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Abstract

COMMUNICATION connectivity is a common requirement in multi-agent systems.

Multi-agent systems typically need to maintain communication connectivity to

complete their tasks. Due to the intrinsic complex structure of multi-agent systems, en-

suring communication connectivity is typically very challenging. In most of the existing

works, communication connectivity is addressed assuming the cooperation of all agents

in the system. This is often undesirable,as the communication connectivity is usually

not the ultimate goal but rather a necessary feature to complete another essential task.

Another gap in the current literature is that this problem is always considered assum-

ing a simple agent dynamic model. However, more complex models are often needed

in practical situations, for example, when agents are unmanned aerial vehicles (UAVs).

The main objective in this thesis is to consider a problem where a set of agents (clients)

do not cooperate in maintaining communication connectivity, while another set of agents

(routers) need to achieve this task by cooperating with each other. At the same time, we

will consider more complex agent models than is normally done in the literature.

In Chapter 2, we present the communication connectivity control design for multi-

agent systems with two clients. These agents are termed as clients, and the others are

termed as routers. In such a system, a simple structure of communication relationship is

selected to be used for control design. The agent dynamic model considered is a quadro-

tor model. However, the control design strategy can be applied for other types of models.

In Chapter 3, we address the communication connectivity problem for multi-agent

systems with an arbitrary number of clients. Multiple clients make the communication

structure and control design more complex. Moreover, the communication structure se-

lected for control design is updated when necessary, which means that the obtained con-

iii



trol scheme is time-varying. The agent model is a single integrator model in order to

make the presentation simpler. As we already pointed out, our results can be extended

for other types of agent dynamic models as long as the motion controllers satisfy some

requirements.

Finally, in Chapter 4, we implement communication connectivity control policy de-

signed in Chapter 3 in experiments by using e-puck robots. The system in the experiment

is set up with three clients and three routers, where clients are paper boards with markers

on them for position tracking while routers are e-puck robots. OptiTrack Flex13 camera

system is used to track the positions of agents, and a HP Elitebook 840 laptop running

Windows is used to generate control inputs for routers. Two experimental settings were

considered: clients move towards each other and clients move away from each other .

The experiment is consistent with and illustrates the theoretical results.
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supervisors Prof. Dragan Nešić and Dr. Iman Shames. My supervisors also contributed

to the proofreading, comments and polishing of the thesis.

To the best of my knowledge, this work is generated originally, except where ac-

knowledge and references are made to other work. Any substantially similar thesis has

not been or is not being submitted for any other degree, diploma or other qualification at

any other university or institution. Part of this work has been presented in the following

publication:
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Chapter 1

Introduction

MULTI-AGENT systems have drawn a lot of interest in system and control soci-

ety and they will continue to attract attention as new missions and applications

become relevant. A number of missions require agents to cooperate between each other

(e.g. a vehicle platoon) and in order to achieve effective cooperation they need to commu-

nicate between each other. Thus, maintaining the communication connectivity is often a

necessary first step in ensuring that effective cooperation can be achieved. The focus of

our work is to study how to guarantee communication connectivity in multi-agent sys-

tems. In this chapter, we will first give a general overview of research in multi-agent

systems. After that, we will focus on the literature on communication connectivity of

these systems. Finally, we formulate the problem we consider and summarise the main

contribution of this thesis.

1.1 Introduction and Motivation

The multi-agent systems we consider are composed of multiple interacting agents, which

have their own computation and movement capabilities. The agents in the system can

make their own decisions based on the information they collect from their own sensors,

as well as information from other agents they are communicating with. With this re-

quirement on the agents, the systems we consider in this thesis are typically multi-robot

systems, such as multiple unmanned underwater/ground/aerial vehicle (i.e. UUV, UGV

and UAV) systems. In our setting, interaction is conducted by exchanging information

with others through communication links. Some examples of the multi-agent systems are

1



2 Introduction

(a) Multi-agent system with UUVs for Mornitoring
Water Quality [7]

(b) Multi-agent system with UGVs as Experiment
Platform [49]

(c) Automated Car Platoon [46] (d) Swarm Robotics for Agricultural Applications
[63]

Figure 1.1: Muti-agent system examples

shown in Figure 1.1. These systems are UUVs for water quality monitoring [7], UGVs for

experimental platform [49], vehicle platoon [46] and swarm of drones for agricultural ap-

plications [63]. Other than these examples, we would present more details of applications

of multi-agent systems in the next subsection.

As shown in the examples in Figure 1.1, multi-agent systems contain different types of

agents and perform different tasks. However, there are always two main elements in such

systems, which are agents themselves and the communication between each other. Thus,

we use circles and dashed lines to represent the structure of the multi-agent systems

we consider in this thesis in Figure 1.2. In this figure, circles denote the agents, and

dashed lines denote that the agents on the two ends can exchange information, i.e. they

communicate with each other.
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Figure 1.2: Multi-agent system example

1.1.1 Applications of Multi-agent Systems

Multi-agent systems have a wide range of applications, such as search and rescue, track-

ing, surveillance, underwater exploration, and deliveries. Next, we present a brief overview

of these applications. Instead of trying to be exhaustive in this overview, we would just

give a few representative examples. The underwater robotics and water quality project

in EPFL [7] uses an underwater robotic multi-agent system to measure the water quality

in lakes and freshwater reservoirs. The underwater robots which act as agents can co-

operatively complete the measurement by moving and communicating with each other.

Another underwater multi-agent platform for monitoring coral reefs and fisheries is re-

ported in [66]. A multi-agent system is also used to track the long term zebra migration

by using wireless sensors [75]. Moreover, multi-agent systems can be used to manage

agriculture and forestry effectively [17]. In this project, a fleet of ground and aerial un-

manned vehicles are used to form a sensor network to improve crop quality, health and

safety for humans and reduce production costs by means of sustainable crop manage-

ment. The Google Loon project [27] plans to use a group of balloons to provide internet

connectivity for remote rural areas. Similar projects using a group of UAVs are conducted

by the Connectivity Lab of Facebook [53]. Other well known applications are search and

rescue after a natural disaster [50], such as flood, forest fire surveillance [35] and intruders

detection [76].

As we can see from the above examples, multi-agent systems have diverse applica-

tions in many aspects of our society and life. This attracted a significant research effort

in this area. In the next subsection, we will give a brief review of the literature on multi-
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agent systems.

1.1.2 A Brief Review of Research in Multi-agent Systems

Research in networked multi-agent systems increased substantially in the 1990s due to

the development of inexpensive and reliable wireless communication systems [40]. In

the last several decades, this area has attracted increasing interest in research and appli-

cations. Research on multi-agent systems often focused on collaborative missions, such

as consensus, distributed optimization, intelligent coordination and distributed estima-

tion [52]. In order for agents to cooperate effectively, it is necessary to maintain a certain

level of communication connectivity among them. Generally speaking, communication

connectivity means that each pair of agents can exchange information directly or aided by

other agents. The application areas ranges from industrial to civilian areas, such as simul-

taneous localization and mapping, mobile sensor networks and intelligent transportation

systems. The main reason for proliferation of multi-agent research is their ability to tackle

certain tasks more efficiently than single agents. Moreover, multi-agent systems have ad-

vantages over single systems in applications, such as scalability, high adaptivity, and easy

maintenance [14].

With cooperative control, multi-agent systems can perform tasks more efficiently, flex-

ibly and robustly. For example, in surveillance, monitoring, rescue and detection tasks,

they can cover an area within shorter time and can tolerate failure of some robots with-

out compromising the mission. However, in order to realize these potential advantages,

there are many challenges in design and control of multi-agent systems. These challenges

are caused by the intrinsic large scale, complex and diverse features of the systems. Next,

we will focus on the challenges and advantages brought by application of multi-agent

(especially multi-robot) systems.

Specific features of multi-agent systems impose a number of design challenges, such

as the communication ability between the robots, battery or fuel constrains and complex

structure. A number of different problems were considered in the related literature, such

as stability analysis with communication protocols [37, 56], communication connectivity

during movement [15,19,23,24,38,60], planning with battery constraints [11,47,51], cov-
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erage with energy constraints [39, 64, 65], and so on. At the same time, the advantages

that stem from cooperation of multiple agents are also studied in different scenarios,

for example, cooperative source localization [21, 28, 43, 48, 57, 62], cooperative navigation

[16,20,22,30,34,55,58,67,68], coverage, monitoring and surveillance with multiple robots

[44, 47, 51, 70, 74], and so on.

1.1.3 Motivation

Communication connectivity is a prerequisite for cooperation and, hence, it is essential

for a number of important problems arising in multi-agent systems. Indeed, cooperation

in multi-agent system is an enabling mechanism for improving efficiency in many tasks,

such as surveillance of a given area or platooning of driver-less vehicles.

The problem of communication connectivity has received a significant attention in

multi-agent (especially multi-robot) systems [42, 59–61, 72, 73]. While a number of issues

in communication connectivity has been well understood, there are a number of open

questions. One such question is addressed in this thesis: a subset of agents (clients)

does not cooperate with the rest of the agents (routers) and the routers are supposed to

maintain the communication connectivity under certain restrictions (assumptions) on the

clients movement. This scenario is common in practice. For instance, a set of bulldozers

(clients) may need to clean a bounded region in a cooperative fashion and a number of

drones (routers) is used to maintain communication connectivity for clients. In such a

scenario, the clients need to work together to complete their task but they do not restrict

their movement for the sake of communication connectivity. On the other hand, the

routers work cooperatively to maintain the connectivity based on the clients’ movement.

1.2 Literature Review

In this section, we present a literature overview of research on the communication con-

nectivity in multi-agent systems. Multi-agent systems have been a prominent research

topic for several decades and many problems have been studied in this context, such

as consensus, formation control, source localization, cooperative navigation and surveil-
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lance. In most cases, an underlying assumption is that there exists a reliable wireless com-

munication connection that can provide information exchange between multiple agents.

This requirement is essential in any task that requires cooperation between the agents.

Maintaining a reliable communication connection in a multi-agent system is not a

trivial problem. There are multiple factors that can affect the reliability of communica-

tion. One is the intrinsic characterization of wireless communication channels, such as

shadowing, fading and multi-path propagation. There are also others issues in network

layer, such as protocol and routing policy. In control and system field, more attention

is dedicated to the design of controllers to maintain communication connectivity. When

considering controller design, it is common to assume that if two agents are sufficiently

close, then they can communication with each other. Thus, control research has concen-

trated on maintaining the spatial proximity between agents as a means of maintaining the

communication connectivity. In this section, we will overview the control research litera-

ture that deals with communication connectivity in multi-agent systems. We classify this

literature based on the control methods used to maintain communication connectivity.

1.2.1 Preliminaries of Graph

In order to make things clear, we first introduce a graph corresponding to communica-

tion relationship of multi-agent systems and present some definitions that will be used

throughout this thesis.

An undirected graph G = (V , E) consists vertex set V and edge set E . The elements

of E are in the form {i, j}, for some i ∈ V , j ∈ V , that is, two elements subsets of V . In

a graph corresponding to a multi-agent system, V is the set of all indices of agents, and

E captures the communication relationship between agents. An edge exists between two

agents if they can communicate with each other directly. Such an edge is also termed as

a communication link. For example, in the system in Figure 1.2, with the agents being in-

dexed from 1 to 7, V = {1, 2, . . . , 7}, E = {{1, 2}, {2, 4}, {3, 4}, {3, 5}, {4, 5}, {4, 6}, {5, 7}}.

A vertex i is adjacent to vertex j if {i, j} ∈ E , and j is called a neighbour of i. The neigh-

bourhood of vertex i is defined as Ni :=
{

j|{i, j} ∈ E
}

. A path pi of length l in G,

which is pi = {i1, . . . , il+1}, is a sequence of l + 1 distinct vertices i1, . . . , il+1 such that for
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k = 1, . . . , l, the vertices ik, ik+1 are adjacent. Here i1, il+1 are called end vertices of path

pi [36]. Vertex i is connected to j if there exists at least one path in G whose end vertices

are i and j. When the vertices of a path are distinct except for its end vertices, the path

is called a cycle. The graph G is connected if, for every pair of vertices in V , there is a

path with them as its end vertices [36]. A connected graph without cycles is called a tree,

denoted by T. Leaves of a tree are the vertices which have only one neighbour. A graph

G′ = (V ′, E ′) is a subgraph of G = (V , E) if V ′ ⊆ V and E ′ ⊆ E . These definitions and

more details related to graph can be found in [26, 36]. We also introduce “one-hop link”

which means that two vertices (agents) connect directly (that is, an edge in E ), and “n-

hop link” which means two agents communicate through a path containing n+ 1 vertices

[71].

Moreover, a weighted graph is defined as Gw = (V , E , A), where (V , E) is a graph,

and the non-negative matrix A ∈ RN×N is a weighted adjacency matrix with N being

the number of vertices [13]. The entry aij of A satisfies: aij > 0 if {i, j} ∈ E , and aij = 0

otherwise. When a weighted graph is corresponding to the communication relationship

in a multi-agent system, the value of aij captures the communication quality of the link

{i, j}. Typically, in control research, aij decreases with the distance between agents i and

j. Furthermore, the weighted Laplacian matrix of Gw is defined as L = diag(A1) − A,

where 1 is a column vector with all ones. Readers may refer to [26] for more details.

1.2.2 Early Work without Controller Design

Though the algorithms for maintaining limited range between agents due to visual sen-

sors range were introduced in [8], communication connectivity was not formally con-

sidered until [59]. In early work on this topic, only analysis of connectivity was ad-

dressed and controller design for maintaining connectivity maintenance was not consid-

ered. Some examples can be found in [59] and [60], where connectivity is analysed by

using a communication model based on distances between robots. The purpose of the

study is finding methods to measure the connectivity and to avoid losing connectivity

when designing motion controllers for agents. However, These early papers did not con-

sider control laws of positioning agents on desired positions to maintain the connectivity.
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1.2.3 Communication Link Connectivity Control

More recently, researchers began to pay attention to the communication link connectiv-

ity control problems. Different kinds of approaches were applied to the analysis and

controllers design for such problems. These approaches can be divided into two main

categories: local connectivity and global connectivity control [54]. These two approaches

are defined as follows:

• Local connectivity control problem: when a one-hop link exists at the initial time

instant t = 0, it will exist for all t ≥ 0.

• Global connectivity control problem: links can be added or deleted when necessary

as long as the graph corresponding to the communication connectivity is connected.

Local Connectivity Control

Local connectivity control can be found in [8] and [29, 31, 45]. The approach in [8] did

not formally address communication between agents, but it provides a solution for local

connectivity while only limited communication range was considered for the commu-

nication model. In [45], an un-weighted undirected graph is used to describe the com-

munication connectivity. In this study, the agents with second order dynamics maintain

all the one-hop links using a designed controller. That is, maintain the direct links be-

tween any two robots connected all the time. Rendezvous and formation control problem

are considered with connectivity maintenance control in [31]. In this paper, a weighted

undirected graph is used to model the communication connections between agents. The

Laplacian matrix L of the corresponding graph G was utilized to determine the connec-

tivity of the graph. This uses the fact the graph is connected if and only if the second

smallest eigenvalue λ2 of the Laplacian matrix is greater than 0 (see [13] for more de-

tails). Based on the value of λ2, a control law is designed to guarantee the connectivity

by maintaining current links and to add more links to the graph when necessary. The

designed controllers maintain the communication connectivity and can also achieve ei-

ther rendezvous or desired formation. Connectivity is also considered for surveillance
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and reconnaissance tasks in [29]. Here, the agents perform some searching tasks while

maintaining point-to-point communication, that is, one-hop link communication.

The papers above all deal with distributed control design or decentralized control

design that each robot can implement individually to perform its own task and maintain

connectivity simultaneously. The control laws for these problems are direct because they

just need to maintain links between neighbouring two robots. Moreover, the tasks they

need to complete are typically not complex, such as consensus, formation. However, the

mobility freedom of the agents is extremely restricted because they need to maintain all

node-to-node links all the time. Because of this reason, local connectivity control design

severely restricts the agents in performing more complex tasks.

Global Connectivity Control

Global connectivity control can provide more freedom for the robots to move around to

complete more complex tasks. One method to address this problem is called k-connectivity

maintenance as in [71]. The k-connectivity is a property where any two vertices can be

connected by a path that includes less than k + 1 vertices all the time. This method ad-

dresses the connectivity of the corresponding graph in continuous time based on the fact

that a graph is k-connected if and only if all elements of I + A + · · ·+ Ak are greater than

0, where A is the weighted adjacency matrix of the graph.

Apart from the k-connectivity, another method uses the second smallest eigenvalue λ2

of Laplacian matrix L to design connectivity control. Examples of this type of method can

be found in [19,54,69,72]. Typically in these papers, first, edge weights aij are assigned to

capture the dependence of λ2 on the agents’ positions (this is because L is derived from

the adjacency matrix A). Then, the connectivity control is designed based on the expres-

sion of λ2 which is a function of agents’ positions. Methods in the literature differ from

each other in the design of edge weights and controllers. For example, in [72], weights

of edges are assigned as aij(x(t)) = σw(ε − ‖xi(t) − xj(t)‖), where xl(t) is the position

of agent l at time t, x(t) = [xᵀ1 (t) . . . xᵀN(t)]
ᵀ,ε > 0 is a design parameter, σw(y) = 1

1+e−wy ,

w > 0 is a design parameter. With the designed edge weights, a gradient distributed
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controller is designed to guarantee that λ2 > 0. In [69], aij is assigned as

aij(x(t)) =


e−‖xi(t)−xj(t)‖

2

2δ2 , ‖xi(t)− xj(t)‖ < r

0, otherwise
.

However, the main contribution in this paper is that it finds the derivative of λ2 with

respect to each agent’s position xi. Based on the derivative, a distributed controller is

designed to maintain that λ2 > 0. A similar idea and method are also addressed in other

papers such as [19, 54]. Approaches in these two papers also use the same derivative

of λ2 as in [69]. Moreover, a potential function of λ2 is designed to make the gradient

controller robust to the estimation error of λ2.

Though the literature above does not explicitly express that existing edges can be

deleted and added, distances of some edges can become large as long as the whole graph

is in a good connectivity condition (that is, λ2 is large enough). This approach using the

value of λ2 to measure the communication connectivity gives more freedom for agents to

move around and perform some pre-assigned tasks.

A slightly different approach to global connectivity control of a multi-agent system is

presented in [38]. It gives a rule of adding and deleting links based on agents’ positions.

In this approach, a set of potential functions are defined as V(‖xi − xj‖) = 1
‖xi−xj‖2 +

1
R−‖xi−xj‖2 , and the gradients of V are used to derive control inputs to maintain connection

between neighbouring two agents. Furthermore, a link (an edge) is added to G if the

distance between the corresponding two agents is less than r. Similarly, a link {i, j} can

be deleted if its length satisfies r < ‖xi − xj‖ < R1 and the deletion of it will not violate

the connectivity of G, here R is the communication limit.

Compared with the local connectivity control, the agents in the system using global

connectivity control have more freedom to move around without breaking communica-

tion connectivity. Therefore, global connectivity control method equips the agents with

potential to complete more complex pre-assigned tasks. However, this method still needs

all agents to cooperatively maintain communication connectivity, which still affects the

agents’ ability to complete their own missions.

1In this thesis, the norm ‖ · ‖ denotes the Euclidean norm.
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1.2.4 Communication Connectivity Control for Free Mobility

Compared with the approaches stated above, the approach in this thesis gives a subset

of agents total freedom to perform their pre-assigned tasks. In such an approach, the

agents are split into two groups, clients and routers. Clients have their corresponding

pre-assigned tasks while routers are obliged to provide communication connectivity for

clients. The feature of this approach is that it permits the clients to perform their own

tasks without worrying about the communication between each other. Therefore, this

method gives more freedom to clients to perform complex tasks. However, there are

few papers addressing this problem because it is difficult to guarantee communication

connectivity only by controlling routers. Some related examples can be found [23–25].

In [25], aerial vehicles (routers) were used to provide optimal communication connec-

tion for ground vehicles (clients). First, the ground vehicles are treated as stationary

and controllers are designed for the aerial vehicles to provide communication connec-

tion between the ground vehicles. Then, movement of the ground vehicles is treated as

disturbance and it was shown that the controllers designed are still effective for commu-

nication connection. In this example, the ground vehicles are much slower than aerial

ones. Some general cases can be found in [23] and [24], where clients were not assumed

to be much slower than the routers. The solution in [23] is based on reachability analy-

sis with the multi-agent system in discrete time form. The communication connectivity

problem in this paper is addressed by finding the routers’ positions which maximize

the time length during which the communication connectivity is maintained under the

movement of clients. A practical way illustrated by experiments is presented in [24],

where communication connection is assumed existing all the time. The objective here is

to minimize the communication rate discrepancy on each one-hop link. An on-line device

is used to measure the communication signal strength, and control laws are designed for

routers to achieve the objective based on the measurement.

The approach above can provide free mobility for clients to perform their pre-assigned

tasks, but the solutions are still restrictive. The example in [25] did not consider the

movement of clients when designing controllers for routers, which restricted the imple-

mentation of the method, and communication connectivity was not theoretically proven
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in [23, 24] . The main goal of this thesis is to address these issues in more detail.

1.3 Problem Formulation

In this thesis, we design control policies to maintain the communication connectivity in

multi-agent systems. Inspired by the literature in Section 1.2, we consider the situation

where there are two different groups of agents, clients and routers, in the systems. The

control policies are designed for routers to ensure communication connectivity for clients

as they are moving around with their pre-assigned control objectives.

A general structure of the multi-agent systems we consider is illustrated in Figure 1.3.

Compared with the multi-agent system in Figure 1.2, two types of circles with different

Figure 1.3: Multi-agent system with clients and routers

colours are used to differentiate clients and routers, and dashed lines still denote com-

munication links. In the multi-agent system we consider, the agents are moving robots.

Clients move in a time-varying bounded area, and they are assumed to have their own

control objectives based on their pre-assigned tasks. For example, their objectives might

include monitoring an area of interest, or tracking some moving objectives. Routers, on

the other hand, are solely responsible for ensuring communication connectivity of clients,

that is, to make sure any two clients can communicate with each other. Ensuring com-

munication connectivity is mathematically modelled by ensuring that a communication

path exists between any two clients, as formalized later in this Section.
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In the system, we assume that each agent is uniquely indexed by an integer number

from V = {1, . . . , N}, where N is the total number of agents in the system. The set of

indices of clients is denoted by C, and the set of indices of routers is denoted by R. The

number of clients is denoted by Nc, and the number of routers is denoted by Nr. Note

that V = C ∪R and C ∩R = ∅. Let xi ∈ Rn denote the position of agent i, where n = 2

or 3. The two choices of n are depend on different types of agents. For example, if the

agents are ground vehicles, n is set as 2; if the agents are UAVs, n is set as 3. We assume

that positions xi is governed by the following general dynamics for every agent i,

ξ̇i =Fi(ξi, ui)

xi =Hi(ξ)
(1.1)

where ξi ∈ Rni are the states of dynamics of agent i ∈ V , Fi : Rni ×Rri → Rni and Hi :

Rni → R are differentiable, and ui ∈ U ⊂ Rri with ni and ri being positive integers. States

ξi may include position, velocity, and acceleration of agent i. In the problem considered,

the control policies of clients ui, ∀i ∈ C, are unknown and need to be designed to achieve

their own control objectives.

In this thesis, we assume the communication between agents only depends on the

distances between them. The following assumption characterises the condition under

which two agents i ∈ V and j ∈ V can communicate with each other.

Assumption 1.1. Agent i ∈ V and j ∈ V can communicate with each other directly at time t if

‖xi(t)− xj(t)‖ ≤ R, where R is a prescribed positive real number that represents the maximum

communication range between any pair of agents.

In some literature, see Section 1.2, models of the communication are typically consid-

ered with the spatial proximity between agents. Without loss of generality, we present

this communication model to indicate that communication exists between two agents

when they are within a certain distance.

The above assumption leads to an undirected graph Go(t) =
(
V , Eo(t)

)
with vertex

set V and edge set Eo(t), where {i, j} ∈ Eo(t) if ‖xi(t)− xj(t)‖ ≤ R. With this induced

graph Go(t), the following gives the definition of persistent connectivity of clients.
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Definition 1.1 (Persistently Connected Clients). We say that clients are persistently con-

nected if for any i ∈ C, j ∈ C there exists a path in Go(t) between them for any t ≥ t0.

