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Abstract 
 

Characteristics of guided modes in slab waveguide structures which consist of 

chiral materials and left handed materials (LHMs) are analytically presented. We 

concentrate our study on chiral nihility materials, in which the permittivity and 

permeability are simultaneously zero.Two waveguide structures are studied in 

details.The first one is a symmetricslab waveguides in which the core consists of 

chiral nihility and the claddingsare left-handed meta-materialswhereas the 

second one is a symmetric slab waveguide in which the claddings are chiral 

nihility materials and the core layer is negative index materials.  

The dispersion equation of an asymmetric three-layered slab waveguide in which 

all layers are chiral materialsis presented. Then, the dispersion equation of a 

symmetric one is derived. Forodd and even guided modes, the dispersion 

equations, normalized cutoff frequencies, electromagnetic fields and energy flow 

of right-handed and left-handed circularly polarized (RCP and LCP) modes are 

derived and plotted. Numerical results of guided low-order modes areprovided. 

Some novel features such as abnormal dispersion curves in the chiral nihility 

waveguides are found. 
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IV 
 
 

 

 

 

 

 

Dedication 
 
 

This thesis work is dedicated to my husband, Tawfeek, who 
has been a constant source of support and encouragement 

during the challenges of graduate and life. I am truly 
thankful for having you in my life. 

 
This work is also dedicated to my parents, Naji and 

Samia Abu Helal, who have always loved me 
unconditionally and whose good examples have taught me 

to work hard for the things that I aspire to achieve. 
 

I will not forget my daughters,Shaimaa and Sham, for 
their patience. 

 
  



V 
 
 

 

Acknowledgment 
First and above all, I praise God, the almighty for providing me this opportunity and 

granting me the capability to proceed successfully.This thesis owes its existence to 

the help, support and inspiration of severalpeople. Iwould first like to thank my thesis 

advisor Dr. Sofyan A. Taya of the Faculty of Science, Physics Department, at The 

Islamic University of Gaza. The door to Dr. Tayaoffice was always open whenever I 

ran into a trouble spot or had a question about my research or writing. He 

consistently allowed this paper to be my own work, but steered me in the right 

direction whenever he thought I needed it. 

I am alsolike to express my sincere appreciation and gratitude to Dr. Khitam Y. 

Elwasife of the Faculty of Science, Physics Department, at The Islamic University of 

Gaza, for her guidance during my research.Her support and inspiringsuggestionshave 

been precious for the development of this thesis content.  

I am also indebted toDr. Tahany R. Dalloul and Ms.HanaaElejla, whome have been 

a constant source of encouragement and enthusiasm, not only during this thesis 

projectbut also during the two years of my Master program.  

I would never forget all the chats and beautiful moments I shared with some of my 

friends and classmates. They were fundamental in supporting me during these 

stressful and difficult moments. 

Also, I know that you did not want to be named, a person that believed in my power 

and supported me. My lovely husband, Dear TawfeekAljalees thanks you foryour 

immeasurable patience during the years of studies, projects, and telephone chats. 

My deepest gratitude goes to my family, my parent, my sisters and brothers for their 

unflagging love and unconditional support throughout my life and my studies.You  

made me live the mostunique, magic and carefree childhood that has made me who I 

am now! 

And finally, I warmly thank and appreciate my mother and father-in-law 

fortheirmaterialandspiritual support in all aspects of my life. 

 

 



VI 
 
 

Table of Contents 
Declaration .................................................................................................................. I 
Abstract ......................................................................................................................II 

Dedication ................................................................................................................. IV 
Acknowledgment ........................................................................................................ V 
Table of Contents ..................................................................................................... VI 

List of Figures ........................................................................................................ VIII 
Chapter 1 Introduction to Electromagnetic and Waveguide Theories ..................... 2 
1.1 Electromagnetic theory ............................................................................................ 2 

1.1.1 Maxwell's equations and constitutive relations ...................................................... 2 

1.1.2 Boundary conditions ............................................................................................. 5 

1.1.3 Wave equations .................................................................................................... 6 

1.1.4 Wave parameters .................................................................................................. 8 

1.1.5 Poynting vectors ................................................................................................... 9 

1.1.6  Reflection and transmission of  plane waves ........................................................ 9 

1.1.7  Total internal reflection ...................................................................................... 12 

1.2 Waveguides theory ................................................................................................ 12 

1.2.1 Waveguide structure ........................................................................................... 13 

1.2.2  Modes in waveguide .......................................................................................... 14 

1.2.3 Goos-Hänchen shift ............................................................................................ 15 

Chapter 2 Left-Handed and Chiral Metamaterials ................................................. 17 
2.1 History of left handed materials ............................................................................. 17 
2.2 Electromagnetic properties and applications of left-handed materials ..................... 17 
2.2.1 Reversal of Snell’s law ....................................................................................... 17 

2.2.2  Left-Handed medium as a lossy medium ............................................................ 19 

2.2.3 Unique properties of LHMs ................................................................................ 20 

2.2.4 Applications of LHMs. ....................................................................................... 20 

2.3 Bi-isotropic and Bi-anisotropic media .................................................................... 21 

2.3.1 Chiral metamaterials ........................................................................................... 22 

2.3.2 Previous studies .................................................................................................. 24 

2.4  Plane waves in chiral media .................................................................................. 25 
2.5 Dispersion equations of three-layered asymmetric slab chiral                                              
waveguides.................................................................................................................. 26 



VII 
 
 

2.6 Dispersion equations of a three-layered symmetric slab chiral waveguides ............ 30 

Chapter 3 Characteristics of Electromagnetic Waves in Slab Waveguide 
Structures Comprising Chiral Nihility Film and Left-Handed Material 
Claddings. .................................................................................................................. 34 
3.1 Dispersion equations of three-layered symmetric slab chiral core and achiral 
claddings waveguides .................................................................................................. 34 
3.2 Guided modes in slab chiral nihility core and LHMs claddings                                                             
waveguides.................................................................................................................. 36 

3.2.1  Odd modes ........................................................................................................ 37 

3.2.2  Even modes ....................................................................................................... 39 

3.3 Results and discusion ............................................................................................. 41 
3.3.1 Dispersion curves ............................................................................................... 42 

3.3.2  Odd guided modes ............................................................................................. 43 

3.3.3. Even guided modes ............................................................................................ 46 

Chapter 4 Propagation of Electromagnetic Waves in Slab Waveguide Structure 
Consisting of Chiral Nihility Claddings and Negative-Index Material Core 
Layer .......................................................................................................................... 50 
4.1 Dispersion relations of three-layered symmetric slab achiral core and chiral 
cladding waveguides ................................................................................................... 50 
4.2 Guided modes in chiral nihility claddings and NIM core waveguide ...................... 52 

4.2.1 Odd modes ......................................................................................................... 52 

4.2.2 Even modes ........................................................................................................ 54 

4.3 Results and discusion ............................................................................................. 56 
4.3.1  Dispersion curves .............................................................................................. 57 

4.3.2 Odd guided modes .............................................................................................. 58 

4.3.3 Even guided modes ............................................................................................. 60 

Conclusions ................................................................................................................ 62 

References .................................................................................................................. 64 

 

  



VIII 
 
 

List of Figures 
 
Figure (1.1): An electromagnetic wave incident at a plane interface....................... 10 
 
Figure (1.2): Total internal reflection of light beam (TIR)...................................... 12 
 
Figure (1.3): Planner waveguide structure. ............................................................ 13 
 
Figure (1.4): Ray picture showing the Goos-Hänchen shift. ................................... 15 
 

Figure(2.1):Propagation of the wave vector 


k and Poynting vector


S  in (a) Right 

handed material, (b) Left handed material…………………………………………..18  

Figure(2.2): Negative refraction of the electromagnetic wave on the interface of a 
"right-handed" and a "left-handed" material. ........................................................... 19 
 
Figure(2.3): micro helix  model. ............................................................................ 22 
 
Figure(2.4): Geometry of the three-layered asymmetric slab chiral waveguide. ..... 26 
 
Figure(2.5): Geometry of the three-layered symmetric slab chiral waveguide. ....... 30 
 
Figure(3.1): Geometry of the three-layered symmetric slab chiral core and achiral                                                                               
claddings waveguide. ............................................................................................. 35 
 
Figure(3.2): Dispersion curves of guided modes in the slab chiral nihility core and 
LHM claddings waveguide. .................................................................................... 43 
 
Figure(3.3): Amplitudes of electromagnetic field components at 푘0푑 = 5.2 for RCP 
odd mode when m=1, 푛푒푓푓 = 1.223...................................................................... 44 
 
Figure(3.4): Energy flux at 푘0푑 = 5.2 for RCP odd mode when m=1, (a) 푛푒푓푓 =
1.223; (b) 푛푒푓푓 = 1.02219. .................................................................................. 44 
 
Figure(3.5):Amplitudes of electromagnetic field components at 푘0푑 = 4 for LCP 
odd mode when m=0. ............................................................................................. 45 
 
Figure(3.6):Energy flux at 푘0푑 = 4 for LCP odd mode when m=0. ...................... 45 
 
Figure(3.7): Amplitudes of electromagnetic field components at 푘0푑 = 1.5 for RCP 
even mode when m=0. ............................................................................................ 46 
 
Figure(3.8):Energy flux at 푘0푑 = 1.5 for RCP even mode when m=0. .................. 47 
 
Figure(3.9): Amplitudes of electromagnetic field components at 푘0푑 = 6 for LCP 
even mode when m=1. ............................................................................................ 48 
 



IX 
 
 

Figure(3.10): Energy flux at 푘0푑 = 6 for LCP even mode when m=1. .................. 48 
 
 
Figure(4.1): Geometry of the three-layered symmetric slab achiral core and chiral                                                                               
cladding waveguide. ............................................................................................... 50 
 
Figure(4.2): Dispersion curves of guided modes in the chiral nihility cladding and 
negative- indexmaterial core waveguide. ................................................................ 57 
 
