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SUMMARY 
 

Loss of Control (LOC) accidents are a major threat for aviation, and contribute 

the highest risk for fatalities in all aviation accidents. The major contributor to LOC 

accidents is pilot spatial disorientation (SD), which accounts for roughly 32% of all LOC 

accidents. A pilot experiences SD during flight when the pilot’s expectation of the 

aircraft’s state deviates from reality. This deviation results from a number of underlying 

mechanisms, such as distraction, failure to monitor flight instruments, and vestibular 

illusions. Previous researchers have developed computational models to understand those 

mechanisms. However, these models are limited in scope as they do not model the pilot’s 

knowledge of the aircraft dynamics. This research proposes a novel model to predict the 

best-possible-pilot-expectation of the aircraft state given vestibular and visual cues. The 

proposed model uses a Model-Based Observer (MBO) as the infrastructure needed to 

establish an “expert” pilot. Expert pilots are known to form an internal model of the 

operated system through training and experience, which allows the expert to generate 

better internal expectations of the system states. Pilots’ internal expectations are 

enhanced by the presence of information fed through the pilots’ sensory systems. Thus, 

the proposed model integrates pilot’s knowledge of the system dynamics (i.e. an aircraft 

model) with a continuous vestibular sensory model and a discrete visual-sampling 

sensory model. The computational model serves to investigate the underlying 

mechanisms of SD during flight and provide a quantitative analysis tool to support flight 

deck and countermeasure designs. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Motivation 
 
 Loss of Control (LOC) accidents are still the most significant threat to both 

commercial air transport and general aviation, and are the type of accidents with the 

highest risk for fatalities. For commercial jet transports, it is estimated that about 0.3 fatal 

LOC accidents occur per million departures [1]. There are a number of contributors to 

LOC accidents, but spatial disorientation makes up 32% of all LOC accidents, making it 

the primary contributing factor to the human-related aircraft incidents/accidents [2-4]. 

(Figure 1) 

 Spatial orientation is defined as the ability to perceive motion and three-

dimensional position and attitude in relation to the surrounding environment. Conversely, 

spatial disorientation (SD) occurs when a pilot fails to properly sense the aircraft’s 

motion, position or attitude. Unfortunately, the possibility for a pilot to experience SD 

during his/her career is on the order of 90-100 percent [5-7]. If the SD is not recognized 

quickly, it can lead to LOC. 
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Figure 1: LOC as a primary cause of fatalities in aviation [1-2] 

 
Humans primarily sense their orientation through two sensory systems: the visual 

and the vestibular system [27]. The vestibular system is located in the inner ear and 

consists of two parts: the otoliths detect linear motion and the Semi-Circular Canals 

(SCC) detect angular motion. The human vestibular system evolved in a 1-g, low speed 

environment, which makes it capable of perceiving motions during actions such as 

walking, sitting etc. However, the vestibular system is easy to trick in flight.  

The limits of the vestibular system can be compensated for by visual reference. 

However, out-of-the-window visual reference might not always be available to the pilot 

(night-time flight, foggy weather, in the clouds). According to a 1954 study, the average 

life expectancy of a non-instrument-rated pilot who flies into clouds or instrument 

meteorological conditions (IMC) is 178 seconds from the onset of LOC due to SD [8]. 

This demands proper visual scans of the flight instruments. 

	  

	  

	  	  	  	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	   
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Additionally, knowledge of the aircraft dynamics plays a substantial role in pilot’s 

expectation of the aircraft states. To make more realistic quantitative assessments about 

state of the aircraft, sensory system information should be integrated with the pilot’s 

knowledge and experience of the dynamics of the aircraft (assuming that the pilot has 

enough knowledge and experience through his/her training and previous flight-hours). 

For these purposes, a Model-Based Observer (MBO) can be developed to establish the 

infrastructure needed to actively integrate the information coming from the major sensory 

systems (i.e., vestibular and visual systems) with the pilot’s internal expectations of the 

state of the aircraft. Out of this model, an expert pilot’s best possible expectation can be 

estimated. 

Many studies have sought to find feasible countermeasures to SD-related 

accidents and incidents [9]. There is a wide range of proposed SD countermeasures 

including training programs, auditory and tactile alerting systems, and flight deck 

instrument improvements. Most of these countermeasures are designed to attract the 

pilot’s attention to flight deck displays instead of relying on his/her vestibular sensing. 

However, current quantitative tools are insufficient to assess a flight deck display design 

[10]. A quantitative assessment should be able to predict the pilot’s potential awareness 

and expectation of energy-state and attitude during the course of a flight. Such 

predictions can then serve to identify critical information requirements for the pilot to 

form an accurate expectation of the aircraft states.  

1.2 Objectives 
 

The goal of this thesis work is to develop a computational model to predict a 

pilot’s best possible expectation of aircraft state given vestibular and visual cues, both to 

investigate the underlying mechanisms of spatial disorientation (SD) during flight and to 

provide a quantitative analysis tool for flight deck design as a countermeasure to SD. 

This goal is supported by two objectives. The first objective is to develop a 
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computational model (using a Model-Based Observer) to predict pilot’s expectation of 

the aircraft state given vestibular and visual cues (measurements). The second objective 

is the parameterization, verification and validation of the model using previously studied 

scenarios. 

1.3 Overview of the Thesis 
	  
Chapter 2 describes the background of the problem and previous work that relates to this 

thesis. It concludes with a discussion of a need for a new model. The following chapters, 

Chapter 3 & 4, are dedicated to the objectives of the thesis: Chapter 3 explains the 

development of the model and describes the structure in-depth; Chapter 4 starts with a 

discussion on the parameterization of the model and concludes with the validation and 

verification of the proposed model based on the previous studies and empirical results 

from the literature. Finally, Chapter 5 summarizes the thesis work and lists its potential 

contributions. 
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CHAPTER 2 
 

BACKGROUND 
	  
 

This chapter discusses the previous studies relevant to this thesis work. It starts 

with a discussion of the pilot’s expectation of orientation and factors contributing to this 

expectation. This first section discusses the impact of vestibular sensors, visual sensors, 

and pilot’s knowledge of the aircraft dynamics on pilot expectation. The discussion of 

pilot knowledge reviews the structure of the Model-Based Observer (MBO), how it can 

be used as an expert pilot to predict the best possible pilot expectation, and various 

former models that have been developed using this approach.  

The second section continues with discussion of sensory system models needed 

for the proposed model together as available in the existing literature. This section starts 

with the background section, describing the chronological development of vestibular 

models in the literature. The following section discusses the sensory dynamics of those 

models to identify most relevant model to be used in this thesis. 

Finally, this chapter concludes with a discussion on the current orientation models 

to highlight the need for a novel model. 

2.1 Contributions to Pilot Expectation 
 

Human orientation sensing happens primarily through two sensory systems: the 

visual and the vestibular system. A third contributor to orientation sensation is the 

proprioceptive system, which provides information about the relative motion and 

orientation of the body parts through special sense organs (pressure receptors) in the 

muscles, tendons, and joints [28]. Both the otolith sensors (part of the vestibular system) 

and the proprioceptive pressure receptors detect the inertial forces due to linear 

acceleration. They can be considered as redundant sensors that increase the accuracy of 
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the orientation sensation. However, forces experienced during flight maneuvers be 

perceived erroneously by these pressure receptors alone [12]. Therefore, this thesis work 

utilizes the primary orientation sensors, namely the vestibular and the visual sensory 

systems.  

The human vestibular system is capable of proper sensing during natural motions 

like walking, sitting, running, etc. However, it can cause illusions in flight when the body 

experiences maneuvers such as slow rolls or sustained forward accelerations. Therefore, 

visual sampling of the outside view or the flight instruments is a vital correction to 

vestibular sensing. Pilot knowledge of the aircraft dynamics can also contribute to 

expectation. The pilot’s expertise allows him/her to project the orientation of the aircraft 

based on the control inputs applied to the aircraft. Thus, the following three sections talk 

about these three contributions to pilot expectation: vestibular, visual, and pilot 

knowledge of the aircraft dynamics. 

2.1.1 Vestibular Inputs 
 

Located in the inner ear, the vestibular system contributes to sensation of balance. 

It is mainly responsible for self-motion perception and is a building block of the postural 

control mechanism [29]. The vestibular system’s perception of linear and angular 

acceleration provides the continuous, unconscious sensation of spatial orientation [16]. Its 

two components help perceive both angular and linear motion. The first component, the 

semi-circular canal (SCC), is responsible for angular motion perception. The second 

component, otoliths, is responsible for linear motion perception and provides Gravito-

Inertial Force (GIF) measurements (specific force).  

Most vestibular models include semi-circular canal (SCC) dynamics for angular 

motion sensation and the otolith dynamics to sense the gravito-inertial forces (GIF) [12-

14 & 18-22]. They provide the specific outputs shown in Figure 2. The SCC is modeled 

as a torsion pendulum with some additional rate sensitivity and adaptation. It acts as an 



	  7	  

angular rate sensor that takes the angular velocity components as input and outputs 

afferent firing rates that represents measures of angular velocity. However, at high and 

low frequencies afferent firing rate response diverges from angular velocity. This issue 

was resolved by augmenting the basic torsion model with two components: Phase lead at 

low frequencies, and a lead component to reproduce the high-frequency deviations [30]. 

The otoliths are modeled as a mechanical accelerometer with some additional rate 

sensitivity. They take GIF (specific force) as an input and output the afferent firing rates 

corresponding to perception of GIF. Detailed discussion of the vestibular sensor 

dynamics can be found in the following section (2.2 The Vestibular System Models). 

