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Abstract

In this thesis, we explore the advanced techniques for both optical transmission and op-

tical fibre sensing. For the optical transmission, we design a low differential modal delay

(DMD) few-mode fibre with distributed long period gratings. With the help of random

strong mode coupling, we verify that our scheme produces a significant DMD reduction,

controllable bandwidth and environmental robustness over a long distance, leading to a

great potential of high-capacity optical transmission. We next explore the application of

few-mode fibre in optical fibre sensing area. A novel multi-parameter sensing technique

will be demonstrated based on elliptical-core few-mode fibre. We also provide a gen-

eral method for discriminative sensing with more than two modes. Experimental results

show an advantageous performance for the discrimination between the temperature and

strain, providing a feasible way of separating multiple parameters simultaneously.

Besides the few-mode fibres technologies, in this thesis, we will introduce two ad-

vanced techniques for high-performance distributed fibre sensing. We will first pro-

pose an ultra-fast Brillouin fibre sensing technique. By utilising the dual-polarisation

orthogonal-frequency division multiplexing and coherent detection, our scheme could

monitor the distributed fibre status with only single-shot measurement. The ultimate

sensing speed is only limited by the fibre length, which will significantly boost the sens-

ing speed. After that, a complex-domain Brillouin fibre sensing technique is demon-

strated, by detecting the complex Brillouin spectrum directly and estimating the Brillouin

frequency on the complex domain. With the complex nonlinear regression method, rig-

orous closed-form expressions are derived for the Brillouin frequency uncertainty. Our

technique will improve the sensing accuracy by a factor of
√

2 and the SNR by a 3dB,

which is confirmed by both simulations and experiments.
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Chapter 1

Introduction

1.1 Introduction

Human beings have the innate desire to explore the unknown world as well express

ourselves. Throughout the long span of civilisation, people have kept developing better

technologies for communicating and sensing the surrounding environments.

1.1.1 Optical fibre communication

In the ancient times, communication could be verbal speech, illustrated symbols, carved

pictures or written scripts. With the advancement of human society, communicating

over a distance, or called telecommunication, has become desirable. In the early his-

tory, telecommunication could be the talking drums in Africa or the smoke signals in

China and America. In 1809, Samuel Thomas von Sömmerring tried the first experiment

electrical telegraphy. In 1838, Samual More successfully demonstrated a telegraph trans-

mission over five kilometres. In 1879, Alexander Graham Bell showed the first telephone

service across the Atlantic ocean. Since then, the demand for transmission has been grow-

ing constantly. Various electrical-based communication systems have been developed to

provide better transmission service for people around the world, over the installed com-

munication medium such as the single copper wire, twisted pair wires, and the coaxial

cables. However, in the late 20 century, such kind of systems had reached a bottleneck in

terms of both the channel capacity and transmission distance. For example, the operat-

ing rate of a coaxial cable can operate can be just 200 Mbps, while the signal needs to be

regenerated every single kilometre. This, however, raises a costly expense for providing

1
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high-quality communication service.

While people started seeking for better communication systems, the concept of light-

wave communication was proposed after the invention of lasers. Particularly, researchers

had been looking for the most appropriate lightwave transmission medium. In 1953,

Bram van Heel successfully transmitted an image through an optical fibre bundle with

transparent cladding. By 1960, the attenuation of glass-cladding fibres was around 1 deci-

bel (dB) per metre. Such a high loss in the optical fibre make it impossible to be utilised in

communication applications. In 1964, Dr. Charles K. Kao proposed the critical idea and

specifications to fabricate the optical fibres with loss below 20 dB per kilometre.. Based

on this, the silica fibre with low transmission loss was successfully fabricated in 1970.

Since then, technologies have been evolved to produce low-loss fibre. In 1979, people

were able to manufacture optical fibres with a loss as low as 0.2 dB per kilometre at the

wavelength of 1.55 µm. To date, the widely used Corning SMF-28 fibre has a loss factor

smaller than 0.18 dB/km. The lowest record of pure silica core fibres can down to 0.1419

dB/km so far [1].

Compared with the electrical-based communication systems, the optical fibre com-

munication systems have a much broader bandwidth, resulting in a considerable boost

of transmission capacity. Most of today’s existing fibre communication systems are based

on single-mode fibre (SMF). A single-mode fibre has many independent channels based

on the different wavelength and the orthogonal polarisation. By multiplexing in both

wavelength-domain (i.e. the wavelength-division multiplexing, WDM) and polarisation

domain (i.e. polarisation-division multiplexing, PDM), the total net data rate can surpass

15.5 Tbps in a single fibre over 7000 kilometre transmission distance. The low attenuation

of optical fibres allows signals transmitting over a very long distance. Moreover, using

silica fibre can be much more cost-effective than the wires made by a copper material. So

far, optical fibre communication systems using single-mode fibres have been widely used

in both long-distance and short-reach applications.

One of the major advances of optical fibre communication is introduction of digital co-

herent technology. Early-stage optical communication systems employed the intensity-

modulation and direct-detection (IM-DD) scheme. Combined with the WDM technol-
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ogy and the erbium-doped fibre amplifiers (EDFAs), the IM-DD scheme has been widely

used in the optical communication even today. On the other hand, with the increas-

ing demand in transmission capacity of WDM systems, the digital coherent technology,

which employs the narrow-linewidth laser source and coherent receivers, attracted a

widespread of interest [2]. The digital coherent optical transmission system can imple-

ment long-range, large-capacity transmission by utilising more spectrally efficient mod-

ulation formats, such as the M-ary phase-shift keying (PSK), the quadrature-amplitude

modulation (QAM), and the orthogonal frequency division multiplexing (OFDM). Com-

pared with the IM-DD system, digital coherent technology uses the complex amplitude of

light (amplitude and phase), allowing the this system to transmit more information than

amplitude-only systems. Moreover, since the digital coherent reception is a linear pro-

cess, all the complex information is preserved after detection, and the channel dispersion

can be compensated with the post signal-processing electrically. With the aid of high-

speed analogue-to-digital converter (ADC), wideband coherent receiver, and probabilis-

tic shaping technique, the digital coherent technology has enabled the real-time coherent

transmission of single-carrier 250-Gb/s uniform 16-QAM over 5523 km trans-Atlantic

field trial [3], which is a milestone in the modern coherent optical communications.

1.1.2 Motivation of spatial division multiplexing

Along with the development of telecommunication, the Internet technologies have ad-

vanced rapidly in the past decades. As the result, the Internet usage has increased

tremendously. Nowadays, with the growing demand of high-definition video streaming,

multimedia file sharing, online gaming, cloud computation and other big data applica-

tion, worldwide data traffic is growing very rapidly every year [4]. According to Cisco

recent Visual Networking Index internet traffic forecast, the global IP traffic will increase

three-fold in the next five years, and the annual global IP traffic will reach 4.8 ZB 1 pear

year by 2022 [5]. This development leads to a higher requirement for optical transmission

capacity.

In the past, the growing capacity demand has been fulfilled by using the PDM and

11 ZB = 1021 bytes.
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WDM technologies. However, after growing over several decades, the capacity of single-

mode fibres has been rapidly approaching its capacity limits, which is imposed by the

combination of Shannon’s information theory and nonlinear fibre effects. This bottleneck

was also called capacity crunch [6]. As the transmitted data rate continues to increase,

researchers have been developing new technologies to deal with this capacity crunch.

One straightforward option is installing more optical fibres. This method can linearly

increase the transmission data rate, e.g. adding two more fibres for one point-to-point

transmission can increase its capacity by twice. However, since all the optical compo-

nents, lasers and detectors need to be increased linearly as well, the cost will be tremen-

dous. Considering the exponentially grown capacity demand each year, the total cost

will beyond measure in the future.

Another alternative is adding a new multiplexing dimension. Existing single-mode

fibre-based optical transmission systems use single-mode fibres which only support the

fundamental mode. However, by changing the fibre refractive index profile, such as

increase the core-diameter or doping concentration, more spatial modes could be sup-

ported. According to the waveguide theory [7], the spatial modes should be orthogonal

to each other, which can form several orthogonal channels for transmission. Therefore,

the total channel capacity will be multiplied. This is equivalent to adding a space dimen-

sion to the existing multiplexing technique. Meanwhile, the digital coherent technique

and the multiple-input and multiple-output (MIMO) technique have also motivated the

researchers to exploit the multiple modes as independent channels in practical solutions.

Based on this idea, the spatial division multiplexing (SDM) technology was proposed

and has drawn much attention in the past years.

Though the multi-mode fibre (MMF), such as the GI-50 MMF, can support a number

of modes at certain wavelength, it has been used for conventional communication and

data networks over a fairly long time. In those applications, the MMF is used as single

optical channel, and the transmitted signal is carried by multiple modes simultaneously.

Due to the fibre loss and modal dispersion, MMF has been mainly used in the short-reach

applications. Meanwhile, researchers have also studied the two-mode fibre (TMF) since

1970s [8,9]. Although these early works on TMFs were not designed for mode multiplex-
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ing, the schematic to design the few-mode fibres (FMF) has already been demonstrated

during that time. In 2000, the dispersive multiplexing scheme in MMF was proposed

with MIMO technique [10], which treats different optical modes as independent chan-

nels. However, the large number of modes in MMF raises a lot of challenges such as

the mode coupling, mode loss, and DSP complexity, thus restrict the application to short

distances. Therefore, the few-mode fibres, which support less modes than MMFs, have

been studied for mode multiplexing, for their potential to provide high mode selectivity

and long transmission distance.

The general concept of SDM includes several different types of a transmission sys-

tem. Depending on the type of fibres, they can be classified into two main categories: the

mode-division-multiplexing (MDM) systems and the multi-core fibre (MCF)-based sys-

tems. Mode-division-multiplexing systems use few-mode fibres , which is a kind of mul-

timode fibres but only supports a few numbers of modes. The MCF-based system uses

multi-core fibre, which packages several single-mode (or few-mode) fibre cores within

one cladding structure. Both of them have the promising potential for overcoming the

capacity crunch. Compared with MCF, the FMF has the similar shape to the SMF, there-

fore the fabrication process could be easier. Therefore, FMFs have been widely stud-

ied in SDM transmission systems. It is noted that by combining the multi-core and the

few-mode techniques, the transmission capacity can achieve 10.16-Peta-B/s over 11.3-km

6-mode 19-core fibre [11].

Although the SDM transmission with FMF has become a very active research field,

challenging issues are still ahead before this technology can be used in the practical long-

haul transmission. One important issue is the mode coupling between the guided modes.

Due to the unavoidable perturbation in the fibre link, the spatial modes in few-mode

fibres suffer from the mode coupling effect, which will hinder the recovery of transmitted

signals. Therefore, designing and manufacturing the high-performance few-mode fibre

is a very attractive topic in SDM transmission area.
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1.1.3 Optical fibre sensors

Besides communication, sensing is the other important issue. There are many environ-

mental parameters around that are critical to the quality of the life to human beings, such

as the temperature, the air pressure, the humidity, the concentration of oxygen and the

sunlight. The surrounding environment can be roughly perceived by our body. However,

in order to sense the actual condition over a distance, or to measure some parameter with

a high accuracy, a remote sensor is necessary.

Sensors, which is related to measurement technology, have been around for quite

some time in various forms. The first thermostat, which was considered as the first mod-

ern sensor by some people, came to market in 1883. The idea of sensing through optical

fibre first emerged half a century ago. In the mid-1960s, the Fotonic Sensor filed a patent,

based on the bifurcated fibre bundle for position/vibration measurement [12].

Optical fibre sensors are devices that utilise the lightwave to convey the information

which they sense. They can be either discrete (i.e. has one or several monitor points) or

distributed (i.e. the sensor is an optical fibre itself). Compared with conventional sensors,

optical fibre sensors have relatively small size, low cost and high reliability. Since the

sensor medium is silica, it can be durable under some extreme condition, such as high

temperature up to 1200◦C [13].

A distributed optical fibre sensor (DOFS) is a kind of intrinsic sensor that can monitor

the physical parameters at every point along the optical fibres. The word intrinsic means

the sensor keeps the light within the fibre inside, and the external physical condition

modulates the light from outside. Detectable physical parameters include temperature,

strain, pressure, bending, vibration, breakpoints, etc. In principle, the environmental

variation changes the refractive index at each position of the fibre. This kind of refractive

index change can be conveyed by sending an optical light probe, reading the backscatter-

ing signals and then interpreting them into the desired physical values.

The DOFS technology can be retrospected to the study on optical time-domain reflec-

tometry (OTDR) in 1976. This technology was initiated for locating the faulty positions

in an optical transmission line. After three-decades development, many different types

of DOFS have been proposed and demonstrated. According to the different scattering
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principle, the distributed optical fibre sensors can be classified into three types:

1. Rayleigh OTDR

The Rayleigh OTDR is based on Rayleigh backscattering, which is a predominantly

elastic scattering in optical fibres. Early stage development of Rayleigh OTDR uses

incoherent broadband laser source to generate probe pulses. This kind of inco-

herent Rayleigh OTDR is also called conventional OTDR, which has been used in

faulty/splice point detection. With the development of coherent optical commu-

nication technologies, Rayleigh-based coherent OTDR (COTDR) has also been pro-

posed. COTDR system adopts a narrow linewidth laser source and direct detection

has been used in the distributed vibration sensing (DVS). COTDR with coherent

detection gives a much better performance in distributed acoustic sensing (DAS),

at the cost of high expense and complicated signal processing.

2. Raman OTDR

The Raman OTDR, or ROTDR, refers to the sensor system based on spontaneous

Raman scattering (SpRS). SpRS is a kind of inelastic scattering caused by thermal

vibration of the lattice. This thermal vibration generates a high-frequency shift

(around 10THz) with a broad bandwidth (tens of nm). Raman scattering is in-

sensitive to strain but sensitive to temperature. Due to this property and simple

structure, Raman OTDR has been widely used in the distributed temperature sens-

ing (DTS).

3. Brillouin-based fibre sensors

The Brillouin-based fibre sensors include the Brillouin OTDR (BOTDR) and the Bril-

louin optical time-domain analysis (BOTDA). BOTDR is based on the spontaneous

Brillouin scattering (SpBS), which is inelastic. In optical fibres, SpBS is the interac-

tion between the light field and hyper-sonic acoustic waves. This process generates

a Brillouin frequency shift around 11GHz, and is sensitive to both temperature and

longitudinal strain. Therefore, BOTDR can be used for temperature or strain sensor.

BOTDA is based on the stimulated Brillouin scattering (SBS), which is the interac-

tion of three waves: the pump wave, the probe wave, and the acoustic waves. As a
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result, BOTDA requires a double-ended access to the tested fibre. BOTDA can also

be used as temperature or strain sensing, with a stronger received signal and better

resolution than BOTDR.

According to the reported results, Brillouin-based optical fibre sensors have the su-

perior performance to ROTDR, in both the sensing accuracy and distance. Note that the

Brillouin frequency is sensitive to both temperature and strain, so separating temperature

and strain has been a great challenge in Brillouin fibre sensing.

The DOFSs described above are working with SMF or MMF. With the growing re-

search on SDM technology, few-mode fibres are also used in optical fibre sensing field.

Compared with SMF-based DOFS, FMF has a larger core-diameter, which can increase

the Rayleigh scattering power, as well as the nonlinear power threshold. Meanwhile,

FMF-based DOFS can control and manage the launched spatial modes, meaning that it

could obtain more information than only one mode. This feature can be used for multi-

parameter sensing, such as the discrimination between the temperature and strain.

1.2 Thesis outline

The contents of this thesis are organised as follows:

Chapter 1 Introduction: This chapter gives the background of this thesis, as well as a

historical development of several key technologies in optical transmission and sensing.

We also introduce the motivation of spatial division multiplexing technique. Several dif-

ferent types of distributed optical fibre sensors are briefly presented.

Chapter 2 Literature review: In this chapter, the mode-division multiplexing (SDM) tech-

nology is reviewed first, including the MDM fibres and modes, mode multiplexers and

demultiplexers, few-mode amplifiers and few-mode transmission system. Then we re-

viewed the current methods for dispersion control in FMF and explained the relationship

between modal dispersion and digital signal processing (DSP) complexity. We also give

a brief review for the recent progress of few-mode fibre sensors in different applications.

Finally, we introduce several other attractive fields in the distributed fibre sensing area,

which have a promising research perspective.
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Chapter 3 Low-DMD FMF for optical transmission: This chapter first discuss the mo-

tivation for designing the Low-DMD fibre. Then the design principle of the FMF with

distributed grating is illustrated. We introduce the coupled mode equations method for

the evaluation of the mode coupling and build a model for random fibre channel. Pos-

sible fabrication is also discussed after that. To evaluate the performance of our design,

We perform intensive simulations. Finally, the results show a considerable improvement

in the DMD reduction. Discussions are also given for practical consideration.

Chapter 4 Multi-parameter sensing with few-mode fibres: In this chapter, we demon-

strate a novel multi-parameter sensing technology with the help of few-mode fibres.

We first introduce the principle of few-mode Brillouin fibre sensors. Then the methods

for multi-parameter discrimination is discussed, including the conventional two-mode

method and our generalised more-mode method. A few-mode BOTDR system is con-

figured, using the elliptical-core FMF. Then we characterise the spontaneous Brillouin

scattering spectrum. As a sensor, its temperature and strain dependence is experimen-

tally calibrated. Finally, we show the improved performance of our technology in the

discriminative sensing.

Chapter 5 Ultra-fast Brillouin fibre sensing technology: In this chapter, we propose an

ultra-fast Brillouin fibre sensing technique, which can monitor the fibre with only one-

shot measurement. The motivation for developing such technique is firstly discussed.

Then we show the principle of this method. To validate the feasibility, the experimental

setup and system configuration are given. We also give the details of the data process-

ing procedure. Experimental results confirm that our method can significantly boost the

sensing speed. At last, we discuss some issue in this problem, as well as the future per-

spectives.

Chapter 6 Complex-domain Brillouin fibre sensing technology: This chapter shows an

advanced technology named complex-domain Brillouin fibre sensors. We first explain

the motivation of this research. Then the detection method for complex Brillouin spec-

trum is illustrated. Rigorous theoretical formula are derived, along with the closed-form

expressions for the BFS uncertainty. We conduct both Monte-Carlo simulation and ex-

periment to verify our improvement. The results show a
√

2 improvement of sensing
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accuracy and a 3-dB improvement of signal-to-noise issue. Discussions are finally given

for some issues in practical applications.

Chapter 7 Conclusions: In this chapter, we summarise the main results in this thesis and

give some perspective of future research directions.
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Chapter 2

Literature Review

2.1 Mode division multiplexing technology

Mode division multiplexing (MDM) [14] is an important branch of spatial division mul-

tiplexing (SDM). As we introduced in chapter 1, MDM technology was first proposed

to overcome the so-called capacity crunch [6, 15–17]. Besides the existing multiplexing

methods of wavelength and polarisation, MDM adds a new dimension: the spatial mode,

to drastically increase the fibre channel capacity.

