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SUMMARY

Nonlinear aeroelastic analysis of damaged High-Altitude-Long-Endurance aircraft

wings is considered. The structural model consists of a full three-dimensional finite

element continuum model for the damaged area, which is a small localized area of the

wing, and a geometrically exact one-dimensional displacement-based finite element

model for the undamaged part of the wing. The solid and the beam parts are then

rigorously combined using a transformation between the joined nodes of the two models

at their intersection. The transformation is derived using the recovery equations of

variational asymptotic beam model and employed to eliminate the six degrees of

freedom of the single joined node of the beam. The validity and efficiency of the

method is demonstrated using test cases involving cracks and delaminations in the

solid part. It is shown that although the accuracy remains virtually the same between

the full three-dimensional model and the joined one-dimensional/three-dimensional

model, the computational cost is considerably lower for the latter. Finite-state induced

flow theory of Peters is exploited as the unsteady aerodynamic model to compute

aerodynamic forces and moments acting on the wing. Combining the structural and

aerodynamic models, a dynamic nonlinear aeroelastic element is developed for the time

simulation of the dynamic responses of composite high aspect-ratio wings. The model

has been used for analyzing aeroelastic instability boundaries and time simulations,

as well as synthesizing an active flutter suppression control system. Numerical results

verifying the validity of the method are presented and the results are discussed.

The proposed joined model will enables the High-Altitude-Long-Endurance aircraft

designers to tackle the problem of aeroelasticity in a computationally efficient manner,

without sacrificing accuracy with regard to full three-dimensional models, hence

reducing the overall time and cost of the design process.
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CHAPTER I

INTRODUCTION

1.1 Motivation

There has been much interest in the aerospace community of late in High-Altitude-Long-

Endurance (HALE) aircrafts. Many designs have been proposed for various HALE

missions, but most feature very high aspect-ratio (A) wings. The design problem

for high A aircraft wings constructed from fiber-reinforced composite materials is a

complex one. The high A of the wing combined with stringent mass requirements

has led to some highly flexible wing designs despite the superior specific stiffness

properties of composites (compared with metallics). The large degree of flexibility in

the wing leads to a strong coupling between the wing structural and aerodynamic

performance. Nonlinear aeroelastic performance issues such as static load distribution,

loss of control surface effectiveness, transient response and flutter are thus vitally

important aspects of the performance of the vehicle. Structural failure can occur due

to extreme loading, the encounter of an extreme gust, excursions beyond the flutter

boundary, or over time due to the existence and growth of defects and/or cracks. The

low temperatures at the extreme service altitude for this class of aircraft give rise to

significant inter-laminar stresses as well as reduced damage tolerance in the wing.

The structural design of composite HALE aircraft wings is therefore often subject

to stiffness requirements coming from static and dynamic aeroelastic performance in

addition to commonly imposed stress-based failure and structural stability criteria

(such as skin buckling). However, the existence of cracks in the structure due to a

manufacturing defect and/or fatigue loading will degrade the structural performance of

the wing, impacting (negatively in most cases) the aeroelastic and buckling performance

1



of the wing and creating stress concentrations. The fatigue loading of the wing results

from transient structural vibrations due to maneuvers or gusts below the flutter speed

and Limit-Cycle Oscillations (LCO) resulting from nonlinear aeroelastic behavior.

Composite HALE designs that do not account for the progressive failure performance

of the wing could be subject to sudden failure if aeroelastic instabilities or poorly

damped transient behaviors are incurred as a result of minor damage to the wing. A

progressive failure analysis for HALE aircraft would hence require consideration of the

damage tolerance or growth rate of cracks, the possibility of skin buckling or other

structural stability issues arising due to the degraded performance, and nonlinear

aeroelastic behavior to capture the altered fatigue loading conditions. Environmental

conditions commonly encountered by the aircraft should be accurately modeled.

Very efficient and yet high-fidelity aeroelastic analysis capability for HALE aircraft

is possible by recognizing that two of the wing dimensions (chord and thickness)

are quite small when compared with the third (span), allowing for the dimensional

reduction of the Three-Dimensional (3D) structural analysis into a Two-Dimensional

(2D) section analysis and a One-Dimensional (1D) beam analysis. For the 2D analysis,

the computer code Variational Asymptotic Beam Section (VABS) [1, 2] implements

the Variational Asymptotic Method (VAM) to calculate equivalent section constitutive

properties for wing cross-sections, including those made of complex composite structure.

These section properties can then be utilized in a 1D beam analysis to solve for the

aeroelastic trim state as well as calculate the in-flight structural vibrations of the wing

due to maneuvers or gusts.

However, the ability of a reduced-dimensional analysis tool such as VABS to analyze

damage geometries that are essentially 3D, or to capture 3D stress field perturbations,

may be questionable. It has been shown that for complex structures that are “beam-

like” in some areas but not in others, it is possible to conduct a dimensionally reduced

analysis over the “beam-like” portion and 3D Finite Elements Analysis (FEA) over the

2



remainder as long as stress and displacement continuity conditions are enforced over

the interface of the cross-section. Such an analysis methodology would retain much of

the efficiency of the dimensionally reduced analysis while providing the accuracy of

3D FEA where it is necessary. This technique of using mixed-dimensional analysis

would have the potential of accurately modeling the effects and growth of damage

without resorting to a full 3D analysis everywhere along the wing.

The control system design for this class of aircraft requires consideration of the

inherent nonlinearities present in a system with large deflections even in the presence

of small strain. Certain types of damage could introduce further nonlinearity into

the system in the stress-strain relationship. To demonstrate this type of nonlinearity,

consider a crack that opens when the wing bends upwards and closes when the wing

bends downward. When the crack is closed, loading can be transferred over the crack

and the structure might behave as if the crack did not exist, but when the crack is

open there can be no load transfer over the crack and the structure could behave as if

the material there is not present. The section constitutive law as obtained by a section

analysis tool such as VABS is a linear matrix relationship between the integrated forces

and moments and the generalized strains and curvatures, but the presence of such a

crack would introduce a nonlinear constitutive relationship. The performance of the

controller in terms of the ability to perform maneuvers, mitigate transient vibrations

due to maneuver or gust loading, and suppress flutter behavior will be affected by such

a nonlinearity in the constitutive law. This issue is exacerbated because the presence,

location, and severity of the damage is unknown during the control design process.

Therefore, the control design must account for the possibility of such a damage growth

and be able to continue to perform adequately even if the damage develops and fails

to be undetected or occurs well before scheduled inspection and maintenance.

3



1.2 Background and Literature Review

1.2.1 Joined Modeling Scheme

Several researchers have developed and proposed different methods for tackling mixed

dimensional Finite Element (FE) problems. However, they can be categorized in two

main categories: transition elements and Multi-Point Constraints (MPC).

As one of the first approaches, Surana [3–6] has developed isoparametric transition

elements for both thin-wall and solid sections. In a similar vein, Cofer and Will [7],

Gümr and Schorderet [8], and Gümr and Kauten [9] have proposed various transition

elements for connecting solid elements to beam or shell elements. Other authors have

also contributed to the field, most notable among them are Dohrmann and Key [10],

Dohrmann et al. [11], Garusi and Tralli [12], and Chavan and Wriggers [13]. Although

transition elements can give good results for mixed dimensional analysis in terms of

stress and frequency, their use is limited to geometrically simple cross-sections with

simple constitutive properties and, thus, they are not suitable for analyzing composite

HALE wings with complicated cross-sectional topologies made of anisotropic materials.

MPC are popular for mixed dimensional analysis which, compared with transition

elements, are simpler to implement and, due to growing computational power of

computers, are being increasingly used in FEA. They are powerful methods, capable of

dealing with both linear and nonlinear constraints between nodes. Among pioneering

authors on the subject, Curiskis and Valliappan [14] have presented a solution algorithm

for linear constraint equations in FEA. Abel and Shephard [15] have also proposed

an algorithm for MPC in FEA. Their methods are convenient especially when the

number of constraints is not very large. Shephard [16] has devised a procedure which

employs the transformation approach for constraint application, thereby reducing

the number of equations to be solved by the number of constraints. In a series of

papers, NASA Langley Research Center has developed and published a method for
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analyzing structures composed of two or more independently modeled substructures,

based on a hybrid variational formulation with Lagrange multipliers, and applied it to

global/local problems for 1D and 2D interfaces [17–21].

Most methods discussed so far, have been used for solid to shell coupling. However,

a few authors have addressed the problem of solid to beam coupling. Among them

Monaghan et al. [22] have obtained MPC between beam and solid elements by

equating the work done by the stresses in each part of the model at the interface.

Then McCune et al. [23] extended the method for shell to solid coupling. Shim et al.

[24] have employed the method for some test cases. Avdeev et al. [25] have presented

a formulation for 1D/2D coupling in sandwich beam structures based on a penalty

function method. However, the methods are only applicable to problems with simple

cross-sections and none of them considered composite beams as a possible test case.

As an alternative approach, Song and Hodges [26] have proposed a transformation

matrix between the beam degrees of freedom and the solid degrees of freedom at the

intersection, in such a way that all the nodal degrees of freedom of the solid part at

the interface are constrained by the nodal degrees of freedom of the beam portion

at the intersection. Information about the deflections, stresses, and strains at the

intersection is available from the cross-sectional analysis, particularly from VABS.

Therefore, the idea is to use that information to find the transformation matrix. Then

dimensionally reduced analysis methods as VAM can be implemented for the beam-like

parts and full 3D FEA can be used when needed, such as near the boundaries or

around the areas with sharp geometric nonlinearities. Continuity conditions at the

joined sections should be enforced using transformations from the interface between

the 3D part and asymptotic beam theory. However, the standalone application written

in FORTRAN90 lacks the generality and flexibility required by FEA. Moreover, it has

not been developed for composite beams [27].
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1.2.2 Nonlinear Aeroelasticity of HALE aircrafts

Over the years, the problem of aeroelasticity of both conventional [28–32] and composite

and non-conventional aircrafts [33–37] has been the subject of numerous studies.

Excellent and extensive reviews on aircraft aeroelasticity can be found in Refs. [38–

41]. Aeroelasticity of high A wings in general, and HALE aircrafts specifically,

has been studied by many researchers. An experimental and theoretical study on

aeroelastic response of high A wings was carried out by Tang and Dowell [42]. An

experimental highA wing aeroelastic model with a slender body at the tip along with

a theoretical model based on nonlinear beam theory and the ONERA aerodynamic

stall model [43] has been constructed, and the response due to flutter and LCO has

been measured in a wind-tunnel test. The theoretical dynamic flutter boundary is

determined by a dynamic perturbation analysis about a static equilibrium. Using

the same theoretical model, Tang and Dowell [44] has also studied the effects of

geometric structural nonlinearity on flutter and LCO of high A wings. They have

shown the importance of the geometric structural nonlinearity effects of the beam

theory on both the perturbation flutter boundary and the nonlinear response. Patil,

Hodges, and Cesnik [45, 46] have studied nonlinear aeroelasticity of HALE aircrafts.

They have shown the importance of taking into account the effects of nonlinear

flexibility in the calculation of trim and flight dynamics characteristics. It is shown

that the aeroelastic behavior of the complete aircraft may be drastically different

from what it would be without such considerations. Patil and Hodges [47, 48] have

demonstrate the need of nonlinear analysis to capture the aeroelastic behavior of

HALE aircrafts and linear aeroelasticity may result to a misleading analysis. In order

to show the significance of structural geometric nonlinearities and dynamic stall on

the aeroelastic response of HALE aircrafts, Jian and Jinwu [49] have developed a first

order state-space model for nonlinear aeroelastic analysis of high A flexible wings

using the fully intrinsic nonlinear composite beam model of Hodges [1, 50] and the
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ONERA aerodynamic stall model. Through numerical simulations, it was shown that

while at the lower flight speeds the geometric stiffness could lead to the LCO, by

increasing the flight speed the effects of dynamic stall become more important in

determining the onset and amplitude of flutter and LCO. Two different formulations

for aeroelastic coupling of geometrically nonlinear structures and linear unsteady

aerodynamics have been presented by Demasi and Livne [51]. The calculation of

time domain integrals is necessary for the first method, whereas the second method

converts unsteady aerodynamic time domain equations to second-order and couples

them directly with the second-order structural equations without the need to compute

time-domain convolution integrals. In order to provide an improved understanding

of nonlinear phenomena occurring in the neighborhood of the flutter boundary and

beyond, Arena et al. [52] have discussed the nonlinear aeroelastic modeling and the

post-flutter behavior of HALE wings. The focus is on the post-flutter condition past

the Hopf bifurcation when the effects of unsteady aerodynamics and dynamic stall

on the dynamic behavior of the wing are more profound. Various effects of engine,

including its thrust, on aeroelastic behavior of high A flying wings have been studied

by Mardanpour and his coworkers [53–56]. The fully intrinsic nonlinear composite

beam model of Hodges is coupled with Peters’ unsteady aerodynamic theory [57]

to form the nonlinear aeroelastic system under consideration. Castellani et al. [58]

have developed two methods based on nonlinear FEM and multibody dynamics for

the nonlinear aeroelastic analysis of high A wings and shown significant differences

between linear and nonlinear analysis.

Previously cited research works have all assumed an undamaged structure for

aeroelastic analysis and simulations. However, a number of authors have contributed

to the theoretical and experimental aeroelastic study of damaged wings [59–62]. In

an attempt to assess the aerodynamic effects of combat damage on wings and tails,

Spearman [63] conducted a series of wind-tunnel tests at the NASA Langley Research
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Center. The results show that the major damage to the vertical tail may lead to the

loss of the aircraft at any speed. This is not the case, however, for the wing and

horizontal tail which is counter-intuitive. Some authors have sought probabilistic and

nondeterministic approaches, regarding damages as structural uncertainty [64–71].

On the other hand, other researchers have resorted to analytical and deterministic

approaches for dealing with damage modeling and analysis. Among them, Kapania and

Castel [72] have presented a 1D FE for aeroelastic analysis of undamaged and damaged

wings, considering the effects of transverse shear as well as bending-stretching coupling

which allows for unsymmetric laminations and arbitrary geometry. Through simulation,

it is shown that unsymmetry due to damage can have a harmful effect because the

extensional, bending, and bending-extension stiffness will decrease simultaneously. The

model, however, may not properly account for the stress distribution and load transfer

mechanisms in the damaged structure. Zhang [73], Douxchamps [74], and Bauchau et al.

[75] have studied the nonlinear aeroelastic effects of matrix microcracking in damaged

composite aerospace structures. They have shown that although the aeroelastic

response of a damaged wing is qualitatively similar to that of an undamaged wing,

matrix microcracking can result in oscillations with considerably higher amplitude.

In a similar fashion, Kim, Atluri, and Loewy [76] have presented numerical methods

to investigate the flutter response and aeroelastic stability of composite plates with

matrix microcracking. The coupled bending and torsional vibration of a fiber-reinforced

composite cantilever with an edge surface crack is presented by Wang et al. [77]. Using

the approach presented in Ref. [77], Wang and Inman [78] have studied crack-induced

effects on aeroelasticity of an unswept composite wing. The edge crack was modeled

using the local flexibility concept, while steady and quasi-steady aerodynamics are

employed to compute aerodynamic loads. It was shown that although for most cases

the existence of cracks can negatively affect the flutter speed, for some cases the crack

may actually improve the flutter boundary. In order to better understand the effects
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of damage, Conyers et al. [79, 80] have modeled a plate-like wing with a hole using

Lagrange’s equations and coupled it with an unsteady aerodynamics model based on

the doublet lattice method. The flutter characteristics have been compared with wind

tunnel test results, verifying the sufficiency of linear analysis. Dang, Kapania, and

Patil [81] have presented an analytical modeling of cracked thin-walled beams under

torsion derived using the principle of virtual work.

Reduced order flutter analysis has also gained traction in the aerospace community.

In particular, Reduced Order Modeling (ROM) schemes based on Proper Orthogonal

Decomposition (POD) have been proven successful for a variety of aeroelasticity

problems. A review of the POD method and its utility for dynamical characterization

and order reduction of mechanical systems is presented by Kerschen et al. [82]. Through

numerical simulation of vibro-impact of a continuous beam and transient and frequency

response of a truss structure, they have shown that the principal orthogonal mode

found from the POD method can be considered as an alternative to linear mode shapes

as well as to nonlinear normal modes, and they can provide reduced-order models that

represent a good characterization of the dynamics. However, they believe that the

method may not always work when the data set lies on a nonlinear manifold, due to

the linear nature of the method. Thomas et al. [83] and Hall et al. [84] have used POD

for ROM and aeroelasticity analysis in the transonic regimes for a typical 2D wing

section. In both references, small-disturbance unsteady aerodynamics was considered

where the complex valued flow snapshots were calculated, at a few discrete frequencies,

by solving the 2D Euler equations in frequency domain. The ROM was then formed

from the snapshots and POD, coupled with a 2-DOF structural model of an airfoil.

