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Hybrid Based Approaches for Software

Fault Localization and Specification Mining

Tien-Duy B. Le

Abstract

Debugging programs and writing formal specifications are essential but expensive

processes to maintain quality and reliability of software systems. Developers of-

ten have to debug and create specifications manually, which take a lot of their

time and effort. Recently, several automated solutions have been proposed to

help developers alleviate the cost of manual labor in the two processes. In par-

ticular, fault localization techniques help developer debug by accepting textual

information in bug reports or program spectra (i.e., a record of which program

elements are executed for each test case). Their output is a ranked list of program

elements that are likely to be faulty. Developers then inspect the ranked list from

beginning of the ranked list until root causes of the fault are found. On the other

hand, many systems have no or lack of high quality formal specifications. To

deal with the issue, researchers have proposed techniques to automatically infer

specifications in a variety of formalism, such as finite state automaton (FSA). The

inferred specifications can be used for many manual software processes, including

debugging.

Unfortunately, to date, the efficacy of existing techniques in fault localization

and specification mining are not perfect yet and more work is needed to employ the

techniques to assist developers in debugging programs and writing formal spec-

ifications. In this dissertation, I propose a number of hybrid based approaches

to improve the effectiveness of fault localization and specification mining. These

hybrid based approaches combine the strength of different techniques and various

sources of information to create more effective solutions. My goal is to lessen the



high expense of debugging and writing formal specifications in order to enhance

the productivity of developers and software quality. To achieve that goal, I pro-

pose AML and Savant, which are new fault (bug) localization techniques, as well

as SpecForge and DSM, which are new specification mining algorithms. Their

contributions are summarized as follows

• AML is a new multi-modal technique that considers both bug reports and

program spectra to localize bugs. The approach adaptively creates a bug-

specific model to map a particular bug to its possible location, and intro-

duces a novel idea of suspicious words that are highly associated to a bug.

• Savant is a new fault localization approach that employs a learning-to-rank

strategy, using likely invariant diffs and suspiciousness scores as features, to

rank methods based on their likelihood of being a root cause of a failure.

Savant has four steps: method clustering and test case selection, invariant

mining, feature extraction, and method ranking. At the end of these four

steps, Savant produces a short ranked list of potentially buggy methods.

• SpecForge is a new specification mining approach that synergizes many

existing specification miners. SpecForge decomposes FSAs that are inferred

by existing miners into simple constraints, through a process we refer to as

model fission. It then filters the outlier constraints and fuses the constraints

back together into a single FSA (i.e., model fusion).

• DSM is a new approach that performs deep learning for mining FSA-based

specifications. Our proposed approach uses test case generation to generate

a rich set of execution traces for training a Recurrent Neural Network Based

Language Model (RNNLM). From these execution traces, we construct a

Prefix Tree Acceptor (PTA) and use the learned RNNLM to extract many



features. These features are subsequently utilized by clustering algorithms to

merge similar automata states in PTA for constructing a number of FSAs.

Then, our approach performs a model selection heuristic to estimate F-

measure of FSAs and returns the one with highest estimated F-measure.
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Chapter 1

INTRODUCTION

1.1 Motivation

Software developers often handle many manual tasks which are costly and take

long-time to complete. Among these tasks, debugging programs and writing for-

mal specification are the essential ones. Software systems are usually plagued

with bugs that compromise system reliability, usability, and security. Developers

have to debug to find and repair those bugs that make their programs behave

unexpectedly. In fact, debugging is time consuming and expensive, which can

contribute up to 80% of the total software cost for some projects [106]. On the

other hand, software systems and libraries that are released without any docu-

mented specifications due to short time-to-market and rapid evolution of software.

The unavailability of specifications makes code comprehension more difficult for

developers, and software becomes more error-prone as bugs are introduced due

to mistaken assumptions. However, constructing formal specifications requires

developers to have requisite skills and motivation, as this takes significant time

and manual effort [43]. Thus, there is a pressing need for automated solutions

that improve productivity of developers when debugging programs and writing

formal specifications. Recently, several fault localization and specification mining

techniques have been proposed to reduce the expense of these manual processes,

respectively, in many scenarios:

• Fault Localization. To help developers debug, fault (or bug) localiza-

tion1 techniques analyze the symptoms of a bug, and produce a list of pro-

1Traditionally, fault localization and bug localization are two distinct families of debugging
techniques. In a nutshell, faults are defects (i.e., incorrect program code) that cause failures

1



gram elements ranked based on their likelihood to contain the bug. These

symptoms could be in the form of a description of a bug experienced by a

user, or a failing test case. Existing bug localization techniques can be

divided into two families: information retrieval (IR)-based bug localiza-

tion techniques [95, 104, 127, 101], and spectrum-based bug localization

techniques [40, 6, 96, 122, 124, 20, 58, 57, 60]. IR-based bug localization

techniques typically analyze textual descriptions contained in bug reports

and identifier names and comments in source code files. Spectrum-based

bug localization techniques typically analyze program spectra that corre-

sponds to program elements that are executed by failing and successful exe-

cution traces. In this dissertation, I focus on improving the effectiveness of

spectrum-based fault (bug) localization by leveraging additional information

from textual bug reports and likely invariants.

• Specification Mining. Due to the short time-to-market and rapid evolu-

tion of software, software systems and libraries are often released without

any documented specifications. Even when a system includes formal specifi-

cations, these specifications may become quickly out of date as the software

evolves [126]. Finally, developers often lack the necessary skill and motiva-

tion to write formal specifications, as this takes significant time and manual

effort [43]. The unavailability of specifications negatively impacts the main-

tainability and reliability of systems. Without specifications developers find

code comprehension more difficult, and software becomes more error-prone

as bugs are introduced due to mistaken assumptions. Moreover, without

a formal specification, developers cannot take advantage of some state-of-

in software applications. On the other hand, bugs are faults reported by software testers or
users, and logged onto a bug tracking system. Usually, a bug accompanies with a textual bug
report describing its syndrome, but a fault often does not have. Even though fault localization
and bug localization techniques are applied in different settings and inputs, intuitions behind
fault localization techniques can be utilized to localize bugs, and vice versa. Therefore, in this
dissertation I use “fault localization” and “bug localization” interchangeably.

2



the-art bug finding and testing tools that require formal specifications as an

input [19, 78]. To address the unavailability of formal specifications, Krka

et al. [46], Beschastnikh et al. [15, 14], Lo et al. [26, 66], Mariani et al. [77],

and many others have proposed finite state automaton (FSA)-based speci-

fication mining algorithms. In this dissertation, I focus on techniques that

extract a model in the form of a finite state automaton (FSA) by analyzing

the execution traces of systems or libraries of interest.

The above mentioned fault localization approaches [95, 104, 127, 101, 40, 6,

96, 122, 124, 20, 58, 57, 60] can be further improved to localize more bugs more

accurately. In particular, most of fault localization approaches only consider one

kind of symptom or one source of information, i.e., only bug reports or only

execution traces. This is a limiting factor since hints of the location of a bug

may be spread in both bug report and execution traces; and some hints may

only appear in one but not the other. Furthermore, fault localization approaches

can utilize the advantage of formal specifications (e.g., likely invariants [30] etc.)

to detect faulty program elements that violate properties regulated by formal

specifications.

Recently, Krka et al. [46] combine both of execution traces and likely invariants

to mine specifications. However, specification miners (i.e., mining approaches)

have not been combined together to become a single one before. Recently, deep

learning (also known as deep machine learning) methods are proposed to learn

representations of data with multiple levels of abstraction [52]. Researchers have

utilized deep learning in various domains, including solving challenging tasks in

software engineering such as defect prediction [112], code clone detection [113],

etc. Nevertheless, deep learning methods have not been employed for mining

specifications before. In fact, the power of deep learning methods to learn com-

plex representations of execution traces by leveraging deep neural networks (i.e.,

networks with many layers) can be used to boost the effectiveness of existing state-

3



of-the-art specification miners. Therefore, similar to fault localization, I believe

there are many opportunities to further improve existing mining approaches and

bring them closer to adoption in practice.

1.2 Dissertation Overview

In this dissertation, I propose a number of hybrid based approaches for fault

localization and specification mining. In terms of design paradigm, the core idea of

hybrid based methodologies is to construct an effective solution by combining the

strengths of different methods and utilizing various sources of informations. For

instance, it is possible for fault localization techniques to process both textual bug

reports and execution traces. It is also potential to combine many specification

miners to create a more powerful one. In fact, existing state-of-the-art automated

solutions in fault localization and specification mining have not fully utilized the

power of hybrid based paradigm.

Hybrid based Fault Localization: Most of existing fault localization tech-

niques only process execution traces of passed and failed test cases, or textual

bug reports separately. Nevertheless, existing hybrid based fault localization ap-

proaches could be better if they can blend various sources of information (i.e.,

textual bug reports, execution traces, likely invariants, etc.) from input faults or

bugs into one single framework. Therefore, I propose the following hybrid based

approaches to bring fault localization closer to adoption in practice:

1. AML (Adaptive Multi-modal bug Localization): a multi-modal technique

that considers both bug reports and program spectra to localize bugs. AML

adaptively creates a bug-specific model to map a particular bug to its possi-

ble location, and introduces a novel idea of suspicious words that are highly

associated to a bug. In the nutshell, my approach has three components:

AMLText, AMLSpectra, and AMLSuspWord. AMLText only processes the textual

description in bug reports, and AMLSpectra only handles program spectra.

4



On the other hand, AMLSuspWord considers suspicious words learned by an-

alyzing textual description and program spectra together. AMLSuspWord cal-

culates the suspicious scores of words that appear in comments or identifiers

of various program elements. The approach associates a program element

to a set of words and the suspiciousness of a word can then be estimated

based on the number of times the corresponding program elements appear in

failing or correct execution traces. Each of these components would output

a score for each program element, and AML computes the weighted sum of

these scores. The final score is adaptively computed for each individual bug

by tuning these weights. To evaluate AML, I apply the approach on 157

real bugs from four software systems, and compare its effectiveness with a

state-of-the-art IR-based bug localization method (i.e., LR [120]), a state-

of-the-art spectrum-based bug localization method (i.e.,Multric [118]), and

three state-of-the-art multi-modal feature location methods (i.e., PROME-

SIR [92], DITA and DITB [28]) that are adapted for bug localization. Ex-

periments show that AML can outperform the baselines by at least 47.62%,

31.48%, 27.78%, and 28.80% in terms of number of bugs successfully local-

ized when a developer inspects 1, 5, and 10 program elements (i.e., Top 1,

Top 5, and Top 10), and Mean Average Precision (MAP) respectively.

2. Savant: a new fault localization approach that employs a learning-to-rank

strategy, using likely invariant diffs and suspiciousness scores as features, to

rank methods based on their likelihood of being a root cause of a failure.

Savant has four steps: method clustering and test case selection, invariant

mining, feature extraction, and method ranking. At first, the approach se-

lects a subset of test cases, including both the failing tests and only those

passing tests that cover similar program elements. Next, it uses Daikon [30]

to learn likely invariants of those methods that are executed by the fail-

ing executions. By diff-ing various sets of invariants inferred from passed

5



and failed execution traces, we identify suspicious methods where invari-

ants inferred from one set of executions do not hold in another. Next, we

convert the invariant diffs into a set of features. We also use the suspicious-

ness scores computed by several SBFL formulae for the suspicious methods

as features. All of the extracted features are then provided as input to a

learning-to-rank algorithm. The learning-to-rank algorithm learns a ranking

model based on a training set of fixed bugs which differentiates invariant dif-

ferences of faulty from non-faulty methods. At the end of these four steps,

the approach produces a short ranked list of potentially buggy methods. To

evaluate Savant, I apply the approach on 357 real-life bugs from 5 programs

from the Defects4J benchmark. On average, Savant can identify the correct

buggy method for 63.03, 101.72, and 122 bugs at the top 1, 3, and 5 positions

in the produced ranked lists. I also compared Savant against several state-

of-the-art spectrum-based fault localization baselines (i.e., theoretically best

fault localization formulas [116], genetic programming generated fault local-

ization formulas [121], and Multric [118]). According to the results, Savant

can successfully locate 57.73%, 56.69%, and 43.13% more bugs at top 1, top

3, and top 5 positions than the best performing baseline, respectively.

Hybrid based Specification Mining: Recently, Krka et al. [46] have a number

of state-of-the-art approaches that put together information of execution traces

and likely invariants to mine FSAs. Despite recent achievements in quality of

inferred specifications, more work is needed to further improve quality of mined

specifications. Existing specification could be better if they are able to combine

different specification miners together or leverage advanced machine learning tech-

nologies for mining specifications. Therefore, I propose the following specification

mining approaches to improve quality of inferred specifications:

1. SpecForge: a new specification mining approach that synergizes many ex-

isting specification miners. SpecForge first uses existing specification miners

6



to infer a set of FSAs. It then uses these to generate a superior FSA. The

approach first performs model fissions to extract important constraints that

are common across the mined FSAs. SpecForge then performs model fusions

to combine the extracted constraints into one FSA model. Both model fis-

sion and model fusion processes are completely automated. In this work, we

use a set of 6 constraint templates to generate constraints, some of which

were proposed by Dwyer et al. [29] and Beschastnikh et al. [14]. SpecForge

checks whether one or more instances of these constraint templates are ob-

served in a mined model. Constraints corresponding to models generated

by various specification miners are then merged together while the outlier

constraints are identified and omitted. To evaluate SpecForge, I apply the

approach on execution traces of 10 programs, which includes 5 programs

from DaCapo benchmark, to infer behavioral models of 13 library classes.

Our results show that SpecForge achieves an average precision, recall and

F-measure of 90.57%, 54.58%, and 64.21% respectively. SpecForge outper-

forms the best performing baseline proposed by Krka et al. [46] by 13.75%

in terms of F-measure.

2. DSM (Deep Specification Miner): a hybrid based approach that performs

deep learning for mining FSA-based specifications. DSM takes as input a

target library class C and employs an automated test case generation tool to

generate thousands of test cases. The goal of this test case generation pro-

cess is to capture a rich set of valid sequences of invoked methods of C. Next,

the approach performs deep learning on execution traces of generated test

cases to train a Recurrent Neural Network Language Model (RNNLM) [80].

After this step, DSM constructs a Prefix Tree Acceptor (PTA) from the exe-

cution traces and leverages the learned language model to extract a number

of interesting features from PTA’s nodes. These features are then input to

clustering algorithms for merging similar states (i.e., PTA’s nodes). The
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output of an application of a clustering algorithm is a simpler and more

generalized FSA that reflects the training execution traces. Finally, our

approach predicts the accuracy of constructed FSAs (generated by differ-

ent clustering algorithms considering different settings) and outputs the one

with highest predicted value of F-measure. To evaluate DSM, I perform

the approach to mine specifications of 11 target library classes. The em-

pirical analysis shows that DSM achieves an average Precision, Recall, and

F-measure of 82.76%, 72.3%, and 71.97%, respectively. In comparison with

specification mining algorithms proposed by Krka et al. [46] and SpecForge,

DSM is more effective than the best baseline by 28.22% in terms of average

F-measure.

The structure of the remainder of the dissertation is as follows. Chapter 2

highlights recent research studies in fault localization and specification mining.

Next, Chapters 3, 4, 5, and 6 describe details of AML, Savant, SpecForge, and

DSM, respectively. Chapter 7 concludes this dissertation and mentions future

work.
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Chapter 2

LITERATURE REVIEW

This chapter briefly describes research studies that are related to my works.

Section 2.1 highlights existing approaches in spectrum-based and information re-

trieval based fault localization. Section 2.2 discusses recent works in rule based

and automaton based specification mining.

2.1 Software Fault Localization

2.1.1 Spectrum-Based Fault Localization

Spectrum-based fault localization (SBFL) takes as input a faulty program and

two sets of test cases. One is a set of failed test cases, and the other one is a

set of passed test cases. SBFL then instruments the target program, and records

program spectra that are collected when the set of failed and passed test cases

are run on the instrumented program. Each of the collected program spectrum

contains information of program elements that are executed by a test case. Various

tools can be used to collect program spectra as a set of test cases are run.

Based on these spectra, SBFL typically computes some raw statistics for every

program elements. Tables 2.1 and 2.2 summarize some raw statistics that can be

computed for a program element e. These statistics are the counts of unsuccessful

(i.e., failed), and successful (i.e., passed) test cases that execute or do not execute

e. If a successful test case executes program element e, then we increase ns(e)

by one unit. Similarly, if an unsuccessful test case executes program element e,

then we increase nf (e) by one unit. SBFL uses these statistics to calculate the

suspiciousness scores of each program element. The higher the suspiciousness

score, the more likely the corresponding program element is the faulty element.
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Table 2.1: Raw Statistics for Program Element e

e is executed e is not executed

unsuccessful test nf (e) nf (ē)
successful test ns(e) ns(ē)

Table 2.2: Raw Statistic Description

Notation Description

nf (e)
Number of unsuccessful test cases that execute
program element e

nf (ē)
Number of unsuccessful test cases that do not ex-
ecute program element e

ns(e)
Number of successful test cases that execute pro-
gram element e

ns(ē)
Number of successful test cases that do not execute
program element e

nf Total number of unsuccessful test cases
ns Total number of successful test cases

After the suspiciousness scores of all program elements are computed, program

elements are then sorted in descending order of their suspiciousness scores, and

sent to developers for manual inspection.

There are a number of SBFL techniques which propose various formulas to

calculate suspiciousness scores. Among these techniques, Tarantula is a popu-

lar one [40]. Using the notation in Table 2.2, the following is the formula that

Tarantula uses to compute the suspiciousness score of program element e:

Tarantula(e) =

nf (e)

nf

nf (e)

nf
+ ns(e)

ns

The main idea of Tarantula is that program elements that are executed by failed

test cases are more likely to be faulty than the ones that are not executed by failed

test cases. Thus, Tarantula assigns a non-zero score to program element e that
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has nf (e) > 0. In addition to Tarantula, Ochiai [7] is also a well-known formula:

Ochiai(e) =
nf (e)√

nf (nf (e) + ns(e))

Recently, state-of-the-art SBFL approaches that have been recently demon-

strated as either theoretically more optimal or high-performing than the other

ones [116, 121, 118]. Xie et al. [116] theoretically analyze the manually-created

SBFL formulas used in previous studies to compute suspiciousness scores and

demonstrate that ER1 and ER5 are the two best SBFL families. They are com-

puted as follows:

ER1a(e) =


−1, if nf (e) < nf

ns − ns(e), if nf (e) = nf

ER1b(e) =nf (e)−
ns(e)

ns(e) + ns(ē) + 1

ER5a(e) =nf (e)

ER5b(e) =
nf (e)

nf (e) + nf (ē) + ns(e) + ns(ē)

ER5c(e) =


0, if nf (e) < nf

1, if nf (e) = nf

Xie et al. [117] further analyze SBFL formulas generated by running an auto-

matic genetic programming (GP) algorithm [121]. The best GP-generated SBFL

formulas are:

GP02(e) =2× (nf (e) +
√
ns) +

√
ns(e)

GP03(e) =

√
|nf (e)2 −

√
ns(e)|

GP13(e) =nf (e)× (1 +
1

2× ns(e) + nf (e)
)

GP19(e) =nf (e)×
√
|ns(e)− nf (e) + nf − ns|
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Xuan and Monperrus propose Multric, a compositional SBFL technique that

uses a learning-to-rank algorithm [118] to combine the results of 25 previously-

proposed SBFL formulas into a model that produces a single ranked list of

potentially-buggy program elements. The 25 formulas are used to compute sus-

piciousness scores of program elements as usual; these scores are then treated as

features input to a learning-to-rank algorithm.

Pytlik et al. propose Carrot, a SBFL technique that also leverages likely

invariants [94]. Carrot mines a set of likely invariants [30] from executions of

successful test cases, and observes how the invariants change when executions

of failed test cases are incorporated. These differences indicate potential bug

locations. Carrot considers the following six invariant types: equality, sum, less

than, constant equality, value sets, and pairs of value sets.

Sahoo et al. [102] extend Pytlik et al.’s approach by adding test case generation

and backward slicing to reduce the number of program elements to inspect, and

modify parts of failing test cases to create new successful tests. Otherwise, it

requires specifications that describe the test cases. Sahoo et al. evaluated their

approach by localizing 6 real faults in MySQL, 1 real fault in Squid, and 1 real

fault in Apache 2.2.

Pearson et al. [89] evaluate the effectiveness of many spectrum-based fault

localization techniques, including Ochiai [7] and Tarantula [40], on 2995 artificial

faults and 310 real faults. The study discovers that results of analyzed fault

localization on artificial faults are inconsistent with the ones on real faults i.e.,

40% of results on artificial faults are revered and the other 60% of the results

are statistically insignificant. In this dissertation, I assess the effectiveness of the

proposed fault (bug) localization approaches (i.e., AML and SpecForge) using

real bugs collected from repositories of real software systems (e.g., Apache Ant,

AspectJ, Rhino etc.).

AML - Key Differences. All of mentioned above approaches only consider a
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program spectra which is a record of program elements that are executed in failed

and successful executions, and generate a ranked list of program elements. This

is a limiting factor since hints of the location of a bug or a fault may be spread

in both bug report and execution traces; and some hints may only appear in one

but not the other. AML (see Chapter 3) is proposed to address this limitation of

existing spectrum-based fault (bug) localization by considering both bug reports

and execution traces. We refer to AML as a multimodal fault (bug) localization

approach since we need to consider multiple modes of inputs (i.e., bug reports and

program spectra). Furthermore, AML is the first to compute suspicious words and

use these words to help bug localization. Previous studies in spectrum-based fault

localization only compute suspiciousness scores of program elements.

Savant - Key Differences. Compared to Tarantula [40], Ochiai [7], theoreti-

cally best SBFL formulas [116], and GP generated SBFL formulas [121], Savant

(see Chapter 4) is different as the approach uses a learning-to-rank machine learn-

ing approach to sort program elements by analyzing both classic suspiciousness

scores and inferred likely invariants observed on passing and failing test cases.

Compared to Multric [118], Savant, also uses a learning-to-rank algorithm and

includes suspiciousness scores as features, but we include a substantively different

set of features extracted from invariant differences. Importantly, Savant localizes

root causes of bugs in suspicious methods where invariant differences occur, rather

than in all methods, as Multric does.

Compared to Pytlik et al.’s approach (i.e., Carrot), Savant uses a much larger

set of invariatn types (that is, all invariants produced by Daikon [30], rather than

the six considered by Carrot), employ a method clustering and test case selection

heuristic for performance, and use invariants and suspiciousness scores as features

to rank program elements.

Compared to Sahoo et al.’s approach [102] Savant differs from theirs in several

respects. First, instead of filtering invariants, Savant uses them as features to
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rank program elements. It is possible to combine the filtering with the ranking

approach in future work. Second, Savant avoids several restrictions and limitations

of the previous work, in that it is not limited to programs with test oracles,

programs where character-level rewriting of test cases makes sense, nor programs

with test case specifications. Finally, our evaluation is substantially larger. We

unfortunately cannot evaluate Sahoo et al.’s approach on our dataset since we

do lack test oracles (unless we manually create them for all failing test cases),

character-level deletion of test cases do not make sense for most of the programs

(except for some bugs from Closure Compiler), and the test cases do not come

with specifications. Moreover, Sahoo et al.’s approach is demonstrated on C rather

than Java programs.

2.1.2 Information Retrieval Based Fault Localization

IR-based bug localization techniques consider an input bug report (i.e., the text

in the summary and description of the bug report – see Figure 4.1) as a query, and

program elements in a code base as documents, and employ information retrieval

techniques to sort the program elements based on their relevance with the query.

The intuition behind these techniques is that program elements sharing many

common words with the input bug report are likely to be relevant to the bug. By

using text retrieval models, IR-based bug localization computes the similarities

between various program elements and the input bug report. Then, program

elements are sorted in descending order of their textual similarities to the bug

report, and sent to developers for manual inspection.

All IR-based bug localization techniques need to extract textual contents from

source code files and preprocess textual contents (either from bug reports or source

code files). First, comments and identifier names are extracted from source code

files. These can be extracted by employing a simple parser. Next, after the

textual contents from source code and bug reports are obtained, they have to be
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preprocessed. The purpose of text preprocessing is to standardize words in source

code and bug reports. There are three main steps: text normalization, stopword

removal, and stemming:

• Text normalization breaks an identifier into its constituent words (tokens),

following camel casing convention. Following the work by Saha et al. [101],

the original identifier names are retained in preprocessed text.