 

 
Figure 2: Vestibular system outputs 

 
The vestibular system cannot sense the motion/orientation that is below a 

threshold value on angular velocity. Such sub-threshold maneuvers require special 

consideration in models of spatial disorientation, especially in commercial aviation, 

where some autopilots intentionally perform sub-threshold maneuvers for the sake of 

passenger comfort. 

Many empirical studies have examined these threshold values. The general results 

are summarized by Mulder’s Law, which defines the angular perception threshold for 

transient accelerations (<10s). According to Mulder’s Law, the product of the angular 

acceleration magnitude and the maneuver duration should be at least 2.5 deg/s for the 

SCC to sense the maneuver.  For sustained turns, this threshold value drops down to 0.5 

deg/s [31]. The otolith’s linear motion perception thresholds have been studied by 

Vestibular	  System 
SCC Otolith 

p
q
r
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Guedry. Guedry’s empirical studies showed that the mean roll and pitch axes threshold is 

0.06 m/s2. These threshold values allow maneuvers to be categorized as either above or 

sub-threshold [12]. 

Especially in the aviation context, the vestibular system is prone to providing 

false inputs and, thus, causing illusions in the absence of a proper visual scanning. 

Prolonged maneuvers, constantly changing accelerations, and a wide range of maneuver 

rates can cause illusions and, thus, misinterpretation of the actual orientation [12-21]. The 

most common vestibular illusions include (1) somatogyral illusion caused by the 

limitations of the SCC, and (2) somatogravic illusions caused by the limitation of the 

otolith as described in the following two sub-sections [32].  

2.1.1.1 Somatogyral Illusions 
 

Somatogyral illusions occur due to the sensory dynamics and limitations of the 

angular rate sensors, namely the SCC. Their threshold values inhibit the sensation of sub-

threshold motions. Additionally, SCC afferent signals tend to die out in a sustained 

maneuver. A common example of a somatogyral illusion is called the “leans”, in which a 

sub-threshold bank maneuver is followed by an above-threshold banking maneuver 

(Figure 3). Experiencing consecutive sub-threshold and above-threshold maneuvers 

causes incoherent perception of the orientation if not corrected by visual scans.  
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Figure 3: Somatogyral Illusion (Leans) – common example of pilot disorientation due to 

SCC thresholds [12] 
 

Some previous orientation models have been able to capture this illusion. For 

example, Borah et al.’s model captures the SCC response that dies out in case of a 

sustained stimulus (Figure 4).  
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Figure 4: Borah et al.’s orientation model response to a step angular velocity stimulus. 

The SCC model output is highlighted [18] 
 

2.1.1.2 Somatogravic Illusions 
 

One of the most common somatogravic illusions is the “pitch-up” sensation that 

occurs in the case of a linear forward acceleration (Figure 5). In the extreme example of a 

catapult take-off from an aircraft carrier, the pilot experiences an approximately 4g pulse 

linear forward acceleration that lasts 2-3 seconds, yet the pilot senses a persistent 

pitching-up illusion for about 30 seconds afterwards [33]. In commercial air transport, 

nighttime take-offs and go-arounds are considered to be critical in terms of somatogravic 

illusions [12]. Thus, the somatogravic illusion is considered to be a significant contributor 

to the spatial disorientation accidents. It was reported that between 1979 and 1993, 35 

accidents in Australia occurred at night during the take-off phase [7].  
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Figure 5: False sensation of pitch during linear acceleration/deceleration [12] 

 

There are currently some computational models that capture the somatogravic 

illusion. For instance, Pommellet’s orientation model captures the somatogravic illusion 

during a 0.2g step acceleration maneuver, in which the pilot sensation deviates from zero 

pitch angle to a positive pitch angle value (Figure 6).  
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Figure 6: Pommellet’s orientation model response. Pitch sensation during a step linear 

acceleration of 0.2g maneuver. (i.e. Illusturation of Somatogravic Illusion) [13] 
 

2.1.2 Visual Inputs 
 

For a pilot, scanning the flight instruments is one of the most accurate and robust 

ways of perceiving the motion, position and attitude of the aircraft during the course of a 

flight. Unlike the vestibular measurements, visual scanning measurements occur at 

“discrete” times.  

The impact of visual inputs on pilot expectation has been partly modeled. 

Newman extended Merfeld’s observer model by adding visual cues [21]. Both Newman’s 

and Borah’s model allow for visual cues as the information coming from outside visual 

references: however, neither makes use of a visual model that samples the flight 

instruments.  

Kleinman et al. employed a continuous optimal scanning model in which the pilot 

monitors two flight instruments. Those instruments display the information 

corresponding to a single-axis control task (longitudinal position of a hovering VTOL 
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aircraft). However, their Optimal Control Model does not include a vestibular model and 

a discrete-time visual scan.  

2.1.3 Knowledge of Aircraft Dynamics 
 

“Model-based”, by definition, describes an observer with an internal plant model 

[11]. A Model-Based Observer (MBO) can integrate both the plant dynamics and the 

sensory inputs, thus producing and propagating estimates of the pilot’s state expectations. 

Observers, in control theory, include a real-time simulation of the plant dynamics given 

knowledge of its control inputs (Figure 7). This internal plant model of the system (in this 

case an internal plant model of an aircraft) is formed by training and learning through 

experiences [12,13].  

The actual plant dynamics (label 1 in Fig. 7) and the observer’s estimate of the 

state (xest) from the internal plant model (label 3 in Fig. 7) are generated in parallel. The 

discrepancy between measures of the actual plant state, labeled 2, and the observer 

estimations is called the residual (error), labeled 4. These residuals, weighted by an 

Observer Gain (K), are eventually used to correct the state estimates. Pilot sensory inputs 

construct the measurement space in this case.  
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Figure 7: Basic MBO structure 

 
 

This application of an MBO to model pilot’s best possible expectation builds on 

an earlier work by Kleinman et al. who verified that the human manual control behavior 

characteristics of the human operator are near optimal [14]. Their Optimal Control Model 

(OCM) used several components to predict task performance in a manual-tracking task, 

including an MBO as well as a model of manual control. They applied the OCM to 

analyze the manual control of longitudinal position of a hovering VTOL aircraft and 

empirically verified that it predicted the outcome well [15]. According to Kleinman’s 

studies, residuals weighted with the optimal Observer Gains would represent the pilot’s 

best possible state expectations of the aircraft. However, Kleinman’s work did not 

explicitly integrate different models of visual and vestibular sensing, and thus did not 

reach this thesis’s ultimate objective of predicting mechanisms of potential SD. 

⌃ 

⌃ ⌃ 
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2.2 The Vestibular System Models 
 

Many models have been propsed of the vestibular system. Some studies focus 

only on the sensors themselves (SCC and otolith) and try to investigate the dynamics of 

relationship between motion and resulting afferent firing rates [30, 34-37]. Other studies 

integrate these sensory dynamics into a mutli-sensory model for orientation modeling 

purposes [18, 35, 13, 39, 38, 10]. 

 Many of models of the SCC dynamics are based on mathematical models of a 

torsion-pendulum. This stems from Steinhausen’s observation of the physiological 

mechanism underlying the SCC’s measurement of angular acceleration and velocity: the 

deflection of the hair cells caused by the fluid motion in the SCC due to angular 

accelerations. In this sense, the internal fluid has an effective moment of inertia. Damping 

is caused by the viscous forces related to the flow of this fluid through the canals, and the 

spring-like structure of the hair cells cause a mechanical resistance in case of an angular 

motion. 

 In early attempts to find the proper parameters for this second-order SCC model, 

researchers relied on empirical data [50]. Young improved the simple torsion-pendulum 

model in 1968 with the augmentation of a new “adaptation” term that attempts to 

describe the SCC’s decreased sensitivity to a continuing stimulus [19, 41]. In the mean 

time, there was no intensive research on modeling the otolith. Young proposed a simple 

first order equation with acceleration and jerk terms [19]. Thus, the SCC modeling efforts 

are considered to be quite accurate based on the empirical studies, while the otolith 

models are not as validated [13]. 

Fernandez & Goldberg studied both the SCC and the otolith extensively in 1971 

and 1976, respectively [30, 37]. They conducted the most thorough study of the 

vestibular afferents firing rates in mammals. They ran a series of experiments using 

squirrel monkeys as subjects and proposed new mathematical models for both sensors. 

According to the frequency domain analysis conducted by Frenandez & Goldberg, the 
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behavior of the SCC was deviating from the torsion-pendulum model at both high and 

low frequencies. In other words, the previous SCC models were reliable only within a 

certain frequency range and within that range the measures are proportional to the 

angular velocity. Out of this frequency range, sensor readings are considered inaccurate.  

 This ambiguous behavior of the SCC sensors is mentioned in most of the related 

literature work. Here are two different quotes from two different fields of studies: 

 
“Neural firing in the vestibular nerve is proportional to head velocity over the 
range of frequencies in which the head commonly moves (0.5-7 Hz). In 
engineering terms, the canals are ‘rate sensors’.” 

