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Micro air vehicles are expected to perform demanding missions requiring efficient

operation in both hover and forward flight. This thesis discusses the develop-

ment of a hybrid air vehicle which seamlessly combines both flight capabilities:

hover and high-speed forward flight. It is the quad-rotor biplane, which weighs

240 grams and consists of four propellers with wings arranged in a biplane con-

figuration. The performance of the vehicle system was investigated in conditions

representative of flight through a series of wind tunnel experiments. These studies

provided an understanding of propeller-wing interaction effects and system trim

analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4

m/s were achievable and that the cruise power is approximately one-third of the

hover power. Free flight testing of the vehicle successfully highlighted its ability to

achieve equilibrium transition flight. Key design parameters were experimentally



investigated to understand their effect on overall performance. It was found that a

trade-off between efficiency and compactness affects the final choice of the design.

Design improvements have allowed for decreases in vehicle weight and ground foot-

print, while increasing structural soundness. Numerous vehicle designs, models,

and flight tests have proven system scalability as well as versatility, including an

upscaled model to be utilized in an extensive commercial package delivery system.

Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role

vehicle.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Motivation

In recent years, the potential uses for unmanned aerial vehicles (UAVs) has in-

creased drastically. These applications include but are not limited to surveillance,

bio-chemical sensing, search and rescue, “over the hill” or “around the corner”

reconnaissance, as well as medical supply and consumer package delivery. Sim-

ple diagrams depicting several of these missions are shown below in Fig. 1.1 [1].

Yet another example of such a mission profile can be seen in Fig. 1.2, provided

by DARPA [2]. This figure depicts a UAV taking off and landing vertically, ma-

neuvering in edgewise flight to deliver payloads, and flying in a high-speed cruise

configuration, all of which are highly desirable capabilities of modern UAVs. It is

worth noting that, as of late, the military has made these vehicles an indispensable

tool for war-fighters. Many UAVs, such as the Reaper, are quite large and offer

a substantial coverage of battlefields and contested areas. Smaller vehicles, like

the Shadow, are carried and flown by soldiers on the ground and require minimal

interaction with ground stations. However, rapid progress in micromechanics and

microelectronics, along with this major increase in unmanned vehicle capability,

performance, and utility, has brought about special interest in the development of

even smaller vehicles called micro aerial vehicles (MAVs).

From a military standpoint, it was envisioned that these MAVs would be easily

portable aircraft for the purpose of increasing the soldier’s situational awareness.

These vehicles are typically used in an attempt to minimize soldier exposure to

1



Chapter 1. Introduction

(a) Urban surveillance (b) Bio-chemical sensing

(c) Assisted search and rescue (d) “Over the hill” reconnaissance

Figure 1.1: Typical UAV missions, [1]

dangerous situations. MAVs can have many specialized applications that range

from surveillance, reconnaissance, search and rescue, and even terrain and en-

vironment mapping, to name a few. However, these vehicles are also valuable

from a commercial standpoint in that they offer high maneuverability, as well as

small payload delivery capabilities, among other merits. Due to their small size,

MAVs can fly into areas including inside buildings or caves that are inaccessible

by traditional aircraft. These vehicles have a small ground footprint and require

little to no infrastructure, as they can be piloted by a single person or even flown

autonomously.

2
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Figure 1.2: Typical multirole MAV mission, [2]

1.1.1 Technical Challenges

Although MAVs offer numerous inherent utilities and exciting new capabilities,

they also offer numerous challenges in design, stemming from their small scale.

From aerodynamic performance to the number of moving parts, each MAV con-

figuration faces design challenges. MAVs operate in low Reynolds number flow

regimes which result in a drop in aerodynamic performance. Vehicle configura-

tion can have a large impact on this, as well. Today, most existing MAVs can be

broadly classified into the fixed-wing, rotary-wing, and flapping-wing categories.

Each configuration brings its own merits and weaknesses and these are detailed in

the following subsections

1.1.1.1 Aerodynamic Performance

A major challenge when designing small scale vehicles is efficient aerodynamic

flight. As vehicle size decreases, so too does the vehicle Reynolds number. This

3
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quantity, used as a non-dimensional description of the flow regime, can be repre-

sented as

Re =
ρV l

µ
(1.1)

where ρ is air density, V is air speed, l is the characteristic length, and µ is the

fluid viscosity. Figure 1.3 shows a comparison between the Reynolds numbers of

typical MAVs and other forms of modern aircraft [3]. It can be seen that the

Reynolds numbers of MAVs are low as compared to well-understood vehicles, like

the F/A-18. Micro aerial vehicles operate in a very sensitive Reynolds number

regime, which can affect aerodynamic performance. In this regime, many complex

flow phenomena take place within the boundary layer. Flow separation, transition,

and reattachment can all occur within a short distance along the chordline of a

rotor or wing. These disturbances can dramatically affect the performance of the

lifting surface.

Lately, some studies have been conducted on aerodynamic surfaces operating at

Reynolds numbers below 70,000, in an attempt to gain dependable performance

data for lifting surfaces operating in these air flows [4]. The studies of Laitone

provided lift and drag measurements for a NACA0012 airfoil, as well as flat and

cambered plate airfoils. The study found that traditional airfoil shapes, such as

the NACA0012, have poor performance compared to cambered plate profiles with

sharp leading edges. This can be seen in Fig. 1.4. Laminar flow was found to

be the cause of low maximum lift coefficients, nonlinear lift and moment curves,

and lower lift to drag ratios with low Reynolds number lifting surfaces. It was

found, that the flat plate airfoil had a 10% higher lift-to-drag ratio as compared

to the NACA0012. Based on the studies conducted by Laitone, it is clear that
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Figure 1.3: Reynolds number comparison between different sized aircraft, [3]

aerodynamic performance is hindered for traditional airfoils when operating in low

Reynolds number regimes.

Hence, designing vehicles that can efficiently fly in this flight regime represents an

entirely new challenge to aerospace design engineers. It is of utmost importance

to reach an in-depth understanding of the aerodynamics of this flight regime in

order to design an MAV that can still be flown efficiently in this low Reynolds

number regime, and these are main goals of this investigation.

1.1.2 Vehicle Configurations

The type of vehicle used in the micro aerial design can have a large impact on the

vehicle’s capabilities. This section examines several vehicle conventions as well as
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Figure 1.4: Degraded aerodynamic performance at low Reynolds number, [4]

their strengths and weaknesses.

1.1.2.1 Fixed-Wing

Fixed-wing MAVs can efficiently perform high cruise-speed missions. These ve-

hicles typically require a takeoff and landing zone and can achieve higher cruise

efficiencies than other aerial vehicle configurations. One such vehicle is shown in

Fig. 1.5. The vehicle pictured is the Black Widow MAV. It has a span of only 6”

and is capable of reaching speeds of 30 mph with an endurance of 30 minutes [5].

These characteristics are impressive for a vehicle weighing less than 100 grams.

However, fixed-wing aircraft, like the Black Widow, typically cannot perform hover

and offer little to no edgewise maneuverability. Small fixed-wing vehicles suffer

from poor gust tolerance, as well.
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Figure 1.5: Fixed-wing MAV, Black Widow, [5]

1.1.2.2 Rotary-Wing

Rotary-wing vehicles have been designed and explored for many years and, at this

point, are a well-understood concept [6–10]. These can vary from conventional

single-main-rotor (SMR) concepts as shown in Fig. 1.6 to multi-rotor concepts

as depicted in Fig. 1.7. Rotary-wing MAVs are well-suited for low speed loiter

and hover tasks with great lateral maneuverability. Additionally, SMR helicopters

and multi-rotor concepts are typically very efficient in hover and can achieve high

payload fractions, among other utilities. However, unfortunately these vehicles

suffer from poor forward flight performance and offer limited speed and range

capabilities as compared to other configurations. A lack of cruise efficiency truly

limits the usefulness of these MAV configurations.

1.1.2.3 Flapping-Wing

Recently, many flapping-wing technologies have been explored, including the or-

nithopter seen in Fig. 1.8 [11]. These vehicles typically mimic the wing motions
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Figure 1.6: Rotary-wing MAV

(a) Quadrotor UAV (b) Coaxial helicopter UAV

Figure 1.7: Typical rotary-wing vehicle configurations

utilized by birds and flying insects to achieve flight. These MAVs represent a

novel approach to flight and can typically offer hovering as well as forward flight

capabilities. One of the anticipated advantages with such a design is its superior

gust tolerance. The functionality of these concepts has been shown via technology

demonstrations at the University of Maryland and Texas A&M University, among

other research institutions (Fig. 1.9) [12–14].

A drawback of these vehicles is that the wing movements utilized by most insects

and birds are very complex and involve twists and other motions that are not

yet fully understood by experts. Additionally, efficient mechanical systems to

drive and withstand the large inertial loads produced by the wings have not yet

been developed. These vehicles require far more developmental effort before they

become readily available for implementation.
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Figure 1.8: Ornithopter flapping-wing UAV, [11]

Figure 1.9: UMD flapper technology demonstrator, [14]

1.1.3 Hybrid Air Vehicles

For numerous missions, such as the profile illustrated in Fig. 1.2, aerial systems

are required to have the ability to hover and maneuver in edgewise flight, as well

as travel a significant distance between two locations quickly. Therefore, it is

of interest to combine the strengths of both the fixed and rotary-wing vehicle

classes into a single hybrid air vehicle. Various hybrid UAV configurations have

been explored in the past, such as fixed-wing with hover capabilities, tilt-wing,

cyclorotor, tilt-rotor, fan-in-wing, and tail sitters, among others [15–23]. Each of

these vehicle configurations will be discussed in detail in the following subsections.
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1.1.3.1 Fixed-Wing Hybrid Vehicles

Fixed-wing MAVs are an attractive platform for outdoor surveillance missions,

as they generally offer better payload and endurance capabilities than compara-

bly sized rotorcraft or flapping-wing vehicles. They are also generally easier to

control than helicopters in outdoor environments. Recent studies have been con-

ducted on the utility of fixed-wing aircraft attempting to sustain hover [24–26].

The capability of achieving hover by utilizing propeller driven fixed-wing aircraft

is verified in these studies. The aircraft achieve transition via the installed control

surfaces. This allows them to reach the hover configuration. However, this vehicle

configuration has some inherent issues. As with typical fixed-wing aircraft, these

vehicles require takeoff and landing zones. This makes them less versatile than a

vehicle which has VTOL capabilities. High wing loading, associated with MAV

dimension constraints, requires high cruise speeds for fixed-wing MAVs. Achieving

hover using a single propeller implies that this design requires an extremely low

structural weight or a high installed power-weight fraction. This can lead to re-

duced payload carrying capabilities. Therefore, it is difficult to achieve preferable

performances at low-speed flight using fixed-wing configurations. Also, there are

associated altitude changes during stages of transition, which can lead to crashes.

1.1.3.2 Cyclorotor Vehicles

Many breakthroughs in cyclorotor research have occurred in recent years [27–30].

Recently, the feasability of this concept was demonstrated at the University of

Maryland by the development of a hybrid twin-rotor cyclocopter [29] and quad-

rotor cyclocopter [30], capable of free hover. The twin-rotor cyclocopter can be

seen in Fig. 1.11.
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Figure 1.10: Fixed-wing MAV capable of hover, [24]

Figure 1.11: Cyclorotor MAV, [28]

The cyclorotor vehicle is unique in its ability to vector its thrust components. This

utility can be seen in Fig. 1.12. By changing the pitch of the airfoil as it passes

through its rotation, the collective lift over the sections can be vectored in any

direction in 360o. However, the cyclocopter utilizes a very high number of moving

parts and complicated control schemes, which diminish the returns of using such

a configuration.
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Figure 1.12: Cyclorotor thrust vectoring, [28]

1.1.3.3 Tilt-Rotor Vehicles

Numerous studies have been conducted on the tilt-rotor vehicle and its applica-

tion to small scale vehicle flight [31]. Tilt-rotors are popular due to their ability to

easily take off and land vertically, as well as reach high cruising velocities. They

also allow for transitions between flight modes without disturbing fuselage atti-

tude. However, at these small scales, where vehicles are unmanned and fuselage

and payload tilting is less of an issue, this utility represents less of an advantage.

The tilting mechanisms installed on most tilt-rotor vehicles represent a large gross

takeoff weight percentage of the vehicle. This leads to a larger, heavier vehicle

overall. Moreover, since only rotors are tilted, the efficiency of the slipstream

effect decreases. This occurs because the wings are not linked to the rotor tilt-

ing mechanism and the wing planform presents a large drag area to the rotor

downwash.
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Figure 1.13: Tilt-rotor configuration MAV

1.1.3.4 Tilt-Wing Vehicles

Tilt-wing MAVs have also experienced increased exploration in recent years. Fig-

ure 1.14 shows a tilt-wing concept vehicle [32] explored in Autonomous Flying

Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles. This is a popular

configuration because, like the tilt-rotor vehicle, it allows for transitions between

VTOL and forward flight modes without fuselage pitching. Tilt-wings present an

advantage over tilt-rotors in that their wings are aligned with propeller slipstream,

increasing vehicle efficiency.

Figure 1.14: Tilt-wing configuration MAV, [32]
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Still, unfortunately studies have shown that there is little interest in developing a

tilt-wing concept for MAVs, except for very high tilt angles where the reduction

in equivalent aspect ratio is beneficial to the lift force [33]. Flight testing with

this design has also shown that the inertia of the wing-tilting mechanism and the

fuselage are comparable. This leads to less than desirable wing-tilting performance

during transition to forward flight.

1.1.3.5 Fan-in-Wing Vehicles

As technology has advanced, a more novel approach to unmanned vertical flight

has been studied: the fan-in-wing design [34]. A vehicle of this design can be seen

in Fig. 1.15. With this approach, multiple rotors are housed within the wings,

allowing for vertical lift. Typically, propulsive mechanisms provide the necessary

vehicle thrust. However, while these vehicles represent an exciting concept, they

suffer from high mechanical complexity and bring an undesirable level of techno-

logical risk owing to their relatively low developmental lifespan. Additionally, the

fans in the wings are not operable in forward flight which can lead to increased

‘dead-weight’ in that mode. These vehicles typically lack efficiency in both hover

and forward flight as compared to comparable conventional aircraft, as well.

Figure 1.15: Fan-in-wing configuration MAV
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1.1.3.6 Tail Sitter Vehicles

Another popular hybrid vehicle is the tail sitter configuration. This vehicle concept

is pictured in Fig. 1.16, which highlights the simplicity of the design. The tail-

sitter configuration is similar to most fixed-wing aircraft and is usually simple in

construction. This inherent benefit in design leads to a lower overall vehicle weight

and less difficult maintenance and repair. Tail sitters also do not require takeoff

and landing strips.

Figure 1.16: Tail sitter configuration MAV, [35]

Google explored this concept when it designed, built, and tested “Project Wing”

for small payload deliveries [22]. This vehicle can be seen in Fig. 1.17. For tail-

sitter vehicles, the entire body tilts as the vehicle transitions from vertical takeoff

and hover to forward flight. This however, involves the operation of single or

multiple propellers in conjunction with aerodynamic surfaces that are activated

in the downwash of the vehicle’s propellers. This action, depicted in Fig. 1.18,

generates the required pitching moments for maneuvering between the various

flight modes. As a result, high disk loadings and downwash velocities are required
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for adequate control forces. This leads to high power requirements, which are

typically not desirable for lightweight MAV designs. Additionally, efficiency in

hover mode would deteriorate significantly at these high disk loadings.

