
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2016

Extrinsic Effects on Heat and Electron Transport In
Two-Dimensional Van-Der Waals Materials- A
Boltzmann Transport Study
Arnab K. Majee
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the Electrical and Computer Engineering Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Majee, Arnab K., "Extrinsic Effects on Heat and Electron Transport In Two-Dimensional Van-Der Waals Materials- A Boltzmann
Transport Study" (2016). Masters Theses. 431.
https://scholarworks.umass.edu/masters_theses_2/431

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/431?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


EXTRINSIC EFFECTS ON HEAT AND ELECTRON TRANSPORT
IN TWO-DIMENSIONAL VAN-DER WAALS MATERIALS —A

BOLTZMANN TRANSPORT STUDY

A Thesis Presented

by

ARNAB KUMAR MAJEE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2016

Electrical and Computer Engineering



© Copyright by Arnab Kumar Majee 2016

All Rights Reserved



EXTRINSIC EFFECTS ON HEAT AND ELECTRON TRANSPORT
IN TWO-DIMENSIONAL VAN-DER WAALS MATERIALS —A

BOLTZMANN TRANSPORT STUDY

A Thesis Presented

by

ARNAB KUMAR MAJEE

Approved as to style and content by:

Zlatan Aksamija, Chair

Neal Anderson, Member

Eric Polizzi, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering



DEDICATION

To my family members



ACKNOWLEDGMENTS

I would, forever, be grateful to my advisor, Professor Zlatan Aksamija, for his thought-

ful, patient guidance and support. Special thanks to Professor Eric Polizzi and Professor

Neal Anderson, for kindly serving as my thesis committee and providing valuable inputs

that improved the quality of this study. I, sincerely, thank Cameron J. Foss for calculating

the electronic bandstructures for graphene and MoS2.

I am also thankful to my parents and friends for their constant support and motivation.

v



ABSTRACT

EXTRINSIC EFFECTS ON HEAT AND ELECTRON TRANSPORT
IN TWO-DIMENSIONAL VAN-DER WAALS MATERIALS —A

BOLTZMANN TRANSPORT STUDY

SEPTEMBER 2016

ARNAB KUMAR MAJEE

B.Tech., WEST BENGAL UNIVERSITY OF TECHNOLOGY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Zlatan Aksamija

Two-dimensional van der Waals materials have been a subject of intense research in-

terest in recent years. High thermal conductivity of graphene can be utilized for many ther-

mal management applications. In spite of possessing very high electron mobility, graphene

can’t be used as transistors because of the absence of band gap; however transition metal

dichalcogenides are another class of two-dimensional van der Waals materials with in-

herent band gap and show a great promise for future nanoelectronic applications. But in

order to tailor these properties for commercial applications, we should develop a better

understanding of the effect of extrinsic factors like size, rough edges, grain boundaries,

mass-impurities, interaction with substrate etc. on thermal and electrical transport.

Most materials exhibit a smooth ballistic-to-diffusive type of thermal transport in which

when the sample size is small as compared to mean-free-path of phonons the transport is

ballistic, whereas, when the sample size is large as compared to phonon mean-free-path,

phonons undergo multiple scattering events and the thermal transport becomes diffusive in
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nature. However, graphene exhibits an atypical thermal transport behavior where thermal

conductivity shows an increasing logarithmic trend even for samples far greater than the

mean-free-path of phonons. We show that this anomalous behavior can be attributed to

the significant contribution coming from momentum-conserving normal phonon-phonon

scattering. Secondly, graphene grain boundaries have been found to significantly reduce

thermal conductivity even in the presence of substrates. In spite of numerous studies on the

effect of grain boundaries (GBs) on thermal conductivity in graphene, there lacks a com-

plete correlation between GB resistance and misorientation angle across graphene GBs.

We show a direct correlation between thermal GB resistance and mismatch angles with low

angle mismatch can be captured only by GB roughness, whereas, large mismatch angles

will lead to the formation of a disordered patch at the interface and it could significantly

deteriorate the overall thermal conductivity even in the presence of substrates.

GBs are found to affect electrical transport in two-dimensional systems as well. Owing

to the excellent electronic properties and compactness of these two-dimensional materials,

high quality 2D heterojunctions are the subject of intense research interest in recent years.

Graphene-MoS2 heterojuctions are found to form ohmic contacts and show great potential

for future nanoelectronic applications. We show that the interface resistance in Gr-MoS2

heterojuctions can affect the overall resistance of the device if the channel (MoS2) length is

small at low carrier densities, whereas, at high carrier densities interface resistance do not

play much role in determining the resistance of the entire device. However, if graphene and

MoS2 grains are misorientated then interface resistance can play a crucial role in determin-

ing the overall resistance of the device. We also show a weak dependence of misorientation

angles on GB resistance across MoS2 grain boundaries.
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CHAPTER 1

INTRODUCTION

Over the past few decades, a huge leap in technological progress has been evidenced,

most of which can be attributed to the rapid growth of the semiconductor industries. Silicon

based technology used in semiconductor industries enabled miniaturization of transistors,

which followed a relatively simple rule given by Gordon E. Moore, co-founder at Intel.

Moore’s prophecy combined with Dennard’s scaling rules gave a simple thumb rule to

multiply the number of transistors in a chip at an economical rate and governed the semi-

conductor industries for around 40 years. However, in the last decade or so, Moore’s law

has come to a saturation, when severe challenges were raised due to continuous scaling of

the transistors. The channel length of these modern transistors has already hit the sub-10

nm regime where quantum tunneling of electrons becomes quite significant, which con-

sequently leads to leakage current. Besides electric power management issues, thermal

management is also one of the major hindrances, which is putting an upper bound on the

shrinking of transistors by Moore’s law. Since then there has been a growing thrust in the

quest for a new material which can take over the legacy of silicon in the field of semiconduc-

tor commerce. Two-dimensional materials like graphene, transition metal dichalcogenides

(TMDCs) etc. have shown great promise for many thermal and electrical applications.

Until 2004 it was believed that two-dimensional materials can not exist due to ther-

mal instability, when for the first time graphene was separated from bulk graphite and it

was found to possess extraordinary electronic, thermal and mechanical properties. A very

high intrinsic mobility in the order of 105 cm2V−1s−1 and thermal conductivity of about

5000 Wm−1K−1 were reported. These measurements engendered a possibility for the re-

1



Figure 1.1. Electronic band structure of graphene. Castro Neto et al., The electronic
properties of graphene, Rev. Mod. Phys. 81, 109 (2009)

placement of silicon-based technology and thereby resulting into an upsurge in the field of

research. Since then, there have been innumerable studies conducted to study the proper-

ties of graphene and other two-dimensional materials. In spite of having electron mobility

about 100 times greater than that of silicon, graphene doesn’t show great promise for future

nanoelectronic transistors because of the absence of band gap as can be seen in Fig. 1.1.

However, transition metal dichalcogenides such as MoS2, MoSe2, WS2 etc. are another

class of two-dimensional materials which are semiconductor in nature and have inherent

band gap, which makes them a prospective class of material for future nanoelectronic de-

vices.

1.1 Extrinsic factors affecting transport

As discussed earlier, an infinite sheet of single crystalline graphene exhibits very high

electronic mobility and thermal conductivity; however when external parameters like size,

grain boundaries, substrate, impurities etc. come into play, both thermal conductivity and

electronic mobility are affected. This has be schematically represented in Fig. 1.2.
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Figure 1.2. Extrinsic factors affecting thermal conductivity

1.1.1 Size dependence on thermal conductivity

A material, where phonon-phonon scattering is strong, shows a smooth ballistic-to-

diffusive crossover of heat flow; in such cases, thermal conductivity (K) can be given as

K(L) = (G/A)(L−1 + Λ−1), where G/A is conductance (G) per unit area of cross-section

(A) of heat flow, Λ is the mean free path of phonons, which is defined as the average

distance traversed by phonons between two scattering events. L is the distance between

the heat source and sink, which we would refer as length of the system here onwards.

For a bulk material where Λ � L, thermal conductivity becomes equal to (G/A)Λ and is

therefore independent of length (L) in this diffused regime as shown in the Fig. 1.3. On

the other extreme when L� Λ, thermal conductivity becomes proportional to L called the

ballistic regime.

However, it has been both experimentally and numerically reported that thermal con-

ductivity in single crystalline graphene shows a logarithmic dependence on L even at

lengths far greater than the mean free path of phonons in graphene (≈800 nm). So there
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Figure 1.3. General size dependence of thermal conductivity showing ballistic and diffu-
sive regime

has been an intense interest in the research community to unravel the physics behind this

anomalous behavior. Besides length, the width and line edge roughness might play an

important role in governing thermal transport in two-dimensional systems.

1.1.2 Effect of substrate on thermal conductivity

Thermal conductivity in single crystalline suspended graphene has been reported to

vary over a wide range from 1800-5300 Wm−1K−1, which is about 10 to 30 times higher

than bulk silicon. However it has been found that when graphene is placed on a substrate,

thermal conductivity reduces to about 500-600 Wm−1K−1. This reduction is being at-

tributed to the suppression of the out-of-plane (ZA) mode due to the substrate. In-plane

thermal transport in supported graphene on different substrates such as SiO2, SiN, boron

nitride etc. has been studied in the literature. In chapter 3, we study in-plane thermal

transport for graphene with grain boundaries on silicon nitride substrate.

4



1.1.3 Effect of grain boundaries (GBs) on thermal and electron transport

Two-dimensional materials, in pristine form, showed a great promise due to their high

electronic and thermal conductivities. However, it is found to be extremely difficult to

fabricate large single crystalline pristine 2-D samples. Most of the large samples are found

to be polycrystalline in nature and the conductivity, especially heat conduction, is reduced

by about two orders of magnitude due to the presence of grain boundaries (GBs). In recent

years there also have been many studies on the effect of GB on electronic transport in two-

dimensional structures, however, the effect of grain mismatch angle on electronic transport

is not very well understood. Thus in order to effectively use these materials for future

electronics and thermal applications, one should develop a stronger understanding of the

effect of GBs on transport (both electrical and thermal) in these 2-D materials.

1.2 Outline

In the second chapter, we have studied the effect of finiteness of graphene sheet on

its thermal conductivity and added a valuable insight on answering the debatable ques-

tion about logarithmic divergence of thermal conductivity in suspended graphene ribbons.

Grain boundaries (GB), in general, are believed to reduce the thermal conductivity. But cor-

relation of grain mismatch angles with thermal conductivity is not very well understood.

In Chapter 3, we report a direct correlation between thermal boundary resistance and mis-

match angles across graphene grain boundaries. In the same chapter we also discuss about

the possibility of the formation of a disordered patch at grain boundaries and how the

width of this disordered patch may be directly related to the mismatch angle. In chap-

ter 4, we show that a lateral heterostructure formed between graphene and MoS2 exhibits

an ohmic-type contact, which can be potentially used for densely-packed future nanoelec-

tronic transistors. Using a novel semi-classical approach, we have computed the interface

resistance across in-plane graphene-MoS2 interfaces. In this work, we assumed that there

is no angle mismatch between graphene and MoS2 grains. In Chapter 5, we study the ef-
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fect of the mismatch angle on electronic transport across the interfaces formed between (a)

graphene-graphene GBs (b) MoS2-MoS2 GBs and (c) graphene-MoS2 interface.
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CHAPTER 2

SIZE DEPENDENCE OF THERMAL CONDUCTIVITY IN
GRAPHENE NANORIBBONS

2.1 Introduction

In recent years, 2-dimensional materials have been the subject of intense research be-

cause of their unique electronic and thermal transport behavior. Among such materials,

graphene has been studied the longest and has shown the most promising properties, with

the highest reported thermal conductivity (ranging from 1800-5300 W/m-K) [6, 37, 18] and

electron mobility (intrinsic limit in the order of 105 cm2/V-s) [17]. Engineering graphene

devices require a firm understanding of thermal transport mechanism, which is mainly

dominated by phonons [5, 61] because of strong covalent sp2 bonding, which efficiently

transfers heat by lattice vibrations. Despite enormous progress in understanding the ther-

mal transport in graphene, there are several questions yet to be answered. In 3-dimensional

samples, thermal conductivity converges to the bulk value of graphite when the size exceeds

the mean free path (mfp) of phonons and transport becomes entirely diffusive in nature.

