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Abstract

Free-surface modelling (FSM) is a highly relevant and computationally intensive area
of study in modern computational fluid dynamics. TheElementalsoftware suite currently
under development offers FSM capability, and employs a preconditioned GMRES solver in
an attempt to effect fast solution times. In terms of potential solver performance however,
multigrid methods can be considered state-of-the-art. This work details the investigation
into the use of Algebraic Multigrid (AMG) as a high performance solver tool for use as black
box plug-in forElementalFSM. Special attention was given to the development of novel
and robust methods of addressing AMG setup costs in addition to transcribing the solver
to efficient C++ object-oriented code. This led to the development of the so-called Freeze
extension of the basic algebraic multigrid method in an object-oriented C++ programming
environment. The newly developed Freeze method reduces setup costs by periodically per-
forming the setup procedure in an automatic and robust manner. The developed technology
was evaluated in terms of robustness, stability and speed by applying it to benchmark FSM
problems on structured and unstructured meshes of various sizes. This evaluation yielded a
number of conclusive findings. First, the developed Freeze method reduced setup times by
an order of magnitude. Second, the developed AMG solver offered substantial performance
increases over the preconditioned GMRES method. In this way, it is proposed that this work
has furthered the state-of-the-art of algebraic multigrid methods applied in the context of
free-surface modelling.
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NOMENCLATURE vii

On notation

Both vector and index notation are used in this thesis, which is usually clear from context.
Vectors and matrices are denoted by lower or upper case letters in bold, while specific
components are denoted by plain text with a subscript index. Where index notation features,
component subscripts may appear as super or subscripts and are typically denoted byi, j, k
andl. Einstein’s summation convention is implied in the case of index notation.
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Chapter 1

Introduction

1.1 Background

In the field of computational fluid dynamics (CFD), one of the most challenging and rele-
vant areas of study is that of free-surface modelling (FSM). FSM is concerned with the mod-
elling of the dynamic interaction of immiscible fluids [12]. Examples include fuel sloshing
in aircraft wings and road transport where fluid dynamics has a considerable impact on
vehicle dynamics [1] as well as structural design and internal baffling [6]. In spacecraft,
liquid sloshing affects manoeuvres in orbit [44]. Wind-water interactions in the marine en-
vironment influence the design of harbours, structures, and ships [36]. Modelling cavitation
phenomena accurately is essential in improving marine propeller and hull service lifetimes
[48]. Slug flow in pipes (where large bullet-shaped pockets of gas form over the largest part
of the pipe cross-section) impact flow characteristics in the oil, natural gas, steam boiler,
vaporiser and cooling industries [28]. Molten metal and plastic processes, such as mould
filling, stirring, and continuous casting, can all benefit from accurate free-surface flow pre-
dictions. The above mentioned flows are typically geometrically complex multi-physics
problems, which require fast and accurate FSM tools to simulate. One such tool is the
Elementalsoftware suite.

Developed as a high resolution, high performance parallel CFD solver,Elementalutilises
a computationally efficient edge-based vertex-centred finite volume scheme [22] coupled
with an artificial compressibility fractional step method [25] to solve the incompressible
Navier-Stokes equations. The free-surface interface is described via a volume-of-fluid
(VOF) method which is based on the Compressive Interface Capturing Scheme for Arbi-
trary Meshes (CICSAM) method [42]. Recent successes in simulating fuel sloshing in an
aircraft tank [26] has highlighted the efficacy of the code as well as the main current com-
putational bottlenecks,viz. the computational effort expended during the solution of the
system of equations arising from the so-called pressure correction step. The latter consti-
tutes a large, sparse, asymmetric system of linear equations which is to be solved at every
simulation time step. Currently, this is accomplished via a preconditioned GMRES method
[24, 21]. As such, the focus of this work was to implement and refine an alternative fast
solver for the solution of the pressure equation. Such a solver should

• require optimal (O(N)) memory storage

• involve low operation counts and scale asO(N) with problem size

1

 
 
 



CHAPTER 1. INTRODUCTION 2

• operate as a robust and automatic ’black box’ plug-in to the existingElementalcode.

The need for low memory cost is obvious, but more important is the operation count and
scalability of the solver, since memory is not generally the limiting factor in computer hard-
ware. The desirability of a black box tool follows from the requirement that the solver be
independent of FSM problem specific factors, and that no changes to the existing code are
needed to implement it. The pressure correction step involves a system oflinear equations
which makes the use of a black box type solver possible. The development and implemen-
tation of such a solver is the focus of the current work.

From the literature, a number of advanced sparse solvers have been applied to FSM
for the purpose of solving the pressure correction equation. These include successive over-
relaxation [16], preconditioned Generalised Minimal Residual (GMRES) [18, 27], various
conjugate-gradient type methods [15, 37, 35, 2] and geometric multigrid methods [46].
Other attempts at solution acceleration include improved initial condition prediction [20],
and algebraic multigrid methods [14]. Each of the aforementioned approaches have inherent
strengths and weaknesses. The successive over-relaxation and conjugate-gradient exhibit
non-linear growth in solution times as a function of problem size [8]. GMRES is proven
to be a very robust solver, but is memory intensive [17], while requiring preconditioning
and also not scaling optimally with problem size. Geometric multigrid has the potential for
exceptional all-round performance, but can be problematic when grids are highly unstruc-
tured or geometries complex, often requiring problem or geometry specific information [8].
Further, the method is more difficult to implement than other approaches, particularly if
a black box type solver is sought. Algebraic multigrid (AMG) methods address many of
the aforementioned shortcomings while holding the potential of offering optimal memory
and computational costs. AMG operates solely on an algebraic system’s coefficient matri-
ces, thus requiring no geometric or problem information. The generation of coarse grids
is still fairly complex however, but due to the relative problem specific independence of
the method, it makes for a good black box solver, if somewhat less efficient than a tailored
geometric method [47]. One other major difficulty faced by algebraic multigrid methods
in the context ofElementalFSM is that the pressure correction coefficient matrix changes
at every simulation time step. This is due to the rapidly evolving fluid interface. Since the
solution structure is built on this matrix, continuous re-coarsening is required. This added
computational cost is thought to be the prime reason as to why algebraic multigrid is under
represented in the context of FSM, even though it is acknowledged as highly applicable to
the pressure correction equation [38, 40].

1.2 Thesis Overview

In light of the above, AMG was the solver type selected solver for use withElementalFSM
for the purposes of this work. As noted, this was due to AMG’s suitability as a black box
type plug-in, its performance (as part of the multigrid family of solution methods), and its
proven robustness and speed as a sparse linear system solver. Special attention was given
to addressing the performance penalty due to changing coefficient matrices by developing
a technique which significantly reduces the CPU time spent on AMG setup. In order to ex-
pedite the implementation of the solver, the classical algebraic multigrid method (C-AMG)
[34] was chosen due to its relative simplicity, robustness and speed. Further, no additional

 
 
 



CHAPTER 1. INTRODUCTION 3

information is needed by C-AMG beyond the system of linear equations to be solved. Note
that more modern AMG algorithms, such as Smoothed Aggregation, require more com-
plex interpolation schemes, or were specifically tailored for finite element methods, such as
AMGe [9].

Among the innovations introduced during this study were

• developing a multi-level strategy to reduce the cost of repeated AMG setup, referred
to as Freeze-AMG

• transcribing the developed AMG solver to computer code via an object-oriented C++
environment.

The decision to use the C++ language for the solver, as opposed to C or Fortran which
are more common in numerical programming, was motivated by several factors. An object-
oriented approach offers superior maintainability and reusability of code, and lends itself
well to modular programming structures, which may be optimized for computational speed
via balanced static and dynamic polymorphism [23]. Further,Elementalalready utilises
C++, and so using this environment would ensure maximum compatibility with existing
code. Finally, existing AMG solvers native to C++, such as used by OpenFOAM [13] are
unsuitable for investigation withElemental. Other implementations exist in Fortran [38], C
[10], Matlab [30] and Python [3].

The developed solver was assessed in terms of speed and robustness by application
to benchmark FSM problems. In the interest of rigorous evaluation, structured as well as
unstructured meshes of various sizes were employed and CPU times compared to precondi-
tioned GMRES, in addition to evaluating the speed-up offered by Freeze-AMG. These tests
yielded promising results, showing that the Freeze-AMG method holds great potential as a
competitive sparse solver for use in FSM simulations.

1.3 Thesis Layout

The remainder of this document is structured as follows:

• Chapter 2 describes theElementalFSM functionality. The employed governing
equations, discretisation, and solution methods which give rise to the linear system of
equations to be solved are described.

• Chapter 3 deals with multigrid theory, detailing the components needed for an AMG
solver. The Freeze-AMG concept is also introduced and illustrated

• Chapter 4 details the implementation of the AMG solver in C++. Specific attention
is given to the evolution of the solver algorithms from initial to final versions, with
commentary on computational performance achieved.

• Chapter 5 focuses on the rigorous evaluation of the developed solver. Benchmark
problems are solved on various meshes and performance compared to a competing
solver.

• Chapter 6 concludes and summarises the document, and tables recommendations for
future work.
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1.4 Publication List

Publications resulting from this work are as follows:

1.4.1 Conference Papers

• VAN DEN BERGH, W.J., MALAN, A.G., WILKE, D.N. (2011). An Algebraic
Multigrid solution strategy for efficient solution of free-surface flows. Second African
Conference on Computational Mechanics, AFRICOMP 2011, Cape Town, South
Africa.

1.4.2 Journal Papers

• VAN DEN BERGH, W.J., MALAN, A.G., WILKE, D.N. (2011). An Algebraic
Multigrid solution strategy for efficient solution of free-surface flows. SUBMITTED
FOR REVIEW, International Journal of Numerical Methods in Engineering, 2011.

1.5 Summary

The purpose of this work is to develop a fast and efficient black box AMG solver to be
used as plug-in to theElementalFSM code. This is accomplished by development of the
so-called Freeze-AMG method, realised in an object-oriented C++ environment.

 
 
 



Chapter 2

Problem Background

2.1 Introduction

The aim of this work is to accelerate the solution of a system of linear equations arising
in the course of a free surface modelling simulation. Specifically, the focus is on the inter-
action of two immiscible, viscous and incompressible fluids modelled with theElemental
CFD package. This chapter provides background of the volume-of-fluid (VOF) govern-
ing equation set employed byElemental, and details the construction of the set of linear
equations, resulting from the pressure correction step, which is to be solved.

Note

For the purposes of this chapter, index notation is used throughout in the interests of brevity.

2.2 Governing Equations

Since the FSM considered in this work involves two fluids, a natural starting point when
constructing the governing equation set is to consider the conservation of mass. Assum-
ing that a unique velocity exists in each fluid at every point in space and time, the mass
conservation equations may be written in Eulerian form as:

∂

∂t
(αρ1) +

∂

∂xi
(αρ1ui) = 0 (2.1a)

∂

∂t
((1 − α)ρ2) +

∂

∂xi
((1 − α)ρ2ui) = 0, (2.1b)

wheret andxi denote time and Cartesian directioni, ρ1 is the density of Fluid 1, and
ρ2 is the density of Fluid 2. The quantityui denotes the velocity field andα constitutes the
volume fraction of each fluid as:

α =

{

1 for Fluid 1
0 for Fluid 2

(2.2)

Coupled with the assumption of incompressibility of the two fluids, Equations (2.1a)
and (2.1b) may be divided by the respective densities and added to obtain:

5

 
 
 



CHAPTER 2. PROBLEM BACKGROUND 6

∂ui

∂xi
= 0, (2.3)

which is the well known incompressible flow mass conservation equation. If instead
Equations (2.1a) and (2.1b) aresubtractedafter dividing by density, the interface tracking
equation used by the VOF method is obtained:

∂α

∂t
+

∂

∂xi
(αui) = 0. (2.4)

Similarly to the mass conservation equations, the momentum conservation for each fluid
can be considered. These are written as:

∂

∂t
(αρ1uj) +

∂

∂xi
(αρ1uiuj) + α

∂p

∂xj
=

∂

∂xi

[

αµ1

(

∂ui

∂xj
+

∂uj

∂xi

)]

+ αρ1fj (2.5a)

∂

∂t
(βρ2uj) +

∂

∂xi
(βρ2uiuj) + β

∂p

∂xj
=

∂

∂xi

[

βµ2

(

∂ui

∂xj
+

∂uj

∂xi

)]

+ βρ2fj, (2.5b)

whereβ = (1 − α), p is the pressure,µ1 andµ2 are the viscosities of the two fluids,
andfj the body force in a directionj. Adding Equations (2.5a) and (2.5b) yields the mean
momentum conservation equation:

∂

∂t
(ρmuj) +

∂

∂xi
(ρmuiuj) +

∂p

∂xj
=

∂

∂xi

[

µm

(

∂ui

∂xj
+

∂uj

∂xi

)]

+ ρmfj, (2.6)

whereρm = αρ1 + βρ2 is the mean density, andµm = αµ1 + βµ2 the mean viscosity.
Combining the above conservation equations and manipulating, the governing equation

set may be written as:

∂Uj

∂t
+

∂Fj

∂xj
+

∂Hj

∂xj
−

∂Gj

∂xj
= Sj, (2.7)

whereSj is a vector of body forces and

Uj =













u1

u2

u3

0
α













, Fj =













u1uj

u2uj

u3uj

uj

αuj













, Hj =















p
δij

ρm

p
δij

ρm

p
δij

ρm

0
0















, Gj =













σ1j

σ2j

σ3j

0
0













, (2.8a)

whereδij is the Kronecker delta and

σij =
µm

ρm

(

∂ui

∂xj
+

∂uj

∂xi

)

, (2.8b)

with nomenclature as defined previously.