• Stopword removal removes punctuation marks, special symbols, number lit-

erals, and common English stopwords [4]. It also removes programming

keywords such as if , for , while, etc., as these words appear too frequently

to be useful enough to differentiate between documents.

• Stemming simplifies English words into their root forms. For example, ”pro-

cessed“, ”processing“, and ”processes“ are all simplified to ”process“. This

increases the chance of a query and a document to share some common

words.

There are many IR techniques that have been employed for bug localiza-

tion. We highlight a popular IR technique namely Vector Space Model (VSM).

In VSM, queries and documents are represented as vectors of weights, where each

weight corresponds to a term. The value of each weight is usually the term fre-

quency—inverse document frequency (TF-IDF) of the corresponding word. Term

frequency refers to the number of times a word appears in a document. Inverse

document frequency refers to the number of documents in a corpus (i.e., a col-

lection of documents) that contain the word. The higher the term frequency and

inverse document frequency of a word, the more important the word would be. In

this work, given a document d and a corpus C, the TF-IDF weight of a word w
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Bug 54460

Summary: Base64Converter not properly handling bytes with MSB set (not
masking byte to int conversion)

Description: Every 3rd byte taken for conversion (least significant in
triplet is not being masked with added to integer, if the msb is set this
leads to a signed extension which overwrites the previous two bytes with all
ones . . .

Figure 2.1: Bug Report 54460 of Apache Ant

is computed as follows:

TF-IDF(w, d, C) = log(f(w, d) + 1)× log
|C|

|di ∈ C : w ∈ di|

where f(w, d) is the number of times word w appears in document d.

After computing a vector of weights for the query and each document in the

corpus, we calculate the cosine similarity of the query’s vector and the document’s

vector. The cosine similarity between query q and document d is given by:

sim(q, d) =

∑
w∈(q

⋂
d)

weight(w, q)× weight(w, d)√∑
w∈q

weight(w, q)2 ×
√∑

w∈d
weight(w, d)2

where w ∈ (q
⋂
d) means word w appears both in the query q and document d.

Also, weight(w, q) refers to the weight of word w in the query q’s vector. Similarly,

weight(w, d) refers to the weight of word w in the document d’s vector.

Various IR-based fault localization approaches that employ information re-

trieval techniques to calculate the similarity between a bug report and a program

element (e.g., a method or a source code file) have been proposed [95, 73, 104, 127,

101, 110, 111, 120]. Lukins et al. used a topic modeling algorithm named Latent

Dirichlet Allocation (LDA) for bug localization [73]. Then, Rao and Kak evaluated

the utility of many standard IR techniques for bug localization including VSM and
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Smoothed Unigram Model (SUM) [95]. In the IR community, historically, VSM

is proposed very early (four decades ago by Salton et al. [103]), followed by many

other IR techniques, including SUM and LDA, which address the limitations of

VSM.

Recently, a number of approaches which considers information aside from

text in bug reports to better locate bugs were proposed. Sisman and Kak

proposed a version history aware bug localization technique which considers

past buggy files to predict the likelihood of a file to be buggy and uses this

likelihood along with VSM to localize bugs [104]. Around the same time, Zhou

et al. proposed an approach named BugLocator that includes a specialized

VSM (named rVSM) and considers the similarities among bug reports to localize

bugs [127]. Next, Saha et al. proposed an approach that takes into account the

structure of source code files and bug reports and employs structured retrieval

for bug localization, and it performs better than BugLocator [101]. Subsequently,

Wang and Lo proposed an approach that integrates the approaches by Sisman

and Kak, Zhou et al. and Saha et al. for more effective bug localization [110].

Most recently, Ye et al. proposed an approach named LR that combines

multiple ranking features using learning-to-rank to localize bugs, and these

features include surface lexical similarity, API-enriched lexical similarity, collab-

orative filtering, class name similarity, bug fix recency, and bug fix frequency [120].

AML and Savant - Key Differences. When a developer receives a bug report,

he/she first needs to replicate the error described in the report. In this process,

he/she is creating at least one failing test case whose execution traces can be in-

vestigated to locate faulty program elements. All mentioned above IR-based fault

localization approaches are limited to only analyze textual descriptions contained

in bug reports and identifier names and comments in source code files. This is

a limiting factor since hints of the location of a bug may be spread in both bug

17



report and execution traces; and some hints may only appear in one but not the

other. AML (see Chapter 3) is proposed to address this limitation by processing

both bug reports and test cases. AML also computes suspicious words and use

these words to help bug localization. Previous studies in IR-based fault localiza-

tion only compute suspiciousness scores of program elements. On the other hand,

Savant (see Chapter 4) is a spectrum-based fault localization approach that only

analyzes execution traces of unsuccessful and successful test cases.

2.2 Software Specification Mining

Formal specifications are useful for describing and understanding behaviors of soft-

ware systems. Especially, specifications are helpful when developers try to find

bugs or understand their programs. However, writing formal specifications takes

significant time and manual effort. Developers are required to have the necessary

skill and motivation to complete the task. In fact, software systems are often

developed and released without formal specifications. In order to support devel-

opers, software engineering research community has proposed several approaches

that automatically mine specifications from various sources of information (i.e.,

execution traces or source code) and in various forms (i.e., temporal rules or

finite state automata). These approaches are divided into two major families:

static and dynamic specification mining. Static approaches construct specifica-

tions from implementations (i.e., source code) of software systems, while dynamic

approaches infer specifications by observing executions of software systems. In

this dissertation, I focus on dynamic approaches that analyze execution traces to

mine specifications, and refer to “dynamic specification mining” as “specification

mining” for short.

Dynamic specification mining approaches can be further categorized to

automaton-based and rule-based approaches. The former category’s miners in-

fer final specifications in the form of finite state automata (see Section 2.2.1),

while the later category’s miners output final specifications in the form of tem-
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poral rules or properties (see Section 2.2.2). A specification miner should have

generalization capability. Specifically, each specification miner has its own way

to generalize behaviors of a software system encoded in input execution traces

in order to infer specifications that reflect unobserved behaviors of the given sys-

tem [13]. Generalization depends on features of analyzed systems, environments,

forms and usages of mined specifications [13]. Furthermore, generalization is par-

ticularly good for specification miners to capture infrequent behaviors that are

rarely observed during executions of software systems. However, generalization is

not always correct as inferred unobserved behaviors possibly reflect infeasible exe-

cutions of systems that never take place in practice. When input execution traces

increasingly capture all or most of properties of a software system, generalization

is less likely needed as most of behaviors are likely to be covered in the traces.

2.2.1 Automaton-based Specification Mining.

Krka et al. propose several specification mining algorithms that can infer a finite

state automaton (FSA) from execution traces by leveraging value-based invariants

that are inferred by Daikon [46]. They propose a number of algorithms namely

CONTRACTOR++, state-enhanced k-tails (SEKT), and trace-enhanced MTS

inference (TEMI).

• k-tails: k-tails is a classic algorithm proposed by Biermann and Feld-

man [16] to infer a FSA from execution traces. The algorithm takes as input

a set of execution traces and a parameter k. To infer a FSA that describes

the input execution traces, k-tails first builds a prefix tree acceptor (PTA)

that accepts all of the input traces. A PTA is an automaton in the form of a

tree, where every common prefix among the input traces corresponds to one

state. Next, k-tails merges every two states of the PTA that have identical

sequences of the next k method invocations (i.e., k-tails). The effectiveness

of the k-tails algorithm depends the choice of k and the quality of its in-
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put traces. If the value of k is small, k-tails might lead to incorrect state

merges. If the value of k is large, then there are fewer merges, which limits

the generalization of the inferred specifications. Similarly, if the number of

input traces is small, then the inferred FSA might not accurately capture

the correct specifications. In this work, we are interested in two variants

of k-tails with the value of k ∈ {1, 2}. We refer to these two variants as

traditional 1-tails and traditional 2-tails.

• CONTRACTOR++: CONTRACTOR++ is a recently proposed algo-

rithm by Krka et al. [46] that uses inferred value-based program invariants

to aid the construction of a FSA from execution traces. CONTRACTOR++

first runs Daikon [30] to infer several families of value-based program invari-

ants; these include relational invariants (e.g., x > 5), null invariants (e.g.,

x is null), and size invariants (e.g., x.size() > 5). It then calls CONTRAC-

TOR [27] which is able to construct a FSA from a set of invariants by running

SMT solvers. CONTRACTOR characterizes each state in the constructed

FSA by a set of methods that are enabled on that state. A legal state is

a state in which the preconditions of the enabled methods are consistent

with one another. CONTRACTOR creates a transition for a method from

a source state to a target state if that method has both its precondition sat-

isfied in the source state as well as its postcondition satisfied in the target

state.

• SEKT: State-enhanced k-tails (SEKT) is another recently proposed algo-

rithm by Krka et al. [46]. Similar to CONTRACTOR++, it also makes use

of inferred value-based invariants to construct a better FSA from execution

traces. SEKT first runs Daikon to infer value-based invariants and then runs

a variant of k-tails [16] that utilizes the inferred invariants. Similar to k-tails,

SEKT also requires that every two states that are merged together have the
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same sequences of the next k invocations. However, different from k-tail,

SEKT also requires that the merged states must share the same value-based

invariants. This additional merging requirement allows SEKT to avoid prob-

lematic merges. In our study, we consider two variants of SEKT with its

parameter k set to 1 and 2. The two variants are referred to as SEKT 1-tails

and SEKT 2-tails.

• TEMI: Trace-enhanced MTS1 inference (TEMI) is yet another recently

proposed algorithm by Krka et al. [46]. TEMI has two main phases. In

the first phase, TEMI runs an algorithm similar to CONTRACTOR++ to

build a FSA. It considers transitions in the FSA built in the first phase as

maybe transitions. In the second phase, TEMI converts maybe transitions

that are observed in the execution traces to required transitions. TEMI has

two variants: optimistic (it outputs all maybe and required transitions) and

pessimistic (it outputs only required transitions).

Beschastnikh et al. have proposed an approach to specify FSA inference al-

gorithms declaratively [14]. A specification consists of a set of property types

(variable-labeled FSAs) and a composition function. Property instances match-

ing the property type are mined from the traces (resulting in event-labeled FSAs)

and these are then composed using the composition function into one FSA. The

composition function resembles our model fusion step. However, we have a funda-

mentally different goal — to synergize existing model inference algorithms, rather

than to describe existing or new inference algorithms. As a result, in our work we

mine property instances that match the prescribed templates from the inferred

models, rather than from the input traces. Additionally, our templates and fusion

step are less generic than their property types and composition function as their

aim is to express a variety of FSA inference algorithms.

1Modal Transition System
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Lo et al. propose an approach named SMArTIC that infers a finite state au-

tomaton from a set of execution traces [26]. This approach is built on a variant

of k-tails automaton learning method that infers a probabilistic FSA and employs

trace filtering and clustering. Erroneous traces are removed from the input ex-

ecution traces and rather than learning a model from all the traces, the traces

are clustered into groups and a separate FSA is learned from each group. These

FSAs are later combined together into one FSA by identifying equivalent transi-

tions – the goal is to get a larger FSA that accepts all the sentences accepted by

the smaller FSAs. This is similar to the model fusion step of SpecForge. How-

ever, the aim of our work is to combine models from multiple specification mining

algorithms.

Walkinshaw and Bogdanov propose an approach that allows users to manu-

ally input temporal properties to guide a specification mining algorithm in the

inference of a FSA from execution traces [108]. This work was extended by Lo

et al. who proposed an approach to automatically mine temporal properties from

execution traces, and use these mined properties to automatically guide or steer

a specification mining algorithm in its inference process [66]. As one step of Spec-

Forge, we also infer temporal properties as constraints. However, rather than

inferring them from execution traces, we infer them from FSAs that are gener-

ated by the underlying FSA mining algorithms on top of which SpecForge is built

on. We do not use a data mining process to infer these properties, but rather a

model checking algorithm.

Lorenzoli et al. [70], and Mariani and Pastore [76] propose two approaches

named gkTail and KLFA to mine extended FSAs that incorporate data flow in-

formation. gkTail is able to infer algebraic constraints which specify restrictions

on the values of some variables/arguments in the transitions of the FSAs. KLFA

includes universally quantified constraints in the transitions of the FSAs to specify

the re-occurrence of data values. Walkinshaw et al. have recently proposed an
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approach to generate algebraic constraints for transitions in a FSA by leveraging

a classification algorithm [109]. In this work, we focus on the generation of simple

FSAs without algebraic constraints and quantified constraints.

SpecForge - Key Differences. None of the above mentioned approaches are

able to combine multiple FSAs mined by different algorithms together. To our

knowledge, SpecForge is the first approach that is capable of integrating the above

mentioned miners: they can be used to learn new FSAs which can then be used

as input to SpecForge. The goal of our work is to synergize many existing miners

to build a more effective miner.

DSM - Key Differences. None of previously mentioned mining approaches

employs deep learning for mining specifications. To the best of our knowledge,

DSM (see Chapter 6) is the first work to use Recurrent Neural Network Lan-

guage Models for mining automaton based software specifications. Our approach

only processes execution traces to infer FSAs rather than considering program

invariants as many previous approaches do (e.g., SEKT, CONTRACTOR++,

TEMI [46], etc.). In comparison between SpecForge and DSM, SpecForge is a

meta-approach that only accepts finite state automata and combine them to-

gether. On the other hand, DSM analyzes execution traces and use deep learning

to mine a FSA from the input traces.

2.2.2 Rule-based Specification Mining.

There are several existing approaches that infer rules from program execution

traces. Yang et al. propose Perracotta that mines two-event temporal rules

from execution traces. To infer these rules, Perracotta uses a set of predefined

rule templates and partitions input traces to several sub-traces. It computes

satisfaction rate of a template, which is the number of partitions satisfying the

template divided by the number of total partitions [119]. Lo et al. extend
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Yang et al.’s approach by inferring from execution traces temporal rules with

arbitrary lengths instead of two-event rules [64]. Li et al. also extend Yang et

al.’s work by extracting simple linear temporal logic (LTL) rules from execution

traces for hardware design [56]. Gruska et al.extract temporal properties of API

usage and employ these properties to detect anomalies that deviate from the

6,000 projects [34]. Lo et al. mine length-2 quantified temporal rules which

specify data-flow dependency constraints between method invocations [68]. Lo

et al. also infer rules following the concept of Live Sequence Charts (LCSs),

which are enriched with Daikon-style constraints [65]. Le and Lo investigate the

effectiveness of several interestingness measures from data mining community for

inferring rule-based specifications. Their findings indicate that other measures

besides support and confidence can better detect correct two-event temporal

rules from execution traces [48]. Lemieux et al. introduce Texada that mines

temporal specifications in the form of linear temporal logic (LTL) of arbitrary

length and complexity [55].

Key Differences. Different from above studies, all proposed specification min-

ing approaches in this dissertation (i.e., SpecForge and DSM) outputs the final

specifications in the form of FSAs. Among SpecForge and DSM, SpecForge is the

only miner that infers temporal rules from input FSAs in its model fission pro-

cess. SpecForge can potentially be integrated with the above mentioned studies,

especially studies that mine temporal properties. These temporal properties can

be combined with constraints that we infer from the mined FSAs and can be used

to mine a more accurate FSA.
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Chapter 3

INFORMATION RETRIEVAL AND SPECTRUM
BASED BUG LOCALIZATION: BETTER TOGETHER

To deal with the limitation of existing techniques, in this work, I propose a new

hybrid-based technique that synthesizes both bug reports and program spectra to

localize bugs. My approach adaptively creates a bug-specific model to map a

particular bug to its possible location, and introduces a novel idea of suspicious

words that are highly associated to a bug.

3.1 Introduction

Existing bug localization approaches[95, 104, 127, 101, 40, 6, 96, 122, 124, 20, 58,

57, 60] only consider one kind of symptom or one source of information, i.e., only

bug reports or only execution traces. This is a limiting factor since hints of the

location of a bug may be spread in both bug report and execution traces; and some

hints may only appear in one but not the other. In this work, I plan to address the

limitation of existing studies by analyzing both bug reports and execution traces.

I refer to the problem as multi-modal bug localization since I need to consider

multiple modes of inputs (i.e., bug reports and program spectra). It fits well to

developer debugging activities as illustrated by the following debugging scenarios:

1. Developer D is working on a bug report that is submitted to Bugzilla. One

of the first tasks that he needs to do is to replicate the bug based on the

description in the report. If the bug cannot be replicated, he will mark the

bug report as “WORKSFORME” and will not continue further [82]. He

will only proceed to the debugging step after the bug has been successfully

replicated. After D replicates the bug, he has one or a few failing execution
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traces. He also has a set of regression tests that he can run to get successful

execution traces. Thus, after the replication process, D has both the textual

description of the bug and a program spectra that characterizes the bug.

With this, D can proceed to use multi-modal bug localization.

2. Developer D runs a regression test suite and some test cases fail. Based

on his experience, D has some idea why the test cases fail. D can create a

textual document describing the bug. At the end of this step, D has both

program spectra and textual bug description, and can proceed to use multi-

modal bug localization which will leverage not only the program spectra but

also D’s domain knowledge to locate the bug.

Although no multi-modal bug localization technique has been proposed in

the literature, there are a few multi-modal feature location techniques. These

techniques process both feature description and program spectra to recommend

program elements (typically program methods) that implement a corresponding

feature [92, 61, 28]. These feature location approaches can be adapted to lo-

cate buggy program elements by replacing feature descriptions with bug reports

and feature spectra with buggy program spectra. Unfortunately, my experiment

(see Section 3.3) shows that the performance of such adapted approaches are not

optimal yet.

My multi-modal bug localization approach improves previous multi-modal ap-

proaches based on two intuitions. First, I note that there are a wide variety of

bugs [107, 115] and different bugs often require different treatments. Thus, there

is a need for a bug localization technique that is adaptive to different types of

bugs. Past approaches [61, 28, 92] propose a one-size-fits-all solution. Here, I pro-

pose an instance-specific solution that considers each bug individually and tunes

various parameters based on the characteristic of the bug. Second, Parnin and

Orso [88] highlight in their study that some words are useful in localizing bugs and

suggest that “future research could also investigate ways to automatically suggest
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or highlight terms that might be related to a failure”. Based on their observation,

I design an approach that can automatically highlight suspicious words and use

them to localize bugs.

My proposed approach, named Adaptive Multi-modal bug Localization

(AML), realizes the above mentioned intuitions. It consists of three components:

AMLText, AMLSpectra, and AMLSuspWord. AMLText only considers the textual de-

scription in bug reports, and AMLSpectra only considers program spectra. On the

other hand, AMLSuspWord takes into account suspicious words learned by analyzing

textual description and program spectra together. AMLSuspWord computes the sus-

picious scores of words that appear as comments or identifiers of various program

elements. It associates a program element to a set of words and the suspiciousness

of a word can then be computed based on the number of times the corresponding

program elements appear in failing or correct execution traces. Each of these

components would output a score for each program element, and AML computes

the weighted sum of these scores. The final score is adaptively computed for each

individual bug by tuning these weights.

I focus on localizing a bug to the method that contains it [85, 92, 118]. Histori-

cally, most IR-based bug localization techniques find buggy files [95, 104, 127, 101],

while most spectrum-based bug localization solutions find buggy lines [40, 6, 96].

Localizing a bug to the file that contains it is useful, however a file can be big

and developers still need to go through a lot of code to find the few lines that

contain the bug. Localizing a bug to the line that contains it is useful, however,

a bug often spans across multiple lines. Furthermore, developers often do not

have “perfect bug understanding” [88] and thus by just looking at a line of code,

developers often cannot determine whether it is the location of the bug and/or

understand the bug well enough to fix it. A method is not as big as a file, but it

often contains sufficient context needed to help developers understand a bug.
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3.2 Adaptive Multi-modal Bug Localization

The overall framework of my Adaptive Multi-modal bug Localization (AML) is

shown in Figure 6.1. AML (enclosed in dashed box) takes as input a new bug

report and the program spectra corresponding to it. AML also takes as input a

training set of (historical) bugs that have been localized before. For each bug in

the training set, I have its bug report, program spectra, and set of faulty methods.

If a method contains a root cause of the bug, it is labeled as faulty, otherwise it is

labeled as non-faulty. Based on the training set of previously localized bugs and a

method corpus, AML produces a list of methods ranked based on their likelihood

to be the faulty ones given the new bug report.

AML has four components: AMLText, AMLSpectra, AMLSuspWord, and Integra-

tor. AMLText processes only the textual information in the input bug reports

using an IR-based bug localization technique described in Section 2.1.2. AMLText

in the end outputs a score for each method in the corpus. Given a bug report b

and a method m in a corpus C, AMLText outputs a score that indicates how close

is m to b which is denoted as AMLText(b,m,C). By default, AMLText uses VSM

as the IR-based bug localization technique.

AMLSpectra processes only the program spectra information using a spectrum-

based bug localization technique described in Section 2.1.1. AMLSpectra in the

end outputs a score for each method in the corpus. Given a program spectra p

and a method m in a corpus C, AMLSpectra outputs a score that indicates how

suspicious is m considering p which is denoted as AMLSpectra(p,m,C). By default,

AMLSpectra uses Tarantula as the spectrum-based bug localization technique.

AMLSuspWord processes both bug reports and program spectra, and computes

the suspiciousness scores of words to rank methods. Given a bug report b, a

program spectra p, and a method m in a corpus C, AMLSuspWord outputs a

score that indicates how suspicious is m considering b and p; this is denoted

as AMLSuspWord(b, p,m,C).
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Figure 3.1: AML’s Framework

The integrator component combines the AMLText, AMLSpectra, AMLSuspWord

components to produce the final ranked list of methods. Given a bug report

b, a program spectra p, and a method m in a corpus C, the adaptive integra-

tor component outputs a suspiciousness score for method m which is denoted as

AML(b, p,m,C).

The AMLText and AMLSpectra components reuse techniques proposed in prior

works which are described in Section 2.1. In the next subsections, I just describe

the new components namely AMLSuspWord and the adaptive integrator component.

3.2.1 Suspicious Word Component

Parnin and Orso highlighted that “future research could also investigate ways to

automatically suggest or highlight terms that might be related to a failure” [88],

however they did not propose a concrete solution. I use Parnin and Orso’s obser-

vation, which highlights that some words are indicative to the location of a bug,

as a starting point to design my AMLSuspWord component. This component breaks
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down a method into its constituent words, computes the suspiciousness scores of

these words, and composes these scores back to result in the suspiciousness score

of the method. The process is analogous to a machine learning or classification

algorithm that breaks a data point into its constituent features, assign weights or

importance to these features, and use these features, especially important ones, to

assign likelihood scores to the data point. The component works in three steps:

mapping of methods to words, computing word suspiciousness, and composing

word suspiciousness into method suspiciousness. I describe each of these steps in

the following paragraphs.

Step 1: Mapping of Methods to Words In this step, I map a method to

its constituent words. For every method, I extract the following textual contents

including: (1) The name of the method, along with the names of its parameters,

and identifiers contained in the method body; (2) The name of the class containing

the method, and the package containing the class; (3) The comments that are

associated to the method (e.g., the Javadoc comment of that method, and the

comments that appear inside the method), and comments that appear in the

class (containing the method) that are not associated to any particular method.

After I have extracted the above textual contents, I apply the text pre-

processing step described in Section 2.1.2. At the end of this step, for every

method I map it to a set of pre-processed words. Given a method m, I denote the

set of words it contains as words(m).

Step 2: Computing Word Suspiciousness I compute the suspiciousness

score of a word by considering the program elements that contain the word. Let

us denote the set of all failing execution traces in spectra p as p.F and the set of

all successful execution traces as p.S. To compute the suspiciousness scores of a

30



word w given spectra p, I define several sets:

EF (w, p) = {t ∈ p.F |∃m ∈ t s.t. w ∈ words(m)}

ES(w, p) = {t ∈ p.S|∃m ∈ t s.t. w ∈ words(m)}

The set EF (w, p) is the set of execution traces in p.F that contain a method in

which the word w appears. The set ES(w, p) is the set of execution traces in p.S

that contain a method in which the word w appears. Based on these sets, I can

compute the suspiciousness score of a word w using a formula similar to Tarantula

as follows:

SSword(w, p) =

|EF (w,p)|
|p.FAIL|

|EF (w,p)|
|p.FAIL| + |ES(w,p)|

|p.SUCCESS|

(3.1)

Using the above formula, words that appear more often in methods that are

executed in failing execution traces are deemed to be more suspicious than those

that appear less often in such methods.

