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Abstract

Characteristics of guided modes in slab waveguide structures which consist of
chiral materials and left handed materials (LHMs) are analytically presented. We
concentrate our study on chiral nihility materials, in which the permittivity and
permeability are simultaneously zero.Two waveguide structures are studied in
details.The first one is a symmetricslab waveguides in which the core consists of
chiral nihility and the claddingsare left-handed meta-materialswhereas the
second one is a symmetric slab waveguide in which the claddings are chiral
nihility materials and the core layer is negative index materials.

The dispersion equation of an asymmetric three-layered slab waveguide in which
all layers are chiral materialsis presented. Then, the dispersion equation of a
symmetric one is derived. Forodd and even guided modes, the dispersion
equations, normalized cutoff frequencies, electromagnetic fields and energy flow
of right-handed and left-handed circularly polarized (RCP and LCP) modes are
derived and plotted. Numerical results of guided low-order modes areprovided.
Some novel features such as abnormal dispersion curves in the chiral nihility

waveguides are found.
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Chapter 1

Introduction



Chapterl

Introduction to Electromagnetic and Waveguide Theories

1.1 Electromagnetic theory

James Clark Maxwell (1831-1879) unified the most important experimental
laws on electromagnetic, which presented by previous scientists and formulated a
symmetric coherent set of equations governing the behaviour of the macroscopic

electromagnetic phenomenon. These equations are known as Maxwell's equations.

1.1.1 Maxwell's equations and constitutive relations

Maxwell's equations obtained theoretically the speed of an electromagnetic
wave which matches the experimental value for the speed of light, within a small
experimental error. In fact, the form that we know today was first expressed by
Oliver Heaviside (1850-1925), but Maxwell was the first to show them clearly.

The basic Maxwell equations in derivative form are given by

> 0B :
Vx £ = 22 Faradays Law (1.1)
ot
> 0D '
Vx H = 2= 4] Amperes Law (1.2)
ot
V. B =p Gaus's Law (1.3)
va Z; -0 No magnetic monopoles (1.4)

N
These equations are reasonable for any medium as well as vacuum. Where £ in volts
per meter (V/m) is the electric field, p in coulombs per cubic meter (C/m’) is the

electric charge density, J in amperes per square meter (A/m’) is the electric current
i 2
density, Din coloumbs per square meter (C/m”) is the electric induction vector,

5
known as the electric displacement vector or electric flux density and / in amperes



- - - -
per meter (A/m), is the magnetic strength vector, D and H are related to £ and B

through
D=e¢,E+P (1.5)

H= B/u, -M, or B=p, (H+M) (1.6)

N
where the polarization vector P is the volume density of electric dipole moment and

N
the magnetization vector M is the volume density of magnetic dipole moment. &

and po are two constants corresponds to the permittivity and the permeability of

vacuum, respectively. They are given the values ofu, =47 x107 H/m and
- -
£, = 8.85418782x 10" F/m.The relation between Pand E, or the relation between

- - -
M and H, is usually called the constitutive relations. In vacuum, we have P= 0

- - - - -
and M= 0, or D=¢, Eand B =y, H .Different kinds of media introduce different

constitutive relations, such that
e Simple media which is non-dispersive, linear and isotropic, these relationships can

be written as

Y (1.7)
M=y H

where y, and y, 1is the electric susceptibilityand the magnetic susceptibility of the

medium, respectively. Thus the constitutive relations of the simple media reads

- - - - -
D =g, (1 +;(e)E = g6, E; orD= ¢k (1.8)
- - - - -

B=u(1+ 2,)H=upH; or B=pH (1.9)



in which e = ¢,¢, and u = p u,, where € and p are permittivity and permeabilityof

the medium, respectively.¢, and p, are relative permittivity and relative permeability,

respectively.
- -
e Dispersive media where D depends on the time derivatives of all orders of £'. Also

- -
Band H have the same behavior. The constitutive relations become linear

differential equations in the form

I T
D:8E+8]a—+828—2+... (110)
ot ot
> > oH  8°H
B=uH+ + ¥ (L.11)
/,l lLt] 8t :u2 atz

e Nonlinear media in which the parameters ¢ and x4 depend on the field strengths.
- -
Also, they are functions of £ and B.
5
e Anisotropic media where polarization depends on E location and time. So does

-

M.

D=¢E,B=uH. (1.12)

where ¢ is the tensor permittivityand u is the tensor permeability, taking the form

8xx 8xy 8xz Hy :uxy Hy,
8:8}”(8)/)/8)/2 » H= ‘uYX‘uW‘uyZ
8zx 8zy 822 :Ltzx :Ltzy :Ltzz

e Bi-isotropic and bi-anisotropic media where cross coupling between the electric

and magnetic fields take place. These media become polarized and magnetized at the



same time when placed in an electric or magnetic field. The general constitutive

relations are given by

D=¢eE+&H (1.13)
B=¢.E+pH (1.14)

where ¢, {, £, and u are generally some of them are 3x3 tensors and some are

scalars (Zhang and Li, 2008; Griffiths,1999).These media will be introduced in

details in the next chapter.

1.1.2 Boundary conditions

The solution of electromagnetic problems becomes much easier if we study the

behavior of electromagnetic fields on the boundary or the interface between two

media. The boundary conditionscan be summarized as (Zhang and Li, 2008;

Griffiths, 1999).

1.

The normal component of the magnetic flux is continuous across the surface

of discontinuity i.e.

-> - -

n.(B>—Bi)=0 (1.15)

The normal component of the electric displacement is discontinuous by p, if a

surface charge of density pexists, then

n(D>-D)=p (1.16)

The tangential component of the electric field is continuous across the

surface, 1.e.

nx(E:-E)=0 (1.17)
The tangential component of the magnetic field is discontinuous across the

surface by J, if a surface current of density J exists, then

WX (H,—~H)=J (1.18)



1.1.3 Wave equations

The wave equationscan be derived directly from Maxwell's equations. It gives
the space and time dependence of the electric and magnetic field vector. The wave
equations are partial differential equations of second order (Thide, 2004). In the

source-free region, where p = 0 and J = 0, we want to derive the wave equation for

- -
the £ and B fields. Maxwell's equations,using the constitutive relations (1.8) and

(1.9), now take the form

5 0B
Ux p = 22 (1.19)
Jt
Y (1.20)
VX B =egp—
Mot
V.E=0 (1.21)
V.B =0 (1.22)
Taking the curl of Eq. (1.19), we have
=d 2 -
VXVX E = —eua f (1.23)
ot
Using the vector identity, the handy "BAC-CAB" formula
Ax(BxE): B(A.E)—E(A.B) (1.24)
The wave equation have the form (Zhang and L1, 2008; Griffiths, 1999)
) —>
> 0" FE (1.25)
V2 E — € = Oa
"o



For steady-state sinusoidal time-dependent fields, we assume an electromagnetic
wave propagates at a single angular frequency o (in radians per meter). A vector that

represents the electromagnetic field is, in the phasor notation, i.e.

t;(r,t) =y, (r)e’’, (1.26)

- - -
where y is either £ or H,y, is the amplitude of the wave (Zhang and Li, 2008;

Griftiths, 1999). Using the following substitutions in Maxwell Eq.(1.19) and
Eq.(1.20) we get

J o° .
We have
VXE=—joB = —jouH, (1.28)
- - - - 1.2
VXH=joD = jwsk, (1.29)
The wave equation (1.25) of £ becomes
> e (1.30)

5
where ;2 = g2, is the wave number. The wave equation can be written for H -

field,

= - (1.31)

Eqgs. (1.25), (1.30) and (1.31)are three dimensional equations called Helmholtz
equations (Thide,2004; Zhang and Li, 2008; Griftiths, 1999). where the laplacian

operator V?* is given in rectangular coordinates by



2 2 2
o o0 (1.32)

1.1.4 Wave parameters
By deriving the wave equations we end up with a wave velocity (Thide, 2004)

equal to

v = —— (1.33)

(o
n=—= : (1.34)

where, c is the speed of light in vacuum given the value,c = = 3*10" ?

_r
, EoHy
The electromagnetic wave which represents the solution of the wave equation takes

the form

—j(;.?—mt) (135)

l//(?‘,t) =Vy,.e !

