cTQc), which means:
(cT x)2

cTQc cTx z

cTx

z
h


� 0.

Apply (42) with A as the left-hand side of this last inequality, and N =


1 0 0

0 Qc
cTQc 0

0 0 1

, to
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obtain: 
(cT x)2

cTQc
cT x

cTQccTQ z

cT x
cTQc Qc

z


Qc

cTQc 0

0 1

 h


Qc

cTQc 0

0 1


T


� 0. (47)

On the other hand, apply once more (42) with

 1 x

xT Q

 as A and

1 − cT x
cTQccT

0 In

 as N to

obtain:  1 − (cT x)2

cTQc xT − cT x
cTQccTQ

x − cT x
cTQc Qc Q

 � 0. (48)

Then, apply the affine ellipsoid combination result from Equation (37), with x − cTx
cTQc

Qc︸         ︷︷         ︸
x′

as

x, the left hand side of (48) as X, and In − QccT

cTQc︸      ︷︷      ︸
M

as M, to obtain thatMx′ ∈ GMQMT,1− (cT x)2

cTQc

.

Now,

Mx′ =

(
In − QccT

cTQc

) (
x − cTx

cTQc
Qc

)
= x − cTx

cTQc
Qc − QccTx

cTQc
+

cTx
cTQc

QccTQc
cTQc

= x − cTx
cTQc

Qc,

and

MQMT =

(
In − QccT

cTQc

)
Q

(
In − QccT

cTQc

)T

= Q − QccTQ
cTQc

− Q(QccT)T

cTQc
+

QccTQccTQ
(cTQc)2

= Q − QccTQ
cTQc

.

Thus,Mx′ ∈ GMQMT,1− (cT x)2

cTQc

means: 1 − (cT x)2

cTQc xT − cT x
cTQccTQ

x − cT x
cTQc Qc Q − QccTQ

cTQc

 � 0. (49)

Add (47) and (49) to conclude.
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4.4 Conclusion and Perspectives

We have developed a set of PVS theories that contain useful results in linear algebra, and ma-

jor theorems for control theory, in particular for the analysis of control law implementations.

The full contribution can be found in Appendix C and online1.

The process of formalizing mathematical results and adding them to a theorem prover is

a long and tedious one. There is, however, great value in adding mathematical knowledge

within these tools: once added, the results can be safely and soundly used forever afterwards.

There is room for the addition of numerous results pertaining to control theory. One

possible direction is to build off the NASA PVS library initial probability theories, which

could open the way, for example, for proofs of optimal behavior of Kalman filters in the

presence of noise. In general, the certification of control strategies and algorithms based on

randomness is a worthwhile endeavor: at the moment, the federal regulator is reluctant to

allow any form of nondeterminism in the national airspace. However, the whole certification

process is based on attaining a rate of catastrophic failure of less than 10−9 per flight hour.

This probabilistic safety measure indicates the realization by the regulator that there is no

0-risk, who should also conclude that controlled randomness is less risky than uncontrolled

determinism.

1http://github.com/rjobredeaux/genecheck

76

http://github.com/rjobredeaux/genecheck


Chapter V

A TOOL FOR THE AUTOMATIC VERIFICATION OF

FUNCTIONAL CONTROL PROPERTIES ON CODE

We are now equipped with a formal expressivity framework, suited to the automatic genera-

tion of annotated code, and with results from control theory proven in an interactive theorem

prover. We develop a tool, which is able to fully automatically generate a certificate for

the correctness of the annotations presented in Chapter 3. The tool, called Genecheck, is

presented in this chapter. It is the glue that sticks together a number of different formal

verification tools in order to achieve the desired verification activity.

It is assumed that the controller under analysis is given in the form of two C functions.

One of them is an initialization function. The other implements a single execution of

the control loop. It acquires inputs and updates the state variables and the outputs of the

controller. This choice is motivated by the output format of the autocoder GeneAuto [55],

an open-source Simulink to C translator.

Indeed it is the author’s belief that the tools provided by this research must be used in

conjunction with proper model-based design practices. Concurrent research [56] involves

the extension of GeneAuto to generate code annotated with the type of annotations described

in Chapter 3.

The properties of open and closed loop stability, as well as state-boundedness, can be

established by solely considering the update function, which the rest of this section will

focus upon. The function is assumed to essentially follow the template shown in Figure 46.

Given this annotated function, it remains to be proven that the annotations are correct

with respect to the code. This is achieved by checking that each individual Hoare triple

holds. Figure 45 presents an overview of the checking process. First, the WP plugin of
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Annotated code

C Code

+ ACSL
+ Proof tactics

ACSL linear algebra library

Frama-C

Verification Conditions

WP

PVS Theorems

Why3

pvs-ellipsoid

QeD

PVS
Interpreted Theorems

+ Proof tactics
PVS linear algebra library

PVS strategies

PVS proof
proveit

Go / No Go

Figure 45: General view of the automated verification process. The annotated code is
processed by Frama-C. PVS theorems that correspond to the verification conditions are
generated. Automatic strategies are used to discharge the proofs, and fed back to Frama-C
to conclude on the validity of the annotations.

/*@ requires in_ellipsoidQ(Q,vect_of_n_scalar(_state_->s_1,
_state_->s_2,
...));

@ ensures in_ellipsoidQ(Q,vect_of_n_scalar(_state_->s_1,
_state_->s_2,
...));*/

void example_compute(t_example_io *_io_, t_example_state *_state_){
...
/*@ requires pre_i
@ ensures post_i
@ PROOF_TACTIC (use_strategy ( strategy_i ) )*/

{
// instruction i;
}
...
}

C+ACSL

Figure 46: Template of the generated loop update function.
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Frama-C generates verification conditions for each Hoare triple, and discharges the trivial

ones with its internal prover QeD. Then, the remaining conditions are translated into PVS

theorems for further processing, as described in Section 5.1. It is then necessary to match the

types and predicates introduced in ACSL in Chapter 3 to their equivalent representation in

PVS, introduced in Chapter 4. This is done through theory interpretation [57] and explained

in Section 5.1.3. Once interpreted, the theorems can be generically proven thanks to custom-

made PVS strategies, as described in Section 5.2. In order to automate these various tasks

and integrate our framework within the Frama-C platform, which provides graphical support

to display the status of a verification condition (proved/unproved), we wrote a Frama-C

plugin named pvs-ellipsoid, described in Section 5.3. Finally, the last verification condition

in the program is of particular interest and handled differently from the others. It holds, by

itself, the key to the floating-point correctness of the properties under consideration in this

work, and is discussed in Section 5.4.

5.1 From C code to PVS Theorems

Frama-C is a collaborative platform designed to analyze the source code of software written

in C. Before delving further into the verification process, the notion of weakest precondition

is defined, which WP relies on.

5.1.1 Hoare Logic and Weakest Preconditions

When Hoare triples and axioms were introduced, no mechanical process or algorithm was

provided to generically discharge them. It was up to the human user to manually pick

relevant axioms to prove the validity of a given triple {P}S {Q}. In order to mechanize the

proof process Edsger Dijkstra introduced the notion of weakest precondition [46]. Given

a postcondition Q and a piece of code S , wp(S ,Q) is the “weakest” precondition which

ensures that Q holds after executing S . It is always true that {wp(S ,Q)}S {Q} is a valid triple.

In addition, the precondition is called “weakest” in the sense that any property P′ such that

{P′}S {Q} holds verifies P′ =⇒ wp(S ,Q). From a set-theoretical perspective wp(S ,Q)

79



represents the maximal (in the sense of inclusion) set of variable states which verifies Q

after executing S , and P′ represents any set included in it. This approach to Hoare logic

is not more expressive of more powerful than the original presentation, but rather gives a

mechanical approach to the verification of Hoare triples. For example, recall the sequencing

rule:
{P} S {Q}, {Q} T {R}
{P} S ; T {R}.

This axiom can be reformulated in the weakest-precondition framework as follows:

wp(S ; T,R) = wp(S ,wp(T,R)).

5.1.2 Converting Verification Conditions to PVS Theorems

The WP plugin enables deductive verification of C programs, annotated with ACSL. For each

Hoare triple {prei}insti{posti}, it generates a first order logic formula expressing prei =⇒
wp(insti, posti). Through the Why3 platform, these formulas can be expressed as theorems

in PVS, so that, for example, the ACSL/C triple shown in Figure 47, taken directly from our

running example, becomes the theorem shown in Figure 48.

Note that, for the sake of readability, part of the hypotheses of this theorem, including

hypotheses on the nature of variables, as well as hypotheses originating from Hoare triples

present earlier in the code, are ommitted here. Note also that in the translation process,

functions like malloc_0 or mflt_1 have appeared. They describe the memory state of the

program at different execution points.

5.1.3 Theory Interpretation

At the ACSL level, a set of linear algebra symbols has been introduced, along with axioms

defining their semantics, in Chapter 3. Each generated PVS theorem is written within a

theory that contains a translation ’as is’ of these definitions and axioms, along with some

constructs specific to handling the semantics of C programs. For example, the ACSL axiom
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/*@
requires in_ellipsoidQ(QMat_4,

vect_of_3_scalar(_state_->Integrator_1_memory,
_state_->Integrator_2_memory,
Integrator_1));

ensures in_ellipsoidQ(QMat_5,
vect_of_4_scalar(_state_->Integrator_1_memory,

_state_->Integrator_2_memory,
Integrator_1,
C11));

PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/
{

C11 = 564.48 * Integrator_1;
}

C+ACSL

Figure 47: Typical example of an ACSL Hoare Triple.

wp: THEOREM
FORALL (integrator_1_0: real):
FORALL (malloc_0: [int -> int]):
FORALL (mflt_2: [addr -> real], mflt_1: [addr -> real],

mflt_0: [addr -> real]):
FORALL (io_2: addr, io_1: addr, io_0: addr, state_2: addr,

state_1: addr, state_0: addr):
...

=> p_in_ellipsoidq(l_qmat_4,
l_vect_of_3_scalar(mflt_2(shift

(state_2, 0)),
mflt_2(shift

(state_2, 1)),
integrator_1_0))

=> p_in_ellipsoidq(l_qmat_5,
l_vect_of_4_scalar(mflt_2(shift

(state_2, 0)),
mflt_2(shift

(state_2, 1)),
integrator_1_0 ,
(14112/25 *
integrator_1_0)))

PVS

Figure 48: Excerpt of the PVS translation of the triple shown in Figure 47.
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/*@ axiom mat_of_2x2_scalar_row:
@ \forall matrix A, real x0101, x0102, x0201, x0202;
@ A == mat_of_2x2_scalar(x0101, x0102, x0201, x0202) ==>
@ mat_row(A) == 2; /*

ACSL

Figure 49: ACSL axiom for the row-size of a 2x2 matrix.

q_mat_of_2x2_scalar_row:
AXIOM FORALL (x0101_0:real, x0102_0:real,x0201_0:real, x0202_0:real)
:

FORALL (a_0:a_matrix):
(a_0 = l_mat_of_2x2_scalar(x0101_0, x0102_0, x0201_0, x0202_0)) =>
(2 = l_mat_row(a_0))

PVS

Figure 50: ACSL axiom in Figure 49 translated to PVS.

expressing the number of rows of a 2 by 2 matrix, shown in Figure 49 becomes, after

translation to PVS, the axiom shown in Figure 50

In order to leverage the existing results on matrices and ellipsoids in PVS, theory

interpretation is used. It is a logical technique used to relate one axiomatic theory to another.

It is used here to map types introduced in ACSL, such as vectors and matrices, to their

counterparts in PVS, as well as the operations and predicates on these types. To ensure

soundness, PVS requires that what was written as axioms in the ACSL library be proven in

the interpreted PVS formalism.

Recall, however, that ACSL only allows for total functions, and that subtypes cannot be

introduced in ACSL. Thus, the straightforward theory interpretation, connecting mat_add

with the + of PVS fails the basic TCC imposing that arguments to the latter function be of

the same dimensions. The beginning of a solution was described in Section 3.3.2, with the

introduction of “throw-away axioms”. Similarly, in order to reflect the axiomatization of

mat_add in PVS, a total function is introduced, as in Figure 51. This process is carried

out for each interpreted function. It carries the advantage of ensuring the match between
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Matrix_add_ext(M1, M2: Matrix): Matrix
Matrix_add(M1, M2: Matrix): Matrix =

if M1‘cols = M2‘cols and M1‘rows = M2‘rows
then M1+M2
else Matrix_add_ext(M1,M2) endif

PVS

Figure 51: The PVS counterpart to ACSL’s mat_add, in the purpose of carrying out theory
interpretation.

ACSL symbols and PVS symbols. Note that the expresseness work done in Chapter 3 did

not require the axioms included in the library. Only in the context of theory interpretation

do they become useful in ensuring a sound connection between libraries.

The interpreted symbols and soundness checks are the same for each proof objective,

making the mechanization of such a process easier. Syntactically, a new theory is created, in

which the theory interpretation is carried out, and the theorem to be proven is automatically

rewritten by PVS in terms of its own linear algebra symbols. These manipulations on the

generated PVS code are carried out by a Frama-C plugin we have written. It is called

pvs-ellipsoid, and is described below.

5.2 Generically Discharging the Proofs in PVS

Once the theorem is in its interpreted form, all that remains to do is to apply the proper

lemma to the proper arguments. Two different types of Hoare triples can be generated

in ACSL. Two PVS strategies were written to handle these possible cases. A PVS proof

strategy is a generic function describing a set of basic steps communicated to the interactive

theorem prover in order to facilitate or even fully discharge the proof of a lemma. The

AffineEllipsoid strategy handles any ellipsoid update stemming from a linear assignment

of t<he variables. The theorem ellipsoid_general, introduced in Section 4.3, is recalled

in Figure 52. To apply this theorem properly, the first step of the strategy consists of parsing

the objectives and hypotheses of the theorem to acquire the name and the dimensions of
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ellipsoid_general: LEMMA
FORALL (n:posnat,m:posnat, Q:SquareMat(n),

M: Mat(m,n), x:Vector[n], y:Vector[m]):
in_ellipsoid_Q?(n,Q,x)
AND y = M*x

IMPLIES
in_ellipsoid_Q?(m,M*Q*transpose(M),y)

PVS

Figure 52: The ellipsoid_general theorem in PVS.

the relevant variables, and to isolate the necessary hypotheses. The second step consists of

a case splitting on the dimensions of the variable: they are given to the prover in order to

complete the main proof, and then established separately using the proper interpreted axioms.

Next, it is established that y = Mx through a case decomposition and numerous calls to

relevant interpreted axioms. All the hypotheses are then present for a direct application of

the theorem. The difficulties in proof strategy design lie in intercepting and anticipating the

typechecking constraints (TCC) that PVS introduces throughout the proof. A third strategy

was specifically written to handle them.

The S-Procedure strategy follows a very similar pattern. It is somewhat simpler, since

the associated instruction in the Hoare triple is a skip. It uses ellipsoid_combination,

the other main theorem presented in Section 4.3.

5.3 The PVS-Ellipsoid Plugin to Frama-C

One major contribution developed as part of this dissertation is the pvs-ellipsoid plug-

in to Frama-C, written in OCaml and available online1. The plugin automates the steps

mentionned in the previous sections. It calls the WP plugin on the provided C file, then,

whenever QeD fails to prove a step, it creates the PVS theorem for the verification condition

through Why3 and modifies the generated code to apply theory interpretation. It extracts

the proof tactic to be used on this specific verification condition, and uses it to signify what

1http://github.com/rjobredeaux/genecheck
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strategy to use to prove the theorem at hand to the next tool in the chain, proveit [58].

proveit is a command line tool that can be called on a PVS file and attempts to prove all the

theories in it, possibly using user guidance such as the one discussed in Section 5.2. When

the execution of proveit terminates, a report is produced, enabling the plugin to decide

whether the verification condition is discharged or not. If it is, a proof file is generated,

making it possible for the proof to be replayed in PVS.

5.4 Checking Inclusion of the Propagated Ellipsoid, and Floating-Point
Soundness

The final verification condition expresses that the state remains in the initial ellipsoid GQ.

Through a number of transformations, it has been established that the state lies in some

propagated ellipsoid G′Q. The conclusion of the verification lies in the final test Q − Q′ ≥ 0.

The current state of the linear algebra library in PVS does not permit to make such a

test, but a number of reliable external tools, like the INTLAB package of the MATLAB

software suite, can operate this check. In the case of our framework, the pvs-ellipsoid plugin

intercepts this final verification condition before translating it to PVS, and uses custom code

from [59] to soundly ensure positive definiteness of the matrix.

Interestingly, the problem of checking the correctness of the annotations under floating-

point computations can be concentrated in this final check. We give here an introduction to

the nature of the floating-point problem, and outline a suggested process by which it can be

handled.

There are two sources of floating-point errors to consider when assessing a verification

framework. The first one comes from the computations in the program under analysis. They

are made with a finite-memory machine which uses floating-point computations: as such the

results of every computation is likely to differ from its ideal value in R. The second source

of error is the verification tool itself: it is also running on a machine and cannot perform

exact real computations.

In the framework here presented, we suggest circumventing the second source of error
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/*@ requires in_ellipsoidQ(Q_1,vect_of_2_scalar(v_1,v_2));
@ ensures in_ellipsoid(Q_2,vect_of_3_scalar(v_1,v_2,v_3));*/

{
v_3 = c_1*v_1 + c_2*v_2
}

C+ACSL

Figure 53: Local ACSL contract before floating-point extension.

//@ \set_model v_3 c_1*v_1 + c_2*v_2;
/*@ requires in_ellipsoidQ(Q_1,vect_of_2_scalar(v_1,v_2));
@ ensures in_ellipsoid(Q_2,vect_of_3_scalar(v_1,v_2,\model(v_3)))
@ ensures \total_error(v_3)<= e_1;*/

{
v_3 = c_1*v_1 + c_2*v_2
}

C+ACSL

Figure 54: Local ACSL contract after floating-point extension.

by using rational numbers in the annotations: the current toolset actually automatically

presents all numbers within annotations as rational numbers when converting the verification

conditions to PVS. The operations involved are naturally more computationally intensive

(one of the main reason for the wide use of floating-point computations is their efficiency),

but the verification process is not as time-sensitive as the embedded program under analysis.

