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Sougata Sen

Abstract
With the prevalence of sensors in public infrastructure as well as in personal devices,

exploitation of data from these sensors to monitor and profile basic activities (e.g.,

locomotive states such as walking, and gestural actions such as smoking) has gained

popularity. Basic activities identified by these sensors will drive the next generation

of lifestyle monitoring applications and services. To provide more advanced and

personalized services, these next-generation systems will need to capture and un-

derstand increasingly finer-grained details of various common daily life activities.

In this dissertation, I demonstrate the possibility of building systems using off-

the-shelf devices, that not only identify activities, but also provide fine-grained de-

tails about an individual’s lifestyle, using a combination of multiple sensing modes.

These systems utilise sensor data from personal as well as infrastructure devices to

unobtrusively monitor the daily life activities. In this dissertation, I have used eating

and shopping as two examples of daily life activities and have shown the possibility

to monitor fine-grained details of these activities. Additionally, I have explored the

possibility of utilising the sensor data to identify the cognitive state of an individual

performing a daily life activity.

I first investigate the possibility of using multiple sensor classes on wearable de-

vices to capture novel context about common gesture-driven activities. More speci-

fically, I describe Annapurna, a system which utilises the inertial and image sensors

in a single device to identify fine-grained details of the eating activity. Annapurna

utilises data from the inertial sensors of a smartwatch efficiently to determine when

a person is eating. The inertial sensors opportunistically trigger the smartwatch’s

camera to capture images of the food consumed, which is used in building a food

journal. Annapurna has been subjected to multiple user studies and we found that



the system can capture finer details about the eating activity – images of the food

consumed, with false-positive & false-negative rates of 6.5% & 3.3% respectively.

I next investigate the potential of combining sensing data from not just multi-

ple personal devices, but also by using inexpensive ambient sensors/IoT platforms.

More specifically, I describe I4S, a system utilises multiple sensor classes in multi-

ple devices to identify fine-grained in-store activities of an individual shopper. The

goal of I4S is to identify all the items that a customer in a retail store interacts with.

I4S utilises the inertial sensor data from the smartwatch to identify the picking ge-

sture as well as the shelf from where an item is picked. It utilises the BLE scan

information from the customer’s smartphone to identify the rack from where the

item is picked. By analysing the data collected through a user study involving 31

users, we found that we could identify pick gestures with a precision of over 92%,

the rack where the pick occurred with an accuracy of over 86% and identify the

position within a 1 meter wide rack with an accuracy of over 92%.

Finally, I explore the possibility of using such finer-grained capture of an indi-

vidual’s physical activities to infer higher-level, cognitive characteristics associated

with such daily life activities. As an exemplar, I describe CROSDAC, a technique

to identify the cognitive state and behavior of an individual during the shopping

activity. To determine the shopper’s behavior, CROSDAC analyses the shopper’s

trajectory in a store as well as the physical activities performed by the shopper.

Using an unsupervised approach, CROSDAC first discovers clusters (i.e., implicitly

uncovering distinct shopping styles) from limited training data, and then builds a

cluster-specific, but person-independent, classifier from the modest amount of trai-

ning data available. Using data from two studies involving 52 users conducted in

two diverse locations, we found that it is indeed possible to identify the cognitive

state of the shoppers through the CROSDAC approach.

Through these three systems and techniques, in this dissertation I demonstrate

the possibility of utilising data from sensors embedded in one or more off-the-shelf

devices to determine fine-grained insights about an individual’s lifestyle.
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Chapter 1

Introduction

1.1 Overview

Over the last few years, recognising simple locomotive activities performed by in-

dividuals through the course of a day (e.g. walking, standing, sitting, etc.) using

mobile and wearable devices has become common [16, 56, 59, 81, 123, 151, 159].

The ability to derive these simple activities has now led researchers to explore the

possibility of using sensor data from personal devices to identify and monitor more

complex activities, where a complex activity might be one that occurs naturally

as a result of an individual’s daily lifestyle (e.g., the capture of daily eating beha-

vior [88, 133, 145] or the study of sleeping patterns and phases [25, 87, 96]) or might

refer to specialized behavior (e.g., the tracking of abnormalities in gait [84, 98] or

monitoring lower limb exercises performed at a gym [167]). However, many of

these monitoring systems are either designed for specific environments or derive

only a part of the activity’s context (e.g. determining eating, without identifying

what was eaten). An open and exciting question is whether fine-grained details of

such complex activities can be reliably and accurately inferred by by utilizing the

diversity of sensors present in either a single or multiple off-the-shelf devices, es-

pecially given (a) the wide variation in the way different individuals (and the same

individual on different occasions) perform such activities, and (b) the variation in
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the capability of an individual sensor in a device as well as a device to monitor a

specific context.

This dissertation explores the possibility of using one or more off-the-shelf de-

vices to obtain insights about an individual’s daily lifestyle activities, at either finer

granularity than previously possible or for attributes that have previously not been

easily monitored. The dissertation does not develop novel mobile or wearable ba-

sed activity recognition techniques, but explores the possibility of using existing

approaches along with IoT based techniques to monitor fine-grained details of inte-

resting daily life activities. For this exploration, it uses two commonplace lifestyle

activities, eating and shopping as exemplars. Eating and shopping are of particu-

lar interest, as the ability to unobtrusively monitor these activities of an individual

have high value for a variety of future applications and services, especially in the

areas of wellness and retail. According to medical literature, these two activities

fall under the broader umbrella of Activities of Daily Living (ADL), where eating

is an essential ADL, while shopping falls under the category of Instrumental ADL

(IADL) [40] (The importance of monitoring IADL tasks is described in [38]). Mo-

reover, these two activities serve as useful exemplars of two classes of such ADLs,

one which can occur anywhere (individuals can eat at a wide variety of places) and

another which occurs only at specific locations (within stores) and can thus take ad-

vantage of specific infrastructural instrumentation. In this dissertation, I determine

the extent to which personal devices are sufficient for monitoring such activities,

and the additional advantages that can arise from the use of infrastructure sensing

in specifically instrumented locations.

Over the years, for understandable reasons, monitoring daily life activities has

been of significant interest in the medical domain, where approaches such as exter-

nal observations or maintaining a self-reported diary or blog [126] or instrumenting

subjects with sensors [106] has been investigated. However, I believe that if the

monitoring of ADLs becomes unobtrusive and unnoticeable, it can have significant

impact beyond the medical domain. Naturally, sensor data from mobile, wearable or
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infrastructure devices used either individually or collaboratively can be instrumental

in this transition. In this dissertation, I explore various innovative techniques, which

in addition to utilising data from mobile and wearable devices, also utilises sensor

data from infrastructure sensors to analyse various interesting lifestyle activities.

Various ADL monitoring systems utilising either one or multiple devices

amongst smartphones, wearables or infrastructure sensors have been proposed by

researchers. The evolution of these systems and techniques reveals a progressive

change, not only in the devices or techniques used, but also in the fine-grained ADL

monitoring goals that researchers are attempting to achieve. Infrastructure based

ADL monitoring techniques (e.g. Tapia et. al. [143]) were proposed even before

it was established that smartphones could be used for activity monitoring. Once

it was established that smartphones could be used for activity recognition, resear-

chers increasingly focused on using smartphones for user context monitoring, either

through a single phone (e.g. - CenceMe [86] and SurroundSense [8]) or through col-

laborative monitoring using multiple smartphones (e.g. - Darwin Phones [85] and

CoMon [68]). The next wave of interesting applications arrived once wearables

(smartwatch, smartglass, fitness bands etc.) became popular (e.g. RisQ [104] tracks

a natural gesture (smoking) through a smartwatch, while E-Gesture [105] tracks

application-specific custom arm gestures). Researchers have additionally explo-

red techniques for collaboratively monitoring context using heterogeneous devices

(e.g. ThirdEye [122]), which explored how a smartglass could be used to track a

user’s visual exploration of products in retail environments. Similar to RisQ [104],

this dissertation demonstrates the possibility of utilising sensor data from a fixed-

positioned wearable device (smartwatch) to identify natural gestures. However, in

addition to identifying the gestures, this dissertation describes several techniques to

infer finer insights of the lifestyle activity (e.g., the image of the food being consu-

med while eating, or the shelf-level location from where a consumer picks products

while shopping) once the gesture corresponding to the activity is identified. These

techniques either utilise multiple sensor classes within the same device for finer
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activity insights or utilise sensors on one device as a trigger for capturing or pro-

cessing sensor data on another device. In this dissertation, I have borrowed several

existing mobile/wearable based activity recognition techniques and have used these

techniques along with IoT based context recognition approaches for fine-grained

monitoring of daily lifestyle activities.

The evolution of multi-sensor and multi-device fine grained lifestyle monitoring

has been possible because of a number of important technological advances. Some

of these include:

1. Research in the field of connected sensors as well as wireless sensor net-

works [49] has enabled various localized (e.g., in homes and shops) and city-

wide infrastructure based IoT deployment with the dream of realising smart

cities [137]. In addition to deriving home, shop or city level analytics, the

sensor data from these devices can be used for personal level context identi-

fication (e.g. utilising Bluetooth Low-Energy (BLE) beacons deployed in a

food court as a location trigger for monitoring an individual’s eating activity).

2. The increasing diversity of sensors embedded in smartphones and wearables

has established the possibility of monitoring fine grained contexts of activi-

ties performed by an individual without completely depending on external

sources.

3. The possibility of programming the smart devices and even moving part of

the code to backend servers (e.g. [10]) ensured that computationally expen-

sive context recognition tasks could still be carried out in these devices. On

the other hand, sensing pipeline optimization techniques (e.g. [81]) have fa-

cilitated on-the-device processing; this in-turn allows low latency real-time

activity recognition.

However, there are some major challenges pertaining to the problem of multi-device

activity recognition. In the next section I describe some of these challenges in detail
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and how this dissertation tackles and addresses a well-identified subset of these

challenges.

1.2 Challenges

In order to realise these automated ADL recognition systems using personalised

devices and infrastructure sensing techniques, numerous challenges have to be ad-

dressed. In this section I list some of these challenges. However, before noting

down the challenges, let us consider the following scenario which will assist in bet-

ter appreciation of the challenges : Monica, a social scientist, has recruited Joey for

a study involving the understanding of ADLs performed by an individual through

the day. One of the monitored ADLs is shopping. Monica has installed an ADL

monitoring application on Joey’s personal devices. On a particular day during the

study, Joey walks into a shop wearing his smartwatch and carrying his smartphone.

On determining Joey’s location as ‘in-shop’, the ADL monitoring application in

each of these devices identifies different aspects of Joey’s shopping behavior – e.g.

the smartwatch identifies picking gesture, while the smartphone determines Joey’s

behavior based on his trajectory. As Joey walks around the shop, inspecting and

selecting items, Monica and Ross (Monica’s colleague working on the same study)

shadow Joey and note down all the items that he picks in the store. The shadowed

data will be utilised to establish the ground-truth.

Some of the challenges are:

• Energy Consumption: Smartphones, smartwatches and other wearable devi-

ces perform various tasks, one amongst which is activity recognition. Since

activity recognition and lifestyle analytics might not be the only primary task

of these devices (even though some devices have dedicated activity recogni-

tion modules), it is important to minimize the energy consumption of these

devices, while performing the lifestyle analytics. For example, in the scena-

rio mentioned previously, it is highly unlikely that Joey will be interested in
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the study if the application drains out the battery in any of his devices within

a few hours.

A major cause of battery drain during ADL tracking is the sensing process it-

self; every active sensor on a device drains the battery. The amount of drain is

dependent on the sensor (e.g., the GPS sensor usually drains the battery faster

than the accelerometer[13]), the sampling rate, the duty cycle etc. Extensive

work has been done in identifying and implementing techniques which can

reduce the energy consumption. Some of these techniques includes duty cy-

cling [54, 81, 151], offloading [29, 77, 116], and inference [28, 89, 97]. For

an application which has to continuously monitor daily life activities, certain

sensors in the monitoring devices has to be turned on. Since sensing is ex-

pensive, the application has to ensure that the sensing process itself does not

drain off the battery. A combination of existing techniques has to be custom-

engineered to ensure the possibility of continuous activity monitoring. A

constraint in a multi device environment is that different devices have diffe-

rent battery capacities and the sensor’s battery drain might be different in two

devices. This has to be kept in mind when choosing the energy conserva-

tion strategy. Since the smartwatch is the central component in the systems

described in this dissertation, minimising the energy consumption is especi-

ally important because: (a) the smartwatch has a smaller battery capacity as

compared to a smartphone and (b) some of the systems described in this dis-

sertation rely on the smartwatch to identify gestures, which in turn identifies

activities. Since activities might last for potentially long period of time, it is

essential that the smartwatch’s battery does not drain out before the end of the

activity.

• Accuracy: Accuracy in identifying an ADL specific activity is an impor-

tant factor for an end user. An application which consumes very little energy

and provides unreliable prediction will provide no insight regarding the user’s
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lifestyle. In the example scenario, if the application running on Joey’s smart-

watch cannot identify any item picks, then the shopping activity monitoring

system will not be of any use to either Monica or Joey. Alternately, if every

sensor in the smartwatch is turned on, then the accuracy might be high, but

the battery drain might be even more severe. Thus, based on application re-

quirement, the balance between accuracy and energy must be maintained.

Work such as [26] demonstrates how applications can balance between accu-

racy and energy consumption. In this dissertation, we describe two systems,

one that captures images of the individual’s food plate during a meal, while

the other identifies all the items picked by a customer in a retail store. Both

these systems have different accuracy needs. In case of capturing images du-

ring the eating activity, we need to capture just one useful image of the food

item, across multiple gestures. In contrast, in shopping, the goal is to capture

the location of every individual pick gesture. These requirements permit or

disallow certain types of energy-saving optimizations (e.g., turning off the ex-

pensive gyroscope sensor may be possible when the activity involves multiple

repeated gestures).

Accuracy errors might creep in if the classification model is erroneous or

if the choice of sensors to recognise the activity is incorrect. For example,

understanding eating gestures might be possible using accelerometer data of

smartwatches, while understanding locomotive states might be possible using

accelerometer data of a smartphone. However choosing a smartphone for

eating recognition or a smartwatch for locomotion recognition might cause

significant accuracy drop. Accuracy will also be compromised if there is

error in correlating between the devices. Work such as [85] and [127] shows

how multiple devices can be used to collaborate across devices and thus have

high accuracy.

• Near Real-time Processing: An application requirement for ADL monito-
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ring might be to perform near-real time sensing and processing. The sensing

and processing might occur either on the device itself or the processing might

be partly offloaded to another device. To understand the importance of near-

real time processing, in the scenario described previously, if Joey should be

able to receive store level promotions, where a promotion is determined based

on the items that Joey picks, then the processing of pick-identification should

occur in near-real time (within a few seconds of the occurrence of the pick ge-

sture). With continuous improvement in the hardware, processing sensor data

on smartwatches and smartphones is possible. Work such as [16] and [81] de-

monstrates the possibility of continuous sensing and processing sensor data

on smartphones, while this dissertation (Chapter 4) shows the possibility of

real time activity recognition on the smartwatch.

For the two systems presented in this dissertation, near real time identifica-

tion of the hand gesture is important as this allows us to trigger other sensing

modalities. For the food journaling system, the real time hand gesture iden-

tification triggers another sensor – the camera on the same device, while for

the shopper’s item interaction monitoring system, the inertial sensor on one

device triggers the sensors on the other device.

• Diversity across users: A major challenge in activity recognition is that a

highly accurate system needs personalized models – training data from the

monitored individual. Systems using personalized models do not address di-

versity exhibited by various individuals. For example, Joey’s item picking

style might be very different from Monica’s. A model that has been trained

on Monica’s picking gesture might have low accuracy in identifying Joey’s

picks. The problem with building personalised models is that systems which

have been built on personalized data do not scale easily. Work such as [63]

shows that data from the community can be used to reduce personalization.

An alternate approach for handling user diversity might be to use multi-modal
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sensing, where the same context might be established through different sen-

sing modalities and devices.

• Data Annotation: The process of collecting labeled ADL data is a challen-

ging task as multiple possible sources of error exist in the labeling process.

For situations where ground truth data has been video recorded and labels are

extracted from the video (e.g. [145]), inaccuracy in synchronising the sensing

device and the ground truth collection device will lead to incorrect segment

annotations. Moreover, the process of data annotation from videos by itself

is a tedious manual task, which requires extensive effort. Alternately, for

scenarios where labeling is done by shadowing the participant (e.g. [130]),

the additional problem of incorrectly labeling (e.g., for ground truth labeling,

Monica marks Joey’s pick once Joey has displaced the item from the shelf,

while Ross marks that a pick gesture is taking place even before Joey has tou-

ched the item.) and missing out labels exists (e.g. since the shadower has to

make split second decisions about labels that has to be marked, in case wrong

label marking is done, then going back in time and changing the label is not

possible.) Additionally, if multiple labels have to be marked at the same time,

then some labels can get missed. A third approach is to utilise annotations

provided by users themselves (e.g. [11]). However, issues related to false or

under-reporting might arise when users self annotate the data [43].

For the activities described in this dissertation, the key annotation that had

to be performed in real time was capturing the hand gesture. Since the hand

gesture can be noisy and individuals can be unpredictable (e.g., an individual

raises his hand to consume a spoonful of food, but before putting the food in

the mouth he gets engaged in a conversation) we had to ensure that incorrectly

marked labels could be discarded, else the incorrectly marked gestures would

affect the overall system’s performance.

• Unsupervised Learning: Another issue with data annotation is that in case
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of large datasets, it is almost impossible to manually annotate each and every

data instance (e.g. identifying and labeling every item that any customer

shopping in a giant supermarket picks). For such scenarios, some automa-

ted labeling techniques have to be identified which can label the data in an

unsupervised manner. Works such as [64] and [65] have shown that in the

field of image processing, a small corpus of training data can be used to iden-

tify items in a large corpus of unlabeled data. Techniques similar to this can

be used in the field of activity recognition. Alternately, work such as [63] has

shown the possibility of labeling data based on how a community performs,

while [158] has shown that automatically learning models from the web can

help in unsupervised clustering.

• Privacy: Data collection from sensors on personal devices naturally raises

privacy concerns. Sometimes the privacy implications might not even be ob-

vious (e.g. – sensor data collected from the smartwatch’s inertial sensor might

be capable of determining a person’s personal details [102, 131, 148, 149]).

Therefore, privacy aspect should always be considered while collecting sensor

data from any personal or infrastructure sensing devices. While it might not

be possible to tackle every privacy threat, for many scenarios, basic preven-

tion techniques such as deleting the raw sensor trace or introducing random

noise in the trace might be useful. Alternately, instead of providing fine grai-

ned context, a high level context might be provided. [157].

In this dissertation, I have primarily addressed a subset of the above mentioned

challenges – specifically, the challenges related to energy consumption, accuracy,

near real-time processing and diversity across users.
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1.3 Thesis Statement

Now that I have discussed about the opportunities and challenges pertaining to iden-

tifying activities of daily living using wearable, mobile and IoT sensors, in this dis-

sertation I show that:

It is indeed possible to harness the multi-modal sensing capabilities of com-

mercial, off-the-shelf mobile, wearable, and IoT devices to derive accurate,

and fine-grained insights about multiple aspects of an individual’s daily life-

style activities and behavior (with eating and shopping used as exemplars) in

near real-time.

Building and easily deploying such systems using off-the-shelf devices involves

identifying appropriate sensing modalities and optimising the usage of the appro-

priate sensor in each of the devices. Since the corpus of possible devices, sensors

and target audience is large, there are many research questions that need to be ans-

wered. This dissertation establishes the thesis via the following steps:

1. First, it determines the characteristics of regular daily life activities with shop-

ping and eating activities as examples. Since every activity has its own level

of complexity (e.g., shopping may be complex, as it involves both gestural

and locomotive actions, while eating may be complex because the mode of

eating and the content being consumed cause the eating behavior to vary sig-

nificantly), understanding these characteristics help identify the design goals

that a lifestyle monitoring system should achieve.

2. Next, for each of the monitoring systems, it determines whether fine-grained

context of the daily life activity can be determined by (a) one or more sensors

in a single device or (b) fusion of sensor data from multiple personal devices

or (c) fusion of sensor data from personal and infrastructure devices.
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3. It then presents two solutions (i) Annapurna: a system for automated food

journaling, and (ii) I4S1 a system for identifying in-store item interaction.The

two systems are designed to infer the fine grained details of each of the daily

life activities either through analysis of data from multiple sensors on a single

device, or via analysis of sensor data from multiple devices.

Annapurna demonstrates the possibility of utilising multiple sensors in a wrist

worn device (smartwatch) for fine-grained context inference. More specifi-

cally, data from the inertial sensor on a smartwatch acts as a gestural marker

in Annapurna to trigger the smartwatch’s camera and capture images of the

food being consumed.

I4S demonstrates that in certain scenarios, a single device might not be ca-

pable of identifying fine-grained context of a daily life activity. In such a

scenario, finer contextual insights can be obtained by fusing data from several

sensors embedded in multiple devices.

4. Additionally, this dissertation explores the possibility of person-independent

identification of cognitive/mental context associated with the daily life acti-

vities. Through exploration of data from personal devices, this dissertation

demonstrates an approach to address user-diversity while determining user’s

cognitive state during the daily life activity.

There were some interesting findings during the process of establishing the thesis.

First, it is well known that energy can be conserved when a cheaper sensor

adaptively turns on a more energy consuming sensor [151]. For Annapurna –

the automated food journaling system, we found that continuous video capturing

drained out the watch in approximately 80 minutes. We thus used the inertial sensor

as a gestural marker to turn on the camera. However, we found that turning on

the camera after a gesture was detected resulted in capturing of images where the

object of interest was not visible . This was because of the latency which existed

1pronounced i-foresee
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in the entire image capturing process. The delay in turning on the camera after

detecting the gesture results in frames where the object of interest is missing. We

thus had to look for alternate image capturing approaches which could capture the

object of interest accurately (with some possible loss in energy).

Second, in I4S, even though both the smartwatch and smartphone were capable

of BLE scanning, I had to eventually utilize the smartphone’s BLE scan information

to determine the shopper’s in-store location. This decision was driven by my

finding that (i) beacon miss rates were typically higher in the smartwatch and

(ii) the hand movement during shopping gesture had very short duration, which

resulted in noisy location prediction.

Third, standard image recognition techniques, with decent performance in iden-

tifying regular items might not perform well in identifying partially hidden objects

which have been captured from unorthodox angles and with motion blur. In An-

napurna, images of the food plate was captured using a camera mounted on the

smartwatch. We found that state-of-the-art image recognition algorithms were not

very effective in identifying such images. We thus switched over from identifying

the item to a heuristic based determination that the object of interest (food) might

be present in the image.

1.4 Research Contribution

This dissertation explores the use of commercially available, off-the-shelf devices

to infer and analyse Activities of Daily Living (ADLs). It uses eating and shopping

as two example ADLs (eating and shopping fall in two different ADL classes) and

describes techniques to identifying fine-grained details of the two ADLs. The main

contributions of this dissertation can be summarized as follows.
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• [Contribution 1] ADL monitoring and Analysis: This dissertation deve-

lops novel techniques to identify additional, fine-grained attributes of daily

life activities. It utilises inertial sensor data from the smartwatch (an off-the-

shelf, fixed positioned, body-worn device) to identify natural gestures (hand-

to-mouth in case of eating, or reaching-for-item in case of shopping). The

activity specific natural gesture acts as a marker for turning on additional sen-

sors (either on the smartwatch or other devices) to capture finer details of the

activity. This has been demonstrated by: (i) building Annapurna, a food

journaling application, which detects the “eating” activity and automatically

creates a food journal and (ii) designing I4S, a system to detect items that

a shopper interacts with while shopping. This dissertation shows how this

concept of gesture-based sensor triggering can be implemented in different

ways. For eating, where the gesture itself is repetitive, I have demonstrated

how energy can be saved by triggering the gyroscope sensor only in the finer-

layer of a two-tier gesture recognizer, and also how useful food images can

be obtained by triggering image capture within individual gestures (without

needing to continue such image capture across gestures).

While developing these applications and designing the techniques, I have

shown how real world system challenges can be addressed. For example, for

the food journaling application, I have shown techniques applied to reduce

energy consumption, whereas in the item interaction system, I have shown

how the choice of sensing modality affects accuracy.

• [Contribution 2] Fine-grained Monitoring using data from multiple sen-

sors in a single device: Work reported in [104] and [145] has demonstrated

the possibility of utilising a single class of sensor (inertial) in a smartwa-

tch to identify a natural gesture, which in-turn indicates a specific activity

period (smoking sessions or eating periods). This dissertation demonstrates

that finer-details of a specific activity can be determined if the natural gesture
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can be utilised to trigger the data collection from additional sensors classes

in the device. Specifically, for the hand-to-mouth gesture during eating, this

dissertation demonstrates the possibility of identifying finer details about the

eating activity and building an automated food journal if the natural gesture

can trigger additional sensor – the smartwatch’s camera.

Existing single-device solutions for eating gesture recognition and food jour-

naling either only identify the eating gesture [145] or capture images of food

being consumed [76, 125]. To the best of my knowledge, there is no au-

tomated food journaling system built using a personal off-the-shelf device,

which not only identifies the eating gesture, but also opportunistically captu-

res images of the food being consumed and builds a food journal using the

captured images. This dissertation has created Annapurna, a system which

not only identifies the eating gesture, but also captures the images of the food

consumed. Annapurna is built using an off-the-shelf commercial smartwa-

tch (Samsung Gear 1), which has a built in camera. The inertial sensor of the

smartwatch determines the eating gesture and episode, while the smartwatch’s

camera opportunistically captures the images of the food consumed.

Various system level contributions emerged during the building of Anna-

purna: - (i) The hand-to-mouth gesture during an eating episode is a periodi-

cally repetitive action. Annapurna shows that using a two tier classification

approach, where a lower energy-cost classifier on identifying the possibility

of hand-to-mouth gestures triggers a more expensive classifier, can reduce

the energy consumption of the system. (ii) Annapurna shows that innovative

design choices made during the energy intensive [74] image capturing pro-

cess can reduce the energy consumption of the process.(iii) Given that images

captured during eating may be irrelevant or unusable (e.g., food item absent,

image too blurry), Annapurna shows how simple image processing techni-

ques (e.g., edge detection, depth estimation) can be effective in selecting the

relevant images and significantly reduce the volume of data that needs to be
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transferred. Chapter 4 provides system details of Annapurna along with the

rationale behind the design choices taken in the system implementation.

• [Contribution 3] Fine-grained monitoring using multi-modal sensing

across multiple devices: For certain scenarios, either a fixed-positioned

smartwatch might not be capable of identifying the complete, fine-grained

context (e.g. to identify if a person is standing, sensors attached to an indi-

vidual’s leg or smartphone in the individual’s trouser pocket might provide

higher identification accuracy as compared to a wrist-worn smartwatch) or

the sensors in a device might not be robust. In such scenarios, sensor data

from additional personal devices might be useful in determining fine grained

context. This dissertation demonstrates that finer-details of a daily life activity

(shopping) can be determined if the natural gesture identified by a smartwatch

can be utilised to trigger data collection from other personal devices. Additio-

nally, this dissertation also demonstrates that instrumented environments can

further assist in determining finer details of a context.

Through the shopping activity monitoring as an example, this dissertation

shows how multi-modal sensing can assist in fine-grained shopping context

identification. For a physical store owner to obtain fine grained information

about shopper’s interactions with items (e.g., ‘pick’, ‘evaluate’, ‘return to

shelf’ or ‘put in cart’), we designed I4S . I4S, a low-cost system, not only uses

the inertial sensors on the smartwatch to identify the “pick” gesture (a natural

shopping gesture) of the shopper, but also utilises infrastructure sensors (BLE

beacons) to identify the location from where an item is being picked.

To achieve this fine-grained shopping interaction tracking, I4S fuses sensor

data from multiple devices – picking gesture is determined by the inertial

sensors of a smartwatch. The pick gesture triggers the inertial sensor on the

smartphone (to determine locomotion state) and the BLE scan information (to

determine store location). In I4S, different sensors from multiple devices are
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combined to deduce different context. For example, the inertial sensors of a

smartphone and smartwatch are jointly used to determine shelf-level location,

whereas the inertial sensors and bluetooth sensors from the smartphone are

combined with inertial sensors on a smartwatch to determine relevant ”pick”

gestures (without suffering from high false positives). Even though the idea

of location instrumentation has been studied in smart homes (where every ob-

ject is tagged with sensors) and shops (with dense active-RFID deployments),

these deployments can be expensive. I4S demonstrates that it is possible to de-

termine deeper individual-specific context in a modestly instrumented store

with lower deployment cost as compared to existing instrumentation appro-

aches. Chapter 5 provides the details of I4S along with various rationale for

several design choices.

• [Contribution 4] Behavior determination: Once the physical ADL monito-

ring techniques are in place, various behavioural insights about an individual

can be extracted. For example, a retail owner might be interested in identi-

fying customers requiring assistance. To realise this, we explored approaches

to determine the cognitive state and behavioral context exhibited by a user

during a daily life activity – shopping. Since individuals can exhibit diverse

physical behavior while having the same underlying cognitive state or beha-

vioral intent, this dissertation explores the possibility of accommodating the

behavioral diversity exhibited across individuals. In contrast to past work that

uses demographic attributes explicitly to capture such diversity, I’ve propo-

sed CROSDAC, an implicit data-driven approach to establish the number of

distinct ’styles’ by which such diversity is manifested. CROSDAC identifies

the behavior of an individual by comparing the behavior pattern with other

“similar” individuals. Chapter 6 provides the details of CROSDAC and how

it determines the shopper’s behavioral state.
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1.5 Project Contributions

For all my studies, I have collaborated with multiple colleagues and faculties, who

have helped in stages right from idea formulation to user studies to final ADL de-

termination. In this section, I list down contributions of various colleagues for the

various projects. (Note: Archan has been involved in the planning, refining and im-

provement of the techniques in all the projects mentioned below, while Rajesh and

Youngki have been involved in Annapurna and I4S.)

Annapurna - For the development of Annapurna, Vigneshwaran Subbaraju

(A*Star) has contributed significantly in various stages of the project - he was in-

volved in various stages of the system design planning, developing image captu-

ring through preview mode and model improvement and also data collection. For

the project, almost everyone in the lab has contributed by providing smartwatch’s

sensor data for techniques which have worked or failed. Table 1.1 captures the

module/activity level effort by various non-faculty contributors:

Sougata Vignesh
System Designing 60% 40%
Activity Recognition 75% 25%
Image Capturing 50% 50%
Image Processing 60% 40%
Data Collection 50% 50%
Data Processing 60% 40%

Table 1.1: Project Contributions – Annapurna

Sougata Karan Meera Vignesh
System Designing 50% 20% 15% 15%
Pick Detector 80% 20% - -
BLE localizer 100% - - -
In-shelf localizer 25% 75% - -
Data Collection 33% 33% 33% -
Data Processing 80% 20% - -

Table 1.2: Project Contributions – I4S

I4S - For I4S, the multiple planning phases involved thought contributions from

Vigneshwaran Subbaraju, Meera Radhakrishnan (SMU) and Karan Grover (IIITD).

Meera and Karan have been actively involved in various phases of data collection.
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Sougata Vignesh Dipanjan Dipyaman
Approach Planning 40% - 30% 30%
Data Collector 100% - - -
Data Collection 100% - - -
Approach Implementation & Testing 75% 25% - -

Table 1.3: Project Contribution – CROSDAC

Karan has also been involved in using quaternion data from smartwatch sensor to

determine position within rack. Table 1.2 captured the module/activity level effort

by various non-faculty contributors for I4S.

CROSDAC - For CROSDAC, I received ample mentoring from Dipanjan Cha-

kroborty (IBM IRL) and Dipyaman Banerjee (IBM IRL). Vigneshwaran has again

been involved in the planning and testing of various possible approaches. Table 1.3

captured the detailed effort by various non-faculty contributors for CROSDAC.

