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Abstract

ELECTRICITY markets face multiple challenges such as intermittent electricity gen-

eration, high levels of average prices, and price volatility. Moreover, future elec-

tricity generation is required to be environmentally friendly, reliable and affordable. This

thesis presents game-theoretic frameworks for addressing the aforementioned challenges

in electricity markets. In our simulations, we apply and evaluate our developed compet-

itive electricity market models to Australia’s National Electricity Market (NEM).

We extend an existing Cournot-based wholesale electricity market model by consid-

ering strategic storage players in addition to generation and transmission players. This

allows us to model the strategic behavior of storage players in future electricity markets,

which can significantly help to reduce the price volatility.

The problem of high levels of price volatility in electricity markets might be related to

the closure of base-load coal power plants or the fast growing expansion of wind power

generation. Using our Cournot-based model, we design a storage allocation framework

to find the optimal regional storage capacities to limit the price volatility in the market to

a certain level. The results show how the impacts of strategic and regulated storage firms

differ in reducing the price volatility in the market.

We next study the market power problem, which is one of the main contributors to

high levels of power prices and price volatility in electricity markets. We develop an

optimization model for allocating a fixed budget on regulated wind and storage capaci-

ties to increase the competition and reduce the weighted sum of average price and price

volatility in an electricity market. The results indicate that storage is more effective in

price volatility reduction than wind, whereas wind is more efficient in average price re-

duction.
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We then study the tax and subsidy policies which can lead to emission reduction

and reliability enhancement in electricity markets. We extend our developed Cournot-

based electricity market model as a long-term generation expansion model with an upper

bound on CO2 emission in the market. In addition to the future generation capacity port-

folio, this model proposes the carbon tax levels required to achieve the carbon abatement

target in the market.

The policies imposed in electricity markets for emission reduction targets may lead

to large investments on intermittent renewable energies. Designing a low carbon and re-

liable electricity market, we develop a long-term market expansion model with emission

reduction and dispatchable capacity constraints. The model is used to calculate the tax

and subsidy on CO2 emission and fast response dispatchable capacity, which can lead to

transition towards a green and reliable electricity market in Australia.

iv



Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Amin Masoumzadeh, June 2018

v





Preface

The outcomes of this thesis are published or under review for publication in the following

journals and conferences. This thesis was mainly done by the student. However, the stu-

dent benefited from his supervisors through group meeting sessions in which they pro-

vided technical comments and guidance. Financial support provided by the University

of Melbourne including Melbourne International Research Scholarship (MIRS) and Mel-

bourne International Fee Remission Scholarship (MIFRS) are gratefully acknowledged.

We also acknowledge this work was supported in part by the ARC Discovery Project

DP140100819.

• Chapter 4

– Masoumzadeh, A., Nekouei, E., & Alpcan, T. (2017, September). Impact of a

Coal Power Plant Closure on a Multi-region Wholesale Electricity Market. in

2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-

Europe), Sept 2017, pp. 16.

The contribution of each author is as follows: First author: Designing the

multi-region market model, performing simulations, and writing the paper.

Second and Third Authors: Supervision, proofreading, and providing techni-

cal comments on the market model.

• Chapter 5

– Masoumzadeh, A., Nekouei, E., Alpcan, T., & Chattopadhyay, D. (2017). Im-

pact of Optimal Storage Allocation on Price Volatility in Energy-only Electric-

ity Markets. IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1-1,

vii



2017.

The contribution of each author is as follows: First author: Designing the

storage allocation framework, performing simulations, and writing the paper.

Second and Third Authors: Supervision, proofreading, and providing tech-

nical comments on the market model, providing proof for existence of Nash

Equilibrium in our model. Fourth Author: Technical comments on the paper,

improving the motivation for reducing the extreme levels of price volatility.

• Chapter 6

– Masoumzadeh, A., Nekouei, E., & Alpcan, T. Regulated Wind-Storage Alloca-

tion to Reduce the Electricity Market Price and Volatility, submitted to IEEE

Transactions on Power Systems.

The contribution of each author is as follows: First author: Designing the

wind-storage allocation framework, performing simulations, and writing the

paper. Second and Third Authors: Supervision, proofreading, providing tech-

nical comments on the market model, and especially on the transmission player.

• Chapter 7

– Masoumzadeh, A., Nekouei, E., & Alpcan, T. (2016, November). Long-term

Stochastic Planning in Electricity Markets under Carbon Cap Constraint: A

Bayesian Game Approach. In Innovative Smart Grid Technologies-Asia (ISGT-

Asia), 2016 IEEE (pp. 466-471). IEEE.

The contribution of each author is as follows: First author: Designing the gen-

eration expansion model, performing simulations, and writing the paper. Sec-

ond and Third Authors: Supervision, proofreading, providing technical com-

ments on the market model, and reorganizing the paper structure.

• Chapter 8

– Masoumzadeh, A., Alpcan, T., & Nekouei, E. Designing Incentive Policies To-

wards a Green and Reliable Electricity Market, submitted to IEEE Transactions

on Power Systems.

viii



The contribution of each author is as follows: First author: Designing the mar-

ket expansion model, performing simulations, and writing the paper. Second

and Third Authors: Supervision, proofreading, providing technical comments

on the market model.

ix





Acknowledgements

I would like to express my sincere gratitude to my supervisors A/Prof. Tansu Alpcan,

Dr. Ehsan Nekouei, and Prof. Robin Evans for their continuous support, patience, and

invaluable constructive criticism. They made my Ph.D. a rewarding experience via their

friendly and tactful supervision. The guidance from my advisors helped me in all the

time of research and writing the thesis. Besides, I would like to thank my thesis commit-

tee, A/Prof. Marcus Brazil, for his insightful comments and questions.

I appreciate the financial support provided by the University of Melbourne. I also

would like to thank my family and friends from my heart for their part and support

during my study journey.

xi





Contents

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 5
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Literature Review and Research Gaps . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

I Electricity Market Models and NEM as the Case Study 27

2 Game-theoretic Cournot-based Electricity Market Models with Storage 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Mathematical Model Description . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Game-theoretic Model of a Wholesale Electricity Market . . . . . . . . . . 34

2.3.1 Game Definition and Nash Equilibrium: . . . . . . . . . . . . . . . 34
2.3.2 The Game with Strategic Storage Firms . . . . . . . . . . . . . . . . 36

2.4 Multi-nodal, Multi-period Wholesale Electricity Market . . . . . . . . . . . 39
2.4.1 The Game as a Centralized Optimization Problem . . . . . . . . . . 39
2.4.2 The Game as a Mixed Complementarity Problem . . . . . . . . . . 41

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 NEM as the Case Study 43
3.1 Overview of National Electricity Market (NEM) . . . . . . . . . . . . . . . 43
3.2 Calibrating the Inverse Demand Functions . . . . . . . . . . . . . . . . . . 45
3.3 Model Calibration with Real Data . . . . . . . . . . . . . . . . . . . . . . . . 47

II Analysis of Price Volatility in Electricity Markets 49

4 Impact of a Coal Power Plant Closure on a Multi-region Wholesale Electricity
Market 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



4.2.1 Wholesale Price Function . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Market Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Case Study and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Model Simulation for 365 Days . . . . . . . . . . . . . . . . . . . . . 60

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Impact of Optimal Storage Allocation on Price Volatility in Electricity Markets 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Upper-level Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Lower-level Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Game-theoretic Analysis of the Lower-level Problem . . . . . . . . 76
5.3.2 The Equivalent Single-level Problem . . . . . . . . . . . . . . . . . . 79

5.4 Case Study and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Simulations in NEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Simulations for a 30-bus System . . . . . . . . . . . . . . . . . . . . 88

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Regulated Wind-Storage to Reduce the Electricity Market Price and Volatility 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 The Problem and Market Model . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Upper-level Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Lower-level Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1 Solution Method for the lower level problem . . . . . . . . . . . . . 103
6.3.2 Solution Method for the equivalent single level problem . . . . . . 103

6.4 Case Study and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.1 Impact of Generation Capacity, Gas Price and Transmission Line on

Average Price and Price Volatility in NEM . . . . . . . . . . . . . . 105
6.4.2 Managing the Average Price and Price Volatility by Only Regulated

Wind or Only Regulated Storage . . . . . . . . . . . . . . . . . . . . 106
6.4.3 Managing the Average Price and Price Volatility by Mixture of Reg-

ulated Wind and Storage in VIC . . . . . . . . . . . . . . . . . . . . 109
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

III Designing Incentive Policies in Electricity Markets 113

7 Long-Term Stochastic Planning in Electricity Markets with a Carbon Cap Con-
straint 117
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Game-Theoretic Formulation of Long-term Wholesale Electricity Market . 119

7.2.1 Game Definition and Bayes-Nash Equilibrium . . . . . . . . . . . . 119

xiv



7.2.2 Carbon Price Calculation as a Dual Variable . . . . . . . . . . . . . 122
7.2.3 Solving the Game as a Centralized Optimization Problem . . . . . 122

7.3 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.1 Impact of Carbon Cap on Capacity Planning . . . . . . . . . . . . . 124
7.3.2 Impact of Wind Stochasticity on Carbon Price . . . . . . . . . . . . 125
7.3.3 Impact of Wind Player’s Strategic Behavior on Capacity Planning . 126
7.3.4 Impact of Remaining Value on Capacity Planning . . . . . . . . . . 128

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Designing Tax&Subsidy Incentives Towards a Green and Reliable Electricity
Market 131
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Strategically Competitive Electricity Market Expansion Model . . . . . . . 133