To handle the first source of errors, we propose the following approach. Define ⊕ :

F × F → F, and ⊗ : F × F → F respectively as the addition and multiplication operators

actually used by the program. Consider a typical contract within the loop body, as in

Figure 53. The unsoundness is brought about by the fact that v_3 is not equal to c_1v_1

+ c_2v_2, but to (c_1 ⊗ v_1) ⊕ (c_2 ⊗ v_2). To correct this, introduce \model(v_3)

as c_1v_1 + c_2v_2. This is made possible by the fact that, within ACSL comments,

operators like +, *, etc. have their real sematics as operators in R × R → R. Using the

keywords introduced in Section 3.3.1.6, the contract in Figure 53 is rewritten as the sound
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/*@ requires in_ellipsoidQ(Q_prop,vect_of_n_scalar(\model(x1),\model(
x2),...,\model(xn));
@ requires \total_error(x_1) <= e_1;
@ requires \total_error(x_2) <= e_2;
@ ...
@ requires \total_error(x_n) <= e_n;
@ ensures in_ellipsoidQ(Q_inv,

vect_of_n_scalar(x_1,x_2,...,x_n));
@ PROOF_TACTIC(use_strategy(PosDef))

*/

ACSL

Figure 55: Final contract in the program: checking that the propagated ellipsoid is included
in the invariant, taking floating-point computations into account.

contract in Figure 54. The main difference is that v_3 is replaced by its counterpart \model

(v_3), which is defined above the contract. In addition, an error term is introduced by

\total_error(v_3)<=e_1. Recall that \total_error is the distance between v_3 and

its model. e_1 is typically obtained using floating-point analysis tools like Gappa [28], or

Fluctuat [60].

The contract transformation now outlined can be carried out throughout the loop, and

each individual error bound can be tracked, so that, when reaching the end of the loop, a con-

tract similar to Figure 55 is obtained. The matrix Q_prop represents the propagated ellipsoid,

and the matrix Q_inv represents the ellipsoid whose invariance we are proving. Variable

vect_of_n_scalar(\model(x1), \model(x2),..., \model(xn)) is denoted as x̃,

variable vect_of_n_scalar(x_1,x_2,...,x_n) as x, variable vect_of_n_scalar(

e_1,e_2,...,e_n) as eps, and variable ε is introduced and defined as ε = x − x̃. Then,

the contract holds if

x̃ ∈ GQprop =⇒ x ∈ GQinv . (50)

For this exercise, it is assumed (as is always the case in practice) that Qinv and Qprop are

invertible and introduce P1 = Q−1
prop and P2 = Q−1

inv. Note that if Qinv and Qprop are given with

rational entries, as suggested, P1 and P2 can be computed exactly. Recall that EP1 = GQprop
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and EP2 = GQinv . Equation (50) is thus equivalent to

x̃TP1 x̃ ≤ 1 =⇒ (x̃ + ε)TP2(x̃ + ε) ≤ 1. (51)

Now,

(x̃ + ε)TP2(x̃ + ε) = x̃TP2 x̃ + 2εT P2 x̃ + εTP2ε.

A bound on ‖ε‖2 is given by ‖eps‖2. The theoretically optimal bound for ‖x̃‖2 that can

be drawn from x̃TP1 x̃ ≤ 1 is 1/λmin(P1), where λmin(P1) is the minimum eigenvalue of

P1. However, to keep the development simple, we do not seek a sound way of computing

this quantity. Instead we use the following approach. First check that P1 � P2 using the

sound checker in [59]. This is the necessary check of final inclusion when ignoring floating-

point computations. If it fails, there is likely an error in the annotations. Then, compute

R = (ri, j)1≤i, j≤n so that RTR is the Cholesky decomposition of P2. Under the assumption of

rational coefficients, this can also be done exactly. Note then, that

‖Rx̃‖22 = x̃TRTRx̃ = x̃TP2 x̃ ≤ x̃TP1 x̃ ≤ 1.

In addition,

‖Rε‖22 ≤ ‖R‖2F‖ε‖22 ≤ ‖R‖2F‖eps‖22,

by the submultiplicative property of the Frobenius norm. All quantities on the left-hand side

can also be computed exactly here. Finally, let η = 2‖R‖F‖eps‖2 + ‖R‖2F‖eps‖22, and note

by the Cauchy-Schwartz inequality that
∣∣∣2εT P2 x̃ + εTP2ε

∣∣∣ ≤ η. Using the sound positive

definiteness checker discussed earlier [59], it can be checked check that P1 − P2/(1− η) � 0.

If this check succeeds, the following can be claimed:

(x̃ + ε)TP2(x̃ + ε) = |x̃TP2 x̃ + 2εT P2 x̃ + εTP2ε |

≤ x̃TP2 x̃ + η

≤ x̃T(1 − η)P1 x̃ + η

≤ (1 − η)x̃TP1 x̃ + η

≤ 1 − η + η = 1.
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Note that this check is not guaranteed to succeed: indeed if it does not, it may mean that

floating point computations are “breaking” the stability of the system, or it may simply mean

that the error bounds computed are not tight enough to conclude. Recall that this research is

focused on soundness, that is, the checker can never claim the system is safe if it is not.

5.5 Application and Benchmarking

Genecheck was successfully used to verify the systems described in Sections 3.4.3 and 3.4.4,

which full code is provided in Appendix B. It takes an average of 30 seconds to check an

individual contract, making the full verification process potentially long. However, note

that there is a lot of room for improvement on this individual contract verification time,

and that the total time increases linearly with the number of lines of code, which is itself

roughly linear in the number of states of the system: these results suggest a decent level of

scalability.

Note that the tool has been developed concurrently with the extended version of Ge-

neAuto, GeneAuto+. As a consequence, the closed loop stability of any linear controller

interacting with a linear plant can be proven by this tool, so long as its code was generated

using GeneAuto+. This includes controllers and plants of any dimensions.

5.6 Conclusion and Perspectives

This chapter presented a tool, the sum of a development effort and the use of multiple formal

analysis software, which takes as input a formally annotated control program as described

in Chapter 3, and uses the library in Chapter 4 along with other analysis tools to conclude

on the validity of the annotations.

The framework proposed to carry out floating-point verification, while sound in principle,

would require some more development in order to integrate yet another tool into Genecheck.

Nevertheless, to our knowledge, aside from the work presented in [61], no other endeavor

offers to soundly verify the type of properties discussed in this work.
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Chapter VI

CONCLUSION

This research has striven to bridge the gap between computer science and control theory,

and to use the best of both fields with the objective of advancing V&V techniques.

Chapter 2 recalls basic elements and heuristics from control theory, used to establish the

closed loop stability of various systems of interest. These heuristics were used to extend an

existing abstract interpretation tool with the ability to automatically carry out these proofs

on code. The results of this activity were published in [61]. Chapter 3 developed a formal

language to describe control properties on C code. Initial results of this effort were published

in [62]. The extension of the expressivity framework to the field of fault detection was

presented in [63]. Chapter 4 described a library of linear algebra and controls results, proven

in an interactive theorem prover. An account on this library and its potential for controller

implementation verification was published in [64]. Finally, Chapter 5 implemented a tool to

demonstrate the feasability of the credible autocoding framework: the tool can successfully,

soundly, and automatically prove the validity of control annotations expressing closed loop

stability of a system. The structure of the tool, as well as its integration with an extended

code generation tool, are in press in [65].

In addition to showing the validity and the feasability of the credible autocoding frame-

work, the prototype presented in this thesis also paves the way for numerous research

directions.

One first possibility is to expand the type of properties and systems handled by the

framework. In particular, robustness properties are close at hand: they are the natural next

step from stability properties, and can usually be formulated using LMIs, which were already

at the heart of this work.
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Optimization algorithms are becoming more and more pervasive in path planning and

efficient control strategies. Being able to provide the type of guarantees we presented on this

type of algorithms would be a valuable endeavor: there are plenty of mathematical results

that support the validity of such programs.

The general topic of probabilistic guarantees deserves more attention. All the properties

considered in this work are based on deterministic systems. It would be useful to be able to

express and prove results involving random perturbations on the input, or to express and

prove a probability of failure. It is more realistic to claim an extremely low probability of

failure, rather than to claim total safety of a system.

Engine manufacturers are considering a move to distributed architectures. The problem

of certification for an engine controller running on multiple processors is a very challenging

one. Similarly, formally proven graceful degradation on a manycore architecture, although a

far away objective, is worth exploring.

More generally, it is this author’s hope that this work will be one of many to involve

deep collaboration between the field of computer science and that of control theory. The

promise of higher safety standards, faster development cycles, and industry sensitization to

formal methods, requires such collaboration to be brought about. The techniques presented

have the potential to challenge engineers to think formally about the safety of their designs,

and provide tangible, mathematical evidence for it.
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Appendix A

ACSL LINEAR ALGEBRA LIBRARY

The following is the full ACSL linear algebra library of symbols and their axiomatization,

developed as part of this thesis. It is publically available1. Note that the matrix constructors

such as mat_of_2x2_scalar are not given here: they are generated by a Python script

which parses through the file under analysis to check which dimensions are necessary, and

appends these definitions at the end of the library.
/*@ axiomatic ellipsoids_proof_tactics {
@ type ellipsoids_tactics = Intuition | AffineEllipsoid | SProcedure
@ | Identity | PosDef | SectBoundSat | SProcSat | EllipsoidBound;
@ predicate use_strategy (ellipsoids_tactics t);
@ }
@ axiomatic matrices {
@ type matrix;
@ type vector;
@ logic real mat_select(matrix A, integer i, integer j);
@ logic real vect_select(vector x,integer i);
@ logic integer vect_length(vector x);
@ logic integer mat_row(matrix A);
@ logic integer mat_col(matrix A);
@
@ logic matrix block_m (matrix a11, matrix a12,
@ matrix a21, matrix a22);
@ logic matrix block_m_ext (matrix a11, matrix a12,
@ matrix a21, matrix a22);
@ axiom block_m_ext:
@ \forall matrix A11, A12, A21, A22;
@ mat_row(A11) != mat_row(A12) ||
@ mat_col(A11) != mat_col(A21) ||
@ mat_row(A22) != mat_row(A21) ||
@ mat_col(A22) != mat_col(A12) ==>
@ block_m(A11, A12,A21,A22) == block_m_ext(A11, A12,A21,A22);
@ axiom block_m_select:
@ \forall matrix A11, A12, A21, A22;
@ mat_row(A11) == mat_row(A12) ==>
@ mat_col(A11) == mat_col(A21) ==>
@ mat_row(A22) == mat_row(A21) ==>
@ mat_col(A22) == mat_col(A12) ==>
@ \forall integer i, j;