Step 3: Computing Method Suspiciousness To compute a method m’s

suspiciousness score, I compute the textual similarity between m and the input

bug report b, and consider the appearances of m in the input program spectra

p. In the textual similarity computation, the suspiciousness of words are used to

determine their weights.

First, I create a vector of weights that represents a bug report and another

vector of weights that represents a method. Each element in a vector corresponds

to a word that appears in either the bug report or the method. The weight of a

word w in document (i.e., bug report or method) d of method corpus C considering

program spectra p is:

SSTFIDF(w, p, d, C) =SSword(w, p)× log(f(w, d) + 1)

× log
|C|

|di ∈ C : w ∈ di|
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In the above formula, SSword(w, p) is the suspiciousness score of word w computed

by Equation 3.1, f(w, d) is the number of times word w appears in document d,

and di ∈ C means document di is in the set of document C. Similarly, w ∈ di

means word w belongs to document di. The above formula considers the weight

of a word based on its suspiciousness, and well-known information retrieval met-

rics: term frequency (i.e., log(f(w, d) + 1)) and inverse document frequency (i.e.,

log |C|
|di∈C:w∈di|).

After the two vectors of weights of method m and bug report b are computed,

I compute the suspiciousness score of the method m by computing the cosine

similarity of these two vectors multiplied by a weighting factor. The formula to

compute this score is as follows:

AMLSuspWord(b, p,m,C) = SSmethod(m, p)×∑
w∈b∩m

SSTFIDF(w, p, b, C)× SSTFIDF(w, p,m,C)√∑
w∈b

SSTFIDF(w, p, b, C)2 ×
√∑

w∈m
SSTFIDF(w, p,m,C)2

(3.2)

Here I use SSmethod(m, p) that computes the suspiciousness score of method m

considering program spectra p as the weighting factor. This can be computed by

various spectrum-based bug localization tools. By default, I use the same fault lo-

calization tool as the one used in AMLSpectra component. With this, AMLSuspWord

integrates both macro view of method suspiciousness (which considers direct exe-

cution of a method in the failing and correct execution traces) and micro view of

method suspiciousness (which considers the executions of its constituent words in

the execution traces).

3.2.2 Integrator Component

The integrator component serves to combine the scores produced by the three

components AMLText, AMLSpectra and AMLSuspWord by taking a weighted sum of

the scores. The final suspiciousness score of method m given bug report b and
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program spectra p in a corpus C is given by:

f(xi, θ) = α× AMLText(b,m) + β × AMLSpectra(p,m)

+ γ × AMLSuspWord(b, p,m) (3.3)

where i refers to a specific (b, p,m) combination (aka data instance), xi denotes

the feature vector xi = [AMLText(b,m),AMLSpectra(p,m),AMLSuspWord(b, p,m)],

and θ is the parameter vector [α, β, γ], where α, β, γ are arbitrary real numbers.

Note that I exclude mentioning corpus C in both sides of Equation 3.3 to simplify

the set of notations used in this section.

The weight parameters (θ) are tuned adaptively for a new bug report b based on

a set of top-K historical fixed bugs in a training data that are the most similar to b.

I find these top-K nearest neighbors by measuring the textual similarity of b with

training (historical) bug reports using the VSM model. In this work, I propose a

probabilistic learning approach which analyzes this training data to fine-tune the

weight parameters α, β, and γ for the new bug report b. The selection of top-K

helps filter noise and less useful features from fixed bugs which are irrelevant to

bug report b. That assists the tuning process of α, β, and γ to find the best

weights to combine scores of three components of AML. Note that if the value of

K is set to too small, α, β, and γ are potentially assigned to inaccurate weights

as there are too little information from fixed bugs are used for learning weights.

Probabilistic Formulation From a machine learning standpoint, bug local-

ization can be interpreted as a binary classification task. For a given combination

(b, p,m), the positive label refers to the case when method m is indeed where the

bug b is located (i.e., faulty case), and the negative label is when m is not relevant

to b (i.e., non-faulty case). As I deal with binary classification task, it is plausible
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to assume that a data instance follows Bernoulli distribution, c.f., [83]:

p(xi, yi|θ) = σ(f(xi, θ))
yi (1− σ(f(xi, θ)))

(1−yi) (3.4)

where yi = 1 (yi = 0) denotes the positive (negative) label, and σ(x) = 1
1+exp(−x)

is the logistic function. Using this notation, I can formulate the overall data

likelihood as:

p(X, y|θ) =
N∏
i=1

σ(f(xi, θ))
yi (1− σ(f(xi, θ)))

(1−yi) (3.5)

where N is the total number of data instances (i.e., (b, p,m) combinations), and

y = [y1, . . . , yi, . . . , yN ] is the label vector.

My primary interest here is to infer the posterior probability p(θ|X), which

can be computed via the Bayes’ rule:

p(θ|X, y) =
p(X, y|θ)p(θ)
p(X, y)

(3.6)

Specifically, my goal is to find an optimal parameter vector θ∗ that maximizes the

posterior p(θ|X, y). This leads to the following optimization task:

θ∗ = arg max
θ
p(θ|X, y)

= arg max
θ
p(X, y|θ)p(θ)

= arg min
θ

(− log(p(X, y|θ))− log(p(θ))) (3.7)

Here I can drop the denominator p(X, y), since it is independent of the parameters

θ. The term p(θ) refers to the prior, which I define to be a Gaussian distribution

with (identical) zero mean and inverse variance λ:

p(θ) =
J∏
j=1

√
λ

2π
exp

(
−λ

2
θ2j

)
(3.8)
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where the number of parameters J is 3 in my case (i.e., α, β, and γ).

By substituting (3.5) and (3.8) into (3.7), and by droppping the constant terms

that are independent of θ, the optimal parameters θ∗ can be computed as:

θ∗ = arg min
θ

(
N∑
i=1

Li +
λ

2

J∑
j=1

θ2j

)
(3.9)

where Li is called the instance-wise loss, as given by:

Li = − [yi log(σ(f(xi, θ))) + (1− yi) log(1− σ(f(xi, θ)))] (3.10)

Solution to this minimization task is known as the regularized logistic regression.

The regularization term λ
2

∑J
j=1 θ

2
j–which stems from the prior p(θ)–serves to pe-

nalize large parameter values, thereby reducing the risk of data overfitting.

Algorithm To estimate θ∗, I develop an iterative parameter tuning strategy

that performs a descent move along the negative gradient of Li. Algorithm 1

summarizes my proposed parameter tuning method. More specifically, for each

instance i, I perform gradient descent update for each parameter θj:

θj ← θj − η
(
∂Li
∂θj

+ λθj

)
(3.11)

where the gradient term ∂Li
∂θj

resolves to:

∂Li
∂θj

= (σ(f(xi, θ))− yi)xi,j (3.12)

with the feature values xi,1 = AMLText(b,m), xi,2 = AMLSpectra(p,m), and xi,3 =

AMLSuspWord(b, p,m), corresponding to the parameters α, β and γ, respectively.

The update steps are realized in lines 11-13 of Algorithm 1.

One key challenge in the current bug localization task is the extremely skewed

distribution of the labels, i.e., the number of positive cases is much smaller than
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Algorithm 1 Iterative parameter tuning

Require: Matrix X ∈ RN×3 (each row is a vector xi =
[AMLText(b,m),AMLSpectra(p,m),AMLSuspWord(b, p,m)] for bug report b,
program spectra p, and method m in one of the top-K most similar training
data), label vector y ∈ RN (each element yi is the label of xi), learning rate
η, regularization parameter λ, maximum training iterations Tmax

Ensure: Weight parameters α, β, γ
1: Initialize α, β, γ to zero
2: repeat
3: for each n ∈ {1, . . . , N} do
4: if n mod 2 = 0 then . Draw a positive instance
5: Randomly pick i from {1, . . . , N} s.t. yi = 1
6: else . Draw a negative instance
7: Randomly pick i from {1, . . . , N} s.t. yi = 0
8: end if
9: Compute overall score f(xi, θ) using Eq. (3.3)

10: Compute gradient gi ← σ(f(xi, θ))− yi
11: α← α− η

(
gi × AMLText(b,m) + λα

)
12: β ← β − η

(
gi × AMLSpectra(p,m) + λβ

)
13: γ ← γ − η

(
gi × AMLSuspWord(b, p,m) + λγ

)
14: end for
15: until Tmax iterations

the number of negative cases. To address this, I devise a balanced random sampling

procedure when picking a data instance for gradient descent update. In particular,

for every update step, I alternatingly select a random instance from the positive

and negative instance pools, as per lines 4-8 of Algorithm 1.

Using this simple method, I can balance the training from positive and neg-

ative instances, thus effectively mitigating the issue of skewed distribution in the

localization task. It is also worth noting that my iterative tuning procedure is

efficient. That is, its time complexity is linear with respect to the number of

instances N and maximum iterations Tmax.
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Table 3.1: Dataset Description

Project #Bugs Time Period Average Number of Methods
AspectJ 41 03/2005 – 02/2007 14,218.39
Ant 53 12/2001 – 09/2013 9,624.66
Lucene 37 06/2006 – 01/2011 10,220.14
Rhino 26 12/2007 – 12/2011 4,839.58

3.3 Evaluation

3.3.1 Methodology

Dataset I use a dataset of 157 bugs from 4 popular software projects to eval-

uate my approach against the baselines. These projects are AspectJ [3], Ant [1],

Lucene [2], and Rhino [5]. All four projects are medium-large scale and imple-

mented in Java. AspectJ, Ant, and Lucene contain more than 300 kLOC and at

least 9000 methods, while Rhino contains almost 100 kLOC and approximately

5000 methods. Table 3.1 describes detailed information of the four projects in my

study.

The 41 AspectJ bugs are from the iBugs dataset which were collected by

Dallmeier and Zimmermann [24]. Each bug in the iBugs dataset comes with the

code before the fix (pre-fix version), the code after the fix (post-fix version), and a

set of test cases. The iBugs dataset contains more than 41 AspectJ bugs but not

all of them come with failing test cases. Test cases provided in the iBugs dataset

are obtained from the various versions of the regression test suite that comes with

AspectJ. The remaining 116 bugs from Ant, Lucene, and Rhino are collected by

ourselves following the procedure used by Dallmeier and Zimmermann [24]. For

each bug, I collected the pre-fix version, post-fix version, a set of successful test

cases, and at least one failing test case. A failing test case is often included as

an attachment to a bug report or committed along with the fix in the post-fix

version. When a developer receives a bug report, he/she first needs to replicate

the error described in the report [82]. In this process, he is creating a failing test
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case. Unfortunately, not all test cases are documented and saved in the version

control systems.

Evaluation Metric and Settings I use two metrics namely mean average

precision (MAP) and Top N to evaluate the effectiveness of a bug localization

solution. They are defined as follows:

• Top N: Given a bug, if one of its faulty methods is in the top-N results, I

consider the bug is successfully localized. Top N score of a bug localization

tool is the number of bugs that the tool can successfully localize [127, 101].

• Mean Average Precision (MAP): MAP is an IR metric to evaluate

ranking approaches [75]. MAP is computed by taking the mean of the

average precision scores across all bugs. The average precision of a single

bug is computed as:

AP =
M∑
k=1

P (k)× pos(k)

number of buggy methods

where k is a rank in the returned ranked methods, M is the number of

ranked methods, and pos(k) indicates whether the kth method is faulty or

not. P (k) is the precision at a given top k methods and is computed as

follows:

P (k) =
#faulty methods in the top k

k
.

Note that typical MAP scores of existing bug localization techniques are

low [95, 104, 127, 101].

I use 10 fold cross validation: for each project, I divide the bugs into ten sets,

and use 9 as training data and 1 as testing data. I repeat the process 10 times

using different training and testing data combinations. I then aggregate the results

to get the final Top N and MAP scores. The learning rate η and regularization
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parameter λ of AML are chosen by performing another cross validation on the

training data, while the maximum number of iterations Tmax is fixed as 30. I

use K = 10 as default value for the number of nearest neighbors. I conduct

experiments on an Intel(R) Xeon E5-2667 2.9GHz server running Linux 2.6.

I compare my approach against 3 state-of-the-art multi-modal feature local-

ization techniques (i.e., PROMESIR [92], DITA and DITB [28]), a state-of-the-

art IR-based bug localization technique named LR [120], and a state-of-the-art

spectrum-based bug localization technique named MULTRIC [118]. I use the same

parameters and settings that are described in their papers with the following ex-

ceptions that I justify. For DITA and DITB, the threshold used to filter methods

using HITS was decided “such that at least one gold set method remained in

the results for 66% of the [bugs]” [28]. In this paper, since I use ten-fold cross

validation, rather than using 66% of all bugs, I use all bugs in the training data

(i.e., 90% of all bugs) to tune the threshold. For PROMESIR, I also use 10-fold

CV and apply a brute force approach to tune PROMESIR’s component weights

using a step of 0.05. PROMESIR, DITA, DITB, and MULTRIC locate buggy

methods, however LR locate buggy files. Thus, I convert the list of files that LR

produces into a list of methods by using two heuristics: (1) return methods in a

file in the same order that they appear in the file; (2) return methods based on

their similarity to the input bug report as computed using a VSM model. I refer

to the two variants of LR as LRA and LRB respectively.

3.3.2 RQ1: AML vs. Baselines

PROMESIR [92], SITIR [61], and several algorithm variants proposed by

Dit et al. [28] are state-of-the-art multi-modal feature location techniques.

Among the variants proposed by Dit et al. [28], the best performing ones are

IRLSIDynbinWMHITS(h, bin)bottom and IRLSIDynbinWMHITS(h, freq)bottom. I

refer to them as DITA and DITB in this paper. Dit et al. have shown that
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Table 3.2: Top N: AML vs. Baselines. N ∈ {1, 5, 10}. Numbers in parentheses
indicate percentages of successfully localized bugs among all of 157 bugs.

Top Project AML PROMESIR DITA DITB LRA LRB MULTRIC

1

AspectJ 7 (4.46%) 4 (2.55%) 4 (2.55%) 3 (1.91%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Ant 9 (5.73%) 7 (4.46%) 3 (1.91%) 3 (1.91%) 1(0.64%) 11 (7.01%) 2 (1.27%)
Lucene 11 (7.01%) 8 (5.10%) 7 (4.46%) 7 (4.46%) 1 (0.64%) 7 (4.46%) 4 (2.55%)
Rhino 4 (2.55%) 2 (1.27%) 1 (0.64%) 1 (0.64%) 0 (0.00%) 2 (1.27%) 2 (1.27%)
Overall 31 (19.75%) 21 (13.28%) 15 (9.55%) 14 (8.92%) 2 (1.27%) 20 (12.74%) 8 (5.10%)

5

AspectJ 13 (8.28%) 6 (3.82%) 4 (2.55%) 3 (1.91%) 0 (0.00%) 0 (0.00%) 1 (0.64%)
Ant 22 (14.01%) 17 (10.83%) 10 (6.37%) 10 (6.37%) 11 (7.01%) 20 (12.74%) 7 (4.46%)
Lucene 22 (14.01%) 18 (11.46%) 13 (8.28%) 13 (8.28%) 6 (3.82%) 16 (10.19%) 13 (8.28%)
Rhino 14 (8.92%) 13 (8.28%) 5 (3.18%) 5 (3.18%) 2 (1.27%) 8 (5.10%) 8 (5.10%)
Overall 71 (45.22%) 54 (34.40%) 32 (20.38%) 31 (19.75%) 19 (12.10%) 44 (28.02%) 29 (18.47%)

10

AspectJ 13 (8.28%) 9 (5.73%) 4 (2.55%) 3 (1.91%) 0 (0.00%) 0 (0.00%) 2 (1.27%)
Ant 31 (19.75%) 28 (17.83%) 20 (12.74%) 20 (12.74%) 19 (12.10%) 32 (20.38%) 15 (9.55%)
Lucene 29 (18.47%) 21 (13.38%) 20 (12.74%) 19 (12.10%) 10 (6.37%) 24 (15.29%) 16 (10.19%)
Rhino 19 (12.10%) 14 (8.92%) 7 (4.46%) 7 (4.46%) 3 (1.91%) 12 (7.64%) 11 (7.01%)
Overall 92 (58.60%) 72 (45.86%) 51 (32.48%) 49 (31.21%) 32 (20.38%) 68 (43.31%) 44 (28.02%)

Table 3.3: Mean Average Precision: AML vs. Baselines.

Project AML PROMESIR DITA DITB LRA LRB MULTRIC

AspectJ 0.187 0.121 0.092 0.071 0.006 0.004 0.016
Ant 0.234 0.206 0.120 0.120 0.070 0.218 0.077
Lucene 0.284 0.204 0.169 0.166 0.063 0.184 0.188
Rhino 0.243 0.203 0.092 0.090 0.034 0.103 0.172

Overall 0.237 0.184 0.118 0.112 0.043 0.127 0.113
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Figure 3.2: AML vs. Baselines in terms of Top N (N ∈ {1, 5, 10}) and MAP.
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these two variants outperform SITIR. However, Dit et al.’s variants have never

been compared with PROMESIR. PROMESIR has also never been compared

with SITIR. Thus, to answer this research question, I compare the performance

of my approach with PROMESIR, DITA and DITB. I also compare with the two

variants of LR [120] (LRA and LRB) and MULTRIC [118] which are recently pro-

posed state-of-the-art IR-based and spectrum-based bug localization techniques

respectively. Table 3.2 and Figure 3.2 show the performance of AML, and all the

baselines in terms of Top N. Out of the 157 bugs, AML can successfully localize

31, 71, and 92 bugs when developers inspect the top 1, top 5, and top 10 methods

respectively. This means that AML can successfully localize 47.62%, 31.48%, and

27.78% more bugs than the best baseline (i.e., PROMESIR) by investigating the

top 1, top 5, and top 10 methods respectively.

Table 3.3 and Figure 3.2 show the performance of AML and the baselines in

terms of MAP. AML achieves MAP scores of 0.187, 0.234, 0.284, and 0.243 for

AspectJ, Ant, Lucene, and Rhino datasets, respectively. Averaging across the four

projects, AML achieves an overall MAP score of 0.237 which outperforms all the

baselines. AML improves the average MAP scores of PROMESIR, DITA, DITB,

LRA, LRB, and MULTRIC by 28.80%, 100.85%, 111.61%, 451.16%, 91.34%, and

109.73% respectively. Moreover, considering each individual project, in terms of

MAP, AML is still the best performing multi-modal bug localization approach.

AML outperforms the MAP score of the best performing baseline, by 54.55%,

13.59%, 39.22%, and 19.70% for AspectJ, Ant, Lucene, and Rhino datasets, re-

spectively.

Moreover, I find that my novel component of AML, i.e., AMLSuspWord, can

outperform all the baselines. AMLSuspWord can achieve a Top 1, Top 5, Top 10,

and MAP scores of 26, 66, 83, and 0.193. These results outperform the best

performing baseline by 23.81%, 22.22%, 15.28%, and 4.89% respectively.
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Table 3.4: Contributions of AML Components

Approach Top 1 Top 5 Top 10 MAP

AML−Text 28 68 87 0.212
AML−SuspWord 28 62 83 0.201
AML−Spectra 26 63 84 0.210

AML 31 71 92 0.237

3.3.3 RQ2: Contributions of AML Components

To answer this research question, I simply drop one component (i.e., AMLText,

AMLSuspWord, and AMLSpectra) from AML one-at-a-time and evaluate their perfor-

mance. In the process, I create three variants of AML: AML−Text, AML−SuspWord

, and AML−Spectra. To create AML−Text, AML−SuspWord , and AML−Spectra, I ex-

clude AMLText, AMLSuspWord , and AMLSpectra components from Equation 3.3 of

my proposed AML, respectively. I use the default value of K = 10, and apply

Algorithm 1 to tune weights of these variants, and compare their performance

with my proposed AML.

Table 3.4 and Figure 3.3 show the performance of the three AML variants,

and the full AML. From the table, the full AML has the best performance in

term of Top 1, Top 5, Top 10, and MAP. This shows that omitting one of the

AML components reduces the effectiveness of AML. Thus, each of the component

contributes towards the overall performance of AML. Also, among the variants,

AML−SuspWord has the smallest Top 1, Top 5, Top 10, and MAP scores. The

reduction in the evaluation metric scores are the largest when I omit AMLSuspWord.

This indicates that AMLSuspWord is more important than the other components of

AML.

3.3.4 RQ3: Integrator vs. SVMrank

Rather than using the integrator component, it is possible to use a standard ma-

chine learning algorithm, e.g., learning-to-rank, to combine the scores produced by
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Table 3.5: Integrator vs. SVMrank.

Metrics Project Integrator SVMrank

Top 1

AspectJ 7 4
Ant 9 7
Lucene 11 10
Rhino 4 4
Overall 31 25

Top 5

AspectJ 13 11
Ant 22 24
Lucene 22 23
Rhino 14 13
Overall 71 71

Top 10

AspectJ 13 14
Ant 31 31
Lucene 29 26
Rhino 19 16
Overall 92 87

MAP

AspectJ 0.187 0.131
Ant 0.234 0.234
Lucene 0.284 0.267
Rhino 0.243 0.227
Overall 0.237 0.215

AMLText, AMLSuspWord, and AMLSpectra. Indeed, the two state-of-the-art IR-based

and spectrum-based bug localization techniques (i.e., LR and MULTRIC) are

based on learning-to-rank. In this research question, I want to compare my Inte-

grator component with an off-the-shelf learning-to-rank tool namely SVMrank [39],

which was also used by LR [120]. I simply replace the Integrator component with

43



0

0.05

0.1

0.15

0.2

0.25

0.3

AspectJ Ant Lucene Rhino Overall

MAP: Integrator vs. SVM^Rank 

Integrator SVMrank

0

10

20

30

40

Integrator SVMrank

Top 1: Integrator vs. SVM^Rank 

AspectJ Ant Lucene Rhino

0

20

40

60

80

Integrator SVMrank

Top 5: MAP: Integrator vs. SVM^Rank 

AspectJ Ant Lucene Rhino

0

20

40

60

80

100

Integrator SVMrank

Top 10: Integrator vs. SVM^Rank

AspectJ Ant Lucene Rhino

Figure 3.4: Integrator vs. SVMrank in Bar Charts.

SVMrank and evaluate the effectiveness of the resulting solution.

Table 3.5 and Figure 3.4 show the results of comparing my Integrator with

SVMrank. I can note that for most subject programs and metrics, Integrator out-

performs SVMrank. This shows the benefit of my Integrator component which

builds a personalized model for each bug and considers the data imbalance phe-

nomenon.

3.3.5 RQ4: Running Time

If AML takes hours to produce a ranked list of methods for a given bug report,

then it would be less useful. In this research question, I investigate the average

running time needed for AML to output a ranked list of methods for a given bug

report. Table 4.8 shows means and standard deviations of AML’s running time

for different projects. From the table, I note that AML has an average running

time of 46.01 seconds. Among the four projects, AML can process Rhino bugs
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Table 3.6: Running Time of AML (seconds)

Project Mean Standard Deviation

AspectJ 72.79 5.50
Ant 40.88 2.52
Lucene 43.39 3.40
Rhino 17.94 1.58

Overall 46.01 18.48

with the least average running time (i.e., 17.94 seconds), and AML needs the

longest running time to process AspectJ bugs (i.e., 72.79 seconds). Compared to

the other three projects, AspectJ is considerably larger. Therefore, it takes more

time for AML to tune its component weights. Considering that a developer can

spend hours and even days to fix a bug [42], AML running time of 20-80 seconds

is reasonable.

3.3.6 RQ5: : Effect of Varying Number of Neighbors

Table 3.7: Effect of Varying Number of Neighbors (K)

#Neighbors Top 1 Top 5 Top 10 MAP

K = 5 29 68 84 0.223
K = 10 31 71 92 0.237
K = 15 30 70 91 0.237
K = 20 29 70 88 0.227
K = 25 29 67 87 0.224

K =∞ 28 69 86 0.222

My proposed approach takes as input one parameter, which is the number of

neighbors K, that is used to adaptively tune the weights α, β, and γ for a bug.