Although the full model has thousands of DOF, the aeroelastic stability was efficiently

and accurately enough determined by solving a generalized eigenvalue problem using

only twenty or fewer aerodynamic states. Lieu and Lesoinne [85] have used a POD-

based ROM for three-dimensional flutter analysis at low free-stream Mach numbers
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outside the transonic regime. They have specifically studied the robustness of the

ROM with respect to varying free-stream Mach number, proposed a Mach-adaptation

strategy, and compared the results with the full model. They have shown that the

POD-based ROM is sensitive to Mach number. The aeroelastic problem has been

formulated as a two-field, arbitrary Lagrangian-Eulerian finite element-finite volume

system of equations. Instead of solving an eigenvalue problem for studying the stability

of the linearized, reduced-order, coupled system of fluid-structure equations, they have

considered the time histories of the lift as the output of the system, noting that the

time histories of the lift with increasing amplitude indicates a dynamic flutter condition.

POD and the method of snapshots in time have been used to find the reduced bases for

the fluid system at different Mach numbers, and then two methods of interpolation of

the bases were considered to find the reduced bases at intermediate Mach numbers: a

Lagranges interpolation formula and the subspace angle method. While the latter was

shown to be a good representation of the full model at intermediate Mach numbers,

the former fails to give an acceptable approximation. The approach proposed in

[85] was used by Lieu et al. [86] for aeroelastic modeling of a complete F-16 fighter

aircraft at the transonic regime. The results show good agreement between the flutter

boundaries found from the ROM method and those predicted by a full-order nonlinear

CFD based aeroelastic analysis, while the computations were performed five times

faster. A method based on the interpolation in a tangent space to the Grassmann

manifold was developed by Amsallem et al. for use in CFD based applications [87, 88].

Exploiting the symmetric positive definite nature of linear structural models, they

have devised an algorithm to first map the ROM onto a tangent space to the manifold,

then interpolate the projected ROM in the tangent space and finally map them back

to the underlying manifold. It was shown the interpolation procedure preserves the

structure of the manifold.
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1.2.3 Flutter Suppression

Flutter, left unchecked, can lead to catastrophic failure of the aircraft. Therefore,

designing passive and active control systems to either delay or suppress the flutter is

of utmost importance.

The large number of DOF arising from FEM discretization of structural models

make the Full Order Model (FOM) impractical for controller design. The issue begs

for a Reduced Order Model (ROM) derived from the FOM. Due to its simplicity, many

references have used a 2D typical section as the representative and applied various

linear and nonlinear controllers [89–92].

Linear Quadratic Regulation (LQR) has also been used extensively for flutter

suppression and maneuver control of aeroelastic aircrafts [93–95]. Karpel [96] has

presented an analytical design technique for active flutter suppression and gust al-

leviation using state-space aeroelastic modeling. The controller gains are constant

and only some states are used as feedback. LQR and Linear Quadratic Gaussian

(LQG) control laws have been used as the control laws for the flutter suppression of

typical sections by Block and Strganac [97] and Frampton and Clark [98], respectively.

Structured Model Reference Adaptive Control (SMRAC) for a wing section with

structural nonlinearity has been presented by Ko et al. [99]. The control system enjoys

the benefit of being able to suppress LCO at higher flight velocity and to effectively

deal with the actuator saturation. Behal et al. [100] have also designed an output

feedback nonlinear adaptive controller to suppress the LCO in an aeroelastic 2D wing

section. Stability is guaranteed in the presence of inaccurate system parameters. Lee

and Singh [101] have designed a robust output feedback controller for a 2D section

with pitch nonlinearity. Wei and Mottershead [102] have designed a robust passivity

based continuous sliding mode control for an under-actuated 2D wing section with

torsional nonlinearity. Numerical simulations verify the local stability of the controller.

A robust nonlinear sliding mode controller which uses leading and trailing edge flaps
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as the control surfaces is presented by Ghorawat et al. [103] for stabilization of LCO of

a nonlinear 2D wing section. This objective is achieved in the presence of gust loads

and parameters uncertainty.

A number of other authors, however, have used continuum structural FOM and

from that extracted a ROM of the structure [104–106]. Patil and Hodges [93, 107] have

designed an optimal output feedback control for the flutter suppression and gust load

alleviation of a nonlinear aeroelastic HALE aircraft. An ad hoc ROM is constructed

from the nonlinear model of HALE aircraft and sensor outputs are used directly.

It is shown that the performance and robustness of the controller is comparable to

both LQR and LQG controllers. A similar approach has been employed by Richards

[108]. Based on a ROM of a very flexible aircraft developed in Ref. [109], Sheare and

Cesnik [110] have designed a nonlinear trajectory controller for the aircraft. The overal

controller consists of an inner loop with LQR and dynamic inversion control laws and

an outer loop that handles kinematic nonlinearities. Raghavan and Patil [111–113]

have coupled a multistep nonlinear dynamic inversion controller based on a ROM,

with a nonlinear guidance law to design a flight controller for path following mission

of high A flying wings. Addressing the need for a fast and reliable ROM procedure

capable of being used in on-line and real-time simulation and controls applications,

Amsallem et al. [114] have proposed a numerical algorithm for interpolating structural

dynamics ROM built upon the method established in Refs. [87, 88]. The performance

of the algorithm was evaluated through two numerical examples: a discrete multiple

mass-spring-damper system and a tapered, backward-swept cantilevered wing. A

modification of the interpolation method in [114] has been used by Amsallem and

Farhat [115] for online robust interpolation of linear parametric projection based

ROM, in which a new linear ROM for a new set of parameters is constructed from

the precomputed linear ROM. In contrast to [114], an additional step has been

performed before the interpolation in which the precomputed ROM is transformed
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into a consistent set of generalized coordinates through a congruence transformation

resulting from analytical solution of a minimization problem. This step is performed

off-line. The second step is the same as the interpolation in [114] which is carried

out on-line. It was demonstrated that the method is robust enough in dealing with

cases in which the set of the sampled parameters leads to a mode veering phenomenon.

It is known that, in general, the stability of the ROM derived from an FOM is not

guaranteed even if the FOM itself is stable [116]. A method for stabilization of a

projection-based ROM is proposed by Amsallem and Farhat [117]. The method is

basically fixes the right Reduced Order Bases (ROB) and solves a convex optimization

problem that searches for the left ROB in the already available reduced space. The

operations are not performed directly on the ROB themselves, therefore, it can be

considered as a post-processing step independent of the method of finding the ROM,

preserving its accuracy.

1.3 Present Work

To add to the aforementioned bulk of literature, this thesis will focus on aeroservoelastic

analysis of damaged high A wings. When there exist no damage or geometrical

nonlinearites in the structure of a HALE aircraft wing, it can be rigorously modeled

as a 1D beam. However, it is not the case in the presence of damage or geometric

nonlinearities. In such a situation, on the one hand, 1D beam models fail to provide

a viable framework for damage analysis. On the other hand, studying the effects

of damage on aeroelastic behavior of wings using full 3D FEM, requires a detailed

CFD/CSD analysis. Such an analysis is a computationally intensive task which

requires lots of processing power. For the case of a damaged HALE aircraft wing,

one is essentially dealing with a structure which for the most part can be properly

modeled as a reduced-dimensional beam. However, small areas need to be regarded as

a 3D continuum. Thus, a mixed-dimensional modeling approach appears to be of a
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great value. Therefore, in this research a computationally economical approach for

dealing with the problem of aeroservoelasticity of damaged HALE aircraft wings will

be proposed. To this end, it suggests and investigates a mixed-dimensional analysis

technique in which most of the structure of a damaged high A wing is modeled as

1D beam, and the small areas around the damage are regarded as full 3D. This way

one can benefit from the computational efficiency of dimensionally reduced analysis,

while preserving the accuracy of full 3D FEA where it is necessary. A transformation

between the 1D and 3D parts of the model is necessary, in order to enforce continuity

conditions at the joined interface. The approach also allows aeroelasticity modeling

using beam theory, avoiding 3D CFD analysis. This way, stability analysis as well as

nonlinear time-simulation would become possible at a fraction of computational cost

of a CFD/CSD analysis. Moreover, it will equip the control system designer with a

computationally efficient, yet numerically accurate, tool for designing and evaluating

active flutter suppression systems. The approach is specially beneficial at the early

stages of airframe design and analysis.

The rest of the dissertation is organized as follows:

Chapter II details the methodology and modeling approach for a joined 3D/1D FE

analysis of damaged HALE aircraft wings. A geometrically exact displacement-based

beam model, which is adopted for the 1D part of the structure, is formulated. Then,

unsteady aerodynamic forces and moments are integrated with the 1D beam model to

provide a nonlinear aeroelastic element. The transformation matrix between the nodal

DOF of the 1D and 3D parts at the joined intersection is derived using the recovery

equations of the variational asymptotic method. Also, POD and method of snapshot is

introduced to find a ROM of the joined 3D/1D model. This chapter is, then, concluded

by the formulation of an active flutter suppression system in LQR/LQG framework.

Chapter III is entirely designated to showing the validity of various analyses

performed using the joined 3D/1D model. A layered composite beam, clamped at one
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end and loaded by a transverse load at the other end, is considered as a test case.

First static stress analysis and eigenanalysis are studied for an undamaged structure.

Subsequently, different damage scenarios for that structure are investigated. For all

test cases, the results are compared and contrasted with full 3D FEA.

Chapter IV will present aeroelastic analysis of a high A composite wing using

the joined 3D/1D approach. Through linear aeroelastic stability analysis, divergence

and flutter boundaries of the wing are determined for different composite layup

arrangements and various damage scenarios. Nonlinear analysis is, then, followed and

effects of large deformations are investigated on the aeroelastic behavior of the wing.

Also, LCO are studied using time-integration of nonlinear equations of motion, and

effects of damage on LCO characteristics are highlighted.

Chapter V will detail a flutter suppression control system. POD and method of

snapshots are exploited to extract a ROM of the joined 3D/1D model, to be used

as a surrogate model for the controller design. This will be followed by describing

the control system, which is designed using LQR/LQG. Performance and robustness

of the controller, in the presence of damage and loss of control power, are assessed

through nonlinear time-simulations. Also, effects of sensor/actuator non-collocation

on the performance of the controller will be discussed.

Chapter VI, finally, will summarize the findings of the research, and some topics

for future work are suggested.
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CHAPTER II

THEORY

2.1 Introduction

Performance requirements of HALE aircrafts drive designers towards very slender high

A wings to decrease the induced drag, and extensive use of light weight composite

materials to reduce overall weight. The wings therefore undergo geometrically nonlinear

behavior such as large deflections and rotation. Since HALE aircraft wings are very

slender, they can properly be modeled as beam structures. A beam model for HALE

aircraft wings, therefore, must account for large deformations. On the other hand,

damage is a 3D phenomenon which cannot be properly modeled in a 1D framework.

Therefore, for the joined 3D/1D fininte element analysis proposed in this thesis, the

damage is fully contained in a relatively small 3D continuum part of the structure.

Most of the structure, however, is modeled as a 1D beam. The continuity conditions

between 1D and 3D part is derived and enforced at the interface. For the purpose of

joined 3D/1D finite elements analysis of damaged HALE aircraft wings, a geometrically

exact displacement based FEM 1D beam model is desired. The model also provides

a compatible framework with the 3D continuum part of the wing. To this end, a

geometrically exact beam model developed by Bauchau [118] is being used for the 1D

part. For the 3D part standard continuum elements of Abaqus are being exploited.

To enforce the continuity conditions at the interface between 1D and 3D parts,

variational asymptotic method is used to derive the transformation between the joined

elements.

Aerodynamic forces and moments are applied to the flexible wing, and hence, de-

form the structure. The resulting deformations alter the aerodynamic loads. Therefore,
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618 16 Formulation of exible elements

sectional loads, three forces and three moments. Furthermore, the three-dimensional
strain eld at all points of the cross-section can be recovered once the sectional
strains are known.

For nonlinear problems, the decomposition of the beam problem into a linear,
two-dimensional analysis over the cross-section, and a nonlinear, one-dimensional
analysis along its span was rst proposed by Berdichevsky [310]. Hodges [311] has
reviewed many approaches to beam modeling; he points out that although the two-
dimensional nite element analysis of the cross-section seems to be computationally
expensive, it is, in fact, a preprocessing step that is performed once only.

A uni ed theory presenting both
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Fig. 16.11. Curved beam in the reference and
deformed con gurations.

linear, two-dimensional analysis over
the cross-section, and a nonlinear, one-
dimensional analysis along the beam’s
span was further re ned by Hodges and
his co-workers [312, 313]. The non-
linear, one-dimensional analysis along
the beam’s span corresponds the ge-
ometrically exact beam theory devel-
oped earlier based on simpli ed kine-
matic assumptions. More sophisticated
beam theories have been developed that
account for Vlasov effects [314] or the
trapeze effect [315]. Detailed devel-
opments of nonlinear composite beam
theory developed by Hodges and his

coworkers are found in his textbook [316] and applications to multibody systems
in ref. [283].

16.3.1 Kinematics of the problem

Figure 16.11 depicts an initially curved and twisted beam of length L, with a cross-
section of arbitrary shape and areaA. The volume of the beam is generated by sliding
the cross-section along the reference line of the beam, which is de ned by an arbi-
trary curve in space. Curvilinear coordinate α1 de nes the intrinsic parameterization
of this curve, section 2.2.1, i.e., it measures length along the beam’s reference line.
Point B is located at the intersection of the reference line with the plane of the cross-
section.

In the reference con guration, an orthonormal basis, B0(α1) = (b̄1, b̄2, b̄3), is
de ned at point B. Vector b̄1 is the unit tangent vector to the reference curve at that
point, and unit vectors b̄2 and b̄3 de ne the plane to the cross-section. An inertial
reference frame, FI = [O, I = (̄ı1, ı̄2, ı̄3)], is de ned, and the components of the
rotation tensor that brings basis I to B0, resolved in basis I, are denoted R

0
(α1).

The position vector of point B along the beam’s reference line is denoted
x0(α1). The position vector of material point P of the beam then becomes
x(α1, α2, α3) = x0(α1) + α2 b̄2 + α3 b̄3, where α2 and α3 are the material

Figure 2.1: Moving beam in an inertial reference frame [119]

the structural and aerodynamic problems are essentially coupled and the interactions

need to be accounted. Finite-state induced flow theory of Peters et al. [57] is exploited

as the unsteady aerodynamic model to compute aerodynamic forces and moments

acting on the wing.

2.2 A Geometrically Exact Beam Model

A displacement-based geometrically exact FE beam model, developed by Bauchau

[118], is adopted and the formulation is presented in this section. More details can be

found in [118].

An initially curved and twisted beam moving in an inertial reference frame I is

shown in Fig. 2.1. An orthogonal basis, B0 (α1) =
(
b1, b2, b3

)
, is attached to the point

B located at the intersection of the refernce line with the plane of the cross section

of the beam. α1 is the curvilinear coordinate measuring the length along the beam’s

reference line. The beam can undergo large deformations, however, the strain remains

small. The position vector of B is denoted as x0 (α1), and the position vector of a

material point P of the beam is expressed as
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x (α1, α2, α3) = x0 (α1) + α2 b2 + α3 b3, (2.1)

where α2 and α3 are the material coordinates along unit vectors b2 and b3, respectively.

The position vector of P in the deformed configuration can be written as

X (α1, α2, α3) = X0 + w1B1 + (w2 + α2)B2 + (w3 + α3)B3, (2.2)

where the position of point B can be expressed as the sum of the initial position

x0(α1) and the displacement vector u (α1) as X0 (α1) = x0 + u. The orthonormal

basis B(α1) = (B1, B2, B3) is attached to the point B in the deformed configuration.

The samll warping field is expressed in the deformed configuration as w(α1, α2, α3) =

w1B1 + w2B2 + w3B3.

The components of the rotation tensor that brings the reference frame I to the

frame B0, expressed in basis I, are denoted as R
0

(α1), and the components of the

rotation tensor that brings the basis B0 to the frame B, expressed in basis I, are

denoted as R(α1). Since Bi = R bi = (RR
0
) ii, Eq. (2.2) can be rewritten as

X(α1, α2, α3) = x0 + u+ (RR
0
)(w3 + α2 i2 + α3 i3). (2.3)

Having the position vector defined, the inertial velocity vector of the point P, ignoring

the contribution from the warping field, can be found by taking the time derivative of

the position vector in the inertial frame, I, as

v = u̇+ Ṙ R
0
s∗

= u̇+RR
0
ω̃∗s∗

= u̇+RR
0
s̃∗Tω∗.

(2.4)

Here, ω∗ is the angular velocity vector expressed in B farme, and ˙(·) denotes differen-
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tiation with respect to time. Thus

v∗ = (RR
0
)Tv

= (RR
0
)T u̇+ s̃∗Tω∗.

(2.5)

The sectional strain measures are defined as

e =





ε

κ





=





x′0 + u′ − (RR
0
) i1

k +Rki




, (2.6)

where k = axial
(
R′RT

)
is the sectional curvature vector expressed in I and (·)′

denotes derivative with respect to α1. The strain measures, consisting of axial and

shear strains, are expressed in the deformed basis, B, as ε∗ = (RR
0
)T ε. The curvature

components, consisting of twist and bending curvatures, are expressed in the deformed

beam basis, B, as κ∗ = (RR
0
)Tκ. For all tensors, the notation (·)∗ denotes that the

components of the tensor are expressed in the deformed basis, B.

Cross sectional forces, N∗, and moments, M∗, are related to the generalized strain

measures through the sectional constitutive law as





N∗

M∗





= C∗




ε∗

κ∗




, (2.7)

where C∗ is the 6×6 sectional stiffness matrix which can be found from VABS.

