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The thesis focuses on the stability and robustness analysis of a class of vibrational con-

trol systems, which take advantages of high-frequency dithers to provide an extra design

freedom. By carefully revisiting the vibrational stabilizability in literature, a new defini-

tion of vibrational stabilizablity is introduced, which plays as a basis of this thesis. With

this help of this definition, it is possible to obtain more general vibrational stability prop-

erties such as semi-globally practically vibrational stability for a large class of nonlinear

engineering systems. Stability criteria for the new definition of vibrational stabilizabil-

ity have been obtained. This new definition can provide a link between the vibrational

stabilizability and the standard stability or robustness definition with respect to a given

equilibrium point. Hence it makes possible to analyze the robustness properties of the

vibrational control system. By using averaging technique and perturbation theory, it has

been shown that both linear and nonlinear vibrational control systems are robust with

respect to bounded additive disturbances. In particular, when disturbances are much

faster compared to the frequency of dithers, it is shown that the system can handle

disturbances with a large amplitude while the ultimate bound of the state trajectories

can be reduced. Moreover, the transient response of vibrational control systems in the

presence of disturbances is fully investigated. Finally, in order to reduce the energy con-

sumption, novel switching laws are proposed. Guidelines for the design of switching laws

and parameters tuning are provided for the linear and nonlinear switched vibrational

control systems separately. Dynamical behaviours of the switched vibrational control

systems have been discovered. Numeric simulations of several application examples have

been executed to verify the effectiveness of theoretic analysis.
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Chapter 1

Introduction

1.1 A Motivational Example

A motivational example of vibrational control algorithm is stabilizing the inverted pen-

dulum without a feedback. The mechanism is shown in Figure 1.1. Assume a massless

slider is connected to the suspension pin of an inverted pendulum by a revolution joint.

The slider acts as an actuator to guide the vertical movement of suspension pin. To

stabilize the pendulum, an open-loop high-frequency sinusoidal dither is inserted to the

suspension point in the vertical direction as shown in Figure 1.1.

Oscillating dither

Slider

Mass

Translational joint

Figure 1.1: Inverted pendulum stabilized by injecting high-frequency oscillations

The dynamics equation of the inverted pendulum after injecting dithers is

mlθ̈ + (mg −maω sinωt) sin θ + klθ̇ + ka cosωt sin θ = 0,

where the variable θ is the angle of pendulum to the lower equilibrium point. The upper

equilibrium point of the inverted pendulum then becomes θe = π, which is open-loop

1



Chapter 1. Introduction 2

unstable. The system parameter m is the mass, l is the length of the pendulum and k

is the viscous friction coefficient. The vibrational control parameter a can change the

amplitude of sinusoidal dither and ω is the frequency.

Representing the system in state-space by letting x1 = θ, x2 = θ̇ and introducing the

small positive parameter ε = 1
ω , the system becomes:

[
ẋ1

ẋ2

]
=

[
x2

−g
l sinx1 − k

mx2

]
︸ ︷︷ ︸

f(x)

+

[
0(

a
εl sin( tε)−

ka
ml cos( tε)

)
sinx1

]
︸ ︷︷ ︸

g( t
ε
,x,ε)

.
(1.1)

The simulated trajectories of the dynamics model from different initial positions are

depicted in Figure 1.2. It can be seen that all trajectories converge to three equilibrium

points [0, 0], [π, 0], [2π, 0]. Some trajectories around [π, 0] converge to it which means the

originally unstable upper equilibrium point has been stabilized after using the dithers.

The dithers injected are open-loop signals so this method can be free from the on-line

measurements of the state used in the traditional feedback control.

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

x
1

x 2

Figure 1.2: Phase portrait of the inverted pendulum stabilized by vibrational control

1.2 Literature Review

1.2.1 Background

Vibrational control algorithm was motivated from the aforementioned example of the

stabilization of inverted pendulum by injecting vertically high-frequency oscillations.

The first publication dates back to 1908 when A. Stephenson [4] firstly demonstrated

the stability of inverted pendulum by using dithers. In 1950s, P.L. Kapitsa [5] developed
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the rigorous stability conditions for the stabilization of inverted pendulum when using

harmonic oscillations. Hence such a stabilized inverted pendulum is also called Kapitsa

pendulum. Later, N.N. Bogoliubov [6] approximated solutions of Kapitsa pendulum and

provided the stability conditions by using averaging theory.

1.2.2 Linear Vibrational Control Systems

S.M. Meerkov [7] firstly introduced vibrational control as an open-loop control algo-

rithm that can stabilize an open-loop unstable system by using oscillating dithers. His

published papers [7–9], built foundations of vibrational control systems.

In general, for an unstable linear-time-invariant system (LTI) ẋ = Ax, after injecting

dithers, linear vibrational control systems are assumed to have the following form:

ẋ = (A+B(t))x, x(t0) = x0 ∈ Rn, (1.2)

where A ∈ Rn×n is a square matrix and B : [t0,∞)→ Rn×n is a periodic matrix with a

zero mean value, which comes from injecting oscillating dithers to the system.

The vibrationally stabilizability is introduced to indicate the stabilizability of the system

ẋ = Ax by adding oscillations:

Definition 1.1. [9] The system ẋ = Ax is called vibrationally stabilizable if there exists

a periodic matrix B(t) with a zero mean value such that the trivial solution x = 0 is

asymptotically stable.

Remark 1.1. For linear systems, the definition shows that after applying vibrational

control, the origin would be transited from an unstable equilibrium point to an asymp-

totically stable one. This definition would be generalized later for nonlinear vibrational

control systems in Chapter 2, where the systems could be stabilized to a limit cycle

around the desired equilibrium point.

A necessary and sufficient condition for vibrationally stabilizability was then given:

Theorem 1.1. [9] Let the system ẋ = Ax be observable in in principle. Then for

this system to be vibrationally stabilizable it is necessary and sufficient that the trace of

matrix A be negative.

Remark 1.2. The system ẋ = Ax is observable in principle means that the matrix A is

a similar matrix to a controllable canonical matrix, so there is a non-singular matrix P

such that Ξ = P−1AP where Ξ is a controllable canonical matrix.
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The trace of the matrix is necessary to be negative for the vibrational stabilization.

From linear system theory [10, 11] it is known that the system ẋ = Ax is stable if all

the real parts of eigenvalues are negative and unstable if there exists an eigenvalue with

a positive real part. Besides, the trace is defined as the summation of eigenvalues, so

it means that although there exist eigenvalues with positive real parts but overall the

summation is negative. This provides the possibility for the periodic matrix B(t) to

relocate all the real parts of eigenvalues to negative plane such that the system becomes

stable. One feasible structures for B(t) is the quasi-triangular structure (see more details

in [9]).

The main idea of the proof of the theorem is transforming the system (1.2) into a time-

invariant system ˙̄x = (A + B̄)x̄ where B̄ is a time-invariant matrix. It is achieved

by showing the stability of the time-invariant systems and the closeness of solutions.

Although not explicitly demonstrated in [9], this time-invariant system is actually the

averaged system.

Later, the work [12, 13] extended the open-loop linear vibrational control systems (1.2)

to a closed-loop form by considering the state feedback:

ẋ = Ax+B1φ(t)u, (1.3)

and the feedback control u = Kx, where φ(·) is a periodic function s.t. φ(t) = φ(t+ T ).

Then the closed-loop system is

ẋ = (A+B1φ(t)K)x. (1.4)

In the open-loop form, the periodic matrix B(t) comes from adding oscillations to the

component of the matrix A, however the existence of such a B(t) matrix is not always

satisfied in applications. In the closed-loop form, the feedback control provides an extra

freedom to design the feedback gain K such that B(t) = B1φ(t)K is a qualified matrix to

stabilize the system ẋ = Ax. Essentially once the feedback gainK is designed, the system

would have the form of (1.4) so the stability analysis is the same. A parameterization

approach [14] was used to capture the stabilizability with designed controller to achieve

the desired time-domain specifications.

The closed-loop vibrational control systems discussed in [12–14], use time-invariant feed-

back gain while the periodic function φ(t) comes from oscillation of structural compo-

nents, as illustrated in (1.4). In 2004, Luc Moreau discussed the output feedback sta-

bilization with periodic feedback gain for a class of single-input-single-output (SISO)
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linear systems [15]:

ẋ = Ax+ bu(t),

y = cx,

u(t) = k(t)y,

(1.5)

where k(t) = m + nωcos(ωt). The closed-loop form of the system (1.5) is in the form

of vibrational control systems (1.2) and the conditions for stabilization with periodic

feedback were provided. It shows that the introduction of periodic feedback provides an

extra design freedom for the pole assignment.

The work [16, 17] addresses the capability of poles relocation of the vibrational control

algorithm. For a desired region, necessary and sufficient conditions for poles assignment

of the linear vibrational control system (1.2) were given when the system ẋ = Ax has

both real and complex eigenvalues. The vibrational control algorithm was also proven

to be powerful in zero placement, as shown in [12, 18]. It can be applied to the problems

of finite gain margin and decentralized fixed modes as illustrated in [19–21]. Similar

periodic controllers in discrete systems were shown to have capabilities for gain margins

improvement [18, 22, 23] in linear system and be useful to achieve absolute stability of

nonlinear system with memoryless uncertainties [24].

1.2.3 Nonlinear Vibrational Control Systems

The framework of nonlinear vibrational control systems was established by R. Bellman,

J. Bentsman and S.M. Meerkov. In their seminar work, the definition of vibrational

stabilization was extended to capture the stabilization in nonlinear systems. The cor-

responding criteria of stabilization, controllability and transient behaviour for different

types of nonlinear vibrational control systems were addressed in [25–28]. A general form

of nonlinear vibrational control system is

ẋ = f(x) +
1

ε
g

(
t

ε
, x

)
, (1.6)

where f : Rn → Rn is continuous, g : R+,Rn → Rn is T -periodic in its first argument

and continuously derivable. ε is a sufficiently small positive coefficient which serves as a

tuning parameter.

Three types of vibrational control g( tε , x) and conditions for vibrational stabilizability

were discussed respectively in [26] and [29]:
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• when g( tε , x) = B( tε)x, it is called linear multiplicative as the vibrational control

mapping is linear;

• when g( tε , x) = L( tε), it is called almost periodic (AP) forcing;

• when g( tε , x) = B( tε)g(x), it is called nonlinear multiplicative.

Remark 1.3. In nonlinear stabilization, the oscillating dithers steer the trajectories to

a limit cycle around the desired equilibrium point, which is a relaxed stability prop-

erty compared to the asymptotic stability in linear systems. A non-singular coordinate

transformation was introduced to capture the transient behaviour of system (1.6), where

averaging technique is applicable. Based on their work, our work considers disturbances

exist in the system and analyses the robustness performance. More details about vibra-

tional stabilizability in R. Bellman’s work will be revisited in Chapter 2.

Theorem 1.1 shows that in linear vibrational control systems, vibrational stabilization is

only possible if the trace of the matrix A is negative, however, B. Shapiro [30] proved that

the nonlinear vibrational control system (1.6) could be stabilized even if the Jacobian

matrix of the original dynamics ẋ = f(x) has a positive trace. This makes it possible

to apply the vibrational control algorithm to a large class of engineering systems. K.R.

Schneider [31] discussed the vibrational stabilizability of the system with fast and slow

variables using the persistence theory of normally hyperbolic invariant manifolds. A.

Balestrino [32] provided an alternative averaging method based on Taylor series expan-

sion to resolve the computational difficulties in nonlinear system. The link between the

amplitude and frequency of vibrational dither with the amplitude of the steady-state

oscillation of system state was established in [33] when vibrational control is AP forcing,

making it more practical for the controller design. Also from the design perspective,

J.M. Berg [34] introduced a design framework based on stability maps for second-order

periodic systems. Stability conditions were extended to vibrational control systems with

time lags in [35] indicating that the stabilization is able to handle some sufficiently small

state-delay. Vibrational control systems with arbitrarily large but bounded delay [36, 37]

were shown to be stable when dithers are sufficiently fast, by applying averaging theory

of time delayed differential equations [38]. As an extension of the application of the

vibrational control to finite systems with ordinary differential equations, J. Bentsman

and K.S. Hong [39] applied it to stabilize a class of distributed parameter systems gov-

erned by parabolic partial differential equations with Neumann boundary conditions.

The stability criterion and transient response of the specific systems were discussed in

[40] and [41] separately.
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1.2.4 Robustness Analysis of Vibrational Control Systems

Although various studies have been done to show the stability of vibrational control

systems, very limited work has addressed the robustness with respect to disturbances or

model uncertainties, especially for nonlinear systems. S.M. Meerkov [9] considered the

existence of disturbances in the linear vibrational control systems

ẋ = Ax+B(t)x+ rw,

y = cx,
(1.7)

where w belongs to a class of bounded disturbances. The output invariance with re-

spect to disturbances is introduced to capture the robustness which means the output

is invariant under different disturbances wi, wj i.e.

ywi(t) = ywj (t),∀t ≥ t0, wi 6= wj . (1.8)

The output invariance is obtained in the assumptions that the system is vibrationally

stabilizable and (r, c) are orthogonal vectors, which prevents the disturbances from af-

fecting the output.

The modelling uncertainty of linear vibrational control systems was considered in [42]:

ẋ = (A+ ∆A)x+B(t)x.

An upper bound of allowable unstructured uncertainty was derived to preserve the vi-

brational stabilizability. The work [43] considered disturbances in the closed-loop linear

vibrational control systems and discussed disturbance decoupling problem with respect

to output, which means by designing the feedback gain, the closed-loop transfer function

from disturbances to output is set as zero.

However, even if the disturbances rejection can be shown for special output of vibra-

tional control systems, the influence of disturbances to the state of the vibrational con-

trol systems needs further exploration as the state can become unstable even if the

output converges. Therefore it is worthwhile to exploit the state-trajectories behaviour

in the presence of disturbances. A central robustness concept in the nonlinear sysems

is input-to-state stable (ISS), which was formulated in [44]. It can estimate the bound

of the trajectories of a dynamic system in the presence of disturbances. To the best our

knowledge, there has not been results to reveal the ISS properties of vibrational control

systems. Recently, D. Nesic and A.R. Teel [45] developed strong and weak averaging

techiniques which provide useful tools for robustness analysis of nonlinear time-varying
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systems. It naturally becomes a feasible tool for the robustness analysis of disturbed

vibrational control systems.

1.2.5 Applications

1.2.5.1 Hamiltonian mechanical systems

Because vibrational control algorithms could provide extra capability for stabilizing the

system, it has been useful and successfully applied to stabilize a class of under-actuated

robotic, i.e. a manipulator that has more degrees of freedom than control inputs, see

[1, 46–49] for examples. In general, it contains a class of mechanical Hamiltonian systems

with conservative forces that are integrable in the existence of both holonomic and

nonholonomic constraints [50–53].

In Section 1.2.3, the stability analysis of the vibrational control system is mainly de-

pendent on the averaging theory. In classic averaging theory, the linearization matrix

of averaged system is usually assumed to be Hurwitz in order to obtain the stability of

original time-varying systems and guarantee the closeness of solutions in infinite time

domain [54, 55]. However, geometry mechanics provide another possibility for system

analysis. As it links to the features of mechanic systems, it becomes natural for Hamil-

tonian systems. The work [50, 56] analyzed the stability of Hamiltonian systems by

both classic averaging theory and geometric analysis. The connection between them is

the averaged potential which is an energy-like geometric quantity defined from averaged

Hamiltonian, which is an unchanged quantity through averaging. The control design cri-

teria and stability conditions are derived based on averaged potential techinique [57, 58],

which indicates that the equilibrium is vibrational stabilizable if it is an minimum point

in the averaged potential. The geometric method is appealing because it is suitable for a

class of systems where vibrational stabilizability could not be directly obainted by clas-

sic averaging. J.M. Coron [59] discussed the stability for a specific vibrational control

system where there exists some eigenvalue of averaged system lying on the imaginary

axis. Although in this case the averaging method is unable to show the stability directly,

the geometric approach indicates the stability and provides a guidance for the controller

design through the averaged potential. Similar results could be found in [48, 60].

S. Tahmasian [61] considered the existence of different frequencies of the vibrational con-

trol inputs in mechanical systems. His results showed that using multi-frequency inputs

would result in lower control authority compared to single-frequency inputs. Later in

[62], the optimal input waveform shape of vibrational systems in a control-affine form

was discussed by transforming the problem into a constrained optimization problem.
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It turned out the square waves require the smallest amplitudes while sinusoidal input

waveforms consumes the least energy. Combined with a state feedback control, vibra-

tional control inputs have been used to control the fight of a biomimetic air vehicle [63]

and track a prescribed trajectory. Simulation results showed that the proposed con-

trol algorithms have robustness properties to overcome modelling error and parameter

uncertainties.

The control of non-actuated bodies in the under-actuated system relies on the kinematic

or dynamic couplings with the actuated parts. For instance, this coupling behaviour

exists in the example of stabilizing inverted pendulum where the high-frequency oscil-

lations in the suspension point are connected with the motion of the pendulum, which

forms a state-involved vibrational control function in the format of (1.6). Based on this

idea, vibrational control algorithm has been applied to steer and stabilize pendulum-

based robotic manipulators. In [1, 46], it is used to steer and stabilize the planar 2R

manipulator as shown in Figure 1.3.

The dynamics model of the 2R planar manipulator can be obtained from Lagrange

equation [1]:

M11(θ2)θ̈1 +M12(θ2)θ̈2 + C1(θ2, θ̇1, θ̇2) = τ(t),

M12(θ2)θ̈1 +M22(θ2)θ̈2 + C2(θ2, θ̇1, θ̇2) = 0,
(1.9)

where Mij is the mass matrices, Ci is the Coriolis vector functions, τ is driven torque

from actuator in the first joint. The partially linearised system is obtained after following

the same procedure in [1]:

θ̈1 = u,

θ̈2 = −(1 + p cos θ2)θ̈1 − pθ̇2
1 sin θ2 − fv θ̇2,

(1.10)

where p = m2l1l2c/(m2l
2
2c + I2) is a constant and u is the control input. The first part

of the control algorithm is driving the active joint to the desired position by designing

proper u. Then vibration control is introduced by inserting oscillations in the active

joint: θ1(t) = −α
ω cosωt + θ1d. The dynamics of unactuated joint is derived by the

second equation of (1.10), where the dithers are coupled with the pendulum dynamics.

Experiments have been executed to verify the feasibility of the algorithm. The reachable

and stabilizable area for a vertical two-link underactuated manipulator was found in [47]

and the influence of direction of gravity was clarified through nonlinear characteristics

of bifurcations. The stabilization of n-pendulum manipulator was discussed in [48].
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Figure 1.3: A Planar 2R manipulator with under-actuated joint [1].

1.2.5.2 Industry applications

Vibrational control has been successfully implemented into some industry applications

and shown to be useful in the situations where on-line measurement is difficult and

expensive for the feedback control. As introduced in [64], Arrhenius system stands for

a large class of chemical reactors, the behaviours of which are characterized by two

positive parameters. There exists an instability area due to its original dynamics as

well as technique limits such as the maximum admissible temperature. However, the

state in the unstable domain offers optimal economical output. Hence it is needed to

design a controller to stabilize the state. Traditional feedback is difficult to be appied

to such a system because on the one hand, on-line measurement of state is expensive

and inaccurate. On the other hand, the system dynamics are too fast to be controlled

by the feedback considering the existence of a large delay in the control input [64].

The vibrational control algorithm provides an alternative way to stabilize the Arrhenius

system. The work [64] showed that, by adding fast and zero mean oscillations in the input

flow rate, the originally unstable equilibriums can be stabilized and sufficient conditions

for the stability were given. Experiment results [2] in an exothermic continuous stirred-

tank reactor (CSTR, see Figure 1.4) verify the theoretic findings, showing that the

introduction of vibrational control algorithm reduces the negative slope part where the

system is unstable and improves the system characteristics.

Similar applications, to which the feedback cannot be directly applicable, exist. For

example, in the stabilization of the beam of particles along the axis of particle accel-

erators, it is hard to measure the state [65]. It was also applied to the stabilization of

CO2 laser system [66] where on-line measurement is expensive. In 2003, J.A. Holyst

applied vibrational control into a typical financial market and found that if periodic
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Figure 1.4: Diagram of experimental reactor system [2].

perturbations are introduced in demand or supply, the equilibrium price of a product

can be increased [67].

It is interesting to know that the vibrational control algorithm has been applied to sup-

press the oscillations or resonance happened in some systems. It is shown as an effective

method by experimental investigations to stabilize the boundary layer flow and panel

vibration in [68, 69]. In the transient control of boundary layer, the periodic heating and

cooling of the wall results in a parametric oscillation of the fluid viscosity which stabilizes

the flow successfully [68]. In the panel stabilization, an additive oscillating force applied

in the longitudinal direction with high-frequency could suppress the subharmonic vibra-

tions [69]. In 2003, P.L. Chow generalized the method to stabilize the nonlinear elastic

panel excited by the periodic wall-pressure fluctuation in a boundary-layer flow [70].

The control inputs consist of both high-frequency parametric vibrations and the force

amplitude modulation to stabilize the unstable periodic motion. This demonstrates the

stabilization capacities of vibrational control in infinite-dimensional systems. Similar

studies on harmonic vibration suppression by vibrational control have been done for a

rotor-bearing system [71] and a helicopter [43].

1.2.6 Summary of the Literature Review

From the literature review, the framework for stability of vibrational control has been

built by R. Bellman, J. Bentsman and S.M. Meerkov for both linear and non-linear sys-

tems. For linear vibrational systems, a necessary and sufficient condition for stability

have been discovered. In nonlinear systems, the vibrational stabilizability concept were

proposed to capture the convergence of trajectories to a limit cycle. Stability criteria
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based on class averaging theory has been introduced. However, as the linearisation tech-

nique is used for the averaged system to be exponentially stable, the obtained results are

only valid in a local region around the desired equilibrium point. With the development

of recent non-local averaging technique [72], it is possible to extend the local vibrational

stabilization to a non-local version, which has a large domain of attraction, making the

stabilization available for a larger set of initial conditions.

Although some work has addressed the robustness of the vibrational stabilization with

respect to the disturbances or uncertainties, most of them are limited to the output re-

jection to linear systems. When disturbances exist, the influence to the state-trajectories

is worthwhile to explore because they are closely related to the system stability. Besides,

there is few work to discuss the robustness analysis of nonlinear vibrational control sys-

tems. As one of the most important system performance requirements, a framework for

robustness of vibrational control systems is needed to ensure the disturbances handling.

Another potential improvement of the vibrational control method which has not been

discussed in literature, is how to reduce energy consumption coming from injecting high-

frequency dithers. One way is introducing a switching signal which turns off the control

input while it is not necessary in the stabilization process. Then the stability and the

dynamic performance of switched vibrational control systems would be worthwhile for

more attention.

Overall these tasks which could improve different aspects of the vibrational control,

make it more applicable and attractive would be our main objectives in the thesis.

1.3 Contributions of the Thesis

This thesis has the following contributions:

• We extend the current local definition of vibrational stabilizability for nonlinear

vibrational control systems to a non-local version by proposing a new definition

called semi-globally practically vibrational (SPV) stabilizability, in which the do-

main of attraction can be arbitrarily large. Sufficient criteria for SPV stabilizability

are derived which require the averaged system is globally asymptotically stable.

This extends the feasibility of vibrational control to a larger class of engineering

systems. The new proposed definition is also useful to be generalized to charac-

terize the robustness of the vibrational control systems. These results have been

published in [73].
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• A robustness framework of vibrational control systems is built which addresses

different types of disturbances for both linear and nonlinear systems. When the

system stabilized by vibrational control is linear, input-to-state stability (ISS) is

obtained for any bounded disturbances. In particular, when disturbances are also

periodic, ultimate bound can be attenuated by high frequencies. In other words,

a higher frequency leads to a smaller ultimate bound. By using strong and weak

averaging techniques, a sufficient condition is given to show that the vibrational

stabilization can handle a more general class of disturbances that are coupled with

the state. These results have been published in [74, 75].

For nonlinear vibrational control systems, by applying the sampling-data Lya-

punov method the local robustness properties are obtained with respect to a class

of additive constrained disturbances. Then the found local robustness properties

are extended to more general robustness results. By considering a relatively weak

stability condition, similar robustness conclusions can be made for a large class of

systems with either local or non-local stability domain. When the disturbances

are periodic, the vibrational control system can handle large disturbances if they

are fast-varying and the average of the disturbances is small. These results have

been included in [76] and a journal paper recently submitted to Automatica.

• The energy consumption of vibrational control algorithm is relatively high as the

high-frequency dithers are used, which have potential damages to the actuators. To

reduce the energy consumption, novel switching laws are introduced to both linear

and nonlinear vibrational control systems. Performance of switched vibrational

control systems in consideration of disturbances is explored. The guidelines for the

switching law design and parameters tuning are provided to reduce the ultimate

bound and increase the convergence speed. Parts of these results are included in

the aforementioned submitted journal paper.

1.4 Organization of the Thesis

The remaining part of this thesis is organized as follows. In Chapter 2, the Lyapunov

stability for both equilibrium points and periodic solutions is reviewed. Then the gen-

eral format of nonlinear vibrational control systems and the definition of vibrational

stabilizability are introduced. An important coordinate transformation for stability and

robustness analysis is introduced before discussing the local and non-local stabilization

results.

Chapter 3 and 4 address the robustness of vibrational control systems. In Chapter 3,

both the original dynamics and vibrational control function are assumed to be linear. An
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important robustness property called input-to-state stability (ISS) will be introduced fol-

lowed by the strong and weak averaging techniques, which are useful robustness analysis

tools for a general nonlinear time-varying system. As a natural choice for the robustness

analysis, the first robustness result is based on strong and weak averaging techniques,

which is applicable to slowly varying disturbances. Subsequently, a more general ro-

bustness is obtained by applying averaging and perturbation techniques. Last part of

Chapter 3 discusses the system performance in the presence of a more general class of

disturbances that are coupled with state.

The robustness analysis for nonlinear vibrational control systems is given in Chapter

4. Firstly a local robustness conclusion is obtained from extending the local vibrational

stabilization by considering the existence of additive disturbances. With weak stability

conditions, more general robustness results with respect to additive disturbances are

found for a large class of vibrational control systems with either local or non-local sta-

bility domain. When disturbances are periodic, the robustness properties of vibrational

control method become stronger. By adapting the weak averaging technique, the vi-

brational control systems can handle arbitrarily large bounded disturbances under some

conditions.

The system performance of switched vibrational control systems is introduced in Chapter

5. The basic knowledge on the switched systems in literature is reviewed, including dif-

ferent switching schemes and the stability and robustness analysis methods of switched

systems. A switching signal with average dwell time is introduced to the linear vi-

brational control systems and the stability of these switched systems is discussed. To

avoid the trajectories escaping the domain of attraction for nonlinear vibrational con-

trol systems, a periodic switching scheme is used. Dynamic behaviour of the switched

vibrational control systems is analysed in consideration of additive disturbances. The

guidelines for the switching laws design and parameters tuning are carefully explained.

Finally, the conclusions and an outline of possible future research directions are included

in Chapter 6. The references are listed in the Bibliography and the Appendices contain

detailed derivations of some theorems in this thesis.



Chapter 2

Vibrational Stabilization of

Nonlinear Systems

2.1 Overview

This chapter will address the stabilization of nonlinear systems with vibrational control

method. First of all, a stability definition called vibrational stabilizability is introduced

to characterize a class of nonlinear systems that can be stabilized by using dithers.

Vibrational stabilizability shows that an open-loop unstable system can be stabilized to

a limit cycle around the desired equilibrium point. To show the system is vibrationally

stabilizable, a coordinate change is needed to convert the problem from the stability

analysis of a limit cycle to an equilibrium point, thus the stability analysis tools for an

equilibrium point can be applied.

Averaging is a key technique to show the stability of a nonlinear time-varying system

by transforming it to an autonomous system. Based on the classic averaging tool, a

local vibrational stabilizability result in literature will be reviewed, which assumes that

the linearization matrix of the averaged system is Hurwitz. The system is shown to be

vibrationally stabilizable within a local domain of attraction.

However, when the Hurwitz condition is unsatisfied, for example, some eigenvalues lie

on the imaginary axis of complex plane, it is interesting to discuss whether the systems

still can be stabilized by vibrational control. A motivational example is found to sup-

port the hypothesis. The averaged system in the example is globally asymptotically

stable although its linearisation matrix is not Hurwitz. Simulations results indicate the

satisfaction of vibrational stabilizability so we seek an alternative averaging technique

to extend the results to make it applicable to a large class of systems.

15
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Thus we propose a non-local vibrational stabilization concept called semi-globally prac-

tically vibrational (SPV) stabilizability which means the system can be stabilized by

vibrational control algorithm for any compact initial domain. We shows that the SPV

stabilizability can be obtained if the averaged system is globally asymptotically stable,

uniformly in the tuning parameter.

The chapter is organized as follows. In Section 2.2, the Lyapunov stability for an equi-

librium point as well as periodic solutions is introduced. As the key analysis tool for

stability analysis of vibrational control systems, both local and non-local averaging tech-

nique will be introduced and explained. A general nonlinear vibrational control systems

is formulated in Section 2.3 before the definition of vibrational stabilizability is intro-

duced. Next, the procedure to make a coordinate change is explained after introducing

several auxiliary systems. Based on that, the local vibrational stabilizability result is

put forward. In Section 2.6, the conditions of semi-globally practically asymptotically

vibrational stabilizability is proposed, which are verified by numeric simulations. Section

2.7 summarizes the chapter.

2.2 Preliminaries

2.2.1 Lyapunov Stability

2.2.1.1 Autonomous systems

In this section, we will introduce the Lyapunov stability. Firstly let’s consider an au-

tonomous systems

ẋ = F (x), x(t0) ∈ Rn (2.1)

where F : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn to Rn. A function

is Lipschitz if there exists a contant L such that for x, y ∈ D the following inequality is

satisfied

|f(x)− f(y)| ≤ L|x− y|1. (2.2)

Without losing generality, suppose the origin x = 0 is the equilibrium point of the system

such that F (0) = 0. Then the stability of the origin x = 0 is defined as follows

Definition 2.1. [77] The equilibrium point x = 0 is

1In this thesis, we use the notation | · | to present the Euclidean norm and ‖ · ‖ for the norm in the
functional space.
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• stable if for each δ > 0 there exists ∆ > 0 such that

|x(t)| < δ, ∀t ≥ 0 (2.3)

whenever |x(0)| < ∆.

• unstable if it is not stable.

• asymptotically stable if it is stable and ∆ can be chosen such that

lim
t→∞

x(t) = 0 (2.4)

whenever |x(0)| < ∆.

• globally asymptotically stable if it is asymptotically stable and ∆ can be arbitrarily

large.

A positive Lyapunov function can be used for determine the stability of the equilibrium

point:

Theorem 2.1. [77] Let x = 0 be an equilibrium point for (2.1) and D ⊂ Rn be a domain

containing x = 0. Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0}. If V̇ (x) ≤ 0 for all x ∈ D then x = 0 is stable.

Moreover, if V̇ < 0 for all x ∈ D − {0} then x = 0 is asymptotically stable.

If the Lyapunov function is radially unbounded and the derivative is negative, the equi-

librium is globally asymptotically stable:

Theorem 2.2. [77] Let x = 0 be an equilibrium point for (2.1). Let V : Rn → R be a

continuously differentiable function such that V (0) = 0 and V (x) > 0, ∀x 6= 0 . If V (x)

is radially unbounded i.e. V (x) → ∞ as |x| → ∞ and V̇ < 0 for all x 6= 0, then x = 0

is globally asymptotically stable.

Normally the derivative of Lyapunov function along the system (2.1) is required to

be negative to guarantee the asymptotic stability of the equilibrium point, however in

some system with the additional knowledge about the behaviour of the solutions, the

negativity can be relaxed by the LaSalle’s invariance principle. Next, the definition of

invariant set and the LaSalle’s theorem are stated.

Definition 2.2. A set M is said to be an invariant set with respect to (2.1) if

x(t) ∈M,∀t ≥ 0 (2.5)

for all x(0) ∈M .
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Theorem 2.3. [78] Let x = 0 be an equilibrium point for (2.1). Let V : Rn → R be a

continuously differentiable radially unbounded function such that V (0) = 0 and V (x) > 0

for all x 6= 0. Suppose that the derivative along the solutions of the system (2.1) satisfies

V̇ ≤ 0. Let M be the largest invariant set contained in the set {x : V̇ (x) = 0}. Then the

system (2.1) is stable and every solution that remains bounded for t ≥ 0 approaches M

as t→∞. In particular, if all solutions remain bounded and M = {0}, then the system

(2.1) is globally asymptotically stable.

Remark 2.1. The boundedness of solutions can be satisfied by the condition V̇ ≤ 0.

To show the equilibrium point x = 0 is globally asymptotically stable it is required to

demonstrate that no solutions can stay in the set {x : V̇ (x) = 0} except for x = 0. We

will use the LaSalle Theorem later in the example 2.2 to show the averaged system is

globally asymptotically stable.