 
 
 



CHAPTER 2. PROBLEM BACKGROUND 7

2.3 Solution Procedure

In order to solve the governing equation set accurately and in a fully coupled manner,El-
ementalemploys a fractional solution approach. These methods operate on the mass and
momentum conservation equations and essentially consist of three steps [31, 25]. Here the
velocityui and the pressurep at the current time-stepn are employed to obtain values at the
next time-stepn+1. In this work, we consider the semi-implicit method which commences
by calculating an intermediate velocity variable as:

∆U∗
i

∆t
= −

∂F ij

∂xj

∣

∣

∣

∣

n

+
∂Gij

∂xj

∣

∣

∣

∣

n

+ Si

∣

∣

∣

∣

n

, (2.9)

for i = 1, 2, 3, where∆t denotes the physical time-step size,∆t = tn+1 − tn. Next,
the pressure correction equation is constructed as

0 = ∆t
∂

∂xi

(

∆U∗
i

∆t
−

1

ρn
m

∂pn+1

∂xi

)

+
∂ui

∂xi

∣

∣

∣

∣

n

, (2.10)

which may be rewritten as:

∂

∂xi

(

1

ρn
m

∂pn+1

∂xi

)

=
∂∆U∗

i

∂xi
+

1

∆t

∂ui

∂xi

∣

∣

∣

∣

n

, (2.11)

for i = 1, 2, 3. The pressure correction may now be solved implicitly from this equation,
as described in Section 2.4. In the third and final step, the calculated pressure is used to
correct the velocity field and calculate the velocity at the next time-step in a semi-implicit
manner as:

un+1
i − un

i

∆t
=

∆U∗
i

∆t
+

∂H ij

∂xj

∣

∣

∣

∣

n+1

, (2.12)

for i = 1, 2, 3. In the FSM case the interface position is finally updated using:

αn+1 − αn

∆t
=

∂αui

∂xi

∣

∣

∣

∣

n

, (2.13)

where the nomenclature is as defined previously.

2.4 Spatial Discretisation and Equation Construction

Before the pressure correction equation system can be constructed from Equation (2.11),
we first describe the discretisation method employed.Elementalemploys a vertex-centred
edge-based finite volume algorithm for the purposes of spatial discretisation, where a com-
pact stencil is employed for second-derivative terms in the interest of both stability and
accuracy [22]. This method was selected as it offers natural generic mesh applicability,
second-order accuracy and computational efficiency which is greater than element based
approaches.

For the purposes of spatial discretisation, a so-called dual mesh is constructed by con-
structing volumes around each node as in Figure 2.1. The governing equation set is then cast
into weak form via integration over an arbitrary control volumeV followed by application
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of the divergence theorem. The resulting surface integrals are calculated in an edge-wise
manner. For this purpose, bounding surface information is similarly stored in an edge-wise
manner and termededge-coefficients. The latter for a given internal edgeΥmn connecting
nodesm andn, is defined as

Cmn = nmn1Smn1
+ nmn2Smn2

(2.14)

whereSmn1
is a bounding surface-segment intersecting the edge (as in Figure 2.1) and

n is the outward pointing normal unit vector.

Sm

Smn1

Smn2

Υmn

m

n

Vm

Figure 2.1: Schematic diagram of the construction of the median dual-mesh on hybrid grids. Here,
Υmn depicts the edge connecting nodesm andn.

In order discretise Equation (2.11), it is necessary to apply the above method to obtain
discrete forms of first and second derivatives. Here, the first derivative terms are approxi-
mated as:

∂φ

∂xj

∣

∣

∣

∣

m

≈
1

Vm

∑

Υmn∩Vm

φmnCj
mn = ∂j

FV φm, (2.15)

whereφmn denotes the value of a scalar field evaluated at the bounding surface ofVm

and∂j
FV φm is the finite volume approximation of the first derivative with respect toxj.

Second derivatives are approximated as:

∂2φ

∂x2
j

∣

∣

∣

∣

∣

m

≈
1

Vm

∑

Υmn∩Vm

[

φm − φn

l
tj + ∂j

FV φm

∣

∣

∣

norm

]

Cj
mn, (2.16)

wheretj now refers to the unit vector tangential to the edge andl is the edge length. We
now turn our attention to casting Equation (2.11) into suitable form to be discretised using
the above approximations. First we define

K(pn+1) =
∂

∂xi

(

1

ρn
m

∂pn+1

∂xi

)

=
∂∆U∗

i

∂xi
+

1

∆t

∂ui

∂xi

∣

∣

∣

∣

n

, (2.17)
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and read it to mean that someK exists which is linear inpn+1. From this, the following
holds:

K(pn+1) = K(pn) +
∂K

∂p

∣

∣

∣

∣

n

(pn+1 − pn). (2.18)

Thus, we can state the following:

K(pn) +
∂K

∂p

∣

∣

∣

∣

n

∆p =
∂∆U∗

i

∂xi
+

1

∆t

∂ui

∂xi

∣

∣

∣

∣

n

⇒
∂K

∂p

∣

∣

∣

∣

n

∆p =
∂∆U∗

i

∂xi
+

1

∆t

∂ui

∂xi

∣

∣

∣

∣

n

− K(pn), (2.19a)

where∆p = (pn+1 − pn) is the pressure correction sought. Applying the approxima-
tions described in this section, it can be shown that we may now arrive at a system of linear
algebraic equations to be solved:

A∆p = b. (2.20)

The matrixA has several important characteristics. Firstly, it is extremely sparse ow-
ing to the discretisation method’s small stencil, which uses only nearest and next-nearest
neighbouring nodes. Since every node is only neighboured by a small number of other
nodes, each row ofA necessarily contains only a small number of coefficients. Secondly,
A is asymmetric, due to the fact that its coefficients are a function of the mean densityρm,
which varies from node to node, and the unstructured nature of the discretisation mesh.
Lastly, A changes as a function of time. This follows from the dependence onρm, which
will vary at nodes local to the interface as the fluid interface evolves. It is this dynamic
nature ofA that results in repeated costly coarse mesh generation when applying an AMG
method to Equation (2.20). This concern is addressed in the next chapter.

2.5 Summary

This chapter described the governing equation set employed byElementalto model free-
surface flows, as well as outlining the fractional step solution approach and employed di-
cretisation method. The spatial discretisation method used was providedviz. a vertex-
centred edge-based finite volume approach. The pressure correction linear equation system
was constructed and shown to be sparse, asymmetric and dynamic.

 
 
 



Chapter 3

Solution Strategy - Algebraic
Multigrid

3.1 Introduction

Chapter 2 provided details on the approachElementaluses in solving the incompressible
Navier-Stokes equations in the context of free-surface modelling. As shown, the method
employed results in a sparse, asymmetric system of linear algebraic equations which is
solved to obtain a pressure correction. For the purposes of this chapter, let this problem be
represented (as in Chapter 2) by

A∆p = b,

whereA is the coefficient matrix of size(N × N), ∆p is the pressure correction being
solved for, andb is the right hand side of the equation. This chapter will first provide a
general overview of solution methods applied to problems such as Equation (2.20), and
justification for choosing Algebraic Multigrid for this work. Details of multigrid methods
and the components required for their implementation are provided, before the chapter is
ended with a description of the newly developed Freeze-AMG methodology.

3.2 Overview of Solution Strategies

Maturing CFD technology, in conjunction with the rapid advances made in computing
power in recent decades, is increasingly being applied to industrially relevant problems.
A major challenge, however, remains providing simulation results in a timely enough fash-
ion to be useful. CFD analyses on a relevant scale often involve the solution of sparse
algebraic systems containing hundreds of thousands, if not millions, of unknowns. In a
competitive industrial environment, a typical design could require hundreds such analyses,
which must be performed in a short amount of time. Furthermore, the size and number of
analyses demanded is increasing at a greater rate than that at which computing power is.
In other words, despite the dramatic improvements made to hardware, and the evolution of
parallel computing in the last decade, efficient solution of large, sparse systems of equations
remains critical.

10
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The earliest solvers applied to systems of asymmetric linear equations were known as
direct methods, and included matrix inversion via Gaussian elimination. These methods
solve a system ofN equations withN unknowns inO(N3) operations and require memory
storage ofO(N2) [45]. Obviously, as problem sizes scale up, computational and memory
costs become prohibitive. Simple matrix-freeiterative solvers, such as Jacobi and Gauss-
Seidel, address the memory concerns with a storage cost ofO(N). Unfortunately, the
number of iterations required to converge to a solution grows rapidly prohibitive as the
problem size increases [45].

The development ofKrylov spacemethods led to the introduction of improved matrix-
free solution strategies such as the generalised minimal residual method (GMRES). Indeed,
GMRES has become a widely used method in CFD for solving sparse linear systems of
equations [43]. Indeed, a preconditioned GMRES method [21, 27] is currently used by
Elementalfor solution of the pressure correction equation. The minimum complexity for
the GMRES algorithm isO(NgN), whereNg is the graph depth associated with spatial
discretisation [19]. An additional concern with the GMRES method is the requirement for
preconditioning, and the associated memory costs [21]. In contrast,multigrid methods, con-
sidered one of the biggest breakthroughs in the area of solving large systems of discretised
partial differential equations [39], may require as little asO(N) operations. These solution
strategies are therefore calledoptimal methods [9]. As with GMRES, memory costs due
to the storage of multiple grid levels’ information is a concern, but this was considered a
secondary factor to solver speed in this work.

Multigrid techniques can be subdivided into two categories, namelygeometricandal-
gebraic, typically referred to as GMG and AMG respectively. Both methods operate on
both high and low frequency errors in a solution by constructing a hierarchy of grids rep-
resenting the original problem. Obviously, in GMG, this hierarchy consists of a subset of
coarser physical grids based on the original discretisation mesh. Obtaining these coarser
grids poses a challenge when geometries are complex or grids are anisotropic [8]. There-
fore, GMG methods are difficult to apply to arbitrary problems and are thus less attractive
as black box type solvers. AMG methods, on the other hand, construct a series of ’grids’
based entirely on the coefficient matrixA of the equations being solved, making it more
favourable as a plug-in solver for the work under consideration.

In light of the above, AMG was chosen as the solution method to be investigated for use
with Elementalin the context of the pressure correction equation. Since memory usage was
not a primary concern, the costs associated with the method were disregarded. The specific
AMG method chosen was Classical-AMG (C-AMG), as first detailed in [34]. C-AMG was
originally developed for symmetric, positive-definite matrices with positive diagonal and
negative off-diagonal entries, such as those arising from the discretisation of elliptic partial
differential equations [4]. It has since proven surprisingly effective at solving a wide variety
of problems, some of which are quite far from these assumptions [39]. Also, importantly, it
requires the bare minimum of information fromElemental, namely the pressure correction
equation coefficient matrix and residual vector, which are easily available. An overview of
multigrid methods, focusing on AMG and the special considerations implemented specifi-
cally to address concerns in FSM applications follows.
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3.3 Multigrid Methods

As mentioned previously, classic matrix-free iterative solution schemes (also called relax-
ation schemes), such as Gauss-Seidel and Jacobi, although offering optimal storage char-
acteristics and being widely applicable, suffer from some severe limitations. These arise
from the fact that, subsequent to initial fast convergence, residual reduction stalls, requiring
a vast number of iterations for complete convergence. Multigrid methods arose from an
attempt to remedy this problem. It was found that when an error of high frequency, such
as a sinusoidal wave with high wave number, was imposed on a system with a known solu-
tion, the error was quickly reduced by Jacobi-like iterative relaxation methods. Conversely,
when an error of low frequency was imposed, the iterations required to reduce this error
was increased drastically. This gave rise to the concept of regarding an (unknown) error as
a Fourier series, and thus the idea of high and low frequency error components.