Figure 1.17: Google’s “Project Wing” tail sitter vehicle [22]

Figure 1.18: Propeller downwash used for control forces, [32]

1.2 Objective

To solve the issues outlined above, a novel vehicle concept has been designed and

is proposed as an alternate hybrid MAV design concept. This is the quad-rotor
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biplane tail sitter. The configuration is a unique and ingenious design and can be

seen in Fig. 6.24 in Chapter 6. The advantages of this particular configuration

are:

1. The maneuverability of a quad-rotor is utilized in hover

2. Pitching moments to enter and exit the transition flight mode are generated

entirely by the relatively large control authority offered by differential rotor

thrust and the substantial ‘moment-arm’ between the rotors

3. Increased compactness with biplane configuration

4. Simple construction and maintenance

5. No additional aerodynamic control surfaces are required

The utilities of this system are greatly improved if the transition maneuver from

hover to forward flight can be achieved in a gradual manner without any loss of

altitude (Fig. 2.3). This is referred to as equilibrium transition which, by definition,

implies that the forces and moments are balanced at every stage of flight. This

type of transition is far safer than the “stall-tumble” method typically utilized

by most modern tail-sitters. Studies have been conducted in the past to explore

the transition of tail-sitters from hover to forward flight [25, 36–40]. However,

systematic studies on the performance of micro-scale wing-propeller systems in

non-axial flow at low Reynolds number have been limited. In this thesis, these

issues are addressed, in order to improve the understanding and implementation of

design and control laws for these class of vehicles. Additionally, the work explores

numerous important design parameters pertinent to the proposed vehicle design

that are used for comprehensive design analysis. The goal of this body of work
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is to present a basis for designing, constructing, and testing lightweight, efficient,

and versatile MAVs to be used for any modern day flight task.

1.3 Thesis Outline

The outline of the thesis is as follows. A brief description of the vehicle design and

system is initially provided in Chapter 2. A few important design parameters, such

as choice of propeller, airfoil profile, wing aspect ratio, biplane wing spacing, and

propeller-wing offset, among others, are systematically investigated in Chapter 3.

In Chapter 4, the performance results of the propeller-wing system in axial and

non-axial flow from a series of wind tunnel tests are discussed. Following this, the

conditions to achieve equilibrium transition are extracted. A brief description of

free flight testing of the quad biplane vehicle to achieve transition flight is presented

in Chapter 5. Deficiencies in initial vehicle design and control are highlighted and

resolved in Chapter 6, including a necessary roll control study which includes the

exploration of three alternate roll control methods. These include pivoting wing

tips, shaft tilting, and variable collective pitch. Vehicle versatility and scalability

are detailed in Chapter 7 as well, via a package delivery case study. The case study

is subsequently validated through a scaling study conducted in the same chapter.

Throughout the entire thesis, multiple variants of the original quad-rotor biplanes

will be shown in various stages of construction and flight testing, highlighting the

overall versatility and longevity of the design.
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Chapter 2

Vehicle Proposal

The conceptual design of the quad-rotor biplane is shown in Fig. 2.1. An initial

proof-of-concept vehicle was constructed using this proposed design. It consists

of two pairs of counter rotating propellers arranged in a quad-rotor configura-

tion. Two wings are affixed to each pair of rotors through a set of rigid motor

attachments. The battery and on-board microcontroller are incorporated in the

center of the vehicle in a streamlined hub. For propulsion, a series of 2000 kV

Hextronix Brushless outrunner motors are used with Turnigy 6-A electronic speed

controllers. These specific brushless outrunner motors are utilized, as in this case,

they do not require the inclusion of a gearbox. Figure 2.2 shows the complete

construction of the proof-of-concept vehicle. The wings are constructed from low

density polyurethane foam using a high lift, low Reynolds number airfoil. The

wing chord is aligned along the propeller axis. The wing span and aspect ra-

tio are 22” and 5.5 respectively and are spaced about 10” apart. The propellers

were chosen to be two-bladed 6” 6x5 GWS SlowFlyer propellers due to their rel-

atively satisfactory hover (power loading = 12 gram/W, figure of merit = 0.59)

and forward flight performance (maximum efficiency in axial flow = 0.67). More

information regarding the choice of propeller and wing airfoil will be outlined in

Chapter 3. The gross weight of the vehicle is approximately 240 grams and a

component weight breakdown can be seen in Table 2.1.

The various operating modes of the quad-rotor biplane concept are shown in

Fig. 2.3. Vertical take-off and landing operations are performed through conven-

tional quad-rotor mode. The vehicle sits on the trailing edge of its wings when on
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Figure 2.1: Conceptual design of quadrotor biplane

Figure 2.2: Constructed vehicle

the ground. Transition is attained through a pitching moment provided through

RPM variation of the propellers. Varying RPM of propeller pairs allows for dif-

ferential thrust which, when coupled with the installed moment arm, generates a

sizable pitching moment. As the vehicle enters forward flight mode, at sufficiently

high cruise speeds, the loads are then transferred to the wings. The wings are

sized to carry the weight of the vehicle at high speeds (above 3 m/s), offloading
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Table 2.1: Vehicle weight breakdown

Component Weight (g)
Rotors (4) 8

Motors (w/ speed controllers and wiring) (4) 75
Sensor-processor (w/ aux. battery) 8

Structre and motor mounts 10
Flight battery 70

Total 236

the propellers lift requirements during cruise. It is seen that one of the main util-

ities of this configuration is that conventional quad-rotor control methodology is

retained in both hover and forward flight modes. During these modes, no redun-

dant actuators are required. More information regarding how control is achieved

at these different modes, is detailed in Chapter 5.

Figure 2.3: Equilibrium transition from hover to forward flight

The pitch, roll, and yaw axes are defined based on the inertial frame in hover mode,

instead of than the vehicle body frame. These axes are invariant to transition and

body pitch angle, α. Therefore, it can be seen that as the vehicle transitions

from hover to forward flight, the roll and yaw axes change with respect to the

body frame of reference. This is illustrated in Fig. 2.4. Banking and turning can

be achieved in any mode through the available control moments, which will be

explored in greater detail in a later section (Chapter 5). Using this, it is also
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Figure 2.4: Vehicle with non-zero pitch angle

envisaged that associated gyroscopic forces and propeller slipstream effects during

these maneuvers can be handled appropriately.
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Chapter 3

Design Studies

The objective of this section is to investigate the performance effects of certain

design parameters typical of the quad-rotor biplane configuration through a se-

ries of wind tunnel tests. These parametric studies included studying the choice

of the vehicle’s propeller, wing airfoil, wing aspect ratio, wing spacing, as well

as propeller-chord alignment (refer to Fig. 2.1). The effects of closing the wing

sections via a boxed-wing configuration is also explored. Some of these design cri-

teria were found to present a trade-off between vehicle compactness and desirable

performance. As a result, design principles were established in order to build a

lightweight and efficient quad-rotor biplane to be used in future studies.

3.1 Choice of Propeller

Since the vehicle is designed to operate in hover and forward flight, a choice of

propeller with preferable axial flight characteristics as well as high hover efficiency

is important. Based on previous rotary wing MAV designs and tests [6, 23], hover

disk loading below 70 N/m2 is appropriate for satisfactory performance. There-

fore a small, representative set of propellers were chosen for comparison. These

included:

1. 5x3 GWS 3-blade

2. 6x3 GWS 3-blade

3. 6x5 GWS 2-blade
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4. 7x3.5 GWS 2-blade

These propellers were tested on a micro-scale rotor stand in both static and axial

flow conditions. This test setup was installed in front of a 22” x 22” open jet wind

tunnel as detailed in Fig. 3.1. The stand consists of a shaft attached to a torque

sensor. This torque sensor is then connected to a thrust load sensor through a

low friction bearing mechanism. A Hall Effect sensor provided the rotational rate

of the propeller. For each propeller, the wind speed was varied from static (0

m/s) to up to approximately 10 m/s. For each wind speed, an RPM sweep was

conducted (3000-7000) and the thrust produced and mechanical power consumed

were measured. From the thrust and power curves, the efficiency of each propeller

was extracted and compared as a function of advance ratio. The mean errors in

thrust, power, RPM and wind speed measurements were determined to be about

0.01 N, 0.1 W, 50 RPM, and 0.1 m/s respectively.

Figure 3.1: Setup to measure propeller performance in axial flight

Hover performances of the propellers are compared in Fig. 3.2(a). It can be seen

that the performance of all the propellers are satisfactory with a power loading of

about 11-12 grams/W. However, since the vehicle is designed to operate mostly in

cruise, it is important to compare the forward flight performance of the vehicle.
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From a measurement of the thrust and power at a given wind speed and propeller

RPM, efficiency curves for the propeller can be extracted using the following non-

dimensional forms, consistent with propeller terminology:

Thrust coefficient : CT =
T

ρn2D4
(3.1)

Power coefficient : CP =
P

ρn3D5
(3.2)

Advance ratio : J =
V

nD
(3.3)

Propeller efficiency : η = J
CT
CP

(3.4)

In these equations, T is the propeller thrust, P is the mechanical power required,

n is the propeller rotation frequency in Hz, D is the propeller diameter, V is the

axial flow velocity, and ρ is the density of air. The variations in propeller effi-

ciency, η, with advance ratio, J , for RPMs between 3000 and 7000 are compared

in Fig. 3.2(b). From this plot, it can be seen that the 7x3.5 propeller has undesir-

able performance, both in hover and forward flight. This is most likely a result of

the lower twist and root collective pitch. The three-bladed rotors offered a highest

efficiency of 0.45 and this occurred at low advance ratios of about 0.4. However,

the highly twisted 6x5 propeller provided the best overall efficiency of 0.67, oc-

curring at high advance ratios. Due to its superior axial flow performance and a

satisfactory hover power loading, the 6x5 propeller was chosen to be installed on

the vehicle.
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(a) Hover performance comparison (b) Axial flow efficiency comparison

Figure 3.2: Propeller performance comparisons

3.2 Parametric Studies

In this section, several design criteria that influence system performance are sys-

tematically investigated. These parameters include:

1. Airfoil profile

2. Wing aspect ratio

3. Wing spacing in biplane configuration

4. Offset of propeller shaft axis relative to wing chord

Each parametric study can then be expanded for a more comprehensive vehicle

design investigation.

3.2.1 Airfoil Selection

For the given design, the vehicle would be operating in a low Reynolds number

regime with large variations in angles of incidence in its flight profile. In order
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to keep the vehicle compact, low aspect ratio wings would also most likely be

incorporated. Therefore, it is very important to choose an efficient airfoil profile

with desirable flight characteristics, such as high maximum lift coefficient and

gentle stall. A few candidate low Reynolds number airfoils that produced high

CL and CL /CD values (at Re ∼= 50,000) were selected from a previous study

conducted on low Reynolds number airfoils [41]. These are shown in Fig. 3.3 and

they include:

• Selig S1223: This is a high lift low Reynolds number airfoil (Fig. 3.3(a)) with

a maximum thickness of 12.1% and a camber of 8.1% (Cm0 = 0.24).

• Gottingen GOE225: The Gottingen 225 airfoil is shown in (Fig. 3.3(b)) with

a maximum thickness of 12.8% and camber of 7.6% (Cm0 = 0.2). As can be

seen, this is similar to the S1223 airfoil.

• Wortmann FX63-100: As can be seen from (Fig. 3.3(c)), the maximum

thickness-to-chord is lower (about 9.9%) and the camber is 4.3% (Cm0 =

0.07).

In order to measure the performance of the airfoils listed above, an experimental

test stand was developed as shown in Fig. 3.4(a). The stand consists of a variable

angle base plate that allows for a range of 180o with 3o increments. The rotating

and non-rotating plates are locked at desired angle settings using a lock pin. Wings

with the desired airfoil profiles were cut out of extruded polypropylene and a

1/4” aluminum rod was installed at quarter chord along the length of the wing

to allow for attachment to the test stand. Due to the low density of the wing

material, there was a tendency for the wing to exhibit large vibratory motion

during tests. Therefore, the dimensions of the rod were carefully chosen to prevent
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Figure 3.3: List of tested high performance airfoils

undesirable vibrations. A small coupling piece was used to interface the 6 degree

of freedom load sensor (the Nano17 F/T sensor) and the rotating base-plate with

the aluminum rod. The test stand was then mounted in front of the open jet wind

tunnel as shown in Fig. 3.4(b). The wings had an aspect ratio of approximately

3.8, as each had a span of 17” and a chord measuring 4.5”. Care was also taken to

place the wing within the 18o wind tunnel contraction zone to avoid undesirable

flow effects in contraction areas. The wind speed was varied from 0 to 10 m/s with

an angle sweep from 30o to 45o in steps of 3o. The lift and drag measurements

for each airfoil section, wind speed, and angle of attack were averaged from three

measurements to minimize error and account for drift. The measurement errors for

wind speed and forces were about 0.1 m/s and 0.02 N respectively. For comparison,

the lift and drag measurements were resolved to their respective non-dimensional

coefficients. It should be noted that these coefficients are calculated for the wing

and do not represent the 2-D values. A comparison between different aspect ratios
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is performed in Section 3.2.2 to evaluate 3-D effects.

(a) Experimental test setup to measure performance (b) Airfoil test stand

Figure 3.4: Airfoil test apparatus

The lift and drag coefficient variation is compared for the three airfoils at a repre-

sentative Reynolds number of 45,000 which occurs at a wind speed of 6.2 m/s. This

comparison is shown in Figs. 3.5(a) and 3.5(b). As can be seen from Fig. 3.5(a),

the 8.1% cambered S1223 airfoil consistently produced higher lift at all angles of

attack. Also, it is shown that the drag for the FX 63 airfoil was the least, as in

Fig. 3.5(b). Based on the drag polar plot shown in Fig. 3.5(c), it can be seen that

the FX 63 had the best overall performance with a maximum CL/CD approxi-

mately equal to 5.5. For comparison, the other airfoils achieved a lower maximum

CL/CD of about 4. Additionally, the variation of CL/CD versus CL was close to

uniform over a wider range of CL values. The relative performances of these air-

foils were found to be quite similar at other Reynolds numbers (20,000 to 60,000)

as well. This is important since the vehicle wing Reynolds number varies with

equilibrium angle of attack and flight speed. It should also be noted that during

actual vehicle operation, much of the span of the wing operates within the pro-

peller downwash. Therefore, it is important to choose an efficient airfoil with low
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(a) CL versus α (b) CD versus α

(c) CL versus CD

Figure 3.5: Comparison in airfoil performance at Re = 45,000 (V = 6.2 m/s)

drag characteristics and sufficient lift capability. Based on the above discussion,

the FX 63 airfoil was chosen for vehicle implementation and further investigation.

3.2.2 Effect of Aspect Ratio

When designing an MAV, one of the chief concerns is the trade-off between ef-

ficiency and compactness. This issue is important in wing design, as illustrated

in Fig. 3.6. Incorporating a low aspect ratio wing has the advantage of compact-

ness, but suffers from a decreased performance as compared to a wing with a

higher aspect ratio. On large scale fixed-wing aircraft, this degraded performance
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is attributed to increases in induced drag. For small-scale vehicles, while the trade-

off in compactness is clear, the differences in performance at these low Reynolds

number regimes is less obvious. Therefore, the aerodynamic performance of three

representative wings with aspect ratios 3.8, 2.4, and 1 (Fig. 3.7) were measured

and compared. It is noted that this is different from the aspect ratio of 5.5 se-

lected for the original prototype vehicle. However, it is within range of the aspect

ratio for the one-quarter propeller-wing system, which was studied in the wind

tunnel. The wing area was maintained at approximately 0.05 m2 for each case.