2.1.1 MDM fibres and modes

In mode division multipled transmission, each mode is designed for carrying indepen-

dent information. Conventional single-mode fibres (SMFs) with 8∼9µm core diame-

ter and 125 µm cladding diameter can support only one mode per polarisation. Con-

ventional multimode fibres (MMFs) with core/cladding diameters of 50/125 µm and

62.5/125 µm can support more than 50 spatial modes. It is also possible to fabricate mul-

timode fibres support as many as several hundred modes. Early stage research on MDM

technology focused on MMF [10, 18]. However, MMF supports too many modes which

will couple with each other even over a middle-range distance. Therefore, MMF-based

MDM demonstrations are limited to a small number of modes, with the assistance of

the spatial filters [19]. Therefore, few-mode fibres (FMFs), which only supports a small

number of modes, have been proposed for MDM technology. Compared with MMF, few-

mode fibres have the manageable number of modes. Therefore, they are relatively easy

to handle and can be used to prove certain concepts in MDM technology.

13
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The optical modes guided in FMF are the modes that can be well constrained in the

core region and can propagate with acceptable attenuation. The mode condition can

be described using the normalised frequency V (also known as V number of the Abbe

number). For a step-index fibre structure, V-number is defined as [20]:

V =
2πa

λ

√
n2

1 − n2
2 ≈

2πn1a
λ

√
2∆ (2.1)

where a is the core diameter, λ is the wavelength in vacuum. n1 and n2 are the refractive

indices of the core and cladding, respectively. ∆ := (n1 − n2)/n1 is the refractive index

difference. If the V number is larger than 2.405, it could guide more than one spatial

mode.

In FMF, the discrepancy between n1 and n2 is usually small enough (i.e. ∆ less than

1%). In this case, weakly guidance approximation is applied in the simplified modal

analysis [21]. Mode groups under this approximation were designated as LP (linearly

polarised) modes. The number of supported LP modes is related to the V parameter of

FMF profile, i.e. N ≈ V2/2.

The simplest example of FMF is the two-mode fibre (TMF), with 2.4 < V < 3.8. A

circular-core two-mode supports two LP modes: LP01 mode and LP 11 mode.

2.1.2 Mode multiplexers and demultiplexers

Besides fibres, another important component in MDM is the mode multiplexers (MMUX),

which can be inversely used as the mode de-multiplexers (MDMUX). So far, a lot of mode

multiplexers have been experimentally demonstrated which can be classified into two

types. The first type is matching the LP mode field pattern of the input side to the mode

pattern of the output fibre. In early-stage SDM experiments [22–25], mode multiplexer is

realized by combining mode converters with passive mode combiners. Mode conversion

could be achieved by using fixed phase plates [22], spatial light modulator, long-period

fibre gratings [23, 26] or liquid crystal in silicon panels [27]. Passive mode combiners can

be realised by using free-space beam splitters and collimators.

Free-space mode multiplexers are widely used in early-stage SDM experiments, as
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Figure 2.1: Mode multiplexers by matching mode field pattern (a) Free-space mode mul-
tiplexer with fixed phase plate. (b) Photonic lantern supports 3 spatial modes.

shown in Fig. 2.1(a). However, they are usually cumbersome, space-consuming and

lossy. To minimise the insertion loss and the volume of the mode multiplexer, low-loss

optical waveguide device, which is called photonic lantern (PL), has been proposed, as

in Fig. 2.1(b). The photonic lanterns are couplers which made by adiabatically tapered

several closely placed SMFs into a FMF [28]. Photonic lanterns can be either symmetric

or mode-selective. Symmetric photonic lanterns, sometimes also called standard pho-

tonic lanterns, have identical single-mode input fibres. When the input signals are in-

jected through these identical fibres and pass through the adiabatic taper, they couple to

each other and finally form a combination of supported modes of output few-mode fibre.

Since the symmetric photonic lantern will scramble single-mode input into few-mode

output, e.g. each input signal excites all the output modes, MIMO signal processing is

necessary, which may increase the system computation complexity. Mode-selective pho-

tonic lanterns, which allow each input excited one selected output mode, can be made

with dissimilar input fibres [29,30]. Comparing with symmetric photonic lanterns, mode-

selective photonic lanterns are more difficult in the manufacture, while they could reduce

the complexity of MIMO signal processing in MDM systems. The state-of-the-art mode-

(group)-selective photonic lanterns can support three group-mode selectively (LP01 with
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20 dB selectivity, LP11 with 10 dB selectivity, and LP21+LP02 with 7 dB selectivity) with

low insertion loss (-0.06 dB) over the entire C-band [30].

SMF

SMF splice FMF
Coupler 1

LOC

LP11a port LP11b port
SMF

LOC
+ + +

LP01 port

All-fibre mode multiplexer using MSC
Mode 
selective
Coupler 
(MSC)

Figure 2.2: All-fibre mode multiplexer using mode selective couplers (MSCs)

The other type of mode-multiplexers is matching the propagating constants [31–34].

This kind of multiplexers could be made by fused directional fibre couplers, which are

sometimes called mode-selective couplers (MSCs). As shown in Fig. 2.2, an MSC can be

comprised of an FMF arm and a SMF arm. The fundamental mode of the single-mode

fibre arm will be coupled to a specific higher-order mode, e.g. LP11a(b), of the few-mode

fibre arm, if the phase match conditions βSMF
01 = βFMF

lm is satisfied, where β is the propaga-

tion constant and l, m are mode numbers. By cascading two MSCs with an elliptical-core

two-mode fibre (e-TMF) [33] or a lobe orientation controller (LOC) [31]. Like the mode-

selective photonic lanterns, cascaded mode-selective couplers can be optimised to cover

the entire C-band as well [35].

2.1.3 Few-mode amplifiers

In long-distance optical transmission, the amplifiers are indispensable to compensate

for the loss of the fibre link. In MDM systems, optical amplifiers are also desirable for

long distance transmission. To achieve this, different MDM amplifiers such as few-mode

erbium-doped fibre amplifiers (FM-EDFAs) and few-mode distributed Raman amplifiers

(FM-DRAs) have been proposed.
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Like the conventional EDFA in single-mode WDM systems, few-mode EDFA dopes

the element Erbium in a few-mode fibre. Comparing with single-mode EDFA which

only amplify the fundamental mode, FM-EDFA aims to amplify all the spatial modes

simultaneously. The first FM-EDFA supports three spatial modes (LP01, LP11a and LP11b)

was experimentally demonstrated in [17]. In FM-EDFA, the gain of each supported mode

needs to be flattened over the C-band and the differential mode gain (DMG) needs to be

minimised [36]. To satisfy these requirements, various erbium doping profiles (EDPs)

have been carefully designed, such as the six-mode ring-doped profile [37], the three-

mode ring structure profile [38] and the ring + central rod-doped profile [39]. Recently

experiment shows a FM-EDFA supporting 5 spatial modes (LP01. LP11a(b) and LP21a(b)

with a flatten gain over 14dB in the entire C-band [40]. The schematic of a FM-EDFA is

shown in Fig. 2.3.

Pump laser
980nm

Input FMF Optical Isolator

FM-EDF

Output 
FMF

Optical Isolator

Dichroic 
mirror Dichroic mirror

Figure 2.3: Typical schematic of a few-mode EDFA

Besides FM-EDFAs, another important type of MDM amplifier is the few-mode dis-

tributed Raman amplifiers (FM-DRAs). Back-propagated laser pump generates stimu-

lated Raman back-scattering, which can be used to amplify forward-propagated few-

mode signals. The equalised gain of different modes can be achieved by selectively cou-

pling the back-propagated laser pump into a LP mode of the FMF. The first FM-DRA

experiment was demonstrated by Bell Labs in 2011 [41], with a gain of 8dB for both LP01

and LP11 modes. More generally theoretical analysis for Raman amplification in few-

mode fibres can be found in [42].
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Figure 2.4: A typical MDM transmission system with FMF.

2.1.4 Few-mode transmission system

An SDM transmission system usually contains the few-mode fibre, the transmitter, the re-

ceiver and a pair of mode multiplexer and de-multiplexer. For long-distance transmission

system the amplifier is also required. As a typical example, Fig. 2.4 shows the schematic

of an MDM transmission with FMF. To transmit signals through N independent modes,

at least N transmitters and N receivers are required. The MMUX and MDMUX are used

for combining and separating different modes at the ends of the FMF channel. Due to

the mode coupling in the fiber channel, MIMO DSP is required to eliminate the channel

linear impacts such as the modal dispersion and modal coupling. A detailed experimen-

tal setup of a MDM transmission can be found in [39]. It contains 146 WDM channels,

each of which carries 19 Gbaud dual polarizations QPSK signal within three LP modes.

The few-mode EDFA and recirculating loop allow the total transmission length reaches

over 1000 km. Mode (de)multiplexer and loop switch based on free-space components

are used. The total capacity of this transmission system is 26.63 Tb/s. A brief summary

of mode-division-multiplexing transmission systems is given in Table 2.1. A remarkable

experiment conducted recently [43] demonstrated the three-mode transmission over 3500

km with a total net capacity of 9.9 Tb/s. Another recent work [44] demonstrated a MDM

transmission system over one of the cores of the few-mode multi-core fibre (FM-MCF).

With the help of 6-mode EDFA and the lens-coupled fan-in and fan-out (FIFO) device,

the total capacity of 266.1-Tbit/s has been achieved with 6-mode 580-wavelength over a

distance of 90.4 km.
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2.2 Dispersion control in MDM transmission

Dispersion is a physical phenomenon that a light pulse spreads out when propagates

along the fibre. In single-mode fibre, chromatic dispersion (CD) and polarisation mode

dispersion (PMD) are two major kinds of dispersion. In MDM transmission system,

modal dispersion (MD) becomes another important issue that needs to be carefully

engineered.

2.2.1 DMD in few-mode fibres

The modal dispersion in few-mode fibres can be characterised by the differential mode

delay, or called DMD. The propagation constant of a spatial mode µ in few-mode fibre

can be written as the Taylor expansion that [61]:

βµ(ω) = β0,µ + β1,µ(ω−ω0) +
1
2

β2,µ(ω−ω0)
2 + · · · (2.2)

where

βm,µ =

(
dmβµ

dωm

)
ω=ω0

(2.3)

For uncoupled modes, the group delay is related to the first-order derivative of the

Taylor expansion of the propagation constant, i.e. β1,µ = dβµ/dω|ω=ω0 . The actual value

of group delay τµ is the product of the distance L and the first-order derivative of beta, i.e.

τµ = β1,µL. For coupled modes, however, group delay is related to field transfer matrix

M(ω) [62]. Assuming that the field transfer matrix can be decomposed as M(ω) =

UΛ(ω)V, where U and V are two unitary matrices and

Λ(ω) = diag[exp(−jωτ1), · · · , exp(−jωτN)]. (2.4)

The group delay vector τ = [τ1, τ2, . . . τN ]
T can be obtained by calculating the eigenvalues

of j[dΛ(ω)/dω]Λ+(ω). Some literature define DMD as the maximal discrepancy among

all the group delays, i.e.:

DMDmax , max(τ)−min(τ). (2.5)
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This definition of DMD is usually called as the maximal DMD. Another definition uses

the standard derivation (std) of the group delays, i.e:

DMDstd , std(τ) =

√√√√ 1
N

N

∑
i=1

(τi − τ̄) (2.6)

where τ̄ is the mean value of vector τ. This definition is usually treated as the std DMD

Compared with the maximal DMD, this definition has the better statistical properties. It

is noted that the maximal DMD and std DMD are strongly correlated [63]. The maximal

DMD will directly affect the DSP complexity (which will be discussed in the following

section), while the std DMD is more suitable for the FMF channel with mode coupling.

In this thesis, if there is no special instruction, the DMD is refer to the definition in Eq.

(2.6).

2.2.2 MIMO DSP complexity

In MDM transmission system, the guided modes suffer from both DMD and modal cross-

talk. While propagating along the fibre, the modes (especially the degenerate modes) will

mix with each other through the mode coupling effect, and the DMD will largely accumu-

late with the distance. This will induce severe inter-symbol interference (ISI), which can

hinder the performance of MDM transmission. Therefore, multiple-input and multiple-

output (MIMO) equalisation has to be deployed to compensate the DMD, as well some

linear channel effects.

The operations and realisation of MIMO DSP has been elaborately reported in [45,64,

65]. Here, we would like to focus on its complexity. For an MDM system transmitting N

spatial modes, the DMD and mode coupling will be compensated by a N × N equaliser.

The DMD equaliser needs an array of N × N filters. Each filter in the DMD equaliser

requires a temporal memory ∆TDMD = ηNDMDmax, where ηN is a constant related to the

number of modes and confidence interval. The number of filter taps for each temporal

memory will be [63]:

NDMD = [∆TDMDRoRs] = [ηN RoRsDMDmax] (2.7)
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where Ro is the oversampling rate and Rs is symbol rate.

The MIMO equalisation can be conducted in either the time-domain or the frequency-

domain. The complexity of MIMO DSP can be quantitatively estimated by the number

of complex multiplications (CM) every symbol. For a time-domain equaliser (TDE), the

DSP complexity can be expressed as

CMTDE = NRoηNDMDmax (2.8)

For a frequency-domain equaliser (FDE), the complexity is given as [63]:

CMFDE = Ro
NFFT log2(NFFT)N + NFFTN2

(NFFT − ηNDMDmax + 1)N
(2.9)

where NFFT is the number of FFT taps. Note that NFFT is usually required to be the pos-

itive integer power of 2, i.e. NFFT = 2m, m ∈ Z+. No matter TDE or FDE is selected,

eqs. (2.8) and (2.9) clearly show that the MIMO DSP complexity is strongly related with

the differential mode delay in the few-mode fibre. When the DMD is large enough, the

MIMO-DSP can be too complicated to compensate the modal dispersion. Therefore, to

recover the transmitted signal, as well as to reduce the MIMO DSP complexity, the DMD

in FMF is expected to be as low as possible.

2.2.3 Methods for DMD reduction in FMF

Literature has reported several methods to control the DMD in FMF, which can be con-

cluded into three different types:

Fibre profile optimisation

Since DMD in few-mode fibres is strongly related by the fibre profile and LP trans-

verse mode pattern, one possible approach to reduce DMD is to optimise the fibre profile.

There are two types of fibre profiles which are used to control the DMD:

The first one is multi-layer step-index (ML-SI) profile, which is demonstrated in Fig.

2.5(a). By adjusting the index and radius of each layer, the group delay difference be-

tween LP01 mode and LP11 mode can be flexibly tuned from positive value to negative
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Figure 2.5: Typical fibre RI profiles for (a) multi-level step-index and (b) trench-assisted
graded-index few-mode fibres

value, including zero at a certain wavelength [66]. The other type is the trench-assisted

graded-index profile, shown in Fig. 2.5(b). A trench layer is added outside the core, aims

to reduce the loss of higher-order LP modes and tune the DMD values. By carefully ad-

justing the shape alpha parameter αn and the refractive indices, the difference of group

delays can be adjusted from positive value to negative value over the C band as well.

Comparing with the multi-layer step-index profile of FMF, the trench-assisted graded-

index profile of FMF is more like the profile of a standard multi-mode fibre. Therefore

this kind of few-mode fibre can be manufactured by scaling the preform of a multi-mode

fibre during the drawing process [67].

Table 2.2: Refractive index profile of the two-mode fibre.

Profile type LP modes Length Designed DMD Measured DMD Ref.

ML-SI 2 20.4 km ≈ 0 ≈ ±400 [66]
TA-GI 2 30 km 0.3 ps/km 76 ps/km [68]
TA-GI 2 4.45 km 8.6 ps/km 85 ps/km [69]
TA-GI 6 4.44 km 25 ps/km 155 /ps/km [67]

Both methods can tune the DMD values from positive to negative. Almost zero DMD

at a certain wavelength is also possible by carefully design the fibre profiles. However,

the actual DMD is strongly affected by the fabrication variations. Table 2.2 shows some

results of FMF fabrication. We can find that even the DMD is optimised to a very small

value, the measured DMD is still much larger than the designed number. For example,
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a 9-LP mode few-mode fibre which supports 15 spatial modes has been reported, with a

designed DMD of 25 ps/km and a measured DMD of 155 ps/km [67]. Thus, this kind of

method is very sensitive to the fabrication tolerance.

DMD management

The second approach to reducing the DMD in fibre link is called DMD management

or DMD compensation. The approach compensates the total accumulated DMD by inter-

connecting fibres with positive and negative DMD [70], which is familiar to the compen-

sation of chromatic dispersion in SMF transmission. Fig. 2.6 shows an example of DMD

compensation in two-mode fibre given in reference [70]. The fibre link comprised many

fibre segments, each of which has the identical length. The DMD of red fibre segment (Fi-

bre 1) is the same in magnitude as of Fibre 2 but opposite in sign. So, if there is no mode

coupling in the fibre or the splice point, the accumulated DMD in two concatenated fibre

(Fibre 1 + Fibre 2) will result in zero.

Fibre 1 Fibre 2 Fibre 1 Fibre 2

Segment Length

G
ro

up
 D

el
ay

Mode 1

Mode 2

Mode 2 Mode 1

Mode 1Mode 1 Mode 2

Mode 2

Fibre length

Figure 2.6: Fibre link configuration for a typical DMD management scheme [70].

However, if there is mode coupling in the fibre, the accumulated DMD will not be zero

anymore. The DMD spread will act like a combination of square root function added by

a sawtooth shape. Detailed analysis of DMD compensation with random mode coupling

can be found in [71]. Since the environmental perturbation and vibration will influence

the longitude variation of fibre refractive index, mode coupling is unavoidable. There-

fore, DMD compensation scheme may only be effective for short or middle range SDM

transmission [72].
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Strong mode coupling

The third possible approach is introducing strong mode coupling in few-mode fibres.

When the transmitted modes are strongly coupled, every independent signal has the

same chance to pass both on fast and slow mode path. Therefore, each mode will have

similar DMD during transmission. In a strong coupling regime, the mean DMD will

scale with the square-root of the fibre length. For instance, assuming that a two-mode

fiber has the DMD of 2 ps/m, therefore the DMD will be accumulated up to 200 ns over

a transmission distance of 100 km, which is very difficult for MIMO DSP. In the strong

mode region, however, the accumulated DMD will be only around 632 ps over 100 km

distance. Detailed derivation of this property in a two-mode fibre can be obtained in

a similar way as the polarisation mode dispersion which was widely studied in single-

mode fibre [73]. For few-mode fibres support over three LP modes, strong mode coupling

is usually classified as the intra-group coupling and inter-group coupling. The intra -

group coupling is defined as the coupling within the same mode groups and the inter-

group coupling is defined as the various mode groups. Since the (degenerated) LP modes

in the same mode group have the similar propagation constant, intra-group coupling can

be easily obtained by adding distributed perturbation such as spinning the fibre during

the drawing process [74]. The inter-group coupling, however, is much more difficult to

achieve. If the fibre is placed in a relatively stable environment, inter-mode coupling will

not even happen after several hundreds of transmissions. Thus, it is desirable to design

methods to guarantee strong mode coupling between different mode groups. Comparing

with DMD management method, strong mode coupling is proven to be useful to improve

the mode dependent loss (MDL) [75].