Taking the Fourier series perspective then, traditional matrix-free iterative methods were
only effective at reducing high frequency errors, rapidly ’smoothing out’ these components
until only low frequency components remain. Multigrid methods were developed to lever-
age this fact by representing low frequency error components on succesively coarser grids,
making them appear to be of higher frequency. A representation of the problem on these
coarser grids (using the residual equation) could then be solved to reduce error components
directly across a spectrum of frequencies, enabling the improvement of the solution estimate
after every iteration. In order to achieve this, all multigrid methods rely on the following
basic elements:

• Coarse grid generation - Section 3.3.1

• Intergrid transfer operators, namely interpolation and restriction - Section 3.3.2

• Coarse grid problem representation - Section 3.3.3

• A solution cycle using some iterative method (also called a smoother) - Section 3.3.4.

The above is illustrated conceptually in Figure 3.1. How each component is constructed
is explored next, first with a simple geometric example, followed by the algebraic equiva-
lents. Note that sub-sections are based on the more detailed discussion of both GMG and
AMG found in [4].

3.3.1 Coarse Grid Generation

Considering the Fourier series solution error representation, it was found that the problem-
atic low frequency modes appeargeometrically smooth. By representing these functions on
a grid with fewer points, the relative frequency of the mode was increased due to the lower
number of nodes. In both algebraic and geometric settings coarse grids must be selected
based on the requirements that they must contain much fewer nodes than the fine grid and
that the resulting interpolation and restriction transfer operators are sufficiently accurate.
In a geometric sense then, a fine grid is merely a spatial discretisation using very small
grid point spacings, while a coarse grid refers to a spatial discretisation of the same domain
using larger spacings. For simple geometries, such as a one-dimensional problem, coarse
grids can be constructed in the GMG approach from the fine grid, denoted by the symbol
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Figure 3.1: Schematic of the components of a multigrid method

Ω, by selecting a subset of the initial grid points such that the grid spacing doubles (in other
words, constructing the coarse grid only from the even points of the initial fine grid). This
concept is illustrated in Figure 3.2.

Figure 3.2: Schematic of a one dimensional geometric coarsening

As shown,Ωh refers to the original fine grid, whereasΩ2h denotes a mesh with double
the grid point spacing. For the purpose of further discussion, a super or subscript ofh will
denote a quantity on the fine grid, and scripts of2h, 4h and so forth will denote quantities
on the second and subsequent coarse grids. Although doubling of grid spacings is simple
enough for structured meshes in one or two dimensions, it is obvious that coarse grid gen-
eration in a geometric fashion may become problematic when the domain is geometrically
complex. In AMG, coarse grid generation is more abstract. Here, the subset of nodes are
chosen based on two criteriaviz. algebraic smoothnessandstrong influence.

Algebraic smoothnessis simply a way of describing the errors that are not reduced
(smoothed) effectively on a particular mesh by the chosen smoothing/relaxation method,
without a geometric representation of the error. In other words, an algebraically smooth
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error for a nodei at a certain iterationn, en
i , is one that is not significantly less than the error

at the previous iteration,en−1
i . In the context of a simple iterative scheme such as Gauss-

Seidel (most commonly used as a smoother in C-AMG methods), it can be proven that
algebraically smooth errors have the characteristic that locally the magnitude of the residual
is much less than that of the error [38]. This concept will be expanded in Section 3.3.2,
where it will be used to define interpolation operators in the AMG setting. For the purposes
of this section, it is sufficient to know that algebraic smoothness guides selection of coarse
nodes to ensure accurate interpolation operators.

Strong influencecan be seen as a measure of how much a given node affects those
around it, and thus how suitable a node is to be chosen for the coarse grid. By examining
the magnitudes of the coefficients in a row of the system matrix, a sense of the ’importance’
of a certain node in determining the value of the unknown described by that row’s equation
can be gained. We associate thei-th equation of the system matrix with determining the
pressure at a specific nodei, ∆pi, where∆p is defined as in Chapter 2. Large coefficients
in equationi will have a concomitantly large effect on the value of∆pi. This leads to
Definition 3.1 [4]:

Definition 3.1 Given a threshold value0 < θ ≤ 1, the variable∆pi strongly depends on
the variable∆pj if

−Aij ≥ θ max
k 6=i

{−Aik}, i 6= j, {i, j, k} ∈ [0, N − 1], (3.1)

whereAij andAik denote off-diagonal components in rowi of the coefficient matrix
(j and k refer to column numbers in rowi). In other words, thei-th variable depends
strongly on thej-th variable if the coefficientAij is large relative to the largest off diagonal
component in rowi. Variablej is then said tostrongly influencevariablei. It is clear that,
in the context of the pressure correction system, every variable in the system will have a set
of nodes that strongly influence it, a set of nodes it strongly influences, and a set of nodes
that have weak influence on it. In practice, the choice ofθ is not critical [38]. Throughout
this work, a value ofθ = 0.8 was found to work well.

To effect the selection of a coarse grid, a set of nodes constituting the next grid level,
denoted by setC, is selected (in C-AMG) based on an initial fine discretisation grid via
the use of two heuristics. These use the concepts of algebraic smoothness and strong influ-
ence to construct coarse grids which result in sufficiently accurate transfer operators while
containing as few nodes as possible. They are:

• Heuristic 1 : Every node that strongly influences a nodei, should either be a coarse
node, or depend on another coarse node that strongly influencesi.

• Heuristic 2 : The set of coarse nodesC should be a maximal subset of all nodes such
that no coarse node depends strongly on another coarse node.

The first heuristic is designed to ensure that interpolation is sufficiently accurate, as
shown in Section 3.3.2. The second is intended to limit the size of the coarse grid. It is
not always possible to satisfy both heuristics simultaneously, and since the first condition is
required for accurate interpolation, it is enforced rigorously. The second condition is then
used as a guide in choosing an initial coarsening which is adjusted to satisfy the first con-
dition. With this methodology, we can next step through an example coarse node selection
procedure.
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Initial Coarse Node Selection Procedure

As stated, the coarsening procedure in C-AMG consists of two passes over the fine grid
nodes. The first obtains an initial selection of independent coarse nodes based on the second
heuristic. The second ensures that the first heuristic is satisfied. In order to perform the first
pass, an initial heuristic is to be assigned to every nodei which indicates its suitability as a
coarse grid node. This measure, called thecardinality, and denoted byλi, is defined as

Definition 3.2 The cardinality of a nodei, denotedλi, is the number of nodes strongly
influenced byi.

Using this value to choose a series of coarse points is referred to as thecolouring pro-
cedure[4]. In order to clearly illustrate this procedure, an example problem is constructed.
Recall Equation (2.11):

∂2p

∂x2
i

=
∂∆U∗

i

∂xi
+

1

∆t

∂Ui

∂xi

For the purposes of illustration, assume that the above differential equation is to be
solved for the pressure,p, instead of using the pressure correction procedure described in
Chapter 2. Using a standard finite difference approach, this equation can be discretised on
a grid with 25 interior points, as shown in Figure 3.3. Assuming equidistant spacingh in
both dimensions, a second-order finite difference discretisation results in coefficient matrix
A, of the form

1

h2

















4 −1 0 0 0 −1
−1 4 −1 0 0 0 −1

. . . .
. . . .

−1 4 −1 0 0 0 −1
−1 4 −1 0 0 0 −1

















Considering Equation (3.1), it is clear that for any choice ofθ, every off diagonal co-
efficient in rowi will have a strong influence on nodei, and be strongly influenced in turn
by i. These mutual strong influences can be visualised as the lines between nodes in the
grid diagram. Note that strong connections are NOT necessarily mutual as in this example.
Accordingly, we can assign cardinalities to every node as in Figure 3.4.

With the cardinality of all nodes known, a node with the highest value ofλ is added to
the list of coarse nodes. For the example,x6 is selected, being the first node with a cardi-
nality of four. Since, according to the second heuristic, no coarse node can strongly depend
on another coarse node, the nodes that the newly chosen coarse node strongly influences
are automatically removed as candidates for coarse nodes. This is shown schematically in
Figure 3.5, wherex6 is marked with a solid grid point, and the nodes strongly influenced by
x6 (namelyx1, x5, x7 andx11) are depicted by dashed lines. The latter indicates that these
nodes may not appear on the coarse grid. Further, in the interest of accurate interpolation,
the next coarse node selected should ideally strongly influence one of the removed (dashed)
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Figure 3.3: Two dimensional unit square

Figure 3.4: The initial cardinalities of each node

nodes. To effect this, the cardinalities of the remaining nodes are incremented according to
their influence on the newly marked nodes. These changes are also reflected in the figure.

The coarse node search is now repeated, and continues until all nodes have been either
accepted or rejected as a coarse node (see Figure 3.6). With the initial coarsening pass com-
plete, we see that we have complied with both first and second heuristic. Examples where
this is not the case, arising when considering asymmetric systems such as Equation (2.20),
are explored next.

Secondary Coarsening

In the aforementioned example, both heuristics for the selection of coarse points were fully
satisfied after the first coarsening sweep. However, the first heuristic, which requires strict
enforcement, may be violated after initial coarsening. This may occur, for instance, when
periodic boundary conditions are present, or when matrix coefficients are such that after
initial coarsening, certain fine nodes nodes have no coarse nodes which strongly influence
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Figure 3.5: The first chosen coarse node and its effects

them. This implies that fine nodes exist that depend strongly only on other fine nodes, with
no dependence on a mutual coarse point (as required by the heuristic). To illustrate this,
consider the hypothetical situation in Figure 3.7, in which nodex3 strongly depends on
nodesx1 andx2, but does not strongly influence them (indicated by the mono-directional
arrows on the connecting lines). The cardinalities are given to reflect this.

On coarsening, nodex0 is selected as coarse, since it is the first node with highest
cardinality. Nodesx1 andx2, strongly influenced byx0, therefore remain fine. This leaves
nodex3 strongly influenced by only fine nodes without a common coarse node. Colouring
cannot partition nodex3 to be coarse or fine, since its cardinality is zero. To remedy this
situation, and comply with the first heuristic, secondary coarsening must be performed.
Secondary coarsening, as described in [4], consists of testing each fine node in turn to
check for heuristic compliance. In addition, heuristic compliance is attempted by making
theminimumnumber of fine nodes into coarse nodes. In short, the procedure is as follows:
For each fine nodei, investigate whether other fine nodes strongly influencei. If a fine node
j is found that strongly influencesi, but does NOT itself strongly depend on a coarse node
which strongly influencesi, j is tentativelymade into a coarse node. Any remaining fine
nodes strongly influencingi are now tested. If these nodes are now all strongly influenced by
coarse nodes which influencei, the tentative coarse node is made permanent. If, however,
another fine node is found which is not strongly influenced by a coarse node influencing
i, nodei itself is turned into a coarse node. In this way, it is ensured that all fine nodes
strongly influencing each other are also strongly influenced by at least one mutual coarse
node. As will be shown, this is critical for meaningful interpolation from coarse grids.
The hypothetical situations shown in Figure 3.8 and Figure 3.9 demonstrate the secondary
coarsening procedure.

In both figures, nodex3 is the fine node under consideration during secondary coarsen-
ing. Figure 3.8 illustrates the situation when only one of the fine nodes strongly influencing
x3 does not depend on a coarse node strongly influencingx3, namely nodex2. This node is
made coarse, which means that the first heuristic is obeyed. However, as seen in the mutual
strong influence of nodesx0 andx2, the second heuristic (stating that coarse nodes may
not strongly depend on each other) is violated. Figure 3.9 illustrates the case where two of
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Figure 3.6: Coarse grid generation (colouring), where no secondary coarsening is required
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Figure 3.7: Cardinalites which violate the first heuristic after colouring

Figure 3.8: Secondary coarsening - Example 1

Figure 3.9: Secondary coarsening - Example 2

the fine nodes strongly influencingx3 are not strongly influenced by coarse nodes strongly
influencingx3. In this case, nodex3 itself is made coarse, enforcing the first heuristic, and
in this case, the second as well.