By default, I set the number of neighbors to 10. The effect of varying this default

value is unclear. To answer this research question, I vary the value of K and I

investigate the effect of different numbers of neighbors on the performance of AML.

In particular, I want to investigate if the performance of AML remains relatively

stable for a wide range ofK. To answer this research question, I vary the number of
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neighbors K from 5 to all bugs in the training data (i.e., K =∞). The results with

varying numbers of neighbors is shown in Table 3.7. I can see that, as I increase

K, the performance of AML increases until a certain point. When I use a large K,

the performance of AML decreases. This suggests that in general including more

neighbors can improve performance. However, an overly large number of neighbors

may lead to an increased level of noise (i.e., the number of non-representative

neighbors), resulting in a degraded performance. The differences in the Top N

and MAP scores are small though.

3.3.7 Discussion

Number of Failed Test Cases and Its Impact. In my experiments with

157 bugs, most of the bugs come with few failed test cases (average = 2.185). I

investigate whether the number of failed test cases impacts the effectiveness of

my approach. I compute the differences between the average number of failed

test cases for bugs that are successfully localized at top-N positions (N = 1,5,10)

and bugs that are not successfully localized. I find that the differences are small

(-0.472 to 0.074 test cases). These indicate that the number of test cases do not

impact the effectiveness of my approach much and typically 1 to 3 failed test cases

are sufficient for my approach to be effective.

AML’s Ineffective Cases. I manually analyze a number of cases where AML is

unable to localize faulty methods with top-N positions (N ∈ {1, 5, 10}) of output

ranked lists. I find that for many bugs, the tuned values of α, β, and γ are not the

best ones. Therefore, faulty methods are not assigned to highest suspiciousness

scores, and AML cannot localize root causes of these bugs in top-N positions

(N ∈ {1, 5, 10}). There are many reasons to explain why learned values of α, β,

and γ are not optimal. Firstly, that could be because AML only considers three

types of features computed by the three components (i.e., AMLText, AMLSpectra,

and AMLSuspWord). The limited information from the current three features could
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be a factor affecting AML. I believe adding more bug localization approaches (e.g.,

spectrum-based, IR-based bug localization, etc.) might improve the effectiveness

of AML. Secondly, that could be our algorithm of tuning α, β, and γ is not

robust enough to handle noises from training data. For the future work, I plan to

utilize other approaches such as Newton’s method [12] to tune weights of AML

components.

3.4 Conclusion

In this work, I put forward a novel multi-modal bug localization approach named

Adaptive Multi-modal bug Localization (AML). Different from previous multi-

modal approaches that are one-size-fits-all, my proposed approach can adapt itself

to better localize each new bug report by tuning various weights learned from a

set of training bug reports that are relevant to the new report. AML (in particular

its AMLSuspWord component) also leverages the concept of suspicious words (i.e.,

words that are associated to a bug) to better localize bugs. I have evaluated my

proposed approach on 157 real bugs from 4 software systems. My experiments

highlight that, among the 157 bugs, AML can successfully localize 31, 71, and 92

bugs when developers inspect the top 1, top 5, and top 10 methods, respectively.

Compared to the best performing baseline, AML can successfully localize 47.62%,

31.48%, and 27.78% more bugs when developers inspect the top 1, top 5, and top

10 methods, respectively. Furthermore, in terms of MAP, AML outperforms the

best baseline by 28.80%.

In the future, I plan to improve the effectiveness of my proposed approach in

terms of Top N and MAP scores. To reduce the threats to external validity, I also

plan to investigate more bug reports from additional software systems.

Dataset. Additional information of the 157 bugs used in the experiments is

available at https://github.com/lebuitienduy/aml.
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Chapter 4

LEARNING-TO-RANK BASED FAULT
LOCALIZATION USING LIKELY INVARIANTS

In this work, I propose Savant, a new spectrum-based fault localization ap-

proach that employs a learning-to-rank strategy, using likely invariant diffs and

suspiciousness scores as features, to rank methods based on their likelihood of

being a root cause of a failure. Savant has four steps: method clustering and test

case selection, invariant mining, feature extraction, and method ranking. At the

end of these four steps, Savant produces a short ranked list of potentially buggy

methods.

4.1 Introduction

This work particularly focuses on a family of automated debugging solutions that

takes as input a set of failing and passing test cases and then highlights the

suspicious program elements that are likely responsible for the failures (failing

test cases), e.g., [6, 10, 11, 20, 40, 57, 60, 71, 124, 122]. While these techniques

have been shown effective in many contexts, their effectiveness needs to be further

improved to localize more bugs more accurately.

I propose a novel technique, Savant, for effective automated fault localization.

Savant uses a learning-to-rank machine learning approach to identify buggy meth-

ods from failures by analyzing both classic suspiciousness scores and inferred likely

invariants observed on passing and failing test cases. Savant is built on three

high-level intuitions. First, program elements which follow invariants of failing

runs that are incompatible with invariants of correct runs are suspicious. Second,

such program elements are even more suspicious if they are assigned higher suspi-

ciousness scores computed by existing spectrum-based fault localization (SBFL)
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formulas [7, 40, 117, 118, 121]. Third, some invariant differences are likely to be

more suspicious than others. For example, the violation of a “non-zero” invariant

(e.g., x 6= 0 or x 6= null) in the failing execution may indicate a division by

zero or null pointer dereference, and is thus likely to be more suspicious than a

violation of a “linear binary” invariant (e.g., x+ y+ 3 = 0), due to the prevalence

of null pointer dereference errors. There exists natural variations in existing in-

variant learning techniques when applied to different executions. The challenge is

thus to distinguish between invariant differences that arise from natural execution

variation and those that are truly indicative of buggy behavior. In the absence of

a clear a priori set of rules, I propose to learn the relative importance of different

invariant differences and suspiciousness scores from pre-existing fixed bugs, and

use that learned information to localize new bugs.

Savant is designed for efficiency and reliability, and employs a number of steps

to both reduce runtime and make informed recommendations based on the inferred

invariants and computed suspiciousness scores. Savant works at the method-level

granularity [85, 92, 118] rather than file- [101, 127] or statement-level [117, 121].

Although localizing a bug to the file-level is useful, files can be large, leaving

considerable code for developers to filter down to the few lines that contain a bug.

For example, the faulty file corresponding to Bug 383 in the Closure Compiler (see

Figure 4.1) is 1,160 lines of code in total. Localizing a bug to the line-level, on the

other hand, is ill-suited for multi-line bugs, which are common [72]. Furthermore,

developers often lack “perfect bug understanding” [88] and thus looking at a

single line of code does not always allow a developer to determine whether it is

truly buggy, nor to understand the bug well enough to fix it. A method is not

as big as a file, but often contains sufficient context needed to help developers

understand a bug. Furthermore, Kochhar et al. reported that 51.81% of their

386 survey respondents chose method-level as the preferred granularity for fault

localization [44].
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Savant consists of four steps: method clustering & test case selection, in-

variant learning, feature extraction, and method ranking. Unlike prior work,

e.g., [6, 40, 71], Savant does not use all available test cases to localize faults.

Instead, for scalability, it selects a subset of test cases, including both the failing

tests and only those passing tests that cover similar program elements. Next,

it uses Daikon [30] to learn likely invariants on the entry and exit of only those

methods that are executed by the failing executions. By limiting the number of

instrumented methods, Daikon completes its learning process much more quickly

than it would by default, especially for larger systems. For efficiency reasons, I

choose to kill Daikon if it does not complete its processing within one minute. I

run Daikon in several settings: first, on traces collected from all executions; then

only on correct executions; and finally only on failing executions. By diff-ing all

pairs of resultant invariant sets, I identify suspicious methods where invariants

inferred from one set of do not hold in another. Next, I convert the invariant

diffs into a set of features. I also use the suspiciousness scores computed by sev-

eral SBFL formulae for the suspicious methods as features. All of the extracted

features are then provided as input to a learning-to-rank algorithm. The learning-

to-rank algorithm learns a ranking model based on a training set of fixed bugs

which differentiates invariant differences of faulty and non-faulty methods. This

ranking model can then be used to rank suspicious methods for new bugs based

on their corresponding invariant differences.

4.2 Motivating Example

I begin by introducing an example defect to motivate my technique. Consider

Bug 383 in the Closure Compiler’s bug database1, summarized in the top part

of Figure 4.1. The bug is assigned a high priority: it causes an issue in Inter-

net Explorer 9 and jQuery.getScript. According to the developer patch (bot-

tom of Figure 4.1), the bug ultimately resides in the strEscape method in the

1https://goo.gl/YtW6Ux
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Bug 383 (Priority: high)

Summary: \0 \x00 and \u0000 are translated to null character

Description:

What steps will reproduce the problem?
1. write script with string constant “\0” or “\x00” or “\u0000”

What is the expected output? What do you see instead?
I expected a string literal with “\0” (or something like that) and instead get a string
literal with three null character values.

Please provide any additional information below.
This is causing an issue with IE9 and jQuery.getScript. It causes IE9 to interpret the
null character as the end of the file instead of a null character.

@@ -963,6 +963,7 @@ class CodeGenerator {
for (int i = 0; i ¡ s.length(); i++) {

char c = s.charAt(i);
switch (c) {

+ case ’\{}0’: sb.append(”\{}\{}0”); break;
case ’\{}n’: sb.append(”\{}\{}n”); break;
case ’\{}r’: sb.append(”\{}\{}r”); break;

Figure 4.1: Bug Report (top) and developer patch (bottom) for bug 383 of the
Closure Compiler

com.google.javascript.jscomp.CodeGenerator class. To find this method,

based on the report, the developer can create test cases to expose the unde-

sired behavior (e.g., returning a null value for “\0”). With these test cases and

previously-created passing tests (of which Closure has 6,740), the developer could

use existing spectrum-based fault localization formulae to generate a ranked list

of methods. The list could then be inspected, in order, until the root cause of the

bug is localized.

Generally, the ranked list contains the methods invoked by failing test cases.

However, the Closure Compiler is a large project: This bug implicates 6,646 meth-

ods! Moreover, none of state-of-the-art SBFL formulae [121, 116, 118] localize

the actual faulty method within the top 10 of the produced list. The two best-

performing formulae for this defect (GP13 and GP19 proposed by Yoo et al. [121])

rank the first faulty method at position #64. Multric [118] assigns the highest

suspiciousness score to the faulty method; however, there are more than 1000
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Figure 4.2: Overview of Savant’s Architecture

methods sharing this score. Existing SBFL approaches provide limited utility for

the developer in this case.

On the other hand, Savant first uses Daikon to infer invariants from execution

traces generated by both passing and failing test cases. Daikon [30]’s Invariant

Diff utility on the inferred invariant sets implicates 556 suspicious methods with

changes in learned invariants between passing versus failing execution types. As-

suming any one of these methods is invoked by the failing test cases, I have already

reduced the number of implicated methods from more than 6,000 to 556 regardless

of SBFL rank. However, this is still an intractably large number. Therefore, I

further rank the output using a learning to rank model built on historical changes

in invariants of previously fixed bugs. The model assigns a score to each of the

identified suspicious methods. I create a ranked list of suspicious methods sorted

by the computed scores, and send to the developer for inspection.

Savant localizes the methods implicated in this example within the top-3 meth-

ods (Section 4.4), significantly outperforming the best SBFL approaches.

4.3 Savant

An overview of Savant’s architecture is shown in Figure 4.2. Savant works in two

phases. In the training phase, Savant learns a statistical model that ranks methods
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based on the likelihood that they are the root cause of a particular failure, based

on features drawn from execution behavior on passing and failing test cases. This

model is learned from training data consisting of a set of previously-repaired bugs,

consisting of a buggy program version, passing and failing test cases, and ground

truth bug locations. The training phase of Savant consists of four steps:

• Method Clustering and Test Case Selection (Section 4.3.1): The goal of this

step is to limit the memory and runtime cost during invariant mining, while

still enabling the inference of useful invariants. Savant first clusters methods

executed by failing test cases. For every cluster, Savant selects a subset of

particularly relevant passing and failing test cases. This step thus outputs

a set of method clusters and their corresponding selected test cases.

• Invariant Mining (Section 4.3.2): Savant uses Daikon to record and infer

method invariants for each cluster, based on program behavior on various

sets of test cases. This step produces sets of program invariants, inferred

from the execution of failing test cases, passing test cases, and their combi-

nation.

• Feature Extraction (Section 4.3.3): Savant uses the Daikon’s Invariant Diff

utility to identify differences between method invariants inferred from the

execution behavior on different sets of test cases. For instance, if invariant

I holds over the set of passing test case executions, but not when the failing

test cases are added, the methods where invariant I differs are suspicious.

For methods whose invariant diffs are non-empty, Savant runs SBFL for-

mulae to obtain suspiciousness scores. This produces a set of features per

method for use as input to a model learning procedure, corresponding to

either (1) the frequency of a type of invariant change for the method, or (2)

a suspiciousness score computed by one of the SBFL formulae.

53



• Model Learning (Section 4.3.4): Savant takes the features and the ground

truth locations to build a ranking model. This model is the overall output

of the training phase that is passed to the deployment phase.

In the deployment phase (also discussed in Section 4.3.4), Savant takes as input

a set of test cases (some failing, some passing), and a buggy program version and

then uses the learned model to rank produce a ranked list of methods that are

likely responsible for the failing test cases.

4.3.1 Method Clustering & Test Case Selection

Algorithm 2 Method Clustering & Test Case Selection

Require:
I: all methods executed by unsuccessful test cases
Pi, Fi : passing and failing test cases, respectively
M : maximum cluster size
T : minimum acceptable coverage

Ensure: Clusters of methods and associated test suites
1: let Cs←reduce size( kmeans(I, |I|

M
) )

2: let Cr ← ∅
3: for cm ∈ Cs do
4: let P s

i ← coverage sort(Pi, cm)
5: let Pc ← ∅
6: while ∃m ∈ cm s.t. coverage(m,Pc) < M do
7: let t← pop(P s

i )
8: if t covers at least one method m ∈ c then
9: Pc ← Pc ∪ {t}

10: end if
11: end while
12: Cr ← Cr ∪ {cm, Pc}
13: end for
14: return Cr

Savant must run the faulty program on passing and failing tests to record ex-

ecution traces for invariant inference. Both trace collection and invariant mining

can be very expensive, and the number of instrumented methods and executed

test cases both contribute to the cost. For medium to large programs (e.g., Com-

mons Math, Closure Compiler etc.), the runtime cost of running Daikon to infer
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invariants for all methods executed by all test cases is very high (i.e., Daikon runs

for many hours without producing results, or crashes with an out-of-memory ex-

ception). At the same time, I must collect sufficient data to support precise and

useful invariant inference.

I resolve this tension via a set of novel heuristics for method clustering and

test case selection for invariant inference on large programs for the purpose of

fault localization. First, I exclude all methods not executed by any failing test

cases. Second, I cluster methods by the passing test cases that execute them, and

record execution traces for each cluster separately on all of the failing and then

a selected subset of the passing test cases. Considering all passing test cases is

unnecessarily costly, as many passing test cases are irrelevant to particular sets of

methods.

Algorithm 2 describes my clustering and test case selection heuristic. This

heuristic represents each method via a coverage vector describing all input passing

test cases. The value of a dimension is one if the method is covered by the

corresponding test case and zero otherwise. Savant uses k-means clustering [36]

to group similar vectors (i.e., methods). K-means takes as input a set of vectors V

and a fixed number of desired clusters k, and produces k clusters, each containing

an arbitrary number of methods. I set k to ‖I‖/M , where I is the number of

methods to cluster, and M is the desired maximum cluster size. Because the

resulting clusters may contain more thanM methods, I heuristically split overlarge

clusters into smaller groups no larger than size M . I keep selecting M methods

randomly to create new groups until the cluster size is reduced to no more than

M .

Savant then selects a subset of passing test cases for each cluster that covers

its methods at least T times each. A perfect solution reduces to the NP-complete

knapsack problem. I take a computationally simpler greedy approach, which

suffices for my purpose. For each cluster, I sort passing test cases in descending
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order by the number of methods in the cluster that each test covers. I then greedily

take test cases from this list until all methods in the cluster are covered at least

by at least T test cases. Both M and T can be tuned to fit experimental system

capacity. Note that as the number of failing test cases is usually significantly less

than the number of passing tests, I are still able to use all failing test cases of the

faulty program for each cluster. The output of this step is the set of clusters Cr,

each containing methods, where for each method cluster there is an associated

subset Pc of passing test cases.

Both values of M and T should not be too large. If we set M and T to

large values, there are less created clusters of methods and there are more test

cases to execute in each cluster, which is very expensive. However, M and T

should not be too small because that negatively affects quality of mined invariants.

Furthermore, the tuning of M and T depends on the hardware capacity. In this

work, I conducted the experiments on an Intel(R) Xeon E5-2667 system, and

M = 10 and T = 10 is an appropriate choice to improve the speed of invariant

inference. Note there are many optimal choices for M and T following the above

discussion.

4.3.2 Invariant Mining

For each cluster produced in the preceding step, Savant traces execution informa-

tion for each included method across all failing test cases as well as the selected

passing test subset for that cluster. Savant collects execution information sepa-

rately for the methods in the cluster using the following three sets of test cases:

Fi, Pc, and Fi ∪ Pc of each method cluster c. For clarity, we refer subsequently to

the execution of the failing test cases on a cluster c as Fc, but remind the reader

that this involves running all failing test cases on each cluster. This information

is then input to Daikon to infer invariants. We refer to the invariants inferred

by Daikon as inv(Fc), inv(Pc), and inv(Fc ∪ Pc), respectively, and these sets of
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invariants form the output of this step. Savant uses these sets to produce features

for the learning-to-rank model construction, discussed next.

4.3.3 Feature Extraction

Savant extracts two different types of features: invariant changes features and

suspiciousness scores features.

Invariant Change Features

For the first set of features, Savant uses Daikon’s Invariant Diff tool to describe

changes in invariant sets between failing and passing program executions. In

a nutshell, Invariant Diff recognizes changes in method invariants inferred from

different sets of execution traces. The changes can consist of a transformation

of an invariant into another (e.g., OneOfString to SingleString, or NonZero to

EqualZero), or invariant removal or addition. My overall insight is that if an

invariant I holds over successful test case executions (i.e., I ∈ inv(Pc)), but not

when the failing test cases are added (i.e., I 6∈ inv(Fc ∪ Pc)), the locations where

invariant I differs are suspicious. These suspicious locations are at the entry

and exit point of a method, suggesting the bug lies within that method. Thus,

Savant ultimately analyzes and ranks only these suspicious methods, rather than

all methods covered by the failing test cases.

Savant uses Invariant Diff to perform three types of comparisons per cluster:

inv(Pc)×inv(Fc∪Pc), inv(Fc)×inv(Pc), and inv(Fc)×inv(Fc∪Pc). I refer to the

output of Invariant Diff on these pairs as idiff(Pc, Fc ∪ Pc), idiff(Fc, Pc), and

idiff(Fc, Fc∪Pc), respectively. I then convert these invariant changes to features.

Feature f of method m is a 3-tuple: f = [IA, IB, InvDiffAB]. IA is the type of

the source invariant inferred from the execution of one set of test cases, IB is the

type of the target invariant to which IA is transformed, and which holds in the

execution of the other set of tests, and InvDiffAB indicates the Invariant Diff’s
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output type from which the change was discovered. I refer to IA and IB as the

left-hand side (LHS) and right-hand side (RHS) invariant, or the source and target

invariants, interchangeably. The value of feature f is then the frequency of the

change between IA and IB in an InvDiffAB comparison. Note that the values of IA

and IB are the invariant types, rather than concrete invariants. Similarly, the value

of InvDiffAB in a feature’s 3-tuple is a label rather the concrete value of Invariant

Diff’s output. For example: [OneOfString, SingleString, idiff(Fc, Pc)] can

be read as “A OneOfString invariant learned from execution of Fc becomes a

SingleString invariant in the execution of Pc.”

Daikon supports many different types of invariants, including abstractions

of concrete invariants. For example, UnaryInvariant abstracts the LowerBound

and NonZero invariants. These invariant types create an inheritance hierarchy

rooted at daikon.inv.Invariant2. Thus, I enrich the feature set by replac-

ing the LHS and RHS invariants of a feature with their abstract types to form

a new feature. For example, [UnaryInvariant, SingleString, idiff(Fc, Pc)]

abstracts [OneOfString, SingleString, idiff(Fc, Pc)], and [UnaryInvariant,

SingleFloat, idiff(Fc, Fc ∪ Pc)] abstracts [LowerBoundFloat, Single-

Float, idiff(Fc, Fc ∪ Pc)].

Each such feature is a pair of invariants that reflects an abstraction of a

method’s behavioral changes, and collecting many such features improves the

chances that Savant successfully captures distinctive changes in the behavior of

faulty methods. Invariant has 311 subclasses, and thus I have 311×311 = 96, 721

potential invariant pairs (and thus overall features) across the three different In-

variant Diff runs i.e., idiff(Pc, Fc ∪ Pc), idiff(Fc, Pc), and idiff(Fc, Fc ∪ Pc).

Suspiciousness Scores Features

It is possible for methods to share similar changes to their invariants between

sets of execution traces. These cases are more difficult for ranking models to

2http://goo.gl/EPwNhV
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distinguish faulty and non-faulty methods. Savant therefore also includes suspi-

ciousness scores output by spectrum-based fault localization tools as additional

features. For each method implicated by changed invariants, Savant computes the

suspiciousness scores output by 10 state-of-the-art spectrum-based fault localiza-

tion formulae: ER1a, ER1b, ER5a, ER5b, ER5c proposed by Xie et al. [116], GP02,

and GP03, GP13, GP19 proposed by Yoo et al. [121] and Multric proposed by

Xuan et al. [118]. I also include the suspiciousness scores output by the 25 SBFL

formulae (including Ochiai [6]) used by Multric, resulting in 35 features extracted

from suspiciousness scores. These features and invariant change features are then

forwarded to the model learning and method ranking steps.

4.3.4 Model Learning and Method Ranking

Feature Normalization Before learning ranking models, I normalize feature

values to a range of [0, 1], as follows:

v′i =



0 if vi < mini

vi −mini
maxi−mini

if mini ≤ v ≤ maxi

1 if vi > maxi

(4.1)

where vi and v′i are the original and normalized values of the ith feature of a

suspicious method, mini and maxi are the minimum and maximum values of the

ith feature inferred from the training data.

Model Learning and Method Ranking In the model learning step, Savant

takes as input a set of fixed bugs, their corresponding features, and their ground

truth faulty methods. The methods modified by the developers to fix the bugs

provide this ground truth. For some bugs in the training set, the difference be-

tween the invariants of their faulty methods (for failed and passing test cases)
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Figure 4.3: Input Data Format for Model Learning. x
(i,j)
k corresponds to the value

of feature k for method j in faulty program i. y(i,j) corresponds to the label (i.e.,
faulty or non-faulty) of method j for faulty program i.

can be empty. I exclude such bugs from the training set. Figure 4.3 shows the

format of input data handled by the model learning step. Given input data in this

format, I use rankSVM [53], an off-the-shelf learning-to-rank algorithm, to learn

a statistical model that ranks methods based on such features.

In the method ranking step, my approach takes the features generated for a

new bug as input to the learned model. Finally, Savant outputs a ranked list

produced by the learned model to the developer for inspection.

4.4 Evaluation

4.4.1 Methodology

Dataset Many fault localization approaches [40, 7, 71, 118] are evaluated on

artificial bugs (e.g., the SIR benchmark3, Steimann et al.’s benchmark [105]).

However, it is unclear whether such bugs capture true characteristics of real bugs in

real programs. Therefore, I evaluate Savant on 357 bugs from 5 different software

projects in the Defects4J benchmark [41], a database of real, isolated, reproducible

3http://sir.unl.edu/php/previewfiles.php
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Table 4.1: Dataset: The bolded components of names denote a shorthand abbre-
viation. “# Bugs” represents the number of bugs in each project. “Avg. KLOC”,
“Avg. Tests”, and “Avg. Methods” correspond to average size of the program,
number of test cases, and number of methods for each buggy version of each
program, respectively.