    Anatomy and Physiology of the Normal Vestibular System [40] 
 

“At a frequency range between 0.1 and 5.0 Hz, which corresponds to that 
normally generated during natural movements such as locomotion, stepping, and 
jumping, the activity of the first-order afferent signals from the semicircular 
canals is close to being in phase with velocity (Melvill Jones & Milsum 1965).” 
      Spatial Orientation in Aviation [12] 

Fernandez & Goldberg, in 1971, addressed this issue by adding two terms to the 

classic torsion-pendulum model: one for low, another for high frequency deviations. [37] 

Therefore, they represented the SCC dynamics in the following form:  

𝑯𝑺𝑪𝑪 𝒔 =   𝑯𝑻𝑷 𝒔 .𝑯𝑨 𝒔 .𝑯𝑳(𝒔)	  	   	   	   	  	  	  	  	  Eq.	  1 

where: 

𝑯𝑻𝑷 𝒔   =   𝟏 [(𝟏+ 𝟏𝒔)(𝟏+ 𝟐𝒔)]	  	   	   	  	  	  	  	  	  	  	  Eq.	  2 

(TF of torsion pendulum) 
 

𝑯𝑨 𝒔   =    𝑨𝒔 (𝟏+ 𝑨𝒔)	  	   	   	   	   Eq.	  3 

(Phase lead at low frequencies, lead to gain attenuation at very low frequencies) 

𝑯𝑳 𝒔   =    (𝟏+ 𝑳𝒔)	  	  	   	   	   	  	  	  	  	  	  	  	  	  	  Eq.	  4 

(Lead component and reproduces the high-frequency deviations from the torsion-
pendulum model) 

 

τ τ

τ τ

τ
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By merging the mathematical model of the torsion pendulum (HTP) with the phase lead 

(HA) and the lead component term (HL) results in the transfer function below. The four 

time constants (𝜏!, 𝜏!, 𝜏!, 𝜏!) are estimated based on experimental measurements gathered 

from squirrel monkeys. This defines the SCC afferent rate with respect to the angular 

acceleration stimulus.  

𝑺𝑪𝑪  𝒂𝒇𝒇𝒆𝒓𝒆𝒏𝒕
𝑨𝒏𝒈𝒖𝒍𝒂𝒓  𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏

=    𝟖𝟎𝒔  (𝟏!𝟎.𝟎𝟒𝟗𝒔)
𝟏!𝟖𝟎𝒔   (𝟏!𝟓.𝟕𝒔)(𝟏!𝟎.𝟎𝟎𝟑𝟑𝒔)

        Eq.	  5	  

	  
At low frequencies, the discrepancy is mainly due to the phase lag. It is enhanced 

by addition of a phase lead component, which lead to gain attenuation at very low 

frequencies. At the end, they concluded by finding out a “reasonably good” agreement 

between the transfer and the experimental data in high and low frequency ranges (Figure 

8). 

 

 
 

Figure 8: High and Low Frequency deviations of the torsion pendulum from the 
experimental data, and the enhancement terms augmented to the torsion pendulum model  

[37] 
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 The SCC model developed by Fernandez & Goldberg is generally considered to be 

an accurate representation of the SCC sensor dynamics. Thus, many of the current studies 

are still based on this model. Ormsby, in 1974, developed and verified an SCC model 

using Fernandez & Goldberg’s experimental results. For the SCC model, Ormsby 

proposed adding two terms to the torsion-pendulum model. One is for adaptation 

dynamics and the other one is for rate sensitivity, which is needed for abrupt changes in 

the angular velocity.  In the same study, Ormsby proposed an otolith model as well. 

However, given the lack of definitive experimental data available at that time for otolith, 

the otolith sensor is modeled as a mass immersed in a fluid and restrained by the 

mechanical restraints such as viscous forces [36].  

 Merfeld modified and simplified the SCC model that has been deduced by 

Fernandez & Goldberg in 1971. Unlike Fernandez & Goldberg’s SCC, which uses 

angular acceleration as the input, Merfeld’s model uses angular velocity, and applies the 

SCC in a mutli-dimensional sensory conflict model. The otolith transfer function is 

approximated as unity. Merfeld’s sensor dynamics are still being used in many of the 

mutli-sensory orientation modeling studies.  

𝑨𝒇𝒇𝒆𝒓𝒆𝒏𝒕  𝒇𝒊𝒓𝒊𝒏𝒈  𝒓𝒂𝒕𝒆
𝑨𝒏𝒈𝒖𝒍𝒂𝒓  𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

  =    𝝉𝒍  𝝉𝒂  𝒔𝟐

𝝉𝒍  𝒔!𝟏   (𝝉𝒂  𝒔!𝟏)
         Eq.	  6 

 

The SCC in Equation 6 is modeled by Merfeld as a 2nd order high-pass filters with 

a fluid-hair cell interaction time constant τl of 5.7 seconds and a neural adaptation time 

constant τa of 80 seconds. 

Pommellet developed a sub-optimal orientation model, which is another mutli-

sensory model that comprises the vestibular sensors, and used Merfled’s SCC system 

dynamics [13, 35]. One of the time constants is slightly different in Pommellet’s 

implementation, which can be considered as a further simplification: 
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𝑨𝒇𝒇𝒆𝒓𝒆𝒏𝒕  𝒇𝒊𝒓𝒊𝒏𝒈  𝒓𝒂𝒕𝒆
𝑨𝒏𝒈𝒖𝒍𝒂𝒓  𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

  =    𝟖𝟎.𝟔  𝒔𝟐

𝟖𝟎𝒔!𝟏   (𝟔𝒔!𝟏)
         Eq.	  7 

For the otolith model: 

𝑨𝒇𝒇𝒆𝒓𝒆𝒏𝒕  𝒇𝒊𝒓𝒊𝒏𝒈  𝒓𝒂𝒕𝒆
𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄  𝒇𝒐𝒓𝒄𝒆

  =    𝟏
𝒔  !  𝟏𝟎𝟎   (𝒔  !  𝟎.𝟏)

         Eq.	  8	  

 

 This SCC model that is considered to be thoroughly investigated and well 

accepted in the literature, while it is still not true for the otolith models [13, 36]. Thus, the 

otolith model developed by Grant and Best is a fairly recent model [17]. These models 

have proven to work coherently in previous multi-sensory models. 

2.3 Current Orientation Models as an Application of the Vestibular Models 
and Need for a New Model 
	  
 

Vestibular system models can be integrated into bigger, multi-sensory models. 

Borah et al. developed a human spatial orientation model, in 1988, using a steady state 

Kalman Filter for their observer based model that applies body dynamics as the internal 

plant, and four sensory systems [18]. This included an SCC model that responds to 

angular accelerations based on Young, Ormbsy and Fernandez & Goldberg’s modeling 

efforts, and is primarily a heavily damped torsion pendulum with adaptation and rate 

sensitivity dynamics [19, 36, 37]. Their otolith model used is based on Young & Meiry, 

and Fernandez & Goldberg’s work, based on a mechanical accelerometer with some 

additional rate sensitivity [30-41]. 

Borah et al. models a “naïve passenger” that only comprise of internal simulation 

of body and sensor dynamics. The maneuvers that are experienced by this passenger were 

also limited to simple motions such as rotation in yaw-axis. They have included a visual 

model that is based on out-of-the-window visual references, and does not include any 

instrument scanning since there is no aircraft involved.  
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Pommellet improved Borah et al.’s model by implementing an Extended Kalman 

Filter to account for the non-linearities in the system dynamics (i.e., body dynamics). 

This added more maneuvering capabilities to the model. However, the internal plant 

dynamics used in Pommellet’s observer based model is, again, the body and sensor 

dynamics. However, Pommellet criticized Borah et al.’s model for being “quite far away 

what is believed to be acceptable values for the time constants of the different (vestibular 

system) dynamics” [13]. Thus, more recent and accepted vestibular systems are 

implemented to Pommollet’s model. As mentioned previously, this model referred to 

Merfeld’s work for the SCC model [35], Grant & Best for the otolith model [17].  

Newman et al. (2012 & 2014) developed a new orientation model, called 

Orientation Modeling System (OMS), which is an extension of Merfeld’s observer based 

orientation model [10, 38]. Newman added visual sensory information to include better 

prediction of orientation, position, and linear velocity estimates. The vestibular sensor 

dynamics used in the OMS is Merfeld’s vestibular models as the model is considered to 

be an extension of Merfeld’s work. Newman et al.’s model is aiming to investigate the 

orientation perception of the pilot in the commercial aviation context. Although the 

aircraft dynamics are not included into their observer model, their model can investigate 

orientation expectation with the maneuvers that are known to potentially trigger SD. 

As explained earlier, the MBO is part of the classic structure of the Optimal 

Control Model (OCM). The OCM is used to model and predict human manual control 

behavior, identify information requirements for manual control of aircraft, and develop 

flight control concepts such as stability augmentation [22]. The MBO, with the help of an 

optimal state estimator, produces aircraft state expectations optimally to reflect the 

“human operators near optimal response characteristics” [14].   

However, the OCM focuses specifically on manual control performance and thus, 

included “neuromotor dynamics” to simulate the response-time lags and other muscular 

system dynamics to include the manual control aspect of the OCM. Since this thesis 
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limits the focus to cases of automated control (i.e. autopilot) with no manual control, 

there is no need to incorporate manual control characteristics. 

None of these formerly developed models included an internal model of aircraft 

dynamics reflecting pilot expertise. If the mechanisms of SD are to be investigated, all of 

the major orientation perception contributors ought to be integrated. An expert pilot’s 

knowledge of the aircraft dynamics, and sensory information should be integrated to have 

a better understanding of SD mechanisms. Therefore, a model of the pilot’s best possible 

expectation of aircraft state needs to integrate sensory models (visual sampling model and 

vestibular model) with the pilot’s internal aircraft model (knowledge of the system 

dynamics). 
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CHAPTER 3 
 

OBJECTIVE 1: DEVELOPMENT OF THE MODEL 
	  
 

This thesis develops a novel computational model predicting the pilot’s best 

possible expectation of the aircraft states by applying a Model-Based Observer (MBO) to 

integrate an internal model of pilot expertise with models of visual scanning and 

vestibular sensing. The model was developed in a C++ simulation framework called 

Work Models that Compute (WMC), which has been developed by the Georgia Institute 

of Technology Cognitive Engineering Center (CEC) [23]. This simulation provides a 

high fidelity, 6-Degree-of-Freedom Boeing 747 model as the representation of the ‘true’ 

aircraft dynamics.  