1.6 Dissertation Roadmap

In my exploration of the open challenges described in the previous subsections,

I have taken an experimental approach, where I have built prototypes, conducted

user studies and performed experiments to validate my ideas. Given the relatively

small user sample sizes used in my studies, I have additionally performed sensitivity

studies to demonstrate that my results and insights are robust, and likely to apply to

a wider population. All these details are reported in this dissertation. The rest of the

dissertation is organised as follows:

Chapter 2 describes literature which is most relevant for this thesis. The chapter

is divided into four parts, where I first describe the existing activity recognition

works. Then I specifically look into literature pertaining to eating and shopping

activity recognition using wearable, mobile and infrastructure sensors. I finally

discuss about literature related to mobile and wearable based behavior recognition.

Chapter 3 presents a brief background of ADL monitoring with examples of

possible motivating scenarios. I explain the scenarios and show how systems that
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we have developed can address the scenarios. I provide a high level overview of

the systems and techniques that we have exploited while providing solutions to the

explained scenarios.

In Chapter 4, I describe the automated food journaling application - Annapurna,

which captures eating and diet details, and shares such captured details with an in-

dividual consumer via a personalized Web portal. In the chapter, I first describe the

need for having a food journaling application and then provide the system overview.

Since eating is a complicated activity, I specify the design goals of Annapurna, al-

ong with the design of the system. Annapurna was built over multiple iterations;

where a user-study was performed and lessons learnt from the user study was used

to improve the design in the subsequent iteration. In the chapter I describe the user-

study details for every iteration and explain the lessons learnt and how it helped in

improving the system. Finally, I describe the web application that was presented to

the end-user, where the user could track food items consumed.

Chapter 5 presents I4S – an approach that I have explored to identify fine grained

in-store item interactions. I4S identifies (i) the “picking” gesture - a fine-grained

shopping specific gesture exhibited by shoppers and (ii) location from where the

item was picked. I4S utilises a smartwatch, a smartphone and infrastructure de-

ployed BLE beacons to identify the location from where an item was picked. In the

chapter, I first explain the system overview, the design choices taken, and the overall

approach in building the system. An in-store user study was performed to determine

the feasibility of identifying the in-store item interactions. I explain details of the

user study along with the performance results of various components of I4S.

In Chapter 6, I present a crowd-scale, non-person specific, recognition frame-

work, called CROSDAC, to tackle the problem of inferring the intentions and atti-

tudes of individual in-store consumers, using mobile sensing data. In the chapter,

I describe two user studies that were conducted to validate CROSDAC. This is fol-

lowed by the analysis of the data collected in determining shopper’s intentions.

Finally, I end the chapter with some open problems and challenges.
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In Chapters 7, I describe the various possible extensions of the current systems

as well as other viable future research directions and in Chapter 8, I recap the sys-

tems and provide my closing comments.
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Chapter 2

Literature Review

Activity Recognition has always been of interest to researchers. With the high avai-

lability of personal mobile and wearable devices as well as infrastructural sensors,

activity monitoring techniques have transmuted from manual monitoring approa-

ches to automated and to almost unobtrusive techniques. Since activity recognition

lies at the foundation of all my contributions, in this chapter, I will first discuss

about some activity recognition techniques that have been developed, followed by

a high level overview of some existing ADL monitoring systems. The bulk of my

work is largely related to two ADLs - eating and shopping. Subsequently, I will

present works which either focus on alternative ways for monitoring these two spe-

cific daily life activities or which use sensors/features in ways very similar to our

monitoring approaches, but to monitor other types of ADLs. Finally, I will discuss

works which have attempted to use data and information from sensing devices to

determine intent or behavior of end users. The rest of the chapter is arranged as

follows:

Section 2.1 discusses multiple activity recognition techniques developed and

tested by researchers and how these solutions address system related challenges.

This section will also present how this activity recognition is used for general ADL

monitoring.

Sections 2.2 and 2.3 continues discussing about various ADL monitoring techni-
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ques developed by researchers. Section 2.2 discusses about eating monitoring

techniques. It also provides details of the literature existing in the area of image

recognition as our eating ADL monitoring technique relies on image processing

and identification. Similarly, Section 2.3 primarily discusses about literature related

to various existing shopping ADL monitoring techniques, it also discusses literature

related to indoor localization as well as techniques to understand human behavior

using mobile and wearable devices that have been explored in various studies.

Finally, Section 2.4 shifts from literature related to identifying the physical ADL

monitoring activity to literature related to identifying an individual’s cognitive state

and behavior through analysis of sensor data.

2.1 Activity Recognition

Sensor based activity recognition has been researched for several years, with activity

recognition using sensor data from smartphones and wearable devices being one of

the newer trends in this research domain. The most commonly used sensor in the

smartphone for activity recognition is the accelerometer. Accelerometer based acti-

vity recognition techniques were tried and tested even before accelerometers made

its way into smartphones. Before the smartphone era, accelerometers were attached

to an individual and activity recognition was performed by processing the data from

these sensors [11, 123]. However, with technological advancements leading to the

introduction of accelerometers in smartphones, works such as [81, 86] demonstra-

ted the use of smartphone for simple activity recognition. Since reducing the energy

consumption during activity recognition is a challenge (Section 2.1.1 details several

approaches to address this challenge) and the energy consumption of the accelero-

meter is lower than several other smartphone sensors [13, 112], it is advantageous to

use the accelerometer for smartphone/wearable based activity recognition. Howe-

ver, since accelerometer might not be the optimum sensor for activity recognition in

certain situations, other sensors have also been utilised to monitor activities – e.g.,
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the microphone to monitor (a) general activities [140], and (b) bathroom related

activities [23], or the GPS sensor for simple activity recognition [72]. Section 2.1.2

describes several sensing modality utilised to monitor numerous daily life activity

monitoring categories.

As an alternative to utilising sensors from personal devices, activity recogni-

tion through infrastructure sensors is also possible. Multiple activity monitoring

approaches using infrastructure sensors have been proposed by researchers. The

use of video feeds to determine individual-specific activities were explored in [20]

and [156], while the possibility of recognizing such activities via passive monito-

ring of RF signals have been addressed in [1, 153]. The major advantages of these

techniques are that they are device-free techniques and do not require any on-body

devices for the activity recognition. However, since the device performing the acti-

vity recognition is not a personal device, the activity prediction might also lead

to privacy leaks. Additionally, they are often designed for specially instrumented

environments.

2.1.1 Addressing Challenges in Activity Recognition

Energy Consumption: Since rapid battery drain in a smartphone affects usability,

reducing the energy consumption of a smartphone has always been of interest to

researchers. Several techniques have been proposed to ensure that the activity re-

cognition (even accelerometer based) does not cause a noticeable battery drain (or

battery drain in any other personal device) [28, 29, 54, 68, 77, 81, 89, 97, 116].

In scenarios where continuous context monitoring is required, works such as [105]

and [151] demonstrate that using a cheaper sensors to turn on a more expensive sen-

sor saved energy. In these studies, the cheaper sensor identified a certain context,

which acted as the marker to turn on the more expensive sensor to monitor additi-

onal context. We have used a similar technique in Annapurna, where we turned on

the camera (the more energy hungry sensor) to capture images of the food consu-
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med only when we received contextual markers – identification of the eating gesture

by the accelerometer sensor.

Accuracy: In addition to energy, activity recognition systems must ensure that

the activity predicted by the system is accurate. It has been well established that per-

sonalised models for activity recognition perform better than general models [11].

However, collecting personal data to create personal models is labor intensive. Ot-

her than personalised data, for the same participant, the position and orientation of

the device affects the accuracy [70] – if training data is collected in a certain device

orientation and the device’s orientation is different during testing, then the accuracy

of the system will be affected. Other factors which affect the system’s accuracy

includes: number of sensors used in the data collection/ activity prediction or the

choice of classifier [159]. Sometimes, a single sensor (or device) might not be ro-

bust enough to determine an activity. Work such as [69] and [85] use sensors on

multiple phones to improve on the context recognition – accuracy of speaker identi-

fication, while work such as [116] utilizes infrastructure sensors to improve on the

accuracy along with energy conservation. The approaches adopted by researchers

which have been highlighted here are a few possible approaches for the personal de-

vices to either save energy or improve accuracy or both. Extensive literature exists,

showing multiple possibilities for improving system’s performance. Our shopping

behavior identification approach, CROSDAC, demonstrates the possibility of achie-

ving reasonable accuracy in identifying behavior, without any personal data, while

I4S, demonstrates the possibility of improving identification accuracy by using sen-

sor data from multiple devices.

2.1.2 Identifying and Monitoring Specific Daily Life Activities

I next discuss some ADL monitoring systems and techniques developed by rese-

archers, which utilises sensor data for various sensing devices (Detailed summary

provided in Table 2.1). Sensing devices utilised for ADL monitoring range from
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personal devices to infrastructure devices. The type of personal devices also vary –

while some studies used off-the-shelf devices like smartwatches and smartphones,

for others, the authors created custom hardware. I first discuss studies which utilises

a smartwatch or smartwatch like device: the use of wrist worn sensors/devices to

determine the eating activity was demonstrated in [3], and [31]. The authors in [3]

did not develop a custom device, but rather attached the sensors to the upper limbs

to monitor the eating activity. Besides eating, the feasibility of monitoring smoking

activity through a custom smartwatch was demonstrated in [104], while sensor data

from an off the shelf smartwatch and smartphone has been utilised to determine

the driving behavior (e.g., [78]) and shopping activity (e.g., [118]). For all of these

studies, the inertial sensor is primarily used as these studies require monitoring the

hand’s motion. Similar to the previous studies, a smartwatch based approach to mo-

nitor toothbrushing activity was explored in [46]. In addition to the smartwatch, the

authors developed a custom toothbrush with a magnet attached. The magnet allowed

the researchers to monitor the hand orientation of an individual while the individual

used the toothbrush. All these researchers have utilized the smartwatch (or almost

equivalent device – not necessarily off-the-shelf) for the activity recognition. Other

than smartwatches, smartphones have also been used for various lifestyle analytics.

Work such as [87, 25] have used the accelerometer, the microphone, and the light

sensor on the smartphone to determine sleep duration and quality of sleep, while

smartphone usage pattern to determine sleeping period and wake up period was ex-

plored in [150]. Besides sleep, the authors in [150] also utilised the smartphone to

identify other activities and individual’s conversations.

ADL monitoring using infrastructure sensors has existed even before personal

devices were used for ADL monitoring. A lot of effort has been made towards

smart homes for ADL monitoring. The authors in [143] demonstrated that attaching

simple sensors to devices in a house can be used to monitor daily life activities in an

instrumented home. These sensors could identify when a certain device was used

by the occupant in the house. Alternately, the possibility of identifying activities
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inside a house using RF signal has been explored in [1]. However, the problem with

these only infrastructure based techniques is that it is not possible to associate an

ADL with a particular user in the case of multi-occupant scenarios.

2.2 Eating Activity Recognition

I next focus specifically on eating detection. In addition to eating detection, since

my work involves the use of image capturing, I also provide some details of existing

image recognition techniques.

Eating Identification and Monitoring: Online food journals such as [95] al-

low users to manually note down all food items consumed, while applications

such as [146] allow self reporting of food consumed through a smartphone ap-

plication. However, literature shows that self reporting leads to under reporting

(e.g., [43, 110]). To overcome this, automated food consumption identification/

monitoring, and journaling approaches have been proposed by various researchers,

where techniques vary from using instrumented locations [22], tabletops [166] etc.

to utilising one or more mobile and wearable devices. These devices can either

be off the shelf [133] or custom made [31] and can use techniques such as iner-

tial sensors [145] or microphones [121] or image / video [125] or even a fusion

of multiple techniques [76]. Additionally, there has been work to identify the items

consumed [66]. Since my work revolves around using mobile and wearable devices,

in this section, I introduce relevant eating detection and monitoring systems which

primarily utilise mobile and wearable devices.

A popular food intake monitoring approach is through the use of wearable sen-

sors with acoustic monitoring capabilities. Work involving acoustic sensing either

detects chewing or swallowing or both. Identification of the chewing sound, an in-

dicator of food consumption has been explored in [4] and [160]. Additionally, the

possibility of identifying the texture of the food from the chewing sound was de-

monstrated in [160]. Several chewing detection studies utilise an ear worn device
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to identify chewing. Alternately, researchers have developed custom devices to be

worn on the neck/throat with the goal of detecting swallowing. The possibility of

identifying the swallowing activity has been explored in [128] and [121]. Both of

these approaches utilized a neck-worn device. More recently, the use of neck worn

wearable sensors not just for chewing/swallowing detection, but also identifying the

type of food has been studied in [18]. Most of the acoustic food monitoring sys-

tems utilise custom hardware which has to be attached to the body and have been

tested in lab conditions. The devices are usually obtrusive. It can be argued that

future earphones can be attached with the hardware. However, the user has to wear

the device during food consumption, which might not be acceptable, especially in

social settings, where multiple people are dining together. Additionally, little work

has been done to understand the effect of real-world noise on these systems.

An alternate approach for food intake identification and monitoring is by uti-

lising visual information – images or videos. The feasibility of image capturing

through a smartphone’s camera was demonstrated in [125]. The work relied on

using images captured by a smartphone’s camera while the phone suspended across

the user’s neck using a lanyard. Even though the system was automatic, it was

obtrusive. Work such as [168] have removed the obtrusiveness by asking the users

to manually capture the image of the food plate at the start and end of a meal. The

authors not only identified the food items consumed, but also the quantity of con-

sumption. Similarly, recognising the food consumed by the user from the images

obtained from the camera of a smartphone has been studied in [52] and [66]. Ho-

wever, similar to [168], both these techniques require the user to explicitly acquire

or label the images of the food and then they identify the food item.

Food intake identification techniques which are closest to my work are the ones

that utilise the inertial sensor data from wearables to identify eating gesture. The in-

ertial sensor based food identification approaches utilise either the accelerometer or

the gyroscope or both. Early, non-smart wearable based eating gesture detection was

demonstrated in [3]. In this work, the authors attached four accelerometer sensors
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in several arm positions to identify the eating gesture. Even though the system was

obtrusive, the authors demonstrated the possibility of utilising the accelerometer for

accurate eating detection. More recently, the possibility of utilising accelerometer

data from two off the shelf devices – a smartwatch and a smartglass to determine

eating gesture in a controlled study was demonstrated in [161]. With an accuracy

of 89%, the authors demonstrated the possibility of identifying eating gesture using

two off-the-shelf devices. The accelerometer data from a single wrist worn device

could also detect eating activity in real world settings was shown in [145]. The

study was performed in both controlled and real-world setting. The performance

of the system was slightly lower than the system utilising two wearable devices.

All the above mentioned systems utilise only the accelerometer for eating gesture

identification. Alternately, the possibility of utilising the gyroscope for identifying

eating gesture was explored in [31]. The gyroscope identifies the rotation of the

wrist during the eating activity to identify the eating gesture. The work relies on

custom hardware for hand rotation detection. The fusion of both the accelerometer

and gyroscope data for eating gesture detection is explored in [32]. Similar to [32],

our work (described in Chapter 4) utilises the data from both the accelerometer and

gyroscope to determine the eating gesture. However, we utilise an off-the-shelf de-

vice for the gesture identification. Additionally, we also capture the image of the

food consumed when an eating session is identified.

Till now I have discussed some techniques which use a single class of sensor.

I next discuss techniques which uses multiple sensor classes. The multiple sensor

classes either reside on the same device or reside on multiple devices. The possibi-

lity of identifying eating gesture using a microphone attached to a custom ear-worn

hardware was demonstrated in [76]. Once eating has been detected, the device turns

on the camera embedded in the earpiece to capture images of the food consumed.

The device has been tested in a real world setting (university restaurant). However,

the authors did not show the performance of the system while the individual perfor-

med other similar activities. In terms of approach, this work closely resembles our
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work, where we use inertial sensor data instead of the microphone data as a trigger

to start capturing images through an embedded camera in the same device. Howe-

ver, our study did not rely on a custom device. Other than multiple single-device

sensor based food identification, the possibility of utilising multiple sensor classes

on multiple devices to identify the food consumed was demonstrated in [88]. The

authors used 2 wrist worn, a head worn and an ear worn devices for the study. In

the controlled study, the authors demonstrated the possibility of identifying multiple

food types using multi-sensor data fusion. Table 2.2 shows a detailed comparison

of several approaches discussed in this section.

Since Annapurna captures images and identifies the best images amongst the

captured images, I next discuss some possible image recognition techniques which

has been implemented.

Image Recognition: Automatic object recognition on mobile phones has been re-

ported in work such as [91], where a smartphone camera is used to identify medi-

cation packages. The system first extracts robust features from the images and then

uses these features for object detection. In computer vision, the Scale-Invariant Fea-

ture Transform (SIFT) [79] and Speeded-Up Robust Features (SURF) [12] are some

common methods used to identify robust features from images of objects. Machine

learning classifiers (trained using a large corpus of images) are then used to recog-

nize the objects from the extracted features and some addition image descriptors.

The classifiers are trained using a large corpus of images. Deep learning [14, 30]

using convolutional neural networks [57, 27] is commonly used for object recogni-

tion from images. However, most deep learning frameworks are designed for ser-

vers. Work such as [60] provides a measurement study of the resource requirements

and constraints involved in implementing deep learning on mobile and wearable

platforms. Alternate approaches such as [24] (which performs continuous recogni-

tion and tracking of traffic signs) offload the image recognition tasks to the server.

32



2.3 Shopping Activity Recognition

Monitoring the shopping activity has been of interest to the marketing community,

as it provides various insights about the activity itself. An approach to identify the

shopping interactions is through observations [71, 154]. However, manual observa-

tion approaches are labor intensive. To overcome this, researchers have experimen-

ted with automatic monitoring approaches. Some of the automatic shopping activity

monitoring approaches utilise physical items like the shopping cart [51] which is in-

strumented, or utilise either one or more amongst vision based approaches [58], RF

approaches [33] or wearable based monitoring approaches [122]. Since my work

utilises wearables and RF sensing, I present relevant work for these categories al-

ong with some vision based approaches. Most purely vision or purely RFID ba-

sed approaches are developed on the server side, with little or no deployment on

the customer’s devices, while most wearable based approaches require application

installation on customer’s device. Even though customers have to install custom

applications, these applications raise less privacy concern as compared to video

monitoring (e.g. [111]). Moreover, applications such as [47] suggest that customers

install custom applications, if adequate incentives are provided.

Video based shopping analysis has been explored by several researchers. A

Kinect-based system for assessing shopping related actions was proposed in [107].

Using the silhouette data from Kinect, collected in a controlled environment, they

identified if the person is examining or picking an item, trying on an item and in-

teracting with the shopping cart, but did not focus on recognizing the actual item

of interest. While the authors in [107] used the Kinect for analysis, the authors

in [165] used the video data to understand the influence of groups on shopping.

From the video, the researchers extracted features which influence shopping – e.g.,

frequency of touch, path taken etc. Similarly, utilising the video feed to identify not

only the path taken but also to identify opportunities to make a sale was suggested

in [109]. These studies demonstrate that shopping activities can be identified by
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video analysis. However, other than privacy, video analysis also has the problem of

occlusion. Shopper’s activity might not be captured by the camera and thus video

analysis might not produce desirable outcome.

Alternate to video analytics, researchers have looked at purely RF based mo-

nitoring. An RFID-based system to infer comprehensive shopping activities like

picking item, putting in basket etc. was demonstrated in [135]. However, since the

system does not use information from personal devices, the system cannot create

an individual-level shopper profile as it does not capture a person-wise item corre-

lation. An alternate RF approach which can provide customer based tracking is to

use the Wi-Fi signal from a customer’s smartphone. A framework for understan-

ding a shopper’s overall in-mall movement pattern using smartphone sensors and

store-recognition using Wi-Fi was put forward in [67]. In this work, the researchers

performed a client side indoor localization to analyse the shopper’s trajectory in the

mall to understand the malling behavior. In contrast, the Channel State Information

of Wi-Fi signals to infer a shopper’s locomotive state & location within a store was

demonstrated in [164]. This approach identified non-gestural shopping activities

– e.g. customer is observing promotions, without any application on the personal

device. Not only researchers, but commercial entities are also looking at shopping

behaviour; Euclid Analytics [33] capture and analyze the in-store movement of in-

dividual consumers by sensing their smartphone Wi-Fi transmissions. Even though

Wi-Fi based approaches can assist in identifying customer specific in-store activi-

ties, it cannot identify finer activities such as whether shopper picked any items.

Other than RF and video analytics, researchers have analysed sensor data from a

shopper’s personal mobile and wearable devices to determine the shopping activity.

The inertial sensor data to identify shopping ADL was explored in [162]. In this

work, the authors divide the user’s inertial data (accelerometer and compass) into

motifs and determine the shopping activity based on the motifs. However, similar

to Wi-Fi based shopping detection, even this approach cannot identify fine grained

shopping activities such as whether the shopper is picking an item. To understand
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finer details of shopping, a combination of sensor data mined from a smartphone

and a smartwatch to recognize item-level gestural interactions and overall in-store

activities was studied in [118]. While the smartphone could identify whether a per-

son was in-aisle or not, the smartwatch could identify the finer details like picking

item, putting in trolley etc. However, the system did not try to identify the exact item

picked. Tracking different elements of physical browsing such as dwelling, gazing,

reaching out action etc. using images, inertial sensors and Wi-Fi data captured from

a smartglass and a smartphone was explored in [122]. By analysing the smartglass’

images to identify the item that an individual’s hand is picking, the system can deter-

mine the item of interest. However, other than privacy concerns, continuous image

capturing through personal devices can lead to quick battery drop.

In addition to shopping activity recognition, since my work utilises indoor loca-

lization, I next describe some fine grained indoor positioning techniques.

Indoor localization: Several indoor localization techniques using Wi-Fi, sound or

bluetooth technologies have been proposed by researchers [9, 113, 152]. Howe-

ver, since I needed very fine grained positioning, I have used BLE based positio-

ning in my work, and thus, I will limit the survey to BLE based localization. A

BLE-based object localization system which requires at least four BLE receivers

to localize an object to which a BLE tag is attached was proposed in [129]. Al-

ternately, fingerprinting-based approaches for BLE-based indoor location tracking

of stationary and moving users was studied in [34, 119]. Since we intended to use

the BLE based localization in a fixed store layout, we relied on the fingerprinting

based technique. An alternate approach to BLE localization is through ranging –

proximity based location identification. An adaptive ranging technique using inter-

beacon measurements was explored in [115] for indoor localization.
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2.4 Behavior Recognition

Till now I have discussed techniques to identify and monitor the physical daily life

activity – emphasising on eating and shopping. I next discuss the importance of

determining the cognitive state and behavior of an individual during a daily life

activity – shopping and the possibility of determining various cognitive states of an

individual through mobile and wearable devices.

2.4.1 Understanding the Shopping Behavior

Understanding the cognitive state of an individual during the shopping activity has

been of interest to researchers in marketing, social sciences and psychology for de-

cades. To understand why people shop, several hypothesis were put forward by the

authors in [144]. One of the hypothesis was associated to the emotional state of the

individual – bored, lonely, depressed etc. This indicates that identifying an indi-

vidual’s emotional state might be useful in identifying whether the individual will

shop or not. In [90], the authors found that identifying the emotion and behavior

exhibited by a store visitor was important as it assisted in increasing the producti-

vity of sales people. This study focused mainly on identifying focused shoppers,

which is one of the behaviors exhibited by shoppers. By surveying shoppers, in

[39], the authors identified several shopper categories based on the behavior exhi-

bited by the individuals during shopping. Some of these behaviors included: basic

shoppers – shoppers who knew what they wanted, destination shoppers – shoppers

who were interested in a brand name, bargain seekers – shoppers who were looking

for discounts etc. Similarly, in [155], the authors identified that customers can be

categorised based on decision making styles, which in-turn affected the behavior.

This study also found that gender played an important role in decision making sty-

les. Orthogonal to studies which focused on identifying the shopping behavior, the

authors in [19] focused on identifying whether an individual was merely browsing

in a store without any purchasing need in mind. The authors indicated that there
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were several occasions when an individual in a store might just look at items wit-

hout having the intent of buying. In general, all these studies indicate that shoppers

can exhibit several emotional state and behaviors during a store visit and this was

affected by several factors like demographics and environmental factors. Some of

the behaviors identified were (a) browsing with no buying intent, (b) focused on

what item to buy, and (c) confused about what to buy.

A labor efficient approach to determine the store’s customer’s behavior is by

analysing sensor data from the customer’s personal devices or by analysing data

from the infrastructure sensors. By analysing the data from the customer’s smart-

watch’s and smartphone’s sensors, the authors in [118] demonstrated the possibility

of determining whether the shopper is in a hurry. Similarly, the trajectory of a

shopper inside a store can be utilised to determine whether the shopper had buying

intentions has been shown in [108] and [82]. Even though our shopping behavior

identification technique – CROSDAC also utilises trajectory to determine shopper’s

behavior, however, in both [108] and [82], the data used to determine the behavior

is from a video feed, which can raise privacy concerns for the shoppers. For CROS-

DAC, we utilised inertial and Wi-Fi scan data of the smartphone to determine the

shopper’s behavior. A major disadvantage of a video monitoring approach is that

it will not be possible to determine the action performed by a shopper in case the

video is occluded by objects or other shoppers. Alternately, companies like [33]

utilise just the Wi-Fi information to identify various attributes and behaviors of the

shopper. Unlike our technique, these approaches ( [33, 82, 108]) do not require any

software installation on a customer’s device.

2.4.2 Automatically Determining Emotions and Behaviors

To identify the emotions and behavior exhibited by individuals, several techniques

and approaches have been proposed by researchers. In this section, I focus only on

techniques which utilises smartphones, wearables or infrastructure devices.Nudging
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the users to manually report their emotional state has been demonstrated in [93].

The researchers analysed the data and provided meaningful feedback to the partici-

pants. Alternately, automatic identification of the emotional state of a smartphone

user by analysing the user’s speech has been studied in [117]. The authors de-

monstrated the possibility of automatic emotion identification using smartphone’s

microphone data. Similarly, the use of microphone for deciphering a person’s stress

state has been reported in [80]. However, a major challenge in the use of microp-

hone is in ensuring that the correct voice is used to determine emotion. In case the

phone identifies the voice of someone else in proximity and determines the emo-

tion, then the identified emotion might not be accurate. An alternate automatic

emotion identifying approach using the smartphone, by analysing the smartphone’s

app usage has been demonstrated in [73]. Since the smartphone is usually personal,

the possibility of confusing the user’s emotion with someone else’s is lower than

analysing the microphone data.

Other than smartphones, researchers have utilised various wearable devices to

understand the human emotion. The possibility of understanding emotions through

the measurement of skin temperature, heart rate and electrodermal activity has been

demonstrated in [55]. For this study, the authors attached sensors on the subject’s

skin, but argued that the sensors could eventually be implemented in a smartwatch.

Through the study, the authors demonstrated that it was possible to build a psycho-

logical database with data collected from multiple participants, which could be used

for building a person independent emotion recognition system. Similar to the study

reported in [55], the authors in [75] also collected various physiological signals.

However, instead of attaching sensors directly to the body, the authors utilised an

off-the-shelf device for the sensor data collection.

The previous techniques utilise the change in voice or physiological signals to

determine emotions. It is well known that facial expression are a good indicator

for several emotions. The possibility of using neurofuzzy networks to determine

emotions has been reported in [50]. This work showed that facial expression based
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emotion recognition systems can be built without utilising any personal devices. In

case of shopping, the CCTV in the store can be used to capture images of the face,

which in turn can identify the emotion. There are various other similar studies which

utilise images/ video for emotion detection. The possibility of fusing the data from

a video feed and EEG sensor attached to an individual to determine the emotion in

real time has been demonstrated in [138].
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Chapter 3

Monitoring Activities of Daily Living

(ADL)

As discussed in Chapter 1, there are various possible approaches to identify and ana-

lyse daily life activities. In this chapter, I first explain the need for identifying not

just the daily life activities, but also the fine-grained details of these activities. I also

describe the approaches applied in this dissertation for this identification. This is

followed by a description of some motivating scenarios which demonstrate the use-

fulness of fine-grained activity monitoring. Finally, I introduce and provide a high

level overview of two separate fine-grained ADL monitoring systems/techniques

(Annapurna and I4S), and explore an approach (CROSDAC ) to determine cognitive

state of an individual during a daily life activity.

3.1 Identifying and Understanding ADL

To monitor a daily life activity, it is essential to correctly distinguish the relevant

marker associated with the activity (e.g. hand-to-mouth gesture might indicate ea-

ting or smoking). As indicated in the previous chapter, several approaches have

been proposed to determine various user activities [44, 62, 96, 104, 145], which in

turn can determine ADLs. An increasingly popular mechanism to identify these
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Figure 3.1: Breakdown of Global Wearable Sales

ADLs is through the use of wearable devices (smartwatches [104, 145], smart-

glasses [88, 122] or other wearables [114, 121]). Based on statistics released by

Statista [141] from the DigiWorld Yearbook 2015 [48], the estimated number of

wearable devices that will be sold in 2017 is close to 100 million, with smartwat-

ches getting the lion’s share of the sales. (Figure 3.1 shows the breakdown of sale

based on category.) With such a high penetration of wearable devices (esp. smart-

watches), along with the availability of ready to use activity recognition APIs (e.g.

Android’s Activity Recognition API [6]) and various machine learning techniques,

innovative ADL monitoring applications are gradually materialising.

As shown in [104] and [145], analysing data from a single class of sensors on

wearable devices can provide details about a specific activity or gesture related to

an ADL. However, a more comprehensive and fine-grained understanding of ADLs

requires a fusion of sensor information from multiple classes of sensors. These

sensors can be embedded in either one device or can be from several devices. To

understand this better, let us consider this example: while Stan consumes his meal

in the food court, a smartwatch might be able to identify the eating gestures and

might be able to determine if he is eating fast, how many spoons did he consume etc.

However, there are other contextual informations - e.g. what is Stan eating? is he
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sitting while eating? etc. which will be difficult (not impossible) to identify without

additional sensors (or devices). These contextual information can provide various

analytical insights – for example, a researcher might be interested in identifying the

effects of standing while eating on weight gain.

In the subsequent sections, I discuss about some motivating scenarios which will

highlight the importance of using multiple sensor classes for fine-grained daily life

activity monitoring.

3.2 Motivating Scenarios

3.2.1 Scenario 1

Scenario: Alice, a University freshman, has moved to a new city three months ago,

and has been living alone since then. It is her first time alone and she feels it is a

huge challenge to keep a healthy eating habit, which was easier previously, when

she was living with her parents. She often eats high-calorie food late at night and

skips breakfast on most mornings. As a result, she has gained several kilos in the

last few weeks. She has also been experiencing heartburn, which led her to visit a

doctor.

Possible Solution: For Alice, an automated and unobtrusive diet monitoring system

which can capture images of her food plate automatically will be useful because

firstly, the system can automatically identify every individual meal that she has con-

sumed. If the system detects that she is eating late at night, it can guide her to eat as

little as possible. Secondly, the application can automatically capture the images of

food items she is consuming, which she (or her parents) can review once a day or

so, and easily keep a diet diary to trace her calorie and nutritional intakes. Finally,

the application can also identify the approximate number of spoonfuls that she con-

sumed ([31] demonstrated possibility of monitoring calorie intake from spoonful

consumed) and her eating speed. This detail can be included in the food journal.
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Possible Steps: To realize the above-mentioned scenario, the diet monitoring system

should be able to perform the following:

• Smartphone + Infrastructure: Identify that Alice is in a location where she

might consume food.

• Smartwatch: Detect hand to mouth gestures and identify if she is eating or

performing some other eating related gestures.

• Smartwatch: Determine if she is wearing a smartwatch which has a camera

and if the camera can be triggered at the appropriate time to capture an images

of her food plate.

• Smartwatch + Smartphone: Keep track of various eating related analytics like

time duration between spoons, count of spoonfuls eaten, is she standing etc.

• Smartwatch + Smartphone + Server: Perform image processing on captured

images to determine images in which the food plate is clearly visible

• Smartphone + Server: At end of day, display the best images of the meal to

Alice.