The stability of an equilibrium point of a nonlinear autonomous system (2.1) can be in-

dicated by investigating the stability of linearised system associated with the equilibrium

point. The follow theorem is known as Lyapunov’s indirect method:

Theorem 2.4. [77] Let x = 0 be an equilibrium point for the nonlinear system (2.1).

Let the linearised matrix

A =
∂f

∂x
(x)
∣∣
x=0

.

Then

• The origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of A, where

Re(λi) means the real part of some eigenvalue.

• The origin is unstable if Re(λi) > 0 for one or more of the eigenvalues of A.

2.2.1.2 Time-varying systems

Next, we will introduce the stability of the equilibrium point for a nonlinear time-varying

system. The following time-varying system is considered:

ẋ = F1(t, x), x(t0) ∈ Rn (2.6)

where F1 : [0,∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x on

[0,∞) × D, then there exists a constant L such that for all x, y ∈ D and t ≥ 0 the

following inequality satisfies:

|F1(t, x)− F1(t, y)| ≤ L|x− y|, (2.7)
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where D ∈ Rn is a domain that contains the origin x = 0. The origin is an equilibrium

point for (2.6) if F1(t, 0) = 0, ∀t ≥ 0.

Comparison functions are introduced to characterize the stability of time-varying sys-

tems.

Definition 2.3. [77] A continuous function α : [0, a) → [0,∞) is said to belong to

class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if

α : [0,∞)→ [0,∞) and α(r)→∞ as r →∞.

Definition 2.4. [77] A continuous function β : [0, a)× [0,∞) is said to belong to class

KL if for each fixed s the mapping β(r, s) belongs to class K with respect to r and

for each fixed r the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as

s→∞.

The definitions of uniform stability, uniform asymptotic stability are given by using class

K and KL functions.

Definition 2.5. [77] The equilibrium point x = 0 of (2.6) is

• uniformly stable (US) if there exists a class K function α, and a positive constant

c, independent of t0, such that

|x(t)| ≤ α(|x(t0)|),∀t ≥ t0 ≥ 0, ∀|x(t0)| ≤ c; (2.8)

• uniformly asymptotically stable (UAS) if there exists a class K function α, a class

KL function β and a positive constant c, independent of t0, such that

|x(t)| ≤ β(|x(t0)|, t− t0),∀t ≥ t0 ≥ 0,∀|x(t0)| ≤ c; (2.9)

• uniformly exponentially stable (UES) if there exist positive constants c, k and λ

such that

|x(t)| ≤ k|x(t0)|e−λ(t−t0), ∀|x(t0)| ≤ c; (2.10)

• globally uniformly asymptotically (GUAS) stable if the inequality (2.9) is satisfied

for any initial state x(t0) ∈ Rn.

When the system is parametrized, the stability could depend on the tuning of the pa-

rameter. Next we consider a class of parametrized nonlinear time-varying systems

ẋ = F2(t, x, ε), x(t0) ∈ Rn, (2.11)
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where xe is the equilibrium point uniformly in t such that F2(t, xe, 0) = 0. The semi-

globally practically asymptotic stability for system (2.11) is defined as follows:

Definition 2.6. [45] Let β ∈ KL. The equilibrium point xe of a time-varying system ẋ =

F2(t, x, ε) is said to be semi-globally practically asymptotically (SPA) stable uniformly

in ε if for each pair of strictly positive real numbers (∆, δ), there exists ε∗ > 0 such that

for all ε ∈ (0, ε∗), the solutions of ẋ = F2(t, x, ε) satisfy

|x(t)− xe| ≤ β(|x0 − xe|, t− t0) + δ, ∀t ≥ t0 ≥ 0, (2.12)

whenever |x0 − xe| ≤ ∆.

Remark 2.2. Compared to uniform asymptotic stability defined in Definition 2.5, SPA

stability is dependent on a tuning parameter such that it holds when the parameter ε

is sufficiently small. According to the definition, the domain of attraction is captured

by the parameter ∆ which can be arbitrarily large. All trajectories starting in the

domain of attraction converge to a neighbourhood that can be arbitrarily small around

the equilibrium point, as characterized by the parameter δ. This neighbourhood circling

the trajectories of steady-states is called ultimate bound.

2.2.1.3 Stability of periodic solutions

When periodic solutions exist in the time-varying systems

ẋ = F1(t, x), x(t0) ∈ Rn, (2.13)

the defined stability concepts for an equilibrium point can be adapted to characterize

the stability of periodic solutions. Let u(t) be a periodic solution of ẋ = F1(t, x) thus

it satisfies u(t+ T ) = u(t) and u̇(t) = F1(t, u(t)). Introducing v(t) = x(t)− u(t), in the

new coordinate, the system (2.13) becomes

v̇ = F1(t, v + u(t))− F1(t, u(t)) = F̃1(t, v). (2.14)

Hence, in the new coordinate, v = 0 becomes an equilibrium point of the system (2.14).

Thus the definition of uniformly asymptotic stability for an equilibrium point can be

used to describe the asymptotic stability of periodic solutions.

Definition 2.7. Let D be a domain in Rn which contains origin. The periodic solution

u(t) of nonlinear time-varying systems ẋ = F1(t, x) is called uniformly asymptotically

stable, if there exists a class-KL function β(·, ·) such that in the new coordinate v = x−u,
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the solutions of v(t) satisfy

|v(t)| ≤ β (|v(t0)| , t− t0) , ∀v(t0) ∈ D.

When a family of parametrized systems ẋ = F2(t, x, ε) is considered, the periodic solution

u(t) is also parametrized by ε, i.e., u(t) = uε(t). The asymptotic stability uniformly in

ε is defined as follows:

Definition 2.8. Let D be a domain in Rn which contains origin. The periodic solutions

uε(t) of nonlinear time-varying systems ẋ = F2(t, x, ε) is called uniformly asymptotically

stable, uniformly in ε, if there exists a class-KL function β(·, ·) such that there exists

ε∗ > 0 such that for any ε ∈ (0, ε∗), in the new coordinate vε = xε − uε, the solutions

wε(t) satisfy

|vε(t)| ≤ β (|vε(t0)| , t− t0) ,∀vε(t0) ∈ D.

Remark 2.3. The stability definition of periodic solutions is generated from stability

definition of the equilibrium point by analyzing the stability of origin in system (2.14).

The trajectories of periodic solutions uε(t) form a closed and time-invariant orbit Ωu in

state plane such that uε(t) stays in the orbit Ωu for all t ≥ t0 if the initial condition

uε(t0) lies in the orbit Ωu. If periodic solutions uε(t) are locally asymptotically stable, the

closed orbit will attract all solutions in its neighbourhood. The ∆-domain of attraction

is then defined as a neighbourhood of Ωu: ROA =

{
x ∈ Rn| inf

y∈Ωu
|x− y| < ∆

}
.

Correspondingly, next definition defines uniformly global asymptotic stability uniformly

in parameter ε.

Definition 2.9. The periodic solution uε(t) of nonlinear time-varying systems ẋ =

F2(t, x, ε) is called uniformly globally asymptotically stable, uniformly in ε, if there exists

a class-KL function β(·, ·) such that there exists ε∗ > 0 such that for all ε ∈ (0, ε∗), in

the new coordinate wε = xε − uε, the solutions of wε(t) satisfy

|wε(t)| ≤ β (|wε(t0)| , t− t0) ,∀vε(t0) ∈ Rn.

2.2.2 Averaging

Averaging is an approximation method that estimates the solutions x(t) of a time-

varying system by calculating the solutions xav(t) of a time-invariant averaged system

[6], [55]. The approximation error between x(t) and xav(t) can be reduced by tuning the

system parameters, thus the analysis of the time-varying system behaviour or stability

is dependent on the time-invariant averaged system that is normally simpler than the

original time-varying system.
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The order of magnitude notation will be used to describe the approximation error, which

is defined in the following:

Definition 2.10. δ1(ε) = O(δ2(ε)) if there exist positive constants k and c such that

|δ1(ε)| ≤ k|δ2(ε)|,∀|ε| < c. (2.15)

Remark 2.4. In the averaging theory, the error between the solutions x(t) and xav(t)

can be in the order of ε where ε is a positive tuning parameter in the system. Expressed

as x(t)−xav(t) = O(ε), the error satisfies the inequality |x(t)−xav| ≤ kε, ∀ε ≤ c where

k, c are postive constants.

Next we will consider the parametrized time-varying systems and introduce the Aver-

aging results. The following parametrized time-periodic system is considered:

ẋ = εF2(t, x, ε), x(t0) ∈ Rn, (2.16)

where ε is a small positive parameter and there exists T > 0 such that

F2(t+ T, x, ε) = F2(t, x, ε), ∀(t, x, ε) ∈ [0,∞)×D × [0, ε∗], (2.17)

for some domain D ∈ Rn. The autonomous averaged system associated with the system

(2.16) is defined as:

ẋ = εFav(x), x(t0) ∈ Rn, (2.18)

where Fav(x) = 1
T

∫ T
0 F2(τ, x, 0)dτ .

The closeness of solutions between time-varying systems (2.16) and its approximated

time-invariant system (2.18) is characterized in the next theorem. Furthermore, if the

averaged system (2.18) is locally exponentially stable then stability of time-varying sys-

tem (2.16) could be concluded.

Theorem 2.5. [77, Theorem 10.4] Let F2(t, x, ε) and its partial derivatives with respect

to (x, ε) up to the second order be continuous and bounded for (t, x, ε) ∈ [0,∞)×D0 ×
[0, ε∗] for every compact set D0 ∈ D, where D is a domain in Rn. Suppose F is T -

periodic in t for some T > 0 and ε is a positive parameter. Let xε(t) and xav,ε(t) denote

the solutions of (2.16) and (2.18) respectively.

• If xav,ε(t) ∈ D ∀t ∈ [0, b/ε] and xε(0) − xav,ε(0) = O(ε), then there exists ε∗ > 0

such that for all 0 < ε < ε∗, xε(t) is defined and

xε(t)− xav,ε(t) = O(ε) on [0, b/ε].



Chapter 2. Vibrational Stabilization of Nonlinear Systems 23

• If the origin x = 0 ∈ D is an exponentially stable equilibrium point of the averaged

system (2.18), Ω ∈ D is a compact subset of its domain of attraction, xav,ε(0) ∈ Ω,

and xε(0)− xav,ε(0) = O(ε), then there exists ε∗ > 0 such that for all 0 < ε < ε∗,

xε(t) is defined and

xε(t)− xav,ε(t) = O(ε) on [0,∞].

• If the origin x = 0 ∈ D is an exponentially stable equilibrium point of the averaged

system (2.18), then there exist positive constants ε∗ and k such that for all 0 <

ε < ε∗, (2.16) has a unique, exponentially stable, T -periodic solution xε(t) with

the property |xε(t)| ≤ kε.

Remark 2.5. The first sub-result shows that if the initial conditions of the time-varying

system (2.16) and the averaged system (2.18) are close, by tuning the parameter ε suffi-

ciently small, the closeness of solutions can be arbitrarily small in a finite time interval.

Besides, if the origin is an exponentially stable equilibrium point for the averaged system

(2.18), the closeness of solutions are sufficiently small for infinite time range. Moreover,

in this case the time-varying system (2.16) has exponentially stable periodic solutions,

which converge to a neighbourhood of the origin. The parameter ε plays an important

role for the system behaviour of (2.16) and (2.18) as when ε tends to zero both tra-

jectories change slowly, behaving more like a constant. Actually in this special form of

systems, the solutions of the time-varying system (2.16) can be regarded as the solutions

of the averaged system (2.18) perturbed by a small perturbation which is in the order

of ε. More generally, the periodic requirement for the time-varying system (2.18) can

be relaxed to almost periodic one, where similar closeness and stability can be reached

by assuming stability of the corresponding averaged system (see more details in [77,

Theorem 10.5]). However, considering that the averaged system is assumed to be expo-

nentially stable in a local region, the obtained closeness of solutions and stability results

are both restricted in the predefined local domain.

A non-local stability can be derived for the time-varying system (2.16) if the averaged

system (2.18) is globally asymptotically stable, which is introduced in [45, 72].

Theorem 2.6. [45] Suppose F2(t, x, ε) is Lipschitz for x ∈ D uniformly in t and

ε, where D is a domain in Rn. If the averaged system (2.18) is globally asymptotically

stable, the actual system ẋ = εF2(t, x, ε) is semi-globally practically asymptotically stable,

uniformly in ε.

Remark 2.6. Compared to the local averaging results in Theorem 2.5, Theorem 2.6

supposes that the averaged system is globally asymptotically stable, consequently the

stability of periodic system can be guaranteed in the semi-global region. In the next
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sections, we will use both local and non-local averaging result to indicate the stability

of nonlinear vibrational control systems.

2.3 Nonlinear Vibrational Control Systems and Stabiliza-

tion

The objective of vibrational control method is to stabilize an unstable equilibrium point

xe for the time-invariant system:

ẋ = f(x), x(t0) = x0 ∈ Rn, (2.19)

where nonlinear mapping f : Rn → Rn is continuous and the notion xe denotes a point

in Rn such that f(xe) = 0.

After introducing the dither signals, the general format of nonlinear parametrized vibra-

tional control systems have been formulated in [29, 79]. It satisfies the following additive

form:

ẋ = f(x) +
1

ε
g

(
t

ε
, x

)
, x(t0) = x0 ∈ Rn, (2.20)

for all t ≥ t0 ≥ 0. Here g : [t0,∞)× Rn → Rn is continuous and T -periodic in t, locally

Lipschitz in x, uniformly in t. The parameter ε is a small positive constant.

Remark 2.7. As discussed in [29], vibrational control systems have a specifically additive

structure which consists of two parts: the first term represents open-loop system dy-

namics that could be unstable while the second term is related to high-frequency dither

signals. This special structure originates from the stabilization of inverted pendulum

without using feedback. In that example, a sinusoidal dither is added to the suspension

pin vertically as an open loop control input, which results in a closed-loop-like form

(2.20) as dither signals are naturally coupled with states.

Remark 2.8. The time-periodic and dither related mapping g(t, x) is the key to stabilize

the unstable equilibrium point by injecting oscillations, however there still lacks of a

standard procedure to design a suitable g(·, ·) for a given unstable system f(x). Nor-

mally it relies on the practical experience to find a component to add the dither signal

which couples suitably with the system dynamics. Another possible way is considering

parameter perturbations, as shown in the stabilization of Rayleigh and Duffing equation

[27]. Moreover, it can also result from time-varying feedback control gain as illustrated

in the example of periodic output feedback control systems [15].
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The idea of vibrational stabilizability is to show that by inserting dither signals, the

solutions of the system (2.20) converge to asymptotically stable periodic solutions around

the desired equilibrium point. The definition is given below:

Definition 2.11. [26] Let D ∈ Rn be a domain containing the equilibrium point xe as an

interior point. The time-invariant system (2.19) is said to be vibrationally stabilizable

(v-stabilizable) if there exists an almost periodic and zero-mean function g(t, x) in t

such that the system (2.20) has an almost periodic, asymptotically stable solution x(t)

characterized by

|x̄− xe| ≤ δ, ∀x0 ∈ D, (2.21)

where x̄ = lim
T→∞

1

T

∫ t0+T

t0

x(τ)dτ .

Remark 2.9. The definition is modified from [26], compared to that, the domain of

attraction is introduced to specify the initial domain. The definition requires that the

vibrational control system (2.20) has asymptotically stable periodic solutions, which

would form a limit cycle in the state-space. Besides, it requires the average of the

solutions converges arbitrarily close to the equilibrium point. From a geometric view,

the equilibrium point is thus the averaged center of the limit cycle formed by the periodic

solutions.

Remark 2.10. The definition of vibrational stabilizability captures the properties of the

original dynamics (2.19) to be stabilized by using dithers. We sometimes also call it

vibrational stability, which addresses the stability of periodic solutions of the vibratioinal

control systems (2.20) after injecting dithers. Thus it is obvious that if the system (2.20)

is vibrationally stable, then the original dynamics (2.19) is vibrationally stabilizable. To

obtain the vibrational stabilizability, it is normally more convenient to show that the

system (2.20) is vibrationally stable for some dither function g(·, ·). In other words,

the problem in stability analysis is converted to show that limit cycle of the vibrational

system (2.20) is asymptotically stable.

In some situations, not only the averaged trajectories of the vibratioinal control systems

(2.20) converge to the equilibrium point xe, but also does the real trajectories when the

limit cycle shrinks to a point along a trajectory to the equilibrium point. This kind of

vibrational stability property is called totally vibrationally stabilizability:

Definition 2.12. [26] Let D ∈ Rn be a domain containing the equilibrium point xe as

an interior point. The equilibrium point xe of f(x) is said to be totally vibrationally

stabilizable (tv-stabilizable) if for any δ > 0, there exists periodic g(t, x) in time with

zero-mean-value such that there exists t∗ s.t. the solutions x(t) satisfy

|x(t)− xe| < δ, ∀t > t∗,
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whenever x0 ∈ D.

Remark 2.11. Totally vibrationally stabilizable system has a better performance as the

trajectories converge to the desired equilibrium point which satisfies the control objec-

tive. In this special case, the vibrational stabilizability for limit cycle has the same

meaning with asymptotically stability for an equilibrium point. Although it has special

requirements for the system, it’s not a rare phenomena, for example, the stabilization

of inverted pendulum by injecting dithers satisfies this definition. We will give the con-

ditions for both vibrational stabilizability and totally vibrational stabilizability in the

next section.

2.4 Coordinate Transformation

In order to analyze the stability of the limit cycle of system (2.20), a coordinate change is

introduced to transform the system (2.20) into a standard average form (2.16). Following

the procedures in [26], after introducing a new time ‘τ = t
ε ’, the system (2.20) becomes

dx

dτ
= εf(x) + g (τ, x) , x(τ0) = x0 ∈ Rn. (2.22)

It is noticeable that the dynamics of the system (2.22) is dominated by the periodic

function g (τ, x) when ε is sufficiently small, so we will analyze the behaviour of the

auxiliary system first:
dξ

dτ
= g (τ, ξ) , ξ(τ0) = c. (2.23)

Here we make a mild assumption that the solution ξ(τ) = h(τ, c) of the time-periodic

system (2.23) is also periodic:

Assumption 2.1. Let Ω be a compact set in Rn containing the origin. For any given

constant c ∈ Ω, the nonlinear function h(τ, c) is continuous and T -periodic with respect

to τ , locally Lipschitz continuous with respect to c.

Under this assumption, the behaviour of the system (2.23) is a limit cycle, the size

or position of which is decided by the initial constant c. The overall behaviour of the

system (2.22) can be regarded as the behaviour of the dominant periodic vibrational

function g(τ, x) perturbed by the original dynamics εf(x) such that it keeps updating

the initial constant c, causing a transient movement of the limit cycle h(τ, c). To capture

this transient behaviour, a coordinate change is introduced which substitutes the initial

constant c with new coordinate y:

x(τ) = h(τ, y). (2.24)
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As shown in [26],
{
∂h
∂y

}−1
exists in Ω, by taking derivative in both side, the dynamics

of transient y-system satisfy the following equation

dy

dτ
= ε

{
∂h

∂y

}−1

f(h(τ, y)) = εf1(τ, y). (2.25)

Remark 2.12. The coordinate change provides a way to analyze the dynamics behaviour

of the system (2.22). We analyze y-system (2.25) first to see transient behaviour y(t).

As x(t) and y(t) are linked by the coordinate change, the behaviour of x(t) can be

obtained consequently once y(t) is known. To guarantee the convergence of the x(t),

y(t) is supposed to converge to some point ye such that the x(t) converge to the limit

cycle h(t, ye). The problem is then converted to analyze the stability of transient system

(2.25), which is also periodic in time. Averaging is a useful method to show the stability

of such a time-periodic system by approximating the behaviour with an autonomous

averaged system.

The averaged system of the transient system (2.25) is

dz

dτ
= εf1,av(z), (2.26)

where f1,av(z) := 1
T

∫ T
0

{
∂h
∂z

}−1
f(h(τ, z))dτ and ze is the equilibrium point of f1,av(z)

such that f1,av(ze) = 0.

Remark 2.13. According to the averaging theory (Theorem 2.5 and 2.6), when the aver-

aged system (2.26) holds some stability conditions, the corresponding stability of tran-

sient system can be concluded. In the next section, the local averaging technique is

firstly used to produce vibrational stabilizability in a local region, then we extend the

results to non-local vibrational stabilizability by applying non-local averaging method.

Remark 2.14. Coordinate change is an essential bedding for the use of averaging tech-

nique, otherwise the averaging technique is unable to prove the stability if directly

applied to the overall system (2.20). Due to the prerequisite g(t, x) is zero mean func-

tion, which would become zero after averaging, the averaged system is thus composed

of the original dynamics i.e. ẋ = f(x) that has an unstable equilibrium point. When

the averaged system is unstable, we could neither conclude the time-varying system is

stable or not. The reason why the transient system (2.25) in y-coordinate can be stable

is that the dithers are coupled with original dynamics so they have a chance to stabilize

the averaged system (2.26) by tuning the parameter. Proved in the [29], the coordi-

nate change is non-singular so the stability properties of the overall system (2.20) and

transient system (2.25) are equivalent.
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2.5 Local Vibrational Stabilization

The vibrational stability of the system (2.20) relies on the stability analysis of transient

y-system (2.25), the behaviour of which is approximated by its averaged system (2.26).

As the coordinate change is non-singular, the limit cycle in the system (2.20) can be

shown to be stable if the averaged system (2.26) holds certain stability. In [26], the

linearization matrix of the averaged system (2.26) is assumed to be Hurwitz, leading to

the fact that the averaged system is locally exponentially stable. Besides, the following

assumptions are needed.

Assumption 2.2. Let Ω be a compact set in Rn. The nonlinear mapping f1(·, y) in the

dynamics of y(τ) in (2.25) is locally Lipschitz continuous for all y ∈ Ω .

Assumption 2.3. The nonlinear mapping f1,av(·) in the averaged system (2.26) is

continuously differentiable for all z ∈ Ω.

Denote ze as the equilibrium point of the averaged system (2.26). To guarantee that the

averaged trajectories converge to desired equilibrium point xe, the equilibrium points

are supposed to satisfy the following assumption:

Assumption 2.4. There exists an equilibrium point ze of (2.26) such that

1

T

∫ T

0
h(τ, ze)dτ = xe. (2.27)

Therefore, the local vibrational stabilization of system (2.20) is summarized in the fol-

lowing Theorem.

Theorem 2.7. [26] Let Ω be a compact set in Rn. Suppose that Assumptions 2.1 -

2.4 hold. If the linearization matrix of the averaged system (2.26) Ā =
[
∂f1,av
∂z

]
z=ze

is Hurwitz, then there exist ε∗ > 0 such that for any ε ∈ (0, ε∗), the system (2.19) is

vibrationally stabilizable for all x0 ∈ Ω.

Remark 2.15. Theorem 2.7 shows that if the condition (2.27) holds and the averaged

system (2.26) is locally exponentially stable, then the system (2.19) is vibrationally sta-

bilizable. The proof employed the averaging theory (Theorem 2.5) to show the closeness

of solutions, i.e. |y(τ)− z(τ)| ≤ kε,∀t ≥ t0 for some positive k. As the averaged system

(2.26) is locally exponentially stable, y(τ) exponentially converges to a neighbourhood

of equilibrium point ze. The coordinate change x(τ) = h(τ, y) then guarantees that

trajectories of the system (2.20) converge to a limit cycle h(τ, ze), which is asymptot-

ically stable. Condition (2.27) ensures that the average of the limit cycle is xe thus

the averaged centre requirement in the Definition 2.11 is satisfied. The stability of the
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system (2.20) can be guaranteed when the initial condition starts in a neighbourhood of

the limit cycle h(t, ze).

Remark 2.16. If h(τ, ·) is almost periodic, condition (2.27) can be slightly modified by

taking the limit of T and with the general averaging results (see [77, Theorem 10.4] for

more details), Theorem 2.7 can still be derived.

Remark 2.17. In [26], it also indicates that if Ā is an unstable matrix, the system (2.19)

cannot be vibrational stabilizable. However, there is a special case when Ā is neither

Hurwitz nor unstable, there lacks of results to show the stability properties in this case.

We will see an example with all the eigenvalues on the imaginary axis and show that it

is also vibrational stabilizable in the next section.

When the equilibrium points have closer relationship by the coordinate change, totally

vibrational stabilizability could be achieved.

Corollary 2.1. Let Ω be a compact set in Rn. Suppose that Assumptions 2.1 - 2.3

hold. If the points xe and ze satisfy the coordinate change such that xe = h(t, ze), and

the linearization matrix of the averaged system Ā =
[
∂f1,av
∂z

]
z=ze

is Hurwitz, then there

exists ε∗ > 0 such that for any ε ∈ (0, ε∗), the system (2.19) is totally vibrationally

stable for all x0 ∈ Ω.

Example 2.1. In the stabilization of the inverted pendulum by vibrational control, the

coordinate change used is x1 = y1

x2 = y2 −
a

l
cos τ sin y1

. (2.28)

In this example, xe = ze = [π, 0]T . They satisfy the coordinate change xe = h(t, ze)

such that totally vibrational stabilization is achieved. It happens because as y1 gets

close to π, the amplitude of oscillation a
l sin y1 becomes smaller such that the oscillation

diminishes so the x(t) converges to the equilibrium point instead of a limit cycle. For

other ze, the oscillating part a
l cos τ sin y1 would cause a limit cycle of x(t) in the steady

states. ◦

2.6 Non-local Vibrational Stabilization

In Theorem 2.7, the linearization technique is used to show the stability of averaged

system such that it is only guaranteed in a local domain. In this section, we will seek

whether the vibrational stabilizability can be extended to a larger non-local initial do-

main. We propose a non-local definition of vibrational stabilizability called semi-globally

practically vibrational (SPV) stabilizability in which the domain of attraction can be
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arbitrarily large. SPV stabilizability can be achieved if the averaged system is globally

asymptotically stable, which is formally stated in Theorem 2.8. First of all, a motiva-

tional example will be given, whose linearisation matrix is not Hurwitz. In this case,

Theorem 2.7 cannot be applied to show the vibrational stabilizability so new analysis

tools needs to be established to indicate the stability of such a class of system.

Example 2.2. Consider the following vibrational control system:[
ẋ1

ẋ2

]
=

[
x2

x1 − x3
2

]
+

[
0 0

2
ε sin

(
t
ε

)
0

][
x1

x2

]
. (2.29)

This system belongs to the category of a linear multiplicative vibrational control scheme

[26] because the vibrational function g( tε , x) has a linear form.

The original time-invariant system f(x1, x2) = [x2, x1 − x3
2]T is unstable as the eigen-

values of linearization matrix on origin are ±1 where positive eigenvalue exists.

Following steps presented in Section 2.4, in the new time τ , the coordinate transforma-

tion is obtained as [
x1

x2

]
=

[
1 0

−2 cos(τ) 1

][
y1

y2

]
. (2.30)

By applying the averaging technique as introduced in Section 2.2.2, the averaged system

(2.26) after transformation is[
ż1

ż2

]
=

[
0 1

−1 0

][
z1

z2

]
+

[
0

−8z2
1z2 − z3

2

]
. (2.31)

In this example, the linearization matrix Ā of the averaged system (2.31) have eigenvalues

±i on the imaginary axis. It indicates that Ā is not a Hurwitz. Theorem 2.7 is thus not

applicable.

Construct the quadratic Lyapunov function V (z1, z2) = 1
2(z2

1 + z2
2). The derivative of

Lyapunov function along the trajectories of the averaged system is V̇ = −z4
2−8z2

1z
2
2 ≤ 0.

Let S = {z ∈ R2|V̇ (z) = 0}, as V̇ = 0⇒ z1 = 0, z2 = 0, no solution can stay identically

in S other than the trivial solution z1(t) = 0, z2(t) = 0.

As the Lyapunov function V (z1, z2) is radially unbounded in R2, applying the LaSalle’s

Theorem 2.3, the origin of the averaged system (2.31) is globally asymptotically sta-

ble. The numerical solutions of the example shown in Figure 2.1 indicate vibrationally

stabilizable behaviors. ◦
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This example shows that when the averaged system (2.2) is globally asymptotically

stable instead of locally exponentially stable, the vibrational control systems (2.20) still

have some stability properties due to closeness of solutions between trajectories of the

averaged system and the trajectories of the actual system. New stability results thus

are needed.

2.6.1 Semi-globally Practically Vibrational Stabilizability

Based on the idea of semi-globally practical stability in Definition 2.6, the semi-globally

practical vibrational stabilizability is introduced for the vibrational control systems

(2.20).

Definition 2.18. Assume that there exists xe ∈ Rn such that f(xe) = 0 in the system

(2.19). The equilibrium xe is said to be semi-globally practically vibrationally (SPV)

stabilizable if there exist β ∈ KL and a time-periodic and zero-mean g(t, x) such that

for any positive real pair (δ,∆) there exists a positive ε∗ such that for all ε ∈ (0, ε∗) the

system (2.20) has an asymptotically stable periodic solution x(t) characterized by

|xav(t)− xe| ≤ β(|xav(t0)− xe|, t− t0) + δ, (2.32)

for all |x0 − xe| ≤ ∆, where xav(t) =
1

T

∫ t+T

t
x(τ)dτ , ∀t ≥ t0 ≥ 0.

Remark 2.19. Compared to the vibrational stabilizability in Definition 2.11, SPV sta-

bilizability allows that the system (2.20) has arbitrarily large domain of attraction ∆

and arbitrarily small ultimate bound δ by tuning the parameter ε appropriately. This

definition has shown its usefulness in investigating the stability of vibrational control

systems when the averaged system (2.26) is uniformly globally asymptotically stable as

shown in Theorem 2.8.

Remark 2.20. SPV stabilizability introduced in Definition 2.18 is a non-local version

of v-stabilizability in Definition 2.11. The subtle difference is that Definition 2.11 only

characterizes the steady-state behaviours of the system (2.20) while Definition 2.18 char-

acterizes both the transient response and the steady-state response. When taking the

average over [t0,∞) as in Definition 2.11, the transient response can not be presented.

With the introduction of the moving average of the trajectories of the system (2.20),

it is possible to use the KL function β(·, ·) to characterize the convergence of averaged

trajectories. These two definitions are consistent in terms of steady-state behaviours.

Remark 2.21. The definition lays the foundation for robustness analysis in this thesis

as it can easily link to the well-known robustness results. In the next chapter, we will

introduce a key concept to describe the robustness concept called input-to-state stable
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(ISS) for the vibrational control systems in the presence of disturbances. The refined

definition with dynamics bound can be directly extended to the ISS by adding an extra

disturbances-related bound.

Next, the conditions for the system (2.19) to be SPV stabilizable are presented:

Theorem 2.8. Suppose Assumptions 2.1 - 2.3 hold and there exists an equilibrium

point ze of the averaged system (2.26) such that the condition (2.27) holds. If ze of the

system (2.26) is a globally asymptotically stable equilibrium, then the system (2.19) is

semi-globally practically vibrationally stabilizable.

Proof. For a given xe and ∆, the initial condition set is defined as Ωx0 = {x||x−xe| ≤ ∆}.
In [29], it indicates that for any given constant c ∈ Ωx0 , h−1(t, c) exists and it is periodic

in t so it is bounded for all c ∈ Ωx0 .

As ze be an equilibrium point of (2.26), we denote that

∆1 = sup
τ∈[τ0,∞),x0∈Ωx0

|h−1(τ, x0)− ze|.

Accordingly, the initial condition set for y coordinate is

Ωy0 = {y||y − ze| ≤ ∆1}.

As the equilibrium ze of averaged system (2.26) is globally asymptotically stable and

Assumption 2.3 hold, from Theorem 2.6, there exists β ∈ KL such that for each pair

of strictly positive numbers (δ1, ∆1), there exists ε∗ such that for all ε ∈ (0, ε∗), the

solutions of system (2.25) satisfy the following inequality:

|y(τ)− ze| ≤ β(|y0 − ze|, τ − τ0) + δ1,∀τ ≥ τ0 ≥ 0, (2.33)

whenever |y0 − ze| ≤ ∆1.

From Assumption 2.2, it is clear that f1(·, ·) is continuous and locally Lipschitz in Ωy0

with a Lipschitz constant L. By using condition (2.27), it has

|xav(τ)− xe| =
∣∣∣∣ 1

T

∫ τ+T

τ
x(s)ds− xe

∣∣∣∣
≤
∣∣∣∣ 1

T

∫ τ+T

τ
(h(s, y)− h(s, ze)) ds

∣∣∣∣
≤ 1

T

∫ τ+T

τ
L|y(s)− ze|ds.

(2.34)
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Combining inequalities (2.33) and (2.34) yields∣∣∣∣ 1

T

∫ τ+T

τ
x(s)ds− xe

∣∣∣∣ ≤ 1

T

∫ τ+T

τ
L (β(|y0 − ze|, s− τ0) + δ1) ds

≤ 1

T

∫ τ+T

τ
L (β(|y0 − ze|, s− τ0)) ds+ Lδ1,

(2.35)

∀τ ≥ τ0 ≥ 0, |y0 − ze| ≤ ∆.

Let β̃(r, τ) = 1
T

∫ τ+T
τ L (β(r, s)) ds. It is easily to see that β̃(r, t) belongs to class K for

fixed τ . It will be shown that for fixed r, β̃(r, τ) decrease to zero as τ goes to infinity.