Potential energy, U , consisting of strain energy of the beam can be expressed as

U =
1

2

∫ L

0

e∗TC∗e∗ dα1. (2.8)
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Using Eq. (2.5), the kinetic energy of the beam, K, is defined by the expression

K =
1

2

∫ L

0

∫

A
ρ v∗Tv∗ dA dα1

=
1

2

∫ L

0

∫

A
ρ
[
u̇T (RR

0
) + ω∗T s̃∗

] [
(RR

0
)T u̇+ s̃∗Tω∗

]
dA dα1.

(2.9)

Integration over the cross section, A, can be carried out to define the constant sectional

inertia properties as

m =

∫

A
ρ dA,

η∗ =
1

m

∫

A
ρ s∗ dA,

%∗ =
1

m

∫

A
ρ s̃∗s̃∗T dA,

(2.10)

where m is the mass per unit length of the beam, η∗ is the mass center position of

the section, and %∗ is the sectional inertial tensor per unit length of the beam. The

kinetic energy, therefore, can be expressed as

K =
1

2

∫ L

0

[
mu̇T u̇+ 2mu̇T (RR

0
) η̃∗Tω∗ + ω∗T%∗ω∗

]
dα1

=
1

2

∫ L

0

∫

A
V∗TM∗V∗ dα1,

(2.11)

where M∗ is the 6×6 inertia matrix arranged as

M∗ =




mI m η̃∗T

m η̃∗ %∗


 , (2.12)
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and the velocities are cast into the vector V∗ as

V∗ =




(R R
0
) 0

0 (RR
0
)








u̇

ω





= (RR
0
)TV .

(2.13)

In Eq. (2.13), the inertial velocities of the cross section are defined as VT = {u̇T , ωT}.

Therefore, if the sectional linear and angular momenta expressed in B are denoted as

h∗ and g∗, respectively, then it can be said that

P∗ =





h∗

g∗





=M∗V∗. (2.14)

Having the kinetic and potential energies for the beam defined, the governing

equations of a beam can be found from Hamilton’s extended principle, which can be

written as ∫ t2

t1

∫ L

0

[
δ(K − U) + δW

]
dt dα1, (2.15)

where δ and δW are the Lagrangian variation operator and the virtual work density

of externally applied loads, respectively. Using Eq. (2.8), the variation of the potential

energy can be found as

δU =

∫ L

0

(
δε∗TN∗ + δκ∗TM∗) dα1. (2.16)

Variations of generalized strain measures can be found by use of Eq. (2.6) as

δε∗ = (RR
0
)T
[
δu′ + (x̃′0 + ũ′)δψ

]
,

δκ∗ = (RR
0
)T δψ′,

(2.17)

in which δψ = axial(δRRT ) is the virtual rotation vector.
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In a similar manner, variation of the kinetic energy, δK, can be found from

δK =

∫ L

0

δV∗TM∗V∗dα1. (2.18)

Variations of the velocities can be expressed as

δ
[
u̇T (RR

0
)
]

= (δu̇T + δψT ˙̃u
T

)(RR
0
),

δω∗T = ˙δψ
T

(RR
0
).

(2.19)

The kinetic energy, therefore, can be expressed as

∫ L

0

[
(δu̇T + δψT ˙̃u

T
)(RR

0
)h∗ + ˙δψ

T
(RR

0
)g∗
]

dα1. (2.20)

By expressing the linear and angular momenta in the inertial reference frame, I, using

P =





h

g





= (RR
0
)P∗, (2.21)

the kinetic energy expression can be simplified as

∫ L

0

[
(δu̇T + δψT ˙̃u

T
)h+ ˙δψ

T
g
]

dα1. (2.22)

Putting Eqs. (2.16) and (2.22) back into Eq. (2.15), Hamilton’s extended principle

results in

∫ t2

t1

∫ L

0

[(δu̇T + δψT ˙̃u
T

)h+ ˙δψ
T
g − (δu′T + δψT ẼT

1 )N

− δψ′TM + δuTf + δψTm] dt dα1 = 0,

(2.23)

where f and m are the externally applied forces and moments on the beam, respectively.

Finally, upon integrating by parts, the governing equations of flexible beam can be
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found as

ḣ−N ′ = f,

ġ + ˙̃uh−M ′ − (x̃′0 + ũ′)N = m.

(2.24)

Eqs. (2.24) are highly nonlinear and must be solved using the finite element method.

The set of all forces acting on the beam can be identified as elastic, inertial, dissipative,

and external forces. From Eqs. (2.24) the inertial forces, F I , can be shown to have

the form

F I = Ṗ +




0 0

˙̃u 0


P , (2.25)

which, upon expanding the terms, can be cast in a compact form as

F I =





mü+ ( ˙̃ω + ω̃ω̃)mη

mη̃ü+ %ω̇ + ω̃%ω




, (2.26)

which can be linearized as

∆F I = K





∆u

∆ψ





+G





∆u̇

∆ω





+M





∆ü

∆ω̇




. (2.27)

Rotation is parametrized using Wiener-Milenković parameters [118] such that

ω = H(θ) θ̇,

κ = H(θ) θ′,

(2.28)

where θ is the rotation vector and H is the tangent tensor defined in [118]. Using

Wiener-Milenković parameters, the displacement and rotation variables are grouped

in the vector qT = {uT , θT}. Therefore, the inertial forces can be shown with the
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compact form

∆F I = K∆q + G∆q̇ +M∆q̈. (2.29)

The contribution of the elastic and dissipative forces, denoted as FC and FD, are

defined as

FC =





N

M




,

FD =





0

(ũ′0 + ũ′)TN




,

(2.30)

with the linearized forms as

∆FC = S∆q′ +O∆q,

∆FD = T ∆q′ +Q∆q.

(2.31)

The reader is advised to consult Ref. [118] for detailed expressions for the matrices K,

G, M, S, O, T , and Q.

Having the inertial, elastic, and dissipative forces described by Eqs. (2.26) and

(2.30), the governing equation, Eqs. (2.24), can be recast in a compact form as

F I −FC ′ + FD −F ext = 0, (2.32)

which is a description of dynamic equilibrium of the beam. In Eq. (2.32), the parameter

F ext represents the vector of external forces. In this thesis, the external force vector is

comprised of aerodynamic and control forces and moments acting on the beam, to

be defined in the next chapters. In order to obtain a finite element formulation of

the beam, a weighted residual formulation is adopted here. The weak form of the
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dynamic equilibrium equation can be described as

∫ L

0

NT (F I −FC ′ + FD −F ext) dα1 = 0, (2.33)

where N is the matrix of test functions. Integrating by parts on the second term yields

∫ L

0

(NTF I +N ′TFC +NTFD −NTF ext) dα1 = 0, (2.34)

which can be linearized recalling Eqs. (2.29) and (2.31) as

∫ L

0

[NT (F I +K∆q+G∆v +M∆a+ FD + T ∆q′ +Q∆q −F ext)

+N ′T (FC + S∆q′ +O∆q)] dα1 = 0.

(2.35)

The assumed shape functions are exploited to interpolate the elemental displacement,

q, velocity, v, and acceleration, a, variables in terms of their nodal values, q̂, v̂, and â,

respectively, as

q(α1) = N q̂, q′(α1) = N ′ q̂,

v(α1) = N v̂, a(α1) = N â.

(2.36)

Accordingly, the weak form of the dynamic equilibrium can be described as

M̂ ∆â+ Ĝ∆v̂ + K̂ ∆q̂ = F̂
ext − F̂ , (2.37)
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where the elemental mass, M̂ , gyroscopic, Ĝ, and stiffness, K̂, matrices are found as

M̂ =

∫ L

0

NTM N dα1, (2.38a)

Ĝ =

∫ L

0

NTG N dα1, (2.38b)

M̂ =

∫ L

0

[NT (K +Q) N +NTT N ′ +N ′TS N ′ +N ′TON ] dα1, (2.38c)

respectively, and the force vectors F̂
ext

and F̂ are defined as

F̂
ext

=

∫ L

0

N ′TF ext dα1, (2.39a)

F̂ =

∫ L

0

(NTF I +NTFD +N ′TFC) dα1, (2.39b)

respectively. More details are provided in Ref. [118]. In the next section, the unsteady

aerodynamic forces and moments acting along the beam, accounted for in F̂
ext

, are

derived.

2.3 Unsteady Aerodynamics

In order to compute aerodynamic loads acting on the wing of the aircraft, an airfoil is

rigidly attached to each node of the beam element. To this end, it is assumed that the

aerodynamic properties of the airfoil as well as the inertia forces remain unaffected by

the warping of the cross-section. According to thin airfoil theory, the aerodynamic

forces consist of lift and drag which are applied at the aerodynamic center of the beam.

At low air speeds and incompressible flow regimes, which are typical of flight speeds

of most HALE aircrafts, the location of the aerodynamic center remains constant at

the quarter-chord of the airfoil. Since the airfoil is rigidly attached to the nodes of the

beam element, its kinematic parameters are fully defined by those of the corresponding

node. Configuration of an airfoil attached to a beam element and moving in an inertial
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12.2. RELATIVE FLOW VELOCITY 319
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Figure 12.2: Configuration of an airfoil in the reference and present configurations.

12.2 Relative flow velocity

The formulation of two-dimensional, unsteady aerodynamic theories typically requires the velocity of the
flow with respect to the airfoil, which simply writes

v̂qca = V∞ + λ− va, (12.7)

where V∞ is the far field flow velocity and λ the average inflow velocity over the airfoil. When using the
internal aerodynamic model, see section 10.2.1, airstations must be located at the airfoil quarter-chord point,
see section 13.3.2; hence, eq. (12.7) gives the relative velocity of the flow with respect to the airfoil quarter-
chord point, denoted v̂qca . However, the relative velocities at the airfoil quarter-, mid- and three-quarter-chord
points, denoted v̂qca , v̂mc

a and v̂tca , respectively, are sometimes used in unsteady aerodynamics theories, as
illustrated in fig. 12.3. For instance, the unsteady aerodynamic developed by Peters, see section 12.3, is
based on the relative velocity of the flow with respect to the airfoil mid-chord point. Since the airfoil is
assumed to be rigid, the following relationships must hold: v̂qca = v̂mc

a + ω̃aη and v̂tca = v̂mc
a − ω̃aη, where η

is the relative position vector of the quarter-chord point with respect to the mid-chord point.

a2

a3

vqc
vmc

vtc

quarter
chord mid

chord

three-quarter
chord

�

Figure 12.3: Structural velocities at the airfoil quarter-, mid- and three-quarter-chord points.

Typically, the components of these relative velocity vectors in the airfoil basis, A, are required

v̂qc∗a = RT
a [V∞ + λ− v̂qca ] (12.8a)

v̂mc∗
a = RT

a

[
V∞ + λ− (v̂qca − ω̃aη)

]
= v̂qc∗a + ω̃∗

aη
∗, (12.8b)

v̂tc∗a = RT
a

[
V∞ + λ− (v̂qca − 2ω̃aη)

]
= v̂qc∗a + 2ω̃∗

aη
∗, (12.8c)

Figure 2.2: An airfoil in the reference and present configurations [119]

reference frame is shown in Fig. 2.2. The orientation of the airfoil is defined by an

orthonormal basis A = (a1, a2, a3) attached to the quarter chord location of the airfoil.

According to Fig. 2.2, if the nodal point is denoted as s, the inertial position of the

aerodynamic center of the airfoil, ua, can be described as

ua = us0 + us + d

= us0 + us +R
s
d0,

(2.40)

where us0 and us are the inertial position of the node in the reference and deformed

configurations, respectively, and R
s

defines the orientation of the beam at that cross

section. The orientation tensor, R
a
, of the basis A then can be found from

R
a

= R
s
R
a0
. (2.41)

The velocity of the aerodynamic center, va, can be easily found as

va = vs + ω̃s d. (2.42)
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The relative velocity of the flow with respect to the airfoil aerodynamic center, v̂qc
a , is

defined as

v̂qc
a = V ∞ + λ− va, (2.43)

in which V ∞ and λ are the free-stream flow velocity and the average inflow velocity,

respectively. Similarly, the rerelative velocity of the flow with respect to the airfoil

mid-chord point, v̂mc
a , which is needed for the unsteady aerodynamic model of Peters

et al. [57] is written as

v̂mc
a = V ∞ + λ− (v̂qc

a − ω̃s η), (2.44)

where η is the relative position of aerodynamic center with respect to the mid-chord

point. To facilitate the computation of aerodynamic forces and moments, the relative

velocities are resolved in the airfoil basis, A, as

v̂qcA
a = RT

a
[V ∞ + λ− va], (2.45a)

v̂mcA
a = RT

a
[V ∞ + λ− (v̂qc

a − ω̃s η)] = v̂qcA
a + ω̃As η

A. (2.45b)

If the semi-chord length of the airfoil is represented by b, then

ηA =





0

b/2

0




. (2.46)

Finally, the relative velocity components resolved in the basis A can be cast as

v̂Aa =





U1

−U2

U3




, (2.47)

where the sign conventions are shown in Fig. 2.3. The span-wise component of the
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320 CHAPTER 12. UNSTEADY AERODYNAMICS

for the quarter-, mid- and three-quarter-chord point relative velocities, respectively. The notation (·)∗
indicates the components of a tensor in the airfoil basis, A. Clearly, η∗T = �0, b/2, 0�, where b is the
semi-chord length. The components of the relative velocity in basis A are

v̂∗a =

⎧
⎨
⎩

U1

−U2

U3

⎫
⎬
⎭ . (12.9)

Note the minus sign for the U2 component: to comply with the sign convention used in aerodynamic theories,
the velocity component parallel to the chord direction is taken positive towards the trailing edge. The velocity
components U1, U2 and U3 are sometimes denoted UR, UT and UP , respectively, indicating the radial, tangent
and perpendicular components of the relative flow.

V

V




U2

U3

a2

a3

Figure 12.4: Relative velocity of the flow with respect to the quarter-chord point.

When dealing with two-dimensional unsteady aerodynamic theories, the analysis often focuses on flow
components U2 and U3 in the plane of airfoil, and component U1 along the wing or blade is ignored, as shown
in fig. 12.4. The flow velocity, V , is defined as the resultant of components U2 and U3

V 2 = U2
2 + U2

3 . (12.10)

The angle of attack, α, is then defined by the following relationships

U2 = V cosα; U3 = V sinα. (12.11)

12.3 Two dimensional unsteady aerodynamics of Peters et al.

The two-dimensional unsteady aerodynamic behavior of airfoils described in this section is based on the work
of Peters et al. [25]. For a thin airfoil in a two-dimensional inviscid, incompressible flow, the unsteady lift,
drag and moment can be separated into their steady and unsteady components. The steady components are
given by the following expressions

Ls = ρba0U2U3, (12.12a)

Ds = ρba0U
2
3 , (12.12b)

M s
qc = 0, (12.12c)

respectively, where ρ is the air mass density, b the semi-chord length, and a0 = 2π the slope of the lift
curve. The relative flow velocity at mid-chord is given by eq. (12.8b) and its components along unit vectors
ā2 and ā3 are U2 an U3, respectively, as given by eq. (12.9). The lift and drag defined by eqs. (12.12a)
and (12.12b), respectively, act along axes ā3 and ā2, respectively. The moment about the quarter-chord
defined by eq. (12.12c) is positive about axis ā1, i.e. it is positive for a nose up moment.

Figure 2.3: Relative air velocity with respect to the quarter-chord [119]

relative air velocity, U1 is much smaller than the other two components and, therefore,

ignored in 2D unsteady aerodynamic theory. The flow velocity, V , is then defined as

V 2 = U2
2 + U2

3 , (2.48)

which can be utilized to compute the angle of attack, α, as

α = tan−1 U3

U2

. (2.49)

The inflow velicity, λ, can be found from finite-state induced flow theory of Peters et

al. [57] by solving the following system of linear ordinary differential equations

A µ̇+
V

b
µ = U̇3 c, (2.50)

where µ is the inflow states array. The system of equations (2.50) can be solved using

a central difference scheme as

A
µ
f
− µ

i

∆t
+
V

b

µ
f

+ µ
i

2
=
U3f − U3i

∆t
c, (2.51)
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where (·)i and (·)f denote the values of the variables computed at the beginning and

the end of the time step, respectively. Therefore,

µ
f

=

(
A+

∆τ

2
I

)−1 [
(U3f − U3i) c+

(
A− ∆τ

2
I

)
µ
i

]
, (2.52)

where I and ∆τ = V∆t/b are identity matrix and non-dimensional time step size,

respectively.

The magnitude of the average inflow vector, λ0, is then a linear combination of

the inflow states as

λ0 =
1

2
bT µ. (2.53)

This average inflow acts along a unit vector, aλ, in the airfoil plane defined by

aλ = − Ṽ∞a1

‖Ṽ∞a1‖
. (2.54)

The average inflow vector, then, is

λ = λ0 aλ. (2.55)

The matrix A is then defined as

A = D + d bT + c dT +
1

2
c bT , (2.56)

where

bn = (−1)n−1 (N + n)!

(N − n)!

1

(n!)2
,

bN = (−1)N+1,

(2.57)

and

cn =
2

n
. (2.58)
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Also

dn =





1/2 for n = 1,

0 for n 6= 1,
(2.59)

and, finally

Dmn =





n/2 for n = m+ 1,

−n/2 for n = m− 1,

0 for n 6= m± 1.