An alternative method for studying the effects of varying aspect ratio is to keep

the wing span constant and alter only the chord length. However, since the wing

area is not invariant and is sized specifically for the vehicle, the gross effects on

equilibrium speed and shaft angle would be significantly affected. To avoid these

problems, the wing area was held constant throughout. The experimental setups

shown in Figs. 3.4(a)and 3.4(b) and test matrices outlined in Section 3.2.1 were

utilized for the aspect ratio tests, as well.

Figure 3.6: Wing aspect ratio trade-off: efficiency and compactness

Figure 3.8 shows the variation of CL with respect to aerodynamic angle of attack,

α, for two different wind speeds and wings with aspect ratios 1 and 2.4. The CL

versus α variation for the 3.8 aspect ratio wing was shown previously in Fig. 3.5(a).

It can be seen that the CL versus α slope increases with aspect ratio as expected.

It must be mentioned that, because the Reynolds number is based on wing chord,

the lower aspect ratio wing operates at higher Re for the same wind speed. This
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Figure 3.7: Wings tested with different aspect ratios

might explain the higher values of CL at lower aspect ratios for a specified wind

speed. Thus, it is not trivial to gauge the effect of Reynolds number through

aspect ratio alone. The drag polars are compared in Fig. 3.9(a) at similar Re.

It can be clearly seen that the performance improves as aspect ratio increases.

However, the performance increase between AR=2.4 and AR=3.8 wings appears

to be less significant, representing a point of diminishing returns. From a vehicle

operation perspective, it is more meaningful to compare performance at the same

wind speed (instead of Re). As can be seen from Fig. 3.9(b), the differences in

performance between the larger aspect ratio wings is negligible. Therefore, it can

be argued that from a standpoint of both compactness and efficiency, a wing with

aspect ratio of 2.4 should be incorporated into the quad-rotor biplane. A future

direction intended to be pursued as a result of this study is to examine the effect

of propeller slipstream on wing performance. This would provide a more realistic

comparison between high and low aspect ratio wings as applicable for the proposed

vehicle design.

32



Chapter 3. Design Studies

(a) Aspect ratio = 1 (b) Aspect ratio = 2.4

Figure 3.8: CL versus α comparison at different wind speeds

(a) Similar Re (b) Similar wind speed

Figure 3.9: Drag polar comparison showing diminishing returns as aspect
ratio increases

3.2.3 Wing Spacing

Since the vehicle operates in a biplane configuration, it is also important to quan-

tify the effect of the vehicle wing spacing on overall performance. To do this, two

FX 63 wings with an aspect ratio of 2.4 (wing chord = 5.5”) were attached to

coupling struts and the Nano17 F/T sensor. The system was then mounted in

front of the open jet wind tunnel as shown in Fig. 3.10. The wing spacing, r,

was varied from 7” to 11” in steps of 1”. As is done on the quad-rotor biplane,
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both of the wing chords were installed parallel to each other. The angle of in-

cidence and wind speed variation were the same as the experiments detailed in

Section 3.2.1 and 3.2.2. The net lift and drag of the system were measured as

shown in Figs. 3.11(a), 3.11(b), and 3.11(c). The drag forces from the exposed

linkages were carefully removed from the total force through a separate series of

tare tests. It must be noted that since both the wings were pivoted about a central

point, a change in angle of incidence would result in a negative stagger, meaning

that the top wing is oriented behind the bottom wing. This was intended to

simulate actual vehicle operating conditions during the different stages of flight.

Figure 3.10: Wings mounted in biplane configuration to study effect of wing
spacing on force production

Lift and drag coefficients were extracted from the measured forces using the total

biplane wing area (Abiplane = 2Awing) as shown in Eq. 3.5.

CLbiplane
=

2LBiplane

ρAbiplaneV 2
, CDbiplane

=
2Dbiplane

ρAbiplaneV 2
(3.5)

Figures 3.11(a) and 3.11(b) show the net lift and drag coefficient variation with

angle of incidence for the biplane configuration for these wing spacings. It can

be clearly seen from Fig. 3.11(a) that the effect of decreased wing spacing is a

reduction in lift. For example, at an angle of incidence of 10o, the lift produced
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with 7” spacing is about 15% lower than that for the 11” spacing. However

the differences in drag are negligible. The differences in performance are also

evident in the drag polar plot featured in Fig. 3.11(c). From a comparison between

Figs. 3.9(b) and 3.11(c), it is also interesting to observe that the net lift coefficient

for the biplane configuration with 11” spacing is only about 10% lower than that

produced by a single wing. Based on the above observations, a wing spacing of at

least 1.5c is desirable, where c is the wing chord length. However, if a low aspect

ratio wing, meaning a wing with a longer chord length, is required, these wing

spacing constraints may not be met. Therefore, a trade-off in efficiency is to be

expected.

(a) CL versus α (b) CD versus α

(c) CL versus CD

Figure 3.11: Effect of wing spacing on performance at Re = 45,000 (V = 6.2
m/s)
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3.2.4 Propeller Shaft Offset

It is shown in Chapter 4 that the interaction effects between the propeller and

wing are significant. In the design space considered in this chapter, the effect of

offset between propeller shaft and wing chord on the forces generated is studied.

One of the motivations of this study is to improve compactness which is possible

by reducing wing span. The constraint for the span is then set by the dimensions

of the propeller. Therefore, during this set of tests, the entire wing span was

contained within the downwash of the propeller. The resulting wing-propeller

system included a 6” diameter propeller and an FX 63 wing with dimensions of

6” span and 4.5” chord. This system was subsequently tested in front of the wind

tunnel and all results pertain to this specific propeller-wing combination. The

offset is defined as the perpendicular distance between the propeller shaft and

wing chord as shown in Fig. 3.12. The setup was tested for the following shaft

axis placements:

1. 1” below wing chord

2. Along wing chord

3. 1” above wing chord

The propeller RPM and shaft angle were varied from 2000 RPM to 5000 RPM and

from 0o to 45o respectively. The forces measured by the load sensor were resolved

to forces perpendicular and parallel to the mean free stream velocity. These forces

are referred to as lift and thrust respectively. For the purpose of clarity, sample

results are shown in dimensional form for a single wind speed and three shaft

angles.

36



Chapter 3. Design Studies

Figure 3.12: Offset between propeller shaft axis and wing chord and forces
produced

Figure 3.13: Effect of propeller offset on forces at 6.2 m/s wind speed

Figure 3.13 illustrates the effect of propeller-chord offset on thrust and lift for

three different shaft angles at a fixed wind speed of 6 m/s. It is shown that for

all three offset values, the net thrust is reduced and the net lift is increased as the

shaft angle is increased. It is important to note that for almost all test cases, when
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the propeller is positioned above the wing chord, the net thrust and lift are lower.

This is a condition which should be avoided during vehicle construction when

possible. At a shaft angle of 30o and propeller RPM of 4000, when the propeller

is placed 1” above wing chord, the lift produced is about 10% lower than that for

the other positions. However, the difference between 0 and -1” offset appears to

be less significant. It can be noted that measurement error in forces was merely

about 0.03 N. Overall, the placement of the propeller axis along the wing chord

line was deemed a suitable design criterion.

3.3 Box Wing

In an effort to improve vehicle performance, design alterations were conducted

on the quad-rotor biplane. Performance improvements were sought via the inclu-

sion of aerodynamic surfaces. To prevent undesirable flight tendencies, such as

side-slip, and provide adequate performance in different flight regimes, typically

aerodynamic control surfaces are utilized on aerial vehicles. However, one of the

main benefits of the quad-rotor biplane configuration is its lack of these control

surfaces and hence a much lower number of moving parts. Since the vehicle does

not use these measures to aid in its control and performance, the potential merits

of a simple, passive method were investigated; a boxed, or closed, wing. Boxed

wings, such as the Prandtl wing, have many benefits including reduced induced

drag over the wing, reduced turbulence, and increased fuel economy [42]. This

wing design method was studied in order to visualize the effect on vehicle induced

drag.The wing system can be seen below in Fig. 3.14. The wing tips are closed by

a thin 1/16” sheet of polyurethane foam and each weighs approximately 5 grams.
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Biplane wings

Box-wing attachment

Load sensor

Figure 3.14: Boxed wing system and test setup

The wing section was constructed and placed in an open jet wind tunnel where it

was subsequently tested for lift and drag. Again, Fig. 3.14 shows the test setup.

The wing system, consisting of two wings with AR = 2.4, was mounted onto

a 6-axis force and moment transducer and subjected to a range of wind speeds

between 2 to 10 m/s and pitch angles ranging from −9o to 45o degrees, both with

and without the foam tip connectors. Figure 3.15 show the performance for the

system in both configurations. From these plots, it can be seen that the simple

box configuration actually leads to a slight increase in overall drag. The potential

reductions in induced drag on a low aspect ratio wing were more than offset by

the increased profile drag of the boxed portion of the wing. As a result, this wing

style was not implemented on the quad-rotor biplane.

3.4 Measurement Transducers

In order to help validate the proposed vehicle design, the data provided must be

determined to be highly accurate. When the studies shown in this chapter as well
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(a) Drag polar (b) Drag polar: Re = 28,624

(c) Drag polar: Re = 39,529 (d) Drag polar: Re = 51,456

Figure 3.15: Performance plots for biplane system with and without box

as Chapter 4 and 6 were conducted, the measuring devices had uncertainties which

can be seen below in Table 3.1. This table details the performance specifications

for the measurement transducers utilized in all aerodynamic testing conducted in

this thesis. These include the Nano17 6 degree of freedom sensor as well as the

tacometer and wind tunnel controller. Pertinent specifications include information

supplied and accuracies.

Table 3.1: List of measuerment accuracies

Parameter Device Uncertainty [English] Tolerance [SI]
RPM Tacometer ±10 [RPM] ±10 [RPM]
Forces Nano17 F/T sensor ±0.01 [lb] ±0.05 [N]

Shaft angle, α Digital level ±1[o] ±1[o]
Wind speed Wind tunnel gauge ±0.25 [ft/s] ±0.076 [m/s]

Torque Nano17 F/T sensor ±0.0004 [lb-ft] ±5.000 [g-cm]
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3.5 Conclusions

This chapter discusses the alteration of the quad-rotor MAV’s design and the

subsequent effects on performance. This investigation was conducted through a

systematic series of bench-top wind tunnel experiments. Parameters investigated

included choice of propeller, airfoil profile, wing aspect ratio, biplane wing spacing,

offset between propeller shaft and wing chord, as well as closing the vehicle’s

wings. A comparison between three relatively efficient high lift low Reynolds

number airfoil showed that the 4.5% camber FX 63 airfoil had the best efficiency

at low angles of attack. It was found that the difference in performance between

wings with aspect ratios of 3.8 and 2.4 was found to be negligible. A biplane

wing spacing of at least 1.5 times the wing chord length may be required to have

the least interference effect on performance. However, if a low aspect ratio wing

is required, such wing spacing constraints may not be met and a trade-off in

efficiency is to be expected. It was seen that placement of the propeller axis

along the wing chord provided the best performance. Finally, a box wing system

was tested with representative vehicle dimensions to study aerodynamic effects at

this micro-scale. It was shown that the closed wing configuration did not provide

beneficial performance characteristics. The above design space can be further

expanded and made comprehensive for future design optimization studies for the

quad-rotor biplane.
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Chapter 4

Aerodynamic Studies

In Chapter 3, the choice of propeller was established and its individual performance

in hover as well as in axial forward flight was studied. Wing performance is also

studied on its own as detailed in Chapter 3. An important aspect of this vehicle

is it ability to perform hover, transition, and forward flight tasks. It is therefore

important that the aerodynamic performance of the propeller-wing system at all

angles of transition is investigated: from hover at 90o to horizontal flight at 0o.

This involves operation of the propeller with components of upstream momentum

in directions which are both parallel and perpendicular to the propeller plane. In

other words, the propeller is operating in non-axial flow. From this, the parameters

required to achieve trimmed flight at various flight speeds can be extracted and

studied.

Figure 4.1: “One-quarter” system utilized in aerodynamic studies, shown in
stages

The objective of this section is to study the performance of the propeller-wing

system as a part of the quad-rotor biplane and to investigate the interaction effects

between the two force contributors; the propeller and the wing. A “one-quarter”

system (seen in Fig. 4.1) based on the quad biplane design, comprised of a propeller
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and a proportionally sized wing, was investigated through a series of wind tunnel

tests. First, the isolated propeller is studied at various angles of transition and

non-axial wind. The wing is subsequently added to the propeller system to study

the resulting interaction effects. Finally, important operating variables including

propeller RPM and transition angle are extracted for given flight speeds that result

in the trim case, meaning steady, level flight. Additionally the power requirements

are extracted that can be used to improve flight speed and maximize efficiency in

future designs.

4.1 Wing Performance

For the quad-rotor biplane to achieve flight in the horizontal cruise configuration,

each wing on the vehicle would have to produce at least 1.2 N of lift while the

propeller is thrusting in the horizontal direction. In order to ensure sufficient lift

production, a representative wing was mounted on the Nano17 F/T sensor in front

of the open jet wind tunnel and tested in flow. The testing was conducted prior

to the design studies outlined in Chapter 3 and, as such, the wing was made using

the S1223 airfoil geometry originally utilized on the vehicle. The wind speed was

varied from 0 to 10 m/s and the wing was tested at angles of attack varying from

0o to 45o. Figure 4.2(a) shows the variation of wing lift with angle of attack.

It is seen that the minimum speed that can be achieved by the vehicle while still

producing the required amount of lift is approximately 6 m/s. Figure 4.2(b) shows

the drag curves for the vehicle wing at different angles of attack. From this plot,

it is found that a satisfactory lift to drag ratio of about 10 is achieved at an angle

of attack between 3o and 6o. It is evident that the chosen wing properties produce
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sufficient lift and also have acceptable performance characteristics based on these

observations.

(a) Lift versus angle of attack for different wind speeds (b) Drag versus angle of attack for different wind
speeds

Figure 4.2: Wing performance plots for S1223 airfoil of aspect ratio 2.8

4.2 Isolated Propeller in Non-Axial Flow

Since the vehicle is designed to operate in hover as well as in forward flight mode,

it is necessary to study the aerodynamic performance of the propeller at various

angles of transition between these two distinct modes. Experimental and numeri-

cal studies have been conducted in the past to study equilibrium transition mode

of tail sitters [36–40]. However, to the author’s knowledge, there have been lim-

ited studies on propeller performance in non-axial flow conditions especially at the

low Reynolds numbers observed on the rotors of the quad biplane (Re ∼= 50,000).

Therefore, a systematic series of experiments was performed to observe important

performance characteristics at various forward flight speeds and angles of transi-

tion. These include vertical and horizontal components of the propeller thrust as

well as the power required to drive the propeller in these conditions. Based on
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these measurements, any key differences that may arise when a wing is added to

the propeller system can be identified.

In the wind-off case, the propeller produces a force Fz along its rotation axis.

Hence the vertical and horizontal forces, otherwise noted as lift and drag, can be

rewritten as functions of shaft angle, α and axial thrust, Fz. These relationships

are shown below.