The first major component described in this chapter is the MBO, which provides 

an “internal simulation” of the state estimates, and corrects these estimates with 

measurements of the aircraft states from the visual and vestibular models. This chapter 

begins with a discussion of the MBO, its structure, and how it can be used as a best-

possible pilot expectation model. The other major components of the MBO are the two 

sensory system models, which are detailed in the second and third sections of this 

chapter.  

3.1 Model-Based Observer 
 

The best-possible pilot expectation applies an “internal simulation” of the aircraft 

dynamics. The estimated state within the MBO is propagated with the help of an accurate 

linear model of the aircraft dynamics, and is corrected continuously by the vestibular 

system and at discrete intervals by the visual sampling. To optimally combine both 

continuous-time and discrete-time measures, the MBO employs a Kalman Filter closer to 

a Hybrid Extended Kalman Filter design.  
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The state vector representation of the MBO (States of Aircraft) can be listed as: 
• (X1)    Altitude 
• (X2, X3, X4)   Linear Velocity 
• (X5, X6, X7)   Angular Velocity 
• (X8, X9, X10, X11)   Attitude (Quaternion) 

 
 

Unlike the multi-sensory orientation models described in Chapter 2 (Borah and 

Pommellet [13, 18]), these states only describe the aircraft dynamics without also 

containing any internal states of the vestibular system. In the MBO, non-linear dynamics 

of the sensory dynamics are linearized around the nominal state vector to generate the 

desired measurement matrix, C.  

Figure 9 details the structure of the MBO. The observer state vector (x) contains 

the variables of the aircraft state needed to assess the pilot’s expectation of the motion as 

shown above. 
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Figure 9: The MBO - Model of Aircraft Dynamics and Pilot’s Best Possible Expectations 
 

The MBO is tightly coupled to the aircraft simulation that describes the dynamics 

of the system. The straight signal paths illustrate continuous-time signals while the 

dashed lines illustrate discrete-time signals. The MBO assumes a model of the aircraft 

dynamics as shown in label (1) propagates the aircraft state vector (x) with additive 

process noise (w), weighted by (G), that has zero mean and a covariance of (Q). The 

measured or observed state variables, label (2), account for the measurement errors (v). 

The continuous path carries the continuous signals coming from the vestibular system 

measurements (yc). In the continuous case, measurement error is the vestibular sensors 

error denoted by (vc). The discrete path carries the discrete signals due to the discrete 

visual measurements (yd). In the discrete case, measurement error comprises the errors 

due to aircraft’s sensor error, errors due to the design of the flight instrument, and errors 
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due to pilot’s perception of the scanned instrument. Further discussion on measurement 

errors can be found in the next chapter (Chapter 4: Parameterization and 

Verification/Validation). Label (3) is the “internal simulation” of the aircraft dynamics 

maintained by the pilot (xest) as simulated with a linearized model of the aircraft.  The 

measurement values that would be expected from xest, indicated as yest, are compared 

with the actual measurements y, and the discrepancy, shown in label (4), is weighted by 

the Observer gain to correct xest.  

To initialize the filter, the initial state estimates (xest,0) are set equal to the actual 

aircraft state. This assumption also sets the initial value of the error-covariance (P0) be 

zero.  

The error-covariance is defined as Eq. 9: 

         Eq.	  9 
 

P is propagated by integrating the continuous Algebraic Riccati Equation (ARE) 

through time (Eq. 10). The continuous ARE assumes the continuous vestibular inputs are 

weighted by the Kalman gain Kc. In case of a discrete measurement, P is updated by 

using the discrete ARE equation with the Kalman gain Kd (Eq. 11).  

 

     Eq.	  10 

    Eq.	  11 
 

The Kalman gains for both continuous-time and discrete-time (Kc & Kd) are set to 

minimize the trace of P, i.e. minimize the discrepancy between xest and x as given in Eqs. 

12. 

     Eq.	  12 
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The pilot's best-possible expectation of the aircraft state, xest, is propagated using 

Eq. 13: 

             Eq.	  13 
 

Discrete visual measures are used to correct xest using Eq. 14: 

           Eq.	  14 
 

To correct the internal expectations of the aircraft state, the visual and vestibular 

cues (i.e. the measurements) feed information to the MBO through the measurement 

matrix (C). The characteristics of these sensory measurements, and the generation of the 

measurement matrices are discussed in the next two sub-sections. 

3.2 Visual Sampling Model 
 

The visual sampling model focuses only on flight instrument scanning, and 

provides the discrete measures (yd). Pilot visual sampling is simulated by a “scan-action” 

structure that may be applied to many different scanning patterns. In the context of this 

thesis, a scan-action defines the information gathered from flight instruments. For 

instance, the Altimeter scan-action provides altitude information, and the Airspeed scan-

action provides information about airspeed. Table 1 relates flight instruments to their 

corresponding elements of the aircraft state. 

 



	  27	  

Table 1: Primary relations between the sensors and the state variables 

 

 

To investigate various scan patterns, there is one scan-action for each of the 

scanned flight instruments. A flight scenario with a “basic-T scan” scans the Attitude 

Indicator, Airspeed Indicator, Altimeter, and Heading Indicator, and thus involves 4 scan-

actions. 

Each scan-action includes the binary measurement matrix (C) that relates aircraft 

states into the measurement to be made. For visual sampling measurements, set by the 

scan-actions, the visual measurement matrix (Cd) is a straightforward binary matrix that 

consists only of 0s and 1s. This is because the visual sampling model simply measures 

the state elements via flight instruments.  

For instance, the altitude scan-action measures only the altitude state of the 

aircraft. Thus, the corresponding measurement matrix, for the altimeter scanning, would 
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have 1 for the altitude state and 0’s for the rest of the state elements. Since, the altimeter 

scanning only measures one component, the altitude value (h), the visual measurement 

matrix, for this particular scan-action, is a 1-by-N matrix, where 1 corresponds to the 

number of measured states, and N is the total number of aircraft states used in the MBO 

(N = 11). 

The visual measurement matrices used in the MBO for the four Basic-T 

instruments are listed below. 

 
Altimeter (h) 

Ch = [ 1 0 0 0 0 ! ! 0 ] 	  
	  
	  
Airspeed Indicator (V) 

CV =
0 u /V 0 0 ! ! ! 0
0 0 v /V 0 0 ! ! 0
0 0 0 w /V 0 0 ! 0

!

"

#
#
#

$

%

&
&
&
	  

 

Since the total airspeed (V) has a non-linear relationship with its components (i.e., 

𝑉! = 𝑢! + 𝑣! + 𝑤!), the airspeed scan-action provides a measurement matrix that is 

solved for at each time step. 

 

Attitude Indicator and Heading Indicator (𝜃,𝜙,&  𝜓) 

CATT&HEAD =

0 ! 0 0 1 0 0 0
0 ! ! 0 0 1 0 0
0 ! ! ! 0 0 1 0
0 0 ! ! ! 0 0 1

!

"

#
#
#
#

$

%

&
&
&
&
	  

	  
	  

 The state vector used in the MBO includes attitude quaternions to define the 

orientation of the aircraft. Both attitude and heading indicators provide information about 

the attitude of the aircraft. Therefore, these scan-action triggers a discrete update of the 
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attitude quaternion states. Since quaternion is a four-element vector, the measurement 

matrices for the attitude and heading indicator are 4-by-N matrices. 

The scan-action, then, adds randomly generated zero mean, white-noise error with 

covariance R: 

 
 

This generic visual sampling model can then be applied to create discrete 

measures of any state or set of states variables at times representing a range of scanning 

strategies, including periodic scans at specified frequencies or episodic scans triggered by 

events. These provide asynchronous “discrete” visual observations to the MBO. 

3.3 Vestibular Model 
 

The SCC model used in this thesis is based on Merfeld’s work (Eq. 15) [35]. For 

the otolith model, similar to Pommellet’s orientation model, Grant & Best’s otolith model 

is applied (Eq.16) [18]. These models express the sensor dynamics in transfer function 

form.  

 

𝑺𝑪𝑪(𝒔) =    (𝟖𝟎)  (𝟓.𝟕)  𝒔𝟐

𝟖𝟎𝒔!𝟏   (𝟓.𝟕𝒔!𝟏)
        Eq.	  15 

𝑶𝑻𝑶(𝒔)   =    𝟏
𝒔  !  𝟏𝟎𝟎   (𝒔  !  𝟎.𝟏)

           Eq.	  16 

 

An important aspect of the vestibular system is the sensor threshold. For motions 

beyond this threshold, the SCC model takes the angular acceleration components as input 

to its transfer function and outputs angular velocity. Likewise, for motions above its 

threshold, the otolith provides Gravito-Inertial Forces (GIFs) continuously, given linear 

acceleration and orientation. In the case of a sub-threshold maneuver, the vestibular 

system outputs provide zero measurement. In other words, the pilot is assumed to be 
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getting zero angular velocity measurements from his/her SCC.  

As mentioned earlier in the Chapter 2: Background, the MBO implements the 

threshold values defined by Mulder’s Law for the SCC measurement. All three axes 

threshold values are defined as 2.5 deg/s according to Mulder’s Law [31]. The otolith 

thresholds considered for the MBO are defined as 0.06 m/s2 by Guedry’s empirical 

studies. However, the otolith thresholds are fairly small and do not contribute to the 

somatogravic illusions [12]. Thus, the current MBO does not apply an otolith threshold. 