Possible Extension: In addition, the system might identify subtle changes that

Alice can consider to her eating style which will help in improving her health – e.g.

if the system determines that she is eating too fast, it can guide her to eat slowly so

that she might consume less food [83]. This can be provided as a feedback to Alice

through her phone. The system might also capture an image of the plate at the end

of her meal, using this (together with images taken at the beginning of the meal) to

quantify the quantity Alice consumed.

3.2.2 Scenario 2

Scenario: Joey is in the medical professional and usually has long working hours.

He gets one off day per week from work, which he utilises for household chores.
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One such chore is grocery shopping. Joey maintains a digital grocery list in his

smartphone, which he keeps updating through the week. However, during his actual

store visit, Joey often gets distracted and forgets to purchase all the items in the list.

Possible Solution: It will be useful for Joey if his devices could ensure that he

purchases all the items in the list. First, it should identify if Joey is in the appropriate

store. It should then identify his picking gesture and location within the store to

determine what items he is picking and accordingly update his notYetPurchased

list. Before leaving the store, Joey can glance through the notYetPurchased list and

ensure it is empty. Since checking for an empty list is less intense as compared to

scanning through the entire list and comparing it against items in his basket, it is

less likely that Joey will miss out on items.

Possible Steps:For this scenario, the item picked monitoring system should perform

the following steps:

• Smartphone + Infrastructure: Identify if Joey is in the correct shop.

• Smartwatch: Determine if Joey has picked an item from a shelf and placed it

in his shopping basket.

• Smartwatch + smartphone + infrastructure: Determine the rack and shelf

from where Joey picked the item.

• Smartphone + infrastructure: Access the shop’s resource database to deter-

mine the item present in the rack. If multiple items are present in the rack,

determine the exact point from where Joey picked the item and which item

is present at that location. If the item is present in Joey’s shopping list, mark

that the item has been picked.

Possible Extension: While Joey is shopping, the application might look for offers

that might be associated either with the picked item or same items from other similar

brands. In case Joey reaches the checkout counter without purchasing any item in

the list, then an application on his devices should notify him. The device might look
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for checkout queues [99] or infrastructure sensors (e.g. BLE beacons) to determine

that Joey is at the checkout counter.

Additionally, in case Joey’s smartwatch/phone can determine if Joey is at the

checkout counter, it can automatically scan the notYetPurchased list and nudge Joey

in case the list is not empty.

3.2.3 Scenario 3

Scenario: Penny loves to cook and is also a frequent visitor of the supermarket. She

has installed the supermarket’s application on her smartphone as well as her smart-

watch which provides location based notifications about all possible promotions

that the supermarket is currently offering. On normal days, Penny finds this useful.

But on certain days when she is in a hurry, the notifications distract her, which in

turn delays her further and she finds this annoying. Penny would have preferred an

application which could automatically determine when she was rushing and would

turn off unnecessary notifications from popping up.

Possible Solution: For this scenario, a sensing application running on Penny’s phone

should be able to determine her location. On identifying that Penny is in the shop, a

combination of her trajectory, locomotion state and hand gestures should be used to

determine if Penny is in a hurry. If the devices determine that she is in a hurry, then

notifications about promotions inside the shop should not be shown to her.

Possible Steps:The scenario above requires:

• Smartphone + Infrastructure: Identify if Penny is in the correct shop.

• Smartphone + Smartwatch Collect sensor data from Penny’s devices to deter-

mine fine-grained activities/gestures and in-store location.

• Server: From the fine-grained activities and locations, determine the extract

Penny’s shopping style and match it with historical data from other shoppers

to determine the exact style.
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• Server: Determine Penny’s shopping behavior by comparing Penny’s shop-

ping style with other shoppers who have exhibited similar shopping style.

• Smartphone + Infrastructure: Based on rules, determine if it is appropriate to

notify Penny.

Possible Extension: An application running on the supermarket’s manager’s

dashboard identifies the behavior that each customer in the shop is exhibiting. In

case the application determines that a shopper appears confused and is looking for

assistance, it can alert the store manager, who in-turn can inform sale-assistants

present in the store to attend the shopper.

3.2.4 Other Scenarios

The scenarios detailed in this section identifies some possible use cases of fine-

grained daily life activity monitoring and of inferring the cognitive state of an indi-

vidual during an activity. I also discussed some of the possible approaches that may

be used to determine the fine-grained details of an activity, by using data from multi-

ple classes of sensors, once the gestural markers of the activity have been identified.

The example scenarios are just some possible scenarios where fine grained acti-

vity monitoring can be useful. There can be many other similar possible scenarios.

Since my work involves eating activity monitoring and shopping monitoring, let me

quickly list out some other possible applications which can be built by monitoring

these activities:

3.2.4.1 Eating Monitoring

The most popular application of an automated food journaling is for monitoring all

food items that an individual consumes through the day. However, there can be

various other compelling scenarios where this can be used. Applications related to

elderly or child care can benefit from automated food identification. In both cases,

if there is a reaction from a food item and the individual cannot express details of all
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food items consumed, monitoring the food journal can help in narrowing possible

causes of the infection. Similarly, people with mental stress or depression can be

identified by analysing their regular eating style (fast or slow) and the surrounding

context of an individual (eating alone or in dimly lit locations) over several meals.

3.2.4.2 Shopping monitoring

In the scenarios above, I have described the advantages of shopping activity moni-

toring applications from a a shop’s customer’s point of view. However, identifying

an individual’s shopping activity and understanding the in-store behaviour can be

interesting both for the customer as well as the retailer. From an retailer’s point of

view, the benefits can be in terms of (a) Managing manpower: assistance can be

provided immediately to shopper’s who are looking for items or (b) In-situ promo-

tions: offering on-the-fly discounts to customers who have a certain product in their

trolley. While from a customer’s point of view, other than the scenarios above, the

benefits can be in terms of Relevant Recommendations: get product’s location and

information that is most relevant.

3.3 ADL Monitoring Systems and Techniques

I next describe three systems/ techniques that I have worked on to demonstrate the

possibility of identifying fine-grained context in daily life activity monitoring or

understanding individual’s cognitive state during the activity.

3.3.1 Annapurna: Automated Food Journaling

This dissertation first describes Annapurna, a system which has been tailored for a

situation similar to Scenario 1 described previously. The Annapurna system consists

of a smartwatch - Samsung Gear 1, a smartphone - Samsung S III (optional in the

system) and a backend server. For the smartphone application, we have also tested

it on other Android devices without any glitches.
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The goal of the system is to create an automated food journal. To realise this,

a custom sensing and processing application runs on the smartwatch. The initial

task of the smartwatch is to identify gestural markers associated with eating – hand-

to-mouth gesture. For the gestural marker identification, the application turns on

the accelerometer sensor to determine eating gestures. Once the accelerometer sen-

sor predicts eating gestures, the application turns on the gyroscope to ensure that the

predicted gesture is indeed eating. A two step eating gesture identification was deve-

loped because the accelerometer sensor is cheaper (in terms of energy consumption)

than the gyroscope sensor. Thus, when there is no eating gesture (most of the time

during the day), energy consumption will be low. However, the accuracy of eating

gesture determination by an accelerometer is less than the gyroscope. So when the

accelerometer detects an eating gesture, it will turn on the gyroscope so that if sub-

sequent eating gestures occur, the gyroscope can filter out false positives. Once the

gyroscope determines eating, the camera of the smartwatch is opportunistically tur-

ned on and images are captured.Through innovative techniques, Annapurna ensures

that the image capturing technique is energy efficient. When the smartwatch does

not identify further gestures for some time, it switches back to the accelerometer

based eating determination mode.

A process running once every few minutes on the smartwatch checks if new

images have been captured. If newly captured images are found, they are transferred

to the smartphone. The smartphone performs some basic image processing to filter

out improper images. Images which might contain the outline of the food plate

are sent to the server. A custom image recognition algorithm using opencv [101]

running on the server determines the best images of the food plate and stores them

in the form of a personalised food journal. An individual can log into Annapurna’s

web application at any time to inspect these images.
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3.3.2 I4S: Identifying In-store Interactions

I4S lays down the steps to realise a system which can determine all the items that a

shopper interacted with, while shopping in a brick and mortar store. Such a system

would help in fulfilling the requirements of Scenario 2.

The goal of the system is to determine all items that an individual interacts with

(picks) during a shopping episode. Even though the smartwatch with multiple sen-

sors can determine diverse contexts, we found that the position of the smartwatch

made it incapable of identifying certain fine-grained context (detailed discussion

in Chapter 5). We thus designed the I4S system with multiple devices, with the

gestural marker from the smartwatch triggering the entire fine-grained context de-

termination. Devices used to evaluate I4S includes: a smartwatch – LG Urbane,

a smartphone – Samsung S IV, BLE Beacons – Estimote and Wi-Fi access points.

I4S also demonstrates that modestly instrumented environments can assist in finer

context determination. The system working of I4S is as follows: A shopper enters a

shop wearing a smartwatch in the wrist and carrying a smartphone. Both the devi-

ces record the accelerometer data, the gyroscope data, Game Rotation Vector data

along with the BLE and the Wi-Fi scan information. To determine the items that

a shopper interacts with, first, using the inertial sensor, the smartphone determines

whether the user is stationary (most interactions occur in stationary state). Once

the smartphone determines that the user is stationary, the smartwatch looks for the

gestural marker of shopping – picking gestures. On identifying picking gestures,

the BLE scan information is used to determine the 2 dimensional location of the

shopper on the floor plane. Then the watch’s inertial sensor determines the hand’s

location at a shelf level and finally the game rotation vector determines the position

in the rack where the interaction took place.

I4S relies on a backend server to provide item-rack location information.

Through a reverse look up, I4S is able to determine the items that the user picked up

during her shopping episode.
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System Name Referenced Chapter Devices Used

Annapurna Chapter: 4
Samsung Gear Smartwatch
Samsung S III Smartphone
Linux Server

I4S Chapter: 5

LG Urbane Smartwatch
Samsung S IV Smartphone
Estimote BLE Beacons
Wi-Fi Access Point

CROSDAC Chapter: 6

Samsung S II Smartphone
Samsung S IV Smartphone
LG Urbane Smartwatch
Estimote BLE Beacon
Wi-Fi Access Point

Table 3.1: List of Devices Used in the Studies

3.3.3 CROSDAC: Understanding Shopping Behavior

This dissertation explores a technique, named CROSDAC, to determine the behavior

of a shopper. CROSDAC is built to realise scenarios similar to Scenario 3. Devices

used in the studies included a smartphone - Samsung S II and Wi-Fi access points.

The goal of the technique is to identify the cognitive state of an individual

during shopping. Specifically, CROSDAC identifies whether the shopper is confu-

sed, focused or has no buying intention. The working of CROSDAC is as follows:

A shopper enters a store carrying a smartphone. The smartphone captures the

accelerometer data as well as scans for Wi-Fi information. At the completion of the

visit, these traces are extracted from the phone and analysed to determine trajectory

and locomotive features. A clustering technique is applied to this feature set to

determine the “shopping style” (a latent attribute) of the shopper. Data from other

shoppers who have visited the store previously and have exhibited similar shopping

style is used to classify the shopper’s behavior to determine the shopping-intent.

The exploration of CROSDAC reveals that CROSDAC can assess the shopper’s

cognitive state even without any personalised training data.

Table 3.1 lists down the chapters where each of the above techniques is explained

in details. It also lists all the devices that have been used in the studies.
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Chapter 4

Automated Food Journaling

In this chapter I present a system that we have built - Annapurna, which not only

performs ADL specific gesture identification (eating gesture recognition), but also

offers additional informations - a diary detailing user’s food consumption, illustra-

ted by the most representative images for each consumed meal. I describe various

design considerations and system level challenges that we have addressed while

building this system. In short, in this chapter, I demonstrate that it is possible to

build an automated food journalling application, by combining the capabilities of

inertial and camera-based sensing using commercially available off-the-shelf devi-

ces, while addressing various system level challenges.

To realise Annapurna, we have built a system which constitutes of three key

components: (a) a smartwatch-based gesture recognizer that can robustly identify

in-the-wild eating-specific gestures, (b) a smartwatch based image capturer that

obtains a small set of relevant images (containing views of the food being con-

sumed) with a low energy overhead, and (c) a smart phone + server-based image

filtering engine that removes irrelevant uploaded images. Table 4.1 lists down the

devices (and sensors) used in Annapurna along with their purpose. In this chap-

ter, I shall first provide details of design choices taken to realise Annapurna, then

discuss about the evaluation technique and the results obtained for each of the com-

ponents. Finally I will discuss about the Annapurna web application. Let me start
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Device Model Role Sensors
Smartwatch Samsung Identify Eating Gesture Accelerometer, Gy-

Gear 1 Opportunistic Image Capture roscope, Camera
Smartphone Samsung S5 Initial Image Filtering -
Server 16 core processor, 32 GB Image Processing -

RAM, Debian 8 OS Hosts Annapurna webapp

Table 4.1: Devices Used in Realising Annapurna

by providing the motivation of food journaling.

4.1 Need for Automated Food Journaling

Automating the creation of a personal food diary has been a research goal for the

mobile sensing community for over a decade. Other than assisting in losing or

maintaining target weight, such diaries can capture irregular habits too (e.g. eating

too fast or having meals too late at night). To date, proposed solutions either (a)

require manual action, as proposed in [125] or (b) rely on specialized wearable sen-

sors and devices such as ear-mounted devices [76], neck-mounted devices [160],

specialised gloves [136] or wrist worn devices [3] or (c) need instrumented envi-

ronments [166]. Such solutions have limited compliance (people fail to faithfully

take pictures of every meal & snack), and/or fail to capture both the eating activity

and the diet (the food being consumed). Consequently, we explore the development

of an automated, completely unobtrusive solution, where a commodity wrist-worn

wearable device (e.g., a smartwatch or a smart-band) is used to capture both the

eating activity and images of the food being consumed. Motivated by the popularity

of smartwatches (with some models such as Samsung Gear 1, Omate Truesmart and

Arrow containing an embedded camera – shown in Figure 4.1), our core idea is sim-

ple enough: a) the inertial sensors on the smartwatch should be able to identify the

eating-related “hand-to-mouth” gestures (similar to ‘intake’ recognition in [145]);

and (b) the embedded camera can then cleverly take appropriate pictures of the food

being consumed (when it has a clear, unobstructed view).

However, a practical embodiment of this “simple idea” has three key challen-
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(Camera circled in red.)

Figure 4.1: Smartwatches with Embedded Cameras

ges/unknowns: (a) First, can a smartwatch camera plausibly capture meaningful

images of the food being eaten? (b) Can the diversity of eating styles, food items

and environment be identified through a robust classifier? (c) Even if the image cap-

ture is feasible, one cannot indiscriminately video-record the entire duration of all

plausible episodes, because of both serious energy overhead and privacy concerns.

Can we build an opportunistic and accurate image capturing technique?

To address the above unknowns, we built Annapurna– an automated food jour-

naling application. Annapurna demonstrates that (a) images of food can be captured

in over 90% eating episodes, (b) eating gestures can be captured in real world scena-

rios with false-positive and false-negative rates of 6.5% and 3.3% respectively and

(c) Gesture recognition and Image capturing pipeline can be optimised to capture

sequence of images while a person is eating. Next, I describe Annapurna and how

it addresses the above challenges.

4.2 System Overview

Since eating activity can be highly diverse, we first set the design goals of Anna-

purna and then design the system which addresses these goals.
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4.2.1 Design Goals

• Focus only on persistent eating episodes that last at least 5 minutes: As eating

episodes are not fleeting (they last several minutes) and consist of multiple

hand-to-mouth gestures, Annapurna’s eating detection logic need not focus

on detecting every eating gesture, but can utilize longer observation windows

for robustness. We explicitly do not try to track extremely transient eating

activities (e.g., picking up a single candy while exiting a restaurant).

• Focus only on plate-related eating episodes: Annapurna can focus on de-

tecting eating episodes that involve some utensil–i.e., we do not target sce-

narios where the user is walking and eating because even though the eating

gesture can be identified, it is not possible to capture the image of the food.

• Judicious image capture and filtering: To support continuous day-long ope-

ration, and address privacy-related sensitivities, Annapurna must trigger the

camera sensor judiciously, for only short long periods of time and should eli-

minate images that do not capture the food being consumed.

4.2.2 Overview

Figure 4.2 provides the high-level work flow of the envisioned Annapurna system.

Broadly speaking, the Annapurna smartwatch component must identify the inter-

mittent eating episodes during the day, and then trigger the associated camera to

capture likely images of the food being consumed. Subsequently, these images must

be first filtered on the smartphone (to remove images that are very likely to not con-

tain any food-related images), and then ranked on the server to select a smaller set

that best represents the food associated with each eating episode. Finally, these ima-

ges and other relevant eating-related information should be displayed to the user via

a Web-based application.
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Figure 4.2: System Overview of Annapurna

Each of the above steps maps into a distinct technical component of the eventual

Annapurna application:

1. Eating Gesture Recognizer: This module on the smartwatch uses inertial

sensors (gyroscope and accelerometer) to detect both (i) the onset of an ea-

ting episode and (ii) individual repetitive eating (i.e., hand-to-mouth) gestu-

res within the episode. It should accommodate the variations in the sensors’

readings introduced by the diversity of users and eating styles. The classi-

fier must balance the possibly conflicting precision and recall goals: while

it should not miss any of the eating episodes, it should also ensure that other

similar gestural activities (e.g., washing one’s face, cooking) do not result in a

false ‘eating’ classification. As we shall see later (in Section 4.3), we eventu-

ally converge on a two-stage classifier that achieves both low energy overhead

and lower false-positive rate (higher recall).

2. Responsive Image Capturer: Once the onset of an eating episode has been

identified (via multiple closely-spaced eating gestures), this module captures
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images automatically. Capturing images automatically is challenging because

the hand-to-mouth gesture is relatively short (on average about 3 seconds) and

the latency of image acquisition by a smartwatch camera (i.e., the time to ac-

tually turn on and capture an image) is fairly high (more than 800 msec). In

Section 4.4.2, we shall show how our choice of a preview-mode based image

capture strategy provides the ability to capture a sufficient set of useful ima-

ges, while tolerating uncertainty in the precise trajectory of each individual

eating gesture.

3. Image Filter: This component performs both the steps of (a) irrelevant image

elimination, followed by (b) selection of the best set of images for each ea-

ting episode. Given that image processing and filtering is a computationally

complex process, only simple (but effective) image pre-processing happens

on the smartphone, with the bulk of such image analysis being performed on

a backend server. In Section 4.4.2.1, we shall derive the detailed algorithms

for elimination and ranking, and show how Annapurna provides transport ef-

ficiency by performing computationally-efficient filtering on the smartphone.

4. Food Journaling: Finally, the server stores this small subset of relevant ima-

ges corresponding to each detected eating episode. The user can then view

these images at any appropriate time (e.g., once every night) via a Web portal.

While the portal development is straightforward, in Section 4.5 we shall dis-

cuss some design choices (e.g., number of images per episode to be presented

to the user) intended to improve the overall user experience.

4.3 Design Choices

With the goals in place, we next discuss the design choices taken while building

Annapurna. Rome wasn’t built in a day; neither was Annapurna. The system buil-

ding was an iterative process where, lessons learnt in a version was used to refine
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Preferred Eat- # of Ep- Completion Hand to Mouth Percentage of
Food Item ing Modality isodes Time (sec) Gestures Episodes with

min max avg min max avg Useful Frames
Rice

≈100gms with 2 vegs fork & spoon 66 211 1140 568 22 54 33.5 95.5%

Sandwich
(bread/ burger & fries) hand 20 255 363 299 6 35 14.4 65%

Pasta / Soupy noodles fork / chopstick 29 234 771 459 13 35 27.3 86.2%

Fruits
≈15 pieces fruit stick 20 51 387 183 7 23 13.5 70%

Table 4.2: Key Results from Micro Studies

the subsequent versions. Overall, the vision of Annapurna required us to address

two basic questions: (a) What relevant aspects of real-world eating activities do we

need to incorporate in the design of robust classifiers for eating detection? and (b)

can a smartwatch camera even plausibly obtain an image of the food being consu-

med? If so, does this depend on the type of food, and on the on-watch placement

of the camera sensor? In this section I describe the design choices and rationale for

the system design choices. However, I will first describe the multiple studies that

were performed and the lessons learnt in each of the study. Lessons from one study

acted as a building block for the subsequent studies and thus will explain all design

choices which we have taken.

4.3.1 Micro Studies and Observations

During the course of developing Annapurna, several system-level choices were ta-

ken based on lessons learnt from previous Annapurna versions: an initial prototype

was developed based on observations and learnings from a set of micro-studies

(there were more controlled studies performed before the reported micro-study).

In this subsection, details of the dataset and observations is reported.

4.3.1.1 Micro-Study Dataset Details:

To understand the possibility of meeting Annapurna’s design goals, we performed

a fairly extensive set of micro studies with 21 participants (8 females, 13 males,
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belonging to 5 nationalities), employed in our university research lab, for a total of

135 eating episodes, where an episode is defined as the period between starting of

a meal (after the purchase) and consuming the last spoonful. The meals were con-

sumed during regular food hours when the participants went for lunch, snacks or

dinner. Most episodes took place in the university’s underground food court (artifi-

cial lights), with a few occurring outdoors (natural light) or in covered, open areas

(mix of artificial and natural light). During the meal, the participant wore the wa-

tch on their dominant hand (all 21 participants turned out to be right-handed). A

custom application running on the watch collected accelerometer data, gyroscope

data and continuous image frames from the smartwatch during the entire episode,

while an external observer video-recorded the meal (for ground truth labeling). Ot-

her than the micro study involving 21 participants, feasibility studies involving 2

users (both were right-handed South Asian males, one user was 32 years old, while

the other was 34.) were also investigated for the sensitivity to the on-body location

& orientation of the smartwatch camera.

Table 4.2 highlights some of the key parameters associated with the consump-

tion of these food types; from these studies, we find that there is a wide variation in

eating gestures for different food types. They lasted about 3.5 to 20 minutes, invol-

ving 13 to 35 separate hand-to-mouth gestures. Among these food items, we also

observed that: (a) sandwiches/fruits presented the least number of distinct hand-to-

mouth gestures (as users often held the items close to their mouth between succes-

sive bites), (b) “noodle soup” had high variability in the number of hand-to-mouth

gestures mainly due to the use of forks vs. chopsticks (use of chopsticks, generally

leads to higher number of gestures). The variations for “rice” are generally due to

the individual’s eating speed and quantity consumed in each mouthful.

4.3.1.2 Possibility of Image Capture

From analysis of the images captured by the smartwatch camera in the micro-

studies, we obtain the best case (upper bound) on the likelihood of there being
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(a) Different Positions of Camera (b) When is the Food Plate Visible?

Figure 4.3: Capturing Food Images vs. Smartwatch Position

at least one image that provides an unobstructed view of the consumed food item.

We note that the likelihood of obtaining a usable food image is fairly high (80% or

higher), except for sandwiches and fruits (in situations where the user never put the

food item down on the plate).

4.3.1.3 Orientation of the Smartwatch Camera:

We also experimented (with the 2 users performing the feasibility studies) with three

distinct smartwatches, Samsung Gear 1, Samsung Gear 2 and Omate TrueSmart (il-

lustrated in Figure 4.3 (a)), each with the camera mounted in a distinct position on

the outward or inward rim of the watch bezel or on the strap. By varying the orien-

tation on the wrist, we obtained 7 different camera positions (Samsung Gear 1 for

positions 1,6 and 7; Samsung Gear 2 for positions 2 and 5; and Omate TrueSmart

for position 3 and 4), as illustrated in Figure 4.3(a). For each distinct camera posi-

tion, the two users consumed one meal each with spoon and fork in the university’s

underground food court. The users ensured that the watch was not covered and the

camera could capture video continuously. On analyzing the captured video, we find

that the food plate is visible at least once (for both users) only for camera positions

1,2 and 7 – more specifically, a useful image is found in 82.6%, 77.4% and 80.4% of
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Figure 4.4: Frames Extracted from the Video During a Complete Eating Gesture

all eating gestures, respectively, for these positions. Moreover, Figure 4.3(b) shows

the probability of the images being useful (i.e., the food item is visible) as a function

of different points in the gestural sequence (the 50% point corresponds roughly to

the zenith, where the hand is closest to the mouth). We see that the on-watch camera

position significantly affects this probability – for Position 1 & 2, the plate is most

visible when the hand was near the mouth.

4.3.1.4 Image Capturing Approach

For the feasibility studies, we had continuously recorded a video. Alternate appro-

aches to video recording is to capture images either in burst mode or in preview

mode. In Section 4.4.2, we shall explain the preview mode and further explore

the choice of the appropriate mode of capturing images–via continuous video or

preview mode. Here, we focus on determining the best strategy for capturing a
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Figure 4.5: Frames Captured in Preview Mode During a Complete Eating Gesture

useful set of images, deferring the discussion on the choice of the best mode to

Section 4.4.2. To understand the difference in image quality between images cap-

tured in preview mode and extracted from video frames, we extracted the images

captured in the preview mode during a micro study and from a video captured during

one of the feasibility studies. Both the episodes occurred under similar environmen-

tal conditions. Figure 4.4 shows the image frames for an eating gesture, extracted

from a video captured by the smartwatch. During the gesture (and episode), the

user (Indian male) consumed rice and vegetables from a plate in the university’s

food court. Similarly, Figure 4.5 shows images extracted from one gesture, where

images were captured in the preview mode, while the user (Vietnamese male) con-

sumed rice and meat from a multiple utensils. From the images in the two figures,

we can see that the images during the initial and the final part of the gesture are

blurry as compared to the images captured around the halfway mark of the gesture.
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Figure 4.6: Sample Images Classified as Usable Images by the Two Annotators

Figure 4.7: Sample Images Classified as Not-Usable Images by the Two Annotators

During the two gestures, a large portion of the food plate is visible. However, it

must be noted that it is not necessary that every gesture in an episode will capture

the image of the plate. During certain gestures, only a part of the plate might be

visible, while in others, the plate might not be visible at all.

To answer questions like: Will the first gesture always capture the image of the

food plate? or If we capture images till k gestures, how likely is it that we will cap-

ture an image of the food plate?, we extracted the frames captured in all the episodes

of the micro-studies. For these frames, we wanted to understand the difference in

obtaining useful images for two strategies: (a) Till-gesture: if we captured images

(or frames extracted from video) continuously till the occurrence of the kth eating

gesture, vs. (b) In-gesture: if we captured images (or frames extracted from video)

till the kth eating gesture, but only when a gesture occurred (and turning image

capture off between gestures). Both the approaches had their own merits.

We developed an image recognition and ranking system (explained in

Section 4.4.2.1) which identified the P-“best” images from amongst all the ima-

ges that were captured till the targeted gesture. From P, we picked the top p ranked

images (p=1,2,5,10). Two annotators manually inspected the images to determine

if at least one manually identifiable good image was present in the top p images
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selected for a particular gesture. Figure 4.6 shows some sample images, which both

the annotators categorised as useful images, while 4.7 were some of the not-useful

images.

For every gesture (k) in an episode (i, i ∈ N ), the value of Good Image(G)

is assigned as 1, if atleast 1 manually identifiable image of the food in the plate

amongst the p images in the gesture is present.

Gik =


1, if gesturekhas good image

0, otherwise

The Good Image Probability (GIP ) for gesture k is calculated as

GIPk =

N∑
i=1

Gk

N

For N = 135, Figure 4.8 represents the GoodImageProbability for images with

identifiable food content for the two strategies, as a function of k. From the figure,

we see that to achieve a likelihood of having at least one good image exceeding

0.8, the Till-gesture strategy would need only 8 gestures, as opposed to 13 gestures

for the In-gesture approach. However, in terms of energy, the Till-gesture strategy

would imply that the camera sensor will be used for about 135 sec (average time it

took for a user to consume 8 mouthfuls of food). In contrast, the In-gesture approach

would keep the camera sensor on for only approximately, 13 ∗ 3.1 = 40.3 seconds.

To understand if an image recognition algorithm could identify the images

which were labeled as not-useful images by the two annotators, we passed the ima-

ges shown in Figure 4.7 (along with other not-useful images) to Clarifai, a commer-

cial deep learning based image recognition system. Figure 4.9 shows the images

along with the predicted label for the image and the label probability. From the

images we see that all the images which were discarded by the annotators as not-

useful images, obtained a high probability of being a food images by the image

recognition algorithm. This indicated that even if an image might not be presenta-
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(a) Hit Rate when All Images Captured
till–k gestures are Considered

(b) Hit Rate when All Images Captured
in–k gestures are Considered

Figure 4.8: Evaluation of Two Strategies to Capture Food Images

Figure 4.9: Image Label Prediction Using a Commercial Image Recognition System
for the Not-Useful Images.

ble in a food journal,it might still be useful in identifying the existence of an eating

episode.

4.3.1.5 Alternate Image Capturing Approach

Currently, we have captured images in preview mode during the micro-studies. Ad-

ditionally, during the feasibility studies, we captured video from the watch. To

understand if capturing a video is more effective than capturing images in the pre-

view mode, we considered two episodes – one from the feasibility studies and one

from the micro studies. Both the episodes occurred under similar conditions in the

underground food court. In both the episodes, the participant consumed noodles
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with a fork. The episode where the video was captured had a duration of 4 minutes

and 24 seconds, while the episode where preview mode data was captured was 5

minutes 40 seconds long. We compare the two modes in terms of total image size,

power consumption and quality of capture.

Total Size: The size of the video file (video frame size was 640 x 640, while

video was captured at 16 fps) was 308 MB, while the total size of all the preview

mode images for a longer episode was only 35 MB. If all images were to be trans-

ferred to the server, the number of bytes transferred for the video mode would be

≈10 times more than preview-mode. The larger size of the image indicates that the

image of the food plate might be clearer in the video mode images, which might

improve the identification accuracy. As we shall see later, if we capture the first 30

seconds of this video, we can capture a reasonable image, For the preview mode, 45

seconds of images provided a good image.

Power Consumption: To understand the power implications of capturing ima-

ges in preview mode or recording a video, we measured the energy consumption

during each of the mode using a Monsoon Power Monitor [92]. From the measu-

rements, we found that the average power consumption in video mode is 200 mW

higher than the preview mode (Figure 4.15 shows the power consumption by dif-

ferent strategies). While the average power consumption in the preview mode was

813 mW, the average power consumption of the video mode was 1021 mW. Ho-

wever, since the smartwatch was attached to the monsoon power monitor during

the power measurements, the power consumption reported might vary in real world

environments, where the scene captured by the camera might continuously change

and there might be additional power consumption due to auto-focusing, changing

light color on sensor, etc.

Image Quality: Finally, to understand if the images captured in the video mode

were better than the preview mode images in terms of item identifiability, we pas-

sed the preview mode images as well as images extracted from the captured video to

Clarifai. For both the modes, the first hand to mouth gesture occurred at approxima-
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Figure 4.10: Images Captured in Preview and Video Mode. (Scale 1:2)

tely 25 seconds from the commencement of the episode. The occurrence of the first

gesture at 25 second was coincidental and it is not necessary that the first gesture

will always occur at 25 seconds for other episodes.

Every image captured from the start of the episode upto the end of the first hand-

to-mouth gesture was passed to Clarifai. The images shown in Figure 4.10 shows

the 1:2 scaled images from the two capturing mode. For the preview mode, ‘(1)’ is

an image from the first gesture, while ‘(2)’ is an image from the second gesture. The

images shown in the figure are the ones which obtained the best prediction proba-

bility. For the video mode, the top predictions along with the prediction probability

were: (i) food(0.993), (ii) spaghetti(0.989), (iii) pasta (0.989) and for the preview

mode, the top predictions were: (i) food (0.991), (ii) herb (0.971), and (iii) meal

(0.944). From the top three predicted items, we can see that for the image captured

by the video, the software could determine that the food item being consumed was

indeed spaghetti. However, for the preview mode, even though the system identi-

fied that food was present, the actual food item prediction probability was low (the
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system determined the item to be pasta with a probability of 0.869). We thus dis-

carded this result and passed subsequent images upto the next gesture to Clarifai.

