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ABSTRACT

A NON-LINEAR EIGENSOLVER-BASED ALTERNATIVE

TO TRADITIONAL SELF-CONSISTENT ELECTRONIC

STRUCTURE CALCULATION METHODS

SEPTEMBER 2013

BRENDAN GAVIN

B.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eric Polizzi

This thesis presents a means of enhancing the iterative calculation techniques

used in electronic structure calculations, particularly Kohn-Sham DFT. Based on

the subspace iteration method of the FEAST eigenvalue solving algorithm, this non-

linear FEAST algorithm (NLFEAST) improves the convergence rate of traditional

iterative methods and dramatically improves their robustness. A description of the

algorithm is given, along with the results of numerical experiments that demonstrate

its effectiveness and offer insight into the factors that determine how well it performs.
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CHAPTER 1

THE MANY-BODY SCHRÖDINGER EQUATION AND

THE SINGLE PARTICLE APPROXIMATION

1.1 The Many-Body Schrödinger Equation

The prediction of many of the electrical and chemical properties of any system of

matter can, at least in principle, be performed by solving the many body Schrödinger

equation with the Born-Oppenheimer approximation:

Ĥψi(x1, x2, x3...xne
) = λiψi(x1, x2, x3...xne

) (1.1)

Ĥ =
ne∑
i=1

− ~
2

2m

d2

dx2i
+ Vnuclear(xi) +

∑
<i,j>

q2

4πǫ0

1

||xi − xj||
(1.2)

Perturbative approximations can offer some insights into some systems, but there

is no known analytical means of actually solving the general many body Schrödinger

equation. If the equation is discretized using some basis set with the appropriate

boundary conditions it becomes a generalized eigenvalue problem, which can be solved

straight-forwardly using well-established diagonalization algorithms. The discretized

solution to the problem, however, cannot generally be stored in a computer due to

the size of the solution space; given some set of basis function fi(x), 1 ≤ i ≤ n, the

solution is approximated as:

ψ(x1, x2, x3, ...) ≈
n∑

i,j,k,...=1

ψijk...fi(x1)fj(x2)fk(x3)... (1.3)

where the ellipses indicate that an arbitrary number of indices may be used, the

precise number of which depends on the number of degrees of freedom in the system.

1



The number of coefficients ψijk... needed clearly scales exponentially with the size

of the system. Although this can be mitigated somewhat by taking advantage of

symmetries, such as the electron exchange (anti)symmetry, the storage requirements

for the solution of the many body Schrödinger equation with a reasonable amount

of accuracy still far exceed what is feasible on a classical computer for almost any

system of interest.

1.2 The Single Particle Approximation

A method of addressing this problem that has met with a good amount of success

is the single particle approximation. There are two primary methods that can be said

to use a single particle approximation: Hartree-Fock and Density Functional Theory

(DFT). This thesis will be dealing with the latter.

The idea behind DFT is that certain important properties of a many body quan-

tum mechanical system, such as the ground state total energy and electron density,

can be found by solving a Schrödinger equation for a related system of fictitious,

non-interacting particles [2][3]. The fact that the particles are non-interacting means

that all of the terms in the system Hamiltonian are entirely separable, and so only

the single particle Hamiltonian needs to be diagonalized:

Ĥ[n]ψi(x) = λiψi(x) n =
ne∑
i=1

2|ψi(x)|
2 (1.4)

Ĥ[n] =
− ~

2

2m

d2

dx2
+ Vnuclear + Vhartree[n] + Vxc[n] (1.5)

where n is the electron density and ne is the number of electrons in the system in

question. These are the Kohn-Sham equations. The Hamiltonian here shares with the

original many body Hamiltonian the nuclear potential Vnuclear, and the electrostatic

energy from the electron-electron interactions is captured by the ”Hartree” potential

2



VHartree. The exchange-correlation Vxc potential accounts for the non-classical electron

correlation and exchange effects.