L = Fz sin(α) (4.1)

T = Fz cos(α) (4.2)

However, in the presence of forward wind, there is a change in magnitude and di-

rection of the upstream air flow momentum. As a result, there are forces produced

in directions both parallel and perpendicular to the propeller’s axis of rotation.

Fz still represents axial thrust parallel to the rotor, however, there is a new force,

Fy, which is perpendicular to the rotor shaft axis. Figure 4.3 shows a schematic

of the forces generated by a propeller in the static case as well as non-axial flow.

The net vertical and horizontal forces are then resolved as shown:

L = Fzsin(α) + Fycos(α) (4.3)

T = Fzcos(α) − Fysin(α) (4.4)

In order to study the variation of these forces with shaft angle and wind speed,

a suitable test matrix was designed and experiments were performed. Based on
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Figure 4.3: Propeller forces in non-axial flow

Figure 4.4: Setup to measure propeller performance

considerations from the static and axial flow propeller performance tests detailed

in Chapter 3, the 6x5, two-bladed propeller was mounted on a stand in front of the

open jet wind tunnel as shown in Fig. 4.4. The Nano17 F/T sensor was attached to

one end of the propeller shaft and motor. The other end of the shaft was mounted

to a setup that allows for changes in shaft angle with respect to the wind. Caution

was taken to ensure throughout all tests that the mean position of the propeller

was about 3” in front and at the center of the wind tunnel exit plane regardless
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of shaft angle. The procedure for the non-axial flow propeller tests was as follows:

1. Select shaft angle

2. Operate wind tunnel to desired velocity

3. Remove tare values and zero out the force measurements

4. Drive the propeller at desired RPMs and take measurements of power re-

quired and forces produced

Steps 1 through 4 were repeated for shaft angles ranging from 0o to 90o in steps

of 6o. The wind velocity was varied from 0 to 10 m/s. In each test case, measure-

ments were repeated three times for error estimation and repeatability checks. As

mentioned earlier, hover mode corresponds to a shaft angle of 90o.

For clarity, the results will look at propeller performance at a small group of

representative shaft angles and wind speeds. First, the effect of wind speed on

performance will be studied at the specified shaft angles. Then, the effect of shaft

angle on performance will be discussed at the representative wind speeds. All

results are presented in dimensional form to avoid confusion with definitions of

non-dimensional parameters in non-axial flow.

4.2.1 Effect of Wind Speed

Figure 4.5 shows the variation of vertical and horizontal forces at different wind

speeds for three different shaft angles. These forces will be referred to as lift

and thrust respectively. Both lift and thrust exhibit a quadratic variation with

RPM for all cases of shaft angle and wind speed. At high shaft angles, such

as 84o, the generated propeller force is delegated mainly to lift. The horizontal
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(a) Vertical force (Shaft angle:
84o)

(b) Horizontal force (Shaft angle:
84o)

(c) Force versus wind speed (Shaft
angle: 84o)

(d) Vertical force (Shaft angle:
42o)

(e) Horizontal force (Shaft angle:
42o)

(f) Force versus wind speed (Shaft
angle: 42o)

(g) Vertical force (Shaft angle: 6o) (h) Horizontal force (Shaft angle:
6o)

(i) Force versus wind speed (Shaft
angle: 6o)

Figure 4.5: Variation of forces with RPM and wind speed for isolated propeller
at various shaft angles

force, which can be seen is a small fraction of the total force, is negative due to

the effect of drag over the rotating propeller. The magnitudes of both lift and

thrust increase marginally with wind speed as can be seen from Fig. 4.5(c). At

a shaft angle of 42o, it might be expected that the horizontal force contribution

be greater than the vertical force. However, from inspection of Fig. 4.3, there

is a force produced perpendicular to the propeller shaft which tends to increase

lift and decrease thrust.This explains the lower magnitude thrust value. Now, as
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shown in Fig. 4.5(f), the magnitude of both these forces steadily decreases with

wind speed which is expected. This decrease is a result of increases in inflow with

wind speed. At low shaft angles, as in Figs. 4.5(g), 4.5(h), and 4.5(i), the majority

of the thrust is in the horizontal direction. As a result of the previous reasoning,

both the lift and thrust steadily decrease with wind speed. However, the thrust

drops at a faster rate due to a higher component of the upstream flow being able

to travel through the propeller disk.

(a) Shaft angle: 6o (b) Shaft angle: 84o

Figure 4.6: Variation of total force produced with mechanical power for iso-
lated propeller

In regards to efficiency, it is beneficial to study the variation of the total force

generated with the power required by the system. Figure 4.6 details this variation

at two different shaft angles, 6o and 84o. It can be seen that at high shaft angles,

the power requirements for a given total force do not change significantly with wind

speed. However, as the shaft angle is reduced and the component of the upstream

velocity through the propeller disk increases, there is a decrease in total force

produced. Therefore, the power required to generate a specified force increases

significantly as the shaft angle drops. This trend can be seen in Fig. 4.6(a).
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4.2.2 Effect of Shaft Angle

As mentioned above, these results can also be expressed with respect to changes

in shaft angles at fixed wind speeds. Figure 4.7 shows the variation of lift and

thrust with RPM at various shaft angles and wind speed of about 7 m/s. It

can be seen that there is a steady decrease in vertical force as the propeller is

oriented from hover at 90o to forward flight mode at 0o. In hover, there is a drag

generated in edgewise flow. As the shaft angle is decreased, there is a reduction in

the component of the upstream momentum that is perpendicular to the propeller

shaft. As a result, the horizontal force increases. It is worth noting that at shallow

angles, such as 30o, there is a marginal increase in horizontal force while there is

a two-fold decrease in vertical force. This can be partly explained by geometric

effects. It can also be explained by the fact that the component of the upstream

momentum parallel to the propeller rotation axis increases as the shaft angle drops.

This increase in the momentum results in an overall decrease in magnitude of total

force. It should be noted that the trends mentioned so far are maintained for all

wind speeds measured in the experiment. Figure 4.8 shows the power requirements

for producing desired vertical forces at various shaft angles at 7.4 m/s of upstream

velocity. It can be seen that there is a severe penalty in power required for a given

vertical force as the shaft angle is reduced. For example, in hover mode, 4.2 W

is required to produce 0.6 N of vertical force whereas up to 8.4 W is required at

an angle of 42o. This highlights the fact that in order to move fast in an efficient

manner, lift augmentation is required at shallow shaft angles. This augmentation

would allow for the propeller to be used primarily for propulsion purposes.
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(a) Vertical force (b) Horizontal force

Figure 4.7: Force versus RPM for isolated propeller at various shaft angles
and 7.4 m/s wind

4.3 Performance of Wing-Propeller System

The importance of including lift augmentation devices was evident in the previous

section from an observation of propeller performance data at various stages of

transition from 90o to 0o. In the quad rotor biplane vehicle, lift augmentation is

provided by the wings. In order to measure the performance of the propeller-wing

system, the setup shown in Fig. 4.9 is used. The wing is attached at the base

of the motor mount in a manner similar to how it is installed on the vehicle. In

order to maintain the same wing-propeller system proportion as on the vehicle,

the aspect ratio of the wing was chosen to be 2.75. Aspect ratio of a single wing

on the vehicle is about 5.5. The chord was maintained the same. The wing was

installed such that the chord was parallel to the propeller rotation axis. The plane

of the propeller was about 1.5 inches offset from the leading edge of the wing.

The rest of the conditions were maintained the same from the isolated propeller

tests. The primary forces of interest in this experiment are those parallel (Fz)

and perpendicular (Fy) to the propeller rotation axis as shown in Fig. 4.10. Slight
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Figure 4.8: Vertical force variation with power for isolated propeller in 7.4
m/s wind

imbalances in the forces produced on either side of the wing can affect torque

measurements. Static tests showed that the penalty due to wing drag was only

about 5% of the total force for a given power input when compared with a propeller

without the wing in its downwash. As a result, mechanical power results from the

isolated propeller experiments are used for trim analysis. Results of pitching and

rolling moments are also not shown since these are affected by the position of the

load sensor, which may be different from the actual vehicle setup. The procedure

for these tests is similar to that used for the isolated propeller experiments. When

an upstream flow is input, the tare values for Fz and Fy are removed prior to

operating the propeller. These represent the lift and drag of the wing-body system

which are later used for trim analysis. The results presented in this section are the
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pure effect of operating the propeller with a wing in its downwash in the presence

of external flow at various shaft angles.

Figure 4.9: Setup to measure performance of propeller-wing combination

Figure 4.10: Differences in forces produced by a propeller in non-axial flow,
with and without wing
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4.3.1 Results

Variations of vertical and horizontal forces produced by the propeller-wing system

at representative shaft angles and wind speeds are shown in Fig. 4.11. It is critical

to note that the effect of pure wing lift, drag, and bluff body drag are removed from

these analyses. Therefore, any differences in performance between the isolated

propeller experiments and the following results are purely due to the effect of the

wing on the propeller slipstream and vice versa. At angles close to hover mode, the

majority of the force is produced in the vertical direction as can be seen from Fig.

4.11(a). Additionally the magnitude of vertical force increases with wind speed.

The horizontal force is mainly in the direction of the upstream. This force reduces

as wind speed increases. From Fig. 4.11(b) it can be seen that there is a greater

drag produced with the propeller-wing system when compared with an isolated

propeller. These effects can be explained by the effect of the wing on the propeller

slipstream. At lower shaft angles such as 42o, there is still a major contribution

to total thrust in the vertical direction. Variation of the forces with wind speed

is reduced. At very low shaft angles (Fig. 4.11(e), 4.11(f)), contribution from the

horizontal force is greater. A greater variation with wind speed is also exhibited

which is expected since the component of upstream momentum into the propeller

disk is increased. It is interesting to note that there is still a substantial amount

of lift being produced at these low shaft angles when compared with the isolated

propeller.
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(a) Vertical force (Shaft angle:
84o)

(b) Horizontal force (Shaft angle:
84o)

(c) Vertical force (Shaft angle:
42o)

(d) Horizontal force (Shaft angle:
42o)

(e) Vertical force (Shaft angle: 6o) (f) Horizontal force (Shaft angle:
6o)

Figure 4.11: Variation of forces with RPM for propeller-wing system at various
shaft angles

4.4 Differences Between Isolated Propeller and

Propeller-Wing System

As observed from the previous results and the isolated propeller experiments, there

are substantial differences between the forces produced in the two cases. These are

better summarized in Fig. 4.12. It shows the variation of vertical and horizontal

forces produced by the propeller with and without the wing as a function of shaft

angle and at a wind speed of about 6.2 m/s and 6500 RPM. Again, it is noted

that the effect of pure wing lift and drag, and the bluff body drag will be included

later for trim analysis. From Fig. 4.12, some key differences are:
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Figure 4.12: Differences in forces produced by a propeller as function of shaft
angle, with and without wing

1. A uniformly greater contribution in vertical force of the propeller with wing

case.

2. The contribution to total thrust from vertical and horizontal forces are equal

at much lower shaft angles for the propeller with wing case.

This was about 40o for the isolated propeller whereas about 12o for the propeller-

wing system. Additionally, the isolated propeller can produce a given horizontal

force at much higher shaft angles as opposed to the propeller-wing system. These

differences may be possibly explained by the effect of propeller slipstream on wing

force as well and vice versa. Consider the schematic shown in Fig. 4.13. In non-

axial flow conditions, the momentum of the upstream flow is changed in both
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magnitude and direction by the induced flow generated by the propeller. Due to

this change in momentum, forces are generated parallel and perpendicular to the

propeller shaft. However, if a wing is placed in the downwash of the propeller, the

direction of the upstream momentum is changed to a greater extent due to the

presence of the wing surface. As a result, the magnitude of the force perpendicular

to the propeller shaft increases. This causes an increase in vertical force and

a decrease in horizontal force which is what is observed in Fig. 4.12. There is

however one more factor that needs to be considered, which is the effect of propeller

slipstream on the forces generated by the wing. When the propeller is operated,

it induces an increase in velocity over a portion of the wing surface as shown

in Fig. 4.14. This contributes to a reduction in positive horizontal force and

an increase in vertical force. A more detailed explanation would require careful

analysis of the effective angle of attack before and after the propeller is switched

on, wing stall and other factors which can be studied in the future. Based on the

above discussion and comparison with isolated propeller experiments, it can be

concluded that there are significant interaction effects between the propeller and

wing, which has a profound influence on the forces produced by the propeller and

should be factored into the trim analysis.

Figure 4.13: Effect of wing on propeller slipstream
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Figure 4.14: Effect of propeller slipstream on wing

4.5 Trim Analysis

The previous section described the variation of the vertical and horizontal forces

generated by the propeller-wing system at various shaft angles and wind speeds

where all the forces generated by the wing and bluff body were removed. It is

of interest to use this information to determine the forward flight capabilities of

the system. In order to do this, the tare values of lift and drag generated by the

system prior to propeller operation (RPM = 0) are first determined (Fig. 4.18). It

can be seen that the lift and drag values can be approximated satisfactorily with

quadratic and cubic variations with wind speed. These values are then added to

the previously determined vertical and horizontal forces as shown below:

LTotal(α,Ω, V ) = Lprop-wing(α,Ω, V ) + Ltare(α, V ) (4.5)
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TTotal(α,Ω, V ) = Tprop-wing(α,Ω, V ) + Ttare(α, V ) (4.6)

where, α is the shaft angle, Ω is the propeller RPM, and V is the forward velocity.

Ltare and Ttare are the lift and thrust forces measured on the propeller-wing system

in non-axial flow with the propeller in the static condition. It can be seen that α

and Ω are the two variables that determine the magnitude of horizontal and vertical

forces and forward velocity. These variables have to be determined to establish

trimmed flight at various angles of transition from 90o to 0o. Figure 4.16 shows a

schematic of the propeller-wing system in a state of trim. This implies a steady

level flight where the net horizontal force is zero and the vertical force balances the

weight of the aircraft. As mentioned earlier, the wing-propeller system represents

one-quarter of the complete vehicle. Since the vehicle weighs about 2.4 N, the

required vertical force from the single propeller-wing system is 0.6 N. It is noted

that moments are not considered since they can be controlled appropriately in the

assembled vehicle.

(a) Lift force (b) Drag force

Figure 4.15: Tare lift and drag forces (RPM = 0)
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Figure 4.16: Propeller-wing system in state of trim

Representative results for the vertical and horizontal forces produced by the system

with and without tare values are shown in Fig. 4.17 for a shaft angle of 18o and wind

speed of about 6.4 m/s. It can be clearly seen there is a significant contribution

to total lift from the wing. The magnitude of this contribution would vary with

shaft angle and wind speed. Considering the case shown in Fig. 4.17 when the

propeller is operated at an RPM of about 5700, the total horizontal force is zero.

However, the total lift is greater than 0.6 N which would not result in level flight.

This can imply:

1. Extra payload carrying capacity at these conditions

2. Wing dimension scaled down to match total lift of 0.6 N

3. Vehicle should fly slower than 6.4 m/s at 18o shaft angle
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For the present study, it is assumed that the lift requirement and wing dimensions

are held constant. Therefore, the only variables are wind speed and shaft angle.

Estimates of velocity and required propeller RPM at various shaft angles can be

obtained from an analysis of trim conditions based on wind tunnel measurements.