Heat conduction in such a case is mainly governed by resistive umklapp phonon-phonon

scattering rather than scattering from the rough boundaries. In contrast, a length depen-

dent behavior of thermal conductivity has been observed in 1-D and 2-D materials even

for samples much bigger than mean free path of phonons. There are rigorous mathemati-

cal proofs for such diverging behavior in momentum-conserving one-dimensional systems

[39, 22, 51, 58] and it has also been experimentally demonstrated for carbon nanotubes

[15]. However, in 2-D materials, the reason for this length divergence is still much in

debate.
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Recently, Xu et al. [65] provided an experimental evidence of this length divergence

for samples as long as 9 µm (around 10 times greater than the average mean free path of

acoustic phonons in suspended graphene) and attributed the reasons for length divergence

to the reduced dimensionality and displacement of in-plane phonon populations at station-

ary non-equilibrium conditions. In addition, quasi-ballistic propagation of extremely long

wavelength acoustic phonons has been demonstrated by Mei et al. [48], where they have

shown that about 20% of phonons have mean free path greater than 100 µm, indicating a

wide ballistic to diffusive crossover regime and thermal conductivity ultimately converging

to 5800 W/m-K. Nika et al. [52] emphasized the importance of low frequency acoustic

phonons, illustrating that with the increase in the sample size, more such low frequency

phonons can be excited, which in turn contributes to thermal conduction, thereby lead-

ing to length-dependent behavior. Lindsay et al. [41] explained the significance of low

frequency ZA phonons towards thermal conductivity in graphene flakes, which leads to

length-dependent behavior.

In contrast to the aforementioned studies, Chen et al. [18] reported thermal conductiv-

ity in graphene flakes without any sample size dependence. This was attributed to large

uncertainty in the measurement of thermal conductivity due to grain boundaries, wrinkles,

defects or polymeric residues in the graphene sample. Park et al. [56] used MD simula-

tions to demonstrate the length dependence over a wide range and interestingly, showing a

converging behavior of thermal conductivity at 16 µm and finally reporting a macroscopic

limit of heat transport in graphene flakes as 3200 W/m-K. Recently, Barbarino et al. [7]

performed direct atomistic simulation called approach-to-equilibrium molecular dynam-

ics (AEMD) to capture thermal conductivity in large samples. They found that intrinsic

thermal conductivity in monolayer graphene is upper-limited. Thus, there have been both

theoretical and experimental evidences of length divergence of thermal conductivity for

large samples (up to few microns), but still there has been an active debate going on about

the divergence of thermal conductivity for flakes when L−→∞.
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In this chapter, we study the length and width dependence of the thermal conductivity

of suspended graphene ribbons. In Sec. 2.2 we present the details of the method used to

calculate thermal conductivity in graphene ribbons which is based on the full phonon dis-

persion and the improved Callaway model recently proposed by Allen [3]. In Sec. 2.3 we

discuss our results, showing two distinct regimes of thermal transport as the length of the

graphene ribbon is increased: logarithmic divergence below 100 µm, driven by the flexu-

ral branch, and convergence for lengths exceeding 100 µm caused by renormalization of

the flexural branch due to coupling between in-plane and cross-plane phonons in the long

wavelength regime. We also show a strong width dependence of thermal conductivity in

graphene ribbons due to the non-resistive normal contribution. Finally, in Sec. 2.4 we con-

clude and comment on the connection of our work to the newly discovered hydrodynamic

regime of thermal transport in 2-dimensional materials.

2.2 Theoretical calculations using improved Callaway model

Several techniques have been employed to model thermal transport in graphene such as

non-equilibrium molecular dynamics (NEMD), [59, 24] non-equilibrium Green’s functions

(NEGF) [66, 30] and Boltzmann transport equation simulations. [34, 53, 1] In our work,

we have used the solution of full phonon Boltzmann transport equation (pBTE) in order to

calculate thermal conductivity in GNRs based on Allen’s improved Callaway model. The

steady state phonon BTE can be written as

~v(~q, b) • ∇~rN~q = −
N~q −N0

~q

τC(~q, b)
−
N~q −N∗~q
τN(~q, b)

(2.1)

where N~q is the number of phonons with wave vector ~q, N0
~q is equilibrium Bose-Einstein

distribution, ~v(~q, b) is the group velocity and τC(~q, b) is the effective relaxation time due

to all scattering mechanisms (which include phonon-phonon scattering, isotope scattering,

impurity scattering and edge roughness scattering). Anharmonic phonon-phonon interac-

tions can be categorized into umklapp (U) and normal (N) processes. Umklapp processes
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(which destroy crystal momentum) relax the non-equilibrium distribution to the final zero-

current equilibrium Bose-Einstein distribution and are resistive in nature whereas N pro-

cesses conserve crystal momentum and relax the perturbed distribution to a flowing equi-

librium (N∗~q ). In materials like graphene, where the Debye temperature is very high (about

2100 K) [64, 50], these momentum conserving normal processes have been shown to play

a significant role in context of heat conduction [41].

The N∗~q term represents a flowing equilibrium to which the distribution evolves un-

der the influence of momentum-conserving normal phonon-phonon processes. Flowing

equilibrium can be envisioned as a hydrodynamic component [14]—while momentum-

destroying resistive processes such as umklapp scattering tend to relax the non-equilibrium

distribution back to its equilibrium Bose-Einstein form; the non-resistive normal processes

conserve crystal momentum and hence cannot fully destroy the heat flux, but only re-

distribute it among the phonon modes. Umklapp scattering, isotope scattering and edge

roughness scattering all destroy crystal momentum; thus all these resistive processes can

be grouped under τ−1U (~q, b). The combined scattering rate is given as the sum of resis-

tive and non-resistive terms τC−1(~q, b) = τU
−1(~q, b) + τN

−1(~q, b), where τN−1(~q, b) is the

scattering rate due to normal scattering. The thermal conductivity expression includes an

extra term over the Debye term and is called N-drift term, which accounts for additional

conductivity from the non-resistive normal processes so that Ktot = KC +KN .

Allen[3] improved the Callaway model [13] and proposed a modified expression in

order to correctly include the contribution of resistive (processes which destroy crystal mo-

mentum) and non-resistive (which conserves crystal momentum) processes towards ther-

mal conductivity and added a correction term
(
λ1λ2
λ3

)
, summed over all the branches b, to

the Debye term KC . The accuracy of the improved Callaway model (ICM) was compared

with the iterative solution of the BTE by Ma et al. [44], to find that the trend of lattice

thermal conductivity against temperature obtained from the ICM compares more favorably
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to the full iterative BTE solution than the RTA or the original Callaway model, especially

in those cases where normal scattering is significant.

The modified ICM expressions are given as:

Ktot = KC +KN = KC +
∑
b

λ1,bλ2,b
λ3,b

(2.2)

where KC is the Debye term, arising from relaxation time approximation (RTA) and some-

times also called as KRTA, and is given by

KC =
1

Aδ

∑
~q,b

~ω~q,bv2‖(~q, b)τC(~q, b)
∂N~q

∂T
(2.3)

where A is the area of GNR sheet, δ (=0.335 nm) is thickness of graphene monolayer[40]

and the correction terms can be expressed as:

λ1,b =
1

Aδ

∑
~q

v‖(~q, b)q‖τC(~q, b)
∂N~q

∂T
(2.4)

λ2,b =
1

Aδ

∑
~q

v‖(~q, b)q‖

[
τC(~q, b)

τN(~q, b)

]
∂N~q

∂T
(2.5)

λ3,b =
1

Aδ

∑
~q

(
q2‖

~ω~q,b

)[
τC(~q, b)

τU(~q, b)

]
∂N~q

∂T
(2.6)

The expression for resistive umklapp scattering rate is taken from the work of Slack et

al. [49] and is given as τ−1U (~q, b) = BUω
aU
~q,bT

bU e−θb/3T , where vb is velocity of sound for

each branch b and is calculated by average slope of its dispersion curve near Γ point [36],

γb is the Gruneisen parameter, θb is the Debye temperature of each phonon branch, M

is the average atomic mass of carbon and BU =
~γ2b

Mθbv
2
b

, for aU and bU equal to 2 and 1

respectively, which have been used in innumerable studies conducted so far and produced

excellent results.
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An empirical form for normal scattering has been adopted from the paper by Slack et

al. [49]: τ−1N (~q, b) = BNω
aN
~q,bT

bN , where

BN(aN , bN) = (kB/~)bN
~γ2bv(aN+bN−2)/3

MvaN+bN
(2.7)

This simple model allows us to efficiently study a broad range of sizes and temperatures

with good accuracy. Several studies have been carried out to determine the best empirical

values for the constants aN and bN , which can accurately describe the contribution from

momentum-conserving normal processes. For our study, we have used aN and bN to be

1 and 3 respectively, which has been used in several studies to explain the contribution

from normal processes in materials like diamond [54] and LiF [10] and fits experimental as

well as first principle data in quite good agreement. In particular, first principles calcula-

tions predict a constant (aN = 0) frequency dependence in pristine graphene; however, the

constant dependence of the anharmonic scattering rate on phonon frequency was found to

disappear in the presence of strain [11]. Even infinitesimally small amounts of strain were

found to lead to a quadratic (aU = 2) dependence for in-plane LA and TA branches and

linear (aN = 1) for flexural ZA branch. This linear dependence can be also tied to the max-

imum scattering rate in the long wavelength limit. In long wavelength limit (ω → 0), the

upper bound on the phonon scattering rate (Γmax = 1/τmin) is dictated by the Ioffe-Regel

limit [28]; equivalently, it can be obtained from Cahill’s minimum thermal conductivity

model [12], according to which ωτmin = π. In addition, as pointed out by Bonini et al.

[11], for the quasi-particle criterion (ωτ ≥ 1) to hold, the exponent aN in τ−1N (~q, b) ∝ ωaN~q,b

has to be greater than or equal to 1 in the long wavelength limit.

Naturally occurring isotopes of carbon can result in scattering due to difference in their

atomic masses. Thus, isotope scattering is also included while calculating the effective

scattering rate and is given as [1]: τ−1Iso(ω) = (ΓΩ0/12)ω2g(ω), where the effective density

of states is calculated by summing the density of states over all the branches b; g(ω) =∑
b gb(ω). The mass-difference constant Γ is given by Γ =

∑
i fi(1 −Mi/M)2 = c(1 −
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c)/(12− c)2. The natural abundances of C12 and C13 are 98.9% and 1.1% respectively and

thus, c= 0.011.

In graphene nanoribbons, boundaries start playing a significant role in scattering of

the heat carriers. As the edges of GNRs are not perfectly smooth, thus phonons tend to

scatter from the boundaries and this effect becomes prominent with increase in rms value

of edge roughness and decreased width of nanoribbons. In this work, the scattering rate due

to line edge roughness (LER) is calculated in the same way as was done by Aksamija and

Knezevic [2]. A momentum-dependent specularity parameter p(~q) = exp(−4q2∆2sin2θE)

has been introduced in order to accurately treat phonon scattering from edge roughness.

It represents the ratio of specular reflections to the total number of interactions with the

boundary. ∆ represents rms value of the line edge roughness and θE represents the angle

made by incident phonons (~q) with the edge direction. The final expression for an effective

LER scattering rate is given by [2]

τ−1LER(~q, b) =
v⊥(~q, b)

W
Fp(~q)

/[
1− Λ⊥int.(~q, b)

W
Fp(~q)

]
(2.8)

where Λ⊥int.(~q, b) = v⊥(~q, b)τint.(~q, b) is the phonon mean free path due to all the intrinsic

processes. The complex interplay between line edge roughness scattering and internal

scattering mechanisms for graphene ribbons is encapsulated in the parameter Fp(~q) called

the form factor

Fp(~q) =
[1− p(~q)]

[
1− exp

(
−W/Λ⊥int.(~q)

)]
1− p(~q)exp[−W/Λ⊥int.(~q)]

. (2.9)

Contacts are assumed to be ideal and in equilibrium, which is captured by treating the in-

teraction of phonons with the contacts analogously to the interaction of phonons with com-

pletely diffuse edges (p(~q) = 0) except having width (W ) replaced by length (L) and the

component of the phonon group velocity being taken along, rather than across, the ribbon.