Potential Difficulties

The coarsening procedure used in C-AMG, as described in the preceding section, unfor-
tunately has some limitations. These include computational cost concerns associated with
secondary coarsening, and sensitivity to the definition of strength of connection [9]. The
first problem is often remedied by defining alternative approaches to interpolation than is
described in Section 3.3.2. The second, associated with the definition of strong influence as
in Definition 3.1, can result in too many nodes being carried to coarse grids. This happens
when a low value ofθ classifies many weaker off-diagonal nodes as strong influences, in-
creasing the number of nodes used for interpolation (and thus the computational cost) for
little gain in accuracy. Additionally, the coarsening procedure as described does not account
for large positive off-diagonal entries [38], since the original assumption on the coefficient
matrix was that off-diagonal entries are negative. To remedy this, special attention must be
given to these entries in the form ofa posterioriupdates of the coarse/fine splitting. Each of
the above concerns have been the subject of numerous research efforts on their own. Since
unmodified C-AMG is well suited to the pressure correction equation [38], the above were
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disregarded for the purposes of the investigation in this work.

3.3.2 Intergrid Transfer Operators

The multigrid method entails operating on the residual equation on successively coarser
grids and using the estimated error obtained to improve the solution estimate on the fine
mesh. For further discussion, we now formally define the residual and error in terms of
Equation (3.2):

r = b − A∆pa = Ae, (3.2)

wherepa is an approximate solution to the pressure correction equation ande is the
error in the approximation. It follows that a method to transfer the residualr to the coarse
grids, and the errore back to the fine grids, is needed. The process of transferring the
residual from fine to coarse grids is calledrestriction, while the reverse process (transferring
the error estimate from the coarse to the fine grids) is calledinterpolationor prolongation
[4]. As is the case with the construction of coarse geometric spatial grids, these processes
are straightforward in the one-dimensional geometric case. Consider an example with2m
nodes on the fine grid andm nodes on the coarse grid. Here, restriction is performed by
injection, whereby a coarse grid node takes on the value of the corresponding node on the
fine grid. This is defined as

r2h
m = rh

2m,

wherer2h
m refers to the nodal residual on the coarse grid, andrh

2m to the nodal residual
of the even nodes on the fine grid. The restriction procedure is implied by writing

I2h
h rh = r2h, (3.3)

whererh andr 2h are the residual vectors on the fine and coarse grids respectively, and
I2h
h is some restriction operator of size(m × 2m).

The most basic interpolation procedure similarly uses injection for the even numbered
nodes on the fine grid, with odd numbered nodes being assigned the average of their two
adjacent coarse-grid nodes. This is defined as

eh
2m = e2h

m

eh
2m−1 =

1

2
(e2h

m−1 + e2h
m ),

where the nomenclature is as defined previously. The interpolation procedure is implied
by writing

Ih
2he2h = eh, (3.4)

wheree2h andeh are the error correction vectors on the coarse and fine grids respec-
tively, and Ih

2h is some interpolation operator of size(2m × m). For clarity, a graphical
representation of these procedures is given in Figure 3.10.

 
 
 



CHAPTER 3. SOLUTION STRATEGY - ALGEBRAIC MULTIGRID 21

Figure 3.10: Schematic representation of the interpolationand restriction operators

Similarly, in AMG , the task of the interpolation operator is to inject error components
from the coarse grid representation to the fine when the node under consideration occurs in
both. In the case of the reverse, the error is interpolated to fine grid nodes. As opposed to
the simple linear interpolation used in the geometric example, AMG interpolation is based
on the concept of a node’sneighbourhood. The neighbourhood of a nodei, denotedNi,
is simply defined as all the off-diagonal coefficients in the rowi of A. The neighbouring
nodes are in addition classified, following Figure 3.11, into:

• Neighbouring nodes that are coarse and influencei strongly,SC
i

• Neighbouring nodes that are not coarse, but influencei strongly,SF
i

• Neighbouring nodes that do not influencei strongly, whether coarse or not,Wi.

Figure 3.11: Neighbourhood classification of a node

In the figure, the fine and coarse nodes are depicted as previously. Strong influences are
again solid lines, while weak influences are dashed lines. Interpolation of the error for a
fine nodei consists of a weighted sum of each of the coarse nodes strongly influencing it,
that is, the nodesSC

i . The interpolation weightωij of each coarse nodej which strongly
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influences nodei takes into account any strong influences oni which are not from coarse
points, as well as any weak influences oni, that is, the nodesSF

i andWi. This is done by
using the principle of algebraic smoothness alluded to previously. Once these interpolation
weights are known, we can define an interpolation operator for every nodei on a fine grid
h such that

(Ih
2he2h)i =







e2h
i i ∈ C

∑

j∈SC
i

ωije
2h
j i /∈ C (3.5)

whereei is the error at nodei, ωij is the interpolation weight of each coarsej strongly
influencingi andC is the set of coarse nodes.

In order to calculate the values ofωij, we recall the assumption of algebraic smoothness,
that is, for smooth errors, the residual magnitude is much smaller than the error magnitude.
We can write this as :

|ri| << Aii|ei|, i ∈ [0, N − 1], (3.6)

whereAii refers to the diagonal entry of a rowi in the coefficient matrix, andri to the
residual at nodei. Further,N is the size of the matrixA, where numbering starts from zero,
conforming with C++ programming conventions. If we take the idea that the residual is
much smaller than the error to the extreme we can state that:

ri = (Ae)i ≈ 0, (3.7)

wheree now refers to the error vector. Rewriting Equation (3.7) in terms of the coeffi-
cients ofA for a nodei, we obtain

Aiiei +
∑

j∈Ni

Aijej ≈ 0

⇒ Aiiei ≈ −
∑

j∈Ni

Aijej

in which the sum over the neighbourhood ofi, Ni can be separated into contributions
from its constituent nodesSC

i , SF
i andWi as follows

Aiiei ≈ −
∑

j∈SC
i

Aijej −
∑

j∈SF
i

Aijej −
∑

j∈Wi

Aijej. (3.8)

Here, the error at a nodei is approximated by the sum of neighbouring nodes’ values. It
is not possible to calculate the interpolation directly from this equation as only coarse nodal
values are directly available. To address this, the last two terms of Equation (3.8) must be
written in terms of the error at strongly influencing coarse nodes,SC

i , as well as the error
at the nodei itself, ei. This will produce an interpolation involving only the nodei and
its strongly influencing coarse nodes. To effect this, we follow [4], in which the contribu-
tion of theej in the sum over weak neighboursWi can be replaced byei (distributing the
weakly connected neighbours to the diagonal). Thus the component sums of interpolation
is rewritten as
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Aii +
∑

j∈Wi

Aij



 ei ≈ −
∑

j∈SC
i

Aijej −
∑

j∈SF
i

Aijej . (3.9)

Next, we must similarly address theSF
i values. We do this by recalling the first heuristic

of coarsening, namely that fine nodes strongly influencing one another must also be strongly
influenced by a mutual coarse node. The errorsej in the sum overSF

i can therefore be
replaced by linear combinations of the error at coarse nodesSC

i such that

ej ≈

∑

k∈SC
i

Ajkek

∑

k∈SC
i

Ajk

, j ∈ SF
i , (3.10)

whereek is now the error at the strongly influencing coarse nodesSC
i . Using this

approximation, the interpolation weight of a coarse pointj, with respect to a fine pointi,
namelyωij, can be finally written as

ωij = −

Aij +
∑

m∈SF
i











AimAmj
∑

k∈SC
i

Amk











Aii +
∑

n∈Wi

Ain

. (3.11)

With the interpolation weights defined, the interpolation operator can be constructed.
The restriction operator is then simply obtained via the variational property

I2h
h = (Ih

2h)T (3.12)

where the nomenclature is as defined previously.

3.3.3 Coarse Grid Operators

As has been mentioned, the multigrid methods rely on operating on the problem on multiple
levels of ’grids’. The above interpolation and restriction operators are used to transfer errors
and residuals between grids, but how would the system matrixA be represented? For simple
geometric problems, one approach is to re-discretise the original problem on the coarser grid
in the same fashion as on the fine grid. Since this approach is generally not applicable to
algebraic methods, the Galerkin principle is instead used. This is written as

A2h = I 2h
h AhIh

2h (3.13)

where, again,Ih
2h refers to the interpolation operator andI2h

h to the restriction operator.
The size ofA2h is (NC × NC), whereNC is the number of coarse nodes on the next grid
level.
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3.3.4 Solution Cycle

Figure 3.12: Schematic of the two grid V-cycle

As shown in Figure 3.1, the final AMG component to be discussed is the solution cycle.
This cycle essentially brings together all components of the method in a manner which
effects efficient solution. The simplest possible cycle, shown in Figure 3.12, is the two grid
V-cycle. In the context of Equation (2.20) this cycle consists of the following:

1. RelaxAh∆p = b for v1 iterations using Gauss-Seidel on the fine grid with initial
estimate∆pa

2. Calculaterh usingrh = b − Ah∆pa

3. Restrictrh to the coarse grid, usingI 2h
h rh = r 2h

4. RelaxA2he2h = r2h for v2 Gauss-Seidel iterations on the coarse grid with initial
guesse2h = 0

5. Interpolatee2h to the fine grid usingIh
2he2h = eh

6. Correct the estimate∆pa using∆pa = ∆pa + eh

7. Again relaxAh∆pa = b for v3 Gauss-Seidel iterations on the fine grid with the
corrected initial estimate

8. Use the corrected estimate as initial guess for next cycle.

Simply put, the solution cycle commences by relaxing the problem on the finest grid,
using some simple iterative smoother such as Jacobi or Gauss-Seidel forv1 iterations (pre-
smoothing, followed by calculating and transferring the residual to the coarser grid. On
this grid, an error is solved for via eitherv2 smoother iterations, or directly. The calculated
’improved’ error estimate is interpolated to the fine grid and added to the solution estimate
(so-calledcorrection). On the fine grid, anotherv3 relaxation iterations are performed (post-
smoothing, completing the V-cycle. The updated solution estimate thus obtained can then
be used as the initial estimate for the next V-cycle.

In practice, this process of pre-smoothing, restriction, interpolation and post-smoothing
may be extended recursively over multiple levels, but the principles remain the same. Dif-
ferent cycle shapes are also possible, but the V-cycle was deemed adequate for this work.
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The optimal values ofv1, v2 andv3 are typically problem dependent, and affect the number
of V-cycle iterations required to converge. For the purposes of this work, the values used
throughout were two, one and four respectively, and were found to perform well on the
problems considered in Chapter 5.

3.4 Algebraic Multigrid and FSM

The preceding sections offered an introduction to multigrid methods, in particular providing
details of the underlying algorithms of Classical Algebraic Multigrid. Clearly, the algorithm
constructs the AMG solution structure from the coefficient matrixA. Indeed, this is one of
the method’s greatest strengths, since this enables it to be an ideal black box type solver.
Strictly speaking however, a given algebraic multigrid solution structure is only applicable
to the specific coefficient matrix it is constructed from. It stands to reason that if the co-
efficient matrix changes, this structure must be rebuilt. This is especially true in the FSM
problem under consideration, where the matrix coefficients change at every simulation time
step due to the evolving fluid interface. Rebuilding the AMG solution structure at every
time step would negatively impact performance as the setup phase in C-AMG consumes a
comparable amount of time to the solution cycle itself. As such, applying the AMG method
in this context requires some special attention in order to remedy this problem. The method
developed to effect this is detailed next.

3.5 Freeze-AMG

As mentioned previously, the basic C-AMG method described in this chapter is applicable
as-is to the solution of the FSM pressure correction equation, but will be hamstrung by
the setup phase. As a result, for the purposes of this work, a method was developed to
circumvent this limitation. One approach is to use an alternative problem formulation in
which the coefficient matrix of the pressure equation stays unchanged [14]. This allows one
AMG setup to be performed, which can then be used for all simulation time-steps. Since
it was not feasible to change the formulation used byElemental, as seen in Chapter 2, a
different approach was required. In addition, concerns with guaranteeing incompressibility
exist in the alternative formulation.

From Chapter 2 it is clear that matrix coefficient changes due to the evolving interface
are necessarilylocalisedaround nodes near the free interface. This being the case, a given
AMG solution structure could be expected to converge for coefficient matrices from several
consecutive time-steps, provided matrix coefficients did not deviate unacceptably far from
their original values [41] (proven as a valid assumption where AMG is used as a precon-
ditioner). In other words, some initial AMG solution structure could be ’frozen’ for many
time-steps and used to solve the pressure correction equation. A new solution structure
would then be constructed once the coefficient matrix deviated too far from the original
matrix. This deviation could be expressed simply as the number of V-cycles required by the
AMG solver to converge. For the purposes of this work, a conservative upper limit of 50
V-cycles was set.