A continuous measurement-provider-action is constructed for both SCC and 

otolith with a similar structure to the scan-actions constructed for the visual sampling 

model and provides the (C), and (v) corresponding to the measurement. However, to 

include the dynamics of the vestibular system, the vestibular measurements reflect the 

state of the vestibular models given in equations 15 & 16, and then measurement error is 

introduced randomly. The sensor error (equivalent to measurement error in the vestibular 

case) (v) associated with vestibular system can be found in the Borah & Young et al.’s 

model [18]. Their sigma sensor error values for the SCC are defined as: σx = 0.01, σy = 

0.01, σz = 0.0316. The otolith sigma sensor error values are equal to each other and are 

σx,y,z = 0.0316.   

Contrary to the visual sampling model, the vestibular model measurements have 

internal dynamics (Eq. 15 & 16), and thus, the vestibular model’s measurement matrix 

(Cc) must be generated through linearization, shown in Eq. 17.  

 Cc =
∂y
∂x xn

     Eq.	  17 

 
 The continuous measurement matrix for both the SCC (CSCC) and the otolith  

(COTO) are generated through linearization of the internal sensor dynamics. In this sense,  

“y”, in the Eq. 17, represents the output of the vestibular system. The “x” indicates the 

state vector of the aircraft. The linearization process, basically, perturbs the state 
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elements of the system (the aircraft) to see the perturbations’ effects on the sensor output, 

and thus, generates the continuous vestibular measurement matrices (Cc). 

3.4 Software Implementation 
 

The MBO consists of 2 different software sections: the continuous-MBO provided 

with the continuous inputs from the vestibular model, and the discrete-MBO provided 

with visual scans at discrete times. These two sections are integrated via the model 

integration schema shown in Figure 10. The upper portion of the Figure 10 shows the 

measurement actions: discretely triggered scan-actions (visual sampling model) in the 

upper right corner (scan airspeed, scan altitude, etc.) and continuous vestibular 

measurements in the upper left corner. Vestibular measurements (SCC and otolith) are 

fed into the continuous-MBO continuously while visual measurements trigger updates in 

the discrete-MBO. Both act upon the same variables xest and P: the continuous-MBO sets 

xest and P continuously, and the discrete-MBO gets and corrects them at the discrete 

times when there is a discrete visual measurement.  
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Figure 10: MBO, Model integration schema 
 

3.4.1 Visual Scan-Actions 
 

As it can be seen from the upper right portion of the Fig. 10, there is one scan-

action for each of the flight instruments. This allows the analyst to discretely schedule 

them either synchronously or asynchronously at the desired frequencies by setting 

“sampling times”. Having this discretely-triggered visual sampling model structure 

makes it possible to implement wide variety of scan behaviors or patterns to reflect both 

nominal and off-nominal cases:  

• T-Scan scan behavior is considered to be a baseline/benchmark pattern that 

exhibits an optimal instrument sampling. In this configuration, the pilot is 

assumed to be scanning all of the necessary instruments at a high enough 

frequency to have reasonable expectations of the states.  

• The Distraction scan behavior is defined as ceasing to sample one or a set of 

flight instruments for the duration of a desired time interval. Thus, specific 
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instruments are omitted by not scheduling them during the desired distraction 

time intervals. 

• The Emphasis scan behavior reflects the cases where one or a set of instruments is 

scanned more frequently compared to the rest of the instruments, by setting two 

different sampling time values: one for high frequency, and one for low frequency 

scanning.  

 

Several variations of scan behaviors can be developed since the scan-actions 

employ a generic and flexible structure. Each scan-action, at the end of its execution, sets 

the relevant measurement matrix and sensor errors for a particular flight instrument and 

feed them to the relevant MBO action (discrete-MBO) through a measurement resource, 

which comprises:  

• y: measured state(s)  

• C: measurement matrix 

• R: sensor error covariance for the measured state(s) 

• M: number of state(s) measured 

Once scan-actions have been executed, they trigger the discrete-MBO in order to 

propagate the next state of the pilot’s best possible expectations and the error covariance 

(xest, P). 

3.4.2 Vestibular Action 
 

There is one action that provides the continuous measurements of the vestibular 

system. The information passed from vestibular action to the continuous-MBO is in the 

same form with the measurement resource listed above for the visual scan-action (y, C, 

R, M). 

Since the actual vestibular sensory system continuously feeds sensory information 

to the Central Nervous System, the vestibular action, unlike discretely triggered visual 
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scan-actions, is scheduled at every time-step. Thus, the continuous-MBO continuously 

incorporate “vestibular measurement resources” in its propagation of pilot’s best possible 

expectation of aircraft state, and the error covariance (xest, P). 

3.4.3 Linkage Between the Continuous-MBO and the Discrete-MBO 
 

To capture the effects of both discrete visual sampling and the continuous 

vestibular system on the pilot’s best possible expectation, the discretely and the 

continuously generated expectations have to be optimally combined.  

Thus, the estimation resource stores the parameters required to link the discrete-

MBO to the continuous-MBO: 

• xest: Best possible expectation of the aircraft states 

• P: Estimation error covariance 

 

Whenever an MBO action (either discrete-MBO or continuous-MBO) needs to 

update, it gets the current xest and P values from the estimation resources and updates xest 

and P. Having this resource structure avoids the conflicts that may arise due to 

simultaneous measurement updates, and provides an organized flow of MBO resources. 
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CHAPTER 4 
 

OBJECTIVE 2: PARAMETERIZATION AND 
VERIFICATION/VALIDATION 

	  
 

The first section of this chapter, Parameterization of the Model, discusses the 

error models that have been implemented and their parameterization process to ensure 

accurate model estimates. An estimation problem would be deterministic without the 

presence of random disturbance and/or noise in the system. For realistic results, the 

stochastic characteristics of both process error (due to external aircraft disturbances) and 

measurement error have been parameterized using previously developed error models.  

The second section, Verification and Validation of the Model, begins with 

discussion of the process used to verify and validate the individual components. This 

section concludes with the validation of the overall model. The validation of the proposed 

model is mainly done using previously studied scenarios and former orientation models 

to confirm that the MBO predicts known illusions and concerns with spatial 

disorientation. 

4.1 Parameterization of the Model 
 
 As the model complexity increases, model’s sensitivity to error values also 

increases. Newman et al. criticize the stable Extended Kalman Filter implementations of 

human orientation perception models by Kynor and Selva for being highly dependent on 

model parameter assumptions [10, 51, 52]. 

 
“Results were also highly dependent on model parameter assumptions and sensitive to 
small deviations in the assumed sensor bandwidths or noise covariance matrices.”  
            Newman et al. 2012 [10]. 

 Thus, the MBO needs for process and measurement errors to be parameterized for 

accurate predictions, and for avoidance of instability and/or divergence of the Kalman 
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Filter estimations. Divergence, in the MBO, usually occurs due to singularities in the 

system. Changing aircraft dynamics (i.e., different flight regimes, various turbulence 

intensities, etc.), and using different sensors (i.e., various sensor dynamics) all requires 

re-tuning the model parameters. The following sub-sections will discuss (1) the process 

error parameterization, and (2) measurement error parameterization. 

4.1.1 Modeling Process Error 
  

The process error, in context of this thesis, is considered to be the external gusts 

experienced by the aircraft. It is denoted as (w) and the location of injection of this 

process was shown earlier in Figure 9. Accurate knowledge of the process error 

covariance (Q) is crucial to a Kalman Filter. 

When used off-line for the analysis purposes, there are multiple approaches for 

modeling wind gust/turbulence for simulation purposes, the most popular of which are 

based on stochastic methods. Two of the most common stochastic models are the von 

Karman and the Dryden model [24, 43]. The Dryden model has been adopted in this 

thesis. 

The Dryden model is based on empirically measured power spectra of wind 

velocity in turbulent air and it assumes gusts to be random, homogenous and isotropic 

[44]. The power spectral density of the gusts is determined based on turbulence field 

properties, such as the turbulence scale length and turbulence intensity (RMS gust 

velocity) [45]. The Dryden transfer functions are, then, derived from those power spectral 

densities by performing a process called “spectral factorization”. The transfer functions 

are used as shaping filters to generate the gust velocity components from Gaussian white 

noise. Gust velocity components include both linear (u, v, w) and angular (p, q, r) 

attributes of the turbulence [46].  

To apply the Dryden model to the 6-Degree-of-Freedom aircraft model, the 

appropriate turbulence scale length and turbulence intensity should be set to describe the 
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turbulence level experienced by the aircraft in any particular simulation run. The desired 

attributes of the turbulence and the shaping filter transfer functions can be found by 

referring to previously developed Dryden models.  

In this project, the medium/high altitude (>2000 feet) Military Specification MIL-

8785C is implemented [47]. All six gust velocity transfer functions and turbulence 

attributes are specified below in Table 2 and in Figure 11, respectively. The scale length 

of the turbulence is equal to 1750 feet for all three components (i.e. Lu, Lv, Lw) at 

altitudes 2000 feet and above. The turbulence intensities (i.e. σu, σv, σw) can be 

determined from Figure 11, based on the altitude and the probability of the turbulence 

intensity being exceeded. All three components of the turbulence intensity are assumed to 

be equal to each other. 

 

Table 2: Medium/High Altitude MIL-8785C Dryden Model [Ref. MIL-8785] 
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Figure 11: Turbulence intensity (RMS Amplitude) vs. Altitude [47, 48] 

 

 
Figure 12: Airspeed and angular velocity components with various turbulence intensities 
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 To illustrate the impact of the gusts, Figure 12 shows the effect of various 

turbulence intensities on relevant of the aircraft states.  