Average
Program # Bugs KLOC Tests Methods

JFreeChart 26 132.9 1,824.9 7,782.5
Closure Compiler 133 345.6 7,200.1 7,479.5
Commons Math 106 111.8 2,905.0 4,792.3
Joda-Time 27 110.8 3,924.6 4,083.5
Commons Lang 65 52.6 1,859.0 2,151.1

software faults from real-world open-source Java projects intended to support

controlled studies in software testing. The projects include a large number of

test cases, and there exists at least one failing test case per bug. My choice of

evaluation benchmark is inspired by influential previous work in the field [123, 59]

that evaluates proposed fault localization approaches on real faulty programs.

Table 4.1 describes the bugs and projects in the evaluation benchmark.

Comparative techniques I compare Savant against 11 state-of-the-art and

well-known spectrum-based fault localization formulae described in Section 2.1.1

(i.e., ER1a, ER1b, ER5a, ER5b, ER5c, GP02, GP03, GP13, GP19, Multric, and

Ochiai) as well as Carrot [94]. I set the granularity of localized program entity

to method, to match Savant. I extend Carrot to use all Daikon invariants and

benefit from my test case selection strategy. This is important for scalability:

without selection, Carrot takes hours to complete. The extended Carrot approach

is referred to as Carrot+. In total, I compare Savant against 12 baselines.

Cross Validation I perform leave-one-out cross validation [35] across each of

the five projects. Given a set of n bugs, I divide the set into n groups, of which

n− 1 are used for training and the remaining serves as the test set. I repeat the
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process n times, using a different group as the test set. I report total results across

the n iterations. Compared to the standard 10-fold cross validation, leave-one-out

cross validation is beneficial for evaluating on smaller datasets, as it provides more

training data for each iteration, at the expense of training and evaluation time.

Savant and Multric are the only two supervised learning techniques I evaluate,

and thus I only perform cross validation for these two techniques, to mitigate the

risk of overfitting. The other techniques are unsupervised.

Savant’s Settings For method clustering and test case selection, I set the

maximum cluster size M = 10 and minimum acceptable size T = 10. Savant

uses Daikon (version 5.2.84) to infer invariants, scikit-learn5 0.17.0 to perform

k-means clustering, and rankSVM with linear kernel (version 1.956) from LIB-

SVM toolkit [17] for the learning to rank task with default settings. I perform all

experiments on an Intel(R) Xeon E5-2667 2.9 GHz system with Linux 2.6.

Metrics I use three metrics to evaluate fault localization success:

• acc@n counts the number of successfully localized bugs within the top-n

position of the resultant ranked lists. I use absolute ranks rather than per-

centages, following findings suggesting that programmers will only inspect

the top few positions in a ranked list of potentially buggy statements [88]. I

choose n ∈ {1, 3, 5}, computing acc@1, acc@3, and acc@5 scores. Note that

if two program elements (i.e., methods) share the same suspiciousness score,

I randomly break the tie. Higher is better for this metric.

• wef@n approximates the wasted effort at n, or effort wasted by a devel-

oper on non-faulty program elements before localizing the root cause a bug.

wef@n is calculated by the total number of non-faulty program elements

4http://plse.cs.washington.edu/daikon/download/
5http://scikit-learn.org/
6https://goo.gl/pHku7x
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in top-n positions of ranked lists before reaching the first faulty program

element, or the nth program element in the ranked lists of all bugs. I again

choose n ∈ {1, 3, 5}. Smaller is better.

• Mean Average Precision (MAP) evaluates ranking methods in infor-

mation retrieval; I use it to evaluate the ranked list of suspicious elements

produced by fault localization techniques. MAP is calculated using the mean

of the average precision of all bugs, as follows:

AP =
M∑
i=1

P (i)× pos(i)
number of faulty methods

where i is a rank of the method at the ith position in the ranked list, M is

total number of methods in the ranked list, and pos(i) is a boolean function

indicating whether the ith method is faulty. P (i) is the precision at ith

position starting from the beginning, defined as:

P (i) =
#faulty methods in the top i

i
.

In cross-validation, I compute the Mean Average Precision (MAP) across

all average precisions output across n iterations. Higher is better. Note

that MAP is a very strict evaluation metric and its score is typically low

(< 0.5) [101, 127]. For bugs appearing in single a method, even if all faulty

methods appear in the top-3 position, the MAP score is only 0.33.

In spectrum-based fault localization, program elements are often assigned

the same suspiciousness score. Thus, I repeat all metric calculations 100

times, using 100 different seeds to randomly break ties.

4.4.2 Research Questions

I investigate the following research questions:
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RQ1: How effective is Savant? In this research question, we evaluate how

effectively Savant identifies buggy methods for the 357 bugs, computing average

acc@n, wef@n, and MAP scores (n ∈ {1, 3, 5}).

RQ2: How does Savant compare to previous approaches? In this research

question, we compare Savant to 12 previous techniques across all evaluation met-

rics.

RQ3: What is the impact of the different feature sets on performance?

By default, we use all features from both Invariant Diff and the suspiciousness

scores. In this research question, we compare the two types of features to evaluate

their individual contribution to Savant’s effectiveness by training and evaluating

models on each set of features independently.

RQ4: How much training data does Savant need to work effectively? In

the default setting, Savant uses n−1 out of n bugs as training data. We investigate

the effectiveness of Savant with reduced amount of training data. We do this by

evaluating Savant in a k-fold cross validation setting, for k ranging from 2–10.

RQ5: How efficient is Savant? In this research question, we measure the

average running time needed for Savant to output a ranked list of methods for a

given bug.

4.4.3 Findings

RQ1: Savant’s Effectiveness.

In this research question, I evaluate how effectively Savant identifies buggy

methods for the 357 bugs, computing average acc@n, wef@n, and MAP scores

(n ∈ {1, 3, 5}). Table 4.2 shows the effectiveness of Savant on bugs from the five

Defects4J projects. Savant successfully localizes 63.03, 101.72, and 122.00 out of

357 bugs in terms of average acc@1, acc@3, and acc@5 score, respectively. The

wasted effort across all projects is 288.97, 811.14, and 1277.14 (wef@1, wef@3,
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Table 4.2: Savant’s effectiveness in terms of average acc@n (n ∈ {1, 3, 5}), wef@n
(n ∈ {1, 3, 5}) and MAP.

Total Avg. acc Avg. wef Avg.
Project Bugs @1 @3 @5 @1 @3 @5 MAP

Chart 26 5.00 8.00 9.00 20.00 56.00 86.00 0.201
Closure 133 2.00 9.00 13.00 131.00 384.00 627.00 0.041
Math 106 22.03 36.72 47.00 82.97 226.14 348.14 0.261
Time 27 5.00 12.00 12.00 22.00 55.00 85.00 0.247
Lang 65 29.00 36.00 41.00 33.00 90.00 131.00 0.535
Overall 357 63.03 101.72 122.00 288.97 811.14 1277.14 0.221

and wef@5, respectively). The overall average MAP score is 0.221. Among the

five projects, Savant is most effective on Commons Lang, achieving the highest

acc@k (29, 36, and 41, respectively), and a MAP score of 0.535. Over these

experiments, Savant terminated Daikon twice on a bug from the Math project

due to the time limit. In total, I invoked Daikon 129,798 times for the 357 faulty

versions.

RQ2: Savant vs. Previous work

In this research question, I compare Savant to 12 previous techniques across all

evaluation metrics. Table 4.3, 4.4, and 4.5 show the effectiveness of the 12

baseline approaches on my dataset. Among the baselines, the top four performers

are ER1b, GP13, GP19 and Multric, and they achieve more or less the same score

for many metrics. The absolute best performers are ER1b and GP13.

Figure 4.4 and 4.5 demonstrate the comparison between Savant and all base-

lines in acc@N, wef@N, and MAP (N ∈ {1, 5, 10}). According to the figures,

Savant outperforms these baselines in all metrics. It outperforms ER1b and GP13

by 57.73%, 56.69%, and 43.13% in terms of average acc@1, acc@3, and acc@5

scores. The wasted effort of Savant is lower than those of ER1b and GP13 by

8.85%, 10.94%, and 12.78% (wef@1, wef@3, and wef@5 respectively). In terms

of average MAP score, my approach is more effective than ER1b and GP13 by
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Table 4.3: Effectiveness of Baseline Approaches (Part I).

Average acc Average wef
Bug Project @1 @3 @5 @1 @3 @5 MAP

ER1a

Chart 0.93 2.42 3.50 25.07 72.83 118.27 0.08
Closure 2.61 6.15 9.26 130.39 385.35 634.22 0.04
Math 8.31 19.70 28.80 97.69 275.74 434.00 0.16
Time 1.00 4.48 7.00 26.00 72.52 114.00 0.07
Lang 2.46 17.86 25.54 62.54 164.62 246.95 0.18
Overall 15.31 50.61 74.10 341.69 971.06 1547.44 0.11

ER1b

Chart 4.00 4.00 6.00 22.00 66.00 108.00 0.15
Closure 2.61 6.15 9.26 130.39 385.35 634.22 0.04
Math 8.35 19.77 28.89 97.65 275.57 433.66 0.16
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 22.00 32.00 38.09 43.00 112.50 168.38 0.37
Overall 39.96 64.92 85.24 317.04 911.42 1464.26 0.15

ER5a

Chart 4.00 4.49 5.56 22.00 65.44 107.00 0.15
Closure 0.31 0.69 1.17 132.69 397.48 661.40 0.01
Math 2.41 7.32 11.68 103.59 303.63 494.48 0.06
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 23.20 31.83 38.32 41.80 113.22 169.24 0.38
Overall 32.92 47.33 59.73 324.08 951.77 1552.12 0.10

ER5b

Chart 0.97 2.95 4.64 25.03 72.04 115.56 0.07

ER5c

Closure 0.31 0.69 1.17 132.69 397.48 661.40 0.01
Math 2.36 7.21 11.54 103.64 303.87 494.99 0.06
Time 0.25 0.85 1.37 26.75 79.40 130.92 0.02
Lang 5.37 15.60 24.27 59.63 163.13 248.92 0.17
Overall 9.26 27.30 42.99 347.74 1015.92 1651.79 0.06

Legend

Savant’s improvement
improvement <10% 10% ≤ improvement <20%
20% ≤ improvement < 50% 50% ≤ improvement <100
100% ≤ improvement

51.37%. Overall, Savant outperforms all popular and state-of-the-art baseline

approaches across all measured metrics.

Note that although Multric includes Ochiai as a feature, it does not consid-

erably outperforms Ochiai. Multric outperforms Ochiai by 6.73% and 0.09% in

terms of average acc@1 and acc@3 scores, and the wasted effort of Multric is only

lower than that of Ochiai by 0.77% and 0.72% in terms of average wef@1 and

wef@3 score. For the other metrics (average acc@10, wef@10 and MAP scores),

Ochiai outperforms Multric. This result is in contrast with that of Savant which
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Table 4.4: Effectiveness of Baseline Approaches (Part II).

Average acc Average wef
Bug Project @1 @3 @5 @1 @3 @5 MAP

GP02

Chart 0.00 0.00 0.00 26.00 78.00 130.00 0.01
Closure 0.10 0.30 0.50 132.90 398.36 663.49 0.00
Math 0.15 0.47 0.83 105.85 317.01 527.50 0.01
Time 0.00 0.00 0.00 27.00 81.00 135.00 0.00
Lang 8.00 11.00 12.12 57.00 167.00 273.78 0.12
Overall 8.25 11.77 13.45 348.75 1041.37 1729.77 0.03

GP03

Chart 0.00 1.00 2.00 26.00 76.00 125.00 0.02
Closure 0.65 1.01 1.02 132.35 396.37 660.34 0.01
Math 0.31 0.90 1.37 105.69 316.14 525.60 0.01
Time 0.00 0.00 0.00 27.00 81.00 135.00 0.01
Lang 8.00 13.00 16.00 57.00 163.00 261.00 0.14
Overall 8.96 15.91 20.39 348.04 1032.51 1706.94 0.03

GP13

Chart 4.00 4.00 6.00 22.00 66.00 108.00 0.15
Closure 2.61 6.15 9.26 130.39 385.35 634.22 0.04
Math 8.35 19.77 28.89 97.65 275.57 433.66 0.16
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 22.00 32.00 38.09 43.00 112.50 168.38 0.37
Overall 39.96 64.92 85.24 317.04 911.42 1464.26 0.15

GP19

Chart 4.00 4.00 6.00 22.00 66.00 108.00 0.15
Closure 2.60 6.11 9.22 130.40 385.42 634.37 0.04
Math 8.35 19.77 28.89 97.65 275.57 433.66 0.16
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 22.00 32.00 38.09 43.00 112.50 168.38 0.37
Overall 39.95 64.88 85.20 317.05 911.49 1464.41 0.15

Legend

Savant’s improvement
improvement <10% 10% ≤ improvement <20%
20% ≤ improvement < 50% 50% ≤ improvement <100
100% ≤ improvement

outperforms all existing techniques by a much larger margin (e.g., 57.73% versus

6.73% for acc@1).

RQ3: Different Sets of Features

By default, I use all features from both Invariant Diff and the suspiciousness

scores. In this research question, I compare the two types of features to evaluate

their individual contribution to Savant’s effectiveness by training and evaluating

models on each set of features independently. Table 4.6 shows the effectiveness of
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Table 4.5: Effectiveness of Baseline Approaches (Part III).

Average acc Average wef
Bug Project @1 @3 @5 @1 @3 @5 MAP

Ochiai

Chart 2.00 4.00 6.00 24.00 69.00 109.00 0.13
Closure 1.95 4.70 8.77 131.05 388.77 639.29 0.04
Math 8.27 19.71 28.82 97.73 275.71 433.99 0.16
Time 5.50 7.00 9.00 21.50 62.50 99.50 0.12
Lang 18.84 28.50 35.09 46.16 125.47 187.35 0.34
OA 36.56 63.91 87.68 320.44 921.45 1469.13 0.14

Multric

Chart 4.35 6.44 8.18 21.65 62.14 98.35 0.15
Closure 1.83 5.14 7.84 131.17 388.24 639.73 0.03
Math 6.33 16.88 25.36 99.67 283.34 448.52 0.14
Time 3.71 5.47 6.52 23.29 67.33 108.65 0.10
Lang 22.80 30.04 34.06 42.20 113.80 177.57 0.36
OA 39.02 63.97 81.96 317.98 914.85 1472.82 0.14

Carot+

Chart 2.05 3.86 5.16 22.95 65.95 104.24 0.11
Closure 0.35 1.01 1.88 132.65 396.99 659.67 0.01
Math 5.81 13.84 20.48 99.19 284.99 457.32 0.10
Time 0.90 1.86 2.36 26.10 76.69 126.25 0.06
Lang 20.48 33.84 39.58 41.52 102.21 146.49 0.41
OA 29.59 54.41 69.46 322.41 926.83 1493.97 0.12

Legend

Savant’s improvement
improvement <10% 10% ≤ improvement <20%
20% ≤ improvement < 50% 50% ≤ improvement <100
100% ≤ improvement

Table 4.6: Savant’s effectiveness using different features.

Avg. acc Avg. wef Avg.
Feature Set @1 @3 @5 @1 @3 @5 MAP

Inv. Changes 55.23 83.50 105.00 296.77 848.64 1346.14 0.179
Susp. Scores 53.81 86.56 105.09 298.19 845.11 1340.82 0.214
Default 63.03 101.72 122.00 288.97 811.14 1277.14 0.221

Savant using invariant change features, suspiciousness scores features, and their

combination (the default). Savant is less effective if only one type of features is

used to construct ranking models, across all metrics. Savant using only suspi-

ciousness scores is more accurate than using only invariant changes according to

most metrics, though notably not acc@1, nor wef@1. Regardless of the features

used in the model, and unlike the baselines, Savant only ranks methods that have
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Figure 4.4: Top N (N ∈ {1, 5, 10}): Savant vs. Baselines in Bar Charts.

changes in invariants in the two set of execution traces, instead of all methods in

faulty programs. This explains why Savant built using only suspiciousness score

features outperforms Multric. Overall, the combination of the two feature types

significantly improves the effectiveness of Savant.

RQ4: Varying Training Data Size

In the default setting, Savant uses n−1 out of n bugs as training data. I investigate

the effectiveness of Savant with reduced amount of training data. I do this by

evaluating Savant in a k-fold cross validation setting, for k ranging from 2–10.

Table 4.7 shows the effectiveness of Savant in various cross validation settings.
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Figure 4.5: MAP: Savant vs. Baselines in Bar Charts.

Table 4.7: Varying training data size: average acc@n (n ∈ {1, 3, 5}), wef@n (n ∈
{1, 3, 5}) and Mean Average Precision (MAP). “K” represents the number of folds in
cross-validation setting. “Default” stands for leave-one-out cross-validation.

Avg. acc Avg. wef Avg.
K @1 @3 @5 @1 @3 @5 MAP

10 61.53 94.72 118.50 290.47 825.64 1298.64 0.215
9 53.03 90.72 110.50 298.97 844.14 1335.14 0.204
8 63.85 94.98 109.69 288.15 815.86 1302.45 0.219
7 68.35 102.19 111.50 283.65 797.83 1276.33 0.220
6 59.35 96.48 117.69 292.65 818.36 1294.45 0.222
5 68.85 94.50 112.00 283.15 809.02 1292.52 0.223
4 63.53 92.22 110.05 288.47 817.14 1307.59 0.219
3 62.50 93.00 114.46 289.50 822.50 1307.54 0.216
2 59.68 90.07 110.00 292.32 825.27 1314.61 0.211
Default 63.03 101.72 122.00 288.97 811.14 1277.14 0.221

Although the effectiveness of Savant varies from setting to setting, the range of

effectiveness is fairly small. Among the settings, 5-fold cross validation (k = 5)

achieves the best performance in most metrics compared to others, but there is no

setting that outperforms the others across all metrics. I conclude that the amount

of training data has little impact on Savant’s accuracy.
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Table 4.8: Running time of Savant (in tens of seconds)

Project Mean Standard Deviation

JFreeChart 15.30 2.85
Closure Compiler 318.45 39.71
Commons Math 41.01 6.09
Joda-Time 23.78 4.59
Commons Lang 19.70 3.41
Overall 138.94 142.32

RQ5: Efficiency

In this research question, I measure the average running time needed for Savant

to output a ranked list of methods for a given bug. Table 4.8 shows average

running time for Savant on my dataset, including both learning and ranking. The

average time to output a ranked list of methods for a given bug from any of the

five projects is 138.94 tens of seconds, with a standard deviation of 142.32 tens of

seconds. This average is dominated by the running time on a single project (the

Closure Compiler); the median running time is 23.78 tens of seconds (Joda-Time).

Among the projects, Savant has lowest average execution time on JFreeChart

bugs (15.30 tens of seconds). Closure Compiler bugs take the longest to localize.

The Closure Compiler is considerably larger than the other projects, leading to

a longer running time in constructing ranking models. I observe, however, that

this running time is conservative, since it includes the training phase, which could

be amortized across different bug localization efforts, and overall is reasonable in

practice.

4.5 Conclusion

I have evaluated my solution on a set of 357 bugs from 5 programs in the Defects4J

benchmark. My evaluation demonstrates that Savant can successfully localize

63.03, 101.72, 122 bugs on average within the top 1, top 3, and top 5 listed

methods, respectively. I have compared Savant against 10 SBFL techniques that
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have been proven to outperform many other SBFL techniques, a hybrid SBFL

technique that also uses learning-to-rank (Multric), and an extended version of

an SBFL technique that also uses likely invariants (Carrot+). Savant can locate

57.73%, 56.69%, and 43.13% more bugs at top 1, top 3, and top 5 methods as

compared to the best performing baseline techniques.

In the future work, I plan to improve Savant further by selectively including a

subset of invariants specialized for a target buggy program version and its spectra.

I also plan to include a refinement process which incrementally adds or removes

invariants to produce a better ranked list of methods. Furthermore, I plan to

extend my evaluation to include more bugs beyond those in the Defects4J bench-

mark and compare Savant against other fault localization approaches. I also plan

to investigate the impact of number of passed and failed test cases as well as other

factors on the effectiveness of Savant.
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Chapter 5

SYNERGIZING SPECIFICATION MINERS THROUGH
MODEL FISSIONS AND FUSIONS

Software systems are often developed and released without formal specifica-

tions. For those systems that are formally specified, developers have to continu-

ously maintain and update the specifications or have them fall out of date. To deal

with the absence of formal specifications, researchers have proposed techniques to

infer the missing specifications of an implementation in a variety of forms, such as

finite state automaton (FSA). Despite the progress in this area, the efficacy of the

proposed specification miners needs to improve if these miners are to be adopted.

In this work, I propose SpecForge, a new specification mining approach that syn-

ergizes many existing specification miners. SpecForge decomposes FSAs that are

inferred by existing miners into simple constraints, through a process I refer to as

model fission. It then filters the outlier constraints and fuses the constraints back

together into a single FSA (i.e., model fusion).

5.1 Introduction

The short time-to-market and rapid evolution of software has led to software sys-

tems and libraries that are released without any documented specifications. Even

when a system includes formal specifications, these specifications may become

quickly out of date as the software evolves [126]. Finally, developers often lack

the necessary skill and motivation to write formal specifications, as this takes

significant time and manual effort [43]. The unavailability of specifications neg-

atively impacts the maintainability and reliability of systems. Without specifi-

cations developers find code comprehension more difficult, and software becomes

more error-prone as bugs are introduced due to mistaken assumptions. Further-
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more, without a formal specification, developers cannot take advantage of some

state-of-the-art bug finding and testing tools that require formal specifications as

an input [19, 78].

In this work we propose SpecForge, an automated approach to synergize the

many existing FSA-based specification mining algorithms. SpecForge first uses

existing specification miners to infer a set of FSAs. It then uses these to generate

a superior FSA. SpecForge first performs model fissions to extract important con-

straints that are common across the mined FSAs. SpecForge then performs model

fusions to combine the extracted constraints into one FSA model. Both model fis-

sion and model fusion processes are completely automated. In this work, we use a

set of 6 constraint templates to generate constraints, some of which were proposed

by Dwyer et al. [29] and Beschastnikh et al. [14]. SpecForge checks whether one

or more instances of these constraint templates are observed in a mined model.

Constraints corresponding to models generated by various specification miners are

then merged together while the outlier constraints are identified and omitted.

5.2 SpecForge

5.2.1 Overall Architecture

Figure 5.1 illustrates the architecture of SpecForge. SpecForge takes as input a

set of execution traces of an API and outputs a finite state automaton (FSA).

SpecForge has three steps: (1) model construction, (2) model fission, and (3)

model fusion.

In the model construction step, the input traces are fed as inputs to N dif-

ferent FSA-based specification miners. Each miner infers a FSA according to

its underlying mining algorithm: FSA1, . . . , FSAN . Many different specification

mining algorithms have been proposed in the literature and in this work I focus

on the N = 7 algorithms proposed by Krka et al. [46] (i.e., Traditional 1-tails,

Traditional 2-tails, CONTRACTOR++, SEKT 1-tails, SEKT 2-tails, Optimistic
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Figure 5.1: SpecForge Overview

TEMI, and Pessimistic TEMI), which are described in Section 2.2.1.

Once the specification miners infer their respective FSAs, SpecForge unifies

these FSAs into one model. First, each inferred FSA is deconstructed into a

set of constraints (model fission). Based on some criteria, the strongly supported

constraints are selected from this set. Finally, the selected constraints are fused

to form the final specification (model fusion). In the next two sections I further

describe the model fission and model fusion steps.
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5.2.2 Model Fission

The goal of this phase is to break a single FSA (e.g., FSAi) into a set of basic

building blocks that can be compared to blocks from other FSAs and used to

build new FSAs. A key observation in my work is that a FSA can be thought of

as a collection of ordering constraints among events. These ordering constraints

can be shared by more than one FSA and are suitable building blocks for other

FSAs. A classic formalism for specifying ordering constraints is Linear Temporal

Logic (LTL) [90]. I use LTL in this work to specify ordering constraints between

events.

The model fission process consists of two steps: constraint enumeration and

constraint checking. In the first step, I generate a set of LTL constraint that may

or may not be satisfied by the FSA. In the constraint checking step I filter out

those LTL constraints that are not satisfied by the FSA.

Constraint Enumeration: It is impossible to check all possible LTL constraints.

I therefore consider just the LTL constraints that fit the following six templates,

each of which relates two events:

• a is always followed by b (denoted by AF(a, b): an occurrence of event

a must be eventually followed by an occurrence of event b in the execution

trace. In LTL, this rule is expressed as: G(a→ XF b).