Figure(4.3): Amplitudes of electromagnetic field components at 푘0푑 = 2.2 for RCP 
odd mode when m=1 ,푛푒푓푓 = 1.6921. .................................................................. 58 
 
Figure(4.4): Energy flux at 푘0푑 = 2.2 for RCP odd mode when m=1, (a) 푛푒푓푓 =
1.6921; (b) 푛푒푓푓 = 0.1284. .................................................................................. 58 
 
Figure(4.5): Amplitudes of electromagnetic field components at 푘0푑 = 2 for LCP 
odd mode when m=0. ............................................................................................. 59 
 
Figure(4.6): Energy flux at 푘0푑 = 2 for LCP odd mode when m=0. ..................... 59 
 
Figure(4.7): Amplitudes of electromagnetic field components at 푘0푑 = 0.5 for RCP 
even mode when m=0. ............................................................................................ 60 
 
Figure(4.8):Energy flux at 푘0푑 = 0.5 for RCP even mode when m=0. .................. 61 
 
Figure(4.9): Amplitudes of electromagnetic field components at 푘0푑 = 3 for LCP 
even mode when m=1. ............................................................................................ 61 
 
Figure(4.10): Energy flux at 푘0푑 = 3 for LCP even mode when m=1. .................. 62



1 
 
 

 

 

 

 

Chapter 1 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 



2 
 
 

Chapter1 

Introduction to Electromagnetic and Waveguide Theories 

1.1 Electromagnetic theory 

James Clark Maxwell (1831-1879) unified the most important experimental  

laws on electromagnetic, which presented by previous scientists and formulated a 

symmetric coherent set of equations governing the behaviour of the macroscopic 

electromagnetic phenomenon. These equations are known as Maxwell's equations.  

 

1.1.1 Maxwell's equations and constitutive relations 

Maxwell's equations obtained theoretically the speed of an electromagnetic 

wave which matches the experimental value for the speed of light, within a small 

experimental error. In fact, the form that we know today was first expressed by 

Oliver Heaviside (1850-1925), but Maxwell was the first to show them clearly. 

The basic Maxwell equations in derivative form are given by 

 

∇ ×


E =  −
휕



B
휕푡  Faraday's Law (1.1) 

∇ ×


H =  
휕



D
휕푡 + 퐽 Ampere's Law (1.2) 

∇ .


D =  휌 Gaus's Law (1.3) 

∇ .


B = 0 No magnetic monopoles (1.4) 

 

These equations are reasonable for any medium as well as vacuum. Where


E in volts 

per meter (V/m) is the electric field, ρ in coulombs per cubic meter (C/m3) is the 

electric charge density, J in amperes per square meter (A/m2) is the electric current 

density,


D in coloumbs per square meter (C/m2) is the electric induction vector, 

known as the electric displacement vector or electric flux density and 


H in amperes 
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per meter (A/m), is the magnetic strength vector, 


D  and 


H are related to 


E  and 


B  

through 

 

 

 



P+E =D 0  (1.5) 

 )M+H (  =Bor    ,M -/B  =H 00



  (1.6) 

 

where the polarization vector 


P  is the volume density of electric dipole moment and 

the magnetization vector 


M  is the volume density of magnetic dipole moment. ɛ0 

and µ0 are two constants corresponds to the permittivity and the permeability of 

vacuum, respectively. They are given the values of 7
0 104   H/m and 

12
0 1085418782.8  F/m.The relation between 



P and 


E , or the relation between



M  and 


H , is usually called the constitutive relations. In vacuum, we have 


P = 0 

and 


M = 0, or 


E =D 0 and


H   =B 0 .Different kinds of media introduce different 

constitutive relations, such that 

● Simple media which is non-dispersive, linear and isotropic, these relationships can 

be written as 

 


 EP e 0
 



 HM m    

(1.7) 

 

where e  and m   is the electric susceptibilityand the magnetic susceptibility of the 

medium, respectively. Thus the constitutive relations of the simple media reads 

 

 

D = 0 1 + e


E =  r 0



E ;      or 


D =  휀


E  (1.8) 

 

B =  0 1 +  m


H = r 0



H ;    or 


B =  휇


H  (1.9) 
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in which 휀 = r 0  and 휇 = ,0 r where ɛ and  µ are permittivity and permeabilityof 

the medium, respectively.ɛr and µr are relative permittivity and relative permeability, 

respectively.  

● Dispersive media where 


D depends on the time derivatives of all orders of


E . Also


B and 


H  have the same behavior. The constitutive relations become linear 

differential equations in the form  

 

 ...2

2

21 












t
E

t
EED   (1.10) 

 ...2

2

21 












t
H

t
HHB   (1.11) 

 

● Nonlinear media in which the parameters ɛ and µ depend on the field strengths. 

Also, they are functions of 


E  and 


B . 

● Anisotropic media where polarization depends on 


E  location and time. So does 


M . 

 

 

E =D   , 


H  =B  . (1.12) 

 

where ɛ is the tensor permittivityand µ is the tensor permeability, taking the form  

 





















zzzyzx

yzyy

xzxyxx









  

  

  

yx   ,  




















zzzyzx

yzyy

xzxyxx









  

  

  

yx  

 

● Bi-isotropic and bi-anisotropic media where cross coupling between the electric 

and magnetic fields take place. These media become polarized and magnetized at the 
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same time when placed in an electric or magnetic field. The general constitutive 

relations are given by 

 

 

D =  휀.


E +  휉.


H  (1.13) 

 

B =  .


E + 휇.


H  (1.14) 

 

where  ,  ,  , and   are generally some of them are 3x3 tensors and some are 

scalars (Zhang and Li, 2008; Griffiths,1999).These media will be introduced in 

details in the next chapter.  

 

1.1.2 Boundary conditions 

The solution of electromagnetic problems becomes much easier if we study the  

behavior of electromagnetic fields on the boundary or the  interface between two 

media. The  boundary conditionscan be summarized as (Zhang and Li, 2008; 

Griffiths, 1999). 

1. The normal component of the magnetic flux is continuous across the surface 

of discontinuity i.e.  

 

 0).( 12 


BBn  (1.15) 

2. The normal component of the electric displacement is discontinuous by 휌, if a 

surface charge of density 휌exists, then 

 

 


).( 12 DDn  (1.16) 

3. The tangential component of the electric field is continuous across the 

surface, i.e. 

 0)( 12 


EEn  (1.17) 

4. The tangential component of the magnetic field is discontinuous across the 

surface by J, if  a surface current of density J  exists, then 

 

 JHHn 


)( 12  (1.18) 
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1.1.3 Wave equations 

The wave equationscan be derived directly from Maxwell's equations. It  gives 

the space and time dependence of  the electric and magnetic field vector. The wave 

equations are partial differential equations of second order (Thide, 2004). In the 

source-free region, where ρ = 0 and J = 0, we want to derive the wave equation  for 

the 


E  and 


B  fields. Maxwell's equations,using the constitutive relations  (1.8) and 

 (1.9), now take the form 

 

 ∇ ×


E =  −
휕



B
휕푡  (1.19) 

 ∇ ×


B = ɛμ
휕



E
휕푡  (1.20) 

 

 ∇ .


E = 0 (1.21) 

 ∇ .


B = 0 (1.22) 

 

Taking the curl of Eq.  (1.19), we have   

 

 ∇ × ∇ ×


E =  −휖휇 2

2

t
E






 (1.23) 

 

Using the vector identity, the handy "BAC-CAB" formula  

 

 


A ×


B ×


C =  


B


A .


C −


C


A .


B  (1.24) 

 

The wave equation have the form (Zhang and Li, 2008; Griffiths, 1999) 

 

 

 E2 − ϵμ 2

2

t
E






 = 0, (1.25) 



7 
 
 

 

For steady-state sinusoidal time-dependent fields, we assume an electromagnetic 

wave propagates at a single angular frequency ω (in radians per meter). A vector that 

represents the electromagnetic field is, in the phasor notation, i.e. 

 

 tjertr  
0  )(),(  



, 
(1.26) 

 

where 


  is either 


E  or ,


H 0  is the amplitude of the wave (Zhang and Li, 2008; 

Griffiths, 1999). Using the following substitutions in Maxwell Eq. (1.19) and 

Eq.(1.20) we get 

 

 

 

휕
휕푡 → 푗휔 ,           2

2

2




t

 (1.27) 

We have   

 

 

 ×


E =  −푗휔


B =  −푗휔μ ,


H  (1.28) 

 

 ×


H = 푗휔


D = 푗휔휀


E , (1.29) 

 

The wave equation  (1.25) of 


E  becomes  

 

 


 E2 + 2k


E = 0, (1.30) 

where 2k = 2 , is the wave number. The wave equation can be written for 


H -

field, 

 

 H2 + 2k


H = 0 (1.31) 

 

Eqs.  (1.25),  (1.30) and (1.31)are three dimensional equations called Helmholtz 

equations (Thide,2004; Zhang and Li, 2008; Griffiths, 1999). where the laplacian 

operator 2 is given in rectangular coordinates by  
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 2 = 2

2

2

2

2

2

zyx 








 , (1.32) 

 

1.1.4 Wave parameters 

By deriving the wave equations we end up with a wave velocity (Thide, 2004) 

equal to 

 

 푣 =  
1

√휀휇
 , (1.33) 

 

The index of refraction or the refractive  index, n, is defined by (Griffiths, 1999). 

 

 푛 =  
푐
푣 =  



00
 , (1.34) 

 

where, c is the speed of  light in vacuum given the value,푐 =  
00

= 810*3 . 

 

The electromagnetic wave which represents the solution of the wave equation takes 

the form 

 ).(
0),( trkjetr  

 

 , 
(1.35) 

 

Since 


k  is the wave vector . It likes any vector has a magnitude and direction. Its 

magnitude is the wave number (k), which is inversely proportional to the wavelength 

and its direction is ordinarily the direction of wave propagation(Thide, 2004), i.e. 