Let t1 > t2,

β̃(r, t1)− β̃(r, t2)

=
L

T

[∫ t1+T

t1

(β(r, s− t0)) ds−
∫ t2+T

t2

(β(r, s− t0)) ds

]
=
L

T

[
lim
δt→0

t1+T∑
t=t1

β(r, t)δt− lim
δt→0

t2+T∑
t=t2

β(r, t)δt

]

=
L

T

[
lim
n→∞

n∑
k=0

T

n

(
β

(
r, t1 + k

T

n

)
− β

(
r, t2 + k

T

n

))]
.

(2.36)

As β ∈ KL is decreasing with respect to the second argument, β
(
r, t1 + k Tn

)
< β

(
r, t2 + k Tn

)
for any k > 0, hence β̃(r, t1) < β̃(r, t2), that is to say β̃(r, τ) is β̃(r, τ) is decreasing with

respect to τ for fixed r. Moreover, it can be verified β̃(r, τ)→ 0 as τ →∞. Hence it is

shown that β̃(r, τ) belongs to KL.

According to (2.34) and (2.35), it follows that

|xav(τ)− xe| ≤ β̃(|y0 − ze|, τ − τ0) + Lδ1. (2.37)

After selecting δ1 = δ
L , there exists β̃ ∈ KL such that

|xav(τ)− xe| ≤ β̃(|xav(τ0)− xe|, τ − τ0) + δ (2.38)

Therefore the equilibrium xe of the system (2.19) is semi-globally practically vibra-

tionally stabilizable.

Remark 2.22. Theorem 2.8 provides sufficient conditions to achieve SPV stabilizability.

Instead of requiring the local exponential stability of the averaged system, it requires the

averaged system (2.26) is GAS, uniformally in ε. With a globally stable averaged system,

the original dynamics (2.19) is then semi-globally practically vibrationally stabilizable,

which indicates that for an arbitrarily large initial domain ∆, the average of trajectories
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converges to an arbitrarily small δ-neighbourhood near the equilibrium xe when the

parameter ε is sufficiently small.

2.6.2 Simulations

Next, we will verify the semi-globally practical vibrational stabilizability and the pro-

posed criteria by numerically solving Example 2.2. In order to show SPVS properties,

the system behaviour of Example 2.2 will be simulated from enlarging sets of initial

conditions.

Let the tuning parameter ε = 0.01 in the system (2.29) initially. Figure 2.1 shows the

state trajectories starting at 8 different initial positions from [1, 1], [2, 2], ..., to [8, 8]

where the topmost branch is the one from [8, 8]. It can be seen that all the branches

converge to a neighborhood of the origin with a small-amplitude oscillation while the

average of each branch is converging to a neighbourhood of the origin, satisfying the

definition of vibrational stabilizability.
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Figure 2.1: State trajectory x1(t) of vibrational control system (2.29) with different
initial positions from [1, 1], [2, 2], ..., [8, 8] when ε = 0.01.

Next we will show that it is also uniformly semi-globally practically vibrationally stable.

By enlarging the initial position to [9, 9], the system behaviour in Figure 2.2(a) shows

that the vibrational system is not stable anymore with the current tuning parameter

value. After reducing the parameter ε to 0.001, the system could be again stabilized

starting at the same initial position as shown in Figure 2.2(b). This indicates that when

initial domain ∆ is enlarged, if the tuning parameter ε is sufficiently small, the system

could be vibrationally stabilized, which is consistent with the definition of SPVS.
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Figure 2.2: State trajectory x1(t) of vibrational control system (2.29) starting at
initial positions [9, 9] with ε = 0.01 and ε = 0.001 respectively.

2.7 Summary

Vibrational stabilizability properties were discussed in this chapter. In the beginning,

necessary stability analysing tools were introduced. The Lyapunov stability for an equi-

librium point of both autonomous and time-varying systems was addressed and then

extended to capture the stability of periodic solutions. Averaging technique is a use-

ful method for the stability analysis of a time-varying system, which approximates the

system behaviour with the solutions of a simpler time-invariant averaged system. The

stability of time-varying systems can be obtained if the averaged system is assumed to

be either locally exponentially stable or globally asymptotically stable.

The definition of vibrational stabilizability proposed by R. Bellman was introduced,

which characterizes a class of nonlinear systems that can be stabilized by injecting

dithers. The idea is steering the trajectories to a limit cycle around the desired equi-

librium point by injecting high-frequency dither signals into the system. The average

center of the limit cycle is close to the equilibrium point such that the overall behaviour

of trajectories in the steady state is similar to the ones converging to it.

The local vibrational stabilization results in literature were reviewed which applies stan-

dard averaging technique, however all stability results obtained are only limited to a

local domain as linearisation technique are used for the averaged system. A motiva-

tional example was found to show that even if the averaged system does not satisfy

the local vibrational stabilizability conditions, the system can still have vibrational sta-

bilizability property with a large domain of attraction. Hence new tools to address a

class of systems with non-local vibrational stabilizability are needed. Motivated by this
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example, we extended the definition of local vibrational stabilizability to semi-globally

practically vibrational (SPV) stabilizability. Our derived results show that when the

averaged system is globally asymptotically stable uniformly in the parameter, the non-

linear vibrational control systems are SPV stable, in which the domain of attraction can

be an arbitrarily large compact set. The obtained results can be generalized to show

the robustness when disturbances exist by appropriately applying averaging technique

and perturbation theory. In the next chapter, we will consider a class of additive distur-

bances existing in linear vibrational control systems and discuss the system robustness

properties.



Chapter 3

Robustness of Linear Vibrational

Control Systems

3.1 Overview

In this chapter, the robustness of linear vibrational control systems with respect to a

class of additive disturbances will be investigated. By assuming that the linear system

is vibrational stabilizable such that the original linear dynamics can be stabilized by

injecting dithers, then we explore the perturbed performance after introducing the ad-

ditive disturbances. The first question needed to be answered is whether the system

stabilized by vibrational control can handle some types of disturbances or not. If they

can, what is the tolerance of disturbances while preserving the stability. At last, we will

explore the system performance with different types of disturbances such as estimating

the transient behaviour and the ultimate bound of state-trajectories.

One of key techniques used in the stability analysis of vibrational control systems is

averaging, so the robustness of averaging techniques need to be explored. Strong and

weak average techniques [45] are useful tools to study the robustness of a class of gen-

eral nonlinear time-varying systems, extending the classic averaging techniques to be

applicable to the systems with disturbances. When considering the linear vibrational

control systems with disturbances, the strong and weak averaging techniques are natural

choices of tools for the robustness analysis. If the strong averaged system exists, it is

possible to get stronger robustness of the original time-varying system, however usu-

ally it is relatively easier to find the weak averaged system for a time-varying dynamic

system in the presence of disturbances. The results in Theorem 3.3 show that strong

averaged system does not exists while weak averaged system exists. By applying the

37
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weak average technique, the system is shown to be robust with respect to a class of

slowly time-varying disturbances.

It is worthwhile to note that strong and weak averaging techniques are applicable to

a class of nonlinear time-varying systems with lumped uncertainties or (the effect of

disturbances to the system is nonlinear). Hence when additive disturbances are con-

sidered, the results obtained using strong or weak averaging might be too conservative.

From simulation results observed, it is clear that the linear vibrational control systems

are robust to fast disturbances. More interestingly, it was observed that the linear vi-

brational systems can attenuate fast disturbances. Besides, strong and weak averaging

require that the averaged system is Lyapunov-ISS which is a strong assumption in the

real engineering systems.

Therefore, we relax the assumption by only assuming the system is vibrationally sta-

bilizable and treating disturbances as some perturbation to the system. By combing

the averaging technique and perturbation theory, updated results in Theorem 3.4 show

that the linear vibrational control system is robust to both slow and fast disturbances

provided that the disturbances are bounded. The linear vibrational system has input-to-

state stability properties, meaning that the trajectories converge to an ultimate bound

decided by the disturbances. When the disturbances are periodic, we further analyze

frequency-spectrum composition of the ultimate bound by using Fourier series of distur-

bances. The results indicate that the frequency of disturbances has attenuation influence

to the ultimate bound such that higher frequency leads to smaller ultimate bound. In

the last part of this chapter, the existence of a more general type of disturbances called

states-dependent disturbances is considered and sufficient conditions to guarantee the

system robustness are provided.

The chapter is organized as follows. In Section 3.2, a well-known robustness concept for

the disturbed systems called input-to-state stability will be revisited. The robustness

analysis tool strong and weak average will also be covered there. Initial robustness results

of linear vibrational control systems derived from strong and weak average are presented

in Section 3.3. Subsequently the robustness results are strengthened in Section 3.4 by

using averaging and perturbation methods. When the disturbances are also periodic,

the influence of the frequencies of disturbances is discussed, followed by the robustness

conclusion with respect to state-dependent disturbances. Section 3.5 summarizes the

chapter.
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3.2 Preliminaries

3.2.1 Input-to-State Stable

Define L-infinity norm ‖w‖∞ :=ess supt≥0 |w(t)|. If ‖w‖∞ < ∞, it can be called that

w ∈ L∞. Consider a time-varying system in the presence of disturbances:

ẋ = F (t, x, w) , x(t0) = x0 ∈ Rn, (3.1)

where F : [0,∞)× Rn × Rm is piecewise continuous in t and locally Lipschitz in x and

w. Here x ∈ Rn, w ∈ Rm are the state and disturbance respectively. The undisturbed

system is:

ẋ = F (t, x, 0) , x(t0) = x0 ∈ Rn. (3.2)

Without losing generality, here we suppose that origin is the equilibrium point for the

undisturbed system (3.2) such that F (t, 0, 0) = 0. The system (3.1) can be treated as

a perturbation of the system (3.2), the input-to-state stability (ISS) is introduced to

describe the stability properties of the perturbed system (3.1):

Definition 3.1. [77] The system (3.1) is said to be input-to-state stable (ISS) with gain

γ ∈ K if there exists β ∈ KL such that for each w ∈ L∞ and x0 ∈ Rn, the solutions

starting at (x0, t0) exist and satisfy:

|x(t)| ≤ β(|x0|, t− t0) + γ(‖w‖∞),∀t ≥ t0 ≥ 0. (3.3)

Remark 3.1. Inequality (3.3) indicates that the trajectories of the system (3.1) are

bounded if the disturbances are bounded. The first composition of bound is time-

decreasing, which is dependent on the initial condition while the second part is time-

invariant that is related to the L-infinity norm of disturbances. As time goes to the

infinity, the trajectories converge to the ultimate bound, which is dependent on the

disturbances. Specifically, if the disturbances w = 0, as we know the property of class-

K functions γ(0) = 0, the trajectories converge to origin, which means the origin is a

globally asymptotically stable equilibrium point according to Definition 2.5. This is an

important corollary of ISS which infers that the the equilibrium point of undisturbed

system (3.2) is GUAS.

A sufficient condition to ensure that the system (3.1) is ISS if it is ISS in Lyapunov

sense.

Definition 3.2. [45] The system (3.1) is called Lyapunov-ISS with the gain γ if there

exists a continuous differentiable function V : [0,∞)× Rn → R such that the following
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inequalities hold

α1(|x|) ≤ V (t, x) ≤ α2(|x|),

∂V

∂t
+
∂V

∂x
f(t, x, w) ≤ −α3(|x|),∀|x| > γ0(‖w‖∞),

where α1, α2, α3 ∈ K∞ and γ0 ∈ K.

Theorem 3.1. [77, Theorem 4.19] The system (3.1) is input-to-state stable with γ =

α−1
1 ◦ α2 ◦ γ0 if it is Lyapunov ISS in Definition 3.2.

Remark 3.2. From the definition of Lyapunov ISS, the derivative of the Lyapunov func-

tion for the system (3.1) decreases when the trajectories is outside the ball γ0(‖w‖∞).

As |x| ≤ α−1
1 (V (t, x)), the trajectories of the system (3.1) decrease until hit the ultimate

bound and then keep staying inside.

3.2.2 Strong and Weak Averaging Techniques

As shown in Section 2.2.2, averaging is a powerful tool to study the stability of a class

of time-varying dynamic systems (2.16). To address system robustness with respect

to disturbances, D. Nesic and A.R. Teel [45, 80] proposed the concept of strong and

weak average. The following parametrized time-varying system with disturbances is

considered:

ẋ = εF (t, x, w) , x(t0) = x0 ∈ Rn. (3.4)

The definitions of strong and weak averaging are given below separately:

Definition 3.3. A locally Lipschitz function Fsa : Rn × Rm → Rn is said to be the

strong average of F (t, x, w) if there exist βsa ∈ KL and T ∗ > 0 such that for all t ≥ 0,

for all w ∈ L∞, for all T > T ∗, the following holds:

∣∣∣ 1

T

∫ t+T

t
[Fsa(x,w(s))− F (s, x, w(s))]ds

∣∣∣ ≤ βsa(max{|x|, ‖w‖∞, 1}, T ). (3.5)

Definition 3.4. A locally Lipschitz function Fwa : Rn × Rm → Rn is said to be the

weak average of F (t, x, w) if there exist βwa ∈ KL and T ∗ > 0 such that for all t ≥ 0,

for all T > T ∗ the following holds:

∣∣∣Fwa(x,w)− 1

T

∫ t+T

t
F (s, x, w)ds

∣∣∣ ≤ βwa(max{|x|, |w|, 1}, T ). (3.6)

Remark 3.3. One of the major difference between strong and weak averaging techniques

is the allowed changing rate of disturbances. The disturbances in the definition of strong

average are treated as a time-varying variable in the integral while they are treated as

constants in the weak averaged system. It means that the changing rate of disturbances
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in the weak averaged systems should be slower than the system dynamics while the one

for strong averaged system can be arbitrarily fast.

As shown in the following lemma, the strong average only exists for a limited class of

nonlinear time-varying systems where time and disturbances can be decoupled.

Lemma 3.1. [45] Suppose that F (t, x, w) is continuous and periodic in t of period T > 0.

Then there exists a strong average Fsa(x,w) if and only if F (t, x, w) = F1(t, x)+F2(x,w)

for some continuous functions F1 and F2 where the average of F1(t, x) exists.

Since strong average exists for systems with a specific structure, weak average is suitable

to analyse the robustness for a more general time-varying systems (3.4). Later we will

show that the vibrational control systems after coordinate transformation only have

weak average. The next theorem shows that if the weak average of system (3.4) exist

and it is Lyapunov-ISS, we can conclude the robustness properties of the system (3.4).

Theorem 3.2. [45] Assume that the system (3.4) is locally Lipschitz in x and w, uni-

formly in t and there exists c ≥ 0 such that |F (t, 0, 0)| ≤ c,∀t ≥ 0. If the weak average of

(3.4) exists and is Lyapunov-ISS with gain γ ∈ K∞, then there exists β ∈ KL and given

any strictly positive real numbers ∆, kw, kẇ, δ, there exists ε∗ > 0 such that ∀ε ∈ (0, ε∗),

the solutions of (3.4) satisfy: ∀t ≥ t0 ≥ 0

|x(t)| ≤ max{β(|x(τ0)|, t− t0), γ(‖w‖∞)}+ δ

whenever |x(t0)| ≤ ∆, ‖w‖∞ ≤ kw, w(t) is absolutely continuous and ‖ẇ‖∞ ≤ kẇ.

Remark 3.4. An important assumption in the Theorem 3.2 is that the weak averaged

system is Lyapunov-ISS, which means the autonomous weak averaged system is already

robust to the disturbances. Based on that, the theorem indicates that the original time-

varying system (3.4) can be practically ISS. Compared to the conclusion when strong

average exists, the changing rate of disturbances needs to be bounded in Theorem 3.2,

which means the system can only handle slow disturbances.

3.3 Robustness based on Strong and Weak Averaging Tech-

niques

3.3.1 Robustness analysis by Strong and Weak Average

This section presents the robustness analysis for LTI systems with a periodic state

feedback. Such a system is called linear multiplicative vibrational control type in [29].
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We consider external disturbances exist in the system:

ẋ = Ax+
1

ε
B1

(
t

ε

)
x+B2w(t), x(t0) = x0 ∈ Rn (3.7)

where x ∈ Rn, A ∈ Rn×n, B1 : [t0,∞) → Rn×n and is periodic in t. B2 ∈ Rn×m, w :

[t0,∞) → Rm and ε is a positive tuning parameter. It is assumed that the matrices A

and B1(t) satisfy the following assumptions:

Assumption 3.1. The matrixA has the observable canonical form satisfying trace(A) <

0.

Assumption 3.2. The matrix B1(t) is continuous and periodic with zero mean value,

i.e. there exists a positive number T such that B1(t+T ) = B1(t) and 1
T

∫ t+T
t B1(τ)dτ =

0.

Remark 3.5. Assumption 3.1 and 3.2 guarantees that the system is vibrationally stabiliz-

able from Theorem 1.1 such that there exists a suitable periodic B1(t) that stabilizes the

system. We will next explore to what extent the stabilization of the original dynamics

ẋ = Ax by vibrational control can handle the disturbances and what’s the performance

of the system (3.7) under different types of disturbances.

Following the steps in the coordinate transformation, the system (3.7) can be re-written

in a new time τ = t
ε :

dx

dτ
= εAx+B1(τ)x+ εB2w(ετ). (3.8)

Next, we introduce the following auxiliary variable ξ coming from the following linear-

time-varying dynamic system:

dξ

dτ
= B1(τ)ξ, ξ(τ0) ∈ Rn, ∀τ ≥ τ0 ≥ 0

with its state transition matrix Φ(τ, τ0) satisfying the following homogeneous relations:
dΦ(τ,τ0)

dτ = B1(τ)Φ(τ, τ0)

Φ(τ0, τ0) = In

. (3.9)

By introducing the following linear coordinate transformation

x(τ) = Φ(τ, τ0)y(τ), (3.10)

where Φ(τ, τ0) is defined in (3.9), it yields:

dx

dτ
=
dΦ(τ, τ0)

dτ
y(τ) + Φ(τ, τ0)

dy

dτ
.
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Substituting x(τ) and its derivative with respect to y(τ) and making use of the homo-

geneous property of Φ(τ, τ0), the transformed system becomes:

dy

dτ
= ε(Φ−1(τ, τ0)AΦ(τ, τ0)y(τ) + Φ−1(τ, τ0)B2w(ετ)), y(τ0) = x0. (3.11)

Remark 3.6. Discussed in [29], the inverse matrix of the state transition matrix Φ−1(τ, τ0)

exists such that this transformation is nonsingular and preserves the stability of system

(3.7). Thus the robustness analysis focuses on the transformed system (3.11), in which

the new disturbances w̃(τ) = Φ−1(τ, τ0)B2w(ετ) exist. When disturbances exist, Strong

and weak averaging techniques are the natural consideration for robustness analysis.

The averaged system without disturbances can be expressed as follows:

dz

dτ
= εĀz, z(τ0) = y(τ0), (3.12)

where Ā = 1
T

∫ t+T
t Φ−1(τ, τ0)AΦ(τ, τ0)dτ .

From Theorem 1.1, for any matrix A satisfying Assumption 3.1, there exists an periodic

matrix B1(τ) with zero average such that the matrix Ā in the averaged system (3.12) is

Hurwitz. Moreover, the corresponding state transition matrix Φ(τ, τ0) is periodic in τ ,

such that the Φ−1(τ, τ0) is periodic and bounded so the new disturbance w̃(τ) in system

(3.11) is bounded. Firstly we check the existence of strong and weak averaged system:

Proposition 3.1. The strong average of the system (3.11) doesn’t exist while the weak

average exists. The weak average is

ẏwa = fwa(ywa, w) = Āywa + B̄2w, ywa(τ0) = y(τ0) (3.13)

where B̄2 = 1
T

∫ t+T
t Φ−1(τ, τ0)B2dτ .

Proof: It can be concluded directly from Lemma 3.1 that strong average doesn’t exist

because the time and disturbances are coupled in the transformed system (3.11). Pro-

posed system (3.13) can be verified to satisfy the Definition 3.4 of the weak average.

Q.E.D.

Remark 3.7. The coupling between disturbances and time comes from the time-varying

coordinate transformation. This leads to the non-existence of strong average of the

transformed system (3.11) because from Lemma 3.1 we know that the strong average

only exists when the system configuration satisfies F (t, x, w) = F1(t, x)+F2(x,w), where

the disturbance and time are decoupled. In fact strong average exists directly applying

the averaging technique to the system (3.7) in original coordinate. As B1(t) is zero mean

it will disappear after averaging, the strong averaged system would be ẋ = Ax + B2w.
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However, the original dynamics matrix A is unstable so the averaged system is impossible

to satisfy the Lyapunov-ISS condition in the strong and weak averaging technique thus

no robustness conclusion could be reached in this way. From these reasons we can see

that the transformation is an important bridge in the robustness analysis, which converts

the system (3.7) to a suitable format that is easier to analyse.

After showing the existence of weak averaged system, next we will demonstrate that

it is Lyapunov-ISS to obtain the practical ISS properties, which is stated in the next

Proposition.

Proposition 3.2. The weak averaged system (3.13) is Lyapunov-ISS with gain γ.

Proof: According to Theorem 1.1, there exists a periodic matrix B1(τ) such that Ā

is Hurwitz. Hence for any positive-definite symmetric matrix Q, there exists a unique

positive-definite symmetric matrix P satisfying PĀ + ĀTP = −Q. Select V (ywa) =

yTwaPywa as a Lyapunov candidate, it has:

λmin(P )|ywa|2 ≤ V (ywa) ≤ λmax(P )|ywa|2.

The derivative of V (ywa) along the trajectory of system (3.13) can be derived:

V̇ = −yTwa(ĀTP + PĀ)ywa + 2B̄2w
TPywa

= −yTwaQywa + 2B̄2w
TPywa

≤ −1

2
yTwaQywa −

1

2
λmin(Q)|ywa|2 + 2|B̄2w|‖P‖|ywa|

≤ −1

2
yTwaQywa,∀|ywa| ≥

4‖B̄2‖|w|‖P‖
λmin(Q)

= ρ(‖w‖)

Therefore the averaged system (3.13) is Lyapunov-ISS with gain γ(r) = α−1
1 ◦α2◦γ0(r) =

4‖B̄2‖‖P‖
√
λmax

λmin(Q)
√
λmin

r. Q.E.D.

Based on Proposition 3.1 and 3.2, Theorem 3.3 states the robustness from Weak aver-

aging indication:

Theorem 3.3. Suppose Assumption 3.1 and 3.2 hold. There exist β ∈ KL, γ ∈ K,

positive numbers M1 and M2 such that for any given strictly positive real numbers

∆, kw, kẇ, δ, there exists ε∗ s.t. ∀ε ∈ (0, ε∗) the solutions of the system (3.7) sat-

isfy:

|x(t)| ≤ β(|x(t0)|, t− t0) + γ(‖w‖∞) + δ, t ≥ t0 ≥ 0 (3.14)

whenever |x(t0)| ≤ ∆, ‖w‖∞ ≤ kw and ‖ẇ‖∞ ≤ kẇ.

Proof: Since Assumption 3.1 holds, Φ(τ, τ0) and Φ−1(τ, τ0) are periodic and bounded, let

their bounds be M1 and M2 respectively, i.e. supτ≥τ0 ‖Φ‖ = M1, supτ≥τ0 ‖Φ
−1‖ = M2.
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Let w̃(τ) = Φ−1(τ, τ0)w(τ), then w̃(τ) is also absolutely continuous with bounded rates

because

‖w̃‖ ≤ sup
τ≥τ0
‖Φ−1‖‖w‖∞ ≤M2kw,

∣∣∣∣∣∣dw̃
dτ

∣∣∣∣∣∣ ≤ sup
τ≥τ0

∣∣∣∣∣∣dΦ−1

dτ

∣∣∣∣∣∣kw + sup
τ≥τ0
‖Φ−1‖kẇ =: kẇ1 .

Therefore, from Theorem 3.2, there exist β1 ∈ KL, γ1 ∈ K such that for any given

δ1 > 0, there exist ε∗ s.t. for all ε ∈ (0, ε∗), the solutions of the system (3.11) satisfy

|y(τ)| ≤ max{β1(|y(τ0)|, τ − τ0),M2γ1(‖w‖∞)}+ δ1,

for all τ ≥ τ0 ≥ 0.

Since x(τ) = Φ(τ, τ0)y(τ) and x(τ0) = y(τ0), ∀τ ≥ τ0 ≥ 0 the solutions of system (3.7)

satisfy:

|x(τ)| ≤M1 max{β1(|x(τ0)|, τ − τ0),M2γ1(‖w‖∞)}+M1δ1,

≤ max{β(|x(τ0)|, τ − τ0), γ(‖w‖∞)}+ δ.
(3.15)

where β(r, s) = M1β1(r, s), γ(r) = M1M2γ1(r) and δ1 is selected as δ/M1.

Representing the above inequality to original time scale t = ετ , the inequality (3.14)

thus is obtained. Q.E.D.

Remark 3.8. Theorem 3.3 shows that if the disturbance is changing slowly with some

bounded rate, trajectories of the system (3.7) converge to a neighbourhood of the origin.

The radius of the ultimate bound is γ(‖w‖∞) + δ. However, the obtained results are

only valid for disturbances that are sufficiently slow compared to the dither signal. The

system behaviour of the system (3.7) with fast disturbances needs further exploration.

Another limitation is the existence of practical term in the ultimate bound. For lin-

ear systems, the asymptotically stability and exponentially stability are equivalent, so

without considering disturbances, the exponential stability of averaged system indicates

that the original system is also exponentially stable from averaging theory (Theorem

2.5). Theoretically, his practical term could be handled in the linear vibrational control

systems.

Remark 3.9. Without considering the disturbances (w = 0), the upper bound in inequal-

ity (3.14) indicates the trajectories of the system (3.7) is totally vibrationally stabilizable

as defined in the Definition 2.12. This result is linked to and consistent with the Corol-

lary 2.1 which characterizes the systems that are totally vibrationally stabilizable. As

shown in the Corollary 2.1, totally vibrational stability happens when the equilibrium

points xe and ze satisfy the coordinate change i.e. xe = h(t, ze). This condition is

automatically satisfied when vibrational control systems (2.20) are linear because the
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coordinate change is a time-periodic linear mapping x(t) = Φ(t, t0)y(t), where the origin

is the equilibrium point for both systems. When totally vibrational stability is achieved,

the the vibrational system (3.7) has better performance as its trajectories converge to

the ultimate bound instead of only the averaged trajectories. Therefore, in the rest of

this chapter we can address the trajectories behaviour directly. It is obvious that the

averaged trajectories have the similar behaviour accordingly.

Remark 3.10. A straightforward way to extend Theorem 3.3 to nonlinear vibrational sys-

tems is to explore local robustness by using standard linearization techniques. Moreover,

strong and weak averaging techniques are useful tools to characterize the robustness for

a large class of nonlinear systems, thus they can be used to show the vibrational stability

for the nonlinear time-varying systems, for which weak average exists and is Lyapunov-

ISS.

3.3.2 Simulation results

To illustrate obtained results, the linearised Duffing system stabilized by vibrational

control with disturbances is analyzed. The state-space model of such a system is:

ẋ1 = x2 + w1(t)

ẋ2 = −ax2 + bx1 +
k

ε
sin

(
t

ε

)
x1 + w2(t),

where a, b are strictly positive values, ε is the reciprocal of dither frequency and k is the

amplitude, w1(t) and w2(t) are disturbances.

When writing this system into the standard form as in (3.7), we have

A =

[
0 1

−a b

]
, B1

(
t

ε

)
=

[
0 0

k sin
(
t
ε

)
0

]
, B2 =

[
1 0

0 1

]
.

It could be seen that matrix A is not stable and B1(t) has quasi-lower triangular form.

In the following simulations, parameters of linearised Duffing system are selected as

a = 1, b = 1 and vibrational control parameters are chosen as k = 20, ε = 0.01. The

simulation results in Figure 3.1 show that without disturbance, the original dynamics

ẋ = Ax is stabilized by using the dithers B1

(
t
ε

)
x.

Next, three different types of disturbances will be considered: d1 = l sin(ωt), d2 =

l, d3 = le−t. By applying Theorem 3.3, the linear vibrational control system will have

ISS-like stability properties if the disturbances are slowly varying.
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Figure 3.1: Effect of vibrational control to linearised Duffing equation.
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Figure 3.2: Comparison of vibrational control system with different kinds of distur-
bance in x1.

From the simulation results in Figure 3.2 and Figure 3.3, it can be seen that both states

eventually enter a bounded region in all cases when disturbances are relatively slow.

Therefore, simulation results support theoretic results of Theorem 3.3.

According to Theorem 3.3, the disturbance should be relatively slow compared with the

dither signal to ensure the robustness of the vibrational systems. However, Theorem 3.3

only provides sufficient conditions. We found in simulations that the vibrational control

system is not sensitive to high frequency disturbances either. Figure 3.4 shows the per-

formance of the vibrational control systems in the presence of the sinusoid disturbances

applied to the system d1(ωt) with different ω. When ω is quite large, the vibrational

control system still keeps ISS like performance.
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Figure 3.3: Comparison of vibrational control system with different kinds of distur-
bance in x2.

It is also interesting to observe the ultimate bound is getting smaller while the frequency

of the disturbances increases, see Figure 3.4 and Table 3.1. This indicates that the

current two averaging tools (strong and weak average) might not be sufficient enough to

fully capture the robustness properties of averaging technique. New averaging tools are

needed to cover the situation when the disturbance is much faster than the frequency of

the system.
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Figure 3.4: Comparison of bound with different frequency of sinusoidal disturbance.
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Table 3.1: Ultimate bound with different frequencies

Frequency 100 101 102 103

Ultimate bound 6.5101 29.5637 2.1253 1.5836

3.3.3 Summary of this section

In this section, the robustness of linear vibrational control systems is addressed con-

sidering the existence of additive disturbances. Because strong and weak averaging

techniques characterize the robustness of a large class of nonlinear time-varying systems

with disturbances, it is straightforward to apply it to the robustness analysis of the linear

vibrational control system, which is a special case of a general nonlinear time-varying

system. For a linear vibrational system in the form of (3.7), the strong average doesn’t

exist while the weak average exists and be Lyapunov ISS. By using the weak average

result, the linear vibrational control systems are shown to have ISS-like properties which

means that the trajectories converge to a neighbourhood of the equilibrium point. The

ultimate bound is related to the L-infinity norm of disturbances and a practical term δ.

The domain of initial points can be designed arbitrarily large and the practical term δ

can be arbitrarily small by tuning the parameter.

However, the robustness result derived from weak averaging is limited to slowly vary-

ing disturbances. Numeric simulations indicate the linear vibrational control systems

are also robust when fast disturbances exist. Hence when the disturbances are fast

time-varying, further robustness analysis are needed by using alternative tools. More-

over, simulations also show that high frequencies of disturbances will attenuate the

ultimate bound of state-trajectories such that it becomes smaller in the presene of

higher-frequency disturbances. In this case, using L-infinity norm of disturbances to

characterize the ultimate bound, as used in most ISS definitions, might not be neces-

sary. A less conservative estimation of the ultimate bound related to the frequencies of

disturbances is needed. In next sections, we will continue exploring the robustness of

linear vibrational control systems by addressing these points.
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3.4 Strengthened Robustness based on Averaging and Per-

turbation

3.4.1 Input-to-State Stability

The previous robustness properties via weak averaging are limited to slow disturbances

thus new tools are needed for a more general class of disturbances. Next, we will exploit

the strengthened robustness by applying averaging and perturbation techniques.

Consider linear vibrational control systems with additive disturbances (3.7), with ma-

trices A and B1(t) satisfying Assumptions 3.1 and 3.2 respectively.

Transformed system (3.11) can be rewritten as

dy

dτ
= ε(Ã(τ)y(τ) + w̃(τ)), y(τ0) = x(τ0) ∈ Rn, (3.16)

where Ã(τ) = Φ−1(τ, τ0)AΦ(τ, τ0) and w̃(τ) = Φ−1(τ, τ0)B2w(ετ). Since Φ(τ, τ0) and

Φ−1(τ, τ0) are T -periodic functions, Ã(τ) is also T -periodic. Moreover, as Φ−1(τ, τ0) is

periodic and continuous, then ‖Φ−1(τ, τ0)‖ is bounded for any τ ≥ τ0 ≥ 0. As w ∈ L∞,

the boundedness of Φ−1(·, ·) and the constant B2 matrix lead to w̃ ∈ L∞.

The subsequent robustness analysis is based on the transformed system (3.16). Per-

turbation technique is used to show that the solutions of system satisfy the following

inequality for bounded disturbances.

Theorem 3.4. Suppose Assumption 3.1 holds and w ∈ L∞. There exists B1(t) satisfy-

ing Assumption 3.2 such that there exists ε∗ > 0 s.t. for all ε ∈ (0, ε∗), the solutions of

system (3.7) satisfy:

|x(t)| ≤MN |x0|e−λ(t−t0) +
MN‖w‖∞

λ
, (3.17)

where N , M , λ are strictly positive constants.

