
University of Melbourne

Department of Electrical and Electronic
Engineering

Submitted in partial fulfilment of the degree of
Doctor of Philosophy

Efficient Algorithms for
Autonomous Agents Facing

Uncertainty

Author:
Daniel D. Selvaratnam
https://orcid.org/

0000-0003-3329-436X

Supervisors:
Dr. Iman Shames

Prof. Jonathan H. Manton
Dr. Branko Ristic

January 5, 2019

https://orcid.org/0000-0003-3329-436X
https://orcid.org/0000-0003-3329-436X


Abstract

This thesis considers the design and mathematical analysis of algorithms
enabling autonomous agents to operate reliably in the presence of uncer-
tainty. The algorithms are designed to preserve computational tractability,
and to respect communication constraints. Four specific problems are ad-
dressed. First, the localisation of a signal source using only random binary
measurements. A Bayesian estimation procedure is adopted that discretises
the search space to achieve tractability. The effect of this discretisation on
convergence is analysed rigorously, as well as the effect of relying on an in-
exact measurement model. Measurement locations are also optimised with
respect to Fisher Information. In the second, the security of general quan-
tized Bayesian estimators is analysed from the perspective of an adversary
that sends false measurements to induce a misleading posterior. Fundamen-
tal limits on the set of posteriors that can be induced are derived, along with
strategies to induce them. The third problem considers the design of control
laws for maintaining reliable communication links between agents as they
traverse the environment. Robustness to disturbances is established theo-
retically. Finally, optimisation problems are tackled involving cost functions
and constraints that change unpredictably as new information becomes avail-
able. Performance bounds are provided for different classes of cost functions,
and both first-order and gradient free methods are examined.
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Chapter 1

Introduction

“An agent is anything that can be viewed as perceiving its en-
vironment through sensors and acting upon that environment
through actuators.”

Artificial Intelligence: A Modern Approach
Russell and Norvig, 1995

autonomous: (adjective) “Denoting or performed by a device
capable of operating without direct human control.”

Oxford English Dictionary, 2018

Human-designed autonomous agents are playing an increasingly prominent
role in modern life. Many of the world’s foremost technology and automotive
firms are racing to develop reliable autonomous vehicles, investing heavily in
all forms of promising technology [1]. The political and moral implications
of autonomous weapon systems have made them a focal point of public de-
bate [2]. Autonomous ‘bots’ on social media stand accused of manipulating
public opinions to an election-altering extent [3]. Beneficent or diabolical, the
success of autonomous systems such as these, hinges on their ability to deal
with the unknown. Environmental disturbances are unavoidable; external
inputs are unpredictable; and the mathematical models used in design can
only approximate reality. Estimation, optimisation and control theory estab-
lish a mathematical framework for decision-making under uncertainty, which
will be exploited in this thesis. All autonomous agents have limited memory,
computational resources and constraints on communication, which can pre-
clude an ideal mathematical solution. Expanding these limits is costly, and
it is often more economic to deploy a large team of cheap and dispensable
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2 CHAPTER 1. INTRODUCTION

agents than to rely on a few high-performance individuals. Here, we design
algorithms enabling autonomous agents to accomplish specific tasks in the
presence of uncertainty. Limits on communication are taken into account,
and some approximations made in the interests of computational efficiency.
Their effects are analysed rigorously.

Four problems are considered. We begin with the localisation of a signal
source using only random binary measurements. A Bayesian estimation pro-
cedure is adopted that discretises the search space to achieve tractability.
We also examine the effect of relying on an inexact measurement model.
The second problem introduces a different source of uncertainty: potentially
deceptive sensors. The security of Bayesian estimators is analysed from the
perspective of an adversary that seeks to induce a false belief. The third
moves to designing control laws for maintaining reliable communication links
between agents as they traverse the environment in the presence of distur-
bances. Optimisation algorithms are ubiquitous in autonomous systems, and
our final problem tackles cost functions and constraints that change unpre-
dictably with time as new information becomes available. These problems
are introduced in greater depth below.

1.1 Source localisation

Chapter 2 considers the localisation of a stationary source using binary mea-
surements obtained from a team of mobile agents. Source localisation in-
volves estimating the location of a signal source using measurements from a
set of available sensors. Regardless of its type, a single bit constitutes the
minimum amount of information that can be extracted from a signal. For
example, when dealing with chemical or radiological sources, this may cor-
respond to detecting the presence or absence of particles of interest [4,5]. In
other situations, sensors may be required to process raw measurement data
locally and report a binary outcome to a fusion centre [6, 7]. In general,
any continuous or discrete-valued signal can be converted into a binary one
via the use of a threshold. This is often desirable for applications with lim-
ited resources, because binary data demands less memory, communication
bandwidth, and energy from the agents involved [8].

Consistent with standard practice, the measurements are treated as random
variables taking values in {0, 1}, to capture the effects of sensor noise and
environmental uncertainty. Given suitable models for the signal propagation
and sensors, the probability of obtaining a detection (i.e. of measuring a 1)
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becomes a well-defined function of the source and agent locations. Specific
examples of such functions constructed for different types of signals and sen-
sors can be found in [4, 8–11], as well as Section 2.6 of this thesis. A novel
aspect of our analysis is that it assumes an arbitrary probability-of-detection
function, subject to mild conditions. Thus, the algorithms and results of
Chapter 2 apply to a large class of measurement models and localisation sce-
narios. The probability-of-detection function is initially assumed to be fully
known, but this is later relaxed by analysing the performance of the algo-
rithm when only an envelope for this function is known. Background false
detection rates and missed detection probabilities are incorporated naturally
into the framework.

Both Bayesian and classical parameter estimation techniques have been ap-
plied to solve the source localisation problem. Here we adopt the former,
which has the advantage of incorporating prior knowledge about the source
location, and of maintaining an entire posterior probability distribution rather
than just a single estimate. Furthermore, a Bayesian framework permits the
recursive addition of new measurements to update the posterior, without
reprocessing past measurements. A disadvantage of this approach is that ev-
ery iteration requires the computation of integrals that, in general, have no
analytic solution. We obtain a tractable approximation by discretising the ex-
ploration region, thereby replacing the integrals with sums and generating a
discrete posterior instead of a continuous one. This technique is well-known,
however we believe the accompanying analysis to be novel. In particular,
we explicitly consider the effects of finite discretisation by identifying points
at which the discrete posterior is guaranteed to vanish asymptotically, and
establish a relationship between the decay and Kullback-Leibler (KL) diver-
gence. The analysis leads directly to conditions on measurement locations
that guarantee sufficient information is being extracted by the agents. We
then extend this by choosing measurement locations to maximise the deter-
minant of the Fisher Information Matrix (FIM) [12, Section 4.3.3.1]. This is
a widely adopted performance criterion known as D-optimality [13]. Focus-
ing on the case where the probability of detection depends solely on distance,
the resulting D-optimal geometries mirror the results of [14] for range-only
sensors. We then show how the knowledge of these geometries can be ex-
ploited via a control strategy by guiding the agents into formation about an
estimated source location.

Importance sampling is an alternative Bayesian technique which uses random
sampling to numerically evaluate the required integrals [15, Chapter 14], [16].
The posterior is approximated by a weighted set of samples or particles, and
well known results prove the convergence of this approximation to the true
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posterior as the number of particles approaches infinity. In practice however,
only a finite number of particles can ever be used. In Section 2.2.2, we estab-
lish that importance sampling with a finite number of particles can be treated
as a special case of discretising the exploration region, under the appropriate
choice of discretisation points and prior. Our approach is more general, be-
cause it allows the discretisation points to be chosen arbitrarily. Another key
difference is that we analyse convergence over time, using only a finite number
of particles. Particle filtering [16] extends important sampling to estimate
a time-varying state based on an assumed dynamic model. Particle filter-
ing does not fit within the framework of Chapter 2, because it requires the
particles to be propagated according to the dynamic model, and re-sampled
every time-step. However, when only a stationary source is involved, noth-
ing is gained by performing these additional steps. Standard importance
sampling/discretisation therefore remains a more appropriate choice for the
problem at hand.

1.2 Security

Distributed statistical inference, which includes estimation, detection and fil-
tering, is often performed over sensor networks [17]. While the use of multiple
sensors has many obvious advantages, the distributed nature of such systems
leaves them vulnerable to cyber-security attacks. Consider as an example
the source localisation problem introduced in the previous section. There,
the sensors transmit their binary decisions to a fusion centre which operates
as a Bayesian estimator. If one of the agents is hijacked, an adversary can
strategically feed misleading data to the fusion centre, hindering its ability to
localise the source, or deliberately fostering certainty in a false location. In
Chapter 3, we study the effect of such attacks on general discrete Bayesian
estimators.

Recall that a Bayesian estimator constructs the posterior probability distri-
bution of an estimand, given a collection of observations and a prior distri-
bution. The goal of Chapter 3 is to specify fundamental limits on the ability
of an adversary to manipulate the estimator’s posterior distribution by in-
jecting false data. The estimator is assumed to be oblivious to the adversary.
Since noisy communication channels can only transmit quantized data, and
discretisation of the parameter space is often performed for tractability, only
Bayesian estimators with finite parameter and observation spaces are con-
sidered. Note that this framework also encompasses Bayesian hypothesis
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testing. Although source localisation is used as the motivating example, the
results of Chapter 3 are stated generally, and are therefore relevant to a va-
riety of applications including target detection [18, 19], crowdsourcing [20],
strategic misreporting [21], and human decision-making [22].

The novel contributions of Chapter 3 are as follows. We specify the set of
posteriors that can be induced by the adversary in expectation. A stochastic
strategy for the adversary to induce, on average, any posterior in this set is
then proposed. We first consider the case where the estimator listens to the
adversary alone, and then the case where the estimator also has access to
honest measurements.

1.3 Connectivity preservation

Communication is a vital aspect of any multi-agent system. To enjoy the
benefits of deploying a team, the individual agents must share information
and strategically divide labour. Reliable communication is an obvious pre-
requisite, but guaranteeing this can be challenging when mobile agents are
involved. The communication network topology at any point in time can be
expressed as a graph. If this graph is connected, any two agents can exchange
information by means of multi-hop communication. Chapter 4 is concerned
with preserving network connectivity throughout the operation of the agents.
Here, we adopt the standard assumption that communication links exist be-
tween two agents if and only if they are within some known range of each
other. Thus, the connectivity preservation problem reduces to one of ensur-
ing that some collection of inter-agent distances are not exceeded. This, it
should be noted, presents a stronger requirement than set ISS [23], a point
which is elaborated in Remark 4.3.1.

Connectivity preservation is rarely the primary goal of a multi-agent sys-
tem. Network connectivity is typically only required as a means to an end.
Thus, individual agents may receive additional control signals relating to
their other tasks. Consider, for example, the source localisation problem
of Chapter 2. In Section 2.6, a control law (2.65) is proposed to guide
the agents to autonomously search for the source. However, the analysis
of Chapter 2 presumes reliable communication between the agents and the
fusion centre (which may itself be one of the agents), and this is not a-priori
guaranteed. The proposed control law is piecewise continuous, bounded (see
Remark 2.6.1), and depends on the measurements of the agents, which are
stochastic. It is therefore desirable to develop a strategy for connectivity
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preservation that accommodates such signals, without requiring prior knowl-
edge of them. Any useful strategy must also offer robustness to uncertainty
in the environment and the agent dynamics. Here, we design control-laws to
preserve communication connectivity in the presence of piecewise continuous
bounded disturbances, which can represent a large class of reference signals,
environmental disturbances and un-modelled dynamics.

1.4 Time-varying optimisation

Recent literature on numerical optimisation has begun to explore problems
involving cost functions, and even constraints, that change with time. These
problems turn up within a variety of signal processing [9,24], robotics [25,26]
and control [27, 28] algorithms for autonomous agents. Objectives or con-
straints often change in response to new information. For example, sequential
Bayesian estimators (of the kind adopted in Chapter 2) construct a poste-
rior probability distribution which they update in real time based on mea-
surement data. The maximum a-posteriori (MAP) estimate is the mode of
this distribution, and is therefore the solution of a time-varying optimisa-
tion problem. Similarly, the ML estimate maximises the likelihood function,
which also changes on the arrival of new measurements. In general, allowing
for temporal variations in the cost function and constraints offers scope for
real-time optimisation in the presence of uncertainty.

An optimisation problem that changes at discrete instances in time can be
treated as a sequence of optimisation problems. Assuming that every cost
function and feasible set in this sequence is made available to the solver, one
approach would be to solve each individual problem completely. This may
not be tractable, depending on the rate at which new functions arrive. It is
also unnecessary if the primary objective is to generate a sequence of iterates
that ‘track’ the time-varying optimal points, or to achieve asymptotically
low cost. Assuming there are bounds on the variation between consecutive
cost functions and constraints, information from the current problem can be
exploited to optimise its successor. A more efficient alternative, therefore,
is to only solve each problem partially by limiting the number of iterations
per cost function. Such approaches have been termed running methods in
[29]. Chapters 5 and 6 consider the most extreme version of this, in which
only a single iteration is performed per cost function. The machine learning
literature refers to this as online optimisation, terminology which we adopt
herein.
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In Chapter 5, a first-order oracle is assumed, which provides gradient infor-
mation about the current cost function. We rigorously analyse the perfor-
mance of online projected gradient descent iterations, applied to different
classes of time-varying smooth costs. Initially, unconstrained nonlinear cost
functions are considered. Assuming a bounded increase between consecutive
cost functions, we extend the well-known Zoutendijk result [30, Theorem 3.2]
to obtain limit-inferior bounds on gradient magnitude. We then restrict at-
tention to cost functions that satisfy the Polyak- Lojasiewicz (PL) inequality,
first invoked by Polyak [31] to establish a linear convergence rate for gra-
dient descent on time-invariant problems. We use the inequality to obtain
steady-state sub-optimality bounds for time-varying problems. A detailed
discussion of the PL inequality, and its relationship to other useful prop-
erties can be found in [32]. In particular, strong-convexity implies the PL
inequality, and the PL inequality implies invexity. Finally, we focus specifi-
cally on strongly convex cost functions. The additional structure this affords
allows us to include time-varying convex constraints in the analysis. Bounds
on both sub-optimality, and distance to the minimiser (henceforth referred
to as tracking error), are derived assuming a bounded shift between minimis-
ers.

Chapter 6 then introduces an additional source of uncertainty. In place of
a first-order oracle, a zeroth-order oracle is now assumed, which only pro-
vides the optimisation algorithm with the value of the cost function at the
current time. The cost function is thereby treated as a black box, with a
time-varying input-output map. This corresponds to practical scenarios in
which derivatives are either unavailable [33, 34], or the cost of computing
them is prohibitive. In such cases, the cost function directional derivatives
can still be approximated via finite-differences. This method is adopted for
time-invariant problems in [35], which relies on a two-point estimate of the
directional derivative in a randomly chosen direction. Chapter 6 borrows
techniques from [35] to deal with time-varying costs. In particular, we focus
on strongly convex, unconstrained problems. Results are first obtained as-
suming a directional derivative oracle, and analysis for the zeroth-order case
then proceeds along the same lines.



Part I

Estimation and Control
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Chapter 2

Source Localisation with
Minimal Information

Something hidden. Go and find it.
Go and look behind the Ranges—
Something lost behind the Ranges.
Lost and waiting for you. Go!

The Explorer
Rudyard Kipling

This chapter treats the localisation of a stationary signal source using a team
of mobile agents that only take binary measurements. A Bayesian estimation
algorithm, operating on a discretised search region, is adopted to solve this
problem. We begin with a review of the relevant literature in Section 2.1.
The problem is formulated mathematically in Section 2.2, and the estimation
algorithm developed. This algorithm is analysed in Section 2.3, which rig-
orously examines the effects of discretisation. Section 2.4 derives D-optimal
measurement locations, and Section 2.5 considers the implications of hav-
ing inexact knowledge of the probability-of-detection function. A numerical
example and simulation results are presented in Section 2.6, along with a
control-law to autonomously guide the agents in their search.

2.1 Related works

A preliminary version of the results in this chapter appeared in the conference
proceedings [36], which developed limited posterior convergence results fo-

9
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cusing on two special cases: measurements taken at a single location with an
arbitrarily located source, and measurements taken at a periodic sequence of
locations assuming a source coincident with one of the chosen discretisation
points. We now extend the latter to include an arbitrarily located source, and
strengthen all the results to almost-sure convergence. Other new theoretical
developments include the relationship with KL divergence, D-optimal loca-
tion optimisation, and the analysis relating to inexact knowledge of the prob-
ability of detection. Below, we present a brief review of other relevant works
in the literature, dividing them into Bayesian and classical approaches.

A Bayesian approach is adopted in [5] to localise a chemical source using a
single mobile agent which detects the presence or absence of an odour. As
in this thesis, the search region is discretised to approximate the posterior,
however a theoretical convergence analysis is not offered. Rather, the focus
of that paper is a search strategy based on maximising the rate of entropy
reduction. Importance sampling is employed in [4] for source localisation
with binary measurements, using a propagation model based on turbulent
dispersion in the atmosphere. Their approach accommodates an unknown
particle release rate by using Rao-Blackwellisation [37] to estimate it explic-
itly. The same Bayesian algorithm underpins [4,5,37], and the work herein. It
should be emphasized that the contribution of this chapter is not to propose
a new estimation algorithm, but rather to provide a rigorous treatment of the
inevitable effects of discretisation, supplemented with numerical results. A
search for multiple stationary targets is considered in [38], which considers a
discrete environment to begin with, and assumes the agents directly observe
the occupancy state of each cell with given false and missed detection prob-
abilities. Since binary measurements are typically generated by means of a
threshold, several works address the problem of designing threshold levels.
These include [10], which studies the best achievable localisation accuracy
using a binary sensor network, under a Gaussian plume propagation model.
Threshold levels and sensor placement are investigated using the Bayesian
Information Matrix (BIM), and the resulting theoretical error bounds are
compared with the performance of the Metropolis-Hastings estimation al-
gorithm. The tracking of a moving source using binary measurements is
considered in [39], which uses particle filtering to estimate the source loca-
tion, and proposes a heuristic for adaptively designing sensor threshold levels.
This is extended to multi-bit measurements in [40], which focuses on adap-
tively designing quantisation thresholds based on the Bayesian Information
Matrix.

Classical approaches treat the source location as a deterministic but un-
known parameter, rather than a random variable. They tend to focus on
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constructing estimators rather than maintaining a probability distribution.
A maximum likelihood estimator is proposed in [9] for localising a diffusive
source using binary measurements. That algorithm seeks to estimate a two-
dimensional source location, time of signal emission, and several other model
parameters via Fisher Scoring, a modified Newton method for maximising
the likelihood function. Convergence guarantees are obtained as the num-
ber of sensors goes to infinity. Since each iteration requires reprocessing the
entire batch of measurements, [9] also proposes a real-time approximate algo-
rithm to avoid this. We compare the complexity and numerical performance
of such maximum likelihood approaches with our own in Section 2.6.2. A set
of different estimators are constructed in [41] without the use of any prob-
ability of detection model, but assuming noise free detections. Such model
independent approaches clearly require less prior information, but typically
display worse performance [11]. As in the Bayesian case, the design of binary
quantisation thresholds based on the FIM is studied in [11]. Thresholds for
multi-bit quantisation are studied in [42], which also compares the resulting
theoretical error bounds with the performance of the maximum likelihood
estimator and a second estimator that takes a weighted average of the sensor
locations.

2.2 Problem formulation

We adopt the convention N = {1, 2, ...} and define Nk := {1, ..., k}. Let
(ak)k∈N ⊂ A to denote ak ∈ A for all k ∈ N.

Consider a team of N agents exploring Ra, where a ∈ {2, 3}. Let agent i have
position xi(t) ∈ Ra, which evolves in continuous time. We assume that all
agents know their own position with respect to the same co-ordinate frame,
and are equipped with identical sensors. The agents must search a compact
region S ⊂ Ra for a source located at s ∈ S. Together, the team of agents take
a sequence of measurements (dk)k∈N ⊂ {0, 1} at a corresponding sequence of
locations (ξk)k∈N ⊂ Ra. The measurement pairs (ξk, dk) are transmitted
in real-time to a fusion centre, where they are processed on arrival. The
subscript k indexes the measurements according to the order in which are
processed by the fusion centre. Note that the fusion centre is agnostic to the
identity of the observing agent. Thus ξk ∈ {xi(tk) | i ∈ NN}, where tk ≥ 0
denotes the time at which reading dk is taken.

We model d1, d2, ... as random variables that are conditionally independent of
each other, given the source location. We assume the probability of receiving
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a detection is a known continuous function ` : Ra × Ra → (0, 1) of the
source and agent locations. Initially, we make no further assumptions about
`. Let `(Ra,Ra) ⊂ (0, 1) denote its image. Observe that there is always
some non-zero probability of failing to detect the signal, as well as a non-
zero background false detection probability regardless of where the source
is. Having defined `, the probability of obtaining the reading dk from an
agent at position ξk when the source location is s, is given by the likelihood
function

g(dk | s; ξk) = `(s, ξk)
dk [1− `(s, ξk)]

1−dk . (2.1)

2.2.1 Discretised Bayesian framework

The estimation algorithm is developed in this section. We treat s as a ran-
dom variable, drawn from some prior distribution p0 over S. Bayesian tech-
niques allow us to compute the posterior probability density of s, given the
history of measurements d1:k := (d1, ..., dk) and corresponding agent poses
ξ1:k = (ξ1, ..., ξk). Bayes rule gives us a recursive description of this poste-
rior density

(2.2)pk(s | d1:k; ξ1:k) =
g(dk | s; ξk)pk−1(s | d1:k−1; ξ1:k−1)∫

S

g(dk | s′; ξk)pk−1(s′ | d1:k−1; ξ1:k−1)ds′
,

where the recursion is initialized with p0(s).

Although (2.2) is exact, the integrals involved do not, in general, have a
closed-form, analytic solution. In order to work with arbitrary `, the posterior
must be approximated, and (2.2) computed numerically. To tackle this, we
discretise S into a finite set of distinct points C := {c1, ..., cM}, the elements
of which we refer to as centres. If it is known that s ∈ C, then this yields a
discrete version of the Bayes recursion (2.2),

(2.3)p̂k(i | d1:k; ξ1:k) =
g(dk | ci; ξk)p̂k−1(i | d1:k−1; ξ1:k−1)

M∑
j=1

g(dk | cj; ξk)p̂k−1(j | d1:k−1; ξ1:k−1)

,

which is initialized with a discrete prior p̂0(i). Without loss of generality,
we assume p̂0 : NM → (0, 1), noting that any ci for which p̂0(i) = 0 can
simply be omitted. For the more general case where s ∈ S is arbitrary, given
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a particular choice of centres, we can define a set of cells C1, ..., CM , such
that

1. each Ci ⊂ S is connected, and ci ∈ Ci for all i

2. S =
⋃M
i=1Ci

3. Ci and Cj are interior disjoint for all i 6= j.

This lends the following interpretation to the discrete posterior:

p̂k(i | d1:k; ξ1:k) ≈ Pr(s ∈ Ci | d1:k).

As an example, the centres and cells can be chosen to form a grid or, more
generally, a Voronoi diagram. Alternatively, the centres could be sampled
from a probability distribution, such as the prior.

2.2.2 Relationship to importance sampling

Consider the posterior mean

ŝk =

∫
S

spk(s | d1:k; ξ1:k)ds.

This can be approximated numerically via

ŝk ≈
1

M

M∑
i=1

si,

where each si ∼ pk(s | d1:k; ξ1:k). However, we do not have a closed form
expression for pk, so we are unable to sample from it directly. Importance
sampling assumes the ability to sample from some other more convenient
density q : S → [0,∞), known as the importance density. The importance
density can be arbitrary, but its support must contain the support of pk. The
expectation can then be computed according to

ŝk ≈
M∑
i=1

ŵikci,

where ci ∼ q(s), and

wik =
pk(ci | d1:k; ξ1:k)

q(ci)
, ŵik =

wi∑M
j=1wj

.
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Here, the ci are referred to as particles, and the ŵi as weights. Note that ŵik
is the normalized version of wik. Recalling (2.2), and defining

νk :=

∫
S

g(dk | s′; ξk)pk−1(s′ | d1:k−1; ξ1:k−1)ds′,

we see that

pk(ci | d1:k; ξ1:k) =
g(dk | ci; ξk)pk−1(ci | d1:k−1; ξ1:k−1)

νk
.

The un-normalized weights therefore obey the recursive relationship

wik =
g(dk | ci; ξk)pk−1(ci | d1:k−1; ξ1:k−1)

νkq(ci)
=
g(dk | ci; ξk)

νk
wik−1.