N
Since k is the wave vector . It likes any vector has a magnitude and direction. Its
magnitude is the wave number (k), which is inversely proportional to the wavelength

and its direction is ordinarily the direction of wave propagation(Thide, 2004), i.e.

k=2n=2%, (1.36)
c A

In vacuum, the wave number 1s k, = 27/ A,. Consequently, we can obtain the wave

number in a medium if the refractive index is known

8



k=nk, (1.37)

1.1.5 Poyntingvectors
The product of electric and magnetic fields is related to the energy of the
electromagnetic wave (Zhang and Li, 2008) since the voltage is the integral of

electric field and the magnetic field is created by current. Thus

S=ExH (1.38)

is the energy that passes through a unit area per unit time. It is called a

Poyntingvector. For an electromagnetic wave propagating at a single angular

N
frequency o, Poynting vector S is given as

§=%qudf) (1.39)

where H " is the complex conjugate of H (Griffiths, 1999).

1.1.6 Reflection and transmission of plane waves

When a monochromatic electromagnetic plane wave is incident at an oblique
angle 6; on a boundary between two linear, homogeneous and isotropic media with
different refractive indices, a portion of this wave is reflected at angle 0;, and another
portion is transmitted at angle 6; (Markos$ and Soukoulis, 2008). The three angles are

shown in Figure (1.1).
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Figure (1.1):An electromagnetic wave incident at a plane interface.

The three laws of geometrical optics which govern this phenomenon are (Griffiths,

1999)
e All wave vectors k lie in a common plane: the three wave vectorsk;, k, and

N
k, all lie in a plane known as the plane of incidence includes the unit normal

to the interface.
e Law of Reflection: the angle of incidence is equal to the angle of reflection
i.e. 6= 0.

e Law of Refraction — Snell’s Law: which states that n; sin 0; = n, sin 0.

The reflectivity of light depends upon the angle of incidence and the plane of

polarization of the light. There are three possible polarization cases to consider

N

Case (I): known as transverse electric (TE) polarization, occur when E, is
-

perpendicular to the plane of incidence and B, is parallel to the plane of incidence.

5
Case (II): known as transverse magnetic (TM) polarization, occur when E,  is

parallel to the plane of incidence and B,,. is perpendicular to the plane of incidence.

10



Case (III): The most general case, is a linear vector combination of Cases (I) and (1I)

5
above, occur when E,  is neither parallel nor perpendicular to the plane of incidence

N
and B, is neither parallel nor perpendicular to the plane of incidence.

Although, Snell's Law can be used to relate the incident and transmitted angles,
Fresnel's equations describe the reflection (r) and transmission (t) coefficients of

electromagnetic waves at the boundary and can be stated in terms of the angles of

incidence and transmission for nonmagnetic media as

n; cos@, —n, coso,

g = 1.4
" n.cos@. +n, cos0, (1.49)
I cosO, —n, cosO, 141
™M n.cos®, +n, cosO, (141
P 2n, cosO, {49
" n.cos@. +n,cos0, (1.42)
2n, cos O,
by = (1.43)

n; cosO, +n, coso,

For a special angle of incidence where the reflection coefficient, is equal to zero, i.e.
no reflected wave exists. This angle is known as the Brewster angleand is denoted by

Op. Generally, Brewster angle is given by

tan 0, =5 (1.44)

n,

At the boundary between nonmagnetic dielectrics, i.e. for an interface between two
right-handed materials of positive refractive indices, the Brewster angle exists for
only the (TM) wave, while the incident angle of zero reflection for the (TE) wave

does not exist. Furthermore, we can see that the Brewster angle exists for only the
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(TE) wave when we treat the formula for the reflection coefficient for the boundary
between magnetic media. While if one of the media is a left handed material with
negative index of refraction, Brewster angle can be found for both

polarizations(Thide, 2004; Zhang and Li, 2008).

1.1.7 Total internal reflection
When an incident plane wave passes from an optically dense medium into an
optically rarer medium, i.e. n;> n,another special angle of incidence called a critical

angle 0, exists(Thide, 2004; Zhang and Li, 2008). Where no transmitted wave and

the refracted wave is propagated parallel to the boundary 6, =90°. This angle does

not depend on polarization, it is actually defined by Snell’s law and given by
sin@, =2 (1.45)

If the angle of incidence exceeds the critical angle, 0;>0., the wave comes back into
the same medium after reflection from interface. This total reflection phenomenon at
the boundary of two nonconducting media is also known as total internal reflection.

| 2

Figure (1.2): Total internal reflection of light beam(TIR).

1.2 Waveguides theory

Waveguides (Kapany andBurke, 1997) are the structures that are used to
guide and confine electromagnetic waves.Waveguides are classified to as either
metal waveguides or dielectric waveguides. Metal waveguides are assumed as one
enclosed conductor filled with an insulating medium but the dielectric waveguides

consists of multiple dielectrics and the electromagnetic wave propagates along the

12



waveguide by reflections at the boundaries. The optical fiber, usually has a circular
cross-section, 1s a well known dielectric waveguide, even though the planar slab
waveguide are the simplest dielectric guide which widely used in integrated optics.
Also, there are many different structures of waveguides. Depending on the frequency
of the wave to be transmitted, the amount of power to be transferred, and the amount
of losses one can choose the suitable structure.These structures are

e (oaxial cables are widely used in radio frequencies (RF) below 3 GHz above

that the losses are too enormous.

e Two-wire lines which can radiate at microwave frequencies .

e Micro strip lines are used widely in microwave integrated circuits.

e Rectangular waveguides are used at frequencies greater than 3GHz to transfer

large amounts of microwave power.

1.2.1 Waveguide structure

The structure to be discussed is the planner slab waveguide with its simplest
form shown in Figure (1.3). The figure shows a planner film having a refractive
index nf sandwiched between two materials called cover and substrate with lower
refractive indices n. and ng respectively. The fields will either be symmetric or
asymmetric, due to the symmetry of the geometry. In order to confine the field, the
fields outside the slab must be evanescent, i.e. they decay in the x direction.
Moreover, the plane wave inside bounces back and forth due to total internal

reflection (Griffiths, 1999).

cover /cladding

A
Ic X

film nr

Y

d

substrate 1=

Figure (1.3):Planner waveguide structure.

The propagation of the field can be characterized as a sum of two plane TEM waves,
upward and downward waves, propagating along zig-zag paths between the guide

walls, with total internal reflection of the light at the film-substrate and film-cover

13



interfaces (Kapany and Burke, 1997). These waves are monochromatic and coherent

travelling with a wave Vectorz and having an angular frequency @. There are
limited frequencies and forms for the wave function which can propagate in the
waveguide due to the constraints of the boundary conditions. The lowest frequency
for the mode to propagate is the cutoff frequency of that mode. The mode with the
lowest cutoff frequency is the basic mode of the waveguide, and its cutoff frequency
is the waveguide cutoff frequency. In order to design the suitable waveguide
structure, the dispersion relation becomes so important. The dispersion equation of
the guide yielding the propagation constant f§ as a function of the frequency @ and
the film thickness d.It is often convenient to use the effective refractive index (N) of

the guide, which is defined by

_hB
N= (1.46)

N
where k is the wave vector.The guide may be symmetric or asymmetric guide due to

the matches between n. and n;

1.2.2 Modes in waveguide
The modes of the guide are the solutions of the wave equations taking the standard

form

E(x.y.z) = E(x,y)exp( — B z) (1.47)

H(x,y.2) = H(x, y)exp(—jB z) (1.48)

According to which of the longitudinal components are zero, we may classify the
solutions as

e Transverse electric and magnetic (TEM) mode, E, =0, H, = 0.

e Transverse electric (TE) mode,E, =0, H,# 0.

e Transverse magnetic (TM) mode, E,# 0, H,= 0.

e Hybrid mode, E,# 0, H,# 0 (Griffiths, 1999).
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1.2.3 Goos-Hénchenshift

When the electromagnetic wave reaches the interface between the film and the
cladding, it penetrates in the cladding until a specific depth before suffering
reflection this cause the reflected wave is shifted relative to the incident wave. This
ray shift, shown in Figure (1.4), is so called the Goos-Héanchen Shift (Marko§ and
Soukoulis, 2008).