Proof : Introduce the following auxiliary system:

dy1

dτ
= εÃ(τ)y1(τ), y1(τ0) = y(τ0). (3.18)

The averaging result in Theorem 2.5 indicates there exists a positive pair (ε∗, k) such

that for all ε ∈ (0, ε∗), thus the following inequality holds:

|y1(τ)− z(τ)| ≤ kε. (3.19)
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where z(τ) is the solution of averaged system (3.12) without disturbances. According

to Theorem 1.1, if the matrix A satisfies Assumption 3.1, there exists B1(t) satisfy-

ing Assumption 3.2 such that the matrix Ā is Hurwitz. Then we have that |z(τ)| ≤
eλmax(εĀ)τ |z(τ0)|, where λmax(εĀ) is the largest eigenvalue of εĀ. Thus for any given

positive number δ, there exists positive ε∗ such that when ε ∈ (0, ε∗) the solutions of

system (3.18) satisfy:

|y1(τ)| ≤ eλmax(εĀ)τ |z(τ0)|+ δ.

It means we can find positive numbers N , λ such that |y1(τ)| ≤ Ne−ελτ |y1(τ0)|. Conse-

quently, the upper bound of the trajectories of (3.16) is obtained as

|y(τ)| ≤ Ne−ελτ |y(τ0)|+ ε

∫ τ

0
Ne−ελ(τ−s)|w̃(s)|ds

≤ Ne−ελτ |y(τ0)|+ 1

λ
N‖w̃‖∞(1− e−ελτ )

≤ N |y(τ0)|e−ελτ +
1

λ
N‖w̃‖∞.

From (3.10), x(τ) = Φ(τ, τ0)y(τ), therefore, the solutions of system (3.7) satisfy the

following inequality:

|x(t)| ≤MN |x(τ0)|e−λt +
MN

λ
‖w‖∞, ∀t ≥ t0,

where M = M1M2, M1 = supτ≥τ0 ‖Φ(τ, τ0)‖ and M2 = supτ≥τ0 ‖Φ
−1(τ, τ0)‖. Q.E.D.

Remark 3.11. In the proof, the transformed system (3.16) can be treated as the sys-

tem (3.18) perturbed by disturbances. The closeness of solutions between system (3.18)

and averaged system (3.12) are guaranteed in infinite time internal by averaging the-

ory because the averaged system is assumed to be locally exponentially stable. The

perturbation of disturbances leads to an ultimate bound in the size of disturbances.

Remark 3.12. Compared to Theorem 3.3 derived from weak average, Theorem 3.4 re-

moves the constraint of the derivative of disturbances so the vibrational control systems

can handle not only slow additive disturbances but also fast additive disturbances. In

addition, the trajectories converge to the ultimate bound that is only composed of the

L-infinity norm of disturbances so the estimation is more accurate after removing the

practical term. This is reasonable because strong and weak averaging techniques cap-

ture the robustness for a more general nonlinear time-varying system so they need the

practical term to bound some nonlinear terms. By applying perturbation technique to

the linear vibrational systems (3.7) with additive disturbances, less conservative results

can be obtained.

Without disturbances, the averaged system of (3.16) becomes the system (3.12). The

closeness of solutions between (3.16) and (3.12) is stated in the following proposition:



Chapter 3. Robustness of Linear Vibrational Control Systems 52

Proposition 3.3. (Closeness of solutions) Suppose Assumptions 3.1 and 3.2 are sat-

isfied. There exists ε∗ and T ∗ such that whenever ε ∈ (0, ε∗), solutions of (3.16) y(τ, ε)

and solutions of averaged system (3.12) z(τ, ε) satisfy:

|y(τ, ε)− z(τ, ε)| < δ + γ̃(‖w‖∞),∀τ ≥ T ∗,

where γ̃(‖w‖∞) = MN‖w‖∞/λ , and M and N are defined in (3.17).

Proof : From closeness of solutions by averaging technique, it can be shown that there

exists positive real number ε∗1 and k such that for all ε ∈ (0, ε∗1), it has (3.18),

|y1(τ)− z(τ)| ≤ kε.

where y1(τ) comes from (3.11) and z(τ) comes from (3.18). Let e(τ) = y(τ) − y1(τ),

then take derivative in both sides:

de

dτ
= ε(Ã(τ)e(τ) + w̃(τ)).

Using the similar procedure as the proof of Theorem 3.4, there exist positive numbers

N and λ such that the upper bound of the solution e(τ) satisfies:

|e(τ)| ≤ N |e(τ0)|e−ελτ +
1

λ
N‖w̃‖∞.

Noting that |y(τ) − z(τ)| ≤ |y(τ) − y1(τ)| + |y1(τ) − z(τ)|, the closeness of solutions

between (3.11) and (3.12) is thus established:

|y(τ)− z(τ)| ≤ N |e(τ0)|e−ελτ +
N

λ
‖w̃‖∞ + kε

≤ N |e(τ0)|e−ελτ +
N

λ
‖w̃‖∞ + kε.

Consequently, there exists T ∗ such that N |e(τ0)|e−ελT ∗ < δ
2 and let ε∗2 = δ

2k . If we choose

ε∗ = min{ε∗1, ε∗2}, for all ε ∈ (0, ε∗), it follows that |y(τ, ε)−z(τ, ε)| < δ+γ(‖w‖∞), ∀τ ≥
T ∗, which completes the proof. Q.E.D.

Remark 3.13. Proposition 3.3 indicates by assuming that the averaged system (3.12) is

exponentially stable, although perturbed by disturbances, the solutions of transformed

system remains close to the solutions of averaged system, which shows good robustness

performance. The distance between the solutions of the system (3.16) y(τ, ε) and solu-

tions of averaged system (3.12) z(τ, ε) is described by the size of disturbances γ̃(‖w‖∞).
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3.4.2 The Influence of Disturbances Frequency on the Robustness Per-

formance

When the bounded additive disturbances are periodic, the robustness of the linear vibra-

tional system (3.7) can be linked to the frequency of disturbances. In particular, we will

show that high frequency of disturbances will attenuate the perturbation to trajectories

of the disturbed vibrational system (3.7) such that the ultimate bound of trajectories

becomes smaller.

Fourier series expansion is used to get the frequency spectrum of disturbances. It is well-

known that the Fourier series expansion of a periodic signal exists if it satisfies Dirichlet

conditions (see [81] for more details). Most periodic signals in engineering applications

satisfy it. Basically we analyze the system response to each component in the frequency

spectrum and obtain a less conservative estimation of the upper bound compared to

taking the L-infinity norm of disturbances directly. The main results are summarized in

the following theorem:

Theorem 3.5. Let Assumption 3.1 hold and w ∈ L∞. Suppose disturbance w(t) is a

Tw-periodic function and its norm can be expressed in Fourier series: |w(t)| = a0/2 +∑∞
k=1[ak cos(kω0t) + bk sin(kω0t)] where ω0 = 2π/Tw. Then there exist B1(t) satisfying

Assumption 3.2 and there exist strictly positive real numbers M , N , λ and ε∗ s.t. for

all ε ∈ (0, ε∗), the solutions of system (3.7) satisfy:

|x(t)| ≤MNe−λt|x0|+
a0MN

2λ
(1− e−λt)

+

∞∑
k=1

MNak
λ2 + k2ω2

0

[λ cos(kω0t)− λe−λt + kω0 sin(kω0t)]

+

∞∑
k=1

MNbk
λ2 + k2ω2

0

[λ sin(kω0t)− kω0 cos(kω0t) + kω0e
−λt].

(3.20)

Proof : From Proof of Theorem 3.4, there exist strictly positive real numbers N and λ

s.t.

|y(τ)| ≤ Ne−ελτ |y(τ0)|+ ε

∫ τ

0
NM2e

−ελ(τ−s)|w(εs)|ds.

where N , M2 and λ are defined the same as in Theorem 3.4. Since |w(t)| could be ex-

pressed in Fourier series: |w(t)| = |w(ετ)| = a0/2+
∑∞

k=1[ak cos(kω0ετ)+bk sin(kω0ετ)].
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It leads to

|y(τ)| ≤ Ne−λετ |y(τ0)|+ a0NM2ε

2

∫ τ

0
e−ελ(τ−s)ds

+NM2ak

+∞∑
k=1

ε

∫ τ

0
cos(kω0εs)e

−ελ(τ−s)ds

+NM2bk

+∞∑
k=1

ε

∫ τ

0
sin(kω0εs)e

−ελ(τ−s)ds.

By calculations, we have:

ε

∫ τ

0
e−ελ(τ−s)ds =

1

λ

(
1− e−λετ

)
,

ε

∫ τ

0
cos(kω0εs)e

−ελ(τ−s)ds

= ε

∫ τ

0

ejkω0εs + e−jkω0εs

2
e−ελ(τ−s)ds

=
1

λ2 + k2ω2
0

(
λ cos(kω0ετ) + kω0 sin(kω0ετ)− λe−λετ

)
,

ε

∫ τ

0
sin(kω0εs)e

−ελ(τ−s)ds

= ε

∫ τ

0

ejkω0εs − e−jkω0εs

2
e−ελ(τ−s)ds

=
1

λ2 + k2ω2
0

(
λ sin(kω0ετ)− kω0 cos(kω0ετ) + kω0e

−λετ
)
.

Noting that |x(τ)| ≤ supτ≥τ0 ‖Φ(τ, τ0)‖|y(τ)|, solutions of x(t) satisfy

|x(t)| ≤MNe−λt|x(t0)|+ a0N

2λ
(1− e−λt)

+N
∞∑
k=1

ak
λ2 + k2ω2

0

[λ cos(kω0t)− λe−λt + kω0 sin(kω0t)]

+N

∞∑
k=1

bk
λ2 + k2ω2

0

[λ sin(kω0t)− kω0 cos(kω0t) + kω0e
−λt]

where M = M1M2. This completes the proof. Q.E.D.

Remark 3.14. When disturbances are not only bounded but also continuously periodic,

the ultimate bound of trajectories obtained in Theorem 3.4 can be expanded by Fourier

series of disturbances. Instead of considering the L-infinity norm of disturbances, the

frequency analysis improves the resolution of boundary calculation such that it becomes

a more accurate estimation. As shown in (3.20), there are two major components in the

estimate of the ultimate bound: one is related to DC term a0 and the other is related to
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the frequency of the periodic disturbances. The upper bound related to the frequency

indicates that disturbances with a higher frequency would have a smaller ultimate bound.

3.4.3 State-dependent Disturbances

In some situations, the disturbances are coupled with system states, for example, in the

stabilization of the inverted pendulum, the viscous friction coefficient varies as humidity

changes resulting in state-dependent disturbances exist in the system. This section aims

at analyzing the robustness of the vibrational control systems in the presence of a more

general class of disturbances:

ẋ = Ax+
1

ε
B1

(
t

ε

)
x+ η(x,w), x(t0) = x0 ∈ Rn. (3.21)

In (3.21), matrices A and B1 are defined the same as in (3.7) and the nonlinear function

η(x,w) represents the state-dependent disturbances. It is assumed that η : Rn × Rm →
Rn is continuous and locally Lipschitz in x and w satisfying η(0, 0) = 0.

Due to existence of the nonlinear term η(·, ·), the standard averaging technique cannot

be applied directly. The perturbation techniques cannot be applied either. Thus strong

average and weak average techniques are used to show the robustness of (3.21).

Similar to previous sections, by using the coordinate transformation (3.10), the system

(3.21) is transformed into the following form:

dy

dτ
= ε

(
Φ−1(τ, τ0)AΦ(τ, τ0)y + Φ−1(τ, τ0)η(Φ(τ, τ0)y, w)

)
. (3.22)

Proposition 3.4. The strong average of the system (3.22) doesn’t exist but the weak

average exists. The weak averaged system is:

ẏwa = ε
(
Āywa + w̃wa

)
, ywa(τ0) = y(τ0), (3.23)

where Ā = 1
T

∫ τ+T
τ Φ−1(s, τ0)AΦ(s, τ0)ds, w̃wa = 1

T

∫ τ+T
τ Φ−1(s, τ0)η(Φ(s, τ0)y, w)ds.

The proof of Proposition 3.4 is similar to the proof of Proposition 3.1, thus it is omitted.

As the weak average of the system (3.22) exists, if it is Lyapunov-ISS, by applying weak

average Theorem 3.2, the following result is obtained.

Theorem 3.6. Suppose Assumption 3.1 holds and w ∈ L∞. Assume the weak averaged

system (3.23) is Lyapunov-ISS with gain γ̂. There exist B1(t) satisfying Assumption

3.2 and β ∈ KL, for any given strictly positive real numbers ∆, kw, kẇ, δ, there exist
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positive constants ε∗,M1,M2 s.t. ∀ε ∈ (0, ε∗) the solutions of (3.21) satisfy:

|x(t)| ≤M1 max{β(|x0|, t− t0),M2γ̂(‖w‖∞)}+M1δ, (3.24)

whenever t ≥ t0 ≥ 0, |x0| ≤ ∆, ‖w‖∞ ≤ kw and ‖ẇ‖∞ ≤ kẇ.

Proof : Since Assumption 3.1 holds, Φ(τ, τ0) and Φ−1(τ, τ0) are periodic and bounded,

let their supremum norm be M1 and M2 respectively i.e. M1 = supτ≥τ0 ‖Φ(τ, τ0)‖ and

M2 = supτ≥τ0 ‖Φ
−1(τ, τ0)‖

The dynamics of transformed system (3.22) f(τ, y, w) = ε
(
Φ−1(τ)AΦ(τ)y + Φ−1(τ)η(Φ(τ)y, w)

)
,

then

|f(t, y1, w)− f(t, y2, w)| ≤ ‖Φ−1AΦ‖|y1 − y2|+ ‖Φ−1‖|η(Φy1, w)− η(Φy2, w)|

≤M1M2( max
i∈{1,2...n}

{|λi(A)|}+ Ly)|y1 − y2|,

|f(t, y, w1)− f(t, y, w2)| ≤M2Lw|w1 − w2|.

So the system (3.22) is Lipschitz in y and w uniformly in τ . Therefore, applying Theorem

3.3, there exists β ∈ KL such that the solutions of system (3.22) satisfy: ∀τ ≥ τ0 ≥ 0

|y(τ)| ≤ max{β(|y(τ0)|, τ − τ0),M2γ̃(‖w‖∞)}+ δ.

Since x(τ) = Φ(τ, τ0)y(τ) and x(τ0) = y(τ0), ∀τ ≥ τ0 ≥ 0, it leads to

|x(τ)| ≤M1 max{β(|x(τ0)|, τ − τ0),M2γ̃(‖w‖∞)}+M1δ.

Q.E.D.

Remark 3.15. The assumption that weak averaged system (3.23) is Lyapunov-ISS in

Theorem 3.6 is not very restrictive due to the fact that Ā is Hurwitz from Assumption

3.1. Next, Corollary 3.1 provides a sufficient condition for the nonlinear mapping η(·, ·)
to guarantee that the weak averaged system (3.23) is Lyapunov-ISS. ◦

Corollary 3.1. Suppose Assumption 3.1 holds. If the nonlinear function η(·, ·) in (3.22)

satisfies the following inequality

|η(x,w)| ≤ |x|c|w|, (3.25)

for some c ∈ [0, 1), then that weak averaged system (3.23) of is Lyapunov ISS.

Proof : As Assumption 3.1 holds, Theorem 1.1 indicates that there exists B( tε) such

that Ā is Hurwitz. According to [77, Theorem 4.6 ], for any positive definite symmetric

matrix Q, there exists positive definite symmetric P s.t. PAav +ATavP = −Q. Choosing
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Q = I, a Lyapunov candidate is selected as V (y) = yTPy. This Lyapunov candidate is

used to show that the weak averaged system (3.23) is Lyapunov-ISS.

V̇ (t) =− yT y + 2yTP
1

T

∫ t+T

t
Φ−1(τ)η(Φ(τ)y, w)dτ

≤− yT y + 2|y|‖P‖‖Φ‖∞ sup
t≥t0
|η(Φ(t)y, w)

≤− |y|2 + 2|y|‖P‖‖Φ‖∞‖Φ−1‖c∞|y|c|w|

≤ − (1− θ)|y|2,

(3.26)

whenever |y| ≥
(

2‖P‖‖Φ‖∞‖Φ−1‖c∞|w|
θ

)1/(1−c)
for 0 ≤ c < 1 and 0 < θ < 1. Applying [77,

Theorem 4.19] directly, it is concluded that the system (3.23) is Lyapunov-ISS.

Q.E.D.

Remark 3.16. By applying weak average, vibrational control systems (3.7) are shown to

be robust to a more general states-dependent disturbances and it has ISS-like stability

with bounded and slow disturbances when the weak averaged system is Lyapunov ISS.

The Lyapunov ISS condition is not strict for the linear systems, which can be satisfied

if the coupling disturbances function η(x,w) is sub-linear.

3.4.4 Simulation Example: Linearised Inverted Pendulum

A strengthened robustness analysis is given in the Section 3.4, 3.4.2 and 3.4.3, which

shows that the vibrational control system has ISS like properties. Next, the model of

linearised inverted pendulum serves as an illustrate example to verify these robustness

performances with numeric simulations.

The state-space model of the inverted pendulum after linearization has the form of (3.7)

with

A =

[
0 1
g
l −

k
m

]
, B1

(
t

ε

)
=

[
0 0

a
lε cos t

ε + ka
ml sin t

ε 0

]
,

B2 =

[
1 0

0 1

]
.

(3.27)

It can be easily verified that the matrix A satisfies Assumption 3.1 and B1(t) satisfies

Assumption 3.2. Without disturbances, Theorem 1.1 indicates that vibrational control

system is stable if ε is sufficiently small.

In the following simulations, parameters of linearised inverted pendulum are selected

as l = 0.185,m = 0.2, k = 1, g = 9.8 and vibrational control parameters are chosen as
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a = 20, ε = 0.0032. Figure 3.5 shows that the vibrational controller can stabilize the

inverted pendulum while the original system is unstable.
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Figure 3.5: Linearised inverted pendulum is stabilized by vibrational control while
original system is unstable

Next it will be verified that this vibrational control algorithm is robust to different types

of disturbances. Assumed that there are exogenous forces disturbing the stabilization of

inverted pendulum, the system has additive, but state-independent disturbances in this

situation. As Theorem 3.4 indicates, the vibrational control system is ISS if disturbances

are bounded. The first disturbance is selected as

w0(t) =
t2

1 + t2
, (3.28)

which satisfies ‖w0‖∞ = 1. The simulated trajectories in l2-norm in Figure 3.6(a) show

that the states converge to a neighborhood of the origin.

Theorem 3.5 provides a less conservative estimation of trajectories bound when the

state-independent disturbances are periodic. Under such a situation, both Theorem

3.4 and 3.5 are applicable. In order to compare the ultimate bounds for two results,

w2(t) = sin 50t is applied. By applying Theorem 3.4, the bound of the trajectories

estimated from (3.17) is around 300. By applying Theorem 3.5, the bound from (3.20)

is shown in Figure 3.7, which is much less conservative (compared with 300 obtained

from Theorem 3.4).

Other than providing a less conservative bound for trajectories, Theorem 3.5 also in-

dicates that when disturbances are periodic, the ultimate bound is almost inversely

proportional to the disturbance frequency when it is sufficiently large. Figure 3.8 shows
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Figure 3.6: Trajectories of the inverted pendulum in the existence of disturbances
w0(t)
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Figure 3.7: Trajectories of x1, x2 and the bound of the trajectories from Theorem 3.5

simulated trajectories with different-frequency sinusoidal disturbances (the angular fre-

quency is 10, 50, 102, 103, 104 respectively). It indicates that the ultimate bound will

reduce as the frequency of disturbances increases.

It is possible to have the scenario when disturbances are coupled with states. For ex-

ample, the friction coefficient may vary as humidity changes, leading to state-dependent

disturbances.

Suppose state-dependent disturbance η(x,w) takes the form of η(x,w) =
[
|x|0.5w0(t)√

2
, |x|

0.5w0(t)√
2

]T
,

where w0 comes from (3.28). Obviously, the condition in Corollary 3.1 is satisfied. Thus

the weak average (3.23) is Lyapunov-ISS. As the disturbance w(t) is bounded and slowly



Chapter 3. Robustness of Linear Vibrational Control Systems 60

5 10 15
0

5

|x
|, 

w
1

5 10 15
0

0.2
0.4

|x
|, 

w
2

5 10 15
0

0.1
0.2

|x
|, 

w
3

5 10 15
0

0.005
0.01

|x
|, 

w
4

5 10 15
0
1
2

x 10
−4

|x
|, 

w
5

Time/s

Figure 3.8: The relationship between the ultimate bound and the frequency of dis-
turbances

0 2 4 6 8 10
−0.5

0

0.5

1

x 1

0 2 4 6 8 10
−6

−4

−2

0

2

x 2

Time/s

Figure 3.9: System is practically input-to-state stable in the existence of state-
dependent disturbance.

time-varying, Theorem 3.6 shows that the trajectories of the system will be practically

ISS. The trajectories of the vibrational control system with such a disturbance are shown

in Figure 3.9. These simulation results are consistent with theoretic results.

3.5 Summary

In this chapter, the robustness properties of linear vibrational control systems (LVCS)

with respect to different types of bounded disturbances were discussed. Input-to-state
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stability is an important concept to characterize the robustness of systems when dis-

turbances exist. It is straightforward to explore the robustness by applying the strong

and weak average techniques which show that LVCS has ISS-like stability properties

when the disturbances are bounded and sufficiently slow. Next, the robustness result

was generalized to demonstrate LVCS could also handle fast disturbances. By applying

the averaging and perturbation technique, the robustness was also strengthened to show

that LVCS is input-to-state stable such that the ultimate bound is only decided by the

L-infinity norm of disturbances.

To get a less conservative estimation of the bound of trajectories when additive distur-

bances are periodic, the frequency spectrum of ultimate bound was analysed by taking

Fourier series of disturbances. It indicated that DC component and low-frequency com-

ponents of disturbances constitute the ultimate bound more compared to high-frequency

components. And also it shows that higher frequency of disturbances leads to smaller

ultimate bound. Finally, a class of state-dependent additive disturbances are considered.

The obtained results show that LVCS is robust with respect to a class of state-coupling

disturbance functions if the disturbances are slowly time-varying. Simulation results

agree with theoretic analysis.



Chapter 4

Robustness of Nonlinear

Vibrational Control Systems

4.1 Overview

In this chapter, we will continue discussing the robustness of vibrational control systems

with respect to additive disturbances, extending the obtained results to the general

non-linear vibrational systems.

First of all, we will extend the local vibrational stability in Theorem 2.7 to local vibra-

tional robustness by considering the existence of additive disturbances. It is shown in

Theorem 2.7 that if the linearized matrix of the averaged system is Hurwitz, the original

dynamics is vibrationally stabilizable in the absence of disturbances. Based on that, we

will explore the perturbed performance when disturbances exist such as the transient

behaviour, the steady state and the ultimate bound.

The robustness analysis is basically representing the disturbed nonlinear vibrational

control systems as the stable averaged system and several perturbation terms. We

adapt the sample-data approach used in [45, 82] in the proof to show that a quadratic

Lyapunov function decays exponentially at sampling time instances. After showing

the closeness between sampled trajectories and actual trajectories, the robustness of

nonlinear vibrational control systems is concluded in Theorem 4.1. The main result

shows that the averaged trajectories of nonlinear vibrational control systems have locally

practically ISS properties.

Next, we will explore the non-local vibrational robustness properties of nonlinear vi-

brational control systems with respect to additive disturbances. We consider that the

averaged system is asymptotically stable in any domain D ⊂ Rn, which has a weaker

62
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stability requirement compared to exponentially stable assumption used in the local

robustness. Main result in Theorem 4.2 shows that the averaged trajectories of time-

varying system have ISS-like stability properties for a non-local domain of attraction,

which can be an arbitrarily large if D is the global domain.

When the bounded disturbances are periodic and fast-varying, the nonlinear vibrationa

control system has stronger robustness properties as shown in Theorem 4.3. It shows that

the nonlinear vibrational control system can handle large amplitude of disturbances in

these cases. Besides, the averaged trajectories converge to a smaller ultimate bound. In

the definition of input-to-state stability, the trajectories converge to a ultimate bound

decided by the L-infinity norm of the disturbances, however we have shown that the

ultimate bound here is only related to the average of the disturbances such that the

estimation of the steady-states is less conservative.

The standing point of the above results is assuming that the nonlinear vibrational control

systems in the absence of disturbances is vibrationally stable. The disturbances are

regarded as perturbations to the stabilized system such that they (or their average)

should be bounded by some value to avoid driving the trajectories out of the domain of

attraction.

In the last section, we considers the weak averaged system (the averaged system with

disturbances) exists and is Lyapunov-ISS, then nonlinear vibrational control systems can

handle arbitrarily large disturbances. Besides, the averaged trajectories satisfy semi-

globally practically ISS properties. We adapt the weak average results to show that

for disturbed nonlinear vibrational control systems, the obtained robustness results are

valid for both fast and slow disturbances.

The chapter is organized as follows. In Section 4.2, local robustness results are obtained.

Robustness based on a weak stability condition is presented in Section 4.3, applicable to

a large class of systems. A stronger robustness conclusion when periodic disturbances

exist is also stated. weak average technique is adapted in Section 4.4 to show that

the system can handle arbitrarily large disturbances when the weak averaged system is

Lyapunov-ISS. Section 4.5 summarizes the chapter.
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4.2 Local Vibrational Robustness with respect to Con-

strained Additive Disturbances

4.2.1 Local Robustness Analysis in the presence of Additive Distur-

bances

In section 2.6.2, the local vibrational stabilization is discussed when the linearised ma-

trix of averaged system is Hurwitz. As an extension, next we consider the exogenous

disturbances w exist in the vibrational control system (2.20) with an additive form:

ẋ = f(x) +
1

ε
g

(
t

ε
, x, ε

)
+ d(w), x(t0) = x0 ∈ Rn, ∀t ≥ t0 ≥ 0, (4.1)

where w ∈ Rm and the disturbance function d : Rm → Rn satisfies the Assumption 4.1.

Assumption 4.1. Let Ωd be a compact set in Rm, in which the origin is an interior

point. There exists γ ∈ K such that the disturbance mapping satisfies

|d(w)| ≤ γ(|w|) (4.2)

for all w ∈ Ωd.

Remark 4.1. The assumption is to guarantee that the influence of disturbances to the

systems is caused by its largest value of disturbances. When disturbances tends to zero,

the influence to the system also diminishes.

By transforming the disturbed vibrational control systems (4.1) with the coordinate

change (2.24), we have

dy

dτ
= ε

{
∂h

∂y

}−1

(f(h(τ, y)) + d(w(ετ)))

= ε(f1(τ, y) + d1(τ, y, w)).

(4.3)

where d1(τ, y, w) =
{
∂h
∂y

}−1
(τ, y)d(w(ετ)).

Remark 4.2. The disturbance in new coordinate d1(·, ·, ·) also satisfies the Assumption

4.1 because
{
∂h
∂y

}−1
(τ, y) is periodic in τ and continuous in y, thus it is bounded for all

y in a compact set Ωy0 in Rn. Based on assumptions and conditions used in Theorem

2.7, we will analyse the robustness of vibrational control systems by treating d1(τ, y, w)

as a perturbation to the nominal system f1(τ, y).

The averaged system of the system (4.3) without considering disturbances is

dz

dτ
= εf1,av(z), (4.4)
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where f1,av(z) := 1
T

∫ T
0

{
∂h
∂z

}−1
f(h(τ, z))dτ and ze is the equilibrium point of f1,av(z)

such that f1,av(ze) = 0.

Next, we apply the standard sampling technique as introduced in [45, 82] to estimate the

original trajectory bound by computing the values of a Lyapunov function at sampled

time instances. Next Lemma shows a quadratic Lyapunov function exists and decreases

at sampled time instances for all initial points inside the domain of attraction.

Lemma 4.1. Suppose Assumptions 2.1 - 2.3 and 4.1 hold. Assume that there exists an

equilibrium point ze of (4.4) such that Ā =
[
∂fy,av
∂z

]
z=ze

is Hurwitz, there exists positive

definite matrix P , positive constants ε∗, µ, ρ0, ν(ρ0) and γ̃ ∈ K such that ∀ε ∈ (0, ε∗),

∀|y0| < ρ0 and ∀‖w‖∞ ≤ ν, Lyapunov function V (y) = yTPy satisfies the following

condition:

Vk+1 − Vk ≤ −µVkεT, ∀Vk ≥ γ̃(‖w‖∞) (4.5)

where T is the period of dither signal in time τ and Vk = V (y(tk)), tk = t0 + kεT ,

k = 0, 1...n.

Proof. Without losing generality, suppose the equilibrium point of the transform system

(2.25) is origin. If the equilibrium point is not the origin, by coordinate change it can

be shifted to the origin. According to Mean Value Theorem, there is ξ ∈ (0, y) such that

the i-th component of the transformed system (4.3) f1(τ, y) can be expressed as

fy,i(τ, y) = fy,i(τ, y)− fy,i(τ, 0)

=
∂fy,i
∂y

(τ, ξ)y

=
∂fy,i
∂y

(τ, 0)y +

(
∂fy,i
∂y

(τ, ξ)− ∂fy,i
∂y

(τ, 0)

)
y.

(4.6)

For
∂fy,i
∂y (τ, y) is assumed to be locally Lipshcitz continuous, for a given compact set,

there exists positive numbers Li such that∣∣∣∣∂fy,i∂y
(τ, y1)− ∂fy,i

∂y
(τ, y2)

∣∣∣∣ ≤ Li|y1 − y2|.

Separating the linear term in this way, we can rewrite the transformed system (4.3) as

dy

dτ
= ε(A(τ)y + η(τ, y) + d1(τ, y, w)), (4.7)

where A(τ) = ∂f1
∂y (τ, 0), η(τ, y) = (∂f1∂y (τ, ξ)− ∂f1

∂y (τ, 0))y. From the Lipschitz condition

we can see that |η(τ, y)| ≤ L|y|2 where L =
√∑n

i=1 L
2
i . As the averaged matrix Ā

is Hurwitz, there exist positive-definite matrices P and Q s.t. the following Lyapunov
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equation is satisfied:

PĀ+ ĀTP = −Q. (4.8)

The transformed system (4.7) can be further written as:

dy

dτ
= ε(Āy + (A(τ)− Ā)y + η(τ, y) + d1(τ, y, w)). (4.9)

Select a Lyapunov function V (y) = yTPy. Since the matrix P is positive definite, there

exist positive constants c1, c2 such that c1|y|2 ≤ V (y) ≤ c2|y|2.

The derivative of V (y) along the system (4.9) is

dV

dτ
(τ) =εyTP [Āy + (A(τ)− Ā)y + η(τ, y) + d1(τ, y, w)]

+ε[Āy + (A(τ)− Ā)y + η(τ, y) + d1(τ, y, w)]TPy

=εyT (PĀ+ ĀTP )y + εyTP (A(τ)− Ā)y

+ εyT (A(τ)− Ā)TPy + 2εηT (τ, y)Py + 2εdT1 (τ, y, w)Py

=− εyTQy + εyTP (A(τ)− Ā)y + εyT (A(τ)− Ā)TPy

+ 2εηT (τ, y)Py + 2εdT1 (τ, y, w)Py.

(4.10)

Let ϕ(τ) = A(τ) − Ā. Since A(τ) is periodic and Ā is a constant matrix then ϕ(τ) is

also periodic. According to the definition of averaged system Ā = 1
T

∫ τ+T
τ A(s)ds, the

average of ϕ(τ) is
1

T

∫ τ+T

τ
ϕ(s)ds = 0, (4.11)

which indicates ϕ(τ) is zero mean.

The equation (4.10) is then rewritten in the original time scale:

V̇ (t) = −yTQy + yTPϕ

(
t

ε

)
y + yTϕ

(
t

ε

)T
Py + 2ηT

(
t

ε
, y

)
Py + 2dT1

(
t

ε
, y, w

)
Py.

(4.12)
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The upper bound of V (t) can be estimated by integrating its derivative:

V (t) = V (t0) +

∫ t

t0

V̇ (s)ds

= V (t0) +

∫ t

t0

[
−yTQy + 2ηT (s, y)Py + 2dT1 (s, y, w)Py

]
ds

+

∫ t

t0

[
yTPϕ

(s
ε

)
y + yTϕ

(s
ε

)T
Py

]
ds

≤ V (t0) +

∫ t

t0

[
− c3|y|2 + 2Lc2|y|3 + 2b|d(w)|c2|y|

]
ds+

∫ t

t0

[
yTPϕ

(s
ε

)
y + yTϕ

(s
ε

)T
Py

]
ds

≤ V (t0)−
∫ t

t0

(1− θ1 − θ2)c3|y|2ds−
∫ t

t0

(θ1c3|y|2 − 2Lc2|y|3)ds

−
∫ t

t0

(θ2c3|y|2 − 2bγ(‖w‖∞)c2|y|)ds+

∫ t

t0

[
yTPϕ

(s
ε

)
y + yTϕ

(s
ε

)T
Py

]
ds

≤ V (t0) +

∫ t

t0

[
−(1− θ1 − θ2)c3|y|2 + 2yTPϕ

(s
ε

)
y
]
ds,

∀γ̃(‖w‖∞) ≤ |y| ≤ ρ0,

(4.13)

where ρ0 = θ1c3
2Lc2

, γ̃(‖w‖∞) = 2bγ(‖w‖∞)c2
θ2c3

, b = sup|y|≤ρ0

∣∣∣[∂h/∂y]−1 (τ, y)
∣∣∣ and θ1, θ2 are

positive real numbers satisfying θ1 + θ2 ∈ (0, 1).