2.3 Recent progress of few-mode fibre sensors

Besides optical transmission, distributed fibre sensing is another important application

with optical fibres. While the few-mode fibres have attracted much attention in spatial-

division multiplexing, researchers have also shown the growing interest in FMF-based

optical fibre sensors.
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2.3.1 Few-mode distributed temperature sensors

Raman distributed temperature sensing (DTS) has been intensively studied in a wide

variety of industrial and scientific areas [76, 77]. It is based on the spontaneous Raman

scattering (SpRS) in optical fibres. However, the SpRS power is rather weaker (-60∼70

dB lower) than the input probe light. Moreover, the maximum input probe power is lim-

ited by the threshold of stimulated Raman scattering (SRS). As a solution, conventional

Raman DTS adopts the MMF as the sensing medium. Since the MMF has a much larger

core diameter, it can increase the Raman backscatter power, as well as the allowable peak

power for input probe. But the sensing range is limited, due to the deterioration of res-

olution caused by modal dispersion. For long-range sensing , RDTS based on SMF has

been proposed [78]. Compared with MMF, SMF has a smaller loss factor. Since it only

supports one mode, the spatial resolution could survive without mode dispersion. How-

ever, the core-diameter of SMF is smaller than MMF, resulting in a lower input power

and weaker SpRS. As a solution, advanced pulse coding technique has been proposed to

enhance the SNR [79], but the system configuration is rather complicated and costly.

Recently, Raman DTS with few-mode fibres was proposed [80], as a trade-off between

the SMF and MMF. The fibre under test was consisted by a graded-index two-mode fi-

bre and a four-mode step-index fibre. Pump pulses were sent in the quasi-single mode

(QSM), i.e. using the LP01 mode only and suppressing all the higher-order modes. 20-

km DTS was demonstrated, with a spatial resolution of 3 metres and 4◦C improvement

on temperature resolution. Reference [81] reports a long-distance RDTS over a 25-km

specially designed graded-index FMF. By optimising the FMF profile, the DMD can be

minimised with a desired effective area Aeff. Under the few-mode operation, i.e. fill-

ing the power in all the spatial modes below the SRS threshold, a good performance of

4◦C temperature resolution and 1.13-m spatial resolution was achieved. Under the QSM

operation, the spatial resolution turned to 4.7◦C, which is superior to the single-mode

fibres.
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2.3.2 Few-mode distributed shape sensing

Shape sensing, or the curvature measurement, is an important issue in a variety of appli-

cations such as the reverse engineering, product inspection and medical diagnosis [82].

Conventional shape sensors are based on long-period gratings [83], fibre Bragg gratings

[84], Sagnac loops [85] and interferometers [86]. However, all these approaches can only

sense single or only several points, lacking the capability for monitoring the distributed

shape variation.

This problem, however, can be solved wi/th few-mode fibres. Ref. [87] reports few-

mode fibre based distributed curvature sensor based on a BOTDA system operating at

QSM. When the fibre is naturally curved, i.e. under uniform temperature and without

extra longitudinal stress, both the lateral beam displacement and the bending strain will

happen in the FMF, resulting in a bending-induced Brillouin frequency change (BFS)

which can be read out through a typical BOTDA system. This technique can also be

a hybrid with other technology. In [88], this QSM Brillouin shape sensor is combined

with a QSM Raman DTS. The hybrid system can monitor the temperature and curvature

distributedly, with 1.5-m spatial resolution over 2 km distance.

2.3.3 Brillouin-based few-mode discriminative sensing

As we stated in section 1.1.3, Brillouin-based fibre sensors, have faced a challenging prob-

lem to discriminate temperature and strain, or other parameter applied to the FUT simul-

taneously. The reason is that the Brillouin frequency shift (BFS), which is main interro-

gated parameter in Brillouin sensors, has a linear response to to both the temperature

and strain. Therefore it is theoretically impossible to separate these two effects by using

BFS only.

To solve this problem, many approaches have been proposed. One simple method

uses a specially designed cable containing two fibres, one of which is kept in loose condi-

tion so that it is sensitive to temperature only. However, it cannot always guarantee the

strain decoupling in a real environment. The hybrid sensing system [89] has also been

considered as a possible solution, but it will considerably increase the system complexity
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and cost. The other approach utilise additional information along with the BFS simul-

taneously, in both single-mode fibre (SMF) [90, 91] and polarisation maintaining fibre

(PMF) [92, 93]. They have demonstrated the feasibility for temperature/strain separa-

tion, but the system is rather complicated. Another approach is to use multiple Brillouin

peaks in the photonic crystal fibre (PCF) [94], the large effective area fibre (LEAF) [95],

and the specially designed fibres with inverse-parabolic [96] or M-shaped [97] profiles.

The multiple Brillouin peaks correspond to the interaction between fundamental optical

mode with higher order acoustic modes, with distinct properties to multiple parameters.

But the small discrepancy between the temperature and strain coefficients leads to an

unfavourable discriminative error.

Recently, few-mode fibres have been considered as a promising solution for multi-

parameter distribution sensing. In ref. [98], our group proposed a few-mode BOTDA

scheme for simultaneous measurement of temperature and strain. By comparing the

temperature and strain coefficients of LP01 mode and LP11 mode, two-parameter sensing

of temperature and strain was successfully demonstrated over a 3-km customer designed

FMF with the discriminative accuracy of 1.2◦C and 21.9µε. In [99, 100], a single-ended

few-mode BOTDR scheme was proposed. Compared with BOTDA, BOTDR can have

access to the tested fibre from one side, which will bring much convenience in practical

application. Such an approach was demonstrated over a two-mode fibre with a 5-m

spatial resolution. In [101], the Brillouin dynamic gratings (BDG)-based Brillouin sensors

was proposed showing its potential for multi-parameter measurement. That system was

demonstrated over 95 meters with a 5m spatial resolution. The temperature and strain

errors are ±105µε and ±1.6◦C, respectively.

2.4 Other attractive fields in distributed fibre sensing

We have reviewed the recent progress of few-mode fibre sensors as a new-type dis-

tributed fibre sensing technology. Nevertheless, optical fibre sensors using conventional

single-mode fibres have also achieved a remarkable progress in the past decades. Besides

few-mode fibre or the space division multiplexing, there are some other attractive fields
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in distributed fibre sensing:

2.4.1 Advanced pulse coding technology

Optical time-domain distributed fibre sensors, such as OTDR, ROTDR, BOTDR, and

BOTDA, are pulse-based systems. By sending an optical pulse into the fibre and de-

tecting the backscattering signal, distributed physical parameters can be monitored. For

long-distance fibre sensing, the received power is quite weak for effective detection. In

optical fibres, the peak pump power is limited by nonlinear thresholds. Although send-

ing a broader pulse can boost the total pump power, the spatial resolution will be de-

graded. Therefore, there is a trade-off between the received SNR and spatial resolution.

Pulse coding is an effective technique to overcome this trade-off. This technology

spreads the probe energy in the time-domain by using properly coded pulse sequences,

resulting in a much higher SNR without deteriorating the spatial resolution [102].In the

past decade, various pulse coding techniques have been proposed to improve the dis-

tributed fibre sensors. In [103], 255-bit Simplex pulse coding method was proposed to

use in the Raman OTDR system, with an enhancement of sensing distance over 19.5 km.

In [104], the simplex pulse coding was applied in the BOTDR-based DTS, with the help of

Landau-Placzek Ratio (LPR). Ref. [105] reported a BOTDA system with 511-bit Simplex

pulse coding, and achieved a 1-m spatial resolution over 50 km SMF. Cyclic simplex pulse

coding, which is a simpler coding technique, has been applied in RDTS [78], BOTDA

[106,107], Coherent φ-TDR[108], and the Raman/Brillouin hybrid sensing systems [109].

Cyclic pulse coding based on pseudo-random sequence has also shown in [110], which

can considerably improve the resolution and distance in the DTS system.

2.4.2 Distributed dynamic sensing

In the past few years, distributed dynamic sensing (DDS), which records fast strain (or

vibration) variation along the fibre, has become a hot topic. This research field is driven

by the growing demand in gas and oil industries, geophysical science and the struc-

tural health monitoring [111]. Conventional Brillouin sensing systems, such as BOTDA,
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usually require a large number of measurements to complete each time, including

scrambling the polarisation, averaging the signals and scanning the frequency. So the

sensing process is quite time-consuming, ranging from tens of seconds to tens of min-

utes. Furthermore, it assumes that the fibre status (strain and temperature) shall remain

unchanged during these measurements; otherwise, the distributed Brillouin spectra may

not be correctly reconstructed. Thus it is applicable for monitoring the dynamic change

along a long-range distance.

Several methods have been proposed to reduce the measurement time for distributed

dynamic sensing. In [112], a slope-assisted BOTDA technique was proposed, utilising

the slope of the SBS gain profile for measuring a few hundred Hertz. Ref. [113] extended

this technique with a frequency-agile method, which will increase the dynamic range

of vibration measurement. Ref. [114] demonstrated a fast frequency-swept method in

BOTDA, which realised a dynamic measurement over 100 m fibre. In [115], a sweep-

free BOTDA technique was proposed, to reduce the measurement time by eliminating

the frequency sweeping process. The optical frequency comb technique was proposed

in [116], which adopted the digital-generated optical frequency comb to measure the

Brillouin spectrum without frequency scanning, resulting in a greatly improved sensing

speed which is suitable for distributed dynamic sensing.

2.4.3 High-performance Brillouin information extraction

Brillouin frequency shift (BFS) is a key parameter in Brillouin-based distributed fibre

sensors, and is directly related with the measurement accuracy. A lower BFS uncertainty

means a higher measurement resolution for the sensors. Therefore, how to improve the

BFS accuracy has become a quite attractive field. In a typical BOTDA or BOTDR sys-

tem, the BFS is estimated by the gain profile. Curve fitting methods, like the Lorentzian

curve fitting for the Brillouin gain/loss spectrum, have been widely adopted in Brillouin

fibre sensors. But the curve fitting method requires a proper selection of initial status.

In addition, the signal processing time for curve fitting is quite time-consuming. For ex-

ample, in a commercialised BOTDA, the Brillouin signal processing time could be com-

parable to the measurement time (according to the author’s test with the off-the-shelf
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product). Therefore, how to estimate the BFS with high accuracy is an interesting topic

in distributed Brillouin fibre sensors.

Recently, with the rapid development of artificial intelligence, researchers start to ex-

plore the applications of machine learning in the fibre sensing area. In [117], an artificial

neural network (ANN) was employed in the signal processing for BOTDA sensor sys-

tem. Results show that ANN has a higher accuracy and larger error tolerance compared

with the conventional curve fitting method. Reference [118] used the support vector

machine (SVM) in the BOTDA system for ultra-fast temperature extraction. Both sim-

ulation and experiment are conducted, resulting in a 100 times faster than the conven-

tional Lorentzian curve fitting method. Compared with ANN, SVM requires a shorter

training time. Ref. [119] demonstrated the simultaneous temperature and strain mea-

surement along a large-effective-area fibre, assisted by the deep neural networks (DNN)

in data processing procedure, while ref. [120] reported another method for temperature

and strain discrimination with a conventional BOTDA with the convolutional neural net-

work (CNN) technique. As a general point of view, machine learning-based techniques

can significantly boost the data processing time, though some training time is required.

Meanwhile, how to prepare the training data in practice is still an issue that needs to be

carefully investigated.





Chapter 3

Low-DMD FMF for Optical
Transmission

3.1 Motivation

In MDM transmission system, the transmitted signal will suffer from the accumulated

DMD in the fibre link, which is strongly related to the MIMO DSP complexity. In order to

fully recover the transmitted signal and reduce the DSP complexity, FMF with low DMD

is desired. As we discussed in section 2.2.3, there are three methods to control the DMD

in FMF: (1) manufacture FMF with low DMD, (2) DMD management, and (3) strong

mode coupling. In this chapter, we focus on the approach that using strong mode cou-

pling to reduce the DMD in few-mode fibres. We study a novel scheme called distributed

grating-(assisted) few-mode fibre (DG-FMF), which is introduced with strong mode cou-

pling between supported LP modes by adding long period grating (LPG) with random

direction distributively along the whole fibre. The basic idea of this scheme comes from

the fact that when manufacturing fibre gratings, no matter by side-illumination of UV

light or CO2 lasers, will introduce an asymmetric refractive index variation in the fibre

cross section. This distribution will result in the non-zero overlap integral between the

fundamental mode and the higher order modes, and thus the strong mode coupling can

be induced. In our proposed schematic, the entire transmission fibre is distributively in-

scribed with this kind of LPGs. To ensure that the mode coupling is uniform over a long

distance, the exposed direction of LPG is randomised with a certain interval. This chap-

ter is orgainised as follows: section 3.2 presents the design of our proposed low-DMD

DG-FMF. Section 3.3 introduces the coupled mode equation for the LPG with random

33
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rotations. The fibre channel model in our scheme will be discussed in section 3.4, while

we will study its performance of DMD reduction, as well as its efficient bandwidth and

the working range of temperature in section 3.5. Finally the work in this chapter will be

summarised in section 3.6.

3.2 Design of Low-DMD DG-FMF

Without loss of generality, consider a two-mode fibre which supports LP01, LP11a and

LP11b modes. we assume the few-mode fibre is circular and isotropic. LP11a and LP11b are

assumed to have the identical propagation constant. Although the higher-order intra-LP

modes do have slight DMD, but do not present a problem as significant as that from inter-

LP, and therefore intra-modal dispersion is ignored in our analysis. To guarantee strong

mode coupling between LP01 and LP11a(b) , the refractive index change introduced by

gratings on the cross section must be asymmetric, otherwise the overlap integral will be

zero. In practice, conventional LPGs manufactured by single side illumination, no matter

exposed by CO2 laser or UV light, always have an asymmetric refractive index distribu-

tion [38,39]. To demonstrate our DG-FMF scheme, the UV-side-illumination model is

chosen to describe the index distribution. As shown in Fig. 3.1 (a), the fibre is exposed

by UV beam at an angle of ψ, and the relative refractive index change along the symmet-

ric axis is depicted in Fig. 3.1 (b). The fibre is consisted of many grating sections, each of

which is made with various angle ψ and identical period Λ, as shown in Fig. 3.1 (c).

The refractive index distribution of each grating section with the angle ψ can be de-

rived from the one with left-side exposure, we first analyse the grating with ψ = 0. In

this case, refractive index change of LPG can be described as:

∆ng(x, y, z) = ∆ng(x, y)
[

1 + cos
(

2πz
Λ

)]
, (3.1)

where Λ is the grating period and ∆ng(x, y) is the cross-section refractive index variation

with following exponential shape as:

∆ng(x, y) = ∆ng exp
[
−ρ

(√
a2 − y2 − x

)]
, (3.2)
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Figure 3.1: (a) Relative refractive index change in the cross-section. (b) Relative refractive
index along the symmetric axis. (c) Schematics of distributed grating-assisted few-mode
fibre.

where parameter ρ determines the asymmetric shape of the index profile, and a is the

core radius. ∆ng is the grating strength. The coupling among LP modes can be calculated

by the coupling coefficients written as:

Kv−µ(z) =
[

1 + cos
(

2πz
Λ

)]
· ζv−µ, (3.3)

where ζv−µ is a z-independent coefficient expressed as in [121] that

ζv−µ =
n1ωε0

2

∫∫
∆ng(x, y)Ev(x, y)Eµ(x, y)dxdy, (3.4)

where Ev(x, y) and Eµ(x, y) are normalised electric fields of mode v and µ respectively. ω

is the angular frequency of light and ε0 is the dielectric constant in vacuum. Parameter

n1 is the refractive index of the core. Assuming that the core radius is 6 µm, ω = 1.2153×

1015 rad/s (for 1550 nm), n1 = 1.4525, and the cladding is pure silica. Fig. 3.2 shows

the relationship between ζv−µ and ρa. We find that the coupling between LP01 and LP11a
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has a maximal value when ρa equals to 1.32. Moreover, the coupling coefficients of LP01-

LP11b and LP11a-LP11b are both zero, meaning no coupling between these modes exists

when the fibre is left-side illuminated.
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Figure 3.2: Mode coupling ratio versus the product of ρ and a.

3.3 Coupled mode equations

The field coupling among LP modes in the LP G can be described by the following cou-

pled mode equations (CME) [121]:

d
dz

A(z) = −
[α

2
I + jΓ(z)

]
A(z), (3.5)

where vector A(z) = [A01(z), A11a(z), A11b(z)]T denotes the complex amplitude of LP

modes with the implicit term exp(−jβz) exp(jωz) and α is the loss factor in the fibre. α is

the loss factor, I is an identity matrix. The coupling matrix Γ(z) is written as

Γ(z) =


γ01−01 γ01−11a γ01−11b

γ11a−01 γ11a−11a γ11a−11b

γ11b−01 γ11b−11a γ11b−11b

 , (3.6)



3.3 Coupled mode equations 37

in which the non-zero elements in matrix Γ(z) are expressed as

γ01−01 = ζ01−01

γ11a−11a = ζ11a−11a

γ11b−11b = ζ11b−11b

γ01−11a =
1
2 ζ01−11ae−jπz/Λ = γ∗11a−01

(3.7)

Note that γ01−11b, γ11a−11b,γ11b−01 and γ11b−11a are zero because the RI distribution is

symmetric about the x axis, resulting in the zero-overlap integrals between LP11b and the

two other modes. Therefore, we can obtain the analytical solution of the CME through

the method described in [121], and the solution will be

A(z0 + z) = c(z)H(z)A(z0), (3.8)

where z0 is the initial position, c(z) = exp(−αz) and H(z) is a unitary matrix that

H(z) =


h11 h12 0

h21 h22 0

0 0 h33

 (3.9)

with the elements:

h11 = exp
[
−j(β0 +

π

Λ
)z
] [

cos(sz)− j
δ

s
sin(sz)

]
(3.10)

h22 = exp
[
−j(β0 −

π

Λ
)z
] [

cos(sz) + j
δ

s
sin(sz)

]
(3.11)

h33 = exp[−j(β0 + χ)z] (3.12)

h12 = −j exp
[
−j(β0 +

π

Λ
)z
]

exp
[
−2jπ(z + z0)

Λ

]
κ

s
sin(sz) (3.13)

h21 = −j exp
[
−j(β0 −

π

Λ
)z
]

exp
[
+

2jπ(z + z0)

Λ

]
κ

s
sin(sz) (3.14)

where χ = γ11b−11b, β0 = (β01 + β11 + γ01−01 + γ11a−11a)/2 and the detuning factor δ =

1/[2(β01 + γ01−01 − β11 − γ11a−11a − 2π/Λ)]. Parameter κ = ζ01−11a/2 and s2 = δ2 + κ2.

If the LPG is made with a rotation angle ψ to the x axis, then the transfer matrix becomes
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Mt(z) = c(z)R(ψ)H(z)R+(ψ) where R(ψ) is a rotation matrix with the following form:

R(ψ) =


1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

 (3.15)

The transmittance can be found by assuming only one certain mode is incident and

calculate the ratio between the input and output power. When the phase-matching con-

dition is satisfied, the period of LPG should be:

Λ =
2π

β01 − β11 + γ01−01 − γ11a−11a
, (3.16)

e.g. δ = 0. The maximum mode conversion between LP01 and LP11a exists when κLmax =

π/2 + mπ, m = 1, 2, 3 . . ., where Lmax = (1 + 2m)π/(2κ) is the length of each LPG. For

the convenience of the following analysis, here we assume that m = 1.