Introducing the best process error values to represent the white noise component 

of the gusts help to overcome the issues caused by the modeling mismatches [26]. 

Especially, since the Dryden gust model does not introduce an uncorrelated pure, white 

noise to the aircraft dynamics, there is a need for some process error to best represent the 

aircrafts dynamics with gusts [47, 49]. 

 The process error ranges have been found by trial and error method for various 

turbulence intensities (light, moderate, and severe turbulence). These ranges are 

determined by ensuring that the process error values selected satisfy the Kalman Filter 

operation and stay within the 2-sigma bounds. For most of the process error values that 

lay outside of this determined range, the Kalman Filter estimates diverge.  

 

Table 3: The process error ranges found for each of the states 

 No or light 
turbulence 

Moderate 
Turbulence 

Severe 
Turbulence 

Altitude [ft] 100 250 500 

Linear Velocities  

(for x, y, z) [ft/s] 

35 
5 
10 

200 
60 
75 

400 
10 
150 

Angular Velocities 

(for x, y, z) [rad/s] 

0.04 
0.04 
0.04 

0.1 
0.1 
0.1 

0.2 
0.2 
0.2 

Quaternions 0.04 0.08 0.13 
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4.1.2 Measurement Error 
 

Measurement error, denoted as (v) previously, is also modeled as Gaussian white 

noise. Figure 9 indicates the location of the injection of the measurement error both for 

the continuous and the discrete measurements.  

Measurement error (v), for the visual measurements, includes not only the noise 

in aircraft’s sensors: flight instrument design can also highly influence the perceived 

measurement. For example, an altimeter with a thick needle can contribute adversely to 

the measurement error by causing an increase in its variance. Thus, measurement error 

here represents the error in the pilot’s expectation of the aircraft states from all causes. 

For vestibular system error, measurement error is considered only to be the 

vestibular sensory error. A number of studies exist have examined the uncertainties in 

pilot expectation. Curry et al. studied the effects of signal-to-noise ratio on the vestibular-

only system [25]. They found that a representative noise to signal ratio for vestibular 

measurements is approximately -18dB. Alternatively, Borah et al.’s optimal estimator for 

human spatial orientation design uses an empirically driven error model [18], in which 

experimental data is used to parameterize error values as error-covariance matrices.  

These error models are utilized as an initial point for the parameterization of the model. 

All these parameters can be used as an initial point for this MBO’s parameterization.  

Borah et al., in their paper, discuss how they “tuned” their measurement errors to 

bring the model responses closer to the empirical human-in-the-loop experiment results 

[18]. Since the measurement errors are unknown and impossible to measure, it gives the 

modeler flexibility as long as the model responses are within a reasonable range. That’s 

why the term “tuning” makes sense when it comes to model parameterization. 

Here, the parameterization explores the range of measurement errors that the 

MBO For this purpose, measurement error value ranges are found both for the visual 

measurements and for the vestibular measurement.  
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Table 4: The measurement error values for the discrete visual measurements 

 Lower Bound Nominal Upper Bound 

Altitude [ft] 1 50 100 

Linear Velocities  [ft/s] 0.05 10 150 

Angular Velocities  [rad/s] 0.002 
 

0.015 
 

0.4 
 

Quaternions 0.001 0.015 0.04* 

 

The sigma error values for the continuous vestibular measurements used in the 

MBO are parameterized based on the previously developed models [18]. The MBO’s 

stability and accurate representation of the vestibular model responses were the criteria 

for this parameterization process. The measurement sigma error values used for the SCC 

are σx = 0.035, σy = 0.041, σz = 0.043. For the otolith, all three components’ errors are 

defined as σx,y,z = 3.16e-3. 

For the most part, these error ranges were found by using the same trial and error 

method as disused earlier in sub-section 4.1.1 Modeling Process Error. The primary 

criterion during this procedure was avoiding the singularities. The nominal measurement 

error values are used for many of the experiments ran for validation/verification 

purposes. These values reflect reasonable error values for each of the states. These lower 

and upper bounds indicate a range of measurement error values that can be used with the 

MBO, and exhibits accurate representation of expectation. The asterisk (*) defines a hard 

bound for quaternions, meaning there will be a singularity issues in case a higher error 

value. So, most of the measurement error values that lay outside of these hard bounds 

caused singularity in the system, thus divergence in the KF estimations.  

 

 



	  42	  

4.2 Verification of the Model Components 
	  

The following sub-sections explain the verification process of each of the 

individual model components. First, the MBO itself is verified to produce estimates that 

are within their predicted statistical bounds. Then, the vestibular system implementation, 

the semi-circular canal (SCC) model, and the otolith model are verified. The Dryden gust 

model verification concludes the discussion of The Verification of the Model Components 

section. 

4.2.1 The Kalman Filter 
 

To verify that the implemented Kalman filter, the core of MBO, is working 

properly, the error propagation matrix (P) can be observed. Since Gaussian error models 

provide input to the MBO, estimation errors (x-xest), i.e., the discrepancy between the 

pilot’s best possible expectation and the actual state of the aircraft, are also expected to 

have a Gaussian distribution. Therefore, in a properly working Kalman filter, this 

estimation error should lie 95.4% of the time within the (-2σ) and (2σ) bounds predicted 

by the error covariance (P) [26] The 2-sigma bounds of every state is examined for all 

runs to make sure that the filter is tuned properly and providing accurate estimations of 

the aircraft states.  

The estimation error (𝑥 − 𝑥) can also be investigated to see if the distribution is 

similar to a Gaussian distribution. Figure 13 shows the normality test that was conducted 

for the pitch rate estimation error (q), as an example. It can be seen from the figure that 

the error has a distribution close to a Gaussian, and it has a p-value of 0.0184, based on a 

significance level of about 5%. Additionally, the predicted estimate error variance from 

the error covariance matrix (P) and the actual estimation error can be compared. For this 

particular case shown in Figure 13, the predicted variance is 9.12e-5 and the actual 

variance is 7.60e-5, i.e., the square of standard deviation 0.0087. 
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Figure 13: Distribution of the estimation error values of the pitch rate (q) 

 

Figure 14 illustrates 2-sigma bounds and actual estimation errors of the airspeed 

for two different simulation runs. The blue lines construct the 2-sigma bounds for a 

particular simulation run, upper bound being the +2σ value and lower being the -2σ 

value. The red line in between the 2-sigma bounds is the estimation error.  
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Figure 14: 2-sigma Error Bounds and Error in the pilot’s expectation of the pitch 

component of the angular velocity and corresponding 95% confidence interval, during an 
above-threshold pitch-up maneuver executed at 5th second, with a high frequency visual 

scan (T-Scan) of all flight instruments and with a 18 seconds of distraction. 
 
The first plot in Figure 14 corresponds to a ‘T-Scan’ scan behavior, and thus 

expected to exhibit a benchmark with a low expectation error allowance (confidence 

interval). The bottom graph in the same figure corresponds to a ‘distraction’ scan 

behavior for 18 seconds starting at the time 3rd second. As anticipated, the pilot’s error 

allowance (confidence interval) grows right after distraction starts. As soon as the pilot 

scans the relevant flight instrument (i.e. end of distraction) error allowance of the pilot 

goes back to its nominal value. All of the maneuvers, in this case, are performed above 

the vestibular threshold (i.e. above-threshold maneuvers), and thus both the visual scan 

and the vestibular sensors correct the pilot’s expectation of aircraft state. 
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Figure 15: 2-sigma Error Bounds and Error in the pilot’s expectation of the pitch 

component of angular velocity and corresponding 95% confidence interval, during a sub-
threshold banking maneuver, with a distraction at the beginning of the maneuver (from 

3rd second to 15th second). 
 
 
 Figure 15 illustrates 2-sigma boundaries and estimation errors with a similar 

pitch-up maneuver as seen in Figure 14. However, the Figure 15 maneuver is performed 

below the vestibular threshold (i.e., sub-threshold maneuver), to see the effects of the 

continuous vestibular measurement on the 2-sigma bounds. In this particular case, the 

pitch maneuver starts at the 5th second, right after the pilot stops scanning the instruments 

and distraction goes on until 15th second. Since this is a sub-threshold maneuver, the 

pilot’s vestibular system is not triggered and feeds continuous measurements of zero to 

the MBO for the angular velocity states of the aircraft. Therefore, compared to the bottom 

graph of Figure 14, the 2-sigma error bounds expand more due to absence of continuous 

vestibular measurements. For this model, as long as the process error and measurement 

error have covariance that are within the allowable range of the MBO, all of the 2-sigma 

graphs verify the Kalman Filter in the MBO is operating properly. 
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4.2.2 The Semi-Circular Canal Model 
 

The vestibular system models implemented into the MBO are based on previously 

developed models. In this verification of the SCC, the implemented SCC model outputs 

are verified to make sure that the implementation is correct.  

To verify the SCC model, its sensor outputs are compared with other model 

responses that have been validated by empirical results. Figure 16 compares the SCC 

output in a simple test case run to same stimulus in the Figure 17. This test case 

verification scenario is created in Matlab to see if the implemented model is able to 

reproduce the Borah et al.’s empirically driven model outputs. As it can be clearly seen, 

the model captures the exponential decay of the afferent signal reasonably good. The time 

crossing zero values for both cases are approximately 16.5 seconds and the peak values 

of the sensor response are approximately equal to 0.235 rad/s for the same stimulus. For 

this verification step, the SCC transfer function is converted to its state-space 

representation using the Matlab built-in functions.  
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Figure 16: Implemented SCC model’s response to a step stimulus 

 
 

 
Figure 17: Borah et al.’s orientation model responses to a step angular velocity stimulus. 