Applying the normalization,

ŵik =
g(dk | ci; ξk)wik−1

νk

M∑
j=1

g(dk | cj; ξk)w
j
k−1

νk

=
g(dk | ci; ξk)wik−1

M∑
j=1

g(dk | cj; ξk)w
j
k−1

.

Finally, letting Wk =
∑M

j=1 w
j
k, we see that

ŵik =

g(dk | ci; ξk)
wik−1

Wk−1

M∑
j=1

g(dk | cj; ξk)
wjk−1

Wk−1

=
g(dk | ci; ξk)ŵik−1

M∑
j=1

g(dk | cj; ξk)ŵ
j
k−1

.

Noting that this recursion is identical to (2.3), we see that the weight ŵik
obeys the same update rule as p̂k(i | d1:k; ξ1:k). The initial weights are given
by

ŵi0 =
p0(ci)

q(ci)
M∑
j=1

p0(cj)

q(cj)

. (2.4)

In Section 2.2.1, no assumptions are made about how the centres are cho-
sen, and an arbitrary discrete prior is assumed. If we choose the centres by
sampling from an importance density, and initialize p̂0(i) = ŵi0 as in (2.4),
then the discretised approach of Section 2.2.1 is identical to importance sam-
pling. Thus, importance sampling with a finite number of particles becomes
a special case of discretisation. This is stated formally below.
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Theorem 2.2.1 (Importance Sampling). Let ci ∼ q(s) for all i ∈ NM , where
q : S → [0,∞) is a probability distribution that satisfies

q(s) = 0 =⇒ ∀k ≥ 0, pk(s | d1:k; ξ1:k) = 0.

Furthermore, for all i ∈ NM , let

p̂0(i) =
p0(ci)

q(ci)
M∑
j=1

p0(cj)

q(cj)

.

Then p̂k(i | d1:k; ξ1:k) = ŵik for all i ∈ NM and all k ≥ 0.

Remark 2.2.1. Theorem 2.2.1 guarantees that the remaining results of this
chapter are also applicable to importance sampling with a finite number of
particles. Any statements about the discretised posterior can be applied to
the weights.

2.3 Consistency and convergence

Informally, the requirement of posterior consistency means that the posterior
should become increasingly concentrated about the source location as k →
∞. A precise definition and discussion of consistency can be found in [43,
Section 4.1.1]. We adopt the following definition, specific to this problem.

Definition 2.1 (Posterior Consistency). The posterior p̂k is consistent if

s /∈ Ci =⇒ lim
k→∞

p̂k(i | d1:k; ξ1:k) = 0 a.s., (2.5)

where Ci is the cell corresponding to centre ci.

If the source does not lie on the boundary between two cells, (2.5) is equiv-
alent to

s ∈ Cj =⇒ lim
k→∞

p̂k(j | d1:k; ξ1:k) = 1 a.s..

The set

O :=
{
i ∈ NM | lim

k→∞
p̂k(i | d1:k; ξ1:k) = 0 a.s.

}
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is of clear interest, because consistency is also equivalent toO = {i ∈ NM | s /∈ Ci}.
Note that for any pair of cells (i, j), successive iterations of (2.3) up to time-
step n gives us

p̂n(i | d1:n; ξ1:n)

p̂n(j | d1:n; ξ1:n)
=
p̂0(i)

p̂0(j)

n∏
k=1

g(dk | ci; ξk)
g(dk | cj; ξk)

. (2.6)

We accordingly define the likelihood ratio

Z
(i,j)
k :=

g(dk | ci; ξk)
g(dk | cj; ξk)

, (2.7)

which is the ratio of the probability of obtaining a reading dk with the source
at ci to the probability of obtaining it with the source at cj. The expected
value of the log-likelihood ratio conditioned on the source location

µ
(i,j)
k := E

[
lnZ

(i,j)
k | s

]
(2.8)

=
1∑
d=0

ln

[
g(d | ci; ξk)
g(d | cj; ξk)

]
g(d | s; ξk), (2.9)

will play a key role in the subsequent analysis. Note that the value µ
(i,j)
k

depends on ci, cj, s and ξk. Following from (2.9), this relationship can be
written as

µ
(i,j)
k = µ(`(ci, ξk), `(cj, ξk), `(s, ξk)), (2.10)

where µ : (0, 1)3 → R,

µ(x, y, z) := z ln

(
x

y

)
+ (1− z) ln

(
1− x
1− y

)
(2.11)

= ln

(
xz(1− x)(1−z)

yz(1− y)(1−z)

)
. (2.12)

In this problem, the expected log-likelihood ratio is intimately related to
the Kullback-Leibler (KL) divergence D(P ||Q), which is a measure of the
information lost when using a probability distribution Q to approximate
another distribution P [44, Section 2.1]. Define

K(s||x; ξk) := D

(
g(· | s; ξk)

∣∣∣∣∣∣∣∣ g(· | x; ξk)

)
(2.13)

= −
1∑
d=0

g(d | s; ξk) ln

[
g(d | x; ξk)

g(d | s; ξk)

]
= −µ(`(x, ξk), `(s, ξk), `(s, ξk)),
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which is the KL divergence [45, Equation (2.26)] between the true conditional
probability distribution for dk, and a distribution which takes x ∈ Ra as the
source location. Noting the identity

µ(x, z, z)− µ(y, z, z) = µ(x, y, z), (2.14)

we obtain
µ

(i,j)
k = K(s||cj; ξk)−K(s||ci; ξk). (2.15)

Now consider a sequence of measurements d = (d1, ..., dn) taken at the cor-
responding locations ξ1:n = (ξ1, ..., ξn). The probability distribution of d,
given source location s and measurement locations ξ1:n ∈ Rna, is

G(d | s; ξ1:n) =
n∏
k=1

g(dk | s; ξk). (2.16)

The extension of (2.13) to the distribution of a sequence of measurements is
then given by

K(s||x; ξ1:n) := D

(
G(· | s; ξ1:n)

∣∣∣∣∣∣∣∣ G(· | x; ξ1:n)

)
(2.17)

=
n∑
k=1

K(s||x; ξk), (2.18)

which follows from the additivity property of KL divergence for independent
distributions (a corollary of [45, Theorem 2.5.3]). Thus

n∑
k=1

µ
(i,j)
k = K(s||cj; ξ1:n)−K(s||ci; ξ1:n). (2.19)

2.3.1 General posterior convergence results

The first theoretical results can now be presented. We begin by establishing
sufficient conditions for p̂k(i | d1:k; ξ1:k) to decay to zero at index i, as k →
∞.

Theorem 2.3.1. Let s ∈ S, and let (ξk)k∈N ⊂ Ra be a bounded sequence of
measurement locations. If there exists a pair of cells (i, j) and some p > 1

2

such that

lim sup
n→∞

[
1

np

n∑
k=1

µ
(i,j)
k

]
< 0, (2.20)

then under recursion (2.3), p̂k(i | d1:k; ξ1:k)→ 0 almost surely as k →∞.



18 CHAPTER 2. SOURCE LOCALISATION

Proof. Since we have assumed the co-domain of ` is (0, 1), this implies

∀d ∈ {0, 1}, ∀s, ξ ∈ Ra, g(d | s; ξ) > 0. (2.21)

Recalling p̂0(j) > 0 for all j, recursion (2.3) together with (2.21) implies that
p̂k(j | d1:k; ξ1:k) > 0 for all j ∈ NM and k ∈ N. Thus (2.6) is well defined,
and for any pair (i, j), we obtain

p̂n(i | d1:n; ξ1:n)

p̂n(j | d1:n; ξ1:n)
=
p̂0(i)

p̂0(j)

n∏
k=1

Z
(i,j)
k .

Since p̂n(j | d1:n; ξ1:n) ≤ 1, this yields the inequality

p̂n(i | d1:n; ξ1:n) ≤ p̂0(i)

p̂0(j)

n∏
k=1

Z
(i,j)
k . (2.22)

Note that Z
(i,j)
1 , Z

(i,j)
2 , ..., are independent random variables because our mea-

surements are independent. We also know s, c1, ..., cM ∈ S, where S ⊂ Ra

is compact. Furthermore, the sequence ξ1, ξ2, ... is bounded, and therefore
never leaves some compact subset X ⊂ Ra. Since ` : Ra × Ra → (0, 1) is
continuous, it attains a minimum and maximum on S × X [46, Theorem
4.16]. Let

`1 := max `(S,X) < 1 and `0 := min `(S,X) > 0. (2.23)

Then (2.1) implies

(2.24)α := min

{
`0

`1

,
1− `1

1− `0

}
≤ g(dk | ci; ξk)
g(dk | cj; ξk)

≤ max

{
`1

`0

,
1− `0

1− `1

}
=:β

for all i, j, k. Thus for all i, j, k,

0 < α ≤ Z
(i,j)
k ≤ β. (2.25)

Now if condition (2.20) holds for some pair (i, j) and p > 1
2
, then by definition

lim sup
n→∞

1

np

n∑
k=1

E
[
lnZ

(i,j)
k

]
< 0,

and applying the result of Lemma A.3,
∏n

k=1 Zk → 0 a.s. as n→∞. Equa-
tion (2.22) then implies p̂n(i | d1:n; ξ1:n)→ 0 a.s..
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Remark 2.3.1. This result is similar to [36, Theorem 1], which establishes
convergence in probability of p̂k(i | d1:k; ξ1:k) for p = 1

2
. Strengthening the

requirement to p > 1
2

allows us to obtain almost sure convergence.

Theorem 2.3.1 provides us with a sufficient condition ensuring that a cell
index i ∈ O, and this condition requires finding an index j for which

∑
k µ

(i,j)
k

diverges at a sufficient rate.
Remark 2.3.2. Noting (2.19), if a pair (i, j) satisfy condition (2.20), then
approximating the source location with cj would asymptotically result in a
lower KL divergence from G(d1, d2... | s; ξ1, ξ2, ...) than approximating the
source with ci.

If the true source location coincides with some centre, Theorem 2.3.1 enables
us to state a condition on the measurement location sequence ξ1, ξ2, ... that
guarantees posterior consistency.

Theorem 2.3.2 (Posterior Consistency). Let (ξk)k∈N ⊂ Ra be bounded, and
let C = {c1, ..., cM} ⊂ S. Suppose cj = s for some j ∈ NM . If ∀i 6= j, ∃p > 1

2

such that

lim inf
n→∞

1

np

n∑
k=1

(`(s, ξk)− `(ci, ξk))2 > 0, (2.26)

then p̂k(j | d1:k; ξ1:k)→ 1 a.s..

Proof. For any x ∈ Ra, the total variation distance between distributions
g(·|s, ξk) and g(·|x, ξk) is given by

sup
d∈{0,1}

|g(d|s, ξk)− g(d|x, ξk)|= |`(s, ξk)− `(x, ξk)|.

Pinsker’s inequality [47, Lemma 2.5] is a lower bound on KL divergence,
which then yields

K(s||x; ξk) ≥ 2(`(s, ξk)− `(x, ξk))2.

By assumption cj = s, which implies K(s||cj; ξk) = 0 for any ξk. Thus,
(2.18) and (2.19) imply that for all n ∈ N and i ∈ NM ,

n∑
k=1

µ
(i,j)
k = −K(s||ci; ξ1:n) ≤ −

n∑
k=1

2(`(s, ξk)− `(ci, ξk))2,
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which in turn implies

lim sup
n→∞

1

np

n∑
k=1

µ
(i,j)
k ≤ lim sup

n→∞

−2

np

n∑
k=1

(`(s, ξk)− `(ci, ξk))2

= − lim inf
n→∞

2

np

n∑
k=1

(`(s, ξk)− `(ci, ξk))2.

If for all i 6= j, there exists p > 1
2

such that (2.26) holds, then the LHS of
the above inequality is strictly negative. Theorem 2.3.1 then implies p̂k(i |
d1:k; ξ1:k) → 0 a.s. for all i 6= j. Since p̂k is a probability distribution, this
implies p̂k(j | d1:k; ξ1:k)→ 1 a.s..

Remark 2.3.3. If `(ci, ξk) = `(s, ξk), then having the source at ci yields the
same probability of detection at ξk, as if the source was at s. Thus, ci cannot
be distinguished from s using measurements taken at ξk. Condition (2.26)
ensures the agents take readings sufficiently often at locations which provide
enough information to distinguish between cells.

Next, we consider what happens when the source does not coincide with any
centre.

2.3.2 Periodic measurement locations

Analysing the general case where s /∈ C is difficult when considering com-
pletely arbitrary agent location sequences. We therefore restrict our attention
to those that are periodic. Many bounded sequences of practical interest are
either periodic, or converge to one that is. Furthermore, the effectiveness
of any finite sequence ξ1, ..., ξn can be analysed by considering a periodic
sequence for which ξ1, ..., ξn constitutes a single period.

Definition 2.2. A sequence (ξk)k∈N is n-periodic iff ξk = ξk+n for all k.

Examples of this include

1. a single agent moving in a periodic trajectory, taking measurements at
the same locations every n time-steps

2. a team of n agents remaining stationary, and taking measurements in
a fixed order.

Any n-periodic location sequence is fully specified by the vector ξ1:n =

(ξ1, ..., ξn) ∈ Rna. For n-periodic trajectories,
∑n

k=1 µ
(i,j)
k < 0 is a sufficient

condition for (2.20).
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Remark 2.3.4. The assumption of n-periodicity can be weakened. Partition
an arbitrary sequence ξ1, ξ2, ... into blocks of some fixed length L ∈ N, and
permute the measurement order within these blocks. This has no effect on
condition (2.20). Thus, if there exists such a permutation which yields an
n-periodic sequence, the results of this section (and Section 2.5.1) apply
without modification to the original sequence.

Equation (2.19) then implies that, in the limit, the algorithm selects the
indices of centres which, when treated as the source location, minimise KL
divergence from the true measurement probability distribution. This is stated
precisely below.

Theorem 2.3.3. Let s ∈ S and let (ξk)k∈N ⊂ Ra be n-periodic for some
n ∈ N. Then

Oc ⊂ arg min
i∈NM

K(s||ci; ξ1:n) =: B. (2.27)

Proof. Consider any index i /∈ B. By definition, for any j ∈ B, we have

K(s||ci; ξ1:n) > K(s||cj; ξ1:n),

which implies
∑n

k=1 µ
(i,j)
k < 0 by (2.19). Since (ξk)k∈N is n-periodic,

∀m ∈ N,
m∑
k=1

µ
(i,j)
k =

⌊m
n

⌋ n∑
k=1

µ
(i,j)
k +

m mod n∑
k=1

µ
(i,j)
k .

Note that limm→∞m
−1bm

n
c = 1

n
and (m mod n) < n for any m. Therefore,

lim
m→∞

1

m

m∑
k=1

µ
(i,j)
k

= lim
m→∞

(
bm
n
c

m

n∑
k=1

µ
(i,j)
k +

1

m

m mod n∑
k=1

µ
(i,j)
k

)

=
1

n

n∑
k=1

µ
(i,j)
k < 0.

Thus (2.20) is satisfied using p = 1, and p̂k(i | d1:k; ξ1:k)→ 0 a.s. by Theorem
2.3.1, which by definition implies i ∈ O. We have shown Bc ⊂ O, which is
equivalent to Oc ⊂ B.

Remark 2.3.5. Equation (2.27) reveals that the posterior may fail to decay to
zero only at indices which minimise K(s||ci; ξ1:n). The centres correspond-
ing to these indices are solutions to arg minx∈C K(s||x; ξ1:n). They can be
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considered approximate solutions to

arg min
x∈S

K(s||x; ξ1:n), (2.28)

where the optimisation now takes place over the entire search region instead
of the finite set C.

The problem (2.28) is more amenable to analysis, as it does not depend on
the choice of centres in C, and its solution set provides us with additional
insight.

Proposition 2.3.4. Given ξ1, ..., ξn ∈ Ra and s ∈ S,

min
x∈S
K(s||x; ξ1:n) = 0, and

arg min
x∈S

K(s||x; ξ1:n) =
n⋂
k=1

{x ∈ S | `(x, ξk) = `(s, ξk)} := A. (2.29)

Therefore, s ∈ arg min
x∈S

K(s||x; ξ1:n).

Proof. Here we exploit the properties of KL divergence stated in [45, Theorem
2.6.3]. Since KL divergence is non-negative, we have K(s||x; ξ1:n) ≥ 0 for all
x. From (2.16),

p(d | s; ξ1:n) =
n∏
k=1

`(s, ξk)
dk [1− `(s, ξk)]

1−dk .

If x ∈ A, then `(x, ξk) = `(s, ξk) for all k ∈ Nn, which implies p(d | s; ξ1:n) =
p(d | x; ξ1:n) for all d ∈ {0, 1}n. Recalling (2.17), this impliesK(s||x; ξ1:n) = 0.

Recalling (2.18), if K(s||x; ξ1:n) = 0, then K(s||x; ξk) = 0 for all k ∈ Nn.
According to the definition (2.13), this holds if and only if

∀k ∈ Nn, ∀d ∈ {0, 1}, g(d | s, ξk) = g(d | x; ξk).

Finally referring to (2.1), choosing d = 1 implies `(s, ξk) = `(x, ξk) for all
k ∈ Nn, and therefore x ∈ A.

Thus (2.28) contains only the candidate locations that are indistinguishable
from the source based on the entire history of measurements (see Remark
2.3.3). Given this characterisation, it is obviously desirable to define the
n-periodic sequence ξk∈N by choosing ξ1, ..., ξn such that A = {s}. This
is a useful requirement to impose when planning agent trajectories, as it
guarantees there is sufficient information available from the measurements
to uniquely identify the source.



2.3. CONSISTENCY AND CONVERGENCE 23

Remark 2.3.6. Observe that A ⊂ Ra is the solution set of n simultaneous
non-linear equations. Therefore if n > a, typically only mild conditions on
the measurement location geometry are required to guarantee A = {s}. Such
conditions are developed in Section 2.3.4 for the case in which the probability
of detection is purely a function of distance from the source.

If A = {s} and s ∈ C, the posterior is consistent and estimation algorithm
will eventually unambiguously identify the source index.

Corollary 2.3.5. Let (ξk)k∈N ⊂ Ra be n-periodic, and let C = {c1, ..., cM} ⊂
S. Suppose cj = s for some j ∈ NM . If A = {s}, then p̂k(j | d1:k; ξ1:k) → 1
a.s..

Proof. Suppose A = {s} = {cj} = arg minx∈S K(s||x; ξ1:n). Since cj ∈ C ⊂
S, we have B = {cj}. The centres are distinct and thus for all i 6= j, ci /∈ B,
which implies i ∈ O by Theorem 2.3.3. Since p̂k is a probability distribution,
this implies p̂k(j | d1:k; ξ1:k)→ 1 a.s..

If A = {s} but s does not coincide with the centres, the support of the
posterior (in the limit) will contain approximations to s in C that yield the
lowest KL divergence from G(· | s, ξ1:n).
Remark 2.3.7. Note that cells having the lowest K value do not necessarily
coincide with the centres closest to the source:

‖s− cj‖≤ ‖s− ci‖ 6=⇒ K(s||cj; ξ1:n) ≤ K(s||ci; ξ1:n).

According to the remark above, if the cells are based on the Voronoi decom-
position of S, there is no guarantee of consistency (with respect to Definition
2.1) when s /∈ C. However, simulation results in Section 2.6 indicate that
the estimation procedure still performs well when the centres are chosen in
a grid.

2.3.3 Bound on posterior rate of decay

We now investigate the rate at which the posterior decays to zero at a given
cell index, and its relationship to KL divergence.
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Proposition 2.3.6. Let s ∈ S, and let (ξk)k∈N ⊂ Ra be bounded. Suppose
that the hypothesis of Theorem 2.3.1 is satisfied for some pair of cells (i, j).
Then there exists K > 0 such that for any ε > 0,

(2.30 )Pr{p̂m(i | d1:m; ξ1:m) ≥ ε} ≤ exp

(
−K (ϑ− γm)2

m

)

for sufficiently large m, where

γm :=
m∑
k=1

µ
(i,j)
k , ϑ := ln

[
εp̂0(j)

p̂0(i)

]
.

Therefore, Pr{p̂m(i | d1:m; ξ1:m) ≥ ε} → 0 as m→∞.

Proof. Recall (2.22) from the proof of Theorem 2.3.1:

p̂m(i | d1:m; ξ1:m) ≤ p̂0(i)

p̂0(j)

m∏
k=1

Z
(i,j)
k .

Therefore (
p̂m(i | d1:m; ξ1:m) ≥ ε

)
=⇒

(
p̂0(i)

p̂0(j)

m∏
k=1

Z
(i,j)
k ≥ ε

)
,

which implies that for any ε > 0,

Pr

{
p̂m(i | d1:m; ξ1:m) ≥ ε

}
≤ Pr

{
m∏
k=1

Z
(i,j)
k ≥ ε

p̂0(j)

p̂0(i)

}
.

Now since (2.20) holds for some p > 1
2
, this implies

lim
m→∞

γm√
m

= −∞. (2.31)

For α, β defined in (2.24), let K := 2(ln β − lnα)−2. Given the bounds on

Z
(i,j)
k in (2.25), Lemma A.4 (Appendix A) can now be applied to obtain (2.30)

for sufficiently large m. Furthermore, (2.31) implies γ2m
m
→∞, by which

lim
m→∞

(ϑ− γm)2

m
=∞.

Therefore, (2.30) gives us Pr{p̂m(i | d1:m; ξ1:m) ≥ ε} → 0.
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This proposition places a decaying bound on the probability that the poste-
rior at a given index exceeds an arbitrary threshold, after a sufficiently large
number of time-steps. Recalling (2.19), the rate at which this bound decays
is clearly determined by the growth of

−
m∑
k=1

µ
(i,j)
k = K(s||ci; ξ1:m)−K(s||cj; ξ1:m)

as m→∞. If our location sequence is n-periodic, the finite sum−
∑n

k=1 µ
(i,j)
k

fully determines the growth of the infinite sum. Furthermore, choosing j
to minimise K(s||cj; ξ1:m) yields the tightest bound on the decay available.
Thus

Γi := K(s||ci; ξ1:n)−K? (2.32)

bounds the rate of decay of p̂k at index i, where

K? := min
j∈Nm

K(s||cj; ξ1:n).

As Γi increases, the more rapidly this bound decays. In particular, we have
Γi = 0 for every index i ∈ B, and Γi > 0 for every other index. Note that if
s ∈ C, then K∗ = 0.

2.3.4 Range dependent probability of detection

In many scenarios, the probability of detection will be purely a function of
the distance from the source to an agent. We can then say ` is of the form
`(x, ξ) = ρ(‖x − ξ‖), where ρ : [0,∞)→ (0, 1). Typically ρ will be strictly
decreasing, and therefore injective. We now consider the application of the
previous results to this case.

We begin by examining the consistency requirement (2.26) for a general mea-
surement location sequence in Theorem 2.3.2, when the source coincides with
some centre.

Lemma 2.3.7. Let s ∈ S, let (ξk)k∈N ⊂ Ra be a bounded sequence, and
assume `(x, ξ) = ρ(‖x − ξ‖), where ρ : [0,∞)→ (0, 1) is continuous and
injective. Then

∀δ > 0, ∃ε ∈ (0, 1),

|‖ξk − s‖−‖ξk − ci‖| ≥ δ =⇒ |`(s, ξk)− `(ci, ξk)|≥ ε.
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Proof. Let z := sup{‖ξk−c‖| k ∈ N, c ∈ C∪{s}} <∞, and letD := ρ([0, z]).
Let ρ̄ : [0, z] → D, ρ̄(r) = ρ(r), which is a bijection because ρ is injective.
By [46, Theorem 4.17], ρ̄−1 is continuous and therefore,

∀l1, l2 ∈ D, ∀δ > 0, ∃ε > 0, |l1 − l2|< ε =⇒ |ρ̄−1(l1)− ρ̄−1(l2)|< δ. (2.33)

Now for any ri ∈ [0, z], li = ρ̄(ri) ∈ D. Therefore (2.33) implies

∀r1, r2 ∈ [0, z], ∀δ > 0, ∃ε > 0, |ρ̄(r1)− ρ̄(r2)|< ε =⇒ |r1 − r2|< δ,

which is in turn equivalent to

∀r1, r2 ∈ [0, z], ∀δ > 0, ∃ε > 0, |r1 − r2|≥ δ =⇒ |ρ̄(r1)− ρ̄(r2)|≥ ε. (2.34)

The image of ρ̄ is contained in (0, 1), which implies ε ∈ (0, 1). Now ‖ξk −
s‖, ‖ξk − ci‖∈ [0, z] by definition of z, and therefore ρ̄(‖ξk − s‖) = `(s, ξk)
and ρ̄(‖ξk− ci‖) = `(ci, ξk). Thus choosing r1 = ‖ξk− s‖ and r2 = ‖ξk− ci‖
in (2.34) completes the proof.