3.4 Fibre channel model

The fibre channel model for our proposed few-mode fibre is shown in Fig. 3.3. It is

modelled as a concatenation of NS segments, each of which is consisted of NL LPGs with

different exposed directions, and each LPG has the identical length of Lg. Orientation be-

tween fibre segments are randomised, with a random rotation angle θi. The transfer ma-

trix of the ith normal few-mode fibre segment is defined as Mi(z, ω) = R(θi)Mt
i(z, ω), k ∈

{1, 2, . . . , NS}, where R(·) is the rotation matrix and Mt
i(z, ω) is the transfer matrix of the

ith fiber segment which can be written as Mt
i(z, ω) = ΠNL

k=1R(ψiNL+k)H(Lg, ω)R+(ψiNL+k).

The total transfer matrix is written as

Mtot(z, ω) = MNS(z, ω)MNS−1(z, ω) · · ·M1(z, ω). (3.17)

To emulate the random perturbation in the channel, a Gaussian distributed random

core rotation is introduced at the end of each segment. Hence the total transfer matrix
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Figure 3.3: Fibre channel model for DG-FMF

will be:

Mtot(ω) = c1

Ns−1

∏
n=0

[
R(θn+1)

NL

∏
i=1

R(ψnNL+i)H(Lg, ω)R+(ψnNL+i)

]
(3.18)

where c1 = exp(−αNSNLLg) denotes the loss of the fibre channel and ψi ∼ U[0, 2π] is the

exposed angle of each LPG. The differential group delay can be evaluated via the group

delay operator as:

G(ω) = j
dMtot(ω)

dω
M+

tot(ω) (3.19)

which eigenvalues correspond to the group delays. For a lossless fibre, Mtot(ω) is unitary

and G(ω) will be Hermitian.

The long distributed gratings in our DG-FMF can be rapidly written by drawing a

FMF through a periodically intensity-modulated UV laser beam, as described in [122]. It

provides an effective method to manufacture a grating of any length and to control the

grating parameters, which is compatible to our scheme. Since the core of a Ge-doped

optical fibre is a photosensitive waveguide, a writing beam of actinic radiation, such as

a UV laser beam, is positioned to write on the fibre. A periodic intensity distribution

is obtained by using an interference pattern generator (phase mask) positioned between

the writing beam and the waveguide to create an interferogram of period Λ. The fibre
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then is translated through the periodic intensity distribution relative to the writing beam

at a precisely-controlled relative velocity v(t). Alternatively, for applications requiring

long-length gratings (but not limited to long-length FBGs), the fibre may be coupled to a

spool which rotates to draw the fibre at v(t) through the periodic intensity distribution.

Finally, a modulator varies the amplitude of the beam intensity as a function of time at a

frequency f (t) such that v(t)/ f (t) = Λ.

3.5 Performance of the proposed DG-FMF

3.5.1 Performance of DMD reduction

Based on the model we described above, numerical simulation has been performed to

evaluate the DMD performance of the DG-FMF. We consider a step-index FMF with core

radius of 6 µm and cladding radius of 62.5 µm, which is comparable to the existing SI

two-mode fibres. The RI of GeO2-doped core is 1.4525. The refractive indices of core,

cladding and gratings for the different wavelengths are calculated with the Sellmeier

equation. The effective indices of LP01 and LP11a(b) are 1.450429 and 1.447415 at 1550nm,

respectively. The transition loss due to cladding mode coupling can be evaluated us-

ing the coupling coefficients and phase match conditions between the core modes and

cladding modes [123]. When the coupling strength equals to 1× 10−6, the added trans-

mission loss of core modes due to the cladding mode coupling is about −0.98 dB at 100-

km length, which is acceptable for transmission. For each LPG, the period is set to satisfy

the phase match condition at 1550 nm, e.g. Λ = 514.35µm. In the simulation, every LPG

segment is assumed about 10 meters, and the core rotation angle θ between two neigh-

bouring segments follows a zero-mean normal distribution with a standard deviation of

σθ = 0.05 rad. Note that here we choose 0.05 for simulating the weak perturbation in the

fiber channel [124]. Compared with the uniform random rotation angle ψ of LPG, θ is

much smaller than ψ, indicating that it does not play a significant role in the simulation.

For each case, we conducted 104 Monte-Carlo simulations.

Fig. 3.4 shows the mean DMDs of SI-FMF without gratings, DG-FMF with Lg =

1 × Lmax and DG-FMF with Lg = 2 × Lmax, respectively. When there are no gratings,
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Figure 3.4: Mean DMDs as a function of the fibre length with ∆ng = 1× 10−6.

DMD in a SI-FMF accumulates linearly to 173.71 ns at 100 km. However, when the FMF

is assisted with distributed gratings of Lg = Lmax, the mean DMD will be remarkably

reduced to 904.16 ps at 100 km, due to the strong mode coupling. In addition, the min-

imum mode conversion occurs when Lg equals to 2× Lmax, resulting in a larger DMD

than the previous one.

Fig. 3.5 shows a closer view of the DMD in the DG-FMF with different grating lengths.

The mean DMDs scale with the square-root of the fibre length. DMD of Lg = Lmax

smaller than other cases because the maximal mode conversion appears at this length.

Furthermore, the four DMD lines are approximately even spaced parallel with an interval

of times, meaning that the mean DMD is proportional to
√

z/Lg when Lg ≤ Lmax, where

z is the length of the fibre.

The mean DMDs with different grating strengths is demonstrated in Fig. 3.6. For each

∆ng, the grating period Λ is chosen to satisfy the phase matching condition at 1550 nm,

and the LPG length is select to be Lg = Lmax the grating strength is 5× 10−7, the mean

DMD is about 1.27 ns at 100 km. With the increase of ∆ng from 5× 10−7 to 4× 10−6, the

DMD becomes lower. This is due to the coupling coefficient κ, which is proportional to

the grating strength, is inversely proportional to Lmax , resulting in a smaller mean DMD.

Notice that if the UV-induced effective index change is large enough, e.g. greater than 1×

10−5, the coupling to the cladding modes will also be enhanced, leading to a considerable
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transition loss in the fibre, which may not be feasible in practical transmission.

3.5.2 Bandwidth control and temperature robustness

Besides DMD, another important issue of DG-FMF is the bandwidth [125]. The mode

conversion ratio and full-width half-maximum (FWHM) bandwidth of fundamental mode

are shown in Fig. 3.7. Even though the maximum mode conversion occurs when the LPG

length equals to Lmax bandwidth is only 0.4 nm. Since the FWHM bandwidth is propor-

tional to the length of LPG [123, 126], wider bandwidth can be achieved by reducing Lg.

When the LPG length equals to Lg = 0.01× Lmax the FWHM bandwidth will be about 40

nm, with a mode conversion ratio of 0.025%. Notice that reducing Lg will also increase

the mean DMD, as we discussed above. So, there is a trade-off between DMD reduction

and wideband applications.

We also evaluated the temperature sensitivity of the DG-FMF. The RI of the silica

cladding is recalculated with the temperature-dependent Sellmeier equation [127], and

the thermos-optics coefficients of the core and grating parts are assumed to be 1.2 ×

10−5/◦C [128]. Fig. 3.8 shows the mean DMD with ∆ng = 1× 10−6. Results indicate

that our DG-FMF has a flat DMD performance from 1530 nm to 1570 nm, which covers

the whole C-band. Furthermore, we find that the DMD at −20 ◦C is a decreasing func-

tion in the C-band, while it becomes flatter when temperature rises. This phenomenon
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coincides with the revealed fact that when the temperature increases, the transmission

spectrum of LPG will move to the lower wavelength [129]. At the temperature of 60 ◦C,

the average DMD in the C-band will be around 12 ns. Although it is higher than the cases

with lower temperatures, the DMD in DG-FMF at 60 ◦C is still much lower and easier to

be processed than SI-FMF by DSP and MIMO. Therefore, our GA-FMF has a stable DMD

performance and temperature robustness within C-band.

Note that although the model we discussed here is for two-mode fibre, it can be up-

grade extended to a FMF supporting more modes. One possible method is to build sev-

eral different types of LPGs, each of which having a different pitch designed for the phase

matching of two certain modes. By randomly cascading these types of LPGs together

with a random rotation, all the modes would get mixed, and strong mode coupling will

be guaranteed.

3.6 Chapter summary

In summary, we have proposed a distributed grating-assisted few-mode fibre (DG-FMF)

to reduce the differential mode delay (DMD). By introducing asymmetric long-period

fibre gratings with random exposure directions in a step-index few-mode fibre during

fibre manufacture process, the strong random mode coupling is generated along the en-
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tire length of the fibre. Simulation results show that mean DMD in the DG-FMF can be

reduced to less than 12 ns at a distance of 100 km with a period of 514 µm and grating

strength of 1× 10−6. The DMD reduction in our DG-FMF is guaranteed within the entire

C-band, and in a wide temperature range from −20◦C to +60◦C. Results in this chapter

have been published in [130].





Chapter 4

Multi-Parameter Sensing with FMF

4.1 Motivation

Few-mode fibres (FMFs) have attracted much attention in spatial-division multiplexing,

since it can offer the potential to overcome the capacity crunch in optical transmission.

Meanwhile, researchers have also shown growing interest in FMF-based Brillouin fibre

sensors. Previous study demonstrates that the circular-core few-mode fibres (EC-FMFs)

can be used in both BOTDA [98] and BOTDR [100] for multi-parameter sensing. The dis-

crimination between temperature and strain is based on the Brillouin peaks of multiple

input optical modes (LP01 and LP11), which correspond to the interaction between the

fundamental acoustic mode and higher order optical modes. However, the temperature

and strain coefficients of the two modes only have a small discrepancy, resulting in a

large amplification factor of measurement error. The elliptical-core (e-core) FMF, which

has already been used in the SDM transmission [54, 57], is considered as another can-

didate, since it can reduce the modal fading in c-core FMFs. The stimulated Brillouin

scattering (SBS) in EC-FMF has been studied [131], and the Brillouin dynamic gratings

(BDG)-based Brillouin sensors has shown its potential for multi-parameter measurement

[101]. However, the spontaneous Brillouin scattering (SpBS) in EC-FMF, as well as the

SpBS-based EC-FMF-based multi-parameter sensor, has yet to be investigated.

This chapter is organised as follows: In section 4.2, we will introduce the principle

of FMF Brillouin fibre sensors. In section 4.3, we will describe the methods for multi-

parameter discrimination, including the conventional method with only two modes and

the generalised solution with arbitrary number of modes. Section 4.4 will demonstrate

47
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the experimental setup for our proposed e-core FMF Brillouin fiber sensor, and its unique

SpBS properties will be characterised in section 4.5. Calibration for the temperature and

strain of the e-core FMF will be performed in section 4.6, followed by the performance

evaluation for this e-core FMF sensor in section 4.7. Note that the analysis in sections

4.5, 4.6 and 4.7 are different from the previous works [98, 100] which are based on the

circular-core FMF. Finally, the contents in this chapter is summarised in section 4.8.

4.2 Principle of FMF Brillouin fibre sensors

The relationship between the Brillouin frequency shift (BFS) ∆vB and the temperature

change (∆T) and strain variation (∆ε) can be expressed as [132]:

∆vB = cT∆T + cε∆ε (4.1)

where cT and cε are the temperature and strain coefficients, respectively. The temperature

change can be expressed using the unit ◦C if using Celsius degrees, while the strain (ε)

can be calculated by dividing the total length deformation ∆L by the original length (L),

i.e.:

ε = ∆L/L, (4.2)

which is a dimensionless variable. In fibre sensing area, the strain is very small. So strain

is often expressed in the unit micro-strain (µε), which equals to ε× 10−6. The widely used

units of cT and cε are MHz/◦C and MHz/µε, respectively.

The BFS of intra-mode Brillouin scattering is given by [96, 100]:

vB =
2no,i

λp
Va,k =

Vclad

λp

2no,i

na,k
, (4.3)

where λp is the wavelength of probe light, no,j is the effective index of the ith optical

modes, na,k is the effective index of kth acoustic modes, Vclad is the longitudinal acoustic

velocity in fibre cladding, which is around 5944 m/s. The temperature dependence of
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Brillouin frequency is given by [133]:

dvB

dT
=

2Vclad

λp

(
na,j

dno,i

dT
+ no,i

dna,j

dT

)
(4.4)

while the strain dependence of Brillouin frequency is

dvB

dε
=

2Vclad

λp

(
na,j

dno,i

dε
+ no,i

dna,j

dε

)
(4.5)

For inter-modal Brillouin scattering, the BFS can be expressed as [131]

vB =

(
no,i + no,j

λp

)
Va,k =

Vclad

λp

no,i + no,j

na,k
, (4.6)

The temperature and strain dependence for inter-modal Brillouin frequency become

dvB

dT
=

2Vclad

λp

(
na,j

dno,i

dT
+ no,i

dna,j

dT
+ na,j

dno,j

dT
+ no,j

dna,j

dT

)
(4.7)

dvB

dε
=

2Vclad

λp

(
na,j

dno,i

dε
+ no,i

dna,j

dε
+ na,j

dno,j

dε
+ no,j

dna,j

dε

)
(4.8)

4.3 Methods for multi-parameter discrimination

4.3.1 Discriminative measurement with two modes

To discriminate temperature and strain, at least two spatial modes (assigned as mode

1 and mode 2) are required. Assuming that the temperature and strain coefficients are

expressed as (cT,1, cε,1) and (cT,2, cε,2), we can separating these two effects by measuring

the BFS in each mode, which can be written as [98]:

∆vB,1

∆vB,2

 = C2

∆T

∆ε

 , C2 =

cT,1 cε,1

cT,2 cε,2

 . (4.9)
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By solving the equation above, we can get the change of temperature ∆T and strain ∆ε as

∆T

∆ε

 = C−1
2

∆T

∆ε

 =
1

det(C2)

 cε,2 −cε,1

−cT,2 cT,1

∆vB,1

∆vB,2

 , (4.10)

where det(·) means matrix determinant.

To estimate the performance of multi-parameter discrimination, we assume the mea-

surement error for these two modes are σvB,1 and σvB,2, respectively and assume they are

uncorrelated. Here σvB,i is defined as the standard deviation of the BFS for mode i. Then

the discriminative errors for temperature and strain are expressed as

σT =

√
c2

ε,2

det(C2)2 σ2
vB,1 +

c2
ε,1

det(C2)2 σ2
vB,2 (4.11)

σε =

√
c2

T,2

det(C2)2 σ2
vB,1 +

c2
T,1

det(C2)2 σ2
vB,2 (4.12)

From these two equations it can be found that the accuracy of temperature and strain

discrimination relies on the accuracy of mode 1 and mode 2. The errors also depend on

the determinant of matrix C2, meaning that the matrix condition will also significantly

affect the measurement resolution.

4.3.2 Generalised solution with more modes

Here, we would like to expand it to a more general case. If n modes are used, each of

them has the temperature and strain coefficients written as (cT, cε),i ∈ {1, 2, ..., n}, then

we have: 
∆vB,1

...

∆vB,n

 = C

∆T

∆ε

 , C =


cT,1 cε,1

...
...

cT,n cε,n

 (4.13)
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If C has linearly independent columns, i.e. CTC is invertible, the solution for temperature

and strain change can be expressed as:

∆T

∆ε

 = C+


∆vB,1

...

∆vB,n

 (4.14)

where C+ = (CTC)−1CT is the Moore-Penrose inverse of matrix C.

Assuming that the uncertainty for Brillouin frequency shift of each mode can be writ-

ten as [σvB,1, σvB,2, · · · , σvB,n], then the errors of temperature and strain discrimination are

evaluated through:

σT =

√
n

∑
k=1

(c+1kσvB,k)2, σε =

√
n

∑
k=1

(c+2kσvB,k)2 (4.15)

where c+ik is the ith-row kth-column element of matrix C+. When two modes are used for

the discrimination of temperature and strain, i.e. n = 2, Eqs. (4.13),(4.14) and (4.15) will

reduce to the identical forms as in [134]. However, by using more modes, the sensing

accuracy will be much improved.

4.4 System configuration

The experimental setup our proposed scheme is shown in Fig. 4.1. An external cavity

laser (ECL) operating at 1.55 µm is split into two branches by a 50:50 optical coupler (OC).

The lower branch is used as the local oscillator (LO), while the upper one is modulated

by an acousto-optic modulator (AOM) driven by a pulse generator. The pulse width is 50

ns, corresponding to a spatial resolution of 5 m. A polarisation scrambler (PS) scrambles

the polarisation of pump light. Then the pump pulses are sent to the free-space mode

launcher (FSML) through an optical circulator (CIR). The Fig. 4.2 shows the structure

of the FSML, which consists of three collimators (CLs) and one 50:50 beam splitter (BS),

which forms two pathways for different spatial modes. A 0-π phase plate (PP) is used

for the mode conversion between LP01-mode and LP11-mode, with an extinction ratio



52 Multi-Parameter Sensing with FMF

ECL AOM
OC1 EDFA

OBPF

BPD

Microwave
Generator

Pre-EDFA

LPF
Mixer

DSO

CIR1

SW2
OC2

Pulse Generator

AMP

E-core FMF spool

88.8

Water 
bath

Port1

SW1

Port2

Port3

LO

Pump

1GSa/s
ELO

Translation 
stage

Fix point

Camera

PS

FSML

Figure 4.1: Experimental setup of the EC-FMF BOTDR.
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Figure 4.2: Inside structure of the free-space mode launcher (FMSL). CL: collimator, BS:
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Figure 4.3: (a) Cross-section of the EC-FMF. (b) Measured mode pattern for LP01 mode.
(c) Measured mode pattern for LP11 mode.
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around 14 dB. The insertion loss of FSML is 4.5 dB for LP01 mode and 5.6 dB for LP11

mode, respectively.

The fibre under test here is a 500-m e-core few-mode fibre, supporting two LP modes

(LP01, LP11e) at 1.55 µm and three LP modes (LP01, LP11e, LP11o) at 1.3 µm. Fig. 4.3(a)

shows the cross-section of the EC-FMF [54]. Fig. 4.3(b) and 4.3(c) are the measured mode

patterns for LP01 and LP11e modes, respectively. We have observed quite pure mode pat-

terns for both LP01 and LP11, indicating that the mode extinction ratio in FSML is suffi-

cient. More detailed parameters of the EC-FMF can be found in [54]. At the far-end of the

FUT, a 4-meter fibre segment is stretched by a translation stage, followed by a 20-meter

segment which is placed in a temperature-controlled water bath. The backscattering light

is filtered by an optical band-pass filter (OBPF) to eliminate the Rayleigh scattering, and

is then amplified by a pre-EDFA with a narrow output filter inside. The beating signal be-

tween Brillouin scattering signal and LO is detected by a balanced photo-detector (BPD).

A voltage-controlled oscillator (VCO) generates a RF sine wave to shift the beating sig-

nal to the frequency range within a 450-MHz low-pass filter (LPF). The signal is finally

collected by a digital storage oscilloscope (DSO) with the sampling rate of 1GSa/s.