From numerical experiments, it was found that the coarsening procedure in Section 3.3.1
is the most CPU intensive phase in the setup procedure, consuming as much time as the
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rest of the setup phases combined. Therefore, an extension of the above Freeze method,
in which only partial AMG setup was performed once convergence deteriorated was also
investigated. This partial AMG setup would consist of only updating the magnitudes of op-
erator coefficients, maintaining previously selected coarse nodes. These AMG refinements
were dubbedFreeze-AMGandExtended Freeze-AMG, and are illustrated in Figure 3.13.

Figure 3.13: Comparison of Freeze-AMG and C-AMG methodologies

3.6 Summary

This chapter provided background to the various solution strategies historically applied in
the context of systems of linear equations. Motivation for using the AMG approach, based
on its characteristics was provided, with the choice of Classical Algebraic Multigrid for this
work justified. In order to provide a foundation on which to describe the implementation of
an algebraic multigrid solver, the principles of multigrid were described and illustrated using
simple geometric examples. These examples were extended to illustrate the basic AMG
theory. Commentary was given on the difficulty faced by the AMG method when solving
problems with changing coefficient matrices, such as those occurring in FSM simulations.
Finally, the method used to improve on basic AMG in this work, namely Freeze-AMG,
was discussed and motivated. The next chapter will discuss in detail how the algorithms
constituting the AMG solver were implemented.

 
 
 



Chapter 4

Object-Oriented C++
Implementation

4.1 Introduction

Chapter 3 provided background on the mechanics of the chosen C-AMG solver. The current
chapter will detail the actual implementation in an object-oriented C++ environment as a
plug-in solver toElemental. To this end, the practicalities of interfacing withElemental
and the object-oriented data structures employed are described. For clarity, the remainder
of the chapter is then divided into subsections based on the separate AMG components in
Chapter 3, as they relate to an object-oriented implementation. Special attention is given to
the details of the algorithms, such that the desired computational efficiency is achieved. This
is critical in the implementation of an AMG solver, since the theoretical optimal complexity
is only possible ifall individual components achieve this ideal. Finally, the implementation
details of the Freeze-AMG method are provided. Before these discussions however, some
background and justification for the use of C++ in the context of this AMG implementation
is provided.

4.2 C++ as Scientific Programming Language

Historically, the programming language of choice in numerical applications was Fortran 77,
which is a procedural type language. Procedural approaches typically become problematic
when faced with large codes of high complexity [7], due to issues with code maintainability
and reusability. As a result, software design principles have evolved, culminating in the
development ofobject-oriented programming. This in turn has resulted in a re-evaluation
of the scientific programming paradigm [5]. The principle ofencapsulation, for example,
which is core to the object-oriented approach, greatly enhances code maintainability and
reusability, meaning that this approach has gained much momentum in the field of numerical
modelling.

As mentioned, Fortran 77, along with its updated version, Fortran 90, are well estab-
lished in a numerical programming context, offering native support for mathematical arrays.
Unfortunately, the Fortran family of languages were not designed with object-oriented ap-
proaches in mind, in contrast to the C++ language. In the context of an AMG solver, Fortran

27
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was deemed less suitable than C++, since the object-oriented approach lends itself well to
such a solver. Specifically, since an AMG solver utilises multiple discreet levels when solv-
ing a system of linear equations, with minimal interaction between these levels, the encapsu-
lation offered by the object-oriented approach is naturally desirable. Furthermore, since the
solver was to be developed as a plug-in toElemental, the modular nature of object-oriented
approaches could be exploited. In light of these factors, C++ was the language chosen for
the current work.

4.3 Interface with Elemental

Since the solver would have to operate as a plug-in to an existing program structure, the
AMG package was coded as a separate library which could be included into any existing
package. In order to take advantage of the object-oriented environment of C++, the solver
was created as a self-contained class, in which all the functions needed for the AMG method
were defined. This self-contained nature of the AMG solver made it possible to interface
with Elementalwith the minimum amount of changes to the main code. At the start of any
FSM simulation inElementala new AMG solver object would be created, as shown in Fig-
ure 4.1. At every simulation timestep where a pressure correction solution is required, the
coefficient matrix and right hand side of Equation (2.20) would be passed to the object dur-
ing the pressure correction step. The object would then construct an AMG solution structure
and obtain the pressure correction solution independently before passing the answer back
to Elemental.

Figure 4.1: Schematic of interaction between the solver and Elemental
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4.4 Solver Structure

The structure of the AMG object itself is depicted in Figure 4.2. As shown, the object con-
tains a series of level objects, each of which is self contained. These contain the relevant
information for each coarse level of an AMG solution structure, including the coefficient
matrices, problem right hand side, transfer operators and the list of nodes selected as coarse.
A function within the AMG object creates these levels and performs the necessary opera-
tions to obtain the aforementioned information. Finally, a solution cycle is implemented
in the AMG object which utilises the level objects in order to obtain the solution to the
linear equation set initially passed fromElemental. The remainder of this chapter inves-
tigates each of the components of the AMG object and the evolution of the implemented
algorithms, following the structure of Figure 4.2.

Figure 4.2: Structure of the AMG object

4.5 The Level Objects

Contained as members of the AMG object, a number of level objects are stored, one for
each discrete coarse level resulting from AMG setup. Defining each level as a separate
object enabled the AMG setup function to create new levels as required instead of rely-
ing on a predefined number of levels. Each of these objects encapsulates all information
specific to a level, independent from other levels. Of particular interest are the level coef-
ficient matrix and transfer operator matrices contained within each object, which are large,
sparse matrices. These require a memory efficient storage scheme in order to leverage their
sparsity. To this end, the compressed row sparse (CRS) storage scheme already in use inEl-
ementalwas employed. This scheme utilises three vectors containing coefficients, column
numbers and row offsets in order to represent a matrix, storing only non-zero coefficients.
This method requiresO(nnz) memory storage for each matrix stored, wherennz is the
number of non-zero coefficients in the matrix. It however has the disadvantage that specific
column elements are not available without a search through an entire row. This limitation
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necessitates intelligent data handling, which is detailed in sections to follow.

4.6 The AMG Setup Routine

Before a solution estimate could be obtained and passed back toElementalfor a given
time step, an AMG solution structure has to be constructed according to the principles in
Chapter 3. Using an initial coefficient matrix, individual coarse levels have to be defined.
This is accomplished by performing several discrete steps, each with its own efficiency
challenges. On every level, these steps consist of obtaining a set of coarse nodes which will
become the next level, using these nodes to construct transfer operators to and from the next
level, and finally constructing the next coarse level’s coefficient matrix. These steps are
discussed individually in this section, with details of how each algorithm evolved in order
to obtain optimal complexity.

4.6.1 Coarse Grid Generation

As shown in Section 3.3.1, the first task in a multigrid method is to define coarse grids
based on an initial fine grid. Clearly, this selection can be subdivided into several algo-
rithms which must be applied. Following the aforementioned section, we must first obtain
the strong influences of every node, according to Definition 3.1. This data can then be used
to perform a colouring procedure, satisfying the second heuristic of C-AMG. Finally, sec-
ondary coarsening must be performed in order to satisfy the first heuristic of C-AMG. At
this point, a set of coarse nodes which will define the next level will have been obtained,
and the construction of transfer operators can commence.

Strong Influence Identification

As stated in Section 3.3.1, each nodei in the coefficient matrixA possesses a set of nodes
that strongly influence it, as well as a set of nodes which it strongly influences, as determined
by Definition 3.1. Applying this relation, every off-diagonal coefficientj in a row i must
be compared to some threshold value as detailed in Section 3.3.1, andj assigned to the set
of nodes which strongly influencesi if needed. This procedure is performed for allN rows
in the matrixA. For the purposes of this section, let this procedure result in every nodei
having a setSfrom

i , containing nodes strongly influencing it, and a setSon
i , which contains

nodes it strongly influences. Thus,2N sets, each with size depending on the neighbourhood
of each nodei, are constructed.

Before constructing these sets, a storage mechanism for them was required. Since it is
not possible to determinea priori how many nodes will be contained in eachSfrom

i and
Son

i , it was considered prudent to use the standard vector class for each nodei’s sets, since
objects of this class can be dynamically resized. In order to facilitate easy access, these
set vectors were all stored in two other vectors of fixed sizeN such that every index of
these corresponded to a nodei. This is shown in Listing 4.1. With the storage scheme
implemented, attention could be turned to the algorithm which would construct the sets.

 
 
 



CHAPTER 4. OBJECT-ORIENTED C++ IMPLEMENTATION 31

AMGSetup : : c o a r s e n i n gf u n c t i o n
{

/ / Dec lare v e c t o r s c o n t a i n i n g s e t s Si ˆ f rom and S i ˆ on
v e c t o r < <v e c t o r <i n t > > s t r o n g i n f l u e n c e f r o m , s t r o n g i n f l u e n c e o n ;
/ / Ass ign s e t s
s e t c o n s t r u c t i o n a l g o r i t h m ;

} ;

Listing 4.1: Declaring vectors of sets

Initially, a segregated approach was attempted in which theSfrom
i andSon

i sets were
determined in separate sub-sections of the algorithm, as shown in Listing 4.2. In this ap-
proach, the maximum off-diagonal coefficient required by Definition 3.1 for every nodei
is obtained by inspecting every off-diagonal in that row. Once this maximum is obtained,
another pass over the nodes in rowi is performed, adding the appropriate nodes toSfrom

i .
These searches over the off-diagonals were limited by the bandwidth of the matrix, which
is extremely small compared to the number of nodesN . Constructing a nodei’s setSon

i

consisted of searching for occurrences ofi in all other nodesj’s setsSfrom
j .

AMGSetup : : c o a r s e n i n gf u n c t i o n
{

/ / Ass ign s e t s
/ / C o n s t r u c t s t r o n g i n f l u e n c e f r o m
f o r ( a l l nodes on l e v e l , i )
{

/ / Determine maximum o f f−diagona l
f o r ( o f f −d i a g o n a l nodes , j , i n row i o f c o e f f i c i e n t m a t r i x )
{

( o b t a i n maximum of f−di a g o n a l )
}
/ / C o n s t r u c t s e t s t r o n gi n f l u e n c e f r o m
f o r ( o f f −d i a g o n a l nodes , j , i n row i o f c o e f f i c i e n t m a t r i x )
{

( compare nodes t o maximum )
i f ( c o e f f i c i e n t j > maximum∗ t h r e s h o l d ) add j t o i ’ s

s t r o n g i n f l u e n c e f r o m
}

}
/ / C o n s t r u c t s t r o n gi n f l u e n c e o n
f o r ( a l l nodes on l e v e l , i )
{

/ / Compare t o a l l o t h e r nodes on l e v e l
f o r ( a l l nodes on l e v e l , j )
{

f o r ( a l l nodes i n j ’ s s t r o n gi n f l u e n c e f r o m )
{

i f ( i o c c u r s i n j , add j t o i ’ s s t r o n gi n f l u e n c e o n )
}

}
}

} ;

Listing 4.2: Segregated set construction
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While this implementation works, it is immediately obvious that the separate calculation
of Son

i is of O(N2). This is due to the nested loop in which a search acrossall N setsSfrom
j

is performed for allN nodesi. Clearly, this method is nonsensical, since only the nodes in a
specifici’s neighbourhood could possibly be added to itsSon

i set. As a result, an improved
version was created in which both sets are constructed simultaneously, shown in Listing 4.3.
This method was based on the obvious fact that if a nodei is strongly influenced by a node
j, j can be added toSfrom

i as normal, whilei can be added immediately toSon
j .

AMGSetup : : c o a r s e n i n gf u n c t i o n
{

/ / Ass ign s e t s
f o r ( a l l nodes on l e v e l , i )
{

/ / Determine maximum o f f−diagona l
f o r ( o f f −d i a g o n a l nodes , j , i n row i o f c o e f f i c i e n t m a t r i x )
{

( o b t a i n maximum of f−di a g o n a l )
}
/ / C o n s t r u c t s t r o n g i n f l u e n c e f r o m and s t r o n g i n f l u e n c e o n
f o r ( o f f −d i a g o n a l nodes , j , i n row i o f c o e f f i c i e n t m a t r i x )
{

( compare nodes t o maximum )
i f ( c o e f f i c i e n t j > maximum )
{

( add j t o i ’ s s t r o n g i n f l u e n c e f r o m )
( add i t o j ’ s s t r o n g i n f l u e n c e o n )

}
}

}
} ;

Listing 4.3: Simultaneous set construction

Using this approach, the influence algorithm was improved to haveO(N) complex-
ity, since the outer loop over all nodes is performed only once, while the inner search for
the maximum off-diagonal and the comparison to this maximum are limited by the small
bandwidth of the matrix, as mentioned before. An evaluation of this algorithm (and all
other algorithms in this chapter) was performed by applying it to a single time step of the
structured mesh sloshing problem of Section 5.2. Results of this evaluation are shown in
Figure 4.3. As shown, various mesh sizes were evaluated. From the curve fit in this figure,
it is immediately obvious that the algorithm scales linearly, with problem size.