Xs| E"‘-,\ i
I . cladding nec

film nr

Figure (1.4):Ray picture showing the Goos-Hénchen shift.
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Chapter 2
Left-Handed and Chiral Metamaterials

2.1 History of left handed materials

Metamaterials are artificial media composed of elements which dimension are
small compared to the wavelength of interest. Metamaterials may display properties
which are more noticeable than those observed in natural materials. The famous
example of these properties are metamaterials with a negative refractive index which
are well known as negative index metamaterials (NIMs), also called left handed
materials (LHMs). The general consideration of the electrodynamics properties of the
materials with simultaneously negative values of the dielectric permittivitys and

magnetic permeability 4 had been introduced by Veselago, in 1968 (Veselago,

1968). Veselago presented that when the algebraic sign of real parts of the
permittivity and permeability are the same, electromagnetic waves will propagate.
Otherwise, waves will not propagate in a medium. Also, he showed that LHMs have
the ability to support backward waves. The concept to fabricate metamaterials with
negative index of refraction seemed to be unfamiliar and new, so Veselago's work
placed dormant for nearly 30 years. Pendryand co-workers (1996) released that the
concept to make LHMs is to treat permitivity and permeability separately, so he used
thin wire structure (wire array) to produce negative permitivity and magnet-free split-
ring resonator (SRR) structure to produce negative permeability (Pendry, Holden,
Robbins and Stewart, 1999). Recently though, much attention of this kind of
metamaterials has been drawn and the fabrication of perfect lens where an object
can be recreated without any error in diffraction was allowed (Pendry, 2000). LHMs
has been first experimentally observed by Shelby, Smith, and Shultz (Shelby, Smith
and Schultz, 2001) in completely different systems.

2.2 Electromagnetic properties and applications of left-handed materials
2.2.1 Reversal of Snell’s law

It is noticeable from Eq. (1.38) that the Poynting vector S is given by a right-

-

handed rule, as well as the wave vector k£ . However, when the medium has a
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negative value of permitivity and permeability these vectors become left handed and
both of S and k propagate in opposite direction as explain in Figure (2.1) . Note

N
that, the electromagnetic wave propagates in the direction of the Poynting vector S

where the direction of the group velocity.

-l
Wl

L1
-

b
f (a) f (b)
Figure(2.1):Propagation of the wave vector & and Poynting vector S in (a) Right
handed material, (b) Left handed material.

Moreover, the orientation of the wave vector Zgives the direction of the phase
velocity. Consequently, phase and group velocities will reversed and become
antiparallel. Such antiparallel orientation corresponds to so called "backward
waves",or'"negative group velocity". The medium then is Left Handed. The
antiparallelity of phase and group velocities immediately affect Snells law as

explained in Figure (2.2).
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medium 1

medium 2

RH

Figure(2.2): Negative refraction of the electromagnetic wave on the interface of a

"right-handed" and a "left-handed" material.

The ray propagates along the way (1-2) through the interface between two media for
positive values of ¢ and £ . Otherwise, if one of the media has negative¢ and u, the
ray takes the bath (1-3). This unusual propagation of the wave, first discussed by
Schuster (Schuster, 1904), is a result of the opposite travelling of the phase and
group velocities and of the continuity of the tangential components of the wave

vector on the interface between the two media (Markos and Soukoulis, 2008).

2.2.2 Left-Handed medium as a lossy medium

The energy of electromagnetic field is given by (Sarid and Challener, 2010)

_L o(ew) ., O(u®) ..,
U_Sﬂ{ ™ E-+ ™ H} (2.1)

implies that the permittivity & and permeability g must depend on the frequency.

This dependence means that both the permittivity and permeability must be complex,

such as any lossy media. Otherwise, the energy U reduces to the expression

U= (8 E*+uH’ )/(871) which would have unacceptable negative value for negative
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¢and u (Markos and Soukoulis, 2008). The general expressions for €and pas a

function of angular frequency w =27z f were proposed as

2

g :1—2—” (2.2)
o +iyw

Fo’
o’ — o] +iol

p=1- (23)

where o,, 7, F, and " are constants associated with a particular metamaterial in

the microwave regime correspond to the electric plasma frequency, the damping
factor, the fractional area of the unit cell occupied by the spilt ring resonator (SRR),

and the dissipation factor, respectively (Sarid and Challener, 2010).

2.2.3 Unique properties of LHMs

An established slab from a left-handed material with negative permittivity and
permeability can be regarded in the same way as a dielectric slab. It is, however
beneficial to highlight two special properties of the left-handed slab. First, a planar
lens can be investigated at the interface of the vacuum and left-handed medium due
to the negative refraction (Markos and Soukoulis, 2008). Second, left-handed slab is
able to amplify incoming evanescent waves which offers many applications such as
perfect lenses (Koschny, Moussa, and Soukoulis, 2006). This abnormal property
makes left-handed materials different in principle from any other known material.
2.2.4 Applications of LHMs.

The unique properties of these metamaterials make them the best candidates
for most applications. LHMs can be used in many applications, such as cloaks,
antenna, resonators, radome, sensors, absorbers and couplers etc(Gangwar, Paras and
Gangwar, 2014). These applications are required for the performance improvement
of the material. Cloaking means that electromagnetic field inside the hollow cloak
tends to be zero, this makes the region inside the shell disappear. This can be
achieved by guiding the electromagnet wave, in another world transforming the
coordinate system (Ergin, Stenger, Brenner, Pendry and Wegener. 2010).

Researches concerned on the use of LHMs in directive antenna substrate systems

(Chen, Wu, Ran, Grzegorczyk and Kong, 2006;Sui et al, 2005; Wu et al, 2005;). The
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problem with the designed antennas in the past is the narrowband operation. It is well
known that by Snell's law, if a source is embedded in a substrate that has a small
index of refraction compared to air, its rays will be transmitted near the normal of the
substrate. The light-weight property of LHMs added benefit to design a wideband
directive antenna (Li, Yeo, Mosig and Martin. 2010). Moreover, Zero-
indexmetamaterials or LHMs where the effective permittivity and permeability are
zero at certain frequencies can be used to achieve a wider frequency band of high
directivity. To increase the gain of the antenna, a planar radome were arranged by
using seven LHMs structures.

The fabrication of LHMs opens a door for designing sensor with specified sensitivity
and enhances the resolution of sensors. These sensors are used in wide variety area
such as agriculture and biomedical.

Conventional couplers can achieve strong forward coupling. But to obtain a
sufficient coupling level, they require very long physical lengths and very tight
spacing between the two lines. To avoid this drawback, LHMs induced the
possibility of achieving strong forward coupling with length drastically

reduced(Gangwar, Paras and Gangwar, 2014).

2.3 Bi-isotropic and bi-anisotropic media

Isotropic means having the same property in all directions. If the properties of a
material are different in various directions, it is said to be anisotropic. Isotropic and
anisotropic media become polarized or magnetized by induction of electric or
magnetic field , without cross coupling between the two fields. The permittivity and
permeability of such media may be either a scalar for isotropic medium or a tensor
for anisotropic one ,which has been mentioned in a previous chapter.

On the other hand, a bi-isotropic or bi-anisotropic medium have uniquely cross
coupling between the electric and magnetic fields make them becomes both polarized
and magnetized by induction of an electric or magnetic field. In order to clarify this

phenomenon we introduce the micro helix model shown in Figure(2.3).
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Figure(2.3): micro helix model.

Molecules in isotropic and anisotropic media are considered as electric dipoles
and/or current loops. Thus, electric field induced molecules to become aligned
electric dipoles and magnetic field induced aligned magnetic dipoles without cross
coupling. But in bi-isotropic and bi-anisotropic media, molecules are considered to
be a large amount of conductive micro helices shown in Figure (2.3). Aligned
electric dipoles (the pair of charges at two ends of the helix) and magnetic dipoles
(the current in the helix) appear simultaneously under the action of an electric field
or a magnetic field alone. To explain this, charges of opposite signs appear at the two
ends of the helix due to the applying of a time-varying electric field and according to
the continuous equation current arises in the helix. Moreover, applying of a time-
varying magnetic field induced current to arise in the helix according to Lenz's
theorem, and again, according to the continuous equation, charges of opposite signs
appear at the two ends of the helix. The medium is bi-isotropic if the above
phenomenon is isotropic, otherwise it is bi-anisotropic. This kind of media is also
known as chiral media (Zhang and Li, 2008). Bi-isotropic and bi-anisotropic media,
also called magnetoelectric materials, was theoretically investigated by Landau in
1957 (Zhang and li, 2008). These materials were detected experimentally by Astrov

in 1960 in anti-ferromagnetic chromium oxide (In Zhang and 11, 2008).