Remark 2.3.8. Referring to the Lemma above, condition (2.26) is met for a
particular cell i if |‖ξk − s‖−‖ξk − ci‖| ≥ δ occurs sufficiently often for the
same δ > 0. A simple way to guarantee this holds for every ci 6= s is to make
sure the location sequence does not travel in (or converge to) a straight line
indefinitely.

We now turn our attention to periodic locations sequences, allowing s ∈ S to
be arbitrary. As discussed in Section 2.3.2, the basic requirement for an n-
periodic location sequence is to ensure A = {s}. If enough readings are taken
at location ξ, then the probability of detection `(s, ξ) can be estimated from
the ratio of hits to misses. When ρ is injective, this probability of detection
can be mapped back to place ξ at a unique distance from s. This suggests
a strategy akin to trilateration will ensure s is the unique solution to (2.28),
and the result below confirms our intuition. Let aff(X) denote the affine hull
of some X ⊂ Ra.

Proposition 2.3.8. Let s ∈ S ⊂ Ra, where a ∈ {2, 3}. Let ξ1, ..., ξn ∈ S
and let ` be of the form `(x, ξ) = ρ(‖x − ξ‖), where ρ : [0,∞)→ (0, 1) is
continuous and injective. If dim aff({ξ1, ..., ξn}) = a, then

A :=
n⋂
k=1

{x ∈ S | `(x, ξk) = `(s, ξk)} = {s}.
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Proof. Since ρ is injective,

A =
n⋂
k=1

{x ∈ S | ρ(‖x− ξk‖) = ρ(‖s− ξk‖)}

=
n⋂
k=1

{x ∈ S | ‖x− ξk‖= ‖s− ξk‖},

which is the intersection of n spheres in S ⊂ Ra. For their intersection to be
unique, it is sufficient for three of the ξk to not be collinear when a = 2, and
four of the ξk to not be coplanar when a = 3.

2.4 Optimal measurement locations

As noted in Remark 2.3.6, the requirement that A = {s} typically imposes
only mild constraints on the geometry of an n-periodic measurement location
sequence if n > a. While this guarantees there is sufficient information
available to uniquely identify the source, it makes no claim to optimality.
In this section, we first attempt to optimise the measurement locations with
respect to the determinant of the Bayesian Information Matrix (BIM) [12,
Section 4.3.3.2], conditioned on the available information as in [48]. The
inverse of the BIM is the Bayesian Cramer-Rao bound, a lower bound on the
MSE of any estimator1. Thus, maximising the BIM determinant minimises
a lower bound on the volume of the estimator’s concentration ellipsoids [12,
Section 4.3.2.1].

Recall we have a team of N agents, and suppose they each report one mea-
surement in a fixed sequence every N time-steps. Consider the following
question: given the information (ξk, dk)k∈Nn received up to time n, what are
the D-optimal agent locations Ξ := (ξ+

1 , ..., ξ
+
N) ∈ Rna at which to take the

next N measurements d+ := (d+
1 , ..., d

+
N) ∈ {0, 1}N?

The joint probability distribution for d+ and s conditioned on the information
received is given by

p(d+, s | d1:n; ξ1:n,Ξ) = G(d+ | s; Ξ)pn(s | d1:N ; ξ1:N),

where G is defined in (2.16). The Bayesian information matrix for estimating
s from d+, given the information received up to time n, is then

Jn(Ξ) := −E
[
∇2

s ln p(d+, s | d1:n; ξ1:n,Ξ) | d1:n

]
.

1subject to the bias conditions in [12, Equation (4.522)].
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Let Xn ⊂ Rna denote the feasible set of agent locations at time n (which may,
for example, incorporate motion constraints). Solving

ξn+1:n+N = arg max
Ξ∈Xn

det Jn(Ξ) (2.35)

yields D-optimal locations for the next N measurements. Although [48, 49]
provide a recursive method for computing the BIM numerically, obtaining a
direct solution to (2.35) is intractable. Instead, we propose a relaxed ver-
sion of the problem which optimises the classical Fisher Information Matrix
(FIM). The BIM can be written as

(2.36)Jn(Ξ) = E [J (s; Ξ) | d1:n] + J	n (d1:n, ξ1:n),

where

J	n (d1:n, ξ1:n) := −E
[
∇2

s ln pn(s | d1:n; ξ1:n) | d1:n

]
is the contribution of the information information already received, and

J (s; Ξ) = −E
[
∇2

s lnG(d+ | s; Ξ) | s
]

= −E

[
∇2

s

N∑
k=1

ln g(d+
k | s; ξ+

k ) | s

]

= −
N∑
k=1

E
[
∇2

s ln g(d+
k | s; ξ+

k ) | s
]
.

is the classical FIM conditioned on the source location [12, Equation (4.515)].
below. Both J	n (d1:n, ξ1:n) and J (s; Ξ) are symmetric positive semi-definite [12,
(4.519), (4.393)]. It then follows from the Minkowski determinant inequality
that

det Jn(Ξ) ≥ detE [J (s; Ξ) | d1:n] + det J	n (d1:n, ξ1:n)

≈ detJ (ŝn; Ξ) + det J	n (d1:n, ξ1:n), (2.37)

where

ŝn := E[s | d1:n]

represents the mean of the posterior pn. Since the second term of (2.37) does
not depend on Ξ,

ξn+1:n+N = arg max
Ξ∈Xn

detJ (ŝn; Ξ), (2.38)
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is a relaxation of (2.35) that chooses measurement locations to maximise the
determinant of the FIM evaluated at the expected source location. The FIM
has the structure

J (s; Ξ) =
N∑
k=1

J(s; ξ+
k ), (2.39)

where

J(s; ξk) := −E
[
∇2

s ln g(dk | s; ξk)
]

(2.40)

=
∇s`(s, ξk)∇s`(s, ξk)

>

`(s, ξk)[1− `(s, ξk)]
. (2.41)

is the FIM for a single reading taken at ξk. Equation (2.41) is derived in
Appendix B. We exploit this structure below to obtain an analytic solution
to the relaxed problem (2.38) for a range-dependent probability of detection,
under particular distance constraints.
Remark 2.4.1. It is interesting to note that the final expression for Fisher
Information in (2.41) does not depend on the log-likelihood Hessian.

2.4.1 Range dependent probability of detection

Suppose the probability of detection is a smooth function of distance. We
focus on localisation in the plane, letting s = (s1, s2) and ξk = (ξk,1, ξk,2).

Proposition 2.4.1 (Fisher Information Matrix). Let s ∈ S ⊂ R2, and as-
sume `(s, ξ) = ρ(‖s− ξ‖), where ρ : [0,∞)→ (0, 1) is continuously differen-
tiable. Let ξ1:N ∈ R2N be such that, ∀k ∈ NN , ξk 6= s. Define

rk := ‖s− ξk‖, θk := atan2(ξk,2 − s2, ξk,1 − s1).

Then

J (s; ξ1:N) =
N∑
k=1

ρ′(rk)
2

ρ(rk)[1− ρ(rk)]

[
cos2(θk)

sin(2θk)
2

sin(2θk)
2

sin2(θk)

]
. (2.42)

Proof. Since `(s, ξk) = ρ(rk), it follows from the chain rule that

∇s`(s, ξk) = ρ′(rk)∇srk.

Equation (2.41) then implies

J(s; ξk) =
ρ′(rk)

2

ρ(rk)[1− ρ(rk)]
∇srk∇sr

>
k .
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Now ∇srk =
s− ξk
rk

, and note ξk 6= s ⇐⇒ rk > 0. By definition of θk,

ξk − s = rk

[
cos θk
sin θk

]
, and therefore ∇srk = −

[
cos θk
sin θk

]
for rk > 0. Thus

J(s; ξk) =
ρ′(rk)

2

ρ(rk)[1− ρ(rk)]

[
cos2(θk)

sin(2θk)
2

sin(2θk)
2

sin2(θk)

]
, (2.43)

and applying (2.39) yields (2.42).

We now derive conditions for an optimal geometry, under the constraint that
the agents be equidistant from the source location. Letting r := r1 = . . . =
rN > 0, the FIM becomes

J (s; ξ1:N) =
ρ′(r)2

ρ(r)[1− ρ(r)]

n∑
k=1

[
cos2(θk)

sin(2θk)
2

sin(2θk)
2

sin2(θk)

]
. (2.44)

It is clear from (2.44) that the optimal angles and radius can now be chosen
independently.

Theorem 2.4.2 (Optimal Sensor Geometry). Assume s ∈ S ⊂ R2, and let
`(s, ξ) = ρ(‖s − ξ‖), where ρ : [0,∞)→ (0, 1) is continuously differentiable.
Constrain ξ1:N ∈ R2N to be such that

∀k,m ∈ NN , ‖ξk − s‖= ‖ξm − s‖> 0. (2.45)

Define θk := atan2(ξk,2 − s2, ξk,1 − s1) and r := ‖ξ1 − s‖.

1. For any fixed r > 0, detJ (s; ξ1:N) is maximised if and only if

N∑
k=1

cos(2θk) = 0 and
N∑
k=1

sin(2θk) = 0. (2.46)

2. Apply the additional constraint r ∈ [r1, r2] for some 0 < r1 ≤ r2. Then
for any fixed θ1, ..., θN , detJ (s; ξ1:N) is maximised if and only if

r ∈ arg max
x∈[r1,r2]

ρ′(x)2

ρ(x)[1− ρ(x)]
. (2.47)

3. Optimising jointly over θ1, ..., θN ∈ R and r ∈ [r1, r2], detJ (s; ξ1:N) is
maximised if and only if (2.46) and (2.47) both hold.
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Proof. Under the constraint (2.45),

detJ (s; ξ1:N) =
ρ′(r)2

ρ(r)[1− ρ(r)]
det

(
N∑
k=1

[
cos2(θk)

sin(2θk)
2

sin(2θk)
2

sin2(θk)

])

(2.48)=
ρ′(r)2

ρ(r)[1− ρ(r)]
det

(
N∑
k=1

[
cos2(θk)

sin(2θk)
2

sin(2θk)
2

sin2(θk)

]
>

)
,

which has a form identical to the Fisher Information determinant for range-
only measurements [14, Equation (13)]. It is also implied by [14, Theorem

2] that det

 N∑
k=1

[
cos2(θk)

sin(2θk)
2

sin(2θk)
2

sin2(θk)

]> is maximised if and only if (2.46)

is satisfied, and this proves Statement 1. The coefficient
ρ′(r)2

ρ(r)[1− ρ(r)]
is a

continuous function of r, and this guarantees the existence of a maximum on
[r1, r2]. Statements 2 and 3 then follow immediately from (2.48).

Remark 2.4.2. A particular type of geometry that satisfies condition (2.46)
is to have the agents spaced out at equal angles about the source. This result
is stated in [14, Proposition 2]. Other types geometries satisfying (2.46) can
also be found in the same work.

The above result identifies optimal measurement locations with respect to
the Fisher Information determinant, given the source location s. In practice,
of course, s is unknown. However, as emphasized at the beginning of Section
2.4, an approximate solution to (2.35) can be generated by optimising the
Fisher Information determinant evaluated at the expected source location.
For some 0 < r1 ≤ r2, let the feasible set at time n be

Xn = {ξ1:N | ∀k,m ∈ NN , ‖ξk − ŝn‖= ‖ξm − ŝn‖∈ [r1, r2]}.

It follows directly from Theorem 2.4.2 that an exact solution to (2.38) is
given by

∀k ∈ NN , ξn+k = ŝn + r

[
cos θk
sin θk

]
, (2.49)

where r, θ1, ..., θN satisfy (2.46) - (2.47).
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2.5 Inexact probability of detection functions

In practice, the probability-of-detection function ` will not be known com-
pletely. Suppose that, instead, we have knowledge of a continuous function
ˆ̀ : Ra × Ra → (0, 1) that satisfies

∀s,x ∈ Ra, ˆ̀(s,x) ≥ `(s,x). (2.50)

That is, ˆ̀ is an envelope for `. If the algorithm uses ˆ̀ in place of ` when
computing (2.3), the corresponding version of the likelihood function is

ĝ(dk | s; ξk) = ˆ̀(s, ξk)
dk
[
1− ˆ̀(s, ξk)

]1−dk
. (2.51)

By the same argument as (2.6), it is clear the convergence of the posterior
depends on the ratio

Ẑ
(i,j)
k :=

ĝ(dk | ci; ξk)
ĝ(dk | cj; ξk)

, (2.52)

the logarithm of which has expected value

µ̂
(i,j)
k = E

[
ln Ẑ

(i,j)
k | s

]
(2.53)

= µ(ˆ̀(ci, ξk), ˆ̀(cj, ξk), `(s, ξk)). (2.54)

We emphasize that this expectation is taken with respect to the true distri-
bution g(· | s; ξk), and remind the reader that µ is defined in (2.11). The KL
divergence originally defined in (2.17) now generalizes to

K(s, ` || x, ˆ̀; ξ1:n) := D

(
G(· | s; ξ1:n)

∣∣∣∣∣∣∣∣ Ĝ(· | x; ξ1:n)

)
(2.55)

= −
n∑
k=1

µ(ˆ̀(x, ξk), `(s, ξk), `(s, ξk)), (2.56)

where Ĝ(d | s; ξ1:n) =
∏n

k=1 ĝ(dk | s; ξk). Using property (2.14), we then
obtain

n∑
k=1

µ̂
(i,j)
k =

n∑
k=1

µ(ˆ̀(ci, ξk), ˆ̀(cj, ξk), `(s, ξk)) (2.57)

= K(s, ` || cj, ˆ̀; ξ1:n)−K(s, ` || ci, ˆ̀; ξ1:n). (2.58)

Remark 2.5.1. When ˆ̀ 6= `, the convergence result in Theorem 2.3.1 holds
when µ

(i,j)
k is replaced with µ̂

(i,j)
k . Similarly, Theorem 2.3.3 holds when

K(s||x; ξ1:n) is replaced with K(s, ` || x, ˆ̀; ξ1:n).
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2.5.1 Periodic measurement locations

Once again, we restrict attention to n-periodic agent location sequences. In
general, according to Theorem 2.3.3 and Remark 2.5.1, the posterior will
decay to zero at every index outside the set

B(ˆ̀ | `) := arg min
i∈Nm

K(s, ` || x, ˆ̀; ξ1:n). (2.59)

Consider two cases. In both cases, the algorithm is run assuming the same
envelope ˆ̀. The first case is a special case in which ` = ˆ̀, and in the second
case ` is arbitrary. Asymptotically, the support of the posterior is then
contained in B(ˆ̀ | ˆ̀) and B(` | ˆ̀) respectively. We now compare these two
sets.

Lemma 2.5.1. Suppose that,

∀k ∈ Nn, ˆ̀(cj, ξk) ≥ ˆ̀(ci, ξk). (2.60)

Then

(2.61 )K(s, ` || cj, ˆ̀; ξ1:n) < K(s, ` || ci, ˆ̀; ξ1:n)

=⇒ K(s, ˆ̀ || cj, ˆ̀; ξ1:n) < K(s, ˆ̀ || ci, ˆ̀; ξ1:n).

Proof. For ease of notation, let ω̂ik := ˆ̀(ci, ξk), zk := `(s, ξk) and ẑk :=
ˆ̀(s, ξk). Applying (2.58), we obtain[

K(s, ˆ̀ || cj, ˆ̀; ξ1:n)−K(s, ˆ̀ || ci, ˆ̀; ξ1:n)
]

−
[
K(s, ` || cj, ˆ̀; ξ1:n)−K(s, ` || ci, ˆ̀; ξ1:n)

]
=

n∑
k=1

µ(ω̂ik, ω̂
j
k, ẑk)−

n∑
k=1

µ(ω̂ik, ω̂
j
k, zk)

=
n∑
k=1

(ẑk − zk) ln

[
ω̂ik(1− ω̂

j
k)

ω̂jk(1− ω̂ik)

]
. (2.62)

By property (2.50), ẑk ≥ zk for all k. Furthermore, the assumption (2.60)
is equivalent to ω̂ik ≤ ω̂jk for all k, which then implies the RHS of (2.62) is
non-positive. The result then follows.
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Proposition 2.5.2. Let (ξk)k∈N be an n-periodic sequence such that,

(2.63 )∀i ∈ NM , ∃j ∈ B(` | ˆ̀), ∀k ∈ Nn,
ˆ̀(cj, ξk) ≥ ˆ̀(ci, ξk).

Then B(ˆ̀ | ˆ̀) ⊂ B(` | ˆ̀).

Proof. Suppose i ∈ NM \ B(` | ˆ̀). Then by assumption (2.63),

∃j ∈ B(` | ˆ̀), ∀k ∈ Nn, ˆ̀(cj, ξk) ≥ ˆ̀(ci, ξk).

Definition (2.59) implies,

K(s, ` || cj, ˆ̀; ξ1:n) < K(s, ` || ci, ˆ̀; ξ1:n).

We can then apply Lemma 2.5.1 to obtain

K(s, ˆ̀ || cj, ˆ̀; ξ1:n) < K(s, ˆ̀ || ci, ˆ̀; ξ1:n),

which implies i /∈ B(ˆ̀ | ˆ̀). We have shown B(` | ˆ̀){ ⊂ B(ˆ̀ | ˆ̀){, which is
equivalent to the result.

Remark 2.5.2. Proposition 2.5.2 can be interpreted as follows. Assuming the
constraints (2.63) on ξk are satisfied, as long as ˆ̀ remains an envelope for
`, the limiting support of the posterior cannot shrink compared to the case
where ` = ˆ̀. Thus, the algorithm behaves conservatively in the limit. The
result holds even if ` is time-varying.
Remark 2.5.3. When the envelope ˆ̀ is strictly decreasing with distance from
the source, the assumption (2.63) requires all the agents to be closer to some
centre in B(` | ˆ̀) than to the other centres. This suggests a sensible strategy
would be to drive the agents towards the current MAP estimate (i.e. a
maximiser of the posterior).

2.6 Numerical example

In this section, we examine a concrete example involving the 2D localisation
of an electromagnetic source. We present simulation results to supplement
the analytical results of the previous sections, and to demonstrate the effec-
tiveness of the Bayesian estimation algorithm when used in the loop with
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a control law that guides the agents towards D-optimal measurement loca-
tions. Consider a source antenna located at ground level, transmitting an RF
signal of wavelength λ, with input power PT and effective area AT . Suppose
each agent is a UAV equipped with a receiving antenna of effective area AR.
Given source location [ s

0 ] ∈ R3, the power received by an agent at location
[ x
z ] ∈ R3 can be modelled by the Friis transmission formula [50]:

PR(s,x) =
ARATPT

λ2(‖s− x‖2+z2)
.

We simulate a team of four agents, constrained to fly at a constant altitude
z > 0, with positions in the plane that evolve according to

ẋi(t) = ui(t), (2.64)

where ui : [0,∞)→ R2 is the control signal applied to agent i. An agent at
location ξk ∈ R2 reports a binary measurement dk by comparing the received
power measured at time tk with a threshold η > 0 according to

dk =

{
0, PR(s, ξk) +Wk < η

1, PR(s, ξk) +Wk ≥ η
,

where Wk ∼ N (0, σ2) accounts for sensor noise. The probability-of-detection
function is therefore given by

`(s,x) = Q
(
η − PR(s,x)

σ

)
,

where

Q(x) :=
1√
2π

∫ ∞
x

e−
u2

2 du

is the Q-function.

Suppose there is a maximum transmission delay of τ
2
≥ 0 seconds between

the agents and the fusion centre. We ignore the effects of packet drop, and
constrain the agents to take measurements synchronously every T > τ sec-
onds. Recalling that subscripts are assigned according to the order in which
the measurements arrive at the fusion centre, this implies

0 ≤ t1 = ... = t4 < t5 = t6 = ...,

where tk+4− tk = T . The fusion centre processes all four measurements pairs
(ξk, dk), ..., (ξk+3, dk+3) within the interval [tk, tk + τ

2
]. It then computes the

posterior mean

s̄k :=
M∑
j=1

p̂k(i | d1:k; ξ1:k)cj,
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which it transmits back to the agents. All agents then receive s̄k no later
than tk + τ , at which time they synchronously update their local copies of
the mean ŝi(tk + τ) = s̄k. Thus, these local copies evolve in continuous-time
according to

ŝi(t) := s̄κ(t−τ),

where κ : [0,∞) → N, κ(t) := max{k | tk ≤ t}. The posterior mean is used
as an input to the controller proposed below:

ui(xi, ŝi) = − (xi − ŝi − δi) (2.65)

where δi := r

[
cos θi
sin θi

]
is chosen according to (2.46) - (2.47). This drives the

agents towards the optimal locations dictated by (2.49).
Remark 2.6.1. The control signal generated by (2.65) is a piecewise contin-
uous function of time. Boundedness can also be guaranteed by imposing a
saturation function, without fundamentally altering its behaviour.

For the simulations below, the search region S is a 75 m × 75 m planar
region (at ground level), and the source location is sampled from the uniform
distribution over S. We choose M centres, aligned in a uniform grid over a
100 m × 100 m region containing S at the centre. Parameter values are
AR = AT = 1 m2, PT = 1 W, λ = 1 m, z = 10 m, η = 5 × 10−3 W,
σ = 2.5× 10−3 W, T = 0.04 s and τ = 0.02 s, unless otherwise stated. Each
agent was initialized as shown in Figure 2.1. A uniform prior for the source
location was used to initialize the Bayesian updates.

To numerically examine the effects of discretisation on estimation perfor-
mance, for every M ∈ {102, 202, ..., 502} we run 100 Monte Carlo trials and
compute the RMS estimation error ek by averaging ‖s̄k − s‖. A supplemen-
tary animation of a trial with M = 302 is available at https://youtu.be/

l8Awf0KCt4s. The results are plotted in Figure 2.2a for up to k = 1000 mea-
surements. While this captures the evolution of ek over a finite time horizon,
it does not necessarily reflect the asymptotic error e∞ after the posterior
converges to its steady-state. In practice, the entropy hk of the posterior is a
good indicator of convergence. We approximately evaluate e∞ by computing
the RMS error at k = 1000, averaging only the trials for which h1000 < 1 nat.
These results are recorded in Table 2.1, and we observe that e∞ decreases
monotonically with grid spacing.

https://youtu.be/l8Awf0KCt4s
https://youtu.be/l8Awf0KCt4s
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Figure 2.1: Sample history of measurement pairs (M = 302, units: m).
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Table 2.1: Asymptotic estimation error.

M = 102 202 302 402 502

Grid Spacing (m) 10 5 3.33 2.5 2
Approx. e∞ (m) 3.95 1.96 1.43 1.04 0.84

Trials with h1000 < 1 99 % 97 % 96 % 97 % 98 %

2.6.1 Computational complexity

Before proceeding to comparisons with other methods, we pause to consider
the computational complexity of our estimation procedure. Suppose each
evaluation of the likelihood function g takes at most L flops. Each iteration
of (2.3) then takes M(L+ 3)− 1 flops. If B bits of memory are required to
store each number, then MBa bits are required to store the centres, and MB
bits to store p̂k. Finally, Ba + 1 bits must be transmitted to N − 1 agents
per measurement to encode the measurement pair (dk, ξk).

2.6.2 Comparison with ML estimators

As mentioned in the introduction, we employ the same Bayesian estimation
algorithm adopted in [4, 5, 37]. Here, we compare its performance with the
maximum likelihood (ML) approach of [9]. The complexity of the full ML
estimator in [9] is O(a3k2) for the kth measurement. The required memory
grows linearly with k. Since this can be impractical for real-time processing,
[9] also proposes a real-time approximation, which has complexity O(a3)
per measurement and requires constant memory. In contrast, Section 2.6.1
establishes the complexity and memory requirements of our Bayesian method
as both of O(M), constant with respect to the number of measurements.
Recall that M is the number of centres.

The RMS error obtained by implementing the full ML estimator in [9] is
plotted in Figure 2.2b. This ML estimator is based on the Newton method,
and since the log-likelihood function for this problem is non-concave, there
are no convergence guarantees as k → ∞. In the simulations, five Newton
iterations are performed per measurement. To facilitate a meaningful com-
parison between the two approaches, the control-law (2.65) is also employed
to direct the agents under the ML approach, but with the posterior mean ŝ
replaced by the ML estimate.

Note that tracking the maximum likelihood estimate is precisely a time-
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Figure 2.2: Estimator performance comparison
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varying optimisation problem, of the type described in Section 1.4. For
the sake of comparison, we have also implement projected gradient descent
(PGD) to compute the ML estimate, using only one gradient iteration per
new measurement. Here, the complexity and required memory both increase
linearly with k. Results are presented in Figure 2.2b. The PGD algorithm is
analysed in greater detail in Chapter 5.