In the definition, t0 denotes the initial time instant of the system we consider. Note

that, except the two end vertices of the path connecting i and j, i, j ∈ C, any other vertex

on the path can either be a router or a client. For example, paths with clients and routers

between the two end vertices can be found in Figure 1.3.

Obviously if the clients are allowed to move in an unbounded area, it is not possible

to ensure that they remain persistently connected for a given finite number of routers.

Thus, the area within which the clients can move is assumed to be bounded.

Assumption 1.2. The clients move within a time-varying bounded area B(t) all the time, that

is, xi(t) ∈ B(t), ∀i ∈ C, ∀t ≥ t0, where t0 is the initial time instant.

In broad terms the objective is to design closed loop control policies ui(t), ∀i ∈ R

to guarantee that clients are persistently connected. To make the system scalable, we

want to design such control policies only by using locally available information. Thus,

we make the following assumption on information exchange among agents.

Assumption 1.3. Each agent i can access the information available from its neighbours inN o
i (t)

and itself at time instant t.

Here, N o
i is the neighbourhood of G as defined in subsection 1.2.1, that is, N o

i ={
j|{i, j} ∈ Eo

}
.

In order to guarantee persistent connectivity of clients, we need an assumption on the

connectivity property of the multi-agent system at the initial time instant t0.

Assumption 1.4. At the initial time instant t = t0, Go(t0) is connected.

With the dynamic models of agents and assumptions above, we present a general

description of our problem throughout this thesis.

Problem 1.1. With the dynamic model of agents in (1.1), Nc clients and Nr routers, under the

Assumptions 1.1–1.4, design control policies ui(t) ∈ U , ∀i ∈ R, such that clients are persistently

connected.
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Throughout this thesis, we will specify the dynamic models of agents in (1.1) when

considering different cases of multi-agent systems with specific dynamic models of agents.

Moreover, we will also specify additional for different cases of multi-agent systems. In

this thesis, we will address Problem 1.1 in two cases. One case considers the problem

in a system with two clients. In such a system, the structure of the corresponding graph

is simple. The other case considers the problem in a general system with an arbitrary

number of clients. Such a general system has a complex structure of the corresponding

graph, which makes the control policy design more complicated.

1.4 Contributions

We consider Problem 1.1 throughout the thesis under different assumptions. The control

policies we design are proven to solve this problem under some additional assumptions.

One main feature of our control policies is that they are satisfied for different types of

dynamic model. This means that the solutions can be applied to different types of robots

when we consider practical multi-agent systems with agents being robots. For example,

these robots can be UAVs, UUVs, UGVs. Moreover, experiments are set up with real

robots to test the effect of our control policies, which verify that the policies are effective

in implementation.

1.5 Outline of the Thesis

In this thesis, we consider guaranteeing clients persistently connected in two types of

systems. In Chapter 2, we consider a simple type of multi-agent systems. In such a

system, there are only two clients. We design controllers for routers to make sure that the

clients are persistent connected according to a simple static graph structure. This work

was originally presented in

• Zhiyang Ju, Iman Shames, Dragan Nešić: Ensuring Communication Connectivity

in Multi-agent Systems in the Presence of Uncooperative Clients. Decision and

Control (CDC), 2016 IEEE 55th Conference on. December 2016.
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In Chapter 3, a general type of system with arbitrary number of clients is considered. The

structure of the corresponding graph is more complex and time-varying in such a system.

In order to guarantee persistent connectivity of clients, the control policy for routers is

designed by considering updating the graph structure when necessary. In Chapter 4, we

implement our control policy in experiments. E-puck robots are used to act as routers to

implement our policy on. We confirmed out theoretical results in experiments. Finally,

conclusions and future work are given in Chapter 5.



Chapter 2

Persistent Connectivity with Two
Clients

The problem of maintaining and guaranteeing communication connectivity between a pair of clients

via controlling a number of routers is considered. It is assumed that agents satisfy quadrotor dynam-

ics. A set of controllers are proposed and it is shown that these controllers solve the problem exponen-

tially fast under a set of mild assumptions. The simulation results illustrate the effectiveness of the

proposed controllers.

2.1 Introduction

PERSISTENT connectivity of two clients is considered in this chapter, which is a

simple case of Problem 1.1 with only two clients existing in the system. An example

to illustrate such a system is shown in Figure 2.1. Though simple, this kind of multi-

Figure 2.1: A multi-agent system example with two clients

agent systems is commonly encountered in practice. For example, in scenarios such as

searching and rescue after flood or forest fire, one client is a moving robot quipped with

expensive sensors for gathering information, and the other client is a mobile base for

receiving useful information. In such an application, the two clients are usually far away

from each other such that the communication between them needs to be aided by routers

in the system. Moreover, the approach in this chapter can still be applied to guarantee

persistent connectivity of more clients if the systems are in a star structure as illustrated

17
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in Figure 2.2 with five clients and eight routers. Note that in such systems, one client

Figure 2.2: A multi-agent system example with five clients

acts as the base which connects all the other clients via separate paths. Therefore, this

approach can be extended to be an alternative way of solving Problem 1.1 with additional

assumptions.

In the system we consider in this chapter, the clients and routers are quadrotors,

which are commonly used in multi-agent systems. We note that the clients models here

are assumed to be quadrotors for the sake of the simplicity of exposition, however, they

can be assumed to have any dynamics as long as their positions, velocities, and acceler-

ations can be measured (or estimated) by the routers. First, we choose a path from the

induced graph, which contains all the agents with the end vertices being the two clients.

Then, we design controllers for routers based on the selected path. Furthermore, we ana-

lytically establish that the proposed controllers solve the persistent connectivity problem

exponentially fast under a set of suitable assumptions.

This chapter is organized as follows. In Section 2.2, the problem we consider is for-

mulated. The controllers and the main results are given in Section 2.3. Simulation results

are presented in Section 2.4 to verify the applicability of the proposed controllers and va-

lidity of the theoretical results. In the end, concluding remarks and future directions are
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Figure 2.3: An example of the multi-agent system with two clients

presented.

2.2 Problem Statement

We adopt the feedback linearised model of quadrotor in [9] throughout this chapter.

Consider N quadrotors in R3 where the feedback linearised model of each quadrotor

i ∈ V = {1, . . . , N} is given by

ẋi = vi, (2.1)

v̇i = −gc̄vi +
1
m

Fi, (2.2)

Ḟi = −βqFi + ui, (2.3)

where xi ∈ R3 denotes the position of quadrotor i, vi ∈ R3 denotes its velocity, g is the

gravity constant, c̄ is a constant related to drag force during flight, m is the mass of the

quadrotor, Fi ∈ R3 is a variable related to lift generated by rotors and attitudes of the

quadrotor i, βq is a constant, and ui is the control input.

The assumption on the maximum communication range of the quadrotors is as stated

in Assumption 1.1, where agents i and j are quadrotors in the specific multi-agent system

in this chapter. We recall that this assumption leads to the induced graph Go = {V , Eo},

and V is partitioned into two subsets C andR.

In broad terms the main objective is to ensure that there is always a path between any

pair i, j ∈ C via controlling the positions of the routers. In the rest of this chapter, we as-

sume that C = {1, N} andR = {2, . . . , N − 1}. The system with two clients is illustrated

in Figure 2.3. We assume that at time t = 0, N o
i satisfies the following assumption.

Assumption 2.1. LetMi = {i − 1, i + 1}, for i = 2, . . . , N. Then at the initial time instant

t = 0,Mi ⊂ N o
i , for i = 2, . . . , N − 1.
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Note that, in this chapter, we assume the initial time instant t0 = 0.

The objective in this work now is to find ui for all i ∈ R such that the two clients are

persistently connected aided by the routers. In order to achieve the objective, we have

the following assumptions on the state measurement and information exchange between

agents, which specifies Assumption 1.3.

Assumption 2.2. Each agent i measures its own state, i.e.
[
xᵀi , vᵀi , Fᵀ

i

]ᵀ, and receives
[
xᵀj , vᵀj , Fᵀ

j

]ᵀ
from j ∈ Mi.

Remark: Note that if vj and Fj, j ∈ Mi, are not directly available then i may estimate

them by measuring xj and receiving uj instead. As stated earlier the main problem of

interest is to ensure a connected path from client 1 to client N with N− 2 routers. For this

to be feasible we need the following assumption on the time-varying bounded area B(t)

the clients move within.

Assumption 2.3. Let sup
t
‖x1(t)− xN(t)‖ ≤ δ̄, for some bounded real value δ̄. Then N − 1 ≥

δ̄

R− ∆̄
, where ∆̄ is a design parameter.

This assumptions gives specific requirement on the bounded area B(t) as in Assump-

tion 1.2, and we will provide explicit bounds on ∆̄ later in this chapter. The following

assumption provides a limit on the maximum speed of the clients.

Assumption 2.4. Let vim = sup
t
‖vi(t)‖, i ∈ C, then max

i∈C
{vim} ≤ vcm, where vcm is some

bounded positive real value.

In order to guarantee connectivity for all time t ≥ 0, the initial positions of the agents

should satisfy the following assumption, which is a stronger version of Assumption 1.4.

Assumption 2.5. If N is an even number, then it can be written as N = 2n for some integer n.

It is assumed that at time t = 0 the following statements are true:

‖xn(0)− xn+1(0)‖ ≤
1
3
‖xn−1(0)− xn+2(0)‖ (2.4a)

‖xj(0)− x2n+1−j(0)‖ ≤
1
2
(‖xj−1(0)

− x2n+2−j(0)‖+ ‖xj+1(0)− x2n−j(0)‖) (2.4b)



2.2 Problem Statement 21

‖x1(0)− x2(0)‖ ≤ ‖x2(0)− x3(0)‖+
1
β

vcm (2.4c)

‖xk(0)− xk+1(0)‖ ≤
1
2
(‖xk−1(0)− xk(0)‖

+ ‖xk+1(0)− xk+2(0)‖) (2.4d)

‖xN−1(0)− xN(0)‖ ≤ ‖xN−2(0)− xN−3(0)‖+
1
β

vcm (2.4e)

where k = 2, . . . , n − 1, n + 1, . . . , N − 2, j = 2, . . . , n − 1, and β is a positive real number

which will be defined later. If N is an odd number, then it can be written as N = 2n− 1 for some

integer n. It is assumed that at time t = 0 the following statements are true:

‖xn−1(0)− xn+1(0)‖ ≤
1
2
‖xn−2(0)− xn+2(0)‖, (2.5a)

‖xj(0)− x2n−j(0)‖ ≤
1
2
(‖xj−1(0)

− x2n+1−j(0)‖+ ‖xj+1(0)− x2n−1−j(0)‖), (2.5b)

‖x1(0)− x2(0)‖ ≤ ‖x2(0)− x3(0)‖+
1
β

vcm, (2.5c)

‖xk(0)− xk+1(0)‖ ≤
1
2
(‖xk−1(0)− xk(0)‖

+ ‖xk+1(0)− xk+2(0)‖), (2.5d)

‖xn−1(0)− xn(0)‖ ≤
1
3
‖xn−1(0)− xn+1(0)‖

+
1
3
‖xn−2(0)− xn−1(0)‖, (2.5e)

‖xn(0)− xn+1(0)‖ ≤
1
3
‖xn−1(0)− xn+1(0)‖

+
1
3
‖xn+1(0)− xn+2(0)‖ (2.5f)

‖xN−1(0)− xN(0)‖ ≤ ‖xN−2(0)− xN−1(0)‖+
1
β

vcm (2.5g)

where k = 2, . . . , n− 1, n + 1, . . . , N − 1, j = 2, . . . , n− 1, and the same as in the previous case

β is a positive real number.

An illustration depicting the distances considered in Assumption 2.5 can be found in

Fig. 2.4.

Remark: Assumption 2.5 is easily satisfied for small δ̄ as defined in Assumption 2.3
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Figure 2.4: Initial conditions for xi when N = 2n

by making ‖xi(0)− xi+1(0)‖ = ‖xi+1(0)− xi+2(0)‖, i = 1, . . . , N − 2.

Then the problem can be formalized as the following.

Problem 2.1. Consider N agents in set V where the dynamics of each agent i is governed by

(2.1). Under Assumptions 1.1 and 2.1–2.5, find ui for all i ∈ R such that there exists a path

between agent 1 and N for all t ≥ 0, that is the two clients are persistently connected.

One way to solve this problem is to guarantee following conditions are satisfied ∀t ≥ 0.

‖xi(t)− xi+1(t)‖ ≤ R, (2.6)

where i = 1, . . . , N − 1.

Remark: The way of solving Problem 2.1 is equivalent to designing controllers such

that the trajectories remain in the non-compact set that characterizes the desired states,

i.e. the states that result in the existence of a path connecting 1 and N, if Assumptions

2.1–2.5 and 1.1 hold.

2.3 Controller Design and Analysis for Quadrotor Model

In this section, we first give the designed controller and give the results of persistent

connectivity of clients in Theorem 2.1. In order to prove the theorem, we then give two

lemmas, one is on the relationship between an auxiliary system and the original system,

the other one is about the connectivity results of the auxiliary system. Finally, the proof

of Theorem 2.1 is given based on the two lemmas.
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For a multi-agent system with N quadrotors whose dynamics are as in (2.1), we de-

sign ur = [uᵀ
2 , . . . , uᵀ

N−1]
ᵀ as follows

ui =βqFi + m[(−βr + gc̄− 2β)ai + β(ai−1 + ai+1)

− βs(2vi − vi−1 − vi+1)]− βFei
F,

where i = 2, . . . , N − 1, ai = v̇i = −gc̄vi +
1
m

Fi, βq, βr, βs, βF are positive real constants,

β =
βs

βr
, eF =

[
e2

F
ᵀ, . . . , eN−1

F
ᵀ]ᵀ , where

ei
F =Fi −m

[
− βrvi − βs(xi − xi−1)− βs(xi − xi+1)

+ gc̄vi − 2β(vi −
vi−1 + vi+1

2
)
]

with i = 2, . . . , N − 1.

By using these control inputs, we have following results regarding the positions of

quadrotors.

Theorem 2.1. Suppose Assumptions 1.1 and 2.1 – 2.5 hold. Using controllers ur in (2.7), the

solutions xi(t) of (2.1) satisfy the conditions in (2.6), ∀t ≥ 0 where ∆̄ ≥ 2β

N
vcm + 2K0 for some

positve K0.

The proof of this theorem is obtained via applying two lemmas that will be intro-

duced next. The first lemma involves establishing that the solution xi, i ∈ R, of multiple

quadrotor system (2.1) for an appropriately chosen set of control laws will converge to the

solution of Problem 2.1 for an auxiliary system comprised of N single-integrators. Then,

in the second lemma the connectivity of the clients in the system of single-integrators is

demonstrated. The proof of Theorem 2.1 is then achieved via invoking these two lemmas.

An auxiliary system with N agents with single-integrator dynamics is introduced as

follows

˙̄xi = v̄i, (2.7)

where i = 1, . . . , N, x̄i is the position of agent i, and v̄i is its control input. Similar to the

assumptions on (2.1) we assume the following for (2.7).
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Assumption 2.6. The control inputs v̄i and states x̄i in system (2.7) satisfy Assumptions 1.1

and 2.1–2.5 where the agents dynamics are governed by (2.7) instead of (2.1).

For this system, we design v̄i, i ∈ R as

v̄i = −β(x̄i − x̄i−1)− β(x̄i − x̄i+1), (2.8)

where i = 2, . . . , N − 1, β is the same as in (2.7).

Additionally, it is assumed that the following assumption holds.

Assumption 2.7. For all t ≥ 0, x̄i(t) = xi(t), v̄i(t) = vi(t), i ∈ C.

Remark: This assumption ensures that the clients in the auxiliary system of single-

integrators have the same position and velocity of their counterparts in the original sys-

tem.

We denote

ex =
[
e2

x
ᵀ
, . . . , eN−1

x
ᵀ]ᵀ, (2.9)

where,

ei
x = xi − x̄i, (2.10)

where i = 2, . . . , N − 1. Now we have the following lemma,

Lemma 2.1. Consider systems in (2.1) and (2.7), suppose Assumptions 1.1 and 2.1 – 2.7 hold.

Using controllers in (2.7) and (2.8), the ex(t) in (2.9) will converge to 0. Additionally, there exists

some K0 > 0, γ > 0, such that ex(t) satisfies ‖ex(t)‖ ≤ K0e−γt, ∀t ≥ 0.

Proof. See Section 2.5.

In the following Lemma 2.2, a result of connectivity of clients from the controller (2.8)

designed for system (2.7) will be stated.

Lemma 2.2. Suppose Assumption 2.6, 2.7 hold for system (2.7), using controller in (2.8), the

solutions of states x̄i(t) will always satisfy the following conditions ∀t ≥ 0.

‖x̄i(t)− x̄i+1(t)‖ ≤ R− ∆̄1, (2.11)
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where ∆̄1 = ∆̄− 2β

N
‖vcm‖, i = 1, . . . , N − 11.

Proof. See Section 2.5.

After having the results in the two lemmas, we give the proof of Theorem 2.1 as

follows.

Proof. We already proved in Lemma 2.2 that the controller designed for single-integrator

system (2.7) will guarantee states x̄i(t) satisfy the requirements in (2.11). From Lemma 2.1,

the solution xi(t), i ∈ R of (2.1) with controller (2.7) will exponentially converge to

x̄i, i ∈ R. Here we will link these two lemmas to prove the results in this theorem.

From (2.10), we have, xi(t) = x̄i(t) + ei
x(t), where i = 2, . . . , N − 1. Based on these

equations and Assumption 2.7, we have

‖x1 − x2‖ =‖x̄1 − x̄2 − e2
x‖

≤‖x̄1 − x̄2‖+ ‖e2
x‖, (2.12a)

‖xi − xi+1‖ =‖x̄i + ei
x − x̄i+1 − ei+1

x ‖

≤‖x̄i − x̄i+1‖+ ‖ei
x‖+ ‖ei+1

x ‖, (2.12b)

‖xN−1 − xN‖ =‖x̄N−1 + eN−1
x − x̄N‖

≤‖x̄N − x̄1‖+ ‖eN−1
x ‖, (2.12c)

where i = 2, . . . , N − 1.

From Lemmas 2.1, for i = 2, . . . , N − 1, we have

‖ei
x‖ ≤ ‖ex‖ ≤ K0e−λt. (2.13)

Based on Lemma 2.2 and (2.12), (2.13), for i = 2, . . . , N − 1,we have

‖xi − xi+1‖ ≤ R− ∆̄1 + 2K0e−λt, (2.14)

1Note that ∆̄1 > 0 because from the statement of Theorem 2.1 it is known that ∆̄ >
2β

N
‖vcm‖.
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By choosing

∆̄ ≥ 2β

N
vcm + 2K0e−λt, (2.15)

based on (2.14), xi satisfy the conditions in (2.6).

2.4 Simulation Results

In the simulation, we choose parameters from [32] in order to have a result close to the

practical quadrotor system. These parameters are g = 9.8, c = 0.01, m = 1.04, βq = 0.1.

For the parameters of controller designed, we set β = 2.5, βr = 5, βF = 5. R is set as

R = 20 which satisfies Assumption 1.1. In the simulation, Assumption 2.2 holds for we

will use these information in the simulation.

The clients are governed by the following inputs:

ui = α


xi

vi

Fi

+ K

(
T


xi

vi

Fi

−


xi
d

vi
d

ai
d


)
+ Ji

d,

where i ∈ C, α = [03×3, 0.0098I3, 0.198I3], K = [−30I3,−31I3,−10I3],

T =


1.04I3 03×3 03×3

03×3 1.04I3 03×3

03×3 −0.1019I3 I3

, x1
d =


10 + 10 sin(

1
5

t− π

2
)

10 cos(
1
5

t− π

2
)

5

,

xN
d =


53 + 20 sin(

1
10

t− π

2
)

20 cos(
1
10

t− π

2
)

5

, and vi
d, ai

d, Ji
d are the first, second, and third derivatives

of xi
d. Using these ui, i ∈ C, and set the initial conditions as x1(0) = 0, xN(0) = [33, 0, 0]ᵀ,

vi(0) = 0, Fi(0) = 0, i ∈ C. We obtain sup
t
‖x1(t) − xN(t)‖ = 70, ‖vi(t)‖ ≤ 2.5, ∀t ≥

0, ∀i ∈ C.

Furthermore, set δ̄ = 70, vcm = 2.5 with which Assumption 2.4 is satisfied, N = 5.

We set the initial values of clients as x4(0) =

[
99
4

0 5
]ᵀ

, x3(0) =

[
33
2

0 5
]ᵀ

, x2(0) =[
33
4

0 5
]ᵀ

and vi(0) = 0, Fi(0) = 0, i ∈ R, to satisfy the conditions in Assumption 2.5.
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From the initial conditions, we have K0 = 0 in (2.19). And we set ∆̄ = 2.5 as in (2.15).

We can see that these choices satisfy Assumption 2.3. And in the simulation we label the

quadrotors with the number that satisfy the relationships in Assumption 2.1. With these

settings, all the Assumptions 1.1–2.5 of this multiple quadrotor system are all satisfied.

The simulation results of distances between neighbouring two quadrotors and the

norms of vi are in Fig. 2.5 and Fig. 2.6.

Figure 2.5: Distances between two neighbouring quadrotors

Figure 2.6: Norms of velocities

From the results, we can see that the distance between any two neighbouring quadro-
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tors is less than R = 20, ∀t ≥ 0. This simulation verifies that the controller we designed

guarantees the persistent connectivity of clients in the multiple quadrotor system, that is,

satisfy the conditions in (2.6). Additionally, in Fig. 2.6, we can see the magnitude of ve-

locities of clients can compare to the magnitude of routers’ velocities, which implies that

our control law can be applied for maintaining connectivity for comparable fast clients.

2.5 Proofs of Main Results

2.5.1 Proof of Lemma 2.1

Proof. By using the control input ur as in (2.7), we can calculate the derivatives of eF in

(2.7) as

ėF = −βFeF. (2.16)

Now the dynamics of the system (2.1) becomes

ẋi =vi,

v̇i =− βrvi − βs(xi − xi−1)− βs(xi − xi+1)

− 2β(vi −
vi−1 + vi+1

2
) +

1
m

ei
F,

ėF =− βFeF,

where i = 2, . . . , N − 1.

Furthermore, we define ev as ev =
[
e2

v
ᵀ, . . . , eN−1

v
ᵀ]ᵀ, where, ei

v = vi + β(xi − xi−1) +

β(xi − xi+1), where i = 2, . . . , N − 1. By taking derivate of ev and with the system (2.1),

we have the dynamics of ev as, ėi
v = −βrei

v +
1
m

ei
F, that is,

ėv = −βrev +
1
m

eF (2.17)

Then the dynamics of the system can be rewritten as

ẋi = −β(xi − xi−1)− β(xi − xi+1) + ei
v,
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v̇ = −βrev +
1
m

eF,

ėF = −βFeF,

where i = 2, . . . , N − 1.

According to Assumption 2.5 and dynamics in the above equations and (2.7), we can

taking derivatives of ex in (2.9) and get the dynamics of it as, ėx = Aex + ev, where A =
−2β β . . . . . . 0

β −2β β . . . 0

. . . . . . . . . . . . . . .

0 . . . . . . β −2β

.

Then the dynamics of ex, ev and eF can be written as


ėx

ėv

ėF

 =


A IN−2 0N−2

0N−2 −βr IN−2
1
m

IN−2eF

0N−2 0N−2 −βF IN−2




ex

ev

eF

 . (2.18)

We can see that A is a tridiagonal matrix and it is also Toeplitz, the eigenvalues of A

are

λi = −2β + 2βcos(
kπ

N − 1
), f or k = 1, 2, . . . , N − 2,

which are all negative. So A is Hurwitz. Furthermore,−βr IN−2 and−βF IN−2 are all Hur-

witz, then the system (2.18) is exponentially stable at the origin. So ex(t) will converge to

0.

By denoting xe =
[
eᵀx , eᵀv , eᵀF

]ᵀ, we can also conclude that, there exists a λ > 0, such

that ‖xe(t)‖ ≤ ‖xe(0)‖e−λt, ∀t ≥ 0. By letting

K0 = ‖xe(0)‖, (2.19)

we have, ‖ex(t)‖ ≤ ‖xe(t)‖ ≤ K0e−λt.
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2.5.2 Proof of Lemma 2.2

Proof. The proof will be slightly different between N is even number and odd number.