2.3.1 Chiral metamaterials
The Greek word "chiral" means handi.e. our hands are mirror images and they

cannot be superimposed on each other, was first predicted by Pasteur (Kim, 2006).
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Some magnetic crystal classes are classified among the natural chiral media such as
sugar arrays, amino acids, DNA, and organic polymers. Hence, wire helices, the
Mobius strip, and the irregular tetrahedron are considered to be artificial chiral
objects. A chiral object is three dimensional body which cannot be brought into
compatibility with its mirror image by translation and rotation. Such an object has
the property of handiness and is either right-handed or left-handed. An object that is
not chiral is called achiral(Barba, 2011; Elsherbeni, Demir, Alsharkawy, Arvas and
Mahmoud.2004).

To summarize, a chiral medium is a macroscopically continuous medium consists of
equivalent uniformly distributed but randomly oriented chiral objects. When a
linearly polarized light enters into a slab of chiral medium, it is decomposed into two
orthogonal co-propagating circular polarizations, right-handed circulary polarized
RCP and left-handed circulary polarized LCP, travelling at different speeds. After
propagating through the chiral material and recombining, the output is linearly
polarized as well, but is rotated by a certain angle with respect to the plane of
polarization of the incident wave (Kim,2006). This rotation depends on the distance
travelled through the medium as a result of the optical activity which occurs
throughout the medium not at the surface. This property makes a substance able to
rotate the plane of incident polarized light due to asymmetrical molecular structure
(Bassir1, 1987). If the chirality parameter is strong and greater than refractive index at
least near the resonant frequency, one eigen-wave in the chiral medium becomes a
backward wave and a negative refraction in the chiral medium is generated (Dong,
2009). Therefore, chiral media can achieve negative refraction, we call the type of
strong chiral as chiral negative refractive medium (Kim, 2006). Due to the discovery
of chiral media and its novel features, recent interest has been focused on the guided
structures filled with chiral material, called ‘chirowaveguides'. Chirowaveguides,
first suggested by p. pellet (pellet, 1990), have unique features that the propagation
modes are hybrid since the electric and magnetic fields are coupled to each other by

chirality.
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2.3.2 Previousstudies

Waveguides consisting of chiral metamaterials with negative refractive indices,
such as slab, grounded slab, parallel-plate waveguide and fiber, have been
investigated theoretically. A special case of chiral negative refractive index medium,
termed as chiral nihility in which the permittivity and permeability are
simultaneously zero, has also intensively explored. Especially, planar and circular
open or closed waveguides containing chiral nihility have been studied. However,
these studies focued on the isotropic chiral medium (Dong, 2012).
The wave propagation and field distributions in slab dielectric waveguides having
homogenous isotropic chiral material have been discussed by M. Oksanen, P. K.
Kolivisto,and I. V. Lindell (1991). The analysis was based on field expansions in the
guide and in the upper and lower half spaces. Enforcing the boundary conditions at
the waveguide interfaces resulted in eigenvalue equations of the guided modes. Also,
the propagation characteristics of general chiral planar waveguides were presented
by J. Xiao, K. Zhang, and L. Gong (1997).The eigen equation was given in a simple
formulation. The results indicated that there were two types of field distributions
which were related to the working wavelength and chiral admittance. Moreover, a
waveguide consisting of homogeneous chiral mediain the film and cladding was
investigated by M. Yokota and Y. Yamanaka (2006). The electromagnetic fields
were decomposed into right and left circularly polarized fields. The guided mode
expressions in the film were obtained. Using the boundary conditions at the
interfaces yields the eigenvalue equation for the hybrid guided modes. The
dispersion relation and the guided mode profile were examined numerically. And, the
propagation of electromagnetic plane waves in an isotropic chiral medium was
presented by C. W. Qiu, et al. (2008) and a special interest was shown in chiral
nihility and the effects of chirality on energy transmission. Some specific case
studies of chiral nihility were presented, and Brewster angles were found to cover an
extremely wide range. The E-field distributions in these different cases, where the
chiral slab was placed in free space, were analyzed by using the appropriate
constitutive relations. It was shown from numerical calculations that one can obtain
some critical characteristics of the effects of chirality on energy transmission and

reflection, such as transparency and power tunneling. The characteristics of guided
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modes in a planar waveguides in which the core or cladding consists of chiral nihility
meta-materials were studied theoretically by J. Dong and C. Xu (2009). The
dispersion curves, electromagnetic fields, energy flow distribution and the power of
several low-order guided modes in the chiral nihility waveguides were
presented.Also, the characteristics of guided modes in a circular waveguide
consisting of uniaxial chiral medium have been investigated by J. F. Dong and J. Li

(2012).

2.4 Plane waves in chiral media

If the four tensors appear in the constitutive relations given in Egs. (1.13) and
(1.14) become scalars, the medium is bi-isotropic. Otherwise, the medium is bi-
anisotropic . The constitutive relations for this medium were formulated by Tellegen

(Tellegen, 1948) as

D=cE+¢H (2.4)

e

CE+uH (2.5)

>R
Il

> 5> 5 >
D, E, B, H, g€ and p are corresponding to usual electromagnetic quantities. § and (

are the coupling constants, which is the intrinsic constant of each media can be

related to the reciprocity y and chirality parameter k as

e

X—JjK= (2.6)

w\ﬁ
=

x+jK= (2.7)

7]

The chiral medium is reciprocal i.e. y = 0 .After substitute the above equations into

the constitutive relations gives (Dong, 2009)

e 1, H (2.8)
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B=p, H+ ji;\Je, uy E (2.9)

where ¢, and u, are the permitivity and permeability of medium 1, respectively. x; is

dimensionless and normalized quantity which represents the handedness of the

medium, called the chirality.

2.5 Dispersion equations of three-layered asymmetric slab chiral
waveguides

The geometry of an asymmetric slab chiral waveguide with thickness d is

shown inFigure(2.4).
L
X
SRR d/2
€3: iy K 0 >
—>

-d/2

€3, 3. K75

Figure(2.4): Geometry of the three-layered asymmetric slab chiral waveguide.

It consists of a thin chiral meta-material film bounded by isotropic chiral meta-
material upper and lower half spaces with different refractive index and chirality. We
mentioned that unlike the conventional dielectric materials, the electric and magnetic
fields in the chiral material are coupled, so the Hybrid mode appears in the
waveguide. This coupling due to the chirality parameter is expressed in the
constitutive relations. Depending on which field vectors are used in the relations, the
constitutive relations may take different, but equivalent, forms. Eq. (2.8) and Eq.
(2.9) coerresponds to the general form of the constitutive relation.

In the chiral medium, electromagnetic fields are expressed as (Dong, 2009)
E=E+E (2.10)
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H=H +H_ (2.11)

The electric and magnetic fields in the chiral medium are related to each other by

(Dong, 2009)

] (2.12)

where the (£) symbols correspond to the right-handed (RCP) and left-handed (LCP)
circularly polarized waves in the chiral material, respectively, and 77, =4/, /€, is

the wave impedance in the media. After few rearranging of the constitutive relations

given in Eq.(2.8) and Eq.(2.9) in the present of Eq. (2.12) one can write

0. =5 n, 1) . @.13)
Similarly,

- _ /’ti -

B, —n—(n FK,)H, (2.14)

where n, =./&,1, /€14, is the refractive index .

Substitution Eq.(2.13), and Eq.(2.14) into Maxwells equations for source-free

regions leads to a new form for Maxwell's equations

VXE, =—jk,_ n H, (2.15)

k.
VxH, =j~*F, (2.16)
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wherek,, = k,(n, +x,)is the wave vector for RCP and LCP waves and

5
k, =w./g, 1, isthe wave vector for free space.
Furthermore, since the structure is uniform in the y direction, we assume 8/ oy=0

and the fields are varying with respect to time as ¢ /#*“")so we assume 0/0z = —jf3
where [ is the propagation constant to be determined.