8.2.1 Inverse Demand Functions . . . . . . . . . . . . . . . . . . . . . . . 133
8.2.2 Total Capacity and Investment Functions . . . . . . . . . . . . . . . 134
8.2.3 The Emission and Capacity Incentive Policies . . . . . . . . . . . . 135
8.2.4 The Market Expansion Game . . . . . . . . . . . . . . . . . . . . . . 136

8.3 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.1 Game-theoretic Analysis of the Market Expansion Model . . . . . . 141
8.3.2 The Mixed Complementarity Problem . . . . . . . . . . . . . . . . . 144
8.3.3 Interpreting the Dual Variables as Tax and Subsidy . . . . . . . . . 145
8.3.4 The Market Expansion Model in Practice . . . . . . . . . . . . . . . 145

8.4 Case Study and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 147
8.4.1 Impact of Emission Reduction Policy on Market Expansion . . . . 147
8.4.2 Impact of Emission Reduction Policy on Electricity Prices and De-

mands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.3 Carbon Tax&Subsidy Design . . . . . . . . . . . . . . . . . . . . . . 150
8.4.4 Fast Response Capacity Tax&Subsidy Design . . . . . . . . . . . . . 152
8.4.5 Impact of Market Power on Market Expansion . . . . . . . . . . . . 153

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9 Conclusions 157
9.1 Summary of Chapters and Conclusions . . . . . . . . . . . . . . . . . . . . 157
9.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A Charging/Discharging 163

B Regulated Transmission Firms 165

C Technology Characteristics 167

xv





List of Figures

1.1 Three main criteria in designing the future electricity markets. . . . . . . . 5

2.1 Storage charging and discharging effects on supply/demand equilibrium
point at a given moment in time (points 1 and 2 represent equilibrium
point before and after storage installation). . . . . . . . . . . . . . . . . . . 38

3.1 Interconnected states in Australia’s National Electricity Market. . . . . . . 43
3.2 Dispatchable and intermittent electricity generation capacities in the NEM,

2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 The clearing engine mechanism in the NEM (Source: AEMO). . . . . . . . 45
3.4 Calibrated linear, exponential and iso-elastic inverse demand functions at

price 50 $/MWh, demand 1500 MW, and elasticity -0.3. . . . . . . . . . . . 47
3.5 Comparing the simulation results (solid lines) of hourly price and demand

with the historical data (dashed lines) (Source: AEMO) for the average day
of 2017 in five states of the NEM. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Sorted historical data of hourly (a) electricity demand and (b) wind power
availability in five regions of NEM during the year 2015. . . . . . . . . . . 61

4.2 Probability distribution of hourly prices in NEM and VIC, considering the
closure of coal power plant Hazelwood in VIC. . . . . . . . . . . . . . . . . 62

4.3 Probability distribution of daily peak prices in NEM and VIC, considering
the closure of coal power plant Hazelwood in VIC. . . . . . . . . . . . . . . 63

5.1 SA’s Hourly wind power availability distribution in 2015 (the central marks
show the average levels and the bottom and top edges of the boxes indicate
the 25th and 75th percentiles). . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Standard deviation and mean of hourly wholesale electricity prices in SA
with no storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Optimal strategic and regulated storage capacity for achieving different
price volatility levels in SA region for a high demand day with coal-plant
outage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Daily peak and average prices in SA versus storage capacity in a high de-
mand day with coal-plant outage. . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Square root of price volatility in SA versus storage capacity during a high
demand day with coal-plant outage. . . . . . . . . . . . . . . . . . . . . . . 86

xvii



5.6 Optimal regulated storage capacity versus the percentage of price volatil-
ity reduction in the two-node market in a high demand day with coal-plant
outage in SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Square root of price volatility level in the 30-bus system after ten iterations
of Algorithm 1 with ∆Qst = 15MWh. . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Mean (over 365 scenarios) wholesale electricity prices in VIC before and
after addition of only 5000 MWh regulated battery storage capacity. . . . . 107

6.2 Mean (over 365 scenarios) wholesale electricity prices in VIC before and
after addition of only 3125 MW regulated wind generation capacity. . . . . 108

6.3 The mean price, the square root of price volatility, and the life time rate
of return for only regulated wind and only regulated battery allocation
versus the equivalent annual budget in VIC. . . . . . . . . . . . . . . . . . 109

6.4 Normalized mean wholesale price and square root of price volatility for
different mixtures of regulated wind and regulated battery with the equiv-
alent annual budget of 300 m$ in VIC. . . . . . . . . . . . . . . . . . . . . . 110

6.5 The budget allocation share between the regulated wind and the regulated
battery as a function of the weighting factor k with the equivalent annual
budget of 300 m$ in VIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1 Normalized wind capacity availability (ωt) during off-peak, shoulder, and
peak load zones, distributed on [(1-σ)E(ω), (1+σ)E(ω)] with the given ex-
pected value E(ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Capacity investment Qtotal and its change ∆Qtotal due to carbon cap con-
straint with coefficient φ ∈ {20, 40%}. . . . . . . . . . . . . . . . . . . . . . 126

7.3 Carbon pricing for different CO2 emission reduction scenarios (φ ∈ {20 %,
60 %}). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 New capacity installation Qnew considering wind strategy (perfectly com-
petitive and strategic). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 New capacity installation considering remaining value. . . . . . . . . . . . 128

8.1 Normalized investment cost of generation and storage technologies dur-
ing 2017-2052 (Normalization is compared to the costs in 2017). . . . . . . 148

8.2 Net increase/decrease of capacity for (a) generation and (b) storage and
transmission technologies by 2052 in NEM for different target levels of
emission intensity reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3 The average yearly (a) wholesale prices and (b) net and wholesale de-
mands in NEM, without or with emission reduction policy (net demand
=wholesale demand + roof-top PV). . . . . . . . . . . . . . . . . . . . . . . 151

8.4 The trajectory of (a) carbon price, (b) carbon tax (positive) and subsidy
(negative) of different generation types during 2017-2052. . . . . . . . . . . 152

8.5 The trajectory of fast response capacity tax (positive) and subsidy (neg-
ative) for (a) No Emission Reduction policy, (b) 80% Emission Intensity
Reduction policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xviii



8.6 Technology capacity mix in NEM with and without considering market
power for (a) No Emission Reduction policy, (b) 80% Emission Intensity
Reduction policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xix





List of Tables

4.1 Wholesale electricity prices $/MWh in five-node NEM market, consider-
ing the closure of coal power plant Hazelwood in VIC. . . . . . . . . . . . 61

4.2 The annual electricity generation profit (billion$ per year) in five-node
NEM market, considering the closure of coal power plant Hazelwood in
VIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Standard deviation of wholesale electricity prices $/MWh in five-node
NEM market, considering the closure of coal power plant Hazelwood in
VIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Greenhouse gas emission of CO2 (million tonne per year) in coal and gas-
fueled power plants in NEM, considering the closure of coal power plant
Hazelwood in VIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Location, capacity and generation cost of synchronous generators in the
30-bus electricity system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Wholesale electricity prices ($/MWh) in five-node NEM market in pri-
mary and secondary cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 The parameters for the inverse demand function. . . . . . . . . . . . . . . . 124
7.2 Costs and technology specifications of generation firms. . . . . . . . . . . . 124
7.3 Total CO2 emission every five years in the system with no carbon cap con-

straint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.1 Financial and Technical Information on Intermittent Generators in NEM. . 167
C.2 Financial and Technical Information on Synchronous Generators in NEM. 168
C.3 Financial and Technical Information on Storage Technologies in NEM. . . 168
C.4 Financial and Technical Information on Interconnectors in NEM. . . . . . . 168

xxi





Nomenclature

Indices

m Intermittent generation firm.

n Synchronous generation firm.

k Generation firm.

b Storage firm.

i, j Node.

y Investment period (yr).

t load time (hr).

w Scenario.

Parameters

αiyt, αitw, αit Intercept of the inverse demand function.

βiyt, βitw, βit Slope of the inverse demand function.

EICO2
Y0

CO2 Emission intensity at base year Y0.

ECO2
y CO2 Emission at year y.

φ Emission reduction coefficient.

EFni Emission factor of the synchronous generator.

αER
y Emission intensity reduction target.

α
sg,FR
ni Binary coefficient to distinguish fast response generators.

αst,FR
bi Binary coefficient to distinguish fast response storage firms.

αFR Fast response proportion coefficient.

r Discount factor.

1



2

Qold
y′′ Old capacity of any generation, storage and transmission technol-

ogy installed at y′′, which is before the base year.

PL Plant life of any generation, storage and transmission technology.

cig
mi,d

ig
mi Quadratic cost function coefficients of the intermittent generator.

γ
ig
mi Binary parameter to distinguish if the intermittent generator is strate-

gic/regulated.

Invig
miy Unitary investment cost of the intermittent generator.

Aig
mit Energy availability coefficient of the intermittent generator.

ωkiystw, ωmitw Energy availability coefficient of the intermittent generator.

C̄ig
mi Maximum potential capacity of the intermittent generator.

csg
ni Marginal operation and fuel cost of the synchronous generator.

γ
sg
ni Binary parameter to distinguish if the synchronous generator is

strategic/regulated.

Invsg
niy Unitary investment cost of the synchronous generator.

Asg
ni Availability coefficient of the synchronous generator.

Rup
ni ,Rdn

ni Ramping up and down coefficient of the synchronous generator.

RAsg
niy Energy availability limit of the synchronous generator at period y.

Invstf

biy Unitary investment cost of the storage on flow capacity.

Invstv

biy Unitary investment cost of the storage on volume capacity.

ηch
bi ,ηdis

bi Charge and discharge efficiencies of the storage.

Ast
bi Availability coefficient of the storage.

ηtr
ij Efficiency of the transmission line.

Invtr
ijy Unitary investment cost of the transmission line.

Atr
ij Availability coefficient of the transmission line.