According to the continuity of solutions, for all initial values {y0 ∈ Rn||y0| < ρ0} and

disturbances {w ∈ Rm|‖w‖∞ ≤ γ̃−1(ρ0)}, there are positive constants M and ε∗1 such

that for all ε ∈ (0, ε∗1), the solutions of transformed system (4.3) satisfy:

|y(t)− y(t0)| ≤M(t− t0), ∀t ∈ [t0, t0 + εT ]. (4.14)

An upper bound of the term in the equation (4.13) can be found in the following way:∫ t0+εT

t0

yT (s)Pϕ
(s
ε

)
y(s)ds

=

∫ t0+εT

t0

[
yT (s)Pϕ

(s
ε

)
y(s)− yT0 Pϕ

(s
ε

)
y0

]
ds

+

∫ t0+εT

t0

[
yT (s)Pϕ

(s
ε

)
y0 − yT (s)Pϕ

(s
ε

)
y0

]
ds

=

∫ t0+εT

t0

[
yT (s)Pϕ

(s
ε

)
(y(s)− y0) + (y(s)− y0)TPϕ

(s
ε

)
y0

]
ds

≤
∫ t0+εT

t0

(|y(s)|+ |y0|) ‖P‖|y(s)− y0|
∥∥∥ϕ(s

ε

)∥∥∥ ds
< 2ρ0c2ξ0M(εT )2,∀t0 ≤ t ≤ t0 + εT,

(4.15)
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where supτ≥0 ‖A
(
τ
ε

)
− Ā‖ = ξ0. Thus there exists ε∗2 = |y0|

2MT such that |y(t)|2 ≥ |y0|2
4 ,

for all t ∈ [t0, t0 + εT ]. Combined with inequality (4.13) we can see that

V (t0 + εT ) ≤V (t0)− 1

4
(1− θ1 − θ2 − θ3)c3|y0|2εT + 4ρ0c2ξ0M(εT )2 − 1

4
θ3c3|y0|2εT.

(4.16)

Then there exists ε∗3 = θ3c3|y0|2
16ρ0c2ξ0M

such that 4ρ0c2ξ0M(εT )2 − 1
4θ3c3|y0|2εT ≤ 0. Select

ε∗ = min(ε∗1, ε
∗
2, ε
∗
3) therefore for every ε ∈ (0, ε∗), for all y0 ∈ Ω, ∀t ∈ [t0, t0 + εT ]

V (t0 + εT ) ≤ V (t0)− 1

4
(1− θ1 − θ2 − θ3)c3|y(t0)|2εT < V (t0).

We can see that the Lyapunov function decreases over a period εT . In the same way we

could see that it decreases at each sampled time instance tk = t0 + kεT where k ∈ N . If

Vk ≥ c2(γ(‖w‖∞))2 = γ1(‖w‖∞), there exists ε∗ s.t. for every ε ∈ (0, ε∗), the following

inequality holds

Vk+1 ≤Vk −
1

4
(1− θ1 − θ2 − θ3)c3|yk|2εT < Vk, t ∈ [tk, tk+1]. (4.17)

In the condition of Vk ≥ c1|yk|2, the difference of Lyapunov function at two sequential

sampled time instances is

Vk+1 − Vk ≤ −µVkεT, t ∈ [tk, tk+1], (4.18)

where µ = (1−θ1−θ2−θ3)c3
4c1

.

Remark 4.3. As Ā is Hurwitz, for any positive definite matrix Q, there exists a positive

definite matrix P such that PĀ + ĀTP = −Q. Although the derivative of proposed

Lyapunov function V (y) = yTPy cannot be shown as negative, Lemma 4.1 shows that

it decreases at sampled time instances along the trajectories of system (4.3), based

on which the contraction could be obtained. The estimated domain of attraction is

DOA = {y ∈ Rn||y−ze| ≤ ρ0}. The L∞ norm of disturbances that the system can handle

will depend on the domain of attraction. For disturbances outside of the estimated

bound, it might drive the trajectories of the system outside the DOA.

Based on the fact that Lyapunov function decreases at sampled time instances, Lemma

4.2 shows the sampled trajectory also decreases.

Lemma 4.2. Suppose the inequality (4.5) holds from Lemma 4.1, there exist β ∈ KL
and γ̂ ∈ K such that the sampled trajectories of (4.3) satisfy

|y(tk)− ze| ≤ max{β(|y0 − ze|, kεT ), γ̂(‖w‖∞)}. (4.19)
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Proof. Without losing the generality, let ze = 0. Then we introduce a new variable

variable u(s) = Vk + ( s
εT − k)(Vk+1 − Vk)), where s ∈ [tk, tk+1], tk = t0 + kεT and Vk

satisfies inequality (4.5). The function u(s) is an absolutely continuous, piecewise linear

function, then it is differentiable for almost all s ≥ 0. As u(s) ≤ Vk, if u(s) ≥ γ̃(‖w‖∞)

we have Vk ≥ γ̃(‖w‖∞). According to (4.5),

du

ds
= (Vk+1 − Vk)

1

εT
≤ −µVk ≤ −µu(s), ∀u(s) ≥ γ̃(‖w‖∞). (4.20)

According to Comparison Lemma in [77, Lemma 3.4],

|u(s)| ≤ max{e−µs|u0|, γ̃(‖w‖∞}.

As u(tk) = Vk ≥ c1|y(tk)|2, |u0| = V0 ≤ c2|y0|2, where c1 and c2 are related to the

positive definite matrix P . Then there exists β ∈ KL and γ̂ ∈ K∞ such that the

following inequality holds

|y(tk)| ≤ max{β(|y0|, kεT ), γ̂(‖w‖∞)}, (4.21)

where β(|y0|, kεT ) =
√

c2
c1
e−0.5µkεT |y0| and γ̂(‖w‖∞)} =

√
c2
c1
γ̃(‖w‖∞).

Remark 4.4. The sampled trajectories converge exponentially because β(·, s) is an ex-

ponentially decaying function with respect to s. This is a natural result from the as-

sumption that Ā is Hurwitz which indicates the averaged system without disturbances

is locally exponentially stable. In the existence of disturbances, the sampled trajectories

will converge to a neighbourhood related to the L∞ norm of disturbances.

After showing that the inter-sampling behaviour between sampled points could be made

sufficiently small by tuning the parameter ε, the main result of this section is given in

Theorem 4.1.

Theorem 4.1. Suppose Assumptions 2.1 - 2.4 and 4.1 hold. If there exists an equi-

librium point ze of (4.4) such that Ā =
[
∂fy,av
∂z

]
z=ze

is Hurwitz, there exist positive

numbers a1, a2, λ, K∞ functions γ̂1, γ̂2 and positive constants ρ, v(ρ), δ∗(ρ) such that for

any δ ∈ (0, δ∗) there exists ε∗ s.t. for all ε ∈ (0, ε∗), the solutions of the system (4.1)

exist for t ≥ t0 and satisfy

|xav(t)− xe| ≤ max{a1|xav(t0)− xe|e−λ(t−t0), γ̂1(‖w‖∞)}+ δ (4.22)

for all t ≥ t0, whenever |x0 − xe| ≤ ρ and ‖w‖∞ ≤ ν, where xav(t) =
∫ t+T
t x(τ)dτ .

Moreover, if xe = h(t, ze) for all t ≥ t0, the solutions of the system (4.1) satisfy

|x(t)− xe| ≤ max{a2|x(t0)− xe|e−λ(t−t0), γ̂2(‖w‖∞)}+ δ, (4.23)
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for all t ≥ t0, whenever |x0 − xe| ≤ ρ and ‖w‖∞ ≤ ν.

Proof. Since Assumptions 2.1 - 2.3, 4.1 hold, sampled trajectory of transformed system

(4.3) satisfies (4.19) in Lemma 4.2. Without losing the generality, let ze = 0. As

indicated in (4.14), for any δ > 0 there exists ε∗ > 0 s.t. for all ε ∈ (0, ε∗),

|y(t)| ≤ |y(tk)|+ δ, ∀t ∈ [tk, tk+1].

Combining the above inequality with (4.21), it shows that

|y(t)| ≤ max{β(|y0|, kεT ), γ̂(‖w‖∞)}+ δ, ∀t ≥ t0 ≥ 0. (4.24)

where β(|y0|, kεT ) =
√

c2
c1
e−0.5µkεT |y0|. Then there exists positive a0 such that for all

ε ∈ (0, ε∗), the following inequality satisfies

a0 ≥
√
c2

c1
e−0.5µεT . (4.25)

Therefore, the trajectories between two sampling instances can be bounded by

|y(t)| ≤ max{
√
c2

c1
e−0.5µkεT |y0|, γ̂(‖w‖∞)}+ δ,

≤ max{a0e
−0.5µ(k+1)εT |y0|, γ̂(‖w‖∞)}+ δ.

(4.26)

As (k + 1)εT ≥ t− t0 for any t ∈ [tk, tk+1],

|y(t)| ≤ max{a0e
−0.5µ(t−t0)|y0|, γ̂(‖w‖∞)}+ δ. (4.27)

The averaged trajectory is defined as xav(t) = 1
T

∫ t+T
t x(τ)dτ , then the closeness to the

equilibrium point could be found using the following inequality:

|xav(t)− xe| =
1

T

∫ t+T

t
(h(τ, y)− h(τ, 0)) dτ

≤ 1

T

∫ t+T

t
(L|y(τ)|) dτ

≤ 1

T

∫ t+T

t
L
(

max{a0e
−0.5µ(τ−t0)|y0|, γ̂2(‖w‖∞)}+ δ

)
dτ

≤ max{a1|xav(t0)− xe|e−λ(t−t0), γ̂1(‖w‖∞)}+ δ.

(4.28)

where λ = −0.5µ, a1 = L
λT (1− e−λT ) supt{h−1(t, y0 − ze)} and γ̂1 ∈ K.
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Moreover, suppose xe = h(t, 0) holds. Since h(t, c) is locally Lipschitz then for any δ > 0,

we have

|x(t)− xe| = |h(t, y)− h(t, 0)|

≤ L|y(t)|

≤ max{a2|x(t0)− xe|e−λ(t−t0), γ̂2(‖w‖∞)}+ δ, ∀t ≥ t0 ≥ 0,

(4.29)

where a2 = La0 supt{h−1(t, y0 − ze)} This completes the proof.

Remark 4.5. The moving average of the system trajectories is used in Theorem 4.1.

Compared to averaging the trajectory over an infinity time in Definition 2.11, it char-

acterizes the transient behaviour of the averaged trajectory such as the decaying rate.

It shows that the averaged trajectory converges arbitrarily close to the ultimate bound

γ̂1(‖w‖∞). In the special case of w = 0, the averaged trajectory will converge arbitrarily

close to the equilibrium point which means the system is vibrationally stable. When

the equilibriums xe and ze satisfy condition (2.27), the original trajectory instead of

averaged trajectory of the solutions will converge to the ultimate bound.

4.2.2 An Illustrative Example: Vertically Moving Inverted Pendulum

to Track a Moving Target

Vibrational control has been shown to be a useful method to stabilize the inverted

pendulum without using a feedback as demonstrated in the motivational example in the

Section 1.1. Next, instead of stabilizing the pendulum to a still upper point, we assume

the targeted upper point of pendulum is moving vertically at a constant speed. Thus

besides the sinusoidal dither, an extra displacement signal σ(t) = σt which casts the

moving target will be added to the motion of the slider, where σ is the speed of the

target.

After deriving the equations of motions from Lagrange dynamics modeling and repre-

senting the system in state-space by letting x1 = θ, x2 = θ̇, the system becomes:[
ẋ1

ẋ2

]
=

[
x2

−g
l sinx1 − k

mx2

]
︸ ︷︷ ︸

f(x)

+

[
0(

a
εl sin( tε)−

ka
ml cos( tε)

)
sinx1

]
︸ ︷︷ ︸

g( t
ε
,x,ε)

+

[
0

− kσ
ml sinx1

]
︸ ︷︷ ︸

d(σ,x)

.
(4.30)

Remark 4.6. It can be seen from equation (4.30) that stabilizing the moving inverted

pendulum with vibrational control brings in an additive term d(σ, x). The moving speed

is then regarded as an additive disturbance to the vibrational control system. As d(σ, x)

has the property |d(σ, x)| ≤ kσ
ml such that Assumption 4.1 is satisfied, Theorem 4.1 is
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Oscillating dither

Slider

Mass

Translational joint

Vertically moving target

Figure 4.1: Moving inverted pendulum stabilized by vibrational control method.

applicable to show the robustness, though the disturbance is coupled with states. There

are other cases where state-independent additive disturbances exist. For example, a

disturbance force Fw is acting on the mass where d(Fw) = [0, Fwl]
T .
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x 2

Figure 4.2: The trajectories of inverted pendulum stabilized by vibrational control
algorithm.

Next, we will simulate the inverted pendulum with a moving target to verify the robust-

ness of vibrational control systems which is indicated in Theorem 4.1. All the parameters

used in the simulations are given in the Table 4.1.

The simulated angular positions and velocities of the pendulum with respect to time

are shown in Figure 4.2. The inverted pendulum starts from a neighbourhood from

its equilibrium position where xe = [π, 0]T . Although the moving speed σ exists as



Chapter 4. Robustness of Nonlinear Vibrational Control Systems 73

-2 -1 0 1 2

X

0

1

2

3

4

5

6

7

Y

 Positions of the pendulum

Moving target

-2 -1 0 1 2

X

0

1

2

3

4

5

6

7

Y

The trajectory of the mass

Figure 4.3: (a) Positions of inverted pendulum at different time instances; (b) trajec-
tory of the mass.

Table 4.1: System parameters of inverted pendulum used in the simulation

Classification Parameter Value Unit

Pendulum

mass m
viscous coefficient k
length l
gravitational acceleration g

1
0.5
1

9.8

Kg
N/m·s−1

m
m/s2

Vibrational controller
amplitude a
tuning parameter ε

10
0.01

m
s

Initial conditions
angular displacement θ0

angular velocity θ̇0

2.64
0.5

rad
rad/s

Disturbance moving speed σ 0.5 m/s

disturbances, the states converge close to the equilibrium positions which shows the

robustness of vibrational control algorithm. By computations, the equilibrium points in

the transformed systems is ye = ze = [π, 0]T . As the coordinate transformation isx1 = y1

x2 = y2 −
a

l
cos τ sin y1.

(4.31)

It means that the equilibrium points xe, ze satisfy the condition of xe = h(τ, ze) in

Theorem 4.1. Hence the trajectory instead of its average converges arbitrarily close to

the equilibrium point. The trajectory behaviours in Figure 4.2 are consistent with the

theoretic analysis.

The positions of inverted pendulum at different time instances are shown in Figure
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4.3(a). It shows that the sensorless inverted pendulum with vibrational controller could

track the moving target in an open-loop fashion. The trajectory of the mass is shown

in Figure 4.3(b).

Overall, the simulation results support the theoretic analysis which verify the local

robustness of vibrational control systems.

4.2.3 Summary of this Section

In this section, we presented the robustness analysis of nonlinear vibrational control sys-

tems with respect to additive disturbances when the linearized matrix of the averaged

system is Hurwitz. The Lyapunov sample-data method was used to show the conver-

gence of solutions. It indicates that for all initial points from the domain of attraction,

the periodic solutions will converge to an ultimate bound near the equilibrium point,

provided that disturbances are constrained in a compact set. The ultimate bound of

solutions is related to the size of disturbances and can be estimated by applying per-

turbation technique. Numerical simulations supported theoretic findings. In the next

section, a weaker stability condition will be used for robustness analysis, which assumes

the averaged system is asymptotically stable in some domain of attraction that can be

either local or global region.

4.3 Non-local Vibrational Robustness with respect to Con-

strained Additive Disturbances

In Section 4.2, a direct extension of local vibrational stabilization to local vibrational

robustness was made considering the existence of additive disturbances when the av-

eraged system is assumed to be locally exponentially stable (LES). However, the LES

assumption is too strong for some practical system, for example, in Section 2.6 we have

seen that vibrational stabilization could be achieved for systems without holding the

LES condition. In the following section, we will provide a more general robustness anal-

ysis where the averaged system is asymptotically stable in any domain of attraction in

Rn. The result is not limited to the local region but can also work when the averaged

system has globally asymptotic stability. When disturbances are bounded and periodic,

taking the L-infinity norm of disturbances to estimate the ultimate bound might be too

conservative. For those fast time-varying periodic disturbances, the ultimate bound will

be shown related to the average of disturbances instead of the L-infinity norm.
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4.3.1 Non-local Robustness Analysis in the presence of Bounded Ad-

ditive Disturbances

Consider disturbances w exist in the vibrational control system (2.20) with an additive

form:

ẋ = f(x) +
1

ε
g

(
t

ε
, x

)
+ d(w), x(t0) = x0 ∈ Rn, ∀t ≥ t0 ≥ 0, (4.32)

where w ∈ Rm and the disturbance mapping d : Rm → Rn satisfies the Assumption 4.1.

By transforming the disturbed vibrational control systems (4.32) with the coordinate

change (2.24), we have

dy

dτ
= ε

{
∂h

∂y

}−1

(f(h(τ, y)) + d(w(ετ)))

= ε(f1(τ, y) + d1(τ, y, w(ετ))),

(4.33)

where d1(τ, y, w) =
{
∂h
∂y

}−1
(τ, y)d(w(ετ)).

Remark 4.7. The additive form is preserved in transformed systems (4.33), in which

the dominant term f1(τ, y) is the same as (2.25). Then system (4.33) can be treated as

the averaged system (4.4) with additional perturbations. The first perturbation comes

from the difference between time periodic functions f1(τ, y) − fy,av(y) while the other

one comes from the disturbances. Next we will show that under some conditions, the

system keeps stable in the existence of these perturbations.

Let Dz be the domain of attraction that is mapped to Dx by the transformation (2.24)

and Dx0 be a compact subset of Dx.

Theorem 4.2. Suppose Assumptions 2.1 - 2.4 and 4.1 hold. If there exists an equilib-

rium point ze of (4.4) such that the averaged system (4.4) is asymptotically stable for all

z(t0) ∈ Dz, there exist positive constants ν, δ∗ such that for any δ ∈ (0, δ∗) there exists

ε∗ s.t. for all ε ∈ (0, ε∗), the solutions of the system (4.32) exist for t ≥ t0 and satisfy

|xav(t)− xe| ≤ max{β̂1(|xav(t0)− xe|, t− t0), γ̂1(‖w‖∞)}+ δ (4.34)

for all t ≥ t0, whenever x0 ∈ Dx0 and ‖w‖∞ ≤ ν, where β̂1 ∈ KL, γ̂1 ∈ K∞.

Proof : see Proof of Theorem 4.2 in Appendix A.1. �

Remark 4.8. As the stability properties of the averaged system (4.4) are defined in the

domain of attraction Dz, the disturbances in (4.32) cannot be arbitrarily large as the

existence of disturbance might drive the trajectories of the system (4.32) outside the

domain of the attraction. When the disturbances are sufficiently small, the trajectories
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of the vibrational control system (4.32) still preserve some stability properties. The

averaged trajectories of system converge to a neighbourhood of the equilibrium xe. The

ultimate bound of the trajectories have two parts: one is related to disturbances or

‖w‖∞, while the other term δ comes from the closeness of trajectories between the

original system and the averaged system. The value of δ can be tuned arbitrarily small

by reducing the value of the parameter ε.

Remark 4.9. Compared with Theorem 4.1, Theorem 4.2 extends the local robustness

from linearisation to the non-local robustness where the domain of attraction can be

arbitrarily large. Besides, the averaged system (4.4) is relaxed to a weak assumption

that it is asymptotically stable instead of locally exponentially stable.

If asymptotic stability of the averaged system is satisfied globally , the initial domain

could be arbitrarily large while trajectories satisfying (4.34) for any bounded distur-

bances. It is stated in the following corollary.

Corollary 4.1. If the system (4.4) is globally asymptotically stable for all z(t0) ∈ Rn

and all the other assumptions of Theorem 4.2 hold, for any given ∆ and ν, the solutions

of the system (4.32) satisfy (4.34) whenever |x0 − xe| ≤ ∆ and ‖w‖∞ ≤ ν.

Remark 4.10. Corollary 4.1 can be indicated from Theorem 4.2 when the domain of at-

traction of the averaged system (4.4) is global, then the time-varying system (4.32) keeps

stable for any bounded initial set. While disturbances are zero, the inequality (4.34) in-

dicates the system is uniformly semi-globally practically vibrational stable, which can

be linked to SPV stability results in Theorem 2.8.

With an extra condition xe = h(t, ze), which means that equilibrium point xe of the

original dynamics ẋ = f(x) coincides with the one after the transformation, the following

corollary shows a stronger result.

Corollary 4.2. Suppose all the assumptions and conditions in Theorem 4.2 are satisfied.

In addition, if xe = h(t, ze) for all t ≥ t0, the solutions of the system (4.32) satisfy

|x(t)− xe| ≤ max{β̂2(|x0 − xe|, t− t0), γ̂2(‖w‖∞)}+ δ, (4.35)

for all t ≥ t0, where β̂2 ∈ KL, γ̂2 ∈ K∞.

The proof of Corollary 4.2 is straightforward, thus it is omitted.
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4.3.2 Frequency-related Robustness in the presence of Bounded and

Periodic Additive Disturbances

As high frequency dither signals are injected to the system (2.19), it is possible that the

dither signals might excite some other periodic disturbances that satisfy the following

assumption.

Assumption 4.2. Disturbances w(t) are bounded and periodic i.e. w ∈ L∞ and there

exists Tw > 0 such that w(t+ Tw) = w(t).

The disturbances are also required to be bounded as in Assumption 4.2 such that The-

orem 4.2 is applicable. In Theorem 4.2, the estimation of ultimate bound comes from

the worst case of disturbances ‖w‖∞. However, when more information of disturbance

is known, a less conservative estimation of the ultimate bound could be obtained. When

disturbances are periodic with the frequency ω, they can be represented as

w

(
ω

(
t+

Tw
ω

))
= w(ωt).

By letting η = 1
ω , the systems (4.32) can be rewritten into the following form with two

time scales:

ẋ = f(x) +
1

ε
g

(
t

ε
, x, ε

)
+ dw

(
t

η

)
, x(t0) = x0 ∈ Rn, ∀t ≥ t0 ≥ 0, (4.36)

where dw(t) = d ◦ w(t) is written in the composition form.

By transforming the disturbed vibrational control systems (4.32) with the coordinate

change (2.24), we have

dy

dτ
= ε

{
∂h

∂y

}−1

(f(h(τ, y)) + d(w(ετ)))

= ε

(
f1(τ, y) + d1

(
τ, y, w

(
ετ

η

)))
,

(4.37)

where d1(τ, y, w) =
{
∂h
∂y

}−1
(τ, y)dw( ετη ).

Next Theorem shows that if the disturbances are faster than dither signal, a less con-

servative estimation of trajectories bound could be obtained.

Theorem 4.3. Suppose Assumptions 2.1 - 2.4, 4.1 - 4.2 hold. If there exists an equi-

librium point ze of (4.4) such that the system (4.4) is asymptotically stable for all

z(t0) ∈ Dz, there exist positive constants ν, δ∗ such that for any δ ∈ (0, δ∗), there exists

ε∗ s.t. for any ε ∈ (0, ε∗), there exists η∗ < ε for any η ∈ (0, η∗), the solutions of the
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system (4.32) exist and satisfy

|xav(t)− xe| ≤ β̂3(|xav(t0)− xe|, t− t0) + γ̂3(|d̄w|) + δ, (4.38)

for all t ≥ t0, whenever x0 ∈ Dx0 and |d̄w| ≤ ν, where d̄w = 1
Tw

∫ t+Tw
t dw(τ)dτ

Moreover, if xe = h(t, ze) for all t ≥ t0, the solutions of the system (4.32) satisfy

|x(t)− xe| ≤ β̂4(|x0 − xe|, t− t0) + γ̂4(|d̄w|) + δ, (4.39)

for all t ≥ t0, where β̂3, β̂4 ∈ KL, γ̂3, γ̂4 ∈ K∞.

Proof : see Proof of Theorem 4.3 in Appendix A.2. �

Remark 4.11. According to equation (A.37) in the proof, the practical term δ in ultimate

bound can be represented as O(ε) +O
(η
ε

)
+O(η). To constrain the trajectories within

δ, firstly dither frequency ε is chosen to be sufficiently small such that it takes part of

δ. It is satisfied if the frequency of disturbances is high enough such that O
(η
ε

)
+O(η)

takes the rest of threshold. Normally δ is smaller than 1, so η should accordingly be

smaller than ε which means the frequency of disturbances is supposed to be higher than

that of dither signal.

Remark 4.12. Compared to Theorem 4.2, the ultimate bound is dependent on the av-

erage of disturbances other than its L-infinity norm. This estimation could be much

less conservative because the average is possible to be much smaller than its L-infinity

norm, for example when the disturbances are periodic with zero mean, the trajectories

of system converge to the δ-neighbourhood that is independent of the L-infinity norm

of disturbances. In other words, the equilibrium point of the system keeps vibrational

stabilizable in the existence of disturbances if they are periodic with zero average and

fast varying.

Remark 4.13. Strong and weak average provides robustness analysis tools for a general

nonlinear time-varying systems in [45]. By applying them to vibrational control systems

in [75], strong average doesn’t exist while weak average exists. From weak average

results, trajectories boundary similar as (4.35) could be estimated if the disturbances

are slowly varying. Theorem 4.3 can be regarded as the complement which works for

fast disturbances having a less conservative estimation.

Remark 4.14. The idea of Theorem 4.3 is similar to that presented in Theorem 3.5 as

both of them consider the frequency components of disturbances. Subtle differences

exist. As Fourier series expansion of |w(t)| was used in the proof of Theorem 3.5 thus

the result obtained is more conservative compared using the periodicity property of the

disturbances in Theorem 4.3. On the other hand, when applying Theorem 4.3, the

periodic disturbances don’t necessarily need to be fast.
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When the average of the periodic disturbances are zero, it is possible to obtain stronger

stability results under some conditions.

Proposition 4.1. Suppose Assumptions 2.1 - 2.3 and 4.1 - 4.2 hold. Assume that there

exists positive integers m and n such that the common period Tc = mεT = nηTw and

(4.4) is asymptotically stable for all z(t0) ∈ Dz. Moreover, if 1
Tc

∫ Tc
0 d1(τ, y)dτ = 0, for

any given δ there exists ε∗ s.t. for all ε ∈ (0, ε∗) solutions of the system (4.32) exist and

satisfy

|xav(t)− xe| ≤ β̂5(|xav(t0)− xe|, t− t0) + δ (4.40)

for all t ≥ t0, whenever x0 ∈ Dx0, where β̂5 ∈ KL

Proof. By using the Lyapunov candidate in the proof of Theorem 4.3, the Lyapunov

function taking the values at sampling instance tk = t0 + kmεT satisfies (A.25). For
1
Tc

∫ Tc
0 d1(τ, y)dτ = 0, the second integral integral in (A.25) is bounded by

∫ tk+1

tk

∂V

∂y
(y) c

(s
ε
, y
)
dw

(
s

η

)
ds

=

∫ tk+1

tk

(
∂V

∂y
(y)− ∂V

∂y
(yk)

)
c
(s
ε
, y
)
dw

(
s

η

)
ds

≤
∫ tk+1

tk

L|y − yk|
∣∣∣∣c(sε, y) dw

(
s

η

)∣∣∣∣ ds
≤ LMm2(εT )2φ0.

(4.41)

Take (A.46), (A.47) and (4.41) into (A.25), the value of the Lyapunov function at tk+1

is bounded by:

V (tk+1) ≤ V (tk)−
1

3
α3 (0.5|yk|) εT, (4.42)

whenever |yk| ≥ O(ε). Then for any given δ there exists ε∗ such that the solutions of

the system (4.32) satisfy (4.40), following the procedures in the proof of Theorem 4.2

after (A.16).

Remark 4.15. The estimated bound of the trajectories of the system (4.4) (see (4.40))

is smaller than that in (4.38). In order to achieve the better performance with smaller

trajectory bound, the knowledge of the frequency information of disturbances is needed.

The Proposition 4.1 can be extended to almost periodic disturbances, though it is not

the major scope of this paper. A straightforward way is applying general averaging to

the transformed system (4.33) and the system is shown to be vibrationally stabilizable:

Proposition 4.2. Suppose that Assumptions 2.1 - 2.3, 4.1 - 4.2 hold. Assume that

Ā =

[
∂fy,av
∂z

]
z=ze
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is Hurwitz. In addition, if lim
T→∞

1

T

∫ T

0
d1(τ, y)dτ = 0, the system (4.33) is vibrationally

stable.

Proof. The average of system (4.33) is system (4.4) because lim
T→∞

1

T

∫ T

0
d1(τ, y)dτ = 0.

For Ā is Hurwitz, there exists a compact set D which ze is an interior point such that the

average system (4.4) is locally exponentially stable. According to [77, Theorem 10.5],

there exists γ, k > 0 such that the solutions of original systems (4.33) satisfy

|y(t)− ze| ≤ |y0 − ze|e−γ(t−t0) + kε

So the closeness between averaged solutions of the system (4.32) and the equilibrium

point is bounded by:

|xav(t)− xe| =
1

T

∫ t+T

t
(h(τ, y)− h(τ, ze)) dτ

≤ 1

T

∫ t+T

t
(L|y(τ)− ze|) dτ

≤ 1

T

∫ t+T

t
L
(
|y0 − ze|e−γ(t−t0) + kε

)
dτ

≤ N |x0 − xe|e−γ(t−t0) + δ,

(4.43)

where N = L
γT (1− e−γT ).

Remark 4.16. Another possible way to explore the stabilization when disturbances are

almost periodic is using the partial averaging technique introduced in [83]. It discusses

the stability of the time-varying system ẋ(t) = f(x(t), t, αt) where α is a sufficiently

large parameter. The original system can be concluded to be locally exponentially

stable if the partially averaged system ẋ(t) = fpav(x(t), t) is locally exponentially stable.

Applying the partial averaging technique into transformed system (4.37), the partially

averaged system is simply relied on the f1(τ, y) if lim
Tw→∞

1

Tw

∫ Tw

0
dw(τ)dτ = 0 because

the other parts are regarded as constant while doing the partial averaging. In this way,

the vibrational stabilization could also be obtained in the assumption of the zero-mean

condition on disturbances although it demands the disturbances are sufficiently fast

time-varying.

4.3.3 Simulation Verification: a 2R Planar Manipulator Steered by

Vibrational Control while Disturbances Exist.

Vibrational control has been shown to provide extra degrees of freedom by inserting

the high-frequency dither signals. It is applied to stabilize and steer the underactuated
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planar manipulators which is introduced in Section 1.2.5.1. A planar manipulator with

two joints is shown in Figure 4.4 where the second joint is unactuated. The linearised

system is not controllable at the operating point such that the manipulator cannot be

steered and stabilized with conventional feedback control. The method used in [1] is

firstly drive the active joint to the desired position by applying partially linearising

control technique before exerting vibrational control approach to the actuated joint to

guide the unactuated joint to its target position.

Active joint

Free joint

Disturbing torque

Actuated torque

Figure 4.4: A 2R planar manipulator steered by vibrational control with disturbances.

Representing the system in state-space by letting x1 = θ2, x2 = θ̇2 and introducing the

small positive parameter ε = 1
ω , the system becomes:

[
ẋ1

ẋ2

]
=

[
x2

−pα2 sinx1 sin2 t
ε −

α
ε cos t

ε(1 + p cosx1)− fvx2

]
+

[
0
p

m2l2cl1
w

]
, (4.44)

which satisfies the additive form of disturbed vibrational control systems (4.33). The

parameters used in the simulations are given in Table 4.2.

Next, it will be verified that vibrational control systems are robust to different types

of disturbances. The first category considered is a class of bounded disturbances. As

indicated by Theorem 4.2, the system keeps stable if the L-infinity norm is sufficiently

small. Let w1(t) = 0.2t2

1+t2
and w2(t) = 0.2. The system behaviours are shown in Figure

4.5 which indicates that both trajectories of the system converge to a neighbourhood

of equilibrium point. According to (4.34), the ultimate bound is dependent on the L-

infinity norm of disturbances, where ‖w1‖∞ = ‖w2‖∞ = 0.2 for the given ones, numeric

solutions verify that they have the same ultimate bound.