The primary difference between these equations and the many body Schrödinger

equation is the fact that the Kohn-Sham equations are nonlinear in the electron

density; both VHartree and Vxc are functions of the electron density. These equations,

taken together with the diagonalization procedure followed by the formation of a

new electron density, form a fixed point map f(n) [1] that takes as input one electron

density and produces another as an output; the solution to the equations is the density

that, used as an input for the Kohn-Sham equations, yields an eigenvalue problem

whose density evaluates to the same as the one used as an input: f(n∗) = n∗.

f(n) = generate Ĥ[n]

⇓

solve Ĥ[n]ψ(x) = λψ(x)

⇓

form nnew =
∑

k 2|ψk(x)|
2

3



CHAPTER 2

SOLVING THE KOHN-SHAM EQUATIONS

The nonlinear nature of the Kohn-Sham equations makes traction with them

significantly more problematic than with the linear Schrödinger equation, but the

fact that their solution is storable in a computer makes this a worthwhile endeavor.

Finding the fixed point of a fixed point mapping like that of the Kohn-Sham

equations is often difficult or impossible to accomplish analytically, and so the problem

is first discretized and then solved using an iterative procedure; one begins with

some sort of guess at the solution, and repeatedly updates that guess through some

procedure until convergence is reached. ”Convergence” is typically defined as the

point when the difference between subsequent iterations of the variable that is being

iterated over (i.e. the electron density, in this case) is smaller than some arbitrary

constraint: ||ni+1 − ni|| < ǫ. Convergence may also be defined with respect to some

function of the variable being iterated over; in DFT, convergence is often defined with

respect to the total energy of the system: |E(ni+1) − E(ni)| < ǫ

The simplest kind of iterative procedure that one can use to solve a fixed point

mapping is to simply iterate using the map until the solution converges:

Given an initial guess for n:

1. Calculate ni+1 = f(ni)

2. If ||ni+1 − ni|| < ǫ, stop; else, set ni = ni+1 and GOTO step 1

This procedure rarely results in numerical convergence; it typically diverges rapidly.

4



A slightly more advanced procedure, called ”simple mixing”, generates an updated

guess at the solution by forming a linear combination of the current guess and the

output of the fixed point mapping:

Given an initial guess for n:

1. Calculate ni+1 = αf(ni) + (1 − α)ni, 0 ≤ α ≤ 1

2. If ||ni+1 − ni|| < ǫ, stop; else, set ni = ni+1 and GOTO step 1

With a good initial guess and a sufficiently small α, this procedure will often converge;

the quality of the initial guess is very important, however, and the best choice for α

usually has to be determined by trial and error on a case-by-case basis. Convergence

tends to take a very long time, needing hundreds or thousands of iterations.

Advanced techniques that offer good rates of convergence are Newton-type tech-

niques that make use of knowledge of the Jacobian of the fixed point mapping in

order to find an intelligent search direction for updating the guess at the solution.

The most common technique used in quantum chemistry for solving the Kohn-

Sham equations is the Direct Inversion of Iterative Subspaces (DIIS) [7], which can

be shown to be equivalent to a Newton-type technique [8]. With DIIS, one begins

with several initial guesses (generated, for example, from a single guess followed by

several iterations of simple mixing) and their residuals, R(ni) = f(ni) − ni, and then

generates a new guess by forming the linear combination of previous guesses that

would result in minimizing the residual of that linear combination, were it the case

that the fixed point mapping f(n) were linear, plus a correction term composed of

the linear combination of the residuals [8].

DIIS:

Start with {n1, n2, ..., ni}, {r1, r2, ..., ri}, rk = f(nk) − nk

1. Find ck to minimize ||
∑
ckrk|| such that

∑
ck = 1

5



2. Form ni+1 =
∑
cknk + ckrk

3. Calculate ri+1 = f(ni+1) − ni+1, discard n1, r1

4. Stop if ||ri+1|| < ǫ; else, goto step 1

The operational assumption here is that, if the initial guesses are good enough, then

they can be thought of as lying close together in or near the neighborhood of the

fixed point, and that the treatment of the fixed point mapping as linear is therefore

a reasonable approximation.

In practice, DIIS even performs fairly well even for initial guesses wherein the

assumption of linearity is not such a good one. Even so, the algorithm is still quite

sensitive to the choice of initial guess, and many iterations may be required before

convergence is reached.