(2.60)

For a thin airfoil, in 2D a inviscid, incompressible flow, the steady component of

lift, drag, and moment are found from

Ls = ρ∞ba0U2U3, (2.61a)

Ds = ρ∞ba0U
2
3 , (2.61b)

Mqc
s = 0, (2.61c)

where ρ∞ is the density of air, b is the semi-chord length, and a0 = 2π is the lift curve

slope. Also, the unsteady components of lift, drag, and moment are defined by

Lus = ρ∞
b2

2
a0(U̇3 + U2ω1), (2.62a)

Dus = 0, (2.62b)

Mqc
us = −ρ∞

b4

16
a0ω̇1 −

b

2
Lus. (2.62c)

2.4 Formulating the Transformation Matrix

Figure 2.4 shows the schematic of a typical joined model. To enforce the continuity

conditions at the interface between 1D and 3D parts, the variational asymptotic

method is used to derive the transformation between the joint nodes. The details of

the derivations are presented by Song and Hodges [26].

The three displacement and three rotational degrees of freedom of the single node
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Deriving the 3D to 1D Transformation 

Continuity Conditions at the Joined Interface 
 Nodal DoFs of 3D and 1D parts at the intersection 
 
 
 
 
 

 
 6 sectional generalized stress resultants of the single 1D node at the 

intersection 
 
 3n nodal forces of n 3D nodes at the intersection 
 
 
 Displacement and load continuity condition 

 
 It can be shown that 
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Figure 2.4: The schematic of a typical joined model

of the beam at the interface are defined as

q̂
I

=

⌊
û1 û2 û3 θ̂1 θ̂2 θ̂3

⌋T
, (2.63)

while the 3n degrees of freedom of the n nodes at the joined section of the solid part

are

q
I

=

⌊
u1

1 u1
2 u1

3 . . . un1 un2 un3

⌋T
. (2.64)

Also, the sectional stress resultants at the beam interface are represented as

F̂ =

⌊
N̂1 N̂2 N̂3 M̂1 M̂2 M̂3

⌋T
, (2.65)

and the nodal forces at the solid interface are represented by

F =

⌊
F 1

1 F 1
2 F 1

3 . . . F n
1 F n

2 F n
3

⌋T
. (2.66)

Therefore, the displacement and rotation continuity condition can be shown as

Rq
I

= q̂
I
, (2.67)
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and the load continuity condition is casted as

− S F̂ = F , (2.68)

where, R and S are transformation matrices to be derived from VAM. Note that S is

a 3n×6 matrix. It is shown in Ref. [26] that

RT = S, (2.69)

and therefore they can be used interchangeably.

Sectional stress resultants can be related to the generalized strain measures as

ε = Φ F̂ , (2.70)

where ε =

⌊
γ11 2γ12 2γ13 κ1 κ2 κ3

⌋T
consists of sectional stretch and shear strain

measures as well as sectional curvatures obtained from a generalized Timoshenko

beam analysis, and Φ the 6×6 cross-sectional flexibility matrix derived from VABS.

Rewriting 1D strain measures for the generalized Timoshenko model as

ε =

⌊
γ11 κ1 κ2 κ3

⌋T
,

γ
s

=

⌊
2γ12 2γ13

⌋T
,

(2.71)

we can then relate ε and γ
s

in terms of classical strain measures, ε̄, using

ε̄ = ε+Qγ′
s

+ P γ
s
,

ε̄′ = ε′ +Qγ′′
s

+ P γ′
s
,

ε̄′′ = ε′′ +Qγ′′′
s

+ P γ′′
s
.

(2.72)
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Here P and Q are matrices defined as

P =




0 0

k2 k3

−k1 0

0 −k1



,

Q =




0 0

0 0

0 −1

1 0



,

(2.73)

where components of ki are the initial twist and curvatures of the beam. The detailed

derivation can be found in Hodges [1].

The 3D strain field is defined as a column matrix in the form of

Γ =

⌊
Γ11 2Γ12 2Γ13 Γ22 2Γ23 Γ33

⌋T
. (2.74)

To recover the 3D strain field in the beam, asymptotically correct warping functions

from VABS is used to cast the strain field as

Γ = [(Γa + ΓR) (V0 + V1R) + Γε] ε̄

+ [(Γa + ΓR)V1S + Γl (V0 + V1R)] ε̄′

+ ΓlV1S ε̄
′′,

(2.75)

where V0, V1R and V1S are the nodal values of the asymptotically correct warping

functions for classical modeling, the correction from nonzero initial curvatures/twist

and the correction from transverse shear deformation, respectively, which are found

from VABS. Γa, ΓR, Γε and Γl, are differential and algebraic matrix operators containing
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nodal coordinates and geometry information defined by Hodges [1] as

Γa =




0 0 0

∂
∂x2

0 0

∂
∂x3

0 0

0 ∂
∂x2

0

0 ∂
∂x3

∂
∂x2

0 0 ∂
∂x3




, (2.76)

Γε =
1√
g




1 0 x3 −x2

0 −x3 0 0

0 x2 0 0

0 0 0 0

0 0 0 0

0 0 0 0




, (2.77)

ΓR =
1√
g



k̃ + ∆k1

(
x3

∂
∂x2
− x2

∂
∂x3

)

O


 , (2.78)

Γl =
1√
g




∆

O


 , (2.79)

where xi’s are nodal coordinates, ∆ is a 3×3 identity matrix, O is a 3×3 matrix of

zeros, the operator (̃ ) is defined such that (̃ )ij = −eijk( )k and g is the determinant

of the metric tensor for the undeformed state, with
√
g = 1− x2k3 + x3k2.

Knowing the 3D strain field, we can find the 3D stress field through stress-strain

relation

σ = D Γ, (2.80)
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where D is the 6×6 material matrix, and σ is the 3D stress field that can be cast as

σ =

⌊
σ11 σ12 σ13 σ22 σ23 σ33

⌋T
(2.81)

According to Song and Hodges [26] the stress field can be recovered as

σ = DCΓ F̂ , (2.82)

where CΓ has the form

CΓ = [(Γa + ΓR) (V0 + V1R) + Γε]Cε̄

+ [(Γa + ΓR)V1S + Γl (V0 + V1R)]Cε̄′

+ ΓlV1SCε̄′′ ,

(2.83)

and Cε̄, Cε̄′ , and Cε̄′′ are operators defined in Song and Hodges [26].

After we obtain the 3D stress field on the interface, the stresses at each Gauss

point can be calculated given its coordinates. The stresses on the Gauss points in each

element are regarded as normal force distribution or shear force distribution on the

interface. Therefore, we can integrate the distributed load over the area surrounding

the corresponding Gauss point and lump this force to the nearest element node. Doing

so, over all the elements on the interface, we can obtain the nodal forces for all the

nodes on the interface. For the brick elements, there are six stress components at each

Gauss point, shown in Fig. 2.5.

For an arbitrary element with four nodes, i , j , k , and l at the 2D interface we use

four Gauss points shown as I, II, III, IV in Fig. 2.6. We can integrate stresses over

the area around the Gauss point and find nodal forces for the corresponding Gauss

point. For example at point I, the forces can be found by
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Figure 2.6: Gauss points on 2D four-node master element
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F I
1 =

∫ 0

−1

∫ 0

−1

σI11 |J | dξdη = σI11A
I ,

F I
2 =

∫ 0

−1

∫ 0

−1

σI12 |J | dξdη = σI12A
I ,

F I
3 =

∫ 0

−1

∫ 0

−1

σI13 |J | dξdη = σI13A
I ,

(2.84)

where |J | is the determinant of the Jacobian matrix of the element, and AI is the area

surrounding the Gauss point I. The nodal forces can be obtained by extrapolation of

the forces at the Gauss points, solving the linear system of equation




N1(I) N2(I) · · · Nn(I)

N1(II) N2(II) · · · Nn(II)

...
...

...
...

N1(m) N2(m) · · · Nn(m)








F 1
i

F 2
i

...

F n
i





=





F I
i

F II
i

...

Fm
i





i = 1, 2, 3, (2.85)

with m Gauss points and n nodal points. N ’s are the shape functions at the Gauss

point. Combining the elemental matrices we get

F = P
A
σ, (2.86)

where P
A

matrix contains the area information of the element and shape functions.

Therefore, it is resulted from Eqn. (2.82) that

F = P
A
DCΓ F̂ . (2.87)

Thus, combining the matrices for all elements, the transformation matrix is found

from Eq. (2.68) as

S = −P
A
DCΓ, (2.88)

which forms a linear system of constraints to be imposed at the interface.
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2.5 Reduced Order Modeling

Systems of equations resulting from an FE discretization of the structure have a

prohibitively large order which renders them unsuitable for control system design

purposes. For control system design, a representative model of the system is desirable

in which, while the most salient modes of the full order model are preserved, the order

of equations is significantly smaller. Over the years many efficient ROM techniques

have been developed by different researchers [82], which among them methods based

on Galerkin projections have found numerous applications in structural dynamics

problems.

Generic dynamical equations of a structural system acted upon by some time-

dependent external loads can be described as

M ü(t) +G u̇(t) +K u(t) = F (t), (2.89)

where u ∈ Rn is the displacement vector, M is the mass matrix, G is the damping

matrix, and K is the stiffness matrix. Since the equation arising from FE discretization

tend to have thousands of DOF, n is usually very large. However, in many cases, the

trajectories of the full order model in a high dimensional space H are embedded in a

lower dimensional subspace S ⊂ H with dimension m where m� n. In fact, if

Φ =
[
φ

1
, φ

2
, . . . , φ

m

]
, (2.90)

is the matrix of m base vectors φ
i

spanning the subspace S, then it can be said that

u(t) ≈ Φ ǔ(t), (2.91)

where ǔ ∈ Rm is the reduced set of coordinates. Substituting Eq. (2.91) into Eq. (2.89)
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results in

M Φ ¨̌u(t) +GΦ ˙̌u(t) +K Φ ǔ(t) ≈ F (t). (2.92)

Galerkin projection techniques seek for a reduced order subspace S for which the

residual vector of the approximation, r(t), defined as

r(t) = F (t)−
(
M Φ ¨̌u(t) +GΦ ˙̌u(t) +K Φ ǔ(t)

)
, (2.93)

is orthogonal to the subspace, i.e.,

ΦT r = 0. (2.94)

Hence, the reduced order system is expressed as

ΦT M Φ ¨̌u(t) + ΦT GΦ ˙̌u(t) + ΦT K Φ ǔ(t) = ΦT F (t), (2.95)

or, by grouping the terms, in a compact form as

M̌ ¨̌u(t) + Ǧ ˙̌u(t) + Ǩ ǔ(t) = F̌ (t). (2.96)

Being a projection based method, POD seeks an orthogonal projection of fixed

rank m defined as

ΠS = H → S, (2.97)

whereby minimizing the integrated projection error

J =

∫ tf

0

‖u(t)− ΠS u(t)‖2
2 dt =

∫ tf

0

‖e(t)‖2
2 dt. (2.98)
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It can be shown that if the correlation matrix K ∈ Rn×n is defined by

K =

∫ tf

0

u(t)u(t)Tdt, (2.99)

and

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, (2.100)

are the eignevalues of K, resulting from solving the equation,

K φ
i

= λi φi i = 1, . . . , n, (2.101)

such that λm > λm+1, then the subspace spanned by the eigenspace of K associated

with λ1, . . . , λm minimizes J . However, because the dimension of K is large, solving

the eigenvalue equation (2.101) is computationally expensive. Thus, the method of

snapshots [120] is utilized. In the method of snapshots, the snapshot matrix, is formed

by Nsnap = m discrete snapshots of the response of the system as

Y =
[
u(t1), u(t2), . . . , u(tNsnap)

]
. (2.102)

The new correlation matrix is constructed as

K =

Nsnap∑

i=1

u(ti)u(ti)
T = Y YT . (2.103)

Since the nonzero eigenvalues of Y YT ∈ Rn×n and YT Y ∈ Rm×m are the same, instead

of solving the eigenvalue equation (2.101), one may solve the equation

YT Y ψ
i

= λi ψi i = 1, . . . , Nsnap. (2.104)
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Then, the first m POD modes are given as

φ
i

=
1√
λi
Y ψ

i
i = 1, . . . ,m. (2.105)

For rectangular matrices, such as Y, there is a close connection between POD and

Singular Value Decomposition (SVD), as the SVD of Y is constructed as

Y = U ΣVT , (2.106)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices

Σ =




Σ
m

0

0 0


 ,

Σ
m

= diag(σ1, σ2, . . . , σm),

(2.107)

where

σ1 ≥ σ2 ≥ · · · ≥ σm > 0, (2.108)

are nonzero singular values of Y . This offers a practical way of finding a basis, Φ, as

the first m columns of U . Finally the ROM can be reconstructed using Eqs. (2.95)

and (2.96).

2.6 Flutter Suppression System

Flutter can negatively impact the life cycle of the structure and, left unchecked,

may compromise the structural integrity of the aircraft which potentially leads to

catastrophic failure of the structure. Active flutter suppression systems have gained

popularity among researchers. A properly designed active control system offers many

advantages, including robustness with respect to system parameter changes and

disturbance rejection, over passive controllers. The joined 1D/3D model, developed
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in the previous sections, is used as the testbed for devising a feedback controller.

Although the joined 1D/3D model drastically reduces the number of DOF vis-a-vis

full 3D model, the system size is still very large for control design purpose. Hence,

POD is used to extract from FOM, an ROM consisting of only a few dominant modes.

The resulting ROM is an approximate model of the full nonlinear system linearized

about an equilibrium condition. It can be used along with control design methods,

including Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG).

LQG method is particularly attractive because it provides a means for dealing with

systems in which all of the states are not available for feedback. The LQG problem is

formulated in this section.

Consider a Linear Time Invariant (LTI) system in state-space form as

ẋ(t) = Ax(t) +B u(t) +W w(t),

y(t) = C x(t) +Du(t) + V v(t),

(2.109)

where x ∈ Rn×n, y ∈ Rm, and u ∈ Rp, are the state, output and control vectors,

respectively. w ∈ Rnand v ∈ Rm are process and measurement noise, respectively,

with intensity matrices W ≥ 0 and V > 0. The control problem is to find the control

vector u ∈ Rp that minimizes the cost functional

J = E
[
xTQx+ uTRu

]
, (2.110)

with Q and R being semi-positive definite and positive definite, respectively. It can

be shown [121] that, a control law as

u = −G x̂, (2.111)

can minimize Eq. (2.110) with G ∈ Rm×n as the matrix of feedback gains and x̂ being
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the estimated state vector evolving according to

˙̂x(t) = A x̂(t) +B u(t) +K (y − C x̂). (2.112)

In Eq. (2.112), K ∈ Rn×m is the gain matrix of Kalman filter, having the form

K = P CTV −1, (2.113)

where P is the positive definite solution of the Algebraic Riccati Equation (ARE)

P AT + AP − P CTV −1C P +W = 0. (2.114)

Feedback gain, G, is also found from

G = R−1BTP , (2.115)

with P being the positive definite solution of the ARE

P A+ ATP − P B R−1BT P +Q = 0. (2.116)

A backward difference scheme is used to discretize the estimator equation, Eq. (2.112),

as
x̂f − x̂i

∆t
= (A−BG −K C)x̂f +K y, (2.117)

which yields

x̂f =
[
I −∆t (A−BG −K C)

]−1 (
K y + ∆t x̂i

)
. (2.118)

The measurement vector, y, is only available at the end of the last time step which

makes the procedure explicitly dependent on it.
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CHAPTER III

STATIC STRESS ANALYSIS FOR COMPOSITE BEAM

3.1 Introduction

In this chapter the validity of the joined 3D/1D method for various static and dynamic

analysis is examined. To this end, a layered composite beam, clamped at one end

and loaded by a transverse tip load is considered as a test case. The beam has four

layers, each layer made of an orthotropic material whose properties are listed in Table

3.1. First an undamaged structure is studied and different damage scenarios for that

structure will be investigated in the subsequent sections. For all test cases, the results

will be compared and contrasted with full 3D FEA.

3.2 Static and Frequency Analysis

3.2.1 Displacements and Stress Distribution

Figue 3.1 shows a schematic of both full 3D and joined 3D/1D model of the beam.

The rectangular cross section has the dimensions of 0.02 m by 0.08 m and the beam

Table 3.1: Material properties and layup of anisotropic beam

Material properties
Et = 1.42× 1011 N/m2

νlt = νtn = 0.42
El = 9.8× 109 N/m2

Glt = Gtn = 6× 109 N/m2

ρ = 1577 kg/m3

Layup
[−45◦/+45◦/−45◦/+45◦]
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has a total length of 1 m. For the joined model, 0.2 m of the end of the beam is

modeled as a 3D solid, and the rest of the beam is modeled with the 1D beam element

introduced in the preceding chapter.

A transverse load with a magnitude of 400 N in the z direction is applied at the

tip. The simulation results of the general nonlinear static analysis for the boundary

block of the joined model and the comparison with the results for similar regions of

the full 3D model are presented. Figure 3.2 shows the u1 displacement for both full

3D and joined models. As it can be seen in the figure, no visible difference exists in

the area of concern between the results for both models, and the maximum difference

for u1 is 0.20%. Therefore, both the amplitude and distribution of axial displacement

are correctly predicted by the joined model. Figure 3.3 shows the u2 displacement for

both full 3D and joined model. As it can be seen in the figure, the difference between

the results are quite negligible and the joined model agrees very well with the full 3D

model, such that the error in the area of concern is not greater than 0.20%.