 

 nn
c

k  2 



  (1.36) 

 

In vacuum, the wave number is 00 /2 k . Consequently, we can obtain the wave 

number in a medium if the refractive index is known 
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 k = n 0k  (1.37) 

 

1.1.5 Poyntingvectors 

The product of electric and magnetic fields is related to the energy of the 

electromagnetic wave (Zhang and Li, 2008) since the voltage is the integral of 

electric field and the magnetic field is created by current. Thus  

 

 

 HES   (1.38) 

 

is the energy that passes through a unit area per unit time. It is called a 

Poyntingvector. For an electromagnetic wave propagating at a single angular 

frequency ω, Poynting vector 


S  is given as  

 

 )Re(
2
1 *



 HES  (1.39) 

 

where


*H is the complex conjugate of 


H (Griffiths, 1999). 

 

1.1.6  Reflection and transmission of  plane waves 

When a monochromatic electromagnetic plane wave is incident at an oblique 

angle θi on a boundary between two linear, homogeneous and isotropic media with 

different refractive indices, a portion of this wave is reflected at angle θr, and another 

portion is transmitted at angle θt (Markoš and Soukoulis, 2008). The three angles are 

shown in Figure (1.1). 
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Figure (1.1):An electromagnetic wave incident at a plane interface. 

 

The three laws of geometrical optics which govern this phenomenon are (Griffiths, 

1999) 

 All wave vectors 


k  lie in a common plane: the three wave vectors ik


, rk


 and 


tk all lie in a plane known as the plane of incidence includes the unit normal 

to the interface. 

 Law of Reflection: the angle of incidence is equal to the angle of reflection 

i.e. θi= θr. 

 Law of Refraction – Snell’s Law: which states that  n1 sin θi = n2 sin θt. 

The reflectivity of light depends upon the angle of incidence and the plane of 

polarization of the light. There are three possible polarization cases to consider 

Case (I): known as transverse electric (TE) polarization, occur when 


incE is 

perpendicular to the plane of incidence and 


incB is parallel to the plane of incidence. 

Case (II): known as transverse magnetic (TM) polarization, occur when 


incE is 

parallel to the  plane of incidence and 


incB is perpendicular to the plane of incidence. 
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Case (III): The most general case, is a linear vector combination of Cases (I) and (II) 

above, occur when 


incE  is neither parallel nor perpendicular to the plane of incidence 

and 


incB is neither parallel nor perpendicular to the plane of incidence. 

Although, Snell's Law can be used to relate the incident and transmitted angles, 

Fresnel's equations describe the reflection (r) and transmission (t) coefficients of 

electromagnetic waves at the boundary and can be stated in terms of the angles of 

incidence and transmission for nonmagnetic media as 

 

 
ttii

ttii
TE nn

nnr



coscos
coscos





 

(1.40) 

   

 
itti

tiit
TM nn

nnr



coscos
coscos





 

(1.41) 

 

 

 

 

ttii

ii
TE nn

nt



coscos

cos2



 

(1.42) 

 
itti

ii
TM nn

nt



coscos

cos2



 

(1.43) 

 

For a special angle of incidence where the reflection coefficient, is equal to zero, i.e. 

no reflected wave exists. This angle is known as the Brewster angleand is denoted by 

θB. Generally,  Brewster angle is given by 

 

 
1

2tan
n
n

B 
 

(1.44) 

 

At the boundary between nonmagnetic dielectrics, i.e. for an interface between two 

right-handed materials of positive refractive indices, the Brewster angle exists for 

only the  (TM) wave, while the incident angle of zero reflection for the (TE) wave 

does not exist. Furthermore, we can see that the Brewster angle exists for only the 
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(TE) wave when we treat the formula for the reflection coefficient for the boundary 

between magnetic media. While if one of the media is a left handed material with 

negative index of refraction, Brewster angle can be found for both 

polarizations(Thide, 2004; Zhang and Li, 2008). 

 

1.1.7  Total internal reflection 

When an incident plane wave passes from an optically dense medium into an 

optically rarer medium, i.e. n1> n2another special angle of incidence called a critical 

angle c  exists(Thide, 2004; Zhang and Li, 2008). Where no transmitted wave and 

the refracted wave is propagated parallel to the boundary 90t . This angle does 

not depend on polarization,  it is actually defined by Snell’s law and given by 

 

 
1

2sin
n
n

c   (1.45) 

 

If the angle of incidence exceeds the critical angle, θi>θc, the wave comes back into 

the same medium after reflection from interface. This total reflection phenomenon at 

the boundary of two nonconducting media is also known as total internal reflection. 

 
Figure (1.2): Total internal reflection of light beam(TIR). 

1.2 Waveguides theory 

Waveguides (Kapany andBurke, 1997) are the structures that are used to 

guide and confine electromagnetic waves.Waveguides are classified to as either 

metal waveguides or dielectric waveguides. Metal waveguides are assumed as one 

enclosed conductor filled with an insulating medium but the dielectric waveguides 

consists of multiple dielectrics and the electromagnetic wave propagates along the 
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waveguide by reflections at the boundaries. The optical fiber, usually has a circular 

cross-section,  is a well known dielectric waveguide, even though the planar slab 

waveguide are the simplest dielectric guide which widely used in integrated optics. 

Also, there are many different structures of waveguides. Depending on the frequency 

of the wave to be transmitted, the amount of power to be transferred, and the amount 

of losses one can choose the suitable structure.These structures are  

 Coaxial cables are widely used in radio frequencies (RF) below 3 GHz above 

that the losses are too enormous. 

 Two-wire lines which  can radiate at microwave frequencies . 

 Micro strip lines are used widely in microwave integrated circuits. 

 Rectangular waveguides are used at frequencies greater than 3GHz to transfer 

large amounts of microwave power.  

1.2.1 Waveguide structure 

The structure to be discussed is the planner slab waveguide with its simplest 

form shown in Figure (1.3). The figure shows a planner film having a refractive 

index nf sandwiched between two materials called cover and substrate with lower 

refractive indices nc and ns respectively. The fields will either be symmetric or 

asymmetric, due to the symmetry of the geometry. In order to confine the field, the 

fields outside the slab must be evanescent, i.e. they decay in the x direction. 

Moreover, the plane wave inside bounces back and forth due to total internal 

reflection (Griffiths, 1999).  

 
Figure (1.3):Planner waveguide structure. 

 

The propagation of the field can be characterized as a sum of two plane TEM waves, 

upward and downward waves, propagating along zig-zag paths between the guide 

walls, with total internal reflection of the light at the film-substrate and film-cover 
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interfaces (Kapany and Burke, 1997). These waves are monochromatic and coherent 

travelling with a wave vector


k  and  having an angular frequency  . There are  

limited frequencies and forms for the wave function which can propagate in the 

waveguide due to the constraints of the boundary conditions. The lowest frequency 

for the  mode to propagate is the cutoff frequency of that mode. The mode with the 

lowest cutoff frequency is the basic mode of the waveguide, and its cutoff frequency 

is the waveguide cutoff frequency. In order to design the suitable waveguide 

structure, the dispersion relation becomes so important. The dispersion equation of 

the guide yielding the propagation constant β as a function of the frequency ω and 

the film thickness d.It is often convenient to use the effective refractive index (N) of 

the guide, which is  defined by 

 

 
k

N 
  (1.46) 

 

where 


k is the wave vector.The guide may be symmetric or asymmetric guide due to 

the matches between  nc and ns.  

 

1.2.2  Modes in waveguide 

 The modes of the guide are the solutions of the wave equations taking the  standard 

form 

 

 ) exp(),(),,( zjyxEzyxE 


 (1.47)  

 ) exp(),(),,( zjyxHzyxH 


 (1.48) 

 

According to which of the longitudinal components are zero, we may classify the 

solutions as 

● Transverse electric and magnetic (TEM) mode, Ez  =0, Hz = 0. 

● Transverse electric (TE) mode,Ez = 0, Hz 0.  

● Transverse magnetic (TM) mode, Ez  0, Hz = 0.   

● Hybrid mode,  Ez  0, Hz  0 (Griffiths, 1999). 
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1.2.3 Goos-Hänchenshift 

          When the electromagnetic wave reaches the interface between the film and the 

cladding, it penetrates in the cladding until a specific depth  before suffering 

reflection this cause the reflected wave is shifted relative to the incident wave. This  

ray shift,  shown in Figure (1.4), is so called the Goos-Hänchen Shift (Markoš and 

Soukoulis, 2008). 

 

 
Figure (1.4):Ray picture showing the Goos-Hänchen shift. 
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Chapter 2 

Left-Handed and Chiral Metamaterials 

2.1 History of left handed materials 

Metamaterials are artificial media composed of elements which dimension are  

small compared to the wavelength of interest. Metamaterials may display properties 

which are more noticeable than those observed in natural materials. The famous 

example of these properties are metamaterials with a negative refractive index which 

are well known as negative index metamaterials (NIMs), also called left handed 

materials (LHMs). The general consideration of the electrodynamics properties of the 

materials with simultaneously negative values of the dielectric permittivity  and 

magnetic permeability  had been introduced by Veselago, in 1968 (Veselago, 

1968). Veselago presented that when the algebraic sign of real parts of the 

permittivity and permeability are the same, electromagnetic waves will propagate. 

Otherwise, waves will not propagate in a medium. Also, he showed that LHMs have 

the ability to support backward waves. The concept to fabricate metamaterials with 

negative index of refraction seemed to be unfamiliar and new, so Veselago's work 

placed dormant for nearly 30 years. Pendryand co-workers (1996) released that the 

concept to make LHMs is to treat permitivity and permeability separately, so he used 

thin wire structure (wire array) to produce negative permitivity and magnet-free split-

ring resonator (SRR) structure to produce negative permeability (Pendry, Holden, 

Robbins and Stewart, 1999). Recently though, much attention of this kind of 

metamaterials has been drawn and the fabrication of perfect lens where an  object 

can be recreated without any error in diffraction was allowed (Pendry, 2000). LHMs 

has been first experimentally observed by Shelby, Smith, and Shultz (Shelby, Smith 

and Schultz, 2001) in completely different systems. 