For better understanding, we again derive the wave equation from Maxwells

equations
]ﬂ Eyi = _jkii n; Hxi (2'17)
0E.. OE. S
xt _ z+ — 'k.+ H . (218)
82 ax ] 1,771 yt
6E% -
yt — —]k+77 H . (219)
ax 1T 1 zZT
]ﬂ Hyi =] kii/ni Exi (2'20)
0H., OH -
xt _ z+ — -k.+ E . (221)
o JKe/miE
6HH -
vE _ jk-+/77- E. (2.22)
ax 1T 1 zZT

The wave equation for the principal electric field component £, is derived as follow

VIE,.+kLE, =0 (2.23)

We can express the solutions of the longitudinal-field component in Eq. (2.23) as
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( d
Ajexp (—yi (x - E)) , x>d/2,
gzi(x) =< Bysin(61x) —d/2 <x<d/2, (2.24)
d
Ciexp (ai (x+5)> , x < -—d/2.
\
for odd guided modes, and
( d
Acexp| —v+ (x - E) , x>d/2,
Ezi(x) =< Bicos(84x) —d/2 <x<d/2, (2.25)
d
Ciexp (ai (x + E)) , x < —d/2.
\

for even guided modes, where the parameters y.,64 and a. are given by

ve = (B2 —k3)V? 6y = (k3 — B)V2 @y = (B2 — K32

The other field components can be obtained by using Egs. (2.12), (2.19), and (2.20).
According to the boundary condition (continuity of the tangential fields) for
electromagnetic field components at x =d/2 and x = —d/2, the dispersion

equations of guided modes in slab chiral waveguide can be derived as follow

4y k. k - —
S (772 . jcosm cosu_+4 (772 . ](k]+k2+)si11u_ cost.
S 1, n;

y. k. (1 +77_2](1 —77—2](1 +i](ki+ki] sinu_cosu, —
n; n; n \No_ o,
k "k ’ 5.k
i(l_ﬂ] +i(1+n—2] (1—1](—7/* - 2‘]cosu_ sinu, —
a_ 773 a+ 773 772 5—
{2’&(1 —”—2](1 +ﬂ] + 2’&(1 +'7—2](1 —ﬂ]}&kh sinu, sinu_ =0
o UE UE a, n; B (2.26)

for odd guided modes, and
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4 _ _
_ y.ky ks (772 m ]sin u, sinu_ + 4(772 i ](k]+k2+)cosu_ sinu, +
s

T[N A COTR I
UE UE 1, a
k : k o.k
{;(1_77_2] 4 3 (14_ ] }( ](h - 2‘]sinu_ cosu, —
a_ UE a,
{zki(l_n ](1+n‘]+2k3+ (14-772]( - ]}5 k,, cosu, cosu_ =0
a_ 773 773 a+ (227)

for even guided modes, where uy = §,.d/2. In the next section we will study the

dispersion equations of guided modes in a three-layered symmetric slab chiral

waveguide.

2.6 Dispersion equations of a three-layered symmetric slab chiral
waveguides

If the chiral meta-materials in the claddings shown in Figure (2.3) have the
same refractive index and chirality as those of the substrate; k; = k3, & = &3 and
W = Uz, then we have a symmetric three- layered slab chiral waveguide as shown in

Figure(2.5).

&
X
€14, K,
d/2
Er: K 0 -
z
&1 4. K d/2

Figure(2.5): Geometry of the three-layered symmetric slab chiral waveguide.
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The solutions of the longitudinal-field component in Eq.(2.23) are written as

e

zi(x) = 3

)
Ay exp (_Vi (

Bysin(84x)

Ay exp (Vi (
\

X —

2

for odd guided modes, and

e

zi(x) = 9

)
Ay exp (_Vi (

Bycos(84x)

Ay exp (Vi (
\

for even guided modes.

d
X+ =

) -

d
E)) x>d/2,
_d/2<x<d/2
)), x < —d/2.
d
X — E))' x>d/2,
_d/2<x<d)2
x < —d/2.

(2.28)

(2.29)

)

Other components of the fields are obtained and the continuity requirements are

applied, we obtain the following dispersion relations

4k, k

2- 4k1+k1- : :
—=———cosu, cosu_ +———sinu, sinu_ —

0,0_

+

)

kl+k2+
5.7,

ky k.
oy

ViV

2 -2+
M=) +———
A
(771 _772)2 + k1+k2-

for odd guided modes, and

(17] +n2)2]sin u_cosu, +

(17] +n2)2]cosu_ sinu,
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4k, .k

1+7V1-

VY-

)

A4k, k, . ,
cosu, CoSu_ +————sinu, sinu_ +

0.7,

(kl+k2+ (77

+Y -

1 _772)2 +

for even guided modes.

kl+k2—

-7+

kl—k2+

+/ -

(17] +n2)2]sin u_cosu, +

(17] +1, )2 ] cosu_sinu,
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Chapter 3
Characteristics of Electromagnetic Waves in Slab Waveguide
Structures Comprising ChiralNihilityFilm and Left-Handed
Material Claddings.

Weanalytically present the dispersion equationfor a symmetric three-layered
chiro-waveguides, in which the claddings are achiral material but the core is chiral
material. After that,two modes of propagation through a chiral nihility core and left
handed material (LHM) claddings waveguide are treated in details. For odd and even
guided modes, the dispersion equations, normalized cutoff frequencies,
electromagnetic fields, and energy flow of right-handed and left-handed circularly
polarized (RCP and LCP) modes are derived in explicit forms. Numerical results of
guided low-order modes and typical chirality parameters are given. Some novel

features such as abnormal dispersion curves are found.
3.1 Dispersion equations of three-layered symmetric slab chiral core and

achiral claddings waveguides

When the waveguide shown in Figure (2.5) consists of a chiral core and an achiral

claddings, where x; =0, as shown in Figure (3.1), the above parameters

—

ko =ko(n £x)ye = (B> —kiDV? 6. = (k3s — B*)V?and  ay = (B* —

k3,)zbecomek ;. = niky = kq.kyy = ko(ny £ k2),y: = (B2 —ki)z =y .0, =
(k3. — BHY2.
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Figure(3.1): Geometry of the three-layered symmetric slab chiral core and achiral

claddings waveguide.

The dispersion equations (2.30), (2.31) reduce to

212 (02 — 12 212 2402 (% .
2k (n, =K3) COSl, COSU_ +i2‘ sinu, sinu_ kG +m) —2t sinu_cosu, +£cosu_ sinu, »=0
6.5 Y ymn 9. 5
3.1
for odd guided modes, and
2k} 2k} —K3) . . k@l +n;) [k ) k, .
i2‘cosu+ cosu_ +M sinu, sinu_ +‘(77‘—772) —2* cosu_sinu, +—==sinu_cosu, r =0
7/ 5+5— 7/77] 772 + 5—
(3.2)
for even guided modes.
When the core is a chiral nihility meta-material, in which the permittivity and
permeability are simultaneously zero, the above parameters become k;;. = n;k, =
1 1
kykor = tkoka,ys = (B2 — kD)2 = v.8+ = (k3, — B?)7 = (k§ri — pHY?* =6
The dispersion relation given by Eq. (3.1) can be divided into two equations as
rd Koy BE—KkF 2
(k3K —,82)25 = tan™1{ . (k(z)}cg —,82)2} + mm, m=0,12,.. (3.3)

for RCP odd modes, and
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koky  B%—ki 1
2 =1,23,..
3 (k(z)}cf —,82) } + mm, m =123,

1d
(k313 — B2z = —tan™(

for LCP odd modes, where m is mode number. It is noted that m starts from 0 in
RCP odd modes and from 1 in LCP odd modes.

Moreover, the dispersion relation given by Eq. (3.2) can also be divided into two
equations, taking in mind that RCP and LCP even guided modes are mirror images of

RCP and LCP odd guided modes, then the dispersion equations take the form

ki kgig — B2
( 52— kf )2} + mm, m=123,..

1d
2,2 _ p2\; - — _ -1
(kgr; — B*) ) tan {ko’fz

for RCP even modes, and

ky ki3 —p* 2
Cpr gz tmm m=012,..

1d
2,2 _ p2y; ~ — -1
(kgks — B*) 2 tan {kOKZ

for LCP even modes. It is noted that, in contrast to odd modes, m starts from 1 in
RCP odd modes and from 0 in LCP odd modes, because of the handedness of chiral

meta-material.

3.2 Guided modes in slab chiral nihility core and LHMs claddings
waveguides

Consider the structure shown in Figure (3.1) with chiral nihility core and the
claddings are left-handed material. It is shown that the dispersion relation given by
Eq. (3.1) and Eq. (3.2) can be divided into two equations corresponding to RCP and
LCP modes, respectively. For odd and even guided modes, the dispersion equations,
normalized cut-off frequencies, electromagnetic fields, and energy flow of RCP and

LCP modes are found as follows.
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3.2.1 Odd modes
We use in the claddings left-handed materials (LHMs), which, by definition,
have a negative refractive index. The parameter n; have a negative value, so the

dispersion relation given by Eq. (3.1) is divided into two equations as

1d L ko, BE—ki 1
(k3ks — 32)25 = tan™{ . (kgkg — ﬁz)z} +mn, m=123,.. (3.7)
for RCP odd modes, and
1d ko, BE—ki 1
(kdks — ,82)25 = —tan™1{ . (k(z)}cf — ,82)2} +mn, m=0,12,.. (3.8)

for LCP odd modes. It is noted that, in contrast to Eqs (3.3) and (3.4), m starts from
0 in LCP odd modes and from 1 in RCP odd modes.