The second gesture for this episode occurred at 45 seconds. ‘(2)’ in Figure 4.10

represents the image with the best prediction probability. The top prediction proba-

bilities for the image were: (i) food (0.995), (ii) herb (0.984), and (iii) pasta (0.957).

This reasonably high prediction probability of pasta indicated that the system could

identify the image.

Even though the comparison shown here is done with just two episodes, howe-

ver, the images classified during the gestures well represent images that are usually

captured in similar episodes. From this simplistic comparison, we found that the

prediction probability for the correct item is more likely in video frames, but the

size of the video frame is larger and capturing a video requires more energy. We

thus used the preview mode in our studies.

4.3.2 Choices That Did Not Work

Based on the observations in the micro-study, we built an initial prototype of

Annapurna, where, (1) the smartwatch identified eating gestures, captured images

during the hand-to-mouth gesture and transfer the images to the server and (2)

server performed the image processing and stored the images. While building this

prototype we observed/learnt the following

We had issues with capturing images during the in-gesture period. The entire eating

gesture lasts for approx. 3 seconds. We broke the gesture into segments and turned

on the camera to capture video when we identified the first segment - initial rising of

hand. In most cases, the video captured the descending phase of the hand - coming

back to position of rest. The reason for this was – there was latency in identifying

the gesture along with latency involved in turning on the camera, showing that the

in-gesture technique could capture only images from the descending phase of the
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hand. This was not identified in the micro-study phase because we were capturing a

continuous video in the micro-study and these latencies did not cause an obstruction.

Based on power measurements, we found that energy consumed in capturing an

image was lower than that of a video. We thus wanted to capture a burst of images

when the user was eating. However, we found that for every image, the camera

would adjust focus to capture a good quality image and after an image has been

captured by the camera, the camera was turned off by the OS. For Annapurna, we

found that even though we had looped the image capturing callback to capture the

next image, there was almost a 900 ms difference between capturing subsequent

images. This indicated that during an eating gesture, we would capture 3-4 images

and it was not necessary that they would be useful. On investigating further, we

found an alternate technique that represents a compromise between these two

extremes– preview mode (explained in Section 4.4.2), which we have used in our

prototyping.

From the micro study data, we had tested various classifiers - whether they could

identify eating gestures. The result for this is reported in Section 4.4. However we

found that in real world, a cross validated classifier did not work well (explained

in Section 4.3.3 – lack of training data). So, to improve the design we tested other

classifier options such as a single class SVM classifier. However, a single class SVM

did not improve the eating gesture recognition accuracy. We thus had to resort to

in-the-wild data collection for non-eating gestures.

4.3.3 In-the-Wild Studies

This subsection the in-the-wild dataset and lessons learnt in each study. For the

in-the-wild studies, we asked participants to wear a smartwatch (with Annapurna

running) on their dominant hand and continue with their daily tasks. In each of
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User (Users, ) Eating TP FP FN Image Per User Problems
Study Duration Detector Filtering Daily Upload

1 7 users, Simple 31 60.3% 0% Server 24836k High-false positive,
5 days Classifier high energy overhead

2 6 users, Cost-based 11 0% 35.3% Server 14546k High-false negative,
2 days Classifier (31.3%) high data cost

3 4 users, 2-stage 29 6.5% 3.3% Phone & 16226k -
5 days Classifier (23.7%) Server

TP=true positive – eating episode was correctly detected, FP=false positive – eating episode falsely detected,

FN=false negative – eating episode missed.

(Numbers in bracket in FP column indicates false positives before the image filtering step)

Table 4.3: Details of In-the-Wild Studies for Annapurna

these studies, the participants separately manually recorded the ground truth (what

they ate, when and how–i.e., with chopsticks, forks, etc.). Naturally, the eating

activities spanned a wide variety of environments (restaurant, in a movieplex, food

court, outdoors, at home), and involved various types of utensils, sitting position

and lighting arrangements. Table 4.3 provides a succinct summary of issues ob-

served for each of the technical components (if any) from each study, and how the

component was refined to overcome these issues.

Study 1: A total of 7 participants (4 females, 3 males) were recruited from our lab

and were asked to register with Annapurna. They were provided with the watch

(which they were instructed to wear in their dominant hand) and the phone. They

were also asked to appropriately recharge the battery whenever it drained out. There

was no requirement laid regarding meals to eat and places to eat. Other than this,

the users were also asked to validate the accuracy of the system at the end of the

day and to ensure that they approved all the images that were uploaded.

By day 3 of the study we found that our gesture recognition system had high

false positives, leading to large volumes of data being upload to the server and rapid

drainage of the smartwatch battery. (Nonetheless, the participants used this ver-

sion for 5 days, capturing a total of 31 eating episodes during periods when the

watch had sufficient battery.) This problem was traced to our use of a very light-

weight classifier (chosen to ensure it could run on the watch) and the lack of robust

real world data of a variety of non-eating activities. Consequently, we eventually
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Id ATrue Positives False Positive Rate False Negative Rate
Participant 1 9 10% (31%) 10%
Participant 2 7 13% (22%) 0%
Participant 3 7 0% (22%) 0%
Participant 4 6 0% (15%) 0%
Overall 29 6.5% (23.7%) 3.3%

(Numbers in bracket in False Positive Rate column indicates false positives before the image filtering step)

Table 4.4: System Performance for Each Individual Particating in the In-the-Wild
Study:3

switched to a cost-based classification approach, where false-positives were more

heavily penalized.

Study 2: We then redeployed the improved system (with a cost-based classifier)

on 6 users (one of the original users dropped out) and evaluated it for 2 days. The

new system significantly lowered the false positives in gesture recognition (we had

only 5 false positives for eating generated by the gesture recognizer; all of these

cases were eventually filtered out (by the image filtering step) as they contained only

irrelevant images). However, this classifier now exhibited higher false negative rate–

we missed out 6 eating episodes over those 2 days. To subsequently tackle this issue,

we then developed a two-stage eating detection classifier (details in Section 4.4.1.4).

Study 3: The final refined version of the Annapurna client was deployed to 4 (out

of the original 7) users over another 5 day period. In this study, 29 eating episodes

were correctly identified and images were accurately captured. There was 1 eating

episode which the system could not identify. In terms of false positives, there were 9

false positive episodes, where even though no eating took place, the eating gesture

recognition model determined that the individual was consuming a meal. Out of

the 9 episodes, 7 were filtered by the image processing algorithm. 2 episodes were

falsely shown to end users as eating episodes. Table 4.4 summarises per-individual

performance of the system. From the table we can see that even at individual level,

the system performs reasonably well. There were just 2 false positives (1 each for

participants 1 and 2) and 1 false negative (for participant 1). Using this study, we
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Figure 4.11: Eating Period Recognition Approach

were finally able to demonstrate our target goal of achieving both low false positives

and false negatives.

4.4 Methodology & Results

We now describe the 3 components, i.e., (i) Eating Gesture Recognizer, (ii) Image

Capturer and (iii) Image Filter.

4.4.1 Detecting Eating Gestures

Identifying eating gestures, using accelerometer and gyroscope sensors, has been

studied in the past by various researchers [133, 145]. Our overall design of the

classifier for detecting eating (both an eating episode and its constituent multiple

‘hand-to-mouth’ gestures) is shown in Figure 4.11. The entire process can be divi-
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Classifier Accuracy Precision Recall
Decision Tree 96.63% 96.1% 96.5%
Random Forest 98.19% 97.1% 99%
SVM 85.66% 83.6% 87.1%

Table 4.5: Accuracy in Identifying Eating Gestures

ded into four parts. We first describe the initial implementation of this classifier, and

then separately describe the refinements that we made based on our user studies.

4.4.1.1 Feature Extraction and Low Level Classification

We extracted the raw accelerometer and gyroscope data from the eating episodes

and from the ground truth file, marked the period where the eating gesture occur-

red. From this data we found that an eating episode, on an average, has about 18

to 19 eating gestures. Our initial approach was to use features defined over short

frames of both accelerometer and gyroscope data. The small frame size is nee-

ded to trigger the camera reasonably in advance to get appropriate images of the

food plate. This approach is shown in the bottom part (Level 2) of Fig 4.11. The

raw sensor data is partitioned into frames of length 500 msec (with 80% overlap

between frames); a set of widely-used features (identical to [159]) are then deri-

ved for each frame. These features included both time domain features − mean

(x̄, ȳ, z̄), magnitude (
√

(x2 + y2 + z2)), variance (var(x), var(y), var(z)), covari-

ance (covar(x, y), covar(y, z), covar(x, z)), as well as frequency domain features

− Energy and Entropy from both accelerometer as well as the gyroscope. From

the features we built person-independent classification models. We performed a 10-

fold cross-validation using a Decision Tree, a Random Forest and a SVM classifier

using Weka [41].

Table 4.5 shows the accuracy of identifying eating gestures for three popular

classification schemes. While both the Decision Tree and the Random Forest clas-

sifier offer high classification accuracy, we selected the Decision Tree classifier (for

watch-based gesture recognition) due to its lower computational complexity.
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Figure 4.12: Variation of Accuracy as Training Data Size is Varied

To understand the dependence of performance of an eating model on the size

of the training data, we took the 95 rice and noodle episodes from the micro-

studies. To analyse the performance of each episode, we selected n : n ∈

{1, 3, 5, 10, 15, 30, 50, 75} training files. The training files were selected randomly

from amongst the other eating episodes. This process was repeated 10 times with

10 seeds for the random number generator. Figure 4.12 shows the overall average

performance for different values of n. From the figure we can see that for n = 1,

the prediction accuracy is 77%, which appears to be reasonably high. However, on

scrutinising the prediction results, we found that for 36% of the experiments, every

instance in the episode is predicted as not-eating. There are several reasons for the

high false negative rate: (a) Since the data has episodes where either rice or noodles

were consumed, if the training happens with an episode where rice was consumed

and the tested episode is noodles, or vice-versa, in such a case it might be difficult

to predict the eating gesture (b) As participants ate the food using various combina-

tions from spoon, fork and chopstick, with a single training episode, it is unlikely

that both the training and testing episode had the same eating modality. (c) There

can be high inter-person diversity when only one episode is used in training. The

eating style of the person whose data was used for training might not be similar to

the person whose data is tested.

The percentage of episodes where all instances are predicted as not-eating drops

to 10% when we use 15 episodes for training and further to below 5% when 30
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Figure 4.13: Variation of Accuracy as Number of Users is Varied

episodes are used for training. At the same time, the prediction accuracy when using

30 episodes for training is above 85% even when a person-independent classifier is

used.

We next analysed the variation in accuracy when all episodes of p : p ∈

{1, 2, 3, 5, 7, 10, 15} participants was used to create the training model and it was

tested on the remaining participants. For the analysis, we again used the 95 epi-

sodes from the 21 participants, where either rice or noodle/pasta was consumed.

Since every participant consumed both rice and noodles/pasta, every training model

created had diversity in terms of food consumed. For the training data, we rand-

omly selected p participants from the pool of 21 participants. For every value of p,

the process was repeated 10 times. Figure 4.13 shows the variation in performance

when the value of p is varied. From the from the figure we can see that for lower

number of users in the training data, the accuracy of the system is low. This gradu-

ally stabilises as more user’s data is user in training. From the figure, we also see

that there is significant variation in performance at lower values of p. This indica-

tes that the performance of the system is affected by the users selected for building

the model. However, for p >= 5, the variation is low. This indicates that for this

dataset, data from 5 participants is sufficient to make the model robust.

When using the classifier on 500 msec windows of sensor traces, we found that

even during an eating gesture, two consecutive frames were not always classified as

eating. There were also periods during the eating episode when non-eating gestures
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(adjusting one’s hair, raising the hand to wave at a friend, etc.) were classified

as eating in various 500 ms windows. We found that in our prediction, on average

during a single eating episode, there were 337 transitions from non-eating to eating.

As this is much higher than the ground-truth (average of only 18-19 gestures), we

needed a second window to smooth out the noise from this classifier.

4.4.1.2 Determining Length of One Eating Gesture

From the ground truth data we found that on average an eating gesture lasted for

3.1 seconds (Rice - 2.8 sec, Noodles - 3.7 sec, Sandwich 3.1 sec) where a gesture

starts from the point the hand starts moving upwards and ends when the hand comes

back to rest. To determine if a gesture determined by the 500 millisecond window

was actually eating, we take a window(w) of past raw classifier outputs (obtained

every 100ms) and compare the number of eating gestures identified by the classifier

during this window with a threshold (t) value. If the total number of classifications

in w is more than t, then we declare the window to be an eating gesture window.

We varied the length of the window (w) between 1 second and 10 seconds while

the threshold was varied between 10 and 50 in multiples of 10. For example, for

w = 5, there would be 50 classifications performed at the low level classifier (which

gives an output every 100ms due to the 80% overlap). Table 4.6 shows the average

error in determining the number of gestures (transitions from notEating to eating)

in an episode, as a function of w and t. We computed PredictionAccuracy =

((ΣGT−ΣP )/ΣGT )∗100, whereGT is the total number of eating gestures (ground

truth) and P is the system-predicted gesture count. (A +ve value indicates that our

system is under estimating, while a negative value indicates over-estimation.) From

this table, we see the lowest values of error in gesture estimation are obtained for

w = 5. A smaller value (w = 2sec) over-estimates the number of eating gestures,

whereas an overly large window (w = 10sec) undercounts the number of eating

gestures as it stays in the eating state for too long.

To understand if the optimal values for w and t varied based on food type. Table
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w t (threshold count)
(s) 10 20 30 40 50
2 -152.1
5 -4.2 -22.2 -3.4
10 48.3 35.7 34.3 35.9 33.9

Table 4.6: Gesture Prediction Error (%) vs. (Window Size, Threshold)

t (threshold count)
10 20 30 40 50

w = 2 -103.4
w = 5 0.36 -7.9 9.2Rice
w = 10 63.3 39.3 35.3 47.1 42.5
w = 2 -347.2
w = 5 -7.6 -84.5 -114.8Noodles
w = 10 53.5 38.9 25.1 -2.73 -19.1

Table 4.7: Differences in Gesture Prediction Error (%) Between Rice & Noodles

4.7 indicates the accuracy of determination for two different food types: Rice and

Noodles. From the table we see that the estimation errors for different settings of w

and t are indeed different, due to the different eating styles. (In case of noodles, the

user usually holds the hand near the mouth till she has consumed the entire strand

of noodle.) However, even though t and w varied across different food items, the

variation was modest enough to allow us to use t = 10 and w = 5 seconds across

food-types (i.e., for our gesture recognizer to be food independent).

4.4.1.3 Determining Eating Period

The next challenge was to determine the number of eating gestures that had to be

observed in a fixed time period to declare that an eating episode was in progress.

From the study, we had found that on average during a rice eating episode, an eating

gesture occurred every ≈17 seconds. From the ground truth observation, we also

saw that these gestures were not evenly distributed, but were rather bursty. Since we

had to capture images of the food plate when we determined eating, we had to do

it as early in the episode as possible. Our studies showed that, on average, the first

minute of the rice eating episode had ≈ 3 eating gestures. Hence, we decided to
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Min Max Average
Rice 19 76 35
Noodles 13 70 31.2
Fruits 3 20 11.6
Sandwich 5 34 10

Table 4.8: Sensor Data Based Gesture Count Determination

detect an eating episode only if our system detected at least 2 eating gestures within

the first minute.

4.4.1.4 Refining the Classifier

Building a Cost-Sensitive Classifier: When the base classifier (described above)

was applied in User Study 1, it resulted in a high positive rate (see Table 4.3). This

triggered detection of many false eating episodes and drained the battery rapidly

by turning on the camera needlessly. To tackle this problem, we then increased

the cost of false-positive misclassification in the training phase, thereby building

a cost-sensitive classifier. However, as shown in Table 4.3, we now suffered from

unacceptably high false-negatives (missing several real eating episodes). Step2–

Cost-Sensitive, Two-stage Classifier: The following improvements were needed

for version 3:

• We needed to determine the optimum cost for the classifier that provides the

best trade-off between false positives and true negatives.

• We also needed an additional pre-classifier, that works on large frame size, to

reduce the false-positive rate.

To get the optimum cost parameter, we first built the various J48 classification

models for 5 values of cost settings (0, 20, 35, 50, 100). Then we acquired day-

long regular life-style sensor traces of non-eating activities from 3 participants (The

participants were asked to remove their watches when they are eating and wear

them at other times.). For the models with different cost parameter settings, the
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Figure 4.14: Error Rates for Different Cost Parameters

false negative rate (FN/(FN +TP )), was determined from cross-validation on the

micro-study training dataset itself. To evaluate the false-positive rate (FP/(FP +

TN)), we used the day long traces of non-eating data (from these 3 participants).

Figure 4.14 provides the false-positive and false-negative rates for different values

of cost parameter. When there is no cost, the FN rate is low, meaning we will not

miss much of the eating gestures. However, the FP rate on real-life trace is very

high (36.8%). For a cost of 100, the FP rate on the real-life trace is very low (6.7%),

but the FN rate for eating is also very high (55.25%), implying we will miss most

of the eating gestures. From this figure, we observed that a cost parameter of 35

provides a low value for both FP rate (12.61%) on the real-life trace and the FN rate

(17.42%) for detecting eating gestures.

In addition, we observed that a large portion of the false-positives were genera-

ted by “jerky movements” of the hand during regular activities such as gesticulating

during interactions, talking or repeated lifting of objects etc. While the image pro-

cessing layer (described in Section 4.4.2) is able to filter out major portion of these

false-positives, it still consumes significant resources on the smartwatch by unne-

cessarily triggering the camera. While a small frame-duration of 500ms is needed

for efficient, low-latency triggering of the camera, an additional larger-frame dura-

tion of 2.5seconds was also needed to eliminate these other transient, short-lived

gestures. Accordingly, we developed an additional classifier ( Level 1, as shown

in Figure 4.11) that uses a longer 2.5sec second frame of accelerometer data alone,
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to first identify the likely eating episodes. To provide further robustness, the sensor

readings are dampened via low pass filtering. As each eating episode is long-lived,

this initial classifier can be used as a trigger for the fine-grained classifier (Level 2

in Figure 4.11) which works on the shorter 500sec frames, additionally using the

gyroscope readings also. Once the eating gesture is consistently detected in level

1 (for more than 10 frames within a minute), this triggers the cost-based classifier

(described earlier) that operates on 500ms frames. As shown in Table 4.3, the ap-

plication of this two-stage classifier helped us to simultaneously reduce both the

false-positive and false-negative rates.

4.4.2 Capturing Food Images

Via the feasibility micro-studies, we first focused on determining the best mode

for capturing food-related images. Clearly, continuous video recording was not an

option given the limited battery capacity of smartwatches (the Galaxy Gear 1 has

battery capacity that is only≈ 1
9

th that of the comparable Samsung S5 smartphone):

for continuous video capture, the battery drained out (from 100% to 10%) in ≈ 80

minutes. An alternative was to capture a single image–this however had two issues:

(i) latency - the latency to trigger the camera and capture a single image was close

to 900 msec, and (ii) precision - as the number of images captured was lower, the

possibility of capturing an usable image (of the food) was extremely low.

We investigated the possibility of capturing Preview frames. Android exposes

APIs which allows developers to grab the preview displayed on the screen. This

preview refreshed at a high rate (more than 20 fps in the Galaxy Gear watch), thus

solving the latency issue that we had with single image (or a burst of images). While

of lower quality than that of a single image, we found the quality of Preview frames

to be good enough for subsequent image analysis.

We also investigated the power consumption profile of these different modes.

Figure 4.15 shows the power consumption (measured using the Monsoon Power
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(a) Power Consumption: IMU (Sen-
sor) + Image Capturing

(b) Power Consumption: Image
Storage Scheme

Figure 4.15: Power Consumption by Various Components

monitoring tool [92]) for different approaches as compared to the baseline. The

sensing energy is included for the image capturing measurements (Figure 4.15a)).

From the figure, we see that the Burst mode consumes the least power, while the

Preview mode consumed only marginally higher power. However, our feasibility

studies showed that the burst mode could only capture an average of 2.7 images

per gesture, while the preview mode captured 45.3 images (compared to continuous

video, which captured 46.8 images). Given our desire for low latency, low power

consumption and large number of captured images, we decided on the Preview mode

as the most suitable approach.

We also studied the implications of storing the images on the smartwatch (the

prior studies did not perform any storage). While the preview frames were in the

YUV file format (approx. 150KB), the files could be stored either directly in the

YUV or in JPEG format (after conversion). Figure 4.15a) shows the energy con-

sumption for the two techniques: JPEG not only resulted in significant power sa-

vings of around 80%, but also resulted in smaller file sizes (approx. 7kB).

4.4.2.1 Image Filtering: Server-based

Our studies showed that many of the images captured by the preview mode were not

useful–these included (i) blank images - when the camera captured only the table

(ii) blurry images - when the hand was moving (iii) no food plate was visible and

(iv) when neighbor’s food plate or images with human faces was captured. We now
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Figure 4.16: Output of Edge Detection

explain the sequence of steps (Figure 4.18 provides the pseudocode) that we used

(at the Annapurna server) for filtering out irrelevant images.

Edge detection The first basic step applied is edge detection. When a clear image

is captured, the image should have a large number of edges, where an edge can be

the distinction line between the food items on the plate or even the distinction of

the food plate from the table. We observed the following ‘edge-related properties’

for common cases of irrelevant images: (i) If the image captured is that of a solid

background (the wall or the table), then the number of edges will be small; (ii) The

number of edges in blurry images is smaller, compared to stable images. Based on

these observations, the first step is to eliminate images where the number of edges is

smaller than a threshold. Figure 4.16 presents two images as exemplars, where in

the upper image, since the number of edges is less, it is discarded. Since the number

of edges present in the lower image is more, it is retained for further processing.

Determine shape of edge The next step is to identify if the edge is the edge of

a plate. Our assumption is that the plate has a regular shape (either rectangular or

circular). To determine rectangular shape, we try to identify straight lines. When the

number of pixels in a straight line (maximum deviation of ±3 pixels from the ideal

slope) is above a threshold, the associate edge becomes a candidate for a rectangular
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(a) Originally Determined Bounding
Rectangle

(b) Extrapolated Bounding Rectangle
Shown in Blue

Figure 4.17: Bounding Box Extrapolation to Determine Maximum Area

plate. Similarly when there are a group of connected edges where the two end points

are above a threshold arc length, then that edge is considered for curved edge. We

use the approxPolyDP function in opencv to compute the number of curves in

the edge. If the value is above a threshold, it is considered for a curved edge. We

finally compute the slope values for consecutive edges, to determine if the shape is

a regular curve: if the slopes do not exhibit a monotonic increase or decrease, that

edge is no longer a candidate for the plate’s outline.

Determine bounding rectangle and area For every regular shape that has been

determined as a rectangle, the bounding rectangle is drawn around the shape (see

examples in Figure 4.17)–in some cases, constructing this rectangle requires ap-

propriate extrapolation of the edges. If the resulting extrapolated area is below a

threshold, it is discarded. Similarly, extrapolation is performed for curved edges.

For curved edges, the extrapolation will happen for two bounding rectangle corners

and the extrapolation will touch either one or two edges of the image.

Eliminating non-food images and neighbor’s food images using a depth map

and CNN Several images were observed to contain edges, but from objects (e.g.,

pictures on the wall, or from the neighbor’s plate) that were distinct from the user’s

food container. To eliminate such images, a depth map is constructed (via the pa-

rallax method) from the acquired sequence of images. First, two images that were
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Figure 4.18: Algorithm for Ranking Images

acquired 300 ms apart are taken. The dominant features in these two images are

identified using SURF algorithm. Then these two images are rectified such that

they are aligned along one of the axes. Now the pixel disparity between the featu-

res identified from SURF are evaluated to build the depth map: foreground objects

have higher disparity than the objects in the background. If the rectangular/circular

object detected in the image is in the foreground, then this image is saved as a likely

image of the food plate; else, it is discarded. To further ensure that the image is

indeed that of a food item, we then invoke the API provided by Clarifai inc. [27].

This API uses convolutional neural networks to identify the presence of food in an

image.

Finally, all images that pass these filtering steps are stored, and ranked based on

a ‘visibility area’ score: this score is directly proportional to the area of extrapolated

rectangle, with an image with a larger score getting a higher rank. The average

number of images being eliminated through each step of this filtering pipeline is

provided in Table 4.9.
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Filtering Step (921617 Images) Device Images remaining (%)
Total images captured Watch 100
RGB Variance and Face count Filter Phone 88
EdgeCount Filter Server 37
Plate Shape Filter Server 6.6
DepthMap and CNN based Filter Server 0.8

Table 4.9: Effectiveness of Image Filtering

Figure 4.19: Images with Human Faces Detected

4.4.2.2 Lightweight Pre-processing on the Phone

While the above filtering algorithm can be effectively run on the server, it is too

complex to be executed on the smartphone. In the absence of any pre-filtering on

the phone, all the preview images captured would be transmitted from the phone

to the Annapurna server. As this would unduly waste bandwidth (especially if the

phone was not on a Wi-Fi network), we eventually (by User Study 3) implemented

an additional lightweight pre-processing step on the phone. The pre-processor uti-

lizes (a) a solid background detector, which computes the variance across pixels of

the image, followed by (b) an initial face detection system using android’s FaceDe-

tector class. Images which had solid background or any visible human face were

discarded. Figure 4.19 presents two images which were identified by the smartp-

hone as images which contained human faces. When we ran this algorithm on the

micro study images, we found that we could eliminate ≈12% of the images, even

prior to transmission.
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4.5 Annapurna Application

The Annapurna application consists of three modules: one each on the smartwa-

tch, phone and the backend server. We first briefly describe our implementation

of the three modules. We then also present the overall user feedback about using

Annapurna across the three in-the-wild-deployments.

4.5.1 Watch and Phone Modules

The watch module is responsible for performing continuous gesture recognition and

appropriately activating the camera to preview images. It is implemented to run on

an Android smartwatch running Android version 4.3 or higher. There were several

challenges in designing and building the watch module: (i) performing real time

gesture recognition on a resource constrained smartwatch, (ii) On-the-fly bringing

application to foreground to capture images (Android security requirement) and (iii)

Ensuring all sensors were turned off when not in use were some of the challenges.

The parameters for all users were tuned to the default setting (Sec 4.3) of (t =

10, w = 5). In our current studies, we did not build a per-person classification

model; instead, a single classifier was trained and deployed to all participants. The

watch module also had a button to stop recording. This answered the user’s privacy

concern.

The phone component was principally involved in relaying the captured images

back to the Annapurna server. The smartphone component was configured to per-

form batch transfer of images, and to re-initiate any interrupted transfers due to loss

of connectivity. However, as mentioned previously, for User Study 3, the phone

also included an image pre-processing engine that performed background and face-

detection based elimination of images. This preprocessor was found to consume

≈ 0.37Joules per image, and incur a processing time of 267 msecs.
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Figure 4.20: Snapshot of Annapurna Portal Shown to a User

4.5.2 Server Module and Parameter Choices

The server processes images sent by users to identify images of food and the best

images determined by the server are stored and were later shown to the user in

the food journal application. The users could decide if they want to accept the

image or discard it. Figure 4.20 shows the food journal that was shown to a user

once she had successfully logged into the system. In the web page, the user could

navigate through tabs to get details of food consumed on a particular day (Label 1).

In a particular tab, Label 2 shows all the meals consumed based on time for any

day. Other than meal time, the user is presented with eating speed details as well

as the number of spoons consumed during the meal. The user can expand the link

indicated by label 3 to view these details. Sometimes Annapurna predicts the wrong

time as food time or the images that we show might not be a food image. The user

can cross off a particular meal or a particular image by pressing the X indicated by

label 4. Finally before we view any of the images, we allow the user to view all the

images they have uploaded during a day. On clicking the link indicated by label 5,

the user can view all files she has uploaded. These files are arranged date wise. If

the user finds any inappropriate image, she can delete the image directly using this

link.

The design of the Annapurna portal involved another question: How many ima-

ges per eating episode should be shown to a user? To understand this, we sent
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Figure 4.21: Number of Images to be Displayed in Annapurna Web Portal.

out a survey to the students and researchers on campus. We received 32 responses

(16 males, 16 females). Figure 4.21 shows user response for different questions.

From the survey we found that users prefer seeing fewer but accurate images rather

than more (but potentially incorrect) images; accordingly, the Annapurna portal was

configured to show only 5 images per eating episode to the user.

4.5.3 User Feedback and Opinions

Finally, at the end of the third in-the-wild study, we asked the participants questions

regarding the usability and usefulness of the system. A total of 6 Annapurna users

responded back; Table 4.10 tabulates their responses. From the response we found

that most users found the overall system usable, but some users felt that the web

application wasn’t very user friendly. Regarding the number of images shown, most

users agreed with the initial survey that 5 images were adequate.

When we asked participants to compare version 3 of Annapurna with the previ-

ous versions, all participants of in-the-wild study 3 felt that the system had improved

since the previous versions in terms of energy drain of smartwatch. A major reason

for this was the reduction in the duration for which the gyroscope was turned on. In

the third user study, the gyroscope was turned on for an average of 136 minutes in

a day for each user as compared to remaining ‘on’ continuously.

Users also provided the following feedback about the overall system, as well as
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Question Options Response No. of Users

The system was easy to use 1 (Strongly Disagree)– 7 (Strongly Agree) 6
7

3 users
3 users

Web Portal was self explanatory 1 (Strongly Disagree)– 7 (Strongly Agree)
5
6
7

2 users
2 users
2 users

Was it okay to show 5 images per meal
Yes
No, more images should have been shown
No, less images should have been shown

Yes
More Needed
Less Needed

4 users
1 user
1 user

Table 4.10: User Feedback for the Overall Annapurna System

suggestions for capabilities that they would like in future versions: (a) many users

wanted a mechanism to automatically determine the calories that was consumed,

(b) one user suggested that there should be a provision of having the watch app run

without the phone app and (c) one user did not want the upload of the images to the

server to happen automatically. Rather, he wanted to ensure that he inspected the

images captured before they were sent. Out of these, Annapurna can be modified to

support all the objectives except (a).

4.6 Discussion

There are certain open questions and challenges pertaining to automated food jour-

naling applications. These includes:

Dominant Hand: One concern or limitation of the Annapurna application is

that it currently requires the user to wear the smartwatch on his or her dominant

hand. Anecdotally, there appears to be a reasonably significant group of users who

prefer wearing the watch on their dominant hand. To study this issue further, we

conducted a survey and based on information from 30 respondents we found that

67% of the respondents wore a watch and 50% of the watch wearers wore the watch

on the dominant hand. Moreover, this assumption has been taken by various other

researchers too (e.g. – [104, 145]).

Again, it is not necessary that the device worn has to be a smartwatch. Over the

past few years, fitness bands (e.g. FitBit [36]) are becoming increasingly popular

and with the greater consciousness towards health, the interest is bound to increase.
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In future, if these devices are equipped with a camera, they can be used for the food

journaling too.

Food Types Captured: In the current approach we have focused only on main

meals, which are consumed in a plate. However, there are various other food habits

which exist and Annapurna fails to capture images for those items – e.g. eating

an ice cream. We have also noted that in our experiments with sandwiches, we

found that even though based on repetitive hand to mouth gesture we could identify

eating, we could not capture images in one-third of the cases. In such a scenario, it

might be interesting to involve the user – e.g. say we cannot capture a useful image

even after x gestures, we nudge the user to manually capture the image of the food

item consumed. Alternately, we can just put a note for the user indicating that an

eating episode was detected at a particular time instance. A similar technique can

be applied for cases when a user wears a watch without a camera.

Similarly, we will miss capturing the image of the food plate when the hand

gesture while consuming the food item is not repetitive or if there are long pauses

between successive eating gestures.