2.2 Electromagnetic properties and applications of left-handed materials 

2.2.1 Reversal of Snell’s law 

It is noticeable from Eq. (1.38) that the Poynting vector 


S  is given by a right-

handed rule, as well as the wave vector 


k . However, when the medium has a 
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negative value of permitivity and permeability these vectors become left handed and 

both of 


S  and 


k  propagate in opposite direction as explain in Figure (2.1) . Note 

that, the electromagnetic wave propagates in the direction of the Poynting vector 


S

where the direction of the group velocity. 

 

Figure(2.1):Propagation of the wave vector 


k and Poynting vector


S  in (a) Right 

handed material, (b) Left handed material.  

 

Moreover, the orientation of the wave vector 


k gives the direction of the phase 

velocity. Consequently, phase and group velocities will reversed and become 

antiparallel. Such antiparallel orientation corresponds to so called  "backward 

waves",or"negative group velocity". The medium then is Left Handed. The 

antiparallelity of phase and group velocities immediately affect Snell's law as 

explained in Figure (2.2). 
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Figure(2.2): Negative refraction of the electromagnetic wave on the interface of a 

"right-handed" and a "left-handed" material. 

 

The ray propagates along the way (1–2) through the interface between two media for 

positive values of  and  . Otherwise, if one of the media has negative and  , the 

ray takes the bath (1–3). This unusual propagation of the wave, first discussed by 

Schuster (Schuster, 1904), is a result of the opposite travelling of the phase and 

group velocities and of the continuity of the tangential components of the wave 

vector on the interface between the two media (Markos and Soukoulis, 2008).  

 

 

 

2.2.2  Left-Handed medium as a lossy medium 

The energy of electromagnetic field is given by (Sarid and Challener, 2010) 

 

 















 22 )()(

8
1 HEU








 (2.1)

 

implies that the permittivity   and permeability   must depend on the frequency. 

This dependence means that both the permittivity and permeability must be complex, 

such as any lossy media. Otherwise, the energy U reduces to the expression  

  )8/(  22  HEU  which would have unacceptable negative value for negative 
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 and  (Markos and Soukoulis, 2008). The general expressions for  and  as a 

function of angular frequency f 2   were proposed as 
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where p ,  , F , and   are constants associated with a particular metamaterial in 

the microwave regime correspond to the electric plasma frequency, the damping 

factor, the fractional area of the unit cell occupied by the spilt ring resonator (SRR), 

and the dissipation factor, respectively (Sarid and Challener, 2010). 

 

2.2.3 Unique properties of LHMs 

An established slab from a left-handed material with negative permittivity and 

permeability can be regarded in the same way as a dielectric slab. It is, however 

beneficial to highlight two special properties of the left-handed slab. First, a planar 

lens can be investigated at the interface of the vacuum and left-handed medium due 

to the negative refraction (Markos and Soukoulis, 2008). Second, left-handed slab is 

able to amplify incoming evanescent waves which offers many applications such as 

perfect lenses (Koschny, Moussa, and Soukoulis, 2006). This abnormal property 

makes left-handed materials different in principle from any other known material. 

2.2.4 Applications of LHMs. 

The  unique  properties  of  these  metamaterials make them the best candidates 

for most applications. LHMs can be used in many applications, such as cloaks, 

antenna, resonators, radome, sensors, absorbers and couplers etc(Gangwar, Paras and 

Gangwar, 2014). These applications are required for the  performance improvement 

of the material. Cloaking means that electromagnetic field inside the hollow cloak 

tends to be zero, this makes the region inside the shell disappear. This can be 

achieved by guiding the electromagnet wave, in another world transforming the 

coordinate system (Ergin, Stenger, Brenner, Pendry and Wegener. 2010). 

Researches concerned on the use of LHMs in directive antenna substrate systems 

(Chen, Wu, Ran, Grzegorczyk and Kong, 2006;Sui et al, 2005; Wu et al, 2005;). The 
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problem with the designed antennas in the past is the narrowband operation. It is well 

known that by Snell's law, if a source is embedded in a substrate that has a small 

index of refraction compared to air, its rays will be transmitted near the normal of the 

substrate. The light-weight property of LHMs added benefit to design a wideband 

directive antenna (Li, Yeo, Mosig and Martin. 2010). Moreover, Zero-

indexmetamaterials or LHMs where the effective permittivity and permeability are 

zero at certain frequencies can be used to achieve a wider frequency band of high 

directivity. To increase the gain of the antenna, a planar radome were arranged by 

using seven LHMs structures. 

The fabrication of LHMs opens a door for designing sensor with specified sensitivity 

and enhances the resolution of sensors. These sensors are used in wide variety area 

such as agriculture and biomedical. 

Conventional couplers can achieve strong forward coupling. But to obtain a 

sufficient coupling level, they require very long physical lengths and very tight 

spacing between the two lines. To avoid this drawback, LHMs induced the 

possibility of achieving strong forward coupling with length drastically 

reduced(Gangwar, Paras and Gangwar, 2014). 

2.3 Bi-isotropic and bi-anisotropic media 

Isotropic means having the same property in all directions. If the properties of a 

material are different in various directions, it is said to be anisotropic. Isotropic and 

anisotropic media become polarized or magnetized by induction of electric or 

magnetic field , without cross coupling between the two fields. The permittivity and 

permeability of such media may be either a scalar for isotropic medium or a tensor 

for anisotropic one ,which has been mentioned in a previous chapter. 

On the other hand, a bi-isotropic or bi-anisotropic medium have uniquely cross 

coupling between the electric and magnetic fields make them becomes both polarized 

and magnetized by induction of an electric or magnetic field. In order to clarify this 

phenomenon we introduce the micro helix model shown in Figure(2.3). 
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Figure(2.3): micro helix  model. 

 

Molecules in isotropic and anisotropic media are considered as electric dipoles 

and/or current loops. Thus, electric field induced molecules to become aligned 

electric dipoles and magnetic field induced aligned magnetic dipoles without cross 

coupling. But in bi-isotropic and bi-anisotropic media, molecules are considered to 

be a large amount of conductive micro helices shown in Figure (2.3). Aligned 

electric dipoles (the pair of charges at two ends of the helix) and magnetic dipoles 

(the current in the helix) appear simultaneously under the action of an electric field 

or a magnetic field alone. To explain this, charges of opposite signs appear at the two 

ends of the helix due to the applying of a time-varying electric field and according to 

the continuous equation current arises in the helix. Moreover, applying of a time-

varying magnetic field induced current to arise in the helix according to Lenz's 

theorem, and again, according to the continuous equation, charges of opposite signs 

appear at the two ends of the helix. The medium is bi-isotropic if the above 

phenomenon is isotropic, otherwise it is bi-anisotropic. This kind of media is also 

known as chiral media (Zhang and Li, 2008). Bi-isotropic and bi-anisotropic media, 

also called magnetoelectric materials, was theoretically investigated by Landau in 

1957 (Zhang and li, 2008). These materials were detected experimentally by Astrov 

in 1960 in anti-ferromagnetic chromium oxide (In Zhang and li, 2008). 

 

2.3.1 Chiral metamaterials 

The Greek word "chiral" means handi.e. our hands are mirror images and they 

cannot be superimposed on each other, was first predicted by Pasteur (Kim, 2006). 
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Some magnetic crystal classes are classified among the natural chiral media such as 

sugar arrays, amino acids, DNA, and organic polymers. Hence, wire helices, the 

Möbius strip, and the irregular tetrahedron are considered to be artificial chiral 

objects. A chiral object is three dimensional body which cannot be brought into 

compatibility with its mirror image by translation and rotation. Such an object has 

the property of  handiness and is either right-handed or left-handed. An object that is 

not chiral is called achiral(Barba, 2011; Elsherbeni, Demir, Alsharkawy, Arvas and 

Mahmoud.2004).  

To summarize, a chiral medium is a macroscopically continuous medium consists of 

equivalent uniformly distributed but randomly oriented chiral objects. When a 

linearly polarized light enters into a slab of chiral medium, it is decomposed into two 

orthogonal co-propagating circular polarizations, right-handed circulary polarized 

RCP and left-handed circulary polarized LCP, travelling at different speeds. After 

propagating through the chiral material and recombining, the output is linearly 

polarized as well, but is rotated by a certain angle with respect to the plane of 

polarization of the incident wave (Kim,2006). This rotation depends on the distance 

travelled through the medium as a result of the optical activity which occurs 

throughout the medium not at the  surface. This property makes a substance able to 

rotate the plane of incident polarized light due to asymmetrical molecular structure 

(Bassiri,1987). If the chirality parameter is strong and greater than refractive index at 

least near the resonant frequency, one eigen-wave in the chiral medium becomes a 

backward wave and a negative refraction in the chiral medium is generated (Dong, 

2009). Therefore, chiral media can achieve negative refraction, we call the type of 

strong chiral as chiral negative refractive medium (Kim, 2006). Due to the discovery 

of chiral media and its novel features, recent interest has been focused on the guided 

structures filled with chiral material, called `chirowaveguides`. Chirowaveguides, 

first suggested by p. pellet (pellet, 1990), have unique features that the propagation 

modes are hybrid since the electric and magnetic fields are coupled to each other by 

chirality. 
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2.3.2 Previousstudies 

Waveguides consisting of chiral metamaterials with negative refractive indices, 

such as slab, grounded slab, parallel-plate waveguide and fiber, have been 

investigated theoretically. A special case of chiral negative refractive index medium, 

termed as chiral nihility in which the permittivity and permeability are 

simultaneously zero, has also intensively explored. Especially, planar and circular 

open or closed waveguides containing chiral nihility have been studied. However, 

these studies focued on the isotropic chiral medium (Dong, 2012). 

The wave propagation and field distributions in slab dielectric waveguides having 

homogenous isotropic chiral material have been discussed by M. Oksanen, P. K. 