We can obtain the normalized cutoff frequencies (V) by setting f — k; in the
dispersion Equations (3.7) and (3.8)

2mn
V= kod = W, m = 1,2,3,. - (39)
for RCP odd modes, and
2mn
V=kyd = m=20,1,2,.. (3.10)

CRra
for LCP odd modes.

We can express the electromagnetic fields in explicit forms as
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f—j’% exp {—y (x - g)} x>d/2,

E (x) =4 _5sﬁﬁ?u) cos(6x) —d/2 <x<d/2, G.11)
G’j’% expy (x+5)} Y < —dj2.
Phealrf) oo

E () =1~ 5’::23) cos(6x) —d/2<x<4d/2, (3.12)
kik17A exp {y (x + %)} X < —d/2.

and

(Aexp{—y(x—d/2)} x>d/2,

E (x) = 1 sin(6x) —-d/2<x<d/2, (3.13)

sin(u)

\Aexp{y(x +d/2)} x<-—-d/2.
for RCP (upper sign) and LCP (lower sign) odd modes, respectively where 4 is an
arbitrary constant, which can be determined by total power.

The magnetic fields in the core and the claddings are

X,y,Z X,y.z

H  =+lF (3.14)
Ny

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.

Energy flow along the z-axis in the waveguides is defined by
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Z

S,=5Re(Ex H )=5Re(E H, ~E H) (3.15)

Thus we can express enery flow along the z-axis as

(BlnA” { 2 ( d)} > d/2
— exp ylx > X /2,
ﬁkOKZAZ 2
— — <x< 3.16
S (x) =1 in15zsin2(u) cos?(6x) d/2<x<d/2, (3.16)
Bl A’ {2 ( +d)} < —d/2
y? exp 12y |x +5 X /2.

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.

It is obvious from Eq.(3.16) that S is positive for RCP odd modes and negative for
LCP odd modes in the core, and positive for both RCP and LCP odd modes in the
claddings. On the other hand, we use LHM claddings which make the energy flux
negative in the claddings for both RCP and LCP odd modes.

3.2.2 Even modes
When the claddings are left-handed materials (LHMs) and the indexn; have a

negative value, the dispersion equation (3.2) divided into two equations as

ki kixs —pB* 1
( B2 — kf )2} + mm, m=20,1,2,.. (3.17)

1d
2,2 _ p2\; & — _ -1
(kgks — B*) 2 tan {kOKZ

for RCP even modes, and

1 d k k2 2 _ n2 1
(k2K2 — B2)re = tan—t{—t (012 f e} + mm,m =1,2,3,... (3.18)
2 k()Kz - kl

for LCP even modes.
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We can obtain the normalized cutoff frequencies (V) by setting f — k; in the

dispersion Equations (3.17) and (3.18):

V=k0d=

for RCP even modes, and

V=k0d=

2m+ D

W,m = 0,1,2,...
2Zm—1)m

( ) m=1273,..

0F =)

for LCP even modes.

We can express the electromagnetic fields in explicit forms as

r—]"ﬁexp {—y (x—%)} x>d/2,
E (x) = A +%s‘2u)sin(5x) —d/2<x<d/2,
k+j"%exp {y (x +%)} x < —d/2.
r?“%exp{—y(x—%)} Xx>d/2,
E(x) =1+ 5];};22) sin(6x) —d/2 <x<d/2
kik17Aexp{y(x+§)} x < —d/2.

and
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rAexp {—y (x - %)} x>d/2,
E _(x) =4 coiu) cos(6x) —-d/2 <x<d/2, (3.23)
kAexp {y (x +%)} x < —d/2.

for RCP (upper sign) and LCP (lower sign) even modes, respectively.
The magnetic fields in the core and the claddings are given by Eq.(3.14).

Moreover, we can express the enery flow along the z-axis in the waveguide as

(BlnA” { 2 ( d)} >d/2
— exp ylx > X /2,
.Bko’czA2 .
S =4+ ——— 2 - <x< 3.24
() =14 t o5t o0 (8x) d/2 <x<d/2 (3.24)
Blad” {2 ( +d)} < —d/2
U2 TP T2 X< —df2.

for RCP (upper sign) and LCP (lower sign) even modes, respectively.

ALso, it is obvious from Eq.(3.24) that S_ is positive for RCP even modes and
negative for LCP even modes in the core, and positive for both RCP and LCP even
modes in the claddings. On the other hand, we use LHM claddings which make the
energy flux negative in the claddings for both RCP and LCP even modes.

3.3 Results and discusion

We can calculate the propagation constants numerically from the dispersion
equations (3.7), (3.8), (3.17) and (3.18), then the electromagnetic fields and the
energy flow distribution can be calculated.

In this section, we assume chiral nihility core guiding film with the parameters
U, = & = 0,k, = 1.5. On the other hand, the cladding and substrate are LHMs with
parametersy; = (=1 +.0011) X pg, & = (=1 +.0011) X &, and k; = 0.
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3.3.1 Dispersion curves

Figure (3.2) shows the dispersion curves of odd and even guided modes in the
slab chiral nihility core and LHMs claddings waveguide for low-order modes, where
Nerr = B/ko is the effective refractive index, kod is the normalized frequency.
Dashed and solid curves related to the odd and even modes, respectively. For LCP
odd and even modes, the curves of effective refractive index versus normalized
frequency increases monotonically, and the normalized cutoff frequencies (points
Cy, C; when n,¢r = 1) satisfy Eq.(3.10) or Eq.(3.20). However, for RCP odd and
even modes, dispersion curves are no longer increasing monotonically, but are bent,
and the cutoff frequencies where n,rr = 1 are not the minimum frequencies that
waves can propagate. When m = 0, there is one solution below cutoff frequency
(pointC;) for RCP even mode in some frequency region. When m = 1, there are two
solutions below cutoff frequencies (points C,, C3) for both RCP even and odd modes
in some frequency region. Thus the cutoff frequencies here are not really “cutoff’.
The real “cutoff” frequencies correspond to the minimum frequencies (critical points
B, D) that guided wave can propagate. As the normalized frequency increases from
the critical points B, D dispersion curves bifurcate two branches, which the effective
refractive index increases for upper branch and decreases to n.sr = 1 for lower

branch.
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- Ci3

Figure(3.2): Dispersion curves of guided modes in the slab chiral nihility core and

LHM claddings waveguide.

3.3.2 Odd guided modes

Figures (3.3) and (3.4) show the amplitudes of electromagnetic field
components and energy flux distribution at normalized frequency kyd = 5.2 for RCP
odd mode when m=1. E_, H_, are odd functions of x (sin form) and
E_ E ¥’ H ., H y (cos form) are even functions of x. §_ is positive in the core and
is negative in the claddings (due to the negative refractive index of LHM claddings).

However, there are two propagation constants at kod = 5.2.
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Figure(3.3): Amplitudes of electromagnetic field components at kyd = 5.2 for RCP
odd mode when m=1,n,¢r = 1.223.
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Figure(3.4): Energy flux at kod = 5.2 for RCP odd mode when m=1, (a)n.rs =

1.223; (b) nrr = 1.02219.
Figures (3.5) and (3.6) show the amplitudes of electromagnetic field components and
energy flux distribution at normalized frequency k,d = 4 for LCP odd mode when

m=0. £ ,, H , are odd functions of x (sin form) and £, Ey, H Hy (cos form)
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are even functions of x. §_ is negative in both the core and the claddings (due to the

negative refractive index of LHM claddings).

imag(E,) Ey E,
2
VA 1
o N B J/¥
\ 2 \/ -1
25 0 2 5 ) 5 5 o 5
x/d x/d x/d
xi0® Hy x10° imag(Hy) . x0° imag(H,)
A A
o) I \\__ (1) IO \\\..K [0 R \ ,,,,,,,,,,
5 5 -
2 0 2 2 0 2 2 0 2
x/d x/d x/d

Figure(3.5): Amplitudes of electromagnetic field components at kyd = 4 for LCP

odd mode when m=0.
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Figure(3.6): Energy flux at kyd = 4 for LCP odd mode when m=0.
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3.3.3. Even guided modes

Figures (3.7) and (3.8) show the amplitudes of electromagnetic field
components and energy flux distribution at normalized frequency ky,d = 1.5 for RCP
even mode when m=0.E , H are even functions ofx(cos form) and

E.,, Ey, H, ,H y (sin form) are odd functions of x. §_ is positive in the core and is

negative the claddings (due to the negative refractive index of LHM claddings).

imag(E,) Ey E,

4 2 2 4 K 4 2 2 4
x(;d 4 2 x(;d 2 4 x/d

><10'3 Hx ><10'3 Imag(Hy) ><10'3 imag(Hz)

4 4

2 2 4

0 0

2 2 2

4 4

4 2 0 2 4 4 2 0 2 4 %4 270 2 a
x/d x/d x/d

Figure(3.7): Amplitudes of electromagnetic field components at kyd = 1.5 for RCP

even mode when m=0.
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x10°

Figure(3.8):Energy flux at kod = 1.5 for RCP even mode when m=0.