The SCC model output is highlighted [18]. 
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In the Figure 18, on the other hand, a similar scenario is produced in the aircraft 

simulation that is linked to the MBO. In this verification step, implementation of the 

sensor dynamics and its coherence with the linked aircraft model is being verified. Again, 

the afferent signal of the implemented model decays towards zero.  

 
Figure 18: Implemented SCC model’s response to a banking maneuver (from aircraft 

model that is linked to the MBO) 
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configurations: (1) the SCC providing zero measurement, and (2) the SCC becoming 

inactive in the sub-threshold motions. The maneuver starts at 5 seconds into the run. The 

top graph in Figure 19 (1) shows the 2-sigma bounds for the zero measurement case and 

the lower graph (2) shows the 2-sigma bounds when the SCC becomes inactive and does 

not provide any measurements to the MBO. As it can be seen from (2), the inactive SCC 

reflects on the 2-sigma bounds. The 2-sigma bounds, in the inactive SCC case (2), grow 

as if there is no sensor before the above-threshold maneuver kicks in. On the other hand, 

the zero measurement case (1) still takes into account the presence of a sensory system, 

and thus, does not grow as much as the case (1). 

Although the SCC provides inaccurate information during the sub-threshold 

motions, its presence cannot be ignored. Therefore, the MBO applies the case (1), and 

implements an SCC model that feeds zero measurement when the motion is below the 

threshold. 
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Figure 19: Experimental studies on the SCC measurements for sub-threshold cases. In 

this case an above-threshold bank maneuver is initiaed at 5th second. Two different 
configurations for the SCC measurements are illustrated. 

 

The Figure 20 shows the model outputs in case of a sub and above threshold 

angular maneuver. Since the SCC doesn’t provide any information sub-threshold, 

afferences (or canal firing rates) do not respond to the maneuver. This verifies that the 

SCC provides correct sensory outputs (canal firing rates) both for sub-threshold and for 

above-threshold cases. 
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Figure 20: The SCC model outputs (afferences) during sub-threshold and above-
threshold pitch maneuvers 

 

4.2.3 The Otolith Model 
 

Similar to the SCC model, the otolith model implemented to the MBO is also 

based on a previously developed model, built by Grant and Best [13]. The existing otolith 

models’ fidelity are not as high as the SCC models. There is no robust information on 

otolith afferences in the literature that can be compared with the implemented model 

responses. Thus, this verification examined whether the otolith model, by first principles, 

measures the specific force correctly.  

The specific force in x-axis:  −  𝜃.𝑔 −   𝑢 

Figure 21 illustrates the otolith model response during a no-pitch forward 

acceleration experiment. The otolith model response does make sense due to the contrary 

behavior between the x-component of the acceleration (𝑢 ) and the corresponding 

component of the otolith response (specific force in x-component).  The pitch angle (θ) 

does not change and equal to zero degree and, thus, does not contribute to the otolith 

measurement. 
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Figure 21: The implemented otolith model response (afferent firing rate) in case of a no-

pitch forward acceleration maneuver. 
 

Figure 22 illustrates the otolith model response during an above-threshold pitch-

up experiment. As it can be seen from the bottom right graph, a deceleration is observed 

due to the nature of aircraft dynamics. The otolith model response in this pitch-up case 

also makes sense as the afferent firing rate complies with the specific force relationship 

stated above. These figures verify the otolith responses, in various maneuvers, provide 

the accurate measurements to the MBO defined by the specific force relationship.  
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Figure 22:  The implemented otolith model response (afferent firing rate) in case of an 

above-threshold pitch-up maneuver. 
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aircraft side, and a modified matrix (CLEARNED) for the pilot side of the MBO. The 

(CLEARNED) case may represent an otolith measurement matrix of a subject that has 

learned the otolith sensory dynamics through experiencing certain motions.  The 

CLEARNED matrix for can be generated based on the actual measurement matrix CREAL, and 

can be modified for the experimentation purposes. In this experimentation study, it is 

assumed that the CLEARNED only contains the angel relationships of the otolith dynamics. 

In other word, this particular experiment simulates an otolith measurement matrix that 

has been learned primarily by experiencing angular motions. To generate this particular 

CLEARNED, all off the elements of CREAL is set to zero except for the quaternion 

relationships. 

In this study, (f1) no acceleration 20 degrees pitch-up, (f2) forward acceleration 

with no pitch, and (f3) forward acceleration with 20 degrees pitch-up were the three flight 

conditions.  

 As it can be seen from Figure 23, the pitch rates, pitch angles, and forward 

component of the airspeed is compared using two measurement matrix configurations 

(CREAL) & (CLEARNED). Although results look similar, (CREAL) configuration exhibits 

much smooth pilot expectation for all the shown states. The (CLEARNED) configurations 

rapid changes in some cases even caused the estimation error to exceed the 2-sigma 

bounds, since the residuals are calculated by comparing real and estimated measures 

created in two different ways. 
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Figure 23: Otolith experimental study - No acceleration, pitch-up (f1) flight condition 
with (CREAL) on the left & (CLEARNED) on the right 
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 In Figure 24, the pitch angle values of both configurations are compared. The 

second configuration (CLEARNED) was aiming to capture a better angle expectation and 

more explicit vestibular illusions. Although they both reproduce the somatogravic 

illusion to some degree, the first configuration (CREAL) seems to be exhibiting more 

consistent behavior if the expectation, and thus, reproduce the somatogravic illusion more 

clearly. 

 Figure 24: Otolith experimental study - Forward acceleration, no pitch-up (f2) flight 
condition with (c1) on the left & (CLEARNED) on the right 
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Again, the pitch rates, pitch angles, and forward component of the airspeed can be seen 

for both configurations (CREAL) & (CLEARNED) in Figure 25. The 2-sigma bounds do not 

exhibit any differences for both configurations. The best possible pilot expectations, on 

the other hand, show the similar smooth behavior in the (f3), and thus, keep the 

estimation errors within the 2-bounds for the first configuration (CREAL). 
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Figure 25: Otolith experimental study - Forward acceleration, pitch-up (f3) flight 
condition with (CREAL) on the left & (CLEARNED) on the right 
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This experimental study was aiming to investigate the effects of different 

measurement matrices on the best possible pilot expectation. The modified CLEARNED 

matrices generate different measurement estimates than the actual measurements defined 

by the sensor dynamics, which might cause substantially different expectations of the 

states. Conceptually, using the CREAL configuration represents a pilot that learned the 

otolith sensory dynamics fully through experiencing all types of forces and rotations 

experienced during natural 1-g motions (e.g., walking, sitting, running, etc.). Since the 

CREAL is generated through the validated otolith models, it is known to some degree. 

Therefore, the MBO applies the CREAL configuration, which implements the same 

measurement matrix for both the aircraft and for the pilot aspect of the MBO. However, 

this experimentation opens up new research questions on types of CLEARNED matrices that 

best capture the illusions. 

4.2.4 The Dryden Model 
 
 The Dryden Model has been implemented to simulate gusts acting on the 

simulated aircraft linked to the MBO. To verify the implementation, the model responses 

were compared to the results of the built-in Matlab Dryden Model. The time history 

graphs of the all three components of the linear (vx, vy, vz) and angular (wx, wy, wz) gusts 

for various turbulence intensities (light, moderate, severe) are plotted. Using these gust 

vales, an Fast Fourier Transform (FFT) analysis verified that Matlab built-in function 

results match with the implemented Dryden Model results in the frequency domain.  

As an example, the comparison graphs only for the linear velocity gusts and 

angular velocity gusts produced by in severe turbulence level are presented in Figure 26 

and in Figure 26, respectively. To verify the Dryden Model, the same analyses are 

conducted for all the turbulence intensities. 
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Figure 26: Linear gust values in severe turbulence. Comparison between the Matlab 
built-in function and WMC implementations (Time-history and Frequency Spectrum 

Distribution) 
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Figure 27: Angular gust values in severe turbulence. Comparison between the Matlab 
built-in function and WMC implementations (Time-history and Frequency Spectrum 

Distribution) 
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4.3 Validation of the Integrated MBO 
 

The validation process deals with the ability of the model to predict known 

problems with pilot SD. Specifically, the MBO is expected to reproduce the illusions that 

occur due to vestibular limitations. Certain maneuvers without visual correction of the 

MBO’s estimate are associated with some of the vestibular illusions. For instance, a 

maneuver below the SCC threshold does not sense angular velocity and thus, cause a 

somatogyral illusion. Likewise, in the case of a linear forward acceleration maneuver, the 

pilot’s best possible expectation is expected to show a pitch-up sensation due to 

somatogravic illusion. These vestibular illusions are reproduced by the MBO and are 

illustrated in the next sub-sections. These sub-sections then confirm that the MBO 

correctly integrates all measurements to also reproduce visual correction of illusions. 

4.3.1 Somatogyral Illusions and Impact of Visual Correction 
 
 Figure 28 and 29 is show a same banking maneuver except that the maneuver is 

sub-threshold in Figure 28 and above-threshold in Figure 29. In both cases, pilot is 

distracted onset of the maneuver such that there is no visual information from 3rd to 15th 

seconds. In Figure 28, the MBO’s estimation reflects the sub-threshold maneuver causing 

somatogyral illusion. The SCC’s contribution to the angular motion sensation can be 

clearly seen in Figure 29: Even though there is no visual correction present at the 

beginning of the maneuver, the MBO’s estimate is able to capture the roll rate to some 

degree. 
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Figure 28: Roll rate state and its expectation during a sub-threshold bank maneuver 

(Distraction from 3rd to 15th sec - No visual scanning at the beginning of the maneuver). 
 