Prw Probability of scenario w.

∆ly,s,t length of time segment (y, s, t).

∆Yy length of time segment y.

∆Ss length of time segment s.

∆Tt length of time segment t.

Invk, mk, ck Investment, maintenance and operation cost of generator k.
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σ Percentage of wind availability domain change.

Qig, Qsg, Qst, Qtr Intermittent generation, synchronous generation, storage and trans-

mission capacities.

Variables

Diyt, Ditw, Dit Electricity demand.

qig
miyt, qig

mitw, qig
mit Generation of the intermittent generator.

qsg
niyt, qsg

nitw, qsg
nit Generation of the synchronous generator.

qst
biyt, qst

bitw, qst
bit Electricity flow of the storage.

qtr
ijyt, qtr

ijtw, qtr
ijt Electricity flow from node j to node i.

Qig,new
miy New capacity of the intermittent generator.

Qsg,new
niy New capacity of the synchronous generator.

qch
biyt, qch

bitw, qch
bit Charge of the storage.

qdis
biyt, qdis

bitw, qdis
bit Discharge of the storage.

Qstf,new
biy New flow capacity of the storage.

Qstv,new
biy New volume capacity of the storage.

Qtr,new
ijy New capacity of the transmission line.

Functions

Piyt (.) , Pitw (.) , Pit (.) Wholesale price.

Qig
miy(.) Total capacity of the intermittent generator.

Qsg
niy(.) Total capacity of the synchronous generator.

Qstf

biy(.) Total flow capacity of the storage.

Qstv

biy(.) Total volume capacity of the storage.

Qtr
ijy(.) Total capacity of the transmission line.





Chapter 1

Introduction

1.1 Background

ELECTRICITY generation industry in many countries around the world has experi-

enced a significant transformation from being a centrally coordinated monopoly to

a deregulated competitive market, during the last three decades (since 1990) [1]. The ex-

isting electricity markets have to overcome some challenges including: (i) the over- and

under-capacity in generation, transmission and distribution, which are imposing costs

on market participants and also the market power that leads to electricity prices signif-

icantly above the electricity generation costs; (ii) the intermittent renewable integration

into the networks, and the system reliability; and (iii) high levels of CO2 emission inten-

sity in electricity generation sector and the challenges for de-carbonization of electricity

markets. Therefore, electricity is aimed to be green, reliable and affordable in future elec-

tricity markets, as shown in Fig. 1.1.

Figure 1.1: Three main criteria in designing the future electricity markets.

However, these three factors are highly interrelated and we need to study them si-

5
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multaneously. For instance, storage is expected to be installed in electricity networks to

increase the system reliability and decrease the average price and price volatility; closure

of coal power plants lowers the emission in the market but may lead to price increase

and volatility problem; although integration of wind and solar in power grids leads to

more clean electricity generation, it brings high levels of price volatility in the network;

although wind and storage both can remedy the high levels of average price and price

volatility in the market, their impacts on price reduction and volatility reduction are not

the same; and electricity generation technologies need to be taxed and subsidized at the

same time. Wind turbines need to be subsidized as they generate clean electricity and

need to be penalized as they bring intermittency in electricity networks.

Storage Integration in Power Grids:

Given the continuing decrease in battery costs, a large amount of battery storage ca-

pacity is expected to be installed in transmission and/or distribution networks in the

near future. Moreover, global roadmap vision indicates significant capacity increase for

pump-storage hydro power, from 140 GW in 2012 to 400 to 700 GW in 2050 [2]. Stor-

age can be used for multiple purposes including reduction in expensive peaking capac-

ity, managing intermittency of distributed wind/solar generation, and managing excess

generation from base-load coal/nuclear during off-peak times. By providing virtual gen-

eration capacity, storage may alleviate existing problems by reducing the impacts of in-

termittent power generation, market power, and volatility.

Coal Plant Closure and Price Volatility Problem:

The exercise of very high prices and price volatility can be the result of closing base-

load power plants down in electricity markets. In many countries, base-load coal power

plants are being closed due to either reaching their end of life, or being scheduled as part

of their national greenhouse reduction schemes [3]. In wholesale electricity markets with

high percentage of intermittent renewable generation, closure of base-load power plants

may lead to high electricity prices and increased volatility, which exposes the market par-

ticipants to a high level of financial risks. Over the past three years, four big coal-fueled
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power plants closed down in Australia’s National Electricity Market (NEM). The closure

of Victoria’s second biggest generator Hazelwood, with a 1600 MW capacity, in 2017 was

a highly debated topic in the press. The impact of a coal plant closure on market prices

can be measured in advance, which might be significant especially in highly renewable

penetrated networks.

Renewable Integration and Price Volatility Problem:

A high level of intermittent wind generation may also result in frequent high prices

and high levels of price volatility in electricity markets [4–6]. High levels of price volatil-

ity in a market refers to a situation in which the market prices vary in a wide range. For

example, one hundred hours with highest levels of electricity prices resulted in 21% of the

annual monetary market share in 2015 in South Australia, which is a highly price volatile

region in the NEM market [7]. Price volatility makes the task of price prediction highly

uncertain, which consequently imposes large financial risks on the market participants.

In the long term, extreme levels of price volatility can lead to undesirable consequences

such as bankruptcy of retailers [8] and market suspension. In a highly volatile electricity

market, the participants, such as generators, utility companies and large industrial con-

sumers, are exposed to a high level of financial risk as well as costly risk management

strategies [9]. In some electricity markets, such as the NEM, the market is suspended if

the sum of spot prices over a certain period of time is more than cumulative price thresh-

old (CPT). A highly volatile market is subject to frequent CPT breaches due to the low

conventional capacity and high level of wind variability. Storage, with price arbitrage

capability, can resolve the problem of high electricity prices and consequently it can pre-

vent high levels of price volatility. We note that recently a large scale storage installation

has been announced in South Australia for resolving the price volatility as well as the

reliability problems.

Average Price and Price Volatility Problem:

In addition to extreme levels of price volatility, high levels of average prices are also

undesirable in electricity markets. Closure of coal power plants and the fluctuation of gas
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price may result in high levels of average price and price volatility in electricity markets

[10]. For example, Australia’s National Electricity Market (NEM) has experienced very

high prices after the closure of Hazelwood coal power plant and the surge of gas price

[11]. As we discussed, price volatility imposes large financial risks on the market par-

ticipants by increasing the future price prediction uncertainty. On the other hand, high

levels of mean wholesale electricity prices lead to higher retail prices, i.e., impose high

cost on consumers.

One of the main reasons behind high electricity prices in highly concentrated elec-

tricity markets, such as NEM, is high levels of market power [7, 12]. Electricity markets

are less likely to be successful and stable in the presence of market power. When market

power is diagnosed to be persistent, more government intervention may pave the way

towards an efficient market as the private sector is likely to act slowly due to regulatory,

institutional, or other barriers [13]. In such cases, the government may choose to inter-

vene and install regulated wind and storage capacities, which have short construction

periods, to increase the competition in the market and reduce the market power as well

as the electricity prices [5].

Penalizing Carbon Emission and Supporting Dispatchable Capacity:

On the other hand, instead of controlling the firms, governments can influence the

market by setting effective tax and subsidy schemes. Market expansion models can be

used to design tax and subsidy schemes required to achieve long-term goals, like emis-

sion reduction strategies and maintaining reliability in the network.

In market expansion models for competitive power markets, electricity price is not set

by regulators but by the equilibrium between electricity supply and demand. In order to

make investment and operation decisions, generation companies have a strong interest

in modeling anticipated prices using available engineering and economic information.

They need appropriate decision making models considering not only technical operation

constraints but also the interaction among market participants. A variety of physical

and economic factors are included in market modeling, many of which are stochastic

by nature. Moreover, policy makers can intervene and incentivize the market players to
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meet their desired goals, such as caps on carbon emission.

Future electricity markets require to be green, reliable, and efficient. Greenhouse gas

reduction from power generation has been firmly on the political agenda recently, follow-

ing the international commitments under the Kyoto (1997) and Paris (2015) Agreements

[14]. The policies imposing an emission target level in the electricity sector affects many

existing fossil-fueled power plants as well as the future generation mix. Moreover, the

emission reduction policies may lead to massive investment in renewable generation.

High penetration of Variable Renewable Energy (VRE) in an electricity network can pose

challenges to system reliability. Additional fast response dispatchable capacity must be

introduced to the system to complement an increasing proportion of VRE generators

such as wind and solar photovoltaic [15]. This may lead to new obligations for VRE gen-

erators connected to NEM to ensure that the system reliability is maintained. Although

the decline in technology cost enables renewables to compete with fossil-fueled plants in

electricity generation, the incentive policies can be used to accelerate the ongoing transi-

tion toward a green network.

Australia’s National Electricity Market (NEM):

In the NEM, electricity is an ideal commodity which is exchanged between producers

and consumers through a pool. The market operator must ensure the agreed standards

of security and reliability. Security of electricity supply is a measure of the power system

capacity to continue operating despite the disconnection of a major generator or inter-

connector. In fact, unserved demand per year for each region must not exceed 0.002

percent of the total energy consumed. This level of reliability across the NEM requires a

certain level of reserve. However, when security and reliability is threatened, the market

operator is equipped with a variety of tools including demand side management, load

shedding and reserve trading to maintain the supply and demand balance.

Operating the NEM consists of estimating the electricity demand levels, receiving

the bidding offers, scheduling and dispatching the generators, calculating the spot price

and financially settling the market. Electricity demand in a region is forecasted based

on different factors, like population, temperature and sectoral energy consumption in



10 Introduction

that region. Electricity supply bids (offers) are submitted in three forms of daily bids,

re-bids and default bids [16]. Using the rising-price stack, generators are scheduled and

dispatched in the market.