1http://github.com/rjobredeaux/genecheck
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@ (0 <= i < mat_row(A11) ==>
@ 0 <= j < mat_col(A11) ==>
@ mat_select(block_m(A11, A12,A21,A22),i, j) ==
@ mat_select(A11, i, j))
@ && (mat_row(A11)<= i < mat_row(A11)+ mat_row(A21) ==>
@ 0<= j <mat_col(A11) ==>
@ mat_select(block_m(A11,A12,A21,A22),i,j) ==
@ mat_select(A21,i-mat_row(A11),j))
@ && (0 <= i < mat_row(A11) ==>
@ mat_col(A11) <= j < mat_col(A11)+mat_col(A12) ==>
@ mat_select(block_m(A11,A12,A21,A22),i,j) ==
@ mat_select(A12,i, j-mat_col(A11)))
@ && (mat_row(A11)<= i < mat_row(A11)+ mat_row(A21) ==>
@ mat_col(A11) <= j < mat_col(A11)+mat_col(A12) ==>
@ mat_select(block_m(A11,A12,A21,A22),i,j) ==
@ mat_select(A22,i-mat_row(A11),j-mat_col(A11)));
@ axiom block_m_row:
@ \forall matrix A11, A12, A21, A22;
@ mat_row(A11) == mat_row(A12) ==>
@ mat_col(A11) == mat_col(A21) ==>
@ mat_row(A22) == mat_row(A21) ==>
@ mat_col(A22) == mat_col(A12) ==>
@ mat_row(block_m(A11,A12,A21,A22)) == mat_row(A11)+mat_row(A21);
@ axiom block_m_col:
@ \forall matrix A11, A12, A21, A22;
@ mat_row(A11) == mat_row(A12) ==>
@ mat_col(A11) == mat_col(A21) ==>
@ mat_row(A22) == mat_row(A21) ==>
@ mat_col(A22) == mat_col(A12) ==>
@ mat_col(block_m(A11,A12,A21,A22)) == mat_col(A11)+mat_col(A12);
@
@ logic vector block_v (vector v1, vector v2);
@ axiom block_v_select:
@ \forall vector v1, v2;
@ \forall integer i;
@ (0 <= i < vect_length(v1) ==>
@ vect_select(block_v(v1, v2),i) ==
@ vect_select(v1, i))
@ && (vect_length(v1)<= i < vect_length(v1)+ vect_length(v2) ==>
@ vect_select(block_v(v1,v2),i) ==
@ vect_select(v2,i-vect_length(v1)));
@ axiom block_v_length:
@ \forall vector v1, v2;
@ vect_length(block_v(v1,v2)) == vect_length(v1)+vect_length(v2);
@
@ logic matrix zeros(integer row, integer col);
@ logic matrix zeros_ext(integer row, integer col);
@ axiom zero_ext:
@ \forall int row, col;
@ row<=0 || col<=0 ==> zeros(row,col) == zeros_ext(row,col);
@ axiom zero_select:
@ \forall int row, col, i, j;
@ 0<= i <row ==>
@ 0<= j <col ==>
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@ mat_select(zeros(row,col),i,j) == 0;
@ axiom zero_row:
@ \forall int row, col;
@ 0 <row ==>
@ 0 <col ==>
@ mat_row(zeros(row,col))==row;
@ axiom zero_col:
@ \forall int row, col;
@ 0 <row ==>
@ 0 <col ==>
@ mat_col(zeros(row,col))==col;
@
@ logic matrix mat_scalar_mult (real a, matrix A);
@ axiom mat_scalar_mult_select:
@ \forall real a, matrix A, int i,j;
@ 0<= i < mat_row(A) ==>
@ 0<= j < mat_col(A) ==>
@ mat_select(mat_scalar_mult(a,A),i,j) == a* mat_select(A,i,j);
@ axiom mat_scalar_mult_row:
@ \forall real a, matrix A;
@ mat_row(mat_scalar_mult(a,A)) == mat_row(A);
@ axiom mat_scalar_mult_col:
@ \forall real a, matrix A;
@ mat_col(mat_scalar_mult(a,A)) == mat_col(A);
@
@ logic vector vect_scalar_mult (real a, vector v);
@ axiom vect_scalar_mult_select:
@ \forall real a, vector v, int i;
@ 0<= i < vect_length(v) ==>
@ vect_select(vect_scalar_mult(a,v),i) == a* vect_select(v,i);
@ axiom vect_scalar_mult_length:
@ \forall real a, vector v;
@ vect_length(vect_scalar_mult(a,v)) == vect_length(v);
@
@ logic matrix mat_add(matrix A, matrix B);
@ logic matrix mat_add_ext(matrix A, matrix B);
@ axiom mat_add_ext:
@ \forall matrix A, matrix B;
@ mat_row(A) != mat_row(B) ||
@ mat_col(A) != mat_col(B) ==>
@ mat_add(A,B) == mat_add_ext(A,B);
@ axiom mat_add_select:
@ \forall matrix A, B;
@ mat_row(A) == mat_row(B) ==>
@ mat_col(A) == mat_col(B) ==>
@ \forall integer i, j;
@ 0 <= i < mat_row(mat_add(A, B)) ==>
@ 0 <= j < mat_col(mat_add(A, B)) ==>
@ mat_select(mat_add(A, B), i, j) ==
@ mat_select(A, i, j) + mat_select(B, i, j);
@ axiom mat_add_row:
@ \forall matrix A, B;
@ mat_row(A) == mat_row(B) ==>
@ mat_col(A) == mat_col(B) ==>
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@ mat_row(mat_add(A, B)) == mat_row(A);
@ axiom mat_add_col:
@ \forall matrix A, B;
@ mat_row(A) == mat_row(B) ==>
@ mat_col(A) == mat_col(B) ==>
@ mat_col(mat_add(A, B)) == mat_col(A);
@
@ logic matrix mat_mult(matrix A, matrix B);
@ logic matrix mat_mult_ext(matrix A, matrix B);
@ axiom mat_mult_ext:
@ \forall matrix A, matrix B;
@ mat_col(A) != mat_row(B) ==>
@ mat_mult(A,B) == mat_mult_ext(A,B);
@ logic real mat_mult_aux(matrix A, matrix B,
@ integer i, integer j, integer k);
@ axiom mat_mult_aux_below_zero:
@ \forall matrix A, B; \forall integer i, j, k;
@ k < 0 ==> mat_mult_aux(A, B, i, j, k) == 0;
@ axiom mat_mult_aux_below_ind:
@ \forall matrix A, B; \forall integer i, j, k;
@ k >= 0 ==> mat_mult_aux(A, B, i, j, k) ==
@ mat_mult_aux(A, B, i, j, k-1) +
@ mat_select(A, i, k)*mat_select(B, k, j);
@ axiom mat_mult_select:
@ \forall matrix A, B; mat_col(A) == mat_row(B) ==>
@ \forall integer i, j;
@ 0 <= i < mat_row(mat_mult(A, B)) ==>
@ 0 <= j < mat_col(mat_mult(A, B)) ==>
@ mat_select(mat_mult(A, B), i, j) ==
@ mat_mult_aux(A, B, i, j, mat_col(A)-1);
@ axiom mat_mult_row:
@ \forall matrix A, B; mat_col(A) == mat_row(B) ==>
@ mat_row(mat_mult(A, B)) == mat_row(A);
@ axiom mat_mult_col:
@ \forall matrix A, B; mat_col(A) == mat_row(B) ==>
@ mat_col(mat_mult(A, B)) == mat_col(B);
@
@ logic vector vect_mult(matrix A, vector x);
@ logic vector vect_mult_ext(matrix A, vector x);
@ axiom vect_mult_ext:
@ \forall matrix A, vector x;
@ vect_length(x)!=mat_col(A) ==>
@ vect_mult(A,x) == vect_mult_ext(A,x);
@ logic real vect_mult_aux(matrix A, vector x, integer i, integer k);
@ axiom vect_mult_aux_below_zero:
@ \forall matrix A, vector x; \forall integer i, k;
@ k < 0 ==> vect_mult_aux(A, x, i, k) == 0;
@ axiom vect_mult_aux_below_ind:
@ \forall matrix A, vector x; \forall integer i, k;
@ k >= 0 ==> vect_mult_aux(A, x, i, k) ==
@ vect_mult_aux(A, x, i, k-1)+mat_select(A, i, k)*vect_select(x, k);
@ axiom vect_mult_select:
@ \forall matrix A, vector x, integer i;
@ mat_col(A) == vect_length(x) ==>
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@ 0< i < mat_row(A) ==>
@ vect_select(vect_mult(A,x),i) ==
@ vect_mult_aux(A,x,i,vect_length(x)-1);
@ axiom vect_mult_length:
@ \forall matrix A, vector x;
@ mat_col(A) == vect_length(x) ==>
@ vect_length(vect_mult(A,x)) == mat_row(A);
@
@ logic matrix eye(integer i);
@ logic matrix eye_ext(integer i);
@ axiom eye_ext:
@ \forall integer i;
@ i<=0 ==> eye(i) == eye_ext(i);
@ axiom eye_select:
@ \forall integer n, integer i, integer j;
@ n>0 ==>
@ (((0<=i<n && 0<=j<n && i==j) ==> mat_select(eye(n),i,j) == 1)
@ && ((0<=i<n && 0<=j<n && i!=j) ==> mat_select(eye(n),i,j) == 0));
@ axiom eye_row:
@ \forall integer n;
@ n>0 ==>
@ mat_row(eye(n)) == n;
@ axiom eye_col:
@ \forall integer n;
@ n>0 ==>
@ mat_col(eye(n)) == n;
@
@ logic matrix transpose(matrix A);
@ axiom transpose_select:
@ \forall matrix A; \forall integer i, j;
@ 0 <= i < mat_row(transpose(A)) ==>
@ 0 <= j < mat_col(transpose(A)) ==>
@ mat_select(transpose(A), i, j) == mat_select(A, j, i);
@ axiom mat_transpose_row:
@ \forall matrix A; mat_row(transpose(A)) == mat_col(A);
@ axiom mat_transpose_col:
@ \forall matrix A; mat_col(transpose(A)) == mat_row(A);
@
@ logic matrix mat_of_array{L}(float *A, integer row, integer col);
@ axiom mat_of_array_select:
@ \forall float *A; \forall integer i, j, k, l;
@ mat_select(mat_of_array(A, k, l), i, j) == A[l*i+j];
@ axiom mat_of_array_size:
@ \forall float *A; \forall integer i,j;
@ mat_row(mat_of_array(A,i,j))==i &&
@ mat_col(mat_of_array(A,i,j))==j;
@
@ logic vector vect_of_array{L}(float *x, integer length);
@ axiom vect_of_array_select:
@ \forall float *x; \forall integer n,i;
@ vect_select(vect_of_array(x,n),i) == x[i];
@ axiom vect_of_array_length:
@ \forall float *x; \forall integer i;
@ vect_length(vect_of_array(x,i))==i;
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@
@ logic real dot_prod (vector x, vector y);
@ logic real dot_prod_ext (vector x, vector y);
@ axiom dot_prod_ext:
@ \forall vector x, vector y;
@ vect_length(x)!= vect_length(y) ==>
@ dot_prod(x,y) == dot_prod_ext(x,y);
@ logic real dot_prod_aux (vector x, vector y, integer i);
@ axiom dot_prod_below_0:
@ \forall vector x, y, int i;
@ vect_length(x)==vect_length(y) ==>
@ i < 0 ==>
@ dot_prod_aux(x,y,i) ==0;
@ axiom dot_prod_ind:
@ \forall vector x,y,int i;
@ vect_length(x)==vect_length(y) ==>
@ i>=0 ==> dot_prod_aux(x,y,i) == dot_prod_aux(x,y,i-1) +
@ vect_select(x,i)*vect_select(y,i);
@ axiom dot_prod_val:
@ \forall vector x,y;
@ vect_length(x)==vect_length(y) ==>
@ dot_prod(x,y) == dot_prod_aux(x,y,vect_length(x)-1);
@
@ predicate square( matrix P);
@ axiom square_def:
@ \forall matrix P;
@ square(P) <==> mat_row(P)==mat_col(P);
@
@ predicate invertible(matrix P);
@ axiom inv_def:
@ \forall matrix P;
@ invertible(P) <==> square(P) &&
@ \exists matrix Q;
@ mat_row(Q) == mat_row(P) &&
@ mat_col(Q) == mat_col(P) &&
@ mat_mult(Q,P) == eye(mat_row(P)) &&
@ mat_mult(P,Q) == eye(mat_col(P));
@
@ logic matrix inverse(matrix P);
@ logic matrix inverse_ext(matrix P);
@ axiom inverse_def:
@ \forall matrix P;
@ invertible(P) ==> mat_mult(P,inverse(P)) == eye(mat_row(P)) &&
@ mat_mult(inverse(P),P) == eye(mat_col(P));
@ axiom inverse_row:
@ \forall matrix P;
@ invertible(P) ==> mat_row(inverse(P)) == mat_row(P);
@ axiom inverse_col:
@ \forall matrix P;
@ invertible(P) ==> mat_col(inverse(P)) == mat_col(P);
@ axiom inverse_ext :
@ \forall matrix P;
@ !invertible(P) ==> inverse(P) == inverse_ext(P);
@
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@ predicate symmetric (matrix P);
@ axiom sym_def:
@ \forall matrix P;
@ (square(P) &&
@ transpose(P)==P) <==>
@ symmetric(P);
@
@ predicate semidefpos (matrix P);
@ predicate semidefpos_ext(matrix P);
@ axiom semidefpos_ext:
@ \forall matrix P;
@ !square(P) ==> (semidefpos(P) <==> semidefpos_ext(P));
@ axiom semidefpos_def:
@ \forall matrix P;
@ square(P) ==>
@ (\forall vector x;
@ (vect_length(x)==mat_row(P) ==>
@ dot_prod(x,vect_mult(P,x))>=0)) <==> semidefpos(P);
@
@ logic matrix V2Ml(vector x);
@ axiom V2Ml_select:
@ \forall vector x, integer j;
@ 0<=j<vect_length(x) ==>
@ mat_select(V2Ml(x),0,j) == vect_select(x,j);
@ axiom V2Ml_row:
@ \forall vector x;
@ mat_row(V2Ml(x))==1;
@ axiom V2Ml_col:
@ \forall vector x;
@ mat_col(V2Ml(x)) == vect_length(x);
@
@ predicate in_ellipsoidQ(matrix Q, vector x);
@ predicate in_ellipsoidQ_ext(matrix Q, vector x);
@ axiom in_ellipsoidQ_ext:
@ \forall matrix Q, vector x;
@ vect_length(x)!=mat_col(Q) ||
@ mat_col(Q)!=mat_row(Q) ==>
@ (in_ellipsoidQ(Q,x) <==> in_ellipsoidQ_ext( Q, x));
@ axiom in_ellipsoidQ:
@ \forall matrix Q, vector x;
@ vect_length(x)==mat_col(Q) &&
@ mat_col(Q)==mat_row(Q) ==>
@ ((symmetric(Q) && semidefpos(Q) &&
@ semidefpos(block_m(eye(1),V2Ml(x),transpose(V2Ml(x)),Q))) <==>
@ in_ellipsoidQ(Q, x));
@
@ predicate neg_quad(matrix G, vector x);
@ predicate neg_quad_ext(matrix G, vector x);
@ axiom neg_quad_ext:
@ \forall matrix G, vector x;
@ vect_length(x)!=mat_col(G) ||
@ mat_col(G)!=mat_row(G) ==>
@ neg_quad(G,x) <==> neg_quad_ext(G,x);
@ axiom neg_quad:
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@ \forall matrix G, vector x;
@ vect_length(x)==mat_col(G) &&
@ mat_col(G)==mat_row(G) ==>
@ neg_quad(G,x) <==> dot_prod(x,vect_mult(G,x)) <= 0;}
*/
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Appendix B

EXEMPLE ANNOTATED PROGRAMS

This appendix shows full examples of annotated programs using the annotation framework

described in chapter 3. They can be analyzed by the tool presented in chapter 5. They are

both available as test cases in the distribution of the tool, which can be found online1.

B.1 Open Loop Stability

This is the fully annotated program for the system described in section 3.4.3.
/*

simple_olg.c
Generated by Gene-Auto toolset ver 2.4.10
(launcher GALauncher)
Generated on: 25/04/2014 10:26:30.965
source model: simple_olg
model version: 7.2
last saved by:
last saved on:

*/

/* Includes */

#include "base.h"
#include "simple_olg.h"

/* Variable definitions */

REAL simple_olg_yd = 0.0;
REAL simple_olg_y = 0.0;

/* Function definitions */

/*@
requires \valid(_state_);

*/
void simple_olg_init(t_simple_olg_state *_state_) {

_state_->Integrator_1_memory = 1;
_state_->Integrator_2_memory = 1;

}

1http://github.com/rjobredeaux/genecheck
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/*@
logic matrix QMat_0 = mat_of_1x1_scalar(1.0);

*/
/*@

logic matrix QMat_1 = mat_of_2x2_scalar(1710.0449662492558, -41
.101885746811455, -41.101885746811455, 499.17657993449376);

*/
/*@

logic matrix QMat_2 = mat_mult(mat_mult(mat_of_3x2_scalar(1.0,
0.0, 0.0, 1.0, 1.0, 0.0), QMat_1), transpose(
mat_of_3x2_scalar(1.0, 0.0, 0.0, 1.0, 1.0, 0.0)));

*/
/*@

logic matrix QMat_3 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_0), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_4 = mat_mult(mat_mult(mat_of_4x3_scalar(1.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 564.48),
QMat_2), transpose(mat_of_4x3_scalar(1.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 564.48)));

*/
/*@

logic matrix QMat_5 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_3), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_6 = mat_mult(mat_mult(mat_of_5x4_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.01, 0.0), QMat_4), transpose(
mat_of_5x4_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.01, 0.0)
));

*/
/*@

logic matrix QMat_7 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_5), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_8 = mat_mult(mat_mult(mat_of_6x5_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 1.0, 0.0, 0.0, 0.0), QMat_6), transpose(
mat_of_6x5_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0)));

*/
/*@

logic matrix QMat_9 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_7), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@
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logic matrix QMat_10 = mat_mult(mat_mult(mat_of_7x6_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0, 1.0), QMat_8), transpose(
mat_of_7x6_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)));

*/
/*@

logic matrix QMat_11 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_9), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_12 = QMat_11;
*/
/*@

logic matrix QMat_13 = mat_mult(mat_mult(mat_of_6x7_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0), QMat_10), transpose(
mat_of_6x7_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_14 = QMat_12;
*/
/*@

logic matrix QMat_15 = mat_mult(mat_mult(mat_of_6x6_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
QMat_13), transpose(mat_of_6x6_scalar(1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_16 = QMat_14;
*/
/*@

logic matrix QMat_17 = mat_mult(mat_mult(mat_of_6x6_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
QMat_15), transpose(mat_of_6x6_scalar(1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
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/*@
logic matrix QMat_18 = mat_mult(mat_mult(mat_of_2x1_scalar(1.0,

-1280.0), QMat_16), transpose(mat_of_2x1_scalar(1.0, -1280
.0)));

*/
/*@

logic matrix QMat_19 = mat_mult(mat_mult(mat_of_6x6_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
QMat_17), transpose(mat_of_6x6_scalar(1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_20 = block_m(mat_scalar_mult
(1.0009008207386647, QMat_19), zeros(6, 2), zeros(2, 6),
mat_scalar_mult(1111.111122222222, QMat_18));

*/
/*@

logic matrix QMat_21 = mat_mult(mat_mult(mat_of_9x8_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0),
QMat_20), transpose(mat_of_9x8_scalar(1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_22 = mat_mult(mat_mult(mat_of_8x9_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
QMat_21), transpose(mat_of_8x9_scalar(1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@
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logic matrix QMat_23 = mat_mult(mat_mult(mat_of_7x8_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 50.1, 0.0, 0.0, 0.0, 0.0, 0.0), QMat_22), transpose(
mat_of_7x8_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 50.1, 0.0, 0.0, 0.0, 0.0, 0.0)
));

*/
/*@

logic matrix QMat_24 = mat_mult(mat_mult(mat_of_8x7_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0), QMat_23), transpose(
mat_of_8x7_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0))
);

*/
/*@

logic matrix QMat_25 = mat_mult(mat_mult(mat_of_8x8_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, -1.0, -1.0), QMat_24), transpose(mat_of_8x8_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, -1.0, -1.0)));

*/
/*@
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logic matrix QMat_26 = mat_mult(mat_mult(mat_of_7x8_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01), QMat_25), transpose(
mat_of_7x8_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01)
));

*/
/*@

logic matrix QMat_27 = mat_mult(mat_mult(mat_of_7x7_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0),
QMat_26), transpose(mat_of_7x7_scalar(1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_28 = mat_mult(mat_mult(mat_of_6x7_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 1.0), QMat_27), transpose(
mat_of_6x7_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_29 = mat_mult(mat_mult(mat_of_4x6_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
QMat_28), transpose(mat_of_4x6_scalar(1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_30 = mat_mult(mat_mult(mat_of_2x4_scalar(0.0,
0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0), QMat_29), transpose(
mat_of_2x4_scalar(0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0)));

*/
/*@

requires \valid(_io_) && \valid(_state_);
requires in_ellipsoidQ(QMat_0, vect_of_1_scalar(_io_->y -

_io_->yd));
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requires in_ellipsoidQ(QMat_1, vect_of_2_scalar(
_state_->Integrator_1_memory, _state_->Integrator_2_memory))
;

requires \separated(_io_, _state_);
ensures in_ellipsoidQ(QMat_1, vect_of_2_scalar(

_state_->Integrator_1_memory, _state_->Integrator_2_memory))
;

ensures \separated(_io_, _state_);
*/
void simple_olg_compute(t_simple_olg_io *_io_, t_simple_olg_state *

_state_) {
REAL A11;
REAL A12;
REAL A21_dt;
REAL C11;
REAL D11;
REAL Integrator_1;
REAL Integrator_2;
REAL Sum1;
REAL Sum2;
REAL Sum3;
REAL Sum4;
REAL Sum5;
REAL control_output;
REAL dt_;
REAL x_t_[2];
REAL yd_t_[1];
/*@

requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_0:
requires in_ellipsoidQ(QMat_0, vect_of_1_scalar(_io_->y -

_io_->yd));
ensures in_ellipsoidQ(QMat_3, vect_of_1_scalar(_io_->y -

_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

behavior ElllipsoidMain_0:
requires in_ellipsoidQ(QMat_1, vect_of_2_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory));

ensures in_ellipsoidQ(QMat_2, vect_of_3_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Integrator_1 = _state_->Integrator_1_memory;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);
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behavior EllipsoidInput_1:
requires in_ellipsoidQ(QMat_3, vect_of_1_scalar(_io_->y -

_io_->yd));
ensures in_ellipsoidQ(QMat_5, vect_of_1_scalar(_io_->y -

_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

behavior ElllipsoidMain_1:
requires in_ellipsoidQ(QMat_2, vect_of_3_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1));

ensures in_ellipsoidQ(QMat_4, vect_of_4_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
C11 = 564.48 * Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_2:
requires in_ellipsoidQ(QMat_5, vect_of_1_scalar(_io_->y -

_io_->yd));
ensures in_ellipsoidQ(QMat_7, vect_of_1_scalar(_io_->y -

_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

behavior ElllipsoidMain_2:
requires in_ellipsoidQ(QMat_4, vect_of_4_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11));

ensures in_ellipsoidQ(QMat_6, vect_of_5_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11, A21_dt)
);

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
A21_dt = 0.01 * Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_3:
requires in_ellipsoidQ(QMat_7, vect_of_1_scalar(_io_->y -

_io_->yd));
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ensures in_ellipsoidQ(QMat_9, vect_of_1_scalar(_io_->y -
_io_->yd));

@ PROOF_TACTIC (use_strategy (Identity));

behavior ElllipsoidMain_3:
requires in_ellipsoidQ(QMat_6, vect_of_5_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11, A21_dt)
);

ensures in_ellipsoidQ(QMat_8, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11, A21_dt,
Integrator_2));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Integrator_2 = _state_->Integrator_2_memory;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_4:
requires in_ellipsoidQ(QMat_9, vect_of_1_scalar(_io_->y -

_io_->yd));
ensures in_ellipsoidQ(QMat_11, vect_of_1_scalar(_io_->y -

_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

behavior ElllipsoidMain_4:
requires in_ellipsoidQ(QMat_8, vect_of_6_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11, A21_dt,
Integrator_2));

ensures in_ellipsoidQ(QMat_10, vect_of_7_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11, A21_dt,
Integrator_2, Sum3));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Sum3 = A21_dt + Integrator_2;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_5:
requires in_ellipsoidQ(QMat_11, vect_of_1_scalar(_io_->y -

_io_->yd));
ensures in_ellipsoidQ(QMat_12, vect_of_1_scalar(simple_olg_y

- _io_->yd));
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@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior ElllipsoidMain_5:
requires in_ellipsoidQ(QMat_10, vect_of_7_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11, A21_dt,
Integrator_2, Sum3));

ensures in_ellipsoidQ(QMat_13, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
simple_olg_y = _io_->y;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_6:
requires in_ellipsoidQ(QMat_12, vect_of_1_scalar(

simple_olg_y - _io_->yd));
ensures in_ellipsoidQ(QMat_14, vect_of_1_scalar(simple_olg_y

- simple_olg_yd));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior ElllipsoidMain_6:
requires in_ellipsoidQ(QMat_13, vect_of_6_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

ensures in_ellipsoidQ(QMat_15, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

@ PROOF_TACTIC (use_strategy (Identity));
*/

{
simple_olg_yd = _io_->yd;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_7:
requires in_ellipsoidQ(QMat_14, vect_of_1_scalar(

simple_olg_y - simple_olg_yd));
ensures in_ellipsoidQ(QMat_16, vect_of_1_scalar(Sum4));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior ElllipsoidMain_7:
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requires in_ellipsoidQ(QMat_15, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

ensures in_ellipsoidQ(QMat_17, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