The same behavior is shown in Fig. 3.4 for u3. Since the loading is in z direction,

one might expect higher differences in u3, however, the maximum error is 0.16% for

this variable in that region. It should be mentioned that the final tip deflection in z

direction is predicted as 0.119 m, which shows that the beam undergoes a moderate

displacement, and the modeling is still capable of predicting the correct displacements.

The results for normal stress in x direction, σ11, for the composite beam under

consideration are shown in Fig. 3.5. As it was the case for the displacements, the

joined model provides good estimates for σ11, and no visible differences exist between

the results for the area under consideration. The same behavior can be seen in Fig.

3.6 for transverse shear σ12. Although the variations in shear stresses are high in

composite beams, the joined model is capable of correctly predicting the shear stress.

The converged results are very similar, and the maximum difference in σ12 does not

exceed 0.30%.
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Figure 3.1: Composite cantilevered beam loaded at the tip
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Figure 3.2: Axial displacement, u1; maximum difference difference in magnitude: 0.20%

U, U2

−5.177e−05
−3.341e−05
−1.505e−05
+3.313e−06
+2.167e−05
+4.004e−05
+5.840e−05
+7.676e−05
+9.512e−05
+1.135e−04
+1.318e−04
+1.502e−04
+1.686e−04

X

Y

Z

(a) Full 3D

U, U2

−5.184e−05
−3.344e−05
−1.503e−05
+3.380e−06
+2.179e−05
+4.019e−05
+5.860e−05
+7.701e−05
+9.542e−05
+1.138e−04
+1.322e−04
+1.506e−04
+1.690e−04

X

Y

Z

(b) Joined 3D/1D

Figure 3.3: Transverse displacement, u2; maximum difference in magnitude: 0.20%
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Figure 3.4: Transverse displacement, u3; maximum difference in magnitude: 0.16%
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Figure 3.5: Normal stress, σ11; maximum difference in magnitude: 0.15%
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Figure 3.6: Transverse shear stress, σ12; maximum difference in magnitude: 0.30%
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Figure 3.7: Transverse shear stress, σ13; maximum difference in magnitude: 0.30%
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And lastly the results for shear stress, σ13, are presented in Fig. 3.7. It can be

verified from the figure that the joined model gives very good predictions for σ13, and

the error between these values and the results from full 3D analysis is very small.

3.2.2 Displacement Convergence

In order to study displacement convergence for the joined 3D/1D model and comparing

it with that of full 3D FEA analysis, the same composite beams shown in Fig. 3.1 are

considered in this section. Various mesh densities, from coarse to fine, are considered

while both joined 3D/1D and full 3D models are loaded at the tip with a transverse

shear force with a magnitude of 400 N in the z direction. In each case, mesh densities

are the same in the 3D part of the joined model and the full 3D model. Also mesh

density of the beam part is the same as the mesh density of the 3D part in the x

direction.

Figures 3.9 and 3.10 present the tip displacement in x and z directions, respectively,

versus number of elements in the 3D part. For the full 3D model, the displacements are

evaluated at the center of the right end section of the beam. For the sake of clarity, the

same results are presented on a logarithmic scale as well. It can be seen in the figures

that the difference between the results decreases as the number of elements increases,

such that for fine meshes the difference between the results becomes ignorable. This

can be verified by inspecting Fig. 3.8 where the highest relative error between the

joined 3D/1D and full 3D results is 0.4% corresponding to the displacement in the

y direction, u2. The largest displacement component corresponds to the z direction,

u3, where the difference is as low as 0.1%. The final displacement of the tip in that

direction is equal to 0.119 m for both cases.

Although the results for the joined 3D/1D do not show significant differences, the

simulation times for both cases differ drastically. Simulation times for both cases are

presented in Table 3.2. It can be verified from the table that while the simulations
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Figure 3.8: Relative error convergence for u1, u2, and u3

for the full 3D model with a fine mesh takes 982 s to complete, the simulations for

the joined 3D/1D model have been carried out in 182 s, which is 5.40 times as fast,

without sacrificing too much accuracy, such that the final results for both cases are

virtually the same. The time efficiency of the joined model should not come as a

surprise as it is the direct result of having fewer DOF in the joined model; while, for

the finest mesh, there are 102400 elements in the full 3D model, the joined 3D/1D

model benefits form having only 20512 elements.

3.2.3 Eigenanalysis

Frequency analysis leads to a similar observation. The first 10 free-vibration frequencies

of the beam are summarized in Table 3.3. Here, for the sake of brevity, only the final

results for a fine mesh are presented. As can be seen in the table, results from the

joined 3D/1D model are very close those of full 3D model. However, as in the case of

static displacement analysis, the processing time required for the analysis is 5.74 times

smaller for the joined model which is the direct result of smaller number of DOF for
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Figure 3.9: Displacement convergence for u1
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Table 3.2: Precessing times for the joined and full 3D models, same mesh density

Elements in 3D Part Joined 3D/1D (s) Full 3D (s) Speedup factor
40 2 11 5.50
80 3 16 5.33
160 4 21 5.25
320 11 59 5.36
640 18 95 5.28
1280 33 172 5.21
2560 55 294 5.34
5120 88 446 5.07
10240 124 646 5.21
20480 182 982 5.40

the joined 3D/1D model.

3.3 Crack Growth Analysis Using XFEM

An important aspect, that determines the stress distribution, is how the crack is

loaded. There are three different pure loading modes, opening in tension Mode I,

in-plane shear Mode II and transverse shear Mode III. The different loading modes

are illustrated in Figure 3.11.

Extended Finite Element Method (XFEM) allows the discontinuity in the FE

solution by using enrichment functions [122]. It has gained popularity for crack growth

analysis due to the ease of modeling since there is no need to predefine the crack

growth path. Also it is not required to re-mesh the crack growth region during the

analysis. In the present work, XFEM has been employed to model and analyze existing

chord-wise cracks on the HALE aircraft wings.

In order to show the validity of an XFEM analysis using the joined 3D/1D method,

an edge crack is embedded inside the 3D part of the beam structure studied in the

previous section. As the loading increases, the crack was allowed to propagate and

the results are obtained at the end of the load step. Figs. 3.12 to 3.17 compare
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Table 3.3: Natural frequencies of the joined 3D/1D and full 3D models

Mode num. Joined 3D/1D (rad/s) Full 3D (rad/s) Relative error (%)
1 My 73.96 73.94 0.03
2 Mz 288.65 288.51 0.05
3 My 463.24 462.64 0.14
4 My 1297.10 1295.90 0.09
5 Mz 1789.22 1787.90 0.07
6 My 2546.58 2543.32 0.13
7 Mx 2619.38 2617.74 0.06
8 My 4113.53 4111.08 0.06
9 Mz 4934.33 4923.49 0.21
10 Mx 5723.29 5717.71 0.10

Joined 3D/1D (s) Full 3D (s) Speedup factor
Wallclock Time 38 219 5.74

2. Theoretical Background

Mode I Mode II Mode III

Figure 2.1: The three different loading modes of a crack where Mode I represents opening in ten-
sion, Mode II represents in-plane shear loading and Mode III represents transverse shear loading.

The stress field ahead of a crack tip in Mode I loading, for a linear elastic, isotropic material with
coordinates specified as in Figure 2.2 is according to [10] defined as in Equation (2.2).

x

y

z

r

θ

Figure 2.2: Definition of the crack
tip coordinate system.

σxx = KI√
2πr

cos θ2

[
1− sin θ2 sin 3θ

2

]
(2.2a)

σyy = KI√
2πr

cos θ2

[
1 + sin θ2 sin 3θ

2

]
(2.2b)

τxy = KI√
2πr

cos θ2 sin θ2 sin 3θ
2 (2.2c)

σzz =
{

0 Plane Stress
ν(σxx + σyy) Plane Strain (2.2d)

τxz = τyz = 0 (2.2e)

2.2.2 Fracture criteria in LEFM

In the FCP analyses, a crack is assumed to be present in the structure already from the fabrication.
The crack is then allowed to grow in a controlled manner until it reaches some critical length at
which it starts to grow in an unstable manner and fracture occurs. What is important then is to
have full control over when this transition takes place. In LEFM, the fracture criteria is defined in
words of a critical SIF at fracture, KC , often called fracture toughness. If plane strain conditions
prevail, the fracture toughness is considered a material parameter and referred to as plane strain
fracture toughness, KIC , where the subscript I emphasizes Mode I loading.

KI = KC (Plane Stress)
KI = KIC (Plane Strain) (2.3)

In order to use this criterion, the ASTM condition for LEFM must be fulfilled, according to
Equation (2.4). Where t is the thickness of the specimen, a is the crack length, W is the width of
the specimen and σY is the yield strength of the material.





t
a

(W − a)



 ≥ 2.5

(
KIC

σY

)2
(2.4)

6

Figure 3.11: Crack opening modes

between both the joined 3D/1D model and full 3D model, the distributions of all stress

components, σij; i, j = 1, 2, 3, around the crack region. It can be seen in the figures

that, the difference between the 3D/1D results and full 3D results are quite negligible

and the joined model has been able to predict the same crack growth pattern and

stress distribution as the full 3D model. The simulation time, however, shows a marked

difference. While the full 3D model requires 12232 s to carry out the simulation, the

joined 3D/1D method can deliver similar results in 2308 s, which is about 5.3 times

as fast.
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Figure 3.12: Normal stress distribution, σ11, around the crack
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Figure 3.13: Normal stress distribution, σ22, around the crack
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Figure 3.14: Normal stress distribution, σ33, around the crack
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Figure 3.15: Shear stress distribution, σ12, around the crack
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Figure 3.16: Shear stress distribution, σ23, around the crack
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Figure 3.17: Shear stress distribution, σ13, around the crack
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3.4 Delamination Analysis Using Cohesive Elements

Inter-laminar delaminations in composite wings can be properly modeled and analyzed

using cohesive elements [123–125]. While they allow a detailed modeling of cohesive

connections, they are not limited to crack propagation for existing cracks; crack

initiation can also be modeled and analyzed. However, the crack can only propagate

in a predefined direction, i.e., along the cohesive layer.

A layered composite beam, clamped at one end and loaded by a transverse tip load,

with a skin attached to the beam near the root is chosen for the skin delamination

analysis. The rectangular cross section has the dimensions of 0.02 m by 0.08 m and

the beam has a total length of 1 m, of which only 0.2 m is modeled as 3D in the joined

model. The full 3D and joined 1D/3D models are shown in Fig. 3.18. A thin cohesive

layer between the skin and the body is modeled using the COH3D8 element. Damage

initiation criterion is based on quadratic nominal stress as [124]

( 〈σI〉
σmaxI

)2

+

(
σII

σmaxII

)2

+

(
σIII

σmaxIII

)2

= 1, (3.1)

where σi i = I, II, III, are nominal stresses in the mode i, and

〈σI〉 =





σI for σI > 0,

0 for σI < 0.
(3.2)

Constitutive behavior of the cohesive layer follows traction-separation rule, with the

mixed-mode fracture obeying the power law [124]

(
GI

GIc

)α
+

(
GII

GIIc

)α
+

(
GIII

GIIIc

)α
= 1, (3.3)

where Gi i = I, II, III, are fracture energies for the mode i. The properties of the

cohesive layer are listed in Table 3.4. It is assumed that no initial damage exists in
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Table 3.4: Physical properties of the cohesive layer [123]

E 8.5× 108 N/m2

σmaxI 3.3× 106 N/m2

σmaxII = σmaxIII 7.0× 106 N/m2

GIc 330 N/m
GIIc = GIIIc 800 N/m

the beam. However, the damage will initiate and propagate along the cohesive layer.

Figure 3.19 shows the maximum principal strain distribution in the cohesive layer

after the damage was initiated. As it can be seen in the figures, for both models

7 elements failed and therefore no longer carry any load. With increasing the tip

deflection and the resulting stress, more elements will fail such that at the end of the

simulation, 447 elements failed in both models, shown in Fig. 3.20. The same is true

about mid and minimum principal strains distributions, depicted in Figs. 3.21 through

3.24. It should be noted from Figs. 3.21 and 3.22 that the mid principal strains would

indeed vanish, which demonstrates the state of plane strain for the cohesive layer.

This is anticipated as the cohesive layer is very thin.

Moreover, the principal strain components for the skin are presented in Figs. 3.25

through 3.27 which associates with the onset of damage formation. The figures also

show very good agreement between the results for the full 3D model and the joined

3D/1D model. However, the simulation times are drastically different. While for the

full 3D model the simulation takes 4848 sec to complete, the required time for the

joined model is only 865 sec which is more than 5.6 times faster. The simulation for

the joined model can be made even faster, compared with the full 3D model, were a

smaller area chosen for the solid part in the joined model.
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(a) Full 3D

(b) Joined 3D/1D

Figure 3.18: Cantilever composite beam for skin delamination
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Figure 3.19: Maximum principal strain in the cohesive layer after damage initiation
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Figure 3.20: Maximum principal strain in the cohesive layer at the end of load step
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Figure 3.21: Mid principal strain in the cohesive layer after damage initiation
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Figure 3.22: Mid principal strain in the cohesive layer at the end of load step
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Figure 3.23: Minimum principal strain in the cohesive layer after damage initiation
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Figure 3.24: Minimum principal strain in the cohesive layer at the end of load step
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Figure 3.25: Maximum principal strain in the skin after damage initiation
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Figure 3.26: Mid principal strain in the skin after damage initiation
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Figure 3.27: Minimum principal strain in the skin after damage initiation
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CHAPTER IV

AEROELASTIC ANALYSIS OF HIGHA WINGS

4.1 Introduction

In order to use the solving and post-processing capabilities of commercial software

and expand the applicability of the method, the geometrically exact beam model is

coupled with Peters’ unsteady aerodynamic theory, summarized in the section 2.2,

and has been coded with C++ programing language into a nonlinear user element.

The element was integrated to a commercial FEA tool, namely, ABAQUS. Therefore,

ABAQUS users can utilize the model for nonlinear static analysis as well as eigen-

analysis and nonlinear time marching. Here, all simulations are carried out on a

Windows-7 machine with Core-i5, 3.4 GHz CPU and 8 GB of RAM.

In this study, the structure is cantilevered at one end with no rigid body motion

to represent a wind-tunnel model of the wing. Therefore, the far-field air flows at

a steady angle of attack with a certain velocity with respect to the wing. The user

element receives as its input the flow velocity and root angle of attack. In order

to study the nonlinear aeroelastic behavior of a wing, multiple time simulations are

performed. For a given altitude and steady angle of attack, the simulation starts with

a fairly low airspeed, with the wing at rest. If after a few seconds of time simulation

the resulting oscillations are damped and wing achieves steady-state condition, then

the simulation restarts with a higher flow velocity. The procedure continues until the

perturbations are not damped. The flutter boundary is characterized as the lowest

velocity at which the wing oscillations are not damped any more. In this situation,

the velocity corresponds to the nonlinear flutter velocity, and the frequency of the

oscillation defines the nonlinear flutter frequency.
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Table 4.1: Aerodynamic and structural properties of Goland wing [93]

Length 20 ft
Aerodynamic chord, c 6 ft
Mass 0.746 slugs/ft
Radius of gyration about c.g. 0.25 c
c.g. location 0.43 c
a.c. location 0.25 c
Bending stiffness 2.36× 107 lb-ft2

Torsional stiffness 2.39× 106 lb-ft2

Elastic axis location 0.33 c
Lift-curve slope 2π
Air density 2.188× 10−3 slugs/ft3

4.2 Validation of the Nonlinear Aeroelastic Element

In order to validate the aeroelastic element, two different wings have been studied.

The first case is the classical Goland wing [28] which has a moderate A and stiffness,

making it suitable for linear aeroelastic analysis. The aerodynamic and structural

properties of the wing are given in Table 4.1. Twenty linear elements are used to

spatially discretize the wing. The time histories of the wing-tip displacement and

twist for Goland wing at different flow velocities are shown in Figure 4.1. As it can be

seen in the figure, for a velocity of 440 ft/s the oscillations are damped out which is in

contrast with that of the velocity of 450 ft/s. The undamped response, at V∞ = 446

ft/s, specifies the flutter condition. The flutter characteristics for the Goland wing are

summarized in Table 4.2 and compared with the results available in the literature. It

can be verified that both the flutter velocity and the flutter frequency agree well with

the published literature and the difference between the results are negligible.