Figure 4.18(a) shows the trim velocity at various shaft angles. At a shaft angle of

about 6o, in order to achieve trim the vehicle should travel at about 7 m/s. As

the angle is reduced even further, there is a sharp increase in velocity requirement.

At 0o, a minimum velocity of 11 m/s is required to achieve trim. At high shaft

angles such as 60o, the forward velocity is about 2 m/s. Velocities lower than 1.5

m/s cannot be measured accurately in the wind tunnel facility and hence are not

included. Extrapolation of the velocity-angle curve indicates that for hover, the

shaft angle is between 84-90o, which correlates well with free flight hover tests.

It is also clear that the required propeller RPM at these various trim conditions

is not constant. Figure 4.18(b) shows the variation of propeller RPM with shaft

angle that achieves required forward velocities. In hover the RPM is about 5000,

which remains approximately constant up to 50o. Below this angle, there is a

steady reduction in required RPM to as low as 3500 at 18o shaft angle. At 0o,

there is a sharp increase to about 7500 which correlates with the higher power

required to maintain trimmed flight at that shaft angle.

From a performance perspective, the propeller RPM, shaft angle, and wind speed

can be used to estimate the required power to achieve trimmed flight at all shaft

angles. As mentioned earlier, the power measurements from the isolated propeller

experiments are used. Figure 4.19 shows the variation of required power as a

function of wind speed. The power is 5 W in hover and this requirement drops

to as low as 1.5 W at a speed of about 4-4.5 m/s. This is more than a three-fold

decrease in power required when compared to hover condition. If a wing is absent,
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the propeller would be required to produce both propulsion and lift which drives

up the required power significantly at a given wind speed. This highlights the

utility of utilizing lift augmentation such as the propeller-wing system. The speed

when hover power and cruise power are equal is 8 m/s. The maximum speed is

about 11 m/s which requires about twice the hover power.

(a) Net horizontal force (b) Net vertical force

Figure 4.17: Net forces for 18o shaft angle and 6.4 m/s wind

(a) Variation of wind speed with shaft angle for
steady, level flight

(b) Required RPM versus shaft angle based on wind speed

Figure 4.18: Trim analysis plots
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Figure 4.19: Power requirements at different forward flight speeds

4.6 Conclusions

In this chapter, investigations of non-axial flow conditions and their effect on ve-

hicle performance were presented through a systematic series of bench-top wind

tunnel experiments. The test apparatus included a rotor utilized on the quad-

rotor biplane and a proportionally sized wing (one-quarter configuration). Mea-

surements were taken for numerous flight conditions and upon review, revealed

significant interaction effects between the propeller and wing at all angles of tran-

sition. The vertical force and horizontal force produced by the propeller-wing

system were uniformly higher and lower respectively when compared to the iso-

lated propeller system. This difference could be attributed to the combined effect

of wing on propeller slipstream and effect of propeller downwash on wing gen-

erated forces. Trim analysis showed that the maximum speed and cruise speed

achievable by the proof-of-concept system were 11 m/s and 4 m/s respectively.

The maximum power required during cruise is approximately one-third of that

required for hover.
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Chapter 5

Vehicle Control

As mentioned earlier in Chapter 2, one of the main advantages of the quad-rotor

biplane is that it is completely controllable without the use of aerodynamic control

surfaces. Vehicle roll, pitch, and yaw are adjusted solely via variable proprotor

RPM techniques. Control inputs for the quad-rotor biplane are very similar to

conventional quad-rotor controls, regardless of the vehicle flight mode. These

inputs are used in conjunction with a quaternion-based feedback controller and

both topics will be detailed in this section.

5.1 Control Inputs

The vehicle utilizes an inertially fixed reference frame for all controls. This means

that the axes do not vary with vehicle movements. Vehicle attitude and positioning

is defined through a quaternion system as well. This is done to avoid gimbal lock

which would be an issue when using Euler angles to define vehicle location and

attitude after transitioning from hover to forward flight.

The various operating flight modes of the vehicle concept are shown in Fig. 5.1.

Vertical take-off and landing operations will be performed through quad-rotor

mode. Transition will involve a steady pitching moment provided through RPM

variation of the propellers. Variations in RPM generate thrust differentials that

provide the necessary pitching moment as the vehicle enters into the horizontal

flight mode. At sufficiently high speeds, the entire body weight is supported by

the wings. Therefore, it can be seen that one of the main utilities of the present
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configuration is that quad-rotor control methodology is retained in both hover and

forward flight conventions. There are no actuators that are redundant in either of

these flight modes.

Figure 5.1: Vehicle achieving various flight modes via pitching moments

5.1.1 Control Axes in Transition

It is important to consider that the actuator control inputs that control pitch,

roll, and yaw are not the same in hover and forward flight mode. The schematic

shown in Fig. 5.2 helps to provide a better understanding of this concept. The

pitch, roll, and yaw axes are defined based on the inertial frame in hover mode.

Therefore, in hover mode, the pitch axis is parallel to the wings and perpendicular

to the chord, the roll axis is perpendicular to the wing span and chord, and the

yaw axis is parallel to the wing span and chord. It can be seen from Fig. 5.2(b)

that as the vehicle transitions from hover to forward flight, the roll and yaw axes

change with respect to the body reference frame. However, unlike these two control

axes, the pitch axis is invariant with transition angle. Therefore, it is important
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to appropriately map the control inputs to the inertial frame of reference. This

frame is the same as the pilot reference frame. Let the pitch, roll and yaw controls

in hover be δθ0, δφ0, and δψ0 respectively. Then the control inputs for pitch, roll,

and yaw at an arbitrary transition angle, α, can be written respectively as,

δθ(α) = δθ0 (5.1)

δφ(α) = δφ0cosα− δψ0sinα (5.2)

δψ(α) = δψ0cosα + δφ0sinα (5.3)

It can be seen that in forward flight mode, the roll and yaw controls are inter-

changed with respect to the hover configuration. Therefore, to accurately transfer

the control inputs, it is of utmost importance to determine the angle of transi-

tion. Traditionally, for hover and low speed applications on rotorcraft, where the

fuselage does not encounter large angles of deviation from hover, Euler angles are

used to define vehicle attitude and location. However, when the vehicle enters

into forward flight mode, it encounters a singularity, also known as gimbal lock.

This problem is alleviated by determining a four dimensional vector called the

quaternion. The quaternion is defined via real time sensor signals from which the

transition angle can be calculated. Additionally, the quaternion formulation can

also be used in developing the control strategy, which will be discussed below.

5.1.2 Quaternion Formulation

As mentioned above, it is imperative that the attitude of the quad-rotor biplane

vehicle be described in a non-singular manner. Consider the rotation between two
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(a) Hover (b) Transition (c) Forward flight

Figure 5.2: Frames of reference in different flight mdoes

Figure 5.3: Rotation between frames A and B described by rotation about rA

coordinate frames of reference A and B (Fig. 5.3) . This transformation can be

described as a rotation about an axis (rA). This rotation axis can be defined as a

vector of four parameters, γ = [γ0, γ1, γ2, γ3] [43]. The first parameter is a scalar

quantity. The remaining quantities are the scaled components of the unit-length

axis of rotation. These quantities satisfy the norm,

γ2
0 + γ2

1 + γ2
2 + γ2

3 = 1 (5.4)

Euler angles representing yaw, pitch, and roll can also describe the orientation

of frame B. This is done by applying sequential rotation angles about axes from

the initial frame A. These angles can also be derived from the quaternion. From
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Fig. 5.2, it can be seen that the transition angle is related to the pitch angle by,

α = −θ (5.5)

This angle can then be calculated via quaternions by,

α = −asin(2γ1γ3 + 2γ0γ2) (5.6)

Therefore, it is of interest to calculate the quaternions from real-time sensor data,

This will allow for vehicle attitude estimates. These quaternions are computed

from the on-board gyro and accelerometer measurements. More details about these

sensors can be found below in Section 5.2. The data coming from the gyro can be

viewed as a measurement of the rate of change between two reference frames as the

body is rotating. The accelerometers are used to measure the gravity vector with

respect to the body frame of reference. Let the gyro measurements be represented

as ω = [0, p, q, r]. In this new representation, p, q, and r are the roll, pitch and

yaw rates respectively. Kuipers showed in Ref. [44] that the time derivative of the

quaternions are related to the gyro measurements by,

γ̇ =
1

2
γ̂ ⊗ ω (5.7)

In this instance, ⊗ represents the composition of two different quaternions. The

quaternion vector can be propagated via time marching,

γt = γ̂t−1 + γ̇δt (5.8)
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It is worth noting that the integration of gyro measurements is susceptible to

drift over time. Therefore, the quaternion estimate from Eq. 5.8 is corrected by

a measurement update which comes from the accelerometer. The accelerometer

vector, denoted as â, is ideally equal to the gravity vector, ĝ, that is rotated from

the inertial frame to the body frame. However, due to slight measurement errors

and vehicle vibrations, there is often a discrepancy between the two vectors. This

error can be represented as,

e = γ̂∗ ⊗ â⊗ γ̂ − ĝ (5.9)

If e is defined as an objective function, then γ̂ can be determined using an algorithm

such as the gradient descent method (Ref. [45]). This solution is then updated in

Eqs. 5.1, 5.2, and 5.3 [43].

5.2 Feedback Control

After the vehicle quaternion is defined, this data is fed into a feedback loop with

the on-board flight controller. The controller utilizes the Embedded Lightweight

Kinematic Autopilot (ELKA-R) board [46]. This board can be seen in Fig. 5.4.

The ELKA-R is a lightweight autopilot system featuring state-of-art hardware, low

power microcontrollers, and improved software methodology. The board features a

Cortex-M4 microprocessor which was selected for its high clock speed and memory.

For an IMU, the ELKA-R has an MPU-9150. It includes an integrated 3-axis

accelerometer, 3-axis gyro, and 3-axis magnetometer. The board also features a

2.4 GHz wireless transceiver and operates on a 1000 Hz loop rate. Altogether,
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the board weighs only 1.7 grams and has a thickness of 1 mm. This autopilot is

included in the control algorithm depicted in Fig. 5.5.

Figure 5.4: ELKA-R board

Figure 5.5: Feedback control loop

In this feedback control loop, the base station sends inputs to the four vehicle

motors. These inputs are based off of trim analysis, discussed in Chapter 4, as

well as feedback from the previous control loop. The motors react accordingly,

altering their RPMs, generating vehicle movements. These movements are then

quantified as position and attitude changes, gauged by the gyro and accelerometers
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found on the ELKA-R board. The data from these sensors is used to generate a

new vehicle quaternion as well as the pitch, roll, and yaw rates used to calculate

error and drift. These values are then fed back into the feedback control loop with

the proper gains and the loop is repeated at a rate of 1000 Hz.

In Chapter 4, it was seen that the propeller-wing system could generate adequate

forces for level transition flight from helicopter to forward flight mode. In order to

verify the quad-rotor biplane’s ability to perform the transition maneuver, flight

testing of the vehicle was performed, utilizing the flight control methods and the

feedback controller detailed above.

5.3 Flight Testing

The quaternion based controller was tested for its ability to maintain stable hover.

As can be seen from Fig. 5.6, satisfactory hover flight was obtained.

Figure 5.6: Quad-rotor biplane in hover
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Free flight transition was performed with the vehicle initially in the hovering flight

mode. After achieving stable hover, the pilot would issue a pitch-forward com-

mand. The throttle was held close to the hover value throughout the transition.

The vehicle transitioned smoothly from helicopter to forward flight mode within

a time frame of about 2 seconds. The quad-rotor biplane went on to proceed in

forward flight mode. An average vehicle speed of about 7 m/s was observed via

video analysis. The sequence of events is shown in Fig. 5.7. The sequence of

events detailing transition from forward flight back to hover is shown in Fig. 5.8.

In this case, a pitch-back command was supplied by the pilot. It is noted that

since the throttle value was held the same as during forward flight, an excess lift

was generated as the vehicle returned back to the hover attitude. Consequently

an increase in altitude was observed. Further tests will be conducted to determine

throttle modulation to obtain transition flights in both modes without change in

altitude.

Figure 5.7: Transition from hover to forward flight
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Figure 5.8: Transition from forward flight hover

5.3.1 Low Roll Control

While multiple flight tests were successful, some flights resulted in vehicle crashes.

Figure 5.9 shows one such test flight. In this figure, it can be seen that the

vehicle achieves hover and transition smoothly. However, during forward flight,

roll control authority suffers and the vehicle crashes, resulting in damage. This

is shown in Fig. 5.10. Multiple control augmentation methods are developed and

tested in Chapter 6.

Figure 5.9: Vehicle flight leading to crash
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Figure 5.10: Vehicle damaged during flight tests

5.4 Conclusions

The quaternion based feedback control loop is shown to be an effective control

scheme for the quad-rotor biplane. It helps to avoid singularity and gimbal lock

when the vehicle transitions into forward flight and has been shown to allow for

stable hover and transition. Unfortunately, in forward flight, the original quad-

rotor biplane exhibited poor roll control authority, which led to hard crashes and

severe vehicle damage. Vehicle improvements, including enhanced roll control in

forward flight are explored in depth in the following chapter.
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Chapter 6

Design Improvements and Flight

Testing

As a result of numerous flight testing trials of the quad-rotor biplane, multiple

design improvements were deemed necessary. Due to the vehicle’s lightweight

design and the inherent load paths of the tail-sitter configuration, damage from

landings was found to be a frequent occurrence. This led to large amounts of time

spent on vehicle maintenance and repair. In an effort to avoid these setbacks,

attempts were made to increase vehicle structural integrity and decrease the chance

of vehicle crashes. This was done via the integration of additional structural parts

and systems redesigns. As mentioned in Chapter 5, it was observed during forward

flight that the original design of the quad-rotor biplane vehicle suffers from a lack

of sufficient roll control authority. This led to vehicle crashes and therefore, more

repair and maintenance. This section explores the deficiencies of the installed

roll control method and investigates several other suitable control systems. These

include a pair of pivoting wing tips, thrust vectoring via angled proprotors, and a

variable collective pitch proprotor method.

6.1 Wing Spars

An unfortunate side effect of having a lightweight vehicle is that it tends to be

fragile as well. This was certainly the case with the original configuration of the

quad-rotor biplane. Since the vehicle is a tail-sitter and uses the wing trailing
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edges as landing gear, hard landings would lead to crumpling and degradation of

the thin, foam wings.

In order to increase wing rigidity, carbon fiber spars were implemented at the wing

quarter chord and along the trailing edge. A vehicle with these spars installed can

be seen in Fig. 6.1. However, these wings, while increasing wing stiffness, are

heavy. Each set of spars adds approximately 25 grams to the vehicle, representing

more than a 10% increase in vehicle weight. Although the spars provide a large

increase in wing rigidity and structural integrity, the vehicle still suffered from a

weak motor-wing connection point. These weak points are highlighted in Fig. 6.1.

The epoxied motor mount attachments would detach during landings and crashes,

requiring major wing repairs often. This issue is alleviated through adjustments

made in the following section.