We start the proof from analysing the system with N is even number, that is N = 2n,

where n = 2, 3, . . . ,. The proof will be similar for N = 2n− 1, where n = 2, 3, . . . ,, so we

will just give the results directly.

In the first step of this proof, we check that the distances ‖x̄i − x̄2n+1−i‖, where i =

2, . . . , N− 1 are less than or equal to some upper bounds which are functions of x̄i, i ∈ V .

Based on these inequalities, we can find a constant upper bound on ‖x̄n − x̄n+1‖. In the

second step, we will check that the distances ‖x̄i − x̄i+1‖ where i = 1, . . . , N − 1 are less

than or equal to some upper bounds which are functions of x̄i, i ∈ V . By using these

inequalities and the upper bound on ‖x̄n − x̄n+1‖ in the first step, we can get constant

upper bounds on ‖x̄i − x̄i+1‖ where i = 1, . . . , N − 1, which will satisfy the requirements

in (2.11).

For each pair of x̄i and x̄2n+1−i, we construct a Lyapunov function Vi =
1
2
‖x̄i −

x̄2n+1−i‖2, where i = 3, . . . , n + 1. By this choice of i, we will start the analysis by consid-

ering the left-hand part agents in the system as in Fig. 2.3.

The derivatives of Vi are as follows

V̇n =(x̄n+1 − x̄n+2)
ᵀ[−3β(x̄n − x̄n+1)

+ β(x̄n−1 − x̄n+2)]

≤− 3β‖x̄n − x̄n+1‖(‖x̄n − x̄n+1‖

− 1
3
‖x̄n−1 − x̄n+2‖),

V̇i =(x̄i − x̄2n+1−i)
ᵀ[−2β(x̄i − x̄2n+1−i)

+ β(x̄i−1 − x̄2n+2−i) + β(x̄i+1 − x̄2n−i)]

≤− 2β‖x̄i − x̄2n+1−i‖(‖x̄i − x̄2n+1−i‖

− 1
2
‖x̄i−1 − x̄2n+2−i‖ −

1
2
‖x̄i+1 − x̄2n−i‖),

where i = n− 1, . . . , 2. A sufficient condition under which the derivatives of Vi are less
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than 0 are as follows

‖x̄n − x̄n+1‖ >
1
3
‖x̄n−1 − x̄n+2‖,

‖x̄i − x̄2n+1−i‖ >
1
2
(‖x̄i−1 − x̄2n+2−i‖

+ ‖x̄i+1 − x̄2n−i‖),

where i = n − 1, . . . , 2. From this condition, we can see the solution of the single-

integrator system will converge to states that satisfy the following conditions,

‖x̄n − x̄n+1‖ ≤
1
3
‖x̄n−1 − x̄n+2‖,

‖x̄i − x̄2n+1−i‖ ≤
1
2
(‖x̄i−1 − x̄2n+2−i‖

+ ‖x̄i+1 − x̄2n−i‖),

Additionally, from the requirements on the initial states in (2.4) in Assumption 2.1,

we can conclude that ‖x̄i(t)− x̄2n+1−i(t)‖ will satisfy the former inequalities ∀t ≥ 0.

Furthermore, by some calculation, we can rewrite the former inequalities as ‖x̄i −

x̄2n+1−i‖ ≤
2n− 2i + 1
2n− 2i + 3

‖x̄i−1− x̄2n+2−i‖, According to Assumption 2.3, we have ‖x̄1(t)−

x̄N(t)‖ ≤ (N − 1)(R− ∆̄), ∀t ≥ 0. Substitute this into the former inequalities, we have,

‖x̄i − x̄2n+1−i‖ ≤ (2n− 2i + 1)(R− ∆̄). Especially for ‖x̄n − x̄n+1‖, we have,

‖x̄n − x̄n+1‖ ≤ (R− ∆̄). (2.20)

In the second step of the proof, we construct another group of Lyapunov functions

for each pair of x̄i, x̄i+1, where i = 1, . . . , n− 1, as V0i =
1
2
‖x̄i − x̄i+1‖2, this is still for the

left-hand part of the agents in the system as in Fig. 2.3. According to Assumptions 2.5

and 2.2, the derivatives of V0i are as follows

V̇01 =(x̄1 − x̄2)
ᵀ[−β(x̄2 − x̄1) + β(x̄2 − x̄3) + v1]

≤− β‖x̄1 − x̄2‖ (‖x̄1 − x̄2‖ − ‖x̄2 − x̄3‖ − v1m) ,

V̇0i =(x̄i − x̄i+1)
ᵀ[−2β(x̄i − x̄i+1) + β(x̄i−1 − x̄i)]
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+ β(x̄i+1 − x̄i+2)]

≤− 2β‖x̄i − x̄i+1‖(‖x̄i − x̄i+1‖ − ‖x̄i−1 − x̄i‖

− ‖x̄i+1 − x̄i+2‖),

where i = 2, . . . , n− 1.

A sufficient condition under which these derivatives of V0i are less than 0 is

‖x̄1 − x̄2‖ >‖x̄2 − x̄3‖+
1
β

v1m,

‖x̄i − x̄i+1‖ >
1
2
(‖x̄i−1 − x̄i‖+ ‖x̄i+1 − x̄i+2‖),

where v1m is the maximal value of ‖v1(t)‖ as in Assumption 2.2.

Similar as above analysis for Vi, the states x̄i, i ∈ V will converge to states such that

the following inequalities will always be satisfied.

‖x̄1 − x̄2‖ ≤‖x̄2 − x̄3‖+
1
β

v1m,

‖x̄i − x̄i+1‖ ≤
1
2
(‖x̄i−1 − x̄i‖+ ‖x̄i+1 − x̄i+2‖),

where i = 2, . . . , n− 1.

Additionally, according to (2.4) in Assumption 2.4, we conclude that these inequalities

are always satisfied ∀t ≥ 0.

Furthermore, by some calculation, we can rewrite the above inequalities as

‖x̄1 − x̄2‖ ≤‖x̄2 − x̄3‖+
1
β

v1m,

‖x̄i − x̄i+1‖ ≤‖x̄i+1 − x̄i+2‖+
1
β

v1m.

From former analysis, we have ‖x̄n − x̄n+1‖ ≤ (R− ∆̄) as in (2.20). By substituting

this inequality in the above inequalities, we finally have

‖x̄i − x̄i+1‖ ≤ (R− ∆̄) +
n− i

β
v1m,
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where 1 ≤ i ≤ n− 1.

Similar analysis can be applied for the other half side containing agent 1 as in Fig. 2.3,

so we also have

‖x̄i − x̄i+1‖ ≤ (R− ∆̄) +
i− n

β
v2m,

where n + 1 ≤ i ≤ 2n− 1, v1m is the maximal value of ‖v1(t)‖ as in Assumption 2.2.

Analysis on system with 2n agents can also be applied similarly on the system con-

sisting of 2n− 1 agents, where n = 2, 3, . . . . By using the similar analysing method and

under the conditions of initial states in (2.5) in Assumption 2.4, we finally have the fol-

lowing results will always hold ∀t ≥ 0.

‖x̄i − x̄i+1‖ ≤ (R− ∆̄) +
2n− 2i− 1

2β
v1m,

where 1 ≤ i ≤ n− 1, ‖x̄i − x̄i+1‖ ≤ (R− ∆̄) +
2i− 2n + 1

2β
v1m, where n ≤ i ≤ 2n− 1. We

denote dimax, dNmax as,

dimax = max
i

{
sup

t
‖x̄i(t)− x̄i+1(t)‖

}
,

where i = 1, . . . , N− 1, and we denote dmax as, dmax = max{dimax}. From Assumption 2.4,

we have, v1m ≤ vcm, v2m ≤ vcm. Then, from the results of upper bound on the distance

between neighbouring two agents on systems with odd and even number of agents, we

have, dmax ≤ (R− ∆̄) +
N
2β

vcm. By denoting, ∆̄1 = ∆̄− N
2β

vcm, we have dmax ≤ (R− ∆̄1).

From the definition of dmax, we conclude that the states x̄i, i ∈ V satisfy the conditions in

(2.11) ∀t ≥ 0.

2.6 Conclusions

In this chapter, we consider a practical multi-agent system and design controllers for

routers to guarantee persistent connectivity of the two clients in the system. The main

concern of this connectivity design is to guarantee that the clients can move freely to
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perform their pre-assigned tasks, which is a typical situation in practical environments.

The controllers designed for routers are proved to ensure persistent connectivity of clients

assisted by an auxiliary single-integrator system and the simulation results verified the

efficiency of the designed controllers. However, in some cases, not all the routers are

needed to provide connectivity if a subset of them is sufficiently to handle it , this is also

an interesting aspect to consider.



Chapter 3

Persistent Connectivity with Multiple
Clients

Persistent connectivity of clients is addressed in a general case of multi-agent systems with an

arbitrary number of clients. The control policy in this chapter consists of periodically computing

desired positions and then steering the routers to those desired positions. First, desired positions of

routers are determined by an optimization problem which minimizes the length of the longest edge

of a tree corresponding to the communication relationship between agents. Then, the routers are

steered to those desired positions by motion control. When the optimization problem is infeasible for

communication connectivity, new routers are added to change the structure of the communication

graph (tree). A quadrotor model of agents is used in the simulation with the control policies for

routers. A comparison of two optimization algorithms for solving the optimization problem is also

presented.

3.1 Introduction and Background

IN this chapter, we consider communication connectivity in the general case with an

arbitrary number of clients. More clients make the communication structure between

agents more complex and the control policy design more complicated.

In the communication connectivity literature, such as the papers reviewed in Chapter

1, there is a common assumption (implicit or explicit) that the system can be maintained

connected by maintaining the initial communication topology. This assumption is rea-

sonable if the main goal of all agents is to maintain the communication connectivity.

However, in practical situations, a subset of agents may have a more important task to

perform and by if they cooperated in maintaining the communication connectivity this

would severely limit their ability to perform their main task. For example, they may need

35
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to reach some locations for surveillance, measure something or help search for something

or somebody. If these agents are restricted by the communication connectivity control,

they may not be able to complete their main tasks. When considering these situations,

it may not be feasible to keep the original communication topology of the graph for all

time and the communication graph may need to be occasionally modified. For instance,

this can be done by re-positioning the routers, adding or deleting edges of the graph or

even adding more routers in the systems. Another aspect in the literature that may be

improved is the dynamic models of the agents, which are usually robots. The models are

always considered as single integrator or double integrator models. However, the mod-

els of actual robots are always more complex, for instance, models of UAVs are given by

[9].

Instead of assuming connectivity can be maintained for all time by using the same

communication graph structure, our control policy changes the graph structure when

needed to guarantee connectivity. The control policy keeps switching between optimiza-

tion and then control. If the optimization is infeasible, the policy resorts to an update of

the communication graph structure (adding more routers, for instance). When the op-

timization is again feasible, the policy starts again switching between optimization and

control. During the optimization and control, first, an optimization algorithm calculates

the desired positions of the routers by minimizing the length of the longest edge of a tree

selected from the communication graph. Then, the routers are steered to their desired

positions by motion control. Moreover, our control policy is also suitable for general dy-

namic models of agents, which makes it widely applicable. With these properties, the

approach in this chapter is more suitable than those in the literature for practical situa-

tions.

The rest of the chapter is organized as follows. We firstly give some preliminaries

in Section 3.2. In Section 3.3, we give a description of the multi-agent system and the

problem considered. A procedure of solving the connectivity problem is presented in

Section 3.4. This section includes two methods of solving an optimization problem to get

desired positions of routers, update of graphs, and requirements on motion controller

design for routers. The result that persistent connectivity of clients is guaranteed by our
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control policy is also given to complete this section. Simulation results are presented in

Section 3.5, and conclusions are presented in the last section.

3.2 Preliminaries

Some basic definitions regarding the sub-gradients of convex functions are presented

next. For more information the readers may refer to [10].

Definition 3.1. Vector g is a sub-gradient of a convex function f : D → R at x ∈ D if

f (y) ≥ f (x) + gT(y− x), ∀y ∈ D.

Definition 3.2. The sub-differential ∂ f (x) of f at x is the set of all sub-gradients:

∂ f (x) =
{

g
∣∣ f (y) ≥ f (x) + gT(y− x), ∀y ∈ D

}
.

Let f (x) = max
{

f1(x), . . . , fm(x)
}

, we know that f is convex if all fi are convex.

Moreover, assume each fi is differentiable. At a point x̄ where f (x̄) = f j(x̄) for some

j ∈ {1, . . . , m}, ∇ f j(x̄) ∈ ∂ f (x̄). This is because

f (x̄) +∇ f T
j (x̄)(y− x̄) = f j(x̄) +∇ f T

j (x̄)(y− x̄)

≤ f j(y) ≤ max
{

f1(y), . . . , fm(y)
}
= f (y)

If there exist more than one fi(x) with maximal value, we use M(x) to denote the set of

indices of functions fi(x) with the maximal values. The set M(x) is defined as M(x) ={
i
∣∣∣i ∈ arg max

{
f1(x), . . . , fm(x)

}}
. Then a set of sub-gradients of f (x) at x is

S f (x) =
{

s f

∣∣∣s f = ∑
i∈M(x)

αi∇ fi(x), αi ≥ 0 and ∑
i∈M(x)

αi = 1
}

. (3.1)
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This is because ∀ s f ∈ S f (x),

f (x) + sT
f (y− x) = ∑

i∈M(x)
αi fi(x) + ∑

i∈M(x)
αi∇ fi(x)(y− x)

≤ ∑
i∈M(x)

αi fi(y) ≤ ∑
i∈M(x)

αi max
{

f1(y), . . . , fm(y)
}
= f (y).

It is obvious that S f (x) ⊂ ∂ f (x), so we can choose any element of S f (x) as the sub-

gradient of f (x) at x.

We use the notation PC(x) : Rn → C to denote a projection of x on set C ⊂ Rn, such

that ‖x− PC(x)‖ = inf
{
‖x− x̃‖|x̃ ∈ C

}
. Notation | · | denotes the number of elements in

a set, νᵀ denotes transpose of a vector ν and d·e denotes the ceiling function.

3.3 Problem Setup

A multi-agent system with an arbitrary number of clients is considered in this chapter.

The structure of such a general multi-agent system is shown in Figure 1.3. Different

from the simple communication structure in systems with two clients, we note that the

clients might also be used to aid communication if it does not conflict their own control

objectives. The main problem in this chapter is still designing suitable motion control

policies for the routers to guarantee that the clients are persistently connected. In the

sequel, we will formally state the problem description along with necessary assumptions.

For simplicity, in this chapter, let xi ∈ R2, the position of agent i ∈ V , be governed by

ẋi = ui, ∀i ∈ V , (3.2)

where ui ∈ Ui ⊂ R2 is the control input of agent i. Here, Ui is defined as

Ui =


{ [

u1
i u2

i
]ᵀ ∣∣∣‖ [u1

i , u2
i
]ᵀ ‖ ≤ vr

}
, if i ∈ R{ [

u1
i u2

i
]ᵀ ∣∣∣‖ [u1

i , u2
i
]ᵀ ‖ ≤ vc

}
, if i ∈ C.

(3.3)

In the problem considered, the control policies of clients ui, ∀i ∈ C, need to be designed

to achieve their objectives. Later in this chapter we will relax this assumption for the
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dynamic model of agents because our control policy is not dependent on specific dynamic

models. The policy only requires that the speeds of clients are bounded and the motion

controllers of the routers satisfy some requirements presented in Subsection 3.4.4.

We have the following standing assumption on the speed of each agent i ∈ V .

Assumption 3.1. The upper bounds vr and vc of speed of agents satisfy

vr > v̄r > max
{ (∆ + tx)vc + er

tm
,

3er − tdvc

tm

}
,

where ∆, tx, er, tm are some positive constants, which will be defined.

This assumption ensures that routers have the potential to move sufficiently faster

than clients to maintain any existing connections with them.

The condition that characterises the communication among agents is the same as in

Assumption 1.1. The following assumption specifies the bounded area B(t) in which the

clients operate.

Assumption 3.2. The clients move within a time-varying bounded area B(t) all the time, that

is, xi(t) ∈ B(t), ∀i ∈ C, ∀t ≥ t0, where t0 is the initial time instant, B(t) is defined as

B(t) =
{

x|‖x− xc(t)‖ ≤ D
2

}
with D being a positive constant and xc(t) = ∑i∈C xi(t)

|C| .

The objective is to design distributed closed loop control policies ui(t), ∀i ∈ R to

guarantee that clients are persistently connected. Assumption 1.3 still holds here to char-

acterise the information exchange between neighbouring two agents.

In this chapter, we need a stronger connectivity assumption at the initial time in-

stant than Assumption 1.4 as follows. First, we define a slightly different graph G(t) =(
V , E(t)

)
, where {i, j} ∈ E(t) if

‖xi(t)− xj(t)‖ ≤ R− δG, (3.4)

where δG is a positive constant, which we will revisit later in the chapter. Here, δG always

satisfies

δG < R. (3.5)
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The graph G(t) defined here is for the purpose of designing control policies, while the

previous graph Go(t) determines the communication relationship among agents. Regard-

ing the initial positions of agents, we have the following assumption.

Assumption 3.3. At the initial time instant t = t0, G(t0) is connected.

In an area B(t), the routers cannot maintain persistent connectivity for clients if the

number of routers is not large enough. Therefore, we present an assumption on the num-

ber of routers in the system.

Assumption 3.4. The number of routers Nr satisfies

Nr ≥ 2Nc

⌈ D
2 + R− 2er

R− δ− 2er
+ 1
⌉
+ 1, (3.6)

where Nc is the number of clients, R is the maximum communication range, D is the constant

used to define B(t), and δ1 is a positive constant.

This assumption on the number of routers depends on the design of control policies

proposed in this chapter. It guarantees that there are enough routers to ensure persistent

connectivity of clients under the proposed methodologies, which is shown in Section 3.4.

Next, we introduce an assumption on the relationship between R and δ.

Assumption 3.5. In the system we consider, R and δ satisfy

R ≥ 4δ. (3.7)

The main focus of this chapter is to provide a solution to the following problem,

Problem 3.1. Under Assumptions 3.1–3.5, 1.1 and 1.3, design control policies ui(t) ∈ U , ∀i ∈

R, so that all clients are persistently connected.

The details of the solution of Problem 3.1 are included in Section 3.4.

1This δ is a design constant whose value is stated in Subsection 3.4.5.
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3.4 Problem Solution

The main contribution of this chapter is a solution to Problem 3.1, which is described in

Algorithm 1. The algorithm always works with a subset of “active routers” that maintain

communication connectivity and ”inactive routers” that are not used for communication

connectivity but are made available if the need arises (e.g. clients move too far from

each other and the current number of active routers is no longer sufficient to maintain

the communication connectivity). The algorithm is implemented in a distributed fashion

and it switches between different modes of operation as illustrated in Figure 3.1. Dur-

Figure 3.1: Modes of operations in Algorithm 1

ing the initialization stage, the algorithm uses the initial positions of clients to select ac-

tive routers and their positions that can establish communication connectivity for clients.

Once the initialization is completed, the algorithm switches to optimization and control

stage. During the optimization stage, positions of clients are measured at equidistant

sampling times and then used to determine new desired positions of the active routers

via an optimization algorithm. Meanwhile, the desired positions of inactive routers are

determined in a different fashion to make sure they are always connected to some active

routers. In the control stage, the desired positions of both active and inactive routers

are used in their corresponding control algorithms to steer all routers to their desired

positions. Algorithm 1 alternates between optimization and control stages as long as the

corresponding optimization problem is feasible2. If at some stage, the clients have moved

to positions where the optimization problem is infeasible, the algorithm is reinitialized.

Reinitialization determines a new set of active routers and their positions so that commu-
2The definition of feasibility is in Subsection 3.4.1.
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nication connectivity of clients can be maintained. Once the reinitialization produces a

new set of active routers with their positions, the algorithm switches to the optimization

and control stage which was described above. The algorithm is reinitialized every time

the infeasibility occurs, whereas optimization and control stage is continued for as long

as the optimization problem is feasible. We describe below all stages of Algorithm 1 in

more detail, see Figure 3.1.

In the initialization stage (see lines 1− 8 in Algorithm 1) as in Figure 3.1, the active

routers are selected using the graph G defined in Section 3.3. Firstly (line 1, Algorithm 1)

a router is appointed to xc(t) as the base. The index of the base is denoted by b. Then we

useRb to denote the set of routers except the base b, that isRb := R \ {b}. This appoint-

ment of the base will make sure the number of routers in Assumption 3.4 is enough to

provide communication connectivity for clients, which is explained in Subsection 3.4.3.

The variable κ is used as an index that enumerates the initialization and reinitialization

stages. The superscript κ in variables, such as Gκ, denotes the variables determined in

the initialization or reinitialization stage. The initial value κ = 0 denotes the initializa-

tion stage (line 2, Algorithm 1), and κ will be increased by 1 every time a reinitialization

stage is encountered in the iterations. Then G(t) at current time is assigned to Gκ (line

3, Algorithm 1), where κ = 0. Once Gκ is generated, a sub-graph in form of a tree3 (de-

noted as Tκ = (VTκ , ETκ )) is selected from Gκ (line 4, Algorithm 1). This tree is generated

so that its set of vertices includes the set of clients and the number of routers (includ-

ing b) on the tree is less than or equal to Nc

⌈ D
2 +R−2er
R−δ−2er

+ 1
⌉
+ 14, that is, C ⊂ VTκ and∣∣VT ∩R

∣∣ ≤ Nc

⌈ D
2 +R−2er
R−δ−2er

+ 1
⌉
+ 1. Another requirement of the tree is that there is no edge

between two clients5. Rules for choosing the tree depend on a user defined criterion. For

example, the tree can be chosen so that it contains a minimum number of routers. Using

the selected tree Tκ, we define the set of active routers as Sκ
A = Rb ∩ VTκ , and the set of

inactive routers as Sκ
I = Rb \ Sκ

A. In order to connect the inactive routers to the tree Tκ, we

3A tree is chosen as the sub-graph because it is simple to check the connectivity of a tree. In fact, the
solution in this chapter can be generalized to cover other types of sub-graphs.

4Such a tree with such a vertex number requirement can be constructed at the initialization stage by using
a method similar to the one presented in Algorithm 8.

5This requirement can guarantee the clients will not lose connectivity with their neighbouring routers,
which is explained in subsection 3.4.5.
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Algorithm 1 Outline of solving Problem 3.1

1: Move a router to xc(t) as the base . t is current time instant
2: κ ← 0
3: Gκ ← G(t)
4: Choose Tκ from Gκ and determine Sκ

A, Sκ
I which are sets of acitve and inactive routers

5: Construct extended tree Tκ
E as in Algorithm 4

6: t0 ← t
7: tκ

0 ← t0
8: n← 0
9: while True do

10: Clients measure their own positions xi(tκ
0 + n∆), ∀i ∈ C.