Kolivisto,and I. V. Lindell (1991). The analysis was based on field expansions in the 

guide and in the upper and lower half spaces. Enforcing the boundary conditions at 

the waveguide interfaces resulted in eigenvalue equations of the guided modes. Also, 

the propagation characteristics of general chiral planar waveguides were presented 

by J. Xiao, K. Zhang, and L. Gong (1997).The eigen equation was given in a simple 

formulation. The results indicated that there were two types of field distributions 

which were related to the working wavelength and chiral admittance. Moreover, a 

waveguide consisting of homogeneous chiral mediain the film and cladding was 

investigated by M. Yokota and Y. Yamanaka (2006). The electromagnetic fields 

were decomposed into right and left circularly polarized fields. The guided mode 

expressions in the film were obtained. Using the boundary conditions at the 

interfaces yields the eigenvalue equation for the hybrid guided modes. The 

dispersion relation and the guided mode profile were examined numerically. And, the 

propagation of electromagnetic plane waves in an isotropic chiral medium was 

presented by C. W. Qiu, et al. (2008) and a special interest was shown in chiral 

nihility and the effects of chirality on energy transmission. Some specific case 

studies of chiral nihility were presented, and Brewster angles were found to cover an 

extremely wide range. The E-field distributions in these different cases, where the 

chiral slab was placed in free space, were analyzed by using the appropriate 

constitutive relations. It was shown from numerical calculations that one can obtain 

some critical characteristics of the effects of chirality on energy transmission and 

reflection, such as transparency and power tunneling. The characteristics of guided 
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modes in a planar waveguides in which the core or cladding consists of chiral nihility 

meta-materials were studied theoretically by J. Dong and C. Xu (2009). The 

dispersion curves, electromagnetic fields, energy flow distribution and the power of 

several low-order guided modes in the chiral nihility waveguides were 

presented.Also, the characteristics of guided modes in a circular waveguide 

consisting of uniaxial chiral medium have been investigated by J. F. Dong and J. Li 

(2012). 

2.4  Plane waves in chiral media 

If the four tensors appear in the constitutive relations given in Eqs. (1.13) and 

(1.14) become scalars, the medium is bi-isotropic. Otherwise, the medium is bi-

anisotropic . The constitutive relations for this medium were formulated by Tellegen 

(Tellegen, 1948) as 

 

 

 HED     (2.4) 

 

 HEB     (2.5) 



D , 


E , 


B , 


H , ε and μ are corresponding to usual electromagnetic quantities. ξ and ζ 

are the coupling constants, which is the intrinsic constant of each media can be 

related to the reciprocity χ and chirality parameter  κ  as 
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  j  (2.7) 

 

The chiral medium is reciprocal i.e. 0 .After substitute the above equations into 

the constitutive relations gives (Dong, 2009) 

 

 

 HjED ii    
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 EjHB ii    00   (2.9)

 

where i  and i are the permitivity and permeability of medium i, respectively. i  is 

dimensionless and normalized quantity which represents the handedness of the 

medium, called the chirality.  

2.5 Dispersion equations of three-layered asymmetric slab chiral                                                                                                                             
waveguides 

The geometry of an asymmetric slab chiral waveguide with thickness d is 

shown inFigure(2.4). 

 
Figure(2.4): Geometry of the three-layered asymmetric slab chiral waveguide. 

 

It consists of a thin chiral meta-material film bounded by isotropic chiral meta-

material upper and lower half spaces with different refractive index and chirality. We 

mentioned that unlike the conventional dielectric materials, the electric and magnetic 

fields in the chiral material are coupled, so the Hybrid mode appears in the 

waveguide. This coupling due to the chirality parameter is expressed in the 

constitutive relations. Depending on which field vectors are used in the relations, the 

constitutive relations may take different, but equivalent, forms. Eq. (2.8) and Eq. 

(2.9) coerresponds to the general form of the constitutive relation.    

In the chiral medium, electromagnetic fields are expressed as (Dong, 2009) 

 

 









 EEE  (2.10)  
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 HHH  (2.11)  

 

The electric and magnetic fields in the chiral medium are related to each other by 

(Dong, 2009) 
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 (2.12)  

 

where the (±) symbols correspond to the right-handed (RCP) and left-handed (LCP) 

circularly polarized waves in the chiral material, respectively, and iii    is 

the wave impedance in the media. After few rearranging of the constitutive relations 

given in Eq.(2.8) and Eq.(2.9) in the present of Eq. (2.12) one can write  
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Similarly, 
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where 00 iiin   is the refractive index . 

Substitution Eq.(2.13), and Eq.(2.14) into Maxwell's equations for source-free 

regions leads to a new form for Maxwell's equations 
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where )(0 iii nkk 


 is the wave vector for RCP and LCP waves and 

000   


k  is the wave vector for free space. 

Furthermore, since the structure is uniform in the y direction, we assume 0 y

and the fields are varying with respect to time as  tje  -z  so we assume jz 

where   is the propagation constant to be determined. 

For better understanding, we again derive the wave equation from Maxwell's 

equations  
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The wave equation for the principal electric field component yE


 is derived as follow 
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 yiy EkE  (2.23)  

We can express the solutions of the longitudinal-field component in Eq. (2.23) as 
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� (2.24) 

 

for odd guided modes, and 

 

 

 

 


E ±(푥) =
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푑
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푑
2  ,              x < −푑/2.

� (2.25) 

 

for even guided modes, where the parameters 훾±,훿± and 훼± are given by 

훾± = (훽 − 푘 ±) /  ,훿± = (푘 ± − 훽 ) /  ,훼± = (훽 − 푘 ±) /  . 

The other field components can be obtained by using Eqs. (2.12), (2.19), and (2.20). 

According to the boundary condition (continuity of the tangential fields) for 

electromagnetic field components at 푥 = 푑/2 and 푥 = −푑/2, the dispersion 

equations of guided modes in slab chiral waveguide can be derived as follow 
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(2.26)  

 

for odd guided modes, and 



30 
 
 

 

 

 

 

0coscos112112

cossin111

sincos111

sincosk  4sinsin4

1
3

1

3

23

3

1

3

23

2

2

1
2

3

23
2

3

23

33

2

1

3

2

3

2
2

21
3

12

3

1222












































































































































 








 







































uukkk

uukkk

uu
kk

k

uukuukk


















































 

(2.27)  

 

for even guided modes, where 푢± = 훿±푑/2. In the next section we will study the 

dispersion equations of guided modes in a three-layered symmetric slab chiral 

waveguide. 

2.6 Dispersion equations of a three-layered symmetric slab chiral 
waveguides 

If the chiral meta-materials in the claddings shown in Figure (2.3) have the 

same refractive index and chirality as those of the substrate; 휅 = 휅 , 휀 = 휀  and 

휇 = 휇 , then we have a symmetric three- layered slab chiral waveguide as shown in 

Figure(2.5). 

 
Figure(2.5): Geometry of the three-layered symmetric slab chiral waveguide. 
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The solutions of the longitudinal-field component in Eq.(2.23) are written as 
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for odd guided modes, and 
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for even guided modes. 

Other components of the fields are obtained and the continuity requirements are 

applied, we obtain the following dispersion relations  
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(2.30)  

 

for odd guided modes, and 
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(2.31)  

 

for even guided modes. 
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Chapter 3 

Characteristics of Electromagnetic Waves in Slab Waveguide 

Structures Comprising ChiralNihilityFilm and Left-Handed 

Material Claddings. 

Weanalytically present the dispersion equationfor a symmetric three-layered 

chiro-waveguides, in which the claddings are achiral material but the core is chiral 

material. After that,two modes of propagation through a chiral nihility core and left 

handed material (LHM) claddings waveguide are treated in details. For odd and even 

guided modes, the dispersion equations, normalized cutoff frequencies, 

electromagnetic fields, and energy flow of right-handed and left-handed circularly 

polarized (RCP and LCP) modes are derived in explicit forms. Numerical results of 

guided low-order modes and typical chirality parameters are given. Some novel 

features such as abnormal dispersion curves are found. 

3.1 Dispersion equations of three-layered symmetric slab chiral core and 
achiral claddings waveguides 

When the waveguide shown in Figure (2.5) consists of a chiral core and an achiral 

claddings, where 휅 = 0, as shown in Figure (3.1), the above parameters

)(0 iii nkk 


 ,훾± = (훽 − 푘 ±) /  ,훿± = (푘 ± − 훽 ) / and 훼± = (훽 −

푘 ±) become푘 ± = 푛 푘 = 푘 ,푘 ± = 푘 (푛 ± 휅 ),훾± = (훽 − 푘 ) = 훾 ,훿± =

(푘 ± − 훽 ) / . 
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Figure(3.1): Geometry of the three-layered symmetric slab chiral core and achiral                                                                               

claddings waveguide. 

 

The dispersion equations (2.30), (2.31) reduce to 
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for odd guided modes, and 
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(3.2) 

for even guided modes. 

When the core is a chiral nihility meta-material, in which the permittivity and 

permeability are simultaneously zero, the above parameters become k ± = n k =

k ,푘 ± = ±푘 휅 ,훾± = (훽 − 푘 ) = 훾,훿± = (푘 ± − 훽 ) = (푘 휅 − 훽 ) / = 훿 

The dispersion relation given by Eq. (3.1) can be divided into two equations as 

 

 
(푘 휅 − 훽 )

푑
2 = 푡푎푛 {

푘 휅
푘 (

훽 − 푘
푘 휅 − 훽

) } + 푚휋,           푚 = 0,1,2, . .. (3.3)  

 

for RCP odd modes, and 
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(푘 휅 − 훽 )

푑
2 = −푡푎푛 {

푘 휅
푘 (

훽 − 푘
푘 휅 − 훽

) } + 푚휋, 푚 = 1,2,3, . .. (3.4)  

 

for LCP odd modes, where 푚 is mode number. It is noted that 푚 starts from 0 in 

RCP odd modes and from 1 in LCP odd modes. 