Thus, a length dependent scattering term is given as τ−1end(~q, b) = v‖(~q, b)/L
[
1− exp

(
L/Λ

‖
int.(~q)

)]
.
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The scattering rates (normal, umklapp, isotope and edge roughness) are added to get total

combined rate in suspended graphene as

1

τC(~q, b)
=

1

τU(~q, b)
+

1

τN(~q, b)
+

1

τIso(ω)
+

1

τLER(~q, b)
+

1

τend(~q, b)
(2.10)

and thus, can be used to calculate the resistive Debye termKC and the non-resistive normal

contribution KN of thermal conductivity in GNRs.

2.3 Results and Discussion

The size dependence of thermal conductivity in GNRs has been studied under two sep-

arate headings in this work —(a) Length dependence (b) width dependence of thermal

conductivity.

2.3.1 Length dependence of thermal conductivity

To study length dependence of thermal conductivity at room temperature, we scaled

ribbon length while keeping the width constant (W=1.5 µm) in order to mimic the ex-

perimental set-up by Xu et al. [65]. In Fig. 2.1(a), thermal conductivity of free-standing

graphene has been plotted against length for various discretization densities of the phonon

dispersions. The red curve in Fig. 2.1(a) shows a convergence in thermal conductivity for

a coarse discretization of q-points having 100,000 points in the first Brillouin zone. Previ-

ous studies suggest that a major part of thermal conductivity comes from the quadratic

out-of-plane ZA modes and divergence is a consequence of long wavelength problem.

Klemens [33] was among the first to propose a logarithmic divergence of thermal con-

ductivity in the two-dimensional phonon gas. In his simplified umklapp-limited model,

the spectral specific heat (C(ω)) in two dimension is proportional to ω while the intrin-

sic mean free path li(ω) ∝ ω−2T assuming a quadratic umklapp scattering rate and linear

dispersion. Klemens then attributed the logarithmic divergence to the problem of long

waves: in the limit q→0, as the phonon wavelength gets larger; the spectral phonon density
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Figure 2.1. (a) Convergence of thermal conductivity (Ktot = KC + KN ) with length (L).
Red and black solid lines in both (a) and (b) (coincide for most of the part) represent Ktot

for coarse and denser discretization grid respectively with quadratic ZA modes while blue
solid line in both (a) and (b) shows convergence of thermal conductivity for denser dis-
cretization grid with renormalized ZA dispersion. Diamond (in cyan) and circular (in ma-
genta) markers represent first principle data from Lindsay et al.[41] and non-equilibrium
MD (NEMD) simulation data from Park et al.[56] respectively. (Inset) Comparison of
our normalized thermal conductivity (blue solid line) with the normalized experimental
data (blue triangles) for zero contact resistance from Xu et al.[65]. (b) Cumulative Ktot

from different phonon wavelength. (c) Compares resistive thermal conductivity (KC rep-
resented by black solid line) from our BTE calculations with KC(L) (resistive thermal con-
ductivity as a function of L represented by dash-dot lines) calculated from simple ’gray’
approximation[4] by fitting differentGballistic/A values. (d) Branchwise contribution of the
correction factors in KN (

∑
λ
λ1λ2
λ3

). For (a)-(d) Width and rms value of edge roughness
(LER) used are 1.5 µm and 2 nm respectively and temperature is 300 K.
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(N(ω) = n0(ω)g(ω) ∝ 1/ω) diverges, leading to a logarithmic divergence in the resulting

thermal conductivity integral [40].

In order to treat the problem of long waves more accurately, we repeated our calcula-

tion of thermal conductivity keeping all parameters exactly the same, but employing a much

denser discretization grid of q-points having 400,000 points for the dispersion and numeri-

cal integration. We obtained a similar converging behavior as shown by the black curve in

Fig. 2.1(a). To further study the convergence in long wavelength limit, we plotted the cu-

mulative thermal conductivity as a function of phonon wavelength, as shown in Fig. 2.1(b).

In both the cases (red and black curves representing coarse and denser discretization grids,

respectively), steps can be observed at the largest wavelength in the discretization, indi-

cating an increase in thermal conductivity due to the addition of more long wavelength

phonons. Despite the addition of more discretization q-points around q−→0 by making

the dispersion grid denser, the results still do not converge fully. However, the size of the

last step in the black curve (denser grid) decreases relative to the red curve (coarser grid),

indicating that convergence is slow and would require even denser grids. We conclude that

the convergence observed in Fig. 2.1(a) is not an actual convergence but rather a numerical

one, caused by the finite number of discretization points. Thus our results show that even

for a ribbon with fixed width and diffuse edges, thermal conductivity diverges with length

as long as the dispersion of the out-of-plane ZA modes is quadratic.

However, several recent studies have shown that increasing the size of the free-standing

graphene will gradually cause a stiffening of the flexural modes, arising out of the coupling

between in-plane and out-of-plane modes. This coupling has been found to result in renor-

malization of ZA modes. The blue curve in Fig. 2.1(a) and Fig. 2.1(b) represents thermal

conductivity with dense discretization grid with renormalized ZA dispersion (renormaliza-

tion will be further discussed in the next section). This stiffening of ZA modes causes

convergence of thermal conductivity with length and leads to a finite value of thermal con-

ductivity, as evidenced by the smooth convergence and the lack of large steps in the long
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wavelength limit (Fig. 2.1(b)). Good agreement between our result (solid blue line) with

previously reported first principles [41] (cyan-colored diamond markers in Fig. 2.1(a)) and

molecular dynamics [56] calculations (magenta-colored circular markers in Fig. 2.1(a))

confirm that the improved Callaway model can be used as an effective tool for the treat-

ment of momentum-conserving normal processes. Our calculated thermal conductivity,

when scaled with Kmax to compensate for contact resistance in the experiments, follows

the same trend as that of the measured data [65], shown in the inset of Fig. 2.1(a).

Here, the analysis of the divergence of thermal conductivity with length is generalized

to include the quadratic dispersion of the ZA branch and the non-resistive normal contri-

bution, both of which were ignored in previous analyses. For a general dispersion of the

form ω ∝ qs, frequency dependence of the group velocity (~v(~q) = ∇ω(~q)) is given as v ∝

ω(s−1)/s while the density of states D(ω) ∝ ω(2−s)/s. In the long wavelength limit (ω −→ 0)

and for finite width, the resistive part of thermal conductivity (KC) is mainly dominated by

edge roughness scattering which, according to equation 2.8, varies as τ−1LER(ω) ∝ v(ω).

Thus the resistive part of thermal conductivity (KC(ω)) ∝ v2(ω)τLERD(ω) ∝ ω(1/s) in-

dicating that KC converges with length and reaches the diffusive regime as long as we

maintain finite width of the samples, irrespective of the value of the exponent s, as our

results in Fig. 2.1(c) indicate.

The length dependence of the resistive component of thermal conductivity (KC) can

be captured through a simple Landauer model [57, 31], where the heat conduction is de-

scribed by constant thermal conductance (G) in the ballistic regime. Then the length vari-

ation in KC is well described by a transition from the ballistic to the diffusive regime as

K(L) = [A/(LGball) + 1/Kdiff ]
−1 [4]. Setting (Gball/A)=2×109 WK−1m−2 exactly fits

the resistive part of thermal conductivity as shown in Fig. 2.1(c). The mean free path (λ)

is calculated from this value by angle averaging in 2D as Kdiff = (Gball/A)(π/2)λ. The

mfp of phonons in suspended graphene with rough boundaries and W=1.5 µm is thus cal-

culated to be 358 nm, somewhat smaller than previously reported values of around 800 nm
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for large square samples [25] due to the presence of edge roughness of 2 nm in our case.

Hence we conclude that the resistive contribution to the thermal conductivity is undergoing

a simple ballistic-to-diffusive transition as length is increased, saturating when L>10 µm.

On the other hand, the length dependence of thermal conductivity of long ribbons (L>1

µm) is dominated by the hydrodynamic contribution, represented by KN , and its length de-

pendence is different from what can be observed in ballistic regime. The non resistive nor-

mal contribution (KN ) is comprised of the three factors: λ1, λ2 and λ3, where, by analysis

analogous to that for KC , we find that λ2 ∝ ω(3−s)/s and λ3 ∝ ω(5−2s)/s (based on Eqs. 2.5

and 2.6). Thus for s ≤2.5 both λ2 and λ3 will converge with increasing length. However,

λ1 ∝ ω(3−2s)/s and thus, for a purely quadratic dispersion (s=2), thermal conductivity will

not converge even in the presence of edge roughness. This is evident in Fig. 2.1(b) where

red and black curves show a continuing step behavior as length is increased; we obtain a fi-

nite value only because our discretization is finite and length eventually exceeds the largest

phonon wavelength captured in the long wavelength limit.

As we noted earlier, Mariani and von Oppen [46] reported that increasing the size of the

graphene sheet leads to stiffening of the flexural modes due to the coupling force between

bending and stretching degrees of freedom, thereby causing renormalization of flexural

modes as ωZA = βZA(q)q2 where βZA(q) = αZA[1+(qc/q)
2]1/4, qc being the cut-off wave-

vector. The temperature dependent transition point qc is calculated to be 0.1 (in the units of

2π/lattice constant) [46]. When L→ ∞ (q→0), qc �q and ωZA becomes proportional to

q3/2. Renormalization of ZA modes and their partial linearization in the long wavelength

regime (where s=3/2) causes λ1 (∝ ω(3−2s)/s), λ2 (∝ ω(3−s)/s) and λ3 (∝ ω(5−2s)/s) all

to converge with length, as can be seen in Fig. 2.1(d). Therefore the non-resistive normal

contribution (KN ) eventually converges to a finite value owing to the coupling between

the in-plane and out-of-plane degrees of freedom. The solid blue curve in Fig. 2.1(a) and

Fig. 2.1(b) show convergence of thermal conductivity with length to a bulk value of 3400
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Figure 2.2. (a) Branchwise contribution of thermal conductivity against length (L) of
GNRs. Black solid and dashed lines (in (a)-(d)) represent total thermal conductivity
(Ktot = KC + KN) and non-resistive normal contribution (KN) respectively and black
dotted lines ((in (a)-(d)) represent resistive contribution (KC). Blue, green and red curves
((in (a)-(d)) represent TA, LA and ZA components of KN respectively. (b) Effect of tem-
perature on contribution of Ktot, KC and KN . (c) shows width dependence of Ktot, KC

andKN . (d) represents the effect of edge roughness onKtot, KC andKN . Length of GNRs
(in (b), (c) and (d)) is 10 µm, Width (in (a), (b) and (d)) is 1.5 µm and temperature (in (a),
(c) and (d)) is 300 K.

W/m-K for ribbon width of 1.5 µm, in good agreement with both experimental measure-

ments and first principles calculations.

Fig. 2.2(a) shows branchwise components of thermal conductivity and their length de-

pendence. Earlier studies have shown that length divergence in thermal conductivity is
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due of quadratic dispersion of out-of-plane modes, however because of the coupling be-

tween the in-plane and flexural modes renormalization of ZA dispersion takes place, which

leads to partial linearization of flexural modes and thereby causes thermal conductivity to

converge when L→ ∞ in long wavelength limit. We observe here that the divergence in

KN beyond 10 µm is driven by the out-of-plane ZA branch, but renormalization of the ZA

branch prevents λ1 (Equation 2.4) from diverging (for s=3/2, λ1 ∝ ω(3−2s)/s= constant) and

the hydrodynamic component eventually reaches saturation for L >100 µm, indicating the

onset of the Ziman regime where extrinsic effects such as length no longer play a role.