11: The base b calculates and keeps xc(tκ
0 + n∆)

12: Calculate the desired positions of routers in Sκ
A by using Algorithm 2 or 3

13: Determine the feasibility of the desired positions of active routers
14: if The desired positions are infeasible then
15: nu ← 0
16: Tκ

nu
= Tκ

17: while The desired positions are infeasible do
18: Update Tκ

nu
by using Algorithm 6 or 8 to get Tκ

nu+1 and Tκ is updated by
Tκ = Tκ

nu+1 . Tκ
E is also updated, there also exist Tκ

Enu
,Sκ

Inu
and Sκ

Anu
, please refer to 6

or 8 for details.
19: Clients measure their own positions xi(tκ

0 + n∆ + nu(tu + tx) + tu), ∀i ∈ C.
20: The base b calculates and keeps xc(tκ

0 + n∆ + nu(tu + tx) + tu)
21: Calculate new desired positions with updated Tκ

nu+1 by using Algorithm 2
or 3

22: Determine the feasibility of the desired positions of active routers
23: nu ← nu + 1
24: end while
25: Calculate desired positions of the routers in Sκ

Inu
by Algorithm 5

26: Set the desired position of the base as xc(tκ
0 + nu(tu + tx))

27: Steer routers to desired positions as in Subsection 3.4.4 with their desired po-
sitions

28: κ ← κ + 1
29: Gκ = G(t)
30: Choose Tκ from Gκ and determine Sκ

A, Sκ
I which are sets of active and inactive

routers
31: Construct extended tree Tκ

E as in Algorithm 4
32: tκ

0 ← t
33: n← 0
34: else
35: Calculate desired positions of the routers in Sκ

I by Algorithm 5
36: Set the desired position of the base as xc(tκ

0 + n∆)
37: Steer routers to desired positions as in Subsection 3.4.4 with their desired po-

sitions
38: n← n + 1
39: end if
40: end while
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construct an extended tree (denoted as Tκ
E = (VTκ

E
, ETκ

E
)) by moving inactive routers close

to some nearby active routers or clients (line 5, Algorithm 1). The tree Tκ
E is constructed

by using Algorithm 4. The generated tree Tκ
E contains all agents in the system and all

edges of Tκ, which are VTκ
E
= V , ETκ ⊂ ETκ

E
. This tree Tκ

E will make inactive routers avail-

able if they are needed. At the end of the initialization stage, the current time is assigned

to t0 and t0 is assigned to tκ
0 (lines 6 and 7, Algorithm 1). Here t0 denotes the start time of

the system when clients start to move, and tκ
0 denotes the start time of the optimization

and control stage right after the initialization or reinitialization stage indexed by κ. Here

κ = 0, that is the initialization stage. Meanwhile, n is used and initialized as 0 to enumer-

ate the number of periods in the next optimization and control stage (line 8, Algorithm

1). After t0 as shown in Figure 3.1, the algorithm switches to the optimization and control

stage.

Remark: We note that while the tree graph structure is simplest to implement, it may

suffer from a lack of robustness as malfunction of any of the routers would break the con-

nectivity between some clients. Considering other types of trees for the sake of ensuring

better robustness is an interesting question that is left for further research.

The optimization and control stage starts at time instant tκ
0, with κ = 0 if such a stage

is right after the initialization stage. During the optimization and control stages in Fig-

ure 3.1, Algorithm 1 runs periodically with a time period ∆. The variable nκ is used to

denote the total number of periods in the optimization and control stage after the initial-

ization or reinitialization indexed by κ. Note that nκ can be 0 in some situations. This ∆

is further divided into several time intervals, as shown in Figure 3.2, according to differ-

ent purposes of the steps in optimization and control stages. Time interval tx is used to

Figure 3.2: Divisions of ∆

calculate desired positions of the active routers (lines 10− 13, Algorithm 1). Firstly, the

positions of clients at the start time tκ
0 + n∆ of a period indexed by n are measured and
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stored for further actions (line 10, Algorithm 1). With these measured client positions, the

base calculates the centroid xc(tκ
0 + n∆) via communication links aided by other agents

(line 11, Algorithm 1). In the next step (line 12, Algorithm 1), the desired positions of

active routers are calculated by an optimization algorithm (Algorithm 2 or 3) with the

measured positions of clients and the centroid xc(tκ
0 + n∆). These two algorithms are

distributed optimization algorithms, where Algorithm 2 uses a primal method and Algo-

rithm 3 uses a dual method to minimize the length of the edges in the worst case. Here,

the worst case means the edges with the longest length. Then, the feasibility of the cal-

culated desired positions will be checked (line 13, Algorithm 1). If the desired positions

of active routers are feasible, the optimization and control stage continues. Otherwise,

the algorithm would switch to reinitialization stage, which we will describe in the next

paragraph. In the feasible case, the next time interval td is assigned to obtain the desired

positions of the inactive routers (lines 35− 36, Algorithm 1). The desired positions of the

inactive routers are determined by Algorithm 5 (line 35, Algorithm 1). These positions

are selected to make sure the inactive routers will not lose connection to their neighbours

in Tκ
E. Meanwhile, the desired position of the base is set as xc(tκ

0 + n∆) to make sure the

number of routers in the system is enough (line 36, Algorithm 1). During the last time

interval tm (lines 37 − 38, Algorithm 1), all the routers will be steered to their desired

positions with some user designed controllers. The controllers are designed by using the

desired positions of routers and should satisfy some requirements as described in Sub-

section 3.4.4 (line 37, Algorithm 1). At the end of current ∆, n is increased by 1 to index

the next time period ∆ if the optimization and control stage can be continued (line 38,

Algorithm 1).

As stated above, Algorithm 1 steps into a reinitialization stage, as shown in Figure 3.1,

if the desired positions of active routers are infeasible (lines 10− 33, Algorithm 1). The

time interval of a reinitialization stage indexed by κ is ∆κ
u. Time interval of this stage

is also divided into several time intervals as shown in Figure 3.3. During the first time

interval tx (lines 10 − 13, Algorithm 1), the desired positions of the active routers are

calculated. The actions taken in tx are the same as the actions in the time interval tx

of the optimization and control stages, thus we will not provide detailed explanations.
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Figure 3.3: Divisions of ∆κ
u

Similarly, all the time intervals with the same names as in the optimization and control

stages will have the same actions, the only difference is that they are with different trees.

After time interval tx, nu is initialized with 0 to enumerate the times of updates of the tree

in the time interval nκ
u(tu + tx) as shown in Figure 3.3 (line 15, Algorithm 1). The index

nu will be increased by 1 once the current tree is updated in current initialization stage.

In the next step, Tκ
nu

is defined to be used for the tree update in the next time interval

and assigned with the current Tκ (line 16, Algorithm 1). The subscript nu in Tκ
nu

is used to

indicate the tree will be used in the tree update process indexed by nu. In the time interval

tu (line 18, Algorithm 1), the current tree Tκ
nu

will be updated with the inactive routers by

using Algorithm 6 or Algorithm 8. Once the tree is updated, another tx time interval will

be assigned to calculated the desired positions of active routers with the new tree (lines

19− 22, Algorithm 1). The update procedure composed of tx and tu will repeat until the

desired positions of the active routers with the updated tree are feasible. As shown in

Figure 3.3, we use nκ
u to denote the total number of updates of the tree Tκ. After the tree

update processes, the desired positions of the inactive routers are determined in td (lines

25− 26, Algorithm 1), and all the routers are steered to their desired positions in tm (line

27, Algorithm 1), as described before. The last part of the reinitialization stage is the same

as the initialization stage (lines 28− 33, Algorithm 1), and a time interval tc is assigned

to it. Firstly, κ will be increased by 1 to index the current reinitialization stage (line 28,

Algorithm 1). Then Gκ is assigned with the current graph G(t) (line 29, Algorithm 1).

The procedures of choosing Tκ and constructing Tκ
E are the same as in the initialization

stage (lines 30− 31, Algorithm 1). In the end, tκ
0 is assigned with current time t (line 32,

Algorithm 1), and n is reassigned with 0 to be used in the next stage (line 33, Algorithm

1). In the future time, Algorithm 1 will alternate between the optimization and control

stage and the reinitialization stage depending on the feasibility of the desired positions
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of the active routers in each iteration (lines 10− 39, Algorithm 1).

Remark: Here the time intervals tu and tc are constants. As the time cost of the up-

date of the selected tree depends on specific tree structure and agent positions when the

update runs, tu can be chosen as the upper bound of the time cost of these updates. Simi-

larly, tc can be chosen as the upper bound of the time cost of the corresponding procedure

in Algorithm 1 (lines 28− 33, Algorithm 1). Note that our control policy designed in this

chapter is also suitable for variable values of tu and tc. This means that tu and tc can

be time varying, in another word, they can be determined in a real-time fashion. This

time-varying setting of tu and tc will not affect our analysis of the persistent connectivity

of clients. We use the constants tu and tc in this chapter is to make our statement and

notation clear.

During the reinitialization stages, the clients still move and may break connection

with the others. Therefore, we introduce an assumption on the movement of clients dur-

ing these stages to make sure they stay connected to their current neighbours.

Assumption 3.6. During any reinitialization stage indexed by κ, κ = 1, . . . during the time

interval [tκ
0 − ∆κ

u, tκ
0], the position of any client i ∈ C satisfies

∥∥∥xi(t) − xj

(
tκ
0 − ∆κ

u + (nu −

1)(tx + tu)
)∥∥∥ ≤ R− tdvc− er, ∀t ∈

(
tκ
0−∆κ

u + tx +(nu− 1)(tu + tx), tκ
0−∆κ

u + tx + nu(tu +

tx)
]
, ∀{i, j} ∈ N

Tκ−1
Enu−1

i , ∀nu = 1, . . . , nκ
u and ‖xi(t) − xj(tκ

0 − tc)‖ ≤ R − δG, ∀t ∈ [tκ
0 −

tc, tκ
0], ∀j ∈ N Tκ

i .

Note that if the clients do not move or move slowly during the reinitialization stages,

this assumption would hold. Moreover, the clients can also cooperate during these time

intervals in the sense specified by Assumption 3.6, if this is allowed by their own tasks.

The objective of Algorithm 1 is to make sure the clients are persistently connected.

The intuition behind the algorithm is to maintain a tree with vertices including all the

clients connected and update the tree when necessary. Obviously, with the trees Tκ se-

lected in Algorithm 1, ensuring that Tκ, ∀κ = 0, 1, 2, . . . remain connected is a solution for

Problem 3.1. Here, the connectivity of Tκ means all the edges of Tκ satisfy the following

conditions,

‖xi(t)− xj(t)‖ ≤ R, ∀{i, j} ∈ ETκ , ∀t ∈
(
tκ
0, tκ+1

0
]
. (3.8)



48 Persistent Connectivity with Multiple Clients

In the remainder of this section, we will first present the algorithms (subroutines)

that are needed in Algorithm 1. Then, we will prove that Algorithm 1 guarantees that

the conditions in (3.8) are satisfied for each Tκ, that is, persistent connectivity of clients is

guaranteed under the stated assumptions in this chapter. In Subsection 3.4.1, two alterna-

tive algorithms for optimization are given to compute desired positions of active routers.

The methods to construct Tκ
E and calculate desired positions of inactive routers are given

in Subsection 3.4.2. The details of the update of Tκ are stated in Subsection 3.4.3, and

controllers design is given in Subsection 3.4.4. Finally, the conclusion and the proof of

ensuring persistent connectivity of clients using Algorithm 1 is stated in Subsection 3.4.5.

3.4.1 Desired Positions of the Active Routers from Optimization

In this subsection, we present two optimization algorithms (Algorithms 2 and 3) which

calculate the desired positions of the active routers on the selected tree. These two al-

gorithms minimize the length of the longest edges of the selected tree. Therefore, the

desired positions of the active routers calculated by the optimization algorithms can be

used to achieve connectivity of the selected tree, that is, satisfy the conditions in (3.8).

As in Algorithm 1, the optimization algorithm is considered for the tree Tκ if it is at the

start of an iteration (line 12, Algorithm 1), whereas it is considered for the tree Tκ
nu

if it is

in reinitialization stages (line 21, Algorithm 1). For clarity, we let T stand for the selected

tree Tκ or Tκ
nu

, and let TE stand for the extended tree Tκ
E or Tκ

Enu
. Similar simplification is

applied for other notations, such as VT, ET. Furthermore, we use xi to stand for xi(tκ
0 +

n∆) or xi

(
tκ
0 + n∆ + nu(tu + tx) + tu

)
if i ∈ C, use xc to stand for xc(tκ

0 + n∆) or xc

(
tκ
0 +

n∆ + nu(tu + tx) + tu

)
and use xj to stand for the decision variables corresponding to

router j of the optimization problem if j ∈ Rb. Note that as in Algorithm 1, the base

keeps the centroid position xc. In Algorithm 2 and 3, we will use xc for iteration instead

of the measured position of the base b because the desired positions of the base will be

set as xc. In the following, when xb is used, we mean that xb = xc.

We use xT = [xᵀr1 , . . . , xᵀrnT
]ᵀ to denote the collection of positions of the active routers

on T, where ri denotes the indices of active routers, nT is the total number of the active

routers on T, which is defined as nT := |Rb ∩ VT|. First, we define fij(xT) as fij(xT) :=
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‖xi − xj‖, ∀{i, j} ∈ ET. With these fij, we define the objective function f (xT) as f (xT) :=

max{i,j}∈ET
fij(xT).

As stated in Algorithm 1, the active routers can only move during the time inter-

val tm as in Figure 3.2 and 3.3. Moreover, we use v̄r in Assumption 3.1 to bound the

distance a router can move during tm to make sure that the routers can reach the de-

sired positions solved by the optimization algorithm. We use x0
i to denote the position

of router i at the start of the optimization algorithms, which is x0
i := xi(tκ

0 + n∆) or

x0
i := xi

(
tκ
0 + n∆ + nu(tu + tx) + tu

)
. Therefore, we define the reachable set of router

i as Ci :=
{

xi|‖xi − x0
i ‖ ≤ tmv̄r

}
, which constrains the position of router i. Instead of

using conditions in equation (3.8), we use the following conditions to constrain the po-

sitions of the active routers in our optimization problem in order to guarantee persistent

connectivity of clients,

fij(xT) = ‖xi − xj‖ ≤ R− δ, ∀{i, j} ∈ ET, (3.9)

where δ is a positive constant. As stated in Algorithm 1, the active routers stay static

during the time interval tx, thus lengths of some edges of T might become larger in this

time interval because of the movement of clients. Additionally, there are some errors

between the desired positions and reached positions of routers that they are steered to

since the controllers are not perfect. This δ in (3.9) is used to make sure that the tree T will

not lose connectivity in these situations with the desired positions of the active routers

calculated by our optimization algorithms. More information on δ will be presented in

subsection 3.4.5. With the objective function f (xT) and the constraints stated above, the

optimization problem considered is expressed as follows,

min
xT

f (xT)

s.t. xi ∈ Ci, ∀i ∈ Rb ∩ VT

fij(xT) ≤ R− δ, ∀{i, j} ∈ ET.

(3.10)

If the optimization problem in (3.10) is feasible, the positions of the active routers deter-

mined by optimization algorithms are set as the desired positions of the active routers.
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Otherwise we need to update the selected tree.

Instead of solving the optimization problem (3.10) directly with the correlated con-

straints as in (3.9), we can deal with it by an alternative way. In the alternative way, we

solve an alternative optimization problem as in (3.11) without constraints in (3.9) and

check the feasibility of the results of the alternative problem.

min
xT

f (xT)

s.t. xi ∈ Ci, ∀i ∈ Rb ∩ VT.
(3.11)

In Proposition 3.1 and 3.2 we show that the alternative way can solve the optimization

problem (3.10). Here we use x∗T = [x∗ᵀr1 , . . . , x∗ᵀrnT
]ᵀ to denote an optimizer of the optimiza-

tion problem in (3.11). We denote the feasible set of the optimization problem in (3.10) as

X1
T = {xT|xi ∈ Ci, ∀i ∈ Rb ∩ VT ; fij(xT) ≤ R− δ, ∀{i, j} ∈ ET}, and the feasible set of

the problem in (3.11) as X2
T = {xT|xi ∈ Ci, ∀i ∈ Rb ∩ VT}. First we show the following

conclusion regarding the cases when the optimization problem in (3.10) is feasible.

Proposition 3.1. If x∗T, a solution to (3.11), satisfies constraints in (3.9), the optimization prob-

lem (3.10) is feasible and x∗T is also its optimizer.

Proof. Because x∗T is an optimizer of the optimization problem in (3.9), then x∗T ∈ X2
T.

Furthermore, x∗T satisfies the constraints in (3.9), then x∗T ∈ X1
T. Obviously, there is at

least one element in X1
T. Therefore, the optimization problem in (3.10) is feasible. Based

on the conditions that X1
T ⊂ X2

T, x∗T ∈ X1
T, we conclude that x∗T is also an optimizer of the

optimization problem in (3.10).

Then we have another conclusion to determine the cases when the optimization prob-

lem in (3.10) is infeasible.

Proposition 3.2. If x∗T does not satisfy the constraints in (3.9), the optimization problem (3.10)

is infeasible.

Proof. Because x∗T is an optimizer of the optimization problem (3.11), we have f (x∗T) ≤

f (xT), ∀xT ∈ X2
T. With the fact that X1

T ⊂ X2
T, we also have f (x∗T) ≤ f (xT), ∀xT ∈ X1

T.

When x∗T does not satisfy the conditions in (3.9), f (x∗T) > R − δ. Based on the above
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analysis, we have f (xT) > R− δ, ∀xT ∈ X1
T, which is equivalent to ∀xT ∈ X1

T, ∃{i, j} ∈

ET s.t. fij(xT) > R− δ. Therefore, X1
T is empty, which means the optimization problem

in (3.10) is infeasible.

Based on the Propositions 3.1 and 3.2, instead of solving the optimization problem

in (3.10), first, the optimization problem in (3.11) is solved. If this solution satisfies con-

ditions in (3.9), it is termed feasible. Otherwise, it is infeasible, which means we need to

select a new tree and possibly introduce new routers to support the persistent connectiv-

ity of clients. If the obtained solution is feasible, we set the desired positions of the active

routers to be the same as this solution.

In the following two parts, we present two distributed algorithms to solve the opti-

mization problem (3.11).

Primal Sub-gradient Method to Solve the Optimization Problem (3.11)

In this part, we use a primal sub-gradient method to solve the optimization problem

(3.11), which uses the sub-gradients of the primal objective function f (xT) to compute

the descent direction to solve (3.11). This method is implemented in a distributed way

as described in what follows. Every agent i on the selected tree runs a local algorithm as

presented in the Algorithm 2 only by using its local information. In each iteration of Al-

gorithm 2, agent i first obtains the set of the longest edges of the tree T, which is denoted

asMk, by a local estimation procedure (lines 3− 9, Algorithm 2). Here k = 0, 1, . . . de-

note the indices of iterations. The estimation procedure is proceeded by communicating

with agent i’s neighbours, and σi denotes the local estimate of the set of the longest edges

(lines 3− 8, Algorithm 2). Then xi is updated locally by using a sub-gradient correspond-

ing toMk if agent i is a router and an ending vertex of an edge inMk, and xi keeps the

current value (lines 10− 14, Algorithm 2) otherwise. In the following we first present

the primal sub-gradient method, then we address the details of Algorithm 2 based on the

method.

Let [∇ fij]l =
∂ fij
∂xl

, then [∇ fij]l = 0 for l 6∈ {i, j} ∩ Rb, [∇ fij]i =
(xi−xj)

‖xi−xj‖ if i ∈ Rb, and

[∇ fij]j =
(xj−xi)

‖xi−xj‖ if j ∈ Rb. In the optimization algorithm, k denotes the kth iteration, and
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Algorithm 2 Local Algorithm of Agent i with primal Sub-gradient method for solving
(3.11).

1: xi[0]← x0
i , k← 0

2: while A termination condition for (3.11) is not satisfied do
3: k′ ← 0
4: σi(0|k) =

{
{i, j}|{i, j} ∈ arg max

{
fij(xT[0]), j ∈ N T

i
}}

5: while k′ ≤ |VT| − 1 do . This loop obtains the longest edges.

6: σi(k′ + 1|k) =
{
{i, j}|{i, j} ∈ arg max

{
fij(xT[k])|{i, j} ∈ σi(k′|k), {i, j} ∈

σj(k′|k), j ∈ N T
i
}}

. Local estimation of the longest edges for each i.
7: k′ ← k′ + 1
8: end while
9: Mk = σi(k′|k)

10: if i ∈ Rb and ∃j ∈ N T
i , such that {i, j} ∈ Mk then

11: xi[k + 1] = PCi

(
xi[k] + ρ[k]∑j,{i,j}∈Mk

αij[k]
xj[k]− xi[k]
‖xi[k]− xj[k]‖

)
,

12: else
13: xi[k + 1] = xi[k]
14: end if
15: k← k + 1
16: end while

the k in square brackets is used to denote the corresponding values of the variables at the

iteration indexed by k, for example xT[k], xi[k]. LetMk denote the set of edges with max-

imum length at iteration k, which is,Mk :=
{
{i, j}|{i, j} ∈ arg max{i,j}∈ET

{
fij(xT[k])

}}
.

Based on the preliminaries in Section 3.2, we have a set of sub-gradients of f (xT) at xT[k]

as follows

S f (xT[k]) =
{

s f |s f = ∑
{i,j}∈Mk

αij[k]∇ fij(xT[k]), αij[k] ≥ 0 and ∑
{i,j}∈Mk

αij[k] = 1
}

. (3.12)

From conclusions of convergence analysis of sub-gradient method in literature, such

as [10], we know that the following iterations minimize f (xT),

xT[k + 1] = PX2
T

(
xT[k]− ρ[k]g f (xT[k])

)
, (3.13)

where ρ[k] is an appropriately chosen step-length, g f (xT[k]) ∈ S f (xT[k]), X2
T is the fea-

sible set of optimization problem (3.11), PX2
T
(·) stands for the projection operation as in
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Section 3.2.

With the sub-gradient method given above, the details of Algorithm 2 are described

as follows. After initializing k by 0 and xi by x0
i (line 1, Algorithm 2), Algorithm 2 goes

into iterations (lines 2− 16, Algorithm 2). From the analysis above, it is necessary for the

edge with the largest length to be identified first at each iteration. The simplest way to

achieve this is that each agent runs the following algorithm at each iteration indexed by

k (line 6, Algorithm 2).

σi(k′ + 1|k) =
{
{i, j}|{i, j} ∈ arg max

{i,j}∈ET

{
fij(xT[k])|{i, j} ∈ σi(k′|k),

(i, j) ∈ σj(k′|k), j ∈ N T
i
}}

, ∀i ∈ VT,
(3.14)

where N T
i is the neighbourhood of i corresponding to the tree T. The initial set σi(0|k)

is set as σi(0|k) = {{i, j}|{i, j} ∈ arg max{ fij(xT[0]), j ∈ N T
i }} (line 4, Algorithm 2). It is

easy to show that the algorithm converges to the set σi(k) at most after |VT| − 1 exchanges,

then Mk = σi(k) (line 9, Algorithm 2). Thus, as stated in (3.13), all i ∈ VT ∩ Rb such

that {i, j} ∈ Mk update their positions locally according to the following rule (line 11,

Algorithm 2):

xi[k + 1] = PCi

(
xi[k] + ρ[k] ∑

j,{i,j}∈Mk

αij[k]
xj[k]− xi[k]
‖xi[k]− xj[k]‖

)
, (3.15)

here αij[k] = αji[k] for {i, j} ∈ Mk, PCi(·) is the projection operation which is defined in

Section 3.2. As stated above, all i will have the information of setMk, thus a predefined

rule of choosing αij[k] can be stored in each agent i. For example, we can simply set them

as αij =
1
|Mk |

, here |Mk| denotes the number of elements inMk. In fact, when running

the algorithm,Mk has only one element at almost all the iterations, thus aij[k] is set as 1

for all most all the k. If agent i does not need to be updated, xi keeps the current value

(line 13, Algorithm 2). After the update of xi, if a termination condition is not satisfied,

Algorithm 2 goes into next iteration. Otherwise, we use the current values of xT as the

optimizer.

In Algorithm 2, the choice of step-length ρ[k] has a major impact on the convergence
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properties of the algorithm. One can choose a constant step-size rule or an adaptive

one, e.g. Polyak step-size rule, or a diminishing one. When we choose constant step-size

rule, the convergence will be sub-linear of order O(1/
√

k) [10]. However, in practice this

might be good enough. Particularly, note that the sub-gradient satisfies,

‖g(xT[k])‖ ≤ ∑
{i,j}∈Mk

(αij[k] + αji[k]) = 2, ∀k = 0, 1, 2, . . . . (3.16)

Selecting a fixed step-length ρ, yields

lim
k→∞

inf f (xT[k]) ≤ f ? + 2ρ,

where f ? is the optimal value of the objective function in optimization problem (3.11).