Moreover, the dispersion relation given by Eq. (3.2) can also be divided into two 

equations, taking in mind that RCP and LCP even guided modes are mirror images of 

RCP and LCP odd guided modes, then the dispersion equations take the form 

 

 
 (푘 휅 − 훽 )

푑
2 = −푡푎푛 {

푘
푘 휅 (

푘 휅 − 훽
훽 − 푘

) } + 푚휋,       푚 = 1,2,3, . .. (3.5)  

 

for RCP even modes, and 

 

 
(푘 휅 − 훽 )

푑
2 = 푡푎푛 {

푘
푘 휅 (

푘 휅 − 훽
훽 − 푘

) } + 푚휋,      푚 = 0,1,2, . .. (3.6)  

 

for LCP even modes. It is noted that, in contrast to odd modes, 푚 starts from 1 in 

RCP odd modes and from 0 in LCP odd modes, because of the handedness of chiral 

meta-material. 

3.2 Guided modes in slab chiral nihility core and LHMs claddings                                                             
waveguides 

Consider the structure shown in Figure (3.1) with chiral nihility core and the 

claddings are left-handed material. It is shown that the dispersion relation given by 

Eq. (3.1) and Eq. (3.2) can be divided into two equations corresponding to RCP and 

LCP modes, respectively. For odd and even guided modes, the dispersion equations, 

normalized cut-off frequencies, electromagnetic fields, and energy flow of RCP and 

LCP modes are found as follows. 
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3.2.1  Odd modes 

We use in the claddings left-handed materials (LHMs), which, by definition, 

have a negative refractive index. The parameter 푛1 have a negative value, so the 

dispersion relation given by Eq. (3.1) is divided into two equations as 

 

 
(푘 휅 − 훽 )

푑
2 = 푡푎푛 {

푘 휅
푘 (

훽 − 푘
푘 휅 − 훽

) } + 푚휋, 푚 = 1,2,3, . .. (3.7)  

 

for RCP odd modes, and 

 

 
(푘 휅 − 훽 )

푑
2 = −푡푎푛 {

푘 휅
푘 (

훽 − 푘
푘 휅 − 훽

) } + 푚휋, 푚 = 0,1,2, . .. (3.8)  

 

for LCP odd modes. It is noted that, in contrast to Eqs (3.3) and (3.4), 푚 starts from 

0 in LCP odd modes and from 1 in RCP odd modes. 

We can obtain the normalized cutoff frequencies (푉) by setting 훽 → 푘  in the 

dispersion Equations (3.7) and (3.8) 

 푉 = 푘 푑 =
2푚휋

(휅 − 푛 ) / ,                                푚 = 1,2,3, . .. (3.9)  

 

for RCP odd modes, and 

 

 푉 = 푘 푑 =
2푚휋

(휅 − 푛 ) / ,                                푚 = 0,1,2, . .. (3.10)  

 

for LCP odd modes. 

 

We can express the electromagnetic fields in explicit forms as 
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E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−

푗훽퐴
훾  exp −훾 푥 −

푑
2                x > 푑/2,

−
푗훽퐴

훿sin(푢)  cos(훿푥) −d/2 ≤ x ≤ d/2,

+
푗훽퐴

훾  exp 훾 푥 +
푑
2              x < −푑/2.

� (3.11)  

 

 

 

 
E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧∓

푘 퐴
훾  exp −훾 푥 −

푑
2                 x > 푑/2,

−
푘 휅 퐴

훿sin(푢)  cos(훿푥) −d/2 ≤ x ≤ d/2,

±
푘 퐴

훾  exp 훾 푥 +
푑
2              x < −푑/2.

� (3.12)  

 

and 

 

 

 E (푥) =

⎩
⎪
⎨

⎪
⎧

퐴푒푥푝{−훾(푥 − 푑/2)} x > 푑/2,

퐴
sin(푢) sin(훿푥) −d/2 ≤ x ≤ d/2,

퐴exp{훾(푥 + 푑/2)} x < −푑/2.

� (3.13)  

 

  

for RCP (upper sign) and LCP (lower sign) odd modes, respectively where 퐴 is an 

arbitrary constant, which can be determined by total power.  

 

The magnetic fields in the core and the claddings are 

 

 
H , , = ±

j
η E , ,  (3.14)  

 

for RCP (upper sign) and LCP (lower sign) odd modes, respectively. 

 

Energy flow along the 푧-axis in the waveguides is defined by 
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S =

1
2 푅푒( E × H

∗
) =

1
2 푅푒( E H

∗
− E H

∗
) (3.15)  

 

Thus we can express enery flow along the 푧-axis as 

 

 

 

 
S (푥) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧훽푘 퐴

휂 훾 푒푥푝 −2훾 푥 −
푑
2                x > 푑/2,

±
훽푘 휅 퐴

휂 훿 sin (푢) cos (훿푥) −d/2 ≤ x ≤ d/2,

훽푘 퐴
휂 훾 exp 2훾 푥 +

푑
2             x < −푑/2.

� (3.16)  

 

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.  

It is obvious from Eq.(3.16) that zS  is positive for RCP odd modes and negative for 

LCP odd modes in the core, and positive for both RCP and LCP odd modes in the 

claddings. On the other hand, we use LHM claddings which make the energy flux 

negative in the claddings for both RCP and LCP odd modes. 

 
3.2.2  Even modes 

When the claddings are left-handed materials (LHMs) and the index푛1 have a 

negative value, the dispersion equation (3.2) divided into two equations as 

 

 
 (푘 휅 − 훽 )

푑
2 = −푡푎푛 {

푘
푘 휅 (

푘 휅 − 훽
훽 − 푘

) } + 푚휋,          푚 = 0,1,2, . .. (3.17)  

 

for RCP even modes, and 

 

 
 (푘 휅 − 훽 )

푑
2 =  푡푎푛 {

푘
푘 휅 (

푘 휅 − 훽
훽 − 푘

) } + 푚휋, 푚 = 1,2,3, . .. (3.18)  

 

for LCP even modes. 
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We can obtain the normalized cutoff frequencies (푉) by setting 훽 → 휅  in the 

dispersion Equations (3.17) and (3.18): 

 

 
푉 = 푘 푑 =

(2푚 + 1)휋
(휅 − 푛 ) / , 푚 = 0,1,2, . .. (3.19)  

 

for RCP even modes, and 

 

 
푉 = 푘 푑 =

(2푚 − 1)휋
(휅 − 푛 ) / , 푚 = 1,2,3, . .. (3.20)  

 

for LCP even modes. 

 

We can express the electromagnetic fields in explicit forms as 

 

 

 

 
E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−

푗훽퐴
훾 푒푥푝 −훾 푥 −

푑
2                 x > 푑/2,

+
푗훽퐴

훿cos(푢) sin(훿푥) −d/2 ≤ x ≤ d/2,

+
푗훽퐴

훾 exp 훾 푥 +
푑
2              x < −푑/2.

� (3.21)  

 

 

 

 
E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧∓

푘 퐴
훾 푒푥푝 −훾 푥 −

푑
2                 x > 푑/2,

+
푘 휅 퐴

훿cos(푢) sin(훿푥) −d/2 ≤ x ≤ d/2,

±
푘 퐴

훾 exp 훾 푥 +
푑
2             x < −푑/2.

� (3.22)  

and 
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E (푥) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧퐴푒푥푝 −훾 푥 −

푑
2                 x > 푑/2,

퐴
cos(푢) cos(훿푥) −d/2 ≤ x ≤ d/2,

퐴exp 훾 푥 +
푑
2              x < −푑/2.

� (3.23)  

 

for RCP (upper sign) and LCP (lower sign) even modes, respectively.  

The magnetic fields in the core and the claddings are given by Eq.(3.14). 

Moreover, we can express the enery flow along the 푧-axis in the waveguide as 

 

 

 

 
S (푥) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧훽푘 퐴

휂 훾 푒푥푝 −2훾 푥 −
푑
2                 x > 푑/2,

±
훽푘 휅 퐴

휂 훿 cos (푢)  sin (훿푥) −d/2 ≤ x ≤ d/2,

훽푘 퐴
휂 훾  exp 2훾 푥 +

푑
2              x < −푑/2.

� (3.24)  

 

for RCP (upper sign) and LCP (lower sign) even modes, respectively. 

ALso, it is obvious from Eq.(3.24) that zS  is positive for RCP even modes and 

negative for LCP even modes in the core, and positive for both RCP and LCP even 

modes in the claddings. On the other hand, we use LHM claddings which make the 

energy flux  negative in the claddings for both RCP and LCP even modes. 

3.3 Results and discusion 

We can calculate the propagation constants numerically from the dispersion 

equations (3.7), (3.8), (3.17) and (3.18), then the electromagnetic fields and the 

energy flow distribution can be calculated. 

In this section, we assume chiral nihility core guiding film with the parameters  

휇 = 휀 = 0, 휅 = 1.5. On the other hand, the cladding and substrate are LHMs with 

parameters휇 = (−1 + .001 I) × 휇 , 휀 = (−1 + .001 I) × 휀 , and 휅 = 0. 
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3.3.1 Dispersion curves 

Figure (3.2) shows the dispersion curves of odd and even guided modes in the 

slab chiral nihility core and LHMs claddings waveguide for low-order modes, where 

푛 = 훽/푘  is the effective refractive index, 푘 푑 is the normalized frequency. 

Dashed and solid curves related to the odd and even modes, respectively. For LCP 

odd and even modes, the curves of effective refractive index versus normalized 

frequency increases monotonically, and the normalized cutoff frequencies (points 

퐶 , 퐶  when 푛 = 1) satisfy Eq.(3.10) or Eq.(3.20). However, for RCP odd and 

even modes, dispersion curves are no longer increasing monotonically, but are bent, 

and the cutoff frequencies where 푛 = 1 are not the minimum frequencies that 

waves can propagate. When 푚 = 0, there is one solution below cutoff frequency 

(point퐶 ) for RCP even mode in some frequency region. When 푚 = 1, there are two 

solutions below cutoff frequencies (points 퐶 , 퐶 ) for both RCP even and odd modes 

in some frequency region. Thus the cutoff frequencies here are not really “cutoff”. 

The real “cutoff” frequencies correspond to the minimum frequencies (critical points 

퐵, 퐷) that guided wave can propagate. As the normalized frequency increases from 

the critical points 퐵, 퐷 dispersion curves bifurcate two branches, which the effective 

refractive index increases for upper branch and decreases to 푛 = 1 for lower 

branch. 
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Figure(3.2): Dispersion curves of guided modes in the slab chiral nihility core and 

LHM claddings waveguide. 