Figures (3.9) and (3.10) show the amplitudes of electromagnetic field components

and energy flux distribution at normalized frequency k,d = 6 for LCP even mode
when m=1. £ ,, H , are even functions of x (cos form) and £, E , H , H , (sin
form) are odd functions of x. §_is negative in both the core and the claddings (due to

the negative refractive index of LHM claddings).
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Figure(3.9): Amplitudes of electromagnetic field components at kyd = 6 for LCP

even mode when m=1.
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Figure(3.10): Energy flux at kod = 6 for LCP even mode when m=1.
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Chapter 4
Propagation of Electromagnetic Waves in Slab Waveguide Structure
Consisting of Chiral NihilityCladdings and Left-HandedMaterial
Core Layer

We derive the dispersion equationfor a symmetric three-layered chiro-
waveguides, in which the claddings are chiral material but the core is an achiral
material. After that,two modes of propagation through a chiral nihility claddings and
left handed material (LHM) core waveguide are presented in details. For odd and
even guided modes, the dispersion equations, normalized cutoff frequencies,
electromagnetic fields, and energy flow of right-handed and left-handed circularly
polarized (RCP and LCP) modes are derived in explicit forms. Numerical results of
guided low-order modes and typical chirality parameters are given. Some novel

features such as abnormal dispersion curves are found.

4.1 Dispersion relations of three-layered symmetric slab achiral core and
chiral cladding waveguides

When the geometry of the waveguide consists of an achiral core and chiral

claddings, wherex, = 0, as shown in Figure(4.1) the above parameters become

k1i = ko(n1 + K1), sz = nyky = k,, Y+ = (,32 - k%i)g, and(Si = (k§ - ,32)5 =
0.

Y
X
region 1 d/2 1. M. K
region 2 ol e
s z
region 3 -df2 £ .. K

Figure(4.1): Geometry of the three-layered symmetric slab achiral core and chiral

cladding waveguide.
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The characteristic equations (2.30) and (2.31) can be written as

2,02 2 2 2 2
2k ~K) )sin2u+25i22coszu——kzg7' *11:) sinu cosu {ki+&} =0 (4.1)
ViV hmn, Ve V-
for odd guided modes, and
2 202 2 2 2 2
M cos’u + 2(%2 sinu +w sinu cosu {& + &} =0 4.2)
ViV hm, Y. Y-

for even guided modes.

When the claddings are chiral nihility media, in which the permittivity and

permeability tend to be zero, the above parameters become ki, = *tkgky, kyy =
1 1 1

noko = ko, vi = (B — kiy)? = (B> — kgki)2 =y, andd, = (k3 — p?)2 = 8. The

dispersion relation given in Eq. (4.1) is divided into two equations as

k, B*-— k(z)K%
kox,

1d
(kz = B2 = tan™'{ )2} 4+ m, m=0,1,2,.. 4.3)

for RCP odd modes, and

1d k
2 _ p2y;~— -1
(3 = By = —tan™ g2

for LCP odd modes, where m is mode number. As can be seenm starts from 0 in
RCP odd modes and from 1 in LCP odd modes.
Also, the dispersion relation given in Eq. (4.2) is divided into two equationswhich

take the form

1 d koky k2 —B% 1

2 AY —1,v0™1 2 =
— 2 — = — 2 =12 45
(kz ﬁ) 2 tan {kz (ﬁz_k(z)}c%) }+m7T, m ) r3r ( )

for RCP even modes, and
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koky  ki—pB* 1
2 =012,.. 4.6
r (ﬁz—kgxf) }+mm,m=0,1,2, (4.6)

1d
(3 = B2y = tan™!{

for LCP even modes.As can be seen, in contrast to odd modes, m starts from 1 in

RCP odd modes and from 0 in LCP odd modes.

4.2 Guided modes in chiral nihility claddings and NIM core waveguide

Consider region 1 and region 3 shown in Fig.4.1 are chiral nihility material and
the core is LHM. It is presented that the dispersion Equations (4.1) and (4.2) can be
divided into two equations correspond to RCP and LCP modes. For odd and even
guided modes, the dispersion equations, normalized cut-off frequencies,

electromagnetic fields,and energy flow of RCP and LCP modes are found as follows.

4.2.1 Odd modes
Assume the core layer is left-handed material, thus the parameter n, has a
negative value, so the dispersion relation given by Eq. (4.1) can be divided into two

equations as

1d ky B*—kiri 1
2 _ p2y; -1 > _ 4
(k5 —B°) > tan {k0K1( K2 — p2 )2 } + mm, m=1,23,.. 4.7)
for RCP odd modes, and
rd ky B?—kiri 1
2 _32)2— = —tan~1 2 =0,1,2.. 4.8
(kz ﬁ ) 2 tan {k0K1( k% —,32 ) }+m7—[’ m Or ) ( )

for LCP odd modes. It is noted that, in contrast to Egs. (4.3) and (4.4), m starts from
0 in LCP odd modes and from 1 in RCP odd modes.

We can obtain the normalized cutoff frequencies (V) by setting f — kok; in the

dispersion relations (4.7) and ( 4.8)

52



2mn

V=k0d=W, m=1,2,3,...
for RCP odd modes, and
2mm

V =kyd = m=20,1,2,..

CREDEEE
for LCP odd modes.

We can express the electromagnetic fields in explicit forms as

B Asi d
r_],Bs%(u) exp{—y(x—i)} x>d/2,
E (x) =1 —j’% cos(6x) —d/2 <x<d/2,
k+].'BA'S+(U) exp{y (x+%)} x < —d/2.
kok, Asi d
f_ oK ;‘m(U) exp {_V (X _ E)} X > d/2,
E(x) =1 ?kiTA cos(5x) —d/2<x<d/2,
kokc, Asi d
k_l_ ok ;‘m(U) exp {V (X +E)} X < —d/2.
and
I(Asin(u)exp{—y(x —d/2)} x>d/2,
E, (x)= 4Asin(5x) —-d/2 <x<d/2,
|
kAsin(u) exp{y(x +d/2)} x < —d/2.
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for RCP (upper sign) and LCP (lower sign) odd modes, respectively where A is an
arbitrary constant, which can be determined by total power.

The magnetic fields in the core and the cladding are

x,Y,Z X,Y,Z

H . =+L1F (4.14)
N2

for RCP (upper sign) and LCP (lower sign) odd modes.

We can express the enery flow along the z-axis as

( BkokiA?sin?(u) { ( d)}
+ expi—2y(x—= x>d/2,
N> P v 2 /
Bk, A2
S (%) =1 7,87 cos?(8x) —d/2 <x<d/2, (4.15)
2
BkokiA?sin? (u) { ( d)}
ki S~ exp 2y x+2 X< —d/2.

for RCP (upper sign) and LCP (lower sign) odd modes.

It 1s obvious from Eq. (4.15) that S_is positive for RCP odd modes and negative for
LCP odd modes in the cladding, and positive for both RCP and LCP odd modes in
the core. On the other hand, we use LHM core which make the energy flux negative

in the core for both RCP and LCP odd modes.

4.2.2 Even modes
We again assume a LHM in the core of negative index n,, so the dispersion

relation given in Eq. (4.2) can be divided into two equations as

1d ko, k3 —p? 1

2 2\5 —1¢+0™1 2 =
— 2— = — 2 =0,1,2,.. 4.16
(k3 = B9) > tan {kz (,Bz—k(z,icf) } + mm, m=0,1,2, (4.16)

for RCP even modes, and
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korq k%_ﬁz 1
k, (

1d
2 _ B2V _ = -1
(kZ ﬁ ) 2 tan { ,32 _ k0K1

for LCP even modes.

s—)2}+tmn,m=123,..