6



CHAPTER 3

NLFEAST

The fact that DIIS converges slowly or unreliably, depending on the initial guess

and the system under study, motivates the exploration of additional techniques for

finding the fixed point electron density of the Kohn-Sham equations. The following

sections will discuss the reasoning behind, and products of, the research project that

is the subject of this thesis, which is aimed at using an eigensolver algorithm called

FEAST as the basis for solving the Kohn-Sham equations.

3.1 Linear FEAST

FEAST is an algorithm for solving large sparse or small dense linear generalized

eigenvalue problems, Ax = λSx, for the eigenvectors whose eigenvalues fall within

some user-prescribed interval [λmin, λmax] [5]. The algorithm takes as its input a

guess at the eigenvectors of interest and improves that guess dramatically through

multiplication by an approximation of the spectral projector for the eigenvectors of

interest (exact multiplication would immediately produce the exact subspace in which

the desired solution lies):

Xi+1 = ρSXi (3.1)

whereXi is the matrix whose column vectors are the current guesses at the eigenvalues

of interest and ρ =
∑

k xkx
T
k is the spectral projector (and sometimes called the

”density matrix”) that spans the eigenvalues that are being sought. Multiplication

7



by S is necessary because, for the generalized eigenvalue problem, the solutions xk

are S-orthogonal.

A reduced eigenvalue problem is then produced by using the improved guess as a

subspace in which to solve the original, large size eigenvalue problem:

Q = Xi+1 (3.2)

Ax = λBx → QTAQx = λQTBQx (3.3)

The solutions to this problem, projected back into the full problem space, serve

as the new guess for a solution to the full size problem. This entire procedure is

repeated until some measure of convergence is met, that measure typically being the

convergence of the trace of the eigenvalues.

In practice, the approximation of the multiplication by the spectral projector is

accomplished by using an integral of the Green’s function of the eigenvalue problem.

The integral is performed in a closed contour in the complex plane around the interval

where the eigenvalues of interest are expected to be found.

ρSX =

∮
C

(H − zS)−1SX dz ≈
∑
i

ωi(H − ziS)
−1SX (3.4)

This integral itself is exact, and the approximation of the spectral projection occurs

when it is evaluated using a quadrature rule. It is worth emphasizing that although

the spectral projection is approximated, the eigenvectors produced by the algorithm

are not approximate; it is only their projection that is approximated, and repeated

application of this procedure can be shown to result in convergence to the correct

vectors [6].

Because a quadrature rule is used in performing the spectral projection, the com-

putational effort of forming the subspace thus amounts to solving several linear sys-

tems,

8



(H − ziS)y = ωiSX (3.5)

the number of which is proportional to the number of points used in the quadrature.

It can be shown that this algorithm will converge to the correct solution, and that the

it will converge more quickly if the contour integration is performed more accurately

(i.e. if there are more points used in the quadrature) [6].

In practice, one provides an initial guess that forms a subspace of larger dimension

than the number of eigenvectors that are expected to be found; the larger the subspace

used for solving the reduced eigenvalue problem, the faster the rate of convergence is.

The full linear FEAST algorithm is given in Fig 3.1.

3.2 Nonlinear FEAST

Nonlinear FEAST (NLFEAST), the subject of this research, is the application of

the FEAST algorithm to the problem of solving the discretized nonlinear Kohn-Sham

equations:

H[n]ψi = λiSψi n =
ne∑
i=1

2|ψi|
2 (3.6)

H[n] = T+Vnuclear +Vhartree[n] +Vxc[n] (3.7)

whereT is the discretized kinetic energy operator and S is the overlap matrix resulting

from discretization using a non-orthogonal basis set, such as finite elements.

In its most essential form, the NLFEAST algorithm is the same as the FEAST

algorithm, except that the projected eigenvalue problem is nonlinear in the eigenvec-

tors being sought. Thus, at each FEAST iteration, the projected problem is solved by

iterating in the density n =
∑

2|ψi|
2 using one of the typical algorithms for solving

nonlinear problems, such as DIIS.
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H[n]ψi = λiSψi → QTH[n]Qψi = λiQ
TSQψi (3.8)

This basic form of the algorithm gives poor performance; numerical experiments

indicate little or no convergence for even the simplest problems. We find that the

algorithm’s performance improves dramatically if, rather than replacing the projec-

tion subspace at each FEAST step, the subspace for the next step is generated by

appending the columns of the new subspace to the old one:

Qi+1 = [Qi Qnew] (3.9)

Convergence then becomes not only swift, but faster than that of DIIS used outside

the context of the FEAST algorithm.