When disturbances are bounded and periodic, Theorem 4.3 signifies the ultimate bound
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Table 4.2: System parameters of the planar 2R manipulator used in the simulations

Classification Parameter Value Unit

Manipulator

mass of link 1 m1

mass of link 2 m2

inertia of link 1 I1

inertia of link 2 I2

length of link 1 l1
length of link 2 l2
Distance to mass center l1c
Distance to mass center l2c
viscous friction coefficient fv

0.200
0.255
3.097
3.499
0.185
0.135
0.103
0.060
0.100

Kg
Kg

Kg·m2

Kg·m2

m
m
m
m

Nm·s

Vibrational controller
amplitude α
tuning parameter ε

2
0.01

m
s

Initial conditions
angular displacement θ20

angular velocity θ̇20

1.5
0.1

rad
rad/s
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Figure 4.5: System behaviour in the existence of bounded disturbances.

is determined by the average of disturbances while practical term δ can be reduced for

faster disturbances. Take the sinusoidal disturbance w3(t) = 0.2 + 5 sin(ωdt) as an ex-

ample where ‖w3‖∞ = 5.2 which is much larger than the average |w̄3| = 0.2. Theorem

4.2 may be unavailable to show the stability because the L-infinity norm of disturbance

can exceed the tolerance. Even if it is within the allowed bound of disturbances, the

estimation of ultimate bound (4.34) is very conservative as it takes the L-infinity norm.

Theorem 4.3 provides a better option which only has constraint of the average of dis-

turbance that can be satisfied more easily and provides a more accurate approximation

of ultimate bound related to the average.

System behaviours for three frequencies (ωd = 1, ωd = 20, and ωd = 1000) are displayed
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in Figure 4.6 respectively. It can be seen that when disturbances are slow (ωd = 1),

the equilibrium point of inverted pendulum is no longer stabilized but keeps stable for

relatively fast disturbances (ωd = 20). To compare the ultimate bound, the system

behaviour in the existence of w1(t) is also included. Even though the L-infinity norm

of w3(t) is larger than that of w1(t), the ultimate bound remains the same because it

relies on the average of disturbances instead of L-infinity norm in the fast and periodic

case. When the frequency increases, the ultimate bound is further reduced. Overall,

these simulation results are consistent with theoretic analysis.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

2

2
(t)

w3
(

d
 = 1)
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d
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Figure 4.6: System behaviour in the existence of bounded and periodic disturbances
with three different frequencies.

4.3.4 Summary of this Section

This section focuses on the robustness analysis of nonlinear vibrational control systems

(NVBS) in the presence of additive disturbances when the average system is assumed

to be asymptotically stable which is a weaker condition than the exponential stability

assumption in the previous section. The robustness analysis is based on the perturba-

tion method by viewing the NVBS as the averaged system perturbed by time-periodic

difference system and disturbances. By using the Lyapunov function of averaged sys-

tem, established from converse Lyapunov theory, the domain of attraction and ultimate

bound of the NVBS is estimated. The domain of attraction will set up an upper bound

on the disturbances which the system can handle. To show the convergence of solutions

to the equilibrium point, the sample-data approach displays the decrease of Lyapunov
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function at sampled instances. After showing the closeness between sampled trajecto-

ries and actual trajectories, the robustness of NVBS is concluded. It indicates that the

averaged trajectories of the systems have practically ISS properties. That means for all

initial conditions from the domain of attraction, disturbances constrained within the es-

timated bound, the solutions of system converge arbitrarily close to the ultimate bound

that determined by the L-infinity norm of disturbances.

When the bounded disturbances are periodically fast time-varying, Theorem 4.3 denotes

that the ultimate bound estimation can be less conservative. By dividing the integral

of disturbances on the dither period into finite summations of the integral on the dis-

turbance period, previous ultimate bound estimation determined by the L-infinity norm

of disturbances can be replaced by the average of disturbances and terms inversely pro-

portional to the frequency of disturbances. It indicates that when the frequency of the

disturbance is increased, the ultimate bound can be reduced. Specifically when the

average of disturbances is zero and the frequency is sufficiently large, the influence of

disturbances to the system behaviour is negligible.

4.4 Semi-global Vibrational Robustness with respect to

Arbitrarily Large Additive Disturbances

The robustness analysis in Section 4.2 and 4.3 is based on the stability of averaged system

while disturbances are treated as a perturbation to the stabilized system. The bound of

disturbances is thus constrained by the domain of attraction. For large disturbances, the

trajectories will be dragged out of the domain of attraction then the system can become

unstable. In this section, we assume the weak average exists for nonlinear vibrational

control system and it is Lyapunov ISS. In this setup, the system (4.33) can handle

arbitrarily large bounded disturbances if the parameters are tuned sufficiently small.

The weak average of transformed system (4.3) is

dz

dτ
= ε(fy,av(z) + dy,wa(z, w)), (4.45)

where the weak average of disturbances dy,wa(z, w) = 1
T

∫ t0+T
t0

d1(τ, z, w)dτ . fy,av(z) is

previously defined as in (4.4).

Next theorem reveals that if the weak average of vibrational control systems (4.33)

exists and is Lyapunov ISS, the original system can be semi-globally practically ISS

where initial domain and disturbances can be arbitrarily large:
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Theorem 4.4. Suppose Assumptions 2.1 - 2.4 and 4.1 hold. If there exists an equilib-

rium point ze of (4.4) such that the weak averaged system (4.45) is Lyapunov ISS with

gain γ, there exists a positive constant δ∗, class KL function β̂6, class K function α1, α2

such that for any δ ∈ (0, δ∗), ∆ > 0, v > 0, there exists ε∗ s.t. for all ε ∈ (0, ε∗), the

solutions of the system (4.32) exist for t ≥ t0 and satisfy

|xav(t)− xe| ≤ max{β̂6(|xav(t0)− xe|, t− t0), γ̂6(‖w‖∞)}+ δ (4.46)

for all t ≥ t0, whenever |x0 − xe| ≤ ∆ and ‖w‖∞ ≤ v, where β̂6 ∈ KL and γ̂6 =

α1 ◦ α−1
2 ◦ γ.

Proof : See Proof of Theorem 4.4 in Appendix A.3 �

Remark 4.17. Theorem 4.4 indicates the trajectories converge to the a neighbourhood

of the equilibrium point, which is composed of the L-infinity norm of disturbances for

any large initial compact set and arbitrarily large bounded disturbances. Compared

to the weak average results in Theorem 3.2, it relaxes the constraint for the derivative

of disturbances, i.e. the system is robust to both fast and slow disturbances provided

that they are bounded. This relaxation is achieved by taking advantage of the special

additive structure of the system.

Remark 4.18. The Lyapunov ISS assumption of weak averaged system is stronger than

the regionally asymptotic stability of averaged system in Theorem 4.2 because while

disturbances are zero Lyapunov ISS signifies that the averaged system has global asymp-

totic stability. Also, the disturbances can be arbitrarily large leading to a relative large

ultimate bound when the weak averaged system is Lyapunov ISS.

Remark 4.19. Although the ultimate of Theorem 4.2 and 4.4 is both related to the L-

infinity norm of disturbances, they origins from different way. On the one hand, the

ultimate bound of Theorem 4.2 is derived by treating the disturbances as perturbation

in the integral of sampling instances (see the derivation of (A.17), on the other hand,

the ultimate bound of Theorem 4.4 comes from the Lyapunov ISS (A.38). Although

another ultimate bound (A.49) is produced in the sampling process, it is related to the

tuning parameter ε, which can be made smaller than the one generated from Lyapunov

ISS.

4.5 Summary

In this chapter, we presented the robustness of nonlinear vibrational control systems.

First of all, the local vibrational stabilization was extended to local robustness by con-

sidering the existence of additive disturbances. By applying the Lyapunov sample-data
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approach, the averaged trajectories of nonlinear vibrational control systems are shown

to have locally practically ISS properties for constrained disturbances. When capturing

non-local robustness, we considered a weak stability condition that the averaged system

without disturbances is asymptotically stable in a domain of attraction that can be ei-

ther local or non-local. Disturbances are treated as the perturbations to the stabilized

system so the L-infinity norm is supposed to be bounded by a small value to keep the

system stable. The allowed disturbances bound is decided by the domain of attraction of

the averaged system, the tuning parameter as well as the initial set. The ultimate bound

of the trajectories is determined by the L-infinity norm of disturbances accordingly. The

state-trajectories are shown to converge to the ultimate bound when the tuning param-

eter is sufficiently small. When the bounded disturbances are also periodic, the ultimate

bound estimation can be less conservative. Using the periodicity of disturbances, the

ultimate bound is relied on the average of disturbances while other parts can be largely

reduced with high frequencies of disturbances. Lastly, the weak averaging technique is

used to show that if the weak averaged system exists and is Lyapunov-ISS, the nonlinear

vibrational control system can handle arbitrarily large disturbances. Serving as an illus-

trative example, a 2R planar manipulator steered by vibrational control is analysed in

the consideration of different types of disturbances. Numeric simulations are consistent

with theoretic analysis.



Chapter 5

Performance of Switched

Vibrational Control System

5.1 Overview

The power of vibrational control systems is the extra design freedom for stabilization

coming from high-frequency dither signals, but it would lead to high energy consumption

of actuators and cause potential damages to actuators. One possible solution is switching

off high-frequency dither signals for some time when it is not necessary. As indicated

in previous chapters, the original dynamics of vibrational control systems is usually

unstable such that the high-frequency dither cannot be switched-off all the time. Hence

an appropriate switching law is needed in order to ensure the stability of the switched

vibrational control systems.

Different switching schemes have been proposed in literature such as state-dependent

switching v.s. time-dependent switching or arbitrarily switching v.s. slow switching [3].

For the vibrational control, which is regarded as an open-loop control method, there

lack of sensors for state measurement so time-dependent switching is the preferred way

to introduce the switching signals. A switching signal is thus needed to be designed

off-line to activate the subsystems according to predefined time sequences.

The autonomous system (2.19) to be stabilized is unstable so the trajectories will be

divergent from the desired equilibrium point xe when the oscillating dither is switched

off. The existence of the unstable subsystem decides that the arbitrarily switching

scheme is not possible because when the switching signal stays in the index of the

unstable subsystem there is no chance for the overall switched system to become stable,

therefore we will use the slow switching methods. For linear vibrational control systems,

87
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a switching signal with average dwell time is introduced, which restricts the number of

switching for a given time interval. For the contraction of trajectories only happens in

the domain of attraction in nonlinear vibrational control systems, a periodic switching

law is then designed to regulate the sequence of stable subsystem and unstable subsystem

specifically to avoid the trajectories jumping out of the domain of attraction.

In the stability or robustness analysis of switched systems, Lyapunov method serves as

a key technique to show the convergence of solutions to an equilibrium point. Common

Lyapunov Function method assumes that all the subsystems have a common Lyapunov

function [84], whose derivative along all the subsystems is negative, then the switched

system can be shown to be global uniformly asymptotically stable. Relaxed from the

Common Lyapunov Function method, Multiple Lyapunov Function method allows the

subsystems to have independent Lyapunov functions but requires that each Lyapunov

function after switching back to a given subsystem decays [85]. For vibrational control

systems however, the behaviours of the subsystems vary largely. The original dynam-

ics have an unstable equilibrium point while after adding the oscillation signals the

vibrational control system has an asymptotically stable limit cycle. Besides, the sta-

bility analysis methods for different subsystems are also very different. For example,

in order to show the stability of vibrational control systems we need to use a coordi-

nate change and apply the averaging technique, which is very complicated. Under this

scenario, showing the stability of the overall switched vibrational control systems by

constructing common/mutiple Lyapunov functions directly is more than difficult. Thus

the Lyapunov-based method is not suitable for the stability or robustness analysis for

switched vibrational control systems.

Alternatively, we seek the trajectories-based method to show the stability after intro-

ducing the time-dependent switching signal. For the switched linear vibrational control

systems, Theorem 5.6 shows that the trajectories are decaying exponentially to the equi-

librium point if the average dwell time is sufficiently long and the ratio of stable and

unstable duration is sufficiently large. For the periodically switched nonlinear system,

Theorem 5.7 shows that the trajectories are decreasing at the end of each switching

period. Geometric series are constructed to capture the decaying of trajectories at the

sampling instances. In the last part of this chapter, the influence of switching signal to

the robustness of vibrational control systems will be discussed. Although the trajectories

can converge to the neighbourhood of the equilibrium point, it shows that the ultimate

bound is amplified after using switching signal, which is correlated to the duration of

the unstable subsystem. To have a smaller ultimate bound, the duration of the unstable

subsystem needs to be reduced. Simulation results from the inverted pendulum and

planar robotic manipulator with switching signals verify the theoretic analysis.
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The chapter is organized as follows. In Section 5.2, the preliminaries on switched systems

are stated. The stability of switched vibrational control systems are discussed in Section

5.3 for both linear and nonlinear systems, followed by the robustness analysis of the

switched system in Section 5.4. Section 5.5 summarizes the chapter.

5.2 Preliminaries

5.2.1 Switched Systems

Suppose there are a family of functions fp : Rn → Rn, where p ∈ P and P is an index set,

for example P = {1, 2, 3, 4, ...n}. A system can be composed of the family of functions

fp [3]:

ẋ = fp(x), x(t0) = x0, p ∈ P. (5.1)

To define the switching system, a switching signal needs to be introduced to describe the

function sequences, which is denoted as a piecewise constant function σ : [t0,∞) → P.

The number of discontinuities of switching function σ indicates the switching times on a

compact time interval. The switching signal σ regulates the index σ(t) ∈ P of the active

subsystems at each time instance t which means the active function in system (5.1) that

determines the dynamics. The switching signal is assumed to be continuous from the

right: σ(ti) = lim
τ→t+i

σ(τ) where ti is a switching time. For example, a switching signal

between three subsystems is shown in Figure 5.1, in this case P = {1, 2, 3}.

1

2

3

Figure 5.1: An example of time-dependent switching signal [3].
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Based on the defined switching signal, a switched system can be characterized by the

equation:

ẋ(t) = fσ(t)(x(t)), x(t0) = x0. (5.2)

Specifically, when all subsystems are linear, the switched linear system is written as

ẋ(t) = Aσ(t)x(t), x(t0) = x0. (5.3)

The solution of switched linear systems under the switching signal in Figure 5.1 can be

expressed as

x(t) = eA1(t−t4)eA2(t4−t3)eA3(t3−t2)eA2(t2−t1)eA1(t1−t0)x0,∀t > t4. (5.4)

5.2.2 Stability under Arbitrarily Switching with Common Lyapunov

Function

Given the family of functions (5.1), to guarantee the asymptotic stability for every

switching signal, all subsystems is supposed to be asymptotically stable otherwise the

switched system would be unstable if the switching signal stays on the unstable sub-

system. So for stability under arbitrarily switching, the asymptotic stability for each

subsystem is a necessary condition presumed [3].

Suppose origin is a common equilibrium point for all subsystems i.e. fp(0) = 0 for all

p ∈ P. The stability definitions for switched systems (5.2) are adapted from stability

definition of non-autonomous systems (Definition 2.5) and given below:

Definition 5.1. [3] The equilibrium point of switched system (5.2) is called

• uniformly asymptotically stable if there exists a positive constant δ and a class

KL function β such that for all switching signals σ the solutions of (5.2) with

|x(0)| ≤ δ satisfy the inequality

|x(t)| ≤ β(|x0|, t− t0), ∀t ≥ t0. (5.5)

• uniformly exponentially stable if the function β takes the form β(r, s) = cre−λs

for some c, λ > 0 such that the solutions satisfy

|x(t)| ≤ c|x0|e−λ(t−t0),∀t ≥ t0. (5.6)
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• Globally uniformly asymptotically stable (GUAS) and globally uniformly expo-

nentially stable (GUES) if (5.5) and (5.6) are satisfied for all switching signals and

all initial conditions x0 ∈ Rn.

Uniform stability of the switched system (5.2) can be obtained by assuming the existence

of a Lyapunov function whose derivative along solutions of all subsystems satisfy certain

conditions. The definition of common Lyapunov function is defined first:

Definition 5.2. [3] Given a positive definite continuously differentiable function V :

Rn → R, it is called a common Lyapunov function for the family of systems (5.1)

if there exists a positive definite continuous function W : Rn → R≥0 such that the

following inequality satisfies:

∂V

∂x
fp(x) ≤ −W (x),∀x,∀p ∈ P. (5.7)

The next Theorem concludes the GUAS through the existence of the common Lyapunov

function:

Theorem 5.1. [3] If all systems in the family (5.1) share a radially unbounded common

Lyapunov function satisfying (5.7), then the switched system (5.2) is GUAS.

Remark 5.1. The upper bound by the −W (x) is necessary to guarantee the switched

systems (5.2) have sufficient decreasing rate which is independen of switching signals.

A counter example is given in [3] to show that ∂V
∂x fp(x) < 0 is not enough to conclude

the asymptotic stability uniformly in the switching signals. A converse theorem exists

showing that when the switched system (5.2) is GUAS, the family of systems (5.1) shares

a common Lyapunov function. Although a common Lyapunov function is very beneficial

to show the stability of the switched system, it is a strong assumption that is not always

satisfied in reality. In next section, the stability analysis method with the existence of a

multiple Lyapunov function will be introduced.

5.2.3 Stability under Arbitrarily Switching with Multiple Lyapunov

Functions

Multiple Lyapunov Functions method can be an alternative tool to analyse the stability

of the switched system in cases a common Lyapunov function does not exist. Suppose

that all the subsystems in the family of systems (5.1) are globally asymptotically stable,

from the Converse Lyapunov Theorem there exists positive definite Lyaunov function

Vp, p ∈ P for each system satisfying
∂Vp
∂x fp(x) ≤ −Wp(x) where Wp(x) is a positive

definite continuous function. It is clear that the Lyapunov function will decrease along
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the solutions of the corresponding subsystem but the values of Lyapunov functions may

have experience an increase when switching to some subsystem with a different Lyapunov

function. Next theorem indicates that the switched system is asymptotically stable if a

switching law makes values of a Lyapunov function Vp decrease after switching back to

the same subsystem.

Theorem 5.2. [78] Let (5.1) be a family of globally asymptotically stable systems and

Vp, p ∈ P be a family of corresponding radially unbounded Lyapunov functions. Suppose

that there exists a family of positive definite continuous functions Wp, p ∈ P with the

property that for every pair of two consecutive switching times (ti, tj), i < j such that

σ(ti) = σ(tj) = p ∈ P and σ(tk) 6= p for ti < tk < tj, we have

Vp(x(tj))− Vp(x(ti)) ≤ −Wp(x(ti)). (5.8)

Then the switched system (5.2) is globally asymptotically stable.

Remark 5.2. To apply the Theorem 5.2, values of the Lypunov function at switching

instances need to be estimated such that the condition (5.8) is satisfied. This means

the solutions information are required. When there is some constraint on the switching

signals such as switching frequency, it provides a useful tool for stability analysis as the

upper bound of solutions can be estimated.

5.2.4 Stability under Slow Switching with Dwell Time

When all subsystems are asymptotically stable, the switched systems are stable if the

switching is relatively slow. A straightforward way to introduce a slow switching signal

is introducing a number τd that restricts the least duration between two consecutive

switching instances. Assuming the switching instances are t1, t2, ...tn, it is required that

ti+1 − ti ≥ τd for all i. The least duration between switchings τd is called dwell time.

Dwell time provides a way to show the stability of switched systems and an explicit

lower bound can be derived if the subsystems are exponentially stable [86]. However,

it exerts quite a strict condition for the switching system that no switching is allowed

during the dwell period after a switching.

The concept of dwell time is extended to averaged dwell time later. It allows the fast

switching during a certain period but reduces the switching frequency later to constrain

the averaged dwell time. The definition of average dwell time is given below:

Definition 5.3. [87] Suppose the number of discontinuities of a switching signal σ on

an interval (t, T ) is denoted by Nσ(T, t). The switching signal σ is called to have average
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dwell time τa if there exist two positive number N0 and τa such that

Nσ(T, t) ≤ N0 +
T − t
τa

, ∀T ≥ t ≥ 0. (5.9)

Next theorem provides an lower bound of average dwell time to guarantee the global

asymptotic stability of the switched system (5.2).

Theorem 5.3. [87] Consider the family of systems (5.1). Suppose that there exist

continuous functions Vp : Rn → [0,∞), p ∈ P, class K∞ functions α1 and α2, and a

positive number λ0 such that we have

α1(|x|) ≤ Vp(x) ≤ α2(|x|), ∀x, ∀p ∈ P (5.10)

and
∂Vp
∂x

fp(x) ≤ −2λ0Vp(x), ∀x, ∀p ∈ P. (5.11)

Suppose also that there exists positive number µ such that

Vp(x) ≤ µVq(x),∀x, ∀p, q ∈ P. (5.12)

Then the switched system (5.2) is globally asymptotically stable for every switching signal

σ with average dwell time

τa >
logµ

2λ0
. (5.13)

Remark 5.3. Theorem 5.3 can be specified to the switching signal with dwell time. When

N0 equals 1, the definition of averaged dwell time requires that there’s no switching

allowed on any interval of length smaller than τa which satisfies the definition of dwell

time. It is noted that the choice of N0 will not affect the stability so the switched system

with a switching signal that has dwell time is also stable when all the conditions in the

theorem are satisfied.

5.2.5 Input-to-State Stability of Switched Systems with Averaged Dwell

Time

While noises/disturbances exist in the switched systems, the input-to-state stability has

been addressed in [88, 89], where all the subsystems are ISS but there does not exist a

common Lyapunov function. Conditions are derived for input-to-state stability of the

switched system under slow switching signal with average dwell time [88] and averaged

average dwell time [89] respectively. Consider the family of nonlinear systems with

disturbances:

ẋ = fp(x,w), p ∈ P, (5.14)
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where the state x ∈ Rn and the disturbances w ∈ Rl, and P is an index set. Suppose

that for each p ∈ P, fp is locally Lipschitz and fp(0, 0) = 0. A switched system with

disturbances is composed of the family of systems (5.14):

ẋ = fσ(x,w), (5.15)

where σ is the switching signal introduced in Section 5.2.1.

Definition 5.4. [90] The switched system (5.15) is input-to-state stable (ISS) if there

exists a function γ ∈ K∞ and β ∈ KL such that for each t0 ≥ 0, each x0 ∈ Rn and each

input w ∈ L∞, the solutions of switched system (5.15) satisfy the following inequality

|x(t)| ≤ β(|x0|, t− t0) + γ(‖w‖∞),∀t ≥ t0. (5.16)

As an extension of Theorem 5.3, next Theorem shows that the switched system (5.15)

is ISS if each subsystem is Lyapunov-ISS and the dwell time of the switching signal is

sufficiently long .

Theorem 5.4. [89] Suppose that there exist continuous functions Vp : Rn → [0,∞), p ∈
P satisfying conditions (5.10) and (5.12), and there exists class K∞ functions γ and

positive number λ0, µ such that the following inequality is satisfied

∂Vp
∂x

fp(x) ≤ −λ0Vp(x) + γ(‖w‖∞), ∀x, ∀p ∈ P. (5.17)

Then the switched system (5.2) is ISS for every switching signal σ with average dwell

time

τa >
logµ

λ0
. (5.18)

The above ISS results can be extended to the cases where not all subsystems of switched

system (5.2) are ISS, for example there may exist some unstable subsystems. Let Ps
denote the set of subsystems which are ISS and Pu be the set of subsystems that are

not ISS, so we have Ps ∪ Pu = P and Ps ∩ Pu = 0. Denote Tu(t0, t) the total activation

time of the systems in Pu and Ts(t0, t) the total activation time of the systems in Ps
during the time interval [t0, t). Obviously we can have Tu(t0, t) + Ts(t0, t) = t − t0.

The conditions for the switched system (5.2) to be ISS are summarized in the following

theorem:

Theorem 5.5. [90] Consider the family of systems (5.2). Suppose there exist functions

γ ∈ K∞ continuously differentiable functions Vp : Rn → R+ and constants λs, λu > 0,

µ ≥ 1 such that (5.10) and (5.12) hold for all x ∈ Rn and all p, q ∈ P and further more,
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the following holds:

∂Vp
∂x

fp(x) ≤ −λsVp(x), ∀x, ∀p ∈ Ps,

∂Vp
∂x

fp(x) ≤ λuVp(x), ∀x, ∀p ∈ Pu,
(5.19)

for all |x| ≥ γ(‖w‖∞). If there exist constants ρ, T0 ≥ 0 satisfying

ρ <
λs

λs + λu
, (5.20)

such that for all t ≥ t0 ≥ 0, it satisfies

Tu(t, t0) ≤ T0 + ρ(t− t0) (5.21)

and if σ is a switching signal with average dwell time satisfying:

τa >
lnµ

λs(1− ρ)− λuρ
, (5.22)

then the switched system (5.2) is ISS.

Remark 5.4. Theorem 5.5 shows that even if some subsystems are not stable, the

switched systems (5.2) can be ISS if the activation duration of non-ISS subsystems

is short and the divergent speed of the unstable subsystems is bounded. This gives some

intuitive ideas for the stabilization of the switched vibrational control systems with a

unstable subsystem.

5.3 Stability Analysis of Switched Vibrational Control Sys-

tems

5.3.1 Switched Vibrational Control Systems

Next, the switched vibrational control systems will be introduced and the stability of

the system will be discussed. A switching signal σ has been added to the vibrational

control system (2.20):

ẋ = f(x) +
σ(t)

ε
g

(
t

ε
, x

)
, x(t0) = x0 ∈ Rn, (5.23)

where the nonlinear mapping f : Rn → Rn is continuous while g : [t0,∞) × Rn → Rn

is continuous and T -periodic in t, locally Lipschitz in x, uniformly in t. The parameter

ε is a small positive constant. Here σ : [t0,∞) → {0, 1} is the switching signal which
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switches on and off the vibrational control input. When σ = 0, the active subsystem

becomes

Σu : ẋ = f(x), x(t0) = x0, (5.24)

which represents the original unstable dynamics. While σ = 1 the active subsystem

becomes the vibrational control systems (2.20):

Σs : ẋ = f(x) +
1

ε
g

(
t

ε
, x

)
, x(t0) = x0. (5.25)

To achieve the stability of switched vibrational control systems (5.23), the subsystem

with vibrational control Σs is assumed to be stable.

Remark 5.5. The stability conditions have been discussed in Chapter 2 so here we assume

that this subsystem has been stabilized by finding a suitable vibrational mapping g(·, ·)
and parameter ε. The domain of attraction will be specified in the following switched

vibrational stability analysis.

The first task to stabilize switched vibrational control systems is designing the switching

signal σ(t). As discussed in Section 5.2, the asymptotic stability is necessary for each

subsystem to allow arbitrarily switching. For the existence of an unstable subsystem,

arbitrarily switching is not available for the vibrational control systems. Thus the slow

switching is chosen as our switching scheme. Next, the switched linear vibrational control

systems are discussed first and a switching signal with average dwell time is introduced.

5.3.2 Stability of Switched Linear Vibrational Control Systems under

a Switching Signal with Average Dwell Time

Switched linear vibrational control systems (5.23) have the following form:

ẋ = Ax+
σ(t)

ε
B1

(
t

ε

)
x, x(t0) = x0 ∈ Rn, (5.26)

where A and B(t) are defined in the equation (3.7). Suppose Assumption 3.1 and 3.2

are satisfied such that when σ = 1 Theorem 3.4 holds. It indicates that there exists ε∗

such that for all ε ∈ (0, ε∗) the solutions of the subsystem when σ = 1 satisfy:

|x(t)| ≤ a1|x0|e−λ1(t−t0), x(t0) = x0 ∈ Rn. (5.27)

where constants a1 > 1 and λ1 > 0. When σ = 0, the activated subsystem becomes

time invariant ẋ = Ax that is unstable such that there exist constants a2 > 1, λ2 > 0
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such that the solutions satisfy:

|x(t)| ≤ a2|x0|eλ2(t−t0). (5.28)

Suppose σ(t) is a piecewise constant switching signal that has an average dwell time.

Let Tσ1 denotes the total activation duration for the stable subsystem Σs and Tσ0 be the

duration for unstable subsystem Σu. Similar to [91], the following assumption is needed

for the switching signal.

Assumption 5.1. Let λ1, λ2 are two positive constants. For a given λ∗ ∈ (0, λ1),

suppose the switching signal σ satisfies

Tσ1

Tσ0
≥ λ2 + λ∗

λ1 − λ∗
, (5.29)

on any interval [t0, T ].

According to the definition of switching signal with an average dwell time (Definition

5.3), the discontinuities Nσ(T, t) of switching on an interval (t, T ) satisfies

Nσ(T, t) ≤ N0 +
T − t
τa

, ∀T ≥ t ≥ 0.

Let Nσ1 and Nσ0 denote the numbers of modes σ = 1 and σ = 0 respectively. The

solutions of switched linear vibrational control systems (5.26) can be bounded by

|x(t)| ≤ bi+1e
ιi+1(t−ti)bie

ιi(ti−ti−1) · · · b1eι1(t1−t0)|x0|. (5.30)

where ti is the switching instances, bi ∈ {a1, a2}, ιi ∈ {−λ1, λ2}. It can be further

written as

|x(t)| ≤ aNσ11 aNσ02 e−λ1Tσ1+λ2Tσ0 |x0| ≤ aNσ1+Nσ0e−λ1Tσ1+λ2Tσ0 |x0| (5.31)

where a = max{a1, a2} and it is easily verified that Nσ1 +Nσ2 ≤ Nσ(t, t0). By using the

Assumption 5.1, we obtain that −λ1Tσ1 + λ2Tσ0 ≤ −λ∗(t− t0),

|x(t)| ≤ aNσ(t,t0)e−λ
∗(t−t0)|x0| ≤ aN0+(t−t0)/τae−λ

∗(t−t0)|x0|

≤ aN0e(ln a/τa−λ∗)(t−t0).
(5.32)

Choosing a λ̄ ∈ (0, λ∗), whenever τa ≥ ln a/(λ∗ − λ̄) we have

|x(t)| ≤ ce−λ̄(t−t0)|x0|, x(t0) = x0 ∈ Rn,∀t ≥ t0, (5.33)
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where c = aN0 . Therefore, the switched system is globally exponentially stable. It can

be summarised in the following theorem:

Theorem 5.6. Suppose when activated, linear vibrational control systems satisfy As-

sumption 3.1 and 3.2 and the switching signal σ(t) satisfies Assumption 5.1. There

exists τ∗a such that the system is globally exponentially stable for any average dwell time

τa ≥ τ∗a and any chatter bound N0.

Remark 5.6. The exponentially decaying rate is λ̄, which is upper bounded by the λ∗.

Thus one way to increase the convergence speed is to enlarge λ∗ to have more space

for increasing λ̄. From Assumption 5.1, the increase of λ∗ means the ratio between

stable duration and unstable duration becomes larger. It means the switched system

stays longer in the stable subsystem for a given time interval so the trajectories converge

faster.

5.3.3 Stability of Switched Nonlinear Vibrational Control Systems un-

der a Periodic Switching Signal

Designing the switching law becomes more challenging for nonlinear vibrational systems

compared to the linear systems. The stability of the subsystem Σs is valid only within

the domain of attraction so the slow switching scheme with average dwell time used

in the switched linear vibrational control systems is not going to work any more. For

example, if the subsystem is active initially from unstable system, the trajectories could

escape from the domain of attraction, failing to hold the stability. Hence avoiding the

trajectories escaping is a necessary requirement in the design of switching law. In this

work, we will use a periodic switching signal to regulate the activating sequences of the

stable and unstable subsystems.

Verifying the stability of the nonlinear vibrational control systems with the designed

switching law is also difficult. In nonlinear systems due to the special concept of vibra-

tional stability, the trajectories of the stable subsystem converge to a limit cycle while

their average converges to the equilibrium point. So the stability analysis with such

a special subsystem is more complicated. To the best of our knowledge, the stability

analysis of the switched system when limit cycles exist in some subsystems has not been

addressed. In our work, the stability analysis will be based on the behaviour estimation

of the averaged trajectories to show that vibrational stability would be preserved after

switching.

The local stability of vibrational systems is assumed such that when σ = 1 the averaged

trajectories converge exponentially if they are in the domain of attraction D ∈ Rn.
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There exists a1 ≥ 1, λ1 > 0 such that the averaged solutions satisfy

|xav(t)| ≤ a1e
−λ1(t−t0)|x0|+ δ, (5.34)

where δ > 0 is the pre-defined ultimate bound. Here the equilibrium point is assumed

to be origin without losing generality. On the other hand, when σ = 0 the subsystem

becomes

ẋ = f(x), x(t0) = x0 ∈ Rn. (5.35)

Actually there’s no stability prerequisite for the above original system, however we can

assume that for a given compact set Dx0 ∈ Rn the function f(x) is locally Lipschitz.

The solutions of the original subsystem are

x(t) = x(t0) +

∫ t

t0

f(x(s))ds

= x(t0) +

∫ t

t0

(f(x(s))− f(0))ds.