We assumed a sample of 10 µm long and 1.5 µm wide to study the effect of temperature

and line edge roughness (LER) on thermal conductivity in graphene ribbons. In Fig. 2.2(b),

thermal conductivity (Ktot) along with its resistive (KC) and non-resistive normal compo-

nents (KN ) are plotted against temperature. At low temperatures, thermal conductivity

is mainly comprised of resistive contribution while at room temperature and above, the

resistive contribution is suppressed considerably due to strong umklapp phonon-phonon

scattering and non-resistive normal contribution starts playing an important role. Thus in

graphene, KC fails to capture the contribution coming from momentum-conserving normal

processes and leads to under-evaluation of thermal conductivity at and above room temper-

atures. It can also be seen that at low temperatures, the out-of plane (ZA) modes coming

from KC contribute significantly to thermal conductivity whereas at high temperatures,

most of the conductivity comes from the hydrodynamic contribution (represented by KN )

of the in-plane branches (LA and TA).

2.3.2 Width dependence of thermal conductivity

Next we turn to the width dependence of thermal conductivity in suspended graphene

ribbons at room temperature and vary the width W while keeping L=10 µm and a con-

stant edge roughness ∆=2 nm, which puts the ribbons in the fully diffusive edge scattering

regime. It can be seen in Fig. 2.3.1(c) that the resistive part of thermal conductivity (KC)
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shows a gradual width dependence. It is because for ribbons narrower than 200 nm, the rib-

bon is in the ballistic regime where both KC is suppressed by line edge roughness (LER)

scattering (τ−1LER ∝ 1/W). In this range, the contribution from non-resistive processes (KN )

is also significantly reduced by the presence of resistive LER scattering, whereas widths

above 200 nm put the ribbon in the Poiseuille regime [38]. In the Poiseuille flow range,

where 200 nm≤ W ≤10 µm, the KN is affected by the interplay of LER scattering and

normal scattering, leading to a pronounced width dependence exceeding that of the resistive

component. The contribution of the non-resistive normal processes to width dependence

has not been previously reported and can be understood as a consequence of the hydrody-

namic phonon transport suggested by Lee et al. [38]. Beyond 10 µm, KN transitions into

the Casimir regime where normal processes dominate over resistive LER scattering and the

thermal conductivity again converges to a finite value.

Unlike their supported counterparts, LER scattering plays a very crucial role in the ther-

mal conductivity of suspended graphene ribbons. Fig. 2.2(d) shows a strong dependence

of thermal conductivity (Ktot) for edge roughness up to 0.5 nm (rms value). In this figure,

it can be seen that Ktot corresponding to zero edge roughness is same as that of Ktot for

1000 µm wide ribbon as can be seen in Fig. 2.2(c), which again indicates that for such wide

ribbons the effect of edge roughness completely dies off. The effect of edge roughness and

width of the ribbons can not be completely decoupled. As we keep on reducing the width

of the ribbon from 1000 µm with fixed edge roughness is equivalent to increasing the edge

roughness for a given width of the ribbon. KN shows a strong LER dependence up to

0.5 nm whereas KC shows weaker dependence on edge roughness as is the case for width

dependence of thermal conductivity.

2.4 Conclusion

In conclusion, we have studied the length divergence of suspended graphene ribbons,

employing the newly developed improved Callaway model to accurately capture the signifi-
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cant contribution from the non-resistive normal processes in the hydrodynamic regime. We

have shown through both numerical and analytical calculations that this non-resistive nor-

mal contribution dominates the length dependence for lengths greater than 1 µm and leads

to a logarithmic divergence, even in ribbons with fixed width and edge roughness. This

divergence is caused by the combination of the quadratic dispersion of the out-of-plane ZA

phonon branch in the long wavelength limit.

However, for lengths exceeding 100 µm, we find that thermal conductivity converges to

a constant value. This convergence is independent of width and not caused by edge disor-

der; rather, it is due to linearization of the ZA branch by coupling between the in-plane and

out-of-plane degrees of freedom. This coupling removes the quadratic dependence of the

ZA dispersion and limits the normal contribution of the ZA branch to a finite value. We also

uncover a prominent width dependence arising from the non-resistive normal contribution

for widths exceeding 200 nm, which delineates the emergence of Pouiselle hydrodynamic

heat flow. Our study confirms the role of non-resistive normal processes in the length and

width scaling of thermal conductivity and provides quantitative limits to the hydrodynamic

regime of heat flow in graphene ribbons.
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CHAPTER 3

EFFECT OF GRAIN MISMATCH ANGLE ON THERMAL
CONDUCTIVITY IN CVD-GROWN GRAPHENE

3.1 Introduction

As discussed in chapter 1, thermal management in nanoelectronic devices is one of

the major problems faced by the present semiconductor industry to achieve further minia-

turization of transistors. 2-D materials have shown a great potential for future electron-

ics devices due to their high electronic and thermal properties. Graphene has served as

a model 2D system for more than a decade now. Large-scale manufacture of graphene

for commercial purposes are mostly done by chemical-vapor deposition (CVD) technique.

However, CVD-grown graphene are mostly polycrystalline in nature and grain boundaries

are found to significantly reduce thermal conductivity in graphene ribbons. So, in order

to efficiently dissipate heat in modern electronic devices, it is of utmost importance that

we understand the physics behind heat transfer across grain boundaries. A wide range

of studies have been conducted to study electronic conduction across grain boundaries of

graphene [35, 68, 19, 63]. However, owing to the significance of graphene grain bound-

aries, a limited range of research has been done to study its effects in determining thermal

conductivity across such grain boundaries. Experimental studies suffer from the problem

that they require a suitable platform capable of separating grain boundary contribution

from the graphene grains itself. On the other hand, in order to theoretically study heat

conduction across the interface, the currently available models —acoustic mismatch model

(AMM) and diffused mismatch model (DMM) — are not universally effective for pre-

dicting thermal boundary resistance, except at very low temperatures. Both models differ
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Figure 3.1. (a) shows scanning electron microscopy (SEM) image of two merged hexag-
onally shaped single crystalline graphene grains forming an individually grain boundary
(GB). The scale bar is 5 µm. (b) High-magnification image of a fabricated thermometry
platform comprised of a heater electrode in the center and two sensor electrodes on the
sides having perfect symmetry. The scale bar is 5 µm [67].

greatly in their treatment of scattering at the boundary. In AMM the interface is assumed

to be perfect, resulting in specular reflection, thus phonons propagate elastically across the

interface. The wavevectors that propagate across the interface are determined by conserva-

tion of momentum. On the other hand in DMM, the interface is assumed to be perfectly

scattering. In this case the incident wavevectors are completely randomized on transmis-

sion across the interface and are independent of incident phonons. In both the models the

detailed balance must still be obeyed. For most of the materials, AMM and DMM mark

the upper and lower limit of thermal conductivity.

In spite of studying thermal conductivity in graphene for more than a decade now,

still there isn’t any study reporting a direct correlation between thermal grain boundary

resistance and grain mismatch angle. In this study, our collaborators fabricated CVD-

grown graphene samples in which two graphene flakes were merged to form an individual

grain boundary on SiN substrate with a grain mismatch angle between them as shown in

the Fig. 3.1(a). The misorientation angles between the grain boundaries in the fabricated

samples were measured to be 3◦, 8◦ and 21◦. In Fig. 3.1(b), it can be seen that at the center
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there is a heater (represented in red) with two sensors, each on either side of the heater

(and is represented by yellow lines), placed symmetrically. This configuration allows to

study thermal conductivity of graphene grains without any boundaries on right hand side

of the figure; whereas on the left hand side the two single crystalline graphene grains are

separated by an individual grain boundary (represented by white dashed line).

3.2 Theoretical modelling of thermal transport across graphene GB

The primary carriers of heat in graphene are phonons. Fourth nearest neighbor force

constant model, as described by Saito [60], has been used to calculate phonon dispersion.

Phonon dispersion of an isolated sheet has been considered for this study, which is a good

approximation [55]. The model used for this study is based on the complete solution of

phonon Boltzmann transport equation (pBTE) same as used in Chapter 2 and is given by

the eqn. 2.1. However, we ignore the second collision term involving normal scattering here

because the presence of substrate completely kills off the normal contribution and eqn. 2.1

can be approximated as—

~v(~k) ~∇~rN(~r,~k) = −N(~r,~k)−N0(ω, T )

τi(ω)
(3.1)

where N0(ω, T ) is equilibrium Bose-Einstein distribution and τi(ω) is the phonon relax-

ation time, which can be written as inverse of the total scattering rate. The competing

scattering rates comprise of anharmonic interaction of 3-phonon processes (both normal

and umklapp), line edge roughness, 1.1 % of C13 isotope concentration [2] and surface

roughness. Thermal transport in supported graphene ribbons is characterized by the com-

plex interplay between GB roughness scattering and various internal scattering mechanisms

(substrate, phonon-phonon, impurity, isotope scattering). It has been studied that in wide

supported GNRs, substrate scattering plays a dominant role over line edge roughness scat-

tering [2]. The interaction with silicon nitride substrate is modeled through perturbations to
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the scattering Hamiltonian in the same way as was done by Aksamija et al. [2] for graphene

on SiO2. As silicon nitride is a smoother substrate than that of SiO2, thus, a very low value

of force constant for out-of-plane modes (0.011 N/m) has been considered to capture the

weak van der Waals coupling force between silicon nitride substrate and graphene. In this

model, two-dimensional graphene sheet is considered to be in contact with the substrate in

the form of small circular patches with radius of 16.3 nm. To calculate in-plane thermal

conductance across graphene grain boundaries, we use the full solution to pBTE in the

presence of GBs—

K(T ) =
~
Sδ

∑
~k,b

v2b (
~k)τtot(~k)ωb(~k)

∂N0(ω, T )

∂T
(3.2)

where S is the surface area of the unit cell, δ=0.335 nm is the graphene thickness, ωb is the

vibrational frequency, and vb is the group velocity of phonon branch b, computed from the

full phonon dispersion relationship.

CVD graphene grows isotropically outwards from each nucleation point until two ad-

jacent single-crystalline grains meet each other and they form the grain boundary. The

shape of the boundary, thus formed, depends on the angle of grain mismatch. Small mis-

match angles can be envisioned as simple line defects (LD) with a small rms value of grain

boundary roughness roughness. But in case of samples with large grain boundary mis-

match angle, the boundary can no longer be assumed to be a line defect. Thus, in order to

include this additional resistance due to large angle mismatch of GBs, a strip of disordered

(amorphous) graphene, whose width is negligible in case of small angles and gradually

increases with angle of mismatch, has been considered. The thermal conductivity due to

this amorphous region (Kmin) has been calculated from Cahill′s minimum thermal con-

ductivity model [12], according to which minimum thermal conductivity is reached when

the scattering rate is maximum i.e. when scattering rate equals twice the phonon vibra-

tional frequency (τ−1D (ω) = ω
π

). Equivalently, all the energy of the phonon normal mode
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is transferred out during one half of the vibration period, resulting in the relaxation time

being equal to half of the period of vibration. In the long wavelength limit, this also im-

plies the mean free path reaches its smallest possible value which is equal to one half of

the phonon wavelength Λb(q) = vτb(q) = v π
ω(q)

= v π
vq

= λ
2

where λ is the phonon wave-

length. Using the disorder scattering rate, thermal conductivity of the disordered region is

calculated from eqn. 3.2. Finally the total thermal conductivity of the sample is given as

KGB−Region = WG

(RGB−Region).A
, where RGB−Region = resistance of the sample in the pres-

ence of grain boundary roughness [(WG −WD)/(A.KG)] + resistance due to disordered

region [(WD)/(A.Kmin)], where WG and WD represents the length of the graphene sam-

ple and width of the amorphous strip and A is the area of cross section for the heat flow

(A = WG × t, where t is the thickness of the graphene sheet).