 

3.3.2  Odd guided modes 

Figures (3.3) and (3.4) show the amplitudes of electromagnetic field 

components and energy flux distribution at normalized frequency 푘 푑 = 5.2 for RCP 

odd mode when m=1. E , H  are odd functions of 푥 (sin form) and 

E , E , H , H  (cos form) are even functions of 푥. zS  is positive in the core and 

is negative in the claddings (due to the negative refractive index of LHM claddings). 

However, there are two propagation constants at 푘 푑 = 5.2 . 
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Figure(3.3): Amplitudes of electromagnetic field components at 푘 푑 = 5.2 for RCP 

odd mode when m=1,푛 = 1.223. 
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Figure(3.4): Energy flux at 푘 푑 = 5.2 for RCP odd mode when m=1, (a)푛 =

1.223; (b) 푛 = 1.02219. 

 

Figures (3.5) and (3.6) show the amplitudes of electromagnetic field components and 

energy flux distribution at normalized frequency 푘 푑 = 4 for LCP odd mode when 

m=0. E , H  are odd functions of 푥 (sin form) and E , E , H , H  (cos form) 
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are even functions of 푥. zS  is negative in both the core and the claddings (due to the 

negative refractive index of LHM claddings). 
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Figure(3.5): Amplitudes of electromagnetic field components at 푘 푑 = 4 for LCP 

odd mode when m=0. 
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Figure(3.6): Energy flux at 푘 푑 = 4 for LCP odd mode when m=0. 
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3.3.3. Even guided modes 

Figures (3.7) and (3.8) show the amplitudes of electromagnetic field 

components and energy flux distribution at normalized frequency 푘 푑 = 1.5 for RCP 

even mode when m=0. E , H are even functions of푥(cos form) and 

E , E , H , H  (sin form) are odd functions of 푥. zS  is positive in the core and is 

negative the claddings (due to the negative refractive index of LHM claddings). 
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Figure(3.7): Amplitudes of electromagnetic field components at 푘 푑 = 1.5 for RCP 

even mode when m=0. 
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Figure(3.8):Energy flux at 푘 푑 = 1.5 for RCP even mode when m=0. 

 

 Figures (3.9) and (3.10) show the amplitudes of electromagnetic field components 

and energy flux distribution at normalized frequency 푘 푑 = 6 for LCP even mode 

when m=1. E , H  are even functions of 푥 (cos form) and E , E , H , H  (sin 

form) are odd functions of 푥. zS is negative in both the core and the claddings (due to 

the negative refractive index of LHM claddings). 
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Figure(3.9): Amplitudes of electromagnetic field components at 푘 푑 = 6 for LCP 

even mode when m=1. 
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Figure(3.10): Energy flux at 푘 푑 = 6 for LCP even mode when m=1. 
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Chapter 4 

Propagation of Electromagnetic Waves in Slab Waveguide Structure 

Consisting of Chiral NihilityCladdings and Left-HandedMaterial 

Core Layer 

We derive the dispersion equationfor a symmetric three-layered chiro-

waveguides, in which the claddings are chiral material but the core is an achiral 

material. After that,two modes of propagation through a chiral nihility claddings and 

left handed material (LHM) core waveguide are presented in details. For odd and 

even guided modes, the dispersion equations, normalized cutoff frequencies, 

electromagnetic fields, and energy flow of right-handed and left-handed circularly 

polarized (RCP and LCP) modes are derived in explicit forms. Numerical results of 

guided low-order modes and typical chirality parameters are given. Some novel 

features such as abnormal dispersion curves are found. 

4.1 Dispersion relations of three-layered symmetric slab achiral core and 
chiral cladding waveguides 

When the geometry of the waveguide consists of an achiral core and chiral 

claddings, where휅 = 0, as shown in Figure(4.1) the above parameters become 

푘 ± = 푘 (푛 ± 휅 ), 푘 ± = 푛 푘 = 푘 , 훾± = (훽 − 푘 ±) , and훿± = (푘 − 훽 ) =

훿. 

 
Figure(4.1): Geometry of the three-layered symmetric slab achiral core and chiral                                                                               

cladding waveguide. 
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The characteristic equations (2.30) and (2.31) can be written as  
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for odd guided modes, and 
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for even guided modes. 

When the claddings are chiral nihility media, in which the permittivity and 

permeability tend to be zero, the above parameters become k ± = ±푘 휅 , 푘 ± =

n k = k , 훾± = (훽 − 푘 ±) = (훽 − 푘 휅 ) = 훾, and훿± = (푘 − 훽 ) = δ. The 

dispersion relation given in Eq. (4.1) is divided into two equations as 

 

 
(푘 − 훽 )

푑
2 = 푡푎푛 {

푘
푘 휅 ( 

훽 − 푘 휅  

푘 − 훽
)  } + 푚휋,             푚 = 0, 1, 2, . .. (4.3) 

 

for RCP odd modes, and 

 

 
(푘 − 훽 )

푑
2 = −푡푎푛 {

푘
푘 휅 ( 

훽 − 푘 휅  

푘 − 훽
)  } + 푚휋,         푚 = 1, 2, 3, . .. (4.4) 

 

for LCP odd modes, where 푚 is mode number. As can be seen푚 starts from 0 in 

RCP odd modes and from 1 in LCP odd modes. 

Also, the dispersion relation given in Eq. (4.2) is divided into two equationswhich 

take the form 

 

 
(푘 − 훽 )

푑
2 = −푡푎푛 {

푘 휅
푘 ( 

푘 − 훽
훽 − 푘 휅  )  } + 푚휋,             푚 = 1, 2, 3, . .. (4.5) 

 

for RCP even modes, and 
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(푘 − 훽 )

푑
2 = 푡푎푛 {

푘 휅
푘 ( 

푘 − 훽
훽 − 푘 휅  )  } + 푚휋, 푚 = 0, 1, 2, . .. (4.6) 

 

for LCP even modes.As can be seen, in contrast to odd modes, 푚 starts from 1 in 

RCP odd modes and from 0 in LCP odd modes. 

4.2 Guided modes in chiral nihility claddings and NIM core waveguide 

Consider region 1 and region 3 shown in Fig.4.1 are chiral nihility material and 

the core is LHM. It is presented that the dispersion Equations (4.1) and (4.2) can be 

divided into two equations correspond to RCP and LCP modes. For odd and even 

guided modes, the dispersion equations, normalized cut-off frequencies, 

electromagnetic fields,and energy flow of RCP and LCP modes are found as follows. 

 

4.2.1 Odd modes 

Assume the core layer is left-handed material, thus the parameter n2 has a 

negative value, so the dispersion relation given by Eq. (4.1) can be divided into two 

equations as 

 

 
(푘 − 훽 )

푑
2 = 푡푎푛 {

푘
푘 휅 ( 

훽 − 푘 휅  

푘 − 훽
)  } + 푚휋,                푚 = 1 ,2, 3, . .. (4.7) 

 

for RCP odd modes, and 

 

 
(푘 − 훽 )

푑
2 = −푡푎푛 {

푘
푘 휅 ( 

훽 − 푘 휅  

푘 − 훽
)  } + 푚휋,              푚 = 0 ,1, 2. .. (4.8) 

 

for LCP odd modes. It is noted that, in contrast to Eqs. (4.3) and (4.4), 푚 starts from 

0 in LCP odd modes and from 1 in RCP odd modes. 

 

We can obtain the normalized cutoff frequencies (푉) by setting 훽 → 푘 휅  in the 

dispersion relations (4.7) and ( 4.8) 
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 푉 = 푘 푑 =
2푚휋

(푛 −휅   ) / ,                                        푚 = 1, 2, 3, . .. (4.9)  

 

for RCP odd modes, and 

 

 

 푉 = 푘 푑 =
2푚휋

(푛 −휅   ) / ,                                      푚 = 0, 1, 2, . .. (4.10)  

 

for LCP odd modes. 

 

We can express the electromagnetic fields in explicit forms as 

 

 

 

 

 
E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−

푗훽퐴sin(푢)
훾  exp −훾 푥 −

푑
2                x > 푑/2,

−
푗훽퐴

훿  cos(훿푥) −d/2 ≤ x ≤ d/2,

+
푗훽퐴 sin(푢)

훾  exp 훾 푥 +
푑
2              x < −푑/2.

� (4.11)  

 

 

 
E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−

푘 휅 퐴sin(푢)
훾  exp −훾 푥 −

푑
2                 x > 푑/2,

∓
푘 퐴

훿  cos(훿푥) −d/2 ≤ x ≤ d/2,

+
푘 휅 퐴sin(푢)

훾  exp 훾 푥 +
푑
2              x < −푑/2.

� (4.12)  

and 

 

 

 
E (푥) =

⎩
⎪
⎨

⎪
⎧

퐴sin(푢)푒푥푝{−훾(푥 − 푑/2)}                       x > 푑/2,

A sin(훿푥) −d/2 ≤ x ≤ d/2,

퐴sin(푢) exp{훾(푥 + 푑/2)}                    x < −푑/2.

� (4.13)  
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for RCP (upper sign) and LCP (lower sign) odd modes, respectively where 퐴 is an 

arbitrary constant, which can be determined by total power. 

The magnetic fields in the core and the cladding are 

 

 
H , , = ±

푗
휂 E , ,  (4.14)  

 

for RCP (upper sign) and LCP (lower sign) odd modes. 

 

We can express the enery flow along the 푧-axis as 

 

 

 

 
S (푥) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧±

훽푘 휅 퐴 sin (푢)
휂 훾 푒푥푝 −2훾 푥 −

푑
2                x > 푑/2,

훽푘   퐴
휂 훿 cos (훿푥) −d/2 ≤ x ≤ d/2,

±
훽푘 휅 퐴 sin (푢)

휂 훾 exp 2훾 푥 +
푑
2             x < −푑/2.

� (4.15)  

 

for RCP (upper sign) and LCP (lower sign) odd modes.  