The Coarsening Procedure : Initial Coarsening

Once the strong influences of all nodes were determined, the initial coarsening phase as
described by the procedure in Section 3.3.1 could be implemented. As was the case in
the code developed for determining strong influence, multiple methods were implemented
before desired performance was achieved. The prototype coarsening algorithm developed
and evaluated was based on that in the AMGLab toolkit [30]. This package, developed
in Matlab, was intended as a rapid prototyping and expert toolkit for AMG methods as a

 
 
 



CHAPTER 4. OBJECT-ORIENTED C++ IMPLEMENTATION 33

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0  100000 200000 300000 400000 500000 600000 700000

Number of nodes

C
P

U
tim

e
(h

)

Recorded times
Linear fit

Figure 4.3: Influence algorithm scaling

whole. The rewriting of this algorithm specifically for C++ was required since the AMGLab
algorithms were unsuited to larger problems, as will be shown. Additionally, AMGLab does
not include secondary coarsening abilities, and the Matlab programming methodology was
incompatible with the code used inElemental.

An outline of the AMGLab coarsening approach is provided in Listing 4.4. The basic
premise rests on initially assigning all nodes to an unsorted set. In this set, a search for the
node with highest cardinality is done, which is then added to the coarse set. Nodes that are
strongly influenced are removed from the working set, and marked as remaining fine, while
cardinalities are updated to reflect the new coarse selection. This process continues until all
unsorted nodes had been dealt with. To clarify the procedure, an example of the AMGLab
approach for one coarse selection is shown in Figure 4.4, which recalls the example in
Section 3.3.1.

{
/ / AMGLab c o a r s e n i n g
u n s o r t e d s e t = ( a l l nodes on c u r r e n t l e v e l ) ;
c o a r s e s e t = ( empty s e t ) ;
f i n e s e t = ( empty s e t ) ;
whi le ( u n s o r t e d s e t not empty )
{

( c a l c u l a t e c a r d i n a l i t i e s of a l l nodes i n u n s o r t e ds e t )
( f i n d node i n u n s o r t e ds e t w i th maximum c a r d i n a l i t y )
( add node t o c o a r s es e t , remove from w o r k i n gs e t )
( add c o a r s e node ’ s s t r o n g i n f l u e n c e d nodes t o f i n es e t , remove from

w o r k i n g s e t )
( upda te c a r d i n a l i t i e s of nodes i n u n s o r t e ds e t )

}
} ;

Listing 4.4: Details of AMGLab coarsening algorithm
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Figure 4.4: AMGLab coarsening outline
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Fundamentally, performing repeated searches over all unsorted nodes to find the next
maximum cardinality results in complexity higher thanO(N) since approximatelyN/2
searches over a set of nodes initially containingN nodes will have to be done, assuming
that N/2 coarse points are selected. Indeed, numerical tests performed on a simple 5-
point Poisson discretisation matrix of various sizes showed this algorithm to be of greater
complexity thanO(N), as shown in Figure 4.5. This figure clearly shows scaling ofO(N2).
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Figure 4.5: Scaling of the AMGLab coarsening algorithm

What exacerbated the complexity of the C++ implementation was the method in which
nodes are removed from the working set. In the Matlab environment, newly marked coarse
and fine nodes can be removed from the unsorted node list by using built-in high perfor-
mance tools which can be used to obtain intersects, set differences and unions. In C++,
specific nodes to be removed from the working set need to be searched for individually in
the unsorted node list.

In an attempt to mitigate these search loops, an intelligent data storage structure was
sought, with the underlying idea that the information required for coarsening should, ideally,
be updated as coarsening proceeds such that the next node to be made coarse is immediately
available when needed. In the first attempt to achieve this, each node is assigned a vector
containing its own coarsening information. Individual vectors of information are combined
into a standard vector object in C++, in ascending order of node number. The coarsening
information of each node could be updated in this vector as coarsening proceeded. Fig-
ure 4.6 depicts a vector containingN nodes’ information. As shown, the nodal coarsening
information includes a node’s number, its current cardinality, and whether it still needs to
be partitioned into the coarse grid.

During the selection of a coarse node, the vector containing all nodes’ information is
sorted in some way such that the next node to be made coarse appears first in the vector.
Figure 4.7 illustrates the method on the same example shown before, while pseudocode for
this process appears in Listing 4.5. Using the standard C++ sort function, this vector is
sorted in order of decreasing cardinality, with already sorted nodes last. This results in the
next most suitable coarse point being the first in the vector, which is then duly added to the
coarse set, and the information of affected nodes updated. This process then repeats until
all coarsening is complete. The repeated resorting of the coarsening information causes the
performance of this method to be non-optimal, since at best the complexity of a single such
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Figure 4.6: The coarsening information vector

sort in C++ isO(N log N). Instead, a method was needed in which only nodes directly
affected by each coarsening step were accessed.

{
/ / Vec to r S o r t c o a r s e n i n g
c o a r s e s e t = ( empty s e t ) ;
f i n e s e t = ( empty s e t ) ;
i n f o r m a t i o n v e c t o r ; / / Vec to r c o n t a i n i n g nodes ’ c o a r s e n i n g i n f o r m a t i o n
( a s s i g n i n i t i a l c a r d i n a l i t i e s t o i n f o r m a t i o nv e c t o r )

i n f o r m a t i o n v e c t o r c l o n e = i n f o r m a t i o n v e c t o r ; / / Create c l one which
w i l l be s o r t e d

( s o r t i n f o r m a t i o n v e c t o r c l o n e by c a r d i n a l i t y )

whi le ( a l l nodes not s o r t e d )
{

( add f i r s t node i n i n f o r m a t i o nv e c t o r c l o n e t o c o a r s e se t , mark as
s o r t e d i n i n f o r m a t i o n v e c t o r )

( add c o a r s e node ’ s s t r o n g i n f l u e n c e d nodes t o f i n es e t , mark as
s o r t e d i n i n f o r m a t i o n v e c t o r )

( upda te u n s o r t e d p o i n t s ’ c a r d i n a l i t i e s i n i n f o r m a t i o nv e c t o r )

i n f o r m a t i o n v e c t o r c l o n e = i n f o r m a t i o n v e c t o r ;
( s o r t i n f o r m a t i o n v e c t o r c l o n e by c a r d i n a l i t y )

}

} ;

Listing 4.5: Details of vector sort coarsening algorithm
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Figure 4.7: Coarsening by sorting an information vector

 
 
 



CHAPTER 4. OBJECT-ORIENTED C++ IMPLEMENTATION 38

To effect this, the idea of an intelligent data structure updated with coarsening infor-
mation as coarsening proceeded was extended. Instead of a vector containing all nodes’
information, a different structure was proposed. In this last approach, a vector of discrete
tiers of cardinality are constructed, with each containing the corresponding nodes which
have that cardinality, as illustrated in Figure 4.9 and Listing 4.6. The first node in the high-
est tier is immediately available and is chosen as a coarse node. When coarsening assigns
specific nodes to coarse and fine sets, these nodes are removed from their tiers. Only nodes
affected by changes in cardinality are moved between tiers. This algorithm marks a com-
plete departure from the original AMGLab approach, in that the whole set of unsorted nodes
is never searched through. The cost of this increased efficiency is an extra set of coarsening
variables that must be stored for each node. The resulting computational performance is of
O(N) as shown in Figure 4.8.

{
/ / C a r d i n a l i t y t i e r c o a r s e n i n g
c o a r s e s e t = ( empty s e t ) ;
r e m a i n f i n e s e t = ( empty s e t ) ;
c a r d i n a l i t y t i e r s ; / / Vec to r c o n t a i n i n g each t i e r and nodes i n t h a t

t i e r
( a s s i g n nodes t h e i r i n i t i a l p o s i t i o n i n t i e r s )
whi le ( a l l nodes not s o r t e d )
{

( add f i r s t node i n h i g h e s t t i e r o f c a r d i n a l i t yt i e r s t o c o a r s es e t )
( remove node from i t t i e r )
( add c o a r s e node ’ s s t r o n g i n f l u e n c e d nodes t o r e m a i nf i n e s e t , remove

from t h e i r t i e r s )
( move a f f e c t e d nodes t o h i g h e r t i e r s i n c a r d i n a l i t yt i e r s )

}
} ;

Listing 4.6: Details of cardinality tier coarsening algorithm
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Figure 4.8: Colouring algorithm scaling
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Figure 4.9: Coarsening by using cardinality tiers
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The Coarsening Procedure : Secondary Coarsening

With the initial coarsening phase complete, attention could be turned to secondary coarsen-
ing. Since only nodes strongly influenced by other non-coarse nodes are the focus of sec-
ondary coarsening, knowledge of each node’s neighbourhood, as defined in Section 3.3.2,
was first required. Recalling that the neighbourhood is simply a partitioning of the coef-
ficients in a rowi, a minor addition to the algorithm determining the strong influences of
nodes was made. This saw the creation of an additional set for each node, namelyWi, in
which all nodesweakly influencinga nodei is recorded. With each node now having the sets
Sfrom

i , Son
i andWi, as well as a list of coarse nodes resulting from the colouring procedure

available, it was possible to partition every non-coarse node’s neighbourhood.
Using this neighbourhood information, nodes that had strong influences from non-

coarse nodes could be examined individually according to the secondary coarsening al-
gorithm described in Section 3.3.1. This involved simply looping through each node’s set
of strong fine influences twice and comparing it to its set of strong coarse influences. Since
the sets are limited to the neighbourhood size at most (in other words the bandwidth of the
coefficient matrix), these searches were computationally inexpensive. In order to confirm
that this approach was valid, the algorithm was again evaluated over multiple problem sizes,
as shown in Figure 4.10, obtaining a clear linear scaling.
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Figure 4.10: Secondary coarsening algorithm scaling

4.6.2 Intergrid Transfer Operators

Once the coarse grid selection algorithm had been completed, the next step was to transcribe
the intergrid transfer operators in Section 3.3.2. The construction of the restriction and inter-
polation operators required the implementation of Equation (3.5) and (3.11). This consists
of looping over all nodes in a level and assigning the appropriate coefficient to the interpo-
lation operator. Restriction operators are obtained by a transpose algorithm applied to the
interpolation matrix. If a nodei was marked as coarse, a coefficient of unity is assigned to
the interpolation operator matrix. On the other hand, ifi is not coarse, Equation (3.11) must
be used to calculate one or more appropriate coefficients.

Cursory inspection of the equation reveals that determining a coefficientω requires
knowledge of the neighbourhood ofi. The neighbourhoods of all nodes are also used in
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the secondary coarsening algorithm described previously, and are thus available for use,
suitably updated to reflect the additional coarse nodes. With this information available,
constructing the interpolation coefficients of each non-coarse node is then simply a matter of
looping over each of these node’s neighbourhood sets and applying Equation (3.11). Once
the interpolation matrix was completed, its transpose could be calculated and assigned as the
restriction operator. TheO(N) cost of the intergrid transfer operator construction procedure
is confirmed in Figure 4.11.
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Figure 4.11: Transfer operator construction algorithm scaling

4.6.3 Coarse Grid Operators

The final step during AMG setup is to define the next coarser level’s coefficient matrix. As
stated in Section 3.3.3, this matrix is obtained using the Galerkin principle, which involves
the triple product of Equation (3.13):

A2h = I2h
h AhIh

2h,

with nomenclature as defined previously. For the sake of programming simplicity, this
triple product may be split into two separate matrix products to which the same algorithm
is applied. First, as in Equation (4.1) an intermediate product is obtained from the system
and interpolation matrix multiplication. This product is then multiplied with the restriction
matrix to obtain the next level system matrix as in Equation (4.2):

Intermediate = AhIh
2h (4.1)

A2h = I2h
h Intermediate (4.2)

Since no matrix multiplication tools are available as standard in C++, and due to the
compressed row sparse storage used, a specialised algorithm was needed, whether custom
coded or obtained from an external library. The latter was considered the simplest option,
and so an external C++ library offering linear algebra functions was evaluated. Specifically,
the BOOST library which offers basic linear algebra subprograms (BLAS), was investi-
gated. Performance evaluation of this library when using the compressed row sparse matrix
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Figure 4.12: BOOST sparse matrix multiplication scaling

storage scheme described previously was not satisfactory however. A performance evalua-
tion of a sparse matrix multiplication in this library is shown in Figure 4.12. In light of this,
it was decided to implement a custom high performance sparse multiplication algorithm
inside the AMG solver itself, which would receive two sparse matricesA andB as input
and return their product,AB. As a starting point, the classic dense matrix multiplication
algorithm is recalled. In this algorithm, the resultant product is constructed one coefficient
at a time according to

ABi,j =

N−1
∑

k=0

Ai,kBk,j, (4.3)

with nomenclature as defined before. In practice, an implementation of this algorithm
is of O(N3) complexity whenA andB are dense square matrices. Applying the same al-
gorithm to an extremely sparse matrix lowers the complexity toO(nnz), where, as before,
nnz is the number of non-zero matrix entries in the matrices being multiplied. For illus-
tration purposes, and for comparison to the algorithm developed later in this section, this
approach is shown for a simple multiplication, as seen in Figure 4.13.