• a is never followed by b (denoted by NF(a, b)): there are no occurrences

of event b after an occurrence of event a in the execution trace. In LTL, this

rule is expressed as: G(a→ XG(¬b)).

• a is always preceded by b (denoted by AP(a, b)): an occurrence of event

a must be preceded by event b in the execution trace. In LTL, this rule is

expressed as: ¬a W b.

• a is always immediately followed by b (denoted by AIF(a, b)): an oc-
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currence of event a must be immediately followed by an occurrence of event

b in the execution trace. In LTL, this rule is expressed as: G(a→ X b).

• a is never immediately followed by b (denoted by NIF(a, b)): there are

no occurrences of event b immediately after any occurrence of event a in the

execution trace. In LTL, this rule is expressed as: G(a→ X(¬b)).

• a is always immediately preceded by b (denoted by AIP(a, b)): an

occurrence of event a must be immediately preceded by an occurrence

of event b in the execution trace. In LTL, this rule is expressed as:

F (a)→ (¬a U(b ∧Xa))

Two of the six templates (i.e., always followed by, and always preceded by)

correspond to two of the most commonly used LTL constraints (i.e., response and

precedence) based on the survey by Dwyer et al. [29]. Another two templates

(i.e., never followed by, and never immediately followed by) were introduced by

Beschastnikh et al. [14] and have been demonstrated to be useful for describing

FSA mining algorithms. The last two templates (i.e., always immediately followed

by, and always immediately precedes) are newly introduced in this work. As a

result, the bottom three templates are variations of the first three templates with

the additional “immediately” requirement.

Given a set of execution traces, SpecForge enumerates all possible event pairs

that appear in the traces. For each pair of events, e.g., a and b, I construct six

possible LTL constraints corresponding to AF(a,b), NF(a,b), AP(a,b), AIF(a,b),

NIF(a,b), and AIP(a,b). These constraints form the input to the constraint check-

ing step.

Constraint Checking: This step checks the satisfiability of each of the generated

LTL constraints in the enumeration step in the FSA model. For this checking I

use the SPIN model checker [38], converting the FSA model into SPIN’s Promela

language. This process filters out those LTL constraints that are not satisfied
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by the FSA. At the end of this step the FSA is decomposed into a set of LTL

constraints based on the six templates listed above; each constraint is satisfied by

the FSA.

5.2.3 Model Fusion

The model fusion phase in SpecForge takes as input the sets of LTL constraints

for each of the inferred FSAs. For the inferred FSAs FSA1, . . . , FSAN , I denote

the corresponding sets of LTL constraints as C1, . . . , CN . That is, Ci is a set of

constraints {Ci1, . . . CiMi
} such that Cij is based on one of the templates above

and is satisfied by FSAi.

The fusion process first selects LTL constraints from these input sets and then

fuses the selected constraints into a new FSA. The fusion process contains the

following three steps: (1) constraint selection, (2) constraint to model translation,

and (3) unified model construction. I described each of these steps below.

Constraint Selection: The goal of this step is to select a sub-set of LTL con-

straints from the sets of all input constraints. In this work, I consider the following

four heuristics for selecting constraints:

• Union: This heuristic assumes that all of the generated constraints are cor-

rect and any one set is incomplete. It returns the union of all the constraint

sets: ∪1≤i≤NCi.

• Majority: Unlike the Union heuristic this heuristics assumes that some of

the constraints are incorrect, but it assumes that those constraints that are in

common across a majority of the constraint sets are correct. This heuristic

returns the union of all constraints that are satisfied by the majority of

the FSAs. Let num-containing(Cij) be the number of input constraint sets

containing Cij. This heuristic returns the set {Cij|num-containing(Cij) ≥

N/2}.

78



• Satisfied By ≥ x: This heuristics generalizes the above heuristics. I deem

a constraint as correct if it is satisfied by at least x FSAs. For x > N/2

this heuristics is at least as strict as the Majority heuristic. Otherwise, it is

more lenient. This heuristic returns the set {Cij|num-containing(Cij) ≥ x}.

• Intersection: The final heuristic is the most conservative. It assumes that

a correct constraint must have been satisfied by all inferred FSAs. It returns

the set {Cij|num-containing(Cij) = N}.

Constraint to Model Translation: At the end of the previous step I have a

set of selected constraints. In this step, I convert each constraint into a simple

FSA (see Figure 5.3). Each simple FSA involves two distinct events in a given

alphabet (e.g., a and b). Note that in Figure 5.3 not all rejecting states are shown

for each FSA.

For example, Figure 5.3 (a) represents the FSA corresponding to the LTL

constraint AF(a, b). In Figure 5.3 (a), accepting state is represented by a double

circle and rejecting state is represented by a single circle. The initial state is S1

and whenever the event a happens, state S2 is entered. Next, whenever event b

happens from state S2, state S1 is entered again. For example, this FSA accepts

the sentence aabab.

In addition to the six simple FSAs in Figure 5.3, I consider one special FSA

which describes the rule “a is never immediately followed by a” (the two events

are the same event). In this case, I construct a FSA (see Figure 5.2 ) which is

slightly different from Figure 5.3 (d).

Unified Model Construction: In this step, SpecForge combines the constraint

FSA models generated in the previous step into a unified FSA. Each model spec-

ifies a language or a set of execution traces that it accepts. I want the unified

FSA to accept an intersection of these languages (i.e., a set of sentences in which

each is accepted by all of the simple models). To construct such a unified FSA,
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Figure 5.2: FSA for “a is never immediately followed by a”.

Table 5.1: List of Target Library Classes and Analyzed Programs.

Target Library Classes Client
Full Name Short Name Programs

java.util.ArrayList ArrayList Dacapo fop
java.util.HashMap HashMap Dacapo h2
java.util.HashSet HashSet Dacapo h2
java.util.Hashtable Hashtable Dacapo xalan
java.util.LinkedList LinkedList Dacapo avrora
java.util.StringTokenizer StringTokenizer Dacapo batik
org.apache.xalan.templates.ElemNumber$

NFST Dacapo xalan
NumberFormatStringTokenizer
DataStructures.StackAr StackAr StackArTester
java.security.Signature Signature Columba, jFTP
org.apache.xml.serializer.ToHTMLStream ToHTMLStream Dacapo xalan
java.util.zip.ZipOutputStream ZipOutputSt JarInstaller
org.columba.ristretto.smtp.SMTPProtocol SMTPProtocol Columba
java.net.Socket Socket Voldemort

SpecForge performs intersection over the FSAs corresponding to the selected con-

straints using the dk.bricks.automaton library [81]. The unified FSA will always

be a connected FSA since it is always possible to represent a set of sentences as

one connected FSA.

5.3 Evaluation

In this section, I first describe my methodology in evaluating SpecForge against

a number of baselines. I then describe four research questions and present my

experimental results that answer these questions. I finish the section by discussing
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Figure 5.3: Translations of LTL expressions to FSAs: (a) a is always followed
by b, (b) a is never followed by b, (c) a is always preceded by b, (d) a is never
immediately followed by b, (e) a is always immediately followed by b, (f) a is
always immediately preceded by b.

remaining, untapped potentials, of my approach.

5.3.1 Methodology

Target Library Classes: In this work, I evaluate the effectiveness of the Spec-

Forge specification miner in generating behavioral models of 13 library classes.

The list of 13 library classes is listed in Table 5.1. The 7 underlying specification

miners on top of which SpecForge is built require a set of execution traces to infer

FSAs. These traces were obtained by running a set of test cases. I use traces from

passing test cases as they are likely to capture correct program behaviour. I make

use of a number of execution traces made available by Krka et al. and generate

additional execution traces by running programs in the DaCapo benchmark. The

list of client programs that had been run to generate the traces are also listed in
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Table 5.1.

Ground Truth Models: To evaluate the quality of a generated FSA, I need a

ground truth FSA. My ground truth FSAs are taken from those that were created

by Krka et al. [46] and Pradel et al. [93]. Following Krka et al., I remove edges

and nodes from the FSAs that do not appear in the execution traces that I use to

mine the model. Also, since the models were not created by library creators, to

ensure correct ground truths, I check the ground truth models against documented

specifications of library usage. I corrected a few errors in the ground truth FSAs

that were manually created by Krka et al. and Pradel et al. that do not follow

the documented specifications. I exclude net.sf.jftp.net.wrappers.SftpConnection

from my experiments (which was considered by Krka et al.) due to the lack

of documentation, which prevented us from verifying its ground truth model. I

exclude some library classes whose models are made available by Pradel et al.

due to difficulties in running Daikon to collect execution traces from some of

the JDK libraries1. The corrected ground-truth models are publicly available:

https://github.com/ModelInference/SpecForge

Evaluation Metrics: To measure the effectiveness of SpecForge, I use precision

and recall introduced by Lo and Khoo [26]. These have been previously used to

evaluate many different specification mining algorithms, e.g., [46, 26]. Precision

and recall are computed by comparing the language that is accepted by an inferred

FSA with the language that is accepted by a ground truth FSA. Precision refers

to the proportion of sentences that are accepted by the inferred model that is also

accepted by the ground truth model. Recall refers to the proportion of sentences

that are accepted by the ground truth model that is also accepted by the inferred

model. I also compute F-measure, which is the harmonic mean of precision and

1I have checked with Daikon developers who responded: “there is not an easy way to generate
invariants within the JDK; I assume that the libraries are correct” [97].
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recall and is defined as:

F-measure = 2× Precision× Recall

Precision + Recall

There is often a tradeoff between precision and recall: one can gain precision by

sacrificing recall (and vice versa). For example, SpecForge I omit more constraints

in the model fusion phase (resulting in a more general model that accepts more

traces) to achieve higher recall. However, this may reduce precision (if correct

constraints are removed in the process)2. In the extreme, if only one correct rule

is selected, the precision will be 100%, but recall will be low. F-measure is often

used as a summary measure that evaluates if an increase in precision outweighs a

reduction in recall (and vice versa). Thus, I use F-measure as a final yardstick to

evaluate the effectiveness of specification mining algorithms.

In the evaluation of precision and recall, I need to generate a set of sentences

that characterize the language that is accepted by a FSA. To generate sufficient

number of sentences that characterize the language that is accepted by an FSA,

I follow the procedure described by Lo et al. in their recent empirical study

paper that compares the effectiveness of various existing specification mining al-

gorithms [67]. I generate a set of sentences that are accepted by the FSA such that

each edge of the FSA is covered at least 10 times (10-transition-coverage). Since

some of the inferred automata is an NFA (Non-deterministic Finite Automata)

and are very large, to keep the number and length of traces manageable, I limit

the number of traces to 10,000 and the length of traces to 100.

Default Configuration: My proposed approach has a number of parameters

that can be tuned. The first parameter is the selection of constraint templates

that are used in the constraint enumeration step. The second parameter is the

selection of heuristic used in the constraint selection step. By default, I make use

2If only bad constraints are removed, then precision will also improve.
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of all the six constraint templates for the constraint enumeration step, and the

Intersection heuristic for the constraint selection step.

5.3.2 Research Questions

RQ1: How effective is the SpecForge specification mining approach?

The effectiveness of a specification mining approach affects the usefulness of

the mined specification for program comprehension and for automated program

analysis. To answer this research questions, we measure the precision, recall, and

F-measure of SpecForge in inferring behavioral models of the 13 library classes

described in Section 5.3.1.

RQ2: How much does SpecForge improve over existing specification mining ap-

proaches?

Many specification mining approaches that analyze execution traces and out-

put a finite state automaton have been proposed in the literature. SpecForge is

built on top of 7 existing approaches. To answer this research question, we com-

pare the precision, recall, and F-measure of SpecForge with those of the 7 existing

approaches for each of the 13 library classes that we investigate in this work.

RQ3: What is the impact of changing the constraint templates used in the con-

straint enumeration step?

In this paper, we consider six different constraint templates. Some constraints

may capture important properties in a FSA that a miner successfully “general-

izes” from a set of execution traces, while others may capture the idiosyncrasies

of a FSA miner which “overfit” the execution traces. In this research question,

we investigate if some constraint templates are prone to capturing incorrect con-

straints. To answer this question, we evaluate the effectiveness of SpecForge when

only some of the constraint templates are considered. We then highlight the effect

of adding and omitting some constraint templates.
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Table 5.2: Precision, Recall, and F-measure: SpecForge with Default Configura-
tion.

Target Library Classes Precision Recall F-measure

ArrayList 100.00% 65.08% 78.85%
HashMap 100.00% 44.02% 61.13%
HashSet 100.00% 55.44% 71.33%
Hashtable 100.00% 44.11% 61.22%
LinkedList 100.00% 82.80% 90.59%
StringTokenizer 60.00% 74.15% 66.33%
NFST 92.00% 30.63% 45.96%
SMTPProtocol 93.73% 45.00% 60.81%
Signature 100.00% 24.32% 39.13%
Socket 77.07% 40.86% 53.41%
StackAr 54.62% 100.00% 70.65%
ToHTMLStream 100.00% 60.00% 75.00%
ZipOutputStream 100.00% 43.18% 60.32%

Average 90.57% 54.58% 64.21%

RQ4: What is the impact of changing the heuristics used in the constraint selec-

tion step?

In this work, we propose a number of heuristics that we can adopt when select-

ing constraints that have been extracted from the input FSAs. These heuristics,

presented in Section 5.2.3, include: union, intersection, majority, and satisfied by

≥ N. For this research question, we evaluate the effectiveness of our approach

when using each of these heuristics. To simplify analysis, we do not vary the

constraint templates and use the templates from the default configuration.

5.3.3 Results

RQ1: Effectiveness of SpecForge

The effectiveness of a specification mining approach affects the usefulness of the

mined specification for program comprehension and for automated program anal-

ysis. To answer this research questions, I measure the precision, recall, and F-

measure of SpecForge in inferring behavioral models of the 13 library classes de-
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scribed in Section 5.3.1.

I execute SpecForge on an Intel(R) E5-2667 2.9 GHz processor server with 189

GB RAM running Linux 2.6; on average, SpecForge takes less than one second

to infer a specification for each input class. Table 5.2 shows the precision, recall,

and F-measure of SpecForge for the different target library classes. I note that

precision ranges from 54.62% to 100%, and that recall ranges from 24.32% to

100%, while F-measure ranges from 39.13% to 100%. Noticeably, the precision

is higher than the recall in most of the cases (11 out of 13 classes). Thus, most

of the behaviors captured in the inferred models are correct but some correct

behaviors are not captured successfully. Furthermore, there are 8 library classes

for which my approach achieves a precision of 100%, and 1 library class for which

its recall is 100%. My approach achieves the best F-measure for LinkedList

(i.e., 90.59%) and it achieves the worst F-measure for Signature (i.e., 39.13%).

Overall, SpecForge achieves an average precision, recall, and F-measure of 90.57%,

54.58%, and 64.21%, respectively.

I have manually investigated the inaccuracies of models generated with Spec-

Forge. I found that the main cause of the low F-measures is due to wrong temporal

rules being selected and fused into the overall model. Sections 5.3.3 and 5.3.3 de-

scribe how I can further improve the F-measure.

RQ2: SpecForge vs. Baselines

Many specification mining approaches that analyze execution traces and output a

finite state automaton have been proposed in the literature. SpecForge is built on

top of 7 existing approaches proposed by Krka [46] (described in Section 2.2.1).

To answer this research question, I compare the precision, recall, and F-measure

of SpecForge with those of the 7 existing approaches [46] for each of the 13 library

classes that I investigate in this work. These baselines are: traditional 1-tails,

traditional 2-tails, CONTRACTOR++, SEKT 1-tails, SEKT 2-tails, optimistic
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Table 5.3: Precision, Recall, and F-measure: Traditional 1-tail and Traditional
2-tail. “P” = Precision, “R” = Recall, and “F” = F-measure.

Target Traditional 1-tails Traditional 2-tails
Library Class P R F P R F

ArrayList 100.00% 11.15% 20.06% 100.00% 10.45% 18.92%
HashMap 100.00% 22.68% 36.97% 100.00% 19.08% 32.05%
HashSet 100.00% 20.76% 34.38% 100.00% 13.50% 23.79%
Hashtable 100.00% 30.23% 46.43% 100.00% 21.89% 35.92%
LinkedList 100.00% 29.49% 45.55% 100.00% 26.49% 41.88%
StringTokenizer 68.18% 39.46% 49.99% 71.21% 21.77% 33.34%
NFST 100.00% 1.80% 3.54% 100.00% 0.90% 1.79%
SMTPProtocol 100.00% 17.50% 29.79% 100.00% 17.50% 29.79%
Signature 100.00% 8.11% 15.00% 100.00% 8.11% 15.00%
Socket 97.15% 10.18% 18.43% 98.69% 8.86% 16.26%
StackAr 34.04% 14.52% 20.36% 51.69% 14.52% 22.67%
ToHTMLStream 100.00% 20.00% 33.33% 100.00% 20.00% 33.33%
ZipOutputStream 100.00% 0.00% 0.00% 95.00% 0.00% 0.00%

Average 92.26% 17.38% 27.22% 93.58% 14.08% 23.44%
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Figure 5.4: Average Precision, Recall, and F-measure: SpecForge vs. Baselines.
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Table 5.4: Precision, Recall, and F-measure: CONTRACTOR++. “P” = Preci-
sion, “R” = Recall, and “F” = F-measure.

Target CONTRACTOR++
Library Class P R F

ArrayList 100.00% 46.15% 63.15%
HashMap 100.00% 4.32% 8.28%
HashSet 100.00% 100.00% 100.00%
Hashtable 100.00% 1.55% 3.05%
LinkedList 100.00% 79.39% 88.51%
StringTokenizer 71.38% 16.33% 26.57%
NFST 87.27% 40.54% 55.36%
SMTPProtocol 85.71% 50.00% 63.16%
Signature 100.00% 75.68% 86.15%
Socket 100.00% 0.22% 0.44%
StackAr 98.35% 100.00% 99.17%
ToHTMLStream 100.00% 100.00% 100.00%
ZipOutputStream 100.00% 25.00% 40.00%

Average 95.59% 49.17% 56.45%

TEMI, and pessimistic TEMI. Tables 5.3, 5.4, 5.5 and 5.6 show the precision,

recall, and F-measure of the baselines.3 Table 5.3 shows the precision, recall, and

F-measure of traditional 1-tails and traditional 2-tails, and Table 5.4 shows the

precision, recall, and F-measure of CONTRACTOR++. Table 5.5 shows the pre-

cision, recall, and F-measure of SEKT 1-tails and SEKT 2-tails, and Table 5.5

shows the precision, recall, and F-measure of Optimistic TEMI and Pessimistic

TEMI. Figure 5.4 shows a bar chart that highlights the comparison between Spec-

Forge and all baselines. From the tables and the bar chart, I find that CONTRAC-

TOR++ has the best average F-measure of 56.45%, and SEKT 2-tails has the least

average F-measure of 23.18%.

Comparing Table 5.2 with Tables 5.3, 5.4, 5.5 and 5.6, my approach outper-

forms the average F-measures of all the baselines by 13.75% to 177.02%. The

average precision of my approach is slightly lower than those of the baselines (by

3Krka et al. have also estimated the precision and recall of these approaches [46]. I use a more
rigorous evaluation setting to generate sentences from inferred and ground truth models, i.e.,
10-transition coverage (see Section 5.3.1). Therefore, the results shown in Tables 5.5 and 5.3
are different from the ones calculated by Krka et al. [46].
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Table 5.5: Precision, Recall, and F-measure: SEKT 1-tail and SEKT 2-tail, Op-
timistic TEMI, and Pessimistic TEMI. “P” = Precision, “R” = Recall, and “F”
= F-measure.

Target SEKT 1-tails SEKT 2-tails
Library Class P R F P R F

ArrayList 100.00% 10.50% 19.00% 100.00% 10.28% 18.64%
HashMap 100.00% 21.75% 35.73% 100.00% 19.02% 31.96%
HashSet 100.00% 20.76% 34.38% 100.00% 13.50% 23.79%
Hashtable 100.00% 27.44% 43.06% 100.00% 20.79% 34.42%
LinkedList 100.00% 28.45% 44.30% 100.00% 25.96% 41.22%
StringTokenizer 63.64% 21.77% 32.44% 75.94% 20.41% 32.17%
NFST 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
SMTPProtocol 100.00% 17.50% 29.79% 100.00% 17.50% 29.79%
Signature 100.00% 8.11% 15.00% 100.00% 8.11% 15.00%
Socket 100.00% 10.11% 18.36% 100.00% 8.86% 16.28%
StackAr 95.55% 14.52% 25.21% 84.85% 14.52% 24.80%
ToHTMLStream 100.00% 20.00% 33.33% 100.00% 20.00% 33.33%
ZipOutputStream 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%

Average 96.86% 15.45% 25.43% 96.98% 13.77% 23.18%

up to 8.11%), however its recall is substantially higher than those of the baselines

(by up to 296.37%). Overall, the above statistics show that my approach is more

effective than all of the baselines.

RQ3: Different Constraint Templates

In this paper, I consider six different constraint templates. Some constraints may

capture important properties in a FSA that a miner successfully “generalizes” from

a set of execution traces, while others may capture the idiosyncrasies of a FSA

miner which “overfit” the execution traces. In this research question, I investigate

if some constraint templates are prone to capturing incorrect constraints. To

answer this question, I evaluate the effectiveness of SpecForge when only some of

the constraint templates are considered. I then highlight the effect of adding and

omitting some constraint templates.

Table 5.7 and Figure 5.5 compare the effectiveness of SpecForge when different

constraint templates are used in the constraint enumeration step. Due to space
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Table 5.6: Precision, Recall, and F-measure: Optimistic TEMI and Pessimistic
TEMI. “P” = Precision, “R” = Recall, and “F” = F-measure.

Target Optimistic TEMI Pessimistic TEMI
Library Class P R F P R F

ArrayList 100.00% 31.03% 47.36% 100.00% 18.92% 31.82%
HashMap 100.00% 4.32% 8.28% 100.00% 1.71% 3.36%
HashSet 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Hashtable 100.00% 0.16% 0.32% 100.00% 1.58% 3.11%
LinkedList 100.00% 79.39% 88.51% 100.00% 34.51% 51.31%
StringTokenizer 52.89% 14.29% 22.50% 78.99% 17.01% 27.99%
NFST 89.61% 40.54% 55.83% 94.00% 30.63% 46.21%
SMTPProtocol 94.81% 50.00% 65.47% 100.00% 5.00% 9.52%
Signature 100.00% 75.68% 86.15% 100.00% 75.68% 86.15%
Socket 100.00% 0.22% 0.44% 100.00% 18.00% 30.51%
StackAr 98.55% 100.00% 99.27% 100.00% 1.79% 3.53%
ToHTMLStream 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
ZipOutputStream 100.00% 25.00% 40.00% 100.00% 6.82% 12.77%

Average 95.07% 47.74% 54.93% 97.92% 31.67% 38.94%

constraints, I do not show all possible combinations. From the table, I note

that there are several combinations of constraint templates that result in higher

average precision, recall and F-measure compared to the default setting. Among

the combinations shown in Table 5.7, AF + NF + AP and AF + NF + AP + AIF

have the highest average precision, recall, and F-measure respectively, which are

83.35%, 71.82% and 72.82%.

On the other hand, ALL−AP and AIF + NIF + AIP have the least average F-

measure of approximately 22%. The decrease in F-measure shows that the absence

of the always preceded by constraints has a significant impact on the effectiveness

of SpecForge. Overall, choosing a suitable combinations of constraint templates

is important for improving effectiveness.

RQ4: Different Constraint Selection Heuristics

In this work, I propose a number of heuristics that I can adopt when selecting

constraints that have been extracted from the input FSAs. These heuristics,

presented in Section 5.2.3, include: union, intersection, majority, and satisfied by
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Table 5.7: Average Precision, Recall, and F-measure: SpecForge with Different
Constraint Templates.

Constraint Average
Templates Precision Recall F-measure

ALL (default) 90.57% 54.58% 64.21%
ALL− AF 87.58% 60.52% 68.21%
ALL− NF 90.68% 54.98% 64.83%
ALL− AP 15.01% 54.58% 21.36%
ALL− AIF 90.73% 54.58% 64.33%
ALL− NIF 86.60% 62.62% 66.71%
ALL− AIP 89.85% 63.22% 70.75%
AF + NF + AP 83.35% 71.82% 72.82%
AF + NF + AP + AIP 86.57% 62.62% 66.70%
AF + NF + AP + NIF 89.85% 63.22% 70.75%
AF + NF + AP + AIF 83.35% 71.82% 72.82%
AIF + NIF + AIP 14.44% 60.92% 21.94%
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Figure 5.5: Average Precision, Recall, and F-measure: SpecForge with Different
Constraint Templates.
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Table 5.8: Average Precision, Recall, and F-measure: SpecForge with Different
Constraint Selection Heuristics.