Since the norm of g(xT[k]) is bounded as in (3.16), by using fixed step-size ρ, one has

the following result for any positive scalar ε [10],

min
0≤k≤K

f (xT[k]) ≤ f ∗ +
4ρ + ε

2
,

K =
⌊d(xT[0])2

ρε

⌋
,

(3.17)

where d(xT) = minx∗T∈X∗T ‖xT − x∗T‖, X∗T is the set of all optimizers of (3.11). In our prob-

lem, because of the reachable set Ci, we have ‖xi[0]− x∗i ‖ ≤ tmv̄r, ∀x∗i ∈ X∗i , where X∗i is

the set of all values of the element x∗i of X∗T. Then we have,

d(xT[0]) = min
x∗T∈X∗T

‖xT[0]− x∗T‖

≤ ∑
i∈VT∩Rb

‖xi[0]− x∗i ‖

≤ |VT ∩Rb|(tmv̄r)

, (3.18)

where |VT ∩Rb| is the number of elements in the set VT ∩Rb. By using this upper bound,

at most
⌊ (|VT∩Rb|(tm v̄r))2

2ε

⌋
is needed to achieve the optimal solution within objective func-

tion error 4ρ+ε
2 .



3.4 Problem Solution 55

Dual Sub-gradient Method to Solve the Optimization Problem (3.11)

In this part we will use Lagrange dual method to decompose the optimization problem

(3.11) so that it can be solved locally. Each agent on the selected tree does the computa-

tions to run Algorithm 3 using its local information. In this algorithm, first an internal

optimization problem is solved locally to get the information needed to update the dual

variables (lines 3− 8, Algorithm 3). Then the dual variables are updated with local infor-

mation (lines 9− 11, Algorithm 3). In the following, we first present the basis of the dual

sub-gradient method with an alternative problem of the optimization problem (3.11).

Then we will address the details of Algorithm 3.

Algorithm 3 An algorithm of agent i by using dual sub-gradient method.

1: Initialization: Choose µij[0], λij[0], θij[0], ∀j ∈ N T
i , m← 0.

2: while A termination condition for µij, λij, θij is not satisfied do
3: if i ∈ Rb ∩ VT then
4:

[
x∗ᵀi [m], y∗ᵀij [m], t∗ᵀi [m]

]ᵀ ← arg min Li
(
xi, yij, ti, µ[m], λ[m], θ[m]

)
,

5: else
6:

[
y∗ᵀij [m], t∗ᵀi [m]

]ᵀ ← arg min Li
(
xi, yij, ti, µ[m], λ[m], θ[m]

)
,

7: x∗i [m] = xi
8: end if
9: µij[m + 1] = µij[m] + β[m]

(
−
(
t∗i [m]− t∗j [m]

))
10: λij[m + 1] = λij[m] + β[m]

(
−
(
y∗ij[m]− x∗j [m]

))
11: θij[m + 1] = PR+

(
θij[m] + β[m]

(
−
(
t∗i [m]− ‖x∗i [m]− y∗ij[m]‖

)))
12: m = m + 1
13: end while

We use nA := |VT| to denote the total number of agents on the selected tree, and use

ai, i = 1, . . . , nA to denote the indices of the agents on the tree. Let ni := |N T
i | denote the

total number of the neighbours of agent i, and il , l = 1, . . . , ni denote the indices of the

neighbours of agent i. Based on the structure of tree T, we have an alternative problem

of the optimization problem (3.11) whose optimizer is also an optimizer of (3.11). This
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problem is formulated as follows,

min
xT ,y,t ∑

i∈VT

ti

s.t. ti = tj, ∀{i, j} ∈ ET,

ti ≥ ‖xi − yij‖, ∀i ∈ VT, ∀j ∈ N T
i

yij = xj, ∀i ∈ VT, ∀j ∈ N T
i

xi ∈ Ci, ∀i ∈ VT ∩Rb

(3.19)

where yij ∈ R2, ti ∈ R, Ci is the reachable set of agent i, t = [ta1 , . . . , tanA
]ᵀ, y =

[yᵀa1 , . . . , yᵀanA
]ᵀ, yi = [yᵀii1 , . . . , yᵀiinI

]ᵀ. The optimizers of the optimization problem (3.19)

are denoted by x̄∗T = [x̄∗ᵀr1 , . . . , x̄∗ᵀrnT
]ᵀ, t∗ = [t∗a1

, . . . , t∗anA
]ᵀ, y∗ = [y∗ᵀa1 , . . . , y∗ᵀanA

]ᵀ, y∗i =

[y∗ᵀii1
, . . . , y∗ᵀiinI

]ᵀ. In the following, we show that the optimizer x̄∗T is also an optimizer of

the optimization problem (3.11).

Proposition 3.3. x̄∗T is an optimizer of the optimization problem (3.11), that is, f (x̄∗T) = f (x∗T),

and f ∗ = f (x∗T) =
1
|VT | t

∗
i .

Proof. First we denote the feasible set of xT in optimization problem (3.19) as X3
T =

{xT|ti = tj, ∀{i, j} ∈ ET; ti ≥ ‖xi − yij‖, ∀i ∈ VT, ∀j ∈ N T
i ; yij = xj, ∀i ∈

VT, ∀j ∈ N T
i ; xi ∈ Ci, ∀i ∈ VT ∩ Rb}. Because ti ∈ R, yij ∈ R2, it is easy to check

that X3
T = X2

T. According to the first three groups of constraints in (3.19), we have tl ≥

max{i,j}∈ET
‖xi − xj‖, ∀l ∈ VT and ti = tj, ∀{i, j} ∈ ET. Thus we have ∑i∈VT

ti = |VT|tl ≥

|VT|max{i,j}∈ET
‖xi − xj‖, ∀l ∈ VT and ∑i∈VT

t∗i = |VT|minxT∈X3
T

max{i,j}∈ET
‖xi − xj‖.

Based on the relationship X3
T = X2

T, we have ∑i∈VT
t∗i = |VT| f ∗. Additionally, because

∑i∈VT
t∗i = |VT|max{i,j}∈ET

‖x̄∗i − x̄∗j ‖ = |VT| f (x̄∗T), we have f (x̄∗T) = f ∗. Then x̄∗T is an

optimizer of the optimization problem (3.11) and f ∗ = f (x∗T) =
1
|VT | t

∗
i .

This optimization problem in (3.19) is a convex optimization problem because, ∑i∈VT
ti

is concave, ti − tj, yij − xj, ∀{i, j} ∈ ET are affine, ‖xi − yij‖ − ti, ∀i ∈ VT, ∀j ∈ N T
i ,

‖xi − xi[0]‖ − tmv̄r, ∀i ∈ VT ∩Rb are convex. Furthermore, the equality constraint func-

tions are linear, and inequality constraint functions are convex, thus the Slater’s Condi-

tion is satisfied and the strong duality holds [12]. Therefore, we can solve the Lagrange
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dual problem instead of the primal problem in (3.19) to get the optimal value of the ob-

jective function and the desired positions of the active routers. The details are described

as follows.

The Lagrangian function of the primal optimization problem is expressed as,

L(xT, y, t, µ, λ, θ) = ∑
i∈VT

ti − ∑
i∈VT

∑
j∈N T

i

µij(ti − tj)− ∑
i∈VT

∑
j∈N T

i

λT
ij(yij − xj)

− ∑
i∈VT

∑
j∈N T

i

θij(ti − ‖xi − yij‖)

= ∑
i∈VT

[
ti − ∑

j∈N T
i

µijti + ∑
p∈N T

i

µpiti − ∑
j∈N T

i

λT
ijyij

+ ∑
p∈N T

i

λT
pixi − ∑

j∈N T
i

θij(ti − ‖xi − yij‖)
]

(3.20)

where µ = [µᵀ
a1 , . . . , µᵀ

anA
]ᵀ, µi = [µii1 , . . . , µiinI

]ᵀ, λ = [λᵀ
a1 , . . . , λᵀ

anA
]ᵀ, λi = [λib1 , . . . , λibnI

]ᵀ,

θ = [θᵀa1 , . . . , θᵀanA
]ᵀ, θi = [θii1 , . . . , θiinI

]ᵀ and θij ≥ 0, ∀i ∈ VT, j ∈ N T
i . µij, λij, θij are the

Lagrangian multipliers. We define Li, ∀i ∈ VT as,

Li(xi, yij, ti, µ, λ, θ) :=ti − ∑
j∈N T

i

µijti + ∑
p∈N T

i

µpiti − ∑
j∈N T

i

λT
ijyij

+ ∑
p∈N T

i

λT
pixi − ∑

j∈N T
i

θij(ti − ‖xi − yij‖)
(3.21)

The Lagrange Dual Function q(µ, λ, θ) is equal to the solution of the following optimiza-

tion problem,

min
xT ,y,t

L(xT, y, t, µ, λ, θ)

s.t. xi ∈ Ci, ∀i ∈ VT ∩Rb

(3.22)

which is,

q(µ, λ, θ) = min
xT ,y,t

L(xT, y, t, µ, λ, θ) (3.23)
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Therefore, the dual problem of the optimization problem (3.19) is,

min
µ,λ,θ

−q(µ, λ, θ)

s.t. θij ≥ 0, ∀i ∈ VT, ∀j ∈ N T
i .

(3.24)

From the strong duality and convexity of the optimization problem (3.19), we have ∑i∈VT
t∗i

= q∗ and x∗T, y∗, t∗ are primal optimal. Therefore, we can solve the dual problem (3.24) to

get the desired positions of inactive routers.

In Algorithm 3, we use m = 0, 1, . . . to index iterations, and the variables with m, such

as µ[m], λ[m], θ[m], denote the values of these variables at iteration m. For any iteration

m, we denote [x∗ᵀT [m], y∗ᵀ[m], t∗ᵀ[m]]ᵀ as the optimizer of the problem (3.22), which is,

[
x∗ᵀT [m], y∗ᵀ[m], t∗ᵀ[m]

]ᵀ ∈ arg min
xT∈X3

T ,y,t
L
(
xT, y, t, µ[m], λ[m], θ[m]

)
. (3.25)

It can be proven that the partial derivative of −L(z∗[m], y∗[m], t∗[m], µ, λ, θ) with respect

to µ, λ, θ is a sub-gradient of −q at µ[m], λ[m], θ[m] [10]. This sub-gradient is expressed

as,

gd(µ[m], λ[m], θ[m]) =
∂L(x∗T[m], y∗[m], t∗[m], µ, λ, θ)

∂[µᵀ, λᵀ, θᵀ]ᵀ

∣∣∣∣
µ=µ[m],λ=λ[m],θ=θ[m]

(3.26)

Furthermore, we define the feasible set of the dual variables as D =
{
[µᵀ, λᵀ, θᵀ]ᵀ|θij ≥

0, ∀i ∈ VT, ∀j ∈ N T
i
}

. Similar to the sub-gradient method in Algorithm 2, the dual

variables can be updated as follows to minimize the dual function.

[µᵀ[m + 1], λᵀ[m + 1], θᵀ[m + 1]]ᵀ =PD([µ
ᵀ[m + 1], λᵀ[m + 1], θᵀ[m + 1]]ᵀ

− β[m]gd(µ[m], λ[m], θ[m])),
(3.27)

where β[m] is an appropriately chosen step-length.

The dual sub-gradient method is implemented locally, and the local algorithm run-

ning on an agent i on the selected tree is Algorithm 3. In this algorithm, we use m =

0, 1, . . . to index iterations, and the variables with m, such as µ[m], λ[m], θ[m], denote

the values of these variables at iteration m. First the initial values of µij, λij, θij are
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chosen and m is initialized by 0 (line 1, Algorithm 3). In the next step, we solve the op-

timization problem (3.22) locally in order to obtain a sub-gradient of the dual problem

(3.24) (lines 3− 8, Algorithm 3). If i is a router except the base, it calculates the elements

x∗i [m], y∗i [m], t∗i [m] of the optimizers of problem (3.22) (line 4, Algorithm 3), which are

denoted by,

[x∗ᵀi [m], y∗ᵀi [m], t∗ᵀi [m]]ᵀ ← arg min Li(xi, yij, ti, µ[m], λ[m], θ[m]). (3.28)

If i is a client or the base, only y∗i [m], t∗i [m] need to be calculated (line 6, Algorithm 3),

[y∗ᵀi [m], t∗ᵀi [m]]ᵀ ← arg min Li(xi, yij, ti, µ[m], λ[m], θ[m]). (3.29)

Then the variables µij[m], λij[m], θij[m] are updated as follows based on the update rule

in (3.27) (lines 9− 11, Algorithm 3).

µij[m + 1] = µij[m] + β[m](−(t∗i [m]− t∗j [m]))

λij[m + 1] = λij[m] + β[m](−(y∗ij[m]− x∗j [m]))

θij[m + 1] = PR+(θij[m] + β[m](−(t∗i [m]− ‖x∗i [m]− y∗ij[m]‖))),

(3.30)

where x∗i [m] = xi if i ∈ C ∪ {b} (line 7, Algorithm 3). We use x∗i [m] for all i ∈ VT is just

to simplify the expressions. If a termination condition is not satisfied, Algorithm 3 steps

into the next iteration, otherwise the current values of xi, ∀i ∈ VT ∩ Rb are set as the

desired positions of corresponding the active routers.

By letting agent i keep the values of local variables µij, λij, θij, yij, ∀j ∈ N T
i and

xi, ti, the updates in (3.30) can be processed locally only by using its own information

µij[m], λij[m], θij[m], y∗ij[m], x∗i [m], t∗i [m] and its neighbours’ information t∗j [m], x∗j [m].

Remark: The proposed dual sub-gradient algorithm can be implemented locally be-

cause we can also calculate the optimizers x∗T[m], y∗[m], t∗[m] in (3.25) locally. The La-

grangian function L(z, y, t, µ[m], λ[m], θ[m]) can be written as the summation of Li, ∀i ∈

VT, which is defined in equation (3.21). It is obvious that there is no coupling between Li

regarding the variables xi, yij, ti. Therefore, we can decompose the minimization problem
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in (3.22) and solve it locally. In this way, an agent i only needs the values of variables of

its own and µij[m], µpi[m], λij[m], λpi[m], θij[m], j, p ∈ N T
i from agent i’s neighbours when

solving the problem (3.22).

In the above statement, we assume we can exactly obtain x∗i [m], y∗ij[m], t∗i [m]. Then the

choice of step-length and convergence analysis of this dual sub-gradient method are the

same as in the part 3.4.1 of Algorithm 2. However, in practical implementation, we can

only calculate their approximation. Let xi[m], yij[m], ti[m] denote the approximation, we

have,

L(xT[m], y[m], t[m], µ[m], λ[m], θ[m]) ≤ L(x∗T[m], y∗[m], t∗[m], µ[m], λ[m], θ[m]) + εm,

(3.31)

where εm is the error between the optimal value and approximation value of L at iteration

m. Therefore,

−q(µ̄, λ̄, θ̄) =−min
xT ,y,t

L(xT, y, t, µ̄, λ̄, θ̄)

≥ −L(xT[m], y[m], t[m], µ̄, λ̄, θ̄)

≥ −L(xT[m], y[m], t[m], µ[m], λ[m], θ[m])

+ hᵀ(µ[m], λ[m], θ[m])([µ̄ᵀ, λ̄ᵀ, θ̄ᵀ]ᵀ − [µᵀ[m], λᵀ[m], θᵀ[m]]ᵀ)

≥ −L(x∗T[m], y∗[m], t∗[m], µ[m], λ[m], θ[m], η[m])− εm

+ hᵀ(µ[m], λ[m], θ[m])([µ̄ᵀ, λ̄ᵀ, θ̄ᵀ]ᵀ − [µᵀ[m], λᵀ[m], θᵀ[m]]ᵀ)

(3.32)

where h(µ[m], λ[m], θ[m]) := ∂L(xT [m],y[m],t[m],µ,λ,θ)
∂[µᵀ,λᵀ,θᵀ]ᵀ

∣∣∣
µ=µ[m],λ=λ[m],θ=θ[m]

, ε = lim supm→∞ εm.

From the above analysis, we conclude that h(µ[m], λ[m], θ[m]) is a ε-sub-gradient of q(µ, λ, θ)

at [µᵀ[m], λᵀ[m], θᵀ[m]]ᵀ [10].

If we choose a constant step length as β for the update of µ, λ, θ, that is β[m] =

β, ∀m = 0, 1, . . . , then we have the following result [41],

lim
m→∞

inf q(µ[m], λ[m], θ[m]) ≤ q∗ +
βγ2

2
+ ε (3.33)

where γ ≥ sup{‖h(µ[m], λ[m], θ[m])‖|m = 0, 1, . . . }. Based on this analysis, we conclude
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that the optimization problem can still be solved approximately with some bounded error

in practical implementation.

3.4.2 Desired Positions of Routers in SI

In this subsection, we present Algorithms 4 and 5 to obtain desired positions of the inac-

tive routers and make sure that the inactive routers do not lose connection to the selected

tree. Algorithm 4 constructs the extended tree by connecting every inactive router to a

nearby router on the selected tree. In the extended tree obtained, because of the method

used in Algorithm 4, every inactive router has one and only one neighbour which is a

router or the base on the selected tree. Based on the extended tree, Algorithm 5 calculates

the desired positions of the inactive routers after the active routers obtain their desired

positions from optimization algorithms. The conclusion that the inactive routers always

connect to the selected tree by using Algorithms 4 and 5 will be presented in subsection

3.4.5. Algorithms 4 and 5 are also applied in different places in the general Algorithm

1 (lines 5, 21, 31, 35, Algorithm 1). For clarity, we use simplified notation without some

superscripts or subscripts. For example, we use T for simplicity of Tκ or Tκ
nu

, ETE for ETκ
E

or E κ
TEnu

.

At the start of Algorithm 4, the extended tree is initialized by T, and a variable f lagi

is used to denote if the inactive router i has been added to TE (line 1, Algorithm 4). Note

that router i only needs to hold the information of the neighbourhoods Ni, N T
i , N TE

i .

Inactive router i will first check if there exists a neighbour in Ni that is an agent on the

selected tree (lines 2− 13, Algorithm 4). If a neighbour j inNi is a router or the base (line

3, Algorithm 4), the inactive router i will choose such a neighbour as its neighbour on

TE (line 4) and set f lagi as 1 (line 5, Algorithm 4). If a neighbour j of i is a client (line

8, Algorithm 4), router i will choose a neighbour l in N T
j as its neighbour on TE (line

9, Algorithm 4) and set f lagi as 1 (line 10, Algorithm 4). If f lagi is still 0, agent i will

keep checking if any of its neighbours in Ni has already been added to TE (lines 14− 22,

Algorithm 4). If a neighbour j’s f lagj is set as 1, it means j has been already added to TE

(line 16, Algorithm 4). Then i will add {i, l} to ETE and add i to VTE , where l is the only

neighbour of j on TE (line 17, Algorithm 4). Thus f lagi is set as 1 (line 18, Algorithm 4).
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Algorithm 4 An algorithm of deriving TE for i ∈ SI

1: Initialization: TE = T, f lagi = 0
2: for j ∈ Ni do
3: if j ∈ VT ∩R then
4: Add j to VTE , add the edge {i, j} to ETE

5: f lagi = 1
6: Break and step out of the current f or loop
7: end if
8: if j ∈ C then
9: Add i to VTE and the edge {i, l} to TE, where l ∈ N T

j
10: f lagi = 1
11: Break and step out of the current f or loop
12: end if
13: end for
14: while f lagi = 0 do
15: for j ∈ Ni do
16: if f lagj = 1 then
17: Add i to VTE and the edge {i, l} to TE, where l ∈ N TE

j
18: f lagi = 1
19: Break and step out the current f or loop
20: end if
21: end for
22: end while
23: Wait until f lagi = 1 for all i ∈ SI

24: Steer i to the position of l, that is xl(t), where l ∈ N TE
j

When all f lagi, ∀i ∈ SI are set as 1, router i will be steered to the current position of its

neighbour in NTE (lines 23− 24, Algorithm 4). Here, xk(t) denotes the current position

of the agent k. Note that when the extended tree is constructed by Algorithm 4, every

inactive router has one and only one neighbour on TE, which is a router in VT.

In Algorithm 5, we use x∗j to stand for the desired positions calculated by the opti-

mization algorithms if j ∈ VT ∩Rb, and use xc to stand for the current desired position of

the base. If the neighbour j of i on TE is not the base, the desired position of the inactive

router i is set as x∗j (line 1, Algorithm 5) (lines 1− 3, Algorithm 5). Otherwise i choose xb

as its desired position (lines 4− 6, Algorithm 5).

Remark: By choosing the desired positions of the inactive routers using Algorithm

5, a situation may arise where the distance between the current position and the desired

position of a router is larger than tmv̄r. Note that, tmv̄r is the largest distance that a router
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Algorithm 5 An algorithm of deriving the desired position for i ∈ SI

1: if j ∈ R, where j ∈ N TE
i then

2: x∗i = x∗j
3: end if
4: if j = b, where j ∈ N TE

i then
5: x∗i = xc
6: end if

is assumed to move during the time interval tm as in Algorithm 1. This situation happens

because the tracking controllers we design in Subsection 3.4.4 will typically have track-

ing errors. Detailed explanation for this case and how to deal with it will be presented

in Subsection 3.4.4. As we will see in the subsection 3.4.5, the routers are always con-

nected to the tree T(t) by using Algorithms 4 and 5. Therefore, when the solution of the

optimization problem (3.10) is infeasible, the information can reach the inactive routers

through other agents, and the inactive routers can be used to update T(t).

3.4.3 Tree and Graph Update

In this subsection, we present Algorithms 6 and 8 for updating of the selected tree in the

reinitialization stages as stated in Algorithm 1 (line 18, Algorithm 1). If the number of the

active routers is less than Nc

⌈
D
2 +R−2er
R−δ−2er

+ 1
⌉
+ 1, we use Algorithm 6 to update T. It will

steer an inactive router towards the longest edge corresponding to the desired positions

of the active routers, and add this router to the set of the active routers. Otherwise, we use

Algorithm 8 to rebuild the selected tree by connecting every client to the base separately.

In this subsection, we will first present the details of the two algorithms and then show

that the number of routers needed is always less than Nr (see Assumption 3.4).

In this subsection, as in subsection 3.4.1, we simpl the notation. Furthermore, we use

xi to stand for xi(tκ
0 + nκ∆ + nu(tx + tu)) if i ∈ VT \ {b}, use xb to stand for xc(tκ

0 + nκ∆)

and use x∗j to stand for the desired positions calculated by the optimization algorithms

right before the execution of Algorithm 6 or 8 if j ∈ VT ∩Rb. Note that the time instant

tκ
0 + n∆ is also denoted by tκ+1

0 − ∆κ+1
u as shown in Figure 3.1 and 3.3.

In Algorithm 6, first, one of the longest edges is identified and is denoted by {i, j}

(line 1, Algorithm 6). The same method as in Algorithm 2 (lines 3− 8, Algorithm 2) can
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be used to achieve this purpose. Then, an inactive router l will be identified such that

l is the closest inactive router to the middle point of the longest edge (line 2, Algorithm

5). The identification of l can be processed locally through the direct communication

between the agents in the system. Details of this identification procedure is illustrated in

Algorithm 7. Note that the execution of Algorithm 7 requires a period of time covering

|VT| − 1 times of direct communication and this time cost is counted in the time interval

tu (see Figure 3.3). After router l is selected, it is steered to the position xi+xj
2 (line 3,

Algorithm 6). When router l reaches the destination, edge {i, j} is deleted from ET and

ETE (line 4, Algorithm 6). Meanwhile, {i, l}, {l, j} are added to these two edge sets and

l is added to VT (line 5, Algorithm 6). Finally, the sets of the active routers and inactive

routers are updated by moving l from SI to SA (line 6, Algorithm 6). After update as in

Algorithm 6, the new edges connecting a client and a router still satisfy the conditions in

Assumption 3.6. Moreover, the length of the new edges connecting two routers (include

the base) is less than or equal to R − 2er. These two conclusions will be presented in

Lemma 3.2 in Subsection 3.4.5.

Algorithm 6 An algorithm of update of the tree

1: Find an {i, j} such that fij(x∗T) = f (x∗T)
2: Determine l ∈ SI such that

∥∥xl −
xi+xj

2

∥∥ = mink,k∈SI

∥∥xk −
xi+xj

2

∥∥ (refer to Algorithm
7)

3: Steer router l to the position xi+xj
2

4: ET ← ET \
{
{i, j}

}
, ETE ← ETE \

{
{i, j}

}
5: VT ← VT ∪ {l}, ET ← ET ∪

{
{i, l}, {l, j}

}
, ETE ← ETE ∪

{
{i, l}, {l, j}

}
6: SA ← SA ∪ {k}, SI ← SI \ {k},

Algorithm 7 A local algorithm of determining an inactive router for tree update

1: k′ ← 0
2: φl(0) = {l} if l ∈ SI , φl(0) = ∅ otherwise.
3: while k′ ≤ |VT| − 1 do
4: φl(k′ + 1) =

{
{l}|{l} ∈ arg max

{
‖xl −

xi+xj
2 ‖

∣∣l ∈ φl(k′), l ∈ φp(k′), p ∈ N T
i
}}

5: k′ ← k′ + 1
6: end while

If |SA| ≥ Ncd
D
2 +R−2er
R−δ−2er

+ 1e+ 1, we use Alogrithm 8 to update the selected tree. This

algorithm will connect all clients to the base through separate paths, which means there
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is no common router between any two paths except the base. First, we define a set of

indices of agents S̄A and initialize it with an empty set (line 1, Algorithm 8). For a client i,

one of its neighbours in N T
i is chosen, which is denoted by agent j (line 3, Algorithm 8).