Battery Life: For our current approach, the battery life is between 8 to 12 hours

- depending on the number of times gyroscope and camera got turned on. My initial

focus was to build the end to end system and to gradually optimise it. With the

current battery life, we found that we could not cover all the meals because the

battery drained out before the end of the day. Other than techniques described in the

literature, I believe there can be system level tweaks which can improve the battery

life. Some possible engineering tweaks can be - (a) Human behavior is usually

routine and meals are usually consumed at certain specific places. If location based

triggers (e.g. duty cycled BLE scan - maybe once in 15 seconds for known food

location) can be used to turn on inertial sensor for eating detection, energy can be

saved, (b) Smart duty cycling of the accelerometer - if it is detected that a person is

sitting in a meeting, it is highly unlikely that the person will consume a meal (similar

idea as ACE [97]) . So, other than the eating model, if the watch also runs alternate
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activity recognition models and those models detect an activity which reduces the

chances of a meal, then all inertial sensors in the watch can be put to sleep for a

certain amount of time, based on the detected activity, (c) Currently we transfer all

captured images from watch to phone. However, instead of transferring all images,

if we transfer a subset of the images and based on the image, the phone can request

for more images - e.g. if we send every second captured image (say image captured

at time t and t + 2) to the phone and if the phone detects plate in two images,

then it can request the watch to send the image that was captured between the two

images (at t + 1) and the watch sends that image, then image transfer overload can

be reduced.

Reducing Image Transfer: The existing image processing pipeline in Anna-

purna transfers every image captured by the smartwatch to the smartphone. The

smartphone performs simple image processing to filter images which are either

blurry or contain human faces. Images which pass through the filter are transferred

to the server for robust image processing. Based on empirical analysis, we found

that the smartphone could filter ≈ 12% of the captured images.

A limitation of the existing approach is that there is an energy cost involved in

transferring all the images from the smartwatch to the smartphone and transferring

≈ 88% of the images from the smartphone to the server. Several approaches can be

considered to reduce the overall image transferring cost. Some possible approaches

include: (a) Moving parts of the image processing from the server to the smartp-

hone. If the smartphone can handle some of the more complex processing steps that

is currently done on the server, then the cost of transferring the images to the server

can be mitigated. However, rigorous analysis has to be performed to understand the

energy cost involved in transferring images to the server versus processing images

on the smartphone, (b) The smartphone can transfer only a subset of the filtered

images to the server. If the server can identify n–good images amongst the trans-

ferred images, then the server can notify the phone to terminate the transfer of the

remaining images. Otherwise, the phone can transfer another subset of the remai-
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ning images and this continues till the server identifies the n–good images or (c)

The smartwatch can transfer only a few sample images to the smartphone. Based

on the images received, the smartphone can determine the probability of capturing

an image with the food plate amongst the previous or subsequent k images. If the

probability is above a threshold, then the watch can send the subsequent images to

the phone.

Additional Factors in Image Ranking: Annapurna’s image ranking algorithm

currently utilises variables such as number of edges in an image and the area of

the plate to determine the best images. However, there can be several other varia-

bles which can assist in improving the image ranking algorithm. One such variable

that can be utilised is the probability of the type of food in an image. Currently, in

addition to whether an image contains food items, the Clarifai API also returns a

confidence score for the type of food item in the image. The existing implementa-

tion of the image ranking algorithm utilises the value returned by Clarifai to assert

if the image has food items. However, in future, the probability of the prediction

by Clarifai can be utilised to determine the food item present in the image. This

probability can also be an independent variable in the image ranking algorithm.

Personalization: Currently we have built models for a general group of people

who have similar lifestyle. However, since a smartwatch is a personal device, a

personal model deployed should improve the gesture detection accuracy and thus

improving the overall system’s accuracy. Since generally creation of personal mo-

dels is more tedious, we can use a continuous learning technique, where we initially

start with a general model, but gradually train the model with some correct eating

gestures to improve the performance of the system.

4.7 Summary

In this chapter, I describe Annapurna, a system that we have developed for automa-

ted food journaling. For the automatic creation of the journal, we use a smartwatch’s

92



inertial sensors for gesture recognition. Once an eating gesture is identified, the ca-

mera of the watch is turned on opportunistically to capture images of food. The

captured images are processed to identify the best images which is finally presen-

ted to the end user. While developing the system, various system level challen-

ges (e.g. handling sensor latency or improving energy) were addressed. Through

Annapurna, we show that it is possible to build systems for automated food jour-

naling (end-to-end ADL monitoring application) using off the shelf devices while

addressing multiple system level challenges. As a next step, I plan to investigate

techniques (similar to FoodAI [37]) to identify the food item in the captured ima-

ges. The food item recognition will be helpful in providing a periodic summary of

food items/types consumed by the individual as well as other similar analytics.
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Chapter 5

Identifying Fine-Grained In-store

Shopper Interactions

This chapter demonstrates the possibility of unobtrusively analysing the sensor data

from multiple off-the-shelf devices to determine fine-grained context associated

with the shopping activity. To identify these fine-grained contexts, we have de-

veloped the I4S1 system, which I will introduce in this chapter. The goal of I4S

is to identify objects (more precisely, the store shelf locations in the store) that a

customer in a retail store interacts with, during a shopping episode. To realise this

goal, I4S utilises sensor data from diverse set of sensors embedded in multiple off-

the-shelf devices – mobile, wearable and infrastructure. To address similar goals

(identifying in-store interactions), existing approaches either use privacy-intruding

techniques – e.g. monitoring the CCTV footage in the store [58] or other recording

devices [122] or rely on manually surveying and observations [154]. We believe that

the I4S system will reduce the privacy concerns associated with customer’s in-store

activity monitoring, while ensuring fine-grained details of the activity can still be

monitored. In this chapter, I primarily discuss the system design of I4S and various

challenges that we tackled while designing the system.

According to Applebaum [7], shopping can be described as a combination of

1pronounced I-foresee
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Device Model Role (Best case Accuracy) Sensors

Smartwatch LG Urbane
Identify Picking Gesture (92.8%)
Identify Shelf Level Location (89%)
Identify Sub-Rack Level Location (92.4%)

Accelerometer
Gyroscope
Game Rotation Vector
BLE scan

Smartphone Samsung S V
Identifying Locomotion State (96.3%)
Identifying Rack-Level Location (85.4%)

Accelerometer
BLE scan

BLE Beacon Estimote Beacons Provide Location BLE advertisement

Table 5.1: Devices Used in I4S

two logically distinct activities: (i) inspecting or browsing items and (ii) eventually

purchasing a subset of these items. Considering that I am interested in identifying

fine grained context, I examine techniques to solve the first logical division of shop-

ping - identifying items that a shopper is inspecting or browsing. To determine

this fine-grained shopping context, I4S takes a two step solution - (i) identify the

“picking” gesture and (ii) identify the location from where the item was picked.

Since a shopper can perform several gestures during shopping, I4S has to ensure

that picking gesture could be differentiated from the other similar gestures. In terms

of location, several techniques have been proposed to determine indoor locations.

Some of these techniques utilise the magnetometer. However, we found that the

store where we conducted our user-studies had strong ferro-magnetic fields and thus

we had to choose a technique which was less susceptible to such environments.

At a high level, the I4S system utilises sensor data from the smartphone and

smartwatch to determine the picking gesture, while sensor data from the smartp-

hone, smartwatch and infrastructure sensor are fused together to determine the pre-

cise location (3-dimensional coordinates) where the picking occurred. Table 5.1

lists the devices used in I4S along with their role and best case accuracy.

5.1 Necessity of Capturing In-Store Interactions

Before explaining the techniques to automatically identify a shopper item inte-

raction (inspecting or browsing), let me reiterate the importance of identifying the

interactions. Other than providing adequate information or feedback to the shop-

ping individual, identifying in-store item interactions can provide various interes-
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ting insights not only to the retailers, but also to sociologists who are interested in

understanding shopping choices. For example, to answer the question: “Does a

shopper who visits a store to purchase an item which is being offered on discount

also interact with other non-discounted items in the store?”, Mulhern et al. [94] ma-

nually surveyed shoppers to found that there is indeed a positive correlation between

interactions with discounted and non-discounted items when a person visits a store

to purchase a discounted item. However, as this work required manual surveying, it

does not have an exhaustive set of all in-store interactions, thus precluding the deter-

mination of further insights such as which items are highly correlated or which items

are always picked, but never bought etc. On the contrary, online retail platforms not

only digitally capture a user’s click stream, but the entire browsing history, inclu-

ding time spent on different pages, navigation trend etc., and uses such history to

enhance the platform’s interaction with the user (e.g., personalized recommendati-

ons). To ensure that a physical retail store can offer a similar level of personalized,

analytics-driven interaction to a shopper as an online store, there is a growing in-

terest in using novel sensing technologies to capture a shopper’s entire shopping

behavior, including the item-level interactions that do not eventually translate into a

purchasing act. Besides personalised analytics, identifying item-interactions will be

an essential component of futuristic stores – e.g. Amazon Go [2], which provides a

checkout-free shopping experience. In Amazon Go, shopper can enter a store, pick

an item and walk out of the store, without bothering about standing in the checkout

queue. To understand the possibility of identifying in-store interactions, in the rest

of this chapter, I will describe our sensor-based approach which uses a combination

of wearable, mobile and infrastructure sensors to identify the in-store item interacti-

ons.

Before proceeding further, we define three store-related terms that shall be used

to explain how both the approaches work, and the type of interaction tracking that

different components of the two approaches provides. These terms can be under-

stood in the context of Figure 5.3, which displays an image of the commonplace
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Figure 5.1: Store Layout and Distinct Terms

layout of items in a retail store:

• Aisle: A store typically consists of many rows of products, often arranged

in a rectangular grid layout. An aisle is the passageway between such rows,

through which shoppers navigate to inspect and retrieve items.

• Rack: A rack refers to a single modular unit of display (Figure 5.3 illustrates

four different racks). An individual rack typically contains a variety of dif-

ferent products, although stores often organize items based on some logical

grouping.

• Shelf: Shelf refers to a single level on a specific rack. Figure 5.3 shows an

example of a rack with 7 distinct shelves. Shelves typically have a higher

degree of product homogeneity – e.g., a particular shelf may stock only pasta,

but possibly of different shapes and of different brands.

We next analyse the initial set up cost for any technology adoption that a shop

owner will have to bear. To understand the price implication of various possible

technologies to identify in-store interaction, we perform some back-of-the-envelope

calculations. Figure 5.2 presents some in-store pictures from the stationary store in

our campus where we conducted the user-studies. In the store, there are about 50

racks in the store and 6 shelves per rack, housing various stationary items – pens,

notebooks, files, etc. Approximately 1000 pens are on display in each of the pen

stands, while each of the note book racks had about 300 notebooks. We analyse the
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Figure 5.2: Pictures to Estimate In-Store Item Density

cost implication of two technologies – a Bluetooth Low-Energy (BLE) deployment

technology against a RFID based technology to identify the approximate cost that

the shopkeeper has to incur for adopting any of the technologies.

Currently BLE beacons can cost anywhere between USD 5 to USD 50, with

Estimote offering a wholesale price of approx. USD 20 for each beacon. In case we

deployed a beacon in each shelf, the total cost for the entire store would be approx

USD 6000, which is not a small investment. In case 1 beacon per rack deployment

can solve the item interaction identification problem, then the set-up cost will come

down to about USD 1000. Alternately, we could use RFID tags attached to each

item, where a tag can cost anywhere between 5 to 15 cents. Assuming that a tag

costs 10 cents and a pen stand will need about 1000 tags, tag deployment for a pen

stand will cost approx. USD 100. Similarly, a 300 notebook holding stand will need

tags worth approx USD 30. Assuming that on average, each shelf has about 500 to

750 items, the total cost for deployment will be approx USD 2500 to USD 3750.

Other than the basic item cost, both these technologies requires a reader. Since

the BLE approach requires a shopper’s smartwatch/ smartphone for scanning/rea-

ding, no additional device cost is incurred by the store owner. However, in case of

RFID, the store owner will have the additional overhead of purchasing RFID rea-
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ders, where each reader can cost about USD 500 and depending on the deployment

strategy (e.g. techniques similar to [135] require a dense deployment of readers

(and the readers are more expensive – ≈ USD 1500) for every rack group), the

number of required readers will vary. In case of fine-grained interaction understan-

ding, the number of readers will be high. Thus deploying a RFID technology will

cost more than a per shelf BLE deployment. Since our goal is to deploy the techno-

logy in-stores, where set up cost is a major factor, we go ahead with the BLE based

infrastructure sensing strategy.

Shopping activity involves various interactions with in-store items. These inte-

ractions includes (i) picking an item from a shelf, (ii) putting that item in a shopping

cart, (iii) returning that item back to the shelf, (iv) inspecting the item (e.g., reading

the nutrition labels on a food product), or (v) evaluating the item (e.g., trying on a

jacket to evaluate its fit). For this work, we focus exclusively on identifying “picks”,

as picking an item is the first concrete and strong example of shopper interest ( [21]

provides evidence that shoppers only pick up and interact with a small percentage

(17%) of the items that they actually consciously browse in grocery stores).

I4S involves innovative use of both the RF-sensing (of the advertisements bro-

adcast by multiple beacons) capabilities of the smartphone and the inertial-sensing

(using the accelerometer & gyroscope sensors) capabilities of the smartwatch. The

smartwatch’s inertial sensors are utilized to achieve two distinct objectives: (i) ge-

sture recognition: identify the time instants when the user performs a “picking”

gesture and (ii) fine-grained localization: determine the location of the user’s hand

at the instant when a picking gesture was performed. In this work I assume that if

there is a separate backend repository that matches individual products with their

on-shelf location, thereby identifying the item that a shopper interacted with.
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Figure 5.3: Overview of I4S System Working

5.2 System Overview

As mentioned previously, I4S’s goal is to track all the item-related interactions that a

shopper performs while visiting a store. To achieve the goal of identifying the pro-

ducts picked, I4S must not only identify the individual ‘picks’, but must try to loca-

lize each such pick – i.e., it must resolve, at as fine a granularity as possible, the 3-D

location in the store where the pick occurred. As a slightly relaxed, more practical

expression of this ideal goal, I4S should be able to identify at least the combination

of (rack, shelf) where each pick occurred. I4S makes the implicit assumption that

there exists a database that contains the mapping between a product/item and the

(rack, shelf) where it is located, and that there is thus a 1-to-1 mapping between a

3-D location coordinate and a product ID.

Given the twin goals of pick gesture identification and localization, we decided

to devise the I4S system based on a combination of infrastructure-mounted BLE

beacons and a smartwatch mounted on the shopper’s wrist. Our initial assumption

was that (1) smartwatch scans of the BLE beacons would help provide accurate 3-D

location; BLE was preferred over more traditional Wi-Fi localization as BLE typi-

cally has a shorter range and can thus be used for finer-resolution location tracking,

and (2) the inertial sensors on the smartwatch would help us to identify the time in-

stants when the shopper performed a ‘pick’ gesture. For various reasons (described

in Section 5.3), this first-cut approach did not work.

The operation of I4S eventually converged upon a more elaborate gesture-
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triggered (rack, shelf) location tracking paradigm that additionally involved the

user’s smartphone (primarily to provide more robust BLE scanning capabilities and

to provide an initial estimate of whether the shopper is sitting or standing). This

paradigm consists of the following steps (Figure 5.3 pictorially illustrates the repre-

sentative trajectory and actions of the shopper that correspond to these steps): (a)

Shopper Moving: The shopper initially navigates through the store, moving around

the various aisles. During this period, the I4S application on the shopper’s smartp-

hone continues to collect the Received Signal Strength Indicator (RSSI) information

of nearby beacons via BLE scanning, but does not actually attempt to localize the

shopper; (b) Shopper Stops at a Specific Rack: Once the shopper has identified a

specific product of interest, she stops in front of a specific rack. The shopper may

continue to stand or may sit down, to look at products on the lower shelves. At

this point, I4S continues to remain in passive sensing mode. (c) Shopper Picks out

Item from a Specific Part of a Specific Shelf: This corresponds to the “pick” activity

instance that we seek to monitor. It is at this point that the context determination

logic of I4S (described below) is actively triggered; (d) Shopper Resumes Browsing

Activity: After the pick instant, the shopper continues with the rest of her actions,

which may involve continuing to remain stationary at that rack, or moving on to

other parts of the store.

The current I4S system determines the occurrence and 3-D location of the “pick”

activity through an offline process, where after the completion of the shopping,

the entire data trace is extracted from the devices of the shopper and we analyse

the trace to determine the “picks”. However, this is not a system limitation. In

future, the entire logic to determine the picking gesture and picking location can be

implemented in an individual’s mobile device to track the picking actions in near-

real time (within 5-10 seconds of the actual occurrence of the pick). The steps for

determining each pick’s 3-D location is as follows:

1. Identify Pick Gesture: I4S first uses the stream of accelerometer and gy-
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roscope data collected from the shopper’s smartwatch to both infer the occur-

rence of a “pick” gesture, and the time that the shopper performed this gesture.

To improve accuracy, such pick gestures are identified only when the user is

stationary (as determined via inertial sensing on the shopper’s smartphone).

2. Localize to the Corresponding Rack: I4S then uses the recent history of BLE

scan data (and potentially even the BLE scan for the next few seconds after

the occurrence of the pick gesture), captured by the smartphone, to retro-

spectively compute the rack from which the pick occurred. Note that this

determination directly identifies the rack, instead of a specific location coor-

dinate: as we shall see later, an alternative method of determining the rack

implicitly via estimating the shopper’s orientation from magnetometer data is

ineffective due to the significant ferromagnetic noise in stores.

3. Localize to the Shelf Level: After the rack has been identified, the I4S App

uses the accelerometer data (corresponding to the time when the pick occur-

red) of the smartwatch to determine the shelf level of the “pick”. To improve

the accuracy of such shelf-level classification, the smartphone data is used

to create a prior of whether the shopper is sitting or standing. Note that the

determination of the shelf level is done via a classifier, rather than the con-

ventional method of using BLE-based localization, as BLE localization did

not provide the required level of location accuracy.

4. Localize Within the Shelf: To further improve the 3-D localization of the

“pick”, I4S subsequently tries to distinguish between various sectors of the

same shelf. More specifically, in our experimental studies, we associated the

left and right halves of a shelf with two distinct sectors, and then use the

game rotation vector data (obtained from the smartwatch’s gyroscope sensor)

to classify the pick between these two sectors.

Figure 5.4 illustrates the flow of the system, including the various contexts sen-
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Figure 5.4: Overview of the I4S System with Smartwatch and Smartphone

sed from the smartwatch and the smartphone. Note that most smartwatches cur-

rently operate by pairing with a smartphone. We can thus expect that the shopper

will have both a smartphone and the smartwatch during a store visit.

5.3 Design Choices

To understand the feasibility of identifying shopper’s interaction, two types of stu-

dies were performed: (a) Lab Study: an initial study was performed in our lab’s

pantry where lab members mimicked shopper’s behaviour and (b) In-Store Study:

student volunteers were recruited and incentivised to perform the study in a statio-

nary store on the SMU campus. The image of the lab’s pantry is shown in Figure 5.5,

while the image of a part of the store is in Figure 5.6. Next, I will provide the details

of the dataset and the initial findings which justified design choices taken for I4S.
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Figure 5.5: In-Lab Data Collection
Location

Figure 5.6: Shop Where Data Col-
lection was Performed

Parameter Value
Number of participant in the study 31(14 males)
Number of shop visit data used 25
Total shop visit duration 2 hours 52 minutes
Total number of picks 778
Number of racks from where items were picked 43
Number of beacons deployed in store 35

Table 5.2: Summary of Dataset Collected In-Store

5.3.1 Dataset

Lab Study The intention of this study was to justify various design choices taken.

For this study, members of the lab were recruited as participants. The participants

were asked to wear a smartwatch (LG Urbane) on their dominant hand and carry a

smartphone (Samsung Galaxy S6) in their pocket. Four BLE beacons were placed

in the pantry to understand the feasibility of using the RF signals emitted by the bea-

cons to identify a participant’s smartwatch’s and smartphone’s location. Participants

were asked to perform various directed ephemeral tasks. Some of these tasks inclu-

ded picking items from different shelves, picking one item multiple times from one

shelf, picking multiple items after walking around the lab during successive picks,

etc. . During the tasks, inertial sensor data (accelerometer, gyroscope, and magne-

tometer sensors) from both the smartwatch and the smartphone was collected.
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In-store field study: For the in-store data collection, we recruited 31 students

from our university through email invitations, with IRB approvals. The students

who agreed to take part in the study were first briefed about the study, then given

a smartwatch and a smartphone with our custom application running for data col-

lection. They wore the watch on their dominant hand and carried the smartphone

in the front pocket of the pants. There was no specific task that was assigned to the

shoppers while they were in the store and they were free to walk around the shop

without any time limitation. As compensation, we provide each participant a shop-

ping voucher worth $10 which the shopper could redeem at the store. We termed

each such visit to the store as an episode.

Before the data collection, we instrumented the shop with 35 Bluetooth Low-

Energy (BLE) beacons. All beacons were placed on the ground level at the base of

the racks. We set the beacons with a transmission interval of 101ms and a transmis-

sion power level of -20dBm.

For our analysis, we used sensor data from 25 out of the 31 shopping episodes.

Four participants did not carry the smartphone (not wearing clothing with pocket)

and two participants’ data had data synchronization issues for the data collected in

the smartphone and smartwatch and thus their data was omitted from our analysis.

A total of 778 picks from 43 distinct racks were observed during this data collection.

Table 5.2 summarizes the dataset that was collected from the store visit.

Ground Truth collection: The ground truth for this study was collected by

shadowing the shopper. The shadower used an application running on a Samsung

Galaxy Note Pro 12.2 LTE device to record the micro-activity labels of shoppers.

The application provided buttons to mark “Standing”, “Picking”, “Bending”, “Sit-

ting”, “picking from left”, “picking from right”. Other than this, the screen had a

provision to mark the “rack location” and the “picking shelf”. Figure 5.7 shows the

screen for the application with labels overlaid for explanation. Label 1 Indicates the

top view of the shop. In this view, location ground truth can be marked by touching

position in the layout corresponding to the location of shopper in the shop. Label
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Figure 5.7: Ground Truth Data Collection Application Screenshot

Figure 5.8: Smartwatch’s Acce-
lerometer’s Data Variation for a
Shopping Episode

Figure 5.9: Orientation of Dif-
ferent Axis when the Watch is
Worn on the Hand

2 allows the shadower to mark the position of the shelf from where the item was

picked. The human figure is only for reference. In case a shopper picked an item

from the lowest shelf, then the light grey dotted section in the figure is marked and

so on. Label 3 consists of various buttons which can be clicked to mark the ground

truth.

5.3.2 Inertial Sensor Analysis for Gesture Recognition

We inspected the accelerometer data collected from one participant who picked

items from shelves in our lab’s pantry. Figure 5.8 shows the variation smartwatch’s

accelerometer data along with the pick times when the person is conducting a series

of picks. From the plots we can see that whenever a pick occurs, there is a large
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Figure 5.10: Accelerometer Va-
riation for Picks from a Lower
Shelf Under Controlled Conditi-
ons.

Figure 5.11: Accelerometer Va-
riation for Picks from Top Shelf
Under Controlled Conditions.

variation in multiple accelerometer axis indicating that it might be possible to iden-

tify the picks. We next looked at all the shopping episodes and found that a picking

gesture (hand moving from the resting position to the item and coming back to the

original position) lasts for≈ 4 seconds on average. We thus used this as the window

size for all feature extraction.

An interesting observation from the data inspection was that picking from dif-

ferent shelves resulted in distinct changes in each axis of the inertial sensor. We

plotted the variation of accelerometer data when a person picked from the top

shelf (approx. 1.5 m from ground level)(Figure 5.11), versus picking from a lo-

wer shelf(ground level)(Figure 5.10). From the figure we can see that there is visi-

ble accelerometer variation in the accelerometer data in both the cases. However,

the changes in each axis is different during the picks from different shelves. This

indicated that it might be possible to identify the shelf from where an item is picked.

5.3.3 Bluetooth Low Energy (BLE) Analysis

We next analyse the characteristics of the BLE beacons heard. Since both smart-

watch and smartphone has the capability of scanning BLE beacons, we analyse the

characteristics of beacons heard by each device to determine if we could use either

or both the devices for localisation. We compare the two devices in terms of beacon

listening capabilities - i.e. is there more packet loss, the RSSI of beacons heard, the
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Figure 5.12: Difference in Number of Beacons Heard by Phone
and Watch

duration during which the beacon is heard, etc.

We first analyse the miss rate for the two devices. For this analysis, we use BLE

data from the 25 episodes of the in-store study. For every episode, difference in

number of beacons heard can be subdivided into two categories: number of unique

beacons heard in an episode and count of total beacons heard. Figure 5.12 shows

the difference in number of beacons heard by the two devices in an episode. In

the figure, the solid bar represents size of the set of beacons heard by the watch,

while the striped bars represent the size of the beacons heard by phone. The dot

for every episode represents the count of the union of set of beacons heard by the

phone and set of beacons heard by the watch. From the plot, we find that for almost

all episodes (except episode 5), the number of beacons heard by phone is equal to

the union of beacons heard by phone and watch, indicating that if a watch hears a

beacon, it is almost likely that the beacon will be heard by the phone. However, the

opposite is not true as in certain episodes (e.g. episodes 4 and 6) not even half the

beacons heard by the phone were heard by the watch. From the figure we can also

see that only in ≈65% episodes, the phone hears all the deployed beacons.

We next analyse the difference in the scan results obtained by the two devices.

For an entire episode we count how many distinct BLE identifiers (not unique)
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Figure 5.13: Episode-wise Ratio of Beacons Heard by Phone
and Watch

Figure 5.14: Difference in Received Signal Strength Indicator (RSSI) Between
Phone and Watch for an Episode
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(a) Phone

(b) Watch

Figure 5.15: Timeline Showing When a Beacon was Heard by the Device
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were recorded by the devices. Figure 5.13 plots the ratio between the total number

of records heard on phone and watch (with standard deviation). In the figure, the

orange bars represents the average ratio for a particular episode (with error bars for

standard deviation) and the blue line running across the figure represents the average

of the ratio, which was equal to 0.173, indicating that the phone hears approximately

6 times more beacons than the watch.

We next compare the difference in RSSI for the beacons heard by the two de-

vices. To understand this, we scrutinise data from one episode (episode no. 15),

where all beacons are heard by both the watch and the phone and the ratio between

the number of beacons heard is almost equal to the average of the ratio across all

episodes. Figure 5.14 shows the box plot of received RSSI for episode 15. The

black bordered box plot represents the data heard by the phone, while the purple

box plot represents the data heard by the watch. From the plot we can see that there

is actually not much difference in the inter-quartile range of signal strength heard

by the two devices. However in terms of maximum and minimum RSSI heard by

the devices, we see that the phone has a wider range for most beacons. Finally we

plot the time-line to understand when different beacons were heard by the phone

and watch. Figure 5.15 shows when different beacons were heard by the two de-

vices. The X axis is the time series, while the Y axis represents a beacon. From

the two sub-figures we can see that even though the overall periods when a beacon

was heard is similar, however Figure 5.15b is more sparse than Figure 5.15a. This

indicates that even though the smartwatch misses a lot of beacons, yet it is able to

maintain the RSSI distribution similar to that of the smartphone.

From these studies, we see that a smartphone has a better beacon capturing

capability, which convinced us to pursue the direction of using the smartphone to

identify the location of a person.
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Figure 5.16: Variation of Magnetometer Readings Inside the Store

5.3.4 Magnetic Field Sensor Analysis

In case of a narrow aisle with racks in each side, a position sensor (compass) could

help in identifying if a person was facing a particular rack or a rack that was 180o

opposite to it. We wanted to understand if this argument held true in case of the

store where we collected data. From the initial study, we extracted compass data

value from a store visit. During this visit, the person stood in front of various racks

wearing the smartwatch on the wrist and the face of the watch (z axis) facing the

rack, while holding the hand still. Figure 5.16 shows movement of the shopper in

the store, where shopper’s trajectory was : Rack 1, Rack 2, · · · Rack 6 and the

variation of the compass for this trajectory (with the Rack level location indicated).

From the plot we can see that when a person’s orientation changed by 180o, the

compass had a maximum variation of 60o indicating that strong ferro magnetic fields

in the store affected the readings from the compass. We believe that we could have

major location prediction inaccuracies, especially when racks are not diametrically

opposite to each other, if we used the readings from the magnetic field sensors and

thus decided not to explore the compass for our experiments.

5.4 Methodology

To identify in-store interactions, I4S relies on inertial and BLE scan data from a

smartwatch and smartphone. There are three main components to the entire system:

• Identifying the picking gestures.
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Feature # Distinct Description
Features

Mean 4 Average of the values of the axis data in the time window
and the average of the magnitude

Variance 3 Variance in the values of the axis data in the time window
Mean crossing rate 3 Count of times the values cross the window’s mean
Max mean 3 Divide the window into sub-windows and compute the maximum

of the means of the sub windows
Max rise 3 Divide the window into sub-windows and compute the maximum

positive change in mean in consecutive sub-windows
Max drop 3 Divide the window into sub-windows and compute the maximum

negative change in mean in consecutive sub-windows
Covariance 3 Co-variance between the axes of the sensor
Entropy 3 The spectral entropy of the axis data in the time window

Table 5.3: Features Extracted from Inertial Sensors

• Identifying the rack in front of which the shopper was standing while picking

an item.

• Identifying the shelf and the zone within the shelf from where the item was

picked.

In this section we shall elaborate on the techniques used in solving the above-

mentioned objectives.

5.4.1 Pick Gesture Detection

The first step in the pipeline is to identify the picking gesture. We use a standard

activity recognition pipeline for this detection.

Preprocessing and Framing: The accelerometer and gyroscope data from the

smartwatch and the smartphone is extracted. The accelerometer provides accelera-

tion of the device for 3 perpendicular axes, while the gyroscope provides the speed

of rotation about each of the axis. The data from both the devices are divided into

frames of length w with 50% overlap between frames. Every instance of the frame

is a tuple represented by [time, accelx, accely, accelz, gyrox, gyroy, gyroz].

In order to identify the picking gesture, we used the sensor data from the smart-

watch. For each frame we computed statistical features for each sensor axis in the

frame as described in Table 5.3. Finally for each frame we had to identify the label.

From empirical observations we identified that on average, the hand moved from a
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position of rest to the item of interest and back to rest in about 4 seconds (with a

range from 2 seconds to 10 seconds). This duration varied depending on the dis-

tance between the initial position of the hand from the object of interest, the time

spent in inspecting the object before actually bringing it back to the trolley or lea-

ving it in the shelf. For the frames extracted from the smartwatch’s sensor data, time

of picking is marked as the time when the hand touched the item of interest. The

time of picking was extracted from the ground truth files for the episode. Frames

which were within ±2 seconds of the pick marked in the ground truth data were

labeled as picking frames.

Similar data was extracted from the smartphone sensor. However, the label for

the frame was one amongst − {walking, standing, bending, sitting}

Gesture Recognition: After extracting frames from the shopping episode and

labeling the frames, we used a classifier in identifying picking gesture from the

smartwatch data. We used weka [41] for our classification. Various classifiers were

tested for performance and we found that we could achieve reasonable accuracy in

identifying picking using a Random Forest [45] classifier. We thus used the same in

our studies.

While observing shoppers in a store, we found that most picks occurred when a

person either completely stationary or had very small movement. From our data we

identified only 4 instances of picks (out of the 778 total instances) where a shopper

picked an item while moving past the shelf. This suggests that the pick gestu-

res should be identified only when the user is relatively stationary; this additional

context predicate on the shopper’s locomotive state helps eliminate false positives

generated due to random hand movements.

To identify locomotion, the data from the smartphone was used. We used the

same classifier in predicting the shopper’s locomotion state identification. While

evaluating our system, we found that in certain situations the four locomotion states

had to be sub-grouped. For example, we had observed that while picking an item,

a shopper is usually stationary. In this situation, we re-labeled all stand, bend and
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sit labels as stationary and re-ran our classifier. Result from this classification was

used in conjunction with the smartwatch features to identify picking.