Weak wing/motor 
connection points

Figure 6.1: Vehicle utilizing carbon fiber spars

6.2 Motor Mounts

Weight savings and overall increased vehicle structural integrity were achieved

through a redesigning of vehicle frame and landing gear. In order to solve the issue
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(a) Drawing of
3D printed motor
mount

(b) Drawing
of lighter mo-
tor mount

Figure 6.2: Redesigned vehicle motor mounts

of landing on fragile wing tips and increase overall vehicle rigidity, a completely

new method of wing attachment was designed. 3D printed wing mounts, which

can be seen below in Fig. 6.2(a), were designed to take the brunt of the force

during landings and transmit them to the vehicle’s ”X” frame rather than the

delicate wings. The motors are attached directly to these airfoil shaped mounts,

further unloading the foam wings. Over time, these mounts were slimmed down

further to save weight. Figure 6.2(b) shows a more up-to-date, lighter version of

the 3D printed mount and they can be seen attached to the vehicle in Fig. 6.3.

Overall, these mounts drastically improve vehicle survivability, as noted through

flight tests, and offer a much more lightweight alternative to heavy spars. A vehicle

with these mounts included weighs approximately 220 grams, representing a 7%

decrease in vehicle weight. As shown in Section 6.5.2, these mounts will aid the

vehicle in more ways than structural rigidity.
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Figure 6.3: Vehicle with 3D printed motor mounts

6.3 Vertical Fins

The quad-rotor biplane was originally designed to be tail-less. The lack of aero-

dynamic surfaces allows for a more lightweight and compact vehicle. Without a

tail, however, it can be difficult to counteract undesirable flight actions, such as

side-slip and loss of yaw control. In order to account for these issues, while keeping

vehicle weight low, an easily constructed and passive method was explored and

implemented. Thin foam vertical fins were installed near the wing trailing edges of

the quad-rotor biplane in order to enhance forward flight yaw stability and prevent

any instances of side-slip. These fins are 2” in width and weigh approximately 2

grams each. The vehicle can be seen successfully flying with these fins installed in

Fig. 6.4.

6.4 Current Roll Control System

Currently, the MAV utilizes a standard quad-rotor yaw system to roll during tran-

sitional flight. This system can be seen in more detail in Fig. 6.5. In order to
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Figure 6.4: Vehicle with lightweight fins installed

generate a rolling moment, the RPMs of diagonal proprotors are altered in order

to create a torque imbalance amongst the two pairs of motor and proprotor com-

binations. Total thrust for the entire system remains constant. For example, in

order to create a clockwise moment, the two motors which are rotating in that

direction would have their RPMs decreased by a certain magnitude. Conversely,

the other two motors, which are rotating in the counter-clockwise direction, would

then have their RPMs increased by a similar magnitude to balance out the loss

in thrust. This would cause a reactionary torque imbalance between the clock-

wise and counterclockwise directions which would lead to clockwise roll without

sacrificing thrust or coupling other moments.

Figure 6.5: Clockwise roll in forward flight using current system
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In order to evaluate the control authority of the conventional system, it was nec-

essary to investigate the performance of the GWS 6x5 propeller in hover and axial

flight in the wind tunnel. It should be noted that in hover, this proprotor is oper-

ating at a low Reynolds number of approximately 51,500. The test setup can be

seen in Fig. 6.6. Performance data generated by the propeller in hover as well as

a flight speed of 6.25 m/s can be seen below in Fig. 6.7(a) and Fig. 6.7(b). It is

important to observe that all control techniques will be compared at a flight speed

of 6.25 m/s. This will be discussed in more detail throughout the chapter.

Figure 6.6: Axial flow testing diagram

Figure 6.7 shows graphs of measured thrust and torque versus RPM for the GWS

6x5 propeller. The low levels of torque generated, which reach a maximum of

approximately 15 N-mm, in hover do not allow for necessary roll moments with

high axial flow speeds. As mentioned earlier, it was observed during vehicle flight

tests that high roll control in forward flight is not attainable using this technique.

80



Chapter 6. Design Improvements and Flight Testing

(a) Thrust versus RPM (dashed lines represent RPM
operating range)

(b) Torque versus RPM (dashed lines represent RPM
operating range)

Figure 6.7: Original roll control performance plots with GWS 6x5 proprotor

The remainder of this section will explore a series of alternate roll control solutions

with the intent of increasing control authority.

6.4.1 “Baseline” System Analysis

For the sake of comparison between roll control methods in this chapter, a “base-

line” case will be defined based on the aforementioned measurements. Test results

from experiments completed for a single propeller in axial flight have been ex-

trapolated to simulate a quad rotor biplane flying at 6.25 m/s. As detailed in

Chapter 3, a GWS 6x5 propeller was tested through a series of RPMs in axial flow

of varying wind speeds. The results for a wind speed of 6.25 m/s are also shown in

Figs. 6.7(a) and 6.7(b) and once again, Fig. 6.6 shows a diagram of the test setup.

Based on the data presented above, in order to maintain a constant flight speed

of 6.25 m/s, all four proprotors of the vehicle must operate at 3970 RPM. At this

RPM, the proprotors generate no net thrust and thus, no net acceleration. To

conduct a clockwise roll maneuver using the conventional roll technique (Fig. 6.5)

within suitable RPM levels for the proprotor, clockwise rotating rotors will de-

crease their RPM to 3000 and counterclockwise rotors will increase their RPM to
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4560. The vertical lines in Fig. 6.7(b) intersect the torque curve at these indi-

cated RPMs, showing maximum achievable torque at this flight condition. This

will create a net roll moment equal to 8.0 N-mm while essentially keeping thrust

constant. All further roll techniques are measured against this baseline case.

6.5 Alternate Control Methods

6.5.1 Pivoting Wing Tip

One option for improving roll control is a pair of servo-driven flapping wing tips.

Operating much like the ailerons on an airplane wing, the pivoting wing tips can

generate moments using directional lift vector changes. The completed design and

completed vehicle can be seen below in Figs. 6.8(a) and 6.8(b). Each wing tip

takes up one quarter of the entire span of the top wing in the biplane configuration.

(a) Close up drawing of wing tip system (b) Vehicle with flapping wing tip sys-
tem

Figure 6.8: Pivoting wing tip system

The wing tip system is actuated by a servo motor which is connected to an arm.

This arm rotates and contains a pin joint which allows it to abduct and adduct

accordingly. A drawing of this motor-arm system can be seen in Fig. 6.9. When
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the servo motors on either side of the wing are driven by a pulse-width modulated

signal, they rotate and pivot their respective wing tips in opposite directions.

This causes lift vectoring at each end of the wing which in turn supplies a pure

roll moment to the vehicle.

Figure 6.9: Close up drawing of servo arm system

Wind tunnel testing was conducted and has shown that this system can indeed

generate large roll moments in forward flight. Fig. 6.10 shows the torque generated

by a single wing tip traveling into the wind. The test setup can be seen in Fig. 6.11.

Figure 6.10: Torque generated by a single wing tip in forward flight

During the test, one half of the span and one wing tip were exposed to wind while

the flap was deflected. The deflected tip generated up to 40 N-mm of torque at

maximum wind speeds. With two wing tips each generating approximately 40 N-

mm of roll moment, the vehicle will experience much greater roll control authority

in forward flight.
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Figure 6.11: Wing with moving wing tip placed in front of open jet wind
tunnel

6.5.1.1 Control Authority for Full Scale Vehicle

Data for a pivoting wing tip in 6.25 m/s wind is shown below in Fig. 6.12. In

order to compare this model to the baseline model discussed above, the pulse-

width modulated signal input to the wing tip control servo will correspond to

the input given to achieve the RPM differential of the baseline control model. It

was seen that, in order to conduct a clockwise roll, the left and right wing tips

would be rotated to 4.2o respectively and vice versa for counter-clockwise roll.

This would generate a roll moment equal to 15.61 N-mm. However, the maneuver

would also generate additional drag. In order to make up for the increase in drag,

the propellers would each need to spin at higher RPMs, leading to an increase in

power consumed.

Figure 6.12: Torque versus wing tip angle in 6.25 m/s wind
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It should be noted that the entire flap system is both heavy and delicate, leading

to performance degradation in other regards as well. A wing with an installed

pivoting wing tip system weighs 57 grams more than a wing without the system.

This represents a 23.75% increase from the 240 gram initial total vehicle weight.

A system such as this would drive up the entire weight and sizing of the MAV

and also lead to an increase in maintenance required. Also, it is important to note

that this system benefits from a high aspect ratio wing design. Using a longer

wing allows for an increased moment arm for each pivoting wing tip, increasing

the total moment generated. A shorter wing with a longer chord would degrade

the performance of such a system. Deflecting the wing tip of a low aspect ratio

wing would lead to increased drag and a lower roll moment.

6.5.2 Angled Motor Mounts

A second option which is explored is that of angling the motors in order to employ

thrust vectoring, or simply, shaft tilt. Fig. 6.13 shows a conceptual design for a

vehicle fitted with the mount which allows for the motor and propeller angling.

Figure 6.14 shows how shaft tilt vectors the vehicle’s thrust. Since the proprotors

on the vehicle are angled slightly, as shown in Fig. 6.14, they will provide a side-

force for the vehicle. When the motor shafts are tilted inward at an angle, αs,

toward the mid-span of their respective wings, these side-forces will provide a

valuable moment which will aid in roll. A mount angle of 10o was chosen as

it provides a considerable increase in sideways thrust and a minimal decrease in

vertical thrust. Tilting the proprotor at an angle of 10o allows for 17

In order for the sideways thrust of the propeller to assist in roll control, the variable

RPM method must also be utilized. In this manner, the inherent differential
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Figure 6.13: Conceptual vehicle design with angled motor mounts

Figure 6.14: Force generation for propeller with nonzero shaft tilt, αs

Figure 6.15: Diagram of thrust vectoring approach

reactionary torque as well as the moment generated through vectored thrust will

complement each other to enhance the roll control authority. Figure 6.15 shows

the direction and relative magnitude of the new forces which, when coupled with
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a moment arm, will generate a large roll moment in the clockwise direction, which

is the desired direction of rotation.

Previous tests and current design characteristics prove that this system will en-

hance roll control. Figures 6.16(a) and 6.16(b) show torque and thrust measure-

ments respectively during hover for the 6x5 Slow Flyer propeller when flown in

the conventional level manner versus the new tilted flying position. The angled

system torque measurements are significantly higher because the torque measure-

ments now include the moment generated by the thrust differential coupled with

the moment arm to the central axis of the vehicle. The moment arm is 4.5 inches.

(a) Roll moment measurements for the two flying con-
ventions

(b) Thrust moment measurements for the two flying
conventions

Figure 6.16: Pivoting wing tip system

The above plots make it clear that thrust vectoring is an effective method of roll

control. The vehicle experiences an average increase in roll performance of 117.4%

while only sacrificing an average of 1.5% of vertical thrust.

6.5.2.1 Data Extraction for Full Scale Vehicle

Data for the angled proprotor in 6.25 m/s wind is shown in Figs. 6.17(a) and

6.17(b).
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(a) Angled proprotor thrust versus RPM in 6.25 m/s
wind

(b) Angled proprotor torque versus RPM in 6.25 m/s
wind

Figure 6.17: Angled proprotor performance comparison

According to the figures and using the same methodology as the baseline calcula-

tion mentioned earlier, to roll in a clockwise manner, clockwise rotating proprotors

will decrease their RPMs to 3000 and counterclockwise rotating proprotors will in-

crease their RPMs to 4560. This will yield a net roll moment of 15.79 N-mm while

keeping thrust virtually the same.

6.5.3 Variable Collective Pitch Approach

The final option that has been explored is a variable propeller pitch technique.

This method is very similar to the aforementioned variable RPM method in which

torque imbalance is generated. However, instead of varying the RPM for each pair

of propellers, the collective pitches of the diagonal rotors will be similarly varied.

For example, in order to rotate in a counter-clockwise direction, the collective

pitches of the propellers rotating in that direction will be decreased. As a result,

the reactionary torque in the clockwise direction is decreased. The propellers

rotating clockwise would then have their pitches increased equally to increase the

reactionary torque in the counter-clockwise direction, thus inducing roll in this

direction. Tests have been conducted using a variable pitch propeller with blades
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shaped identically to the GWS 6x5 Slow Flyer propeller to gauge the effectiveness

of such a roll system. Figure 6.18 shows a picture of the servo-actuated variable

pitch hub system and Fig. 6.19 shows a picture of the test setup. The system

contains a hollow shaft motor with a vertically translating rod which is driven by

a servo motor. The rod is connected to a non-rotating swashplate which provides

variable collective for the proprotor when actuated in the vertical direction.

Figure 6.18: Servo-driven variable pitch hub (without motor and proprotor
blades

Figure 6.19: Variable pitch propeller test setup

Figures 6.20(a) and 6.20(b) show how the different collectives affect hover per-

formance. As expected, increasing blade collective, prior to blade stall, generates

greater magnitudes of thrust and torque. The propeller was also subjected to ax-

ial flow wind, ranging from 0 to 8 m/s, and swept through its maximum range of
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propeller collective angles, which ranged from 6o to 14o. The propeller was also

swept through a series of RPMs between 2000 and 4000 to measure thrust and

torque under each flight condition. Figure 6.20(c) shows efficiency versus advance

ratio for the 3000 RPM test case in forward flight for the variable pitch propeller

system.

(a) Thrust versus pitch angle in hover (b) Torque versus pitch angle in hover

(c) Efficiency versus advance ratio comparison at 3000
RPM

Figure 6.20: Variable pitch system performance plots

Figure 6.20(c) shows that the use of higher collective pitches increases the envelope

of optimum efficiencies to higher advance ratios. The curves of efficiency versus

advance ratio move to the right with increasing collective, allowing for better per-

formance at higher forward flight speeds. This trend is common for all operating

RPMs. Also, from this figure, it can be seen that if the collective is fixed, the

range of advance ratios for efficient flight is limited.
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6.5.3.1 Data Extraction for Full Scale Vehicle

Figures 6.21(a) and 6.21(b) contain flight performance data for the variable pitch

hub flying at 6.25 m/s.

(a) Thrust versus pitch angle in 6.25 m/s wind (b) Torque versus pitch angle in 6.25 m/s wind

Figure 6.21: Variable pitch system forward flight performance plots

According to the above plots, in order to complete a clockwise roll, the collective

of the clockwise spinning proprotors could be decreased to 6o while increasing the

collective of the counterclockwise rotating proprotors to 14o. This would lead to

a total rolling moment equal to 15.16 N-mm while altering thrust by a minuscule

amount. This shows that altering collective pitch of proprotors is an effective way

to control vehicle roll in rapid forward flights.

Figure 6.22: Vehicle equipped with servo-driven variable collective pitch hubs
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Another goal of this chapter is to investigate the possibility of a full scale vehicle

equipped with four variable pitch hubs. Figure 6.22 shows a model containing a

suite of variable pitch propeller systems to allow for total improved roll control.

This vehicle will be constructed and explored in depth in the near future.

6.6 Comparison Between Various Control Con-

cepts

6.6.1 Roll Control

Table 6.1 shows a brief summary of the aforementioned roll control techniques.

While all explored systems appear to dramatically improve upon the baseline,

variable RPM technique, all methods come with their own benefits and weaknesses.