Figure 4.13: Traditional dense matrix multiplication

In this figure, the multiplication to obtain the first coefficient inAB, AB1,1, is dia-
grammed. As shown, the coloured numbers are the coefficients required to construct the
first coefficient ofAB. Like coloured numbers are multiplied, then added to give the final
coefficient in the result. In practice, this necessitates accessingA1,1, multiplying it with
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B1,1, and storing it inAB1,1. Access then shifts toA1,2, B2,1, A1,3 andB3,1 in turn. This
approach takes for granted that all coefficient indices are easily available and accessed,
which isnot the case when a format such as compressed row sparse storage is used. Specif-
ically, compressed row sparse storage contains matricesrow-by-row, meaning that specific
column indices are not immediately available. The continuous access of different rows and
columns in the matrices necessitate costly searches for specific indices in this case. Clearly,
this is far from ideal.

Instead, a different approach was implemented, which takes advantage of the row-by-
row storage format. In a reversal of the traditional implementation of Equation 4.3, where
the result’s coefficients are constructed one by one, looking up specific rows and columns in
the matricesA andB as needed, the implemented algorithm instead accessesA andB one
row at a time and performs all multiplications involving that row before moving to the next.
This has the effect of constructing multiple coefficients in the resultant matrixsimultane-
ously, and takes advantage of the immediately available row indices compressed row sparse
storage format offers. Figure 4.14 illustrates this multiplication approach schematically.

Figure 4.14: Row by row multiplication

As before, like coloured numbers are multiplied. However, as opposed to Figure 4.13,
where components across multiple rows are accessed to construct a specific coefficient, all
calculations take place within one row, with contributions being added to multiple coeffi-
cients in the result. Since only one row is ever being accessed at a time, no searches in the
compressed row sparse storage vectors need to be performed. Using this efficient method,
a complexity ofO(nnz) was achieved, wherennz is the number of non-zero components
in the matrices being multiplied. This number is proportional toN and the size of the
discretisation stencil used, and as such, the sparse multiplication is ofO(N), as shown in
Figure 4.15.

4.7 The AMG Solution Routine

As shown in Figure 4.2, obtaining a solution estimate to a given problem is performed in
a separate routine. This routine is performed multiple times, depending on the accuracy
required from the solution estimate. As seen in Section 3.3.4, the two grid V-cycle in Fig-
ure 3.12 can be extended recursively over multiple levels in order to provide a solution
cycle. This is the approached adopted in the AMG implementation. A representation of
this recursive cycle is given in Figure 4.16, with pseudocode in Listing 4.7. Obviously, the
solution cycle implemented has multiple instances of smoothing, restriction and interpola-
tion. These procedures involve only very simple matrix/vector products, and are thus trivial
to implement optimally. Scaling of the solution routine is provided in Figure 4.17.
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Figure 4.15: Matrix multiplication algorithm scaling

Figure 4.16: Recursive v-cycle

{
/ /AMG s e t u p
( c r e a t e N l e v e l s of c o a r s e n i n g )

void v c y c l e ( c u r r e n t l e v e l ) / / R e c u r s i v e c y c l e f u n c t i o n
i n t v1 , v2 , v3 ; / / Number o f i t e r a t i o n s t o use f o r smooth ing

c u r r e n t l e v e l = 0 ; / / S t a r t on t h e f i n e s t l e v e l

i f ( c u r r e n t l e v e l i s NOT t h e c o a r s e s t )
{

( per form v1 Gauss−Se i d e l o p e r a t i o n s on l e v e l )
( r e s t r i c t s o l u t i o n e s t i m a t e t o c u r r e n tl e v e l +1)
v c y c l e ( c u r r e n t l e v e l +1) ; / / R e c u r s i v e c a l l

( i n t e r p o l a t e e r r o r from c u r r e n tl e v e l +1)
( c o r r e c t e r r o r e s t i m a t e ont h i s l e v e l )
( per form v3 Gauss−Se i d e l o p e r a t i o n s ont h i s l e v e l )

}
e l s e i f ( c u r r e n t l e v e l IS t h e c o a r s e s t )
{

( per form v2 Gauss−Se i d e l o p e r a t i o n s on l e v e l )
}

}

} ;

Listing 4.7: Recursive V-cycle
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Figure 4.17: V-cycle routine scaling

4.8 Freeze-AMG

As described in Section 3.5, the Freeze-AMG method utilises the AMG setup of a single
time step in order to obtain solution estimates for multiple subsequent time steps. Owing to
the creation of the separate AMG object in Figure 4.2, a given solution structure would exist
in memory and remain accessible until the setup routine was performed again. Since the
setup and solution routines independently function using each level’s object, it is possible to
intelligently perform the setup routine only when needed. Furthermore, it is possible to only
performparts of a setup routine, as required by the proposed extension of Freeze-AMG,
where only transfer and operator matrices are updated. In this work, a very basic heuristic is
used to determine when the setup routine is performed, namely placing an empirical limit on
the number of solution cycles allowable. An outline of this process is shown in Figure 4.18.
An evaluation of this methodology follows in Chapter 5, in which the characteristics of the
extended and basic Freeze-AMG are quantified.

Figure 4.18: The Freeze-AMG solution method
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4.9 Summary

This chapter started with justification for the C++ object-oriented approach chosen for the
AMG solver, followed by details the algorithms required to implement an algebraic multi-
grid method, as specified in Chapter 3. Attention was given to the data structures used,
and the evolution of algorithms to achieve optimal performance scaling. Specifically the
influence, coarsening and operator multiplication algorithms were explored in more detail.
Finally, the manner in which the recursive V-cycle was implemented was illustrated, as well
as how the Freeze-AMG methodology was used to limit the amount of full coarsenings
performed. Implementation of the preceding algorithms are discussed in the next chapter.

 
 
 



Chapter 5

Solver Testing and Evaluation

5.1 Introduction

The previous chapters detailed the development of an algebraic multigrid tool intended to
accelerate the solution of the pressure correction equation arising from free surface mod-
elling simulations. This chapter is concerned with verifying the accuracy and multigrid
performance of the implemented solver, as well as the performance increases offered over
the existing solver on representative problems. In order to evaluate the performance of the
solver in terms of efficiency and computational speed improvements, it was applied to two
benchmark FSM problems, namely a two-dimensional sloshing tank and dam-break. These
were selected as they represent both smooth and violent interface problems, thus serving as
a thorough evaluation for the robustness and efficiency of the developed F-AMG method.

In the interests of a rigorous evaluation, each problem was solved on multiple meshes
spanning at least an order of magnitude in number of unknowns, and actual CPU times of
four solvers comparedviz. C-AMG, F-AMG, extended F-AMG and preconditioned GM-
RES. Solution time scaling as a function of mesh size of the four solvers was evaluated and
the contribution of the pressure correction solution to the total simulation time compared.
Further, both structured and unstructured meshes were employed, with the following being
adhered to for all simulations:

• The pressure equation was considered solved only once the scaled residual had been
reduced by five orders of magnitude (reducing this to three orders was found to not
have a significant effect on CPU times),

• In the interests of automation, the AMG solver was allowed to construct coarse levels
until the coarsest level contained one unknown only, with a coarsening threshold (θ)
of 0.8,

• The V-cycle (as described in Section 3.3.4) consisted of2 pre-,4 post- and1 coarse-
level smoothing iterations,

• The number of V-cycles allowed before a solution structure was deemed inappropriate
(ie. re-coarsening was required) was set to fifty,

• All simulations were performed on a Dell Latitude E6510 computer, with dual 2.66GHz
Intel Core i7 CPU (4Mb of cache memory each) and 4Gb of 1066Mhz RAM .

47
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In addition to the performance comparison of the implemented solver, it was verified
that problems were accurately solved by comparing computed results to experimental or
benchmark predictions, and that the expected multigrid convergence behaviour had been
obtained. Finally, the performance of the F-AMG methods was evaluated. These topics are
the focus of the remainder of this chapter.

5.2 Two-Dimensional Fluid Sloshing

The first test case used to evaluate the solver was the simple side to side slosh in two di-
mensions of a wave with low amplitude [33]. The computational domain is depicted in
Figure 5.1, with a width of 0.1m and a height of 0.065m. The bottom and sides of the do-
main are slip boundaries, while a fixed pressure condition is applied at the top surface. The
initial fluid surface is defined by half a cosine wave with amplitude as shown, and sloshes
under the influence of gravity. In order to gauge performance of the F-AMG solver, the
motion of the fluid was simulated for ten seconds (twenty-six slosh cycles) using the origi-
nal preconditioned GMRES solver used byElemental, the basic C-AMG solver, the initial
F-AMG implementation and the extended F-AMG method described in Section 3.5. Per-
formance evaluations were performed on both structured and unstructured grids of multiple
sizes.

Figure 5.1: Two-dimensional fluid sloshing - Computational domain

To assess correct solution, the implemented AMG solver was applied to a structured
mesh containing 17,161 nodes (Figure 5.4). The computed results for the interface height
at the left-hand boundary as a function of time compare well to the results of others [32],
as shown in Figure 5.2. Next, multigrid speed-up was assessed using the same mesh. The
improved convergence achieved via the basic C-AMG solver is depicted in Figure 5.3. As
seen, the multigrid solution method achieves a speed-up of multiple orders of magnitude,
proving the implementation is sound.

5.2.1 Solver Comparison

In order to rigorously gauge the performance of the implemented solver, multiple simula-
tions of the sloshing problem were performed on differing mesh types using the various
matrix free solvers. Examples of these meshes are depicted in Figure 5.4. As shown in
Figure 5.5, it was found that solution times scaled linearly with the length of the simulation
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Figure 5.2: Two-dimensional sloshing - Experimental comparison
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Figure 5.3: Convergence speed-up achieved due to the C-AMG solver

over all mesh sizes for both structured and unstructured meshes. This is thought to be due to
the small interface velocity range and smoothness, resulting in uniform real time step sizes
throughout.

What is clear from the solver comparison is that the AMG methods outperform the pre-
conditioned GMRES solver, with the F-AMG implementations offering the greatest speed-
ups. The latter outperforms GMRES by a large factor on both structured and unstructured
problems. The greater amount of time spent on the unstructured problems can be ascribed
to the larger discretisation stencil resulting from increased node connectivity. However, it
is surprising to note that the two F-AMG methods were almost identical in performance,
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Structured mesh - 17,161 nodes Unstructured mesh - 16,479 nodes

Figure 5.4: Two-dimensional sloshing - Meshes
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Figure 5.5: Two-dimensional sloshing - Solver comparisons

with no discernible advantage offered by the extended methodology over the basic Freeze
method. In addition, the Freeze methods offered only marginal improvements over C-AMG
for this problem. Reasons for this are explored in detail in Section 5.4.

Next, solver performance was assessed as a function of mesh size. For this purpose,
the four solvers were applied to structured meshes ranging over two orders of magnitude.
Since the CPU time scales linearly with the simulation time for this problem, a shortened,
one second simulation was performed. The results are summarised in Figures 5.6 and 5.7,
with the latter depicting the percentage of overall CPU time used by each pressure solver.
As shown, two distinct scaling regimes were observedviz. in and out out of cache, with the
former offering significantly superior performance.