The fact that the subspace Q is now composed of the subspaces from various

previous iterations, none of which are necessarily orthogonal to each other, means that

the projected overlap matrix QTBQ is not necessarily symmetric positive definite.

Because the symmetric positive definiteness of the overlap matrix is necessary in order

for there to be a solution to the generalized eigenvalue problem, an additional step

is required wherein the singular value decomposition of the subspace Q is performed

and only the left singular vectors are retained.

Q = UΣVT → Q = U (3.10)

With these modifications, the full NLFEAST algorithm is given in fig 3.2

3.3 Numerical Results

Numerical experiments for this research consisted of finding the ground state elec-

tron density and total energy for various molecules using the NLFEAST and the DIIS

algorithms, while keeping track of the convergence of each algorithm. Convergence

10



was measured as a relative error of either the trace of the eigenvalues being sought or

the total energy, where ”relative error” is defined as a normalized absolute difference

between two iterations of the same quantity (e.g. for total energy, the relative error

would be |E(ni+1) − E(ni)|/|E(ni+1)| at iteration i+ 1).

These algorithms were implemented in an in-house all-electron simulation frame-

work that uses a real-space cubic finite element discretization, some details of which

are described in Ref [4]. The DIIS technique was used both for performing the tra-

ditional iterative approach as well as for solving the NLFEAST nonlinear reduced

system in Step-3c of Figure 3.2. Both DIIS procedures make use of a subspace com-

posed of five successive generations of electron densities, but the maximum number of

DIIS iterations for solving the reduced system in NLFEAST has been fixed to three

(i.e. the non-linear reduced system is then solved only approximately). For most of

the examples, increasing the number of the inner iterations further has had no effect

on the overall NLFEAST convergence rate.

3.3.1 Performance Comparison

In all the experiments conducted thus far, including various molecules from H2 to

C60, the NLFEAST algorithm has outperformed SCF-DIIS both in terms of conver-

gence rate and execution time. Three representative examples are shown in Figure 3.3

for the Silane, Benzene and Caffeine molecules. The relative error on the total energy

at each iteration, |E(ni+1) − E(ni)|/|E(ni+1)|, is used as the measure of convergence

for both approaches, as this is the most directly comparable measure of convergence

for both DIIS-SCF and NLFEAST. The meaning of the outer-iterations is different

for both algorithm since, for NLFEAST, it directly represents the number of contour

integrations and non-linear reduced systems.

Because the implementation of DIIS in this research uses the FEAST algorithm as

its eigenvalue solver, it is possible to have a direct comparison between the operations

11



counts for both DIIS-SCF and NLFEAST. In both cases the contour integration is the

most time consuming single numerical operation. In the three examples provided in

Figure 3.3, for example, SCF-DIIS requires 5× to 7× more contour integrations than

NLFEAST for obtaining the same level of accuracy in the total energy(i.e. ∼ 10−7).

On the other hand, NLFEAST requires the solution of ∼ 3× as many Poisson equa-

tions as does SCF-DIIS. However, since the Poisson system matrix only needs to be

factorized once at the beginning of the calculation, the remaining Poisson solve oper-

ations become negligible in comparison to both factorizing and solving the complex

linear systems that arise from the contour integration. The rest of the numerical

operations involved in NLFEAST, such as solving the reduced eigenvalue problem

or performing the SVD in Step-3b of Figure 3.2, bring no significant computational

overhead provided that the ratio N/M0 stays relatively large for a given search inter-

val.

Table 3.1 summarizes the final total energies obtained by using NLFEAST for

molecules ranging in size from H2 to C60, and provides the results obtained by using

the NWChem software package [9] for the same molecule geometries. Although these

two pieces of software use different discretizations and convergence criteria, their

results are in good agreement with each other. Because of the differences between the

two codes, however, it was not possible to make a direct comparison between them

for the purpose of comparing the rate of convergence.