2.6.3 Effect of control strategy

We now examine the effectiveness of the control strategy (2.65), which drives
the agents into the D-optimal geometries defined by (2.49). In Figure 2.2a,
the RMS estimation error of the Bayesian algorithm with the control-law in
the loop is plotted against a scenario in which the agents remain fixed at their
initial positions (which are evenly spaced throughout the environment). The
motion of the agents significantly increases the rate at which the estimation
error decays. A sample trajectory induced by the control law is plotted in
Figure 2.1, along with the full history of measurement pairs (ξk, dk).

2.6.4 Effect of inexact knowledge

To examine the effect of inexact knowledge of `, we fix the assumed value of
the transmitted power at P̂T = 5W , and vary the true value PT between 1 W
and 5 W. Thus the assumed probability-of-detection function ˆ̀ remains an
envelope for `. We use M = 202 grid points for the simulations. Consistent
with the strategy proposed in Remark 2.5.3, we modify the control law (2.65)
by replacing ŝ with the MAP estimate. This time, the angles θi are chosen
according to (2.46), but we set r = 2.5 m so that the agents are driven
to converge to points that are closer to the MAP estimate than the other
centres. The results of 100 Monte Carlo trials are plotted in Figure 2.3. We
observe a graceful degradation in RMS estimation error for PT ≥ 3 W, but
the estimator ceases to be effective when the transmitted power falls to 2 W
or less.
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Chapter 3

Security Analysis of Bayesian
Estimators

“I bid you come out before your
doors and look abroad. Too long
have you sat in the shadows and
trusted to twisted tales and crooked
promptings.”

Gandalf the Grey

As we saw in the previous chapter, a team of autonomous agents may be
deployed to tackle co-operative estimation problems. Bayesian estimators
can combine measurements from individual agents to generate a posterior
probability distribution over possible values of the estimand. This chapter
presents a security analysis of Bayesian estimators with finite parameter and
observation spaces. We proceed from the perspective of an adversary that
has ‘hacked’ one of the agents, and can feed false measurement data to the
estimator. Assuming that the estimator is oblivious to the adversary, we
derive the set of posteriors that can be induced by the adversary in expec-
tation. A strategy for the adversary is also proposed, based on the posterior
it desires to induce. The chapter begins with a brief review of the relevant
literature in Section 3.1. The problem is formulated mathematically in Sec-
tion 3.2, Section 3.3 derives the theoretical results, and simulation results are
then presented in Section 3.4.

42
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3.1 Related works

The security analysis herein has close connections to the signal processing
literature on Byzantine attacks. The papers [51–55] all consider estima-
tion problems with multiple sensors providing quantized measurements to
an estimator. Some proportion of these sensors have been compromised,
and traditionally, attention has focused on ‘blinding’ the estimator. That
is, crafting attacks that render the set of measurements uninformative. The
works [53–55] also consider possible mitigation strategies for the estimator to
adopt. An analysis of fundamental limits on the set of posteriors that can be
induced in a Bayesian estimator is missing from this body of literature, and
we have endeavoured to fill this gap. Chapter 3 also relates to research on
the security of cyber-physical systems. This ever-expanding field considers
the impact of security flaws in networked devices on the underlying system
dynamics. In particular, [56–58] study attacks on discrete-time linear dy-
namical systems from a control theoretic viewpoint. Finally, the economics
literature on Bayesian persuasion [22, 59, 60] and cheap talk [61, 62] is also
pertinent. There, a well-informed sender passes messages to an uninformed
estimator with the intention of manipulating its decision. Those studies dif-
fer from ours by assuming that the estimator is always aware of the presence
of the adversary, significantly restricting its ability to deceive.

3.2 Problem formulation

Let P{·} denote the probability of an event. Consider the problem of com-
puting the posterior distribution of a random variable X that takes values
in a finite set X, given information received in some message M that takes
values in a finite set M. For example, X may contain all the possible locations
of a signal source, and M may be a binary set corresponding to whether the
measured signal strength exceeds some threshold. The prior distribution of
X is given by pX : X → [0, 1], where pX(x) := P{X = x}. The estimation
objective is to compute the posterior pX|M(x|m) := P{X = x |M = m}. The
probability distribution of the message conditioned on X is assumed to be
pM |X(m|x) by the estimator. It accordingly follows Bayes’ rule to compute
the posterior:

pX|M(x|m) =
pM |X(m|x)pX(x)∑

x′∈X pM |X(m|x′)pX(x′)
. (3.1)
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Note that, since the message M is a random variable, the value of the con-
ditional density function pX|M(x|M) at a given x ∈ X is itself a random
variable.

Covert adversary

Consider the case where the adversary injects a message M = m, but be-
cause the estimator is unaware of this attack, it mistakenly follows (3.1).
Can the adversary ensure the posterior generated by (3.1) matches a pos-
terior that it desires to induce? The set of possible posteriors is given by
P := {pm | m ∈M}, where pm : X→ [0, 1],

pm(x) := pX|M(x|m). (3.2)

The adversary may adopt a deterministic strategy that transmits m in order
to induce pm ∈ P . However, the set cardinality |P|≤ |M|. It is therefore of
interest to determine whether, by adopting a stochastic policy, the adversary
can induce a larger set of posteriors in expectation. A deterministic policy
is then a special case of this, with the relevant probabilities set to unity.
Consider a family of functions {πx}x∈X, where each πx is the posterior the
adversary seeks to induce when X = x.

Assumption 3.1 (Family of desired posteriors). Let πx : X → [0, 1] satisfy∑
x′∈X πx(x

′) = 1 for all x ∈ X.

Assuming the adversary knows X, suppose it transmits stochastic messages
M according to p̄M |X(m|X).

Problem 3.1. Find a probability distribution p̄M |X : M × X → [0, 1] such
that

∀x, x′ ∈ X, EM{pX|M(x′|M) | X = x} = πx(x
′). (3.3)

Note that, in the above equation, x′ corresponds to a dummy variable for
evaluating πx(x

′), and x corresponds to possible realisations of the random
variable X.

Side-channel information

It is often the case that the estimator has access to some reliable side informa-
tion, such as the measurements from honest sensors. A random variable N ∈
M with conditional probability function pN |X(n|x) := P{N = n |X = x} is
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used to show this side-channel information. It is assumed that, conditioned
on the realisation of X, messages M and N are statistically independent,
i.e., P{M = m,N = n|X = x} = P{M = m|X = x}P{N = n|X = x}. In
this case, the update rule in (3.1) must be adapted to

pX|M,N(x|m,n)

=
pN |X(n|x)pM |X(m|x)pX(x)∑

x′∈X pN |X(n|x′)pM |X(m|x′)pX(x′)
. (3.4)

As before, the adversary may follow the conditional distribution p̄M |X(m|X)
to generate its messages, while the estimator unknowingly follows (3.4). This
leaves us with the following problem.

Problem 3.2. Find a probability distribution p̄M |X : M × X → [0, 1] such
that

∀x, x′ ∈ X, EM,N{pX|M,N(x′|M,N) | X = x} = πx(x
′). (3.5)

With these problem formulations at hand, we are ready to present the main
results.

3.3 Fundamental limitations

Without loss of generality, suppose X = {1, ..., a} and M = {1, ..., b}. We now
express the relevant marginal and conditional probabilities of the problem as
vectors and matrices respectively. Let x ∈ Ra, M,M,N ∈ Rb×a, Π ∈ Ra×a

and P ∈ Ra×b, and define

[x]i := pX(i), [M]ij := pM |X(i|j), [M]ij := p̄M |X(i|j),
[Π]ij := πj(i), [N]ij := pN |X(i|j), [P]ij := pX|M(i|j), (3.6)

where [·]i denotes the ith element of a vector, and [·]ij the ijth element of a
matrix.

3.3.1 Covert adversary

We first address Problem 3.1. The estimator’s update rule (3.1) can be
written as

[P]ij =
[M]ji[x]i
[Mx]j

. (3.7)

Let supp(·) denote the set-theoretic support of a function.
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Proposition 3.3.1. There exists a probability distribution p̄M |X : M× X→
[0, 1] for which

∀x, x′ ∈ X, EM{pX|M(x′|M)|X = x} = πx(x
′), (3.3)

if and only if the following linear equation in M admits a non-negative solu-
tion: [

P
1>b

]
M =

[
Π
1>a

]
. (3.8)

Proof.

EM{pX|M(i|M)|X = j} =
∑
m∈M

pX|M(i|m)p̄M |X(m|j)

=
∑
m∈M

[P]im[M]mj = [PM]ij. (3.9)

Recalling (3.6) then yields the first row of (3.8). The second row is equivalent
to the requiring

∑
m∈M p̄M |X(m|x) = 1 for all x ∈ X.

Corollary 3.3.2. The linear equation in Proposition 3.3.1 admits a solution
only if supp(πx) ⊆ supp(pX) for all x ∈ X.

Proof. If [x]i = 0, then (3.7) implies [P]ij = 0 for all j ∈ X. If (3.8) holds,
then [Π]ij = 0 for all j ∈ X.

If a solution to (3.8) exists, then M provides the conditional probability
distribution that the adversary should employ to generate messages. Corol-
lary 3.3.2 states the obvious result that it is not possible to fool the Bayesian
estimator to believe that an event with zero probability has happened.
Remark 3.3.1. The number of scalar linear equations in (3.8) is a(a+1), while
the number of unknowns is ab. Thus, intuitively, having a large observation
space makes it easier to deceive the estimator.

The set of posteriors that can be induced in expectation via some stochastic
policy can now be stated in terms of the convex hull, conv(·).

Theorem 3.3.3. There exists a probability distribution p̄M |X : M×X→ [0, 1]
for which

∀x, x′ ∈ X, EM{pX|M(x′|M)|X = x} = πx(x
′), (3.3)

if and only if every column of Π lies in the convex hull of the columns of P.
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Proof. Let pi, πi and m̄i denote the ith columns of P, Π and M respectively.
Then (3.8) can be written as

∀i ∈ X, Pm̄i = πi, 1>b m̄i = 1, m̄i ≥ 0.

By the definition of convex hull [63, Section 2.1.4], πi ∈ conv{p1, ...,pb} if
and only if there exist θ1, ..., θb ≥ 0 such that m̄i = (θ1, ..., θb) satisfies the
above equations.

Remark 3.3.2. Each column πi represents a desired posterior πi. Each col-
umn pj represents pj ∈ P , defined in (3.2). Thus, Theorem 3.3.3 states
that the set of posteriors that can be induced in expectation via some p̄M |X
is convP . Clearly the closest achievable posterior to some desired πx is its
projection onto convP .

3.3.2 Side-channel information

Now, consider Problem 3.2. Receiving the messages N and M can be treated
as receiving a single message Z ∈ M2. A matrix representation of pZ|X (as
assumed by the estimator) is

Z :=
[
n1 ⊗m1 n2 ⊗m2 . . . na ⊗ma

]
∈ Rb2×a,

where ni and mi are the columns of N and M respectively, and ⊗ is the
Kronecker product. Each (m,n) ∈M2 corresponds to some row k of Z:

[Z]ki = [N]ni[M]mi = pN |X(n|i)pM |X(m|i). (3.10)

Just as in (3.7), the update rule (3.4) can now be written as

[Q]ik :=
[Z]ki[x]i
[Zx]k

= pX|M,N(i|m,n), (3.11)

where Q ∈ Ra×b2 . We now state an analogous result to Proposition 3.3.1.

Proposition 3.3.4. There exists a probability distribution p̄M |X : M× X→
[0, 1] for which

∀x, x′ ∈ X, EM,N{pX|M,N(x′|M,N) | X = x} = πx(x
′), (3.5)

if and only if the following linear equations in {m̄j}j∈X admit non-negative
solutions:

∀j ∈ X, Q(nj ⊗ Ib)m̄j = πj (3.12)

∀j ∈ X, 1>b m̄j = 1. (3.13)
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Proof. First recall there is a bijection σ : M2 → {1, ..., b2} such that if
σ(m,n) = k,

[N]nj[M]mj = pN |X(n|j)p̄M |X(m|j) = [nj ⊗ m̄j]k.

Furthermore, nj ⊗ m̄j = (nj ⊗ Ib)m̄j. Together with (3.11), this implies

[Q(nj ⊗ Ib)m̄j]i = [Q(nj ⊗ m̄j)]i =
b2∑
k=1

[Q]ik[nj ⊗ m̄j]k

=
∑
m,n∈M

pX|M,N(i|m,n)pN |X(n|j)p̄M |X(m|j)

= EM,N{pX|M,N(i|M,N) | X = j}.

The desired value for this is [πj]i, which leads to (3.12). The requirement∑
m∈M p̄M |X(m|j) for all j leads to (3.13).

Applying same reasoning as in Theorem 3.3.3 leads us to another correspond-
ing result.

Theorem 3.3.5. There exists a probability distribution p̄M |X : M×X→ [0, 1]
for which

∀x, x′ ∈ X, EM,N{pX|M,N(x′|M,N) | X = x} = πx(x
′), (3.5)

if and only if, for all j ∈ X, πj lies in the convex hull of the columns of
Q(nj ⊗ Ib).

Remark 3.3.3. In Theorem 3.3.3, the set of posteriors achievable in expecta-
tion (convP) is independent of the realisation of X. In Theorem 3.3.5 this is
no longer the case, because the estimator receives information about X from
N . Thus, when X = j, then the set of posteriors achievable in expectation
corresponds to the convex hull of the columns of Q(nj ⊗ Ib).
Remark 3.3.4. Since Q(nj ⊗ Ib) ∈ Ra×b and m̄i ∈ Rb, (3.12) - (3.13) express
a(a + 1) equations in ab unknowns. Thus, the addition of the side-channel
information does not add to the complexity of crafting an attack.

The intuition behind Remark 3.3.4 is that the estimator can first update
its original prior based on the side channel information, and then processes
the adversary’s measurement. The posterior of the estimator based on the
side-channel information alone can therefore be treated as a new prior for
the attack.
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3.3.3 Attack strategies

To provide a complete answer to Problems 3.1 and 3.2, we must now iden-
tify the adversarial distribution p̄M |X that will induce the desired family of
posteriors. Theorems 3.3.3 and 3.3.5 show that an arbitrary πx may not be
achievable. However, the adversarial distribution inducing the projection of
πx onto the set of achievable posteriors can be generated by solving

∀i ∈ X, min
m̄i

‖Aimi − πi‖ s.t.

{
1>b m̄i = 1

m̄i ≥ 0
, (3.14)

where Ai ∈ {P,Q(ni⊗Ib)} depends on the presence of side-channel informa-
tion, and ‖·‖ is any norm of choice. These are a collection of a convex prob-
lems, of state dimension b. They can all be solved offline by the adversary
a-priori. Once the adversary knows the realisation of X, only the solution
corresponding to i = X need be implemented. Choosing the Euclidean norm
yields quadratic programs, but in general other convex functions of m̄i (e.g.
KL divergence) may be adopted.

3.4 Numerical example

We now present a numerical example, based on the source localisation prob-
lem of Chapter 2. For simplicity, we consider two stationary agents located
at ξ1, ξ2 ∈ R2. We adopt the measurement model of Section 2.6. A fusion
centre (the estimator) receives a sequence of 5 binary measurements from
each sensor. Starting with a uniform prior, the estimator uses the sequential
Bayesian update rule (2.3) to generate a posterior over a discretised search
region X = C := {−48,−44, . . . , 44, 48}2. Let N,L ∈ {0, 1}5 correspond to
honest measurements from ξ1, ξ2 respectively. That is,

N := (n1, ..., n5) ∼
5∏

k=1

g(nk | X, ξ1), L := (l1, ..., l5) ∼
5∏

k=1

g(lk | X, ξ2),

where X = s ∈ X is the source location and g is defined in (2.1). Now,
suppose that ξ2 has been compromised by an adversary, and seeks to make
the estimator believe the source location is y ∈ X, regardless of the true value
of X. Its family of desired posteriors are therefore πx(x

′) = δ(x′ − y) for all
x ∈ X, where δ is the discrete Dirac distribution. Let M ∈ {0, 1}5 denote the
adversary’s message, which it transmits according to the 2-norm solution of
(3.14), accounting for the presence of the side-channel information N .
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The posteriors induced in the estimator are plotted for two different cases:

(a) the estimator processes N,L, i.e., both sensors are honest

(b) the estimator processes N,M , i.e., one sensor is dishonest

Average posteriors (taking expectations with respect to measurements) are
plotted in Figure 3.1, while posteriors corresponding to random realisations of
M,L,N are plotted in Figure 3.2. The figures clearly demonstrate the effect
of a sensor being ‘hacked’. While the adversary does not succeed in inducing
the desired Dirac distribution, it still has a significant and misleading effect
on the estimators posterior.
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Mean: Allies Only
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Mean: Ally + Adversary

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Source: x
Decoy: y
Ally
Adversary

(b) EN,M [pX|N,M (x′|N,M) | X = x]

Figure 3.1: Expected posteriors induced in estimator for x = (−4, 4), y =
(24, 24), ξ1 = (−20,−20), ξ2 = (20, 20). (Units: m)
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Sample: Allies Only

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

(a) pX|N,L(x′|N,L) | X = x

Sample: Ally + Adversary
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Figure 3.2: Realisations of posteriors induced in estimator for x =
(−4, 4), y = (24, 24), ξ1 = (−20,−20), ξ2 = (20, 20). (Units: m)



Chapter 4

Decentralised Robust
Connectivity Preservation

And the Lord said, “Indeed the
people are one and they all have one
language, and this is what they
begin to do; now nothing that they
propose to do will be withheld from
them.

Genesis 11:6

This chapter considers the design of control laws that guarantee connectivity
preservation within a team of single-integrator agents subject to piecewise
continuous bounded disturbances. Section 4.1 presents a review of the rele-
vant literature. The problem is formulated mathematically and the controller
is proposed in Section 4.2. Theoretical robustness guarantees are obtained
in Section 4.3, and the chapter concludes with simulation results in Section
4.4.

4.1 Related works

Control laws for connectivity preservation are hardly a recent development. A
large body of literature is devoted to achieving this under both fixed [64–66],
and time-varying [67–69] topologies. The proposed control laws are of-
ten designed to achieve specific objectives such as rendezvous [64, 66–68],

53
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flocking [69, 70], or formation control [68], while guaranteeing connectiv-
ity preservation throughout. Single integrator dynamics are commonly as-
sumed, however more complex models such as double integrators [69–71],
unicycles [72–74], and other structured nonlinear dynamics [67,75], have not
escaped attention. Strategies with bounded control inputs have also been
developed in [72, 76, 77]. The above works all adopt gradient-following con-
trol laws that seek to minimise a potential function. Other, typically earlier,
works rely on optimisation-based approaches to maximise the graph Fielder
value [78, 79], or maintain positive-definiteness of the sum of powers of its
adjacency matrix [80,81]. The list of references above is not exhaustive, but
we direct the reader to [82] for a more comprehensive review of the field.
Only more recent works have considered robustness of the proposed control
strategies to disturbances, and we focus on these below.

A collection of double integrator systems subject to external force distur-
bances is considered in [83]. The disturbances are assumed to be generated by
a known autonomous linear system, implying that the disturbance dynamics
are perfectly known. The authors design observer-based controllers to achieve
leader-following rendezvous (i.e., all agents converging to the same reference
trajectory), while preserving connectivity. This generalises their previous
work [84], which assumes each agent is subject to the same disturbance. The
same authors also design controllers to achieve connectivity preserving veloc-
ity consensus in [70], under the same disturbance assumptions, but without
relying on a leader. The leader-following rendezvous work [71] extends [83] by
considering both force and velocity disturbances, and allowing for parameter
uncertainty in the assumed disturbance dynamics. Problem complexity is fur-
ther increased in [67], which assumes double-integrator dynamics, but with
an additional unknown nonlinear force fi(·, ·), and smooth bounded force
disturbances. A PID controller, with learning states to compensate for the
unknown dynamics and disturbances, is designed to track a bounded refer-
ence trajectory. Smoothness features prominently in the assumptions of [67]:
fi is twice continuously differentiable, disturbances have bounded first and
second derivatives, and the reference trajectory has bounded derivatives up to
fourth order. Under these conditions, the controller guarantees that no edges
will be lost. One-dimensional single integrator dynamics are assumed in [85],
which proposes a discontinuous control law to achieve finite-time rendezvous
in the presence of arbitrary continuous, bounded disturbances. A discontinu-
ous sliding mode control law is also adopted in [64] to extend [67] by achieving
leader-following rendezvous in finite time, under weaker smoothness assump-
tions. The problem of tracking the reference trajectory in formation, while
preserving connectivity, is then addressed within the same framework.
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In this chapter, we return to the basic problem of maintaining a fixed,
connected network topology under single-integrator dynamics. We adopt
a gradient-following control law, and show that the desired network topology
plays an important role in proving robustness. The control law is decen-
tralised, in that the individual agents compute their own actions, and only
rely on information from their neighbours. In contrast to all the works men-
tioned in the previous paragraph, we do not explicitly assume additional
objectives such as consensus or formation control. This allows us to pro-
vide connectivity preservation guarantees that are not restricted to a par-
ticular objective. Our framework still accommodates certain objectives via
the choice of potential functions, desired network topology, and the addi-
tion of bounded control signals. Remarks 4.2.1 - 4.2.3 indicate how this
may be achieved. Secondly, we do not assume a model for disturbances
(c.f. [70, 71, 83, 84]), neither do we require them to be smooth (c.f. [67]).
Our controller has a simpler structure that those of [67, 71, 83, 84] because
it does not rely on the existence of a leader or reference trajectory, and
does not require the construction of observers or learning algorithms. Note
that [85] considers single-integrator agents subject to continuous bounded
disturbances, as does the work herein. However, those results are only stated
for one-dimensional agents, whereas our analysis allows the dimension to be
arbitrary. Moreover, we achieve connectivity preservation with a smooth con-
trol law, thereby avoiding the technicalities of non-smooth analysis in [64,85].
We adopt the potential function approach of [68], which we generalize to a
larger class of potential functions. That work did not establish robustness
to disturbances. The primary contribution of Chapter 4 is to extend [68] by
proving robust connectivity preservation under arbitrary piecewise continu-
ous bounded disturbances, when the desired network topology is a tree.

4.2 Problem formulation

Consider a team of N mobile agents. Let xi ∈ Rn, n ∈ {2, 3} denote the
position of agent i, which evolves according to

ẋi = ui,

where ui is the control input to agent i. The vector x := (x1, ..., xN) ∈
RNn fully specifies the configuration of the team. Let G(x) = (NN , E(x))
be a simple graph with a node set NN := {1, ..., N} indexing the team of
agents, and an edge set E(x), which contains all pairs of agents {i, j} that
can communicate with each other when in configuration x. Assuming that
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connectivity is equivalent to the agents being within some communication
range R > 0 of each other, we define the edge set as

E(x) := {{i, j} | ‖xi − xj‖< R, i, j ∈ NN}. (4.1)

Let E0 be a desired set of edges that makes the graph (NN , E0) connected,
and let

N (i) := {j ∈ NN | {i, j} ∈ E0}

denote the corresponding neighbour set of agent i.

Problem 4.1. Assuming the initial configuration x0 is chosen such that
E0 ⊂ E(x0), design a control law ui(x) such that

1. E0 ⊂ E(x(t)) for all t ≥ 0, in the presence of disturbances

2. the controller only uses local information. That is, computing ui(x)
only requires information from agents in N (i) ∪ {i}.

Problem 4.1 can be solved via the use of an edge-potential, which can be
thought of as a virtual tensile energy between neighbouring agents.

Definition 4.1 (Edge-potential). An edge-potential is any function w : [0, R2)→ [0,∞)
that satisfies the following properties:

1. w is continuously differentiable

2. w′(s) is locally Lipschitz

3. w(s)→∞ and w′(s)→∞ as s→ R2.

Let the edges in E0 be labelled 1, ...,m, where m = |E0|, and kij = kji ∈
Nm corresponds to edge {i, j} ∈ E0. Consider a family of edge-potentials
{wk}mk=1. We define the total potential of the configuration as

T =
1

2

N∑
i=1

∑
j∈N (i)

wkij(‖xj − xi‖2). (4.2)

Note that T is only defined for x ∈ R, where

R := {x ∈ RNn | ∀{i, j} ∈ E0, ‖xj − xi‖< R}.