(5.36)

By using the Lipschitz condition,

|x(t)| ≤ |x(t0)|+
∫ t

t0

λ2|x(s)|ds. (5.37)

Applying the Gronwall-Bellman inequality [77, Lemma A.1] to |x(t)|, the upper bound

of the solutions can be obtained

|x(t)| ≤ a2|x0|eλ2(t−t0), (5.38)

where a2 ≥ 1 and λ2 is the Lipschitz constant in Dx0. It is worthwhile to note that

the upper bound of unstable subsystem exists exclusively for x ∈ Dx0. Outside of this

local region we cannot find a constant λ2 to bound the solutions exponentially. We

can guarantee the trajectories stay inside such a compact set by properly designing

the switching signal such that the inequality (5.39) holds. Consequently, the averaged

trajectories satisfy:

|xav(t)| ≤ a2|x0|eλ2(t−t0). (5.39)

Next we will use a periodic switching law which pre-defined the switching sequences and

then achieve the stability of the switched system by designing the suitable parameters

to attain the desired trajectories behaviour. A periodic switching signal is introduced

as follows

σ(t) =

{
1, t ∈ [k(Ts + Tu), k(Ts + Tu) + Ts) ; k ∈ N
0, t ∈ [k(Ts + Tu) + Ts, (k + 1)(Ts + Tu)) ; k ∈ N

(5.40)
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where Ts, Tu are the durations when σ = 1 and σ = 0 respectively. The period for the

switching signal is Ts + Tu as a result.

To achieve the stability of switched system (5.23) under the periodic switching law,

intuitively the duration of the stable system should be sufficiently long compared to the

duration for the unstable system so the trajectories converge toward the origin. The

requirement for stable and unstable duration is discussed in details next.

Selecting λ∗ ∈ (0, λ1), then there exists T ∗s s.t. for all Ts > T ∗s , the following inequality

holds:

(λ1 − λ∗)Ts − ln a1 − ln a2 > 0, (5.41)

and T ∗s = ln a1+ln a2
λ1−λ∗ . Hence there exists T ∗u such that for all Tu ∈ (0, T ∗u ), we have:

ln a1 + ln a2 + (λ∗ − λ1)Ts + (λ2 + λ∗)Tu ≤ 0. (5.42)

This leads to an upper bound of Tu:

T ∗u =
(λ1 − λ∗)Ts − ln a1 − ln a2

λ2 + λ∗
.

Based on the above context, the stability of switched nonlinear vibrational control sys-

tems is summarised in the following theorem:

Theorem 5.7. Suppose all conditions in Theorem 4.1 are satisfied such that solutions

of the stable subsystem (5.25) satisfy (5.34), for all x0 ∈ Dx0 ∈ Rn. Consider f(x)

is locally continuously Lipschitz for all x ∈ Dx0. Assume the switching signal σ(t) is

periodic, satisfying (5.42). Selecting λ∗ ∈ (0, λ1), there exists T ∗s and for any Ts ≥ T ∗s

there exists T ∗u (Ts) such that for all Tu ∈ (0, T ∗u ] the solutions of the switched systems

(5.23) satisfy:

|xav(t)− xe| ≤ a1e
−λ∗t|x0 − xe|+ a1a2δe

λ2Tu 1

1− e−λ∗(Ts+Tu)
+ δ, ∀t ≥ 0. (5.43)

where xav(t) = 1
T

∫ t+T
t x(s)ds.

Proof. See Proof of Theorem 5.7 in Appendix A.4.

Remark 5.7. The estimated bound of averaged trajectory is composed of the exponential

decaying transient response and the ultimate bound. The transient response is related

to the initial condition whose decaying rate is λ∗, which is bounded by λ1. To have a

larger decaying rate λ∗, (5.41) indicates the unstable duration Ts should be tuned larger

and the unstable duration Tu needs to be reduced as shown in (5.42). The ‘new’ ultimate

bound is relevant with the unstable duration Tu, stable duration Ts and the previous
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ultimate bound of the stable subsystem δ. Thus in order to have a small ultimate bound,

the unstable duration Tu needs to be small enough while the duration of stable mode is

sufficiently large.

Remark 5.8. Several aspects are different in switched nonlinear vibrational systems.

Firstly, the slow switching law becomes periodic other than switching with average

dwell time because the sequence of stable and unstable mode has to be fixed to avoid

that the trajectories escaping the domain of attraction. Besides, instead of the original

trajectories, only the averaged trajectories can be shown to converge to the equilibrium

point. Moreover, in the linear case, it is only required that the ratio of stable and

unstable duration is larger than some value, however in nonlinear switched system the

stable duration has a lower bound while the unstable duration has an upper bound for

one switching period. The last difference is that the averaged trajectories of nonlinear

switched system only converge to an neighbourhood of the equilibrium point due to the

existence of δ in the ultimate bound while in linear system the trajectories converge to

the equilibrium point.

Remark 5.9. The vibrational stability is preserved after switching because δ and the

switching duration Tu, Ts can be tuned to have an arbitrarily small ultimate bound,

satisfying the definition of vibrational stability.

After showing the convergence of the averaged trajectories, next we will discuss the

convergence of the real trajectories of the switched nonlinear vibrational systems (5.23).

The closeness between the trajectories xs(t) of the stable subsystem Σs and the desired

equilibrium point can be expressed with

xs(t)− xe = h(t, y)− xe = h(t, y)− h(t, ze) + h(t, ze)− xe. (5.44)

According to the stability analysis in Chapter 2, it can be bounded by

|xs(t)− xe| ≤ |h(t, y)− h(t, ze)|+ |h(t, ze)− xe|

≤ a1e
−λ1t|x0 − xe|+ δ + |h(t, ze)− xe|.

(5.45)

Let H(t) = h(t, ze)− xe, then it is periodic and zero mean as

1

T

∫ T

0
H(t)dt =

1

T

∫ T

0
h(t, ze)dt− xe = 0 (5.46)

based on the fact that xe = 1
T

∫ T
0 h(t, ze)dt.

Let the maximum value of H(t) be hmax = max
t≥t0

H(t), so the upper bound of the trajec-

tories is

|xs(t)| ≤ a1e
−λ1t|x0|+ δ + hmax, (5.47)
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where the equilibrium point xe is set as origin without losing generality. It has the

same form of the inequality (5.34). The upper bound of the unstable subsystem is

unchanged with inequality (5.39). Therefore, the upper bound of the trajectories x(t)

of the switched vibrational systems (5.23) can be obtained by modifying Theorem 5.7.

Corollary 5.1. Suppose the conditions in Theorem 4.1 are satisfied such that the so-

lutions of the stable subsystem Σs (5.25) satisfy (5.45), for all x0 ∈ Dx0. Then the

solutions of switched systems (5.23) satisfy:

|x(t)| ≤ a1e
−λ∗t|x0|+ a1a2(δ + hmax)eλ2Tu

1

1− e−λ∗(Ts+Tu)
+ δ + hmax,∀t ≥ 0, (5.48)

where Tu, Ts and λ∗ are defined in (5.43). Specially when xe = h(t, ze), the solutions

x(t) satisfy:

|x(t)| ≤ a1e
−λ∗t|x0|+ a1a2δe

λ2Tu 1

1− e−λ∗(Ts+Tu)
+ δ, ∀t ≥ 0. (5.49)

Corollary 5.1 shows that the trajectories have a larger ultimate bound other than the

ultimate bound of the averaged trajectories in (5.43) because they converge to the limit

cycle that is bounded by hmax. Considering that the trajectories of the stable subsystem

can converge arbitrarily close to the limit cycle, next we will introduce a special periodic

switching signal to reduce the ultimate bound.

Since H(t) is a continuously T -periodic function with zero mean, there exists t∗0 such

that |H(t∗0)| = hmin = inf
t≥t0
|H(t)|. Design the following switching periodic signal, where

for some m ∈ N, the stable duration is mT and unstable one is T :

σ(t) =

{
1, t ∈ [t∗0 + k(m+ 1)T, t∗0 + k(m+ 1)T +mT ) ; k ∈ N
0, t ∈ [t∗0 + k(m+ 1)T +mT, t∗0 + (k + 1)(m+ 1)T ) ; k ∈ N

(5.50)

Similarly, there exists m∗ such that for all m > m∗, the following inequality holds:

ln a1 + ln a2 + (λ∗ − λ1)mT + (λ2 + λ∗)T ≤ 0. (5.51)

As (5.45) shows, the trajectories of stable subsystem can be bounded by

|xs(t)| ≤ a1e
−λ1(t−t0)|x0|+ δ + |H(t)|. (5.52)

Then the upper bound of sampled trajectories at following sampling point can be

bounded by

|xs(t∗0 + nT )| ≤ a1e
−λ1(nT )|x0|+ δ + hmin. (5.53)

Following the proof in Theorem 5.7, next Corollary can be obtained:
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Corollary 5.2. Suppose the conditions in Theorem 4.1 are satisfied such that the solu-

tions of the stable subsystem Σs (5.25) are bounded by (5.52), for all x0 ∈ Dx0. There

exists t∗0,m
∗ such that for all m > m∗ when the switching signal (5.50) is applied to the

system, the solutions of switched systems (5.23) satisfy:

|x(t)| ≤ a1e
−λ∗(t−t∗0)|x0|+a1a2(δ+hmin)eλ2T

1

1− e−λ∗(m+1)T
+δ+hmax, ∀t ≥ t∗0, (5.54)

where T is the inherent frequency of the dither signals.

Remark 5.10. The upper bound (5.52) of trajectories of stable subsystem is periodic as

|H(t)| is a periodic function so it is varying within the switching period. The switching

law (5.50) activates the unstable subsystem when the bound of trajectories reaches the

smallest value. Consequently, the first term in ultimate bound can be reduced from

hmax to hmin. This is extremely useful for a large difference between hmax and hmin.

Specially, when hmin is close to zero, the trajectories of switched systems can converge

very close to the limit cycle.

5.4 Robustness of Switched Nonlinear Vibrational Control

Systems

5.4.1 Switched Vibrational Control Systems with Additive Distur-

bances

Next, the existence of additive disturbances is considered in the switched system. The

switched vibrational control system with additive disturbances are expressed as

ẋ = f(x) +
σ(t)

ε
g

(
t

ε
, x

)
+ d(w), x(t0) = x0 ∈ Rn, (5.55)

Two subsystems are denoted as Σs,w and Σu,w separately:

Σs,w : ẋ = f(x) +
1

ε
g

(
t

ε
, x

)
+ d(w), x(t0) = x0 ∈ Rn (5.56)

Σu,w : ẋ = f(x) + d(w), x(t0) = x0 ∈ Rn (5.57)

From Theorem 4.2, if the averaged system (2.26) of the stable subsystem (5.56) is asymp-

totically stable in a domain of attraction D ∈ Rn, the averaged trajectories satisfy

|xav(t)− xe| ≤ max{β̂1(|xav(t0)− xe|, t− t0), γ̂1(‖w‖∞)}+ δ, (5.58)

where β̂1 ∈ KL and γ̂1 ∈ K.
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After estimating the upper bound for the unstable subsystem (5.56), by properly de-

signing the stable and unstable duration, the switched vibrational systems are robust

with respect to disturbances, which is concluded in the next theorem:

Theorem 5.8. Suppose all the assumptions and conditions of Theorem 4.2 hold such

that solutions of Σs,w-subsystem (5.56) satisfy inequality (5.58) for sufficiently small ε.

For any δ > 0 there exists T ∗s > 0 such that for a designed Ts ≥ T ∗s there exists T ∗u s.t.

under the periodic switching law (5.40), for all Tu < T ∗u solutions of the system (5.23)

satisfy

|xav(t)− xe| ≤ β̄(|x0 − xe|, t− t0) + γ̄(‖w‖∞) + δ. (5.59)

whenever x0 ∈ Dx and ‖w‖∞ ≤ ν, where β̄(·, ·) ∈ KL and γ̄(·) ∈ K.

Proof : see Proof of Theorem 5.8 in Appendix A.5. �

Remark 5.11. Stability of switched systems with both stable and unstable subsystems,

has been investigated in literature for time-invariant systems e.g. [90, 91] have addressed

the switching stability for linear and nonlinear systems respectively. However there has

little work dealing with switching between subsystems with limit cycles and subsystems

with unstable equilibrium points. This is also the first time as far as we know that the

stability and robustness of switched vibrational control systems are addressed.

Remark 5.12. Even though only two parameters are used in the switching law, the tuning

is quite complicated. The stability or the robustness properties hold with a correct

tuning sequence as stated in Theorem 5.8. First of all, Σs,w-subsystem (5.25) should be

vibrationally stable with a given domain of attraction such that the trajectories converge

towards the desired equilibrium point for the first Ts seconds. When it switches to the

unstable Σu,w-subsystem (5.24), the trajectories keep going away for Tu seconds so we

need to make sure that at time Ts + Tu, the trajectories of the system have a suitable

contraction compared to the initial condition. The contraction condition we used in the

tuning guidance of switched vibrational system (5.55) is |xav(Ts + Tu)| ≤ p|xav(0)| for

some p ∈ (0, 1), which guarantees the convergence of the overall trajectories.

Remark 5.13. Due to the existence of the unstable subsystem (5.24) and switching, the

ultimate bound of the switched system is larger than the previous ultimate bound of

stable subsystem (5.25). As shown in the proof of Theorem 5.8, the ‘new’ ultimate

bound can be estimated as δ̃ = eLTuδ + γ(‖w‖∞)
L (eLTu − 1) > δ as shown in (A.73).

5.4.2 Simulation Verification

The example of inverted pendulum stabilized by vibrational control (4.30) is used as

an illustrative example to verify the stability and robustness of switched system. The
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switching signal is added to the amplitude a(t) = a0σ(t) where σ(t) is defined as (5.40).

[
ẋ1

ẋ2

]
=

[
x2

−g
l sinx1 − k

mx2

]
︸ ︷︷ ︸

f(x)

+

 0(
a0σ(t)
εl sin( tε)−

ka0σ(t)
ml cos( tε)

)
sinx1


︸ ︷︷ ︸

g( t
ε
,x,ε)

+

[
0

−w(t)
ml

]
︸ ︷︷ ︸
d(w(t))

.

(5.60)

The switching period Ts + Tu is set as 1 second. According to the Theorem 5.8, the

system is stable if the duration of unstable mode (5.24) is sufficient small compared

with the stable one (5.25). Figure 5.2 shows that when Tu = 0.2s, the switched system

is stable with trajectories converging to the neighbourhood of the equilibrium point.

While the duration of unstable mode increases to 0.3s, the system becomes unstable as

illustrates in Figure 5.3.
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Figure 5.2: Switched vibrational control system is stable when Ts + Tu = 1s and
Tu = 0.2s.

The trajectories under different unstable duration are shown in Figure 5.4, where undis-

turbed solutions are included for comparison. It can be seen that the trajectories con-

verge to the equilibrium point without neither switching nor disturbances. In the pres-

ence of disturbances, the trajectories converge to a neighbourhood of equilibrium point,

where the amplitude of oscillations in steady states is small. While switching signal with

small unstable duration (Tu = 0.1) is introduced to the system, the trajectories start to

hover around the previous ultimate bound, with a larger oscillation amplitude. When

the unstable duration is further increased (Tu = 0.2), the amplitude of the oscillations

becomes larger. This is consistent of the comments in Remark 5.13 because it shows

that the ultimate bound will be amplified by the eLTu .
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Figure 5.3: Switched vibrational is unstable when Ts + Tu = 1s and Tu = 0.3s.
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Figure 5.4: Trajectories of inverted pendulum stabilized by vibrational control with
switching signal under different unstable durations.

In the example of inverted pendulum (5.60), the energy consumed by the actuator in-

cludes two parts: the first part is changing the mechanical energy of the system i.e.

∆E = E(t)−E(t0), where E(t) = Λ(t) + Ξ(t) and kinetic energy Λ(t) = 1
2mv

2(t), gravi-

tational potential energy Ξ(t) = mgh(t) and E(t0) is the initial mechanical energy. The

velocity of the mass v(t) and the height of the mass h(t) can be related to the θ and θ̇ as

well as the oscillation a
ε sin

(
t
ε

)
. The second part of the energy is consumed by the fric-

tion during the stabilization process, which can be calculated as Wf (t) =
∫ t
t0
kv2(t)dt.

Then the total energy consumed can be expressed as Wactuator(t) = ∆E(t) + Wf (t).

Figure 5.5 shows the simulation results of energy comparison between non-switched sys-

tem and switched system with Tu = 0.2, which is largest allowed unstable duration we
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found. It can be seen that after introducing the switching signal, the energy consumed

by vibrational control is reduced by almost 20% in both transient process and steady

states.
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Figure 5.5: Comparison of energy consumption between non-switched and switched
vibrational control systems.

It is shown in Theorem 5.8 that the allowed maximum unstable duration T ∗u depends

on the choice of stable duration Ts, the divergence speed of the unstable system as well

as the decaying rate of the stable system. Next the dynamics behaviour of 2R planar

manipulator (4.44) with switching signal (5.40) which has a smaller divergence speed

serves as an comparison. The switching period Ts + Tu is also set as 1 second. The

trajectories with different unstable duration are shown in Figure 5.6. It shows that

with a smaller divergence speed, the allowed unstable duration can be largely increased

from 0.2 to 0.5 second. Although the stable duration decreases from 0.8 to 0.5 second,

the switched system stays stable. These simulation results are consistent with theoretic

analysis.

5.5 Summary

This chapter presented the stability and robustness analysis of switched vibrational

control systems. The key feature of vibrational control systems is the high-frequency

oscillations. This requires high energy consumption with possible damages to actuators.

To reduce the energy consumption, novel switching laws are introduced to turn-off the

dither signals for a certain time when it’s not necessary in the process of stabilization.
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Figure 5.6: Trajectories of the switched vibrational planar robotic manipulator under
different unstable durations.

For linear vibrational control systems, a switching law with average dwell time that

limits the switching times during a certain time interval was introduced. It was shown

that the switched linear vibrational control systems under this slowly varying switching

signal have a globally uniformly exponentially stable equilibrium point if the ratio of

stable duration and unstable duration is sufficiently large.

When vibrational control systems are nonlinear, a periodic switching signal was used to

regulate activating sequences of stable and unstable subsystems. This periodic switching

scheme avoids the trajectories escaping from the domain of attraction. To guarantee that

the trajectories converge toward the equilibrium point, the duration of stable subsystem

and unstable subsystem was carefully tuned. It shows that the averaged trajectories

converge arbitrarily close to the equilibrium point which means the vibrational stabiliz-

ability is preserved after using switching. Besides, the real trajectories converges to a

neighbourhood of a limit cycle. By properly choosing the switching instance, the ulti-

mate bound to the limit cycle can be reduced. Finally, the switched vibrational control

systems are shown to be robust to a class of bounded disturbances. The guidelines for

reducing the ultimate bound were proposed by either reducing the ultimate bound of

stable subsystem or tuning the switching duration. Simulation results from an inverted

pendulum and a planar robotic manipulator illustrate the effectiveness of the estimated

trajectories bounds. Besides, the energy consumed by vibrational control can be reduced

after switching.



Chapter 6

Conclusion

In the first part of the thesis, we presented the stability analysis of vibrational control

systems with more general definitions. The local vibrational stabilization results for non-

linear systems have been extended to establish non-local vibrational stability criteria

with a new definition. Next, the robustness under different types of disturbances was

discussed in both linear and non-linear vibrational control systems. The perturbed

system performance such as the trajectories convergence, the transient behaviour and

the ultimate bound was addressed. To reduce the energy consumption by inserting high-

frequency dithers, novel switching laws were introduced to turn-off the control input for

a period in the stabilization process. The stability and robustness of switched vibrational

control systems were discussed. Numeric simulations support the theoretic findings. In

the rest of this chapter, three main contributions will be summarized below, followed by

suggestions for future work.

6.1 Summary of Contributions

6.1.1 Non-local Vibrational Stabilization

In order to obtain non-local vibrational stabilization for nonlinear vibrational control

systems, the concept of semi-global practical vibrational stabilizability was presented as

an extension of well-known results in literature. Our derived result showed that when

the averaged system is globally asymptotically stable uniformly in the parameter, the

nonlinear vibrational control systems are semi-globally practically vibrationally stable,

where the domain of attraction can be an arbitrarily large compact set. The obtained

results can be generalized to show the robustness when disturbances exist by applying

the average technique and perturbation theory.

109
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6.1.2 Robustness Framework of Vibrational Control Systems with Bounded

Disturbances

For linear vibrational control systems, when the disturbances are state-independent,

perturbation techniques can be used to show that the linear vibrational control system

is input-to-state stable (ISS) with respect to additive disturbances. In particular, when

disturbances are periodic, a higher frequency leads to a smaller ultimate bound. When

state-dependent disturbances are considered, weak averaging technique is used to show

the robustness of vibrational control systems when disturbances are slowly time-varying.

For nonlinear vibrational control systems, the local vibrational stabilization was ex-

tended to local robustness by considering the existence of additive disturbances. When

capturing non-local robustness, we considered a weak stability condition that suits a

large class of systems. The averaged trajectories of nonlinear vibrational control sys-

tems were shown to have practically ISS properties for constrained disturbances. When

the bounded disturbances are also periodic, the ultimate bound estimation can be less

conservative. Lastly, the weak averaging technique is used to show that the nonlinear

vibrational control system can handle arbitrarily large disturbances if the weak averaged

system is Lyapunov-ISS.

6.1.3 System Performance of Switched Vibrational Control Systems

The key feature of vibrational control systems is using high-frequency dithers to provide

an extra design freedom in stabilization. This requires high energy consumption with

possible damages to actuators. To reduce the energy consumption, novel switching laws

were introduced to turn-off the dither signals during a certain period when it’s not

necessary in the process of stabilization.

For linear vibrational control systems, a switching law with average dwell time that

limits the switching times during a period was introduced. It was shown that the

switched linear vibrational systems under this slowly varying switching signal have a

globally uniformly exponentially stable equilibrium point if the ratio of stable duration

and unstable duration is sufficiently large.

When vibrational control systems are nonlinear, a periodic switching signal was used to

regulate activating sequences of stable and unstable subsystems. This periodic switch-

ing scheme avoids the trajectories escaping from the domain of attraction. To guarantee

that the trajectories converge toward the equilibrium point, the duration of the stable

subsystem and the unstable subsystem was carefully tuned. It shows that the averaged
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trajectories converge arbitrarily close to the equilibrium point thus the vibrational sta-

bilizability is preserved after using switching. Besides, the real trajectories converges to

a neighbourhood of a limit cycle. By properly choosing the switching instance, the ulti-

mate bound to the limit cycle can be reduced. Finally, the switched vibrational control

systems were shown to be robust to a class of bounded disturbances. The guidelines for

reducing the ultimate bound were proposed by either reducing the ultimate bound of

stable subsystem or tuning the switching duration.

6.2 Suggested Future Work

6.2.1 A Systematic Procedure to Design the Vibrational Control Func-

tion

As shown in Chapter 2, the general vibrational control systems have the following ad-

ditive form

ẋ = f(x) +
1

ε
g

(
t

ε
, x

)
, x(t0) = x0 ∈ Rn, (6.1)

where g : [t0,∞) × Rn → Rn is continuous and T -periodic in t, locally Lipschitz in x,

uniformly in t.

Vibrational control function g(·, ·) currently comes from a naturally coupling between

the oscillating dithers and the system dynamics. But how to insert the dithers to have a

suitable vibrational control function still relies on the practice experiences. For example,

in the inverted pendulum, if the dithers are inserted in the horizon direction, it fails to

stabilize the system. In the stability analysis, we have shown that the stabilization can

be successful if the dithers are inserted in the vertical direction and the obtained stability

criteria explain why it happens. However, the stability criteria need to check the stability

of the averaged system after transformation which is not practical to give a guidance

on the dither injecting in implementation. Actually inserting dithers in two directions

results in two different vibrational control functions, so we expect that the successful

stabilizing function would satisfy some properties. In other words, there should exist

a link between the obtained stability criteria and these ‘stabilizing properties’ of the

vibrational function. After transferring the stability criteria to the vibrational function,

it gives more information about the successful coupling thus becomes more applicable.

The constructed Lyapunov function in the sample-data method in Chapter 4 is a possible

solution to build the link. It has been shown that the Lyapunov function contains the

information of the stability of the averaged system (the derivative along the averaged
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system is upper bounded by a negative function), so by tracking backward through the

transformation it could pass the stability criteria to the vibrational function.

6.2.2 Algorithm Implementation

We find some new features of the vibrational control algorithm in this work, for example

we show that the stabilization could be semi-global if the averaged system is globally

asymptotically stable. Besides, the stabilization could handle a class of disturbances

and interesting frequency attenuation to the ultimate bound is found if the disturbances

are periodic. Moreover, different switching schemes are introduced to the control input

systems to reduce the energy consumption while keeps the systems stable. Although

the numeric simulation results verify the effectiveness of these theoretic findings, more

work is needed to implement the algorithm with these new features to demonstrate the

effectiveness in applications.

However, designing an engineering device in application to verify the new findings ob-

tained from this thesis can be very challenging. For example, to assure the semi-globally

practically vibrational stabilizability, we need to find a mechanism such that after in-

serting the dithers the averaged system is globally asymptotically stable, but it would

be challenging to find such a nonlinear mechanism.

Exploring the switching performance in applications is also an interesting task because

different systems would have different convergence speeds so their abilities to handle

switching are different. It is expected that the system with higher convergence speed

could save more energy by using switching. It is also worthwhile to verify how conser-

vative is the estimated trajectories bound obtained from theoretic derivation.



Appendix A

Proofs

A.1 Proof of Theorem 4.2

Step 1: decrease of Lyapunov functions at sampled instances

In this proof, the equilibrium position ze is assumed to be origin without losing generality.

Since the averaged system (2.26) is asymptotically stable in the region of attraction Dz,

then according to converse Lyapunov theorem [77, Theorem 4.16], there is a continuously

differentiable function V : [t0,∞)×Dz → R that satisfies the inequalities:

α1(|z|) ≤ V (z) ≤ α2(|z|)
∂V

∂z
fy,av(z) ≤ −α3(|z|)∣∣∣∣∂V∂z

∣∣∣∣ ≤ α4(|z|).

(A.1)

where α1, α2, α3 and α4 are class K functions.

The disturbed vibrational control systems in transformed coordinate (4.33) can be

rewritten as
dy

dτ
= ε(fy,av(y) + (fy(τ, y)− fy,av(y)) + dy(τ, y, w)). (A.2)

The derivative of Lyapunov function V (y) along trajectories of system (A.2) is:

V̇ =
∂V

∂y

(
fy,av(y) + fy

(s
ε
, y
)
− fy,av(y) + dy

(s
ε
, y, w

))
≤ −α3(|y|) +

∂V

∂y

(
fy

(s
ε
, y
)
− fy,av(y) + dy

(s
ε
, y, w

)) (A.3)
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The upper bound of V (t) can be estimated by integrating its derivative:

V (t) ≤ V (t0)−
∫ t

t0

α3(|y(s)|ds+

∫ t

t0

∂V

∂y
(y) dy

(s
ε
, y, w

)
ds

+

∫ t

t0

∂V

∂y
(y)
(
fy

(s
ε
, y
)
− fy,av(y)

)
ds.

(A.4)

Next we will use sampling-instances method introduced in [45] to show that the Lya-

punov function decreases at each sampling step tk = t0 + kεT , where k ∈ N and T is

period of the dither signal. According to the continuity of solutions, for all initial values

y0 ∈ Dz and disturbances w ∈ L∞, there is positive constants M and ε∗1 such that for

all ε ∈ (0, ε∗1), the solutions of transformed system (A.2) satisfy:

|y(t)− y(t0)| ≤M(t− t0), ∀t ∈ [t0, t0 + εT ]. (A.5)

AsDz is a compact set in Rn, there exists ρ such that the domainDz0 = {y ∈ Rn||y| ≤ ρ}
is a subset of Dz. Then for all y0 ∈ Dz0, there exists ε∗2 such that |y0| ≥ 2MεT for all

ε ∈ (0, ε∗2), then for all t ∈ [t0, t0 + εT ]:

− α3(|y(t)|) ≤ −α3(max{|y0| −MεT, 0}) ≤ −α3

(
1

2
|y0|
)

(A.6)

Then the upper bound of the integral of −α3(|y(t)|) in a period is:

−
∫ t0+εT

t0

α3(|y(s)|ds ≤ −α3

(
1

2
|y0|
)
εT. (A.7)

Secondly, ∂V
∂y (y) dy

(
s
ε , y, w

)
could be bounded as

∂V

∂y
(y) dy

(s
ε
, y, w

)
≤
∣∣∣∣∂V∂y (y) dy

(s
ε
, y, w

)∣∣∣∣
≤ α4(|y|)

∣∣∣∣∣
{
∂h

∂y

}−1( t
ε
, y

)∣∣∣∣∣ |d(w)|.
(A.8)

For all t ∈ [t0, t0 + εT ], the trajectory y(t) could be preserved in Dz0, then there exists

ρ0 such that α4(|y|) ≤ ρ0. As
{
∂h
∂y

}−1 (
t
ε , y
)

is continuously periodic in t and continuous

in y, it will be bounded for all t ∈ [t0, t0 + εT ] and all y ∈ Dz0. By letting

sup
t≥t0,y∈Dz0

∣∣∣∣∣
{
∂h

∂y

}−1( t
ε
, y

)∣∣∣∣∣ = ξ

and supposing the holding of Assumption 4.1, we can estimate the upper bound:∫ t0+εT

t0

∣∣∣∣∂V∂y (y) dy

(s
ε
, y, w

)∣∣∣∣ ds ≤ ρ0ξγ(‖w‖∞)εT. (A.9)
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The residual term in (A.3) could be divided into the following parts:

∂V

∂y
(y)

(
fy

(
t

ε
, y

)
− fy,av(y)

)
=
∂V

∂y
(y)fy

(
t

ε
, y

)
− ∂V

∂y
(y)fy,av(y)

+
∂V

∂y
(y0)fy

(
t

ε
, y0

)
− ∂V

∂y
(y0)fy

(
t

ε
, y0

)
+
∂V

∂y
(y0)fy,av(y0)− ∂V

∂y
(y0)fy,av(y0)

=

[
∂V

∂y
(y)fy

(
t

ε
, y

)
− ∂V

∂y
(y0)fy

(
t

ε
, y0

)]
+

[
∂V

∂y
(y0)fy,av (y0)− ∂V

∂y
(y)fy,av (y)

]
+
∂V

∂y
(y0)

(
fy

(
t

ε
, y0

)
− fy,av(y0)

)
.

(A.10)

It can be shown that the following boundary exists:∣∣∣∣∂V∂y (y)fy

(
t

ε
, y

)
− ∂V

∂y
(y0)fy

(
t

ε
, y0

)∣∣∣∣
≤
∣∣∣∣∂V∂y (y)fy

(
t

ε
, y

)
− ∂V

∂y
(y)fy

(
t

ε
, y0

)∣∣∣∣+

∣∣∣∣∂V∂y (y)fy

(
t

ε
, y0

)
− ∂V

∂y
(y0)fy

(
t

ε
, y0

)∣∣∣∣
≤ |α4(y)|

∣∣∣∣(fy ( tε , y
)
− fy

(
t

ε
, y0

))∣∣∣∣+

∣∣∣∣fy ( tε , y0

)∣∣∣∣ ∣∣∣∣(∂V∂y (y)− ∂V

∂y
(y0)

)∣∣∣∣
≤ 2KL|y − y0|

(A.11)

for all y ∈ Dz0 and

K = max

{
sup
y∈Dz0

{α4(y)}, sup
t≥t0,y0∈Dz0

{
fy

(
t

ε
, y0

)}}
.

Similarly, we have∣∣∣∣∂V∂y (y)fy,av (y)− ∂V

∂y
(y0)fy,av (y0)

∣∣∣∣ ≤ 2KL|y − y0|. (A.12)

From the definition of averaging system,

1

εT

∫ t0+εT

t0

(
fy

(s
ε
, y0

)
− fy,av(y0)

)
ds = 0. (A.13)

Combining inequalities (A.5), (A.11) - (A.13), we can get the following upper bound:∫ t0+εT

t0

∂V

∂y
(y)
(
fy

(s
ε
, y
)
− fy,av(y)

)
ds ≤ 4KLM(εT )2. (A.14)
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From (A.7), (A.9) and (A.14), the change of V (t) in a period (A.4) is

V (t0 + εT ) ≤ V (t0)− α3

(
1

2
|y0|
)
εT + ρ0ξγ(‖w‖∞)εT + 4KLM(εT )2,

≤ V (t0)− 1

3
α3

(
1

2
|y0|
)
εT,

(A.15)

whenever |y0| ≥ 2α−1
3 (3ρξγ(‖w‖∞)) + 2α−1

3 (12KLMεT ) := γ1(‖w‖∞) +O(ε).

We can see that the Lyapunov function decreases over a period εT at the initial point. In

the same way we could see that it decreases in each sampled instance tk = t0+kεT where

k ∈ N if |yk| ≥ γ1(‖w‖∞)) + O(ε) which means the difference of Lyapunov function at

two sequential sampled time instances satisfies:

Vk+1 − Vk ≤ −
1

3
α3(0.5|yk|)εT. (A.16)

Since α1(|yk|) ≤ Vk ≤ α2(|yk|), then

Vk+1 − Vk ≤ −
1

3
α3(0.5α−1

2 (Vk))εT, (A.17)

whenever Vk ≥ α2 ◦ γ1(‖w‖∞)) +O(ε).