3.3 Results and discussions

The experimental results obtained from our collaborators are shown in Fig. 3.2. Fig. 3.2(a)

shows the extracted average thermal conductivity of the graphene grains and GB regions

for three tested devices having misorientation angles of 3◦, 8◦ and 21◦. The thermal con-

ductivity of single crystalline graphene at room temperature is extracted to be 836 ± 126

Wm−1K−1. The figure reveals that an individual grain boundary can significantly reduce

thermal conductivity in graphene structures, and the effect becomes more pronounced as

the misorientation angle of the merged grains increases. In Fig. 3.2(b), the total thermal

resistance from these three devices were calculated as— R = L/(KWt) where L, W, and t

are the length (5 µm), width (11.5 µm), and thickness (0.335 nm) of the graphene channel,

and K is the average thermal conductivity values from Fig. 3.2(a). In Fig. 3.2(c), the con-

ductance of the GB region is calculated as GGB = R−1GB, where RGB = RGB−Region(3◦, 8◦

or 21◦)−RG (resistance of the graphene grains without GB).

In order to explain the order of magnitude difference between our experimental re-

sults and previous predictions [62], we used extensive theoretical modeling to elucidate
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Figure 3.2. (a) Temperature-dependent extracted thermal conductivity of the single crys-
talline graphene and the GB region with different mismatch angles (3◦, 8◦ and 21◦). The
error bars represent the overall uncertainty of the measurements. (b) Thermal resistance of
the GB regions and the single-crystalline graphene grains. (c) The thermal conductance per
unit area (G/A) of the different GBs. (d) The additional thermal resistance caused by an
individual GB is shown as an equivalent extra length of the single grain with similar width
[67].
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the different phonon modes and their scattering mechanisms involved in thermal transport

across the graphene GBs. Fig. 3.3(a) illustrates the variation of thermal conductivity with

temperature for various grain mismatch angle, including the one with no grain mismatch

angle, which basically represents perfect grain boundary. The misalignment in the bound-

aries of adjacent grains can be thought of as two single-crystalline grains are stitched to

each other with a patch of disordered graphene. For low angle of grain mismatch, this

disordered patch is so narrow that it can be approximated as line defect (LD) with some

rms value of edge roughness depending on the angle of misalignment. For higher angles,

this disordered patch is wide enough to add a considerable amount of additional resis-

tance to the flow of heat so as to reduce thermal conductivity by a substantial amount.

To sum up, the effect on thermal conductivity due to grain mismatch angle can be mod-

eled as two separate phenomena first is the resistance due to scattering of phonons from

the rough boundaries (edge roughness scattering) and second is the resistance due to ad-

ditional patch of disordered graphene for large angle mismatch. The total thermal con-

ductivity has been calculated as KGB−Region = WG/(RGB−RegionA), where RGB−Region

is the total resistance due to graphene with GB and amorphous patch and is given by

RGB−Region = [(WG − WD)/(AKG)] + [WD/(AKmin)]. Here, WG denotes the width

of the graphene between heater and sensor (5µm), WD is the width of the disordered re-

gion at the GB, and KG denotes thermal conductivity of graphene without any GBs. Kmin

is the thermal conductivity of the disordered region calculated from Cahill′s minimum ther-

mal conductivity model. Fig. 3.3(c) shows the effective G/A through a GB as a function of

temperature. The G is calculated as the reciprocal of the resistance arising due to GB alone

(RGB) as (G = 1/RGB), where RGB = [WG/(AKGB−Region)] − [WG/(AKG)]. It can be

seen that the boundary conductance (G/A) results obtained from the solution of pBTE are

in excellent agreement with the experimental data.

The effect of GB on the thermal conductivity due to different rms roughness (∆) and

the effect of disordered region due to its varying width (WD) are complementary to each
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Figure 3.3. (a) Thermal conductivity vs temperature calculated from the phonon Boltz-
mann transport model. The symbols in (a) and (c) represent experimental data from
Fig. 3.2(a) and (c), while solid curves represent simulation results. Panel b shows ther-
mal conductivity at room temperature vs the grain boundary roughness ∆ and the width
of the disordered boundary region WD. Solid curve shows total thermal conductivity vs
WD keeping ∆=0. Symbols represent experimental data at 300 K. The agreement with the
experimental data is achieved by including a narrow strip of disordered graphene, whose
conductivity is calculated from Cahill′s minimum thermal conductivity model, as explained
in the text, and plotted in the inset of (b). (c) Thermal conductance of the grain boundary
vs temperature. The agreement in (a) and (c) is achieved using the following values for
grain boundary roughness (∆) and the width of the disordred region at GB (WD): (1) with-
out grain boundary: ∆=0 nm, WD=0 nm; (2) 3◦ mismatch:∆=0.12 nm, WD=0.12 nm; (3)
8◦ mismatch: ∆=1.3 nm, WD=1.3 nm; (4) 21◦ mismatch: ∆=7.5nm, WD=7.5 nm. (d)
Solid line shows thermal conductivity vs temperature for 3◦ grain mismatch angle, while
dash, dash-dot, and dotted lines show its branch-wise components (ZA, TA, LA), respec-
tively, with ZA carrying most heat at low temperatures, and in-plane modes (TA and LA)
dominating at room temperature and above.
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other because the effect of roughness saturates after ∆=0.25 nm. Fig. 3.3(b) shows that, for

low values of ∆ and WD, the total thermal conductivity (solid curve) follows the thermal

conductivity curve due to GB scattering alone (dashed curve) and, for higher values of ∆

and WD, follows the thermal conductivity curve due to the width of disordered strip alone

(dotted curve). Hence, for small values of ∆ and WD (up to 0.25 nm), thermal conductivity

is largely dominated by the GB scattering alone with negligible effect from the narrow dis-

ordered strip, in agreement with the experimental data for low mismatch angle. For higher

values of ∆ and WD (beyond 0.25 nm), GB scattering becomes completely diffuse (p=0)

and the effect of boundary roughness saturates. There is a natural crossover occurring at

1 nm, beyond which the total thermal conductivity is dominated by the additional resis-

tance of the disordered region. This is in good agreement with the experimental data for

large angle mismatch. Using the explained methodology, the experimental data for thermal

conductance of the GB is well-reproduced for the entire temperature range (Fig. 3.3(c)).

The individual contribution to thermal conductivity from each of the branches are shown

in Fig. 3.3(d), with the out-of-plane acoustic (ZA) branch contributing at low temperatures,

and in-plane (LA and TA) dominating above 150 K.

3.4 Conclusion

We observed that the thermal resistance at highly misoriented GBs can be remarkably

higher than previous theoretical predictions owing to the larger disorder found in the atomic

structure of GBs in CVD grown graphene. BTE calculations indicate that a bimodal scatter-

ing mechanism governs the phonon transport through the GBs: for small mismatch angles,

thermal resistance of GB can be captured through phonon scattering from GB roughness,

while for higher mismatch angles, the GB roughness effect is saturated. The lower thermal

conductivity at higher mismatch angles can be explained through the presence of a narrow

strip of disordered graphene at the GB. For the highest mismatch angle of 21◦, we calculate

the width of the disordered region to be 7.5 nm based on the minimum thermal conductivity
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model. For intermediately misoriented GBs, thermal conductivity is affected by a complex

interplay between the magnitude of grain boundary roughness and amount of disorder in

the disordered patch. Our results show a direct correlation between GB thermal resistance

and grain mismatch angles.
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CHAPTER 4

EFFECT OF GRAIN BOUNDARIES IN TWO-DIMENSIONAL
LATERAL GRAPHENE-CONTACTED MOS2

HETEROSTRUCTURES

4.1 Introduction

In recent years, there have been a growing research interest in creating transistors out of

high quality 2D heterojunctions, owing to their excellent electronic and thermal transport

properties as well as compactness. Such devices have the potential to form the backbone

of next generation electronic/optoelectronic industries. Besides graphene, transition metal

dichalcogenides (TMDs) are a new family of two-dimensional materials, which are show-

ing a future prospect for developing systems with reduced dimensionality. Molybdenum

disulfide (MoS2), being one of the most popular member of this group has shown interest-

ing semiconducting properties, which makes it a promising candidate for digital electronic

circuitry applications. However, MoS2 has been reported to form Schottky contacts with

most of the commonly used metals due to Fermi-level pinning phenomenon [8]; as a re-

sult it imposes large contact resistance on the extrinsic performances of these MoS2-based

devices [21]. Moreover, such metal-contacted devices do not have enough mechanical

bendability to be used in flexible electronic applications. Therefore, there has been a grow-

ing interest in making transistors out of two flexible monolayer sheets and recent studies

on 2-D transistors based on out-of-plane graphene contacted MoS2 have been reported

with improved performance as compared to the metal-contacted semiconductor transistors

[70, 42, 69, 20, 71]. However, it has been found that the contact area in such vertical

heterostructures is in the order of few micrometer, possibly to preserve the device mobil-
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ity. This can seriously limit the count of transistors per chip for future high performance

integrated electronics.

In this work, our collaborators fabricated nearly-perfect lateral MoS2/Gr heterojunc-

tions as shown in Fig. 4.1. The difference in the work functions and electron affinity of

graphene and MoS2 would lead to band-bending at the interface, which varies with the

applied gate voltages; thus making it imperative to study the effect of grain boundaries on

electron transport in such structures. We carried out numerical simulation in order to gain a

comprehensive insight of the electric transport at the MoS2/Gr grain boundaries for differ-

ent gate voltages in bottom-gated lateral graphene-contacted MoS2 heterojunctions. A new

theoretical model based on energy band rearrangement has been developed to describe the

electric transport behavior across the MoS2/Gr grain boundary. The boundary resistance

is modeled using a combination of first principles band structure calculations, followed by

calculation of the transmission coefficient and grain boundary conductance in the Landauer

formalism. We report that the grain boundary resistance decreases at higher gate voltages,

which is also consistent with the Kelvin probe force microscopy (KPFM) results. We at-

tribute such behavior to the improved band alignment and electron transmission between

the two materials culminating in a negligibly small grain boundary contribution to the total

resistance and results in ohmic behavior.

4.2 Theoretical modeling

To shed light on the origin of the improved electrical performance of the graphene-

contacted MoS2 devices, the individual electronic band structures of graphene and MoS2

was calculated using first-principle Density Functional Theory as implemented within the

open-source distribution Quantum-Espresso [26]. The total resistance (Rtot) of the whole

device between source and drain is comprised of the series resistances from the graphene

grains (Rgrap, forming source and drain), resistance of MoS2 grain (RMoS2), constitut-

ing the channel) and resistances from the grain boundaries (RGB) formed at the interface
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Figure 4.1. Microscopy and characterization of the MoS2/Gr in-plane heterostructure. Op-
tical image of (a) the fully covered MoS2 film (b) partially covered MoS2 flakes next to
the partially covered graphene flakes (scale bars 10 m). (c) SEM image of the MoS2/Gr
in-plane heterostructure from the selected area in (b) (scale bar 5 m). (d) AFM image from
the selected area of (c) (scale bar 5 m). (e) Higher magnification AFM image of the se-
lected area in (d), showing the boundary between MoS2 and graphene (scale bar 300 nm).
(f) Optical image of a cross-shape patterned graphene film which is filled with MoS2 in a
second CVD growth (scale bar 5 m). (g) Raman mapping of a selected area shown in (f)
(scale bar is 2 m). (h) Representative Raman point spectra from the MoS2/Gr boundary
area. (i) SEM image of a large scale MoS2/Gr in-plane heterostructure (scale bar 10 m) the
inset magnifies the same image (Scale bar in inset 2 m) [9].
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between graphene and MoS2. We calculate the series grain resistances of graphene and

MoS2 sections from the general expression R2D = ρL/W , where ρ is the resistivity of

the material (sheet resistance in this case) and L/W is the aspect ratio of the sample. The

conductivity (σ = 1/ρ) of graphene and MoS2 grain is calculated from σ = qnµ, where n

is the carrier concentration, µ is the carrier mobility.