Note also thatR is open and convex, but unbounded, and by definition,

E0 ⊂ E(x) ⇐⇒ x ∈ R.
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We adopt the control-law u : R → RNn,

u(x) := −∇xT (x), (4.3)

which drives the agents in the direction of steepest descent in potential. Note
that

ui(x) = − ∂T
∂xi

=
∑
j∈N (i)

w′kij(‖xj − xi‖
2)(xj − xi),

and therefore Point 2 of Problem 4.1 is satisfied.
Remark 4.2.1. Certain additional objectives, such as rendezvous, formation
control and even collision avoidance, can be incorporated through the appro-
priate design of the edge potentials and E0. Specifically, local minimisers of
wkij should correspond to desired distances between agents i and j.
Remark 4.2.2. The edge-tension functions proposed in [68, (14),(24)] satisfy
the properties of an edge-potential. In the absence of disturbances, these
induce rendezvous and formation control respectively.
Remark 4.2.3. While it will be shown the controller (4.3) guarantees connec-
tivity preservation in the presence of additional piecewise continuous bounded
control signals, further work is required to show that the additional signals
still achieve their objective in the presence of (4.3). To this end, edge poten-
tials can be designed such that wk(s) = 0 for all s ≤ δ2, where 0 ≤ δ < R.
Here, δ corresponds to some safe inter-agent distance, within which the con-
nectivity preservation term does not interfere with the additional objective.

We conclude this section with a precise definition for piecewise continuity.

Definition 4.2 (Piecewise Continuous). Let f : R→ Rn.

1. The function f is piecewise continuous on [a, b] ⊂ R if there exists a
finite number of points a = t0 < t1 < . . . < tk = b such that f(t) is
continuous on t ∈ (ti−1, ti) for all i ∈ Nk, and

∀i ∈ Nk, lim
t→t+i−1

‖f(t)‖<∞, lim
t→t−i
‖f(t)‖<∞.

2. Furthermore, f is piecewise continuous if it is piecewise continuous on
every closed interval [a, b] ⊂ R.
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4.3 Existence and uniqueness

Consider the system

ẋ = u(x) + d(t), (4.4)

where d is bounded and piecewise continuous in t. We assume that d is
unknown.
Remark 4.3.1. Point 1 of Problem 4.1 is a stronger requirement than set
ISS [23] with respect to R. While set ISS asymptotically bounds the distance
to R in terms of ‖d‖∞, connectivity preservation requires that x(t) always
remain in the interior of R for any finite value of ‖d‖∞.

The controller u : R → RNn is only locally Lipschitz, and its magnitude ap-
proaches infinity on the boundary of R. A sufficient condition for the ex-
istence and uniqueness of solutions to (4.4) for all t ≥ 0, is the forward
invariance of some compact subset of R [86, Theorem 3.3]. In general, how-
ever, the trajectories of the agents x(t) need not be bounded, and therefore
may not remain within any compact set. To circumvent this, we consider the
dynamics of the edge vectors xj−xi, {i, j} ∈ E0, which must be bounded for
connectivity to be maintained. Suppose we arbitrarily assign a direction to
each edge 1, ...,m. Let H ∈ RN×m denote the (vertex-edge) incidence matrix
of the resulting directed graph, and define H := H ⊗ In ∈ RNn×mn, where
⊗ is the Kronecker matrix product and In is the n× n identity matrix. The
transformation

y = H>x, (4.5)

where y := (y1, ..., ym) ∈ Rmn, then yields yk = xj − xi for some {i, j} ∈ E0.
Note that

x ∈ R ⇐⇒ H>x ∈ B(R)m, (4.6)

where B(R) = {y ∈ Rn | ‖y‖< R}. The total potential can then be expressed
in terms of the edge vectors,

T =
1

2

m∑
k=1

wk(‖yk‖2), (4.7)

only defined for y ∈ B(R)m. Let vk : B(R)→ Rn, where

vk(yk) := −w′k(‖yk‖2)yk (4.8)

= −
(
∂T

∂yk

)>
.
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Defining v(y) := (v1(y1), ..., vm(ym)) then yields

v(y) = −∇yT (y), (4.9)

where v : B(R)m → Rmn. An important relationship between u and v is
derived below.

Lemma 4.3.1. For any x ∈ R, u(x) = Hv(H>x).

Proof. Applying the chain rule to (4.3), the transformation (4.5) implies that

∀x′ ∈ R, u(x′) = −∇xT (x′)

= −

[
∂T

∂y

∣∣∣∣
y=H>x′

∂y

∂x

∣∣∣∣
x=x′

]>
= −H∇yT (H>x′)

= Hv(H>x′). (4.10)

We now examine bounds on the magnitude of u(x). For ε ∈ [0, R], de-
fine

Rε := {x ∈ RNn | ∀{i, j} ∈ E0, ‖xj − xi‖≤ R− ε}.

Just as in (4.6),

x ∈ Rε ⇐⇒ H>x ∈ B(R− ε)m, (4.11)

where B(·) denotes the closure of B(·) in Rn.

Lemma 4.3.2. For any r ∈ [0, R), v : B(R)→ Rmn is bounded on B(r).

Proof. Since B(r) is the finite Cartesian product of closed balls in Rn, it
is compact. If r ∈ [0, R), then B(r) ⊂ B(R), and Point 1 of Definition 4.1
implies v is continuous on B(R). Thus, ‖v(B(r))‖ is compact by [46, Theorem
4.14], and therefore bounded.

Corollary 4.3.3. For any ε ∈ (0, R], u : R → RNn is bounded on Rε.

Proof. If x ∈ Rε, then (4.11) implies H>x ∈ B(R − ε)m. The rest follows
from Lemma 4.3.1 and Lemma 4.3.2.

A self-contained equation for the edge vector dynamics is now derived.
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Lemma 4.3.4 (Edge vector dynamics). Let J ⊂ R be an open interval.
Suppose x : J → R is continuously differentiable, and d : J → RNn is
continuous and bounded. Define y(t) := H>x(t). If

∀t ∈ J, ẋ(t) = u(x(t)) + d(t), (4.12)

then

∀t ∈ J, ẏ(t) = H>Hv(y(t)) + H>d(t). (4.13)

Proof. The edge-vector dynamics can be written as

ẏ(t) = H>ẋ(t)

= H>u(x(t)) + H>d(t)

= H>Hv(H>x(t)) + H>d(t),

by Lemma 4.3.1. Substituting y(t) = H>x(t) yields (4.13).

The existence and uniqueness of solutions to (4.13) under certain initial con-
ditions and network topologies can be proved by appealing to [86, Theorem
3.3]. We restrict attention to trees, because the incidence matrix of any di-
rected tree has full column rank [87, Lemma 2.5]. The proof of our main
result relies on the following property.

Lemma 4.3.5. Let M ∈ RN×m have full column rank, and let v : [0, τ) →
Rm, where τ ∈ (0,∞]. Then,

lim
t→τ
‖v(t)‖=∞ =⇒ lim

t→τ
‖Mv(t)‖=∞.

Proof. Since M has full column rank, M>M ∈ Rm×m is symmetric positive
definite and

λm‖v(t)‖2≤ v(t)>M>Mv(t) = ‖Mv(t)‖2,

where λm > 0 is the smallest eigenvalue of M>M .

Lemma 4.3.6. If M ∈ RN×m has full column rank, then M ⊗ In has full
column rank.

Proof. This follows from the identity rk(M ⊗ In) = rk(M) · rk(In).

We are now ready to establish the existence and uniqueness of solutions to
the edge-vector dynamics. Solutions are defined in the sense of Caratheodory,
and need only be piecewise continuously differentiable.
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Proposition 4.3.7. Let d : R→ RNn be a piecewise continuous bounded dis-
turbance. Assume E0 specifies a tree. Let (t0,x0) ∈ R×R. Then, there exists
a unique solution y : [t0,∞)→ B(R)m to the initial value problem

ẏ(t) = H>Hv(y(t)) + H>d(t), y(t0) = H>x0. (4.14)

Furthermore, ∃r < R, ∀t ≥ t0, y(t) ∈ B(r)m.

Proof. The RHS of (4.14) is piecewise continuous in t, and locally Lipschitz in
y on the domain R×B(R). The assumption x0 ∈ R implies y(t0) ∈ B(R)m.
As per [86, Section 3.1], there exists a right maximal interval of existence1

[t0, τ), τ ∈ (t0,∞], over which (4.14) has a solution y(t). By definition, the
solution is continuous and satisfies

∀t ∈ [t0, τ), y(t) ∈ dom v = B(R)m. (4.15)

The derivative of the potential along the solution trajectory satisfies

Ṫ =
∂T

∂y
ẏ(t)

= −v(y(t))>
[
H>Hv(y(t)) + H>d(t)

]
= −‖Hv(y(t))‖2−[Hv(y(t))]>d(t)

≤ −‖Hv(y(t))‖(‖Hv(y(t))‖−‖d(t)‖) , (4.16)

for almost all t ≥ t0 (that is, except where d is discontinuous). Now, to
obtain a contradiction, suppose

r := sup{‖yk(t)‖| t ∈ [t0, τ), k ∈ Nm} ≥ R. (4.17)

Comparing this with (4.15), continuity implies

∃j ∈ Nm, lim
t→τ−

yj(t) = R.

Definition 4.1 and (4.7) then imply

lim
t→τ−

T =∞. (4.18)

Since E0 specifies a tree, H has full column rank [87, Lemma 2.5]. Lemma
4.3.6 then implies H has full column rank. Definition 4.1 and (4.8) imply
‖vj(yj(t))‖→ ∞ as t ↑ τ . Therefore, ‖v(y(t))‖→ ∞, and Lemma 4.3.5 then
implies ‖Hv(y(t))‖→ ∞, as t ↑ τ . Since d is bounded, (4.16) implies there

1see [88, Definition 8.31]
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exists t1 ∈ [t0, τ) such that Ṫ < 0 for almost all t ∈ (t1, τ). This contradicts
(4.18), proving the hypothesis (4.17) is false. Thus,

∀j ∈ Nm, ∀t ∈ [t0, τ), ‖yj(t)‖≤ r < R. (4.19)

Therefore τ = ∞ by [86, Theorem 3.3], which also establishes that y is the
unique solution to (4.14). Finally, (4.19) is then equivalent to y(t) ∈ B(r)m

for all t ≥ t0.

Although a unique solution to (4.14) is guaranteed, H> is rank deficient and
cannot be inverted to directly obtain a solution to (4.4). The result below
guarantees that such a solution can still be found via integration.

Lemma 4.3.8. Let (t0,x0) ∈ R × R, and let d : R→ RNn be piecewise
continuous and bounded. Consider the two initial value problems

ẋ(t) = u(x(t)) + d(t), x(t0) = x0, (4.20)

ẏ(t) = H>Hv(y(t)) + H>d(t), y(t0) = H>x0. (4.14)

If y : [t0,∞)→ B(R)m is a solution to (4.14), then

x(t) := x0 +

∫ t

t0

Hv(y(τ)) + d(τ)dτ (4.21)

is a solution to (4.20) on t ≥ t0.

Proof. Suppose y : [t0,∞)→ B(R)m is a solution to (4.14), implying that

∀t ≥ t0, y(t) ∈ dom v = B(R)m. (4.22)

Defining x(t) as in (4.21), we obtain

H>x(t) = H>x0 +

∫ t

t0

H>Hv(y(τ)) + H>d(τ) dτ

= y0 +

∫ t

t0

ẏ(τ)dτ

= y(t), (4.23)

for all t ≥ t0. Let D ⊂ R denote the set of points at which d is discontinuous,
and let T := [t0,∞) \ D. Now (4.21) implies that x is differentiable on T ,
and furthermore,

∀t ∈ T , ẋ(t) =
d

dt

∫ t

t0

Hv(y(τ)) + d(τ)dτ

= Hv(y(t)) + d(t)

= Hv(H>x(t)) + d(t), (4.24)
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by (4.23). Now (4.6) and (4.22) together imply

∀t ≥ t0, x(t) ∈ R = dom u.

Applying Lemma 4.3.1 to (4.24) then yields

∀t ∈ T , ẋ(t) = u(x(t)) + d(t).

Noting that x(t0) = x0 completes the proof.

The preceding results now come together to solve Problem 4.1.

Theorem 4.3.9. Let d : R→ RNn be a piecewise continuous, bounded dis-
turbance. Assume E0 specifies a tree. Let (t0,x0) ∈ R × R. Then, there
exists a unique solution x : [t0,∞)→ R to the initial value problem

ẋ(t) = u(x(t)) + d(t), x(t0) = x0. (4.20)

Furthermore, ∃ε > 0, ∀t ≥ t0, x(t) ∈ Rε.

Proof. Let x0 ∈ R. Proposition 4.3.7 then establishes the existence of a
unique y : [t0,∞) → B(R)m that satisfies (4.14). Lemma 4.3.8 then implies
that x : [t0,∞) → R, as defined in (4.21), is a solution to (4.20). All
that remains is to establish the uniqueness of this solution. Suppose that
x2 : [t0,∞)→ R is also a solution to (4.20). Then, by definition, it satisfies
the integral equation

∀t ≥ t0, x2(t) =

∫ t

t0

u(x2(τ)) + d(τ) + x0.

Let y2(t) := H>x2(t). Lemma 4.3.4 implies that y2(t) is also a solution to
(4.14). Since this solution is unique, y2(t) = y(t) for all t ≥ t0. Now applying
Lemma 4.3.1,

∀t ≥ t0, x2(t) =

∫ t

t0

Hv(H>x2(τ)) + d(τ) + x0 (4.25)

=

∫ t

t0

Hv(y2(τ)) + d(τ) + x0 (4.26)

=

∫ t

t0

Hv(y(τ)) + d(τ) + x0 (4.27)

= x(t), (4.28)

by (4.21). Furthermore, since there exists r < R such that y2(t) = y(t) ∈
B(r)m for all t ≥ t0, (4.11) implies x2(t) = x(t) ∈ Rε for all t ≥ t0, where
ε = R− r.
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Not only does this guarantee that connectivity is preserved, but that it can
also be achieved with a bounded control signal.

Corollary 4.3.10 (Bounded control effort). Under the dynamics (4.20),
u(x(t)) is bounded for all t ≥ t0.

Proof. This follows from Corollary 4.3.3.

4.4 Numerical simulation

We now present a numerical simulation of four single-integrator agents, choos-
ing E0 to be a path graph. The edge-potentials are designed as follows:

∀k ∈ N3, wk(s) = w(s) :=

0, s ∈ [0, δ2]
(s− δ2)2

(s−R2)2
, s ∈ (δ2, R2)

.

Agent i is subject to the disturbance

di(t, xi) := U sat[−xi + p(t) + ri(t)],

where sat : Rn → Rn,

sat(x) :=
x

max{‖x‖, 1}
,

both p : R → Rn, ri : R → Rn are piecewise constant, and U = 1000.
This is an additional control term that directs all agents into a time-varying
formation about the point p(t) ∈ Rn. Specifically, agent i is displaced ri(t) ∈
Rn from p(t). Note that control law proposed in Section 2.6 takes this form.
Choosing δ = 20 m and R = 30 m, the edge lengths are plotted with and
without imposing the control law (4.3) in Figure 4.1.
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Chapter 5

Online Gradient Descent

“We seek him here, we seek him there,
Those Frenchies seek him everywhere.
Is he in heaven? — Is he in hell,
That demmed, elusive Pimpernel?”

The Scarlet Pimpernel
Baroness Emmuska Orczy

This chapter considers optimisation problems with cost functions and con-
straints that change discretely with time1. We focus on obtaining perfor-
mance bounds for online projected gradient descent iterations, when applied
to different classes of cost functions. We begin in Section 5.1 with a brief
review of the relevant literature on time-varying optimisation. The problem
and its basic assumptions are then stated precisely in Section 5.2. Section
5.3 commences by considering general unconstrained nonlinear cost func-
tions. The PL inequality is then invoked to obtain sub-optimality bounds
in Section 5.3.1. Strongly convex cost functions are assumed in Section 5.4,
which also incorporates time-varying convex constraints. Error and sub-
optimality bounds are both derived, and Section 5.4.3 in particular tackles
issues relating to constraints. Finally, two numerical examples are provided
in Section 5.5.

1Material from Sections 1.4, 5.1, 5.2, 5.4, 5.5, 7.4 and Appendix D.1 has been accepted
for publication in the proceedings of the 57th IEEE Conference on Decision and Control
(CDC 2018), under the title ‘Numerical Optimisation of Time-Varying Strongly Convex
Functions Subject to Time-Varying Constraints’.
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5.1 Related works

Gradient descent on a sequence of smooth, strongly convex functions is in-
vestigated in [89], with bounds on tracking error derived for unconstrained
problems. Error bounds are also presented for cost functions that vary in
continuous time, with the gradient descent iterates replaced by a gradient-
based control law. A general framework for time-varying convex optimisation
problems (with time-varying constraints) is proposed in [29], based on the
theory of averaged operators. The authors develop error bounds on a vari-
ant of the Mann-Krasnosel’skii iterations with time-varying operators. These
bounds are then used to prove the convergence of a variety of ‘running’ meth-
ods, including projected gradient descent, proximal-point, forward-backward
splitting, dual ascent, dual decomposition, and ADMM.

Our own work on strongly convex costs extends the projected gradient de-
scent results in [89] and [29] by exploring the consequences of time-varying
constraints in greater detail. In particular, the tracking error bounds for gra-
dient descent in [29] are stated under slightly different assumptions to [89],
which requires the difference between consecutive cost function gradients to
be bounded over the whole of Rn. The latter is quite restrictive, given that
strong convexity and an unconstrained domain are both assumed. In [29],
a bounded distance between consecutive optimisers is assumed instead, with
the results remaining valid under time-varying constraints. While this is
more general, in practice it can be difficult to establish a useful bound on the
distance between consecutive optimisers when time-varying constraints are
involved (e.g. [90]). In Section 5.4, we derive such bounds under appropri-
ate restrictions on the change between consecutive constraints. In addition,
further conditions are stated which guarantee finite-time feasibility. We also
present sub-optimality bounds, along with a more detailed analysis of the
error than is available those works.

Time-varying convex optimisation problems are studied by the machine learn-
ing community in the context of Online Convex Optimisation (OCO) [91,92].
OCO frames the problem as a game, in which the iterates are actions selected
by a player. In response to each action, an adversary selects a cost-function,
which determines the cost of that action. In contrast to the aforementioned
works, OCO is concerned with minimising the integrated cost rather than
the asymptotic cost. Algorithmic performance is evaluated in terms of the
regret, defined as the integrated difference between the observed cost and
the cost at the best fixed decision variable. Dynamic regret is a general-
isation which compares the observed cost with the instantaneous optimal
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cost. OCO results are typically presented in terms of regret bounds, the goal
being to achieve sub-linear regret. Dynamic regret is more relevant to the
wider literature and to our own work, because it directly integrates the sub-
optimality. Dynamic regret bounds for projected gradient descent are derived
in [93] under the assumptions of strongly convex cost functions, and fixed,
compact constraints. Compact constraints are a standard assumption in the
OCO literature that is not required in more general formulations. Special
cases of time-varying constraints are considered in [94], along with possibly
non-smooth cost functions, however only static regret bounds are presented.
In contrast, the work of Chapter 5 considers general time-varying (convex)
constraints that need not be compact.

We now mention some literature on time-varying optimisation that consid-
ers a different class of iterations to projected gradient descent. In particu-
lar, [95–97] focus on Newton-type methods, with [97] discussing optimisation
problems on manifolds with changing co-ordinate maps. Generalized equa-
tions are used in [98] to develop an augmented-Lagrangian method. Several
other works have studied time-varying cost functions in the context of dis-
tributed optimisation over a network. The distributed structure of the solu-
tions precludes the use of straightforward gradient descent. Of these, [99,100]
both treat the entire problem in continuous time, focusing on quadratic costs
and deriving control laws which track the optimum. Others present itera-
tive solutions using a variety of methods such as consensus-based algorithms
in [101, 102], and distributed gradient descent in [103]. Duality is exploited
by [24,25,104] and [105], which develops online ADMM.

5.2 Problem formulation

We will work with a family of continuous functions

F := {fk : Rn → R | k ∈ N0}.

Let X := {Xk ⊂ Rn | k ∈ N0} be a family of closed, non-empty sets, which
captures possible time-varying constraints. We are interested in generating
solutions to the following sequence of optimisation problems

min
x∈Xk

fk(x), (5.1)

using iterates of the form
xk+1 = Gk(xk), (5.2)
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where the operator Gk : Rn → Rn is restricted to using first order information
and knowledge of the current feasible set Xk. This formulation reduces to
a standard time-invariant optimisation problem when F = {f} and X =
{X}.

Our analysis will rely on the following assumptions.

Assumption 5.1 (Well-posedness). For every f ∈ F , the set of minima
arg min{f(x) | x ∈ Rn} is non-empty.

Accordingly, define

f ?k := min{f(x) | x ∈ Rn},

and let

φk := fk(xk)− f ?k (5.3)

denote the level of sub-optimality.

Assumption 5.2 (Smoothness). Every f ∈ F is twice continuously differ-
entiable, and

∃L > 0, ∀f ∈ F , ∀x, y ∈ Rn, ‖∇f(x)−∇f(y)‖≤ L‖x− y‖.

Further assumptions will be made as required.

5.3 Nonlinear unconstrained problems

We begin by considering smooth, non-convex cost functions, and restrict
attention to unconstrained problems, in which X = {Rn}. In particular, we
examine iterates of the form (5.2), where

Gk(x) := x− αkpk,

and pk ∈ Rn is a descent direction; that is, ∇fk(x)>pk < 0.

Zoutendijk’s Theorem [30, Theorem 3.2] is a well-known classical result that
relies on the Wolfe Conditions to establish the convergence of line-search
methods to stationary points of a non-linear cost-function. The Wolfe Con-
ditions [30, Section 3.1] place restrictions on the step size αk to guarantee
both sufficient decrease in cost and sufficient progress with each step. In
order to extend Zoutendijk’s theorem to time-varying problems, we restrict
the change between consecutive cost functions as follows.
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Assumption 5.3 (Bounded increase in cost). For the family F , there exists
δ0 ≥ 0 such that

∀k, ∀x ∈ Rn, fk+1(x)− fk(x) ≤ δ0.

Theorem 5.3.1 (Modified Zoutendijk). Let F satisfy Assumptions 5.1 - 5.3.
Let x0 ∈ Rn, and consider iterations of the form

xk+1 = xk + αkpk,

where αk > 0 and pk ∈ Rn are chosen such that

∀k, p>k∇f(xk) < 0 (5.4)

∃c1 ∈ (0, 1), ∀k, fk(xk+1) ≤ fk(xk) + c1αk∇fk(xk)>pk (5.5)

∃c2 ∈ (c1, 1), ∀k, ∇fk(xk+1)>pk ≥ c2∇fk(xk)>pk. (5.6)

Then,

lim
N→∞

1

N

N∑
k=1

‖∇fk(xk)‖2cos2 θk ≤
L

C
(δ0 + ∆) , (5.7)

where θk := arccos
(
∇fk(xk)>pk
‖∇fk(xk)‖‖pk‖

)
, C := c1(1− c2) and

∆ := lim inf
k→∞

f ?0 − f ?k
k

. (5.8)

Proof. Assumption 5.2 and (5.4) - (5.6) guarantee the hypotheses of [30,
Theorem 3.2] are satisfied for any fixed fk. Applying a single iteration yields

fk(xk+1) ≤ fk(xk)− C
L

cos2 θk‖∇fk(xk)‖2,

which is derived in the proof of [30, Theorem 3.2]. Assumption 5.3 then
implies

fk+1(xk+1) ≤ fk(xk)− C
L

cos2 θk‖∇fk(xk)‖2+δ0.

Applying this result recursively, we obtain

fN(xN+1) ≤ f0(x0)−
N∑
k=0

C
L

cos2 θk‖∇fk(xk)‖2+Nδ0.

This is equivalent to

0 ≤ φN+1 = fN(xN+1)− f ?N+1

≤ f0(x0)− f ?0 −
N∑
k=0

C
L

cos2 θk‖∇fk(xk)‖2+Nδ0 + f ?0 − f ?N+1,
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which then yields

1

N

N∑
k=0

cos2 θk‖∇fk(xk)‖2≤ L

C

(
φ0

N
+ δ0 +

f ?0 − f ?N+1

N

)
.

Taking the limit inferior of both sides as N →∞ yields the result.

Remark 5.3.1. Conditions (5.5) - (5.6) are the Wolfe conditions, required to
hold with the same constants c1, c2 for every f ∈ F . For an arbitrary family
F , it is not a-priori clear that there exist choices of αk, c1, c2 that satisfy
(5.5) - (5.6). It is shown in Appendix D.2 that this existence is guaranteed
for strongly convex cost functions when pk = −∇fk(xk).
Remark 5.3.2. The parameter ∆ in (5.8) can be thought of as the average
reduction in the optimal cost per iteration. It is possible for ∆ < 0, which
occurs if some subsequence of the f ?k increases linearly. Note that if F is
uniformly bounded below, then ∆ = 0.