5.4.2 Rack Level Pick Location Identification

As mentioned previously, we had deployed Estimote’s BLE beacons inside the store

and the smartwatch as well as the smartphone continuously scanned for the beacons

and locally logged all discovered beacons along with the corresponding RSSI. RSSI

is a function of distance, with the RSSI being lower when a person is far from a be-

acon. Due to results shown in Section 5.3.3, as well as our analysis of the smartwa-

tch’s BLE scan data for 3-D location identification (using the approach mentioned in

this section for 3-D location tracking for a granularity 100 cm x 50 cm x 30 cm, we

found that using a smartwatch, we could identify the correct location in only ≈13%

picks as compared to 2-D location accuracy of ≈ 60% picks identified by smartp-

hone without using history based prediction techniques), we decided to pursue the

smartphone based shopper’s in-store location determination, rather than using the

smartwatch to determine the shopper’s hand’s 3-D position when an item is picked.

A limitation of using the smartphone is that the smartphone can only identify the

shopper’s physical location (rack of width 1 meter, in front of which the shopper

is standing ), but can not identify the hand’s location (i.e. what item is picked). In

the store where we performed our studies, most racks are 1 meter in width and the

racks were arranged shoulder to shoulder. Each shelf within the rack is approxima-

tely 30 centimetres high. For a smartphone based location tracking, since we aim to

identify the rack in front of which the shopper is standing, we compute the system’s

accuracy based on whether the system could identify the rack in front of which the

shopper was standing, which is approx. 1 meter.

To identify the in-store location, we extracted frames of size w (w/2 seconds

before and w/2 seconds after a pick was marked) from BLE scan log of the smartp-

hone. Similar to gesture detection, we used a window of size w = 4 seconds in
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our evaluation. For this window w, we computed each deployed beacon’s average

RSSI (35 values). If a beacon was not heard in the window, the RSSI value for the

beacon was set to a very small number. Finally a label indicating the location (rack)

from where the shopper is picking an item is added to the vector. The length of

the vector (denoted as M ) in our case was 36 (35 beacon information + 1 location

information) and this vector represented a fingerprint of the location. This step was

repeated for all P picks that took place in a shop (778 picks in our study) and we

created a fingerprint map of size {M ×P}. The same location could be represented

by multiple entries in the map.

To identify the location of the shopper we used a RADAR like approach [9]

where, once the fingerprint map was generated, for each pick Pi, we computed the

euclidean distance of the fingerprint Pi from all other P − 1 fingerprints in the fin-

gerprint map. The fingerprint is assumed to be at the location which has the smallest

euclidean distance. For evaluation, we noted down the top-k smallest distances for

each fingerprint and then assigned a probabilistic location to each fingerprint instead

of a deterministic one, where the probability was computed as the inverse of the eu-

clidean distance between the testing fingerprint and the kth closest fingerprint.

Since we had historical movement information of the shopper, we computed the

M dimensional vector not only for the time window when the pick occurred, but

also h windows of size w before the pick. For each of the landmark, we applied the

RADAR like location identification algorithm to determine the person’s position for

that window. Due to physical constraint, a person can traverse a certain number of

grids at max in a unit time. For example, if two grids are 5 m apart inside a shop,

it is highly impossible for a person to traverse between these two landmarks in a

few milliseconds. To realise this intuition in our algorithm, we performed a Viterbi

smoothing [147] on our data. A trellis diagram (Figure 5.17) corresponding to the

viterbi decoding was generated to determine the most likely sequence of locations

that a shopper was assigned just before the pick occurred. For the viterbi implemen-

tation, we used a depth of (h = 4), indicating that we were using 4 time windows for

116



Figure 5.17: Trellis for Viterbi Smoothing

our prediction. For our trellis, the top-k prediction by the RADAR technique was

used as the nodes for each level L, while the edges were computed as the product of

the probability of the prediction for the note at the current level, the probability of

the node at the previous level and the transition probability from node at previous le-

vel to the node at the current level. The transition probability used in our study was

computed empirically from the ground truth file for each transition that took place

during any of the shopping episodes. Alternately, similar to [53], we could consider

using the inverse of the distance between racks as the transitional probability. Based

on our current approach, the path with the highest probability was selected as the

most likely path and the node at level h was identified as the correct location of the

shopper.

5.4.3 Shelf Level Pick Location Identification

Identifying the part of the shelf where the pick took place can be divided into two

sub-parts: (i) Identifying the shelf from where the picking took place and (ii) Iden-

tifying the location within the shelf from where the item was picked.

Identifying the Shelf from which the item was picked: In Section 5.4.1 we listed

the steps involved in identified a picking gesture. In order to identify the shelf from

which item was picked, we extracted all the frames which were labeled as picking.

An additional field was added to the frame:- the shelf level from which item is
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picked. Since the racks in the stores had varying height and varying number of

shelves. For consistency, we labeled shelves as: L1 - if shelf was 0 to 30 cm from

the ground, L2 - if shelf was 30 cm to 60 cm from the ground, · · · L6 - if shelf was

150 cm to 180 cm above the ground. In case of shelves which were more than 30

cm high, we labeled picks from it as Llower if the shopper picked an item from the

lower half of the shelf and Lhigher otherwise. We passed these frames to the Random

Forest classifier which identified the shelf from where the item was picked.

Identifying the pick zone within the Shelf : Finally, to identify the point from

where a shopper picked an item, we plotted the trajectory of the hand while picking

an item. Android provides a virtual sensor - Rotation Vector, which uses the data

from the 9 axis IMU sensors (accelerometer, gyroscope and magnetometer) to pro-

vide the quaternion value which can be used to determine the hand’s trajectory.

However, since the magnetometer was highly influenced by the items in the store as

well as the material used in the store, we decided to use the Game Rotation Vector

sensor, which is identical to the rotation vector sensor, except that it does not use

the geomagnetic field.

The output of the Game Rotation Vector is also a quaternion value. A quaternion

represent the orientation and rotation of an object in a 3 dimensional space. Since

the Game Rotation Vector does not use the magnetic field sensor, the output of

the quaternion does not provide results with respect to the Earth’s magnetic north.

The Game Rotation Vector provides a quaternion value which gives us the axis and

degree of rotation of the watch in a 3D space. A Game Rotation Vector(q) is a unit

quaternion of the form:

q = cos(θ/2) + x · sin(θ/2) · î+ y · sin(θ/2) · ĵ + z · sin(θ/2) · k̂

where (x, y, z) represent the axis of rotation and θ represents the angle of ro-

tation. Since the game rotation vector needs an initial reference point, the hand is

positioned at a fixed orientation and location at the starting of every shopping ses-
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Feature # Distinct Features Description
Displacement 6 Displacement of the wrist in all the axis during first half of

gesture and second half of gesture
Distance 2 Distance from the location of the pick from the starting and

ending point
MeanVel 2 Mean velocity of the wrist during first half of gesture and

second half of gesture
MaxVel 2 Maximum velocity of the wrist during first half of gesture and

second half of gesture
MedianAng 6 Median of angular velocity for yaw, pitch and roll during the

first half of gesture and second half of gesture
MaximumAng 6 Maximum of angular velocity for yaw, pitch and roll during the

first half of gesture and second half of gesture
NetAng 6 Net angular change for yaw, pitch and roll during the first

half of gesture and second half of gesture

Table 5.4: Features Extracted from Game Rotation Vector Sensor

sion. Any point that is derived further is with respect to this reference point. An

advantage of using the game rotation vector in a magnetic environment is that the

relative rotations provided are more accurate as compared to the rotation vector. For

our studies, we used the unit quaternion given to us by the Game Rotation Vector

Virtual Sensor to rotate this point in 3D space to get the final coordinates of the

wrist. A point p(px, py, pz) in 3D space can be rotated using a quaternion using the

following formula:

p′ = q · p · q−1

where q−1 is the inverse of the quaternion q and can be expressed as:

q−1 = cos(θ/2)− x · sin(θ/2)− y · sin(θ/2)− z · sin(θ/2)

Hence, if wt represents the wrist position at time t and qt represents the value

given by the Game Rotation Vector Virtual Sensor, then wt can be calculated as

follows:

wt = qt · w0 · q−1
t

For a picking gesture, we extracted the quaternion values from the smartwatch

data. Again a window of ±2 seconds was used to extract the quaternions. For each

of these 4 second window, we computed the position of the wrist at all times ∆t in
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this window. A spline was used to fit in all the predicted points in the trajectory.

For each trajectory we extracted features as mentioned in Table 5.4. The features

are similar to features used in [104], except that we do not use the duration features

and in addition to the roll and pitch features, we also compute the yaw features.

The yaw is useful in a shopping scenario as it can help in determining if the hand

moved towards the left or towards the right, which might not be required in case of

identifying smoking gestures.

Finally, for each of the feature vectors derived, we labeled it based on the po-

sition on the shelf from where the shopper picked the item (left or right) based on

the ground truth information and we used a Random Forest classifier to identify the

position of the hand inside the shelf.

5.5 Results

In this section, we present the detailed performance evaluation of I4S. Our evalua-

tion focuses on three distinct components of I4S: (a) We evaluate how accurately I4S

can detect picking gestures, (b) We evaluate the performance of the coarse-grained

(rack-level) localization process, and (c) We study the fine-grained localization of

the pick (shelf-level and within the shelf).

5.5.1 Pick Gesture Identification

As an initial step to identifying pick gestures, we identify the locomotion step of

a shopper. To identify the shopper’s locomotive state, we extracted accelerometer

data from the shopper’s smartphone and applied techniques mentioned in [159] and

using a 10 fold cross validation, we achieved a precision of 0.963 and a recall of

0.987 in identifying the locomotive state (“stationary” vs. “moving”) using a binary

classifier. We use this classification model to filter out hand gestures that occur

while the user is moving.

Identifying picking gestures: To classify the “pick” gesture, we utilize 2-second
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Accuracy Precision Recall
Stationary Store (10 fold cross validation) 92.85% 0.92 0.815

Table 5.5: Accuracy (Precision/Recall) in Identifying Picking Gesture

frames (w = 2), with a 50% overlap between consecutive frames. A frame was

marked as a true “pick”, if it was within ±2 seconds of the ground truth pick time

(marked by the person shadowing the shopper). A random forest-based classifier

is trained on the training data (using the smartwatch’s accelerometer-based features

described in Table 5.3).

Table 5.5 summarises the accuracy, along with the precision and recall of the

classifier, based on a 10-fold cross validation strategy. We can achieve an over-

all accuracy of 92.85%. The precision value is 0.92, indicating that our classifier

generates approx. 8% false positives, inferring pick gestures when none was perfor-

med. In contrast, the recall is 0.815, implying that we are unable to correctly infer

approx. 18% of the actual picks. Note that this performance is based on a person-

independent classification model, which does not account for the cross-individual

variation in picking activity and other parameters (such as the way the person wears

the watch or the hand on which the watch is worn).

Figure 5.18: Variation of Accuracy/Precision/Recall of 10 Fold Cross Validation for
Different Cost Parameter Settings for Picking Being Misclassified

Cost-based classification: Moreover, the system can be tuned to achieve diffe-

rent precision/recall trade-offs –e.g., an application which tries to deliver product-

121



specific promotions based on the shopper’s item-level interactions would desire hig-

her precision (to avoid spamming), while a system looking to identify the general

interest level of the shopper (browser vs. interested shopper) may desire a higher

recall. Keeping this in mind, we performed a cost-sensitivity analysis of our system.

Figure 5.18 shows the system’s performance for different cost settings. From the

figure we can see that the recall for the system is low for cost less than 1 and it

saturates for a cost of 1, while the precision of the system keeps on dropping as the

cost is increased. Based on application needs, the appropriate cost setting can be

used for the system.

Figure 5.19: Variation of Accuracy Across Users for Leave-One-User-Out Cross
Validation

Person independent classification: Finally, we analyse the per-user classification

accuracy. Figure 5.19 plots the per user accuracy where each frame is labeled as

picking or not-picking. The average accuracy obtained was ≈ 73%. However,

since picking gesture usually lasts for at least 3 frames (4 seconds), we performed

a smoothing of data across 5 frames (extra frames as buffers) and computed the

precision and recall for 2 settings - (1) if 2 out of 5 frames were predicted as pick, we

considered this to be a pick gesture and (2) if 3 out of the 5 frames were predicted as

picks, we identified the gesture as a pick gesture. Table 5.6 shows the performance

of detecting a person-independent picking gesture. From the results we can see that

tightening the criteria for determining picking (3 out of 5) provides a high precision

- i.e. almost 9 out of 10 picks identified for a person are actually picks. However
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Smoothing Precision Recall
window size
2 0.789 0.875
3 0.888 0.674

Table 5.6: Precision and Recall in Identifying Picking Gesture
in a Person Independent Setting with Varying Smoothing Window Length

the recall of the system is low and thus many actual picks are missed.

Application based requirement: Every application can have its specific require-

ments – e.g. for an application which recommends items to shoppers based on the

item that the shopper is picking, it might be acceptable to miss certain picks, but

for an application which tries to identify all items that are picked when item x is

picked by a shopper, it might be okay to have some false positives. Based on the

application of the pick-gesture identification, it might be necessary to tune the cost

parameters.

5.5.2 Rack Level Location Identification

We next evaluate how accurately we could track the shopper’s location in the shop

using localization techniques based on the signal (RSSI) heard from the bluetooth

beacons heard by the phone. The distance of each of the 778 picks was compared

against the 777 other picks. The label of the pick with the smallest distance from the

test pick was assigned to the test pick. With this approach, we obtained an accuracy

of 58.61%.

Since the number was low, we investigated methods for improvement. The first

approach we investigated was - Count of Beacon Advertisements. Since there were

various losses in the RF signal, we investigated if there is a minimum number of

times a beacon should be heard for us to add it to the fingerprint map. We varied the

count of number of times a beacon should be heard for it to become a candidate of

the fingerprint map. Table 5.7 summarizes the variation in accuracy observed for a

basic fingerprint matching technique. From the results we see that even if a beacon
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n 1 2 3 5 10 20
Accuracy 58.61% 57.58% 55.78% 57.71% 51.79% 40.74%

Table 5.7: Variation of Accuracy when Fingerprint is Generated Based on Number
of Times Beacon is Heard

Figure 5.20: Variation of Leave-One-Pick-Out Accuracy for Varied Beacon Count

is heard once, it is useful in localization. Or in other words, since the hearing of

beacons might not be reliable, it is good to use any beacon that is heard. From the

data evaluation we also observed that there were certain picks which did not hear

even one beacon more than 10 times. This prompted us to use any beacon heard in

our fingerprint.

We next wanted to understand whether the localization strategy should use the

RSSI readings from just a smaller subset of ‘stronger-signal’ beacons or a wider

set of beacons (including ones with weaker signals). For this evaluation, we used

the similar fingerprint map as before, but restricted the test beacon vector to the

top t beacons, based on the average RSSI heard by the smartphone from those be-

acons during the pick gesture. Figure 5.20 shows the variation of accuracy when

the value of t is changed. From the figure we see that we could achieve the best

accuracy (68.63%) if we chose t = 5. Surprisingly, if we use t = 1 choosing only

the beacon with strongest signal strength, the accuracy is quite low. This indicates

that a using a technique where location is determined based on the best RSSI heard

will fare poorly in such a scenario. For the above setting (t = 5), for the location

accuracy, we determined the rack level location based on the closest distance ob-

124



Figure 5.21: Variation of Prediction Accuracy Across Different Racks

served in the fingerprint map. Alternately we also noted the top 3 closest distances

predicted and observed that in 80.84% cases, the correct rack was one of the top

3 chosen racks. However using a simple majority voting based technique lowered

the prediction accuracy from 68.38% to 61.4%, while a weighted majority voting,

where weights were determined based on the distance, the prediction accuracy was

71.2%. Even though the location prediction accuracy was low, having the correct

location in the top-k location set indicated that we could use historical knowledge

for the localization.

Finally, for the above setting (n = 1 and t = 5), we performed a Viterbi smoo-

thing. To identify the rack where the shopper is located while picking an item, we

used data from the window (p0 → ±2seconds around the pick) where the pick

occurred as well as data from three other 4 second windows (p−1 = {−2,−6} sec,

p−2 = {−6,−10} sec,p−3 = {−10,−14} sec) immediately preceding the pick in-

stant. We then compute the location probabilities for each window independently

and use a depth=4 Viterbi decoding to estimate the pick location. Based on this

path-smoothing approach, we improved the rack-level location prediction accuracy

to 85.47%.

The location accuracy reported above is skewed by popularity, as the pick data-

set will naturally contain a higher number of pick instances for a more popular rack.

To understand the un-weighted location accuracy, we computed the pick accuracy
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Figure 5.22: Surface Chart Showing Zone Wise Location Prediction Accuracy

for each rack individually and computed the average of these values. The resulting

average accuracy was 61%. Figure 5.21 shows the accuracy distribution across the

43 distinct racks. From the figure we can see that 11 racks have an accuracy of 0.

On closer inspection, we found that these racks had less than 5 picks in the dataset,

indicating that the loss of accuracy was due to lack of sufficient training data. To

understand the rack locations with high/low accuracy, we plotted the contour plot of

the accuracies. Figure 5.22 shows the contour of the distribution of accuracy. In the

figure, zones with no gradient indicates a pathway (some pathways are too narrow

to be seen), while the racks with 0 accuracy are indicated by tiny hills with lighter

shade of blue. From the figure we can see that the racks in the center had higher

accuracy as compared to the ones on the sides, with the exception of the racks near

the entrance. The racks at the entrance are the pen stands and was one of the most

popular racks in the study. The takeaway here is that the overall location accuracy

will be improved via a more carefully-directed data collection phase, where partici-

pants are explicitly instructed to make picks uniformly across all racks.

5.5.3 Shelf Level Location Detection

Until now, we have evaluated and identified picking gestures with ≈92% accuracy

and the rack level location of pick with ≈85% accuracy. We finally evaluate the

performance of our approach in detecting shelves and zones within shelves from

where item was picked.

To identify the shelf from where the item was picked, for all the picks in our
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Right Left ← Predicted
111 5 Right
9 60 Left

Table 5.8: Confusion Matrix for Zone in Shelf Identification

dataset, we changed the class label of the picking gestures from picking to the shelf

number from where the item was picked. In all we had 6 shelves marked. We

performed a 10 fold cross validation on the picks that were identified correctly using

the same set of features as before and using a random forest classifier. We found

that the accuracy of the classifier in identifying the shelf was 77.12%. On closer

analysis we observed that there were a lot of picks which were actually occurring

from shelves 5 and 6, but were being labeled as either shelf 1 or 2. A reason for

this could be because sitting and picking from a lower shelf might have similar

hand trajectory/orientation as standing and picking from an upper shelf. On adding

the locomotion state (i.e., discriminating between ’sitting’ and ’standing’ states) of

the user to the feature vector and re-classifying, we found that the classification

accuracy increased to 89.07%.

Finally, we wanted to understand whether the item that was picked in a shelf

was placed towards the left of the shelf or towards the right. From the data we had

observed that picks usually occurred when the person is directly in front of the item

of interest. However, in certain cases the person stretches her hand towards left or

right to pick the item. From the data we extracted 185 picking gestures (from 22

shoppers’ data), where the shopper picked an item that was not directly in front of

her, but either to the left or right. Items were picked from multiple shelves and in

116 of these gestures, the shopper picked an item that was towards her right.

We extracted features over a window size of 4 seconds from the game rotation

vector sensor data and computed the feature vectors. After labeling the pick as

“pick from left” or “pick from right”, we performed a 10 fold cross validation using

a random forest classifier. Table 5.8 shows the confusion matrix in determining the

location of pick within a shelf. From the table we can see that we can achieve an
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Accuracy Precision Recall
Person Dependant Picking Gestures Identification 92.85% 0.92 0.815
Person Independent Picking Gesture Identification NA 0.789 0.875
Rack Level Location Identification (1 meter) 85.47% NA NA
Shelf Level Location Identification 89.07% NA NA
In Shelf location Identification (0.5 meter) 92.43% NA NA

Table 5.9: Summary of the Performance of Various Components of I4S

accuracy of 92.43% in determining whether the pick occurred from the left half of

the shelf or the right.

This shows that our approach could identify the shelf from where item was

picked in 89% cases when we used the sensor data from the smartwatch and the

smartphone. Within a shelf, if we used the hand trajectory data, we could identify

if the item was picked from the left side of the shelf or the right in 92% cases.

5.5.4 Summary of I4S Approach

Table 5.9 summarises the performance of various components of I4S. From the table

we can see that for every sub-component of the system, the overall performance

accuracy is above 85% indicating that it is possible to realise an accurate system

which can help in identifying the location from where the shopper picks items.

If there exists a separate backend repository that matches individual products with

their on-shelf location, a location-based lookup of this repository will directly reveal

the specific items (or possible group of items) that the shopper picked up.

5.6 Discussion

Real-world studies show that I4S is very promising: it can help detect pick events

and localize them (to an approximate 3-D location accuracy of 0.5 meters) using the

smartwatch and BLE beacons, even in a medium-sized store with narrow aisles and

non-regular rack layouts. There are, however, many additional aspects to consider.

Inability to Track Misplaced Items: I4S’s operation is based on the premise that

identifying, at shelf-level granularity, the location of a user’s pick gesture impli-
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citly identifies the product (or product category) selected. While this is likely to

be broadly true, store operators know only too well that products are continually

being misplaced by shoppers. Hence, if a shopper picks up an item from a shelf

where it has been dumped by a previous shopper, the I4S approach will result in a

mis-identification of a shopper’s true interest.

Generalisation : The system has been validated in a mid-sized stationary store

with students from the university. The user-studies were performed using a LG

smartwatch, Estimote beacons and Samsung smartphone. Some of the findings in

this study might be environment or device specific. For example, in our study, we

found that the magnetic sensor produced erroneous results. However, techniques

such as using the magnetometer might be help in improving the accuracy in other

settings where the ferro magnetic interference is not high. Similarly, the picks iden-

tified in the study are specific to the stationary store. Picking style in other stores

(e.g. a clothes store) might be different. This can be validated with additional stu-

dies. We are currently expanding to other stores (Details in Chapter 7) to identify

in-store differences. Other than the store specific techniques, the devices used might

affect the performance. In the feasibility studies we identified that the number of

beacons heard by the smartwatch is less than the smartphone. However, we have to

perform studies with other devices to determine if the results hold true for various

smartwatch brands or if it is specific to the smartwatch used in the study.

The current system has been validated with a specific device type and on stu-

dents who have similar lifestyle. To generalise the system, additional studies with

shopper and device diversity is needed.

Energy Overheads & System Optimization: Currently, I4S activates continuous

sensing of the inertial sensors (accelerometer and gyroscope) and BLE scanning

on the smartwatch, primarily because we have no capability to predict the time

instants when a consumer may actually pick an item from a shelf. Such sensing

obviously drains energy: gyroscope sensing consumes more power than accelero-

meter sensing, and it is well-known that continuous BLE scanning on smartphones
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has less-than-ideal power efficiency [119]. This overhead may not be a serious dra-

wback because of the limited duration of a shopping episode–in our studies, the

average shopping episode lasted 6 minutes 52 seconds. However, additional forms

of context-driven optimization of such sensing are certainly possible. For example,

the user’s smartphone sensors may be used to detect when a user is stationary, and

turn off the BLE scanning by the smartwatch once the user’s location has been es-

tablished. Likewise, the inertial sensing may also be paused when the shopper is

detected at locations that are far away from product shelves (e.g., in non-product

areas in large department stores).

Integration of Additional Sensor Devices & Sensors: While I4S currently uses

only the inertial sensors on the smartwatch, a variety of alternative sensing modes

may help increase the fidelity level of shopper interaction monitoring. For exam-

ple, in Chapter 7 we show details of an initial study which utilises a smartwatch-

mounted camera to take opportunistic pictures of items being picked, for subse-

quent image-based product identification. There also exist possibilities of com-

bining infrastructure-based video sensing with I4S, to improve the accuracy of pick

identification and localization. For example, video cameras mounted on either walls

or on the top of individual racks may be used to identify the time instants when

a shopper’s hand picks up an item from a shelf, and this time may be correlated

with the inertial sensing-based pick time detected by the smartwatch to unambigu-

ously identify which shopper picked up the specific product. Note that I4S currently

does not directly aim for such product-level resolution, and instead offers shelf-level

tracking of shopper interactions.

Device Position: In the current studies, devices had a fixed positions – the smart-

watch was worn on the dominant hand, the smartphone was carried in the front pant

pocket, while the beacons were placed at the foot of the racks. Experiments were

performed to identify the ideal position of the beacons. However, for the smart-

watch and smartphone, it was assumed that the smartwatch was worn on the wrist

and the smartphone was carried in the pocket. For the smartwatch, every participant
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wore the watch on their dominant hand. In future, studies can be conducted to ob-

serve the performance of the system, when the watch is worn on the non-dominant

hand. In case of the smartphone, the pocket is one of the many positions where

shoppers keep the phone while shopping. Since we had provided the smartphone

to the participants for the study, they did not perform natural gestures involving the

smartphone – e.g. talking on the phone, sending a text message or even browsing.

This ensured that the position of the phone was the same throughout the study. Ho-

wever, this is not a natural behavior. In future, studies have to be conducted, where

the application is installed on the participant’s smartphone. Using the participant’s

smartphone will help in simulating behavior that is expected in any real world study.

5.7 Summary

Understanding items that a shopper interacted with during a store visit can reveal

various interesting insights not only to the store owner or the shopper, but also to

social scientists in understanding how shoppers make their shopping choices. In this

chapter, I described I4S– an approach that we have developed to identify shopper’s

in-store item interaction using multiple sensor data from the shopper’s smartwatch

and a smartphone. I4S uses data from BLE scans to determine a shopper’s rack

level location. Once the scan has determined the person’s rack level location, we

use the inertial sensor data to determine the shelf level information from where an

item is being picked. We can also identify the half from where the item was picked

in the shelf. I4S shows that it is possible to identify ‘fine-grained’ ‘high-level’ ‘ADL

specific’ activities using sensor data from multiple devices.

131



Chapter 6

Understanding Individual’s

Behaviour

Now that we have established that it is indeed possible to identify daily life activi-

ties using multi-modal sensing approaches, we next explore the possibility of going

beyond capturing just physical daily lifestyle activities, to potentially understanding

higher-level motivations and intentions of individuals during such activities. Unlike

Annapurna and I4S, the challenge for this objective is not in inferring the physical

activities, such as a shopper’s indoor location or their specific gesture. Rather, it is

to discover the distinct number of ways in which the same behavioral intent is ma-

nifested by properties of the collection of locomotive/gestural states that occur over

an entire shopping episode. More specifically, the goal is to extract the meaningful

features (over this underlying sequence of locomotive states) that can be used to

infer shopper intent. By analysing the sensor traces from multiple personal devices,

in this chapter, I show the possibility of determining the behaviour exhibited by an

individual during the shopping ADL, even if the shopper has never visited the store

previously.

The anecdotal observation that – an individual who is in a hurry and needs to buy

an item, will move quickly through a store, pick the item and check out. Comparati-

vely, an individual who is not in a hurry, has the liberty of spending some time brow-
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sing through items not in her shopping list – serves to illustrate the point that some

aspects of a shopper’s psychographic profile may be revealed from his or her phy-

sical actions. Through CROSDAC, a novel non-person specific approach, we show

the possibility of identifying an individual’s shopping intent by analysing these phy-

sical actions. CROSDAC utilises sensor data from the smartphone’s inertial sensor

as well as Wi-Fi scans to determine these physical actions. Inertial sensors provide

information about an individual’s locomotion state (sit,stand,walk,turn), while the

Wi-Fi scans provide location details of the individual.

There are two major challenges that CROSDAC has to address: (a) the same

intent can be manifested in diverse ways – e.g. a hurrying 15 year old might have

different physical signature from a hurrying 70 year old, and (b) the number of such

manifestations is not known apriori. For the first problem, prior research suggests

that the diversity is directly influenced by demographic attributes, such as height,

weight and gender (e.g. [63]). However, since its not know which all factors in-

fluence shopping behavior, we propose CROSDAC, an unsupervised technique to

determine the number of diverse manifestations – we call this the “shopping style”.

Once CROSDAC determines the shopping style, it identifies the intent based on

similarity of the shopper with others exhibiting similar shopping style. We have

tested other variations of CROSDAC and found that the aforementioned approach

could best identify a shopper’s intent.

Even though identifying behavior using sensor data of a smartphone has been

studied by various researchers(e.g. – [103]), we believe that the CROSDAC appro-

ach is the first one targeting behavioral identification through non-invasive mobile

sensing in the retail domain.

6.1 Necessity of Identifying Shopping Behaviour

Before discussing the design of such systems, let us understand the impact of un-

derstanding a shopper’s behavior. Consider the following scenarios:
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Scenario 1: Alice walks into a store looking for a pair of jeans. She spots

the appropriate section, selects her favorite pair and heads towards the check out

counter. However, before reaching the checkout counter, she spots a beautiful top

that would go well with the jeans and stops to look at it. For a while she considers

buying the top too, but when she sees the price tag, thinks for a while and decides

that it was above her stipulated budget and goes ahead with just the jeans purchase.

This is a scenario that many of us might have experienced. Now reconsider the

scenario - While Alice was admiring the top, a backend system determined that

Alice is interested in purchasing the item. However, as soon as she flips the price

tag and starts reconsidering whether to make the purchase, the system determines

that Alice is confused, but with desire to purchase the item. The system takes the

active decision to send a promotion for the top to Alice to tempt her in making the

purchase.

Scenario 2: Bob, the store assistant observes the two customers shopping in his

retail store. While customer 1 is wandering around the store, customer 2 stands

in front of a rack for a while and then moves to another rack and then the next.

Assuming that customer 2 needs assistance, Bob goes ahead and starts talking to

the customer. It turns out that the customer 2 is frittering away his time and has

no buying intention. It also turns out that the customer is extremely chatty and

for courtesy’s sake, Bob is not able to cut short the small talk. At some point Bob

notices customer 1 leaving the shop and wonders if she actually needed assistance.

In this scenario, it would have worked wonders for Bob if he had knowledge of each

customer’s intentions, even before he approached any of them. In case he found that

customer 1 was confused and customer 2 had no buying intention, he would have

assisted customer 1 and the assistance might have resulted in a sale.

Even though the above scenarios might sound like a far fetched idea, but with

the availability of multiple sensing devices and information from similar shopper’s

exhibiting similar behavior, I believe that the above-described scenarios will be-

come a reality in the near future. In this chapter, we design and evaluate one possible
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Figure 6.1: SHOP Overall Architecture

approach towards determining a shopper’s intent.

6.2 System Overview

Keeping the above scenario and all associated challenges in mind, we explored the

possibility of identifying the behavior of the shopper using sensor data from her

personal devices. Assuming that the contextual knowledge of the shopper – her tra-

jectory using Wi-Fi / BLE localization and sequence of performed activities using

phone’s inertial sensors – could be extracted from her smartphone through “SHOP”

a store specific application, we explore techniques to determine the shopper’s exhi-

bited behavior. We call this behavior determination component CROSDAC. In this

section, we describe the overview of the store specific application - SHOP, that

could run CROSDAC. Figure 6.1 illustrates the client-server architecture of SHOP.

The shopper’s smartphone (and her wearable devices) runs the SHOP client,

which collects the raw sensor data from the phone and extracts relevant sensor fea-

tures from such data. In our present smartphone-based implementation, the sensors

used include the accelerometer (to perform micro-activity recognition) and the Wi-

Fi sensor data (i.e., the RSSI readings from different APs heard by the smartphone).

This data is used by the CROSDAC approach.
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At a high-level, the CROSDAC approach focuses on organically separating out

the training data into a relatively small set of distinct shopping styles, and building

separate classifiers for each style. The rationale behind such separation is our belief

that different segments of a crowd-scale population do manifest the same intent in

fundamentally distinct ways. The central principle of our CROSDAC approach is

borrowed from the speech recognition domain, where it is well known that words

are better classified once they are grouped by speaker accents–i.e., if separate recog-

nition systems are built for each distinct accent [15]. CROSDAC’s design rests on

our belief that shopping too has such hidden accents, which if captured, can help us

better classify individual shopping behavior. We refer to this analogous concept as

the Shopping Style of the shopper. Examples of such styles might be a tendency to

look through various items on display in a deliberate fashion first before narrowing

down focus on a specific brand, or an inclination to first do an overall reconnais-

sance of a store’s entire floor area before then focusing on the sections of primary

interest.