4.2.1 Mobility calculation in MoS2

The carrier mobility in graphene, which depends on its carrier concentration, is taken

from the work by Dorgan et al. [23]. In addition to intrinsic phonon-limited carrier mobil-

ity in MoS2 (µph ∼ 410 cm2V −1s−1 [32]), the mobility is also influenced by factors like

charged impurities, surface optical (SO) phonons and other short range scattering mecha-

nisms. However, it has been reported that the electron mobility in MoS2 is largely affected

by the charged-impurity (CI) scattering [72, 73, 45]. An empirical expression for CI-limited

mobility for MoS2 has been adopted and modified from the work by Ma and Jena [45] and

is given as: µCI ≈ 45/(nimp(1011(cm)−2))(A(ε) + ((CoxideVg + nimp)/(1013(cm−2))1.2),

where A(ε)=0.036 is a fitting constant depending on the dielectric constant of SiO2 (oxide

layer), Coxide is the capacitance per unit area of the gate oxide and nimp is the charged-

impurity density. The impurity density equals sheet charge density (nC = CoxideVg +nimp)

at zero gate voltage. We use an impurity concentration of 5.5 × 1011(cm−2), which is

found by fitting the finite resistance at zero gate voltage obtained from experimentally

measured Id − VDS data. In the presence of multiple scattering mechanisms, the mobil-

ity of the free carriers can be represented by Matthiessen's rule and is given as: µMoS2 =

(µ−1ph + µ−1CI + µSR−1)−1, where µSR is the mobility due to short range effects [73].

4.2.2 Electronic bandstructure alignment between graphene and MoS2

Due to the difference in work function and electron affinity of graphene and MoS2,

there will be band-bending at their interface. The electron affinity (an intrinsic property of a

semiconductor) of MoS2 (χMoS2) and graphene (χgrap) is 4.2 eV and 4.55 eV respectively;
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Figure 4.2. (a) Electronic band structure and (b) DOS of MoS2 (solid black lines) and
graphene (dashed blue lines), showing the band alignment at the interface. There is a 0.35
eV Schottky barrier at the interface (c).

whereas the work function in a semiconductor, depends on the gate voltage, is given as:

φ = χ + Ec − EF , where Ec represents the bottom of the conduction band and EF is the

fermi energy level. The barrier height φB, when seen from graphene towards the MoS2,

can be calculated as: φB(Vg) = φgrap(Vg) − χMoS2 . And the amount of band-bending in

MoS2 at the interface is given by the difference in energies of the conduction band bottom

at and away from the interface i.e. φinterface(Vg) = φMoS2(Vg) − χMoS2 − φB(Vg). The

electronic band structure alignment of graphene and MoS2 at the interface has been shown

in Fig. 4.2 and the band-bending is shown in Fig. 4.3.

4.2.3 Transmission coefficient and grain boundary resistance calculation

To calculate the grain boundary resistance, we develop a numerical model to calculate

the transmission coefficient of electrons from the graphene to MoS2. In our model, we

include both the effect of the potential barrier at the interface and the mismatch in the elec-

tronic structures of the two materials by requiring both electron energy and the component

of the wavevector parallel to the interface to be simultaneously conserved. This approach

expands the method originally proposed by Yazyev and Louie [68] for electron transmission

through graphene/graphene grain boundaries and allows us to calculate the dependence of
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Figure 4.3. Band alignment between MoS2 and graphene, showing the Schottky barrier
at the interface and band bending in the MoS2, indicating an n-type Ohmic contact for (a)
intrinsic graphene and MoS2 at Vg=0 V and a small barrier height for (b) extrinsic graphene
and MoS2 at Vg=0 V (c) at Vg=60 V.
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GB resistance on the band alignment between the two domains. The momentum conserva-

tion principle requires that: (i) the magnitude of parallel component of the incident wave

vector (ki‖) be equal to the magnitude of parallel component of the transmitted wave vector

(kt‖), in their respective domains; and (ii) energy is conserved by finding a perpendicular

component of the transmitted wave vector (kt⊥) such that E1(ki) = E2(kt‖ + kt⊥) and kt⊥

is within the 1st Brillouin zone of the respective domain. The transmission coefficient is

then calculated using the perpendicular components of the incident (ki⊥) and transmitted

(kt⊥) wave vectors using a general expression for wave transmission between two domains

[16] given by τb(ki) = (4ki⊥kt⊥)/ | ki⊥+kt⊥ |2, where b represents electron band. Finally,

the energy-resolved transmission coefficient Γb(E) is calculated by averaging the product

of transmission coefficient τb(k) and electron group velocity vb(k) over the constant energy

contour, described by δ(E−Eb(k)), using the 2-dimensional version of the linear extrapo-

lation approach described by Gilat and Raubenheimer [27] and then we calculate transport

distribution function (TDF) as follows:

Ξ(E) =
∑
b

= vb(E)Γb(E)Db(E) =
∑
b

(1/4π2)

∫
vb(k)τb(k)δ(E − Eb(k))dk (4.1)

The TDF is then used to numerically calculate the grain boundary conductance in a Lan-

dauer formalism and inverted to obtain the grain boundary resistance RGB, calculated by

inverting the grain boundary conductance which is obtained from an integral of the TDF

over energy:

R−1GB = GGB = e2/2

∫ Emax

EC

Ξ(E)(−∂f(E − EF , T )/∂E)dE (4.2)

where EC is the bottom of the conduction band and Emax is the highest electron energy in

the first four conduction bands.
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4.3 Results

On applying gate voltage, but before any source-drain bias is applied, the Fermi lev-

els in both graphene and MoS2 away from the interface shift relative to their position at

zero gate voltage in response to the induced charge in the 2-dimensional layers, as shown

in Fig. 4.4(a). Consequently, the energy bands on both sides of interface rearrange them-

selves to maintain the equilibrium condition. However, the shift in the bands on the two

sides is not identical because the two materials have different densities of states, leading

to an increase in band bending in the MoS2 with increasing gate bias. The transmission

coefficient of electrons across the grain boundary, however, depends on the alignment of

energy bands at the interface between graphene on one side and MoS2 on the other. For

example, states near the Fermi level in graphene cannot typically be transmitted because

there are no available states at the same energy in MoS2 as energies near the Fermi level

fall inside the bandgap. Increasing the gate bias raises the sheet charge in both graphene

and MoS2; in response, the Schottky barrier between graphene and the conduction band in

MoS2 decreases with gate bias (Fig. 4.4(a)), in agreement with KPFM measurements.

As a result of band rearrangement and barrier lowering, the transmission Γ(E) also

shows a dependence on gate voltage. It can be seen in Fig. 4.4(b) that with increasing

gate voltage, the transmission coefficient Γ(E) shifts towards the left, resulting in larger

overlap between Γ(E) and the so-called Fermi window (-df/dE) which is centered at the

Fermi level. This gives rise to gate-voltage-dependent grain boundary resistance, as shown

in Fig. 4.4(c), paralleling the reduction in the resistance of MoS2 grain which arises from

both the increase in sheet charge and mobility (conductance calculation described further

in Methods). Overall, the contribution of the grain boundary resistance to the total resis-

tance of the combined MoS2+GB+graphene system decreases with gate bias, starting at

around 25% of the total in the intrinsic (zero gate) case, and rapidly dropping below 1%

at gate voltage of 60 V, as shown in the inset to Fig. 4.4(c), closely paralleling the KPFM

measurements of the grain boundary contribution. The agreement between measured and
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Figure 4.4. (a) shows the variation in grain boundary Schottky potential barrier height from
graphene to MoS2 (φB) and from MoS2 to graphene (φinterface) with gate voltage (Vg). (b)
resulting shift in transmission coefficient with gate voltage, such that with the increasing
Vg a larger part of Γ(E) overlaps with the Fermi window (shown by the grey area in the
plot) resulting in increased conductance. (c) grain boundary resistance (RGB) and the total
resistance (Rtot) both measured (red line with red markers) and calculated (black line with
black markers) against gate voltage. The inset shows the percentage contribution of grain
boundary resistance (RGB) towards the total resistance (Rtot) of the device at different gate
voltages, in good agreement with KPFM measurements. (d) drain current (ID) vs. drain-
source voltage (VDS) calculated both experimentally and by numerical simulation showing
good agreement between numerical and experimental results.
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calculated total resistances, mathematically written as Rtot = 2Rgrap +RMoS2 + 2RGB and

shown in Fig. 4.4(d), indicates that the measured resistances are well reproduced by the

model and that at most non-zero gate biases, the grain boundary contributes very little to

the overall resistance, leading to ohmic behavior.

4.4 Conclusion

In this work, we calculated I-V characteristics in 2D transistors with graphene and

MoS2 lateral heterojunctions, which exhibit improved electrical performance in compari-

son to metal-MoS2 devices and similar electrical performance to that of vertical graphene-

MoS2 heterostructures with large contact area. However, lateral heterostructures have

atomically narrow contact area. This makes in-plane MoS2/Gr heterostructures promis-

ing for large scale production of electronic and logic circuits from all-2D materials for next

generation device applications. The numerical calculations reveal that both the barrier at

the interface as well as the resulting grain boundary resistance decrease as sheet charge is

increased in response to the external gate voltage. At gate voltages above 60 V, the inter-

face contributes less than 1 % of the MoS2 region despite the appreciable electron mobility

in the MoS2, resulting in the observed linear (ohmic) behavior. This work uses a simple,

novel theoretical model to calculate electronic grain boundary resistance across interfaces

formed between different materials, thereby would help us to gain more insight about elec-

tronic conduction across complex grain boundaries. This work assumes no grain angle

misorientation between materials across the interface and resulting into small grain bound-

ary resistance in comparison to the total resistance of the device. However, it would be very

interesting to investigate the effect of grain angle mismatch on grain boundary resistance.
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CHAPTER 5

IMPACT OF MISMATCH ANGLES ON ELECTRONIC GRAIN
BOUNDARY/INTERFACE RESISTANCE IN LATERAL

TWO-DIMENSIONAL HETEROSTRUCTURE

5.1 Introduction

Graphene, a monolayer of sp2 hybridized carbon atoms arranged in a honeycomb lat-

tice structure, has a unique electronic band structure because of which it exhibits numerous

interesting properties including quasi-ballistic electrical transport up to several microns

of length even at room temperature. Besides graphene, transition metal dichalcogenides

(TMDCs) are another class of two-dimensional materials which have attracted intense

research interests in recent years. The potential applications of graphene and TMDCs

have motivated mass scale production of large-area films. Among the most popular meth-

ods, chemical-vapor deposition (CVD) on transition metal substrates is relatively cheap

and extensively used to grow high quality large two-dimensional sheets. However, CVD-

grown films are typically found to be polycrystalline in nature, consisting of many single

crystalline grains each with random crystal orientation and separated by grain boundaries

(GBs). Many studies have reported that grain boundaries deteriorate both electronic and

thermal properties.

The effect of grain boundary roughness on electronic transport in graphene and MoS2

is negligible because the dominant electron modes are located around K-valleys and have

relatively short wavelength; as a consequence, the rough GBs are expected to behave rather

coherently. However, the difference in orientation between adjacent grains play a signif-

icant role in electron transport across an interface formed between both similar (homo-

junction) and dissimilar (heterojunction) materials. In spite of numerous studies of the
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effect of misorientation angle on the electronic transport across graphene grain boundaries

[29, 19], and very few of MoS2 GBs [43] (and to the best of our knowledge, none yet for

graphene-MoS2 lateral interfaces), a complete picture of the impact of mismatch angle on

interface resistance requires further investigation. Huang et al. [29] showed a wide range

of distribution of misorientation angles between adjacent grains in polycrystalline single-

layer graphene sheet with a preferential low angle growth of about 7◦. The GB resistance

across such GBs was found to be about 60 Ω µm as compared to a sheet resistance of

700 Ω/� for the entire device of size 250 nm. Thus, they show that the GB resistance is

about one-third of the grain resistance with grain size of 250 nm and thereby, concluded

that graphene GBs don’t play a significant role in determining resistance of polycrystalline

graphene sheets. Clark et al. [19], in 2013, found GB resistance to be varying between

40-140 Ω µm for misorientation angles ranging from 9◦ to 21◦. Recent studies have shown

graphene GB resistance to vary from few Ω µm to several thousands of Ω µm suggest-

ing a strong dependence of grain boundary resistance on mismatch angles. Ly et al. [43]

showed that MoS2 sheets exhibit very poor electrical transport properties (mobilities below

70 cm2V −1s−1) for all the devices with different misorientation angles. However, they did

not conduct any four-probe measurement to calculate the GB resistance separately. There-

fore, a further investigation about the fundamentals behind the effect of GBs and interfaces

in homojunctions and heterojunctions is imperative.