4.17)

We can obtain the normalized cutoff frequencies (V) by setting f — kok; in the

dispersion Equations (4.16) and (4.17)
2m+ Dn

Yt Gy

m=20,1,2,..

for RCP even modes, and

2m—-1r

Yt Gy

m=1,23,..

for LCP even modes.

We can express the electromagnetic fields in explicit forms as

ifA d
r—]'B(:+(u)exp {—y (X_E)} x>d/2,
E (%) =1 +j’% sin(6x) —d/2<x<d/2,
ifA d
k+J'B(:+(u)exp{y (x+z)} x< —d/2.
kox, A d
r——OK ycos(u) exp {—y (x — E)} x>d/2,
E,(x) =1 ikiTAsin((Sx) —-d/2 <x<d/2,
kox, A d
k+%Os(u)exp{y(x+i)} x < —d/2.

and
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rAcos(u)exp {—y (x - E)} Xx>d/2,

E (x) = { A cos(6x) —-d/2<x<d/2, (4.22)

kAcos(u)exp {y (x + %)} X < —d/2.

for RCP (upper sign) and LCP (lower sign) even modes.
The magnetic fields in the core and the cladding are given by Eq.(4.14). We can

express the enery flow along the z-axis in the waveguide as

( BkokiA%cos?(u) { ( d)}
+ expi—2y(x—= x>d/2,
n2Y? P Y 2 /
Bl A?
S _(x) =1 a7 S0 (6x) —d/2<x<d/2, (4.23)
2
Bk, A?cos?(u) { ( d)}
ki — exp )2y x+t3 x < —d/2.

for RCP (upper sign) and LCP (lower sign) even modes, respectively. It is obvious
from Eq.(4.23) that S_is positive for RCP even modes and negative for LCP even
modes in the cladding, and positive for both RCP and LCP even modes in the core.

On the other hand, we use LHM core which make the energy flux negative in the

core for both RCP and LCP even modes.

4.3 Results and discusion

We can calculate the propagation constants numerically from the dispersion
relations (4.7), (4.8), (4.16), and (4.17), then the electromagnetic fields and the
energy flow distribution can be calculated.In this section, we use numerical values
for the parameters in the core and cladding as

U =& = O, K1 = O.l,ﬂz = (_5 + 0011) X Ho, E2 = (_5 + 0011) X &gy Ko = 0.
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4.3.1 Dispersion curves

Figure (4.2) shows the dispersion curves of odd and even guided modes in the
slab chiral nihility cladding and LHM core waveguide for low-order modes. Dashed
and solid curves correspond to the odd and even modes, respectively. For LCP odd
and even modes, the curves of effective refractive index versus normalized frequency
increase rapidly, and the normalized cutoff frequencies (points €y, C; when n,zr =
1) satisfy Equations(4.10) or (4.19). However, for RCP odd and even modes, the
cutoff frequencies wheren,sr = 1 are not the minimum frequencies that waves can
propagate so the dispersion curves are bent. For RCP even mode whenm = 0, there
is one solution below cutoff frequency (pointC;) in some frequency region. For both
RCP even and odd modes whenm = 1, there are two solutions below cutoff
frequencies (points C,,C3) in some frequency region. Thus the real “cutoff’
frequencies correspond to the minimum frequencies (critical pointsB and D) that
guided wave can propagate. As the normalized frequency increases from the critical
pointsB and D, dispersion curves bifurcate two branches, which the effective
refractive index increases for upper branch and decreases to n.sr = 1 for lower

branch.

0o fp

k,d

Figure(4.2): Dispersion curves of guided modes in the chiral nihility cladding and

negative- indexmaterial core waveguide.
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4.3.2 Odd guided modes

Figures (4.3) and (4.4) show the amplitudes of electromagnetic field
components and energy flux distribution at normalized frequency kyd = 2.2 for RCP
odd mode when m=1. E_, H_, are odd functions of x (sin form) and
E.E,H,H, (cos form) are even functions of x. §S_ is positive in the cladding
and is negative in the core due to the LHM core material. However, there are two

propagation constants at kod = 2.2.

imag(E,) E E,

Figure(4.3): Amplitudes of electromagnetic field components at kyd = 2.2 for RCP
odd mode when m=1 ,n.sr = 1.6921.

<10 x107%

0— - - - —————

2 a0 1 2 2 a0 1 2
x/d x/d
(a) (b)

Figure(4.4): Energy flux at kod = 2.2 for RCP odd mode when m=1, (a)n.¢s =
1.6921; (b) n,pp = 0.1284.

Figures (4.5) and (4.6) show the amplitudes of electromagnetic field components and
energy flux distribution at normalized frequency k,d = 2 for LCP odd mode when
m=0. £ ,, H , are odd functions of x (sin form) and £, E,H,H, (cos form)
are even functions of x.S_ is negative in both the core and the cladding due to the

negative refractive index of the core.
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Figure(4.5): Amplitudes of electromagnetic field components at kyd = 2 for LCP

odd mode when m=0.

x 10

Figure(4.6): Energy flux at kyd = 2 for LCP odd mode when m=0.
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4.3.3 Even guided modes

Figures (4.7) and (4.8) show the amplitudes of electromagnetic field
components and energy flux distribution at normalized frequency kod = 0.5 for RCP

even mode when m=0. E _, H, are even functions of x (cos form) and

E.E,H, H are odd functions of x (sin form). §_is positive in the cladding and

is negative in the core as expected.

imag(E,) E E,
0.8 y
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2 0 083 0 003 0
x/d x/d x/d
x10°3 H, x 1073 Imag(Hy) x 10 imag(H,)
— ° N
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2 . | — ]
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2
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2 ) 2 0 03 0
x/d x/d x/d

Figure(4.7): Amplitudes of electromagnetic field components at k,d = 0.5 for RCP

even mode when m=0.
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Figure(4.8): Energy flux at kyd = 0.5 for RCP even mode when m=0.

Figures (4.9) and (4.10) show the amplitudes of electromagnetic field components

and energy flux distribution at normalized frequency kod = 3 for LCP even mode
when m=1. £ ,, H , are even functions of x (cos form) and £, E , H , H , (sin

form) are odd functions of x. S_1s negative in both the core and the claddings.

Figure(4.9): Amplitudes of electromagnetic field components at kod = 3 for LCP

even mode when m=1.
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Figure(4.10): Energy flux at kod = 3 for LCP even mode when m=1.

The results of this thesis work are consistent with whose in (Dong, 2009) eventhough
Dong's work treats a waveguide structures comprising chiral nihility core or
claddings with right-handed materials. We analytically present the dispersion
relations and the characteristices of the propagation of electromagnetic waves in a
waveguide structures consist of chiral nihility core or claddings with left-handed

material which make the derivation of the dispersion relations become more difficult.
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Conclusions

The dispersion equations of three-layered asymmetric and symmetric chiral slab
waveguides in which both the core and claddings are chiral materials were derived.
Chiral nihilityproperity where the permitivity € and permeability p tend to be zero
was considered. In this work, Two special structures of chirowaveguides were
presented. The first one consists of a chiral nihility core and LHMs claddings. The
other is chiral nihility claddings and LHMs core waveguides. The dispersion
equations for odd and even guided modescan be divided into two equations which
correspond toright-handed circulary polarized lightRCP and left- handed circulary
polarized lighLCP modes. For each waveguide structure we study odd and even
guided modes. For odd and even guided modes,the dispersion equations, normalized
cutoff frequencies, electromagnetic fields, and energy flow of RCP and LCP modes
were derived in explicit forms. A numerical results for typical chirality parameters of
several guided modes were given and plotted. Some novel features such as abnormal
dispersion curves in the chiral nihility waveguides were mentioned.For LCP odd and
even modes, the curves of effective refractive index versus normalized frequency
increase monotonically.However, for RCP odd and even modes, dispersion curves
are no longer increasing monotonically, but are bent, and the cutoff frequencies
wheren, s = 1 are not the minimum frequencies that waves can propagate. Thus the
cutoff frequencies here are not really “cutoff’. The real “cutoff” frequencies
correspond to the minimum frequencies that guided wave can propagate.

This analytical work can be benefit in the manufacturing of new waveguides used as

antinnas, sensors ,couplers and even solar cells.
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