Figure 6.2: Steps in CROSDAC Classification

We believe that such styles, if they exist, are a hidden or latent property of a
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shopper, which is dependent on a combination of factors such as demographic attri-

butes (e.g., age, gender, ethnicity), lifestyle attributes (e.g., food preferences, level

of disposable income) and exogenous environmental attributes (e.g., the crowded-

ness of a store or narrowness of the shopping aisles). Figure 6.2 illustrates our repre-

sentation of this cause, effect and observed behavior. The CROSDAC approach is to

somehow capture the “distinct shopping styles” that are present in the crowd-scale

shopping population, and then have the actual classification process be moderated

by these distinct styles. As shown in Figure 6.2, the approach is to (a) discover

shopping styles without explicit apriori enumeration of such styles, and then (b)

have the shopping styles influence the classification logic (which takes as inputs the

smartphone-generated sensor features, potentially historical shopping episodes and

these uncovered shopping styles). Intuitively, this is achieved through some form of

clustering, prior to the step of classification, with each cluster representing episodes

with the same shopping style. The question then is: can we, as in [63], form such

clusters simply based on demographic/environmental attributes, or is it better to dis-

cover such clusters through other unsupervised means? To investigate this question,

we shall outline some of the possible alternative techniques (involving classification

and clustering) that CROSDAC may utilize.

In order to describe the alternative techniques precisely, let us first define

some mathematical notation. Assume we have sensor traces from m users M =

{1, 2, · · · ,m}, each performing n shopping episodes (in our scenarios, n may even

be 0, corresponding to cases where the user visits the store for the first time. Let

p of these m × n episodes have a shopping behavior label, i.e., they constitute the

training data. Let (D) be the demographic and (E) be the environmental factors

associated with each of them. Our goal is to predict the shopping behaviors of the

remaining m× n− p using the p labeled episodes as the training set.

We map the sensor traces into a k-dimensional feature vector F , where Fij =

{f1, f2, · · · , fk} denotes the feature vector corresponding to the jth shopping epi-

sode of the ith user. The choice of these features can, as mentioned, vary by location.
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If we denote the set of shopping behavior labels as B = {b1, b2, · · · , bl}, predicting

the shopping behaviors of the remaining m × n − p using the p labeled episodes

as the training set can be formulated as learning a concept function ci for every

individual i such that:

∀j, ci(Fij) = bx where bx ∈ B.

Now that we have introduced the mathematical notations, let us consider some

of the possible approaches for style-aware non-individualized classification are:

• Single-Level Supervised Classifier (U1): This is a supervised classifier (e.g.,

decision tree) that uses all the p labeled episodes as training data and le-

arns a single classification model c for all users. As and when a new epi-

sode Fij comes in, the episode is passed through the supervised classifier,

which classifies this episode into one of the shopping behaviors in B, i.e.,

∀i, j, c(Fij) = bx.

• Unsupervised Clustering and Supervised Classifier (U2):In this approach, the

feature vectors of all the p episodes are clustered using a distance function d

such that, any two feature vectors F, F ′ are put into the same cluster only

if d(F, F ′) < s, where s is a threshold. All episodes inside a cluster are

taken along with the episode label and a supervised classifier is created inside

each cluster. To classify an unlabeled Fij , it is first put into a cluster whose

center is at a minimum distance from Fij , and subsequently classified using

the cluster-specific classifier.

• CSN like approach (C1) [63]: Using the concept of homophily, a similarity-

based supervised classification technique is built. This model assumes that

people who are similar physically (e.g., gender) or in lifestyle (food prefe-

rence or frequent visitor of the store) will behave in similar ways. Multi-

ple supervised classifiers, one for each kind of similarity (male-classifier, fe-

male classifier, etc) are built from the p labeled episodes (Classifiermale =
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U1 U2 C1 C2
Applies clustering prior to classification N Y N Y
Builds a separate classification model for each de-
mographic attribute

N N Y Y

Requires knowledge of demographic labels for each
episode

N N Y Y

Fuses predictions from multiple demographically-
filtered classifiers

N N Y Y

Table 6.1: Various Approaches for Crowd-Scale Shopping Behavior Prediction

{Fij|Dj ∈ {male}}, Classifierfemale = {Fij|Dj ∈ {female}}, etc).

When a test episode comes in, it is assumed that the demographic and other

personal details of the user is known and the classifier’s corresponding to the

corresponding values for the demographic/lifestyle attributes are chosen–e.g.,

a male, vegetarian shopper will be classified by both the Classifiermale and

Classifierveg classifiers. Each classifier predicts the class label with a cer-

tain confidence. If {t1, t2, · · · , tT} are all the classifiers built and confit is the

prediction confidence of classifier t for the behavior bi, then the overall pre-

diction for the episode is determined by max
1≤bi≤Bi

(∑T
t=1 confbi

)wheret ∈ Di.

• Unsupervised Clustering and applying CSN like approach(C2): This appro-

ach is effectively a combination of U2 and C1. Here, all the episodes are

clustered into multiple smaller clusters;subsequently, for each cluster, T se-

parate classifiers (corresponding to each attribute value) are built, as in C1.

When an unknown (test) shopping episode comes in, it is first assigned to

one cluster (applying the clustering logic of U2), followed by an overall pre-

diction computed by combining the confidence of the multiple cluster-specific

classifiers.

Table 6.1 summarizes these approaches, listing the important ways in which

they differ, both in terms of their processing steps and the assumptions that they

make about the incoming shopping episodes.
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6.3 Design Choices

To gain insights into the real-world feasibility of using CROSDAC approach to ana-

lyse shopping data to infer shopper’s intent, we had to determine the number of

shopping styles that existed in the data. We took an empirical approach, where we

used the data to determine the number of shopping styles that existed in the data.

To understand the generalisability of CROSDAC, we performed two user studies. In

this section, I first describe the two distinct user studies which we conducted. While

the first study was conducted in a food court located in a large shopping mall in New

Delhi, the second study was conducted in the University’s gift shop in Singapore.

The description of the user study is followed by the details of the approach taken by

CROSDAC to determine the number of “shopping styles”. Based on the “shopping

styles”, CROSDAC determines the overall shopping behavior/intent. Even though

the overall objective of both the studies was the same, the setting in the two studies

were quite different in terms of location, type of store, size etc. Table 6.2 provides a

summary of the two studies, highlighting some significant differences between the

two studies.

Cognitive state/ behavior identification: To derive insights into the different

behaviors exhibited by shoppers during a store visit, we surveyed relevant litera-

ture on consumer behavior and marketing. The shopping behavior identification

literature indicates that shoppers can exhibit several behaviors during a store vi-

sit. At a high level, the shopper might be in a store with purchasing intentions or

might be browsing [19]. We term this category of shoppers who are browsing as

shoppers with no buying intention (‘NBI’). Amongst the shoppers with purchasing

intentions, there can be several sub-category (e.g., shoppers were categories into

8 sub-categories in [155]). One common sub-category which we identified in se-

veral articles, including in [155] was confused by over choice. This influenced us

to explore the possibility of determining if the shopper is confused (we term this

category as has buying intention, but confused shopper (‘BIAC’)) using sensor data
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Study 1 Study 2
Location of the Study Food Court in a shopping University’s gift Store

mall in New Delhi in Singapore
Number of participants 30 (15 males, 15 females) 22 (12 males, 10 females)

Size of Location Large - housed multiple stores small – ≈ 50m2

Devices used Samsung S II smartphone, Samsung S IV smartphone
Wi-Fi AP Wi-Fi Access Point

LG Urbane smartwatch

Table 6.2: Summary of the Studies Conducted to Understand Shopper’s Behavior

from the shopper’s personal devices. The category which represents the shoppers

who are not confused (BIAC) is the focused category. We termed shoppers in this

category as has buying intentions and is focused (‘BIAF’) shoppers. In addition to

identifying the BIAC category shoppers, we also explored the possibility of iden-

tifying NBI and BIAF shoppers through sensor data analysis. This behavior based

categorisation of shoppers is similar to the influence of attitude on purchase shown

in [154]. In addition to the above mentioned behavior based categorisation, litera-

ture also indicated that social factors – like shopping in a group affects a person’s

shopping [139]. This motivated us to explore the possibility of identifying the influ-

ence of social factors on shopping. We termed shoppers in this category as buying

intention and in group shoppers (‘BIG’).

6.3.1 Datasets

6.3.1.1 Study 1: Food Court in New Delhi

The first study was conducted in the food court of a large shopping mall in New

Delhi. For the study, we recruited 30 distinct volunteers (15 males and 15 females)

from amongst the shoppers. The participants were made aware that they would be

asked to perform certain tasks, where each task was considered as an “episode”.

Altogether, 86 “episodes” were collected from the 30 shoppers over 14 days in the

food court area (next to the movieplex) of the mall. Figure 6.3 provides a sche-

matic of food court’s layout, which consisted of 12 F&B stalls and 2 centralized
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Figure 6.3: Schematic Layout of Mall

cash counters for buying coupons (purchases in each store required redemption of

coupons). The central area of the food court had seats, where the person could sit

and consume her meal. Even though the mall had retail stores, our justification of

conducting the first study in the food court was (i) it is a semi-public area, and thus

easier to perform experiments without requiring the consent of individual retailers,

and (ii) the adjacency of the food court to the movieplex meant that it could provide

us with the necessary diversity of behavioral intent.

To mimic different types of shopping behavior, the participants were asked to

perform certain semi-guided tasks to simulate different shopping behaviors, without

any prescribed time limit. The tasks belonged to four categories, corresponding to

3 distinct types of shopping intent/cognitive states:

1 No Buying Intention (NBI): This label captures participant behavior when she

was unlikely to make a purchase. To generate such behavior, NBI users were

instructed to “Please wait here for a friend joining you for a movie”.

2 Buying Intention-Alone-Focused (BIAF): This label captures behavior when

the participant has a premeditated purchase goal. This behavior was genera-

ted through instructions such as “Please buy a cold beverage for you and a

friend” (note that beverages are available at multiple stalls, implying that the

participant still had to exercise some amount of choice.)

3 Buying Intention-Alone-Confused (BIAC): This label is intended to capture
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behavior where the participant has a purchase intention, but the precise nature

of the purchase is fairly ambiguous. To generate such behavior, BIAC parti-

cipants were instructed to “Please buy a small-sized meal for your mother-in-

law”.

4 Buying in a group (BIG): This label was designed to capture the buying be-

havior of participants when they shopped in a group; BIG participants were

told to “Please help your friend (who was with the shopper) in choosing what

to eat”.

While our initial goal was to study both individual and group-level behavior, we

realized that individual behavior itself is challenging to analyze. Hence, we do

not consider the group-interaction based episodes further in this dissertation and

confine our studies to NBI, BIAF and BIAC participants. The resulting dataset

had 67 episodes (20 NBI; 19 BIAF and 28 BIAC). The average episode time for

the 67 episodes was 520.59 seconds with a standard deviation of 242.49 seconds.

For the 67 episodes which we considered in our study, 7 participants performed

tasks corresponding to all three categories, whereas 23 participants performed tasks

corresponding to any two of the three categories.

It must be noted that the participants were given high-level behavioral tasks

which they enacted. There was no physical restriction imposed on the participants

while they completed the study. The participants were neither asked to follow any

specific physical activity (e.g. walk in a certain route or sit down after every one

minute), nor was any time factor limitation imposed in the study (participants were

free to take as much time as they desired).

Sensor Data Collection− To collect the mobile sensing data, each participant was

provided with a Samsung SII phone, which had a pre-installed application running

and continuously collected sensor data. The participants were asked to carry this

phone in any pocket of their clothing. The application captured (i) accelerome-

ter and compass data, which was later used to identify four locomotion states (sit,

stand,walk and turn) exhibited by the participant, and (ii) Wi-Fi scan data, which

143



was later used to compute of location of the participant in an indoor environment

using the Horus algorithm [163]. The locomotion state was calculated every 5 se-

conds and the trajectory state was computed every 15 seconds.

Ground Truth Collection− Other than collecting the sensor data from the phone, we

also recorded the “ground truth” (including the locomotive actions and the location

trajectory) for each of the shopping episodes. This ground truth was collected by

an observer, who shadowed the participant and noted down their various activities,

using a separate custom Application (similar to the shadowing application described

in Section 5.3 ) for recording user behavior.

6.3.1.2 Study 2: University Gift Shop in Singapore

The second user study was conducted in our university gift shop – a small sized

souvenir store. Recruitment for the second study was done through word-of-mouth

information passing to members of the University. In all, we recruited 22 volun-

teers, of which 12 were males and 10 were females. 19 of the 22 volunteers were

undergraduate students in the university, while 1 was a post graduate student and 2

were staff members of the university. Similar to the previous study, each participant

was asked to carry out certain tasks. The tasks belonged to the three categories –

confused (BIAC), focused (BIAF) and no buying intention (NBI). Each participant

executed 3 tasks (one from each category) and in all we collected 66 “episodes”,

but due to error in data collection, we had to ignore data from all 3 tasks of one user

and 1 task each from two other users. So finally, we used 61 episodes for our data

analysis.

The entire study was carried out over 5 days. Figure 6.4 provides a schematic

layout of the study venue. Unlike the distinct shops in the Delhi food court, the gift

shop did not have any well defined zoning. However, I have marked the zones in

the shop based on the majority items that were present in the zone and these zones

have been referred to as shops while extracting features. It must be noted that the

zoning in the figure did not define a pure zone; some of the clothing zones had gifts
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Figure 6.4: Schematic Layout of University Gift Shop

and vice versa.

Similar to Study 1, for this study, participants executed some semi-guided tasks

to mimic shopping behaviors and the broader category was similar – the shopper had

to execute tasks mimicking focused, confused and no-buying-intention. However,

since the location of the study was not a food court, the details of the tasks varied.

1 No Buying Intention (NBI): To generate a no-buying-intention behavior, users

were instructed to “Spend some time in the shop window shopping before

your friend joins in”.

2 Buying Intention-Alone-Focused (BIAF): For the second study, this behavior

was generated through the instruction similar to “buy a t-shirt for yourself”.

Again, to ensure that the buying required some choosing, the item that was

suggested in the instruction had multiple options – e.g. multiple t-shirt de-

signs.

3 Buying Intention-Alone-Confused (BIAC): To generate the confused behavior

in the gift shop, participants were instructed to “Please buy a gift item for an

acquaintance”.
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Similar to the previous study, the participants in this study were instructed to

follow the behavioral tasks. There was no restriction imposed on the physical shop-

ping activity or the time taken to carry out the entire shopping. Shoppers were free

to move as they wished and look at/pick items from any rack in the store.

Sensor Data Collection− In Study 1, we collected sensor data using the Samsung

S II smartphone. In this round of study, we provided the Samsung S IV smartphone

to the participant. The participant also wore a LG Urbane smartwatch (note: smart-

watch data has not been used in the behavior analysis). The participants were asked

to carry the smartphone in the front pocket of the clothing and wear the smartwa-

tch in the dominant hand. Both the devices were running our custom application,

which collected not only the inertial sensor data and Wi-Fi scan data, but also ble

scan information. Again, similar to study 1, we used inertial sensor data from the

smartphone to determine locomotion state, while the location of the shopper was

determined through the Wi-Fi scan information. Even though we collected BLE

information, the location derived in the final evaluation was through Wi-Fi based

localization using the RADAR technique [9].

Ground Truth Collection− The ground truth data collection in this study was done

by shadowing the shopper, in a manner similar to Study 1.

6.3.2 Determining Number of Shopping Styles

Since we believed that the data from shoppers could be clustered based on shopping

styles, we had to divide the data into clusters. However, we did not have before

hand knowledge of the number of existing shopping styles; thus, we first estimated

the number of clusters (or shopping styles) in the shopping episodes. For this deter-

mination, we used an empirical approach. Since the number of clusters could vary

across studies, we used the data from each study to determine the optimum cluster

size for the particular study.

To understand the likely shopping styles embedded within our observational
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Figure 6.5: Study 1: Effect of Cluster Size on Prediction Accuracy

data, we studied the accuracy of the best-performing U2 approach (details in

Section 6.5) by varying the number of clusters K specified in a simple K-Means

clustering algorithm [42]. Accuracy for a value of k was defined as the sum of all

correctly predicted instances in every cluster divided by the total number of instan-

ces in the entire dataset. We next see how the accuracy is affected by the choice of

K.

6.3.2.1 Determining K in Study 1

For study 1, we used the ground truth data to determine the variation in accuracy.

Figure 6.5 presents the variation in classification accuracy for different values of

K. From the figure we can see that K = 3 provided the best performance for 2-

ary classification, while the performance of both K = 2 and K = 3 are similar

for 3-ary classification. To make a conservative estimation, we decided that there

were three latent shopping styles in our dataset and used K = 3 in all our studies.

An observation we made in this analysis was: for higher value of K (greater than

4) certain clusters evolved with less than 3 episodes indicating that the clustering

algorithm was looking too narrowly for clusters and we were running into the danger

of splitting one shopping style into multiple clusters if we chose larger cluster sizes.
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Figure 6.6: Study 2: Effect of Cluster Size on Prediction Accuracy

6.3.2.2 Determining K in Study 2

For the second dataset, similar to study 1, we tested the variation of accuracy for

different values of K. Figure 6.6 presents the variation of accuracy for different

values of K. From the values we can see that again the best performance is at

k = 3 for both 2-ary as well as 3-ary classifier. Again, similar to the previous study,

in this study also we see that as we increase the number of clusters, there is a dip in

accuracy after an initial rise. This is a strong indication that even though clustering

might improve in identifying shopping styles, having too many clusters isolates

certain episodes.

Based on these explorations, we used K = 3 as the number of clusters in both our

studies.

6.4 Methodology

We now investigate an approach for recognizing various abstract aspects of in-store

shopping behavior from an individual’s mobile/wearable sensor traces. The CROS-

DAC approach seeks to (a) first identify these distinct styles in a data-driven fashion

(from the underlying multi-user training data), and then (b) have these styles mo-

derate the actual classification process. The identification of styles is performed
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via a clustering technique, whereas a separate classification model is then develo-

ped from training data for each specific cluster. For all our experiments, we used

Weka [41]’s implementation of (i) k-means algorithm for clustering (ii) J48 decision

tree for classification and (iii) 10-fold cross validation strategy.

Steps in the data processing pipeline included: (1) extracting sensor data from

the smartphone and framing them. The sensor data included accelerometer data

as well as the Wi-Fi scan results. (2) extract micro level details - instantaneous

micro level activity and location from the frame (3) use the micro level details to

extract features for an entire episode (4) Cluster episodes with similar shopping

styles together (5) Apply a classifier to determine the shopping intent.

6.4.1 Feature Vectors & Classification

For an entire episode, we had a feature vector of length 25. We next describe the

features that were calculated at the third step of the data processing. The features

were extracted from the micro level locomotion and location details. The features

were divided into two classes:

• High Level Locomotive Features: These are obtained from (accelero-

meter, compass) readings. These include ( f1 · · · f8) - number of [sit;

stand;walk;turn] frames and percentage of time spent in each of these acti-

vities, and ( f9) - the number of state transitions.

• Trajectory Features: These are obtained from Wi-Fi based location traces.

The trajectory features is broken into two levels:

1 Grid level features, which consists of location at grid – level granularity,

both at (i) micro-level (shopping area broken down into 10x10 grids) and

(ii) macro-level (shopping area broken down into 2x2 grids). Micro-grid

level features included ( f10) - number of grids visited at least once, ( f11)

- total number of grids traversed and ( f12) - the number of re-visits to an

individual grid, where the count is incremented if the user visits a grid
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she had visited previously. Macro-grid level features included (f13−f16)

- the percentage of time spent in every grid, and (f17) - the grid wise

entropy calculated from the proportion(Pi) of time spent in each grid

using the formula−∑4
i=1 Pi ∗ log(Pi). Repeated visits to grids and high

number of grids traversed indicated either a BIAC or a NBI. At a macro

level, when a user spent most time in one grid, it was indicative of a

BIAF user.

2 Semantic level features, i.e., computed at shop-level granularity inclu-

ded (f18, f19) - the number of shops visited (both repeating and unique)

, (f20) - highest time spent stationary in front of a shop, (f21) - total time

spent in shops, (f22) - mean time spent in shops, (f23) - Standard devi-

ation of time spent in shops, (f24) - the total episode time and (f25) -

proportion of time spent in top shop i.e (f20/f24). If the person spent a

high percentage of her episode time in front of shops, it was often indi-

cative of BI; likewise, if the difference of number of shops visited and

the number of unique shops visited was high (indicating multiple visits

to the same shop), it indicated BIAF user.

6.5 Results

The above mentioned features were used to determine every shopping behavior.

For each of the studies, we determine the accuracy of CROSDAC and our insights

of the shopping behavior. We investigate how the various methodologies described

previously perform in identifying the shopper’s behavior. We investigate two cases

here: (1) 2-Ary classifier which tries to identify whether the shopper has buying

intentions (BI) or no buying intentions (NBI), and (2) 3-Ary classifier which tries to

distinguish across all 3 labels: BIAF, BIAC and NBI. For the 2-Ary case, both BIAC

and the BIAF labels map to the BI class label. Using a 10-fold cross validation

methodology, we investigate the resulting classification accuracy.
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U1 U2 C1 C2

Sensor Data
2-ary 71.6 77.6 64.7 71.47
3-ary 46.02 52.2 41.3 42.05

Ground Truth
2-ary 76.41 89.7 74.77 83.7
3-ary 52.68 64.47 45.9 56.57

Table 6.3: Study 1: Classification Accuracy for Sensor Data and Ground Truth

In this section, we also scrutinise the types of episodes that fall in each cluster

and finally, we identify the features which have the highest distinguishing ability.

6.5.1 Study 1: Food Court

For our studies, other than the sensor traces, we also had the data from the ground

truth. For the data analysis, we computed the performance of both: (1) the sensor

trace which is obtained from the participant smartphone, and (2) the ground truth

obtained via shadowing. The difference in the performance between the two traces

would help us understand the magnitude of inaccuracy that creeps in because of the

inaccuracy in determining micro- features, which might either be the locomotive

feature or the instantaneous location.

6.5.1.1 Classification Accuracy

Table 6.3 shows the performance of the different techniques for data obtained from

the sensor trace as well as the ground truth. From the results we can see that the

identification accuracy in case of ground truth based analysis is much higher than the

sensor trace information, with accuracy difference being as high as 10% in certain

cases, showing the importance of identifying the micro-features more accurately.

However, since we have to determine the episode type from the sensor data, we

scrutinise the sensor trace to identify some key findings. There are some interesting

findings from the data:

• For the sensor trace data (as well as the ground truth data), we find that the

clustering-based algorithms(U2,C2) outperform their respective basic coun-
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terparts (U1,C1), with the pairwise accuracy gains exceeding 10% (for U2

vs. U1). As clustering is our implicit method for identifying latent shopping

styles, the results suggest that identifying and using such styles as a basis for

differentiation is central to robust performance.

• Explicit use of demographics as a basis for clustering similarity is not always

beneficial. Note that U1 outperforms the corresponding demographics-aware,

CSN-equivalent, method (C1).

• Finally, note that the classification accuracies for our style-based approach,

U2, is higher than all the other approaches (Quite high if ground truth data is

used). This suggests that mobile sensing-based classification of such abstract

shopping attributes may indeed be possible-such classification will become

more accurate as wearable sensing becomes more commonplace.

6.5.1.2 Error Analysis

We next wanted to understand which classes were being confused for another. When

we compared the prediction vs actual class label for each episode, we found that

identifying NBI was easier to detect as compared to the other classes. We take an

observational approach and identify characteristics which might have caused the er-

ror. For the NBI task, we observed that participants commonly used their cellphone

(to make a call, use an App or play games) while sitting in the central area or wal-

king around the food court. Some NBI participants ambled around the food court,

glancing through the menus of the stores. Comparatively, BIAF participants usually

either (i) went directly to a beverage-carrying store right next to the cash counter af-

ter purchasing their cash card, or (ii) went to 2-3 stores before making their purchase

(from post-task interviews, this was attributed to either longer queues or their pre-

ferred drink being unavailable at the initial stores), while BIAC participants also

visited multiple stores, but their browsing time in front of each of the stores was

much higher. BIAC participants exhibited two types of confusion: (i) inter-store,
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Figure 6.7: Study 1: Features with the Highest Information Gain

where the participant was unsure about the store selection, and (ii) intra-store, where

the participant is unable to choose from the menu within a store. When we analysed

the confusion matrix for the study, we found that the intra-store confusion behaviour

was sometimes perceived as focused behaviour (as both intents exhibited a long pe-

riod of being stationary at a single store). From the post-survey, we also discovered

a cultural aspect: vegetarian participants preferred going to stores selling only veg

food items. While our observational dataset is quite small, similar cultural traits are

likely to exist in other geographies (e.g. people going to Halal food stores).

6.5.1.3 Information Gain

Finally, we wanted to understand which features had the highest influence in pre-

dicting the class labels. For this, we ranked the features based on their information

gain. Figure 6.7 shows the 5 features which had the highest information gain. From

the list we can see that duration for which a person stands or sits is a key feature in

this identification. Since a shopper who made a purchase stood near the food court

counter for a while, this feature played an important role. Similarly, a person who

had no buying intention would take a seat in the sitting area of the food court. Other

features which ranked highly in the information gain list are: proportion of times at

shops - which had a strong influence in filtering no buying intention and max time

in a shop: again indicating that the person was making a purchase.
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U1 U2 C1 C2
2-ary 65.57 70.49 65.57 65.57
3-ary 40.98 54.09 42.62 47.54

Table 6.4: Study 2: Performance of Different Approaches in the University Gift
Shop

6.5.2 Study 2: University Gift Shop

We next study the performance of the various techniques in predicting shopper’s

behavior in the University gift shop.

6.5.2.1 Classification Accuracy

Table 6.4 shows the performance of the different techniques obtained from the sen-

sor trace. From the table we can see that (i) Similar to Study 1, in Study 2, the U2

performs better than U1 for both 2-ary as well as 3-ary. But for the CSN like appro-

ach, we found that in case of 2-ary, the performance of both the approaches C1 and

C2 are similar. This indicates that the performance of clustering based identifica-

tion approach is at least at par with the non-clustering based approach, if not better.

(ii) Overall U2 again has the highest accuracy and in this study, for 3-ary classifi-

cation, the performance of U2 is much higher than its counterpart U1. However,

the accuracy of U2 in this study is lower than the accuracy obtained in Study 1. In

Section 6.6, we discuss about the effect of the environment on the performance.

6.5.2.2 Error Analysis

Similar to the previous study, we analyse the possible error causes in the 3-ary pre-

diction. For this study, we found that almost all the classes had similar true positives

(between 50 to 60%), with BIAC being the highest. In terms of actions observed,

in our studies we had some observations which demonstrates behavioral difference

in diverse store types. We first describe the behaviors observed in the study. For the

focused task (BIAF), many participants went directly to one zone selling t-shirts,

chose one t-shirt and returned to the checkout counter. However, there were some
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Figure 6.8: Study 2: Features with the Highest Information Gain

participants who moved back and forth between selected shelves while making the

choice and some of them were categorised as confused (BIAC) shoppers. Most

shoppers executing the BIAC task spent a lot of time walking around the shop.

Amongst the confused category, there were some shoppers who had decided that

they would buy a souvenir, while there was another category of shoppers who were

confused whether to buy a piece of clothing or a souvenir. Finally, for the NBI

category, the unpredictability of the human was evident. Even though we had in-

structed the shoppers that they had to window shop, we ended up with 6 impulsive

shoppers - these shoppers initially started off with normal window shopping, but at

some point, they liked an item and considered it like a confused buyer. After the

study was completed (turning of the sensing application), these shoppers ended up

buying the item. So evidently, some of these impulsive shoppers ended up being in

the confused category.

6.5.2.3 Information Gain

Finally, we analyse the information gain of the various features in the study. Fi-

gure 6.8 shows the features with the highest information gain in Study 2. From the

data we see that Stand and Walk - indicating the count of state transitions to Stand

and Walk have the highest information gain. A possible reason for this is that cu-

stomers who are focused usually tend to stick to one location (also reasoning why

stand duration is ranked fifth), while in case of confusion, participants would walk
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around, stop and then walk again to a different shelf. This also gave the intuition

as to why euclidean and Manhattan distance measures featured higher in the top

feature list.

Comparing the features with the highest information gain in the two studies, we

find that the type of store plays an important role in determining which features will

have the highest information gain and in turn, the highest influence in determining

the behavior.

6.5.2.4 Sensitivity Analysis

The number of episodes used in our studies is small and for our studies, we have

performed a leave one episode out cross validation. The classifier model generated

for every episode in the study is susceptible to overfitting. To understand if this

is really an issue, we performed sensitivity studies on various sizes of the training

dataset.

For this study, we divided the entire dataset (U ) into two sets – the training

set and the testing set. The size of the training set (ST rain) was varied between

10% of U to 90% of U in steps of 10. A stratified random selection approach was

used to create the training set of size ST rain. This ensured that the training model

has a balanced representation of each class label (’BIAF’,’BIAC’,’NBI’). Episodes

that were not used in creating the trainer were assigned to the testing set. Once

the training set was selected, it was clustered into k = 3 clusters and for each

cluster, a classification model (decision tree) was created. To test the performance,

each episode from the testing set was selected and assigned to a cluster (using k-

means clustering approach). Inside the cluster, the episode was passed through the

cluster specific classification model and the behavior exhibited by the shopper in

the episode was determined. For every value of ST rain, the process was repeated 20

times with unique seeds, to create 20 different unique training sets.

Figure 6.9 represents the performance of CROSDAC for both binary as well as

3-ary classification. The error bars represents the standard deviation in accuracy for
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Figure 6.9: Average Performance (20-Runs) of CROSDAC for Different Training
Data Size

the 20 runs. From the figure we can see that the overall variance in performance

of the binary classifier – distinguishing between ’BI’ and ’NBI’ was lower than the

3-ary classification. The overall performance accuracy for the 2-ary classification

is between 60% and 70%. Compared to this, the 3-ary classifier accuracy varies

between 32% to 51%, where 32% accuracy was achieved for ST rain = 10%. For

3-ary classification, random selection probability is 33%. This indicates that when

the training dataset size is small, the performance is similar to random selection.

However, as more data is used to train the model, the performance gradually im-

proves. The difference between the system’s performance when ST rain = 50%

and ST rain = 90% is used is 3% as compared to a difference of 13% between

ST rain = 10% and ST rain = 50%, indicating that when the training set size is small,

there is variation of performance from 3-ary, which gradually stabilises as reasona-

ble amount of training data is available. In case of binary classification, the increase

in performance of the technique is marginal for various ST rain (there is a difference

of 1.5% between ST rain = 50% and ST rain = 90%) indicating that the technique’s

behavior is consistent – increase in the training data size does not significantly im-

prove the performance. Since in these experiments, we have varied the training set

157



for every run and have also varied the size of the training set, yet we achieved similar

performance for the different runs, indicating that the model is not overfitting.

6.6 Discussion

In this Chapter, I have shown two studies that were conducted to determine the shop-

ping behavior. There are some interesting points of discussion, which I highlight in

this section.

Location Specific Model: From the two studies that we conducted, we found that

there is ample difference between the behavior exhibited by shoppers in a food

court as compared to the souvenir store and that is expected. This difference is

also highlighted by the ranking of features in terms of information gain. There can

be many other behaviors - e.g. behavior in a shoe store or a supermarket will be

different. However, for every location, there are certain fixed traits exhibited which

can determine the intent of the shopper - e.g. a confused shopper might try out

multiple sunglasses or in a food court, a confused shopper might stare at the menu

longer. So we should build classification model for a set of similar stores.

Location specific Prediction Approach: For our current studies we used indoor

localization techniques which are known to have atleast 2 meters inaccuracy. In

case of the foodcourt, the length of the floor was more than 30 meters and the

average distance between cash registers of stores was more than 2 meters and so a 2

meter inaccuracy was tolerable. However, in case of the souvenir store, many racks

were within 1 meter of each other and thus indoor location techniques have errors

in determining the exact shopper’s location, which in turn propagates error to the

semantic level features. Thus, location specific techniques to mine out the micro

features should be used – e.g. techniques such as BLE localization might help in

improving the localization errors in a small store as compared to the Wi-Fi based

location prediction techniques.