From the scaling investigation, it is clear that the AMG methods exhibit optimalO(N)
scaling with mesh size, with in cache being1.85−5N and out of cache6.67−5N . The
F-AMG methods continued to be almost identical. This is in contrast to the GMRES
method, which exhibits clear non-linear behaviour (this is unsurprising as GMRES scales
asO(N log N)). The upshot of this is that as problem size increases, F-AMG specifically
outperforms GMRES by a greater and greater amount. Of particular interest is the fact that
in the AMG methods, a much lower percentage of CPU time is devoted to the solution of
the pressure correction equation, as opposed to the GMRES method in which almost all
the time taken was dedicated to this process. This indicates that significant relief of the
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Figure 5.6: Two-dimensional sloshing - Solver scaling
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Figure 5.7: Two-dimensional sloshing - Solver time contribution

bottleneck associated with the pressure correction equation has been achieved.

5.3 Two-Dimensional Dam-break

The second problem on which solver performance was evaluated was the canonical two-
dimensional dam-break problem [29]. In this problem, a column of water of widtha =
0.146m and height2a is allowed to flow under the influence of gravity, as shown in Fig-
ure 5.8. All four boundaries are considered no-slip boundaries. This problem exhibits vio-
lent interface motion, as seen in the snapshots of the evolving interface, and as such offers
the opportunity to test the robustness of the developed AMG setup methodologies. This is of
special interest since the matrix coefficients in Equation (2.20) will undergo large changes
between time steps as the interface sweeps over the entire domain. Following this, a two
second simulation interval was modelled as it contains the time period of the problem char-
acterised by a violent, fast-moving interface. Subsequent to this, the interface settles down
into a quasi-static mode which requires little solver effort and is thus of limited interest.

As with the previous test case, verification of the solver was performed by comparing
computed results to experimental [29] and published results. These comparisons are shown
in Figure 5.9, in which the solution obtained on a structured mesh containing 3,721 nodes
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Figure 5.8: Two-dimensional dam-break - Interface evolution

is depicted. As seen, the simulated values show good agreement with experiment and liter-
ature, which verifies that the implemented method is solving the problem correctly.

5.3.1 Solver Comparison

As in Section 5.2, multiple simulations across various mesh sizes were performed in order
to gauge solver performance. In this case, structured meshes ranging from 3,721 to 32,761
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Figure 5.9: Two-dimensional dam-break - Solution verification

nodes were employed, an example of which is depicted in Figure 5.10. The mesh sizes
were all chosen to be below the caching limit observed in the previous test case. Solver
performance on the meshes investigated showed similar behaviour, as depicted in the repre-
sentative case in Figure 5.11, in which the solver comparison for a simulation on the finest
mesh employed appears.

Figure 5.10: Two-dimensional dam-break : Structured mesh

Similar to the results obtained from the sloshing test case, barring the uniform real time
step size, the AMG methods again outperform the GMRES solver, with marginal differences
between the F-AMG methods. Considering first CPU cost as a function of time simulated,
GMRES exhibits drastically slower performance than the AMG methods, which show fairly
consistent performance over the entire time period. The aforementioned also suffers from
higher CPU cost at0.3s, which coincides with the interface reaching the opposite wall, as
shown in Figure 5.8, where interface motion starts to become much more rapid. While it is
unknown why the GMRES method would have difficulty with this situation, it is interesting
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to note that the F-AMG methods do not exhibit this problem.
Plotting the solver times as the mesh sizes increased yielded the scaling in Figure 5.12.

The scaling data again shows the AMG methods exhibiting superior scaling to the GMRES
solver, approaching optimalO(N) behaviour, with the latter exhibiting definite non-linear
scaling. Thus, as problem sizes increase, the factor by which solution times are reduced
increases rapidly.
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5.4 F-AMG Performance Analysis

As seen in the previous sections, the basic and extended Freeze-AMG methods exhibit
almost exactly the same performance on the cases evaluated. Since only updating interpola-
tion operators consumes roughly half as much computational time as a full setup procedure,
this ran contrary to expectations. In addition, both F-AMG methods offer lower than ex-
pected improvements over the C-AMG solver. In order to investigate possible causes of
this behaviour, a detailed breakdown of the time spent during the solution of the pressure
correction equation was performed. This data is shown in Table 5.1 for the coarsest meshes
on both test cases.

From this information, it becomes clear why the Freeze methods exhibit the observed
behaviour. As shown, the Freeze methods perform vastly more V-cycles during the course
of a simulation than the basic C-AMG method, while spending much less time on setup.
As expected, the extended Freeze method spends the least amount of time on setup, but
accordingly more time on V-cycles. The result of this is that the majority of CPU time spent
on the solution of the pressure equation becomes devoted to the solution cycle, whereas the
setup time consumes much less time. This increase in the total number of solution cycles
required is a direct result of the fact that frozen solution structures do not converge in as few
cycles as a structure constructed at every time-step, which also accounts for the discrepancy
between the extended and basic Freeze methods.

Solution Time Breakdown
Method Total CPU time Pressure eqn. Sol. cycle AMG setup

(h) (h) % (h) % Total cycles (h) %

Two-dimensional sloshing, structured
Ext. F-AMG 0.327 0.124 37.84 0.108 32.96 288392 0.016 4.87
Basic F-AMG 0.315 0.115 36.49 0.097 30.83 259374 0.0178 5.66

C-AMG 0.379 0.174 45.98 0.048 12.68 126378 0.126 33.3
GMRES 0.875 0.675 77.19 n/a n/a n/a n/a n/a

Two-dimensional sloshing, unstructured
Ext. F-AMG 0.893 0.384 42.97 0.297 33.24 460789 0.087 9.73
Basic F-AMG 0.839 0.373 44.45 0.287 34.16 446651 0.086 10.29

C-AMG 1.112 0.624 56.14 0.215 19.37 329940 0.410 36.78
GMRES 2.142 1.666 77.77 n/a n/a n/a n/a n/a

Two-dimensional dam-break, structured
Ext. F-AMG 0.458 0.241 53.85 0.220 49.11 540635 0.021 4.75
Basic F-AMG 0.448 0.239 53.24 0.218 48.57 540299 0.021 4.67

C-AMG 0.570 0.367 63.99 0.174 29.85 416866 0.194 34.14
GMRES 0.582 0.374 64.29 n/a n/a n/a n/a n/a

Table 5.1: Breakdown of the pressure equation solution time

It is proposed that the above limited performance improvement due to the freeze mech-
anism can be ascribed to the extremely basic heuristic used in its implementation, namely
a fixed number of allowable V-cycles before re-setup occurs. Since the typical number of
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V-cycles required for a solution to converge is problem specific, using a hard limit of fifty
cycles may not be ideal. Instead, an adaptive approach which records convergence infor-
mation as the simulation proceeds could conceivably improve solution times dramatically
by finding the optimum balance between setup and solution times. Barring this, it is clear
that the additional complexity of the extended F-AMG method offers no real benefits. It is
clear though that the solution of the pressure equation consumes a much lower percentage
of total CPU time when using the F-AMG methods than the GMRES solver, confirming
the behaviour observed in Figure 5.7. This highlights the fact that the bottleneck associated
with the solution of the pressure correction equation has been greatly reduced. Additional
improvements in solution time can be realised by identifying further bottlenecks in theEle-
mentalpackage, which is beyond the scope of this work.

5.5 Summary

The developed solver tool has been evaluated by applying it to smooth and violent interface
test-cases on a range of mesh sizes. Having validated accurate solution via comparing
predicted solutions to available benchmark solutions, the performance of the developed
Freeze-AMG solvers was evaluated by comparing CPU times for simulations to those of
preconditioned GMRES and C-AMG solvers. Additionally, the scaling of the solvers with
problem size was investigated. These evaluations showed that the implemented C-AMG and
F-AMG were consistently faster than the preconditioned GMRES method, while exhibiting
optimalO(N) behaviour. The basic and extended F-AMG methods offered the best solution
times, but were almost indistinguishable from one another. Additional investigation into
this phenomenon determined that the F-AMG methods spend little time on solver setup (as
expected) but that increased CPU time is spent on solution cycles. A proposal to remedy
this is to introduce adaptive heuristics for the Freeze methods instead of the hard limit on
solution cycles currently imposed. A summary of the contributions of this work, as well as
recommendations for further research is provided in the next chapter.

 
 
 



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The aim of the current work was to implement and test a solution acceleration method for
solving large, sparse systems of linear equations, which arise during the pressure correc-
tion step in free-surface modelling simulations. The chosen acceleration method was to be
designed as a plug-in to an existing CFD packageElemental, which currently uses a precon-
ditioned GMRES method to solve this equation set. After investigation, the decision was
made to examine the suitability of an algebraic multigrid method due to both the optimal
performance scaling exhibited by multigrid methods as well as its suitability to be used as
a black box plug-in solver. The partitioned solution method employed byElementalresults
in a changing coefficient matrix for the pressure correction equation at each simulation time
step. Due to the fact that AMG methods use this matrix as input in order to construct a
solution structure, the setup phase of the AMG method would have to be performed re-
peatedly. During implementation, specific attention would be given to a method to mitigate
these costs.

After developing the governing equation set and the background of the pressure cor-
rection equation, an overview of the multigrid method as advanced solver was given, with
focus on Classic Algebraic Multigrid. In this way, the algorithmic components required of
a multigrid solver were detailed, ready for implementation. Additionally, in anticipation
of the aforementioned cost of repeated AMG setup, an augmented methodology was in-
troduced, termed Freeze-AMG. The method relies on maintaining solution structures over
multiple simulation time steps until solver convergence decays. Underlying the new method
is the observation that frozen solution structures remain adequate approximations to the sys-
tem of equations due to the fact that only minor changes to the coefficient matrix occurs over
several time steps. An extension of this freezing concept was also developed, in which only
partial setup of the solution structure was performed in an effort to maintain solver perfor-
mance for as little computational cost as possible.

The AMG solver in its entirety was developed in object-oriented C++. Special focus
was given to obtaining optimal complexity for each individual algorithm. This resulted in
multiple implementation refinements. With the solver successfully implemented, a rigorous
evaluation was performed. Both smooth and violent interface problems were evaluated on
multiple mesh sizes,viz. two-dimensional fluid sloshing and dam-breaks.
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The developed Freeze-AMG solvers were evaluated by assessing correct solution and
computational speed-ups, as well as comparing computational cost to an existing precondi-
tioned GMRES solver and C-AMG. For all problems run and meshes used, the F-AMG
solvers proved robust and accurate, while exhibiting the best performance and optimal
O(N) scaling. In addition, the Freeze methods reduced the percentage of computational
time required to solve the pressure correction equation from 95% for GMRES to 65% while
offering an improvement over C-AMG of 5%. Further, the CPU time spent on AMG setup
while using the Freeze methods is circa 5 to 10 times lower than the time spent on solution,
as opposed to basic C-AMG method, where the time spent on the two are comparable.

The similar CPU cost of the two developed Freeze methods points to the need for an
adaptive heuristic which balances the time spent on setup and solution cycles. While be-
yond the scope of this work, this development may result in a clear distinction between
the extended and basic Freeze methods, while offering even greater improvements over the
C-AMG solution times. Nevertheless, from the obtained results, it is felt that both Freeze-
AMG methods are a promising extension of the basic AMG method in the FSM context,
offering a viable alternative as a high-performance linear solver, with great potential for
further development.

6.2 Future Work

The scope of this work was limited to a serial implementation of the C-AMG method on
limited problem sizes, using only basic heuristics for the F-AMG method. Obviously, in
the context of relevant industrial applications, a massively parallel implementation is indis-
pensable. Classical AMG coarsening, which forms the basis of this work, has in the past
been considered ill-suited to parallelisation [11], as well as being superceded by more ad-
vanced AMG methods [9]. In addition, trends in AMG research have pointed to the use of
the method as a preconditioner for GMRES instead of a stand-alone solver as offering the
best possible performance. Considering these factors, the following areas are recommended
as extensions for this research:

• Implementation and testing of a parallel Freeze-AMG solver

• Automatic adaptive heuristic to determine when to freeze and unfreeze solution struc-
tures

• Investigation of more modern AMG algorithms to replace the classical model in use

• Performance comparison of the stand-alone AMG solver and an AMG preconditioned
GMRES solver.
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[19] R. Löhner.AppliedCFDTechniques. John-Wiley and Sons Ltd., Chichester, 2001.
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[39] K. Stüben. A review of algebraic multigrid.Journal of Computational and Applied
Mathematics, 128(1-2):281–309, 2001.
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