For the simulations reported in Table 3.1, the following parameters were used for

the NLFEAST algorithm: (i) a Q search subspace that keeps increasing indefinitely

until convergence, (ii) 16 nodes for the Gauss quadrature along the complex contour,

(iii) a conventional initial guess as the starting point for the electron density (e.g. the

all-electron result for the single atoms). The role that each of these parameters plays

in the functioning of the algorithm will be discussed in greater detail in the following

sections.

12



3.3.2 Convergence Rate and Q subspace size

As mentioned in Section 3.2, using only a single subspace Q (in step-3a of Figure

3.2) returned by the contour integration procedure of FEAST provides an extremely

poor convergence rate; a successful implementation of the NLFEAST algorithm thus

requires expanding the subspace size beyond this. It may be extended by retaining

only a finite number of the most recent subspaces, or it may be extended indefinitely

until convergence. For the numerical experiments presented in Figure 3.3 and Table

3.1, the rate of convergence is expected to reach a maximum because all generated

subspaces have been retained. Figure 3.4 shows the results of several numerical ex-

periments that were performed for our selected three molecules using different sizes

for the search subspace Q.

These results show clearly that the rate of convergence of NLFEAST is directly

related to the number of subspaces that are retained. They also show that it is, in

practice, not necessary to retain every subspace that gets generated; retention of only

four of the most recent subspaces provides a rate of convergence that is nearly as

good as that obtained by retaining every subspace.

Worthy of particular note are the simulation results for Benzene and Caffeine

where only a single subspace was retained, that being the subspace that was most

recently generated. Here the algorithm does not appear to converge at all. Although

this is not necessarily typical, and the solution may eventually converge using a more

efficient approach for solving the non-linear reduced problem (e.g. using a larger

number of inner iterations for the FEAST-DIIS problem which has been fixed to three

in these simulations), it highlights the importance of extending the search subspace

size for the success of this algorithm.

13



3.3.3 Convergence Rate and Contour Integration Accuracy

At each iteration of NLFEAST, the approximate subspace solution is improved

through multiplication by the density matrix of the most current Hamiltonian. This

step, Step 2 in Figure 3.2, is accomplished by performing a numerical contour inte-

gration of the Green’s function multiplied by the approximate solution. In practice, a

Gauss quadrature can be efficiently used here, which involves summing the solutions

of several separate linear systems.

For all the results presented so far, 16 Gauss contour points were used to perform

the quadrature. Figure 3.5 shows the results for simulations wherein the number

of contour points is varied between 4 and 48. Although increasing the number of

Gauss points can help to improve the convergence rate, the effect here is not quite

as dramatic as the effect of increasing the subspace size. The relationship that exists

here between the contour integration accuracy and the convergence rate is similar to

the case in the linear FEAST algorithm, where both a larger subspace size and an

improved contour integration accuracy also improve convergence rate [6].

3.3.4 The Initial Guess

Like other schemes for solving nonlinear eigenvector equations, NLFEAST requires

an initial guess for the electron density n. Clearly, a good initial guess can provide

faster convergence, but for NLFEAST the quality of the initial guess is not important

as far as achieving convergence is concerned. Unlike other means of performing SCF

iterations, this algorithm is capable of achieving convergence even when given an

extremely poor initial guess, including the extreme case of no initial guess at all (i.e.

n = 0). Figure 3.6 shows the results of a several numerical experiments wherein the

initial guess for the electron density was set to zero. Each experiment eventually

resulted in convergence.
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The algorithm’s performance when given such a poor initial guess is partly related

to the size of the system; more electrons typically means that a larger number of

iterations is required before convergence is reached. Performance also appears to

depend on the particular molecule under consideration. In Figure 3.6, CH4 requires

a larger number of iterations to reach a high level of convergence, despite being the

second smallest system (in terms of number of electrons). It is likely that, for some

molecules, the algorithm converges towards a local energy minimum before ultimately

finding its way to the global minimum, which results in its progress being more delayed

than it would be with a molecule where such a detour does not occur.

These results are given only as a demonstration of the robustness of the algorithm;

in practice, one would always use some reasonable heuristic to derive a more sensible

initial guess.