1.2 Research Questions

In this thesis, we develop wholesale electricity market models to answer the following

research questions.

Research Question 1: How can we model strategic storage firms in a competitive

electricity market?

Large amounts of storage capacity are expected to be installed in power grids, which

impact the electricity prices at peak and off-peak times, and the electricity dispatch from

intermittent and classical generators in the market. In addition to generation and trans-

mission players, storage players impact the total amounts of electricity generation and

demand in an electricity market. We develop an electricity market model considering the

interaction between strategic storage firms with generation, and transmission players.

We address this research question and the related issues in Chapter 2.

Research Question 2: What is the impact of a coal plant closure on electricity prices

in a multi-region wholesale electricity market?

The prices may change from very high levels to low levels or vice versa as a conse-

quence of generation capacity closure (coal closure) or storage integration in a wholesale

electricity market. The existing electricity market models are mostly developed based

on linear inverse demand functions, which may not accurately indicate the relation be-

tween price and demand. Electricity market models including generation and storage

players with non-linear inverse demand functions exist in the literature as single-region

models. We develop multi-region wholesale electricity market models with non-linear

inverse demand functions, which can precisely capture the price and demand relation,

and use them to find the impact of a coal power plant closure on electricity prices in dif-
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ferent nodes of an electricity market. We address this research question in Chapters 3 and

4.

Research Question 3: How can we find the optimal storage allocation to limit the

price volatility in a competitive electricity market?

The fast growing expansion of wind power generation may lead to extremely high

levels of price volatility in wholesale electricity markets. Storage capacities in electricity

networks in any form of pump-storage hydro, large scale or distributed batteries can help

to reduce the price volatility significantly in the market. It is important to find the opti-

mal size and location of required storage capacities, which can limit the price volatility in

an electricity market. Therefore, we develop an optimization model to solve the storage

allocation problem in a multi-region wholesale electricity market model including gener-

ation, storage and transmission players. We address this research question in Chapter 5.

Research Question 4: How can we find the optimal wind and storage allocation to

reduce the average price and price volatility in a competitive electricity market?

High levels of average price and price volatility in an electricity market can be the

consequence of a coal power plant closure or gas price fluctuation. Installing regulated

wind and storage capacities can lead to significant price and volatility reduction amounts

in the market. The impacts of wind and storage on the average price and on the price

volatility are different from each other. Therefore, we intend to develop an optimization

model to find the optimal wind and storage capacities in order to minimize the weighted

sum of average price and price volatility in the market. We address this research question

in Chapter 6.

Research Question 5: How can we calculate the required carbon price in a compet-

itive electricity market to limit the CO2 emission?

Carbon price in an electricity market provides incentives for carbon emission abate-

ment and renewable generation technologies. Penalizing carbon emission can signifi-

cantly impact the capacity planning decisions of both fossil-fueled and renewable gener-
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ators. We intend to calculate the amounts of carbon price or carbon tax that can fulfill an

emission abatement target in an electricity market. We address this research question in

Chapter 7.

Research Question 6: How can we design tax&subsidy incentive policies which

leads to a green and reliable electricity market?

Incentive schemes and policies play an important role in reducing carbon emission

from electricity generation sector. Emission abatement policies lead to more intermittent

renewable generation in the market, which may endanger the market reliability. There-

fore, in addition to setting incentive policies on emission reduction, we require another

set of policies to encourage more fast response dispatchable capacity to ensure the bal-

ance between supply and demand (reliability) at all times in the market. We intend to

calculate the incentive policies on emission and dispatchable capacities in order to tran-

sit towards a low carbon and reliable electricity market in long-term. We address this

research question in Chapter 8.

1.3 Literature Review and Research Gaps

In this thesis, we develop Cournot-based electricity market models with generation, stor-

age, and transmission players to address the market operation and planning issues re-

lated to designing a green, reliable and efficient electricity market. The literature review

on the research questions given in Section 1.2, and the corresponding research gaps are

discussed below.

Literature on Research Question 1: Cournot-based Electricity Market Models and

Storage Integration

Classical cost-minimization and surplus-maximization models for electricity gener-

ation do not incorporate strategic behaviors [1, 17]. Game theoretic models including

Cournot-Nash models are capable of computing market equilibrium considering strate-

gic behaviors, which originates from the players’ market power [18]. For example, a
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comprehensive analysis of Australian electricity sector in both least-cost and Cournot

schemes is discussed in [19], which states that the price bids may be significantly above

the marginal cost depending on the level of competition. Classical Cournot-based mod-

els are modified in the literature to study different affecting issues in electricity markets,

such as strategic interaction in electricity transmission networks [20], co-optimization

of ancillary services [21], joint evaluation of maintenance and generation strategies [22],

transforming energy-only markets to capacity-energy markets [23], considering volatile

renewable generation [7], and introducing storage players in the market [24]. Note that

Storage is modeled in a receding horizon problem in [25], in a double auction problem

in [26], and in a competitive electricity market model in [27], but not in a multi-region

Cournot-based electricity market model.

Therefore, to the best of our knowledge, the problem of modeling storage firms as

strategic players in multi-region Cournot-based electricity market models has not been

addressed before.

Literature on Research Question 2: Multi-region Cournot-based Electricity Market

Models

Electricity system modeling has changed significantly after the transformation of the

electricity industry from being a regulated monopoly to a deregulated competitive mar-

ket in many countries around the world [1]. Game-theoretical models have been exten-

sively used in imperfect competitive energy system analysis to calculate the price and

generation quantities in a market [28]. The problem of finding the equilibrium price and

generation in an electricity market, which consists of generation firms, transmission lines

and consumers, has been studied by solving the game-theoretical profit maximization

Cournot-based (quantity bidding) problems, e.g. in [7, 19–21, 23, 29–33], and Bertrand-

based (price bidding) or supply function-based problems, e.g. in [34–36]. However, the

multi-region non-cooperative electricity market models including non-linear inverse de-

mand functions have not been investigated in the literature.

The paper [29] studies a single-region electricity market in which firms compete in

quantity as in the Nash-Cournot game, and formulates the problem as a Linear Com-
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plementarity Problem (LCP). The paper [30] models the imperfect competition among

electricity producers as an LCP problem, in which the players consider the spacial price

discrimination to model the transmission lines in the market. The papers [20, 31] model

the transmission lines in electricity markets using a bi-level model in which strategic gen-

erators bid on their quantities in the upper level and a clearing engine with transmission

constraints clears the market in the lower level. Moreover, the multi-region electricity

market is formulated as a centralized convex optimization problem to make long-term

planning decisions [32], to include greenhouse gas reduction constraint [19], to introduce

capacity market beside an energy market [23], to analyze interrelated markets for differ-

ent commodities [21], and to observe the volatility of wind power [7]. The paper [33] for-

mulates a centralized convex optimization problem to find the price of carbon emission

in an electricity market. We note that these works are restricted to linear inverse demand

functions, which are the first order approximation terms at their nominal points and may

become imprecise approximations when the operational points change, for multi-region

market modeling.

The papers [34, 35] study the multi-region electricity market using a bi-level supply

function-based model in which the strategic generators bid on their supply function in

the upper level and a clearing engine with transmission constraints clears the market in

the lower level. The market participants strategically bid just on their prices in the upper

level of the market model in [36]. Although it is possible to extend the model formulation

in these works to consider non-linear inverse demand functions, they have to deal with

cumbersome computations pertaining to using the bi-level models.

To the best of our knowledge, the problem of solving a multi-region non-cooperative

electricity market with nonlinear inverse demand functions has not been addressed be-

fore.

Literature on Research Question 3: Storage Allocation in Wholesale Electricity

Markets

The problem of optimal storage operation or storage allocation for facilitating the in-

tegration of intermittent renewable energy generators in electricity networks has been
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studied in [37–44], with total cost minimization objective functions, and in [45–50], with

profit maximization goals. However, the price volatility management problem using op-

timal storage allocation has not been investigated in the literature.

The operation of a storage system is optimized, by minimizing the total operation

costs in the network, to facilitate the integration of intermittent renewable resources in

power systems in [37]. Minimum (operational/installation) cost storage allocation prob-

lem for renewable integrated power systems is studied in [38–40] under deterministic

wind models, and in [41] under a stochastic wind model. The minimum-cost storage al-

location problem is studied in a bi-level problem in [42,43], with the upper and lower lev-

els optimizing the allocation and the operation, respectively. The paper [44] investigates

the optimal sizing, siting, and operation strategies for a storage system to be installed in

a distribution company controlled area. We note that these works only study the mini-

mum cost storage allocation or operation problems, and do not investigate the interplay

between the storage firms and other participants in the market.

The paper [45] studies the optimal operation of a storage unit, with a given capacity,

which aims to maximize its profit in the market from energy arbitrage and provision of

regulation and frequency response services. The paper [46] computes the optimal supply

and demand bids of a storage unit so as to maximize the storage’s profit from energy ar-

bitrage in the day-ahead and the next 24 hour-ahead markets. The paper [47] investigates

the profit maximization problem for a group of independently-operated investor-owned

storage units which offer both energy and reserve in both day-ahead and hour-ahead

markets. In these works, the storage is modeled as a price taker firm due to its small

capacity.

The operation of a price maker storage device is optimized using a bi-level stochastic

optimization model, with the lower level clearing the market and the upper level maxi-

mizing the storage profit by bidding on price and charge/discharge in [48]. The storage

size in addition to its operation is optimized in the upper level problem in [49] when the

lower level problem clears the market. Note that the price bids of market participants

other than the storage firm are treated exogenously in these models. The paper [50] also

maximizes the day-ahead profit of a load serving entity which owns large-scale storage
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capacity, assuming the price bids in the wholesale market as exogenous parameters.