4.5 Characterisation of SpBS

We sent the pump in LP01 mode and received the Brillouin backscattering signals from

both LP01 mode and LP11e mode. The distributed Brillouin spectrograms were recovered

by moving a 50-ns fast Fourier transform (FFT) window on the time-domain signal with

5-ns step interval. To make the spectra finer, the zero-padding technique was used. To

improve the signal-to-noise ratio (SNR) as well as to eliminate the polarisation fading,

the Brillouin spectrograms were averaged for 5000 times. Figs. 4.4 and 4.5 shows the

measured Brillouin spectrograms as a function of frequency detuning and fibre distance,

of LP01 output and LP11e output respectively. Multi-peak shape is observed for both of

them, indicating that there are higher order-acoustic modes. Fig. 5.6 shows the Brillouin

spectra of the cross-sections of measured Brillouin spectrograms for a fibre segment un-

der loose condition and room temperature.
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Figure 4.4: Measured Brillouin spectrograms of LP01 output as a function of frequency
detuning and distance.

Figure 4.5: Measured Brillouin spectrograms of LP11 output as a function of frequency
detuning and distance.
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Figure 4.6: BGS of SpBS in EC-FMF: (a) LP01 to LP01, (b) LP01 to LP11. Dots: measured
data points; solid red lines: multi-peak Lorentzian fit curves; dashed lines: standard
Lorentzian fit curves.

We adopted the multi-peak Lorentzian fitting with the following model:

fn(v) =
n

∑
i=1

g0,iΓ2
B,i

Γ2
B,i + 4(v− vB,i)2

(4.16)

where v is the frequency detuning. g0,i, ΓB,i, and vB,i correspond to the Brillouin am-

plitude, Brillouin linewidth and the BFS of ith peak, respectively. Fig. 4.6 shows the

measured SpBS spectra ( dots), the multi-peak fitting curves (solid lines) and the stan-

dard Lorentzian fit curves of each peak (dashed lines) for LP01 output and LP11e output.

Detailed characteristics of these SpBS, including g0, vB (in GHz unit) and ΓB (in MHz

unit), are shown in Table 4.1. From this table we can find that the 1st-peak vB of the

LP01 output is different from that of the LP11e output by the amount of 26.9 MHz. Mean-

while, a difference of 18.8 MHz is observed between the 2nd-peak vB of the LP11e output

and that of the LP01 output. These results indicate that the multi-peak Brillouin spectra

are due to the interaction between the optical and acoustic modes, instead of the mode

leakage.

4.6 Calibration of temperature and strain

We then conduct the calibration of temperature and strain coefficients by heating the wa-

ter and moving the position of the translation stage. Fig. 4.7 gives the measured BFS

as a function of temperature with various output modes, and Fig. 4.8 is the relationship
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Table 4.1: Characteristics of the SpBS in EC-FMF

Mode 1st Peak 2nd Peak 3rd Peak 4th Peak

LP01

g0 1.4086 0.3216 0.0652 –
vB 10.7525 10.8464 10.9366 –
ΓB 54.051 63.614 87.592 –

LP11

g0 0.4961 0.2717 0.0746 0.0301
vB 10.7794 10.8652 10.9379 11.0012
ΓB 53.728 58.489 54.737 139.939
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Figure 4.7: Measured BFS as a function of temperature for the 1st and 2nd peaks of LP01-
LP01 and LP01-LP11e, respectively.
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Table 4.2: Temperature and strain coefficients

Optical-acoustic
mode pair

Temperature Strain

Slope cT
(MHz/◦C)

Intercept
(GHz)

Slope cε

(MHz/µε)
Intercept

(GHz)

LP01-L1 1.242 10.691 0.0613 10.790
LP01-L2 1.278 10.767 0.0364 10.889
LP11e-L1 1.287 10.700 0.0658 10.803
LP11e-L2 1.501 10.765 0.0484 10.896

between BFS and strain with various output modes. Linear regression (solid lines) was

performed to calculate the temperature and strain coefficients. The fitting results, includ-

ing the slopes (cT, cε) and the intercepts, can be found in Table 4.2. Compared with the

standard SMF which has coefficients around 1.08 MHz/◦C and 43 kHz/µε [135], our EC-

FMF has larger temperature and strain coefficients due to the core size and deformation.

4.7 Performance of discriminative sensing

Since the coefficients of various modes are different, they could be used for the tempera-

ture and strain discrimination. We assign the optical-acoustic mode pairs as M1: LP01-P1,

M2: LP01-P2, M3: LP11e-P1, and M4: LP11e-P2, where LPlm means the lm-order output op-

tical modes and Pi indicates the ith-order acoustic peak. Then we can group them into

11 combinations, including 6 two-mode combinations, 4 three-mode combinations and

1 four-mode combination. To evaluate the performance of multi-parameter discrimina-

tion, we use the error amplification factors, which are defined as the ratios between the

temperature/strain uncertainty and the BFS uncertainty, i.e. σT/σvB and σε/σvB . Note

that in Eq. (4.15) there are more than one mode used in the error estimation. Many

literature assume that the BFS uncertainty or measurement error equals to 0.1 MHz for

all the modes. However, in our system the BFSs of multiple Brillouin peaks are estimated

through one Brillouin scattering spectrum, as shown in Fig. 4.6. According to [136,137],

the BFS uncertainty σvB can be expressed as:

σvB ∝
1

SNRa

√
δvΓB =

σn

g0

√
δvΓB (4.17)
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where σn is the standard deviation of the noise, δv is the frequency interval of the Brillouin

scattering spectrum, SNRa is the amplitude signal-to-noise ratio. For all the modes, σn

and δv are usually kept unchanged for a measurement. Therefore, the BFS uncertainty

should take the Brillouin gain g0 and the Brillouin linewidth ΓB into account. Assuming

that the BFS uncertainty for the 1st-order peaks of LP01 mode (i.e. σvB,M1) and LP11e mode

(i.e. σvB,M3) equals to σv, the BFS uncertainty for the 2nd-order peaks should be σvB,M2 =

4.7463 · σv and σvB,M4 = 1.9051 · σv, calculated according to Eq. (4.17) with the data in

Table 4.1.

Table 4.3: Error amplification factors with various combinations of optical-acoustic
modes

Combination [M1, M2] [M1, M3] [M1, M4] [M2, M3]

σT/σv (◦C/MHz) 8.8498 31.7716 3.9630 8.4418
σε/σv (µε/MHz) 182.0517 631.8870 87.8433 167.5566

Combination [M2, M4] [M3, M4] [M1, M2, M3] [M1, M2, M4]

σT/σv (◦C/MHz) 33.2409 3.6840 8.5644 5.5674
σε/σv (µε/MHz) 1042.9360 78.8164 171.3150 124.1234

Combination [M1, M3, M4] [M2, M3, M4] [M1, M2, M3, M4]

σT/σv (◦C/MHz) 3.6624 5.1435 5.0228
σε/σv (µε/MHz) 76.5745 110.3671 105.2716

The error amplification factors σT/σv and σε/σv are then evaluated through Eqs.

(4.13),(4.14) and (4.15) . Table 4.3 shows the results with various combinations of dif-

ferent optical-acoustic modes. Among the 2-mode combinations, using [M3, M4], i.e. the

1st-order and the 2nd-order Brillouin peaks for LP11e output, has the minimum error am-

plification factors of 3.6840 ◦C/MHz and 78.8164 µε/MHz for temperature and strain,

respectively. With the increasing number of modes in the combination, smaller error am-

plification factors can be achieved. When combination [M1, M3, M4] is used, we obtain

the minimum factors, which are 3.6624 ◦C/MHz and 76.8163 µε/MHz, respectively. In-

terestingly, when all the four modes [M1, M2, M3, M4] are used, the error amplification

factors become larger than some two-mode or three-mode combinations. This is due to

the fact that the large BFS uncertainty σvB,M2 for M2 peak contributes a lot in both tem-

perature and strain errors. Therefore, involving M2 in the error analysis will deteriorate
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the performance. It is worth noticing that the three-mode combination [M1, M3, M4] only

surpass the two-mode combination [M3, M4] by less than 3%. Considering the additional

steps for detecting the output of both LP01 mode and LP11e mode, this small improvement

could be neglected in most practical applications. Therefore, the optimal solution will be

injecting the light into LP01 mode and detecting the Brillouin backscattering from LP11e

mode. In practical situation, this can be realised by using a simple FSML, and there is no

need for mode switching. For a fair comparison with other FMF-based multi-parameter

sensors, we also assume σv = 0.1 MHz as in [98]. In this case, the accuracy of discrimina-

tion between temperature and strain is 0.37 ◦C and 7.88 µε. Compared with the previous

results with FMFs, our scheme has better discriminative performance. This result in-

dicates that the using the higher-order optical and acoustic modes in the elliptical-core

few-mode fibre could be a promising solution for multi-parameter sensing.

It is noted that the Moore-Penrose inverse method used in this chapter is a simple

approach, but might not be the optimal solution when the noise of each mode is differ-

ent. Therefore, it is also a part of the reasons that the performance is degraded when all

the modes are used. An alternative will be a solution that taking the error (noise) per

mode into account, such as the minimum mean-square error (MMSE) estimator. We are

currently working on this topic and will present the results in the future.

4.8 Chapter conclusion

In this chapter, we have proposed and experimentally demonstrated a single-ended Bril-

louin optical time-domain reflectometry in EC-FMF. Both the inter-modal and intra-modal

SpBSs were observed and characterise. Distributed multi-parameter sensing of tempera-

ture and strain was demonstrated over 0.5 km EC-FMF with 5-m spatial resolution. Our

results show that the EC-FMF can be good candidate for multi-parameter distributed fi-

bre sensing. Part of this work has been presented at the 26th International Conference of

Optical Fibre Sensors (OFS) [138].





Chapter 5

Ultra-fast Brillouin fibre sensing
technique

5.1 Motivation

Conventional BOTDA requires taking a large number of measurements for distributed

fibre sensing each time, including scrambling the pump polarisation, averaging the re-

ceived traces and scanning the probe frequency. Therefore the sensing process is usu-

ally time-consuming, ranging from tens of seconds to tens of minutes. Furthermore,

it assumes that the fibre status (strain and temperature) shall remain unchanged dur-

ing these measurements; otherwise, the distributed Brillouin spectra may not be cor-

rectly reconstructed. Thus it is applicable for monitoring some relatively slow changes

along the fibre. In the past few years, distributed dynamic sensing which records fast

strain/temperature variation along the fibre, has become a hot topic driven by the grow-

ing demand in gas and oil industries, geophysical science and structural health monitor-

ing. Therefore it is desirable for BOTDA technique with boosted sensing speed. To reduce

the measuring time, several methods have been proposed, including the slope-assisted

method [112, 113], the fast frequency-swept method [114], the RF phase demodulation

method [139] and the digital optical frequency comb method [116]. All of these meth-

ods have shown some encouraging improvements and applications. Nevertheless, either

frequency scanning, or polarisation scrambling, or averaging is still required, which will

limit the ultimate measuring speed.

In this chapter, we will propose and demonstrate a novel ultra-fast Brillouin fibre

sensing technique named single-shot Brillouin optical time-domain analyser (single-shot

61
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BOTDA). Here, ‘single-shot’ means that all the information of the fibre is gathered by

sending only one pump pulse and receiving the corresponding probe light. Therefore,

the sensing speed is expected to be drastically improved. Compared with other DSP-

based multi-tone method, our OFDM method in BOTDA has several advantages: (1)

no spectral leakage when performing piecewise FFT analysis, (2) low PAPR by properly

design the symbol, (3) no need for Guard Interval (GI) since the same OFDM symbol is

repeatedly sent as the probe. The details of our proposed scheme will be described in the

following sections.

5.2 Principle of single-shot BOTDA

Frequencyv1v2v3v4 vN

(a)

Frequencyv0

USBLSB

……

v

0

v+v0+vR
F

(b)
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v+v0−vR
F
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Figure 5.1: The principle of single-shot BOTDA.

The principle of our proposed single-shot BOTDA method is shown in Fig. 5.1,

instead of the CW probe used in conventional BOTDA, we use the orthogonal side-

band probe with orthogonal frequency division multiplexing (OFDM) modulation in our

scheme. A baseband OFDM symbol s(t) can be expressed as [140]

s(t) =
+∞

∑
i=−∞

N

∑
k=1

ckisk(t− iTs) (5.1)

sk(t) = Π(t)ej2πvkt, (5.2)
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Π(t) =


1, (0 < t ≤ Ts)

0, (t ≤ 0, t > Ts)

(5.3)

where cki is the ith complex information at the kth subcarrier, sk is the waveform for the

kth subcarrier and vk is the frequency [141]. N is the number of subcarriers, Π(t) is

the pulse shaping function and Ts is the symbol period. If an identical complex sequence

c = [c1, c2, . . . , cN ]
T is repeatedly sent as the information symbol, then in time domain the

baseband signal becomes

s(t) =
N

∑
k=1

ckej2πvkt (5.4)

The frequency of subcarriers can be expressed as a vector v = [v1, v2, . . . , vN ]
T, k =

1, 2, . . . , N, as shown in Fig. 5.1(a). After modulating on an optical carrier with amplitude

A0 and frequency v0, the time-domain electric field Et(t) of transmitted optical OFDM is

written as

Et(t) = A0

N

∑
k=1

ckej2π(vk+v0)t (5.5)

Taking the Fourier transform of the above equation, we get

Êt(v) = A0

N

∑
k=1

ckδ[2π(v− vk − v0)] (5.6)

In order to cancel the polarisation fading, the optical OFDM signal Et is then double

sideband (DSB) modulated by a RF sine wave with frequency vRF in an intensity modu-

lator working at its null point. Then the output electric field turns to

ÊDSB = a0A0

N

∑
k=1

ckδ[2π(v− vk − v0 + vRF)]︸ ︷︷ ︸
Ês+

+ (5.7)

a0A0

N

∑
k=1

ckδ[2π(v− vk − v0 − vRF)]︸ ︷︷ ︸
Ês−

where a0 is a factor which contains the amplitude scaling and the common phase change.

The polarizations of the upper sideband (USB) and lower sideband (LSB) are then ro-
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tated to be orthogonal to each other. Finally the orthogonal sideband probe can be rep-

resented as a Jones vector Es = Es+ex + Es−ey, where ex and ey are the basis vectors for

x-polarisation and y-polarisation, respectively, as depicted in Fig. 5.1(b).
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Frequency

Amplitude

Position

Position

Position

Dual-polarized DSB OFDM probe

Pump

Received signal

Distributed Brillouin 
spectrogram

Piecewise FFT and 
DSP

Figure 5.2: Principle of single-shot BOTDA
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Figure 5.3: Orthogonal double-sideband of OFDM probes.

As shown in Fig. 5.2, the probe and pump counter-propagate along the fibre. When

they meet each other at the position z, stimulated Brillouin scattering (SBS) process hap-

pens. If the RF frequency vRF is near the Brillouin frequency shift (BFS) vB, the lower

sideband will be amplified while the upper sideband will be attenuated, which is shown
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in Fig. 5.3 and can be expressed:

Er+ = h+(t, z)⊗ Es+, Er− = h−(t, z)⊗ Es− (5.8)

where ‘⊗’ is the convolution operator, h+(t, z) and h−(t, z) are the impulse responses

of the Brillouin gain and loss at position z, respectively. In frequency domain Eq. (5.8)

becomes

Êr+ = H+(v, z)Ês+, Êr− = H−(v, z)Ês− (5.9)

where H+(v, z) and H−(v, z) are the complex Brillouin gain and Brillouin loss spectra

at position z, respectively. Assuming that the pump width is longer than the lifetime of

acoustic phonon, then these spectra can be given by [142]

H±(v, z) = exp
[
± η±g0ΓB

ΓB + 2j(v− vp ± vB(z))

]
(5.10)

where g0 is the local Brillouin gain, ΓB is the Brillouin linewidth, vp is the frequency of

pump light. η+ and η− are the real mixing efficiency factors of the LSB probe and the

USB probe. According to [143], the mixing efficiency factors are written as

η± =
1
2
(1 + s1ps1s± + s2ps2s± − s3ps3s±) (5.11)

where sp = [s1p, s2p, s3p]T, ss+ = [s1s+, s2s+, s3s+]T, ss− = [s1s−, s2s−, s3s−]T are the nor-

malised Stokes vectors of the pump, the LSB probe and the USB probe, respectively. Since

the LSB probe and the USB probe are orthogonal in polarisation, i.e. ss+ + ss− = 0, one

has η+ + η− = 1.

The probe light is then received by a polarisation diversity coherent receiver, which

mixes probe with a local oscillator (LO) light ELO = E0 exp(j2πvLOt) in a 90 degree opti-

cal hybrid. The received complex signals are written as

R+ =
1√
2

γEr+E∗LO, R− =
1√
2

γEr−E∗LO (5.12)

where γ is the detector responsivity. If LO, probe carrier and pump has the same fre-
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quency, i.e. (vLO = v0 = vp), the received frequency will be down-converted. Then

the received time-domain signals R+ and R− are divided into many segments, each of

which has the identical length to OFDM symbol period Ts. The subcarrier amplitude

of each segment can be obtained through Fourier transform, as shown in Fig. 5.2.

Here we assign the subcarrier frequencies of LSB and USB as vectors v+ = [vk+]N×1

and v− = [vk−]N×1, respectively, where vk+ = vk − vRF and vk− = vk + vRF, vk is

the k-th element of v. Since the transmitted symbol c is known, we can easily derive

the Brillouin gain spectrum (BGS) and Brillouin loss spectrum (BLS), which can be de-

scribed by the logarithmic gain vector Γ+(z) = [Γk+]N×1, Γk+ = Γ+(vk+, z) and loss vec-

tor Γ−(z) = [Γk−]N×1, Γk− = Γ−(vk−, z) where

Γ±(v, z) = ± 2η±g0Γ2
B

Γ2
B + 4(v± vB(z))2

(5.13)

The next step is to combine BGS and BLS and eliminate the polarisation effect. Here

we flip the vector Γ−(z) as Γ−(z) and define ∆Γ(z) = Γ−(z)− Γ−(z) . If the subcarrier

frequency of the baseband OFDM satisfies vk = −vN+1−k, k = 1, 2, . . . , N, then ∆Γ(z) =

G(v, z), where G(v, z) is the Lorentzian shape Brillouin gain profile that

G(v, z) =
2g0Γ2

B
Γ2

B + 4(v− vRF + vB(z))2
(5.14)

According to the Eq. (5.14) the gain profile is independent of polarisation, indicating

that the polarisation fading has been eliminated. After calculating the Brillouin spectrum

vector ∆Γof the entire segments, we can combine them as the distributed Brillouin spec-

trogram. Therefore the BFS vB can be estimated by curve fitting with the vector v and

∆Γ.