When applying Theorem 5.3.1 to gradient descent, (5.7) bounds the mean
square gradient magnitude. This leads us to the following asymptotic result.

Proposition 5.3.2. Let the hypotheses of Lemma 5.3.1 be satisfied. Choos-
ing pk = −∇fk(xk) implies

lim inf
k→∞

‖∇fk(xk)‖2 ≤ (δ0 + ∆)L

C
. (5.9)

Proof. Choosing pk = −∇fk(xk) implies cos2 θk = 1. Equation (5.7) then
yields

lim
N→∞

1

N

N∑
k=1

‖∇fk(xk)‖2≤ (δ0 + ∆)L

C
=: u. (5.10)

To obtain a contradiction, suppose l := lim infk→∞‖∇fk(xk)‖2> u and let
ε := l−u

2
> 0. Thus u+ ε < l, and therefore

∃K ∈ N, ∀k > K, ‖∇fk(xk)‖2> u+ ε.

Thus for any N > K,

1

N

N∑
k=1

‖∇fk(xk)‖2>
1

N

K∑
k=1

‖∇fk(xk)‖2+
(N −K)

N
(u+ ε) .

Taking N →∞ on both sides,

lim
N→∞

1

N

N∑
k=1

‖∇fk(xk)‖2> u+ ε,
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which contradicts (5.10).

Remark 5.3.3. Proposition 5.3.2 guarantees the gradient sequence will return

infinitely often to any ball of radius larger than
√

(δ0+∆)L
C

, centred at the
origin.

5.3.1 PL cost functions

We now restrict attention to families of functions that satisfy the PL inequal-
ity. We refer to such functions as PL functions.

Assumption 5.4 (Polyak- Lojasiewicz). There exists µ > 0 such that for all
f ∈ F ,

∀x ∈ Rn,
1

2
‖∇f(x)‖2≥ µ(f(x)− f ?), (5.11)

where f ∗ = min{f(x) | x ∈ Rn}.

Remark 5.3.4. If a function satisfies (5.11), then all its stationary points are
global minima. That is, the PL inequality implies invexity.

Note that in Lemma D.3, it is shown that for sufficiently smooth functions,
the gradient Lipschitz constant L is an upper bound for µ. Clearly, if the PL
inequality is satisfied, Proposition 5.3.2 leads directly to limit inferior bounds
on sub-optimality for online gradient descent.

Corollary 5.3.3. Let the hypothesis of Proposition 5.3.2 be satisfied, along
with Assumption 5.4. Then

lim inf
k→∞

φk ≤
(δ0 + ∆)L

2µC
.

Further analysis allows us to obtain limit superior sub-optimality bounds as
well.

Lemma 5.3.4. Let F satisfy Assumptions 5.1 - 5.4. Let x0 ∈ Rn, and
consider iterations of the form

xk+1 = xk − αk∇fk(xk), (5.12)

where 0 < αk ≤ 2
L

for all k ∈ N0. Then,

∀k ∈ N0, φk+1 ≤ (1− ηk)φk + δ0 + f ?k − f ?k+1,

where ηk := αkµ
(
1− αkL

2

)
∈ (0, 1

2
].
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Proof. By Taylor’s Theorem,

fk(xk+1)− fk(xk) ≤ ∇fk(xk)>(xk+1 − xk) +
L

2
‖xk+1 − xk‖2

= ∇fk(xk)>(−αk∇fk(xk)) +
α2
kL

2
‖∇fk(xk)‖2

= −αk
(

1− αkL

2

)
‖∇fk(xk)‖2

≤ −αkµ
(

1− αkL

2

)
(fk(xk)− f ?k )

= ηk(f
?
k − fk(xk)).

Rearranging this, we obtain

fk(xk+1)− f ?k ≤ (1− ηk)(fk(xk)− f ?k ).

Since µ ≤ L, note that

0 < ηk ≤ αkL(1− αkL
2

) ≤ 1
2
.

Now observe

fk+1(xk+1)− f ?k+1 = [fk+1(xk+1)− fk(xk+1)] + [fk(xk+1)− f ?k ] + [f ?k − f ?k+1]

≤ δ0 + (1− ηk)[fk(xk)− f ?k ] + f ?k − f ?k+1.

Corollary 5.3.5. The choice of step-size that maximises ηk is αk = 1
L

, which
yields ηk = µ

2L
.

We now impose an additional assumption, which limits the decrease between
consecutive optimal values.

Assumption 5.5. For the family F , there exists δ? ≥ 0 such that

∀k ∈ N0, f
?
k − f ?k+1 ≤ δ?.

Note this assumption implies ∆ ≤ δ?, where ∆ is defined in (5.8). We use
this to obtain a stronger result than Corollary 5.3.3.

Proposition 5.3.6. Let F satisfy Assumptions 5.1 - 5.5. Let x0 ∈ Rn, and
consider iterations of the form

xk+1 = xk −
1

L
∇fk(xk). (5.13)

Then,

lim sup
k→∞

φk ≤
2(δ0 + δ?)L

µ
.
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Proof. Lemma 5.3.4 and Corollary 5.3.5 imply

∀k ∈ N0, φk+1 ≤ (1− µ
2L

)φk + δ0 + δ?,

which yields the result.

Remark 5.3.5. The definition of C in Lemma 5.3.1 implies that C < 1
4
. Thus,

(δ0 + δ?)L

2µC
>

2(δ0 + δ?)L

µ
.

The limit inferior bound in Corollary 5.3.3 is therefore made redundant by
the limit superior bound in Proposition 5.3.6 under Assumption 5.5.

5.4 Strongly convex problems

We now turn attention to families of strongly convex functions. The ad-
ditional structure this affords allows us to obtain stronger bounds, and to
address time-varying convex constraints. Accordingly, we make the follow-
ing assumptions.

Assumption 5.6 (Uniform strong convexity). There exists σ ∈ (0, L] such
that

∀f ∈ F , ∀x ∈ Rn, ∇2f(x) � σI.

Assumption 5.7 (Convex constraints). Every X ∈ X is closed, convex and
non-empty.

Together, these assumptions guarantee the existence of a unique global min-
imiser, which we define as

x?k := arg min{fk(x) | x ∈ Xk}.
Furthermore, any continuously differentiable, σ-strongly convex function sat-
isfies the PL inequality with µ = σ [106, Lemma 1.3]. Thus, Assumptions
5.6 and 5.7 make Assumptions 5.1 and 5.4 redundant. For the remainder
of this chapter, we employ online projected gradient descent to deal with
time-varying constraints. This pertains to a specific choice of Gk that will be
defined in the next subsection. In addition to making stronger assumptions
and incorporating constraints, we also place different restrictions on the vari-
ation between cost functions. Specifically, instead of bounding the increase
in cost, we bound the distance between consecutive global minimisers to ob-
tain bounds on tracking error. We also show in Section 5.4.3 that the shift in
minimisers can in turn be bounded by the change between consecutive cost
function gradients.
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5.4.1 Error bounds

Let PX : Rn → X,

PX(y) := arg min
x∈X

‖x− y‖2,

denote the projection operator, where X ⊂ Rn is a closed, convex set. The
Projection Theorem guarantees the existence and uniqueness of PX(y). In on-
line projected gradient descent, iterates evolve according to (5.2), where

Gk(x) := PXk (x− αk∇fk(x)) , (5.14)

and αk > 0 is a sequence of step sizes.

We will consider the evolution of the tracking error ek := ‖xk−x?k‖, and the
distance

ēk := ‖xk+1 − x?k‖,

which we refer to as the estimation error, because xk+1 can be considered
an estimate of x?k using all the information available up to time k. In [107,
Proposition 6.1.8], it is established that, under Assumptions 5.2 – 5.7, Gk is
a contraction map for αk <

2
L

. Specifically,

∀x, y ∈ Rn, ‖Gk(x)−Gk(y)‖≤ ρk‖x− y‖, (5.15)

where

ρk := max{|1− αkL|, |1− αkσ|}. (5.16)

Given the sequence αk, we will also find it convenient to define

ρ := sup{ρk | k ∈ N0}.

It is well known that x?k is a fixed point of Gk, and we present a simple proof
of this below.

Lemma 5.4.1 (Fixed point). Let f : Rn → R be convex and continuously
differentiable. Let X ⊂ Rn be closed, convex and non-empty. Let α > 0, and
define

G(x) := PX(x− α∇f(x)).

Then, G(x?) = x? for any x? ∈ arg min{f(x) | x ∈ X}.

Proof. By definition of x?,

∀x ∈ X, ∇f(x?)>(x− x?) ≥ 0. (5.17)
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Now the Projection Theorem [108, Theorem 1 of Section 3.12] implies

∀x ∈ X, [x? − α∇f(x?)−G(x?)]> [x−G(x?)] ≤ 0.

Substituting x = x? ∈ X into the above yields

‖x? −G(x?)‖2+α∇f(x?)>[G(x?)− x?] ≤ 0.

Referring to (5.17), both terms on the LHS are non-negative, and therefore
both must vanish.

Substituting x = xk and y = x?k into (5.15) then yields the inequality

ēk ≤ ρkek, (5.18)

which we use to bound the tracking error evolution. For notational conve-
nience, define

∏N−1
j=N ρj := 1 for any N ∈ N.

Theorem 5.4.2 (Tracking error dynamics). Let F , X satisfy Assumptions
5.2, 5.6 and 5.7. Let x0 ∈ Rn, and consider iterations of the form

xk+1 = PXk (xk − αk∇fk(xk)) , (5.19)

where 0 < αk <
2
L

for all k. Then

∀k ∈ N, ek+1 ≤ ρkek + ‖x?k+1 − x?k‖. (5.20)

Proof. Observe that

‖xk+1 − x?k+1‖ = ‖xk+1 − x?k + x?k − x?k+1‖
≤ ‖xk+1 − x?k‖+‖x?k − x?k+1‖
≤ ρk‖xk − x?k‖+‖x?k − x?k+1‖, (5.21)

by application of (5.18).

Corollary 5.4.3. For all N ∈ N,

eN ≤ e0

N−1∏
j=0

ρj +
N−1∑
k=0

‖x?k+1 − x?k‖
N−1∏
j=k+1

ρj. (5.22)

Proof. Treating (5.21) as a dynamical system, we obtain

∀N ∈ N, eN ≤ Φ(N, 0)e0 +
N−1∑
k=0

Φ(N, k + 1)‖x?k+1 − x?k‖,

with state-transition operator Φ(N, k) :=
∏N−1

j=k ρj.
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Remark 5.4.1. Theorem 5.4.2 reveals the tracking error is bounded by a
discrete time dynamical system, where the shift in minimisers behaves as a
disturbance input. Corollary 5.4.3 presents a closed-form expression for this
bound.

If the shift in minimizers (i.e., the disturbance input) is bounded, this leads
to a steady-state error bound under mild restrictions on the step sizes. We
make the following assumption accordingly.

Assumption 5.8 (Bounded shift in minimiser). For the pair (F ,X ), there
exists V ≥ 0 such that

∀k ∈ N0, ‖x?k+1 − x?k‖≤ V.

Applying this leads directly to an alternative proof of [29, Corollary 7.1 (b)].

Corollary 5.4.4. Let the hypotheses of Theorem 5.4.2 be satisfied, along with
Assumption 5.8. If there also exists ε > 0 and ᾱ < 2

L
such that ε ≤ αk ≤ ᾱ

for all k, then

lim sup
k→∞

ek ≤
V

1− ρ
(5.23)

lim sup
k→∞

ēk ≤
V ρ

1− ρ
. (5.24)

Proof. Referring to (5.16), ρk only attains its maximum value of 1 over αk ∈
[0, 2

L
] at αk = 0 and αk = 2

L
. Thus, for any ε ∈ (0, 2

L
) and ᾱ ∈ (ε, 2

L
),

restricting αk ∈ [ε, ᾱ] for all k implies

ρ ≤ sup
α∈[ε,ᾱ]

(
max{|1− αL|, |1− ασ|}

)
< 1.

Since ρ and V are upper bounds for ρk and ‖x?k+1 − x?k‖ respectively, we
obtain

eN ≤ ρNe0 + V
N−1∑
k=0

ρk

from (5.22). The result follows by taking limits, and applying (5.18).

Remark 5.4.2. When Assumption 5.8 is satisfied, it is clear from (5.20), (5.23)
and (5.24) that minimising ρk results in both the fastest rate of convergence
of the bound, and its steady-state value. Referring to (5.16), this corresponds
to a constant step size of αk = 2

σ+L
, which implies ρ = ρk = L−σ

L+σ
for all k.
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Corollary 5.4.5. If α = 2
σ+L

for all k, then

lim sup
k→∞

ek ≤
V (L+ σ)

2σ
(5.25)

lim sup
k→∞

ēk ≤
V (L− σ)

2σ
. (5.26)

Henceforth, the step size that minimizes some steady state bound on tracking
error or sub-optimality will be referred to as the optimal step size.

Speed constraints

In certain situations, it may be of practical interest to bound the distance
between consecutive iterates. For example, the xk may be used to generate a
sequence of way-points for a mobile robot, in which case bounds on ‖xk+1 −
xk‖ correspond to speed constraints on the robot. Assume X = {Rn}, and
suppose we require that

‖xk+1 − xk‖= αk‖∇fk(xk)‖≤ U (5.27)

for all k. It is then necessary that αk ≤ U
‖∇fk(xk)‖ , which may interfere with

the optimal choice of step-size. Now if ∇fk(xk) is unbounded, then αk → 0,
which violates the hypotheses of Corollary 5.4.4. However, if the gradient
sequence is bounded, then steady-state error bounds can be guaranteed while
still ensuring (5.27).

5.4.2 Unconstrained sub-optimality bounds

We now turn our attention to the level of sub-optimality. Recall the definition
of φk in (5.3), and similarly define

φ̄k := fk(xk+1)− fk(x?k). (5.28)

We refer to φ̄k as the predicted sub-optimality, which is relevant if the cost of
action xk is incurred before the function changes. Here, we consider bounds
on φk and φ̄k for unconstrained problems. The effect of constraints will be
considered in Section 5.4.4. The guarantee that ∇fk(x?k) = 0 when Xk = Rn

leads to the inequalities

φk ≤ L
2
e2
k (5.29)

φ̄k ≤ L
2
ē2
k, (5.30)
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which are proved in Lemma D.1 under Assumption 5.2. These allow our
tracking and estimation error bounds to be translated directly into sub-
optimality bounds. In particular, they yield the steady-state sub-optimality
bounds below.

Corollary 5.4.6 (Steady-state sub-optimality). Suppose X = {Rn} and F
satisfies Assumptions 5.2, 5.6 and 5.8. Let x0 ∈ Rn, and consider iterations
of the form

xk+1 = xk − α∇fk(xk), (5.31)

where α = 2
σ+L

. Then

lim sup
k→∞

φk ≤
LV 2(L+ σ)2

8σ2
(5.32)

lim sup
k→∞

φ̄k ≤
LV 2(L− σ)2

8σ2
. (5.33)

5.4.3 Issues specific to time-varying constraints

The error bounds of Section 5.4.1 apply equally well to constrained and un-
constrained problems. However, the presence of constraints does warrant
extra consideration. As yet, projected gradient descent does not guarantee
xk ∈ Xk, but only that xk ∈ Xk−1. Establishing bounds on the shift in op-
tima to satisfy Assumption 5.8 is also more challenging when constraints are
involved. Furthermore, the sub-optimality bounds of Section 5.4.2 no longer
apply because the constrained minima need not be stationary points. In this
section, we present sufficient conditions to address the issues of feasibility,
to bound the shift between minimisers, and to bound sub-optimality in the
presence of time-varying constraints.

Finite-time feasibility

While projected gradient descent only guarantees feasibility with respect
to the previous constraints, we can guarantee eventual feasibility under an
additional assumption.

Assumption 5.9 (Sufficient overlap). The pair (F ,X ) is such that

∀k ∈ N0, {x ∈ Xk | ‖x− x?k‖≤ R} ⊂ Xk+1,

for some R > V ρ
1−ρ .
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Proposition 5.4.7 (Finite-time feasibility). Let Assumptions 5.2, 5.6 – 5.9
be satisfied. Let x0 ∈ Rn, and consider iterations of the form

xk+1 = xk − α∇fk(xk),

where α ∈ (0, 2
L

). Then,

∃N ∈ N0, ∀k > N, xk ∈ Xk.

Proof. For any R > V ρ
1−ρ , (5.24) implies there exists N ∈ N0 such that ‖xk+1−

x?k‖≤ R for all k ≥ N . Use of the projection operator PXk in (5.19) ensures
xk+1 ∈ Xk, and Assumption 5.9 then guarantees xk+1 ∈ Xk+1 for all k ≥
N .

Bounds on the shift between minimisers

Here, we present alternative conditions that guarantee Assumption 5.8. These
conditions impose restrictions on changes in the cost function gradients and
the constraints between consecutive time steps.

Lemma 5.4.8. Let X1, X2 ⊂ Rn be closed and convex. Suppose f1, f2 : Rn →
R are twice continuously differentiable, and strongly convex with modulus
σ > 0. Furthermore, assume x?1, x

?
2 ∈ X1 ∩ X2, where x?i = arg min{fi(x) |

x ∈ Xi} for i = 1, 2. If

∃δ1 ≥ 0, ∀x ∈ X1 ∩X2, ‖∇f1(x)−∇f2(x)‖≤ δ1,

then ‖x?2 − x?1‖≤ δ1
σ
.

Proof. The result is trivial if x?1 = x?2, so assume v := x?2 − x?1 6= 0. Since
f1, f2 are convex,

∀i ∈ {1, 2}, ∀x ∈ Xi, ∇fi(x?i )>(x− x?i ) ≥ 0. (5.34)

Choosing i = 2 and x = x?1 ∈ X2, we obtain

∇f2(x?2)>v ≤ 0. (5.35)

By the mean value theorem,

∇f2(x?2) = ∇f2(x?1) +∇2f2(x?1 + Tv)v,
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for some T = diag(t1, ..., tn), where t1, ..., tn ∈ (0, 1). Substituting this result
into (5.35),

∇f2(x?1)>v + v>∇2f2(x?1 + Tv)v ≤ 0,

which implies

v>∇2f2(x?1 + Tv)v +∇f1(x?1)>v ≤ [∇f1(x?1)−∇f2(x?1)]> v. (5.36)

Now, choosing i = 1 and x = x?2 ∈ X1, (5.34) also implies ∇f1(x?1)>v ≥ 0.
Thus, by strong convexity,

σ‖v‖2 ≤ v>∇2f2(x?1 + Tv)v

≤ v>∇2f2(x?1 + Tv)v +∇f1(x?1)>v.

Combining this with (5.36) then yields

σ‖v‖2≤ [∇f1(x?1)−∇f2(x?1)]> v ≤ δ1‖v‖,

which implies the result.

This result is a direct generalisation of [89, (A.16)] to the constrained case.
We observe that two conditions are sufficient for bounding the shift in min-
imisers.

Assumption 5.10. There exists δ1 ≥ 0 for the pair (F ,X ), such that

∀k, ∀x ∈ Xk ∩Xk+1, ‖∇fk+1(x)−∇fk(x)‖≤ δ1.

Assumption 5.11. Let (F ,X ) be such that x?k−1, x
?
k+1 ∈ Xk.

Remark 5.4.3. In practice, it is difficult to guarantee x?k+1 ∈ Xk, however,
this follows automatically if Xk+1 ⊂ Xk.

Proposition 5.4.9. Let (F , X ) satisfy Assumptions 5.2, 5.6, 5.7, 5.10 and
5.11. Then Assumption 5.8 is also satisfied with V = δ1

σ
.

Proof. Assumption 5.11 is equivalent to x?k, x
?
k+1 ∈ Xk ∩Xk+1. The rest fol-

lows directly from Lemma 5.4.8.

Applying Corollary 5.4.5 then yields the result below.

Corollary 5.4.10. Let (F , X ) satisfy Assumptions 5.2, 5.6, 5.7, 5.10 and
5.11. Let x0 ∈ Rn, and consider iterations of the form

xk+1 = PXk

[
xk −

2

σ + L
∇fk(xk)

]
. (5.37)
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Then,

lim sup
k→∞

ek ≤
δ1(L+ σ)

2σ2
(5.38)

lim sup
k→∞

ēk ≤
δ1(L− σ)

2σ2
. (5.39)

Remark 5.4.4. Appendix C considers the special case of unconstrained strongly
convex quadratics subject to Assumption 5.10. In Proposition C.1, a differ-
ence equation that governs the evolution of xk−x?k exactly is derived for this
case. The resulting bound in Corollary C.2 is the same bound implied by
Theorem 5.4.2 and Proposition 5.4.9, which were derived under more general
assumptions. This suggests that the error bounds of Sections 5.4.1 and 5.4.3
cannot be improved.

5.4.4 Sub-optimality bounds under compact constraints

One way of obtaining sub-optimality bounds in the presence of constraints
is to impose a uniform Lipschitz property on the fk over Xk. Given strong
convexity, this implies the compactness of every feasible set.

Assumption 5.12 (Uniform Lipschitz cost). For the pair (F ,X ), there ex-
ists M > 0 such that

∀k ∈ N0, ∀x ∈ Xk, ‖∇fk(x)‖≤M.

Lemma D.2 then gives us the inequalities

φk ≤Mek (5.40)

φ̄k ≤Mēk. (5.41)

Corollary 5.4.11 (Steady-state sub-optimality). Let F , X satisfy Assump-
tions 5.2, 5.6 – 5.8 and 5.12. Let x0 ∈ Rn, and consider iterations of the
form

xk+1 = PXk (xk − α∇fk(xk)) , (5.42)

where α = 2
σ+L

. Then

lim sup
k→∞

φk ≤
MV (L+ σ)

2σ
. (5.43)

lim sup
k→∞

φ̄k ≤
MV (L− σ)

2σ
. (5.44)
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A different bound on predicted sub-optimality can be obtained, if we choose
step sizes αk ≤ 1

L
.

Proposition 5.4.12. Let F ,X satisfy Assumptions 5.2, 5.6, 5.7 and 5.12.
Let x0 ∈ Rn, and consider iterations of the form

xk+1 = PXk (xk − αk∇fk(xk)) ,

where αk ∈ (0, 1
L

] for all k ∈ N0. Then for all k,

φ̄k ≤M
√
M2α2

k + e2
k −M

2αk. (5.45)

Proof. First note that, since αk ∈ (0, 1
L

], [107, Proposition 6.1.6] implies [107,
(6.14)] is satisfied. Thus, all the hypotheses of [107, Proposition 6.1.7] are
satisfied. Applying [107, (6.17)],

ē2
k = ‖x?k − xk+1‖2

≤ ‖x?k − xk‖2−2αk(fk(xk+1)− fk(x?k))
= e2

k − 2αkφ̄k.

The inequality (5.41) then implies

φ̄2
k ≤M2(e2

k − 2αkφ̄k),

which can be rearranged to form

φ̄2
k + 2M2αkφ̄k −M2e2

k ≤ 0.

Taking the non-negative solutions to the above inequality yields the result.

Corollary 5.4.13. If Assumption 5.8 is also satisfied, and αk = α ∈ (0, 1
L

]
for all k, then

lim sup
k→∞

φ̄k ≤M

√
M2α2 +

V 2

(1− ρ)2
−M2α, (5.46)

where ρ = max{|1− αL|, |1− ασ|}.

Proof. This follows from Corollary 5.4.4.

Remark 5.4.5. The function
√
x2 + b− x is decreasing in x and increasing in

b for x, b > 0. Furthermore, ρ is decreasing in α for α ∈ (0, 1
L

]. This implies
the bound in (5.46) is decreasing in α, and the optimal choice of step size is
therefore α = 1

L
.
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Corollary 5.4.14. In particular, if α = 1
L

, then

lim sup
k→∞

φ̄k ≤M

√
M2

L2
+
V 2L2

σ2
− M2

L
. (5.47)

Remark 5.4.6. The bounds in (5.44) and (5.47) are different bounds, which
hold under different choices of step size. The minimum of the two depends
on the parameters M,σ, δ1, V and L.

5.5 Numerical experiments

The theoretical error and sub-optimality bounds obtained for strongly-convex
functions are illustrated here by means of two numerical examples. In par-
ticular, a non-trivial example with time-varying constraints is provided that
satisfies all the required assumptions.

5.5.1 Unconstrained example

In this example, we use a sequence of cost functions of the form

fk(x) = 1
2
(x− sk)>Qk(x− sk),

where Qk ∈ Rn×n and sk ∈ Rn are randomly generated and satisfy

σI � Qk = Q>k � LI (5.48)

‖sk+1 − sk‖≤ V, (5.49)

for all k. Results for parameter values n = 3, σ = 5, L = 10, V = 4 are
plotted in Figure 5.1, which compares actual performance with the bounds
dictated by (5.20), (5.18), (5.29) and (5.30), for a step size α = 2

σ+L
.