It is obvious from Eq. (4.15) that zS is positive for RCP odd modes and negative for 

LCP odd modes in the cladding, and positive for both RCP and LCP odd modes in 

the core. On the other hand, we use LHM core which make the energy flux negative 

in the core for both RCP and LCP odd modes. 

 
4.2.2 Even modes 

We again assume a LHM in the core of negative index n2, so the dispersion 

relation given in Eq. (4.2) can be divided into two equations as 

 

 
(푘 − 훽 )

푑
2 = −푡푎푛 {

푘 휅
푘 ( 

푘 − 훽
훽 − 푘 휅  )  } + 푚휋,              푚 = 0, 1, 2, . .. (4.16)  

 

for RCP even modes, and 
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(푘 − 훽 )

푑
2 = 푡푎푛 {

푘 휅
푘 ( 

푘 − 훽
훽 − 푘 휅  )  } + 푚휋, 푚 = 1, 2, 3, . .. (4.17)  

 

for LCP even modes. 

We can obtain the normalized cutoff frequencies (푉) by setting 훽 → 푘 휅  in the 

dispersion Equations (4.16) and (4.17) 

 
푉 = 푘 푑 =

(2푚 + 1)휋
(푛 −휅   ) / , 푚 = 0, 1, 2, . .. (4.18)  

 

for RCP even modes, and 

 

 
푉 = 푘 푑 =

(2푚 − 1)휋
(푛 −휅   ) / , 푚 = 1, 2, 3, . .. (4.19)  

 

for LCP even modes. 

We can express the electromagnetic fields in explicit forms as 

 

 

 

 
E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−

푗훽퐴 cos(푢)
훾 푒푥푝 −훾 푥 −

푑
2                 x > 푑/2,

+
푗훽퐴

훿 sin(훿푥) −d/2 ≤ x ≤ d/2,

+
푗훽퐴 cos(푢)

훾 exp 훾 푥 +
푑
2              x < −푑/2.

� (4.20)  

 

 

 

 

E (푥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−

푘 휅 퐴 cos(푢)
훾 푒푥푝 −훾 푥 −

푑
2                 x > 푑/2,

±
푘  퐴

훿 sin(훿푥) −d/2 ≤ x ≤ d/2,

+
푘 휅 퐴 cos(푢)

훾 exp 훾 푥 +
푑
2             x < −푑/2.

� 
(4.21)  

 

and 
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 E (푥) =

⎩
⎪⎪
⎨

⎪⎪
⎧퐴cos(푢)푒푥푝 −훾 푥 −

푑
2                 x > 푑/2,

A cos(훿푥) −d/2 ≤ x ≤ d/2,

퐴cos(푢)exp 훾 푥 +
푑
2              x < −푑/2.

� (4.22)  

 

for RCP (upper sign) and LCP (lower sign) even modes. 

The magnetic fields in the core and the cladding are given by Eq.(4.14). We can 

express the enery flow along the 푧-axis in the waveguide as 

 

 

 

 
S (푥) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧±

훽푘 휅 퐴 cos (푢)
휂 훾 푒푥푝 −2훾 푥 −

푑
2                 x > 푑/2,

훽푘 퐴
휂 훿  sin (훿푥) −d/2 ≤ x ≤ d/2,

±
훽푘 휅 퐴 cos (푢)

휂 훾  exp 2훾 푥 +
푑
2              x < −푑/2.

� (4.23)  

 

for RCP (upper sign) and LCP (lower sign) even modes, respectively. It is obvious 

from Eq.(4.23) that zS is positive for RCP even modes and negative for LCP even 

modes in the cladding, and positive for both RCP and LCP even modes in the core. 

On the other hand, we use LHM core which make the energy flux negative in the 

core for both RCP and LCP even modes. 

4.3 Results and discusion 

We can calculate the propagation constants numerically from the dispersion 

relations (4.7), (4.8), (4.16), and (4.17), then the electromagnetic fields and the 

energy flow distribution can be calculated.In this section, we use numerical values 

for the parameters in the core and cladding as  

휇 = 휀 = 0, 휅 = 0.1,휇 = (−5 + .001I) × 휇 , 휀 = (−5 + .001I) × 휀 , 휅 = 0. 
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4.3.1  Dispersion curves 

Figure (4.2) shows the dispersion curves of odd and even guided modes in the 

slab chiral nihility cladding and LHM core waveguide for low-order modes. Dashed 

and solid curves correspond to the odd and even modes, respectively. For LCP odd 

and even modes, the curves of effective refractive index versus normalized frequency 

increase rapidly, and the normalized cutoff frequencies (points 퐶 , 퐶  when 푛 =

1) satisfy Equations(4.10) or (4.19). However, for RCP odd and even modes, the 

cutoff frequencies where푛 = 1 are not the minimum frequencies that waves can 

propagate so the dispersion curves are bent. For RCP even mode when푚 = 0, there 

is one solution below cutoff frequency (point퐶 ) in some frequency region. For both 

RCP even and odd modes when푚 = 1, there are two solutions below cutoff 

frequencies (points 퐶 , 퐶 ) in some frequency region. Thus the real “cutoff” 

frequencies correspond to the minimum frequencies (critical pointsB and D) that 

guided wave can propagate. As the normalized frequency increases from the critical 

pointsB and D, dispersion curves bifurcate two branches, which the effective 

refractive index increases for upper branch and decreases to 푛 = 1 for lower 

branch. 
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Figure(4.2): Dispersion curves of guided modes in the chiral nihility cladding and 

negative- indexmaterial core waveguide. 
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4.3.2 Odd guided modes 

Figures (4.3) and (4.4) show the amplitudes of electromagnetic field 

components and energy flux distribution at normalized frequency 푘 푑 = 2.2 for RCP 

odd mode when m=1. E , H  are odd functions of 푥 (sin form) and 

E , E , H , H  (cos form) are even functions of 푥. zS  is positive in the cladding 

and is negative in the core due to the LHM core material. However, there are two 

propagation constants at 푘 푑 = 2.2. 
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Figure(4.3): Amplitudes of electromagnetic field components at 푘 푑 = 2.2 for RCP 

odd mode when m=1 ,푛 = 1.6921. 
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Figure(4.4): Energy flux at 푘 푑 = 2.2 for RCP odd mode when m=1, (a)푛 =

1.6921; (b) 푛 = 0.1284. 

 

Figures (4.5) and (4.6) show the amplitudes of electromagnetic field components and 

energy flux distribution at normalized frequency 푘 푑 = 2 for LCP odd mode when 

m=0. E , H  are odd functions of 푥 (sin form) and E , E , H , H  (cos form) 

are even functions of 푥. zS  is negative in both the core and the cladding due to the 

negative refractive index of the core. 
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Figure(4.5): Amplitudes of electromagnetic field components at 푘 푑 = 2 for LCP 

odd mode when m=0. 
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Figure(4.6): Energy flux at 푘 푑 = 2 for LCP odd mode when m=0. 
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4.3.3 Even guided modes 

Figures (4.7) and (4.8) show the amplitudes of electromagnetic field 

components and energy flux distribution at normalized frequency k d = 0.5 for RCP 

even mode when m=0. E , H  are even functions of 푥 (cos form) and 

E , E , H , H are odd functions of 푥 (sin form). zS is positive in the cladding and 

is negative in the core as expected.  
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Figure(4.7): Amplitudes of electromagnetic field components at 푘 푑 = 0.5 for RCP 

even mode when m=0. 
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Figure(4.8): Energy flux at 푘 푑 = 0.5 for RCP even mode when m=0. 

 

Figures (4.9) and (4.10) show the amplitudes of electromagnetic field components 

and energy flux distribution at normalized frequency k d = 3 for LCP even mode 

when m=1. E , H  are even functions of 푥 (cos form) and E , E , H , H  (sin 

form) are odd functions of 푥. zS is negative in both the core and the claddings.  
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Figure(4.9): Amplitudes of electromagnetic field components at 푘 푑 = 3 for LCP 

even mode when m=1. 
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Figure(4.10): Energy flux at 푘 푑 = 3 for LCP even mode when m=1. 

 
The results of this thesis work are consistent with whose in (Dong, 2009) eventhough 

Dong,s work treats a waveguide structures comprising chiral nihility core or 

claddings with right-handed materials. We analytically present the dispersion 

relations and the characteristices of the propagation of electromagnetic waves in a 

waveguide structures consist of chiral nihility core or claddings with left-handed 

material which make the derivation of the dispersion relations become more difficult.  
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Conclusions 
The dispersion equations of three-layered asymmetric and symmetric chiral slab 

waveguides in which both the core and claddings are chiral materials were derived. 

Chiral nihilityproperity where the permitivity ɛ and permeability µ tend to be zero 

was considered. In this work, Two special structures of chirowaveguides were 

presented. The first one consists of a chiral nihility core and LHMs claddings. The 

other is chiral nihility claddings and LHMs core waveguides. The dispersion 

equations for odd and even guided modescan be divided into two equations which 

correspond toright-handed circulary polarized lightRCP and left- handed circulary 

polarized lighLCP modes. For each waveguide structure we study odd and even 

guided modes. For odd and even guided modes,the dispersion equations, normalized 

cutoff frequencies, electromagnetic fields, and energy flow of RCP and LCP modes 

were derived in explicit forms. A numerical results for typical chirality parameters of 

several guided modes were given and plotted. Some novel features such as abnormal 

dispersion curves in the chiral nihility waveguides were mentioned.For LCP odd and 

even modes, the curves of effective refractive index versus normalized frequency 

increase monotonically.However, for RCP odd and even modes, dispersion curves 

are no longer increasing monotonically, but are bent, and the cutoff frequencies 

where푛 = 1 are not the minimum frequencies that waves can propagate. Thus the 

cutoff frequencies here are not really “cutoff”. The real “cutoff” frequencies 

correspond to the minimum frequencies that guided wave can propagate. 

This analytical work can be benefit in the manufacturing of new waveguides used as 

antinnas, sensors ,couplers and even solar cells. 
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