Selection Heuristics Precision Recall F-measure

Union 56.19% 10.26% 15.40%
Satisfied By ≥ x = 2 78.51% 12.01% 18.36%
Satisfied By ≥ x = 3 83.62% 17.81% 25.36%
Majority 93.00% 20.24% 28.98%
Satisfied By ≥ x = 5 89.80% 34.98% 45.34%
Satisfied By ≥ x = 6 88.82% 48.56% 59.48%
Intersection (default) 90.57% 54.58% 64.21%
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Figure 5.6: Average Precision, Recall, and F-measure: SpecForge with Different
Constraint Selection Heuristics.

≥ N. For this research question, I evaluate the effectiveness of my approach when

using each of these heuristics. To simplify analysis, I do not vary the constraint

templates and use the templates from the default configuration.

Table 5.8 and Figure 5.6 compare SpecForge’s performance for different con-

92



straint selection heuristics. The table lists the selection heuristics in increasing

order of strictness in selecting constraints. From the table, I notice that inter-

section is the most effective selection heuristic with an F-measure of 64.21%,

while union is the least effective heuristic with an F-measure of 15.40%. The

results also show that stricter selection heuristics tend to improve SpecForge’s

F-measure. Note that with a stricter heuristic, SpecForge only selects a subset of

constraints which enlarges the language accepted by the final inferred FSA. This

potentially increases recall (if more correct sentences are accepted by the inferred

FSA) – in the worst case recall will remain the same (if no additional correct sen-

tences are accepted). Selecting fewer constraints may reduce precision (if many

incorrect sentences are accepted by the inferred FSA). However, in the results, I

note that precision, in general, increases with stricter heuristics – this shows that

the additional sentences in the accepted languages of inferred FSAs include no or

few incorrect sentences.

Discussion

Untapped Potentials. In this paper I evaluated SpecForge based on the 7

specification mining techniques analyzed by Krka et al. [46]. Currently, my

meta-approach works better than existing baselines on average, however, it

does not perform the best in all cases. In my future work, I plan to improve

SpecForge’s performance in two concrete ways:

1. I plan to extend SpecForge with other specification mining techniques, such as

Synoptic [15] and Perfume [87]. This can help SpecForge exclude more incorrect

constraints, which is the main reason why currently SpecForge performs poorly

on some target classes. As just one example, if I drop 4 incorrect constraints that

are used to construct the FSA for java.util.Hashtable I can boost the F-measure

of the inferred model from 61.22% to 72.30%.
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2. I also plan to investigate alternative selection heuristics. Currently SpecForge

applies the same constraint selection heuristic across all the constraint templates.

However, it is possible to apply a different selection heuristic to each template.

This will allow us to vary the strictness of the heuristics used for the constraint

selection process. One promising direction is to use machine learning approaches

to identify the best heuristics to apply for each template by learning over a large

training dataset.

5.4 Conclusion

I have evaluated SpecForge by inferring specifications of 13 target library classes

from the execution traces of their client applications. I demonstrated that the

FSAs constructed with SpecForge are superior to those inferred by any one spec-

ification mining approach. My experiments show that SpecForge (with default

configuration) can achieve an average precision, recall, and F-measure of 90.57%,

54.58%, and 64.21% respectively. Although the average precision of SpecForge is

slightly lower than the baselines (by up to 8.11%), its average recall is significantly

better (by up to 296.37%). In terms of average F-measure, the harmonic mean

of precision and recall, SpecForge improves over the best performing baseline by

13.75%. I have also tried to adjust the configuration of SpecForge, and the best

configuration can achieve an average precision, recall, and F-measure of 83.35%,

71.82%, and 72.82% respectively. I believe that SpecForge generalizes and can

easily include, and build on, other FSA specification mining approaches.

In the future, I plan to improve the effectiveness of SpecForge further by in-

creasing the number of underlying FSA miners synergized together, increasing the

number of constraint templates, and developing an approach that can infer good

configurations of constraint templates and selection heuristics based on training

data. I also plan to reduce the threats to external validity further by experiment-

ing with additional target library classes and execution traces. Moreover, I plan

to extend SpecForge to mine parametric specification following the work by Lee
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et al. [54] and Lo et al. [25, 68].
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Chapter 6

DEEP SPECIFICATION MINING

Formal specifications are essential but usually unavailable in software systems.

Furthermore, writing these specifications is costly and requires skills from devel-

opers. Recently, many automated techniques have been proposed to mine specifi-

cations in various formats including finite-state automaton (FSA). However, more

works in specification mining are needed to further improve the accuracy of the

inferred specifications.

In this work, we propose Deep Specification Miner (DSM), a new approach

that performs deep learning for mining FSA-based specifications. Our proposed

approach uses test case generation to generate a rich set of execution traces for

training a Recurrent Neural Network Based Language Model (RNNLM). From

these execution traces, we construct a Prefix Tree Acceptor (PTA) and use the

learned RNNLM to extract many features. These features are subsequently uti-

lized by clustering algorithms to merge similar automata states in PTA for con-

structing more accurate resultant models. Finally, DSM performs a model selec-

tion heuristic to select the most accurate model as the final one. We execute DSM

to mine specifications of 11 target library classes. Our empirical analysis shows

that DSM achieves an average Precision, Recall, and F-measure of 82.76%, 72.3%,

and 71.97%, respectively. Compared to the best baseline, our approach is more

effective by 29.82% in terms of average F-measure.

6.1 Introduction

To mine more accurate FSA models, we propose a new specification mining algo-

rithm that performs deep learning on execution traces. We name our approach as
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DSM which stands for Deep Specification Miner. Recently, deep machine learn-

ing techniques are proposed to learn representations of data with multiple levels

of abstraction [52]. Specifically, deep learning techniques have the capabilities to

learn complex representations from large amount of data (e.g., execution traces)

by utilizing deep neural networks (i.e., networks with many layers). In this work,

we perform deep learning using Recurrent Neural Networks (RNN) [80] to learn a

complex model from temporal behaviors of software systems encoded in execution

traces. RNN is particularly good for learning models that depend on time or tem-

poral information as RNN’s hidden layers are allowed to connect to each other.

Our approach takes as input a target library class C and employs an automated

test case generation tool to generate thousands of test cases. The goal of this test

case generation process is to capture a rich set of valid sequences of invoked meth-

ods of C. Next, we perform deep learning on execution traces of generated test

cases to train a Recurrent Neural Network Language Model (RNNLM) [80]. We

construct a Prefix Tree Acceptor (PTA) from the execution traces and leverage

the learned language model to extract a number of interesting features from PTA’s

nodes. These features are then input to clustering algorithms for merging similar

states (i.e., PTA’s nodes). The output of an application of a clustering algorithm

is a simpler and more generalized FSA that reflects the training execution traces.

Finally, our approach predicts the accuracy of constructed FSAs (generated by

different clustering algorithms considering different settings) and outputs the one

with highest predicted value of F-measure.

We evaluate our proposed approach for 11 target library classes which were

used before to evaluate many prior work [46, 47]. For each of the input class, we

first run Randoop to generate thousands of test cases. Then, we use execution

traces of these test cases to infer FSAs. Our experiments show that DSM achieves

an average precision, recall, and F-measure of 82.76%, 72.3%, and 71.97%, re-

spectively. Compared to other existing specification mining algorithms, our ap-
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proach outperforms all baselines that construct FSAs from execution traces (e.g.,

k-tails [16], SEKT, etc.) by at least 29.82% in terms of average F-measure. Some

of the baselines first use Daikon to learn invariants that are then used to infer a

better FSA. Our approach does not use Daikon invariants in the inference of FSA.

Excluding baselines that use Daikon invariants, our approach can outperform the

remaining best performing miner by 33.24% in terms of average F-measure.

The contributions of our work are highlighted below:

1. We propose DSM (Deep Specification Miner), a new specification mining

algorithm that utilizes test case generation, deep learning, clustering algo-

rithms, and model selection strategy to infer automaton based specifications.

To the best of our knowledge, we are the first to use deep learning for mining

specifications.

2. We employ deep neural network based language models to estimate a number

of interesting features to be extracted from automaton states. These features

are subsequently used to support clustering algorithms to merge similar

states in order to infer simpler automata.

3. We propose a model selection strategy that predicts precision, recall, and F-

measure of a FSA given a set of execution traces of generated test cases. Our

approach selects and returns the FSA with highest predicted F-measures.

4. We evaluate the effectiveness of DSM on 11 different target library classes.

Our results show that our approach outperforms the best baseline by 29.82%

in terms of average F-measure.

The remainder of this paper is structured as follows. We describe details of

our proposed approach in Section 6.2. Then, we present our empirical evaluation

in Section 6.3. We discuss the future work and conclusion in Section 6.4.
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Figure 6.1: DSM’s overall framework.

6.2 Deep Specification Mining

6.2.1 Overall Framework

Figure 6.1 shows the overall framework of our proposed approach. In our frame-

work, there are three major processes: test case generation and traces collection,

Recurrent Neural Network Based Language Model (RNNLM) learning, and au-

tomata construction. Our approach takes as input a target class and signatures

of methods. Then, DSM runs Randoop [98] to generate a substantial number

of test cases for the input target class. Then, we record the execution of these

test cases, and retain traces of invocations of methods of the input target class as

the training dataset. Next, our approach performs deep learning on the collected

traces to infer a RNNLM that is capable of predicting the next likely method to

be executed given a sequence of previously called methods.

Subsequently, we employ a heuristic to select a subset of traces that best rep-

resents the whole training dataset. From these traces, we construct a Prefix Tree

Acceptor (PTA); we refer to each PTA’s node as an automaton state. Utilizing the

inferred RNNLM, we extract a number of features from automaton states, and in-

put the feature values to a number of clustering algorithms (i.e., k-means [74] and

hierarchical clustering [99]) considering different settings (e.g., different number

of clusters). The output of a clustering algorithm is clusters of similar automaton

states. We use these clusters to create a new FSA by merging states that belong
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to the same cluster. Every application of a clustering algorithm with a particular

setting results in a different FSA. We propose a model selection strategy to heuris-

tically select the most accurate model by predicting values of Precision, Recall,

and F-measure. Finally, we output the FSA with highest predicted F-measure.

6.2.2 Test Case Generation and Trace Collection

This process plays an important role to our approach as it decides the quality of

RNNLM inferred by the deep learning process. Previous research works in specifi-

cation mining [46, 49, 47] collect traces from the execution of a program given unit

test cases or inputs manually created by researchers. In this work, we utilize deep

learning for mining specification. Deep learning requires a substantially large and

rich amount of data. The more training inputs, the more patterns the resultant

RNNLM can capture. In general, it is difficult to follow previous works to collect

a rich enough set of execution traces for an arbitrary target library class. Firstly,

it is challenging to look for all projects that use the target library class, especially

for classes from new or unreleased libraries. Secondly, existing unit test cases or

manually created inputs may not cover many of the possible execution scenarios

of methods in a target class.

We address the above issues by following Dallmeier et al. [23, 22] to generate

as many test cases as possible for mining specifications, and collect the execution

traces of these test cases for subsequent steps. Recently, many test case generation

tools have been proposed such as Randoop1 [98], EvoSuite2 [33], etc. Among the

state-of-the-art test case generation tools, we choose Randoop because it is widely

used and lightweight. Furthermore, Randoop is well maintained and frequently

updated with new versions. As future work, we plan to integrate many other test

case generation methods into our approach.

Randoop generates a large number of test cases, which is proportional to the

1https://randoop.github.io/randoop/
2http://www.evosuite.org/
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time limit of its execution. In order to improve the coverage of possible sequences

of methods under test, we provide class-specific literals aside from default ones to

Randoop. For example, for java.net.Socket, we create string and integer literals

which are addresses of hosts (e.g., “localhost”, “127.0.0.1”, etc.) and listening

ports (e.g., 8888, etc.). Furthermore, we create driver classes that contain static

methods that invoke constructors of the target class to initialize new objects. That

helps speed up Randoop to create new objects without spending time to search

for appropriate input values for constructors.

6.2.3 Learning RNNLM for Specification Mining

In this section, we first briefly discuss statistical language model in general. Next,

we present an overview of Recurrent Neural Network Based Language Models

(RNNLM), which is a specific type of language model used in this work. DSM

employs RNNLM to extract several important features from states of an automa-

ton, and use these features to merge similar states.

Statistical Language Model: A statistical language model is an oracle that

can foresee how likely a sentence s = w1, w2, . . . , wn to occur in a language. In

a nutshell, a statistical language model considers a sequence s to be a list of

words w1, w2, ..., wn and assigns probability to s by computing joint probability of

words: P (w1, . . . , wn) =
∏n−1

i=1 P (wi|w1, . . . , wi−1). As it is challenging to compute

conditional probability P (wi|w1, . . . , wi−1), different language model has its own

assumption to approximate the calculation. N-grams model, a popular family of

language models, approximates in a way that a word wk conditionally depends

only on its previous N words (i.e., wk−N+1, . . . , wk−1). For example, unigram

model simply estimates P (wi|w1, . . . , wi−1) as P (wi), bigram model approximates

P (wi|w1, . . . , wi−1) as P (wi|wi−1), etc. In this work, we utilize the ability of lan-

guage models to compute P (wi|w1, . . . , wi−1) for estimating features of automaton

states. We consider every method invocation as a word and an execution trace of
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Figure 6.2: An unrolled Recurrent Neural Network from time t0 to t3 for
predicting the next likely method given a sequence of invoked methods for
java.util.StringTokenizer. “STN” : StringTokenizer(), “NT” : nextToken(),
and “HMTF” : hasMoreTokens()==false.

an object as a sentence (i.e., sequence of method invocations). Given a sequence

of previously invoked methods, we use a language model to output the probability

of a method to be invoked next.

Recurrent Neural Network Based Language Model: N-grams models have

been widely used to solve many software engineering tasks. For decades, there

have been many research studies trying to outperform N-grams. Recently, a fam-

ily of language models that make use of neural networks is shown to be more

effective than N-grams [79]. These models are referred to as neural network based

language models (NNLM). If a NNLM has many hidden layers, we refer to the

model as a deep neural network language model or deep language model for short.

Furthermore, the process of training weights in the underlying network of such

deep language models is called deep learning. Recently, Recurrent Neural Net-

work Based Language Model (RNNLM) [80] is well-known with its ability to use

internal memories to handle sequences of words with arbitrary lengths. The un-
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derlying network architecture of a RNNLM is a Recurrent Neural Network (RNN)

that stores information of input word sequences in its hidden layers. Figure 6.2

demonstrates how a RNN operates given the sequence <START>, STN, NT, HMTF,

<END>. In the figure, a RNN is unrolled to become four connected networks, each

of which is processing one input method at a time step. Initially, all states in the

hidden layer are assign to all zeros. At time tk, a method mk is represented as

an one-hot vector ik by the input layer. Next, the hidden layer updates its states

by using the vector ik and the states previously computed at time tk−1. Then,

the output layer estimates a probability vector ok across all methods for them to

appear in the next time step tk+1. This process is repeated at subsequent time

steps until the last method in the sequence is handled.

Construction of Training Method Sequences: Our set of collected execution

traces is a series of method sequences. Each of these sequences starts and ends

with two special symbol: <START> and <END>, respectively. These symbols are

used for separating two different sequences. We gather all sequences together

to create data for training Recurrent Neural Network. Furthermore, we limit

the maximum frequency of a method sequence MAX SEQ FREQ to 10 to prevent

imbalanced data issue where a sequence appears much more frequently than the

other ones.

Model Training: We perform deep learning on the training data to learn a

Recurrent Neural Network Based Language Model (RNNLM) for every target

library class. By default, we use Long Short-Term Memory (LSTM) network [37],

one of the state-of-the-art RNNs, as the underlying architecture of the RNNLM.

Compared to the standard RNN architecture, LSTM is better in learning long-

term dependencies. In fact, LSTM network is more suitable for learning from

execution traces data as sequences of methods in the traces are usually long.
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6.2.4 Automata Construction

In this processing step, our approach takes as input the set of training execution

traces and the inferred RNNLM (see Section 6.2.3). The output of this step is a

FSA that best captures the specification of the corresponding target class. The

construction of FSA undergoes several substeps: trace sampling, feature extrac-

tion, clustering, and model selection.

At first, we use a heuristic to select a subset of method sequences that repre-

sents all training execution traces. The feature extraction and clustering steps use

these selected traces, instead of all traces, to reduce computation cost. We con-

struct a Prefix Tree Acceptor (PTA) from the selected traces and extract features

for every PTA nodes using the inferred RNNLM. We refer to each PTA node as

an automata state. Figure 6.3 shows an example of a PTA constructed from three

different sequences of methods of java.util.ZipOutputStream. We want to find

similar automata states and group them into the same cluster. In the clustering

substep, we run a number of clustering algorithms on PTA nodes with various

settings to create many different FSAs. Finally, in the model selection substep,

we follow a heuristic to predict the F-measure (see Section 6.3.2) of constructed

FSAs and output the one with highest predicted F-measure. The full set of traces

is used in this model selection step. In the following paragraphs, we describe

details of each substep in this processing step:

Trace Sampling: Our training data contains a large number of sequences. Thus,

it is expensive to use all of them for constructing FSAs. Therefore, the goal of

trace sampling is to create a smaller subset that is likely to represent the whole

set of all traces reasonably well. We propose a heuristic to find a subset of traces

that covers all co-occurrence pairs of methods in all training traces. (m1,m2) is a

co-occurrence pair if m1 and m2 appear together in at least one trace.

Algorithm 3 shows our heuristic to select execution traces from the whole

set of execution traces S. At first, we determine all pairs (a, b) where a and b
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Algorithm 3 Selecting Subset of Method Sequences

Require: S = {Si | 1 ≤ i ≤ N}: Collection of method sequences where N is the
number of sequences

Ensure: X: Selected sequences of methods
1: Sort S in ascending order of sequence length
2: D ← initialization of dictionary type
3: P ← empty set
4: for Si ∈ S do
5: for (a, b) where a ∈ Si ∧ b ∈ Si ∧ a < b do
6: D[(a, b)]+=[Si]
7: Include (a, b) to P
8: end for
9: end for

10: X ← empty set
11: while ∃(a, b) ∈ P do
12: Select (a, b) ∈ P that D[(a, b)] has the least number of elements
13: for Si ∈ D[(a, b)] ∧ Si 6∈ X do
14: Include Si to X
15: Remove all pairs (a, b) from P where a ∈ Si ∧ b ∈ Si ∧ a < b
16: break
17: end for
18: end while
19: return X

are methods that occur together in at least one trace in S and store them in P

(lines 4 to 9). Next, we create a set O that contains selected traces – initially

O is an empty set (line 10). Then, we iteratively choose a pair (a, b) which does

not appear in any trace in O and occur in the least number of input traces in

S (line 12). Given a selected pair (a, b), we look for the shortest trace Si 6∈ O

where a, b ∈ Si (line 13). Once the trace is found, we include Si to O. We mark

the pair (a, b) as processed by removing it from P (line 15). We keep searching

for sequences until O covers all co-occurrence pairs (a, b) in the input execution

traces.

Feature Extraction: From method sequences of the sampled execution traces,

we construct a Prefix Tree Acceptor (PTA). A PTA is a tree-like deterministic

finite automaton (DFA) created by putting all the prefixes of sequences as states,

and a PTA only accepts the sequences that it is built from. The final states
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S0

S9

S1

<START>

S2

<init>

S6
putNextEntry write

S7 S8
close <END>

S12S10
<END>

S11
close

S5S3 S4
close <END>

Figure 6.3: An example Prefix Tree Acceptor (PTA).

of our constructed PTAs are the ones have incoming edges with <END> labels

(see Section 6.2.3). Figure 6.3 shows an example of a Prefix Tree Acceptor (PTA).

Table 6.1 shows information of the extracted features. For each state S of a PTA,

we are particularly interested in two types of features:

1. Type I: This type of features captures information of previously invoked

methods before the state S is reached. The values of type I features for

state S is the occurrences of methods on the path between the starting

state (i.e., the root of the PTA) and S. For example, according to Figure 6.3,

the values of Type 1 features corresponding to node S3 are: F<START> =

F<init> = Fclose = 1 and Fwrite = FputNextEntry = FcloseEntry = F<END> = 0.

2. Type II: This type of features captures the likely methods to be called after

a state is reached. Values of these features are computed by the inferred

RNNLM in the deep learning step (see Section 6.2.3). For example, at node

S3 in Figure 6.3, close and <END> have higher probabilities than the other

106



Table 6.1: Extracted Features for An Automata State

Feature ID Value
Type I: Previously Invoked Methods

Fm
1 if m is invoked before the automata state. Oth-
erwise, 0.

Type II: Next Methods to Invoke

Pm

Probability computed by the learned Recurrent
Neural Network based Language Model for method
m to be called after a particular automata state is
reached (0 ≤ Pm ≤ 1).

methods to be called afterward. Examples of type II features and their values

for node S3 output by a RNNLM are as follows: Pclose = P<END> = 0.4 and

P<START> = P<init> = Pwrite = PputNextEntry = PcloseEntry = 0.04.

Our intuition of extracting different types of features is to provide sufficient infor-

mation for clustering algorithms in the subsequent substep to better merge PTA

nodes.

Clustering: We run k-means [74] and hierarchical clustering [99] algorithms on

the PTA’s states with their extracted features. Our goal is to create a simpler and

more generalized automaton that captures specifications of a target library class.

Since both k-means and hierarchical clustering require the predefined input C for

number of clusters, we try with many values of C from 2 to MAX CLUSTER (refer

to Section 6.3.2) to search for the best FSA. Overall, the execution of clustering

algorithms results in 2× (MAX CLUSTER− 1) FSAs.

Model Selection: We propose a heuristic to select the best FSA among the ones

output by the clustering algorithms. Algorithm 4 describes our strategy to predict

precision of an automaton M given the set of all traces Data (see Section 6.2.2).

We predict Precision by first constructing a set PData containing all pairs

(m1,m2), where m1 and m2 appear consecutively (i.e., m1 is called right before

m2) in an execution trace in Data. Then, we construct another set PM containing

107



Algorithm 4 Predicting Precision of a finite-state automaton given a set of
method sequence.

Require:
M : an finite-state automaton
Data: a set of training method sequences

Ensure: Predicted Precision of M
1: PData ← empty set
2: for seq ∈ Data do
3: for 0 ≤ i < length(seq)− 1 do
4: Include (seq[i], seq[i+ 1]) to PData
5: end for
6: end for
7: PM ← empty set
8: EM ← the set of transitions in M
9: for s1

m1−→ s2 ∈ EM ∧ s2
m2−→ s3 ∈ EM do Include (m1,m2) to PM

10: end for

11: precision← |PData|
|PData ∪ PM |

12: return precision

all pairs (m1,m2) that appear consecutively in a trace generated by the automa-

ton M . In Algorithm 4, lines 1 to 6 compute all pairs (m1,m2) occurring in Data,

and lines 7 to 11 collect those pairs occurring in traces generated by the input

automaton M . To find all pairs occurring in traces generated by M , we look for

two transitions s1
m1−→ s′1 and s2

m2−→ s′2 of M , where s′1 = s2. We take labels

of the two transitions (i.e., m1 and m2) and add a pair of methods (m1,m2) to

the set PM . Line 12 computes the predicted value of Precision, which is the ratio

between of number of all pairs in PM and all pairs in PData ∪ PM . We input all

FSAs created by clustering algorithms and all execution traces to Algorithm 4 for

estimating the FSAs’ Precision.

Next, we approximate the values of Recall by computing the percentage of all

execution traces accepted by a given automaton M . Once all precision and recall

of FSA models are predicted, we compute the expected value of F-measure (i.e.,

harmonic mean of precision and recall) for each of the automata. Finally, our

approach returns the FSA with highest expected F-measure.
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Table 6.2: Target Library Classes. “# Methods” represents the number
of class methods that are analyzed, “# Generated Test Cases” is the num-
ber of test cases generated by Randoop, “# Recorded Method Calls” is the
number of recorded method calls in the execution traces, “NFST” stands for
NumberFormatStringTokenizer.