5.5.2 Constrained example

Here, we use a sequence of cost functions of the form

fk(x) = 1
2
x>Qx+ q>k x

where σI � Q = Q> � LI, and qk is randomly generated to satisfy

∀k, ‖qk+1 − q0‖≤ δ. (5.50)
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Figure 5.1: Unconstrained numerical example (α = 2
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The sequence of constraints is of the form

X0 = {x ∈ Rn | −u ≤ x ≤ u} (5.51)

∀k ∈ N, Xk = {x ∈ Rn | Akx ≤ bk, −u ≤ x ≤ u}, (5.52)

where u ∈ Rn defines the initial box constraints,

Ak+1 =

[
Ak
a>k+1

]
, bk+1 =

[
bk

‖ak+1‖2

]
, (5.53)

and ak+1 ∈ Rn is randomly generated based on the previous minimiser to
satisfy

‖ak+1‖≥ ‖x?k‖+R, (5.54)

for some R > 2ρδ
σ(1−ρ)

.
Claim. Assumptions 5.2, 5.6 – 5.12 hold.

Proof. Assumptions 5.2, 5.6 and 5.7 are obviously true. Note that (5.50)
implies Assumption 5.10 holds with constant δ1 = 2δ. Now (5.53) implies
x?k+1 ∈ Xk+1 ⊂ Xk, and observe that

Ak+1x
?
k =

[
Akx

?
k

a>k+1x
?
k

]
≤
[

bk
‖ak+1‖‖x?k‖

]
≤
[

bk
‖ak+1‖2

]
= bk+1,

by which x?k ∈ Xk+1. This implies Assumption 5.11 is satisfied. By Proposi-
tion 5.4.9, Assumption 5.8 is then satisfied with V = δ1

σ
. Let

y ∈ {x ∈ Xk | ‖x− x?k‖≤ R}.

Thus
‖y‖= ‖y − x?k + x?k‖≤ R + ‖x?k‖.

Since y ∈ Xk,

Ak+1y =

[
Aky
a>k+1y

]
≤
[

bk
‖ak+1‖(R + ‖x?k‖)

]
≤
[

bk
‖ak+1‖2

]
= bk+1,

by (5.54), and thus yk ∈ Xk+1. Noting that R > V ρ
1−ρ , this establishes As-

sumption 5.9. Finally, compactness of the initial box constraints guarantees

‖∇fk(x)‖= ‖Qxk + qk‖≤ L‖u‖+‖q0‖+δ := M,

thereby satisfying Assumption 5.12.



5.5. NUMERICAL EXPERIMENTS 89

Results for parameter values n = 2, σ = 6, L = 8, δ1 = 300, u = 150 ·
1 ∈ Rn, R = 33.34 are plotted in figure 5.2, which compares the actual
performance with the bounds dictated by (5.20), (5.18), (5.40), (5.41) and
(5.45), for a step size of α = 1

L
. An animation of this can be found at

https://youtu.be/DV7Jb5IQDms.

https://youtu.be/DV7Jb5IQDms


Chapter 6

Online Gradient-Free
Optimisation

‘Would you tell me, please, which way I
ought to go from here?’
‘That depends a good deal on where you
want to get to,’ said the Cat.
‘I don’t much care where—’ said Alice.
‘Then it doesn’t matter which way you go’

Alice’s Adventures in Wonderland
Lewis Carroll

This chapter continues our investigation of time-varying optimisation prob-
lems. In contrast to Chapter 5, we now focus on iterative algorithms that
do not require full gradient information about cost function. In particular,
the methods and analysis of Nesterov in [35] are adapted to time-varying
problems. Note that while [35] obtains sub-optimality bounds in expecta-
tion, we derive bounds on the expected tracking error, focusing primarily on
unconstrained problems. In Section 6.2 we assume access to the cost func-
tion directional derivatives, but in Section 6.3, only the cost function value is
utilised. The notation of Chapter 5 is maintained throughout. We commence
with a brief review of related works.

90
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6.1 Related works

See [109] for a comprehensive review of time-invariant gradient-free optimi-
sation. Here, we focus on reviewing the time-varying case, which has mainly
been considered by the machine learning community. Gradient free OCO has
been termed Bandit Convex Optimisation (BCO) because it corresponds to
a multi-armed bandit problem [110] with convex losses. Static regret bounds
for convex problems under fixed compact constraints are derived in [111,112],
for iterative methods that rely on multi-point estimates of the gradient. Note
that the two point version of this belongs to the class of iterations considered
in [35]. Methods relying on a single-point estimate of the directional deriva-
tive are also developed in [113] and [110, Section 6.2]. A similar approach is
applied to solve an energy pricing problem in [34]. The previous works all
prove bounds on static regret. In contrast, the tracking error bounds derived
herein relate more closely to dynamic regret, as explained in Section 5.1. Dy-
namic regret bounds for BCO are obtained in [33], which also incorporates
time-varying compact constraints. However, the primal-dual saddle point
iterations adopted in [33] do not belong to the class of iterations considered
in this chapter. Our analysis also addresses unconstrained problems, which
violate the compactness assumptions in BCO literature.

6.2 Directional derivative oracle

We start by assuming an oracle that returns the cost function directional
derivative in some direction u ∈ Rn. Define gk : Rn × Rn → Rn,

gk(x, u) := (∇fk(x)>u)u.

Observe that

∇fk(x)>gk(x, u) = ∇fk(x)>(∇fk(x)>u)u = (∇fk(x)>u)2,

and therefore −gk(x, u) is never an ascent direction of fk for any choice of
u ∈ Rn. Consider iterations of the form

xk+1 = xk − αkgk(xk, Uk), (6.1)

where each Uk ∼ N (0, In) is a i.i.d. random direction. It follows that the xk
are random variables obeying the Markov property.
Remark 6.2.1. Each xk+1 is conditionally independent of x0, ..., xk−1 given
xk.
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It is clear that each step, in general, proceeds in a descent direction. It is
further established in [35, (25)] that

∇fk(x) = E [gk(x, Uk)] , (6.2)

which implies that, on average, (6.1) mimics gradient descent. In this chap-
ter, we rely on Assumptions 5.2, 5.6, 5.7 and 5.8. Assumption 5.2 (smooth-
ness), in particular, yields the inequality

E[‖gk(x, Uk)‖2] ≤ (n+ 4)‖∇fk(x)‖2, (6.3)

also derived in [35, (32)]. Recall now the definitions of x?k, ek and ēk in Section
5.4. A useful property of general online line-search methods is now derived.
Although this chapter is primarily concerned with unconstrained problems,
constraints are included in the preliminary results below to set the stage for
future work.

Lemma 6.2.1. Let F , X satisfy Assumptions 5.2, 5.6 and 5.7, and let gk ∈
Rn. If

xk+1 = PXk [xk − αkgk],

where αk > 0, then

ē2
k ≤ e2

k − 2αkg
>
k (xk − x?k) + α2

k‖gk‖2.

Proof. Since the projection operator is non-expansive,

ē2
k := ‖xk+1 − x?k‖2

= ‖PXk(xk − αkgk)− x?k‖2

= ‖PXk(xk − αkgk)− PXk(x?k)‖2

≤ ‖xk − αkgk − x?k‖2

= [(xk − x?k)− αkgk]
> [(xk − x?k)− αkgk]

= e2
k − 2αkg

>
k (xk − x?k) + α2

k‖gk‖2.

Under Assumption 5.6 (strong convexity), each fk ∈ F satisfies the restricted
secant inequality [32, Appendix A]

∀x ∈ Xk, ∇fk(x)>(x− x?k) ≥
σ

2
‖x− x?k‖2, (6.4)

which will be exploited in the forthcoming analysis.
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Lemma 6.2.2. Let F , X satisfy Assumptions 5.2, 5.6 and 5.7. Furthermore,
let X = {X}. Choose x0 ∈ X, and let

xk+1 = PX [xk − αkgk(xk, Uk)],

where Uk ∼ N (0, In) and αk > 0. Then for all k ≥ 0,

E[ē2
k | xk] ≤ (1− αkσ)e2

k + α2
k(n+ 4)‖∇fk(xk)‖2.

Proof. First apply the result of Lemma 6.2.1. Then, taking conditional ex-
pectations,

E[ē2
k | xk] ≤ e2

k − 2αkE[gk(xk, Uk) | xk]>(xk − x?k) + α2
kE
[
‖gk(xk, Uk)‖2| xk

]
= e2

k − 2αk∇fk(xk)>(xk − x?k) + α2
kE
[
‖gk(xk, Uk)‖2| xk

]
≤ e2

k − 2αk∇fk(xk)>(xk − x?k) + α2
k(n+ 4)‖∇fk(xk)‖2,

having applied both (6.2) and (6.3). Noting that xk ∈ X and applying the
restricted secant inequality (RSI)

∇fk(xk)>(xk − x?k) ≥
σ

2
‖xk − x?k‖2,

we obtain

E[ē2
k | xk] ≤ e2

k − 2αk
σ

2
e2
k + α2

k(n+ 4)‖∇fk(xk)‖2

= (1− αkσ)e2
k + α2

k(n+ 4)‖∇fk(xk)‖2.

This relationship between tracking and estimation error is analogous to (5.18).
Assumption 5.8 further implies

ek+1 := ‖xk+1 − x?k+1‖
≤ ‖xk+1 − x?k‖+‖x?k − x?k+1‖
≤ ēk + V, (6.5)

and therefore

E[ek+1 | xk] ≤ E[ēk | xk] + V. (6.6)
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6.2.1 Unconstrained strongly convex problems

Gradient magnitude is bounded by tracking error in unconstrained problems
(see Lemma D.4):

‖∇fk(xk)‖≤ Lek, (6.7)

which leads us to the following result.

Theorem 6.2.3. Let X = {Rn}, and let F satisfy Assumptions 5.2, 5.6,
and 5.8. Choose x0 ∈ Rn, and consider the iterations

xk+1 = xk − αkgk(xk, Uk),

where Uk ∼ N (0, In) and αk > 0. Then for all k ≥ 0,

E[ek+1 | xk] ≤ ek

√
1− αkσ + (n+ 4)α2

kL
2 + V,

and therefore

E[ek+1] ≤ E[ek]
√

1− αkσ + (n+ 4)α2
kL

2 + V. (6.8)

Proof. Take the result of Lemma 6.2.2. Applying (6.7),

E[ē2
k | xk] ≤ (1− αkσ)e2

k + α2
k(n+ 4)L2e2

k

= (1− αkσ + (n+ 4)α2
kL

2)e2
k.

It follows from Jensen’s inequality that

E[ēk | xk] ≤
√

E[ē2
k | xk] ≤ ek

√
1− αkσ + (n+ 4)α2

kL
2,

and applying (6.6) we obtain

E[ek+1 | xk] ≤ ek

√
1− αkσ + (n+ 4)α2

kL
2 + V,

and (6.8) follows by taking expectations with respect to xk.

The optimal step-size (with respect to the steady-state bound on tracking
error) is

αk = arg min
α>0

[
1− ασ + (n+ 4)α2L2

]
=

σ

2(n+ 4)L2
. (6.9)
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Corollary 6.2.4. If αk = σ
2(n+4)L2 for all k, then

lim sup
k→∞

E[ek] ≤
V

1−
√

1− σ2

4(n+4)L2

.

Proof. Substituting the optimal step-size into (6.8),

E[ek+1] ≤ E[ek]

√
1− σ2

4(n+ 4)L2
+ V.

The result follows, noting that the coefficient of E[ek] is less than one.

6.3 Zeroth-order oracle

We now increase the difficulty of the problem by assuming an oracle that only
provides the cost function value. In such cases, the directional derivative can
still be approximated via finite differences. Define gη,k : Rn×Rn → Rn,

gη,k(x, u) :=
fk(x+ ηu)− fk(x)

η
u, (6.10)

and consider iterations of the form

xk+1 = xk − αkgη,k(xk, Uk), (6.11)

where Uk ∼ N (0, In). Observe that

gk(x, u) = lim
η→0

gη,k(x, u).

Hence, our analysis in the previous section corresponds to a limiting case of
(6.11). It is shown in [35, (21)] that

E[gη,k(x, Uk)] = ∇fη,k(x), (6.12)

where
fη,k(x) := E[fk(x+ ηUk)] (6.13)

represents a smoothed version of fk. The difference in gradients between the
original and the smoothed cost is bounded by [35, (27)]

‖∇fη,k(x)−∇fk(x)‖≤ η

2
L(n+ 3)

3
2 (6.14)
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under Assumption 5.2, which also implies the magnitude bound [35, (35)]

E[‖gη,k(x, Uk)‖2] ≤ η2

2
L2(n+ 6)3 + 2(n+ 4)‖∇f(x)‖2. (6.15)

Remark 6.3.1. The bound in (6.3) is not recovered by setting η = 0 in
(6.15). For this reason, performance under a zeroth-order oracle cannot yet
be guaranteed to approach the performance of a directional derivative oracle
as η → 0.

6.3.1 Unconstrained strongly convex problems

Here we derive an analogous result to Theorem 6.2.3. An additional Lemma
is first required.

Lemma 6.3.1. Let x, y, a, c ≥ 0, and b ∈ R. Then

x2 ≤ ay2 + by + c =⇒ x ≤
√
ay +D,

where D := max
{

b
2
√
a
,
√
c
}
.

Proof. The definition of D implies both 2
√
aD ≥ b and D2 ≥ c. Assuming

the LHS of the implication holds,

x2 ≤ ay2 + by + c

≤ ay2 + 2
√
aDy +D2

= (
√
ay +D)2.

Theorem 6.3.2. Let X = {Rn}, and let F satisfy Assumptions 5.2, 5.6,
and 5.8. Choose x0 ∈ Rn, and consider the iterations

xk+1 = xk − αkgη,k(xk, Uk),

where Uk ∼ N (0, In) and αk > 0. Then for all k ≥ 0,

E[ek+1 | xk] ≤ ek

√
cα2

k − σαk + 1 + aαk + V,

where a := ηL(n+6)3/2√
2

and c := 2L2(n+ 4). Therefore,

E[ek+1] ≤ E[ek]
√
cα2

k − σαk + 1 + aαk + V. (6.16)
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Proof. First, apply the result of Lemma 6.2.1 to obtain

ē2
k ≤ e2

k − 2αkgη,k(xk, Uk)
>(xk − x?k) + α2

k‖gη,k(xk, Uk)‖2.

Taking conditional expectations,

E[ē2
k | xk] ≤ e2

k−2αkE[gη,k(xk, Uk) | xk]>(xk−x?k)+α2
kE
[
‖gη,k(xk, Uk)‖2| xk

]
,

and then applying (6.12) and (6.15),

E[ē2
k | xk] ≤ e2

k−2αk∇fη,k(xk)>(xk−x?k)+2α2
k(n+4)‖∇fk(xk)‖2+

(ηαkL)2

2
(n+6)3.

(6.17)
Equations (6.4) and (6.14) then imply

∇fη,k(xk)>(xk − x?k) = [∇fη,k(xk)−∇fk(xk)]>(xk − x?k) +∇fk(xk)>(xk − x?k)
≥ ∇fk(xk)>(xk − x?k)− ‖∇fη,k(xk)−∇fk(xk)‖ek

≥ σ

2
e2
k −

ηL

2
(n+ 3)3/2ek.

Applying this result to (6.17), along with (6.7),

E[ē2
k | xk] ≤ e2

k − αkσe2
k + αkηL(n+ 3)3/2ek + 2α2

k(n+ 4)‖∇fk(xk)‖2+
(ηαkL)2

2
(n+ 6)3

≤ e2
k − αkσe2

k + αkηL(n+ 3)3/2ek + 2α2
kL

2(n+ 4)e2
k +

(ηαkL)2

2
(n+ 6)3

= [2L2(n+ 4)α2
k − σαk + 1]e2

k + [ηL(n+ 3)3/2αk]ek +
η2L2(n+ 6)3

2
α2
k.

(6.18)

Note that σ ≤ L < 2L
√

(n+ 4), and therefore

2L2(n+ 4)α2
k − σαk + 1 ≥ 1

2
(6.19)

for all αk. Applying Lemma 6.3.1 to (6.18),

E[ēk | xk] ≤
√

E[ē2
k | xk] ≤ ek

√
2L2(n+ 4)α2

k − σαk + 1 +Dk

where

Dk := ηαkLmax

{
(n+ 3)3/2

2
√

2L2(n+ 4)α2
k − σαk + 1

,
(n+ 6)3/2

√
2

}
.
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Now (6.19) implies

2
√

2L2(n+ 4)α2
k − σαk + 1 ≥ 2√

2
=
√

2,

which in turn implies that Dk = ηαkL(n+6)3/2√
2

. Finally applying (6.6),

E[ek+1 | xk] ≤ ek

√
2L2(n+ 4)α2

k − σαk + 1 +Dk + V.

Corollary 6.3.3. If αk ∈ (0, σ
c
) for all k, then

lim sup
k→∞

E[ek] ≤
aαk + V

1−
√
cα2

k − σαk + 1
.

Proof. If 0 < αk <
σ
c
, then cα2

k − σαk + 1 < 1.

It is straightforward but tedious to show that the optimal step size

αk = arg min
α∈(0,σ

c )

[
aα + V

1−
√
cα2 − σα + 1

]
(6.20)

satisfies
Aα2

k +Bαk + C = 0, (6.21)

where

A := (aσ + 2V c)2 − 4a2c

B := −2V (aσ2 + 2V cσ + 4ac)

C := (V σ + 2a)2 − 4a2.

The root of (6.21) in the interval (0, σ
c
) should therefore be chosen.

6.4 Numerical experiments

The results of numerical experiments are now presented. The sequence of cost
functions described in Section 5.5.1 is also adopted here, but with parameter
values σ = 1, L = 2, V = 0.5 and n = 3. In Figure 6.1, the performance
of the directional derivative iterations (6.1) is compared with the zeroth-
order oracle iterations (6.11), for different values of η. The bounds (6.8) and
(6.16) are also plotted. Observe that, although these bounds are only in
expectation, in practice they also bound the performance of individual trials.
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Figure 6.1: Algorithm tracking error (solid lines) compared with bounds in
expectation (dashed lines).
Optimal step-sizes (6.9) and (6.20) are used in each trial.



Chapter 7

Conclusion

My son, beware of anything beyond these.
Of making many books there is no end,
and much study is a weariness of the flesh.

Ecclesiastes 12:12

7.1 Source localisation

The first problem considered in this thesis is the localisation of a station-
ary source using binary measurements. The adopted estimation procedure
discretises the search region into a finite set of centres, and uses a Bayesian
update rule to maintain a posterior over these centres. A theoretical analysis
of this discrete posterior is presented. Conditions on the sequence of mea-
surement locations are derived which guarantee posterior consistency when
the source is coincident with a centre. The more general case of an arbitrar-
ily located source is studied by restricting attention to periodic measurement
location sequences. In this case, the algorithm asymptotically selects the in-
dices of centres which minimise KL divergence from the true measurement
probability distribution. The results described above hold for general, con-
tinuous probability-of-detection functions. Specific results are also derived
for range-dependent probability-of-detection functions.

The design of D-optimal measurement locations with respect to the Bayesian
Information Matrix is also formulated mathematically. Although obtain-
ing an analytic solution is intractable, a relaxed version of the problem is
proposed, which maximises the Fisher Information determinant about the

100
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expected source location. The FIM for a range-dependent probability of
detection is then derived, and a closed-form solution is established to a con-
strained version of the resulting optimisation problem. The effect of having
inexact knowledge of the probability-of-detection function is examined by
assuming knowledge of an envelope for the function. Under certain condi-
tions, the asymptotic support of the posterior is shown to be no smaller than
when the true probability-of-detection function coincides with the assumed
envelope. Finally, a numerical example is simulated to supplement the the-
oretical results, with a control strategy proposed to guide the agents into
the D-optimal measurement locations. The algorithm performance is also
compared with the ML approach of [9] and the projected gradient descent
algorithm in Chapter 5.

7.1.1 Future work

It would be useful to generalise the result of Chapter 2 to multi-bit mea-
surements. While consistency is not guaranteed when the search space is
partitioned into Voronoi cells, it is worth investigating whether other types
of partitions can provide guarantees. Similarly, there may be modifications to
the discrete Bayes recursion (2.3) that result in posterior convergence based
on Euclidean distance rather than KL divergence. The general properties
of Bayesian estimators with discretised parameter spaces and time-varying
measurement probability distributions can also be studied without restricting
attention to source localisation. Extending the estimation algorithm to deal
with multiple targets is of practical importance. The closed-loop properties
of the system under the control-law (2.65) should also be studied theoreti-
cally, and more advanced control strategies developed that are time-optimal
or guarantee consistency. The works [114, 115] may also offer insight into
designing iterative methods for optimising measurement locations with re-
spect to the conditional BIM. Finally, a distributed implementation of the
estimation algorithm should be considered, while incorporating the effects of
transmission delay, asynchronous updates, and packet drop.

7.2 Security

Chapter 3 analyses the susceptibility of quantized Bayesian estimators to
attack by an adversary. The adversary manipulates the measurements it
sends to the estimator, with the aim of inducing a desired posterior. We
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derive the set of achievable posteriors that can be induced in expectation,
for both the case where the adversary is the only source of information, and
for the case where the estimator has access to a truthful side-channel. The
adversarial probability distribution inducing the projection of any desired
posterior onto the set of achievable posteriors is posed as the solution of
a convex optimisation problem. Simulation results then apply this to the
source localisation problem of Chapter 2, and demonstrate that the adversary
can have a powerful effect on the estimator, even in the presence of a side-
channel.

7.2.1 Future work

Interesting extensions to the security analysis of Chapter 3 can be pursued by
relaxing the finiteness assumption on the parameter and observation spaces.
In particular, the asymptotic effect of an adversary should be considered, on
a Bayesian estimator receiving an infinite sequence of measurements. The
relationship between this and the the results of Chapter 3, which hold in
expectation, needs to be explored. Obtaining results for continuous obser-
vation or parameter spaces are also of theoretical interest. Furthermore, the
security analysis of Chapter 3 can be extended to Bayesian filtering by intro-
ducing a dynamic model for the state. Combining techniques from Chapters
2 and 3 in the context of source localisation, it should be possible to choose
measurement locations that provide maximum security to the estimator by
restricting the set of posteriors that can be induced by an adversary.

7.3 Connectivity preservation

Chapter 4 treats the design of decentralized control laws for guaranteeing
connectivity preservation within a team of mobile agents, in the presence of
piecewise continuous bounded disturbances. The goal is to maintain some
fixed desired network topology by ensuring the required inter-agent distances
are not exceeded. A potential function is defined based on the inter-agent
distances, and a gradient-following control law is adopted to minimise it.
Connectivity preservation guarantees are obtained when the desired topology
is a tree. The strategy is also shown to result in a bounded control signal.
Simulation results illustrate the performance of the controller on a team of
agents subject to disturbances that appear as additional control signals.
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7.3.1 Future work

The connectivity preservation guarantees in Chapter 4 hold when the desired
network topology is a tree. Future work should focus on extending this to
arbitrary network topologies, or on providing a counter-example involving a
cyclic graph. The  Lojasiewicz Inequalities [116, (0.1–0.2)] (not to be con-
fused with the PL inequality) may prove useful to this end. Modifying the
controller and extending the robustness guarantees to maintain connectiv-
ity through a time-varying network topology will provide more flexibility for
the agents to complete other tasks. Robust connectivity-preserving control
laws should also be designed for systems with more complicated dynamics,
such as unicycles. Non-holonomic dynamics in particular pose a challenge to
guaranteeing robustness, because the agents may not be able to move in the
required direction instantaneously. However, theoretical results may still be
possible if the set of allowable initial conditions is properly restricted.

7.4 Time-varying optimisation

The performance of online projected gradient descent on different classes of
time-varying optimisation problems is considered in Chapter 5. Limit infe-
rior bounds on gradient magnitude are first derived for unconstrained prob-
lems by modifying Zoutendijk’s theorem and restricting the increase between
consecutive cost functions. These are then strengthened to limit superior
bounds on sub-optimality when the PL inequality is also assumed. Attention
is then restricted to time-varying strongly convex cost functions subject to
time-varying convex constraints. Tracking and estimation errors are defined,
along with the analogous sub-optimality and predicted sub-optimality levels.
Bounds on each of these quantities are derived assuming a bounded shift
between consecutive minimisers. Conditions on the sequence of constraints
are then presented that guarantee finite-time feasibility, and the shift be-
tween minimisers is also bounded in terms of the increment in consecutive
cost functions gradients.