The second case considered is a HALE wing presented by Patil [93]. The properties

of the wing are listed in Table 4.3. Unlike the Goland wing, this wing is a slender,

high A wing which can undergo large deformation. This would enable us to perform

nonlinear time-marching and post-flutter analysis. The wing’s structure is discretized
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Figure 4.1: Wing-tip displacement and twist for Goland wing
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Table 4.2: Flutter boundaries of Goland wing

Present analysis Goland and Luke [28] Patil [93]
Flutter velocity 446 ft/s 445 ft/s 445 ft/s
Flutter frequency 69.8 rad/s 70.7 rad/s 70.2 rad/s

Table 4.3: Aerodynamic and structural properties of HALE wing [93]

Length 16 m
Mass 0.75 kg/m
Mass polar moment of inertia 0.1 kg.m2/m
Torsional stiffness 1.0× 104 N.m2

Flapwise bending stiffness 2.0× 104 N.m2

Chordwise bending stiffness 4.0× 106 N.m2

Elastic axis location 0.5 c
c.g. offset from elastic axis 0.25 c
a.c. offset from elastic axis 0.25 c
Aerodynamic chord, c 1 m
Lift-curve slope 2π
Air density 0.0889 kg/m3

in space using sixteen element. Proceeding similar to the Goland wing, the nonlinear

time-marching starts with a low flow velocity with the wing at rest. After a few runs,

at a certain velocity, the oscillations were not damped anymore. Beyond the flutter

speed, however, the large deformations and the resulting geometric stiffness effects do

not allow the oscillation to grow and the oscillations settle into a stable limit cycle.

The wing-tip displacement and twist are shown in Figure 4.2 for V∞ = 25.0 m/s,

highlighting the post-flutter response of the HALE wing. To demonstrate the validity

of the results, the same analysis has been done using DYMORE software and the

results are compared in the same figure. Very similar behavior can be observed for

V∞ = 25.2 m/s. Large displacements are noticeable as the wing-tip oscillates between

1.88 m and 2.62 m, more than 16% of the wing length.
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4.3 Linear Aeroelastic Analysis Using Joined 3D/1D Model

For the joined 1D/3D analysis, a layered composite beam with a rectangular cross-

section is considered. The dimensions and aerodynamic properties of the wing are the

same as those listed in the Table 4.3. However, the cross sectional properties, found

from VABS, are different. The beam section is made of three graphite-epoxy layers

the material properties of which are listed in Table 4.4 [30].

Table 4.4: Properties of Laminates

Material properties
E1 2.06× 1011 N/m2

E2 = E3 5.17× 109 N/m2

G12 3.10× 109 N/m2

G13 = G23 2.55× 109 N/m2

ν12 = ν23 = ν13 0.25

Layup
Symmetric [β◦/0◦/β◦]
Antisymmetric [β◦/0◦/-β◦]

Figure 4.3 shows the layup arrangement for the composite wing. Each of the top

and the bottom layers have 15 mm thickness, and the thickness of the mid layer is

10 mm. The symmetric 6×6 sectional stiffness matrix, S = Sij; i, j = 1, 2, . . . , 6, is

diagonal for an isotropic, prismatic beam with the beam axis located at the shear

center. However, for anisotropic and layered composite beams, depending on the

layering pattern, different stiffness coupling terms will appear in the stiffness matrix.

Layered cross sections may be categorized in two major groups: i) symmetric layup

and ii) antisymmetric layup. Stiffness matrices for both categories are no longer

diagonal. For the antisymmetric layup the major stiffness couplings are extension-

twist coupling and shear-bending coupling. On the other hand, a symmetric layup

results in coupling between twist and bending. Normalized sectional stiffness properties
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for both symmetric and antisymmetric layups with layup angle, β, between -90◦ and

+90◦ are found using VABS and shown in Figs. 4.4 and 4.5, respectively. Each stiffness

value is normalized with respect to the maximum of the prospective property, listed in

Table 4.5. Other values that are not listed in the table would vanish for all layups.

Table 4.5: Maximum value of sectional properties, N-m2

Symmetric layups Antisymmetric layups
S11 1.65× 109 1.65× 109

S22 7.80× 107 1.20× 108

S33 1.72× 107 1.74× 107

S44 4.61× 104 5.30× 104

S55 2.20× 104 2.18× 104

S66 5.49× 106 5.49× 106

S41 0.00 4.22× 106

S52 0.00 2.87× 106

S63 0.00 1.11× 104

S46 5.82× 104 0.00

4.3.1 Linear Divergence Analysis

To study the effect of crack location on the divergence boundaries, a wing with

orthotropic layup, i.e., β = 0◦, is considered in this section. The chord-wise crack

extends from the leading edge with three different crack to chord length ratios, a/b,
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Figure 4.4: Sectional stiffness properties for various symmetric layups
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Figure 4.6: Chord-wise crack location along the span; side view

equal to 0.1, 0.2, and 0.3. The crack location varies along the span from 0.05L to

0.95L, as shown in Fig. 4.6. Of the 16 m of the wing span, only 0.5 m of the wing

surrounding the crack is modeled using full 3D solid elements, and the rest of the

beam is modeled with 1D elements. The divergence boundary is then found by solving

an eigenvalue problem whose lowest eigenvalue gives the divergence dynamic pressure.

The results of the analysis for chord-wise cracks at the leading edge of the wing, with

varying location along the span, are presented in Fig. 4.7. The results are normalized

with respect to the divergence dynamic pressure of the undamaged wing, which is

found to be equal to 70.14 N/m2.

Figure 4.7 shows that the larger cracks near the wing-root have a more significant

effect on the divergence. It can be seen from the figure that a crack with a/b =

0.3 located at 0.05L will decrease the divergence dynamic pressure by about 10.1%,

whereas the crack with a/b = 0.1 will reduce it by 4.5%. The effect of the intermediate

case, a/b = 0.2, lies between those of the other two. The figure also shows that the

effect of a crack on the divergence boundary fades away as the crack moves towards the

wing-tip such that for the cracks located at 0.90L the divergence dynamic pressures

for all three cases are very close to that of the undamaged wing. A similar analysis

for trailing edge cracks was carried out which ended up with the same results.

A parametric study of the effects of damage on the divergence boundary of the
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Figure 4.7: Divergence boundaries for varying crack locations along the span

wing with different layup arrangement is also instrumental. Normalized divergence and

flutter dynamic pressures with respect to the laminate angles for both antisymmetric

and symmetric layups are shown in Figs. 4.8 and 4.9, respectively. All chord-wise

cracks at the leading edge are located at 0.05L which, based on the Fig. 4.7, reduces

the divergence dynamic pressure the most. The dynamic pressures are normalized

with respect to that of the baseline layup, i.e., β = 0◦.

Figure 4.8 shows that the divergence dynamic pressure exhibits symmetry about

β = 0◦. This is in agreement with the results reported in Ref. [126]. It can be seen in

the figure that arranging the layup antisymmetrically can significantly expand the

divergence boundary such that when β is equal to ±35◦, the divergence dynamic

pressure is 3.82 times as high as that of the baseline wing with β = 0◦. It can be

explained by the help of Figure 4.5 where the ratio between the normalized twist

stiffness and flap-wise bending stiffness, S44/S66, is the highest and equal to 2.85. The

coupling terms, especially extension-twist coupling S44, also contribute in expanding
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Figure 4.8: Divergence boundaries for wing with antisymmetric layup; Crack location: 0.02L

the divergence boundary [93], though are of secondary importance for an antisymmetric

layup. Figure 4.8 also suggests that the effects of a crack on the divergence speed are

the highest for the layup with the maximum divergence speed such that for β = ±35◦,

the divergence dynamic pressure for a damaged wing with a/b = 0.3 is 13.2% lower

that that of the clean wing. It is evident from the figure that, increasing the crack

length decreases the divergence speed.

A symmetric layup arrangement results in a different aeroelastic behavior. In-

specting Figure 4.9 reveals that for a negative β the divergence dynamic pressure will

significantly decrease such that when β is equal to -25◦ the divergence occurs at a

dynamic pressure 84.5% lower than that of β = 0◦. However, even a slightly positive

β significantly enhances the divergence stability such that for β between 5◦ and 80◦,

the divergence dynamic pressure will be orders of magnitude higher than the baseline

case of β = 0◦, should divergence occur at all. Figure 4.4 provides the explanation.

As depicted in Figure 4.4, a nonzero bending-twist coupling term, S46, exists for a
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Figure 4.9: Divergence boundaries for wing with symmetric layup; Crack location: 0.02L

symmetric layup configuration. A coupling factor parameter is defined in Ref. [93]

as ψ = S46/
√
S44 · S66. A positive symmetric β (i.e., negative ψ), will result in a

favorable bending-twist coupling, which in turn significantly enhances the aeroelastic

divergence characteristic. A negative β, on the other hand, will drastically reduce

the divergence dynamic pressure, and hence must be avoided. For the considered

configuration, a maximum ψ equal to -0.19 can be achieved with a symmetric ply

angle, β, of +15◦. In these cases, the divergence speed is so high that comparing it

for the clean and damaged wings does not provide much information.

4.3.2 Linear Flutter Analysis

Unlike divergence, which is essentially static and associates with stiffness while mass

does not play a role, flutter is a more complicated phenomenon and requires dynamic

analysis. Therefore, characterization of flutter is also necessary for a safe design to

avoid catastrophic failure of the structure. To this end, the same wing as the one
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presented in the previous section is considered and a linear flutter analysis has been

carried out for different scenarios. Flutter boundaries are determined by solving

a generalized eigenvalue problem. For air velocities below the flutter speed, all

eigenvalues have negative real parts. The flutter speed, then, is characterized as the

lowest air speed for which one or more eigenvalues cross the imaginary axis to the

right half plane, thus making the real part negative. The frequency at which flutter

occurs represents the flutter frequency.

To study the effect of crack location on the flutter boundaries, a wing with

orthotropic layup, i.e. β = 0◦, is considered in this section. The chord-wise crack

extends from the leading edge with three different crack to chord length ratios, a/b,

equal to 0.1, 0.2, and 0.3. Of the 16 m of the wing span, only 0.5 m of the wing

surrounding the crack is modeled with full 3D solid elements, and the rest of the beam

is modeled with 1D elements. The flutter speeds and frequencies are normalized with

respect to those of orthotropic layup, i.e., β = 0◦, which are found to be equal to

37.12 m/s and 19.87 rad/s, respectively. Looking at Figs. 4.7 and 4.10 reveals that,

compared with divergence, flutter is less affected by the presence of a crack. It can

be explained by noting that the overall mass of the wing remains largely the same

for clean and cracked wings. It can be observed from the figure that a crack with

a/b = 0.3 located at 0.05L will decrease the divergence dynamic pressure by about

5.5%, whereas the crack with a/b = 0.1 will reduce it by 2.0%. The effect of the

intermediate case, a/b = 0.2, lies between those of the other two. The figure also

shows that the effect of a crack on the flutter boundary weakens as the crack gets

closer to the wing-tip such that for the cracks located at 0.90L the flutter speed for

all three cases are very close to that of the undamaged wing. The same is true about

the flutter frequency, shown in Fig. 4.10 (b), where a small decrease in the overall

stiffness of the wing would cause a slightly lower flutter frequency.

The flutter analysis has also been done for wings with cracks located at the trailing
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edge and the result are presented in Fig. 4.11, for the sake of completeness. As can

be seen in the figure, the results for both flutter speed and flutter frequency are very

close to those of the wing with leading edge cracks, and the differences are negligible

for this case.

A parametric study on the effects of damage on the flutter boundary of the wing

with different layup arrangement has been carried out. Normalized flutter speeds and

frequencies with respect to the laminate angles for both antisymmetric and symmetric

layups are shown in Figs. 4.12 and 4.13, respectively. All chord-wise crack at the leading

edge are located at 0.02L which, according to Fig. 4.10, has the most detrimental

effect on the flutter boundary. The flutter speeds and frequencies are normalized

with respect to that of the baseline layup with β = 0◦. For the antisymmetric layup

configuration, Fig. 4.12 shows a symmetry about β = 0◦, previously observed in Fig.

4.8 for aeroelsatic divergence instability. This is true for both flutter speed and flutter

frequency. Also, the existence of a crack has the greatest negative effect on the flutter

speed for the case where the flutter speed and frequency are maximum, i.e., when

β is equal to ±35◦. For this layup angle, cracks with a/b equal to 0.1 and 0.3 will

reduce the flutter speed by 5.3% and 12.7%, respectively. However, a symmetric layup

improves the flutter condition by 70%, at most, which is smaller than the factor of

3.82 obtained for the divergence.

Examining Fig. 4.13, on the other hand, reveals that symmetric layup does

not exhibit any symmetry about β = 0◦, which was also the case for the divergence

instability. However, while a negative symmetric layup angle would drastically decrease

the divergence boundary, it will not have a similar effect on the flutter condition and

a negative layup will also increases the flutter speed, though not as much as a positive

angle. The lack of symmetry is more profound in the case of flutter frequency. It

can be observed that the flutter frequency will decrease for β greater than zero and

attains a minimum at β = 20◦. There is a sharp increase in the flutter frequency
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Figure 4.10: Flutter boundaries for leading edge cracks varied along the span
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Figure 4.11: Flutter boundaries for trailing edge cracks varied along the span
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Figure 4.12: Flutter boundaries for clean and damaged wings; Crack location: 0.02L
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Figure 4.13: Flutter boundaries for clean and damaged wings; Crack location: 0.02L
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Figure 4.14: Wing reinforced near the root

between β = 30◦ and β = 35◦ before it start to decrease again. The sharp change can

be explained by the fact that different flutter modes with different frequencies exist

and changing the layup will cause a different mode to go unstable at the same flutter

speed while other modes remain stable. Other observations made about effects of a

crack, already made for antisymmetric layup also hold true for the symmetric layup.

A different damage scenario, namely skin delamination near the wing-root, has

also been considered here. The same wing depicted in Fig. 4.3 has been reinforced

near the root with a skin made of the same material as the wing, which is depicted

in Fig. 4.14. However, instead of a leading edge or trailing edge crack, the skin has

been partially detached from the wing along the span (Figure 4.15). Two different

cases with delamination to chord ratios, a/b, equal to 0.5 and 1.0 are considered.

The flutter characteristics for delaminated cases are compared with those of a clean,

reinforced wing, and the analysis results for both antisymmetric and symmetric layup

are presented in Figs. 4.16 and 4.17, respectively. The reinforcement slightly increases

both the flutter speed and frequency such that for an undamaged wing with β = 0◦

the flutter speed and frequency will be 38.21 m/s and 20.04 rad/s, respectively. These

findings are used for normalizing the results shown in Figs. 4.16 and 4.17.

Close examination of the figures shows that, compared with crack, delamination
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Figure 4.15: Delamination in the wing

has even a smaller effect on the flutter boundary, especially when the stiffness couplings

are small. Other qualitative observations already made for the crack cases, either for

symmetric or antisymmetric layups, remain valid for the delamination case.

4.4 Nonlinear Aeroelastic Analysis

Ease of computations come especially handy for parametric studies, such those pre-

sented in Section 4.3. Linear aeroelastic analysis methods, very useful and powerful

in their own right, suffer from their own limitations and shortcomings. In the case

of HALE aircraft, where nonlinearities stemming from large deformations and aero-

dynamic effects are omnipresent, nonlinear aeroelastic analysis becomes a necessity.

While both static and dynamic analyses carried out in the previous chapter were solely

linear, meaning that large deformations were not present, nonlinear aeroelasticity

can be approached from two different directions. The first approach, applicable to

both static and dynamic cases, consists of finding the static equilibrium solution, or

trim, at a specific flight condition and then linearizing equations of motion about that

equilibrium. In this case, nonlinear effects will manifest themselves in the equilibrium

solution and small perturbations about that nonlinear equilibrium, which are linear in

nature, will be studied. An eigenvalue analysis, similar to those undertaken before,
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Figure 4.16: Flutter boundaries for delamination; antisymmetric layup
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Figure 4.17: Flutter boundaries for delamination; symmetric layup
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will then be carried out to determine the stability characteristics.

For the case of damaged wings, material failure and crack growth can also be

investigated as a nonlinear quasi-static problem, meaning that the arbitrarily large

deformations are taking place slowly enough that the inertial effects can be neglected.

As shown in Chapter III, the joined 3D/1D approach will deliver an accurate stress

distribution around the damage area. Therefore, the evolution of damage can be

monitored during the simulation and any possible crack growth can be detected.

Nonlinear aeroelastic behavior of the wing can be investigated beyond the stability

and quasi-static analysis. Although linear analysis can be invoked to predict stability

boundaries and the onset of instabilities, it fails to provide much information beyond

that point. A linear dynamic analysis would claim that for a flexible wing at the

flutter condition and beyond, the amplitude of perturbations would grow unboundedly,

whereas nonlinear geometric and aerodynamic effects will bound the growth and in

most cases the perturbations will eventually end up in an LCO [44, 45]. This has

far-reaching consequences, making a nonlinear dynamic analysis necessary. Here, a

nonlinear time-marching can be performed to study post-flutter behavior and LCO.

In a stable LCO the deformations are bounded. However, depending on the amplitude

of oscillations, it may put excessive structural loads on the wing which not only can

reduce the life-cycle of the airframe, but may also compromise the structural integrity

and result to a catastrophic failure of the structure. When dealing with damaged

wings, being able to characterize the causes and mechanisms of forming and sustaining

LCO is of paramount importance, as the structure is more prone to failure. Nonlinear

time-marching for a full 3D FE model is a computationally intensive task. In this

case, the joined 3D/1D approach offers a computationally economical alternative in

early stages of the design and analysis.

It was already demonstrated in Figs. 4.7 and 4.10 that, for a fixed crack to

chord ratio a/b, damage near the wing-root has the most significant effects on the
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divergence and flutter speeds and its effect will diminish by getting closer to the

wing-tip. Therefore, in what follows, only cases with a crack located at 0.02L are

considered for LCO analysis.