@ PROOF_TACTIC (use_strategy (Identity));
*/

{
Sum4 = simple_olg_y - simple_olg_yd;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior EllipsoidInput_8:
requires in_ellipsoidQ(QMat_16, vect_of_1_scalar(Sum4));
ensures in_ellipsoidQ(QMat_18, vect_of_2_scalar(Sum4, D11));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior ElllipsoidMain_8:
requires in_ellipsoidQ(QMat_17, vect_of_6_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

ensures in_ellipsoidQ(QMat_19, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

@ PROOF_TACTIC (use_strategy (Identity));
*/

{
D11 = -1280.0 * Sum4;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_9:
requires in_ellipsoidQ(QMat_18, vect_of_2_scalar(Sum4, D11))
;

requires in_ellipsoidQ(QMat_19, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3));

ensures in_ellipsoidQ(QMat_20, vect_of_8_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3, Sum4, D11));

@ PROOF_TACTIC (use_strategy (SProcedure));
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*/
{

}
/*@

requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_10:
requires in_ellipsoidQ(QMat_20, vect_of_8_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3, Sum4, D11));

ensures in_ellipsoidQ(QMat_21, vect_of_9_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3, Sum4, D11, control_output));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
control_output = D11 + C11;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_11:
requires in_ellipsoidQ(QMat_21, vect_of_9_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, C11,
Integrator_2, Sum3, Sum4, D11, control_output));

ensures in_ellipsoidQ(QMat_22, vect_of_8_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1,
Integrator_2, Sum3, Sum4, control_output, _io_->u));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
_io_->u = control_output;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

@ behavior EllipsoidMain_12:
@ requires in_ellipsoidQ(

QMat_22, vect_of_8_scalar(_state_->Integrator_1_memory,
_state_->Integrator_2_memory,

Integrator_1,
Integrator_2, Sum3,
Sum4,
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control_output, _io_->u))
;

@ ensures in_ellipsoidQ(
QMat_23, vect_of_7_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory,
Integrator_1, Integrator_2, Sum3,
Sum4, A11));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
A11 = 50.1 * Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_13:
requires in_ellipsoidQ(QMat_23, vect_of_7_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1,
Integrator_2, Sum3, Sum4, A11));

ensures in_ellipsoidQ(QMat_24, vect_of_8_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1,
Integrator_2, Sum3, Sum4, A11, A12));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
A12 = 5.0 * Integrator_2;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_14:
requires in_ellipsoidQ(QMat_24, vect_of_8_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1,
Integrator_2, Sum3, Sum4, A11, A12));

ensures in_ellipsoidQ(QMat_25, vect_of_8_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, Sum3, Sum4,
A11, A12, Sum1));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Sum1 = -A12 - A11;

}

/*@
requires \separated(_io_, _state_);
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ensures \separated(_io_, _state_);

behavior ElllipsoidMain_15:
requires in_ellipsoidQ(QMat_25, vect_of_8_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, Sum3, Sum4,
A11, A12, Sum1));

ensures in_ellipsoidQ(QMat_26, vect_of_7_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, Sum3, Sum4,
Sum1, dt_));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
dt_ = 0.01 * Sum1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_16:
requires in_ellipsoidQ(QMat_26, vect_of_7_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, Sum3, Sum4,
Sum1, dt_));

ensures in_ellipsoidQ(QMat_27, vect_of_7_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Integrator_1, Sum3, Sum4,
dt_, Sum2));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Sum2 = dt_ + Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_17:
@ requires in_ellipsoidQ(QMat_27,

vect_of_7_scalar(_state_->Integrator_1_memory,
_state_->Integrator_2_memory,

Integrator_1, Sum3, Sum4, dt_, Sum2));
@ ensures in_ellipsoidQ(QMat_28,

vect_of_6_scalar(_state_->Integrator_1_memory,
_state_->Integrator_2_memory,

Sum3, Sum4, Sum2, Sum5));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/
{
Sum5 = Sum4 + Sum2;

}
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/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_18:
requires in_ellipsoidQ(QMat_28, vect_of_6_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Sum3, Sum4, Sum2, Sum5));

ensures in_ellipsoidQ(QMat_29, vect_of_4_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Sum3, Sum5));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
_state_->Integrator_2_memory = Sum3;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_19:
requires in_ellipsoidQ(QMat_29, vect_of_4_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Sum3, Sum5));

ensures in_ellipsoidQ(QMat_30, vect_of_2_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
_state_->Integrator_1_memory = Sum5;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior ElllipsoidMain_20:
requires in_ellipsoidQ(QMat_30, vect_of_2_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory));

ensures in_ellipsoidQ(QMat_1, vect_of_2_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory));

@ PROOF_TACTIC (use_strategy (PosDef));
*/

{

}
}
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B.2 Closed Loop Stability

This is the fully annotated program for the system described in section 3.4.4.
/*

simple_clg.c
Generated by Gene-Auto toolset ver 2.4.10
(launcher GALauncher)
Generated on: 25/04/2014 09:55:50.798
source model: simple_clg
model version: 7.2
last saved by:
last saved on:

*/

/* Includes */

#include "simple_clg.h"

/* Variable definitions */

REAL simple_clg_yd = 0.0;
REAL simple_clg_y = 0.0;

/* Function definitions */

/*@
requires \valid(_state_);

*/
void simple_clg_init(t_simple_clg_state *_state_) {

_state_->Integrator_1_memory = 1;
_state_->Integrator_2_memory = 1;

}

/*@
ghost REAL Plant_0;

*/
/*@

ghost REAL Plant_1;
*/
/*@

ghost REAL Plant_xp_0_tmp;
*/
/*@

ghost REAL Plant_xp_1_tmp;
*/
/*@

logic matrix QMat_1 = mat_of_1x1_scalar(1.0);
*/
/*@
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logic matrix QMat_2 = mat_of_4x4_scalar(302.489180697473, -6
.517333308825514, 38.42584456456831, -3488.8814244777536, -6
.5173333088254735, 3.902945409520518, -4.233543080803806,
26.159788880690265, 38.425844564568266, -4.233543080803765,
38.03680122438909, -241.69936880801467, -3488.881424477755,
26.159788880690428, -241.69936880801467, 42532.50094858428);

*/
/*@

logic matrix QMat_3 = mat_mult(mat_mult(mat_of_5x4_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0), QMat_2), transpose(
mat_of_5x4_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0))
);

*/
/*@

logic matrix QMat_4 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_1), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_5 = mat_mult(mat_mult(mat_of_6x5_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
1.0, 0.0, 0.0, 0.0, 0.0), QMat_3), transpose(
mat_of_6x5_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0)));

*/
/*@

logic matrix QMat_6 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_4), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_7 = mat_mult(mat_mult(mat_of_7x6_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 564.48), QMat_5), transpose(
mat_of_7x6_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 564.48)));

*/
/*@

logic matrix QMat_8 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_6), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@
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logic matrix QMat_9 = mat_mult(mat_mult(mat_of_8x7_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.01, 0.0), QMat_7), transpose(
mat_of_8x7_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01, 0.0)
));

*/
/*@

logic matrix QMat_10 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_8), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_11 = mat_mult(mat_mult(mat_of_9x8_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
QMat_9), transpose(mat_of_9x8_scalar(1.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)));

*/
/*@

logic matrix QMat_12 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_10), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@
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logic matrix QMat_13 = mat_mult(mat_mult(mat_of_10x9_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 1.0), QMat_11), transpose(
mat_of_10x9_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)));

*/
/*@

logic matrix QMat_14 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_12), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_15 = mat_mult(mat_mult(mat_of_10x10_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
, 0.0, 0.0, 0.0), QMat_13), transpose(mat_of_10x10_scalar
(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0)));

*/
/*@

logic matrix QMat_16 = mat_mult(mat_mult(mat_of_1x1_scalar(1.0),
QMat_14), transpose(mat_of_1x1_scalar(1.0)));

*/
/*@

logic matrix QMat_17 = mat_mult(mat_mult(mat_of_2x1_scalar(1.0,
1.0), QMat_16), transpose(mat_of_2x1_scalar(1.0, 1.0)));

*/
/*@
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logic matrix QMat_18 = mat_mult(mat_mult(mat_of_9x10_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0), QMat_15), transpose(
mat_of_9x10_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_19 = block_m(mat_scalar_mult
(1.0090817457114025, QMat_18), zeros(9, 2), zeros(2, 9),
mat_scalar_mult(111.11111222222222, QMat_17));

*/
/*@

logic matrix QMat_20 = mat_mult(mat_mult(mat_of_11x11_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1
.0), QMat_19), transpose(mat_of_11x11_scalar(1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1.0)));

*/
/*@
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logic matrix QMat_21 = mat_mult(mat_mult(mat_of_10x11_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, -1280.0), QMat_20), transpose(mat_of_10x11_scalar(1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
-1280.0)));

*/
/*@

logic matrix QMat_22 = mat_mult(mat_mult(mat_of_11x10_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0
, 1.0), QMat_21), transpose(mat_of_11x10_scalar(1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0))
);

*/
/*@
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logic matrix QMat_23 = mat_mult(mat_mult(mat_of_10x11_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0), QMat_22), transpose(mat_of_10x11_scalar(1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0))
);

*/
/*@

logic matrix QMat_24 = mat_mult(mat_mult(mat_of_10x10_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 50.1, 0.0,
0.0, 0.0, 0.0, 0.0), QMat_23), transpose(mat_of_10x10_scalar
(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 50.1, 0.0
, 0.0, 0.0, 0.0, 0.0)));

*/
/*@
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logic matrix QMat_25 = mat_mult(mat_mult(mat_of_11x10_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0
, 0.0), QMat_24), transpose(mat_of_11x10_scalar(1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0))
);

*/
/*@

logic matrix QMat_26 = mat_mult(mat_mult(mat_of_11x11_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1
.0), QMat_25), transpose(mat_of_11x11_scalar(1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0)));

*/
/*@
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logic matrix QMat_27 = mat_mult(mat_mult(mat_of_10x11_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.01), QMat_26), transpose(mat_of_10x11_scalar(1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01)
));

*/
/*@

logic matrix QMat_28 = mat_mult(mat_mult(mat_of_10x10_scalar(1.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
, 0.0, 0.0, 1.0), QMat_27), transpose(mat_of_10x10_scalar
(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0)));

*/
/*@
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logic matrix QMat_29 = mat_mult(mat_mult(mat_of_9x10_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 1.0), QMat_28), transpose(
mat_of_9x10_scalar(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_30 = mat_mult(mat_mult(mat_of_7x9_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0), QMat_29), transpose(mat_of_7x9_scalar(1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0)));

*/
/*@

logic matrix QMat_31 = mat_mult(mat_mult(mat_of_6x7_scalar(0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0), QMat_30), transpose(
mat_of_6x7_scalar(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)));

*/
/*@

logic matrix QMat_32 = mat_mult(mat_mult(mat_of_4x6_scalar(1.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.01, 5.0E-5, 0.0, 0.0, 0.0, -0.01, 1.0, 0.01,
0.0), QMat_31), transpose(mat_of_4x6_scalar(1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.01, 5.0E-5, 0.0, 0.0, 0.0, -0.01, 1.0, 0.01, 0.0)));

*/
/*@

requires \valid(_io_) && \valid(_state_);

124



requires _io_->y == 1.0 * Plant_0;
requires in_ellipsoidQ(QMat_1, vect_of_1_scalar(_io_->yd));
requires in_ellipsoidQ(QMat_2, vect_of_4_scalar(

_state_->Integrator_1_memory, _state_->Integrator_2_memory,
Plant_0, Plant_1));

requires \separated(_io_, _state_);
ensures in_ellipsoidQ(QMat_2, vect_of_4_scalar(

_state_->Integrator_1_memory, _state_->Integrator_2_memory,
Plant_0, Plant_1));

ensures \separated(_io_, _state_);
*/
void simple_clg_compute(t_simple_clg_io *_io_, t_simple_clg_state *

_state_) {
REAL A11;
REAL A12;
REAL A21_dt;
REAL C11;
REAL D11;
REAL Integrator_1;
REAL Integrator_2;
REAL Sum1;
REAL Sum2;
REAL Sum3;
REAL Sum4;
REAL Sum5;
REAL control_output;
REAL dt_;
REAL x_t_[4];
REAL yd_t_[1];
/*@

requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_0:
requires in_ellipsoidQ(QMat_2, vect_of_4_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1));

ensures in_ellipsoidQ(QMat_3, vect_of_5_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y)
);

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior EllipsoidInput_0:
requires in_ellipsoidQ(QMat_1, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_4, vect_of_1_scalar(_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

*/
{

}
/*@

requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);
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behavior Plant_1:
requires in_ellipsoidQ(QMat_3, vect_of_5_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y)
);

ensures in_ellipsoidQ(QMat_5, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior EllipsoidInput_1:
requires in_ellipsoidQ(QMat_4, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_6, vect_of_1_scalar(_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

*/
{
Integrator_1 = _state_->Integrator_1_memory;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_2:
requires in_ellipsoidQ(QMat_5, vect_of_6_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1));

ensures in_ellipsoidQ(QMat_7, vect_of_7_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior EllipsoidInput_2:
requires in_ellipsoidQ(QMat_6, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_8, vect_of_1_scalar(_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

*/
{
C11 = 564.48 * Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_3:
requires in_ellipsoidQ(QMat_7, vect_of_7_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11));
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ensures in_ellipsoidQ(QMat_9, vect_of_8_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, A21_dt));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior EllipsoidInput_3:
requires in_ellipsoidQ(QMat_8, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_10, vect_of_1_scalar(_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

*/
{
A21_dt = 0.01 * Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_4:
requires in_ellipsoidQ(QMat_9, vect_of_8_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, A21_dt));

ensures in_ellipsoidQ(QMat_11, vect_of_9_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, A21_dt, Integrator_2));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior EllipsoidInput_4:
requires in_ellipsoidQ(QMat_10, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_12, vect_of_1_scalar(_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

*/
{
Integrator_2 = _state_->Integrator_2_memory;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_5:
requires in_ellipsoidQ(QMat_11, vect_of_9_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, A21_dt, Integrator_2));

ensures in_ellipsoidQ(QMat_13, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, A21_dt, Integrator_2, Sum3));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
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behavior EllipsoidInput_5:
requires in_ellipsoidQ(QMat_12, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_14, vect_of_1_scalar(_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

*/
{
Sum3 = A21_dt + Integrator_2;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_6:
requires in_ellipsoidQ(QMat_13, vect_of_10_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, A21_dt, Integrator_2, Sum3));

ensures in_ellipsoidQ(QMat_15, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior EllipsoidInput_6:
requires in_ellipsoidQ(QMat_14, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_16, vect_of_1_scalar(_io_->yd));
@ PROOF_TACTIC (use_strategy (Identity));

*/
{
simple_clg_y = _io_->y;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_7:
requires in_ellipsoidQ(QMat_15, vect_of_10_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->y,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y));

ensures in_ellipsoidQ(QMat_18, vect_of_9_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

behavior EllipsoidInput_7:
requires in_ellipsoidQ(QMat_16, vect_of_1_scalar(_io_->yd));
ensures in_ellipsoidQ(QMat_17, vect_of_2_scalar(_io_->yd,

simple_clg_yd));
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/
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{
simple_clg_yd = _io_->yd;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_8:
requires in_ellipsoidQ(QMat_17, vect_of_2_scalar(_io_->yd,

simple_clg_yd));
requires in_ellipsoidQ(QMat_18, vect_of_9_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y));

ensures in_ellipsoidQ(QMat_19, vect_of_11_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y,
_io_->yd, simple_clg_yd));

@ PROOF_TACTIC (use_strategy (SProcedure));
*/

{

}
/*@

requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_9:
requires in_ellipsoidQ(QMat_19, vect_of_11_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y,
_io_->yd, simple_clg_yd));

ensures in_ellipsoidQ(QMat_20, vect_of_11_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y,
simple_clg_yd, Sum4));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Sum4 = simple_clg_y - simple_clg_yd;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_10:
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requires in_ellipsoidQ(QMat_20, vect_of_11_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, simple_clg_y,
simple_clg_yd, Sum4));

ensures in_ellipsoidQ(QMat_21, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, Sum4, D11));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
D11 = -1280.0 * Sum4;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_11:
requires in_ellipsoidQ(QMat_21, vect_of_10_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, Sum4, D11));

ensures in_ellipsoidQ(QMat_22, vect_of_11_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, Sum4, D11,
control_output));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
control_output = D11 + C11;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_12:
requires in_ellipsoidQ(QMat_22, vect_of_11_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, C11, Integrator_2, Sum3, Sum4, D11,
control_output));

ensures in_ellipsoidQ(QMat_23, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Integrator_2, Sum3, Sum4, control_output,
_io_->u));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
_io_->u = control_output;
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}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_13:
requires in_ellipsoidQ(QMat_23, vect_of_10_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Integrator_2, Sum3, Sum4, control_output,
_io_->u));

ensures in_ellipsoidQ(QMat_24, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Integrator_2, Sum3, Sum4, _io_->u, A11));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
A11 = 50.1 * Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_14:
requires in_ellipsoidQ(QMat_24, vect_of_10_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Integrator_2, Sum3, Sum4, _io_->u, A11));

ensures in_ellipsoidQ(QMat_25, vect_of_11_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Integrator_2, Sum3, Sum4, _io_->u, A11,
A12));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
A12 = 5.0 * Integrator_2;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_15:
requires in_ellipsoidQ(QMat_25, vect_of_11_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Integrator_2, Sum3, Sum4, _io_->u, A11,
A12));
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ensures in_ellipsoidQ(QMat_26, vect_of_11_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Sum3, Sum4, _io_->u, A11, A12, Sum1));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Sum1 = -A12 - A11;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_16:
requires in_ellipsoidQ(QMat_26, vect_of_11_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Sum3, Sum4, _io_->u, A11, A12, Sum1));

ensures in_ellipsoidQ(QMat_27, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Sum3, Sum4, _io_->u, Sum1, dt_));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
dt_ = 0.01 * Sum1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_17:
requires in_ellipsoidQ(QMat_27, vect_of_10_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Sum3, Sum4, _io_->u, Sum1, dt_));

ensures in_ellipsoidQ(QMat_28, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Sum3, Sum4, _io_->u, dt_, Sum2));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Sum2 = dt_ + Integrator_1;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_18:
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requires in_ellipsoidQ(QMat_28, vect_of_10_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1,
Integrator_1, Sum3, Sum4, _io_->u, dt_, Sum2));

ensures in_ellipsoidQ(QMat_29, vect_of_9_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, Sum3,
Sum4, _io_->u, Sum2, Sum5));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
Sum5 = Sum4 + Sum2;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_19:
requires in_ellipsoidQ(QMat_29, vect_of_9_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, Sum3,
Sum4, _io_->u, Sum2, Sum5));

ensures in_ellipsoidQ(QMat_30, vect_of_7_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, Sum3,
_io_->u, Sum5));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
_state_->Integrator_2_memory = Sum3;

}

/*@
requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_20:
requires in_ellipsoidQ(QMat_30, vect_of_7_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, Sum3,
_io_->u, Sum5));

ensures in_ellipsoidQ(QMat_31, vect_of_6_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->u,
Sum5));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
_state_->Integrator_1_memory = Sum5;

}

/*@
requires \separated(_io_, _state_);
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ensures \separated(_io_, _state_);

behavior Plant_21:
requires in_ellipsoidQ(QMat_31, vect_of_6_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1, _io_->u,
Sum5));

ensures in_ellipsoidQ(QMat_32, vect_of_4_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
*/

{
/*@

ghost Plant_xp_0_tmp = Plant_0;;
*/
/*@

ghost Plant_xp_1_tmp = Plant_1;;
*/
/*@

ghost Plant_0 = 1.0 * Plant_xp_0_tmp + 0.01 * Plant_xp_1_tmp
+ 5.0E-5 * _io_->u;;

*/
/*@

ghost Plant_1 = -0.01 * Plant_xp_0_tmp + 1.0 *
Plant_xp_1_tmp + 0.01 * _io_->u;;

*/

}
/*@

requires \separated(_io_, _state_);
ensures \separated(_io_, _state_);

behavior Plant_22:
requires in_ellipsoidQ(QMat_32, vect_of_4_scalar(

_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1));

ensures in_ellipsoidQ(QMat_2, vect_of_4_scalar(
_state_->Integrator_1_memory,
_state_->Integrator_2_memory, Plant_0, Plant_1));

@ PROOF_TACTIC (use_strategy (PosDef));
*/

{

}
}
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Appendix C

PVS LIBRARIES

The following is the list of PVS definitions and lemmas introduced as part of this work. All

these results were proven in PVS. These libraries, as well as the proof for all theorems and

lemmas, are available online1. Are only included here the theories this work significantly

contributed to. The online library includes a few more which were borrowed (with due

credit) from the Nasa linear algebra library.