Then, the distance di between xj and xb is calculated (line 4, Algorithm 8). Based on di, a

variable ki is calculated, which determines the number of routers we will choose for the

path connecting i and the base b (line 5, Algorithm 8). Then a group of inactive routers

are chosen, their number is ki + 1 and we use i1, . . . , iki+1 to denote their indices (line 6,

Algorithm 8). Selection of these ki + 1 inactive routers is processed locally as illustrated

in Algorithm 9. Next the indices of the chosen inactive routers are removed from SI ,

meanwhile these indices are added to the set S̄A to be stored (lines 7 − 8, Algorithm

8). The process of choosing such a group of routers will continue until this has been

completed for all the clients (lines 2 − 9, Algorithm 8). In the next step, the inactive

routers with indices i1, . . . , iki are steered to the positions which are evenly distributed on

the straight line connecting the neighbour j of i and the base b (line 10, Algorithm 8). An

extra router ki + 1 is also appointed to the position xj, where j is the neighbour chosen

for the client i (line 11, Algorithm 8). This steering process (lines 10− 11, Algorithm 8)

is addressed for every i ∈ C. After steering, the tree T, SA and SI will be re-defined and

based on the new positions of the chosen inactive routers (lines 12− 13, Algorithm 8).

Then, all the routers in the new inactive set SI will be steered to the position xb (line 14,

Algorithm 8). After that, a new extended tree is constructed (line 15, Algorithm 8). After

the selected tree is updated by Algorithm 8, the length of each updated edge is less than

or equal to R− 2er. This conclusion will be presented in Lemma 3.3 in Subsection 3.4.5.

Remark: Algorithms 6 and 8 present the procedures of tree update on system level.

In execution, these two algorithms are processed locally as described above and in Al-

gorithms 7 and 9. In Algorithm 6, the first step (line 1, Algorithm 6) is executed locally

as stated above and the second step (line 2, Algorithm 6) is executed locally by having

each agent execute Algorithm 7. Moreover, the positions of the corresponding agents in

the sets {i, j} and φj can be broadcast to each agent simultaneously with the processes of

identifying these sets. Thus the third step (line 3, Algorithm 6) can be processed locally.

By noting that each agent only keeps the set of its neighbours regarding the tree graph
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Algorithm 8 An algorithm of update of the whole graph G

1: S̄A = ∅
2: for i ∈ C do
3: Choose j such that j ∈ N T

i
4: di = ‖xj − xc‖
5: ki =

⌈ di
R−δ−2er

⌉
6: Choose ki + 1 routers from SI and the indices of them are denoted as i1, . . . , iki+1

(refer to Algorithm 9). Broadcast the indices of these selected routers to all the agents
through |V| − 1 times of direct communication.

7: SI ← SI \ {i1, . . . , iki+1}
8: S̄A ← S̄A ∪ {i1, . . . , iki+1}
9: end for

10: Steer router il to xb + l xj−xb
ki

, ∀l ∈ {1, . . . , ki}, ∀i ∈ C
11: Steer router iki+1 to the position xi+xj

2 , where j ∈ N T
i is the same neighbour of i chosen

in the f or loop above
12: SA ← S̄A, VT ← SA, ET =

{
{il , il+1}|∀i ∈ C, ∀l ∈ {1, . . . , ki}

}
∪
{
{i1, b}|∀i ∈ C

}
∪{

{iki+1, i
}
|∀i ∈ C}

13: SI ← Rb \ S̄A
14: Steer router q to the base position xb, ∀q ∈ SI
15: VTE ← VT, ETE = ET ∪ {{q, b}|∀q ∈ SI}

Algorithm 9 A local algorithm of selecting inactive routers for client i in graph update

1: k′ ← 0
2: ψj(0) = {j} if j ∈ SI , ψj(0) = ∅ otherwise.
3: while |ψj| < ki + 1 do
4: ψj(k′ + 1) =

{
{l}|l ∈ ψj, l ∈ ψp, p ∈ N T

j
}

5: k′ ← k′ + 1
6: end while
7: Denote the indices in ψj as ψj = {i1, . . . , ikψj

}with kψj ≥ ki + 1 and ip < ip+1, 1 ≤ p ≤
kψj − 1. Then select the first ki + 1 routers from ψj as the selected inactive routers.

structure and each router keeps the flag whether it is an inactive router or an active router,

the other steps (lines 3-6, Algorithm 6) can be executed locally. In Algorithm 8, the sixth

step (line 6, Algorithm 8) is executed locally by having each agent execute Algorithm 9.

The other steps can be executed locally for the same reason as stated for Algorithm 6.

In the following, we will prove that the number of routers needed in Algorithms 6

and 8 is less than or equal to 2Nc

⌈ D
2 +R−2er
R−δ−2er

+ 1
⌉
+ 1. This conclusion is presented in

Proposition 3.4.
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Proposition 3.4. The following statements are true regarding Algorithms 6 and 8: the number

of inactive routers needed to update the selected tree is less than or equal to Nc

⌈ D
2 +R−2er
R−δ−2er

+ 1
⌉

;

the number of the active routers on the updated selected tree is always less than or equal to

Nc

⌈ D
2 +R−2er
R−δ−2er

+ 1
⌉
+ 1; the total number of routers (active and inactive routers) is less than or

equal to 2Nc

⌈ D
2 +R−2er
R−δ−2er

+ 1
⌉
+ 1.

Proof. Define Na as Na =: Nc

⌈ D
2 +R−2er
R−δ−2er

+ 1
⌉
+ 1. Algorithm 6 is executed when |SA| < Na

and only one inactive router can be added to the selected tree. Therefore, the number

of active routers on the updated selected tree by Algorithm 6 is less than or equal to Na

and the number of inactive routers needed in Algorithm 6 is 1. Obviously, the number of

routers needed in Algorithm 6 is less than 2Na − 1.

Now we prove the conclusion of inactive router number regarding Algorithm 8. From

Assumption 3.2, we have ‖xi − xb‖ ≤ D
2 for any client i. During the time interval of

running Algorithm 8, based on Assumption 3.6, we have ‖xi − xj‖ ≤ R − 2er, where

j ∈ N T
i is a chosen neighbour of i as in Algorithm 8 (line 3, Algorithm 8). Therefore

‖xj − xb‖ ≤ ‖xi − xb‖+ ‖xi − xj‖ = D
2 + R− 2er. Then we have,

ki ≤
⌈

D
2 + R− 2er

R− δ− 2er

⌉
(3.34)

The condition in (3.34) is satisfied for every client. Since we choose ki + 1 inactive routers

regarding a client i (line 6, Algorithm 8), the inactive routers needed for update using

Algorithm 8 is less than or equal to Na − 1. There are at most Na active routers on the

original T, thus the total number of routers needed is less than or equal to 2Na − 1. As

the construction of the new selected tree and the new set SA in Algorithm 8 (lines 12− 13,

Algorithm 8), it can be shown that the number of the active routers in the new tree is less

than or equal to Na. Note that here the active routers include the base.

3.4.4 Routers’ Desired Trajectories and Control Requirements

In this subsection, we define the routers’ desired trajectories, and provide control re-

quirements on their transient behaviour. In this chapter, we will not consider collision
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and obstacle avoidance.

Next, we introduce the routers’ desired trajectories. We define desired trajectory on

different time intervals tm, tu and tc (Figures 3.2 and 3.3), on which the routers move.

Note that the routers do not move on the other time intervals tx and td (Figures 3.2 and

3.3). Below, we will use x∗i to denote the desired position of router i, xi(t) to denote the

position of agent i at time instant t and x̂i to denote the actual position agent i reaches at

the end of the corresponding time interval.

Next, we present the properties of the desired trajectory during the time interval tm

(Figures 3.2 and 3.3). We use tn to denote the time instant tκ
0 + n∆ + tx + td (line 37,

Algorithm 1) or tκ
0 + n∆ + tx + nκ

u(tu + tx) + td (line 27, Algorithm 1), which is the initial

time instant of this time interval.

For a router i ∈ R, we define its desired trajectory during (tn, tn + tm] as

ri(t) := xi(tn) +
t− tn

tm

(
x∗i − xi(tn)

)
, (3.35)

and define tracking error at time instant t as ei(t) := xi(t)− ri(t). In order to guarantee

the communication connectivity of clients, we have the following requirement

‖ei(t)‖ ≤ er, ∀i ∈ R, ∀t ∈ (tn, tn + tm], (3.36)

where er is a positive constant. This constant er should satisfy

er ≤
1
2

txv̄r. (3.37)

Remark: The desired position for the base at (n+ 1)∆ is the centroid of client positions,

that is, xc(n∆). According to the definition of xc(t), note that ‖ẋc(t)‖ ≤ vc. Based on

Assumption 3.1, the distance the base needs to move is less than tmv̄r.

In the following, the routers’ desired trajectories in time intervals tu and tc (Figures

3.2 and 3.3) are characterised. We use ts to denote the initial time instant of the movement

of the corresponding inactive routers.
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We define the desired trajectory of router i ∈ SI as

ri(t) = xi(ts) +
x∗i − xi(ts)

‖x∗i − xi(ts)‖
(t− ts)v̄r, t ∈

(
ts, ts +

‖x∗i − xi(ts)‖
v̄r

]
. (3.38)

The requirement for the transient behaviour of inactive router i on these time intervals is

‖ei(t)‖ ≤ er, i ∈ SI , ∀t ∈
(

ts, ts +
‖x∗i − xi(ts)‖

v̄r

]
. (3.39)

3.4.5 Persistent Connectivity of Clients

In this subsection, under previous assumptions, we prove that the clients in the system

are persistently connected with the control strategy we design in Algorithm 1. First we

choose δ in (3.6) and (3.7) as

δ := max
{
(∆ + tx + td)vc + 2er, 4er

}
, (3.40)

and we choose δG in (3.4) and (3.5) as

δG := max
{
(tx + td)vc + er, 2er

}
. (3.41)

The following conclusions are all based on this choice of δ and δG. First, we present the

results of communication connectivity of clients during optimization and control stages

and reinitialization stages. Finally, the persistent connectivity of clients will be proved.

Communication Connectivity of Clients During Optimization and Control Stage ∆

Lemma 3.1 states that the corresponding selected tree is always connected during time

interval tm (Figures 3.2 and 3.3).

Lemma 3.1. Suppose Assumptions 3.1, 1.1, 1.3, 3.3, and 3.6 hold and let the motion of routers

satisfy the requirements in (3.36). Let δ and δG be defined as in (3.40) and (3.41), respec-

tively. Then, ‖xi(t) − xj(t)‖ ≤ R, ∀{i, j} ∈ E κ
T, ∀t ∈

(
tκ
0 + n∆, tκ

0 + (n + 1)∆
]
, ∀κ =

0, 1, . . . , ∀n = 0, . . . , nκ − 1.
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Proof. In this proof, we will use x∗i (t
κ
0 + n∆) to denote the desired position of the active

router i calculated during time interval (tκ
0 + n∆, tκ

0 + n∆ + tx + td] and x∗b(t
κ
0 + n∆) to

denote xc(tκ
0 + n∆).

Case 1: First, we consider the edge {i, j} connecting a router and a client, i ∈ R, j ∈ C.

Consider n = 0, with Assumptions 3.3 and 3.6, we have

‖xi(t)− xj(t)‖ ≤ R− (tx + td)vc − er + (tx + td)vc = R− er, ∀t ∈ (tκ
0, tκ

0 + tx + td].

Moreover, for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + td] where n > 0, we have

‖xi(t)− xj(t)‖ ≤ R− δ + (∆ + tx + td)vc + er ≤ R− er.

The above inequalities hold because the routers stay static and only clients move during

these time intervals. Let x∗i (t
κ
0 + n∆) be a solution to the optimization problem (3.11)

considered in time interval (tκ
0 + nδ, tκ

0 + n∆ + tx]. We have

‖x∗i (tκ
0 + n∆)− xj(tκ

0 + n∆ + tx + td)‖ ≤ R− δ + (tx + td)vc ≤ R− ∆vc − 2er.

During any time interval (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], with the trajectory ri(t) in

(3.35) and requirement (3.36) in Subsection 3.4.4, the length of edge {i, j} satisfies the

following condition for all t ∈ (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆]

‖xi(t)− xj(t)‖ =
∥∥∥∥xi(tκ

0 + n∆ + tx + td) +
t− tκ

0 − n∆− tx − td

tm
(x∗i (t

κ
0 + n∆)− xi(tκ

0 + n∆))

+ ei(t)− xj(t)
∥∥∥∥

=‖(1− α)(xi(tκ
0 + n∆ + tx + td)− xj(t)) + α(x∗i (t

κ
0 + n∆)− xj(t)) + ei(t)‖

≤(1− α)(R− er + αtmvc) + α(R− ∆vc − 2er + αtmvc) + er

=R + α(tmvc − ∆vc − er)

≤R

,

where α =
t−tκ

0−n∆−tx−td
tm

and 0 ≤ α ≤ 1. The largest value on the right hand side of this
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inequality is achieved when α = 0.

Therefore, ‖xi(t) − xj(t)‖ ≤ R, ∀t ∈ (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], ∀{i, j} ∈{
{i, j}|i ∈ R, j ∈ C, {i, j} ∈ ETκ

}
, ∀κ = 0, 1, . . . , ∀n = 0, . . . , nκ − 1.

Case 2: Now, we consider the edges {i, j} with i, j ∈ R.

Consider n = 0, with Assumptions 3.3 and 3.6, we have

‖xi(t)− xj(t)‖ ≤ R− 2er ∀t ∈ (tκ
0, tκ

0 + tx + td]. (3.42)

Moreover, for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + td] where n > 0, we have

‖xi(t)− xj(t)‖ ≤ R− δ + 2er ≤ R− 2er. (3.43)

The above inequalities hold because the routers and base stay static during the time in-

tervals considered.

The desired position calculated by the optimization problem satisfies the following

condition for any κ, n

‖x∗i (tκ
0 + n∆)− x∗j (t

κ
0 + n∆)‖ ≤ R− δ ≤ R− 4er.

During any time interval (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], with the trajectory ri(t) in

(3.35) and requirement (3.36) in Subsection 3.4.4, the length of edge {i, j} satisfies the

following condition for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + td]

‖xi(t)− xj(t)‖ =‖[xi(tκ
0 + n∆ + tx + td) + α(x∗i (t

κ
0 + n∆)− xi(tκ

0 + n∆ + tx + td)) + ei(t)]

− [xj(tκ
0 + n∆ + tx + td) + α(x∗j (t

κ
0 + n∆)− xj(tκ

0 + n∆ + tx + td)) + ej(t)]‖

≤(1− α)‖xi(tκ
0 + n∆ + tx + td)− xj(tκ

0 + n∆ + tx + td)‖

+ α‖x∗i (tκ
0 + n∆)− x∗j (t

κ
0 + n∆)‖+ ‖ei(t)‖+ ‖ej(t)‖

≤(1− α)(R− 2er) + α(R− 4er) + 2er

≤R

,

where α is defined as before in this proof.
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Therefore, ‖xi(t) − xj(t)‖ ≤ R, ∀t ∈ (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], ∀{i, j} ∈{
{i, j}|i ∈ R, j ∈ R, {i, j} ∈ ETκ

}
, ∀κ = 0, 1, . . . , ∀n = 0, . . . , nκ.

With the analysis of Case 1 and Case 2, we conclude that ‖xi(t)− xj(t)‖ ≤ R, ∀{i, j} ∈

E κ
T, ∀t ∈ (tκ

0 + n∆, tκ
0 + (n + 1)∆], ∀κ = 0, 1, . . . , ∀n = 0, . . . , nκ − 1.

Communication Connectivity of Clients during Reinitialization Stage ∆u

In this part, we demonstrate that the clients remain connected during reinitialization

stage ∆u (lines 10− 33, Algorithm 1). Here, we drop the explicit dependence of ∆u on

κ to simplify the notation. First, we present that the corresponding selected tree is con-

nected during the tree update process when Algorithm 6 or 8 is executed in time interval

tu (Figure 3.3). Then, it will be shown that the corresponding selected tree is always

connected during reinitialization stage ∆u in Lemma 3.4 .

Note that in Lemma 3.2, we use the same simplified notations as in Algorithm 6.

Lemma 3.2. Suppose Assumptions 1.1, 1.3, 3.3, 3.5 and 3.6 hold and let the motion of routers

satisfy the requirement in (3.39). Let δ and δG be defined as in (3.40) and (3.41), respectively.

After {i, j} ∈ VT is updated as in Algorithm 6, the length of the new edges {i, l}, {l, j} satisfies

‖xi − xl‖ ≤ R − tdvc − er, ‖xl − xj‖ ≤ R − tdvc − er if i ∈ C or j ∈ C, and ‖xi − xl‖ ≤

R− 2er, ‖xl − xj‖ ≤ R− 2er if i ∈ R and j ∈ R.

Proof. Case 1: First, we consider the edge {i, j} with i ∈ C or j ∈ C. With Assumptions 3.3

and 3.6, we have ‖xi − xj‖ ≤ R− tdvc − er. After the router l is steered to its destination

and {i, l} is added to the edge set ET, with control requirement (3.39) and Assumption

3.5, we have

‖xi − xl‖ ≤
‖xi − xj‖

2
+ er ≤

R− tdvc − er

2
+ er ≤ R− tdvc − er (3.44)

Moreover, with Assumption 3.6, the edge {l, j} also satisfies ‖xl − xj‖ ≤ R− tdvc − er.

Case 2: Now, we consider the edge {i, j} with i ∈ R and j ∈ R.

At the start time instant of ∆u (Figure 3.1), with the feasible condition (3.9) and defi-
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nition of δ in (3.40), we have

‖xi − xj‖ ≤ R− δ + 2er ≤ R− 2er. (3.45)

After the execution of Algorithm 6 for the first time, under the control requirement (3.39)

and Assumption 3.5, we obtain

‖xi − xl‖ ≤
‖xi − xj‖

2
+ 2er ≤

R− 2er

2
+ 2er ≤ R− 2er (3.46)

The above inequality shows that the length of any edge {i, j}with i, j ∈ R on the new se-

lected tree still satisfy the condition in (3.45). By induction, we know that after every time

Algorithm 6 is executed in ∆u (Figures 3.3 and 3.1), the conditions in (3.46) are always sat-

isfied. Moreover, with the same analysis as above, we also have ‖xl − xj‖ ≤ R− 2er.

Combining Case 1 and Case 2 completes the proof.

In the following Lemma 3.3, we establish the connectivity of the selected tree after the

execution of Algorithm 8. Note that in this lemma, we still use the same notation as in

Algorithm 8.

Lemma 3.3. Suppose Assumptions 1.1, 1.3, 3.3, 3.5 and 3.6 hold and let the motion of routers

satisfy the requirement in (3.39). Let δ and δG be defined as in (3.40) and (3.41), respectively. After

the selected tree is updated by Algorithm 8, we have ‖xi′ − xj′‖ ≤ R− tdvc − er, ∀{i′, j′} ∈ ET,

here ET denotes the updated edge set of the updated selected tree.

Proof. First, we consider an edge {i′, j′} ∈ {{il , il+1}|∀i ∈ C, ∀l ∈ {1, . . . , ki − 1}} after

the selected tree is updated by Algorithm 8. With the steering operation in Algorithm 8

(lines 10, Algorithm 8) and the control requirement (3.39), we have ‖x′i − x′j‖ ≤ R− δ−

2er + 2er = R− δ < R− tdvc − er. Next, we consider the other edges. Since Algorithm 8

steers iki+1 to the position xi+xj
2 (line 11, Algorithm 8), with Assumptions 3.3, 3.5 and 3.6

and control requirement (3.39), we have ‖xki − xki+1‖ ≤ R−tdvc−er
2 + 2er < R− tdvc − er.

Moreover, with Assumption 3.6, we have ‖xi − xki+1‖ ≤ R− tdvc − er. With the above

analysis, the conclusion in this lemma is satisfied.
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Remark: From Assumption 3.1, we have

(tx + tm)vc + er < tmv̄r. (3.47)

Assumption 3.5 implies

R− tdvc − er −
(
(tx + tm)vc + er

)
≤ R− δ, (3.48)

and
R− tdvc − er

2
+ 2er +

(
(tx + tm)vc + er

)
< R− δ. (3.49)

Let x̄i denote the position of client i used in the optimization algorithm right after the

running of Algorithm 8. Then, Assumptions 3.3 and 3.6 , control requirements (3.47) and

(3.48), yield

∥∥∥∥(xki+1 +
x̄i − xki+1

‖x̄i − xki+1‖
(
(tx + tm)vc + er

))
− x̄i

∥∥∥∥ < R− tdvc − er −
(
(tx + tm)vc + er

)
≤ R− δ,

and∥∥∥∥(xki+1 +
x̄i − xki+1

‖x̄i − xki+1‖
(
(tx + tm)vc + er

))
− xki

∥∥∥∥ ≤ R− tdvc − er

2
+ 2er +

(
(tx + tm)vc + er

)
< R− δ.

Moreover, as in the proof of Lemma 3.3, ‖xi − xj‖ < R− δ, ∀{i′, j′} ∈
{
{il , il+1}|∀i ∈

C, ∀l ∈ {1, . . . , ki − 1}
}

. Consider optimization problem (3.11), with the above analysis,

we conclude that feasible solutions exist. This implies that after running Algorithm 8, the

while loop (lines 17− 24, Algorithm 1) terminates.

In the light of Lemmas 3.2 and 3.3, in Lemma 3.4 we show that the selected tree is

connected during reinitialization stages. We will use E κ
T(t) to denote the current set of

edges of the selected tree at time instant t during the time interval
(
tκ+1
0 − ∆κ+1

u , tκ+1
0

]
.

For example, E κ
T(t) = ETκ

0
for all t ∈

(
tκ+1
0 − ∆κ+1

u , tκ+1
0

]
.

Lemma 3.4. Suppose Assumptions 1.1, 1.3, 3.5 and 3.6 hold and let the motion of routers satisfies
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the control requirement in (3.39). Let δ and δG be defined as in (3.40) and (3.41), respectively.

Then, ‖xi(t)− xj(t)‖ ≤ R, ∀{i, j} ∈ E κ
T(t), ∀t ∈

(
tκ+1
0 − ∆κ+1

u , tκ+1
0

]
, ∀κ = 0, 1, . . . .

Proof. First, we consider the time interval (tκ+1
0 − ∆κ+1

u , tκ+1
0 − td − tm − tc] (Figure 3.3).

Under Assumptions 3.3 and 3.6 and Lemmas 3.2 and 3.3, we have the following two

results, ‖xi(t) − xj(t)‖ ≤ R − tdvc − er, ∀{i, j} ∈
{
{i, j}|{i, j} ∈ E κ

T(t), i ∈ C or j ∈

C
}

, ∀t ∈ (tκ+1
0 − ∆κ+1

u , tκ+1
0 − td − tm − tc], ∀κ = 0, 1, . . . ; ‖xi(t) − xj(t)‖ ≤ R − 2er,

∀{i, j} ∈
{
{i, j}|{i, j} ∈ E κ

T(t), i ∈ R and j ∈ R
}

, ∀t ∈
(
tκ+1
0 − ∆κ+1

u , tκ+1
0 − td − tm − tc

]
,

∀κ = 0, 1, . . . .

Then, we consider time interval
(
tκ+1
0 − td − tm − tc, tκ+1

0 − tm − tc
]

(Figure 3.3). Since

only clients move during this time interval, for any time instant t in it we have the fol-

lowing results. If {i, j} ∈ E κ
T(t) with i ∈ C or j ∈ C, then ‖xi(t)− xj(t)‖ ≤ R− tdvc − er +

tdvc = R− er. If {i, j} ∈ E κ
T(t) with i ∈ R and j ∈ R, then ‖xi(t)− xj(t)‖ ≤ R− 2er.