4.4.1 Nonlinear Aeroelastic Divergence

In Subsection 4.3.1, the divergence was studied for undeformed wings. However,

as the dynamic pressure increases the wing deforms and the equilibrium condition

would change. For HALE aircraft wings, most notably, the deformed configuration

can be drastically different from the undeformed one. Therefore, new divergence

instability conditions may be found for the new deformed equilibrium. Figure 4.18

shows the difference in the divergence conditions due to the loading for various

subcritical dynamic pressures. It can be seen in the figure that, before the ratio

between the loading dynamic pressure and the linear divergence dynamic pressure,

q/qdiv, reaches 0.5, the difference between linear and nonlinear divergence conditions

is negligible. However, after that the difference increases such that when q/qdiv is

equal to 0.7, a linear analysis results for the divergence instability would differ from

a nonlinear analysis by 3.8%. The difference increases to 6.9% for q/qdiv = 0.8.

This clearly demonstrates the importance of including geometric nonlinearities in the

determination of aeroelastic divergence of HALE aircraft wings.

Also shown in Fig. 4.18 is the difference in divergence dynamic pressure for the

damaged wing. According to the figure, the same qualitative behavior can also be seen

when a crack exists near the root of the wing, which seems plausible considering the

overall stiffness degradation of the structure due to damage. As can be verified from the

figure, before the ratio between the loading dynamic pressure and the linear divergence

dynamic pressure, q/qdiv, reaches to 50% the difference between linear and nonlinear

divergence conditions is negligible. However, after that the difference increases such

that when q/qdiv is equal to 0.8, a linear analysis results for the divergence instability
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Figure 4.18: Change in divergence dynamic pressure with nonlinear equilibrium

would differ from a nonlinear analysis by 6.2%. Very similar results are found for the

case of delamination. Therefore, the results are labeled as Damaged in the figure.

Another interesting finding of nonlinear analysis is the difference between the crack

growth in a wing with a leading edge crack and a trailing edge crack. Figure 4.19

shows the area around the crack at the leading edge when the q/qdiv = 0.83. It can

be seen that the crack has started to grow, marked as STATUSXFEM around 0.5.

Although the linear analysis did not show any difference between a crack located at

the leading edge as opposed to the trailing edge, Fig. 4.19 shows that the crack at the

trailing edge does not grow for a similar loading condition. This can be explained by

the fact that while for a leading edge crack, displacement in y direction, leads to the

opening of a Mode I crack, a trailing edge crack would be closing instead so that the

crack growth is delayed.

A damage growth has also been detected for the case of delamination. However,

the simulation shows that it only occurs when the delaminated area is very large, a/b
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greater than unity, which is an extreme condition.

The results obtained in this section cannot be attained using a pure 1D analysis,

and a full 3D FEM analysis requires a lot of computational power. The joined 3D/1D

method, in contrast, offers a relatively inexpensive alternative for that, which could

be expedient at the early stages of aeroelastic design and analysis of HALE aircraft

wings.

4.4.2 Nonlinear Flutter Analysis

In Subsec. 4.3.2 linear flutter analysis was carried out for damaged and undamaged

wings. However, it has been known that geometric and aerdynamic nonlinearities

would affect flutter characteristics of wings. The linear analysis does not take into

account the fact that the structure will deform under aerodynamic loading. Therefore,

in this section, the flutter conditions are calculated based on the linearized equation

about a nonlinear equilibrium configuration. After the static equilibrium solution is

found and equations are linearized about that solution, the rest of the procedure will

be similar to what was done before, namely by increasing the air velocity and looking

for the velocity at which one or more eigenvalues have positive real parts.

Figure 4.20 shows the flutter speed and frequency with the root angle of attack for

a baseline wing with a leading edge chord-wise crack near the root. Also depicted in

the figure are the flutter boundaries for the undamaged wing as well as the reinforced

wing near the root with a partially delaminated skin. It can be clearly seen in the

figure that both the flutter speed and flutter frequency are affected by root angle

of attack. This is due to the fact that by increasing the angle of attack, the static

equilibrium would alter and the wing will move further away from the unloaded and

undeformed reference configuration.

The damaged wings, however, are more affected by increasing the root angle of

attack as the static deformation will be larger for them as a result of lower overall
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Figure 4.19: Crack growth for nonlinear static aeroelasticity
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stiffness of the structure. It can be seen from the figure that the flutter speed at the

zero angle of attack, which is the same as a linear flutter speed, is higher than the

one associated with an angle of attack equal to 4 deg. The difference is more than 2.6

m/s for damaged cases as opposed to 1.5 m/s for the undamaged wing. The flutter

frequency also changes in a similar fashion. The analysis highlights the importance of

a nonlinear analysis for high A wings.

4.4.3 Limit Cycle Oscillations

Evolution of LCO is investigated in this section for two different layups; a baseline

wing without stiffness coupling (i.e., β = 0◦), and one with bending-twist coupling

which is a result of a symmetric layup arrangement. It was shown in Figs. 4.9 and

4.17 that a layup with positive β will substantially enhance divergence and flutter

stabilities. Hence, here a positive layup with β = 45◦, resulting in a negative coupling

factor ψ, is considered. The analysis proceeds as follows.

For the undamaged baseline wing, i.e., β = 0◦, the simulation was first done for an

air velocity close to the linear flutter speed, namely V∞ = 37 m/s. The time histories

of tip vertical displacement and twist at this velocity are shown in Figure 4.21. As can

be seen in the figure, at the beginning the oscillations grow exponentially and reach

1.26 m at 5.96 s. However, due to geometric stiffness, the oscillations cannot grow

beyond that point and start to subside in amplitude and eventually settle in a stable

LCO in which the wing tip oscillates almost harmonically between 0.54 and 1.20 m.

The same observation is made for the tip twist, where the wing oscillates between -10

deg and 21 deg. In that figure, the existence of LCO is verified by the phase portrait

of the wing-tip displacement. FFT plot shows that two harmonics exist where the

frequency of 17.18 rad/s is dominant. It is worth mentioning that, according to Fig.

4.22, during the stable phase of the LCO, the tip displacement and twist oscillations

are almost out of phase such that the upper limit of the tip displacement, 1.20 m,
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Figure 4.20: Nonlinear flutter boundaries for undamaged and damaged wings
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corresponds to the lower limit of the tip twist, -10 deg. This would appear to be the

limiting mechanism by which the aerodynamic lift and pitching moment, along with

geometric stiffness, would sustain a bounded LCO. The simulation results for the

damaged wing at the same air velocity, namely V∞ = 37 m/s, are presented in Figs.

4.23 and 4.24. Comparing these figures with Figs. 4.21 and 4.22 shows that although

LCO for the damaged and clean wings are qualitatively very similar, there are still

differences between the nonlinear time responses such that a second harmonic appears

to start forming for the damaged wing. The upper limits for both tip displacement

and twist are slightly higher for the damaged wing and found to be 1.32 m and 23

deg, respectively.

As the air velocity increases to 39 m/s, both the amplitude and frequency of the

oscillations are noticeably altered. For the clean wing, the time histories of tip vertical

displacement and twist at this velocity are shown in Figure 4.25. Similar to the

previous case, the oscillations start to grow exponentially and the tip displacement

reaches to 1.61 m at 2.74 s. At this point the geometric stiffness arising from the large

deformations hinders the growth of oscillations and instead drives them into an LCO.

The difference between the upper and lower bounds of the amplitudes is higher in

this case. While the tip displacement varies between 0.33 m and 1.61 m, the tip twist

oscillates between -16.5 deg and 24.5 deg. The LCO for this case, however, is different

from the one at 37 m/s. Whereas for the 37 m/s case only one harmonic existed, the

phase plot for 39 m/s case, Fig. 4.26, reveals that there are three harmonics present

in this case, and the dominant harmonic has slightly increased to 17.8 rad/s.

For the damaged wing the differences are more noticeable. It can be seen from

Figs. 4.27 and 4.28 that the frequency spectrum is broader for the damaged wing and

more harmonics exist for this case. Effects of nonlinear aerodynamics start to become

more significant as the angle of attack increases and its interaction with the flexible

structure causes larger deformations. Both displacement and twist are still bounded,
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Figure 4.21: Wing-tip displacement and twist, V∞ = 37 m/s
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Figure 4.22: Phase portraits and FFT, V∞ = 37 m/s
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Figure 4.23: Wing-tip displacement and twist for damaged wing, V∞ = 37 m/s
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Figure 4.24: Phase portraits and FFT for damaged wing, V∞ = 37 m/s
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Figure 4.25: Wing-tip displacement and twist, V∞ = 39 m/s
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Figure 4.26: Phase portraits and FFT, V∞ = 39 m/s
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however, the upper bound for them have increased to 1.79 m and 27 deg, respectively

which shows the effect of reduced overall stiffness caused by the crack.

Increasing the flow velocity to 41 m/s causes the angle of attack to enter the

nonlinear range. The nonlinear coupling between large deformations and angle of

attack becomes even more significant which makes the oscillations have a much richer

frequency content. As can be seen in Fig. 4.29, the LCO is still bounded between

-0.2 m and 1.88 m for the displacement and between -22.4 deg and 27.5 deg for the

twist. However, the distinct harmonics cannot be identified anymore. This fact is

verifiable by inspecting Figure 4.30 where between frequencies 1.22 rad/s and 20.25

rad/s many other frequencies contribute to the frequency content of the response.

The time-histories of the damaged wing for the same air velocity (i.e., V∞ = 41 m/s),

show an even more complex response. Figure 4.31 shows that the upper bound of the

wing-tip displacement increases to 2.47 m, and the wing-tip twists between -22.9 deg

and 28.2 deg. Moreover, Fig. 4.32 shows that no periodic pattern can be identified for

this case which would indicate a chaotic behavior.

In short, by comparing phase plots in Figs. 4.22 through 4.32, it can be clearly seen

that the complexity of LCO increases with the existence of damage and increasing air

velocity. This can be attributed to the larger deformations due to higher air velocity

speed and lower stiffness for the damaged wing coupled with the nonlinear effects of

the large angles of attack. While for V∞ = 37 m/s the LCO only shows one harmonic

for the clean wing, there will be two harmonics for the damage wing. Increasing the

speed to V∞ = 39 m/s will result in three harmonics for the undamaged wing, whereas

the damaged wing have a more complex LCO. Eventually, at the speed of V∞ = 41

m/s, the angle of attack passes the aerodynamic stall region and the LCO for both

damaged and undamaged wing becomes chaotic. However, it remains bounded for

both cases.

A similar analysis has been carried out for a wing with a positive layup of β = 45◦
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Figure 4.27: Wing-tip displacement and twist for damaged wing, V∞ = 39 m/s
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Figure 4.28: Phase portraits and FFT for damaged wing, V∞ = 39 m/s
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Figure 4.29: Wing-tip displacement and twist, V∞ = 41 m/s
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Figure 4.30: Phase portraits and FFT, V∞ = 41 m/s
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Figure 4.31: Wing-tip displacement and twist for damaged wing, V∞ = 41 m/s
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Figure 4.32: Phase portraits and FFT for damaged wing, V∞ = 41 m/s.
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which provides a negative bending-twist coupling. For the undamaged wing, the

simulation was first done for an air velocity close to the linear flutter speed, namely

V∞ = 56 m/s. The time histories of tip vertical displacement and twist at this velocity

are shown in Fig. 4.35. Although the speed in this case is much higher than the speed

for the wing with β = 0◦, the negative bending-twist coupling prevents the wing to

deform as mush. As it can be seen in the figure, at the beginning the oscillations

grow exponentially and reach to 0.72 m at 4.7 s. However, due to geometric stiffness,

the oscillations cannot grow beyond that point and start to subside in amplitude,

eventually settling into a stable LCO in which the wing tip oscillates harmonically

between 0.09 m and 0.48 m. The same observation is made for the tip twist where the

wing oscillates between -22.2 deg and 22.5 deg. In that figure, the existence of LCO

is verified by the phase portrait of the wing-tip displacement. FFT plot shows that

two harmonics exist where the frequency of 31.8 rad/s is dominant. Because of the

higher bending stiffness, the flutter frequency is much higher than that of the wing

with orthotropic layup (i.e. β = 0◦). It should be noted that, according to Fig. 4.36,

during the stable phase of the LCO, the tip displacement and twist oscillations are

out of phase such that the upper limit of the tip displacement, 0.58 m, corresponds

to the lower limit of the tip twist, -22.2 deg. This would appear to be the limiting

mechanism by which the aerodynamic lift and pitching moment, along with geometric

stiffness, would sustain a bounded LCO.

For the damaged wing at the same speed of V∞ = 56 m/s, Figs. 4.33 and 4.34

show that the LCO is qualitatively the same. However, it seems that the damage has

slightly decreased the bending stiffness and the bending-twist coupling such that the

tip displacement varies between 0.19 m and 0.58 m. Twist remains largely unaffected

by the existence of damage and varies between -22.1 deg and 22.6 deg.

Figures 4.37 and 4.38 show that, unlike the case of β = 0◦, increasing the air speed

will not result in a chaotic LCO. This is mainly owing to the bending-stiffness coupling
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effect which prevents the wing to undergo very large deformations. In fact, as a

result of the coupling, a favorable bending moment limits the amplitude of oscillations

between -0.08 m and 0.42 m for the stable segment of the LCO at the speed of 57 m/s.

In this case, however, two harmonics exist and the one at 31.8 rad/s is dominant.

For the case of a damaged wing, it can be seen in Figs. 4.39 and 4.40 that the two

harmonics are formed because of the nonlinear aerodynamic effects. However, since

the displacement is not very large, the LCO would not become chaotic, as opposed to

the wing with β = 0◦. The tip displacement is bounded between -0.49 m and 0.79 m,

while the twist varies between -24.5 deg and 25.5 deg. Figure 4.40 shows that, unlike

the undamaged wing, in this case the harmonic at 2.7 rad/s is dominant.
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Figure 4.33: Wing-tip displacement and twist, V∞ = 56 m/s
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Figure 4.34: Phase portraits and FFT, V∞ = 56 m/s
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Figure 4.35: Wing-tip displacement and twist for damaged wing, V∞ = 56 m/s
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Figure 4.36: Phase portraits and FFT for damaged wing, V∞ = 56 m/s
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Figure 4.37: Wing-tip displacement and twist, V∞ = 57 m/s
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Figure 4.38: Phase portraits and FFT, V∞ = 57 m/s
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Figure 4.39: Wing-tip displacement and twist for damaged wing, V∞ = 57 m/s
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Figure 4.40: Phase portraits and FFT for damaged wing, V∞ = 57 m/s
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CHAPTER V

FLUTTER SUPPRESSION CONTROL SYSTEM

5.1 Introduction

Flutter, left unchecked, can seriously compromise the structural integrity of a wing

and may eventually lead to a catastrophic failure of the aircraft. Both passive and

active mechanisms have been proposed by researchers to address the issue of flutter

suppression, some of which were reviewed in Subsec. 1.2.3. However, because of the

advent of light weight and reliable processors and sensors, active flutter suppression

has become more prevalent. Model-based feedback control offers various advantages

over the passive control including the reduction of overall weight and increasing the

robustness at the presence of structural uncertainty and atmospheric disturbances.

Therefore, in this study a feedback control flutter suppression system for HALE

aircraft wings is proposed. The joined 3D/1D modeling, developed and studied in the

previous chapters, provides an economical and reliable model for aeroelastic analysis

and nonlinear simulations. Although this approach drastically reduces the DOF of

the model, the model arising from finite element discretization is still prohibitively

large for designing a control law. Therefore, there is an obvious need for ROM to keep

only a small number of dominant modes and discard other modes with no physical

significance. This goal is achieved here by using POD and the method of snapshots.

On the other hand, only a subset of state variables are available for feedback through

sensor measurements. Hence, even for an ROM, other states need to be estimated.

Here a Kalman filter is used to estimated the state variables and send them to the

controller to compute the input to the actuators. Therefore, the final controller

will be configured in an LQR/LQG framework. To avoid unnecessary complexity of
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the control system, the actuator is chosen to be a trailing edge flap which provides

the damping forces and moments for suppressing flutter. The effects of the number

and location of the sensors and actuators will also be studied in this chapter. The

final design must possess enough robustness properties to withstand the structural

damages of the kinds studied in the previous chapter. The performance of the flutter

suppression control system is investigated through nonlinear time simulation of the

joined 3D/1D model with the controller in the loop.

5.2 Reduced Order Model of the Joined Model

The physical and structural properties of the wing model used in this section is

described in Sec. 4.3. Dynamical equations of the structural system acted upon by

some time-dependent external loads can be describes as

M ü(t) +G u̇(t) +K u(t) = F (t). (5.1)

The full order M , G, and K matrices are available from the FEM model solved by

ABAQUS. They can be requested as an output file with .mtx extension at the end of

an static analysis. The joined 3D/1D model has 26400 DOF. The matrices, therefore,

are highly sparse 26400×26400 matrices. In order to use POD, the impulse response

of the wing is obtained by loading the wing the tip for a very short duration of time

with two transverse forces as well as a twist moment. A dynamic simulation using

ABAQUS is then performed to find responses for all DOF. The time step must be

small enough to capture all relevant frequencies. Hence, a fixed time-step equal to

0.01 is used. In order to extract only first six dominant modes of the system, six

snapshots are chosen. Time histories for all nodes for these six time points are put

in a matrix of snapshots, Eq. 2.102, with six columns. Following Sec. 2.5, singular

value decomposition is then performed on this snapshot matrix to extract the six
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Table 5.1: Natural frequencies of the joined and reduced-order models (rad/s)

Mode num. Joined 3D/1D freqs. POD freqs. I POD freqs. II
1 17.5655 17.5655 17.5655
2 35.3346 35.3346 35.3241
3 109.6931 109.6931 109.5254
4 214.4486 214.4492 —
5 298.5263 298.5343 —
6 304.1003 304.3762 —
7 573.0332 — —
8 586.2803 — —
...