Chapter 6 adapts the analysis in [35] to time-varying optimisation problems.
Tracking error bounds for unconstrained strongly convex problems are first
derived for a randomised algorithm that relies on a directional derivative
oracle. The analysis is then extended to a gradient free algorithm, which uses
finite differences to approximate the directional derivative. The theoretical
results in both chapters are illustrated using numerical examples.
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7.4.1 Future work

Time-varying optimisation problems present researchers with boundless op-
portunities for placing bounds. Most of these remain unexplored, and a few
possible directions are offered here. Chapters 5 and 6 both assume that only
a single iteration is performed before new information arrives. While this is
the least computationally intensive approach, the number of iterations per
cost function need not, in general, be limited to one. The results herein can
be generalised to permit multiple iterations. It is then of practical interest
to calculate the number of iterations per cost function required to guarantee
some desired convergence rate or steady-state error. The results of Section
5.4 rely on strong convexity, however relaxing this to strict convexity, and
even convexity, will widen the scope for applications. Assumption 5.2 on
smoothness can also be relaxed. In particular, this allows the performance of
online sub-gradient methods on non-smooth convex functions to be analysed.
The relationship between time-varying optimisation problems and their du-
als offers potential for new fundamental results. Note that the dual of any
time-varying optimisation problem is convex, potentially non-smooth and
time-varying, but subject to fixed non-negativity constraints. This there-
fore constitutes an important class of problems for research. Assumptions
5.3, 5.8 and 5.10 all limit the changes between consecutive cost-functions. It
becomes important to identify conditions on the primal sequence that guar-
antee these assumptions are satisfied by the dual. The existing results can
also be extended by considering alternatives to these assumptions.

The limit inferior bound on gradient magnitude in Section 5.3 is rather weak.
Though Remark 5.3.3 suggests that it is not entirely useless, it remains to
be determined whether stronger limit superior bounds can be obtained for
general time-varying nonlinear cost functions. Distinct from convexity and
the PL inequality, self concordance [117] is another useful function property
that has not yet been exploited in the context of time-varying optimisation.
Another obvious area of extension is to consider other types of optimisation
algorithms, beyond just gradient descent and its zeroth-order analogue. The
work of [97] considers the effect of changing co-ordinate maps on the per-
formance of the Newton method for optimisation on manifolds. It would be
interesting to further explore the relationship between changing co-ordinate
maps and time-varying cost functions. This may lead to conditions under
which well-designed optimisation algorithms achieve zero steady-state track-
ing error.

Finally, only a portion of the results in [35] have been applied to time-varying
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problems in Chapter 6. Nesterov’s results for constrained and non-smooth
time-invariant problems remain to be extended. To this end, Lemma 6.2.1
and Lemma 6.2.2 provide a starting point for analysing constrained time-
varying problems. So far, the bounds for directional derivative and gradient-
free methods hold only in expectation. Further work is required to obtain
steady-state bounds that hold almost surely. The work of Duchi et al. [118] on
gradient-free stochastic time-invariant optimisation also offers useful analysis
that can be exploited for time-varying problems.
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[28] B. Gutjahr, L. Gröll, and M. Werling, “Lateral Vehicle Trajectory Opti-
mization Using Constrained Linear Time-Varying MPC,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 18, pp. 1586–1595,
June 2017.

[29] A. Simonetto, “Time-Varying Convex Optimization via Time-Varying
Averaged Operators,” arXiv:1704.07338 [math], Apr. 2017.

[30] J. Nocedal and S. J. Wright, Numerical Optimization. Springer series
in operations research and financial engineering, New York : Springer,
c2006., 2006.

[31] B. T. Polyak, “Gradient methods for the minimisation of functionals,”
USSR Computational Mathematics and Mathematical Physics, vol. 3,
pp. 864–878, Jan. 1963.

[32] H. Karimi, J. Nutini, and M. Schmidt, “Linear Convergence of Gradi-
ent and Proximal-Gradient Methods Under the Polyak-{\L}ojasiewicz
Condition,” arXiv:1608.04636 [cs, math, stat], Aug. 2016.



110 BIBLIOGRAPHY

[33] T. Chen and G. B. Giannakis, “Bandit Convex Optimization for Scal-
able and Dynamic IoT Management,” arXiv:1707.09060 [cs], July
2017.

[34] S. J. Kim and G. B. Giannakis, “An Online Convex Optimization Ap-
proach to Real-Time Energy Pricing for Demand Response,” IEEE
Transactions on Smart Grid, vol. 8, pp. 2784–2793, Nov. 2017.

[35] Y. Nesterov and V. Spokoiny, “Random Gradient-Free Minimization
of Convex Functions,” Foundations of Computational Mathematics,
vol. 17, pp. 527–566, Apr. 2017.

[36] D. D. Selvaratnam, I. Shames, D. V. Dimarogonas, J. H. Manton,
and B. Ristic, “Co-operative estimation for source localisation using
binary sensors,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pp. 1572–1577, Dec. 2017.

[37] B. Ristic, A. Gunatilaka, and Y. Wang, “Rao–Blackwell dimension
reduction applied to hazardous source parameter estimation,” Signal
Processing, vol. 132, pp. 177–182, Mar. 2017.

[38] J. Hu, L. Xie, K. Y. Lum, and J. Xu, “Multiagent Information Fusion
and Cooperative Control in Target Search,” IEEE Transactions on
Control Systems Technology, vol. 21, pp. 1223–1235, July 2013.

[39] M. Vemula, M. F. Bugallo, and P. M. Djuric, “Particle Filtering-Based
Target Tracking in Binary Sensor Networks Using Adaptive Thresh-
olds,” in 2007 2nd IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing, pp. 17–20, Dec. 2007.

[40] O. Ozdemir, R. Niu, and P. K. Varshney, “Adaptive local quantizer
design for tracking in a wireless sensor network,” in 2008 42nd Asilomar
Conference on Signals, Systems and Computers, pp. 1202–1206, Oct.
2008.

[41] A. Shoari and A. Seyedi, “Localization of an uncooperative target with
binary observations,” in 2010 IEEE 11th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC),
pp. 1–5, June 2010.

[42] R. Niu and P. K. Varshney, “Target Location Estimation in Sensor
Networks With Quantized Data,” IEEE Transactions on Signal Pro-
cessing, vol. 54, pp. 4519–4528, Dec. 2006.



BIBLIOGRAPHY 111

[43] J. K. Ghosh, M. Delampady, and T. Samanta, An Introduction to
Bayesian Analysis: Theory and Methods. Springer texts in statistics,
New York : Springer, c2006., 2006.

[44] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer Sci-
ence & Business Media, Dec. 2003.

[45] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hobo-
ken, N.J. : J. Wiley, 2005., 2005.

[46] W. Rudin, Principles of Mathematical Analysis. International series in
pure and applied mathematics, New York, McGraw-Hill [1964], 1964.

[47] A. B. Tsybakov, Introduction to Nonparametric Estimation. Springer
Series in Statistics, New York, NY: Springer New York, 2009.

[48] Y. Zheng, O. Ozdemir, R. Niu, and P. K. Varshney, “New Con-
ditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequen-
tial Bayesian Estimation,” IEEE Transactions on Signal Processing,
vol. 60, pp. 5549–5556, Oct. 2012.

[49] L. Zuo, R. Niu, and P. K. Varshney, “Conditional Posterior
Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Esti-
mation,” IEEE Transactions on Signal Processing, vol. 59, pp. 1–14,
Jan. 2011.

[50] H. T. Friis, “A Note on a Simple Transmission Formula,” Proceedings
of the IRE, vol. 34, pp. 254–256, May 1946.

[51] S. Marano, V. Matta, and Lang Tong, “Distributed Detection in the
Presence of Byzantine Attacks,” IEEE Transactions on Signal Process-
ing, vol. 57, pp. 16–29, Jan. 2009.

[52] K. Agrawal, A. Vempaty, H. Chen, and P. K. Varshney, “Target local-
ization in Wireless Sensor Networks with quantized data in the presence
of Byzantine attacks,” in 2011 Conference Record of the Forty Fifth
Asilomar Conference on Signals, Systems and Computers (ASILO-
MAR), pp. 1669–1673, Nov. 2011.

[53] A. Vempaty, O. Ozdemir, K. Agrawal, H. Chen, and P. K. Varshney,
“Localization in Wireless Sensor Networks: Byzantines and Mitiga-
tion Techniques,” IEEE Transactions on Signal Processing, vol. 61,
pp. 1495–1508, Mar. 2013.



112 BIBLIOGRAPHY

[54] V. S. S. Nadendla, Y. S. Han, and P. K. Varshney, “Distributed In-
ference With M-Ary Quantized Data in the Presence of Byzantine At-
tacks,” IEEE Transactions on Signal Processing, vol. 62, pp. 2681–
2695, May 2014.

[55] J. Zhang, R. S. Blum, X. Lu, and D. Conus, “Asymptotically Optimum
Distributed Estimation in the Presence of Attacks,” IEEE Transactions
on Signal Processing, vol. 63, pp. 1086–1101, Mar. 2015.

[56] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in
2009 47th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 911–918, Sept. 2009.

[57] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A se-
cure control framework for resource-limited adversaries,” Automatica,
vol. 51, pp. 135–148, Jan. 2015.

[58] H. Sandberg, S. Amin, and K. H. Johansson, “Cyberphysical Security
in Networked Control Systems: An Introduction to the Issue,” IEEE
Control Systems, vol. 35, pp. 20–23, Feb. 2015.
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Appendix A

Infinite products of random
variables

This section contains some results concerning the convergence of infinite
products of random variables, on which Chapter 2 relies.

Lemma A.1. Let (Wk)k∈N be a sequence of independent random variables
such that E[Wk] = 0 for all k. If the sequence is bounded, that is

∃M > 0 s.t. ∀k, |Wk|< M,

then

∀p > 1

2
, lim
n→∞

1

np

n∑
k=1

Wk = 0 a.s..

Proof. The sequence Wk is bounded, and therefore there exists C > 0 such
that Var[Xk] ≤ C for all k. Let p > 1

2
, and note that E [k−pWk] = 0 and

Var [k−pWk] ≤ k−2pC. This implies

∀n,
n∑
k=1

Var

[
Wk

kp

]
≤

n∑
k=1

C

k2p
.

Now 2p > 1, and therefore
∑∞

k=1 Var [k−pWk] < ∞ by [46, Theorem 3.28].
Applying [119, Theorem 12.2] yields

∞∑
k=1

Wk

kp
<∞ a.s.,

and Kroneckers’ Lemma [119, Lemma 12.7] then implies the result.
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Corollary A.2. Let (Xk)k∈N be a sequence of independent, bounded random
variables. Then

∀p > 1

2
, lim sup

n→∞

1

np

n∑
k=1

Xk = lim sup
n→∞

1

np

n∑
k=1

E[Xk] a.s..

Proof. Letting Wk := Xk − E[Xk], the result follows from Lemma A.1.

Lemma A.3. Let (Zk)k∈N be a sequence of independent random variables
for which there exist α, β > 0 such that Zk ∈ [α, β] for all k. If there exists
p > 1

2
such that

lim sup
n→∞

1

np

n∑
k=1

E[lnZk] < 0, (A.1)

then

lim
n→∞

n∏
k=1

Zk = 0 a.s.

Proof. The random variable lnZk ∈ [lnα, ln β] ⊂ (0,∞). For any p > 1
2
,

lim sup
n→∞

1

np
ln

(
n∏
k=1

Zk

)
= lim sup

n→∞

1

np

n∑
k=1

lnZk

= lim sup
n→∞

1

np

n∑
k=1

E[lnZk] a.s.

by Corollary A.2. Suppose (A.1) holds, and fix a realisation (Zk)k∈N for
which

c := lim sup
n→∞

1

np

n∑
k=1

E[lnZk] < 0.

This implies there exists N ∈ N such that 1
np

ln (
∏n

k=1 Zk) <
c
2
< 0 for all

n > N , and thus

∀n > N, ln

(
n∏
k=1

Zk

)
<
npc

2
< 0.

This in turn implies ln (
∏n

k=1 Zk)→ −∞ as n→∞, which yields the result.

Lemma A.4. Let (Zk)k∈N be a sequence of independent random variables
for which there exist α, β > 0 such that Zk ∈ [α, β] for all k. Let γn :=∑n

k=1 E [lnZk]. If
γn√
n
→ −∞, (A.2)
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then for any ε > 0, there exists K ∈ N such that

∀n > K, Pr

(
n∏
k=1

Zk ≥ ε

)
≤ exp

(
− 2 (ln ε− γn)2

n(ln β − lnα)2

)
. (A.3)

Proof. Let Xk := ln(Zk), and define Sn :=
∑n

k=1Xk. The Xk are indepen-
dent, and therefore

E[Sn] =
n∑
k=1

E [lnZk] = γn.

Note that
∏n

k=1 Zk = exp(Sn), and therefore(
n∏
k=1

Zk ≥ ε

)
⇐⇒ (Sn ≥ ln ε) ,

where ε > 0. Therefore for any ε > 0,

Pr

(
n∏
k=1

Zk ≥ ε

)
= Pr

(
Sn − γn

n
≥ ln ε− γn

n

)
. (A.4)

If (A.2) holds, then

∀ε > 0, ∃K ∈ N s.t. ∀n > K, γn < ln ε,

and therefore
ln ε− γn

n
> 0 for all n > K. Furthermore, Xk ∈ [ln(α), ln(β)]

for all k. We can therefore apply Hoeffding’s inequality [120, Theorem 2] for
all n ≥ K:

Pr

(
Sn − γn

n
≥ ln(ε)− γn

n

)
≤ exp

(
− 2(ln ε− γn)2

n(ln β − lnα)2

)
.

Combining this with (A.4) gives us (A.3).



Appendix B

Fisher Information

A general expression for the FIM in Chapter 2 is derived below, based on the
likelihood function g defined in (2.1). The log-likelihood gradient is given
by

∇s ln g(dk | s; ξk) =
∇sg(dk | s; ξk)

g(dk | s; ξk)

=

[
∇s`(s, ξk)

`(s, ξk)

]dk [ ∇s`(s, ξk)

`(s, ξk)− 1

]1−dk

=
∇s`(s, ξk)

(−1)1−dk [`(s, ξk)]
dk [1− `(s, ξk)]1−dk

,

and its Hessian,

∇2
s ln g(dk | s; ξk)

=
∂

∂s
[∇s ln g(dk | s; ξk)]

=

[
`(s, ξk)∇2

s`(s, ξk)−∇s`(s, ξk)∇>s `(s, ξk)
`(s, ξk)

2

]dk
·
[

[`(s, ξk)− 1]∇2
s`(s, ξk)−∇s`(s, ξk)∇>s `(s, ξk)

[1− `(s, ξk)]2

]1−dk

=
∇2

s`(s, ξk)

(−1)1−dk [`(s, ξk)]
dk [1− `(s, ξk)]1−dk

− ∇s`(s, ξk)∇s`(s, ξk)
>

[`(s, ξk)]
2dk [1− `(s, ξk)]2(1−dk)

.
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The FIM for a single reading is then

J(s; ξk) = −E
[
∇2

s ln g(dk | s; ξk)
]

= −
∑

d∈{0,1}

g(d | s; ξk)∇2
s ln g(d | s; ξk)

= −`(s, ξk)
[
`(s, ξk)∇2

s`(s, ξk)−∇s`(s, ξk)∇>s `(s, ξk)
`(s, ξk)

2

]
− [1− `(s, ξk)]

[
[`(s, ξk)− 1]∇2

s`(s, ξk)−∇s`(s, ξk)∇>s `(s, ξk)
[1− `(s, ξk)]2

]
=
∇s`(s, ξk)∇s`(s, ξk)

>

`(s, ξk)[1− `(s, ξk)]
.



Appendix C

Time-varying quadratics

Here we consider a special case of Section 5.4 involving unconstrained strongly
convex quadratic cost functions. Assume only first order changes over time.

Proposition C.1. Let X = {Rn}, and

fk(x) =
1

2
x>Qx+ q>k x, (C.1)

where Q = Q> � 0, and qk ∈ Rn for all k ≥ 0. Let x0 ∈ Rn, and consider
iterations of the form

xk+1 = xk − α∇fk(xk).

Then for all k,

xk+1 − x?k+1 = (I − αQ)(xk − x?k) +Q−1(qk+1 − qk).

Proof. The gradient ∇fk(x) = Qxk + qk. For the unconstrained problem,
this implies

x?k = −Q−1qk,

and therefore
qk = −Qx?k.

Applying the gradient descent iterations with constant step-size α > 0,

xk+1 = xk − α∇fk(xk)
= xk − α(Qxk + qk)

= xk − αQxk + αQx?k.
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This yields the relationship

xk+1 − x?k+1 = (I − αQ)xk + αQx?k − x?k+1

= (I − αQ)xk + αQx?k +Q−1qk+1

= (I − αQ)xk + αQx?k +Q−1qk+1 −Q−1qk +Q−1qk

= (I − αQ)xk + αQx?k +Q−1qk+1 −Q−1qk − x?k
= (I − αQ)xk + (αQ− I)x?k +Q−1(qk+1 − qk)
= (I − αQ)(xk − x?k) +Q−1(qk+1 − qk).

Let λ1 ≥ λ2 ≥ . . . ≥ λn > 0 denote the eigenvalues of Q. Since Q is unitarily
diagonalisable, it follows that

‖I − αQ‖= max{|1− αλi| | i ∈ Nn} = max{|1− αλ1|, |1− αλn|},

and ‖Q−1‖= 1
λn

. Now F consists of cost functions of the form (C.1), which
implies Assumptions 5.2 and 5.6 are satisfied with constants L = λ1 and
σ = λn respectively.

Corollary C.2. If ‖qk+1 − qk‖≤ δ1 for all k, then

ek+1 ≤ ρek +
δ1

σ
,

where ρ := max{|1− αL|, |1− ασ|}.

Observe that exactly the same bound follows Theorem 5.4.2 and Proposition
5.4.9.



Appendix D

Technical results

D.1 Real analysis

Lemma D.1. If f : Rn → R is twice continuously differentiable and satisfies

∃L > 0, ∀x, y ∈ Rn, ‖∇f(x)−∇f(y)‖≤ L‖x− y‖,

then for all x, x? ∈ Rn,

f(x)− f(x?) ≤ ‖∇f(x?)‖‖x− x?‖+1
2
L‖x− x?‖2.

Proof. Let e := x − x?. Then by Taylor’s theorem, there exists t ∈ (0, 1)
such that

f(x) = f(x?) +∇f(x?)>e+
1

2
e>∇2f(x? + te)e.

The result then follows.

Lemma D.2. Let f : Rn → R be continuously differentiable. Let X ⊂ Rn be
convex and non-empty. Then

∀x, x? ∈ X, f(x)− f(x?) ≤M‖x− x?‖,

where M := sup{‖∇f(x)‖| x ∈ X}.

Proof. By the mean value theorem, there exists t ∈ (0, 1) such that

f(x) = f(x?) +∇f(tx+ (1− t)x?)>(x− x?).
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Lemma D.3. Let f : Rn → R be twice continuously differentiable, and let
∇f be L-Lipschitz on Rn. Furthermore, suppose f attains a minimum value
f ?. If

∃µ > 0, ∀x ∈ Rn,
1

2
‖∇f(x)‖2≥ µ(f(x)− f ?),

then µ ≤ L.

Proof. Choose x ∈ Rn\arg min{f(y) | y ∈ Rn}, and define x′ := x− 1
L
∇f(x).

By Taylor’s Theorem,

f(x′) ≤ f(x)− 1

L
‖∇f(x)‖2+

1

2
‖ 1
L
∇f(x)‖2L

= f(x)− 1

2L
‖∇f(x)‖2.

Therefore

µ(f(x)− f ?) ≤ 1

2
‖∇f(x)‖2≤ L(f(x)− f(x′)),

which implies
µ

L
≤ f(x)− f(x′)

f(x)− f ?
≤ 1,

because f ? ≤ f(x′) by definition.

Lemma D.4. Let X ⊂ Rn be closed and convex. If f : Rn → R is continu-
ously differentiable and satisfies

∃L > 0, ∀x, y ∈ X, ‖∇f(x)−∇f(y)‖≤ L‖x− y‖,

then for any x? ∈ arg min{f(x) | x ∈ X} and x ∈ X,

|‖∇f(x?)‖−‖∇f(x)‖| ≤ L‖x− x?‖

Proof. The result follows directly from the reverse triangle inequality.

D.2 Wolfe condition guarantees

Lemma D.5 (Curvature Condition). Let f : Rn → R be continuously dif-
ferentiable, and strongly convex with modulus σ > 0. Let 0 < α < 1

σ
, x ∈ Rn

and p = −∇f(x). Then, any c2 ∈ (0, 1−ασ] satisfies the curvature condition

∇f(x+ αp)>p ≥ c2∇f(x)>p.
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Proof. By strong convexity of f , for any x, x′ ∈ Rn,

[∇f(x′)−∇f(x)]
>

(x′ − x) ≥ σ‖x′ − x‖2.

Letting x′ = x+ αp,

[∇f(x′)−∇f(x)]
>

(αp) ≥ σ‖αp‖2= α2σ‖p‖2.

If p = −∇f(x), this can be written as

[∇f(x′)−∇f(x)]
>
p ≥ −ασ∇f(x)>p,

which is equivalent to

∇f(x′)>p ≥ (1− ασ)∇f(x)>p.

Let α < 1
σ
. If c2 ∈ (0, 1− ασ], then 1− ασ ≥ c2, which implies

∇f(x′)>p ≥ c2∇f(x)>p,

as desired.

Lemma D.6 (Armijo Condition). Let f : Rn → R be twice continuously
differentiable, with a gradient ∇f that satisfies the Lipschitz condition

∃L > 0, ∀x, y ∈ Rn, ‖∇f(x)−∇f(y)‖≤ L‖x− y‖.

Let 0 < α < 2
L
, x ∈ Rn and p = −∇f(x). Then, any c1 ∈ (0, 1− αL

2
] satisfies

the Armijo condition

f(x+ αp) ≤ f(x) + c1α∇f(x)>p.

Proof. The result is obvious if ∇f(x) = 0. Assume, now, that ∇f(x) 6= 0.
Using Taylor’s theorem

∃t ∈ (0, 1), f(x+ αp) = f(x) + α∇f(x)>p+
α2

2
p>∇2f(x+ tαp)p.

Choose α ∈ (0, 2
L

) and c1 ∈ (0, 1− αL
2

], which implies

c1 − 1 +
αL

2
≤ 0. (D.1)
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Letting H := ∇2f(x+ tαp) and p = −∇f(x),

f(x+ αp) = f(x) + c1α∇f(x)>p+ (1− c1)α∇f(x)>p+
α2

2
p>Hp

= f(x) + c1α∇f(x)>p− (1− c1)α‖p‖2+
α2

2
‖p‖2p

>Hp

p>p

≤ f(x) + c1α∇f(x)>p− (1− c1)α‖p‖2+
α2

2
‖p‖2L

≤ f(x) + c1α∇f(x)>p+ α‖p‖2

(
c1 − 1 +

αL

2

)
≤ f(x) + c1α∇f(x)>p,

where the last step is obtained by applying (D.1).

Theorem D.7. Suppose f : Rn → R is twice continuously differentiable,
and satisfies

∀x ∈ Rn, σI � ∇2f(x) � LI,

for some σ, L > 0. Define ν := max{L
2
, σ} and let 0 < α < 1

ν
. Choose any

c1 ∈ I1 := (0, 1− αν) and c2 ∈ I2 := (c1, 1− ασ]. Then

I1, I2 6= ∅, c1 ∈ (0, 1), c2 ∈ (c1, 1).

Furthermore, for any x ∈ Rn and for p = −∇f(x),

f(x+ αp) ≤ f(x) + c1α∇f(x)>p (D.2)

∇f(x+ αp)>p ≥ c2∇f(x)>p. (D.3)

Proof. First note α < min{ 2
L
, 1
σ
}, and therefore the hypotheses of Lemma

D.5 and Lemma D.6 are satisfied. Furthermore, 0 < αν < 1 and therefore
I1 ⊂ (0, 1) is non-empty. Clearly I2 ⊂ (c1, 1). Since ν ≥ σ, it also holds that
c1 < 1 − αν ≤ 1 − ασ, and therefore I2 is also non-empty. Finally, Lemma
D.6 implies (D.2), and Lemma D.5 implies (D.3).

Remark D.2.1. Theorem D.7 implies that if F satisfies Assumptions 5.2 and
5.6, and αk = α < 1

ν
for all k, then there always exist c1, c2 that satisfy (5.5)

- (5.6).
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