C.1 Matrix definitions and common results

The following two theories introduce the matrix type and prove classic results on matrices.

These theories were initiated by Heber Herencia and significantly built upon as part of this

work.
% --------------------------------------------------------------
% File Name: matrices
% Author Names: Romain Jobredeaux & Heber Herencia-Zapana
%
% --------------------------------------------------------------
% This theory introduces the matrix type and common subtypes,
% operations , and results on matrices.

matrices: THEORY
BEGIN

IMPORTING vectors+vectors, vect_of_vect , reals+sigma_below ,reals+
sigma_swap

% A preliminary lemma for sum conversions
sigma_trick:
LEMMA
FORALL (n:posnat, high:{high:nat|high<n},
low:{low:nat|low<=high}, F:[below(n)->real]):
sigma[below(n)](low,high,F) =
sigma[nat](low,high,LAMBDA (i:nat): IF (i>=n) THEN 0 ELSE F(i)

ENDIF) ;

1http://github.com/rjobredeaux/genecheck
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conversion- b2n
n, m,e: VAR nat
pn, pm: VAR posnat
c, r, s: VAR real

conversion- b2n

Matrix:
TYPE = [# rows: posnat, cols: posnat,

matrix: [below(rows), below(cols) -> real] #]

Mat(m, n):
TYPE = {M: Matrix | M‘rows = m and M‘cols = n}

M, N, P: VAR Matrix

rowV(M)(i: below(M‘rows)): Vector[M‘cols] =
lambda (j: below(M‘cols)): M‘matrix(i, j)

colV(M)(j: below(M‘cols)): Vector[M‘rows] =
lambda (i: below(M‘rows)): M‘matrix(i, j)

rowM(M)(i: below(M‘rows)): Matrix =
(# rows := 1, cols := M‘cols,
matrix := lambda (k: below(1), j: below(M‘cols)): M‘matrix(i, j)
#)

colM(M)(j: below(M‘cols)): Matrix =
(# rows := M‘rows, cols := 1,
matrix := lambda (i: below(M‘rows), k: below(1)): M‘matrix(i, j)
#)

cols(M): Vector_of_Vectors[M‘rows, M‘cols] =
lambda (i: below(M‘cols)):
lambda (j: below(M‘rows)): M‘matrix(j, i)

rows(M): Vector_of_Vectors[M‘cols, M‘rows] =
lambda (i: below(M‘rows)):
lambda (j: below(M‘cols)): M‘matrix(i, j)

Mr2V(M: Matrix | M‘rows = 1): Vector[M‘cols] =
lambda (j: below(M‘cols)): M‘matrix(0, j)

Mc2V(M: Matrix | M‘cols = 1): Vector[M‘rows] =
lambda (j: below(M‘rows)): M‘matrix(j, 0)

vectors2matrix(pn, pm)(V2: Vector_of_Vectors[pn, pm]): Matrix =
(# cols := pm, rows := pn,
matrix := lambda (i: below(pn), j: below(pm)): V2(j)(i) #)

conversion+ vectors2matrix , cols

transpose(M): Matrix =
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(# rows := M‘cols, cols := M‘rows,
matrix := lambda (i: below(M‘cols), j: below(M‘rows)): M‘matrix(j,

i) #)

square?(M): bool = M‘rows = M‘cols

Square: TYPE = (square?)

squareMat?(n: posnat)(M: Square): bool = M‘rows = n

SquareMat(n: posnat): TYPE = (squareMat?(n))

zero?(M): bool =
FORALL (i: below(M‘rows), j: below(M‘cols)): M‘matrix(i, j) = 0

nonzero?(M): bool = not zero?(M)

Zero: TYPE = (zero?)

delta(i, j: nat): MACRO nat = if i = j then 1 else 0 endif

identity?(M: Matrix): bool =
square?(M) and
FORALL (i, j: below(M‘rows)):
M‘matrix(i, j) = delta(i, j)

I(n: posnat):
(identity?) =
(# rows := n, cols := n,
matrix := lambda (i, j: below(n)): delta(i, j) #)

Zero_mat(m:posnat,n:posnat):
Zero =
(# rows := m, cols := n,
matrix := lambda (i:below(m), j: below(n)): 0 #)

upper_triangular?(M): bool = square?(M)
AND FORALL (i, j: below(M‘rows)): i > j => M‘matrix(i,j) = 0

lower_triangular?(M): bool = square?(M)
AND FORALL (i, j: below(M‘rows)): i < j => M‘matrix(i,j) = 0

diagonal?(M): bool = square?(M)
AND FORALL (i, j: below(M‘rows)): i /= j => M‘matrix(i,j) = 0;

-(M):
Matrix =
M WITH
[‘matrix := LAMBDA (i: below(M‘rows), j: below(M‘cols)): -M‘matrix(i

, j)]

symmetric?(M): bool = square?(M) AND transpose(M) = M

skew_symmetric?(M): bool = square?(M) AND transpose(M) = -M

137



transpose2: LEMMA transpose(transpose(M)) = M

same_dim?(M, N): macro bool = M‘rows = N‘rows AND M‘cols = N‘cols

same_dim?(M)(N): macro bool = M‘rows = N‘rows AND M‘cols = N‘cols;

+(M, (N: (same_dim?(M)))):
Matrix = M WITH
[‘matrix := LAMBDA (i: below(M‘rows), j: below(M‘cols)):

M‘matrix(i, j) + N‘matrix(i, j) ];

-(M, (N: (same_dim?(M)))): Matrix =
M WITH [ ‘matrix := LAMBDA (i: below(M‘rows), j: below(M‘cols)):
M‘matrix(i, j) - N‘matrix(i, j) ];

plus_assoc: LEMMA
FORALL (M, (N, P: (same_dim?(M)))): M + (N + P) = (M + N) + P;

plus_comm: LEMMA
FORALL (M, (N: (same_dim?(M)))): M + N = N + M;

minuses: LEMMA
FORALL (M, (N: (same_dim?(M)))): M + (-N) = M - N;

zero_left_ident: LEMMA
FORALL (Z: Zero, M: (same_dim?(Z))): Z + M = M;

zero_right_ident: LEMMA
FORALL (Z: Zero, M: (same_dim?(Z))): M + Z = M;

*(r, M): Matrix =
M WITH [‘matrix := LAMBDA (i: below(M‘rows), j: below(M‘cols)):
r * M‘matrix(i, j)];

*(M, r): Matrix = r * M;

*(M, (N: Matrix | M‘cols = N‘rows)): Matrix =
(# rows := M‘rows, cols := N‘cols,
matrix := lambda (i: below(M‘rows), j: below(N‘cols)):
sigma[below(M‘cols)](0, M‘cols-1, lambda (k: below(M‘cols)):

M‘matrix(i, k) * N‘matrix(k, j)) #);

*(M, (v:Vector[M‘cols])): Vector[M‘rows] = lambda (i: below(M‘rows)):
sigma[below(M‘cols)](0, M‘cols-1, lambda (k: below(M‘
cols)):

M‘matrix(i, k) * v(k));

add_dim_row:
LEMMA
FORALL (A:Matrix, B:Matrix | A‘rows=B‘rows AND A‘cols = B‘cols):

(A+B)‘rows = A‘rows
add_dim_col:
LEMMA
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FORALL (A:Matrix, B:Matrix | A‘rows=B‘rows AND A‘cols = B‘cols):
(A+B)‘cols = A‘cols

minus_scal :
LEMMA -M = (-1)*M

mult_dim:
LEMMA
FORALL (A:Matrix, B:Matrix | A‘cols=B‘rows):

(A*B)‘rows=A‘rows AND (A*B)‘cols = B‘cols

mult_dim_row: LEMMA FORALL (A:Matrix, B:Matrix | A‘cols=B‘rows):
(A*B)‘rows=A‘rows

mult_dim_col: LEMMA FORALL (A:Matrix, B:Matrix | A‘cols=B‘rows):
(A*B)‘cols = B‘cols

zero_times_left: LEMMA
FORALL (M, (Z: Zero | Z‘cols = M‘rows)): zero?(Z * M)

zero_times_right: LEMMA
FORALL (Z: Zero, (M | M‘cols = Z‘rows)): zero?(M * Z)

zero_neg_id : LEMMA FORALL (M:Matrix) : zero?(M-M)

zero_times_left_1: LEMMA
FORALL (M:Matrix): Zero_mat(pn,M‘rows) * M = Zero_mat(pn,M‘cols)

zero_times_right_1: LEMMA
FORALL (M:Matrix): M * Zero_mat(M‘cols,pn) = Zero_mat(M‘rows,pn)

sigma_lem: LEMMA
FORALL (n: posnat, j: below(n), r: real):
sigma[below(n)](0, n - 1, (lambda (k: below(n)): 0) WITH [(j) := r])

= r

right_mult_ident: LEMMA
FORALL (M, (I: Matrix | identity?(I) AND M‘cols = I‘rows)):

M * I = M

left_mult_ident: LEMMA
FORALL (M, (I: Matrix | identity?(I) AND M‘rows = I‘cols)):

I * M = M

right_mult_ident_1: LEMMA
M * I(M‘cols) = M

left_mult_ident_1: LEMMA
I(M‘rows) * M = M

ident_vect:
LEMMA
FORALL (I:Matrix|identity?(I)): FORALL (x:Vector[I‘cols]):I*x=x

ident_trans:LEMMA transpose(I(pn))=I(pn)
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zero_trans: LEMMA FORALL (m,n:posnat): transpose(Zero_mat(m,n))=Zero_mat
(n,m);

trans_scal : LEMMA FORALL (x:real):
transpose(x*M) = x*transpose(M)

trans_sum : LEMMA FORALL (M,(N |same_dim?(M)(N))):
transpose(M) + transpose(N) = transpose(N+M)

sigma_prop:
LEMMA
FORALL (m, n: posint, f: [below(m) -> real], g: [below(m), below(n) ->
real]):
sigma[below(m)](0, m-1,
lambda (i: below(m)): f(i) * sigma[below(n)](0, n-1,

lambda (j: below(n)): g(i,j)))
= sigma[below(m)](0, m-1, lambda (i: below(m)):

sigma[below(n)](0, n-1, lambda(j: below(n)): f(i) * g(i,j)))

sigma_comm: LEMMA
FORALL (m, n: posnat, f: [below(m), below(n) -> real]):
sigma[below(m)](0, m-1, lambda (i: below(m)):

sigma[below(n)](0, n-1, lambda (j: below(n)): f(i,
j)))

= sigma[below(n)](0, n-1, lambda (j: below(n)):
sigma[below(m)](0, m-1, lambda (i: below(m)): f(i,
j)))

mult_assoc: LEMMA
FORALL (M, (N | M‘cols = N‘rows), (P | N‘cols = P‘rows)):
M * (N * P) = (M * N) * P

right_scal_shift: LEMMA
FORALL (M,(N | M‘cols = N‘rows), x:real):
M*(x*N) = x*(M*N)

left_scal_shift: LEMMA
FORALL (M,(N | M‘cols = N‘rows), x:real):
(x*M)*N = x*(M*N)

mult_assoc_vect:
LEMMA
FORALL (M, (N | M‘cols = N‘rows), V:Vector[N‘cols]): (M * N) * V = M *
(N * V)

left_scal_shift_vect:
LEMMA
FORALL (M:Matrix, V:Vector[M‘cols], x:real): (x*M) * V = x*(M *V)

right_scal_shift_vect:
LEMMA
FORALL (M:Matrix, V:Vector[M‘cols], x:real): M* (x*V) = x*(M * V)
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scal_assoc :
LEMMA FORALL (M:Matrix, x,y:real) : x*(y*M) = (x*y)*M

left_distributive:
LEMMA
FORALL (M, (N | M‘cols = N‘rows), (P: (same_dim?(N)))):
M * (N + P) = (M * N) + (M * P)

right_distributive:
LEMMA
FORALL (M, (N: (same_dim?(M))), (P | M‘cols = P‘rows)):
(M + N) * P = (M * P) + (N * P)

left_distributive_add_vect:
LEMMA
FORALL (A:Mat(m,n),B:(same_dim?(A)),v:Vector[n]): (A+B)*v = A*v+B*v;

left_distributive_min_vect:
LEMMA
FORALL (A,B:Mat(m,n), v:Vector[n]): (A-B)*v = A*v - B*v

left_distributive_vect:
LEMMA
FORALL (M, (v1, v2:Vector[M‘cols])): M * v1 - M * v2 = M * (v1 - v2)

scal_dist :
LEMMA
FORALL (A,B:Mat(m,n), x:real): x*A+x*B = x*(A+B)

scal_dist_left : LEMMA FORALL(x,y:real,A:Mat(m,n)) : (x+y)*A = x*A + y*A

scal_dist_left_min : LEMMA FORALL(x,y:real,A:Mat(m,n)) : (x-y)*A = x*A -
y*A

zero_scal : LEMMA 0*M = Zero_mat(M‘rows,M‘cols)

transpose_product: LEMMA
FORALL (M, (N | M‘cols = N‘rows)):
transpose(M * N) = transpose(N) * transpose(M)

trans_mat_scal:
LEMMA
FORALL (A:Matrix, x:Vector[A‘rows], y:Vector[A‘cols]):
x * (A * y) = (transpose(A) * x) * y

trans_dim:
LEMMA
FORALL (A:Matrix) : A‘cols=transpose(A)‘rows AND A‘rows=transpose(A)‘
cols

trans_eq :
LEMMA
FORALL(M, (N: (same_dim?(M)))): transpose(M)=transpose(N) IFF M = N
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inverse?(M: Square)(N: Square | N‘rows = M‘rows): bool =
M * N = I(M‘rows) and N * M = I(M‘rows)

invertible?(M: Square): bool = EXISTS (N: (inverse?(M))): inverse?(M)(N
)

inverse_unique: lemma
FORALL (M: (invertible?), N, P: (inverse?(M))): N = P

inverse(M: (invertible?)): {N: Square | N‘rows = M‘rows}
= the! (N: Square | N‘rows = M‘rows): inverse?(M)(N)

invertible_product: lemma
FORALL (M: (invertible?), N: (invertible?) | N‘rows = M‘rows):
invertible?(M * N)

product_inverse: lemma
FORALL (M: (invertible?), N: (invertible?) | N‘rows = M‘rows):
inverse(M * N) = inverse(N) * inverse(M)

trace(M: Square):
real =
sigma[below(M‘rows)](0, M‘rows-1, lambda (k: below(M‘rows)): M‘matrix
(k, k))

tr_symm:
LEMMA
FORALL (A,B : Matrix):
A‘cols = B‘rows AND A‘rows = B‘cols IMPLIES trace(A*B) = trace(B*A)

ortho?(N:Matrix):bool= N*transpose(N)=I(N‘rows)

symmetric_part(M: Square): (symmetric?) =
1/2 * (M + transpose(M))

skew_symmetric_part(M: Square): (skew_symmetric?) =
1/2 * (M - transpose(M))

square_decomp: LEMMA
FORALL (M: Square): M = symmetric_part(M) + skew_symmetric_part(M)

square_matrix_induct: LEMMA
forall (p: pred[Square]):
(forall (M: Square):
(forall (N: Square): N‘rows < M‘rows implies p(N)) implies p(M))

implies (forall (M: Square): p(M))

zero_vect_mult:
LEMMA
FORALL (V:Vector[pn]): Zero_mat(pm,pn)*V = vectors[pm].zero;

symmetric_scal:
LEMMA
FORALL (a:real): symmetric?(M) IMPLIES symmetric?(a*M);
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symmetric_sum:
LEMMA
FORALL (N:(same_dim?(M))):
symmetric?(M) AND symmetric?(N) IMPLIES symmetric?(M+N)

symmetric_prod_1: LEMMA symmetric?(M*transpose(M))
symmetric_prod_2: LEMMA symmetric?(transpose(M)*M)

concat_V(M:Matrix,N:{N:Matrix|M‘cols=N‘cols}):
Matrix =
(# rows:= M‘rows+N‘rows, cols:= M‘cols,
matrix := LAMBDA (i:below(M‘rows+N‘rows),j:below(M‘cols)):