15



Basic FEAST Algorithm

Input: interval [Emin, Emax], and an (over)-estimation
M0 of the number of eigenpairs

1- Initialization

Select M0 > M random vectors Y ∈ R
N×M0

2- Contour Integration

Compute Q
N×M0

= −
1

2πı

∫
C

dZ G(Z)Y
N×M0

,

3- Rayleigh-Ritz

Form HQM0×M0
= QTHQ and SQM0×M0

= QTSQ

Solve the reduced eigenvalue problem HQΦ = ǫSQΦ

4- Subspace Iteration

(a) Set Em = ǫm and X
N×M0

= Q
N×M0

Φ
M0×M0

(b) Check convergence (i.e. Trace{Em})

(c) If needed go back to step 2 with Y = SX

Output: All the M < M0 eigenpairs ({Em,xm}).

Figure 3.1. The FEAST algorithm

#electrons #iterations Etot(eV) NWChem
H2 2 5 -30.962 -30.959
CH4 10 5 -1091.45 -1091.69
H2O 10 7 -2065.24 -2065.48
CO 14 6 -3060.12 -3060.45
SiH4 18 9 -7907.42 -7909.78
Na2 22 8 -8785.57 -8786.61
C6H6 42 6 -6262.31 -6263.65
C8H10N4O2 102 9 -18364.5 -18360.3
C60 360 8 -61610.5 -61660.1

Table 3.1. Total energy results for NLFEAST and NWChem for various molecules.
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Non-linear eigenvector FEAST algorithm

Input: interval [Emin, Emax] including M lowest occupied
states and an initial search subspace of size M0 > M

1- Initialization

a-Define an initial guess for the electron density n

b-Construct Hamiltonian H[n]

c-Select M0 > M random vectors Y ∈ R
N×M0

2- Contour Integration at FEAST iteration k

Compute Q(k)
N×M0

= −
1

2πı

∫
C

dZ (ZS − H[n])−1Y
N×M0

,

3- Non-linear Rayleigh-Ritz

a-Construct the subspace Q̂ = {Q(k),Q(k−1),Q(k−2), . . . }

b-Compute Q := U using SVD i.e. Q̂ = UΣVT

c- SCF Procedure

• construct Hamiltonian H[n]
(requires also solving the Poisson equation)

• form HQM0×M0
= QTH[n]Q and SQM0×M0

= QTSQ

• solve reduced eigenvalue problem HQΦ = ǫSQΦ

• compute electron density n = 2
M∑

m=1

|QΦm|
2

• Check convergence of n, go back to step-c if needed
with a new generated input density

4- Subspace Iteration

Set Em = ǫm and compute X
N×M0

= Q
N×M0

Φ
M0×M0

Check convergence (i.e. Trace
∑

mEm ∈ [Emin, Emax]).

If needed go back to step 2 with Y = SX

Output: All the M < M0 eigenpairs ({Em,xm}).

Figure 3.2. The full NLFEAST algorithm
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Figure 3.3. Results of numerical experiments comparing the performance of
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molecules.
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CHAPTER 4

FUTURE WORK

The subspace iteration procedure of the FEAST algorithm can, with some small

modifications, serve as an effective means of enhancing the traditional methods of solv-

ing the Kohn-Sham equations of Density Functional Theory. Numerical experiments

performed on a variety of molecular geometries show that the resulting NLFEAST

algorithm has a faster convergence rate than normal iterative procedures alone and

that it gives a dramatic improvement in robustness.

Still left to be done is to address the fundamental bottleneck preventing the

NLFEAST algorithm from being used effectively for systems of extremely large size:

the reduced eigenvalue problem. Because the algorithm requires expanding the sub-

space size by an amount proportional to the number of electrons, systems with a large

number of electrons will produce a prohibitively large and dense reduced eigenvalue

problem to solve. Addressing this effectively will require taking advantage of the

structure of the projected Hamiltonian and overlap matrices in order to find some

means of parallelizing the solution of the reduced system, possibly with another layer

of the FEAST algorithm. This may be a somewhat considerable undertaking, equal

to this project in scope and difficulty, if indeed it succeeds.

As things stand now, the NLFEAST algorithm is able to effectively address prob-

lems of moderate size, and the primary barrier for its adoption in other electronic

structure codes and projects is its implementation. It is proposed that, for the final

version of this thesis, a reverse communication interface be developed that would
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allow other projects to easily incorporate the NLFEAST algorithm while minimizing

the number of implementational details that they need to concern themselves with.
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