In the previous chapter, we discussed about the resistance across a heterojunction formed

between graphene and MoS2 but for only perfectly-matched grains. In this work, we inves-

tigate electron transport across GBs in graphene, MoS2, and graphene-MoS2 lateral inter-

faces. To study the impact of misorientation angle, we have developed a numerical model

based on first-principles electronic structure and an extension of the approach originally

proposed by Yazyev and Louie [68] to calculate the transmission coefficient of electrons

across an interface based on elastic theory by simultaneously conserving both electron en-

ergy and the component of the wavevector parallel to the interface. The orientation of the
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grains with respect to the GB/interface is defined by two angles — θL and θR. θL being

the angle of rotation between the grain on the left side of the interface with respect to the

interface and θR is the angle of rotation of the right grain with respect to the interface as

shown in Fig. 5.1. According to our convention, θL is taken to be positive for anticlockwise

rotation of the left grain, whereas, θR is positive for clockwise rotation of the right grain.

We define misorientation angle (θ) as θ = θL + θR.

As discussed in Chapter 3, when the misorientation angle (θ) between two grains is

small then the GB/interface mainly comprises of edge dislocations and the atomic structure

of the grain boundary itself doesn’t play much role in determining grain boundary resis-

tance. However, for larger values of θ the dislocations become so densely packed that it is

no longer fair to treat them as mere dislocations rather it forms a disordered patch at the in-

terface. Owing to the small wavelength of electrons, in general, the disordered (amorphous)

patch scatters electron diffusively; consequently, GB resistance is not affected significantly

due to the presence of amorphous patch in case of large misorientation angles. However,

in this study we ignore the effect of the atomic structure of the grain boundary, even in the

case of large mismatch angles.

5.2 Theoretical approach

In our numerical model we calculate the electronic bandstructure for bulk graphene and

MoS2 from first principles. The bands are aligned at the interface using electron affinity

model. The effect of grain boundary/interface is incorporated using boundary conditions

based on elastic theory. From translational symmetry, elastic transmission requires simul-

taneous conservation of energy of the incident electron as well as conservation of its mo-

mentum parallel to the interface. Here we assume the interfaces are free from trapped and

surface impurities; consequently the bands are assumed to be well-aligned across the inter-

face with same materials on either side. However, due to the difference in work function

(φ) and electron affinity (χ) of graphene and MoS2, the bands bend at the graphene-MoS2
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Figure 5.1. shows orientation of the grains with respect to the interface. The black
hexagons represent the orientation of the brillouin zones for perfectly matched condition
(θL = θR = 0◦). θL is the angle of rotation, measured in anticlockwise direction, between
the rotated left grain (red) and the one for perfectly-matched condition (black) and θR is
the angle of rotation, measured in clockwise direction, between the rotated right grain and
the grain for perfectly-matched condition.
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interface and a potential barrier is formed at the interface. The barrier height is calcu-

lated as φB(VG) = φgraphene(VG) − χMoS2 and the amount of band-bending on MoS2

side is given by φinterface(VG) = φMoS2(VG) − χMoS2 − φB(VG). On aligning the band

structures, we calculate mode-dependent transmission coefficient (τb(~k)) for each branch

b. For including the effect of misorientation angle, the wavevectors in the first brillouin

zone are rotated by θL for the left grain and θR for the grain on the right hand side of the

interface and then mode-dependent transmission coefficient is calculated. Transmission is

computed on the basis of thermionic emission and tunneling is neglected in this current

model. As mentioned in chapter 4, transmission coefficient is given by this expression —

τb(ki) =| 4ki⊥kt⊥ | / | ki⊥+ kt⊥ |2, where ki is the incident wavevector, kt is the wavevec-

tor of the transmitted wave and the subscript ⊥ stands for the perpendicular component of

wvaevector. The grain boundary conductance is calculated using Landauer formalism as

given in eqn. 4.2 in Chapter 4.

5.3 Results and discussion

Before discussing about the impact of mismatch angle between two grains on grain

boundary resistance (RGB), we calculated ballistic resistance in graphene-graphene (Gr-Gr)

interface and compared it with analytically calculated values. We define ballistic resistance

as the resistance between two perfectly-matched grains i.e. when misorientation angle is

0◦. Let us first discuss about how to calculate ballistic resistance of graphene-graphene

interface.

5.3.1 Ballistic resistance of graphene-graphene interface

The quantum conductance is the maximum conductance that can be obtained from a

perfect 1-D conductor and maximum conductance is achieved when transmission coeffi-

cient is 1 for all the modes. Thus the quantum conductance is called ballistic resistance for

1-D conductor and is given by the expression — Gball,1D = 2q2/h, where q is the charge of
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the carrier and h is the Planck’s constant. Using the expression of ballistic conductance for

1-D conductor, the ballistic conductance for a two-dimensional conductor is given by—

Gball,2D = Gball,1D ×M2D(EF ) (5.1)

where M2D(EF ) is the number of 1-D channels available for conduction in width W for a

two-dimensional ribbon and from now onwards will be referred to as channel number. The

channel number at any energy (E) for a given width of the ribbon is calculated as [47]

M(E) = W
h

4
<vx(E)>D2D(E) (5.2)

where <vx(E)> is calculated by 2-D averaging of velocity of all the modes, <vx(E)> =

2
π
vF . vF is the Fermi velocity (≈ 106 ms−1), which is calculated as the slope of the

dispersion (E-k relationship) around Dirac point. D2D(E) is the 2-D density of states.

5.3.1.1 Calculation of density of states, carrier density, and channel number in graphene

The dispersion of graphene around Dirac point is approximated by the relation—E(~k) =

~vF | ~k |, where ~ is the reduced Planck’s constant. The general expression for calculating

2-D density of states is

D2D(~k) =
1

(2π)2
2π | k |
∇kE(~k)

gsgv (5.3)

where gs and gv are constants related to the spin of electron and valley degeneracy re-

spectively. For graphene gv=2 and gs=2 for electrons. ∇kE(~k) is the gradient of energy

dispersion with respect to the wavevector and around Dirac point it can be approximated

by ~vF . Thus for graphene,

D2D(E) =
2

π~2v2F
| E | (5.4)

In general, 2-D carrier density is given as

n2D(EF ) =

∫ ∞
0

f0(E)D2D(E)dE (5.5)
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where f0(E) is the Fermi-Dirac distribution function and can be written as f0(E) = [1 +

exp(E−EF

KBT
)]−1. As graphene is degenerate, so eqn. 5.5 can be approximated by—

n2D(EF ) =

∫ EF

0

D2D(E)dE =

∫ EF

0

2

π~2v2F
EdE =

E2
F

π~2v2F
(5.6)

Using the expressions for density of states and 2D-averaged velocity, channel number in

eqn. 5.2 for graphene can be written as—

M2D(EF ) =
2

π

EF
~vF

W (5.7)

Replacing the expression for channel number obtained from eqn. 5.7 in eqn. 5.1, we

can calculate ballistic conductance in graphene as

Gball,2D

W
=

8q2

~2vF
EF (5.8)

From eqn. 5.6 and 5.8, ballistic conductance in graphene can be expressed in terms of

carrier density as—
Gball,2D

W
=

4q2

h

√
n2D

π
(5.9)

Thus the ballistic resistance (Rball) in graphene, which is the reciprocal of Gball,2D

W
, is in-

versely proportional to the square root of carrier density. On using the values of the con-

stants in eqn. 5.9 and intrinsic carrier density of 8×1010 cm−2, the analytical value of Rball

in graphene is about 405 Ω µm.

We compare analytically calculated values of ballistic resistance for different carrier

densities with our numerically calculated values as shown in Fig. 5.2(b). At intrinsic carrier

concentration (n0 = 8 × 1010 cm−2), the numerically calculated ballistic resistance is 424

Ω µm, which compares quite well with the analytical value of 405 Ωµm. In Fig. 5.2(a)

we can see that transmission coefficient [T(E)] is about 1 for all energies showing perfect
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Figure 5.2. (a) shows perfect transmission for 0◦ mismatch angle between two graphene
grains. The curves outlining the area in different colors represent Fermi window function
(−df/dE), which is symmetric aboutEF , for different carrier densities. (b) shows compar-
ison between numerically and analytically calculated values of GB resistance (RGB) with
carrier density. RGB is inversely proportional to the square root of the carrier density.

transmission for 0◦ mismatch (perfectly-matched grains). The curve encompassing the

blue area in the figure is the Fermi window function, which is defined as the derivative of

Fermi-Dirac distribution function w.r.t. energy, for intrinsic carrier density i.e. when Fermi

level (EF ) is around Dirac point and the number of free electrons is equal to the number of

free holes. Eqn. 4.2 shows that the grain boundary resistance is a function of transmission

coefficient, Fermi window function, velocity (proportional to Fermi velocity in graphene,

which is a constant) and density of states. When the carrier (electron) density increases

the Fermi level goes inside the conduction band and as a result Fermi window function,

which is symmetric about Fermi level, also shifts accordingly as shown in Fig. 5.2(a). The

integral of the product of Fermi window, transmission coefficient and velocity w.r.t. energy

is same for all carrier density but it is due to the 2-D density of states, which is independent

of Fermi level, in the integral of grain boundary resistance that causes the difference in

RGB when plotted against carrier density as shown in Fig. 5.2(b).

In two dimensional materials depending on the orientation of each grain with respect to

the grain boundary and orientation of the grains with respect to each other, grain boundaries
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(GB) can be of different types. Here we have discussed about two particular types of GBs

— the first is when both the grains are rotated by equal angles w.r.t. the GB but one in

clockwise and the other in anticlockwise direction (i.e. θL = θR) and the second is when

both the grains are rotated by different angles w.r.t. the GB (i.e. θL 6= θR). In literature, the

former type of grain boundaries are referred to as twin GBs and the latter as tilt GBs.

5.3.2 Electron transport across graphene grain boundaries

Fig. 5.3(a) and Fig. 5.3(b) show transmission coefficient [T(E)] and GB resistance

(RGB) respectively for various misorientation angles in twin GBs. We see in Fig. 5.3(a) that

perfect transmission is obtained for all the modes at any given energy level. But with the

increase in misorientation angle, some of the modes get reflected and remaining get trans-

mitted, consequently resulting in the reduction of transmission coefficient, which varies

between 0.8 and 0.5 for various mismatch angles. However, we note that even for large

mismatch angles there is no transmission gap in the energy spectrum. Due to the misorien-

ation angle between two grains, if there is a region around Dirac point (≈ 0 eV in our case)

in the energy spectrum where transmission coefficient is zero, we call it— transmission

gap. Perfect transmission at 0◦ mismatch angle translates into ballistic resistance across

graphene GBs as shown in Fig. 5.3(b) [same as the blue curve in Fig. 5.2(b)]. The reduc-

tion in transmission coefficient with increasing misorientation angle maps into increase in

grain boundary resistance as can be seen in Fig. 5.3(b). When the carrier density increases

the Fermi level goes into the conduction band and, consequently, Fermi window function

[−df/dE] also shifts towards higher energy level. As density of states in graphene is pro-

portional to energy around Dirac point (from eqn:5.4), thus, the value of the integral in

eqn. 4.2 increases. As a result of which we see a decrease in GB resistance with increasing

carrier density in Fig. 5.3(b).
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Figure 5.3. (a) shows transmission coefficient vs. energy for various misorientation angles
across graphene twin grain boundaries. (b) shows the variation of grain boundary resistance
with carrier density for the same mismatch angles as plotted in (a). The curves for large
mismatch angles— 14◦, 21◦ and 30◦ are overlapped on each other in both (a) and (b).
Transmission coefficient vs. energy and the resultant GB resistance vs. carrier density for
different misorientation angles in graphene tilt GBs are plotted in (c) and (d) respectively.
A transmission gap opens up for such tilt GBs.