Table 6.1: Roll moment analysis in 6.25 m/s wind

Method Torque (N-mm) Percentage Increase
Baseline 7.998 -

Pivoting Wing Tip 15.613 95.21%
Angled Motor Mount 15.793 97.47%
Variable Pitch Hub 15.613 89.48%

The above table shows that the pivoting wing tip control method provides a large

increase in roll moment magnitude, generating almost twice the roll magnitude of

the baseline model. Based on these results, this method would clearly be a viable

option for increasing vehicle roll control authority. Upon further inspection, this

may not necessarily be the case. As mentioned earlier, a wing with the pivoting

wing tip system weighs 57 grams more than a wing without the system. This
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would severely drive up vehicle weight and size. Also, the deflected wing tips

generate considerable drag forces. To overcome this increased drag and maintain

flight speed, all proprotors would need to spin at an increased rate, driving up

power required. It is also worth noting that this system would generate even less

roll moment if installed on a wing with a lower aspect ratio or shorter span, which

is desirable for most compact MAVs. Due to all of these qualities, this method

may not be the most effective for full scale vehicle implementation.

The angled motor mount method creates a significant increase in achievable roll

moment in forward flight. This method also has the benefit of implementing no

additional moving parts to the system and essentially no increase in vehicle weight.

However, the angled motor mount method utilizes the same constant collective

proprotor as the baseline method and therefore, cannot by itself alter efficiency of

the vehicle in forward flight.

According to Table 6.1, the variable pitch method increases the roll moment

achievable by a considerable amount. However, the increase in roll moment mag-

nitude achieved is still slightly less than the other explored options. Ideally, this

method would be implementable with another explored option. When combined

with a system such as the vectored thrust method, the variable pitch system could

further increase roll control authority to a new regime. For example, installing a

variable pitch hub system on an angled mount would lead to a 185.6% increase in

roll moment generated.

6.6.2 Efficiency

The only method which allows for a simultaneous increase in efficiency as well as

roll control is the variable pitch hub approach. Figure 6.23 shows how altering
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collective pitch can increase vehicle efficiency depending on vehicle flight regime.

At higher advance ratios, or rapid forward flights, higher collective proprotor pitch

allows for greater efficiency. At lower advance ratios, which can occur during

vehicle transitions or slow, high angle of attack flights, a lower collective will

provide highest aerodynamic efficiency. This means that a variable collective hub

effectively expands the flight envelope for the vehicle.

Figure 6.23: Efficiency versus advance ratio: variable pitch propeller and
original propeller

While the variable pitch method clearly allows for increases in aerodynamic ef-

ficiency, much like the pivoting wing tip system, this is inherently heavy. The

current servo-actuated swashplate hub and hollow shaft motor pair involves many

moving parts and weighs about 5 times as much as the motors and non-moving

hub utilized in the baseline control method. In order for the variable pitch system

to be effective on the quad-rotor biplane MAV, a much lighter system must be

explored and implemented.
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6.7 New Vehicle Design and Flight Testing

A new, more compact vehicle design has been designed and built utilizing the

angled motor mounts. This vehicle can be seen below in Fig. 6.24. The vehicle is

comprised of two wings each with a chord of 6.25 inches and a span of 15 inches,

leading to an aspect ratio of 2.4. The compact design allows for most of the

span to stay within the downwash of the proprotors which has been proven to

improve aerodynamic performance and can ideally improve gust tolerance. This

test vehicle has been used to conduct numerous successful flight tests, one of

which can be seen below. The new quad-rotor biplane can be seen completing

a round circuit in Fig. 6.25, thus demonstrating the utility of the design (see

https://www.youtube.com/watch?v=p4jwYW_LV6M).

Figure 6.24: Vehicle constructed with angled motor/wing mounts
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T = 0 s

T = 9 s

Figure 6.25: New vehicle completing circuit flight

6.8 Conclusions

This chapter discussed multiple vehicle improvements ranging from structural to

performance alterations. New motor mounts led to a redesigned vehicle config-

uration utilizing a simpler and more modularized construction process. Vehicle

structural soundness and survivability both improved drastically without severe

changes to vehicle weight.

During forward flight, roll control was found to be insufficient for the quad-rotor

biplane. This led to hard vehicle crashes and severe vehicle damage. In order

to alleviate this issue, new roll control concepts were designed and tested. These

included: wing-tip pivoting, shaft tilting, and variable collective pitch. In this

chapter, three roll moment control techniques were systematically explored and

tested for a range of flight conditions, covering hover and airplane modes. The

objective of this research was to help the MAV system achieve a maximum roll

moment rapidly enough to control the vehicle in a gusty environment. This chapter

encompasses all phases of design, development, and flight testing of the control

system.
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According to the analyses, all control methods improved roll control in forward

flight, some more than others. The pivoting wing tip system provided the greatest

increase in roll moment as compared to the original, baseline control method.

However, this system is not the most effective due to its inherent heft and increased

power requirements during implementation and performs well only in high aspect

ratio wing systems. Since compactness is of major importance in MAV systems,

low aspect ratio wings are preferred and such a system would render the pivoting

wing tips less practical. The shaft tilting method is inherently simple and provides

more than sufficient control authority in roll. The variable pitch proprotor was

proven to increase roll control as well as propeller efficiency during forward flight.

This makes it an attractive roll control method, assuming a lightweight option can

be developed. This system has the added benefit of improving the vehicle flight

envelope from an advance ratio of 0.4 to an advance ratio of 1. Combining the

thrust vectoring method via angled motor mounts with the variable pitch proprotor

system would yield a vehicle with enhanced roll control as well as the ability to

increase efficiency in all flight regimes. Combining the improvements in roll control

from the variable pitch method with a thrust vectoring, moment arm system would

allow for nearly a three-fold increase in roll moment and control authority. A

system comprised of both of these roll control methods would certainly lead to a

compact aerial vehicle capable of high performance flight.

Future studies will explore the development and flight testing of a full scale ve-

hicle with an integrated lightweight variable collective pitch system. Data from

these experiments will allow for further assessment of the systems usefulness at

small scales. The chapter successfully supplied information to be utilized in the

construction of a high-speed, high-endurance quad-rotor biplane micro air vehicle.

97



Chapter 7. Case Study and Scalability Analysis

Chapter 7

Case Study and Scalability Analysis

7.1 Distributed Logistics in an Urban Setting

Using Small Unmanned Aerial Vehicles

Based on the work presented thus far, a case study was conducted to validate the

usefulness of the quad-rotor biplane vehicle. In accordance with the 32nd Annual

AHS International Student Design Competition 2015 Request for Proposal (RFP),

a large-scale quad-rotor biplane, the AirEZ vehicle, was designed and simulated

for a parcel delivery system [47]. The project outlined in the RFP was titled

Distributed Logistics in an Urban Setting Using Small Unmanned Aerial Vehicles

and students were tasked with designing a UAV system to deliver up to 5,000

packages a day. The AirEZ vehicle, which weighs 38.42 lbs and was sized using

an in-house sizing algorithm, can be seen with dimensions below in Fig. 7.1.

The large quad-rotor biplane was designed in order to deliver packages up to a

size of 12”x12”x16”, weighing as much as 5 lbs, to customers within a 50 mile

by 50 mile square region of urban environment (see Fig. 7.2. 5,000 packages were

requested in a typical 8 hour day and the vehicle had a maximum of 2 hours to

complete a delivery to any location in the 2,500 square mile region. A fleet of

400 vehicles working together in a mesh networking system ensures delivery to the

customer’s door within 90 minutes of order placement at a low delivery price of

$9.03 dollars per package. As part of the logistics network, the vehicles function as

a completely self aware node capable of grid communications, mesh networking,

HUMS, and precise navigation in an urban canyon. Performance plots can be
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Figure 7.1: The AirEZ vehicle design

Figure 7.2: Map of delivery range

seen below in Figs. 7.4 and 7.5. The design features a variable pitch hub, which

has been proven in Chapter 6 to increase efficiency in different flight regimes. A

drawing of the hub can be seen in Fig. 7.3.

The hub allows for substantial power savings in both hover and forward flight.

The ariable pitch allowed for a figure of merit of 0.74 and a propulsive efficiency of
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Figure 7.3: The AirEZ variable pitch rotor hub

0.85, and as a result, AirEZ is able to operate in cruise at 55 kts, attain maximum

dash speeds of 87 kts, hover at altitudes of over 8,000 ft, and fly for up to 7 hours.

It can be seen by 7.4 that the large-scale quad-rotor biplane experiences similar

power savings to the small-scale vehicle, making it an attractive option for long-

distance and high-speed travel. This vehicle is capable of much higher speeds than

a conventional multi-rotor aerial vehicle as seen in Fig. 7.5.

Figure 7.4: Power versus forward flight speed for the AirEZ
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Figure 7.5: Power comparison between conventional quad-rotor and AirEZ

The AirEZ system is a multi-redundant system with safety measures built into

every logistics node. The avionics suite onboard the AirEZ vehicle features multi-

ple power loss and sensors capability loss failure mode mitigation strategies built

in to safely guide the vehicle away from high-risk scenarios. Furthermore, the ve-

hicle design is such that in the case of battery/motor failure, the rotors can either

autorotate to the ground or safely operate in an one-motor inoperative condition.

If however, a system level failure occurs, an inbuilt parachute system can guide

the vehicle safely to the ground.

Some relevant system specifications are shown in Table 7.1 in a comparison be-

tween the larger AirEZ vehicle and the quad-rotor biplane MAV.

Table 7.1: Design specifications for AirEZ vehicle and quad-rotor biplane
MAV

AirEZ vehicle Quad-rotor biplane
Rotor diameter 35.4” 6.0”

Wing span 78.7” 15.0”
Wing chord 16.4” 6.3”
Max speed 87.5 kts 21.4 kts

Gross weight 38.4 lbs 0.5 lbs
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7.2 Scaling Objective

The following sections make use of the data presented in Chapter 4 which has

already proven the feasibility of the small quad-rotor biplane vehicle. The data is

used to corroborate the claims made in the AHS Graduate Student Design Report,

mentioned in Section 7.1 and to validate the proposed design, the AirEZ vehicle

[47]. The report states that the AirEZ vehicle, a large-scale quad-rotor biplane,

can take off and land vertically, transition between vertical and horizontal flight,

and fly at rapid forward speeds. In order for the small scale vehicle data to be

used in this study, a relationship between the two quad-rotors is defined via scaling.

The data for the 0.5 lb vehicle is non-dimensionalized and then subsequently scaled

to provide operating variables for the proposed full-scale vehicle in different flight

modes. This scaled data proves that the large-scale quad-rotor can maintain steady

level flight along its entire delivery mission profile, while staying within installed

power constraints.

7.3 Pre-Test Predictions

Utilizing the aforementioned studies, this scaling validation substantiates claims

made in the AHS Student Design Report that state a quad-rotor biplane is capable

of delivering packages through a defined mission profile. As previously mentioned,

the validation is conducted through data scaling which is outlined below.
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7.3.1 Scaling Analysis and Predictions

In order to complete the scaling desired, the non-dimensionalized data is applied

to the AirEZ vehicle dimensions. Once completed, the data yields trim flight

conditions for all flight angles which prove that the AirEZ vehicle is capable of

completing its specified mission profile. Dynamic scaling is used to apply the non-

dimensionalized data to the final vehicle dimensions, [48]. This scaling technique

has been used to explore the effects of rotor size on vehicle performance charac-

teristics and has been applied to vehicles which are comparably sized with the

proposed delivery vehicle. This technique provides a realistic baseline with which

to compare the scaled data. It is predicted that these two scaling techniques proves

that the full scale vehicle is capable of flight in any required regime.

7.3.2 Data Scaling

The studies conducted in Chapter 4 provided over 3,000 unique, raw test cases for

the wing and wing-propeller systems which required calibration beforehand as well

as tare value calculations, scaling, and analysis. As mentioned earlier in Chapter 4,

these processes were repeated for a range of wind speeds, shaft angles, and RPMs.

Upon completion of all test cases, data was reduced and scaled. All raw thrust,

lift, and torque measurements were reduced to non-dimensionalized coefficients,

scaled, and fit to polynomial best-fit curves. The scaling conducted was done

in accordance with Refs. [48] and [49]. According to Mettler and Consdale, non-

dimensional force coefficients do not change based on vehicle scaling. For example,

while Reynolds number effects ignored, a CT calculated from a case during small-

scale MAV wind tunnel tests would be the same CT for a corresponding case of

the full-scale /AirEZ vehicle. This allows for simple scaling to new cases through
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size and speed ratios. Wolowicz, et al. [50] state that proper aircraft speed scaling

is dependent on the ratio between the wing span length of the original and scaled

models, n, for incompressible flow. The wing span ratio is defined and utilized to

determine scaled vehicle flight speed below in Eqs. 7.1 and 7.2:

n =
Spanscaled

Spanmodel

=
78.7”

22”
= 3.57 (7.1)

Vscaled = Vmodeln (7.2)

Since the quad-rotor biplane testing was conducted at wind speeds up to 32 ft/s,

Eq. 7.2 shows that the upscaled quad-rotor biplane vehicle data would run up to

114 ft/s. The rotor scaling factor is defined as [49]:

λ =
Rmodel

Rscaled

(7.3)

This scaling factor, λ= .168 , is used to define new forces, such as axial rotor thrust,

which can be broken down to lift and thrust based on α as shown earlier. Vehicle

rotor forces are dependent upon a factor of λ3 and therefore scale accordingly [49].

Utilizing non-dimensionalized force coefficients with scaling factors for the rotor

provide new force values for a full-scale AirEZ vehicle like so:

Fscaled =
1
2
ρCFπR

2
model(ΩRmodel)

2

λ3
=
Fmeasured

λ3
(7.4)

Combining raw data with these scaling factors results in test and trim data for

a quad-rotor biplane on the scale of the AirEZ vehicle and the following section

details how this data is utilized.
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7.3.3 Test Case Example

Upon scaling, all data cases were fit to best-fit polynomial curves and analyzed

to extract steady, level flight trim cases. For example, Figs. 7.6(a) and 7.6(b)

show this process for the cases of α = 6o. In these plots, each blue line represents

a best-fit curve for a different wind speed. The roots of the plot in Fig. 7.6(a)

(highlighted in black) show the RPM values where the forward thrust is equal to

0. These roots are then plotted in Fig. 7.7(a) against their respective wind speeds.

Each case plotted in Fig. 7.7(a) is then used to plot Fig. 7.7(b). This figure shows

the lift generated at these cases with 25% of the vehicle weight subtracted. When

the line in Fig. 7.7(b) crosses 0, this represents a case of steady, level flight, to

be used in trim analysis. For instance, at 6o shaft tilt, to generate zero net thrust

and enough lift to carry its own weight, the upscaled quad-rotor biplane would

need to fly at 27.2 kts and have a proprotor RPM equal to 2350. Figure 7.8 shows

an example trim analysis as applied to the vehicle system; with and without body

drag as well as with and without wing lift.

(a) Thrust curves for different airspeeds (b) Lift curves for different airspeeds

Figure 7.6: Polynomial curve fits of test data
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(a) RPMs where the net thrust is 0 (b) Net lift values where the net thrust is 0

Figure 7.7: Data extraction for trim condition

Figure 7.8: Trim analysis

7.3.4 Results

The process detailed in the previous subsection is completed for all pitch angles,

ranging from 0o to 90o. This provides a trim case for every shaft angle from which,

such variables as wind speed, rotor RPM, and even rotor power required can be

extracted. Figures 7.9(a) and 7.9(b) show curves for speed and RPM versus shaft

angle, α. It can be noted that these curves very closely match the trends presented

in Chapter 4. Figure 7.9(a) shows that, as expected, the vehicle slows as it pitches

up from α = 0o to α = 90o and Fig. 7.9(b) shows a trend very similar to that
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shown in the corresponding plots in Figs. 4.18 and 4.19.