It is worth noting that the polarisation-diversity coherent detection in our scheme

can not only acquire the complete electric field of the probe light, but can increase the

signal-to-noise ratio (SNR) and sensitivity as well. Compared with the direct detection

in conventional BOTDA which can only detect the probe intensity, the LO in coherent

detection can amplify the probe by a factor of |ELO|/|Es|, which can significantly enhance

the SNR and make it easier to detect the weak probe light. Thus the desired SNR can be
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achieved by coherent detection. This SNR enhancement is realised by mitigating the

impact of receiver-side noise. However, it may not has as much improvement as the

averaging on some in-band noise in the channel, such as the in-band component of ASE

noise.

5.3 Experimental setup
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Figure 5.4: The experimental setup

The experimental setup is depicted in Fig. 5.4. An external cavity laser (ECL) with

1542.72 nm centre wavelength and 100 kHz linewidth is split into three branches as the

probe, the pump, and the local oscillator by two 3dB beam splitters (BS). The probe part

is first modulated by an OFDM signal in an optical in-phase quadrature (IQ) modulator

driven by an arbitrary waveform generator (AWG) operating at of 10 GSa/s. The OFDM

frame is initially designed in frequency domain with N = 256 subcarriers and 2048 total

sample points, corresponding to a symbol period of 204.8 ns 1 and a spatial resolution of

20.48 m. In order to reduce the peak-to-average power ratio (PAPR), the subcarriers are

1We choose 204.8 ns as the symbol duration because we use 2048-point FFT in OFDM signal generation
with an AWG sampling rate of 10 GSa/s.
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mapped by a Zadoff-Chu sequence c = [ck]N×1 given by

ck = exp
(
−jπ(k− 1)2/N

)
, k = 1, 2, . . . , N (5.15)

Due to the large symbol period, intra-symbol phase noise between LO and probe may

occur. Thus we add a pilot tone at the right side of c to track the phase as depicted in Fig.

5.5(a), and to compensate the phase noise in the following section. Then the frequency

domain signal is transformed to time domain OFDM frame by a 2048 points inverse fast

Fourier transform (Inverse FFT). The real and imaginary parts of an OFDM frame in time

domain are shown in Fig. 5.5(b). According to the PAPR definition that

PAPR = max
[
|s(t)|2

]
/E
[
|s(t)|2

]
(5.16)

, the PAPR of our designed OFDM signal is only 3.04 dB (within the time interval of one

symbol period), which is almost identical to the PAPR of an ideal sinusoidal waveform

(3dB), indicating that our OFDM signal power is nearly uniformly distributed in both

time domain and frequency domain.
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Figure 5.5: (a) Generation of the complex baseband OFDM signal. (b) The real part (I)
and imaginary part (Q) of one generated OFDM frame in time domain. (c) The electric
spectrum of the baseband OFDM probe.(d) The optical spectrum of the double-sideband
OFDM probe with orthogonal sideband polarizations.
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Then the OFDM frame is repeatedly modulated on the probe as the OFDM signal

Et(t). The electrical spectrum of the OFDM signal is depicted in Fig. 5.6. The 256 sub-

carriers occupy a bandwidth from −625 MHz to +625MHz with 4.88 MHz frequency

spacing and almost identical amplitude. The small fluctuation of the flat top in Fig. 5.6 is

due to the electric distortion of cables and digital-to-analogue converters (DACs). Then

a vRF = 11 GHz radio frequency (RF) sine wave modulates the OFDM baseband probe

in an electro-optic modulator (EOM). The upper sideband and lower sideband are then

separated by a 50 GHz dense wavelength division multiplexer (DWDM) with a sharp

slope (30 dB over 10 GHz) . The polarizations of USB and LSB are then adjusted to be or-

thogonal via two polarisation controllers (PCs) and are combined in a polarisation beam

splitter (PBS). Fig. 5.7 depicts the optical spectrum of DSB probe with orthogonal polar-

isation sidebands. The USB and LSB are assigned as x-polarisation and y- polarisation,

respectively. The dual-polarised DSB probe is sent into the fibre through an optical isola-

tor. The total transmitted probe power is −16 dBm.

The pump pulse is generated in another EOM driven by a pulse signal with 150 ns

pulse width and 50 kHz repetition rate. Then the pump pulses are amplified by an EDFA

to 8 dBm and sent into the fibre under test (FUT) via an optical circulator. The FUT is

composed of a 983.14 m standard single-mode fibre (SSMF) spool and a 98.85 m SSMF

segment, which the first 20 m is heated by a water bath. The total length is around 1.08

km and the round-trip time is about 10.8 µs. FC/APC connectors are used to reduce the

Fresnel reflection.

After the SBS process, the probe signal is mixed with a 6 dBm CW LO in a polarisation

diversity coherent detector, which consists of a 90-degree dual-polarisation optical hybrid

(Kylia) and four balanced photo-detectors (BPDs). The outputs of four BPDs are acquired

by a digital storage oscilloscope (DSO) operating at 50 GSa/s. The received data are then

treated in the following signal processing part.
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5.4 Data processing

The procedure of data processing is illustrated in Fig. 5.8. The received outputs from four

detectors are Ix, Qx, Iy, and Qy. After the skew alignment and power normalisation, they

form the complex received signals as Rx = Ix + jQx and Ry = Iy + jQy, which correspond

to the x- and y-polarisation, respectively. After the timing synchronisation, frequency

offset compensation and polarisation rotation compensation using the training frames, a

bandpass filter is utilised to filter out the pilot tone and estimate its relative phase drift

to the LO. Since the pilot tone and the OFDM signal are generated simultaneously and

propagate along the same fibre, their phases are inherently locked. Therefore the phase

drift of OFDM signal can be compensated by multiplying the conjugate of the pilot phase

and relative frequency offset. The time-domain data are then down-sampled by 5 and

divided into segments, each of which has 2048 sample points, corresponding to 20.48 m

fibre length. Fast Fourier transform (FFT) is conducted on each segment to get the spectra

of both polarizations. The first several segments which are not affected by SBS process

are used to estimate the frequency-domain channel distortion. The channel distortion of
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other segments in SBS region can be compensated by inverting this distortion shape.
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Figure 5.9: (a) Logarithmic gain of BGS vector Γ+(z) and vector BLS Γ−(z) of a OFDM
frame in the SBS region. (b) Differential Logarithmic gain between the BGS and BLS vec-
tors. (c) Flipped the combined logarithmic gain profile ∆Γ(z) (d) shows the data points
which used for curve fitting and BFS estimation.

Fig. 5.9(a) depicts the logarithmic subcarrier amplitudes of both x- and y- polariza-

tions of one OFDM frame, corresponding to the BGS vector Γ+(z) and BLS vector Γ−(z),

respectively. We can find that they have the similar channel distortion shape. Some sub-

carrier amplitudes of y-polarisation are amplified while some subcarrier amplitudes of

x-polarisation are attenuated. When we subtract Γ−(z) from Γ+(z), as shown in Fig.

5.9(b), the channel distortion is almost eliminated. Then we flip the spectrum and add it

with the original one, resulting in a logarithmic gain profile vector ∆Γ, as shown in Fig.

5.9(c). Fig. 5.9(d) illustrates part of the data points with a good Lorentzian shape, which

can be use for BFS estimation.

We then calculate the BLS and BGS vectors for each segment and draw them as the

reconstructed Brillouin spectrogram for x-polarisation, y-polarisation and the combined
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Figure 5.10: Reconstructed Brillouin spectrogram for (a) x-polarisation (b) y-polarisation
and (c) combined dual-polarisation. (d), (e) and (f) are the three-dimensional view of (a),
(b) and (c), respectively.
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Figure 5.11: The measured BGS and Lorenztian fit curves for three selected positions. A:
maximal gain; B: minimal gain; C: maximal frequency shift.

dual-polarisation in Fig. 5.10(a) (b) and (c), respectively. Fig. 5.10(d), (e) and (f) are the

three-dimensional view of (a) (b) and (c), respectively. Due to the polarisation effect,

there are drastic amplitude fluctuations in Fig. 5.10(a) and (b). However, the Brillouin

peaks in Fig. 5.10(c) are quite stable, meaning that the polarisation fading has been suc-

cessfully mitigated. We also notice that there is a small fluctuation of Brillouin peaks in

the combined spectrogram due to measurement noise. To prove that this undulation is

insignificant, we choose the maximal peak position, the minimal peak position and the

maximal BFS shift position marked as A, B and C in Fig. 5.10. The original data points

and the Lorentzian fitting curves of these three positions are shown in Fig. 5.11. It can be

found that all the data points for A, B and C are adequate for the curve fitting, meaning

that all the data in the reconstructed spectrogram are sufficient for BFS identifying.

5.5 Results

In order to test our single-shot BOTDA performance, distributed temperature sensing

experiment is carried out by increasing the temperature of water bath from room tem-

perature to over 75 ◦C and taking several single-shot BOTDA measurements. Then we

treat the recorded data by the signal processing method described in section 4 and com-
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pute the distributed BFS. Fig. 5.12 shows the calculated BFS for the 1.08 km FUT. The

slight variation around the far end of 983 m fibre spool is because of the strain change

from manual spooling [115]. The inset in Fig. 5.12 depicts the variation of BFS in the

hotspot. With temperature goes higher, the BFS shifts upwards. We then record the BFS

of the hotspot position and evaluate its relationship with the temperature via linear fit-

ting, as shown in Fig. 5.13. The temperature coefficient for the FUT is 1.03 MHz/◦C.

The coefficient of determination R2 2 is 99.96%, indicating that good linear relationship is

achieved for temperature sensing.

0 200 400 600 800 1000

Fibre length (m)

10.87

10.88

10.89

10.9

10.91

10.92

10.93

10.94

B
F

S
 (

G
H

z
)

65°C Water bath

Figure 5.14: BFS of 25 times of measurements along the fibre when the water bath is set
to 65◦C. Blue line is the mean value for each segment. Dots are BFS data points. Red lines
are the error bars.

To validate that our single-shot BOTDA is replicable and reliable, the single-shot mea-

surement is consecutively performed 25 times when the temperature of hotspot is set to

65 ◦C. Fig. 5.14 shows the BFS of each measurement. The blue line denotes the mean

BFS values and the dots are the BFS data for each segment. We can find that the BFS

data points are well superposed, indicating that the results are almost the same. To de-

marcate the accuracy of temperature sensing, we calculate the BFS deviation to the mean

value of each segment. According to the histogram in Fig. 5.15, the probability density of

2In this thesis, R2 is defined as the ratio of the sum of squares of the regression (SSR) and the total sum of
squares (SST). Assuming that the measured data y = [y1, y2, . . . yn]T and the fit data is ȳ = [ŷ1, ŷ2, . . . ŷn]T ,
SSR is defined as ∑n

i=1(ŷi − ȳ)2 and SST is defined as ∑n
i=1(yi − ȳ)2, where ŷ is the mean value of y.
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Figure 5.15: Probability density distribution of BFS deviation. Blue line denotes the Gaus-
sian curve fitting of the probability density function (PDF).

BFS deviation approximates a Gaussian distribution. We then perform Gaussian fitting

N (µ, σ2) on the measured BFS and obtain the results as µ = 0 MHz and σ = 0.57 MHz.

Since the temperature coefficient is 1.03 MHz/◦C, the accuracy of temperature sensing is

only 0.59 ◦C, indicating that our measurement result is accurate and reliable.

5.6 Discussion

In our configuration, the pump pulse repetition rate is set to 50 kHz. However, since

all the data are acquired with one-time measurement, the ultimate sensing speed is only

limited by the fibre round-trip time. Moreover, since the spectrum of OFDM probe can

cover several GHz, the sensing speed can be further increased by sequentially launching

the pump pulses with different frequencies, as used in [115]. Furthermore, since the

subcarriers within the Brillouin bandwidth are amplified or attenuated simultaneously,

the pump depletion effect in conventional BOTDA, which has a hollow of the Brillouin

spectrum, can also be avoided. Therefore our single-shot method is available for long-

range distributed fibre sensing.

The spatial resolution in our experiment is 20.48 m. Different from conventional

BOTDA, the spatial resolution of single-shot BOTDA is determined by the subcarrier
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frequency. For example, in our experiment the frequency spacing ∆ f is 4.88 MHz (2048

points over 10 GHz), therefore the spatial resolution is vg/(2∆ f ) = 20.48 m, where vg

is the group velocity. Higher resolution can be achieved by increasing the ∆ f . How-

ever, since the Brillouin linewidth ∆vB is fixed, a larger frequency spacing means less

data points in the stimulated Brillouin profile, which may increase the measurement er-

ror during the curve fitting process [144]. This problem can be solved by increasing the

Brillouin linewidth, which can be realised by adding proper modulation on the pump

[145], and will be presented in our future work.

5.7 Chapter conclusion

In conclusion, we have demonstrated a novel ultra-fast Brillouin fibre sensing method,

which can monitor the distributed fibre status with only one-time measurement. Instead

of the CW probe used in classic BOTDA, we adopt an orthogonal-sideband OFDM probe

to acquire stimulated Brillouin spectrum and to diminish the polarisation fading. By

carefully designing the OFDM symbol, we achieve a low PAPR signal which uniformly

distributes the power in both time domain and frequency domain. Polarisation-diversity

coherent detection is used to collect the full field information and to enhance the signal-

to-noise ratio. We then conduct the distributed temperature sensing experiment in a 1.08

km standard single-mode fibre with a spatial resolution of 20.48 m. Sensing results show

that the distributed Brillouin frequency shift can be successfully located by one-time mea-

surement, with a temperature coefficient of 1.03 MHz/◦C and 0.59 ◦C accuracy. This is,

to the best of our knowledge, the first BOTDA that uses only one shot measurement and

successfully locates the BFS along the fibre. There is no polarisation scrambling, aver-

aging or frequency scanning in our scheme, indicating that the ultimate sensing speed

is only limited by the fibre length, which can be a promising approach in distributed

dynamic sensing. Results in this chapter have been published in [146–148]



Chapter 6

Complex-domain Brillouin fibre
sensing technique

6.1 Motivation

BOTDA has achieved remarkable progress in distributed optical fibre sensing due to its

high accurate distributed monitoring along the fibre [149]. A BOTDA system relies on the

measurement of the Brillouin frequency shift (BFS), which has a linear relationship with

the change of temperature or strain in the sensing fibre. Conventional BOTDA systems

acquire the BFSs through fitting the distributed Brillouin gain spectrum (BGS) result-

ing in high sensing accuracy for distances of several kilometres. However, if the fibre is

longer, the maximal power of injected pump and probe will be limited by stimulated Ra-

man scattering, modulation instability [150] and non-local effects, resulting in a low BGS

signal-to-noise-ratio (SNR) at the receiver. Therefore, averaging of many measurements

is necessitated to improve the SNR, restricting both the sensing speed and the measure-

ment precision.

In the past years, phase-based BOTDA system has become a promising alternative

approach, which uses the Brillouin phase spectrum (BPS) instead of the BGS to estimate

the Brillouin frequency shift [113, 139, 151–154]. Comparing with BGS method, fitting

through BPS can bring several advantages such as the imperviousness to non-local ef-

fects [139], a quasi-linear region for dynamic sensing [151], and improvement in BFS

estimation within a restricted frequency range [144]. Although most of the phase-based

BOTDA systems can measure both BGS and BPS simultaneously, the BFSs are usually

determined by BGS or BPS solely. For instance, in [139, 153, 154], BFS is determined by

79
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either the Brillouin amplitude spectra or the phase-shift spectra separately. Some rela-

tions between the BGS and BPS, such as the angle [151] or the ratio [113], have also been

explored for BFS estimation in dynamic sensing. Nevertheless, since the BGS and the

BPS are derived from the same complex Brillouin spectrum (CBS) function, it is intuitive

to consider that estimating the BFS with both BGS and BPS simultaneously can lead to

better performance, as predicted in [152]. However, to date, this kind of improvement

has not been quantitatively and experimentally investigated.

6.2 Method for Detecting the Complex Brillouin Spectrum

In a BOTDA system, when a continuous-wave (CW) probe ES = Es exp(2jπvst) meets the

counter-propagating pump pulse EP = Ep exp(2jπvpt), and frequency difference vs − vp

is near the BFS vB, stimulated Brillouin scattering (SBS) is induced. This is described by

the complex transfer function that

H(v, z) = exp[−h(v, z)], (6.1)

where h(v, z) is the complex Brillouin gain function written as [155]:

h(v, z) =
[

g0(z)ΓB

ΓB + 2j(v− vB(z))

]
(6.2)

where g0(z) is the local gain factor of position z, ΓB is the Brillouin linewidth, and h(v, z)

is the complex logarithmic gain, j :=
√
−1 is the imaginary unit. The minus sign in

H(v, z) indicates that it is a Brillouin loss process, which the power is transferred from

the CW probe to the pump pulse. Thus, h(v, z) can be expressed as h(v, z) = g(v, z) +

jϕ(v, z), where the real and the imaginary parts represent the BGS and the BPS respec-

tively as

Re[h(v, z)] = g(v, z) =
g0(z)Γ2

B
Γ2

B + 4(v− vB(z))2

Im[h(v, z)] = ϕ(v, z) = −2g0(z)ΓB(v− vB(z))
Γ2

B + 4(v− vB(z))2
(6.3)
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and satisfy the Kramers-Kronig relations [155]. A three-dimensional plot of the CBS,

along with its real and imaginary parts, is illustrated in Fig. 6.1.
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Figure 6.1: Complex Brillouin spectrum. The real and imaginary parts denote the corre-
sponding BGS and the BPS, respectively.

To detect the complex Brillouin spectrum, we generate a reference light ER that ER =

Er exp(2jπvrt) with the fixed frequency discrepancy ∆v = vs − vr > 2ΓB to the probe

light ES. If the probe light interacts solely with the pump, the detected beating signal of

the PD will be:

ID = 2αηErEs

{
Re
{

exp[−h(v, z) + 2jπ∆vt + j∆ϕ]
}
+ nD

}
(6.4)

where α is the channel transmittance, η is the PD responsivity, ∆ϕ is the relative phase

difference between probe and reference due to the chromatic dispersion and nD is the

received noise referred to 2αηErEs. In a practical BOTDA system this noise may come

from a variety of sources [142, 154]. For simplicity and without loss of generality, we as-

sume here that nD is dominated by an additive white Gaussian noise (AWGN) following

the distribution of N (0, σ2
D). The complex Brillouin spectrum h(v, z) is determined with

an IQ demodulation process by compensating the frequency offset (i.e. down-shifting

the signal around frequency ∆v to zero frequency by multiplying exp(−2jπ∆t)) and ap-

plying a digital low-pass filter with a 1/M bandwidth of the original detected signal



82 Complex-domain Brillouin fibre sensing technique

ID. The filtered signal is then down-sampled by a factor of M and is factored out of

2αηErEs exp(−j∆ϕ). The demodulated signal can be written as:

SD = exp[−h(v, z)] + nI + jnQ (6.5)

where nI and nQ are two independent and identically distributed (i.i.d.) Gaussian ran-

dom variables following N (0, σ2
h ), σ2

h = σ2
D/(2M). If the gain is small, i.e. |h(v, z)| � 1,

we have exp [1− h(v, z)] ≈ 1− h(v, z). Thus, the detected CBS contaminated by noise

can be obtained through:

ĥ(v, z) ≈ 1− SD = h(v, z) + nh (6.6)

where nh = nI + jnQ corresponding to the additive Gaussian noises of the real part and

the imaginary part separately. For a long sensing distance, the complex gain is usually

small to mitigate the non-local effect as well as other nonlinear distortion. Therefore, this

small-gain approximation would be satisfied in a long-range BOTDA system..