... — —

base vectors of the reduced-order system. The natural frequencies of the joined and

ROM are presented in Table 5.1. As can be seen in the table, the frequencies of

the reduced-order model agree very well with those of the first six frequencies of the

joined model. Since the contributions of high-frequency modes are much smaller than

those from the low-frequency modes, only the first three modes are picked for the

control system design using a matrix of snapshots with only three columns. As for

the previous case, the results in Table 5.1 show that the frequencies agree very well

with those from the joined model. Therefore, the ROM used for controller design will

have only 3 DOF.

The same procedure can be followed for the wings with different layups with

structural couplings. The results are not presented here in order to avoid unnecessary

repetition.

5.3 Trimming Using the Control System

Since the controller designed in the previous section adds artificial damping to the

system, whereby damping out the oscillations of the wing, for a specific air velocity it

can be employed as a trimmer to bring the wing, which is initially at rest, to the final

configuration. In order to accomplish this task, the controller is active throughout the
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Figure 5.1: Flap deflection for trim

simulation and prevents the wing from undergoing flutter condition from the onset

by driving the wing-tip vertical velocity and twist rate to zero. Therefore, the final

configuration characterized by steady state deformations and zero velocities represent

the trim condition.

Two test cases are considered in this section and the simulation results are compared.

Here the results for the baseline configuration, with no structural coupling, are

presented. The first case is an undamaged wing with the air velocity, V∞, equal to 36

m/s which is slightly above the flutter speed. The second case is the same wing with

a chord-wise crack at the leading edge with crack length to chord ratio of 0.2, at the

same air velocity, i.e. V∞ = 36 m/s. It should be noted that for this analysis, as it was

the case for the flutter analysis, only the effect of an existing damage is considered

and the damage is not allowed to grow.

The flap deflection to trim is shown in Figure 5.1. At the beginning, a large control

input is required to move the wing from the rest. Therefore, the flap deflection is
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Figure 5.2: Wing-tip displacement and twist for trim
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Figure 5.3: Wing-tip velocity and twist rate for trim
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initially big and peaks at 0.19 sec. It reaches to 5.65 deg and 6.05 deg for undamaged

and damaged wings, respectively. However, the flap deflection decreases afterward and

eventually approaches zero after trimming the wing and suppressing the oscillations.

Figure 5.2 shows the simulation results for the wing-tip displacement and twist for

both damaged and undamaged wings. It can be observed from the figure that the

control system has been able to bring both cases to the trim condition. The trim

condition is equivalent to the steady-motion of the aeroelastic system. This fact can

be verified by inspecting Figure 5.3 in which the wing-tip velocities are depicted. It is

easily verifiable that, despite the initial increase in the velocities which is the result of

the transition from the initial configuration, both tip velocities and twist rates are

eventually driven to zero by the control system. Inspecting Figure 5.1 reveals that

the flap deflections for both damaged and undamaged wings are close in magnitude.

This implies that the control forces and moments applied on both wings must be close

in magnitude as well. However, it can be immediately observed in Figure 5.2 that

the steady state condition is achieved slightly faster for the undamaged wing, and

although the undamaged wing-tip displacement and twist measures are 0.70 m and

2.96 deg, respectively, those measures for the damaged wing go up to 1.01 m and 4.05

deg, respectively. In fact, the larger steady state deformations for the damaged wing

are directly attributable to the stiffness reduction due to the existence of the crack.

5.4 Flutter Suppression

In this section the performance of the control system is evaluated for suppressing

flutter. To this end, the wings studied in Sec. 5.3 are considered here. The air speed is

also slightly above the flutter speed for the undamaged wing and is the same for both

damaged and undamaged wings, i.e., V∞ = 36 m/s. However, instead of having the

controller on from the outset, as was the case for trimming, it is initially off, which

allows the oscillations build up and undergo flutter. After 10 s, when the oscillations
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are settled into a stable limit cycle, the controller is turned on to suppress the flutter.

The task of flutter suppression system is to drive the wing-tip velocity and twist rate

to zero.

Figures 5.4 and 5.5 show the simulation results for the wing-tip displacement and

twist, respectively, for both damaged and undamaged wings. In order to highlight the

effect of the flutter suppression system, in these figures, the results for the uncontrolled

wings are overlaid on top of those of the controlled wings. The results for the velocities

and twist rates are not shown here for the sake of brevity.

As can be seen in Fig. 5.4, if the controller remains off throughout the simulation,

the wing-tip oscillations will eventually settle into a stable limit-cycle, such that the

wing tip would oscillate between 0.51 m and 0.84 m for the undamaged wing, and

between 0.55 m and 1.21 m for the damaged wing. The same situation holds to

be true for the wing-tip twist. Figure 5.5 shows that while the twist angle for the

uncontrolled wing is between -6.55 deg and 11.40 deg for undamaged wing, it would

oscillate between -9.95 deg and 20.45 deg for the damaged wing. However, since the

controller will be on after 10 sec, the feedback mechanism provides additional damping

to the system and the the fluctuations will be suppressed for both wings. It can be

verified from the figures the flutter is damped out after that. The steady-state will be

the same as that of the trim condition, considered in Sec. 5.3.

The flap deflection, depicted in Fig. 5.6, is also worth noting. To have a clear view

of the transient phase of the control, only the segment between 9 s and 17 s is shown

in the figure and the reset of the flap deflection to zero is not shown. Comparing

Figs. 5.6 and 5.1 reveals that whereas the flap deflections for trimming for damaged

and undamaged wing are close in magnitude, it is no longer the case for the flutter

suppression. While the flap deflection for the undamaged wing varies between -5.05

deg and 7.65 deg, the damaged wing needs a much bigger control effort and the flap

deflects between -10.62 deg and 17.72 deg, which is more than twice as much. This is
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Figure 5.4: Wing-tip displacement for flutter suppression
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Figure 5.5: Wing-tip twist for flutter suppression
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Figure 5.6: Flap deflection between 9 s and 17 s for flutter suppression

due to the fact that, compared with the damaged wing, the limit cycle oscillations for

the undamaged wing have a lower amplitude and a lower acceleration which requires a

smaller force and moment. Hence, a smaller flap deflection is sufficient to compensate.

However, even at the presence of a crack, by turning the flutter suppression system

on during the flight the designer can ensure that flutter will not take place.

The performance of the flutter suppression system can be negatively affected by a

decrease in the control effectiveness. This may occur as a result of a partial loss of

the control surface due to damage or a mechanical system malfunction. The effect

is studied here by reducing the flap control power, Clδ. Two cases are simulated for

the damaged wing. The simulation results for the wing-tip displacement and the flap

deflection are presented in Figs. 5.7 and 5.8, respectively. As can be seen in Figure 5.7,

when the control effectiveness is decreased by 25% of its nominal value, the control

system would still be able to suppress the flutter, though it would take longer before

the oscillations are damped out. Figure 5.8 also proves that the control effort is also

much higher for the case of partial loss of flap control power, such that the flap deflects
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Figure 5.7: Tip displacement for reduced control effectiveness

between -18.25 deg and 27.70 deg. The situation becomes even more problematic

by a further loss of control power, such that when the flap loses 50% of its control

power the control system is no longer able to completely suppress the flutter. In that

case, the control system can only reduce the amplitude of oscillations so that the wing

settles into a new stable limit cycle with a lower amplitude between 0.78 m and 1.19

m.

So far, while designing and analyzing the performance of the control system, it was

always assumed that both sensor and actuator were located at or near the wing-tip.

This can be beneficial, as the wing motions are more pronounced near the wing-tip

and they can be measured more easily by sensors for feedback. Also, a smaller control

effort may be required as an applied shear force near the tip produces a larger bending

moment on the wing. It is, however, not always possible due to the system design

and integration considerations. Therefore, flap and sensors might be non-collocated.

While studying the effects of flap/sensor non-collocation on the performance of the
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Figure 5.8: Flap deflection for reduced control effectiveness

controller, it was found that the system is not sensitive to the location of the sensor,

and as long as the sensor can provide the control system with velocity measurements,

the flutter suppression system would be able to accomplish the intended task. This is

partly because the first structural modes are dominant for the present flutter scenario

and there are no structural nodes along the span. However, the situation is different

for the flap location. Figures 5.9 and 5.10 show the simulation results for two different

flap locations along the span of the damaged wing, with the sensor location fixed at

the wing-tip. It can be seen from Fig. 5.9 that, moving the flap further towards the

root, will have a degrading effect on the controller performance which is akin to the

loss of the flap control power. Therefore, when the flap is located at 25% of the span,

the controller fails to effectively suppress the oscillations, and it can only partially

reduce the amplitude of fluctuations. This might be attributed to the fact that the

controller bending moment would be reduced by shortening the distance between the

control force and the wing-root.

Figure 5.10 also shows similar behavior to Fig. 5.8, though the control effort is
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Figure 5.9: Tip displacement for noncollocated sensor and actuator
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Figure 5.10: Flap deflection for noncollocated sensor and actuator
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slightly lower in the former. To avoid unnecessary repetition, the results for the twist

and velocities, as well as undamaged wing, are not presented here.

A few points regarding the amplitude of the flap deflections must be noted. Firstly,

the actuator saturation is not considered while designing the controller. Therefore, the

flap deflection needed might exceed what the actuator can actually deliver. Secondly,

the controller has very high authority which makes the flap deflection large. By

extending the flap along the span, the actual flap deflection can be made smaller.

The effects of these factors must be considered in any actual implementation of the

controller and they deserve more consideration in future studies.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, a joined 3D/1D FE modeling approach was presented for aeroelastic

analysis of damaged HALE aircraft wings. Most of the wing structure was modeled

using a displacement-based geometrically exact 1D beam model and the damage was

encapsulated in a small area modeled as a full 3D continuum. The solid and the beam

parts were then rigorously combined using a transformation between the joined nodes

of the two models at their intersection. The transformation was derived using the

recovery equations of variational asymptotic beam model and employed to eliminate

the six DOF of the single joined node of the beam. The proposed approach has the

additional benefit of making it possible to use aerodynamic models for aeroelastic

analysis, avoiding the use of a computationally expensive CFD method. To compute

aerodynamic forces and moments acting on the structure, the finite-state induced flow

theory of Peters was integrated with the 1D beam element, providing a nonlinear

aeroelastic element capable of static and dynamic analysis. The nonlinear aeroelastic

element was coded as a user-defined element, UEL, for a commercial FE software,

namely Abaqus, which expedited the analysis by using solving and post-processing

capabilities of Abaqus. The model was also used to evaluate the performance of a

flutter suppression system, designed using LQR/LQG method. The controller was

also coded for use in Abaqus. The findings are summarized as follows.

• Static and dynamic structural analysis of beam-like structures. It was shown

that the joined 3D/1D approach can greatly reduce the computational cost for

beam like structures. The stress analysis showed that although the accuracy of
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the results for the joined 3D/1D method is totally comparable to that of full 3D

FE analysis, the simulation time was less than one fifth the former. The same

was true for eigenvalue analysis. The joined method was also demonstrated to

be capable of dealing with damaged structures where the damage was either a

crack, modeled using XFEM, or delamination, modeled using cohesive elements.

• Linear divergence and flutter analysis. Linear aeroelastic analysis revealed

that the presence of damage, in form of chord-wise crack or span-wise skin

delamination, can negatively affect the aeroelastic stability characteristics of

HALE aircraft wings. It was shown that bigger cracks near to the wing-root

have the most noticeable effect on both divergence dynamic pressure and flutter

boundary, and the effects of damage will fade away as the crack moves towards

the wing-tip. Through a parametric study, it was also demonstrated that a

negative bending-twist stiffness coupling can greatly improve the aeroelastic

instability conditions for both damaged and undamaged wings.

• Nonlinear divergence. It was shown that, a linear analysis would over-predict

the divergence dynamic pressure, for both damaged and undamaged wings.

Although a linear eigenvalue analysis cannot differentiate between a leading edge

and a trailing edge crack, it was found that a nonlinear quasi-static simulation

predicts a leading edge crack would grow at a lower sub-critical dynamic pressure

than that of a trailing edge crack. Also, it was seen that if the separated area

between the beam and the skin near the wing-root is large, the skin delamination

can also grow at sub-critical dynamic pressures.

• Nonlinear flutter and LCO. Nonlinear flutter analysis was also carried out for two

different layup arrangements for damaged and undamaged wings. For a HALE

aircraft wing without any stiffness coupling, it was found that at post-flutter

air speeds the interaction between large structural deformations and nonlinear
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aerodynamic effects, will make the LCO more complex, such that when the air

speed is high enough the LCO becomes chaotic. This was even more pronounced

for a damaged wing as the reduction in the overall stiffness would result in

higher bending and twist deformations. However, for a wing with a negative

bending-twist stiffness coupling resulting from a positive symmetric layup the

effects of nonlinear aerodynamics were dominant. This is because the stiffness

coupling prevents the wing from undergoing very large deformation, and the LCO

would never become chaotic; it remains periodic even at post-flutter conditions.

However, for this case, period doubling can occur with increasing the air speed.

• ROM and flutter suppression system. A ROM with only a few dominant modes

of the FOM was constructed using POD and the method of snapshots. The

ROM was exploited to design a flutter suppression system where the wing-tip

velocity and twist rate were measured by sensors and fed-back to the controller

to determine the deflection of the trailing edge flap. The controller’s task, then,

was to provide additional damping to the system and force the wing-tip velocities

to zero. It was shown that the controller could be used as a regulator, to bring

the wing to a trim condition, as well as a flutter suppression to damp out the

detrimental oscillations of the wing. It was also demonstrated that the control

system is robust enough even when some of flap control power is lost, and also in

the presence of crack. The effects of non-collocated sensor and actuator pairs was

also studied to find out if the flap were moved far from the sensor towards the

wing-root, whether the controller would be able to completely remove unwanted

fluctuations. The simuluation results show that this effect is akin to the partial

loss of the flap control power.
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6.2 Future Work

This research was an initial, yet important, step towards providing a computationally

economical method for rigorous aeroelastic analysis of damaged HALE aircraft wings.

Several improvements can be suggested for future research in order to expand the

scope and applicability of the method.

• Adding rigid body DOF. Flight dynamic equations are absent from the present

approach and, thus, it is applicable to the structures with no rigid body DOF,

such as an aircraft flying at cruise conditions or a wing tested in a wind tunnel.

Therefore, the method in its current form cannot be used for flight dynamics

problems. By including rigid body DOF to the formulation, the joined 3D/1D

model may well be employed to study the effects of various maneuvers and flight

conditions on the aeroelastic behavior of HALE aircrafts.

• Using an aerodynamic model acting on the 3D part. In the present research, it

has been assumed that aerodynamic loads are not directly acting on the 3D part

of the model, which encompasses only a small area of the wing. Although this

assumption is expedient, adding a simplified aerodynamic model for the 3D part

would result in more reliable analysis results.

• Expanding the applicability of the method to low A wings. The present joined

solid/beam (3D/1D) model was developed specifically for HALE aircraft wings,

which have a very high A. A similar approach can be pursued to develop a

joined solid/plate (3D/2D) model for low to moderate A wings. If such an

approach is sought then it would become necessary to integrate the 2D structure

with a low-order aerodynamic model, such as a vortex lattice or panel method,

to compute unsteady aerodynamic loads. It is true that, compared with joined

3D/1D model, the computational cost would be higher for a joined 3D/2D model.
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However, it would still be more economic than a full 3D coupled CFD/CSD

analysis.

• Optimization and studying different damage scenarios. The present work was

focused on investigating the effects of existing damage on the aeroelastic behavior

of HALE aircraft wings. Therefore, it was assumed that both the size and

location of the damage were known a priori. An interesting subject would be to

use the joined model when the damage characteristics are not predetermined.

Accordingly, stochastic and statistical methods can also be invoked to predict

the size and location of damage. The effects of flutter on structural fatigue

can also be studied in the future. The method can also be assessed using

structural data of operational aircraft. Typical structural optimization problems

are computationally intensive, requiring several rounds of simulations. The

joined 3D/1D approach may also be potentially used for that purpose, greatly

reducing the computational cost.

• Controller optimization. The designed flutter suppression system has not been

optimized for the best performance in terms of flap deflection. In practice,

therefore, the actuator might saturate and fail to provide the required input.

Considering actuator’s rate and position saturation while designing the con-

troller is recommended as a future work. The sensor/actuator placement needs

optimization as well to deliver the best performance of the control system.

Also, if rigid-body DOF would be present, flap deflection required for flutter

suppression might conflict with the required input for trimming aircraft in lat-

eral/directional channel. A separate actuation mechanism, such as a piezoelectric

sensor/actuator, might be employed to tackle the issue.
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