IF (i<M‘rows) THEN M‘matrix(i,j) ELSE N‘matrix(i-M‘rows,j) ENDIF #)

concat_v_row:
LEMMA
FORALL (M:Matrix,N:{N:Matrix|M‘cols=N‘cols}):
concat_V(M,N)‘rows = M‘rows+N‘rows;

concat_v_col:
LEMMA
FORALL (M:Matrix,N:{N:Matrix|M‘cols=N‘cols}): concat_V(M,N)‘cols = M‘
cols;

eye_row: LEMMA I(pn)‘rows = pn
eye_col: LEMMA I(pn)‘cols = pn

zero_row: LEMMA Zero_mat(pn,pm)‘rows = pn
zero_col: LEMMA Zero_mat(pn,pm)‘cols = pm

mult_scal_dim_row: LEMMA (c*M)‘rows = M‘rows
mult_scal_dim_col: LEMMA (c*M)‘cols = M‘cols

transp_row : LEMMA transpose(M)‘rows = M‘cols
transp_col : LEMMA transpose(M)‘cols = M‘rows

left_scal_id : LEMMA FORALL (x:real):
M * (x * I(M‘cols)) = x*M

right_scal_id : LEMMA FORALL (x:real):
(x * I(M‘rows)) * M = x*M

V2Mc(n:posnat, V: Vector[n]): Matrix =
(# rows := n, cols := 1,

matrix := lambda (k: below(n),j: below(1)): V(k) #)

V2Ml(n:posnat, V: Vector[n]): Matrix =
(# rows := 1, cols := n,

matrix := lambda (k: below(1),j: below(n)): V(j) #)

v2ml_row :LEMMA FORALL (V:Vector[pn]): V2Ml(pn,V)‘rows = 1;
v2ml_col :LEMMA FORALL (V:Vector[pn]): V2Ml(pn,V)‘cols = pn;
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v2ml_quad :
LEMMA
FORALL (n:posnat, MM:Mat(n,n), v:Vector[n]):
V2Ml(n,v)*(MM*transpose(V2Ml(n,v))) = (v*(MM*v)) * I(1)

v2ml_quad_2:
LEMMA
FORALL (n:posnat, MM:Mat(n,n), v,w:Vector[n]):
V2Ml(n,v)*(MM*transpose(V2Ml(n,w))) = (v*(MM*w)) * I(1)

conv_vect_mat:
LEMMA
FORALL (m,n:posnat, M:Mat(m,n), V:Vector[n]): V2Mc(m,M*V) = M*V2Mc(n,V)

v2ml_scal :
LEMMA
FORALL (n:posnat, v:Vector[n], a:real): V2Ml(n,a*v) = a*V2Ml(n,v)
v2ml_sum:
LEMMA
FORALL (n:posnat, v1,v2:Vector[n]) : V2Ml(n,v1+v2) = V2Ml(n,v1)+V2Ml(n,
v2)

v2ml_dot : LEMMA FORALL (x,y:Vector[pn]): (V2Ml(pn,x)*y)(0) = x*y

AUTO_REWRITE+ zero_times_right_1
AUTO_REWRITE+ zero_times_left_1
AUTO_REWRITE+ zero_left_ident
AUTO_REWRITE+ zero_right_ident
AUTO_REWRITE+ right_mult_ident_1
AUTO_REWRITE+ left_mult_ident_1
AUTO_REWRITE+ ident_trans
AUTO_REWRITE+ zero_trans
AUTO_REWRITE+ eye_row
AUTO_REWRITE+ eye_col
AUTO_REWRITE+ zero_row
AUTO_REWRITE+ zero_col
AUTO_REWRITE+ add_dim_row
AUTO_REWRITE+ add_dim_col
AUTO_REWRITE+ mult_dim_row
AUTO_REWRITE+ mult_dim_col
AUTO_REWRITE+ mult_scal_dim_row
AUTO_REWRITE+ mult_scal_dim_col
AUTO_REWRITE+ transp_row
AUTO_REWRITE+ transp_col
AUTO_REWRITE+ concat_v_row
AUTO_REWRITE+ concat_v_col

END matrices

matrix_lemmas: THEORY

% Linear Algebra library
% Heber Herencia-Zapana NIA
% Romain Jobredeaux Georgia Institute of Technology
% Gilberto Perez University of Coruna Spain
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% Pablo Ascariz University of Coruna Spain
% Felicidad >Aguado University of Coruna Spain
% Date: May, 2015

BEGIN

IMPORTING matrix_operator

%----------------------------------------------------------------
%----------------------------------------------------------------
% Matrix Lemmas
%----------------------------------------------------------------
%----------------------------------------------------------------

%----------------------------------------------------------------
% Multiplying a matrix and the zero vector yields the zero vector
%----------------------------------------------------------------

matrix_prod_zero: LEMMA FORALL (A:Matrix): A * zero[A‘cols] = zero[A‘
rows]

%----------------------------------------------------------------
% Rows and cols of a subtraction of matrices
%----------------------------------------------------------------

minus_rows: LEMMA FORALL (A:Matrix,B: (same_dim?(A))): (A - B)‘rows = A
‘rows

minus_cols: LEMMA FORALL (A:Matrix,B: (same_dim?(A))): (A - B)‘cols = A
‘cols

%----------------------------------------------------------------
% Rows and cols of the transpose matrix
%----------------------------------------------------------------

transpose_rows: LEMMA FORALL (A: Matrix): transpose(A)‘rows = A‘cols

transpose_cols: LEMMA FORALL (A: Matrix): transpose(A)‘cols = A‘rows

%----------------------------------------------------------------
% Multiplying a matrix by its inverse yields the identity matrix
%----------------------------------------------------------------

inverse_ident: LEMMA FORALL (N: (invertible?)): inverse(N) * N = I(N‘
rows)

ident_inverse: LEMMA FORALL (N: (invertible?)): N * (inverse(N)) = I(N‘
rows)
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%----------------------------------------------------------------
% Multiplying the identity matrix by a vector yields the vector
%----------------------------------------------------------------

ident_mat_prod: LEMMA FORALL (n: posnat, x: Vector[n]): matrices.I(n) *
x = x

%----------------------------------------------------------------
% Rows and cols of the inverse matrix
%----------------------------------------------------------------

inverse_rows: LEMMA FORALL (N: (invertible?)): (inverse(N))‘rows = N‘
rows

inverse_cols: LEMMA FORALL (N: (invertible?)): (inverse(N))‘cols = N‘
cols

inverse_invertible : LEMMA FORALL (N:(invertible?)) : invertible?(
inverse(N))

inverse2 : LEMMA FORALL(N:(invertible?)): inverse(inverse(N)) = N

invertible_scal: LEMMA FORALL(N:(invertible?), a:nzreal): invertible?(a
*N)

inverse_scal: LEMMA FORALL(N:(invertible?), a:nzreal):
inverse(a*N)= (1/a)*inverse(N)

inv_prodvect: LEMMA FORALL (A:(invertible?), x:Vector[A‘cols]) :
A*x = zero[A‘rows] IFF x = zero[A‘rows]

tr_sim: LEMMA FORALL (A: Square, B: (same_dim?(A))):
invertible?(B) IMPLIES trace(inverse(B)*A*B) = trace(A)

invertible22 : LEMMA FORALL (p11,p22,p12,p21:real, MM:Mat(2,2)):
MM = (# cols := 2, rows :=2,
matrix:= LAMBDA(i,j:below(2)) : COND
(i=0 AND j=0) -> p11, (i=0 AND j=1) -> p12,
(i=1 AND j=0) -> p21, (i=1 AND j=1) -> p22
ENDCOND #)AND (NOT p11*p22-p12*p21 =0) IMPLIES
invertible?(MM);

inv22 : LEMMA FORALL (p11,p22,p12,p21:real, MM:Mat(2,2)):
MM = (# cols := 2, rows :=2,

matrix:= LAMBDA(i,j:below(2)) : COND
(i=0 AND j=0) -> p11, (i=0 AND j=1) -> p12,
(i=1 AND j=0) -> p21, (i=1 AND j=1) -> p22
ENDCOND #) AND (NOT p11*p22-p12*p21 =0) IMPLIES
inverse(MM) =(1/(p11*p22-p12*p21))* (# cols := 2, rows :=2,
matrix:= LAMBDA(i,j:below(2)) :COND
(i=0 AND j=0) -> p22, (i=0 AND j=1) -> -p12,
(i=1 AND j=0) -> -p21, (i=1 AND j=1) -> p11
ENDCOND#);
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%----------------------------------------------------------------
% The transpose of the identity matrix is the identity matrix
%----------------------------------------------------------------

transp_ident: LEMMA FORALL (n: posnat): transpose(I(n)) = I(n)

%----------------------------------------------------------------
% Transpose and inverse "commute"
%----------------------------------------------------------------
transp_invertible:
LEMMA
FORALL (M: (invertible?)):
invertible?(transpose(M))

transp_inv:
LEMMA
FORALL (M: (invertible?)):
transpose(inverse(M))=inverse((transpose(M)))

sym_inv: LEMMA FORALL (M:(invertible?)):
symmetric?(M) IMPLIES symmetric?(inverse(M))

%----------------------------------------------------------------
% Distributive rules for matrices and vectors
%----------------------------------------------------------------

distr_mat_vect:
LEMMA
FORALL (A: Matrix, (B: (same_dim?(A))), y: Vector[A‘cols]):
(A + B) * y = A * y + B * y

distr_vect_mat: LEMMA FORALL (A: Matrix, x, y: Vector[A‘cols]):
A * x + A * y = A * (x + y)

%----------------------------------------------------------------
% Technical lemmas about applying "minus" to matrices
%----------------------------------------------------------------

matrix_sum_minus:
LEMMA
FORALL (A: Matrix, (B: (same_dim?(A)))): A - B = A + (-B)

matrix_prod_minus:
LEMMA
FORALL (A: Matrix, x: Vector[A‘cols]): -(A * x) = (-A) * x

neg_vect_mult : LEMMA FORALL (M:Matrix, (v1:Vector[M‘cols])): M*(-v1) =
-(M*v1)
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END matrix_lemmas

C.2 Block Matrices

The following theory introduces block matrices and block vectors. Useful results are also

proved. The definitions were introduced by Heber Herencia.
% --------------------------------------------------------------
% File Name: block_matrices
% Author Names: Romain Jobredeaux & Heber Herencia-Zapana
%
% ---------------------------------------------------------------
% This theory introduces block matrices and useful results on them,
% such as rank one update inverse and proof by induction.

block_matrices: THEORY

BEGIN

IMPORTING matrices,reals+sigma_below_sub , reals+sigma_swap ,
matrix_lemmas

m,n,p,q: VAR posnat

%------------------------------------------------------------
% Definition of Block Matrices
%------------------------------------------------------------

Block_Matrix:
TYPE = [# rows1: posnat,rows2: posnat,cols1: posnat,cols2: posnat,

matrix: [below(rows1 + rows2), below(cols1 + cols2) -> real] #]

Block_Mat(m,n,p,q):
TYPE = {M: Block_Matrix | M‘rows1 = m AND M‘rows2 = n AND

M‘cols1 = p AND M‘cols2 = q}

M,N: VAR Block_Matrix

%------------------------------------------------------------
% Conversions
%------------------------------------------------------------

Block2M(M):
Matrix =
(# rows := M‘rows1 + M‘rows2,
cols := M‘cols1 + M‘cols2,
matrix := LAMBDA (i: below(M‘rows1 + M‘rows2), j: below(M‘cols1 + M‘
cols2)):
M‘matrix(i,j) #)
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Block2M1(M): %upper left block
Matrix =
(# rows := M‘rows1, cols := M‘cols1,matrix :=
LAMBDA (i: below(M‘rows1), j: below(M‘cols1)): M‘matrix(i,j) #)

Block2M2(M): %lower left block
Matrix =
(# rows := M‘rows2, cols := M‘cols1,matrix :=
LAMBDA (i: below(M‘rows2), j: below(M‘cols1)): M‘matrix(i + M‘rows1,j)
#)

Block2M3(M): %upper right block
Matrix =
(# rows := M‘rows1,
cols := M‘cols2,
matrix := LAMBDA (i: below(M‘rows1), j: below(M‘cols2)):
M‘matrix(i,j + M‘cols1) #)

Block2M4(M): %lower right block
Matrix =
(# rows := M‘rows2, cols := M‘cols2,matrix :=
LAMBDA (i: below(M‘rows2), j: below(M‘cols2)):
M‘matrix(i + M‘rows1,j + M‘cols1) #)

M2Block(m,n,p,q)(A: Mat(m,p),B: Mat(n,p),C: Mat(m,q),D: Mat(n,q)):
Block_Matrix =
(# rows1 := A‘rows,rows2 := B‘rows,cols1 := A‘cols,cols2 := C‘cols,

matrix :=
LAMBDA (i: below(A‘rows + B‘rows), j: below(A‘cols + C‘cols)):
IF i < A‘rows THEN
IF j < A‘cols THEN A‘matrix(i,j)
ELSE C‘matrix(i,j - A‘cols)

ENDIF
ELSE IF j < A‘cols THEN B‘matrix (i - A‘rows,j)
ELSE D‘matrix(i - A‘rows,j - A‘cols)

ENDIF
ENDIF
#)

% (A C)
% (B D)

conversion Block2M

access_m_1:
LEMMA
FORALL (A: Mat(m,p),B: Mat(n,p),C: Mat(m,q),D: Mat(n,q)):

Block2M1(M2Block(m,n,p,q)(A,B,C,D))=A ;
access_m_2:
LEMMA
FORALL (A: Mat(m,p),B: Mat(n,p),C: Mat(m,q),D: Mat(n,q)):

Block2M2(M2Block(m,n,p,q)(A,B,C,D))=B ;
access_m_3:
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LEMMA
FORALL (A: Mat(m,p),B: Mat(n,p),C: Mat(m,q),D: Mat(n,q)):

Block2M3(M2Block(m,n,p,q)(A,B,C,D))=C ;
access_m_4:
LEMMA
FORALL (A: Mat(m,p),B: Mat(n,p),C: Mat(m,q),D: Mat(n,q)):

Block2M4(M2Block(m,n,p,q)(A,B,C,D))=D ;

%------------------------------------------------------------
% Block vectors
%------------------------------------------------------------

Block_Vector: TYPE = [# comp1: posnat,comp2: posnat,
vector: [below(comp1 + comp2) -> real] #]

Block_Vector2: TYPE = [# comp1: posnat,comp2: posnat,
vector1: [below(comp1) -> real],
vector2: [below(comp2) -> real] #]

Block_Vect(m,n): TYPE = {V: Block_Vector | V‘comp1 = m AND V‘comp2 = n}

V: Var Block_Vector

BV1toBV2(V): Block_Vector2 = (# comp1 := V‘comp1, comp2 := V‘comp2,
vector1 := LAMBDA (i: below(V‘comp1)): V‘vector(i),
vector2 := LAMBDA (i: below(V‘comp2)): V‘vector(i + V‘comp1)#)

BV2toBV1(V: Block_Vector2):
Block_Vector = (# comp1 := V‘comp1, comp2 := V‘comp2,
vector := LAMBDA (i: below(V‘comp1 + V‘comp2)): IF i < V‘comp1

THEN V‘vector1(i) ELSE V‘vector2(i - V‘comp1) ENDIF #)

conversion BV1toBV2,BV2toBV1

Block2V(V): Vector[V‘comp1 + V‘comp2] =
LAMBDA (i: below[V‘comp1 + V‘comp2]): V‘vector(i)

Block2V1(V): Vector[V‘comp1] = LAMBDA (i: below[V‘comp1]): V‘vector(i)

Block2V2(V): Vector[V‘comp2] =
LAMBDA (i: below[V‘comp2]): V‘vector(i + V‘comp1)

V2Block(m,n:posnat)(x: Vector[m],y: Vector[n]):
Block_Vector = (# comp1 := m,comp2 := n,vector :=

LAMBDA (i: below(m + n)):
IF i < m THEN x(i)
ELSE y(i - m) ENDIF
#);

V2 : Var Block_Vector2

access_v_1:
LEMMA
Block2V1(BV2toBV1(V2)) = V2‘vector1;
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access_v_2:
LEMMA
Block2V2(BV2toBV1(V2)) = V2‘vector2;

access_vb_1 :
LEMMA
FORALL (x:Vector[m], y:Vector[n]):
Block2V1(V2Block(m,n)(x,y)) = x;

access_vb_2 :
LEMMA
FORALL (x:Vector[m], y:Vector[n]):
Block2V2(V2Block(m,n)(x,y)) = y;

*(V, (W: Block_Vect(V‘comp1,V‘comp2))):
real = Block2V1(V)*Block2V1(W) + Block2V2(V)*Block2V2(W)

conversion Block2V

%------------------------------------------------------------
% Operations with Block Matrices
%------------------------------------------------------------

Btranspose(M): Block_Matrix = (# rows1 := M‘cols1,rows2 := M‘cols2,
cols1 := M‘rows1,cols2 := M‘rows2,
matrix :=

LAMBDA (i: below(M‘cols1 + M‘cols2), j: below(M‘rows1 + M‘rows2)):
M‘matrix(j,i) #)

conv_transp:
LEMMA
FORALL (M: Block_Matrix):
Btranspose(M) = M2Block(M‘cols1,M‘cols2,M‘rows1,M‘rows2)(transpose(
Block2M1(M)),

transpose(Block2M3(M)),transpose(Block2M2(M)),transpose(Block2M4(M)))

Bsquare?(M): bool = square?(M)

Bdiag_square?(M): bool = square?(Block2M1(M)) AND square?(Block2M4(M))

block_square:
LEMMA
FORALL (M: Block_Matrix):
Bdiag_square?(M) IMPLIES Bsquare?(M)

trans_conv:
LEMMA
FORALL (M: Block_Matrix):
transpose(Block2M(M)) = (Block2M(Btranspose(M)));