To measure the CBS for BFS estimation, the probe light is scanned with N frequencies

as vector v = [v1, v2, . . . , vN ]
T. The corresponding CBS of position z can be obtained as

vector:

h(z) = [ĥ(v1, z), ĥ(v2, z), . . . , ĥ(vN , z)]T (6.7)

which the real part g(z) = [gi(z)] = Re{h(z)} corresponds to the BGS vector obtained

in a gain-based BOTDA system, and the imaginary part φ(z) = [ϕi(z)] = Im{h(z)}

corresponds to the BPS vector obtained in a phase-based BOTDA system.

6.3 Theoretical analysis

6.3.1 BFS uncertainty estimated by BGS and BPS

The following step is to determine the BFS. To quantify the improvement of our pro-

posed approach, we start from the BFS estimation process of the conventional gain-based

BOTDA and phase-based BOTDA systems. Conventional BOTDA systems usually de-
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termine the BFS by fitting the BGS or BPS solely to either equation in Eq. (6.3). To get a

more accurate result, nonlinear least squares (NLS) regression is commonly utilised. This

method seeks an optimal real coefficient vector a = [g0, ΓB, vB]
T that minimises either the

gain cost function:

fg(a) = ‖g(v, z)− g(z)‖2 (6.8)

when BGS is used, or minimises the phase cost function:

fϕ(a) = ‖ϕ(v, z)−φ(z)‖2 (6.9)

when BPS is used, where ‖ · ‖ is the Euclidean norm of an N-dimensional vector.

Minimising the cost functions (6.8) and (6.9) can be generalised as an optimisation

problem [156] such that:

min
a

f (a) = min
a

N

∑
i=1

∣∣y(vi; a)− yi
∣∣2 (6.10)

where a = [a1, a2, a3]T(i.e.[g0, B, vB]
T) ∈ R3; y(v; a) and y = [yi]N×1 denote the fitting

function and measured data of BGS or BPS, depending on which cost function is used.

Assuming that the added random noise at each observation is normally distributed

and has the identical variance σ2
y , then the goodness of fit can be expressed as [157]

χ2(a) =
1
σ2

y

N

∑
i=1

∣∣y(vi; a)− yi
∣∣2 =

1
σ2

y
r(a)Tr(a) (6.11)

where χ2 is the chi-square distribution, r(a) = [rm(a)]N×1 = y(v; a)− y is the residual

vector. Note that though y(v; a) is a column vector that the k-th element is calculated

by y(vk; a) The result of such NLS regression is the coefficient vector a0 which minimises

χ2(a)[157]. Assuming that the fitting function y(v; a) is differentiable around a0. Stan-

dard references on statistics and data analysis give the well-known result that the vari-

ances of the coefficients are given by the co-variance matrix Q that [157]:

Q(a0) = [Qmn(a0)]3×3 = σ2
y C(a0)

−1 (6.12)
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where C is the curvature matrix (or called the Hessian matrix) which can be approxi-

mated via

C(a) = J(a)TJ(a) (6.13)

by ignoring higher order terms [156]. J(a) is the Jacobian matrix with elements defined

as

[J(a)]mn =
∂rm(a)

∂an
=

∂y(vm; a)
∂an

(6.14)

where m ∈ {1, . . . , N} and n ∈ {1, 2, 3}. The standard deviation of parameter a3 is exactly

the accuracy of the BFS estimation, i.e.:

σvB =
√

Q33(a0) (6.15)

If the BFS vB (a3) is determined by the BGS, according to Eq. (6.3), we have yi = gi,

σy = σg. The function y(v; a) will be

y(vi; a) = g(vi; a) =
a1a2

a2
2 + 4(vi − a3)2

=
a1

1 + 4t2
i

(6.16)

where ti = (vi − a3)/a2. The matrix C can be computed through Eqs. (6.13) and (6.14)

with the elements:

c11 =
N

∑
i=1

1
(1 + 4t2

i )
2

c12 =
N

∑
i=1

8γt2
i

(1 + 4t2
i )

3
= c21

c13 =
N

∑
i=1

8γti

(1 + 4t2
i )

3
= c31 (6.17)

c22 =
N

∑
i=1

64γ2t4
i

(1 + 4t2
i )

4

c23 =
N

∑
i=1

64γ2t3
i

(1 + 4t2
i )

4
= c32

c33 =
N

∑
i=1

64γ2t2
i

(1 + 4t2
i )

4
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where γ = a1/a2.

Since the calculation of co-variance matrix Q in Eq. (6.12) requires the inversion of

the curvature matrix C, the theoretical expression for σvB could be quite cumbersome.

Nevertheless, if the scanned frequencies v are uniformly and symmetrically distributed

around the central value a3, which is the simplest and in fact the the most common case

as assumed in [102, 144, 157], the expressions can be significantly simplified. Then we

have c13 = c31 = c23 = c32 = 0 and the inverse of matrix C can be explicitly written as

C−1 =


c22

c11c22−c2
12
− c12

c11c22−c2
12

0

− c12
c11c22−c2

12

c11
c11c22−c2

12
0

0 0 1
c33

 (6.18)

and the BFS uncertainty becomes

σ
(g)
vB =

√
Q33(a0) = σg

√
δt

γ2 S−1
g (6.19)

where the superscript ‘(g)’ of σvB denotes that it is calculated with the BGS function, δt is

defined as δv/a2, and Sg is a sum of series which is given by

Sg =
N

∑
i=1

64t2
i δt

(1 + 4t2
i )

4
(6.20)

Similarly, if the BFS is estimated with the BPS, we have yi = ϕi, σy = σϕ. The function

y(v; a) becomes

y(vi; a) = ϕ(vi; a) =
2a1a2(vi − a3)

a2
2 + 4(vi − a3)2

=
2γti

1 + 4t2
i

(6.21)

Following the same calculation steps as the BGS case, the elements of C when BPS is

used will be

c11 =
N

∑
i=1

4t2
i

(1 + 4t2
i )

2

c12 =
N

∑
i=1

−4γ(1− 4t2
i )t

2
i

(1 + 4t2
i )

3
= c21
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c13 =
N

∑
i=1

−4γ(1− 4t2
i )ti

(1 + 4t2
i )

3
= c31 (6.22)

c22 =
N

∑
i=1

4γ2(1− 4t2
i )

2t2
i

(1 + 4t2
i )

4

c23 =
N

∑
i=1

4γ2(1− 4t2
i )

2ti

(1 + 4t2
i )

4
= c32

c33 =
N

∑
i=1

4γ2(1− 4t2
i )

2

(1 + 4t2
i )

4

When the scanned frequencies are uniformly and symmetrically distributed around

the central value, as assumed in the BGS case, the inverse of matrix C still has the form

of Eq. (6.18). Therefore the BFS uncertainty fit by BPS is written as

σ
(ϕ)
vB =

√
Q33(a0) = σϕ

√
δt

γ2 S−1
ϕ (6.23)

where the superscript ‘(ϕ)’ indicates that it is calculated by the BPS, and Sϕ is a sum of

series given by

Sϕ =
N

∑
i=1

4(1− 4t2
i )

2δt

(1 + 4t2
i )

4
(6.24)

No matter the BGS or BPS is used, for a given symmetric data points the BFS un-

certainty can be directly given via Eqs. (6.19) or (6.23), along with the sums Sg or Sϕ .

Generally speaking, the above sums do not have closed-form expressions. But when N is

sufficient large and δt is sufficient small, they could be written in terms of integrals [157].

Consider that the scanned N data points occupy a fixed range L, i.e. L = Nδt = Nδv/a2.

If L > 4 (the reason why 4 is chosen will be discussed below), then we have

lim
N→∞

Sg =
∫ ∞

−∞

64t2

(1 + 4t2)4 dt =
π

2
(6.25)

lim
N→∞

Sϕ =
∫ ∞

−∞

4(1− 4t2)2

(1 + 4t2)4 dt =
π

2
(6.26)

The reason we choose 4 as the threshold for L is that above integration from −2 to +2

will cover sufficient range of their limits (i.e. 99.83% for Sg and 98.93% for Sϕ). Therefore
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the asymptotic closed-form expressions of σ
(g)
vB and σ

(ϕ)
vB are given by

σ̃
(g)
vB = σg

√
2

πa2
1

a2
2δt =

σg

g0

√
2
π

δvΓB (6.27)

and

σ̃
(ϕ)
vB = σϕ

√
2

πa2
1

a2
2δt =

σϕ

g0

√
2
π

δvΓB, (6.28)

indicating that if the BGS and BPS have the same noise variance, i.e. σg = σϕ, the BFS es-

timated by the gain spectrum or the phase spectrum will have similar uncertainty, which

is coincident with the conclusion in [144]. It is also worth noting that our expressions

have almost identical form with [136] except the scalar coefficient. The coefficient
√

2/π

in our equations is smaller than that of
√

3/4 in [136], since we adopt the nonlinear model

instead of the quadratic model in that reference.

6.3.2 BFS uncertainty estimated on complex domain

In our complex BOTDA approach, we consider h(v, z) = g(v, z) + jϕ(v, z) as a complex

function instead of partitioning it into phase and gain separately. Then the observed data

for h(v, z) will be h(z) = g(z) + jφ(z). To fit this complex set of data, we adopt the com-

plex nonlinear least squares (CNLS) regression method instead of the NLS method used

with BGS/BPS. The CNLS regression was developed several decades ago as an extension

of the NLS method [158], and has been applied extensively for complex impedance spec-

troscopy [159], [160]. Comparing with NLS, the CNLS regression provides an improved

performance since a complex-valued fit model is used for simultaneous regression to

both the real and imaginary parts of the measured spectrum [161]. In this case, the cost

function can be written as

fh(a) = ‖h(v, z)− h(z)‖2 (6.29)
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and minimising this in the complex domain. Minimising the cost function (6.29) can be

generalised as an optimisation problem [156] such that

min
a

f (a) = min
a

N

∑
i=1

∣∣y(vi; a)− yi
∣∣2 (6.30)

where y(v; a) and y = [yi]N×1 ∈ CN denote the ideal complex function and measured

complex data of CBS. Assigning Re[y(vi; a)] = YRe
i , Im[y(vi; a)] = YIm

i , Re[yi] = yRe
i and

Im[yi] = yIm
i , then Eq. (6.30) can be rewritten as

min
a

N

∑
i=1

∣∣∣(YRe
i − yRe

i
)
+ j
(
YIm

i − yIm
i
)∣∣∣2 (6.31)

= min
a

N

∑
i=1

{(
YRe

i − yRe
i
)2

+
(
YIm

i − yIm
i
)2
}

which is equivalent to

min
a
‖Ȳ− ȳ‖2 = min

a

2N

∑
i=1

∣∣Ȳi − ȳi
∣∣2 (6.32)

where Ȳ, ȳ ∈ R2N are extended vectors defined as

Ȳ = [Ȳi]2N×1 = [YRe
1 , . . . , YRe

N , YIm
1 , . . . , YIm

N ]T

ȳ = [ȳi]2N×1 = [yRe
1 , . . . , yRe

N , yIm
1 , . . . , yIm

N ]T (6.33)

Assuming the real and imaginary parts of the added complex random Gaussian noise

have the same variance σ2
y , then the goodness of fit can be expressed as:

χ2(a) =
1
σ2

y

2N

∑
i=1

∣∣Ȳi − ȳi
∣∣2 =

1
σ2

y
r̄(a)T r̄(a) (6.34)

where the residual vector becomes r̄(a) = [r̄m(a)]2N×1 = Ȳ− ȳ. As we discussed above,

the co-variance matrix Q can be computed by inverting the curvature matrix C, which is

calculated through the Jacobian matrix. In this case, the Jacobian matrix J̄ becomes

[J̄(a)]mn =
∂r̄m(a)

∂an
=

∂Ȳm

∂an
(6.35)
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where m ∈ {1, . . . , 2N} and n ∈ {1, 2, 3}.

When CBS is used for BFS estimation, we substitute h(vi; a) and hi into y(vi; a) and

yi, respectively. σy is assigned to be σh as described in Section 6.2. Then, straightforward

calculation gives the expression of elements of C as

c11 =
N

∑
i=1

1
1 + 4t2

i

c12 =
N

∑
i=1

4γt2
i

(1 + 4t2
i )

2
= c21

c13 =
N

∑
i=1

4γti

(1 + 4t2
i )

2
= c31 (6.36)

c22 =
N

∑
i=1

4γ2t2
i

(1 + 4t2
i )

2

c23 =
N

∑
i=1

4γ2ti

(1 + 4t2
i )

2
= c32

c33 =
N

∑
i=1

4γ2

(1 + 4t2
i )

2

Under the symmetric assumption as in section 6.3.1, the uncertainty of BFS determined

by the CBS can be written as

σ
(h)
vB =

√
Q33(a0) = σh

√
δt

γ2 S−1
h (6.37)

where the superscript ‘(h)’ indicates that it is calculated with BGS function, and sum Sh

is expressed as

Sh =
N

∑
i=1

4δt

(1 + 4t2
i )

2
(6.38)

The asymptotic closed-form can be obtained through the similar steps in section 6.3.1.

Considering the scanned N data points within a fixed range L = Nδt > 4, when N → ∞,

δt = L/N → 0. Therefore we have

lim
N→∞

Sh =
∫ ∞

−∞

4
(1 + 4t2)2 dt = π (6.39)



90 Complex-domain Brillouin fibre sensing technique

Thus, the asymptotic BFS uncertainty by CBS will be

σ̃
(h)
vB = σh

√
1

πa2
1

a2
2δt =

σh

g0

√
1
π

δvΓB (6.40)

It is obvious that Sh = Sg + Sϕ, indicating that if Sg ≈ Sh and σg(z) = σϕ(z) =

σh(z), then σ
(h)
vB (z) .

= σ
(g)
vB (z)/

√
2 .
= σ

(ϕ)
vB (z)/

√
2, indicating the BFS uncertainty fit by

CBS is about
√

2 times smaller than that obtained by BGS or BPS solely. Moreover, the

asymptotic expressions (6.27) (6.28) and (6.40) also reveal this kind of improvement.

6.4 Monte-Carlo Simulation

To validate the theoretical predictions, we perform the Monte-Carlo simulation by re-

peatedly constructing a ideal CBS vector h(v; a) with complex random Gaussian white

noise nh = [nh(vi)]N×1, resulting h = h(v; a) + nh. The scanned frequency v of CBS is

set from 10890 MHz to 11010 MHz, with a frequency interval δv of 3 MHz. The Brillouin

linewidth ΓB is assigned to 35 MHz, and the BFS vB is set to 10950 MHz. The added noise

σh is fixed at 0.005, while the local gain factor g0 is controlled by the value of SNR. In

different literature the SNR may have various definitions [102,154,162,163]. In this paper

we define the SNR as

SNR = 10 log10

[
g2

0/σ2
h
]
(dB) (6.41)

which is identical to the definition in [154, 163] but in the decibel unit. The SNR is grad-

ually increased from 9 dB to 23 dB with 1 dB step size, corresponding to a g0 tuned from

1.41% to 7.06%. Notice that in [102,144] the SNR is defined as the ratio between the max-

imal gain g0 and the noise standard deviation, which can be treated as the amplitude

SNRa. Thus our simulated SNR range from 9 dB to 23 dB equals to the SNRa range from

2.8 to 14.1, which is in accord with the analysis range in [144].

The BFS is then estimated by fitting the vector h with the CBS function h(v; a) through

the CNLS regression. To explore the improvement of our method, we also perform NLS

regression to estimate BFS by fitting the real part (i.e. the BGS) and the imaginary part

(i.e. the BPS) of h with the ideal BGS and BPS functions in Eq. (6.3), respectively. The
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Levernberg-Marquardt algorithm is employed to solve both the NLS and CNLS problem.

The standard deviation of estimated BFS error, which reflects the BFS uncertainty and

sensing accuracy, is then calculated by 104 Monte-Carlo simulations of each SNR value,

while the termination tolerance of nonlinear regression is set to 10−12.
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Figure 6.2: Simulated and theoretical standard deviations of the BFS values versus SNR
based on BGS, BPS and CBS, respectively. Simulated points are from the statics
of 104 Monte-Carlo simulation. Theoretical results are calculated through Eqs. (6.19),
(6.23),(6.20),(6.24),(6.37) and (6.38).

The simulation results are depicted in Fig. 6.2. The markers denote the simulated re-

sults, and the solid lines are the theoretical results calculated through Eqs. (6.19), (6.23),

(6.20), (6.24), (6.37) and (6.38). We also calculate the BFS uncertainty with the asymp-

totic expressions in Eqs. (6.27), (6.28), (6.40) and find that they are almost identical with

the solid curves. The results show a remarkable agreement between the theoretical pre-

dictions and simulated results. The BFS uncertainty determined by BGS and BPS has

the same performance, while BFS uncertainty fit by the CBS is approximately
√

2 times

smaller than the estimated by either BGS or BPS solely. Meanwhile, for the same accuracy

level, estimation by CBS can reduce the SNR requirement by 3 dB, as shown in Fig. 6.2.

This result validate the fact that the BFS estimation in the complex domain will result in
√

2 times uncertainty reduction or 3-dB SNR improvement, compared to estimates based

solely on either BGS or BPS.

Fig. 6.3 shows the simulated and theoretical BFS uncertainty with different fitting



92 Complex-domain Brillouin fibre sensing technique

1 2 3 4 5 6 7 8 9 10

Fitting bandwidth /
B

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

B
F

S
 U

n
c
e

rt
a
in

ty
 (

M
H

z
)

BGS Theo. 3MHz

BPS Theo. 3MHz

CBS Theo. 3MHz

BGS Theo. 6MHz

BPS Theo. 6MHz

CBS Theo. 6MHz

BGS Simu. 3MHz

BPS Simu. 3MHz

CBS Simu. 3MHz

BGS Simu 6MHz

BPS Simu 6MHz

CBS Simu 6MHz

Figure 6.3: Simulated and theoretical standard deviation of BFS with different scanned
bandwidth and frequency interval. Simu.: simulated results; Theo.: theoretical results.
The bandwidth has been normalised to the Brillouin linewidth. SNR is set to 20 dB.
Simulated points are from the statistics of 104 Monte-Carlo simulations.

bandwidth and frequency steps. The scanned bandwidth is normalised to the Brillouin

linewidth. We find that when the normalised bandwidth is very narrow, such as from

0.5 to 1, BFS uncertainty by the BGS is much larger than that by the BPS, which is con-

sistent with [144]. When the normalised bandwidth is larger than 2, the BFS estimated

by BGS and BPS has the similar performance (BGS is slightly better than BPS), both of

which are approximately
√

2 times of the result with CBS. With a larger frequency step

(6 MHz), BFS uncertainty is almost
√

2 times of the result with the original case (3 MHz),

which is consistent with our theory. From the practical point of view, a successful BOTDA

system should be able to detect the potential temperature or strain in the FUT, so the nor-

malised scanned bandwidth range is usually larger than
√

2. Therefore, the results indi-

cate that the
√

2 improvement of our complex method is valid when a practical scanned

bandwidth is considered, and the simulated results match very well with our theoreti-

cal predictions. Even at the special condition that the scanned bandwidth is less than 1,

our complex method still has improvement comparing with the BGS or BPS methods.