(a) Forward flight speed versus shaft angle (b) Required rotor RPM versus shaft angle

Figure 7.9: Trim analyses for scaled quad-rotor biplane MAV

Figure 7.10 shows a comparison of power curves between the scaled model data and

the actual AirEZ vehicle. It can be seen that although the magnitudes are slightly

different, the curves’ trends are very similar. The magnitude differences can be

attributed to the differences in vehicle systems. The AirEZ vehicle, as detailed in

the design report, has a very large representative flat plate area, especially in the

hover and edgewise flight configurations. This contributes drastically to overall

vehicle drag and low speed, high α forward flight power requirements. The scaled

quad-rotor biplane has the same body shape as shown in Fig. 2.1 and does not

include the large fuselage for storing packages, which would allow for the scaled

MAV to utilize less power in these flight regimes. It is also important to note that

the rotors utilized in both cases are very different in design. The AirEZ vehicle’s

proprotor and motor systems were designed with greater emphasis on propeller

and cruise efficiency, leading to a slightly degraded performance in low speed

flight regimes. The vehicle represented by the curve named “Test Data” utilizes

an upscaled rotor with the same geometry as the GWS 6x5 SlowFlyer propeller.

The AirEZ vehicle utilizes a specially designed variable pitch rotor. This allows

the AirEZ vehicle to travel rapid forward flight speeds efficiently, which explains
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the more steep increase in power required for the scaled test data. The AirEZ

rotor design is fully explained in the report [47] and is not detailed in this thesis.

However, it is important to note that via the simple scaling done, the magnitudes

of the power required curves are still similar and of the same order of magnitude.

Both curves have a minimum power required per rotor of approximately 90 W

and a maximum of about 500 W. The power curves both show a peak during wing

stall as well. This helps to validate the claims made about power required for the

AirEZ vehicle in the design report.

Figure 7.10: Power curve comparison for scaled MAV and the AirEZ vehicle

7.3.5 Scaled AirEZ Vehicle

Recently, at the University of Maryland, a scaled-down version of the AirEZ ve-

hicle was designed and constructed. Figure 7.11(a) shows the the AirEZ-Micro

vehicle which weighs 0.67 lbs. The AirEZ-Micro is a 1/5th scaled vehicle. The

vehicle has a wing span of 1.36 ft and a length of 1.31 ft. As was noted in the

previous section, a major reason for the discrepancies in power curves between the

test data and the AirEZ vehicle is lack of similar fuselage. However, this problem

has been mitigated by the scale model. The AirEZ-Micro vehicle has a relative
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flat plate area which is far more commensurate with the full-scale AirEZ vehicle.

This allows for more direct scaling of power values at different flight speeds. A

more detailed breakdown of the vehicle can be seen in Fig. 7.11(b).

(a) The AirEZ-Micro vehicle

Removable 
nose cone

ELKA-R 
board

Counter-rotating 
proprotors

Bay door

Biplane 
wings

(b) Vehicle component breakdown

Figure 7.11: AirEZ-Micro

7.3.6 FlightTesting

Upon completion of vehicle construction and ELKA-R integration (Chapter 5),

flight testing was conducted. Figure 7.12 shows the AirEZ-Micro demonstrating

stable hover. Further flight testing was conducted outdoors to demonstrate tran-

sition and high pitch attitude flight in gusty environments. These tests can be

seen in Fig. 7.13. Additional flight tests will be conducted in the future. How-

ever, the initial tests clearly demonstrate the scalability of the AirEZ design, thus

enhancing its versatility.

7.4 Conclusions

Overall, the scaled data showed close matching to the vehicle trends presented in

Chapter 4 and the design report for the AirEZ vehicle [47]. This helps to validate

109



Chapter 7. Case Study and Scalability Analysis

t = 0 s t = 4 s t = 8 s t = 15 s

Figure 7.12: AirEZ-Micro hover flight testing

Hover Transition to cruise High α flight Transition to hover Hover

Figure 7.13: AirEZ-Micro outdoor flight testing (https://www.youtube.
com/watch?v=p4jwYW_LV6M)

the quad-rotor biplane’s scalability and the claims made in the report which state

that the AirEZ vehicle is capable of achieving steady, level flight in all of its flight

modes; hover, transition, and forward flight. This study also corroborates the

power values calculated for the AirEZ vehicle. In the report, it was stated that

the AirEZ vehicle would require 110 W to cruise at 30 kts while the hardware

validation analysis claims a value of 190 W at this speed for a similarly scaled

quad-rotor biplane. This discrepancy can be explained by the improved variable

pitch proprotor design implemented on the AirEZ vehicle. The design changes

implemented on the AirEZ vehicle allow it to travel much more rapidly than

a scaled version of the quad-rotor biplane built and tested at the University of

Maryland, proving the advantages of such a design. The scalability of the quad-

rotor biplane was demonstrated by both the design of the AirEZ vehicle as well

as the construction and testing of the AirEZ-Micro.
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Chapter 8

Summary and Conclusions

The quad-rotor biplane MAV has redefined rotary wing aviation for small scale

vehicles. It is a fast, efficient, and simple configuration capable of both edgewise

and forward flight that requires no redundant or complicated aerodynamic control

surfaces. It combines the most desirable characteristics of fixed and rotary-wing

concepts to operate efficiently in all flight regimes. Simple RPM variation allows

for vehicle control regardless of vehicle orientation. The components and subsys-

tems are designed in a time-saving and modular fashion utilizing manufacturing

techniques that allow for ease of maintenance and repair.

8.1 Vehicle

The original proof-of-concept vehicle weighs approximately 240 grams and has two

wings, each with a span of 22” and a chord of 4”. The wings are spaced by 10”.

Since the initial vehicle design, multiple iterations have been designed and built.

A more current vehicle, weighing 220 grams, has a span of 15” with a chord length

of 6.25”, allowing for a more compact ground footprint. The vehicle also utilizes

enhanced construction that allows for increased rigidity, as well as enhanced and

more robust performance in forward flight. New motor and wing mounts as well

as vertical fins have helped lead to an improved quad-rotor biplane vehicle design.
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8.2 Parametric Studies

Multiple vehicle subsystems and parameters have been carried out to examine

their effects on performance. A study conducted to compare three high perfor-

mance, low Reynolds number airfoils revealed that the FX 63 airfoil had superior

flight characteristics and was subsequently installed on the vehicle. Differences in

performance between 3.8 and 2.4 aspect ratio wings were found to be small. Wing

spacings below 1.5c could be avoided so as not to degrade flight performance. It

was seen that placement of the propeller axis along the wing chord provided the

best performance. A boxed-wing configuration, where the wing tips are enclosed

by an aerodynamic surface, was explored, as well. The boxed-wing design con-

figuration was found to supply no aerodynamic benefits and has since been avoided.

8.3 Vehicle Aerodynamics

An in-depth study of the propeller-wing system helped to validate vehicle flight-

worthiness in hover, transition, and forward flight. A single propeller attached

to a proportionally scaled wing with a vertical force requirement of 0.6 N was

tested at various shaft angles and forward flight speeds. The performance of

the isolated propeller was initially studied at various angles of flight. The wing

was subsequently added to the system to investigate interaction effects between

the wing and propeller. Finally, operating variables such as propeller RPM and

transition angle were extracted for a given forward flight speed that resulted in

steady, level flight. Additionally the power requirements were extracted that can
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be used to improve flight speed and maximize efficiency in future designs. The

following are some specific conclusions from the study:

1. Contributions from horizontal and vertical forces produced by isolated pro-

peller are equal at 40o shaft angle and at wind speeds greater than 3 m/s.

2. Power required to produce a given total force increases significantly at low

shaft angles due to effects of increased inflow.

3. For the propeller-wing system, a higher vertical force and a lower horizontal

force is produced at a given shaft angle and wind speed when compared with

the isolated propeller.

4. Contributions from horizontal and vertical forces produced propeller-wing

system are equal at much lower shaft angles of about 12o.

5. Forward flight velocity that satisfies steady level flight increases steadily as

shaft angle decreases with a sharp increase at 0o shaft angle.

6. Required propeller RPM is close to 5000 in hover mode and up to shaft

angles of 50o. At 0o, the required RPM rises sharply to 7500.

7. The minimum power requirement during cruise is 3 times lower than the

hover power requirement. Maximum achievable velocity is about 11 m/s for

the present configuration.
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8.4 Design Improvements and Flight Tests

Flight testing showed that the quaternion-based PID feedback controller effectively

stabilized the vehicle in hover, forward flight and transition states. Numerous suc-

cessful level transition flights were obtained. A flight velocity of about 7 m/s was

attained with a shaft angle of close to 5o from horizontal. This correlated well

with predictions from the trim analysis.

Horizontal flight is a critically important flight mode for the quad-rotor biplane,

and during this flight regime, roll control was found to be insufficient. Multiple

alternative roll control techniques were designed and tested. These included a piv-

oting wing tip system, angled motor mounts and rotor shaft tilting, and a variable

collective pitch system. This study included a range of flight conditions between

hover and airplane modes. As a result of the testing, it was found that each of

the roll methods improved control authority from that of the baseline vehicle in

forward flight. However, most systems had inherent weaknesses, rendering them

undesirable for vehicle inclusion. The pivoting wing tip system provided large

magnitude roll moments as compared to the baseline control system. This system

was not chosen due to its high weight and increased power requirements during

implementation, among other reasons. The angled motor mount is the most simple

and lightweight option, which provides suitable roll moments and control author-

ity, making it an obvious choice for vehicle implementation. The variable pitch

method is the only method which simultaneously increased roll control and for-

ward flight efficiency. Further research will need to explore a lightweight variable

pitch system as the benefits of the system have been made clear.
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It was also found that utilizing a system of variable pitch proprotors with the

proven shaft tilt method would yield a vehicle with drastically enhanced roll con-

trol, as well as the ability to increase efficiency in all flight regimes. 185.6%

increase in roll moment and control authority can be achieved by combining these

two designs. A system which combines both of these roll control methods would

be preferable for a compact MAV.

8.5 Scalability and Functionality

A case study proved the utility of the quad-rotor biplane system and provided

a look into possible system of systems implementation. All in all, this vehicle

configuration has been shown to be viable through multiple designs and flight

testing processes. The AirEZ vehicle showed large scale implementation of the

quad-rotor biplane in a system of systems package delivery service. The AirEZ-

Micro, which was designed and built in-house to be a scaled model of the AirEZ

vehicle, showed the scalability of that design. Multiple variants of the quad-

rotor biplane have been designed and constructed. Every vehicle that has been

subjected to flight testing has achieved steady flight in at least one of the desired

flight modes, if not all three. This has truly helped to demonstrate the viability

and functionality of the design. Through these multiple vehicle iterations, the

quad-rotor biplane is shown to be a novel design which allows for multiple mission

profiles ranging from parcel delivery to surveillance and beyond.
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8.6 Recommendations for Future Work

The work presented in this thesis examined the design, as well as aerodynamic

and flight testing, of the quad-rotor biplane. Parametric studies examined the

performance effects of varying many design qualities, including but not limited to

wing design and spacing. Systematic aerodynamic experimentation led to a bet-

ter understanding of the aerodynamics of a low Reynolds number propeller-wing

system. Flight control algorithms and software were explained and subsequently

demonstrated through flight tests. Throughout the work, multiple variants of the

quad-rotor biplane were constructed and flown, highlighting the vehicle’s versa-

tility and dependability. However, based on the studies shown, there are several

areas in which further research needs to be performed. These improvements will

complete or at least enhance the knowledge gained by the present study.

As mentioned earlier, this thesis examined interaction forces between wings and

propellers. Multiple wing-propeller system factors and their effects on vehicle

performance were studied, including axis offset as well as type of airfoil and pro-

peller. It was found that interaction effects lead to an increase in vertical force

generation and a decrease in horizontal force. However, wing-propeller interac-

tion at low Reynolds number is a complicated and poorly understood phenomena.

Further investigation can be conducted regarding careful analysis of the effective

angle of attack before and after the propeller interaction, wing stall, and other

propeller-wing system factors.

It was seen in Chapter 5 that the quad-rotor biplane experiences a slight alti-

tude gain when transitioning from forward flight to hover. This is a result of the
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pitch-up command, which leads to an increase in vehicle lift. Furthermore, im-

provements must be investigated regarding vehicle transition out of hover. The

inherent altitude gains associated with the transition can lead to vehicle crashes

when in enclosed and crowded locations which must be avoided. An in-depth

study should be conducted regarding vehicle dynamics between hover and forward

flight with the goal of more efficient gain scheduling. Also, implementing sensors

to detect the state of wing lift would be valuable when used for real-time feedback

control. All of this will allow for smoother transition flight control, as well as

ideally providing enhanced gust tolerance.

The wings utilized on the quad-rotor biplane are untwisted, non-tapered, non-

staggered, and unswept. The vehicle exhibited preferable flight performance with

this basic wing setup, achieving both high maximum speeds and highly efficient

flight at lower speeds. However, multiple fixed-wing aircraft are flown featuring

wings which incorporate non-zero twist, taper, and sweep. Biplanes also typically

utilize wing staggering, placing the upper wing ahead of the lower. Future inves-

tigations can study the effects of varying these parameters on quad-rotor biplane

performance and control. These studies may prove that greater lift-to-drag ratios

can be achieved on the quad-rotor biplane, allowing for higher flight speeds and

more efficient cruise.

Much of the testing done to prove vehicle functionality and utility was conducted

through a systematic series of wind tunnel and flight tests. These tests proved

that the quad-rotor biplane can reach any desired mode of flight smoothly and

efficiently. However, more studies should be conducted on future models through

aerodynamic stability analysis before flight tests are conducted to help further

validate the designs. These validations may help to avoid crashes during flight

testing if a certain vehicle variant is not deemed flight-worthy beforehand.
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As shown in Chapter 6, a quad-rotor biplane with variable collective pitch capa-

bility can experience improved roll control, as well as heightened efficiency in all

flight regimes. Unfortunately, it was shown that the variable pitch system explored

in this thesis is too heavy to consider for vehicle implementation. Therefore, it

is imperative that a lightweight variable pitch system be developed and imple-

mented on the quad-rotor biplane vehicle. A vehicle with added variable pitch

actuators will have added control capabilities. Currently, the quad-rotor biplane

is controlled simply via the variable RPM approach. A vehicle with both variable

collective and RPM control inputs will ideally be more maneuverable, as well as

more efficient.

This study examined multiple quad-rotor biplane configurations of varying weights

and sizes, mostly of a small scale. Currently, a vehicle capable of carrying a 1 lb

payload is under construction at the Alfred Gessow Rotorcraft Center. The vehicle

has a wing span of 36”, a rotor diameter of 15.2”, and a gross takeoff weight of 8

lbs. Upon completion, this will help, once again, to demonstrate the scalability of

the vehicle concept. In the future, a larger scale quad-rotor biplane, comparable to

the AirEZ vehicle and its 5 lb payload outlined in Chapter 7, should be designed,

built, and tested.

A likely use of the quad-rotor biplane is rapid payload delivery. However, up to this

point, no investigations have been made into the payload carrying capabilities of

the constructed vehicle. Payload integration should be explored and implemented

to improve vehicle usability and utility. A hub allowing for payload attachment

must be designed and integrated into the vehicle. Studies must then be conducted

to gauge payload fraction capabilities and examine ways to increase it, if necessary.
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