Bsymmetric?(M): bool = symmetric?(M)

block_symmetric:
LEMMA
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FORALL (M: Block_Matrix):
Bsymmetric?(M) AND M‘cols1 = M‘rows1 AND M‘cols2 = M‘rows2
IFF
symmetric?(Block2M1(M)) AND symmetric?(Block2M4(M)) AND
transpose(Block2M2(M)) = Block2M3(M);

transpose_eq:
LEMMA
FORALL (M:Block_Matrix):
Btranspose(M) =transpose(Block2M(M));

*(M: Block_Matrix ,V: Block_Vect(M‘cols1,M‘cols2)):
Block_Vector2 = (# comp1 := M‘rows1, comp2 := M‘rows2,

vector1 := Block2M1(M)*Block2V1(V) + Block2M3(M)*Block2V2(V),
vector2 := Block2M2(M)*Block2V1(V) + Block2M4(M)*Block2V2(V)#)

same_Bdim?(M)(N): bool = M‘rows1 = N‘rows1 AND M‘rows2 = N‘rows2 AND
M‘cols1 = N‘cols1 AND M‘cols2 = N‘cols2;

+(M: Block_Matrix ,N: (same_Bdim?(M))):
Block_Matrix =
(# rows1 := M‘rows1,rows2 := M‘rows2,
cols1 := M‘cols1 ,cols2 := M‘cols2,
matrix := LAMBDA (i: below(M‘rows1 + M‘rows2),j: below(M‘cols1 + M‘
cols2)):
M‘matrix(i,j) + N‘matrix(i,j) #);

*(r: real, M: Block_Matrix):
Block_Matrix = M WITH
[‘matrix := LAMBDA (i: below(M‘rows1 + M‘rows2), j: below(M‘cols1 + M‘

cols2)):
r * M‘matrix(i, j)];

*(M: Block_Matrix , (v: Vector[M‘cols1 + M‘cols2])):
Vector[M‘rows1 + M‘rows2] = LAMBDA (i: below(M‘rows1 + M‘rows2)):
sigma(0, M‘cols1 + M‘cols2 - 1,
LAMBDA (j: below(M‘cols1 + M‘cols2)): M‘matrix(i, j) * v(j));

*(M:Block_Matrix ,N:{N:Block_Matrix|N‘rows1=M‘cols1 AND N‘rows2=M‘cols2
}):

Block_Matrix =
M2Block(M‘rows1,M‘rows2,N‘cols1,N‘cols2)(
Block2M1(M)*Block2M1(N) + Block2M3(M)*Block2M2(N),
Block2M2(M)*Block2M1(N) +Block2M4(M)*Block2M2(N),
Block2M1(M)*Block2M3(N) + Block2M3(M)*Block2M4(N),
Block2M2(M)*Block2M3(N) +Block2M4(M)*Block2M4(N));

conv_mult:
LEMMA
FORALL (m,n,p,q,r,s:posnat, A:Mat(m,p), B:Mat(n,p), C:Mat(m,q),
D:Mat(n,q), E:Mat(p,r), F:Mat(q,r), G:Mat(p,s), H:Mat(q,s)):
Block2M(M2Block(m,n,p,q)(A,B,C,D))*Block2M(M2Block(p,q,r,s)(E,F,G,H))

=
Block2M(M2Block(m,n,r,s)(A*E+C*F, B*E+D*F, A*G+C*H,B*G+D*H));
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conv_sum:
LEMMA
FORALL (m,n,p,q:posnat, A:Mat(m,p), B:Mat(n,p), C:Mat(m,q),
D:Mat(n,q), E:Mat(m,p), F:Mat(n,p), G:Mat(m,q), H:Mat(n,q)):
Block2M(M2Block(m,n,p,q)(A,B,C,D))+Block2M(M2Block(m,n,p,q)(E,F,G,H))

=
Block2M(M2Block(m,n,p,q)(A+E, B+F, C+G,D+H));

conv_scal :
LEMMA
FORALL (m,n,p,q:posnat, A:Mat(m,p), B:Mat(n,p), C:Mat(m,q),
D:Mat(n,q), a:real):
a*Block2M(M2Block(m,n,p,q)(A,B,C,D)) =
Block2M(M2Block(m,n,p,q)(a*A,a*B,a*C,a*D))

eq_block:
LEMMA
FORALL (m,n,p,q:posnat, A:Mat(m,p), B:Mat(n,p), C:Mat(m,q),
D:Mat(n,q), E:Mat(m,p), F:Mat(n,p), G:Mat(m,q), H:Mat(n,q)):
A=E AND B=F AND C=G AND D=H IMPLIES
Block2M(M2Block(m,n,p,q)(A,B,C,D)) =
Block2M(M2Block(m,n,p,q)(E,F,G,H));

block_mult_comm:

LEMMA

FORALL (M:(Bdiag_square?), V:Block_Vect(M‘cols1,M‘cols2)):
Block2M(M)*Block2V(V) = Block2V(M*V);

block_v_mult_comm:
LEMMA
FORALL (V1,V2:Block_Vect(m,n)): Block2V(V1)*Block2V(V2) = V1*V2;

block_v_mult_comm2:
LEMMA
FORALL (M:Block_Matrix , VV:Block_Vect(M‘cols1,M‘cols2)):
Block2M(M)*Block2V(VV) = Block2V(M*VV)

split_vect:
LEMMA
FORALL (n:{n:posnat|n>=2},z:Vector[n],m:{m:posnat|m<n}):
EXISTS (x:Vector[m],y:Vector[n-m]):
z = Block2V(BV2toBV1((# comp1:=m ,comp2:=n-m,vector1:=x, vector2:=y

#)));

id_block:
LEMMA
FORALL (n,m:posnat):
I(n+m) = Block2M(M2Block(n,m,n,m)(I(n),Zero_mat(m,n),Zero_mat(n,m),I(
m)))

block_induct_1:
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LEMMA
FORALL (p:pred[Square]):
(FORALL (MM:Mat(1,1)): p(MM)) AND
(FORALL (n:posnat):
(FORALL (MM:Mat(n,n)): p(MM))
IMPLIES
(FORALL (NN:Mat(n,n), a:real,b,c:Vector[n]):

p(Block2M(M2Block(1,n,1,n)(a*I(1),transpose(V2Ml(n,b)),V2Ml(n,c),NN)))
))
IMPLIES FORALL(MM:Square): p(MM)

AUTO_REWRITE+ access_m_1
AUTO_REWRITE+ access_m_2
AUTO_REWRITE+ access_m_3
AUTO_REWRITE+ access_m_4
AUTO_REWRITE+ access_v_1
AUTO_REWRITE+ access_v_2
AUTO_REWRITE+ block_mult_comm
AUTO_REWRITE+ conv_mult
AUTO_REWRITE+ block_v_mult_comm

block_invertible :
LEMMA
FORALL (NN:Mat(n,n), c:real,b:Vector[n]):
invertible?(NN) IMPLIES
(c- (b*(inverse(NN)*b))) /=0 IMPLIES
invertible?(Block2M(M2Block(1,n,1,n)(

c*I(1),transpose(V2Ml(n,b)),
V2Ml(n,b),NN)))

END block_matrices

C.3 Quadratic forms and positive definite matrices

The following theory introduces the concept of positive definiteness and semidefiniteness for

matrices. Useful results are proven. Of particular interest, the Schur complement formula,

and the Cholesky factorization existence are proven in this theory.
% --------------------------------------------------------------
% File Name: posdef
% Author Names: Romain Jobredeaux
%
% ---------------------------------------------------------------
% This theory proves results on quadratic forms defined by a
% matrix, and results on positive-definite, and semi positive-
% definite matrices. Particular results of interest include
% the existence of a Cholesky decomposition for semi positive-
% definite matrices, as well as results involving Schur’s
% complement.
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posdef:THEORY

BEGIN

IMPORTING matrices,reals+sigma_below_sub , reals+sigma_swap ,
matrix_lemmas , block_matrices

% Some results on quadratic forms

symetric_qua_trans:
LEMMA
FORALL(A:(square?),M:{M:Matrix|M‘cols=A‘rows}):
symmetric?(A)IMPLIES symmetric?(M*A*transpose(M))

skewsym_quad_zero :
LEMMA
FORALL(A:(skew_symmetric?), x:Vector[A‘cols]):
x*(A*x) = 0

quad_scal:
LEMMA
FORALL(A:(square?), a:real,x:Vector[A‘cols]): x*((a*A)*x) =a*(x*(A*x))

quad_sum:
LEMMA
FORALL (A:(square?),B:(same_dim?(A)), x:Vector[A‘cols]):
x*((A+B)*x) = x*(A*x)+x*(B*x)

sym_block_quad_expr :
LEMMA
FORALL (m,n:posnat, A:Mat(m,m), B:Mat(n,m), D:Mat(n,n),
x:Vector[m], y:Vector[n], G: Mat(m+n,m+n), z:Vector[n+m]):

z = Block2V(V2Block(m,n)(x,y)) AND
G = Block2M(M2Block(m,n,m,n)(A,B,transpose(B),D)) IMPLIES
z*(G*z) = x*(A*x) + 2*(y*(B*x)) + y*(D*y)

%------------
% Definitions
%------------

semidef_pos?(A: (square?)): bool = FORALL (x: Vector[A‘rows]): x*(A*x)
>= 0

def_pos?(A: (square?)):
bool = FORALL (x: Vector[A‘rows]): (NOT x=zero[A‘rows]) IMPLIES x*(A*x)

> 0

def_pos_id: LEMMA FORALL (n:posnat) : def_pos?(I(n))

semidef_pos_sym :
LEMMA
FORALL (A:(square?)): semidef_pos?(A) iff semidef_pos?(symmetric_part(
A))
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def_pos_semidef_pos :
LEMMA FORALL (A:(square?)): def_pos?(A) IMPLIES semidef_pos?(A)

posdef_inv :
THEOREM
FORALL (n:posnat,P:SquareMat(n)):
invertible?(P) AND symmetric?(P)
IMPLIES (def_pos?(P) IMPLIES def_pos?(inverse(P)))

posdef_inveq:
THEOREM
FORALL (n:posnat,P:SquareMat(n)):
invertible?(P) AND symmetric?(P)
IMPLIES (def_pos?(P) IFF def_pos?(inverse(P)))

semidef_qua_trans:
LEMMA
FORALL(A:(square?),M:{M:Matrix|M‘cols=A‘rows}):
semidef_pos?(A) IMPLIES semidef_pos?(M*A*transpose(M))

semidef_sum:
LEMMA
FORALL (A:(square?), B:(same_dim?(A))):
semidef_pos?(A) AND semidef_pos?(B) IMPLIES semidef_pos?(A+B);

semidef_scal: LEMMA FORALL (a:nnreal, A:(semidef_pos?)): semidef_pos?(a*
A);

defpos_scal : LEMMA FORALL (a:posreal, A:(def_pos?)): def_pos?(a*A);

block_semidef:
LEMMA
FORALL (M:(Bdiag_square?)):
semidef_pos?(Block2M(M)) IMPLIES
semidef_pos?(Block2M1(M)) AND semidef_pos?(Block2M4(M))

diag_block_semidef: LEMMA FORALL (m,n:posnat, A:Mat(m,m), B:Mat(n,n)):
semidef_pos?(A) AND semidef_pos?(B) IMPLIES
semidef_pos?(Block2M(M2Block(m,n,m,n)

(A,Zero_mat(n,m),Zero_mat(m,n),
B)))

chol_step1 :
LEMMA
FORALL(n:posnat,alpha:real, v:Vector[n], B:Mat(n,n)) :
alpha=0 AND
semidef_pos?(Block2M(M2Block(1,n,1,n)(
alpha*I(1), transpose(V2Ml(n,v)),V2Ml(n,v),B)))

IMPLIES v= zero[n]

chol_step2 :
LEMMA
FORALL (n:posnat, alpha:nzreal, v:Vector[n], B:Mat(n,n)):
LET C = B - (1/alpha)*(transpose(V2Ml(n,v))*V2Ml(n,v)) in
semidef_pos?(Block2M(M2Block(1,n,1,n)(
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alpha*I(1), transpose(V2Ml(n,v)),V2Ml(n,v),B)))
IMPLIES semidef_pos?(C)

cholesky_semidef:
LEMMA
FORALL (MM:(square?)):
symmetric?(MM) AND semidef_pos?(MM)
IMPLIES
EXISTS (R:Mat(MM‘rows,MM‘cols)): MM = transpose(R)*R

cholesky_rev :
LEMMA
FORALL (MM:(square?)):
(EXISTS (R:Mat(MM‘rows,MM‘cols)): MM = transpose(R)*R)
IMPLIES
symmetric?(MM) AND semidef_pos?(MM)

semidefpos_inv_defpos:
LEMMA
FORALL (A:(invertible?)):
symmetric?(A) AND semidef_pos?(A) IMPLIES def_pos?(A)

def_pos_sym :
LEMMA
FORALL (A:(square?)): def_pos?(A) iff def_pos?(symmetric_part(A))

schur_semidef_1:
LEMMA
FORALL (n,m:posnat, A:Mat(n,n),B:Mat(n,m),D:Mat(m,m)):
invertible?(A) AND symmetric?(A) AND symmetric?(D)
IMPLIES
(semidef_pos?(Block2M(M2Block(n,m,n,m)(A,transpose(B),B,D)))
IFF
def_pos?(A) AND semidef_pos?(D-transpose(B)*inverse(A)*B))

schur_semidef_2 :
LEMMA
FORALL (n,m:posnat, A:Mat(n,n),B:Mat(n,m),D:Mat(m,m)):
invertible?(D) AND symmetric?(A) AND symmetric?(D)
IMPLIES
(semidef_pos?(Block2M(M2Block(n,m,n,m)(A,transpose(B),B,D)))
IFF
def_pos?(D) AND semidef_pos?(A-B*inverse(D)*transpose(B)))

IMPORTING reals+quadratic

posdef22 : LEMMA FORALL (p11,p22:posreal, p12:real, MM:Mat(2,2)):
MM = (# cols := 2, rows :=2,

matrix:= LAMBDA(i,j:below(2)) : COND
(i=0 AND j=0) -> p11, (i=0 AND j=1) -> p12,
(i=1 AND j=0) -> p12, (i=1 AND j=1) -> p22
ENDCOND #) AND p11*p22-p12^2 > 0 IMPLIES
def_pos?(MM);
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END posdef

C.4 Ellipsoids and control theory results

This theory contains the fundamental ellipsoid combination results discussed in chapter 4
% --------------------------------------------------------------
% File Name: ellipsoid
% Author Names: Romain Jobredeaux & Heber Herencia-Zapana
%
% ---------------------------------------------------------------
% This PVS theory defines the notion of ellipsoid (centered at the

origin),
% both in the classic way (x^T P x <= 1) and the "Schur complement way":
% ( 1 x^T )
% ( ) >= 0, referred to with the predicate "in_ellipsoid_Q?"
% ( x P^-1 )
%
% Theorems are then introduced that describe how a linear transformation
% affects an ellipsoid
ellipsoid: theory

begin

importing matrix_operator , matrices, block_matrices , posdef

N:var Matrix
n:var posnat

Vector_no_param: TYPE = [# length: posnat, vect: vectors[length].Vector
#]

-(x: Vector_no_param ,y: Vector_no_param | x‘length=y‘length) :
Vector_no_param = (# length:=x‘length, vect:=x‘vect-y‘vect #);

*(P: Matrix, c: Vector_no_param | P‘cols=c‘length) :
Vector_no_param = (# length:= P‘rows, vect:= P*c‘vect #);

in_ellipsoid_P?(n:posnat, P:SquareMat(n), x:Vector[n]): bool =
def_pos?(P) AND symmetric?(P) AND x*(P*x)<=1

in_ellipsoid_Q?(n:posnat, Q:SquareMat(n), x:Vector[n]): bool =
semidef_pos?(Q) AND symmetric?(Q) AND
semidef_pos?(Block2M(M2Block(1,n,1,n)(I(1),transpose(V2Ml(n,x)),V2Ml(n
,x),Q)))

ellipsoid: LEMMA
forall (n:posnat, Q, M: SquareMat(n), x, y, b, c: Vector[n]):
bijective?(n)(T(n,n)(Q)) AND bijective?(n)(T(n,n)(M))
AND (x-c)*(inv(n)(Q)*(x-c))<=1
AND y=M*x + b
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IMPLIES
(y-b-M*c)*(inv(n)(M*(Q*transpose(M)))*(y-b-M*c))<=1

ellipsoid_simp: LEMMA
forall (n:posnat, Q, M: SquareMat(n), x, y: Vector[n]):
bijective?(n)(T(n,n)(Q)) AND bijective?(n)(T(n,n)(M))
AND x*(inv(n)(Q)*x)<=1
AND y=M*x
IMPLIES
y*(inv(n)(M*(Q*transpose(M)))*(y))<=1

ellipsoid_general: THEOREM
FORALL (n:posnat,m:posnat,Q:SquareMat(n),M:Mat(m,n),x:Vector[n],y:Vector
[m]):

in_ellipsoid_Q?(n,Q,x)
AND y = M*x
IMPLIES
in_ellipsoid_Q?(m,M*Q*transpose(M),y)