Now, we consider time interval
(
tκ+1
0 − tm − tc, tκ+1

0 − tc
]

(Figure 3.3). Using the same

arguments as in the proof of Lemma 3.1, yields ‖xi(t) − xj(t)‖ ≤ R, ∀{i, j} ∈ E κ
T(t),

∀t ∈
(
tκ+1
0 − tm − tc, tκ+1

0 − tc
]
.

Finally, we consider time interval
(
tκ+1
0 − tc, tκ+1

0

]
(Figure 3.3). With the fact that ac-

tive routers do not move during this time interval in reinitialization stage and Assump-

tion 3.6, we have ‖xi(t) − xj(t)‖ ≤ R − tdvc − er, ∀{i, j} ∈
{
{i, j}|{i, j} ∈ E κ

T(t), i ∈

C or j ∈ C
}

, ∀t ∈
(
tκ+1
0 − tc, tκ+1

0

]
, ∀κ = 0, 1, . . . , and ‖xi(t) − xj(t)‖ ≤ R − 2er,

∀{i, j} ∈
{
{i, j}|{i, j} ∈ E κ

T(t), i ∈ R and j ∈ R
}

, ∀t ∈
(
tκ+1
0 − tc, tκ+1

0

]
, ∀κ = 0, 1, . . . .

Based on the above analysis, the conclusion in this lemma holds.

Theorem 3.1. Suppose Assumptions 3.1–3.6, 1.1 and 1.3 hold and routers satisfy control re-

quirements in (3.36) and (3.39). Let δ and δG be defined as in (3.40) and (3.41), respectively.

Then, by using the control policies in Algorithm 1, the conditions in (3.8) are satisfied, that is, the

clients are persistently connected.

Proof. Since the set of indices active and the set of inactive routers do not change other

than the update procedures in Algorithms 6 and 8, with Assumptions 3.2 and 3.4 and

Proposition 3.4, we conclude that the number of routers is enough for running Algo-

rithm 1. Moreover, with Lemmas 3.1 and 3.4, we conclude that the conditions in (3.8) are
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satisfied for all t ≥ t0.

Note that, as stated in Remark 3.4.5, under Assumptions 3.1 and 3.6, the while loop

(lines 17− 24) in Algorithm 1 will be terminated in finite time.

Finally, we conclude that under Assumptions 3.1–3.5, if the movement of clients sat-

isfies the conditions in Assumption 3.6, Algorithm 1 solves Problem 3.1.

In the above contents of this chapter, we can see that the proofs of all the results are not

dependent on the agents’ dynamic model (3.2). The reason why we choose this model is

to make the statements simplified and clear. As long as the system satisfies the Assump-

tions 3.1–3.6, 1.1 and 1.3 and the motion controllers for routers satisfy the requirements

(3.36) and (3.39), all the results still hold. Furthermore, in practical situations, it is not

easy to find such a kind of robot with such a simple model. Therefore, in the simulation

in the next section, we choose a more realistic dynamic model to verify our results.

3.5 Simulation

The simulation includes two parts. First, we evaluate the time costs of the two optimiza-

tion algorithms with some randomly generated trees. In the second part, we run the

simulation of Algorithm 1 with a specific quadrotor dynamic model.

3.5.1 Time Costs of Two Optimization Algorithms

Computation of the routers’ desired positions takes a significant proportion of the total

time cost of executing Algorithm 1. Thus, we execute Algorithms 2 and 3 in simulation

to compare their time costs in this subsection. We use randomly generated trees to test

the time cost of the two different optimization algorithms (Algorithms 2 and 3). Since

we only consider the time cost of running optimization algorithms, the trees we use are

equivalent to the selected trees, and the routers on trees are all treated as active routers.

Moreover, the initial positions of the agents are generated randomly. Each coordinate of

the position is generated in the range [0, 10]. We choose 48 trees with different number

of agents for this test. The numbers of agents on the trees are Ns = 4n, n = 2, . . . , 49,
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where a quarter of them are set as clients. The value of tmv̄r, which is the radius of

reachable sets of routers, is set as 2. With multiple trials of different stopping criteria

for Algorithms 2 and 3, we choose different criteria for these two algorithms. Each stop-

ping criteria is selected with less time cost and almost the same accuracy. The stopping

criterion for Algorithm 2 is f (xT[k]) ≤ 0.001. The stopping criterion for Algorithm 3 is

m > 100. In simulation there are two iteration loops in Algorithm 3. One is the loop to

get x∗i [m], y∗ij[m], t∗i [m] (lines 3− 8, Algorithm 3), which is called inner loop in our simula-

tions. The other one is the loop for iteration of µij[m], λij[m], θij[m] (lines 2− 13, Algorithm

3), which is called outer loop. We set the constant number of iterations as 100 for the inner

loop, and 100 for the outer loop.

In the simulations, we choose constant step-length for both Algorithms 2 and 3. The

step-length chosen for Algorithm 2 is ρ[k] ≡ 0.01. Step-lengths of Algorithm 3 are set as

0.01, 0.01, where the first value is for outer iteration loop, the second value is for inner

loop. The choices of number of iterations and step-lengths are based on multiple times

of trials.

When considering Algorithm 2, in this simulation results, the relationship between

time cost and the number of agents is approximately tc
2 ≈ 0.02Ns, where tc

2 denotes the

time cost of executing Algorithm 2, Ns is the number of agents in the simulation. For

Algorithm 3, tc
3 ≈ 0.6Ns, where tc

3 denotes the time cost of executing Algorithm 3. How-

ever, in the simulation, the time cost of communication and the distributed computation

among agents have not been considered. In the following, we will analyse the time cost

in practical applications based on the simulation results.

Let δc denote the communication time cost of one time exchange of information be-

tween an agent and its neighbours. Let K1 denote the number of iteration in the simu-

lation of Algorithm 2, K2 denote the number of iteration of outer loop in the simulation

of Algorithm 3. By running the simulation, we calculate that the average value of K1 is

1478. In Algorithm 2, Ns − 1 information exchanges are needed to get the longest edge

in one iteration (lines 5 − 8, Algorithm 2), and 1 exchange is needed to update xi[k].

Moreover, in practical situations, two agents will compute the update of xT[k] concur-

rently at almost every kth iteration. Therefore, the actual time cost of Algorithm 2 is
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ta
2 ≈

tc
2
2 + K1Nsδc ≈ 0.01N + K1Nsδc. In Algorithm 3, in each iteration of outer loop, 2

exchanges of information are needed. One exchange is for the inner loop iteration. The

other is for the update of dual variables in the outer loop. However, in this algorithm,

the computation operates concurrently among all the agents, which means the time cost

is approximately equally divided among agents. The actual time cost of Algorithm 3 is

ta
3 ≈ 1

Ns
tc
3 + 2K2δc ≈ 0.6 + 2K2δc. The approximate actual time costs of Algorithms 2 and

3 with respect to Ns and δc are shown in Figure 3.4. The grey surface denotes the time

cost of Algorithm 2, and the red surface denotes the time cost of Algorithm 3.

Figure 3.4: Time costs of Algorithms 2 and 3

Wireless communication protocols used in multi-agent system, such as Zigbee, are

usually relatively slow. For example, the theoretical speed of Zigbee is 250kb/s. Then,

according to the information needed to be exchanged in each iteration, the order of the-

oretical magnitude of δc should be 1ms. In practice, however, δc should be larger than

that. In our setting, the time cost of Algorithm 2 is more than the time cost of Algorithm

3 if we consider Zigbee for communication. Based on the above analysis, the time cost of

Algorithm 2 mainly comes from communication. However, the time cost of Algorithm 3
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mainly comes from computation. Therefore, it is better to use Algorithm 3 if the compu-

tational capability of agents is powerful. If the communication is fast enough, Algorithm

2 is a better choice. Furthermore, with the expressions of ta
2 and ta

3, the time cost of Al-

gorithm 3 does not increase with the increasing of the number of agents, but time cost of

Algorithm 2 does. Thus Algorithm 3 is more scalable for systems with large number of

agents.

3.5.2 Persistent Connectivity of Clients

The dynamic model of agents we use is a quadrotor model which comes from [33]. The

controller that we use is a PID controller which is also included in [33]. The states of the

dynamic model of the agent i are ξi =
[
ξ1

i , ξ2
i , ξ3

i , ξ4
i , ξ5

i , ξ6
i , ξ7

i , ξ8
i , ξ9

i , ξ10
i , ξ11

i , ξ12
i
]ᵀ, where[

ξ1
i , ξ2

i , ξ3
i

]ᵀ are the coordinates along longitudinal, lateral, and vertical axes,
[
ξ4

i , ξ5
i , ξ6

i

]ᵀ
are the velocities along the corresponding axes,

[
ξ7

i , ξ8
i , ξ9

i

]ᵀ are the roll, pitch and yaw

angles,
[
ξ10

i , ξ11
i , ξ12

i
]ᵀ are the angular velocities corresponding to the angles. Thus the

planar position of xi of agent i is defined as xi =
[
ξ1

i , ξ2
i
]ᵀ. The reason why we can

choose a planar position is that the controller is a hovering controller, which means the

quadrotors can be controlled always on the same altitude. The details of the dynamic

model and controller design are referred to [33].

Remark: The positions can also be chosen as the positions with three dimensions and

the distances can be calculated according to this, which will not affect the results.

In this simulation, we choose v̄r = 2m/s, vc = 0.2m/s. By running trajectory tracking

with the PID controller [33] for multiple times with different desired positions, we choose

er as 0.4m. Other parameters are chosen as follows, ∆ = 3s, tx = 1s, td = 0s, tm = 2s,

R = 7m, D = 40m, V = {0, 1, . . . , 136}, C = {92, 93, 94, 95, 96, 97, 98, 99, 100, 101}, t0 = 0.

Here, td is set as 0s because the time cost of Algorithm 5 is too small compared to other

time intervals. Router 0 is set as the base, that is b = 0. The constant δ is calculated as

1.6m. The constant δG is calculated as 0.8. The initial positions of agents are generated

randomly. In the initialization stage (lines 1− 5, Algorithm 1), the operations are based

on the randomly generated initial positions of agents.

The movement of the clients are governed by the following rules. During a reinitial-
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ization stage indexed by κ, the clients remain stationary during time intervals (tκ−1
0 +

tx, tκ
0 − tc − tm − td] and (tκ

0 − tc, tκ
0]. During the time intervals tx and tm, the clients move

towards randomly chosen destinations. Thus, the trajectories of the clients are set as

the straight line connecting their current positions and the corresponding destinations

with a constant velocity. These straight line trajectories are generated the same way as

in (3.35), only with different time length which is tx or tm. The random destinations and

trajectories are chosen such that they satisfy the requirement of the maximal speed vc and

Assumption 3.2.

With the settings of simulation above, Assumption 3.1 is satisfied with the choice

of v̄r and vc. In this simulation, the communication between agents are set to satisfy

Assumption 1.1. With the movement of clients stated above, Assumptions 3.2 and 3.6 are

satisfied. Moreover, in the simulation, we assume that the information exchange satisfies

Assumption 1.3 and choose G(t0) such that it satisfies Assumption 3.3. Moreover, V and

C are selected so that Assumption 3.4 is satisfied and R and δ satisfy Assumption 3.5.

Hence, Assumptions 3.1–3.6 are satisfied.

Remark: In this simulation, the selected tree will be only updated using Algorithm

3.4.

Next, we show the simulation results of the control policy in Algorithm 1 with the

two different optimization algorithms, that is, Algorithms 2 and 3.

The result of the length of the longest edge of the tree T(t) under Algorithm 2 is

shown in Figure 3.5. In this figure, the length of the longest edge on the selected tree is

always less than the communication range R, which means the clients are persistently

connected. The time instants when the curve is not continuous mean when the selected

tree is updated. The selected trees and extended trees at some time instants are shown in

Figure 3.6. The two axes denote the axes of the coordinate axes of agents’ positions with

meter as unit. The trees with red edges stand for tree T(t), the trees with green dashed

edges are extended trees TE(t), and the blue dashed circles stand for the boundaries of

B(t) as in Assumption 3.2. With the trees in the figure, we can see some inactive routers

move to update the selected trees and become active routers.

In Figure 3.7, we show the length of the longest edge on the selected tree when Algo-
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Figure 3.5: Length of the longest edge of T under Algorithm 2

rithm 1 runs with the optimization Algorithm 3. The length is also always less than R,

which means the clients are persistently connected.

The trees T and TE at some time instants with Algorithm 3 are shown in Figure 3.8,

which shows the varying structure of the trees when Algorithm 1 runs with optimization

Algorithm 3.

3.6 Conclusion

In this work, maintaining persistent connectivity of clients is achieved by running control

policy Algorithm 1 for routers. One important feature of our work is that the clients

can move without worrying about the communication between each other except some

possible reinitialization stages. This makes the clients more suitable for their own tasks

in multi-agent systems.

In the proposed strategy, first, a tree is selected from the graph induced by the dis-

tances between agents. Then, the optimization algorithms minimize the length of the

edges of the selected tree in the worst case, which gives the desired positions of routers
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(a) t = 0.0s (b) t = 36.0s

(c) t = 69.7s (d) t = 108.2s

Figure 3.6: T(t) and TE(t) during the process of simulation under Algorithm 2

to maintain communication connectivity of clients. When the structure of the selected

tree cannot support communication for clients, update of the selected tree handles these

situations. After proposing the control policy, we analyse it to show that it guarantees the

persistent connectivity of clients. Finally, a simulation example is given to demonstrate
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(e) t = 154.8s (f) t = 200.0s

Figure 3.6: T(t) and TE(t) during the process of simulation under Algorithm 2

Figure 3.7: Length of the longest edge of T under Algorithm 3

the performance of our control policy.
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(a) t = 0.0s (b) t = 36.0s

(c) t = 73.4s (d) t = 111.0s

Figure 3.8: T(t) and TE(t) during the process of simulation under Algorithm 3

As a future direction, the case where the condition for the existence of a communica-

tion link between a pair of agents depends on other factors other than the distance alone

will be considered. Moreover, the question of choosing a tree from the induced graph

needs further attention.



3.6 Conclusion 85

(e) t = 195.1s

Figure 3.8: T(t) and TE(t) during the process of simulation under Algorithm 3





Chapter 4

Experiment with Differential Wheeled
Robots

A multi-agent system with multiple ground robots is used to test Algorithm 1. The experiment set

up and motion controller design of the robots are presented. With the results of the experiment, we

show that the persistent connectivity of clients is maintained all the time.

4.1 Introduction

EXPERIMENT is set up with multiple e-puck robots to test the effectiveness of the

control policy in Chapter 3. First, we describe the motion controller design for

one robot by using an existing controller in the literature. Then, we integrate the motion

controller in an multi-agent system by modifying the existing controller. Moreover, in this

chapter, we prove that persistent connectivity of clients is guaranteed under the settings

of our experiment. Finally, the experimental results verify the effectiveness of the control

policy in Algorithm 1 with the modified motion controller for routers.

4.2 Robot Motion Controller Design

The robot we use for experiment is e-puck robot [6], which is a differential wheeled robot.

The e-puck robot is shown in Figure 4.1 [5].

87
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Figure 4.1: E-puck robot version 1

4.2.1 Dynamic Model of E-puck Robot

We use ξx, ξy to denote the Cartesian position of a robot, and φ to denote its orientation

angle, as shown in Figure 4.2. The kinematic model of the differential drive robots is as

Figure 4.2: Dynamic model of e-puck robot

follows

ξ̇x = v cos φ, (4.1a)

ξ̇y = v sin φ, (4.1b)

φ̇ = ω, (4.1c)
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where v is the linear velocity and ω is the angular velocity of orientation of the robot. The

assumed control inputs v and ω satisfy the following conditions

v =
rψ̇r

2
+

rψ̇l

2
, (4.2a)

ω =
rψ̇r

2l
− rψ̇l

2l
, (4.2b)

where r is the radius of the wheels of the robot, l is the distance between two wheels,

ψ̇r, ψ̇l are the angular velocities of the right and left wheels. Here, ψ̇r, ψ̇i are the actual

control inputs for the robot. Based on the relationship in (4.2), v, ω should satisfy

ψ̇r =
v + lω

r
(4.3a)

ψ̇l =
v− lω

r
. (4.3b)

4.2.2 Trajectory Tracking Controller

Assume a reference state trajectory qd(t) = [ξxd(t), ξyd(t), φd(t)]ᵀ is given. The state of an

e-puck robot at time instant t is denoted by q(t) = [ξx(t), ξy(t), φ(t)]ᵀ. Define q̃, ṽ, ω̃ as

q̃ := qd − q, ṽ = vd − v, ω̃ = ωd − ω. Linearisation of the dynamic model of the robot at

qd(t) leads to

˙̃q =


0 0 −vd sin φd

0 0 vd cos φd

0 0 0

 q̃ +


cos φd 0

sin φd 0

0 1


 ṽ

ω̃

 . (4.4)

The trajectory tracking controller design presented in the following is from [18]. Read-

ers may refer to Section 5 in [18] for more details. Tracking error ε = [ε1, ε2, ε3]> is defined

as 
ε1

ε2

ε3

 =


cos φ sin φ 0

− sin φ cos φ 0

0 0 1

 q̃. (4.5)
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The control inputs v, ω are designed as

v = vd cos ε3 + k1(vd, ωd)ε1,

ω = ωd + k̄2vd
sin ε3

ε3
ε2 + k3(vd, ωd)ε3,

(4.6)

where k1(vd(t), ωd(t)) = k3(vd(t), ωd(t)) = 2σ
√

ω2
d(t) + bv2

d(t), k̄2 = b with b > 0 and

σ ∈ (0, 1). Theorem 4.1 presents the stabilization of ε under the controller presented in

4.6.

Theorem 4.1. [18] Assuming vd and ωd are bounded with bounded derivatives, and that vd(t) 9

0 or ωd(t) 9 0 when t → ∞, the control law (4.6) globally asymptotically stabilizes the origin

ε = 0.

Note that, with the relationship in (4.5), ε = 0 implies q̃ = 0. Once v and ω are

calculated, ψ̇r, ψ̇l will be determined according to (4.3).

With our sensing system, the values of φ are in the interval [−π, π], which will cause

discontinuity of ε3 under some conditions. For example, when φ = π, and ω > 0, in the

next time instant φ might become −π, which makes ε3 change discontinuously. To avoid

such situations, we redefine ε3 as

ε3(t) =


φd(t)− φ(t) if −π ≤ φd(t)− φ(t) ≤ π

φd(t)− φ(t) + 2π if φd(t)− φ(t) < −π

φd(t)− φ(t)− 2π if φd(t)− φ(t) < π

(4.7)

4.2.3 Controller for Steering an E-puck Robot in the Multi-agent System

We use x to denote the planar position of a robot, which is x := [ξx, ξy]>. Because we

only address one robot in this part, we will omit the indices of agents. When we consider

controllers of robots in the multi-agent system settings, we will use indices to differen-

tiate agents. As stated in Subsection 3.4.4, the desired trajectory of a router is a straight

line. The trajectory is defined based on the desired position x∗, which is determined by

Algorithm 2 or 3. Therefore, testing the controller for one robot, we will only consider

straight line trajectories. Assume the desired positions of a robot is x∗ = [ξ∗x, ξ∗y ]
>. Here
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we use ta to denote the time interval for steering a robot to its desired positions. Then the

desired trajectory of planar position is defined as

r(t) := x(t̄0) +
t− t̄0

ta

(
x∗ − x(t̄0)

)
, ∀t ∈ (t̄0, t̄0 + ta], (4.8)

where t̄0 denotes the initial time instant of steering. Note that r(t) = [ξxd(t), ξyd(t)]>,

∀t ∈ (t̄0, t̄0 + ta]. Since the desired trajectory r(t) is a straight line, the desired rotation

angle φd(t) is a constant such that

φd(t) ≡ arctan
ξ∗y − ξy(t̄0)

ξ∗x − ξx(t̄0)
, ∀t ∈ (t̄0, t̄0 + ta]. (4.9)

Thus, the reference state trajectory of the robot with desired position x∗ is set as

qd(t) =
[
ξxd(t), ξyd(t), φd(t)

]>
=
[
r(t)>, φd(t)

]>. (4.10)

According to the definition of e(t), we have e(t) = [ξ i
x(t)− ξ i

xd(t), ξ i
y(t)− ξ i

yd(t)]
>. Thus

the norm of e(t) is ‖ei(t)‖ =
√
(ξx(t)− ξxd(t))2 + (ξy(t)− ξyd(t))2.

4.2.4 Experiment Result of Controller for One Robot

Experiment set up for motion control of one robot

The robot we use for experiment is e-puck1 [1]. The radius of the wheel is r = 0.0205m,

and the distance between two wheels is 2l = 0.053m. The angular velocities of the wheels

satisfy −2π/s ≤ ψ̇r ≤ 2π/s,−2π/s ≤ ψ̇l ≤ 2π/s. The tracking system we use to cap-

ture the position of robots is a camera tracking system OptiTrack Flex13 [4]. The main

program to calculate the control inputs to control the robot is written in python, which

is running on a HP Elitebook 840 laptop with Windows system. In the program, we

use the package optirx [3] to receive the position of robots from the Motive [2], which

is the software environment corresponding to OptiTrack Flex13. The main control pro-

gram will send the control inputs ψ̇l and ψ̇r to the e-puck1 robot. The firmware on the

micro-controller of the robot is written based on the standard firmware of e-puck robots.
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Readers may refer to [6] for details of the firmware. The communication between the

Python program and the e-puck robot is via bluetooth.

Because of the restricted area in our lab, we set v̄r in Assumption 3.1 as 0.02m/s,

which is slower than the maximal speed vr the e-puck1 robot can reach. We also set

−1.5rad/s ≤ ω ≤ 1.5rad/s. Note that these constraints on the movement of robots are

used in designing the desired trajectories of robots.

Experimental results for one e-puck robot

We first test the trajectory tracking controller for a robot with a straight line desired tra-

jectory. As we only use one robot in this test, we still use x = [ξx, ξy]T without the

index i to denote the position of the robot. Same simplification rules apply for other

notations in this test. We use x0 to denote the initial position of the robot, which is

x0 = [ξx0 , ξy0 ]
ᵀ = [0.35, 0.21]ᵀ in our implementation. The destination is chosen as

x∗ = [ξx0 + 0.4, ξy0 + 0.4]ᵀ. (4.11)

The desired trajectory is set as r(t) = x0 +
t−t̄0
30 (x∗− x0), where the time length for the test

is set as 30s. We show how the tracking error e(t) varies with different initial orientation

angle φ0 in Figure 4.3. As shown in this figure, when the difference between φ(t̄0) and φd

is large, there is a large tracking error e(t) at the start of the movement of the robot. We

conclude that the tracking error upper bound er increases with the difference between

initial orientation angle and the orientation angle of the desired trajectory. Note that at

the end of the movement, we can see that the magnitude of the error is still small even

with a large difference between φ(t̄0) and φd.

If we expect a small magnitude of er, which is presented in (3.36) and (3.39), the mag-

nitude of e(t) is required to be small all the time during the steering. The method we use

to deal with this requirement is addressed in the next section.