The paper [51] maximizes a large-scale energy storage system’s profit considering

the storage as the only strategic player in the market. Using Cournot-based electricity

market models, the generation and storage firms are considered as strategic players in

[24,29]. However, they do not study storage sizing problem and the effect of intermittent

renewables on the market.

Therefore, to the best of our knowledge, the problem of finding optimal storage ca-

pacity subject to a price volatility management target in electricity markets has not been

addressed before.

Literature on Research Question 4: Wind-Storage Allocation in Wholesale Electric-

ity Markets

The problem of storage allocation in the presence of intermittent renewable energy

generation in electricity networks has been studied in [37–39, 41–43], using cost mini-

mization modeling approaches, and in [24, 45–49], using profit maximization goals.

Facilitating the integration of renewable resources, the potential value of energy stor-

age in power systems with renewable generation is evaluated by minimizing the total

operation cost in the network in [37]. The optimal operation and sizing of the storage

systems is studied by minimizing the cost of the system in [39]. The storage allocation

in renewable integrated power systems is studied in [38] and [41] under deterministic

and stochastic wind models, respectively. To accommodate the integration of renewable

generation, bi-level optimization models are also proposed to determine the optimal al-

location and operation of energy storage systems in [42] and of battery energy storage

systems in [43], in which the upper level problem minimizes the storage system cost

and the lower level problem implements the power flow in the network. Note that these

works are based on cost minimization models and do not investigate the market interplay

between storage, renewable generators and other players.

Assuming the storage firms as price taker players in the market, the optimal operation

of storage firms in renewable integrated systems is determined by maximizing the profit

from energy arbitrage and regulation services in [45], by maximizing the energy arbitrage
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profit in day-ahead and hour-ahead markets in [46], and by maximizing their energy

and reserve profit in day-ahead and hour-ahead markets in [47]. Assuming the storage

firms as price maker players in the market, the optimal charge/discharge operation of the

storage devices, and the optimal operation and size of the storage devices are determined

in [48] and [49], respectively, treating the price bids of market participants other than the

storage players as exogenous inputs. The market operation behavior of all generation

and storage firms are considered endogenously in a single-node electricity market in [24]

using a Cournot-based electricity market model.

The charge/discharge behavior of storage firms and their impact on price volatility

reduction in a multi-region electricity market model is studied in [52]. However, studying

the joint effect of generation and storage on market price characteristics is missing in

the literature. As we show in Chapter 6, wind might be more efficient than storage in

reducing the average price and the results of [52] are not applicable when it is desirable

to reduce the average price in the market. Therefore, different from the existing work, we

consider the problem of managing the average price and the price volatility by optimal

allocation of wind and storage capacities.

To the best of our knowledge, the problem of optimal allocation of wind and storage

capacities for managing the average price and price volatility in the market has not been

addressed before.

Literature on Research Question 5: Carbon Pricing Using Long-term Generation

Expansion Models

Before electricity market deregulation, planning and operation scheduling were de-

pendent on administrative and centralized procedures. Cost minimization models have

been widely used in long-term capacity expansion models, e.g. planning in micro scale

[53] and in macro scale [54]. During the last three decades, power industry in many

countries and regions has transformed from being a centrally coordinated monopoly to a

deregulated liberalized market. Although classical cost minimization and surplus maxi-

mization models do not incorporate strategic behaviors existing in the markets [1], [17], a

heuristic cost minimization model is used for optimal investment planning in a compet-

itive market assuming different forecasted market price scenarios [55]. Game-theoretic
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models including Cournot-Nash are capable of computing market equilibrium, price and

generation, considering strategic behaviors. Cournot-based game models have been ex-

tensively used in energy systems analysis with formulations following the same logic,

e.g. in electricity markets [18] and global oil markets [28].

Research on short and long-term capacity expansion in electricity markets using game-

theoretic models has been conducted for a long time. Firms in the market compete by

deciding on their generation quantities and expansion-planning decisions in a Cournot

manner using an iterative solving algorithm [56] or a Mixed Linear Complementarity

Problem [29]. Since solving the Cournot-based market games as a LCP could be cum-

bersome, the problem of computing the Nash Equilibrium (NE) is posed as a centralized

optimization problem alternatively, e.g. on short term in [7] and on long-term in [19] and

[23].

Cournot-based models used in electricity market representation are mostly determin-

istic. By considering a set of scenarios, uncertainty on the conjectured price responses,

i.e., the slope of the linear inverse demand function, has been introduced in an oligopoly

Bayesian game where generation companies decide on their long-term generation and

capacity investment [32]. Uncertainties on both sides of supply and demand are con-

sidered in an oligopoly model in [57]. The load uncertainty is due to errors in the load

forecast, and the generator availability uncertainty is about generators that might have a

forced outage.

In both optimization and game-theoretic formulations, maximum carbon production

can be embedded in the model as a constraint [54], the dual variable of which indicates

the carbon price. In a cost minimization model, different values for maximum carbon

production limit calculates different dual variables or carbon prices.

To the best of our knowledge, the problem of designing carbon price policies required

to achieve long-term carbon cap targets in competitive electricity markets with strategic

generation players has not been addressed before.

Literature on Research Question 6: Designing Tax&Subsidy Policies Using Long-

term Market Expansion Models
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The problem of electricity market expansion for studying the future generation mix

or the CO2 emission abatement has been studied in [54,58–64], with least cost generation

expansion planning models, and in [19,23,29,32,33,65–67], with imperfectly competitive

market evolution models. However, the electricity market expansion problem with emis-

sion and fast response dispatchable capacity incentive policies has not been investigated

in the literature.

A least cost electricity generation expansion planning model, in which the total tech-

nology and operation costs to meet a specified demand are minimized, is studied in [58]

considering the demand side management, and in [59] considering the simultaneous ex-

pansion of the electricity and gas networks. A multi-period power generation expansion

model considering the CO2 emission target constraint is developed in [54, 60], which

calculates the additional costs of achieving a CO2 abatement target as the absolute and

marginal costs of abatement. Instead of embedding an emission target constraint, the

cost of CO2 emission is added to the fuel cost as carbon tax to support more renewable

power installation in [61].

Considering a target penetration level for renewables and an ensured payback period

constraints, the incentive rate (subsidy) on new renewable technologies are calculated in

[62]. Incentive policies for renewable energies and emission reduction are also calculated

using bilevel optimization models. Minimizing the total technology installation and op-

eration costs in the lower level problem in [63] (or maximizing the social welfare in the

lower level problem in [64]), the total policy intervention is minimized in the upper level

problem to calculate the incentive policies of renewable subsidization or carbon taxation.

In order to investigate the strategic (price making) behavior of market participants,

game-theoretical Cournot-based (oligopolistic) generation expansion models, i.e., market

evolution models, are developed, for instance in [29], and are compared with least cost

generation expansion models in [65]. Stochastic strategic generation expansion mod-

els are developed to include the uncertainty in conjectured-price response in [32] and

the uncertainty in renewable power availability in [66]. Moreover, strategic generation

expansion models have been utilized to manage the CO2 emission level in the market,

with an exogenous emission permit price in [67], and with a target emission constraint in
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[19, 33]. It is discussed in [33] that the dual variable of the emission target constraint can

be interpreted as the carbon price in the market.

The electricity market expansion models are also required to ensure that there is

enough dispatchable capacity connected to the network. In order to support more in-

vestment on dispatchable capacity, the total generation from wind and solar is limited to

30% of aggregated annual generation in each region in [54], and to incentivize the right

level of dispatchable capacity investment, capacity market is designed beside the energy

market in [23]. The Blueprint for the Future report [68] suggests to limit the total VRE

generation to a proportion of dispatchable generation in Australia in order to ensure the

system reliability and minimum required dispatchable capacity.

To the best of our knowledge, the problem of designing emission taxation and fast re-

sponse capacity support policies required to achieve long-term emission intensity reduc-

tion and dispatchability provision targets in competitive electricity markets with strategic

generation, storage and transmission players has not been addressed before.

1.4 Thesis Contributions

The contributions of this thesis to answer the research questions discussed are as follow-

ing:

• Contributions to answer Research Question 1 (in Chapter 2):

– A classical Cournot-based model of wholesale electricity markets is theoreti-

cally extended to embed storage firms as strategic players in the market.

– The game-theoretic game with strategic storage firms is developed and solved

as a centralized optimization problem. The Centralized version can be de-

veloped for Cournot-based game models which have linear inverse demand

functions.

• Contributions to answer Research Question 2 (in Chapter 3 and Chapter 4):

– A Cournot-based multi-region electricity market model with nonlinear inverse

demand functions is developed as a Mixed Complementarity Problem (MCP)
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to find the impact of a coal power plant closure on electricity prices. In this

model, generators are strategic and transmission lines are regulated.

– Transmission lines are modeled as individual market participants likewise the

other players in the game. In our model, we have strategic generation firms

and regulated transmission lines.

• Contributions to answer Research Question 3 (in Chapter 5):

– A bi-level optimization model is developed to find the optimal storage ca-

pacity required to limit the price volatility level in a multi-region electricity

market.

– The total storage capacity is minimized subject to a price volatility target con-

straint, in the upper level problem.

– The strategic interaction between generation, transmission and storage players

in the market is modeled as a stochastic (Bayesian) Cournot-based game with

exponential inverse demand functions, in the lower level problem.

– The existence of Bayesian Nash Equilibrium (Bayes-NE) is established for the

lower level problem, which includes exponential inverse demand functions.

• Contributions to answer Research Question 4 (in Chapter 6):

– A bi-level optimization model is developed to allocate a fixed budget opti-

mally between regulated wind and storage capacities to minimize the weighted

sum of average price and price volatility in an electricity market.