Step 2: boundary of sampled values

Introduce a new variable u(s) = Vk +
(
s
εT − k

)
(Vk+1 − Vk) where s ∈ [tk, tk+1] and Vk

satisfies (A.17). According to the definition, the variable u(s) is a continuous, piecewise

linear function, then it is differentiable for almost all s ≥ 0. It is noted that 0 ≤
Vk+1 ≤ u(s) ≤ Vk for all s ∈ [tk, tk+1], hence if u(s) ≥ α2 ◦ γ1(‖w‖∞) + O(ε), we have

Vk ≥ α2 ◦ γ1(‖w‖∞) + O(ε). Combining with the inequality (A.17), the derivative of

u(s) satisfies:
du

ds
= (Vk+1 − Vk)

1

εT
≤ −1

3
α3(0.5α−1

2 (u(s))), (A.18)

whenever u(s) ≥ α2 ◦ γ1(‖w‖∞) + O(ε). Acording to the standard comparison Lemma

[77, Lemma 3.4], there exists β ∈ KL such that

|u(s)| ≤ max{β(|u0|, s), α2 ◦ γ1(‖w‖∞ +O(ε)). (A.19)

Since u(tk) = Vk ≥ α1(|yk|), then there exists β1(u, v) = α−1(β(α2(u), v)) such that the

following inequality holds:

|y(tk)| ≤ max{β1(|y0|, kεT ), γ̂(‖w‖∞) +O(ε)} (A.20)

where γ̂(‖w‖∞) = α−1
1 ◦ α2 ◦ γ1(‖w‖∞).

Step 3: boundary of trajectories

As indicated in (A.5), the closeness of sampled values with trajectories could be bounded
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by

|y(t)| ≤ |y(tk)|+O(ε),∀t ∈ [tk, tk+1].

Combining the above inequality with (A.20), it shows that

|y(t)| ≤ max{β1(|y0|, kεT ), γ̂(‖w‖∞) +O(ε)},∀t ≥ t0 ≥ 0. (A.21)

For any given δ > 0, there exists ε∗ such that for all ε ∈ (0, ε∗)

|y(t)| ≤ max{β1(|y0|, kεT ), γ̂(‖w‖∞) + δ}, ∀t ≥ t0 ≥ 0. (A.22)

As shown in [45, Lemma 5], for any β ∈ KL, there exists β̃ ∈ KL s.t. β1(s, kεT ) ≤
β̃(s, (k + 1)εT ), ∀s, ∀k. As t− t0 < (k + 1)εT therefore

|y(t)| ≤ max{β̃(|y0|, t− t0), γ̂(‖w‖∞)}+ δ, ∀t ≥ t0 ≥ 0. (A.23)

Step 4: boundary of original trajectories

The averaged trajectory is defined as xav(t) = 1
T

∫ t+T
t x(τ)dτ , then the closeness to the

equilibrium point could be found

|xav(t)− xe| =
1

T

∫ t+T

t
(h(τ, y)− h(τ, 0)) dτ

≤ 1

T

∫ t+T

t
(L|y(τ)|) dτ

≤ 1

T

∫ t+T

t
L
(

max{β̃(|y0|, τ − t0), γ̂2(‖w‖∞)}+ δ
)
dτ

≤ max{β̂1(|xav(t0)− xe|, t− t0), γ̂1(‖w‖∞)}+ δ.

(A.24)

where β̂1 ∈ KL and γ̂1 ∈ K. This completes the proof. Q.E.D.

A.2 Proof of Theorem 4.3

As assumed that the averaged system is asymptotically stable in a compact set Dz

within region of attraction, then there exists continuously differentiable function V :

[t0,∞)×Dz → R that satisfies (A.1).

Next we will apply instance-sampling method as illustrated in the proof of Theorem 4.2.

By taking derivative of the Lyapunov function along the trajectories of systems (4.36)
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and doing integral from an arbitrary point yk ∈ Dz at sampling instance tk = t0 + kεT :

V (tk+1) ≤ V (tk) +

∫ tk+1

tk

∂V

∂y
(y) c

(s
ε
, y
)
dw

(
s

η

)
ds

−
∫ tk+1

tk

α3(|y(s)|ds+

∫ tk+1

tk

∂V

∂y
(y)
(
fy

(s
ε
, y
)
− fy,av(y)

)
ds.

(A.25)

where c (t, y) =
{
∂h
∂y

}−1
(t, y) which is continuous and periodic in t. As proved in (A.7)

and (A.14), the following inequalities are satisfied:

−
∫ tk+1

tk

α3(|y(s)|ds ≤ −α3

(
1

2
|yk|
)
εT. (A.26)

∫ tk+1

tk

∂V

∂y
(y)
(
fy

(s
ε
, y
)
− fy,av(y)

)
ds ≤ 4KLM(εT )2. (A.27)

The term related to disturbances in (A.25) can be rewritten by adding a new term

related to its average:∫ tk+1

tk

φ
(s
ε
, y
)
dw

(
s

η

)
ds =∫ tk+1

tk

φ
(s
ε
, y
)(

dw

(
s

η

)
− d̄w

)
ds+

∫ tk+1

tk

φ
(s
ε
, y
)
d̄wds

(A.28)

where φ (t, y) = ∂V
∂y (y) c (t, y) that is continuous and periodic in t and d̄w = 1

Tw

∫ t+Tw
t dw(τ)dτ .

The second integral in the right hand side of (A.28) could be bounded as∫ tk+1

tk

φ
(s
ε
, y
)
d̄wds ≤ φ0d̄wεT (A.29)

where φ0 = sup
t∈[t0,∞),y∈Dz

|φ (t, y) |.

Considering the first term, it could be bounded by taking advantage of the definition of

the average d̄w. ∫ tk+1

tk

φ
(s
ε
, y
)(

dw

(
s

η

)
− d̄w

)
ds

=

i=N0∑
i=0

∫ tk+(i+1)ηTw

tk+iηTw

φ
(s
ε
, y
)(

dw

(
s

η

)
− d̄w

)
ds

+

∫ tk+1

tk+(N0+1)ηTw

φ
(s
ε
, y
)(

dw

(
s

η

)
− d̄w

)
ds

(A.30)
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where N0 is the largest nonnegative active integer such that (N0 + 1)ηTw ≤ εT . Define

tki = tk + iηTw∫ tk(i+1)

tki

φ
(s
ε
, y
)(

dw

(
s

η

)
− d̄w

)
ds

=

∫ tk(i+1)

tki

[
φ
(s
ε
, y
)
− φ

(
tki
ε
, y

)](
dw

(
s

η

)
− d̄w

)
ds

+

∫ tk(i+1)

tki

[
φ

(
tki
ε
, y

)
− φ

(
tki
ε
, yki

)](
dw

(
s

η

)
− d̄w

)
ds,

(A.31)

where the property that∫ tk(i+1)

tki

φ

(
tki
ε
, yki

)(
dw

(
s

η

)
− d̄w

)
ds = 0

is used which comes from the definition of d̄w = 1
Tw

∫ t+Tw
t dw(τ)dτ . By mean value

theorem, there exists ξki ∈ [tki, tk(i+1)) such that

φ
(s
ε
, y
)
− φ

(
tki
ε
, y

)
= φ′(ξki, y)

(
s− tki
ε

)
. (A.32)

In the assumption the c(t, y) is locally Lipschitz, φ(t, y) is locally Lipschitz, then the

following property holds:∣∣∣∣φ( tkiε , y
)
− φ

(
tki
ε
, yki

)∣∣∣∣ ≤ L|y − yki|. (A.33)

Taking advantage of property (A.32) and (A.33), (A.31) is bounded as∣∣∣∣∫ tk(i+1)

tki

φ
(s
ε
, y
)(

dw

(
s

η

)
− d̄w

)
ds

∣∣∣∣
≤
∫ tk(i+1)

tki

∣∣φ′(ξki, y)
∣∣ ∣∣∣∣(s− tkiε

)∣∣∣∣ ∣∣∣∣(dw ( sη
)
− d̄w

)∣∣∣∣ ds
+

∫ tk(i+1)

tki

L|y − yki|
∣∣∣∣(dw ( sη

)
− d̄w

)∣∣∣∣ ds
≤ φ′0

ηTw
ε
dweηTw +MLηTwdweηTw,

(A.34)

where φ′0 = sup
t∈[t0,∞),y∈Dz

|φ′ (t, y) |, dwe = max
t∈[t0,∞)

∣∣∣∣(dw ( sη
)
− d̄w

)∣∣∣∣ .
By using the inequality of (A.34) and the fact that |tk+1 − (tk + (N0 + 1)ηTw| < ηTw,
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the left hand side of (A.30) could be bounded by∣∣∣∣∫ tk+1

tk

φ
(s
ε
, y
)(

dw

(
s

η

)
− d̄w

)
ds

∣∣∣∣
≤ φ′0

ηTw
ε
dwe(N0 + 1)ηTw +MLηTwdwe(N0 + 1)ηTw + φ0dweηTw

≤ κ1
η

ε
εT + κ2ηεT + κ3η.

(A.35)

By taking the property (A.35) into (A.28) to get the boundary:∣∣∣∣∫ tk+1

tk

φ
(s
ε
, y
)
dw

(
s

η

)
ds

∣∣∣∣ ≤ (κ1η

ε
+ κ2η + φ0|d̄w|

)
εT + κ3η. (A.36)

Take (A.36), (A.46) and (A.47) into (A.25), the change of Lyapunov function could be

bounded by

V (tk+1) ≤ V (tk)− α3 (0.5|yk|) εT + 4KLM(εT )2

+ κ1
η

ε
εT + κ2ηεT + κ3η + φ0|d̄w|εT

≤ V (tk)−
1

5
α3 (0.5|yk|) εT,

(A.37)

whenever |yk| ≥ κ̄1ε + κ̄2
η
ε + κ̄3η + γ(|d̄w|) where γ(x) = 2α−1

3 (5φ0x) ∈ K∞. Follow

the same procedures in the proof of Theorem 4.2 after (A.16), there exists β̂3, β̂4 ∈ KL,

γ̂3, γ̂4 ∈ K∞ such that for given δ > 0 there exists ε∗ and η∗ << ε∗ such that for all

ε ∈ (0, ε∗) and η ∈ (0, η∗), (4.38) and (4.39) hold respectively. Q.E.D.

A.3 Proof of Theorem 4.4

The equilibrium position ze is assumed to be origin without losing generality. Since the

weak averaged system (4.45) is Lyapunov ISS, then according to definition of Lyapunov

ISS 3.2, there is a continuously differentiable function V : [t0,∞)×Rn → R that satisfies

the inequalities:

α1(|z|) ≤ V (z) ≤ α2(|z|), (A.38)

∂V

∂t
+
∂V

∂z
(fy,av(z) + dy,wa(z, w)) ≤ −α3(|z|), ∀|z| > ρ(‖w‖∞), (A.39)

where α1, α2, α3 and ρ are class K functions.

The disturbed vibrational control systems in transformed coordinate (4.33) can be

rewritten as

dy

dτ
= ε(fy,av(y) + dy,wa(y, w) + fy(τ, y)− fy,av(y) + dy(τ, y, w)− dy,wa(y, w)). (A.40)
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The derivative of Lyapunov function V (y) along trajectories of system (A.40) is:

V̇ =
∂V

∂y

(
fy,av(y) + dy,wa(y, w) + fy

(
t

ε
, y

)
− fy,av(y) + dy

(
t

ε
, y, w

)
− dy,wa(y, w)

)
≤ −α3(|y|) +

∂V

∂y

(
fy

(
t

ε
, y

)
− fy,av(y) + dy

(
t

ε
, y, w

)
− dy,wa(y, w)

)
(A.41)

Let ky = sup
|x−xe|≤kx,t≥t0

h−1(t, x) be the boundary of domain of attraction mapped by

transformation. For any point yk ∈ {y ∈ Rn||y − ye| ≤ ky} at sampling time instance

t = tk, the Lyapunov value at the next sampling instance can be bounded by

V (tk+1) ≤ V (tk)−
∫ tk+1

tk

α3(|y(s)|)ds+

∫ tk+1

tk

∂V

∂y
(y)
(
dy

(s
ε
, y, w

)
− dy,wa(y, w)

)
ds

+

∫ tk+1

tk

∂V

∂y
(y)
(
fy

(s
ε
, y
)
− fy,av(y)

)
ds.

(A.42)

The second integral containing disturbances can be further bounded by∫ tk+1

tk

∂V

∂y
(y)
(
dy

(s
ε
, y, w

)
− dy,wa(y, w)

)
ds

≤
∫ tk+1

tk

∂V

∂y
(y)
(
c
(s
ε
, y
)
− cav(y)

)
d(w(s))ds

≤
∫ tk+1

tk

∣∣∣∣∂V∂y (y)
(
c
(s
ε
, y
)
− cav(y)

)∣∣∣∣ |d(w(s))|ds

≤
∫ tk+1

tk

∣∣∣∣∂V∂y (y)
(
c
(s
ε
, y
)
− cav(y)

)∣∣∣∣ dsγ(‖w‖∞)

(A.43)

where c
(
t
ε , y
)

=
{
∂h
∂y

}−1
(τ, y) that is periodic in t and continuous in y and cav(y) =

1

T

∫ t0+T

t0

c
(s
ε
, y
)
ds.

Similar to the proof of (A.14), the following inequality satisfies:∫ tk+1

tk

∣∣∣∣∂V∂y (y)
(
c
(s
ε
, y
)
− cav(y)

)∣∣∣∣ ds ≤ 4K̃L̃M̃(εT )2. (A.44)

Substitute (A.44) into (A.43):∫ tk+1

tk

∂V

∂y
(y)
(
dy

(s
ε
, y, w

)
− dy,wa(y, w)

)
ds ≤ 4K̃L̃M̃(εT )2γ(kw). (A.45)

As proved in (A.7) and (A.14), the following inequalities are satisfied:

−
∫ tk+1

tk

α3(|y(s)|ds ≤ −α3

(
1

2
|yk|
)
εT. (A.46)
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∫ tk+1

tk

∂V

∂y
(y)
(
fy

(s
ε
, y
)
− fy,av(y)

)
ds ≤ 4KLM(εT )2. (A.47)

Then the Lyapunov value at tk+1 from (A.42) can be bounded by

V (tk+1) ≤ V (tk)− α3

(
1

2
|yk|
)
εT + 4K̃L̃M̃(εT )2γ(kw) + 4KLM(εT )2,

≤ −1

3
α3(0.5|yk|)εT

(A.48)

whenever

|yk| ≥ 2α−1
3 (12K̃L̃M̃γ(kw)εT ) + 2α−1

3 (12KLMεT ) (A.49)

The ultimate bound is determined by the maximum value of (A.49) and ultimate bound

of Lyapunov ISS function. Since (A.49) is related to parameter ε, when ε is tuned

sufficiently small, (A.49) can be made smaller than the other candidate, then the final

ultimate bound is decided by (A.38). Follow the step 2 - 4 in the Appendix A.1, Theorem

4.4 can be proved. Q.E.D.

A.4 Proof of Theorem 5.7

The initial values of the averaged trajectories at the end of each periods t = k(Ts + Tu)

and in the middle of periods t = k(Ts + Tu) + Ts can be calculated:

|xav(Ts + Tu)| ≤ a1a2e
−λ1Ts+λ2Tu |x0|+ δa2e

λ2Tu ;

|xav((Ts + Tu) + Ts)| ≤ a1a2e
−λ1Ts+λ2Tu |x0|a1e

−λ1Ts + a1a2e
−λ1Ts+λ2Tuδ + δ

|xav(2(Ts + Tu))| ≤ a2
1a

2
2e
−2(λ1Ts+λ2Tu)|x0|+ a1a2e

−λ1Ts+λ2Tuδa2e
λ2Tu + δa2e

λ2Tu

|xav(2(Ts + Tu) + Ts)| ≤ a2
1a

2
2e
−2(λ1Ts+λ2Tu)|x0|a1e

−λ1Ts +
2∑
i=0

ai1a
i
2e
i(−λ1Ts+λ2Tu)δ

(A.50)

The upper bound of trajectory value in the middle of k-th period can be calculated by

iteration:

|xav(k(Ts + Tu) + Ts)| ≤ ak1ak2ek(−λ1Ts+λ2Tu)|x0|a1e
−λ1Ts +

k∑
i=0

ai1a
i
2e
i(−λ1Ts+λ2Tu)δ

≤ ek(ln a1+ln a2−λ1Ts+λ2Tu)|x0|a1e
−λ1Ts +

k∑
i=0

ei(ln a1+ln a2−λ1Ts+λ2Tu)δ.

(A.51)
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According to (5.42), ln a1 + ln a2 − λ1Ts + λ2Tu ≤ −λ∗(Ts + Tu), then |xav(k(Ts + Tu))|
is bounded by

|xav(k(Ts + Tu) + Ts)| ≤ e−kλ
∗(Ts+Tu)|x0|a1e

−λ1Ts +

k∑
i=0

e−iλ
∗(Ts+Tu)δ

≤ e−kλ∗(Ts+Tu)|x0|a1e
−λ1Ts + δ

1− qk+1

1− q
, k = 0, 1, ...

(A.52)

where q = e−λ
∗(Ts+Tu).

As a result, the solutions at t = k(Ts + Tu) can be bounded by:

|xav(k(Ts + Tu))| ≤ e−kλ∗(Ts+Tu)|x0|+ δa2e
λ2Tu 1− qk

1− q
, k = 0, 1, ... (A.53)

For t ∈ [k(Ts + Tu), k(Ts + Tu) + Ts), the upper bound of the trajectories are

|xav(t)| ≤ |xav(k(Ts + Tu)|a1e
−λ1(t−k(Ts+Tu)) + δ

≤
(
e−kλ

∗(Ts+Tu)|x0|+ δa2e
λ2Tu 1− qk

1− q

)
a1e
−λ1(t−k(Ts+Tu)) + δ

≤ e−kλ∗(Ts+Tu)|x0|a1e
−λ1(t−k(Ts+Tu)) + δa1a2e

λ2Tu 1− qk

1− q
+ δ

≤ a1e
−λ∗t|x0|+ a1a2δe

λ2Tu 1

1− q
+ δ.

(A.54)

For t ∈ [k(Ts + Tu) + Ts, (k+ 1)(Ts + Tu)), the upper bound can be found in the similar

way

|xav(t)| ≤ a2e
λ2(t−k(Ts+Tu)−Ts)e−kλ

∗(Ts+Tu)|x0|a1e
−λ1Ts + a2δe

λ2Tu 1

1− q

≤ e−kλ∗(Ts+Tu)|x0|eln a1+ln a2+λ2(t−k(Ts+Tu)−Ts)−λ1Ts + a2δe
λ2Tu 1

1− q
.

(A.55)

According to the the constraint of stable duration and unstable duration (5.42),

ln a1 + ln a2 − λ1Ts ≤ −λ∗(Ts + Tu)− λ2Tu.

Also it is noted that t− k(Ts + Tu)− Ts ≤ Tu, then

|xav(t)| ≤ e−(k+1)λ∗(Ts+Tu)|x0|e−λ2(Tu−(t−k(Ts+Tu)−Ts)) + a2δe
λ2Tu 1

1− q

≤ e−λ∗t|x0|+ a2δe
λ2Tu 1

1− q
.

(A.56)

Therefore, the trajectories can be bounded by

|xav(t)| ≤ a1e
−λ∗t|x0|+ a1a2δe

λ2Tu 1

1− q
+ δ, ∀t ≥ 0, (A.57)
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which competes the proof. Q.E.D.

A.5 Proof of Theorem 5.8

Since solutions of systems (5.23) satisfy inequality (4.35) while σ = 1, thus for t ∈
[k(Ts + Tu), k(Ts + Tu) + Ts), k ∈ N, when |xav(t)− xe| ≥ γ̂1(‖w‖∞)

|xav(t)− xe| ≤ β̂1(|x0 − xe|, t− t0) + δ,

Let x̃av(t) = xav(t)− xe. When t = k(Ts + Tu) + Ts

|x̃av(k(Ts + Tu) + Ts)| ≤ β̂1(|xk|, Ts) + δ. (A.58)

When σ = 0, the active system becomes time invariant:

˙̃x = f(x̃+ xe) + d(w), x̃(t0) = x0 − xe. (A.59)

From Assumption 4.1, |d(w)| ≤ γ(|w|). Let γw =: sup
‖w‖∞≤v

γ(|w|) = γ(‖w‖∞). The

solutions of system (A.59) can be written as

x̃(t) = x̃(t0) +

∫ t

t0

f(x̃(s) + xe)ds+

∫ t

t0

d(w(s))ds,

= x̃(t0) +

∫ t

t0

(f(x̃(s) + xe)− f(xe)) ds+

∫ t

t0

d(w(s))ds

(A.60)

Let Bρ be the largest ball inside the initial set: Bρ = {x ∈ Dx0||x− xe| ≤ ρ+H} where

H = maxt |h(t, ze)|. As assumed that f(x) is Lipschitz in Dx0, then there exists constant

L such that the following hold:

|f(x̃(s) + xe)− f(xe)| ≤ L|x̃(s)|. (A.61)

The upper bound of the solutions could be estimated as follows:

|x̃(t)| ≤ |x̃(t0)|+ γw(t− t0) +

∫ t

t0

L|x̃(s)|ds (A.62)

After applying Gronwall-Bellman inequality ([77, Lemma A.1]) to |x̃(t)|,

|x̃(t)| ≤ |x̃0|+ γw(t− t0) +

∫ t

t0

L(|x̃0|+ γw)(s− t0)eL(t−s)ds.
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Integrating the right hand side, we obtain when σ = 0

|x̃(t)| ≤ |x̃0|eL(t−t0) +
γw
L

(eL(t−t0) − 1). (A.63)

Therefore, the averaged trajectories of unstable subsystem satisfy:

|x̃av(t)| ≤ |x̃0|eL(t−t0) +
γw
L

(eL(t−t0) − 1). (A.64)

For a point in B̃ρ = {x̃ ∈ Rn||x̃| ≤ ρ + H} where tk = k(Ts + Tu), the upper bound of

the value at tk+1 can be estimated if |x̃av(t)| ≥ γ̂1(‖w‖∞) + δ for all t ∈ [tk, tk+1]:

|x̃av,k+1| ≤ β̂1(|x̃av,k|, Ts)eLTu + (
γw
L

+ δ)eLTu − γw
L
. (A.65)

Solutions of the switched system converge to the boundary {xav ∈ Rn||xav − xe| =

γ̂1(‖w‖∞) + δ} if there exists p ∈ (0, 1) and Tu such that the following conditions are

satisfied:

β̂1(|x̃av,k|, Ts)eLTu ≤ p|x̃av,k| (A.66)

p|x̃av,k|+ (
γ

L
+ δ)eLTu − γ

L
≤ |x̃av,k| (A.67)

To guarantee the existence of Tu for (A.66) and (A.67), there exists T ∗s such that the

following inequality is true for all Ts > T ∗s

inf
|x|∈[γ̂1(‖w‖∞+δ),ρ]

β̂1(|x̃|, Ts)
|x̃|

<
γ̂1(‖w‖∞)

γ̂1(‖w‖∞) + δ
(A.68)

Selecting p ∈

[
inf

|x̃|∈[γ̂1(‖w‖∞)+δ,ρ]

β̂1(|x̃|, Ts)
|x̃|

,
γ̂1(‖w‖∞)

γ̂1(‖w‖∞) + δ

]
, the conditions (A.66) and

(A.67) could be satisfied for sufficient small Tu. Therefore, from the conditions (A.66)

and (A.67), the critical value of Tu could be found: T ∗u = min{T ∗u1, T
∗
u2} which

T ∗u1 =
1

L
ln inf
|x̃|∈[γ̂1(‖w‖∞)+δ,ρ]

p|x̃|
β̂2(|x̃|, Ts)

; (A.69)

T ∗u2 =
1

L
ln

1

γ/L+ δ

(
(1− p)γ̂1(‖w‖∞) +

γ

L

)
. (A.70)

Therefore, for all Ts > T ∗s and Tu < T ∗u , conditions (A.66) and (A.67) are satisfied such

that |x̃av,k+1| < |x̃av,k| whenever |x̃av(t)| ∈ [γ̂1(‖w‖∞) + δ, ρ], combing the fact that

|x̃av(t)| < |x̃av,k| for t ∈ [k(Ts + Tu), (k + 1)(Ts + Tu)), there exists β̄ ∈ KL such that

|x̃av(t)| ≤ β̄(|x̃0|, t − t0), whenever |x̃av| ≥ γ̂1(‖w‖∞) + δ. Let ť and t̂ denote the time

that averaged trajectories enter and leave the boundary {x ∈ Rn||x| = γ̂1(‖w‖∞) + δ}
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respectively. If t̂ =∞ then the averaged trajectories can be bounded by

|x̃av(t)| ≤ β̄(|x̃0|, t− t0) + γ̂1(‖w‖∞) + δ, ∀t ≥ t0. (A.71)

When t̂ <∞, the averaged trajectories can be bounded for t ∈ [t̂, t̂+ Tu]:

|x̃av(t)| ≤ (γ̂1(‖w‖∞) + δ) eL(t−t0) +
γw
L

(eLTu − 1),

≤ (γ̂1(‖w‖∞) + δ) eLTu +
γw
L

(eLTu − 1)
(A.72)

For t > t̂ + Tu, the averaged trajectories |x̃av(t)| ≤ β̄(|x̃0|, t − t0) until it enters the

boundary {x ∈ Rn||x| = γ̂1(‖w‖∞)+δ} again, and the above procedure occurs repeatedly

so the trajectories can be bounded for all t ≥ t0 as follows:

|x̃av(t)| ≤ β̄(|x̃0|, t− t0) + (γ̂1(‖w‖∞) + δ) eLTu +
γw
L

(eLTu − 1),

≤ β̄(|x̃0|, t− t0) + γ̄(‖w‖∞) + eLTuδ +
γw
L

(eLTu − 1).
(A.73)

For any given δ̃ > 0, the practical term of ultimate bound can be achieved by letting

δ = δ̃/2 and choosing T ∗∗u such that eLTu δ̃/2 + γw
L (eLTu − 1) ≤ δ̃ for all Tu ≤ T ∗∗u .

Therefore, when Tu ≤ min{T ∗u , T ∗∗u }, the trajectories satisfy

|x̃av(t)| ≤ β̄(|x̃0|, t− t0) + γ̂3(‖w‖∞) + δ̃, (A.74)

By using the fact xav(t) = x̃av +xe, (5.59) could be obtained which completes the proof.

Q.E.D.
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[80] A.R. Teel and D. Nešić. Averaging with disturbances and closeness of solutions.

Systems and Control Letters, 40(5):317–323, 2000.

[81] E. Kamen and B.S. Heck. Fundamentals of Signals and Systems: With MATLAB

Examples. Prentice Hall PTR, 2000.

[82] D. Aeyels and J. Peuteman. A new asymptotic stability criterion for nonlinear

time-variant differential equations. IEEE Transactions on Automatic Control, 43

(7):968–971, 1998.

[83] J. Peuteman and D. Aeyels. Exponential stability of nonlinear time-varying differen-

tial equations and partial averaging. Mathematics of Control, Signals and Systems,

15(1):42–70, 2002.

[84] K.S. Narendra and J. Balakrishnan. A common Lyapunov function for stable lti

systems with commuting a-matrices. IEEE Transactions on Automatic Control, 39

(12):2469–2471, 1994.

[85] M.S. Branicky. Multiple Lyapunov functions and other analysis tools for switched

and hybrid systems. IEEE Transactions on Automatic Control, 43(4):475–482,

1998.

[86] A.S. Morse. Supervisory control of families of linear set-point controllers-part i.

exact matching. IEEE Transactions on Automatic Control, 41(10):1413–1431, 1996.

[87] J.P. Hespanha and A.S. Morse. Stability of switched systems with average dwell-

time. In the 38th IEEE Conference on Decision and Control, volume 3, pages

2655–2660. IEEE, 1999.

[88] W. Xie, C. Wen, and Z. Li. Input-to-state stabilization of switched nonlinear sys-

tems. IEEE Transactions on Automatic Control, 46(7):1111–1116, 2001.

[89] L. Vu, D. Chatterjee, and D. Liberzon. Input-to-state stability of switched systems

and switching adaptive control. Automatica, 43(4):639–646, 2007.

[90] M.A. Müller and D. Liberzon. Input/output-to-state stability and state-norm esti-

mators for switched nonlinear systems. Automatica, 48(9):2029–2039, 2012.



Bibliography 134

[91] G. Zhai, B. Hu, K. Yasuda, and A.N. Michel. Stability analysis of switched systems

with stable and unstable subsystems: an average dwell time approach. International

Journal of Systems Science, 32(8):1055–1061, 2001.



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Cheng, Xiaoxiao

 

Title: 

Stability, robustness and switching performance of vibrational control systems

 

Date: 

2018

 

Persistent Link: 

http://hdl.handle.net/11343/219721

 

File Description:

Stability, Robustness and Switching Performance of Vibrational Control Systems

 

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.


	Abstract
	Declaration of Authorship
	Preface
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 A Motivational Example
	1.2 Literature Review
	1.2.1 Background
	1.2.2 Linear Vibrational Control Systems
	1.2.3 Nonlinear Vibrational Control Systems
	1.2.4 Robustness Analysis of Vibrational Control Systems
	1.2.5 Applications
	1.2.5.1 Hamiltonian mechanical systems
	1.2.5.2 Industry applications

	1.2.6 Summary of the Literature Review

	1.3 Contributions of the Thesis
	1.4 Organization of the Thesis

	2 Vibrational Stabilization of Nonlinear Systems
	2.1 Overview
	2.2 Preliminaries
	2.2.1 Lyapunov Stability
	2.2.1.1 Autonomous systems
	2.2.1.2 Time-varying systems
	2.2.1.3 Stability of periodic solutions

	2.2.2 Averaging

	2.3 Nonlinear Vibrational Control Systems and Stabilization
	2.4 Coordinate Transformation
	2.5 Local Vibrational Stabilization
	2.6 Non-local Vibrational Stabilization
	2.6.1 Semi-globally Practically Vibrational Stabilizability
	2.6.2 Simulations

	2.7 Summary

	3 Robustness of Linear Vibrational Control Systems
	3.1 Overview
	3.2 Preliminaries
	3.2.1 Input-to-State Stable
	3.2.2 Strong and Weak Averaging Techniques

	3.3 Robustness based on Strong and Weak Averaging Techniques
	3.3.1 Robustness analysis by Strong and Weak Average
	3.3.2 Simulation results
	3.3.3 Summary of this section

	3.4 Strengthened Robustness based on Averaging and Perturbation
	3.4.1 Input-to-State Stability
	3.4.2 The Influence of Disturbances Frequency on the Robustness Performance
	3.4.3 State-dependent Disturbances
	3.4.4 Simulation Example: Linearised Inverted Pendulum

	3.5 Summary

	4 Robustness of Nonlinear Vibrational Control Systems
	4.1 Overview
	4.2 Local Vibrational Robustness with respect to Constrained Additive Disturbances
	4.2.1 Local Robustness Analysis in the presence of Additive Disturbances
	4.2.2 An Illustrative Example: Vertically Moving Inverted Pendulum to Track a Moving Target
	4.2.3 Summary of this Section

	4.3 Non-local Vibrational Robustness with respect to Constrained Additive Disturbances
	4.3.1 Non-local Robustness Analysis in the presence of Bounded Additive Disturbances
	4.3.2 Frequency-related Robustness in the presence of Bounded and Periodic Additive Disturbances
	4.3.3 Simulation Verification: a 2R Planar Manipulator Steered by Vibrational Control while Disturbances Exist.
	4.3.4 Summary of this Section

	4.4 Semi-global Vibrational Robustness with respect to Arbitrarily Large Additive Disturbances
	4.5 Summary

	5 Performance of Switched Vibrational Control System
	5.1 Overview
	5.2 Preliminaries
	5.2.1 Switched Systems
	5.2.2 Stability under Arbitrarily Switching with Common Lyapunov Function
	5.2.3 Stability under Arbitrarily Switching with Multiple Lyapunov Functions
	5.2.4 Stability under Slow Switching with Dwell Time
	5.2.5 Input-to-State Stability of Switched Systems with Averaged Dwell Time

	5.3 Stability Analysis of Switched Vibrational Control Systems
	5.3.1 Switched Vibrational Control Systems
	5.3.2 Stability of Switched Linear Vibrational Control Systems under a Switching Signal with Average Dwell Time
	5.3.3 Stability of Switched Nonlinear Vibrational Control Systems under a Periodic Switching Signal

	5.4 Robustness of Switched Nonlinear Vibrational Control Systems
	5.4.1 Switched Vibrational Control Systems with Additive Disturbances
	5.4.2 Simulation Verification

	5.5 Summary

	6 Conclusion
	6.1 Summary of Contributions
	6.1.1 Non-local Vibrational Stabilization
	6.1.2 Robustness Framework of Vibrational Control Systems with Bounded Disturbances
	6.1.3 System Performance of Switched Vibrational Control Systems

	6.2 Suggested Future Work
	6.2.1 A Systematic Procedure to Design the Vibrational Control Function
	6.2.2 Algorithm Implementation


	A Proofs
	A.1 Proof of Theorem 4.2
	A.2 Proof of Theorem 4.3
	A.3 Proof of Theorem 4.4
	A.4 Proof of Theorem 5.7
	A.5 Proof of Theorem 5.8

	Bibliography