Fig. 5.3(c) and Fig. 5.3(d) show transmission coefficient [T(E)] and grain boundary

resistance respectively for various mismatch angles in tilt grain boundaries. Transmission

coefficient shows a similar reduction with increasing mismatch angles as seen in Fig. 5.3(a),

however, the reduction is more rapid than in the case of twin GBs. In such GBs, we

also observe widening of the transmission gap with increasing misorientation angle. The

transmission becomes zero for large misorientation angles i.e. beyond 10◦ mismatch. This

transmission gap around Dirac point maps into large GB resistance for large angle tilt
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GBs and also grain boundary resistance becomes less sensitive to the variation in carrier

densities. In the literature, we find that the GB resistance across graphene GBs varies

within a wide range— few Ωµm to 50000 Ωµm. The reason for such wide variation in GB

resistance can, thus, be explained clearly with the trends observed in 5.3(b) and 5.3(d) for

twin and tilt GBs respectively.

5.3.3 Electron transport across MoS2 grain boundaries

To study electronic resistance across MoS2 GBs, we use the same set-up as used for

graphene GBs in the previous section. The transmission coefficient as a function of en-

ergy is plotted in Fig. 5.4(a) for different misorientation angles in twin GBs. The blue

curve shows transmission across an imaginary grain boundary (which corresponds to 0◦

mismatch). A perfect transmission is obtained for energies greater than about 0.94 eV and

less than about -0.94 eV. Zero transmission at energies between -0.94 eV and 0.94 eV cor-

responds to the energy band gap of 1.88 eV in intrinsic MoS2. We also observe a gradual

reduction in transmission coefficient with increasing misorientation angles. A similar ab-

sence of transmission gap is found in MoS2 twin GBs as was also observed in graphene

twin GBs. Corresponding to the transmission coefficient for various misorientation angles,

the boundary resistance across MoS2 twin grain boundaries vs. carrier density is shown in

Fig. 5.4(b). We note that the values of RGB in MoS2 twin GBs are almost double than the

values of GB resistance in graphene twin boundaries for a carrier density of 1× 1012 cm−2

but for large values of carrier densities, i.e. 6 × 1012 and 9 × 1012 cm−2, MoS2 twin GBs

have almost same resistance as graphene twin GBs.
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Figure 5.4. (a) shows transmission coefficient vs. energy for various misorientation angles
across MoS2 twin grain boundaries. (b) shows the variation of grain boundary resistance
with carrier density for the same mismatch angles as plotted in (a). Transmission coefficient
vs. energy and the resultant GB resistance vs. carrier density for different misorientation
angles in graphene tilt GBs are plotted in (c) and (d) respectively. Apart from intrinsic band
gap, an additional transmission gap opens up for large tilt GBs.

Fig. 5.4(c) and Fig. 5.4(d) show transmission coefficient vs. energy and GB resistance

vs. carrier density respectively for various misorientation angles in MoS2 tilt GBs. It can

be seen in Fig. 5.4(c) that transmission coefficient decreases with increasing msiorientation

angle and the rate of reduction of transmission coefficient is rapid than what was observed

in MoS2 twin GBs. Like in tilt graphene GBs, a transmission gap is also observed in tilt

MoS2 GBs for large misorientation angles. The variation of GB resistance with misorienta-

tion angle is quite distinct in this case as compared to the variation of RGB in graphene tilt
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GBs. It is important to note that the resistance across MoS2 GBs is much smaller than what

we found in case of graphene GBs. Thus, misorientation of adjacent grains across grain

boundaries can cause a significant reduction in electronic conductance in polycrystalline

graphene; however, GBs in polycrystalline MoS2 might not play much role in electron

conduction.

5.3.4 Electron transport across graphene-MoS2 interfaces

The interfaces formed between two dissimilar materials can be a little different from

those of homojunctions because of the difference in the size and type of unit cells of the two

materials on either side of the interface. Although graphene and transition metal dichalco-

genides like MoS2 have same type of unit cell (hexagonal) but the size of the unit cell is

different. So, before discussing about electron transport across such heterojunctions, we

redefine the nomenclature of the interfaces formed between graphene and MoS2. When

graphene (left side of the boundary) and MoS2 (right side of the boundary) grains are ro-

tated by equal angle with respect to the interface i.e. θL = θR, such heterojunctions are

referred to as Class-I interface in this work, whereas when θL 6= θR such interfaces will be

referred to as Class-II interface from now onwards in this work.

Fig. 5.5(a) shows the thermionic transmission of the electrons across graphene-MoS2

Class-I interface for various misorientation angles and carrier density of 1 × 1012cm−2.

Due to the difference in the work function and electron affinity in graphene and MoS2,

the bands bend and a potential barrier is formed at the interface as shown in the previous

chapter (Fig. 4.2 and Fig. 4.3). We find that the barrier height is independent of the mis-

orientation angle and, consequently, we see in Fig. 5.5(b) that the interface resistance in

Class-I heterojunctions is also independent of mismatch angle. We also note a strong de-

pendence of interface resistance on carrier density as was also seen in chapter 4 (Fig. 4.3).

At very high carrier densities, the interface resistance becomes comparable to the ballistic
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Figure 5.5. (a) shows transmission coefficient vs. energy for various misorientation angles
across graphene-MoS2 class-I interfaces. (b) shows the variation of interface resistance
with carrier density for the same mismatch angles as plotted in (a). Class-I graphene-MoS2

interfaces show neglibible sensitivity towards misorientation angles. (c) shows transmis-
sion coefficient vs. energy for different misorientation angles in graphene-MoS2 Class-II
interfaces. On top of intrinsic barrier height, an additional transmission gap gets added up
for such Class-II graphene-MoS2 interfaces. The resulting interface resistance in Class-II
interfaces vs. carrier density for different misorientation angles are plotted in (d).

resistance of graphene and MoS2 because at such high carrier densities the potential barrier

almost disappears, which can also be seen in Fig. 5.6 and also in Fig. 5.8.
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Figure 5.6. (a)-(f) show transmission coefficient vs. energy for various carrier densities
in Class-I graphene-MoS2 interfaces with misorientation angles of 0◦, 4◦, 8◦, 14◦, 21◦, and
30◦ respectively.

57



Figure 5.7. (a)-(d) show transmission coefficient vs. energy for various carrier densities
in Class-II graphene-MoS2 interfaces with misorientation angles of 0◦, 4◦, 8◦, and 14◦

respectively.

Fig. 5.5(c) shows transmission coefficient vs. energy for various misorientation angles

in Class-II graphene-MoS2 interface at a carrier density of 1×1012 cm−2. It can also be seen

that transmission coefficient decreases with increasing mismatch angle. A transmission

gap gets added on top of existing potential barrier and the transmission gap widens with

increasing misorientation angle. The transmission becomes zero for large mismatch angles

(beyond 14◦). A strong dependence of interface resistance on misorientation angles in

Class-II graphene-MoS2 heterojunctions can be seen in Fig. 5.5(d).
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In homojunctions like graphene-graphene and MoS2-MoS2 GBs, band alignment is

independent of the position of the Fermi level, thus, transmission coefficient is independent

of carrier densities in homojunctions. However, in heterojunctions, barrier height (band

alignment) is a function of carrier density (position of the Fermi level) due to the difference

in density of states of graphene and MoS2. Transmission coefficient for different carrier

densities in Class-I graphene-MoS2 interface is plotted for 0◦, 4◦, 8◦, 14◦, 21◦, and 30◦ in

Fig. 5.6 (a)-(f) respectively. It should be noted that at high carrier densities, the barrier

height completely disappears in case of all mismatch angles. For Class-II graphene-MoS2

junction, transmission coefficient for different carrier densities is plotted for 0◦, 4◦, 8◦, and

14◦ in Fig. 5.7 (a)-(d) respectively. For low mismatch angles, the potential barrier becomes

zero at high carrier densities, but for large mismatch angles— 8◦, and 14◦— a barrier height

exists even at high carrier densities as can be seen in Fig. 5.7(c) and (d), thereby, resulting

into very large interface resistance.

Figure 5.8. Comparison of GB/interface resistance vs. misorientation angles across Gr-Gr
and MoS2-MoS2 GBs and Gr-MoS2 interface.

Fig. 5.8 shows a comparison of the interface resistance among Gr-Gr, MoS2-MoS2, and

Gr-MoS2 interfaces. It can be seen that, in general, twin GBs in homojunctions and Class-

I interfaces in heterojunctions show a very weak dependence on the degree of mismatch
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between adjacent grains, whereas tilt GBs in homojunctions and Class-II interfaces in het-

erojunctions exhibit strong dependence on misorientation angles except in MoS2, where

both tilt and twin GBs are found to show a weak dependence on mismatch angles. The

weak angle dependence in MoS2-MoS2 GBs can be attributed to the flat parabolic conduc-

tion band because of which the underlap in the bandstructures on the either side of the GB

is quite small even at large mismatch angles.

5.4 Conclusion

In conclusion, we find that misorientation angle between two adjacent grains play a

very significant role in both homojunctions and heterojunctions. We show that the grain

boundary resistance across graphene GBs vary over a very wide range depending on the

degree of mismatch between adjacent grains and type of GBs. Twin GBs are found to scat-

ter electrons rather coherently, whereas tilt GBs strongly affect transmission of electrons

across them. However in comparison with graphene, MoS2 shows weaker dependence on

misorientation angle for both twin and tilt GBs. This can be attributed to the flat parabolic

bandstructure around K-valleys in MoS2 as compared to the steep linear E-k relationship

around K-valleys. We also show that the interface resistance across Class-II graphene-

MoS2 heterojunctions exhibit a strong dependence on misorientation angle, whereas the

interface resistance in Class-I graphene-MoS2 heterojunctions is almost independent of the

effect of mismatch angles. However, Class-I interfaces exhibit a strong dependence on

carrier densities.
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CHAPTER 6

SUMMARY

We find that transport properties, both thermal and electronic, are significantly affected

due to the presence of extrinsic factors such as finiteness of the 2D system, substrate,

and mismatch angles between two grains at the interface. Our comprehensive study pro-

vides a deeper insight about the physics of how these external factors affect both heat and

electron transport in van-Der Waals two-dimensional materials. In Chapter 2, we show

that lattice thermal conductivity of intrinsic graphene keeps diverging with length due to

quadratic nature of out-of-plane normal modes until these quadratic modes get partially

linearized (renormalized) for large graphene samples; as a result the thermal conductiv-

ity gradually converges to a bulk value. The width dependence of thermal conductivity

in graphene ribbons exhibit a Pouiselle hydrodynamic-like heat flow. GBs are found to

reduce thermal conductivity considerably even in the presence of substrate. A bimodal

phonon scattering mechanism is uncovered according to which small mismatch angles be-

tween adjacent grains can be captured by grain boundary roughness alone, whereas, for

large mismatch angles a disordered patch is formed at the interface which significantly

adds to the thermal boundary resistance. Interfaces are also found to affect the electronic

transport between graphene-MoS2 heterojunctions as well. Graphene-MoS2 interfaces are

found to be strongly dependent on applied gate voltage and at very high carrier densities,

graphene-MoS2 heterojunctions form Ohmic contacts. Interface resistance across such het-

erojunctions are found to be varying from 106 to 102 Ω µm, when the mismatch angle

between graphene and MoS2 is zero. However, we also show that interface resistance
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across graphene-MoS2 heterojunctions largely depend on misorientation angles between

the grains and can vary over a very wide range— 102 to 1014 Ω µm.

The model we used to compute electronic interface resistance in homojunctions as well

as heterojunctions neglect the possibility of tunneling across the interfaces, which can be

included using WKB approximation in future work. The calculations of large samples with

boundaries using first principles can be computationally expensive, however, can, possibly,

be done in the future to check how the accuracy of this model.
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