– In the upper level problem, the weighted sum of average price and price

volatility is minimized by allocating the fixed budget on regulated wind and

storage capacities in the market.

– In the lower level problem, the non-cooperative interaction between strategic

and regulated generation, storage and transmission players in the market is

modeled as a stochastic (Bayesian) Cournot-based game.

• Contributions to answer Research Question 5 (in Chapter 7):
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– A stochastic game-theoretic Cournot-based model is developed, in which strate-

gic and regulated generation firms decide on expanding their generation ca-

pacity considering an emission constraint and the uncertainties due to inter-

mittency of wind and solar.

– The dual variable of the emission cap constraint at the Bayes-NE point of the

game is used to calculate the carbon price required to limit the CO2 emission

to the cap level in the market.

– The remaining value of new technologies (their value at the end of the study

time) and the capacity retirement are considered in our model, which enables

us to calculate the capacity expansion/closure during the study period.

• Contributions to answer Research Question 6 (in Chapter 8):

– A game-theoretical Cournot-based electricity market expansion model is de-

veloped to find the future capacity mix of generation, storage and transmis-

sion in the market with both strategic and perfectly competitive (regulated)

players.

– All players in our model are subject to the emission intensity reduction con-

straint, the dual variable of which at the NE point is used to calculate the

emission tax and subsidy that generators pay and receive for a targeted low

emission market.

– All players in our model are also subject to the fast response dispatchable gen-

eration constraint, the dual variable of which at the NE point is used to calcu-

late the capacity tax and subsidy that generators and storage firms pay and re-

ceive for maintaining the system reliability (generation and demand balance).

1.5 Thesis Outline

Chapter 2: Game-theoretic Cournot-based Electricity Market Models with Storage

In Chapter 2, the mathematical formulation of a game-theoretic Cournot-based elec-

tricity market model is described. The market model includes several strategic and reg-
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ulated generation firms and is extended as a multi-region model with strategic storage

players. After describing the mathematical formulations of AC and DC power flows,

the Cournot game in a wholesale electricity market is defined. The game is extended

to include strategic storage players and is solved as a centralized optimization problem.

Solving the game based on its Karush Kuhn Tucker (KKT) equations is also discussed in

this chapter.

Chapter 3: NEM as the Case Study

In Chapter 3, we introduce the NEM market briefly and explain its pricing mecha-

nism. The market clearing engine that settles the electricity generation, demand, and

price is discussed. Moreover, we discuss the price and demand curves in competitive

electricity markets based on linear and non-liner relations, and explain the calibration

mechanism of the inverse demand functions based on historical price and demand data

in the market. Then we show how accurate our model can simulate the electricity price

and demand levels in NEM.

Chapter 4: Impact of a Coal Power Plant Closure on a Multi-region Wholesale Elec-

tricity Market

In Chapter 4, the system model of a wholesale electricity market including strate-

gic/regulated generation, and transmission players is developed using a Cournot-based

electricity market model. Regarding the nonlinear inverse demand functions, the set of

KKT equations of market participants, i.e., wind and synchronous generators and trans-

mission players, is solved to find the NE solutions. Market simulation is repeated with

365 different scenarios to calculate the price volatility in the market. The NEM market is

studied as the case study and the impact of closing the Hazelwood power plant in Victo-

ria on the market prices and volatility is investigated. Greenhouse gas emission of CO2

in coal and gas power plants is also compared in simulations before and after the closure.

Chapter 5: Impact of Optimal Storage Allocation on Price Volatility in Electricity

Markets

In Chapter 5, a bi-level optimization model is proposed to find the nodal storage

capacities in an electricity market required to achieve a certain level of price volatility.

The price volatility is calculated at the Bayes-NE solution of a stochastic Cournot-based
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electricity market model including wind and synchronous generators, storage firms, and

transmission players. The set of KKT equations is solved to find the Bayes-NE solution

of the stochastic game and a greedy algorithm is used to solve the upper and lower level

problems. The NEM market is studied as the case study and the optimal capacity of

storage in South Australia and Victoria respect to a certain level of price volatility is cal-

culated. Our storage allocation framework is also applied to manage the price volatility

in a 30-bus IEEE system.

Chapter 6: Regulated Wind/Storage to Reduce the Electricity Market Price and

Volatility

In Chapter 6, a bi-level optimization model is proposed to allocate a fixed budget on

regulated storage and wind capacities in order to minimize the weighted sum of average

price and price volatility in a competitive market. A stochastic Cournot-based whole-

sale electricity market model is developed to find the Bayes-NE solution of the game

between intermittent and synchronous generators, storage firms, transmission lines, and

regulated wind and storage firm in the market. The set of KKT equations is solved to find

the market equilibrium solution and a line search algorithm is used to solve the upper

and lower level problems. The NEM market is studied as the case study and the optimal

capacity for regulated wind and storage firm is calculated to minimize the weighted sum

of price and volatility in the market.

Chapter 7: Long-Term Stochastic Planning in Electricity Markets Under Carbon

Cap Constraint

In Chapter 7, a long-term stochastic Cournot-based generation expansion model is

proposed, in which any generation firm maximizes the net present value of its profit sub-

ject to a aggregated CO2 emission constraint. The dual variable of the emission constraint

at the Bayes-NE point is used to calculate the carbon price required to limit the emission

in the market. Regarding the linear inverse demand functions, the game model is solved

as a centralized optimization problem. A generic wholesale electricity market including

coal, gas and wind generators is studied as the case study under several wind availabil-

ity scenarios. The effect of wind intermittency on capacity expansion decisions and on

carbon price is discussed in the simulations.
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Chapter 8: Designing Tax&Subsidy Incentives Towards a Green and Reliable Elec-

tricity Market

In Chapter 8, a long-term Cournot-based market expansion model is proposed, in

which any generation, storage, and transmission firm maximizes the net present value

of its profit subject to an upper bound on CO2 emission intensity constraint and a fast

response dispatchable capacity constraint. The dual variable of the emission constraint at

the NE point is used to calculate the tax and subsidy incentive policies required to reduce

the emission intensity and the dual variable of the dispatchable capacity at the NE point is

used to calculate the tax and subsidy policies required to ensure the existence of adequate

dispatchable capacity in an electricity market with high level of intermittent generation.

The set of KKT equations are analyzed to calculate the tax and subsidy policies. The

NEM market is considered as the case study and the required tax and subsidy policies

are calculated to enable the transition towards a green and reliable electricity market by

2052 in Australia.
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Introduction to Part I

ELECTRICITY market models are developed to find the electricity market prices

based on the interaction between market players. Classical electricity market mod-

els just include generation players, who aim to maximize their profit considering the

transmission constraints in the network. The classical electricity market models are ex-

tended in this thesis because of the integration of storage firms, in small or large scales.

In Chapter 2, we introduce a classical Cournot-based electricity market model, in

which we discuss the generation and transmission players explicitly. We extend the

model by embedding the storage firms as strategic players in the market. The impact

of storage energy flow on market prices is compared in charging and discharging situa-

tions. This electricity market model is used as part of the models in other chapters.

In Chapter 3, we first introduce the NEM market as the case study for our simulations

in this thesis and explain how the market clearing engine settles the electricity generation,

demand and price in the NEM. Then, we explain the inverse demand function calibra-

tion methodology, and compare the linear and non-linear inverse demand functions with

each other. We also show how accurate our model can simulate the electricity price and

demand levels in NEM.





Chapter 2

Game-theoretic Cournot-based
Electricity Market Models with

Storage

Existing wholesale electricity markets have been designed for the traditional electricity grid that has

very limited storage capability. In the near future, a substantial amount of storage capacity is expected

to be installed in power grids following the decentralization and renewable distributed generation

trends. At the same time, information and communication technologies enable aggregation of storage

capabilities regardless of their specific form which can be, e.g. pump-storage hydro, large-scale or

distributed residential batteries, or electric vehicles. In this chapter, a classical Cournot game model

is extended in order to analyze how strategic storage firms can be modeled in an electricity market

and influence the wholesale price levels during charging and discharging periods. The developed

model takes power generators (synchronous and intermittent), storage firms and transmission lines

as market players into account, and is used as part of the developed models in the other chapters.

2.1 Introduction

In this chapter, a classical Cournot-based electricity market model is extended by embed-

ding strategic storage firms which can be considered as owners of virtual power plants.

Our model considers synchronous and renewable generators, storage firms and trans-

mission lines in a multi-region electricity market. Any player maximizes its utility in

the game, assuming linear price (inverse demand) functions. Note that the solution of

individual players’ profit maximization problems, the Nash Equilibrium solution of the

game, can be found by solving a single optimization problem or a Mixed Complemen-

tarity Problem (MCP). Because the inverse demand functions in our model are linear, we

31
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can model the electricity market as a centralized optimization problem.

The contributions of this chapter include the following:

• We theoretically extend a classical multi-period Cournot-based electricity market

model by introducing storage firms, who own virtual power plants, as strategic

players in the market.

• We solve our extended Cournot-based electricity market model as a centralized op-

timization problem. Note that the centralized version just applies to market models

with linear inverse demand functions.

The rest of this chapter presents the AC and DC power flow models in Section 2.2,

the wholesale electricity market game model in Section 2.3, and ends with a conclusion

in Section 2.5.

2.2 Mathematical Model Description

AC Power Flow

Power flow equations (2.1) describe the steady-state behavior in an electric power grid.

At point or bus i, the nominal power injected to the network, Snominal
i , consists of active

power, Pactive
i , and reactive power, Qreactive

i . The voltage level at bus i, Vi, and the current

injected to the network from the bus i, Ii, are as:

Snominal
i = Pactive

i + jQreactive
i = Vi I∗i ∀i (2.1)

Pactive
i − jQreactive

i = V∗i Ii = V∗i ∑
j

YijVj, ∀i, (2.2)

where Yij denotes the admittance between bus i and j, and (.)* denotes complex conjuga-

tion.