AUTO_REWRITE+ v2ml_row
AUTO_REWRITE+ v2ml_col

ellipsoid_equivalence: THEOREM FORALL (n:posnat, P:SquareMat(n), x:
Vector[n]):
invertible?(P) IMPLIES
(in_ellipsoid_Q?(n,inverse(P),x) IFF in_ellipsoid_P?(n,P,x))

ellipsoid_combination: THEOREM
forall (n,m:posnat, lambda_1, lambda_2: posreal,
Q_1: Mat(n,n), Q_2: Mat(m,m), x:Vector[n],
y:Vector[m], z:Vector[m+n]):
in_ellipsoid_Q?(n,Q_1,x)
AND in_ellipsoid_Q?(m,Q_2,y)
AND lambda_1+ lambda_2 = 1
AND z = Block2V(V2Block(n,m)(x,y))
IMPLIES in_ellipsoid_Q?(n+m,
Block2M(M2Block(n,m,n,m)(1/lambda_1*Q_1,Zero_mat(m,n),
Zero_mat(n,m), 1/lambda_2*Q_2)),z)

step_ellipsoid_combination_plus: THEOREM
forall (n:posnat, Q: Mat(n,n), x: Vector[n], mu: posreal):

mu>=1 AND in_ellipsoid_Q?(n,Q,x) IMPLIES in_ellipsoid_Q?(n,mu*Q,x)

ellipsoid_combination_plus: THEOREM
forall (n,m:posnat, lambda_1, lambda_2: posreal,
Q_1: Mat(n,n), Q_2: Mat(m,m), x:Vector[n],
y:Vector[m], z:Vector[m+n]):
in_ellipsoid_Q?(n,Q_1,x)
AND in_ellipsoid_Q?(m,Q_2,y)
AND lambda_1+ lambda_2 <= 1
AND z = Block2V(V2Block(n,m)(x,y))
IMPLIES in_ellipsoid_Q?(n+m,
Block2M(M2Block(n,m,n,m)(1/lambda_1*Q_1,Zero_mat(m,n),
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Zero_mat(n,m),1/lambda_2*Q_2)),z)

ellipsoid_general_2 : THEOREM
forall (n:posnat,m:posnat, Q:SquareMat(n), M: Mat(m,n),
x:Vector[n], y:Vector[m],c:Vector[n]):
in_ellipsoid_Q?(n,Q,x-c)
AND y = M*x
IMPLIES in_ellipsoid_Q?(m,M*Q*transpose(M),y-M*c)

in_ellipsoid_Q2?(n:posnat, Q:SquareMat(n), x:Vector[n],lam:nnreal): bool
=
semidef_pos?(Q) AND symmetric?(Q) AND
semidef_pos?(Block2M(M2Block(1,n,1,n)(lam*I(1),transpose(V2Ml(n,x)),

V2Ml(n,x),Q)))

in_ellipsoid_P2?(n:posnat, P:SquareMat(n), x:Vector[n],lam:nnreal): bool
=
def_pos?(P) AND symmetric?(P) AND x*(P*x)<=lam

eq_ellq_ellq2 : lemma
forall (n:posnat, Q:SquareMat(n), x:Vector[n],lam:posreal):
in_ellipsoid_Q2?(n, Q, x,lam) IFF in_ellipsoid_Q?(n, lam*Q, x)

eq_ellp_ellp2 : lemma
forall (n:posnat, P:SquareMat(n), x:Vector[n],lam:posreal):
in_ellipsoid_P2?(n, P, x,lam) IFF in_ellipsoid_P?(n, (1/lam)*P, x)

ellP2_zero: LEMMA FORALL (n:posnat, P:SquareMat(n),x:Vector[n]):
in_ellipsoid_P2?(n,P,x,0) IFF (x=zero[n] AND symmetric?(P) AND

def_pos?(P))

ellQ2_zero: LEMMA FORALL(n:posnat, Q:SquareMat(n),x:Vector[n]):
in_ellipsoid_Q2?(n,Q,x,0) IFF (x=zero[n] AND symmetric?(Q) AND

semidef_pos?(Q))

ellipsoid_equivalence_2: THEOREM FORALL (n:posnat, P:SquareMat(n),
x:Vector[n], lam:nnreal):
invertible?(P)
IMPLIES
(in_ellipsoid_Q2?(n,inverse(P),x,lam) IFF in_ellipsoid_P2?(n,P,x,lam

))

ellipsoid_general_3 : THEOREM
forall (n:posnat,m:posnat, Q:SquareMat(n), M: Mat(m,n),

x:Vector[n], y:Vector[m],c:Vector[n],lam:nnreal):
in_ellipsoid_Q2?(n,Q,x-c,lam)
AND y = M*x
IMPLIES in_ellipsoid_Q2?(m,M*Q*transpose(M),y-M*c,lam)

ellipsoid_general_4 : THEOREM
forall (n:posnat,m:posnat, Q:SquareMat(n), M: Mat(m,n),
x:Vector[n], y,b:Vector[m],c:Vector[n],lam:nnreal):
in_ellipsoid_Q2?(n,Q,x-c,lam)
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AND y = M*x+b
IMPLIES in_ellipsoid_Q2?(m,M*Q*transpose(M),y-(M*c+b),lam)

ellipsoid_bound : THEOREM
forall(n:posnat, Q:SquareMat(n), c,x:Vector[n]):
in_ellipsoid_Q?(n,Q,x) IMPLIES abs(c*x)<= sqrt(c*(Q*c))

sat(x:real): real = TABLE
%-------+----++
| x < -1| -1 ||
%-------+----++
| x > 1 | 1 ||
%-------+----++
| ELSE | x ||
%-------+----++

ENDTABLE

sat_id_comp : LEMMA FORALL (x:real) : (x<=0 IMPLIES sat(x)>=x) AND
(x>=0 IMPLIES sat(x)<=x)

sat_lin_com : LEMMA FORALL (x:real, d:posreal) : (abs(x)<= d) AND d>=1
IMPLIES
(x<=0 IMPLIES sat(x)<=(1/d) * x) AND
(x>=0 IMPLIES sat(x)>=(1/d) * x)

sat_sect_bound_step: LEMMA FORALL (n:posnat, Q:SquareMat(n),
c,x: Vector[n], d:posreal):
in_ellipsoid_Q?(n,Q,x) AND d >= sqrt(c*(Q*c))
IMPLIES
(sat(c*x)-(c*x))*(sat(c*x)-(1/d)*(c*x))<=0

block_rank_1: LEMMA FORALL (m,n:posnat, x,z:Vector[m],y,t:Vector[n]):
LET a = Block2V(V2Block(m,n)(x,y)) IN
LET b = Block2V(V2Block(m,n)(z,t)) IN
transpose(V2Ml(n+m,a))*V2Ml(n+m,b) =
Block2M(M2Block(m,n,m,n)(transpose(V2Ml(m,x))*V2Ml(m,z),

transpose(V2Ml(n,y))*V2Ml(m,z),
transpose(V2Ml(m,x))*V2Ml(n,t),
transpose(V2Ml(n,y))*V2Ml(n,t)))

block_sym_rank_1 : LEMMA FORALL (n:posnat, c:Vector[n], d:posreal):
LET a = Block2V(V2Block(n,1)(-c,LAMBDA (i:below(1)): 1)) IN
LET b = Block2V(V2Block(n,1)((-1/d)*c,LAMBDA (i:below(1)): 1))
IN

LET G = 1/2*(transpose(V2Ml(n+1,a))*V2Ml(n+1,b) +
transpose(V2Ml(n+1,b))*V2Ml(n+1,a))
IN
G = Block2M(M2Block(n,1,n,1)(

(1/d)*transpose(V2Ml(n,c))*V2Ml(n,c), 1/2*(-1-1/d)*V2Ml(n,c),
1/2*(-1-1/d)*transpose(V2Ml(n,c)), I(1)))
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sat_sect_bound : THEOREM FORALL (n:posnat, Q:SquareMat(n),
c,x:Vector[n], d:posreal):
LET z = Block2V(V2Block(n,1)(x,LAMBDA (i:below(1)): sat(c*x)))
IN

LET a = Block2V(V2Block(n,1)(-c,LAMBDA (i:below(1)): 1)) IN
LET b = Block2V(V2Block(n,1)((-1/d)*c,LAMBDA (i:below(1)): 1))
IN

LET G = 1/2*(transpose(V2Ml(n+1,a))*V2Ml(n+1,b) +
transpose(V2Ml(n+1,b))*V2Ml(n+1,a)) IN
in_ellipsoid_Q?(n,Q,x) AND

d >= sqrt(c*(Q*c))
IMPLIES z*(G*z) <= 0

sect_bound_quad: THEOREM FORALL (n:posnat, d1,d2:posreal,f:[real->real],
x:real):
LET v = Block2V(V2Block(1,1)(LAMBDA (i:below(1)): x,

LAMBDA (i:below(1)): f(x))) IN
LET g = (# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)):

COND
(i=0 AND j=0) -> 1/(d1*d2), (i=0 AND j=1) -> -(d1+d2)/(2*d1*d2),
(i=1 AND j=0) -> -(d1+d2)/(2*d1*d2), (i=1 AND j=1) -> 1
ENDCOND #) IN
(f(x)-(1/d1)*x)*(f(x)-(1/d2)*x)<=0 IFF
v*(g*v)<=0

sect_bound_ell : THEOREM FORALL (n:posnat, Q:SquareMat(n), c,x:Vector[n
],
d1,d2,mu:posreal, f:[real->real]):
LET d = c*(Q*c) IN
LET g = (# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> 1/(d1*d2), (i=0 AND j=1) -> -(d1+d2)/(2*d1*d2),
(i=1 AND j=0) -> -(d1+d2)/(2*d1*d2), (i=1 AND j=1) -> 1
ENDCOND #) IN

LET v = Block2V(V2Block(1,1)(LAMBDA (i:below(1)): c*x,
LAMBDA (i:below(1)): f(c*x))) IN

LET D = 4*(d1*d2)^2-mu*d*(d1-d2)^2 IN
in_ellipsoid_Q?(n,Q,x) AND
D>0 AND
(f(c*x)-(1/d1)*(c*x))*(f(c*x)-(1/d2)*(c*x))<=0 AND
d>0
IMPLIES
LET q =(# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> 1/d, (i=0 AND j=1) -> 0,
(i=1 AND j=0) -> 0, (i=1 AND j=1) -> 0
ENDCOND #) IN

in_ellipsoid_P2?(2,q+mu*g,v,(c*x)^2/(c*(Q*c)))

sect_bound_invertible:THEOREM FORALL(d,d1,d2,mu:posreal):
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LET g = (# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> 1/(d1*d2), (i=0 AND j=1) -> -(d1+d2)/(2*d1*d2),
(i=1 AND j=0) -> -(d1+d2)/(2*d1*d2), (i=1 AND j=1) -> 1
ENDCOND #) IN

LET q =(# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> 1/d, (i=0 AND j=1) -> 0,
(i=1 AND j=0) -> 0, (i=1 AND j=1) -> 0
ENDCOND #) IN

LET D = 4*(d1*d2)^2-mu*d*(d1-d2)^2 IN
D>0 IMPLIES invertible?(q+mu*g)

sect_bound_inv: THEOREM FORALL(d,d1,d2,mu:posreal):
LET g = (# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> 1/(d1*d2), (i=0 AND j=1) -> -(d1+d2)/(2*d1*d2),
(i=1 AND j=0) -> -(d1+d2)/(2*d1*d2), (i=1 AND j=1) -> 1
ENDCOND #) IN

LET q =(# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> 1/d, (i=0 AND j=1) -> 0,
(i=1 AND j=0) -> 0, (i=1 AND j=1) -> 0
ENDCOND #) IN

LET D = 4*(d1*d2)^2-mu*d*(d1-d2)^2 IN
D>0 IMPLIES
LET h = 1/D *(# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :

COND
(i=0 AND j=0) -> sq(2*d1*d2)*d, (i=0 AND j=1) -> (2*d*d1*d2)*(d1+

d2),
(i=1 AND j=0) -> (2*d*d1*d2)*(d1+d2), (i=1 AND j=1) -> (4*d1*d2)/mu*(mu*
d+d1*d2)

ENDCOND #) IN
inverse(q+mu*g) = h

sect_bound_P2Q: THEOREM FORALL(d,d1,d2,mu:posreal, lam:nnreal,v:Vector
[2]):
LET g = (# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :

COND
(i=0 AND j=0) -> 1/(d1*d2), (i=0 AND j=1) -> -(d1+d2)/(2*d1*d2),
(i=1 AND j=0) -> -(d1+d2)/(2*d1*d2), (i=1 AND j=1) -> 1
ENDCOND #) IN
LET q =(# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :

COND
(i=0 AND j=0) -> 1/d, (i=0 AND j=1) -> 0,
(i=1 AND j=0) -> 0, (i=1 AND j=1) -> 0
ENDCOND #) IN
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LET D = 4*(d1*d2)^2-mu*d*(d1-d2)^2 IN
D>0 AND
in_ellipsoid_P2?(2,q+mu*g,v,lam) IMPLIES LET h = 1/D *(# cols :=2,
rows:=2,

matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> sq(2*d1*d2)*d, (i=0 AND j=1) -> (2*d*d1*d2)*(d1+

d2),
(i=1 AND j=0) -> (2*d*d1*d2)*(d1+d2), (i=1 AND j=1) -> (4*d1*d2)/mu*(mu*
d+d1*d2)

ENDCOND #) IN
in_ellipsoid_Q2?(2,h,v,lam)

sect_bound_ell_Q: THEOREM FORALL (n:posnat, Q:SquareMat(n),
c,x:Vector[n], d1,d2:posreal,mu:posreal, f:[real->real]):

LET d = c*(Q*c) IN
LET D = 4*(d1*d2)^2-mu*d*(d1-d2)^2 IN
LET v = Block2V(V2Block(1,1)(LAMBDA (i:below(1)): c*x,

LAMBDA (i:below(1)): f(c*x))) IN
in_ellipsoid_Q?(n,Q,x) AND
D>0 AND
(f(c*x)-(1/d1)*(c*x))*(f(c*x)-(1/d2)*(c*x))<=0 AND
d>0
IMPLIES
LET h = 1/D *(# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :

COND
(i=0 AND j=0) -> sq(2*d1*d2)*d, (i=0 AND j=1) -> (2*d*d1*d2)*(d1+

d2),
(i=1 AND j=0) -> (2*d*d1*d2)*(d1+d2), (i=1 AND j=1) -> (4*d1*d2)/mu*(mu*
d+d1*d2)

ENDCOND #) IN
in_ellipsoid_Q2?(2,h,v,(c*x)^2/d)

sat_sect_bound_ell_Q: THEOREM FORALL (n:posnat, Q:SquareMat(n),
c,x:Vector[n],mu:posreal):

LET v = Block2V(V2Block(1,1)(LAMBDA (i:below(1)): c*x,
LAMBDA (i:below(1)): sat(c*x))) IN

in_ellipsoid_Q?(n,Q,x)
IMPLIES
LET d1 = sqrt(c*(Q*c)) IN
LET D = 4-mu*(d1-1)^2 IN
D>0 AND
d1>0 IMPLIES
LET h = 1/D *(# cols :=2, rows:=2,

matrix:= LAMBDA(i,j:below(2)) :
COND
(i=0 AND j=0) -> sq(2*d1), (i=0 AND j=1) -> (2*d1)*(d1+1),
(i=1 AND j=0) -> (2*d1)*(d1+1), (i=1 AND j=1) -> 4/mu*(mu*d1+1)
ENDCOND #) IN
in_ellipsoid_Q2?(2,h,v,(c*x)^2/(c*(Q*c)))

ell_proj_lem_1: LEMMA FORALL (n:posnat, Q:SquareMat(n),
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c,x:Vector[n], d1,d2:posreal,mu:posreal, f:[real->real]):
LET d = c*(Q*c) IN
LET D = 4*(d1*d2)^2-mu*d*(d1-d2)^2 IN
in_ellipsoid_Q?(n,Q,x) AND
D>0 AND
(f(c*x)-(1/d1)*(c*x))*(f(c*x)-(1/d2)*(c*x))<=0 AND
d>0
IMPLIES
LET v = Block2V(V2Block(n,1)( ((c*x)/d)*(Q*c),LAMBDA (i:below(1)): f(c
*x))) IN

LET M = Block2M(M2Block(n,1,1,1)(transpose(V2Ml(n,(1/d)*(Q*c))),
Zero_mat(1,1),Zero_mat(n,1),I(1))) IN

LET h = 1/D *(# cols :=2, rows:=2,
matrix:= LAMBDA(i,j:below(2)) :

COND
(i=0 AND j=0) -> sq(2*d1*d2)*d, (i=0 AND j=1) -> (2*d*d1*d2)*(d1+

d2),
(i=1 AND j=0) -> (2*d*d1*d2)*(d1+d2), (i=1 AND j=1) -> (4*d1*d2)/mu*(mu*
d+d1*d2)

ENDCOND #) IN
in_ellipsoid_Q2?(n+1,M*h*(transpose(M)),v,(c*x)^2/d)

ell_proj_lem_2: LEMMA FORALL (n:posnat, Q:SquareMat(n), c,x:Vector[n]):
c*(Q*c)>0 AND
in_ellipsoid_Q?(n,Q,x) IMPLIES
in_ellipsoid_Q2?(n,Q,x-((c*x)/(c*(Q*c)))*(Q*c),1-(c*x)^2/(c*(Q*c)))

ell_proj_combination: THEOREM FORALL (n:posnat, Q:SquareMat(n),
c,x:Vector[n], h:Mat(2,2), y:real):

LET v = Block2V(V2Block(1,1)(LAMBDA (i:below(1)): c*x,
LAMBDA (i:below(1)):y)) IN

LET outV = Block2V(V2Block(n,1)(x,LAMBDA (i:below(1)): y)) IN
in_ellipsoid_Q?(n,Q,x) AND
in_ellipsoid_Q?(2,h,v) AND
c*(Q*c) >0 IMPLIES
in_ellipsoid_Q?(n+1,Block2M(M2Block(n,1,n,1)(

Q-1/(c*(Q*c))*(transpose(V2Ml(n,Q*c))*V2Ml(n,Q*c)),
Zero_mat(1,n),Zero_mat(n,1),Zero_mat(1,1))) +

Block2M(M2Block(n,1,1,1)(
1/(c*(Q*c))*transpose(V2Ml(n,Q*c)),
Zero_mat(1,1),Zero_mat(n,1),I(1)))*
h *
transpose(Block2M(M2Block(n,1,1,1)(

1/(c*(Q*c))*transpose(V2Ml(n,Q*c)),
Zero_mat(1,1),Zero_mat(n,1),I(1)))),

outV)

convex_ellipsoid: THEOREM FORALL (n:posnat, Q:SquareMat(n),
x,y:Vector[n], lam:nnreal):

in_ellipsoid_Q?(n,Q,x) AND
in_ellipsoid_Q?(n,Q,y) AND
lam<=1 IMPLIES
in_ellipsoid_Q?(n,Q,lam*x+(1-lam)*y)
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end ellipsoid
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[29] Muñoz, c. and Narkawicz, A., “Formalization of an efficient representation of Bern-
stein polynomials and applications to global optimization,” J. of Automated Reasoning,
2011.

[30] Alur, R., Henzinger, T., and Ho, P.-H., “Automatic symbolic verification of embedded
systems,” Software Engineering, IEEE Transactions on, vol. 22, pp. 181–201, Mar
1996.
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