Another interesting result is that the BFS uncertainty with normalised bandwidth larger

than 4 converges to a constant value,indicating that fitting with 4ΓB is sufficient for a

stable sensing accuracy.
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Figure 6.4: Experimental setup of the complex-domain BOTDA.

To validate this significant improvement, we conduct a distributed temperature sens-

ing experiment with 40-km standard single-mode fibre (SSMF). Fig. 6.4 is the experimen-

tal setup of our complex BOTDA scheme. An external cavity laser (ECL) centred at 1545

nm with a 100 kHz linewidth is divided into two parts as the probe and pump by a 3-

dB optical coupler (OC). The probe wave is firstly double-sideband modulated by a 200

MHz sine wave with a 20 dB suppressed carrier. Then it is up-shifted by a microwave

synthesizer (MSS) sweeping from 10924 MHz to 11044 MHz with a 3 MHz interval. A

commercial dense wavelength division multiplexer (DWDM) with a sharp falling slope

(30 dB over 10 GHz) is used as the optical bandpass filter (OBPF) to eliminate undesired

light waves. The probe light is then sent into the fibre through an optical isolator (ISO).

The pump pulse is modulated by an optical switch (OSW) with a 4.2 kHz repetition

rate. The pulse width is 100 ns, corresponding to a spatial resolution of 10 meters. To

mitigate the polarisation fading along the fibre, a polarisation scrambler (PS) is used to

randomly scramble the state of polarisation (SOP) of the pump. A 40-km SSMF spool is

used as the fibre under test (FUT) with the last 20 m of placed in a temperature controlled

water bath. To avoid pump depletion and the non-local effect, the average power of
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probe and pump is set to −8 dBm and −6 dBm, respectively. The received signal is

amplified by a Erbium-doped fibre amplifier (EDFA), then converted into electrical signal

by a photo-detector (PD), and finally collected by a digital storage oscilloscope (DSO)

sampling at 1.25 GSa/s. Since the bandwidth of PD is much greater than the sampling

rate of DSO, an 575MHz analogue low-pass filter (LPF) is applied as an anti-aliasing filter

before analogue-to-digital conversion. The received data is first mixed with the double

frequency of a 200 MHz sine wave and then filtered out by a 125 MHz bandwidth digital

LPF, leading to an M factor for the IQ demodulation procedure equals to 10. The filtered

data is finally for CBS extraction, as well as the BFS estimation.

6.6 Experimental results

Figure 6.5: The three-dimensional views of the real part of the distributed complex Bril-
louin spectrum, i.e. the distributed Brillouin gain spectrum.

Figs. 6.5 and 6.6 show the three-dimensional views of the distributed Brillouin gain

and phase in a 40-km FUT obtained from 50-time averaging. The spectrograms may

look noisy because we intentionally acquire them through limited times averaging per

scanned each frequency, in order to provide an obvious demonstration of our improve-

ment. It is well-known that the noise variance is inversely proportional to Nav, where Nav

is the number of traces taken into the averaging process[102,164]. So the SNR will be im-

proved if more averaging times are used. The maximal local gain factor is approximately
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Figure 6.6: The three-dimensional views of the imaginary part of the distributed complex
Brillouin spectrum, i.e. the distributed Brillouin phase spectrum.

0.1557, while the minimal local gain factor is about 0.0257%. The standard deviation of

noise is 0.0056, indicating that the SNR decreases from 28.88 dB to 13.22 dB along the

fibre.

We then characterise the statistics of the complex noise added on the CBS. Fig. 6.7(a)

is the scatter diagram of the noise with 105 samples. The mean value of the noise equals

to zero and the samples scatter as a thermal state. Fig. 6.7(b) shows the probability den-

sity distribution of the real and imaginary parts of the noise. Both of them have almost

identical distribution, which fits well with the ideal Gaussian distribution (green line)

in Fig. 6.7(b). The correlation coefficient between the real and imaginary parts is 0.003,

confirming our assumption that they are independently and identically distributed. The

variance of the real/imaginary component is 0.0056. According to the measured dis-

tributed spectrum, the maximal local gain factor is 0.1557, while the minimal local gain

factor is 0.0257. Thus, the SNR decreases from 28.88 dB to 13.22 dB along the fibre.

We compare the estimates of the distributed BFS based on the nonlinear least squares

fitting methods of the BGS, the BPS and the CBS. Fig. 6.8 depicts the BFS results obtained

by these three approaches. The BFS values estimated by BGS and BPS have a similar

amplitude fluctuation, while the BFS fluctuation by CBS in the complex-domain is no-

ticeably smaller. Fig. 6.9 represents the standard deviation of BFS (i.e. σvB ) by calculating
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Figure 6.7: Statistical characterisation of the complex noise added on the CBS. (a) The
scatter diagram of the real and imaginary components of the complex noise. (b) The
probability density distribution of the real (red bars) and imaginary (blue bars) compo-
nents, respectively. The thick green curve is the theoretical Gaussian distribution
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Figure 6.8: The estimated BFS by separately using the BGS, the BPS and the CBS.
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Figure 6.9: The standard deviation of 50 consecutive BFS by using the BGS, the BPS and
the CBS, separately.

Figure 6.10: The relationship between CBS-based BFS uncertainty and BGS/BPS-based
BFS uncertainty with different scanned bandwidth and frequency step.
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a set of 50 consecutive BFSs. The standard deviation of these BFSs estimated by the BGS

and BPS have similar performance, while the standard deviation of BFS from the CBS is

considerably reduced.

To quantify the improvement, the relationships between the CBS-based BFS uncer-

tainty σ
(h)
vB and the BGS/BPS-based BFS uncertainty (σ(g)

vB or σ
(ϕ)
vB ) divided by

√
2 are

depicted in Fig. 6.10(a) and (b), respectively. The BFS uncertainty points are scattered

near the expected unity slopes (red solid lines), verifying the agreement between our the-

oretical prediction and the experimental results. Fig. 6.10(c) and (d) are the cases where

the BFS is fit with half of the scanned bandwidth.Fig. 6.10(e) and (f) are the cases where

the BFS is fit with double of the frequency step. We can see that the
√

2 improvement is

still valid in these scenarios, as we predicted in the theory and simulation. Fig. 6.10(g)

and (h) are the special condition under which a very narrow bandwidth (i.e., 21 MHz or

0.6 normalised bandwidth) is scanned. As we predicted, σ
(g)
vB rises above the

√
2 times

of σ
(h)
vB while σ

(ϕ)
vB falls below the

√
2 times of σ

(h)
vB , which is consistent with the results

in [144]. In Fig 6.10(h), the solid green line indicates that the σ
(h)
vB equals to σ

(ϕ)
vB . We

can find that most of the data points are distributed between the red and the green lines,

which means when the fitting bandwidth is narrow, the improvement of our approach

will be smaller than
√

2. Meanwhile, most of the data points are still above the green solid

line, indicating that our complex method still has improvement even with such narrow

bandwidth.

To evaluate the practical sensing performance of our proposed technique, the tem-

perature of water bath containing a 20 m fibre segment at the far end of the 40 km length

is increased from 25 ◦C to 65 ◦C with 10 ◦C steps. The probe frequency is scanned from

10890 MHz to 11040 MHz with an interval of 3 MHz. To get more accurate results, the

data traces are averaged by 100 times per scanned frequency. Since the spatial resolution

is 10 meters and there is no applied strain at the far-end of FUT, it is reasonable to assume

that the BFS within this heated 20 m segment fibre is uniform. We then estimate the BFS

of this segment by repeating measurement with BGS, BPS and CBS, respectively. Fig.

6.11 shows the mean BFS values in the 20-m segment at different temperatures. It can

be found that the BFS data obtained from BGS, BPS and CBS are well superposed . Lin-
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100 Complex-domain Brillouin fibre sensing technique

ear regression is then conducted on these BFS data points. The temperature coefficients

calculated by BGS, BPS and CBS are 1.050 MHz/◦C, 1.056 MHz/◦C and 1.051 MHz/◦C,

respectively. The coefficients of determination (R2) of these three methods are all above

99.8%, indicating that a promising linear relationship is achieved for distributed temper-

ature sensing. This result confirm the fact that the measured BFS can really retrieve the

real temperature change amount. We also compute the standard deviation of the BFS

at various temperatures, as shown in Fig. 6.12. Comparing with the estimates from the

BGS and BPS, the results from the CBS have a obviously lower BFS uncertainty, meaning

that our complex BOTDA is more accurate and reliable. The
√

2 times of the BFS uncer-

tainty by CBS versus temperature are plotted in Fig. 6.12 as the horizontal purple lines.

The accordance between the purple lines and the BFS uncertainty by both BGS and BPS

confirms the expected improvement predicted by our theory and simulations.

6.7 Discussiosn

It is worth noting that this technique can be applied to other existing phase-based BOTDA

[113, 139, 151–154] with few modifications. Since the Brillouin gain information can be

obtained when extracting the Brillouin phase, the sensing accuracy of all phase-based

BOTDA systems can be enhanced by constructing the CBS and applying the CNLS re-

gression. Therefore, this feature reveals a new advantage of the phase-based BOTDA

configurations over conventional ones. Meanwhile, benefiting from the mitigation of BFS

uncertainty, our complex BOTDA needs fewer measurements than a conventional system

under the same SNR requirement. This indicates that the complex BOTDA approach can

also reduce the measurement time as well as improve the sensing efficiency.

6.8 Chapter conclusion

In this chapter, we have proposed and demonstrated a novel complex BOTDA approach,

which can not only detect the complex Brillouin spectrum, but also use it directly for

BFS estimation in the complex domain. We have derived the theoretical equations and
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asymptotic closed-form expressions for the BFS uncertainty estimated from CBS, BGS

and BPS by nonlinear least squares regression. Both theoretical equations and Monte-

Carlo simulation indicate that our complex BOTDA approach can reduce the sensing

uncertainty by a factor of
√

2 or the required SNR by 3 dB. We have conducted a dis-

tributed temperature sensing experiment in a 40-km SSMF. Experimental results validate

the considerable improvement of the sensing accuracy for a long fibre range, compar-

ing with either the gain-based or the phase-based BOTDA approaches. Results in this

chapter have been published in [137, 165].

.





Chapter 7

Conclusions

7.1 The summary of this work

7.1.1 Low-DMD few-mode fibre for optical transmission

On the topic of reducing DMD for high-performance optical transmission, we have pro-

posed a distributed grating-assisted few-mode fibre (DG-FMF) to reduce the mean DMD.

By introducing asymmetric long-period fibre gratings with random exposure directions

in a step-index few-mode fibre during fibre manufacture process, the strong random

mode coupling is generated along the entire length of the fibre. Simulation results show

that mean DMD in the DG-FMF can be reduced to less than 12 ns at a distance of 100 km

with a period of 514 µm and grating strength of 1× 10−6. The DMD reduction in our

DG-FMF is guaranteed within the entire C-band, and in a wide temperature range from

−20◦C to +60◦C.

7.1.2 Multi-parameter sensing with few-mode fibres

On the topic of enabling the multi-parameter sensing with few-mode fibres, we have

proposed a novel multi-parameter sensing technique based on a Brillouin optical time

domain reflectometry in the elliptical-core few-mode fibre, using both the higher order

optical and the higher-order acoustic modes. Multiple Brillouin peaks have been ob-

served for the backscattering of both LP01 mode and LP11 mode. We characterise the

temperature and strain coefficients for various optical-acoustic mode pairs. By selecting

the proper combination of modes pairs, the performance of multi-parameter sensing can

103
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be optimised. Distributed sensing of temperature and strain is demonstrated, with the

error amplification factors of 3.66 ◦C and 76.6 µε for temperature and strain, respectively.

7.1.3 Ultra-fast Brillouin fibre sensing technology

On the topic of boosting the measurement time in Brillouin fibre sensors, we have demon-

strated a novel single-shot distributed Brillouin optical time domain analyser. In our

method, dual-polarisation probe with orthogonal frequency-division multiplexing mod-

ulation is used to acquire the distributed Brillouin gain spectra, and coherent detection

is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature

sensing is demonstrated over a 1.08 km standard single-mode fibre with 20.48 m spatial

resolution and 0.59 ◦C temperature accuracy. Neither frequency scanning, nor polari-

sation scrambling, nor averaging is required in our scheme. All the data are obtained

through only one-shot measurement, indicating that the sensing speed is only limited by

the length of fibre.

7.1.4 Complex domain Brillouin Fibre sensors

On the topic of improving the sensing accuracy, we have demonstrated a novel complex

Brillouin optical time-domain analysis (BOTDA) approach for distributed fibre sensing

that detects the complex Brillouin spectrum. Unlike other approaches, we utilise the com-

plex nonlinear least-square regression technique to determine the Brillouin frequency

shift (BFS) directly in the complex domain. The reduction of BFS uncertainty with our ap-

proach is shown through theoretical analysis and is validated by both simulations and ex-

periments. Compared with either the gain-based or the phase-based BOTDA approaches,

our complex BOTDA can improve the sensing accuracy by a factor of
√

2, which is equiv-

alent to a 3 dB improvement in the power signal-to-noise ratio. Distributed temperature

sensing is demonstrated over 40 km standard single-mode fibre. The experimental re-

sults agree well with the theoretical predictions of BFS uncertainty that confirms this

considerable improvement.
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7.2 Future work and perspectives

Spatial-division multiplexing could potentially bring about a bright future for both opti-

cal transmission and optical sensing. For the high-performance optical transmission with

few-mode fibres, controlling the modal dispersion is still a challenging topic. Though we

have proposed a method to reduce the DMD with distributed gratings, the fibre profile

and transmission loss can be further optimised. While our improvement has been con-

firmed by the simulation, the fabrication is still waiting to be finalised in the future. In

addition, the perspective of SDM will also depend on the high-performance and cost-

effective components, such as low-loss low-DMD low-crosstalk few-mode fibres, high

extinction ratio mode multiplexers, equalised high-gain few-mode amplifiers, fast few-

mode optical switch and reconfigurable optical add-drop multiplexers (ROADMs). With

the development of these key components, SDM technology could be more mature, and

the overall system cost could be significantly reduced. Therefore the SDM-based systems

could be deployed in the future.

For the optical fibre sensing area, few-mode fibres have shown much improvement,

including higher power threshold, better sensing accuracy and more measurable param-

eters. Even so, the few-mode fibre-based DOFS is still in its early stage. A lot of phe-

nomena and applications are to be further explored. Meanwhile, the influence of other

parameters, such as the modal crosstalk, the modal dependent loss and mode control

needs to be thoroughly investigated. So the few-mode fibre is a fertile ground for many

interest research topics.

For the distributed fibre sensing in single-mode fibre, boosting the sensing time, ex-

tending the sensing distance and improving the sensing accuracy are always the main

challenges. In this thesis we have proposed the ultra-fast and complex-domain tech-

niques for BOTDA. Nevertheless, these techniques can be further optimised and devel-

oped, by reducing the complexity and improving the performance. Though these meth-

ods are developed for single-mode fibre sensors, they can be applied in the few-mode

fibre sensors as well. With the recent research fever on artificial intelligence, the interdis-

ciplinary of the machine learning and optical fibre sensing could be the next hot topic,

which will make the optical fibre sensors more intelligent and autonomous in the future.





Appendix A

Acronyms

AOM Acoustic-optical modulator

ASE Amplified spontaneous emission

ASIC Application-specific integrated circuit

AWG Arbitrary waveform generator

BFS Brillouin frequency shift

BOTDA Brillouin optical time-domain analysis

BOTDR Brillouin optical time-domain reflectometry

BS Beam splitter

CW Continuous wave

DMD Differential mode delay

DG-FMF Distributed-grating few-mode fibre

DSB Double sideband

DSO Digital storage oscilloscope

DSP Digital signal processing

DRS Distributed Raman amplifier

ECL External cavity laser

EC-FMF Elliptical-core few-mode fibre

EOM Electro-optic modulator

FM Few-mode

FMF Few-mode fibre

FS Free-space

FSML Free-space mode launcher
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LO Local oscillator

LOC Lobe orientation controller

LP Linearly polarised

LPF Low-pass filter

LPG Long period grating

MIMO Multiple-input multiple-output

MDMUX Mode demultiplexer

MMF Multimode fibre

MMUX Mode multiplexer

OBPF Optical bandpass filter

OC Optical coupler

OFDM Orthogonal frequency division multiplexing

OOK On-off keying

PAPR Peak-to-average power ratio

PC Polarisation controller

PD Photodetector

PM Polarisation-maintaining

QAM Quadrature amplitude modulation

QPSK Quadrature phase shift keying

RF Radio frequency

RI Refractive index

SBS Stimulated Brillouin scattering

SDM Spatial division multiplexing

SMF Single-mode fibre

SpBS Spontaneous Brillouin scattering

SpRS Spontaneous Raman scattering

SSB Single sideband

SRS Spontaneous Raman scattering

TMF Two-mode fibre
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B. Ercan, R. P. Scott, S. J. B. Yoo, L. Grüner-Nielsen, Y. Sun, and R. J. Lingle, “30×30

MIMO Transmission over 15 Spatial Modes,” in Optical Fiber Communication Con-

ference Post Deadline Papers, p. Th5C.1 (Optical Society of America, 2015).

[53] Y. Chen, A. Lobato, Y. Jung, H. Chen, V. A. Sleiffer, M. Kuschnerov, N. K. Fontaine,

R. Ryf, D. J. Richardson, B. Lankl, and N. Hanik, “41.6 Tbit/s C-band SDM OFDM

transmission through 12 spatial and polarization modes over 74.17 km few mode

fiber,” Journal of Lightwave Technology 33(7), 1440–1444 (2015).

[54] E. Ip, G. Milione, M.-J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto,
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[136] M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Bril-

louin distributed optical fiber sensors,” Optics Express 21(25), 31,347–31,366 (2013).

[137] J. Fang, M. Sun, D. Che, M. Myers, H. Bao, C. Prohasky, and W. Shieh, “Complex

Brillouin Optical Time-Domain Analysis,” Journal of Lightwave Technology 36(10),

1840–1850 (2018).

[138] J. Fang, G. Milione, J. Stone, G. Peng, M.-J. Li, E. Ip, Y. Li, Y.-K. Huang, P. N. Ji,

M.-F. Huang, S. Murakami, W. Shieh, and T. Wang, “Distributed Temperature and



126 BIBLIOGRAPHY

Strain Sensing Using Brillouin Optical Time-Domain Reflectometry Over a Few-

Mode Elliptical-Core Optical Fiber,” in 26th International Conference on Optical Fiber

Sensors, p. TuD1 (Optical Society of America, 2018).

[139] J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-

local effects by using a phase-modulated probe wave and RF demodulation,” Op-

tics Express 21(14), 17,186–17,194 (2013).

[140] W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Op-

tics Express 16(2), 841–859 (2008).

[141] W. Shieh and I. Djordjevic, OFDM for optical communications (Academic Press, 2009).

[142] J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin opti-
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