Accordingly, the active and reactive powers correspond to the real and imaginary
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parts of the nominal power, respectively, as:

Pactive
i = Re{V∗i ∑

j
YijVj} ∀i

Qreactive
i = −Im{V∗i ∑

j
YijVj} ∀i

Considering the phasor type of the voltage Vi with the voltage absolute |Vi| and the

voltage phase δi as Vi = |Vi|ejδi , and the admittance elements Y with their conductance

amounts G and susceptance amounts B as Yij = Gij + jBij, we can write the final power

flow equations as:

Pactive
i = ∑

j
|Vi||Vj|(Gijcosδij + Bijsinδij), ∀i,

Qreactive
i = ∑

j
|Vi||Vj|(Gijsinδij − Bijcosδij), ∀i,

where δij denotes δi − δj.

DC Power Flow

Direct Current Load Flow (DCLF) provides estimates of line power flows on AC power

systems. As a simplification, DCLF looks only at the active power and neglects the reac-

tive power [69].

DC load flow analysis has four basic assumptions:

• Line resistances (active power losses) are negligible i.e. in line impedance Z we assume

that Re(Z)� Im(Z).

• Voltage angle differences are assumed to be small i.e. sin(δ) ' δ and cos(δ) ' 1.

• Magnitudes of bus voltages are set to 1.0 per unit (flat voltage profile, Vrated).

With the simplified AC power equations under the assumptions made above, the
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active power flowing from node i to node j can be shown as:

Ptr
ji = |Vi|(Gij|Vi| − Gij|Vj| cos δij − Bij|Vj| sin δij)

' |Vrated|2(−Bijδij) ∀i, j
(2.3)

which is used in our developed electricity market model to show the power flow on

interconnectors.

Note that we rename the active power Pactive to q in the remainder of Chapter 2.

2.3 Game-theoretic Model of a Wholesale Electricity Market

Power suppliers in a competitive electricity market generate power in order to maximize

their profits. Players in a generic strategic (non-cooperative) game are either able to af-

fect the price by deciding on their generation quantities, which are referred to as strategic

players, or just follow the price in the market, which are referred to as perfectly competi-

tive (price-taking) players. Accordingly, we define the following Cournot-based game to

model the electricity generation behavior in a wholesale electricity market.

2.3.1 Game Definition and Nash Equilibrium:

Let K = {1, · · · , K} be the set of generation firms participating in the electricity mar-

ket. At time t ∈ T , T = [1, · · · , T], they decide on their electricity generation qg
t =

[qg
1,t, · · · , qg

K,t] < 0. We assume that the generator k has constant marginal cost of produc-

tion ck ≥ 0.

The price P determines per unit revenue of a firm in the market. Inverse demand or

pricing function, Pt(Dt), is defined by a linear equation with parameters αt and βt, and is

determined by the market demand, Dt, that has to match the total generation, ∑k qg
k,t, in

a one-node model:

Pt(Dt) = αt − βtDt. (2.4)

The demand function parameters α and β are calculated based on the historical price and

demand data in the region.
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Players in the model are categorized into perfectly competitive and strategic ones,

which differ in their objective functions. A strategic player (generator) decides on its

generation qg
k,t according to the following objective function:

Ug
k = ∑

t
qg

k,tPt(Dt)− ckqg
k,t. (2.5)

while the perfectly competitive or regulated generator’s objective function is:

Ug
k = ∑

t
qg

k,tPt(Dt) + βtq
g
k,t − ckqg

k,t (2.6)

Due to the term βtq
g
k,t, the perfectly competitive player never withholds its available

capacity to raise the market price, i.e. it does not have or misuse the market power ability

to strategically increase the wholesale prices.

Definition 1. A perfectly competitive (PC) player does not misuse or have the market power to

raise wholesale prices, while a strategic player may deliberately decide to increase the prices by

withholding its available capacity.

Considering all firms strategic, the generation firm k solves the following profit max-

imization problem:

max
qg

k,t≥0
Ug

k (q
g) := ∑

t
qg

k,tPt(q
g
t )− ckqg

k,t s.t. Agqg ≤ bg (2.7)

where generation constraints are embedded in the inequality Aqg ≤ b. The action space

of the generation players is defined as Ω = {qg ∈ R+K∗T |Agqg ≤ bg}, which is com-

pact, convex, and non-empty in our model. Moreover, as the quadratic objective function

is concave and continuous on its action set, the problem (2.7) is a convex optimization

problem.

The problem (2.7) has the corresponding Lagrangian function,

Lk = ∑
t
(αt − βt ∑

k′
qg

k′,t)q
g
k,t − ckqg

k,t − λ(Agqg − bg),

where λ ≥ 0 is the vector of Lagrange multipliers.
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Consequently, the Karush-Kuhn-Tucker conditions are both necessary and sufficient

for optimality [70],

dLk

dqg
k,t

= αt − βt ∑
k′

qg
k′,t − βtq

g
k,t − ck − λa(k ∗ t) = 0, (2.8)

where a(k ∗ t) is the (k ∗ t)th column of the constraint matrix Ag. The solution of (2.8)

is the best response of player or generation firm k given the decisions of other players.

The intersection of the best responses of all players, qg∗, is by definition the NE of the

corresponding strategic game G = {K, qg ∈ Ω, Ug}.

Proposition 1. The electricity generation strategic game G = {K, qg ∈ Ω, Ug} played among

the set of K firms, which decide on generation levels qG in order to maximize the profit Ug admits

a Nash Equilibrium solution qg∗ if the action space Ω = {qg ∈ R+K∗T |Agqg ≤ bg} given

coefficient matrix Ag and vector matrix bg is convex, compact, and non-empty. Furthermore, any

solution qG∗ of the quadratic optimization problem

max
qg≥0

F := ∑
k,t

(αt −
βt

2 ∑
k′

qg
k′,t)q

g
k,t −

βt

2
(qg

k,t)
2 − ckqg

k,t

s.t. Agqg ≤ bg

is a NE of the game.

Proof. The proof follows the Theorem 4.4 in [7] and [71].

2.3.2 The Game with Strategic Storage Firms

We call a firm that operates a set of storage capacities, e.g. battery or pump-storage

hydro, in the network a storage firm. The firm’s operation mode can be either charging or

discharging. While charging, the storage generates electricity similar to the conventional

generators, and while discharging, it operates as an additional load in the system. Having

generation (Discharging) and demand (charging) modes, a storage firm does not look like

conventional generators modeled in the market.



2.3 Game-theoretic Model of a Wholesale Electricity Market 37

A strategic storage player with decision variable qst
t is modeled and embedded in

our non-cooperative electricity generation game. Storage facilities are limited by their

charging rate and capacity constraints [72]. According to the charging rate constraint,

discharging takes positive values 0 ≤ qst
t ≤ qst,max, and charging takes negative val-

ues qst,min ≤ qst
t ≤ 0. In order to satisfy the capacity constraints, the actual charg-

ing level, with initial value of Qst,0, must be maintained within a proper range, i.e.,

0 ≤ Qst,0 −
t

∑
t′=1

qst
t′ ≤ Qst,max, where t ∈ T .

While discharging, the storage firm injects electricity into the grid. Therefore, its dis-

charging adds to total generation, which is equal to the total demand: yt = ∑k qg
k,t + qst

t ,

if qst
t ≥ 0. Given the inverse demand function in (2.4), the utility function of the storage

firm, Ust
t = Ptqst

t , becomes:

Ust
t = (αt − βt(∑

k
qg

k,t + qst
t ))q

st
t i f qst

t ≥ 0 (2.9)

On the other hand, storage charging results in changing the intercept coefficient in the

inverse demand function, i.e., Pt = (αt − βtqst
t )− βtDt, if qst

t < 0. While charging, given

the total generation of incumbent generators, ∑
k

qg
k,t, the utility function of the storage

firm, Ust
t = Ptqst

t , considering the new inverse demand function is:

Ust
t = ((αt − βtqst

t )− βt ∑
k

qg
k,t)q

st
t if qst

t < 0. (2.10)

Note that the terms in these utility functions are identical and instead of looking at a

storage firm in discharging and charging modes, we can consider the strategic storage

firm in a non-cooperative electricity generation game as a generator with both positive

and negative bids (generation).

Therefore, it is acceptable to assume a storage firm as a generator with real decision

variable, i.e., a generator capable of generating both positive and negative amounts. Fig-

ure 2.1 illustrates how storage charging/discharging affects the supply curve, while the

demand curve is assumed fixed, and shifts the equilibrium point.

Due to extension of the game for multiple strategic storage players, the objective func-
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Figure 2.1: Storage charging and discharging effects on supply/demand equilibrium
point at a given moment in time (points 1 and 2 represent equilibrium point before and
after storage installation).

tion of storage firm b and generator firm k respectively become:

Ust
b (q

g, qst) = ∑
t

qst
b,t(αt − βt(∑

k
qg

k,t + ∑
b

qst
b,t)) (2.11)

Ug
k (q

g, qst) = ∑
t

qg
k,t(αt − βt(∑

k
qg

k,t + ∑
b

qst
b,t))− ckqg

k,t (2.12)

Consequently, the NE point of the new game including strategic storage players can

be computed by solving the modified centralized optimization problem:

max ∑
t
(αt −

βt

2
(∑

k
qg

k,t + ∑
b

qst
b,t))(∑

k
qg

k,t + ∑
b

qst
b,t)−

βt

2
(∑

k
qg

k,t
2
+ ∑

b
qst

b,t
2
)−∑

k
ckqg

k,t

(2.13)

s.t. [ Ag Ast ][
qg

qst
] ≤ [

bg

bst
]

Based on the results in Proposition (1), the Lagrangian equations for the optimization

problem (2.13) respect to variables qg and qst coincidence with Lagrangian equations for

individual profit maximization problems of storage firms with utility function (2.11) and

generators with utility function (2.12). Hence, the solution of (2.13) coincides with the

NE of the game.