Alternate Sensors: In our current studies we have attempted to determine the be-
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havior using the data from the smartphone. However, with the prevalence of other

sensing options - smartwatches or fitness bands, it might be possible to extract a

richer set of features - e.g. currently we have information about where a person is

standing and for how long - smartwatches can enhance this feature by adding how

many items were picked while standing at the location to the current feature set.

Handling the Cold Start: Since the system is designed to determine the behavior

of the shopper unobtrusively and without any personalised training, getting the ini-

tial corpus of diverse sensed data might be difficult. Even with data from a small

set of volunteers, it might not be possible to cover a wide range of shopping styles.

A possible approach to handle such a situation is to involve the user - e.g. if the

prediction probability of a certain behavior is low, then the application might ask

certain questions to the user and determine the behavior, which can be added to the

database. Alternately, instead of employing a deterministic behavior prediction sy-

stem, future systems can have probabilistic predictions. In such cases, shopkeepers

can take decision if the probability of a certain behavior is above a threshold.

Energy Consumption: Currently for this work, we do not consider energy factor.

However, if all the sensors are turned on continuously, battery drain will be high and

the device will not be usable for its regular usage like making calls. Thus, a system

like SHOP should be built while ensuring that the battery drain of the system is not

high. Various techniques exist in literature - e.g. duty cycling, adaptive sensing etc.

which can be used to conserve the energy.

Possible Alternate Approaches: In this chapter we described a system which uti-

lises sensor data from the smartphone to determine a shopper’s behavior. We also

discussed about the possibility of using the wearables for such inference. However,

in an eco-system without personal devices, alternate possible approaches could be

- (a) video analytics - continuous image processing on frames extracted from a vi-

deo could help in identifying shopper behavior, (b) infrastructure sensing - recent

work like ShopMiner [135] have shown that information from infrastructure sensors

(RFiD tags) could be used to determine items picked and correlation between items.
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Extracting information - e.g. how many times was the same item picked, could help

in identifying behavior. However, Shopminer does not create an individual speci-

fic item information, thus designing techniques to relate an item interaction with a

person is required.

6.7 Summary

This chapter tackles the important, albeit ambitious, problem of inferring the ab-

stract intentions of individual shoppers at stores, based on mobile sensing of their

in-store physical behavior which can reveal various interesting insights about the

shopper’s behavior. The key goal is to develop an activity/intent recognition al-

gorithm that works at crowd-scale in real-life, i.e., it accommodates the diversity

expected across the throngs of shoppers, but does not resort to building individuali-

zed supervised classification models (which require infeasible amounts of training

data). Based on two real-world studies, it was observed that the impact of diver-

sity on certain high level activities, such as shopping, cannot be factored in simply

through individual demographic/environmental components. Instead, CROSDAC

approach, which utilizes an unsupervised clustering algorithm to detect the latent

shopping styles embedded in a crowd-scale population, performs better than prior

community-oriented approaches, that assume that similarity in demographic attri-

butes translates to a similarity in behavioral styles. CROSDAC achieved reasonable

accuracies in determining behavior in both our studies, even when noisy sensor data

in a real-world setting was used. Although our overall accuracy in either setting was

not very high, our studies do indicate that locomotive and trajectory-based features

can reveal insights into a shopper’s mindset, especially if we employ unsupervised

clustering to first disaggregate users into distinct shopping styles. Moreover, the

classification accuracy can be expected to increase as more accurate and diverse

sensing techniques (e.g., finer-grained BLE based indoor localization, wearable-

sensor based gesture monitoring) are adopted. As wearable devices become more
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popular, it can be expected that the range of physical activities captured will only

increase, thereby bringing more discriminative power in determining much finer

grained behaviors.
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Chapter 7

Discussion and Future Directions

In this dissertation, I described several approaches for building systems/designing

techniques to monitor various daily life activities through multi-modal sensing. In

the process, I have addressed various system related challenges - e.g. power, latency

etc. To validate these systems, I have conducted several user studies, more than

what has been described in this dissertation. Some studies have not been reported

as no useful outcome was derived from those studies. Even though useful results

were not derived, yet those studies helped in improving all the current systems.

Studies described in this dissertation involved 116 participants, who participated

in multiple controlled, semi controlled and in-the-wild studies. These studies have

resulted in the multiple published [120, 130, 133] or under review works. The food

journaling application – Annapurna has been demonstrated in various conferences

and seminars (Mobisys 2016 [134], ICDCN 2016 1, TechInnovation 2016 2).

During this journey, I have learnt multiple important lessons, including:

• A major lesson that I learnt while testing the systems is not to depend on mo-

dels created using data collected from controlled studies for determining real

world gestures. I found that a user behavior in a controlled study was very

different from a real world study. There are numerous scenarios and environ-

1http://ares.smu.edu.sg/icdcn16/posters.html
2http://www.techinnovation.com.sg/
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ments that a user faces, which a lab study cannot predict – e.g. eating in a food

court with a group of friends usually results in more random hand gestures as

compared to an in-lab data collection. In short, models created in a lab setting

more often than not, fail in the real world, even if cross validated accuracy of

such models are high. Thus, anyone interested in building systems to monitor

real-world activities, should ensure that they have collected reasonably large

amount of data from real-world settings. It is not necessary that the data has

to be personalised, but it should capture a diverse activity set which will be

representational of activities that the user of the system might perform.

• Another key takeaway from the system building was that in terms of energy

consumption of the system, no component inside a smartphone or any wea-

rable is a cheap component and no sensor is a cheap sensor. Turning on any

sensor, no matter how cheap it is, will affect the overall system’s lifetime and

in turn performance. So, systems should be built while balancing the duration

for which a sensor is operational and the accuracy desired for the system.

• Finally, for conducting user studies, unless the entire process is performed

systematically – from planning to post processing, reworks becomes unavoi-

dable. An example of such a situation arose during an initial data collection

for the I4S study. During the data collection phase, shadowing the shopper

was done by two of us. After the first round of data collection, we identified

difference in the shadowing approach that each of us had taken. While I had

marked pick when the hand touched the item, my colleague had marked pick

after the hand had removed the item from the shelf. So, in both the cases,

even though individually both the markings were acceptable, however care

had to be taken during the processing. This by itself was not a show stopper.

However, when this was added to the next difference that we had, data pro-

cessing became more difficult. The next difference was the orientation of the

hand at the start of the shopping – we learnt that the performance of the game
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rotation vector sensor data was affected by the initial orientation and since we

had collected data without actually ensuring similar hand orientation, or no-

ting down the initial hand orientation, some of the initial data collected could

not be analysed and used in our studies.

These experiences in previous projects will definitely help in better executing

future research. I next describe some future research possibilities.

In this dissertation, I have presented some novel and innovative approaches

and techniques that I have applied to produce energy-efficient, accurate and non-

personalised systems for ADL monitoring. During the process of building these

systems, various innovative research directions have opened up, which goes beyond

the food journaling or shopping activity/intent detection. In this section, I discuss

some possible improvement to the existing systems and applicability of the currently

developed approaches in other activity recognition systems, as well as identify ad-

ditional interesting research questions for future work.

7.1 Additional Uses of Gesture-Triggered Image

Capturing

The Annapurna-like approach of gesture-triggered image capture by the smartwatch

need not be restricted to eating, but can be used to capture context of other activities

such as shopping. In particular, we explored this concept for identifying the items

with which a shopper interacted in a store – i.e., in achieving the same goals as I4S,

but without the infrastructural BLE support.

7.1.1 In-Store Interaction Monitoring

Chapter 5 describes I4S, a system that fuses sensor data from multiple source, to

identify the location from where an item is picked. Through a simple lookup, I4S

can identify the exact item picked (not currently implemented). In addition to I4S,
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Figure 7.1: Architecture for a Single Device Item Identification System

we have also explored a single device in-store item interaction technique, which is

similar to Annapurna. Through a controlled study, we found that an Annapurna–

like approach could be used for in-store item interaction. The approach, similar to

I4S, utilises the inertial sensor data information from the smartwatch to determine

the picking gesture. But instead of using the BLE scan information, this appro-

ach investigated the use of a camera (attached to the smartwatch) to determine the

object being picked - similar to Annapurna. However there are a few differences

between this technique and Annapurna– (a) since the picking gesture involves hand

movement in a particular direction, the camera orientation that was used in Anna-

purna might not be optimum, (b) Annapurna did not attempt to identify the food

item from the image and (c) Unlike picking, eating is a repetitive and periodic ge-

sture. We thus had to continuously identify the hand gesture. In this work, we did

not target developing a real time solution and hence I will not discuss (c), but focus

only on the first two differences. At a high level, this approach uses the inertial

sensor of the smartwatch to determine “pick” gesture and captures images using the

camera on the smartwatch to identify the item. The identification of pick in this

approach is similar to I4S and we will not focus on that. The subsequent sections

focus only on the image capturing and identification technique involved.
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7.1.1.1 System Overview

Unlike I4S, where we identify the location of pick and then through a reverse lookup

we identify the item picked, the goal of this approach is to directly identify the item

picked through the images captured. Thus, the whole working of the system can be

broken down into two parts: (a) identify the pick gesture and (b) capture images and

identify objects in the image. In this section we concentrate only on (b).

To realise (b), consecutive image frames captured by the smartwatch’s camera

are transferred to a backend server. The image processing module on the server

matches the image frame captured by the watch against a corpus of test images, to

determine the object in the image.

Figure 7.1 shows the overall working of such a system. In this architecture, the

smartwatch is responsible for “pick” detection and “image capturing”, while the

backend server is responsible for the item identification through image recognition.

7.1.1.2 Design Choices

To realise the system, we required a watch which could capture image when a person

was picking. We tested out various camera positions on the watch’s strap as well

as the orientation of the watch with respect to the hand. Based on our empirical

observations, we found that we could capture the best images when the camera was

on the side of the watch face and the watch was rotated so that the face was on

the same plane as the person’s palm. Based on this requirement, we found that the

Omate TrueSmart [100] smartwatch had a camera on the watch which best suited

our needs. Figure 7.2 shows the orientation of the watch as well as the camera

position on the watch. It also shows the image captured by the watch in a frame,

while Figure 7.3 shows the images captured by the smartwatch. The time difference

between two successive images in the figure is 167 ms.
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Figure 7.2: Camera View With Image Captured While an Item is Being Picked

7.1.1.3 Dataset

To understand the feasibility of capturing the item’s image, we performed a small

lab study. For our study, we recruited 5 participants from our lab (2 males, 3 females

- all aged between 20 and 30) and who were almost in the similar height range

(1.55 to 1.70 meters). Participants were asked to perform activity sequences that

are normally carried out while grocery shopping: (1) open the door of the shelf,

(2) pick an item from the shelf, (3) put the item aside and (4) close the door of the

shelf. Each participant repeated the sequence for 3 different items (packs of biscuit,

packs of green tea and bottles of water) which were placed in 3 different shelves.

Each participant repeated this process 10 times. In total, we collected 30 sample

sequences each from a participant. The ground truth of the activities was collected

by a shadower, who labeling the activities as the user performs it.

7.1.1.4 Methodology

As shown in Figure 7.3, while performing our experiments of picking items, we

found that for a short period of time, the camera on the watch usually points towards

the item that is being picked and it is possible to capture a legible image of the

item being picked from the camera. To investigate the possibility of identifying the

item while a person is picking and to identify the best moment when the object is
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Figure 7.3: Images Extracted from the Video While Person is Picking an Item

visible, we captured a video during the participant’s activity sequence and extracted

all individual frames from the video. This was done for the 5 users, each picking

items from the three different racks.

In all we extracted frames from all the 150 videos that were captured. Next, to

analyse if the captured image (extracted from the video frame) could be identified

automatically by a image recognition software, we used the as-is implementation

of SURF [12] algorithm in openCV. A small training set was created by capturing

the images of the 3 objects (3 images of each object, taken from 3 different an-

gles). Each frame was compared against the training set and the recognition was

considered successful if the image was identified correctly.

7.1.1.5 Results

We first investigate if all the frame extracted from the video captured the image of

the item. Based on manually inspecting the 150 videos, we found that we could

see the object at least once in all the 150 videos. Next, from all the videos, frames

were extracted. We again manually labeled whether the frame captured the image

of the item. We plotted the probability of a captured image being ‘useful’ (i.e.,
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Figure 7.4: Probability of Capturing Image of Item Being Picked

provides a clear view of the item picked) as a function of the time when the image

was captured, relative to the overall duration of the gesture. Figure 7.4 shows the

plot of this probability as a function of the time, with the time being expressed as a

percentage of the overall gesture duration. We can see that the probability of getting

a useful image is within the 20th to 80th percent of the duration. In terms of absolute

time, this window is approximately 1.2 seconds, which is a fairly wide window and

thus instead of capturing a video, even if a single image is captured, the image of

the item will be procured, resulting in savings in the overall energy consumption.

We next analyse the performance of the SURF algorithm in identifying the item

in the images. We found that we could identify the correct item in 61% cases (va-

nilla baseline - 33%), which was not very high. When we analysed the images that

were identified wrongly, we realized that the wrong classification occurred due to

(i) occlusion of the object - if the object is small, the fingers cover a major portion

of the image. In our case, we found that in many of the frames containing the pack

of biscuit, where part of the packet can be seen, the image recognition software

mistook it for the tea box. (ii) blurriness - when the item being picked is picked,

motion blur creeks in the image frame obtained from the video. This might result in

mis-classification. (iii) Insufficient training of the recognition model - for our small

study, we just used simple feature matching to recognise the objects. Even though

these images were taken from different angles, they did not cover all possible angles
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that might be visible to the camera when the object is being picked. The accuracy

should improve with a more sophisticated recognition model that can be trained

carefully for this application. To understand if images captured by the watch were

identifiable by a commercially available deep learning based image recognition soft-

ware, we ran some of the images on Clarifai [27], a commercial image recognition

software which uses convolutional neural networks. We found that, even without

supplying training data, the deep learning software was able to broadly tag the ima-

ges obtained from our study and every video had at least 1 frame which had been

identified correctly by Clarifai.

7.1.1.6 Comparing with I4S

Both I4S and the Annapurna-like approach have their own advantages and disad-

vantages. We next compare the two approaches for some important aspects:

Privacy: Compromise of privacy is a growing concern for many wearable ap-

plications. However, since privacy concerns is person dependant, it is difficult to

determine which sensors data leakage has more serious impact. For example, a per-

son X might be okay with automatic camera trigger, but might not want her location

information to be public, while another user might be okay with location leaks, but

will be concerned about her accompanier details getting leaked. I compare the two

approaches in terms of location privacy and image captured concern. In terms of

location leak - identifying that the shopper is in a particular shop or has picked a

particular item is possible through both the techniques. However, privacy concerns

such as capturing images of all other shoppers who are present in the shop at a par-

ticular time is possible in the Annapurna-like approach. Unless proper precaution is

taken, privacy can be a major concern in the Annapurna-like approach. Approaches

such as on-the-fly face detection and blurring can be applied, but that might not be

adequate in many scenarios.

Occlusion: Since the Annapurna-like approach utilises the camera mounted

on the smartwatch to capture images of the products, it requires the smartwatch

170



camera to have an unobstructed view i.e., not be covered by clothing such as jacket

or shirt sleeves. An alternative to the use of wrist worn cameras can be the use

of smartglasses [122], however this will increase the number of devices involved

in the recognition. Since I4S does not capture images, this is not a concern in the

approach. However, I4S uses RF signals to determine the precise location of the

person and the signals are affected when there is an obstruction between the beacon

and the device.

Energy Overhead: Currently both the approaches have a certain set of sensors

which are continuously sensing. For I4S, the sensors includes the inertial sensors

and continuous low energy bluetooth scan, while for the Annapurna-like appro-

ach, the sensors that are continuously sensing are inertial and the camera. Thus the

comparison between the two approaches is the camera versus BLE scans. From em-

pirical evaluation, we found that continuous video recording using the smartwatch

drains out a completely charged smartwatch in 80 minutes, while the battery drop

for a completely charged smartwatch performing BLE scans is 18% in 80 minutes.

This indicates that I4S has lower energy overhead as compared to the Annapurna-

like approach. However, smart triggering of the camera (an approach is described in

Chapter 4) instead of continuous video recording can significantly lower the energy

consumption.

Identifying misplaced items: I4S’s operation is based on the premise that iden-

tifying, at shelf-level granularity, the location of a user’s pick gesture implicitly

identifies the product (or product category) selected. While this is likely to be bro-

adly true, store operators know only too well that products are continually being

misplaced by shoppers. Hence, if a shopper picks up an item from a shelf where it

has been dumped by a previous shopper, I4S will result in a mis-identification of a

shopper’s true interest. On a contrary, the Annapurna-like approach is based purely

on image recognition and thus immune to item misplacement.

Infrastructure / Store Knowledge Overhead: Since both the approaches re-

quires item level information - a detailed inventory list is necessary for both the
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approaches. Besides the inventory list, I4S requires (a) the knowledge of the shelf

location of every item, and (b) deployment of BLE beacons, with the system being

aware of the location of the deployed beacon. This is an additional overhead for

the system. Alternately, the Annapurna-like approach has the additional overhead

of maintaining a large corpus of images of the items in the store against which the

captured image can be matched.

Multi device synchronisation: I4S relies on fusion of data from multiple devi-

ces – smartwatch, smartphone as well as deployed beacons. Failure due to software

or hardware at any source or synchronisation mismatch between any pair of devices

will produce erroneous predictions. Contrary to this, the Annapurna-like approach

relies on a single device and thus is not affected by failure of other devices.

7.2 Short Term Plan

Before discussing my longer term research plans related to the broad topic of ADL

monitoring, I discuss some short term plans which can be studied to improve the

existing diet monitoring and shopping monitoring systems.

7.2.1 Automated Food Journaling

Energy: The existing Annapurna application has been tested with users in the real

world setting and as mentioned in Section 4.6, I found that the battery life of the

system was less than half a day, indicating that if we had to take the system beyond

lab studies, we will have to figure out techniques to improve on the energy. I have

listed down some possible energy improving approaches in Section 4.6. I plan to

test those techniques and analyse the possibility of increasing the system life.

Hardware Independence: The current version of Annapurna requires a camera

on the smartwatch, that too at a certain position. However, due to various con-

cerns (energy, privacy, lack of compelling use case), manufacturers are gradually

removing the camera from the smartwatch and this will affect the existing design.
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To achieve an image based journal, alternate devices – smartglasses or other head

mounted cameras might be used, with gesture based triggering used to capture the

images. Alternately, if the system can seamlessly integrate with infrastructure ca-

meras, they might be useful in capturing images.

7.2.2 In-store Interaction Identification

Using video cameras: Both these approaches have their own advantages as well

as disadvantages. Other than these approaches, there are various other possibilities

that can be explored to identify in-store item interactions. Some other possibilities

includes - combining infrastructure-based video sensing with either approaches to

improve the accuracy of pick identification and localization. For example, video

cameras mounted on either walls or on the top of individual racks may be used to

identify the time instants when a shopper’s hand picks up an item from a shelf,

and this time may be correlated with the inertial sensing-based pick time detected

by the smartwatch to unambiguously identify which shopper picked up the specific

product.

Futuristic Shopping Experience: In the current work, I have concentrated mainly

on the picking gestures. However, there are many other gestures that are performed

in the store. An interesting direction can be in creating a taxonomy of all possible

gestures, which can be used to identify state transition probabilities, which can ex-

plain shopping event sequence. Currently, in this dissertation I have not looked at

any real time prediction techniques. With the knowledge of state transitions, various

existing techniques can be used to determine the shopper’s behavior - e.g. if a shop-

per picks item A and then stands for a while, it can be predicted that he will pick

item B. With techniques like I4S in place, various innovative in-store experiences

can also be created for customers – e.g. a smart basket along with the I4S system

can help in identifying all items that have been placed in it. When the smart-basket

+ I4S system detects that the shopper has finished picking all items, it automatically
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checks out all the items.

Beyond the Shops: Techniques learnt and used in building the above systems

can be used to build other innovative applications which can involve usage of one

or more devices amongst a smartphone, wearable device like a smartwatch and

any infrastructure sensors. Some examples can be: With the availability of smart

displays in public places [142], a possible use case of a system like I4S can be in the

library. When a person picks a book from the library’s shelf and reads the synopsis,

the smart display might communicate with the smartwatch and identify the book

picked. With that information, the display can show details of similar books or

reviews from other users etc.

7.3 Longer Term Research

Throughout this dissertation, I have not only described the systems that we have

built, but I also shared the experiences gathered while building the systems. I believe

that the lessons learnt while building these systems will have a much deeper impact

on future systems that will use mobile, wearable and infrastructure sensor data to

monitor lifestyle. The systems described in this dissertation monitor a few example

daily life activities. These systems have been tested on a small group of participants.

There are several possible extensions to the approaches and techniques:

Possible Extended Use-Cases: This dissertation describes some possible ap-

proaches to monitor two common daily lifestyle activities (eating and shopping).

Researchers or system developers can extend these approaches to monitor various

other daily life activities. For example, a system similar to I4S can assist in monito-

ring the cooking activity. Such a system can utilise the sensor data from wearables

and infrastructure sensors. Monitoring the cooking activity can help in identifying

whether all ingredients have been correctly added to the food item that is being pre-

pared. Additionally, it can also determine if the quantity of the added ingredients
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are correct. Such a system is useful in any environment where cooking takes place

– be it the kitchen of a house to the kitchen of a restaurant. The system will require

inertial sensor data from the smartwatch to determine when an ingredient is added.

It will require the indoor localization (which might be BLE beacons installed on

racks/shelves) to determine the location from where an ingredient is picked.

Other than general daily life activity monitoring, I believe that techniques des-

cribed in this dissertation will be useful in the elder care domain. For the elder

care domain, a smartwatch based solution can be useful in determining if an elderly

individual has performed one or more daily life task – e.g., if she has consumed

her medication. For the medicine intake monitoring example, inertial sensor data

from a smartwatch (or any hand worn device with sensing capabilities) can be used

to determine the taking medicine gesture, which might involve steps similar to (a)

opening the medicine box, (b) identifying the medicine strip, (c) taking out the cap-

sule from the strip, and (d) consume the capsule. For such a solution, the inertial

sensor can identify gestures such as opening box or putting the medicine in mouth,

while the camera can be used to capture the image of the strip of medicine from

which the capsule was extracted. This system is similar to the Annapurna system

that has been described in this dissertation.

Impact of Users: The systems described in this dissertation has not been tested

on diverse user demographics. While the I4S system has been tested on students

in the university, Annapurna has been tested on members of our lab. Although

these studies successfully demonstrated the proof of concept, there might be other

factors to consider while expanding to other demographic groups. As mentioned

previously, one demographic group which I am particularly interested in and I be-

lieve will benefit from automated daily life monitoring is the elderly. Automated

and unobtrusive monitoring of their daily life activities can help in identifying and

improving the assistance that they require. However, there are several challenges

in monitoring the elderly, one amongst which is the reluctance of the elderly to use

wearables [35]. Thus, if ADL monitoring techniques for this category have to be
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designed and it has to be performed using wearable devices, innovative approaches

have to be taken - e.g. using wearable rings, which hypothetically, might be less

noticeable to the end user. Alternately, innovative use of infrastructure sensors can

be used for the activity monitoring. An interesting direction of research could be in

determining how an existing system can be modified so that it can cater to a spe-

cific demographic group. Currently, I have not tested any of the systems on the

elderly and thus I believe that performing studies on them will help in identifying

challenges specific to the demographics.

Impact on Users: Currently, I have built systems which can help in identifying

ADLs. The next obvious question is: what do we do with these ADLs? I believe

that an interesting future research direction will be in understanding user needs. For

example, in case we identify eating, what useful analytics should we provide to

the users? Based on a survey, we found that most respondents wanted Annapurna

to determine the number of calories consumed in a meal. However, with existing

techniques, determining the number of calories is a hard problem. So an interesting

research direction is in identifying the sweet-spot between what a user wants and

what can be provided to the user.

ADL specific features: Currently in CROSDAC, I have used features which are

specific to the activity. However, most existing ADL monitoring applications use a

set of statistical features - mean, variance, correlation etc. I believe that even though

the statistical features have been powerful in micro activity recognition, to identify

an ADL, a more sophisticated set of features are needed. I believe that identifying

and analysing these features will be a useful direction in ADL monitoring. Alter-

nately, recent work in deep-learning based activity recognition methods illustrates a

direction, where feature-less ADL monitoring might be possible.

Evaluation of Annotation Techniques: To ensure accurate marking of ground

truth, each and every ADL step should be recorded and an annotator should be

able to look back at the recording and mark the ground truth. However, this is not

possible because (i) looking back at a recording again and again is not a scalable
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solution, (ii) IRB committees will have privacy concerns and (iii) the labeling still

will be done by a human.

Currently in my studies, I have used a manual shadowing approach and assume

that the ground truth marked is 100% accurate. But since there is human invol-

vement, there will definitely be errors in the ground truth marking. Thus, an in-

teresting research direction is to analyse the reliability of ground truth annotations

in ADL monitoring applications. To do this, one approach can be in having multi-

ple people marking the same ADL episode and then analysing the variance in the

ground truth marking. Based on findings from this analysis, ground truth annotation

correction techniques can be determined.

Classification Techniques: Currently, I have only evaluated shallow learning clas-

sification techniques. However, with the rapid increase in the number of devices and

sensing capability of these devices, in future, shallow learning approaches will be

laborious. With the evolution of deep learning and its success in certain domains,

researchers have started exploring deep learning techniques for activity recogni-

tion [17, 61]. The advantage of deep learning over shallow learning is that shallow

learning activity recognition classifiers require a set of features. For ADLs, the fea-

ture set should accommodate the ADL specific feature (e.g. [104, 130]), indicating

that it should be hand-crafted, which by itself is a challenging task. Since deep

learning does not need features, this hand-crafted feature identification step is not

involved in deep learning.

With the rapidly increasing number of devices, deep learning (focusing on re-

presentational learning) also seems well suited for transfer learning (one device trai-

ning the other) as compared to shallow learning. Since each device will produce a

certain sensor stream, which might not be similar to one another, work such as [14]

have shown that deep learning performs better than shallow learning even when the

training and test sets are not similar. Thus an interesting direction will be to evaluate

the performance of deep learning for multi-modal ADL monitoring.
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Chapter 8

Conclusion

With the continuously increasing number of sensors in our personal devices as well

as in the environment around us, monitoring basic activities and context has become

a reality. This has opened the floodgates for fine-grained, multi-modal monitoring

of more complex activities, which in turn can provide useful details and insights –

e.g. remembering what you ate two days ago for lunch will become easier.

This dissertation has shown that it is indeed possible to harness the multi-modal

sensing capabilities of commercial, off-the-shelf mobile, wearable and IoT devi-

ces to derive accurate and fine-grained insights about multiple different aspects of

an individual’s daily lifestyle activities and behavior specifically related to retail

shopping and eating.

This dissertation, describes various techniques and approaches for building these

daily life activity monitoring systems. It also shows the possibility of identifying the

in-activity user behavior. The next section provides a quick recap of these systems

and techniques described in this dissertation.

8.1 System and Technique Summary

Annapurna: In Chapter 4, I have described Annapurna, an automated diet mo-

nitoring and food journaling application. Annapurna has a smartwatch module, a
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smartphone module and a server module. Annapurna primarily relies on a smartwa-

tch to determine eating gesture and capturing images of the food items being consu-

med. The working of Annapurna’s smartwatch module is divided into multiple lay-

ers and various design choices have been made at every layer to either save energy or

increase the probability of capturing an image. Some energy saving techniques that

have been taken for the watch module included - multi leveled inertial sensing and

camera triggering, capturing images from preview mode and storing lower quality

jpeg files.

Images captured by the Annapurna’s smartwatch module were transferred to the

smartphone module, which performed initial image filtering and passed the relevant

images to the server. The server applied multiple heuristics to determine whether

the food plate was visible in any of the images and which were the best images in

terms of capturing the food plate.

Through multiple real-world user studies (7 users over 12 days), I showed that

Annapurna has minimal false positive and false negative rates of 6.5% and 3.3%,

respectively, while recognizing a wide variety of food items, consumed at various

locations, by people of different nationalities, and with different eating styles. An

initial version of this work, showing feasibility of the technique has appeared in a

PerCom 2015 workshop [133], while the experience with developing a robust ge-

sture recognizer has been accepted in the WPA workshop [132]. An article detailing

the image capturing strategy is currently under submission.

I4S: I4S, a system to automatically identify items that a shopper interacted with,

has been described in Chapter 5. I4S utilises sensor data from the smartwatch, the

smartphone as well as information from BLE beacons to determine the interacted

item. While both the smartwatch and smartphone continuously captures the iner-

tial sensor data, the smartphone additionally captures BLE scan information. Using

gesture recognition techniques, the smartwatch determines if the shopper is inte-

racting with an item. When an interaction is determined, the BLE scan information

assists the system in identifies the shopper’s rack level location. In addition to the
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gesture recognition, the smartwatch is also used to determine the shelf as well as

zone within the shelf from where the item was picked.

Through an comprehensive user study of 31 shoppers, I have shown that we

could identify various aspects of the item interaction - identifying picking gesture,

identifying location of pick and identifying the sub-shelf level picking location

accurately in over 85% cases individually, indicating that identifying item inte-

raction is indeed possible. This work is currently under submission.

In Chapter 7, I have also described an alternate technique to identify items that

is picked by a shopper. In this technique, we used the camera in a smartwatch to

determine the picking gesture and triggered the camera appropriately to capture the

image of the item picked. Through a small user study, we demonstrated that it was

possible to capture the image of the item being picked. This work was published in

COMSNETS 2016 workshop [120].

CROSDAC: Chapter 6 shows a technique of using sensor data from the shopper’s

mobile device to determine the shopping behavior and intent – whether the shopper

has buying intention or not and if she has buying intentions, whether she is focused

or confused. CROSDAC demonstrates that the accuracy in determining shopping

behavior increases when shopper are clustered based on shopping style and then

their behavior is determined. Through two studies conducted in diverse settings

(study with 30 users in a food court a shopping mall in New Delhi and with 22 users

in the gift shop of our University in Singapore), I showed that CROSDAC approach

performed better than alternate existing approaches. This work has appeared in the

Proceedings of International Symposium of Wearable Computing 2015 [130] and is

being readied for a journal submission.

8.2 Closing Remarks

This dissertation demonstrates that daily lifestyle monitoring through fusion of sen-

sor data from multiple sensors located in either one or several devices can be done
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reliably and accurately using various off-the-shelf devices. This is a paradigm shift

from wiring sensors on an individual with the intention of monitoring basic activities

to using personal devices to unobtrusively monitor an individual. This possibility of

unobtrusively monitoring an individual will not only assist in building applications

for healthy living, but will also open up the floodgates for various innovative appli-

cations in various other domains, some of which I have mentioned in the motivating

scenarios throughout the dissertation.

In this dissertation, through detailed evaluation of multiple techniques (either

with single device or multiple devices), I have demonstrated the possibility of mo-

nitoring common daily life activities. I have discussed various system level challen-

ges that have to be answered so that these techniques can cross over from being a

proof of concept to an actual usable system. I believe that techniques shown in this

dissertation will help drive innovative daily life monitoring applications which can

be used by an entire population.

This dissertation has also demonstrated that it might be possible to identify

user’s behavior through the analysis of sensor data from the user’s personal de-

vices. Currently, this is in a developing stage and through further improvement,

these techniques can not only assist in monitor ADLs, but also predict the intent of

the user, which in turn will enable pre-emptive intervention where necessary.

Collectively, the ADL monitoring and behavior determination techniques dis-

cussed in this dissertation paves the way for future daily life monitoring applicati-

ons. These applications can run on multiple off-the-shelf, utilising several sensor

classes to provide fine-grained details of activities to the individual.
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[4] O. Amft, M. Stäger, P. Lukowicz, and G. Tröster. Analysis of chewing sounds for dietary
monitoring. In International Conference on Ubiquitous Computing, pages 56–72. Springer,
2005.
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