4.3 Modified Trajectory Tracking Controller for an E-puck Robot 93

Figure 4.3: e(t) with different φ(t̄0) with t̄0 = 0

4.3 Modified Trajectory Tracking Controller for an E-puck Robot

As shown in Figure 4.3, in order to decrease the value of er, we need to make e(t) small at

the start of the movement of the robot. To achieve this, we split the steering process into

two stages, rotation stage and translation stage. During the rotation stage, the robot ro-

tates to the desired angle which is the angle of the desired straight line trajectory. During

the translation stage, the robot will track the straight line trajectory connecting its current

position and the desired position. A time interval with tp seconds is allocated to the ro-

tation stage, and tr seconds is allocated to the translation stage. The process of steering a

router to its corresponding desired position is presented in Algorithm 10.
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Algorithm 10 Process of steering a router to its desired position

1: Steer the robot to a desired rotation angle arctan
ξ i∗

y −ξy(tn)

ξ i∗
x −ξx(tn)

with a constant angular
velocity ωd

2: Wait until the current time instant is t̄0 + tp
3: Steer the robot to the desired position along the trajectory ri(t)

In the rotation stage, we set the reference trajectory as follows. First we define δφ as,

δφ =


φd − φ(t̄0), if −π ≤ φd − φ(t̄0) ≤ π

φd − φ(t̄0) + 2π, if φd − φ(t̄0) < −π

φd − φ(t̄0)− 2π, if φd − φ(t̄0) > π,

(4.12)

where φd is defined in (4.9). Then we define φi
o(t) as φ(t) = φ(t̄0) +

δφ

|δφ|ωd(t− t̄0), t̄0 ≤

t ≤ t̄0 + tp, where t̄0 is the initial time instant of movement. In the rotation stage, the

desired trajectory of φ(t) is defined as follows for all t ∈ [t̄0, t̄0 + tp]

φd(t) =


φo(t), if −π ≤ φo(t) ≤ π

φo(t) + 2π, if φo(t) < −π

φo(t)− 2π, if φo(t) > π.

(4.13)

The desired trajectory of the other two states are set as ξxd(t) = ξx(t̄0), ξyd(t) = ξy(t̄0).

Thus the desired planar trajectory during this time interval is r(t) = [ξx(t̄0), ξy(t̄0)]>, t ∈

[t̄0, t̄0 + tp]. Then the desired trajectory qd(t) during the rotation stage is set as

qd(t) = [ξx(t̄0), ξy(t̄0), φd(t)]T, t ∈ [t̄0, t̄0 + tp]. (4.14)

During the translation stage, the desired planar position trajectory r(t) is set in the

way as in (4.8) as follows

r(t) = x(t̄0) +
t− t̄0 − tp

ta

(
x∗ − x(t̄0)

)
, t ∈ (t̄0 + tp, t̄0 + tp + tm]. (4.15)

Moreover, the desired rotation angle is φd, which is defined in (4.9). Then the desired
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Figure 4.4: e(t) with different φ(t̄0) with t̄0 = 0

trajectory qd(t) during the translation stage is

qd(t) = [r(t)>, φd]
>, t ∈ (t̄0 + tp, t̄0 + tp + tm]. (4.16)

Next, we present experimental results for one robot with different initial orientation

angles by using the modified motion controller. In Figure 4.4, e(t) is shown with this

rotation and tracking control strategy. The destination is still set the same as in (4.11).

Moreover, the desired trajectory is set the same as in Subsection 4.2.4. It shows that the

magnitude upper bounds of e(t) are almost the same for different φ(t̄0). Furthermore,

we can conclude the upper bound is smaller by using this control strategy. Thus, in
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the implementation of our control strategy in Algorithm 1, we will choose this rotation-

tracking movement strategy to steer the rotors when the steering is in time interval tm.

From multiple times of trials, we set the upper bound of the magnitude of e(t) as 0.01m

with the controller inputs determined by (4.3) and (4.6). That is, ‖e(t)‖ ≤ 0.01m, ∀t ∈

[t̄0, t̄0 + tp + tm].

4.4 Modified Routers’ Desired Trajectories and Control Require-
ments

With the modified controller design in Section 4.3, the desired trajectories and control

requirements for routers in multi-agent systems are presented. In this section, we use

superscript or subscript i to denote the variables corresponding to router i. Previous

steering of routers is split into two stages as presented in Section 4.3. The first one is

preparation stage, which costs tp seconds, during which the robots rotate to their cor-

responding desired orientation angles. The other stage is the translation stage, during

which the robots follow the desired straight line trajectories. In this section, we imple-

ment the modified motion controller for routers in the multi-agent system considered in

Chapter 3.

First, we consider implementing the modified motion controller for routers in the time

interval tm (Figures 3.2 and 3.3). We appoint the preparation stage to the time interval td

(Figures 3.2 and 3.3) right before the time interval tm. Translation stage is still appointed

in the time interval tm. Now there are two tasks to be completed in the time interval td.

The first one is to determine the desired positions of inactive routers during time interval

tr. The second task is to rotate the routers to the desired orientation angles determined by

the straight line desired trajectories during time interval tp. The time interval td is split

as in Figure 4.5.

Now, the start time instant of movement for our multi-agent system is tn − tp, where

tn is the start time of the time interval tm. The desired orientation angle is

φi
d = arctan

ξ i∗
x − ξ i

x(tn − tp)

ξ i∗
y − ξ i

y(tn − tp)
, (4.17)
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Figure 4.5: Split of td

where
[
ξ i∗

x , ξ i∗
y
]ᵀ

= x∗i . Then δi
φ is defined as

δi
φ =


φi

d − φi(tn − tp), i f − π ≤ φi
d − φi(tn − tp) ≤ π

φi
d − φi(tn − tp) + 2π, i f φi

d − φi(tn − tp) < −π

φi
d − φi(tn − tp)− 2π, i f φi

d − φi(tn − tp) > −π

, (4.18)

and φi
o(t) := φi(tn − tp) +

δi
φ

|δi
φ|

ωd(t− tn + tp). Thus, during the rotation stage, the desired

trajectory of orientation angle is defined as in (4.13)

φi
r(t) =


φi

o(t), if −π ≤ φi
o(t) ≤ π,

φi
o(t) + 2π, if φi

o(t) < −π,

φi
o(t)− 2π, if φi

o(t) > π.

t ∈ (tn − tp, tn] (4.19)

The desired trajectory of planar position during the rotation stage is

ri(t) := [ξ i
x(tn − tp), ξ i

y(tn − tp)]
>, t ∈ (tn − tp, tn]. (4.20)

Thus, the desired trajectory qd(t) during this stage is,

qi
d(t) = [ξ i

xd(t), ξ i
yd(t), φi

r(t)]
> = [ξ i

x(tn − tp), ξ i
y(tn − tp), φi

r(t)]
>, t ∈ (tn − tp, tn] (4.21)

In the translation stage, the desired orientation angle is φi
d, which is defined in (4.17). The

desired trajectory of the planar position of a router i is

ri(t) := xi(tn − tp) +
t− tn

tm

(
x∗i − xi(tn − tp)

)
, t ∈ (tn, tn + tm]. (4.22)
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Therefore, the desired trajectory used for controller design of robot i is set as,

qi
d(t) = [ξ i

xd(t), ξ i
yd, φi

d]
> = [ri(t)>, φi

d]
>, t ∈ (tn, tn + tm]. (4.23)

With the modified desired trajectories of routers above, the tracking error ei(t) during

the movement satisfies

|ei(t)| = ‖xi(t)− ri(t)‖ ≤ er, t ∈ (tn − tp, tn + tm]. (4.24)

We deal with the inactive routers when ‖x∗i − xi(tn)‖ > tmvr in the same as the original

motion control design.

Then, we consider implementing the modified controller for routers in time intervals

tu and tc (Figures 3.2 and 3.3). In these situations, we appoint preparation stage to time

interval (ts, ts + tp] and translation stage to time interval
(

ts, ts +
‖x∗i −xi(ts)‖

v̄r

]
. The desired

trajectory in the preparation stage is the same as the trajectory in time interval (tn− tp, tn]

above. The desired trajectory in the translation stage is the same as the trajectory in (3.38).

As the method of deriving the desired trajectory is in the same way as in time interval

(tn − tp, tn + tm] above, we will not give details here.

By using this modified controller design, we will show next that the persistent con-

nectivity of clients can be maintained.

4.4.1 Persistent Connectivity of Clients with Modified Desired Trajectories

In this subsection, we will prove that the persistent connectivity of clients still holds with

the modified controllers design. We give the details that the conclusion in Lemma 3.1 still

hold with the modified controllers design for routers. The other conclusions in Lemmas

3.2–3.4 and Theorem 3.1 can be proved in the same way, we will not give details. During

every optimization and control stage (lines 10 − 13, 35 − 38, Algorithm 1), Lemma 3.1

presents that the corresponding selected tree is always connected.

Lemma 4.1. Suppose Assumptions 3.1, 1.1, 1.3, 3.3, and 3.6 hold and let the motion of routers

satisfy the requirement in (4.24). Let δ and δG be defined in (3.40) and (3.41), respectively. Then,
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‖xi(t) − xj(t)‖ ≤ R, ∀{i, j} ∈ E κ
T, ∀t ∈

(
tκ
0 + n∆, tκ

0 + (n + 1)∆
]
, ∀κ = 0, 1, . . . , ∀n =

0, . . . , nκ − 1.

Proof. In this proof, we will use x∗i (t
κ
0 + n∆) to denote the desired planar position of the

active router i calculated during time interval (tκ
0 + n∆, tκ

0 + n∆ + tx + td] and x∗b(t
κ
0 + n∆)

to denote xc(tκ
0 + n∆).

Case 1: First, we consider the edges {i, j} connecting a router and a client, i ∈ R, j ∈ C.

Consider n = 0, with Assumptions 3.3 and 3.6, we have

‖xi(t)− xj(t)‖ ≤ R− (tx + td)vc − er + (tx + td)vc + er = R, ∀t ∈ (tκ
0, tκ

0 + tx + td].

Especially, for all t ∈ (tκ
0, tκ

0 + tx + tr], we have

‖xi(t)− xj(t)‖ ≤ R− δ + er + (∆ + tx + tr)vc ≤ R− tqvc − er (4.25)

The above inequalities hold because the routers stay static and only clients move during

these time intervals.

Moreover, for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + td] where n > 0, we have

‖xi(t)− xj(t)‖ ≤ R− δ + er + (∆ + tx + td)vc + er ≤ R.

Especially, for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + tr], we still have

‖xi(t)− xj(t)‖ ≤ R− δ + er + (∆ + tx + tr)vc ≤ R− tqvc − er (4.26)

Let x∗i (t
κ
0 + n∆) be a solution to the optimization problem considered in time interval

(tκ
0 + n∆, tκ

0 + n∆ + tx]. With the modified controllers design for routers, we have

‖x∗i (tκ
0 + n∆)− xj(tκ

0 + n∆ + tx + tr)‖ ≤ R− δ + (tx + tr)vc ≤ R− (∆ + tq)vc − 2er.

During any time interval (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], with the trajectory ri(t) in

(4.22) and control requirement in (4.24), the length of edge {i, j} satisfies the following
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condition for all t ∈ (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆].

‖xi(t)− xj(t)‖ =
∥∥∥∥xi(tκ

0 + n∆ + tx + td) +
t− tκ

0 − n∆− tx − td

tm
(x∗i (t

κ
0 + n∆)− xi(tκ

0 + n∆))

+ ei(t)− xj(t)
∥∥∥∥

=
∥∥∥(1− α)(xi(tκ

0 + n∆ + tx + td)− xj(t)) + α(x∗i (t
κ
0 + n∆)− xj(t)) + ei(t)

∥∥∥
=
∥∥∥(1− α)(xi(tκ

0 + n∆ + tx + td)− xj(t))
∥∥∥+ ∥∥∥α(x∗i (t

κ
0 + n∆)− xj(t))

∥∥∥
+
∥∥∥ei(t)

∥∥∥
≤(1− α)(R− tqvc − er + tpvc + αtmvc) + α

(
R− (∆ + tq)vc − 2er + tqvc

+ αtmvc
)
+ er

≤(1− α)(R− er + αtmvc) + α(R− ∆vc − 2er + αtmvc) + er

=R + α(tmvc − ∆vc − er)

≤R

,

where α =
t−tκ

0−n∆−tx−td
tm

and 0 ≤ α ≤ 1. The largest value on the right hand side of this

inequality is achieved when α = 0.

Therefore, ‖xi(t) − xj(t)‖ ≤ R, ∀t ∈ (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], ∀{i, j} ∈{
{i, j}|i ∈ R, j ∈ C, {i, j} ∈ ETκ

}
, ∀κ = 0, 1, . . . , ∀n = 0, . . . , nκ − 1.

Case 2: Now, we consider the edges {i, j} with i, j ∈ R. Consider n = 0, with As-

sumptions 3.3 and 3.6, we have

‖xi(t)− xj(t)‖ ≤ R− δG + 2er ≤ R, ∀t ∈ (tκ
0, tκ

0 + tx + td]. (4.27)

Especially, for all t ∈ (tκ
0, tκ

0 + tx + tr], because the routers do not move, we have

‖xi(t)− xj(t)‖ ≤ R− δG ≤ R− 2er. (4.28)

Moreover, for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + td] with n > 0, we have

‖xi(t)− xj(t)‖ ≤ R− δ + 2er + 2er ≤ R. (4.29)
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Especially, for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + tr], we still have

‖xi(t)− xj(t)‖ ≤ R− δG ≤ R− 2er. (4.30)

The desired positions of routers calculated by the optimization problem satisfy the

following conditions for any κ, n

‖x∗i (tκ
0 + n∆)− x∗j (t

κ
0 + n∆)‖ ≤ R− δ ≤ R− 4er.

During any time interval (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], with the trajectory ri(t) in

(4.22) and controller requirement in (4.24), the length of edge {i, j} satisfies the following

condition for all t ∈ (tκ
0 + n∆, tκ

0 + n∆ + tx + td]

‖xi(t)− xj(t)‖ =
∥∥∥∥[xi(tκ

0 + n∆ + tx + tr) +
t− tκ

0 − n∆− tx − td

tm

(
x∗i (t

κ
0 + n∆)

− xi(tκ
0 + n∆ + tx + tr)

)]
−
[

xj(tκ
0 + n∆ + tx + tr)

+
t− tκ

0 − n∆− tx − td

tm

(
x∗j (t

κ
0 + n∆)− xj(tκ

0 + n∆ + tx + tr)
)]∥∥∥∥

=‖[xi(n∆ + tx + tr) + α(x∗i (n∆)− xi(n∆ + tx + tr)) + ei(t)]

− [xj(n∆ + tx + tr) + α(x∗j (n∆)− xj(n∆ + tx + tr)) + ej(t)]‖

≤(1− α)‖xi(n∆ + tx + tr)− xj(n∆ + tx + tr)‖

+ α‖x∗i (n∆)− x∗j (n∆)‖+ ‖ei(t)‖+ ‖ej(t)‖

≤(1− α)(R− 2er) + α(R− 4er) + 2er

≤R

.

Therefore, ‖xi(t)− xj(t)‖ ≤ R, ∀t ∈ (tκ
0 + n∆ + tx + td, tκ

0 + (n + 1)∆], ∀{i, j} ∈
{
{i, j}|i ∈

R, j ∈ R, {i, j} ∈ ETκ

}
, ∀κ = 0, 1, . . . , ∀n = 0, . . . , nκ.

With analysis of Case 1 and Case 2, we conclude that ‖xi(t) − xj(t)‖ ≤ R, ∀{i, j} ∈

E κ
T, ∀t ∈ (tκ

0 + n∆, tκ
0 + (n + 1)∆], ∀κ = 0, 1, . . . , ∀n = 0, . . . , nκ − 1.

Note that in time intervals ts, tc, it is easy to check that the modified motion controller

for routers does not affect the results in Lemmas 3.2 and 3.3. Then, Lemma 3.4 still holds.
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Therefore, Theorem 3.1 follows from these lemmas.

4.4.2 Experiment Setup

Limited by the area in our lab, we choose R = 0.9m, v̄r = 0.02m/s, vc = 0.002m/s. The

time intervals are chosen as follows, tx = 25s, td = 5s, tm = 10s, tr = 0s, tp = 5s, ∆ = 40s.

With these choices and er = 0.01m, we calculate that δ = 0.16m, δG = 0.07m. The set of

indices of agents is V = {1, 2, 3, 4, 5, 6}, the set of indices of routers is R = {1, 2, 3} and

the set of indices of clients is C = {4, 5, 6}. Thus N = 6, Nr = 3 and Nc = 3. Limited

by the number of e-puck robots we have, in the experiment, clients are paper boards

with markers on them for position tracking while routers are e-puck robots. Same as the

settings for one robot control, OptiTrack Flex13 [4] camera system is used to track the

positions of agents, and a HP Elitebook 840 laptop running Windows is used to support

the experiment.

The wireless communication on e-puck1 robots is bluetooth 2.0. The bluetooth chip

on e-puck1 cannot support a real ad-hoc communication which supports communication

between robots. Therefore, the communication between two robots need to be handled

through a computer. Another fact is, the speed of this type of wireless communication

is slow. Considering these factors, we simulate the distributed algorithms, especially the

optimization algorithms, on a computer by using python. We implement the algorithms

in a distributed fashion by using class objects in python. Each class object is used to emu-

late a micro-controller on a robot and they exchange local information through interfaces

during the execution of the algorithms. Therefore, it can still test that our distributed al-

gorithms. When we have new platform that can support ad-hoc communication, such as,

wireless communication with zigbee protocol, the algorithms will be applied distribut-

edly on the robots. At this stage, we simulate the exchange of information of robots with

python class objects. Similarly, the control inputs are also calculated distributedly with

python on a computer. After the control inputs are calculated, they will be sent to cor-

responding robots. The structure of our experiment setting is illustrated in Figure 4.6.

Remark: In our experiment, as stated before, we do not consider the collision between
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Figure 4.6: Experiment setting in the lab

robots. However, because the area in the lab is limited, if the inactive routers are steered

to the same desired position as their neighbours on the extended tree, it will cause colli-

sion. To avoid this collision situation, we will not steer an inactive robot if the distance

between its position and the neighbour’s position is less than 0.035m. This distance is

selected according to the size of the e-puck1 robot we use. In future works, when there

are many more robots in the system, we need to consider the collision between robots.

Note that this treatment of avoiding collision will not change the connectivity of inactive

routers to their corresponding neighbours on the extended tree.

First, we show some results of our control policy (Algorithm 1) with primal sub-

gradient method (Algorithm 2). The result of the length of the longest edge on the se-

lected tree is shown in Figure 4.7. In this figure, we can see that the length of the longest

edge on the selected tree is always less than R, which means the persistent connectivity

of the clients is maintained all the time.

In Figure 4.8, the structure of the selected trees and extended trees at different time

instants are shown. This figure shows the update progress of the selected tree. The two

axes are the coordinate axes of agents with meter as unit. The blue dashed lines are the
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Figure 4.7: The length of the longest edge on T

edges of extended trees, and the red lines are the edges of selected trees.

Next, we show some results of the control policy (Algorithm 1) with dual sub-gradient

method (Algorithm 3). The result of the length of the longest edge on the selected tree is

shown in Figure 4.9. In this figure, we can see that the length of the longest edge on the

selected tree is always less than R, which means the persistent connectivity of the clients

is maintained all the time.

In Figure 4.10, the structure of the selected trees and extended trees at different time

instants are shown. This figure shows the update progress of the selected tree. These two

experiments confirm that the control policy in Chapter 3 (Algorithm 1) ensures persistent

connectivity of clients with the modified motion controller for routers in this chapter.
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(a) t = 0.0s (b) t = 80.4s

(c) t = 161.0s (d) t = 241.3s

Figure 4.8: Selected tree and extended tree
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(e) t = 322.0s (f) t = 412.5s

Figure 4.8: Selected tree and extended tree

Figure 4.9: The length of the longest edge on T
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(a) t = 0.0s (b) t = 80.4s

(c) t = 161.0s (d) t = 241.6s

Figure 4.10: Selected tree and extended tree
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(e) t = 322.2s (f) t = 402.9s

Figure 4.10: Selected tree and extended tree



Chapter 5

Conclusions

In this thesis, we propose control policies of routers to maintain persistent connectivity of clients

while the clients have their own corresponding objectives. These control policies are suitable for sit-

uations where client tasks have higher priority. For example, rescue after disasters and tracking fast

moving targets. We address the persistent connectivity of clients in multi-agent systems in two cases.

One case is simple with two clients, the other is with an arbitrary number of clients. Moreover, we

consider general dynamic models of agents, which makes our control policies fit most of the common

types of robots used in multi-agent systems.

5.1 Conclusions

There are three main contributions in this thesis, which are persistent connectivity of

clients with different numbers of clients in two cases and the experiment test of the cor-

responding results.

First, in Chapter 2, we consider a type of multi-agent systems with two clients. This

makes the structure of the system simple, that is, the corresponding graph structure is

simple. With this structure, we do not need to change the structure of the graph. We

also consider a specific dynamic model of the agents in this chapter, which is a quadrotor

model. Unlike the simple general model used in most of existing literature, this practical

model makes our control strategy more practical when we consider real applications.

Furthermore, as mentioned in this chapter, the method of designing control policy for

this specific dynamic agent model can be adapted to other robot models by using the

same idea. As presented in Chapter 2, we prove that the initial structure of the multi-

agent system is always maintained aided by an auxiliary system. That is, the persistent

connectivity of the two clients is ensured. Finally, we test the persistent connectivity

109
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results in the simulation by using practical parameters of the quadrotor model.

In Chapter 3, a general case of multi-agent systems with multiple clients is considered.

This situation leads to a more complex structure, which makes the control policy design

more complicated. In this case, we consider the system and control policy in a hybrid

form instead of the continuous one in Chapter 2. The control policy to address the persis-

tent connectivity of clients in this case switches between optimization and control. First,

optimization algorithms are executed to derive the desired positions of routers based

on the current positions of clients. Then, the routers are steered to their corresponding

desired positions by using controllers satisfying some specific requirements. If the struc-

ture of the corresponding graph cannot support connectivity of clients, the graph will be

updated by some spare routers. Because the execution of optimization algorithms and

update of the graph structure cost computation time, it is more convenient to address the

problem in a hybrid form. At the end of this chapter, we still use a quadrotor model as

the dynamic model of agents in the simulation to verify the designed control policy.

In Chapter 4, we use e-puck robots as practical routers to implement our control pol-

icy in Chapter 3 and test the results of Chapter 4. In the setting of the experiment, we

use a camera system to capture the positions of agents and use the python program on

a computer to simulate the computation of agents and communication between robots.

This restrictive setting is because the bluetooth 2.0 communication on e-puck robots is

slow and the number of e-puck robots we have is limited. As shown in the experiment

results, the lab experiment verifies the effectiveness of the control policy we design.

5.2 Future Work

There are several future research directions that follow from this work. These directions

include theoretical and experimental parts, as stated as follows.

When considering the general case in Chapter 3, we assume that the routers are suf-

ficiently faster than the clients, which limits the capability of clients in performing their

main tasks. Moreover, as in the experiment in Chapter 4, the setting that v̄r is much larger

than vc reflects this limitation in applications. Increasing the speed of clients is very im-
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portant for a range of applications. For example, in searching and rescue, faster speed

means less time to complete the tasks. Therefore, relaxing such an assumption, such as

Assumption 3.1, is a direction to improve the applicability of our control policy.

As in Assumption 1.1, the communication model we use in this chapter is only based

on the distances between agents. However, the practical wireless communication is also

affected by other factors, such as shadowing, fading and routing protocols. In order to

make control policies more applicable, we may need to use a more practical commu-

nication model when considering communication connectivity in multi-agent systems.

Moreover, we might need to have a new definition of persistent connectivity according

to improved communication models. This direction requires that we combine the theory

in control and system field with the theory in wireless communication field.

Another aspect we may need to explore deeply is how to make use of the structure

of the graph corresponding to a multi-agent system. In our control policy in Chapter

3, no criterion is given to choose the selected tree. Future work in this direction may

include defining and finding a good tree. We might combine the graph structure with

real communication protocols. For example, when we consider the routing protocol, we

might choose a more complex structure than a tree from the graph in order to make the

communication reliable when considering real wireless communication protocols.

The optimization algorithms, especially Algorithm 3, need synchronous iterations

among agents during their execution. These might be improved to be asynchronous algo-

rithms which might be more suitable for multi-agent systems without a centre. In multi-

agent systems, the communication and computation might not occur in a synchronous

fashion. For example, there might exist delays in communication. Thus, asynchronous

algorithms might need less time than synchronous ones which need some time to syn-

chronize information. To explore in this direction, we need to address the convergence of

distributed optimization algorithms in asynchronous fashion.

We may also want to improve the experiment platform. Because the communica-

tion between agents is simulated on the computer as stated in Chapter 4, we might need

to choose a platform that can support ad-hoc wireless communication between robots.

When using a real wireless communication, such as zigbee, we might need to schedule
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the information exchange between agents in experiments. This, in turn, might help im-

prove the theoretical control policy design for practical situations.

In conclusion, there still exist interesting directions in communication connectivity of

multi-agent systems and they deserve more efforts.
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