 

Figure 29: Roll rate state and its expectation during an above-threshold bank maneuver 
(Distraction from 3rd to 15th sec - No visual scanning at the beginning of the maneuver). 
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As discussed earlier in Chapter 2: Background, the vestibular illusions occur 

when the visual cues are lacking. This indicates the power of proper visual scanning of 

instruments when the outside visual field is not available to the pilot. Since spatial 

disorientation is not likely to occur with a proper scan pattern, the model estimates of the 

aircraft state responses are expected to show no significant divergence from the actual 

aircraft state in case of a proper scanning pattern. 

The following illustrates the same scenarios shown in Figures 28 and 29, which 

are known to be prone to SD, with a recursive T-Scan scan-pattern. Its recursion can be 

varied but for simplicity it is assumed that the instruments are scanned every second. In 

Figures 30 and 31, the roll experiment shown in Figure 28 and 29 is run once more with a 

proper T-Scan. Having the visual cues help pilot expectation to capture the actual aircraft 

states relatively better and thus, helps avoid the illusions that might end up causing SD. 

As it can be seen from both figures, there is not much of a difference the way the pilot’s 

best possible expectation behaves. Figure 31 expectation shows a slight decay around 5th 

to 10th seconds, which might be due to the decaying behavior of the SCC afferences 

activated due to an above-threshold roll maneuver. 
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Figure 30: Roll rate state and its expectation during a sub-threshold bank maneuver with 

a proper T-Scan scanning pattern. 
 
 

 
Figure 31: Roll rate state and its expectation during an above-threshold bank maneuver 

with a proper T-Scan scanning pattern. 
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4.3.2 Somatogravic Illusions and Impact of Visual Correction 
 

Considered to be one of the most common and dangerous illusions in context of 

spatial disorientation, the somatogravic illusion is a crucial element of orientation 

models: Linear accelerations and decelerations, without visual correction, lead to pitch-up 

and pitch-down sensations, respectively.  So, a useful model needs to be capable of 

reproducing this illusion. 

 The somatogravic illusion captured from the proposed model is represented in 

Figures 32 and 33. Figure 32 shows a no-pitch linear acceleration case. The linear 

acceleration, here, is in the x-axis of the aircraft. There is a 15 second distraction starting 

at the 15th second into the simulation, which causes a slight pitch-up sensation, building 

up as distraction time goes by, due to the otolith sensor’s coupled specific force 

measurements. The time-history plot of the acceleration can be seen on the right-hand 

side of the same figure.  

 Conversely, Figure 33 shows a no-pitch linear deceleration maneuver with 15 

seconds of distraction starting from the 15th second. As it can be seen from the graph, the 

pilot starts sensing a pitch-down a few seconds into the distraction. Lack of visual cues 

leads pilot to sense the aircraft state solely based on his/her vestibular sensor and thus, to 

experience the somatogravic illusion. Again, the time-history of the deceleration is 

located on the right-hand side of the figure. 
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Figure 32: Somatogravic illusion: pitch-up sensation - Pitch angle and its expectation 
during an acceleration (no-pitch) maneuver (Distraction from 15th to 30th sec). 

 
 
 

 
 

Figure 33: Somatogravic illusion: pitch-down sensation - Pitch angle and its expectation 
during a deceleration (no-pitch) maneuver (Distraction from 3rd to 15th sec). 
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There are coupling for some of the aircraft states. Therefore, when the MBO has 

the correct model of the aircraft system dynamics in its internal simulation, coupling 

should between the expected states. For instance, when the expectation of the vertical 

speed indicating a positive value (downward direction), the MBO’s estimates of the 

altitude state should be going down (losing altitude sensation). According to this, if the 

forward component of the airspeed is examined in the case of an acceleration maneuver, 

seen in Figure 32, pitching-up sensation is causing it to diverge from the actual aircraft 

airspeed state (Figure 34). 

 

Figure 34: Somatogravic illusions effect on the other states - Airspeed and its 
expectation during an acceleration (no-pitch) maneuver (Distraction from 15th to 30th 

sec). 
 

Figures 35 and 36 are the same maneuvers executed in Figures 32 and 34, except 

with a proper T-Scan. The significance of the visual cues is apparent in the sense that 

there is no somatogravic illusion with the proper instrument scanning.  
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Figure 35: Somatogravic Illusion Correction with a T-Scan - Pitch angle and its 

expectation during an acceleration (no-pitch) maneuver. 
 

 
Figure 36: Somatogravic illusion Correction with a T-Scan – Forward component of the 

airspeed and its expectation during an acceleration (no-pitch) maneuver. 
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CHAPTER 5 
 

CONCLUSION 
 

5.1 Summary 
 

This thesis demonstrates the structure and development of a model-based observer 

(MBO) that can predict the best-possible pilot expectation of aircraft state given accurate 

knowledge of the aircraft dynamics, vestibular sensing, and a given visual scan. The 

MBO is applicable to a wide range of potential conditions and variations in pilot 

instrument scanning behavior, which makes it possible to investigate the underlying 

mechanisms of spatial disorientation (SD). Additionally, the model accounts for the 

expert pilot’s knowledge of the aircraft’s dynamics. While this thesis demonstrated only 

the effects of visual scanning and vestibular system on the pilot’s best possible 

expectation, the model can be extended to examine the a large space of potential 

contributions to the best possible pilot expectation. 

One engineering utility of this model is to identify the visual scanning behavior 

required of the pilot with any SD countermeasure. Thus, it can be used by designers to 

gain design insights for the development of novel flight deck display design(s) by 

providing them a structured method for predicting the best possible pilot expectation 

given some estimated uncertainty due to the combined effects of aircraft sensor error, 

uncertainty or noise added by the display (e.g., the precision with which it may be 

interpreted), and any perceptual error inherent to the pilot. Thus, display improvements in 

terms of reduced uncertainty, and other designs such as alerting the pilot’s attention, can 

be analyzed rigorously and quantitatively. These computational simulations, by running 

faster than real-time, can assess a large space of combinations of flight maneuvers, 

disturbance levels (wind gusts) and visual scans. Similarly, engineering design may use 
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such simulations to identify problematic flight conditions particularly susceptible to poor 

pilot expectation of aircraft state. 

Additionally, eye-tracking measures from human-in-the-loop (HITL) simulations 

can be used to estimate the best possible estimates that the pilots could have during a 

particular maneuver.  In the future, the potential further exists to use the MBO in real-

time, with knowledge of actual pilot scan provided by eye-tracking, to assess the best 

possible pilot expectation of aircraft state resulting from their actual recent visual scan, 

again to alert the pilot or actively control the salience of important information. 

5.2 Contributions 
 

The contribution of this thesis is to establish a computational model that can 

predict the best possible pilot expectation of aircraft state based on vestibular cues and a 

given visual scan. Uniquely, the MBO also accounts for pilot expertise, and thus, can 

predict the best possible pilot expectation of the aircraft states.  

The visual and vestibular models implemented in the MBO have generic 

structures, which can be modified. Thus, if a new and more applicable vestibular model is 

developed, the new vestibular dynamics can easily be redefined in the implemented 

model structure. Having the generic structure also helps the eye-tracking data to be 

swapped in to the visual scanning model, and thus, allows the model to be used real-time 

based on actual pilot scan pattern of the flight instruments. 

By applying the model to a wide range of potential conditions and variations in 

the pilot’s visual scan-behavior, it is possible to investigate the information requirements 

of the pilot and underlying mechanisms of SD. This computational model makes it 

possible to examine the full space of variations in these mechanisms through ‘what-if’ 

experiments that identify those mechanisms with the greatest potential for triggering SD.   

The model can, thus, be used to provide a structured, predictive basis for 

development of novel flight deck display design(s) and/or other flight deck technology 
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intervention(s). The model can help identify the critical SD mechanisms, and thus, help 

identify which countermeasures may best help prevent SD. For instance, one of the 

known mechanisms of SD is distraction. The model predicts the impact on best possible 

pilot expectation of a visual scan that stops visual sampling at some key point in the 

flight. Key points of distraction during maneuvers and problematic durations of 

distraction can, thus, be identified. Likewise, the impact of the accuracy with which a 

pilot can perceive information from a flight instrument can also be characterized. 

Another design intervention that the MBO can help evaluate is the positioning and 

design of the displays to mitigate the time required to observe and to interpret the 

displayed information. In subsequent flight simulator and/or flight test evaluations, these 

design interventions can then also be measured in terms of whether pilots actually 

demonstrate these expected visual sampling behaviors.  

5.3 Future Work 
 

Some of the aspects of the developed model can still be enhanced and/or 

improved to make it more computationally efficient. Built in a simulation framework 

(WMC) in C++, improving the computational efficiency will foster current efforts to run 

the model on-line. For on-line prediction of the best-possible pilot expectation, the model 

can be coupled with an HITL aircraft simulator. The subject’s gaze, in the HITL 

simulator, can be traced with the help of an eye-tracker. This would allow the model to 

get the sampling information from the eye-tracker and trigger the corresponding visual 

sampling scan-actions. Eventually, such a capability may also be used on board aircraft. 

Additionally, new sensory systems can be incorporated to increase the accuracy of 

the pilot expectation prediction. For instance, a model of the proprioceptive system, and 

more elaborate vestibular models, could be implemented. Although both the 

proprioceptive system and the otolith measure inertial forces, this redundancy might help 

reduce the variance of the estimation error for some cases. In addition to proprioceptive 
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sensors, a continuous visual measurement model can also be implemented to take into 

account the out-of-the-window visual cues for clear sky, daytime flight scenarios.  
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