Target Library
# Methods

# Generated # Recorded
Class Test Cases Method Calls

ArrayList 18 42,865 22,996
HashMap 11 53,396 67,942
Hashtable 8 79,403 89,811
HashSet 8 23,181 257,428
LinkedList 7 13,731 4,847
NFST 5 15,8998 95,149
Signature 5 79,096 205,386
Socket 21 80,035 130,876
StringTokenizer 5 148,649 336,924
StackAr 7 549,648 13,2826
ZipOutputStream 5 162,971 43,626

6.3 Evaluation

6.3.1 Dataset

Target Library Classes: In our experiments, we select 11 target library

classes as the benchmark to evaluate the effectiveness of our proposed ap-

proach. These library classes were investigated by previous research works

in specification mining [46, 47]. Table 6.2 shows further details of the se-

lected library classes including information of collected execution traces. Among

these library classes, 9 out of 11 are from Java Development Kit (JDK); the

other two library classes are DataStructure.StackAr (from Daikon project) and

NumberFormatStringTokenizer (from Apache Xalan). For every library class,

we consider methods that were analyzed by Krka et al. [46].

Ground Truth Models: We utilize ground truth models created by Krka et al. [46].

Among the investigated library classes, we refine ground truth models of five Java’s

Collection based library classes (i.e., ArrayList, LinkedList, HashMap, HashSet,
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and Hashtable) to capture “empty” and “non-empty” states of Collection ob-

jects. We also revise ground truth models of NumberFormatStringTokenizer and

Socket by including missing transitions of the original models.

6.3.2 Experimental Settings

Evaluation Metrics

We follow Lo and Khoo’s method [63] to measure precision and recall for assess-

ing the effectiveness of our proposed approach. Lo and Khoo’s method has been

widely adopted by many prior specification mining works [46, 49]. By defini-

tion, precision of an inferred FSA is the percentage of sentences (i.e., execution

traces) accepted by its corresponding ground truth model among the ones that

are generated by that FSA. Similarly, recall of an inferred FSA is the percentage

of sentences accepted by itself among the ones that are generated by the corre-

sponding ground truth model. If precision of a FSA is low, it means that the

automaton generates many invalid sentences. Therefore, the higher the precision,

the more likely sentences generated by the FSA are correct. On the other hand, if

recall is low, the FSA overfits the training data and unable to accept many other

valid sentences. Thus, the higher the recall, the more general the inferred FSA.

We use F-measure, which is the harmonic mean of precision and recall, as a sum-

mary metric to evaluate specification mining algorithms. F-measure is defined as

follows:

F-Measure = 2× Precision×Recall
Precision+Recall

(6.1)

Experimental Configurations & Environments

Randoop Configuration. In test case generation step, for each target class,

we repeatedly execute Randoop (version 3.1.2) with a time limit of 5 minute

with 20 different initial seeds. We set the time limit to 5 minutes to make sure
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subsequent collected execution traces are not too long as well as not too short.

We repeat execution of Randoop 20 times to maximize the coverage of possi-

ble sequences of program methods in Randoop generated test cases. Further-

more, we turn off Randoop’s option of generating error-revealing test cases (i.e.,

--no-error-revealing-tests is set to true) as executions of these test cases are

usually interrupted by exceptions or errors, which results in incomplete method

sequences for subsequent deep learning process.

RNNLM. We use a publicly available implementation of RNNLM based on

TensorFlow (r.11.0).3 We execute this implementation on a NVIDIA DGX-1

Deep Learning system. We use the default configuration included as part of the

implementation.

Clustering Configuration. In clustering step, we run k-means and hi-

erarchical clustering with the setting of number of clusters from 2 to

MAX CLUSTER = 20 for every target class. We use sklearn.cluster.KMeans and

sklearn.cluster.AgglomerativeClustering of scikit-learn (version 0.18) with

default settings.

Baselines

In the experiments, we compare the effectiveness of DSM with many previous

specification mining works . Krka et al. propose a number of algorithms that

analyze execution traces to infer FSAs [46]. These algorithms are k-tails, CON-

TRACTOR++, SEKT, and TEMI. CONTRACTOR++, TEMI, and SEKT infer

models leveraging invariants learned using Daikon. On the other hand, k-tails

construct models only from ordering of methods in execution traces. Despite the

fact that DSM is not processing likely invariants, we include CONTRACTOR++,

SEKT, and TEMI as baselines to compare the applicability of deep learning and

3https://github.com/hunkim/word-rnn-tensorflow
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likely invariant inference in specification mining. For k-tails and SEKT, we choose

k ∈ {1, 2} following Krka et al. [46] and Le et al. [47]’s configurations. In total, we

have six different baselines: Traditional 1-tails, Traditional 2-tails, CONTRAC-

TOR++, SEKT 1-tails. SEKT 2-tails, and TEMI

We use the implementation of provided by Krka et al.4 [46]. We utilize

Daikon [30] to collect execution traces from Randoop generated test cases and

inferred likely invariants from all of the traces. Originally, Krka et al.’s implemen-

tation uses a 32-bit version of Yices 1.0 Java Lite API5, which only works with

32-bit Java Virtual Machine and limited to use up to 4 GB heap memory. Since

the amount of execution traces is large, we follow two experimental schemes to

run Krka et al.’s code:

1. Scheme I: Krka et al.’s implementation is updated to work with the 64-bit

libraries of Yices 1 SMT solver6. Then, we input execution traces of all

generated test case as well as Daikon invariants inferred by these traces to

all baselines. For each application of Krka et al.’s code, we set the maximum

allocated memory to 7 GB and time limit to 12 hours.

2. Scheme II: We use the original Krka et al.’s implementation and a set of

execution traces corresponding to test cases generated by Randoop with one

specific seed.

6.3.3 Research Questions

RQ1: How effective is DSM? In this research question, we compute precision,

recall, and F-measure of FSAs inferred by our approach for the 11 target library

classes.

RQ2: How does DSM compare to existing specification mining algo-

rithms? In this research question, we compare DSM with a number of existing

4http://softarch.usc.edu/wiki/doku.php?id=inference:start
5http://atlantis.seidenberg.pace.edu/wiki/lep/Yices Java API Lite
6http://yices.csl.sri.com/old/download-yices1.shtml

112



Table 6.3: Precision, Recall, and F-measure: DSM

Target Library Classes Precision Recall F-measure

ArrayList 54.39% 13.95% 22.21%
HashMap 100.00% 76.53% 86.71%
HashSet 100.00% 62.39% 76.84%
Hashtable 100.00% 66.55% 79.92%
LinkedList 100.00% 18.33% 30.98%
NFST 75.18% 80.01% 77.52%
Signature 100.00% 100.00% 100.00%
Socket 41.69% 77.58% 54.24%
StackAr 59.21% 100.00% 74.38%
StringTokenizer 100.00% 100.00% 100.00%
ZipOutputStream 79.89% 100.00% 88.82%

Average 82.76% 72.3% 71.97%

specification mining algorithms proposed by Krka et al. [46] in various experimen-

tal schemes.

RQ3: Which Recurrent Neural Network (RNN) is best for DSM? By

default, DSM trains RNNLMs using Long-Short Term Memory (LSTM) networks

from execution traces. In this research question, we first adapt DSM to use the

standard RNN and Gated Recurrent Units (GRU)[18] networks for constructing

language models with the same learning configuration as LSTM (see Section 6.2.3).

Then, we analyze the effectiveness of DSM for each neural network architecture

(i.e., Standard RNN, LSTM, and GRU).

6.3.4 Findings

RQ1: DSM’s Effectiveness. Table 6.3 shows the precision, recall, and F-

measure of DSM for the eleven target library classes (Section 6.3.1). According

to the table, our approach achieves the average precision, recall, and F-measure

of 82.76%, 72.30%, and 71.97%, respectively. Noticeably, for StringTokenizer

and Signature, DSM infers models that are exactly matched to the ground truth

models (i.e. F-measure of 100%). There are other 6 out of 11 library classes where
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Table 6.4: Precision, Recall, and F-measure: Traditional 1-tail and Traditional
2-tail. “P” = Precision, “R” = Recall, and “F” = F-measure.

Target Library Traditional 1-tails Traditional 2-tails
Class P R F P R F

ArrayList 70.33% 2.92% 5.61% 93.14% 1.57% 3.08%
HashMap 43.12% 32.95% 37.35% 57.05% 13.58% 21.93%
HashSet 57.01% 14.38% 22.96% 66.52% 8.67% 15.35%
Hashtable 76.68% 80.24% 78.42% 94.28% 60.05% 73.37%
LinkedList 100.00% 15.14% 26.30% 100.00% 4.20% 8.07%
NFST 86.00% 57.22% 68.72% 90.82% 35.49% 51.04%
SMTPProtocol 85.56% 31.37% 45.91% 100.00% 27.55% 43.20%
Signature 100.00% 100.00% 100.00% 100.00% 91.22% 95.41%
Socket 48.51% 30.30% 37.30% 82.03% 12.69% 21.98%
StackAr 89.93% 27.88% 42.57% 89.93% 27.88% 42.57%
StringTokenizer 100.00% 100.00% 100.00% 100.00% 81.31% 89.69%
ZipOutputStream 70.23% 100.00% 82.51% 74.05% 82.57% 78.08%

Average 77.28% 49.37% 53.97% 87.32% 37.23% 45.31%

our approach achieves F-measure of 70% or greater. DSM has the least F-measure

on ArrayList (i.e., 22.21%) and LinkedList (i.e., 30.98%). For both of the two

least effective cases, we note that precision is higher than recall. This is due to

the poor coverage of possible sequences of method calls in generated test cases

which makes RNNLM overfitted. As future work, we plan to design a better test

case generation technique for specification mining.

RQ2: DSM vs. Previous Works. Table 6.4, 6.5, and 6.6 show the precision,

recall, and F-measure of 6 baselines proposed by Krka et al. [46]. Optimistic

TEMI7 is the best performing baseline in terms of average F-measure; Traditional

1-tails is the best baseline that constructs models from execution traces with the

average F-measure of 53.97%. According to the bar chart shown in Figure 6.4,

we note that the average recall, and F-measure of DSM is higher than those of

all the six baselines. That indicates our inferred models are more generalized

and less overfitted. In terms of average F-measure, our approach outperforms

the best baseline (i.e., Optimistic TEMI) by 29.82%. DSM is also more effective

7Krka’s implementation was not able to return any Optimistic TEMI models for all StackAr’s
input execution traces.
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Figure 6.4: Average Precision, Recall, and F-measure: DSM vs. Baselines.

than Traditional 1-tails (i.e., the best baseline that infers FSAs from traces) by

33.24%. Noticeably, compared to the baselines that construct automata from

execution traces (i.e., Traditional 1-tails, Traditional 2-tails, SEKT 1-tails, and

SEKT 2-tails), DSM’s F-measures are higher for all target library classes. For the

other baselines that use likely invariants, our approach is more effective in terms of

F-measures for 7 out of 11 target library classes except ArrayList, LinkedList,

Hashtable, and Socket.

RQ3: Best RNN Architecture. Table 6.7 and 6.8 shows the effectiveness

of DSM configured with standard RNN architecture DSMRNN and DSMGRU, re-

spectively. According to the tables, DSMGRU outperforms DSMRNN in terms of

F-measure by 6.88%. GRU performs equally well as LTSM (our default setting).
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Table 6.5: Precision, Recall, and F-measure: SEKT 1-tail and SEKT 2-tail. “P”
= Precision, “R” = Recall, and “F” = F-measure, “N/A” = the result is not
available.

Target Library SEKT 1-tails SEKT 2-tails
Class P R F P R F

ArrayList 100.00% 2.22% 4.34% 100.00% 1.57% 3.08%
HashMap 43.12% 32.95% 37.35% 57.05% 13.58% 21.93%
HashSet 57.01% 14.38% 22.96% 66.52% 8.67% 15.35%
Hashtable 100.00% 69.05% 81.69% 100.00% 48.66% 65.47%
LinkedList 100.00% 10.16% 18.45% 100.00% 3.41% 6.59%
NFST 79.60% 57.22% 66.58% 92.89% 33.75% 49.51%
SMTPProtocol 100.00% 31.37% 47.76% 100.00% 27.55% 43.20%
Signature 100.00% 91.22% 95.41% 100.00% 81.46% 89.78%
Socket 85.17% 22.28% 35.32% 94.29% 11.73% 20.87%
StackAr 89.93% 27.88% 42.57% 89.93% 27.88% 42.57%
StringTokenizer 100.00% 85.54% 92.21% 100.00% 73.57% 84.77%
ZipOutputStream 76.16% 100.00% 86.47% 74.57% 62.23% 67.84%

Average 85.92% 45.36% 52.59% 89.60% 32.84% 42.58%

6.3.5 Discussions

According to the empirical evaluation, DSM outperforms all baseline mining algo-

rithms that only analyze method ordering in execution traces to construct FSAs

(i.e., k-tails). On the other hand, DSM is not better than CONTRACTOR++ and

Optimistic TEMI for ArrayList, LinkedList, Hashtable, and Socket. Both of

CONTRACTOR++ and Optimistic TEMI mainly rely on likely invariants rather

than execution traces to construct FSAs. In fact, the two baselines benefit from

accurate program invariants inferred from the execution of substantial amount of

generated test cases (see Table 6.2).

In a nutshell, there is a trade-off between using likely invariants and raw

method orderings in execution traces to construct FSAs. Program invariants

are more helpful in inferring specifications [46], but they are more expensive to

process and infer. This is because we need to record additional information in the

traces such as values of all visible variables in entry and exit points of every in-

voked method. The more values of variables captured in the execution traces, the
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Table 6.6: Precision, Recall, and F-measure: CONTRACTOR++ and Optimistic
TEMI. “P” = Precision, “R” = Recall, and “F” = F-measure, “N/A” = the result
is not available.

Target Library CONTRACTOR++ Optimistic TEMI
Class P R F P R F

ArrayList 86.30% 22.77% 36.03% 92.72% 22.19% 35.82%
HashMap 52.60% 100.00% 68.94% 52.60% 100.00% 68.94%
HashSet 57.11% 48.11% 52.22% 65.91% 48.11% 55.62%
Hashtable 100.00% 86.53% 92.78% 100.00% 86.53% 92.78%
LinkedList 100.00% 75.47% 86.02% 100.00% 75.47% 86.02%
NFST 29.00% 31.94% 30.40% 35.00% 31.94% 33.40%
SMTPProtocol 89.25% 33.62% 48.84% 99.66% 32.09% 48.54%
Signature 100.00% 50.24% 66.88% 100.00% 50.24% 66.88%
Socket 67.91% 46.43% 55.15% 69.37% 46.43% 55.62%
StackAr 52.03% 26.26% 34.91% N/A N/A N/A
StringTokenizer 100.00% 11.92% 21.30% 87.92% 0.00% 0.00%
ZipOutputStream 45.77% 100.00% 62.80% 49.48% 100.00% 66.20%

Average 73.33% 52.77% 54.69% 77.51% 53.91% 55.44%

more accurate the inferred invariants. On the other hand, utilizing raw method

orderings in execution traces for specification mining is less costly. However, ex-

ecution traces provide limited information of important properties that might be

valuable to enhance quality of inferred FSAs. As future work, we plan to employ

likely invariants in DSM to avoid incorrect merges of automaton states made by

clustering algorithms.

6.3.6 Threats to Validity

There are a number of potential threats that may affect the validity of our study:

Threats to internal validity We have carefully checked our implementation,

but there are errors that we did not notice. There are also potential threats related

to correctness of ground truth models created by Krka et al. [46] that we used.

To mitigate this threat, we have compared their models against execution traces

collected from Randoop generated test cases as well as textual documentations

published by library class writers (e.g., Javadocs). We revised the ground truth
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Table 6.7: Precision, Recall, and F-measure: DSM with standard RNN (DSMRNN)

Target Library Classes Precision Recall F-measure

ArrayList 57.97% 2.58% 4.95%
HashMap 100.00% 95.62% 97.76%
HashSet 71.40% 66.48% 68.86%
Hashtable 100.00% 78.48% 87.94%
LinkedList 100.00% 19.25% 32.29%
NFST 53.95% 100.00% 70.09%
Signature 48.49% 100.00% 65.31%
Socket 55.00% 48.09% 51.31%
StackAr 56.41% 98.70% 71.79%
StringTokenizer 100.00% 92.10% 95.88%
ZipOutputStream 77.55% 100.00% 87.36%

Average 74.62% 72.85% 66.69%

models accordingly.

Threats to External Validity These threats correspond to the generalizability

of our empirical findings. In this work, we have analyzed 11 different library

classes. This is larger than the number of target classes used to evaluate many

prior studies, e.g., [46, 67, 66]. As future works, we plan to reduce this threat by

analyzing more library classes to infer their automaton based specifications.

Threats to Construct Validity These threats correspond to the usage of

evaluation metrics. We have followed Lo and Khoo’s approach that uses preci-

sion, recall, and F-measure to measure the accuracy of automata output by a

specification mining algorithm against ground truth models [63]. Furthermore,

Lo and Khoo’s approach is well known and has been adopted by many previous

research works in specification mining e.g., [14, 15, 46, 26, 62, 66, 49].

6.4 Conclusion

Formal specifications are helpful for many manual software processes. In this work,

we propose DSM, a new approach that employs Recurrent Neural Network Based
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Table 6.8: Precision, Recall, and F-measure: DSM with GRU (DSMGRU)

Target Library Classes Precision Recall F-measure

ArrayList 51.08% 5.17% 9.39%
HashMap 100.00% 100.00% 100.00%
HashSet 87.93% 63.70% 73.88%
Hashtable 100.00% 78.48% 87.94%
LinkedList 100.00% 21.11% 34.86%
NFST 83.54% 65.31% 73.31%
Signature 100.00% 91.22% 95.41%
Socket 53.56% 64.05% 58.34%
StackAr 67.10% 92.21% 77.67%
StringTokenizer 100.00% 100.00% 100.00%
ZipOutputStream 57.84% 100.00% 73.29%

Average 81.91% 71.02% 71.28%

Language Models (RNNML) for mining automaton based specifications. We ap-

ply Randoop, a well-known test cases generation approach, to enrich execution

traces for training RNNML. From the collected traces, we construct a Prefix Tree

Acceptor (PTA) and extract many features of PTA’s states. These features are

then utilized by clustering algorithms to merge similar automata states and con-

struct the final finite-state automaton. We perform our proposed approach to infer

specifications for 11 target library classes. Our results show that DSM achieves

an average precision, recall, and F-measure of 82.76%, 72.3%, and 71.97%, respec-

tively. Compared to other existing specification mining algorithms, our approach

outperforms the best baseline by 29.82% in terms of average F-measure.

As future work, we plan to improve DSM’s effectiveness further by integrating

information of likely invariants into our deep learning based framework. Fur-

thermore, we plan to tune DSM with many clustering algorithms aside k-means

and hierarchical clustering, especially the ones that require no inputs of number

of clusters (e.g., DBSCAN [31], etc.). We also plan to develop new test cases

generation technique that is specialized for application of deep learning in specifi-

cation mining. Finally, we plan to evaluate our approaches with more classes and
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libraries in order to reduce threats to external validity.
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Chapter 7

CONCLUSION AND FUTURE WORK

Software fault localization and specification mining are essential. Developers

employ fault localization to find locations of faulty program elements, while speci-

fication mining approaches automatically infer formal specifications in a variety of

formalism that can be used in various downstream processes (e.g., finding bugs).

In this dissertation, I propose a number of hybrid based approaches for fault lo-

calization and specification mining. In terms of design paradigm, my proposed

approaches combine various available models and sources of information together

(i.e., AML and SpecForge) or integrate different inference/learning techniques in

one framework (i.e., Savant and DSM). Summary of the proposed approaches are

highlighted as follows:

1. AML is a multi-model fault localization approach that considers both bug

reports and program spectra to localize bugs. AML also proposes the new

concept of suspicious words to adapt tf-idf weighting scheme of Vector Space

Model for fault localization (see Chapter 3).

2. Savant employs a learning-to-rank strategy, using likely invariant diffs and

suspiciousness scores as features, to rank methods based on their likelihood

of being a root cause of a failure (see Chapter 4).

3. SpecForge synergizes many existing specification miners. The approach de-

composes FSAs that are inferred by existing miners into simple constraints,

through a process I refer to as model fission. SpecForge then filters the

outlier constraints and fuses the constraints back together into a single FSA

(i.e., model fusion) (see Chapter 5).
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4. DSM employs deep learning, test case generation, and clustering algorithms

for mining FSA based specifications from execution traces. The approach

utilizes test case generation to create a rich set of training data for learning

Recurrent Neural Network Language Model (RNNLM). Then, the approach

constructs a Prefix Tree Acceptor (PTA) from execution traces, and extracts

interesting features using the learned language model. These features are

subsequently utilized by clustering algorithms for inferring several finite-

state automata. Finally, DSM performs a model selection heuristic to select

the most accurate FSA as the resultant FSA-based specification.

For future work, I plan to further improve AML, Savant, SpecForge, and DSM

in many different ways as follows:

• AML: I plan to employ AML to combine many bug localization approaches

including Savant. I am also interested to enhance AML’s Integrator block

to effectively use historical bugs for combining different bug localization

models. To reduce the threats to external validity, I also plan to investigate

more bug reports from additional software systems, which are implemented

in different programming languages.

• Savant: I plan to improve Savant further by selectively including a subset

of invariants specialized for a target buggy program version and its spectra.

I also plan to include a refinement process which incrementally adds or

removes invariants to produce a better ranked list of methods. Furthermore,

I plan to extend my evaluation to include more bugs beyond those in the

Defects4J benchmark and compare Savant against other fault localization

approaches. I also plan to investigate the impact of number of passed and

failed test cases as well as other factors on the effectiveness of Savant.

• SpecForge: I plan to improve the effectiveness of SpecForge further by in-

creasing the number of underlying FSA miners synergized together, increas-
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ing the number of constraint templates, and developing an approach that

can infer good configurations of constraint templates and selection heuris-

tics based on training data. I also plan to reduce the threats to external

validity further by experimenting with additional target library classes and

execution traces. Moreover, I plan to extend SpecForge to mine parametric

specification following the work by Lee et al. [54] and Lo et al. [25, 68].

Finally, I plan to combine many more specification miners including DSM

to infer more accurate specifications.

• DSM: I plan to improve DSM’s effectiveness further by integrating informa-

tion of likely invariants into our deep learning based framework. Further-

more, I plan to improve DSM by considering many clustering algorithms

aside from k-means and hierarchical clustering, especially the ones that re-

quire no inputs of number of clusters (e.g., DBSCAN [31], etc.). I also plan

to develop new deep learning based solution that leverages likely invariants

inferred by Daikon for mining FSA-based specifications. Finally, I plan to

evaluate DSM with more classes and libraries in order to reduce threats to

external validity.

My long-term goal is to further improve the effectiveness and efficiency of

Savant as well as AML to be adopted in practice by developers to find bugs.

I am also particularly interested to combine fault localization and specification

techniques together. In fact, fault localization tools can utilize specifications to

detect violated properties in execution traces or in program implementations.
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Khudanpur. Recurrent neural network based language model. In Eleventh
Annual Conference of the International Speech Communication Association,
2010.

[81] Anders Møller. dk.brics.automaton — Finite-state automata and regular
expressions for Java. http://www.brics.dk/automaton/, 2010.

[82] Mozilla. Bug fields. https://bugzilla.mozilla.org/page.cgi?id=

fields.html. Accessed: 2015-03-16.

[83] K.P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
2012.

[84] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and
methodology (TOSEM), 20(3):11, 2011.

[85] Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M. Al-Kofahi, Hung Viet
Nguyen, and Tien N. Nguyen. A topic-based approach for narrowing the
search space of buggy files from a bug report. In 26th IEEE/ACM Int.
Conference on Automated Software Engineering, 2011.

[86] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. Semfix: program repair via semantic analysis. In 35th Interna-
tional Conference on Software Engineering, ICSE ’13, pages 772–781, 2013.

[87] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc
Palyart, Ivan Beschastnikh, and Yuriy Brun. Behavioral resource-aware
model inference. In Proceedings of the 29th ACM/IEEE international con-
ference on Automated software engineering, pages 19–30. ACM, 2014.

[88] Chris Parnin and Alessandro Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON,
Canada, pages 199–209, 2011.
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