In order to consider energy flow efficiency for charging and discharging, 0 ≤ µdis, µch ≤

1, it needs to allocate two independent positive variables qch
b,t and qdis

b,t for storage charge

and discharge quantities. Again, the net energy flow of storage firm b at time t, qst
b,t =
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qdis
b,t µdis − qch

b,t
µch , takes a real value. However, for simplicity we assume no energy loss for

storage firms and continue only with the variable qst
b,t.

2.4 Multi-nodal, Multi-period Wholesale Electricity Market

2.4.1 The Game as a Centralized Optimization Problem

The multi-period (finite horizon) wholesale electricity market model presented can be ex-

tended at multiple interconnected nodes by inserting the node index i ∈ I , I = [1, · · · , I].

In a multi-nodal game, the transmission value between the nodes i and j emerges as an

independent variable qtr
ij,t which needs to be decided on in the game. Given the transmis-

sion player between nodes i and j) behaves perfectly competitive, according to Definition

(1) and similar to (2.6) it has the utility function:

Utr
ij = ∑

t
(Pi,t − Pj,t)qtr

ij,t +
β j,t + βi,t

2
(qtr

ij,t)
2

where the player transmits electricity from the higher price node to the lower price node

as long as either there is price difference between nodes i and j or the transmission line is

congested. The second term, β j,t+βi,t
2 (qtr

ij,t)
2, differentiates the player from a strategic one

and prevents withholding the available capacity to benefit strategically from the price

difference between nodes.

On the other hand, when the transmission player between nodes i and j behaves

strategically, similar to (2.5) it has the following utility function:

Utr
ij,t = ∑

t
(Pi,t − Pj,t)qtr

ij,t

where it is capable of increasing the price differences strategically by withholding its

available capacity.

Players of the game are categorized into: (1) Generation firms, (2) Storage firms, (3)

Transmission firms, which can be either strategic or regulated. The generation firm k

in node i decides on the vector of variables [qg
k,i,1, · · · , qg

k,i,T] which take positive values,
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whereas the storage firm b in node i decides on the vector of variables [qst
b,i,1, · · · , qst

b,i,T]

which take both positive and negative values, and the transmission firm between nodes

i and j decides on the vector of variables [qtr
ij,1, · · · , qtr

ij,T] which take both positive and

negative values as well.

The mathematical model presented below is an extension of the centralized optimiza-

tion problem (2.13), which is developed for the energy-only five node NEM market sub-

ject to generation, storage and transmission constraints. The network constraints are

given based on DC load flow (DCLF) assumptions (the Kirchoffs law is always respected

in our models). The multi-nodal intertemporal wholesale electricity market model con-

sisting of strategic generations and storage firms and regulated transmission lines is:

max
qg,qtr,δ,D�0

qst

∑
i,t

(αi,t −
βi,t

2
Di,t)Di,t −∑

k,i,t
ck,iq

g
k,i,t − (∑

k,i,t

βi,t

2
qg

k,i,t
2
+ ∑

b,i,t

βi,t

2
qst

b,i,t
2
) (2.14a)

s.t.

Di,t = ∑
k

qg
k,i,t + ∑

b
qst

b,i,t −∑
j

qtr
ji,t ∀i, t (2.14b)

qtr
ji,t = |Vrated|2(−Bijδij,t) ≤ Qtr

ji ∀i, j, t (2.14c)

δmin
i ≤ δi,t ≤ δmax

i ∀i, t (2.14d)

qg
k,i,t ≤ Qg

k,i ∀k, i, t (2.14e)

qg
k,i,t − qg

k,i,t−1 ≤ Rup
k,i Qg

k,i ∀k, i, t (2.14f)

qg
k,i,t−1 − qg

k,i,t ≤ Rdn
k,i Qg

k,i ∀k, i, t (2.14g)

qg
k,i,t ≤ ωk,i,tQ

g
k,i ∀k, i, t (2.14h)

∑
t

qg
k,i,t ≤ RAg

k,i ∀k, i (2.14i)

0 ≤ Qst,0 −
t

∑
t′=1

qst
t′ ≤ Qst ∀b, i, t (2.14j)

qst,min
b,i ≤ qst

b,i,t ≤ qst,max
b,i ∀b, i, t (2.14k)

where qg, qst, qtr are independent variables, and Di,t, δij,t are intermediate variables.

The optimization problem (2.14a)-(2.14k) considers all individual profit maximization
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problems. As shown in Proposition 1, the objective function (2.14a) enables us to write

the game as a centralized optimization problem. Constraint (2.14b) show the nodal elec-

tricity supply and demand balance. Constraint (2.14c) presents the electricity transmitted

between nodes (where |Vrated| is the rated voltage assumed in the network, Bij is the sus-

ceptance characteristic of the line and δij, i.e., δi − δj, is voltage phase difference between

nodes i and j) and limits the transmission values to the maximum power flow capacities.

As the problem is on DCLF format, constraint (2.14d) expresses the technical limit just on

voltage phases and does not consider the voltage magnitudes. The generation capacity

limit is shown in (2.14e). Constraints (2.14f)-(2.14g) show the ramp limits of generators

while the problem is cast as a chronological one. Period-by-period availability limit ap-

plicable to all generators especially intermittent wind turbines are shown in (2.14h), and

intertemporal generation limits due to fuel scarcity or planned/forced outages are ex-

pressed in (2.14i). Considering the strategic storage players, we include the constraints

(2.14j)-(2.14k) to show the storage capacity and the charging rate limit, respectively.

2.4.2 The Game as a Mixed Complementarity Problem

Alternatively, we can solve the electricity market game using the best response functions

of all firms participating in the market. The best response of any player satisfies the

necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions, i.e.

the set of first order optimality equations of all players, are the derivative of Lagrangian

function of each player L respect to all its decision variables, e.g. q:

∂L
∂q
≤ 0 ⊥ q ≥ 0 if q ≥ 0 (2.15a)

∂L
∂q

= 0 if q is free (2.15b)

where the perpendicularity sign, ⊥, indicates that one of the adjacent inequalities must

at least be satisfied as an equality [73], i.e., the complementarity constraints.

Then, any intersection of all firms’ best response functions will be a NE. At the NE

strategy of the game, no player has any incentive to unilaterally deviate its strategy from
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the NE point. The KKT equations of the game are fully described in Chapter 5.

2.5 Conclusion

Electricity networks are transforming toward installing substantial amounts of storage in

different forms of pump-hydro, large-scale batteries and distributed batteries as a buffer

system to store the excess generated electricity at off-peak hours and sell it to network

at peak hours. We developed a multi-region Cournot-based wholesale electricity market

model and embedded the storage in it with the following conclusions:

• Storage players can be modeled as generators with both positive and negative gen-

eration amounts in the market. In other words, although storage charging impacts

the inverse demand functions on the demand side, we can equivalently find the

storage impact on the supply side.

• Transmission lines are also modeled as individual players in our model, who max-

imize their utility in the game. Considering a market power term, we have both

strategic and regulated transmission players in our model.

• Given linear inverse demand functions in our Cournot-based electricity market

model, we transform the game model into a centralized version and solve it as

an optimization problem to find the NE solution.

• When there is a nonlinear inverse demand function in a Cournot-based market

model, the best responses of all players must be written as the set of KKT equa-

tions to find the NE solution of the game.

The electricity market model developed in this chapter is used as part of the models

in other chapters.



Chapter 3

NEM as the Case Study

3.1 Overview of National Electricity Market (NEM)

The Australia’s National Electricity Market (NEM) operates as a wholesale market for the

supply of electricity to retailers and end-users. NEM is operated by Australian Energy

Market Operator (AEMO) and consists of five interconnected regions (states) shown in

Fig. 3.1: South Australia (SA), Queensland (QLD), Tasmania (TAS), Victoria (VIC) and

New South Wales (NSW).

Figure 3.1: Interconnected states in Australia’s National Electricity Market.

In NEM 2017, different types of electricity generation firms, i.e. coal, gas, hydro and

wind, with a total (both dispatchable and intermittent) generation capacity of 45.7 GW are

active. Roof-top solar with capacity of 4.8 GW is also generating electricity in Australia.

Fig. 3.2 illustrates the existing generation capacities in the NEM, which are used in our

43
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numerical simulations and are gathered from AEMO’s website (aemo.com.au).
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Figure 3.2: Dispatchable and intermittent electricity generation capacities in the NEM,
2017.

In market NEM, 13, 23, 21, 20, and 18 synchronous generators are participating in SA,

QLD, TAS, VIC, and NSW, respectively. The NEM also includes the total wind power

capacities of 1250 MW in SA, 0 MW in QLD, 250 MW in TAS, 964 MW in VIC, and 554

MW in NSW. The share of wind power installed capacity in total electricity generation

capacity is 34.3% in SA, 0% in QLD, 9.1% in TAS, 8.7% in VIC, and 3.4% in NSW. SA

possesses the highest share of wind power in its total electricity generation in NEM.

In the NEM, electricity is an ideal commodity which is exchanged between producers

and consumers through a pool. Wholesale trading of electricity is conducted in a spot

market. Generators offer to supply the market with specific amounts of electricity at

particular prices. Offers are submitted every five minutes (market price cap is 11000

$/MWh and market floor price is -1000 $/MWh). Finally, the output from all generators

is aggregated and scheduled to meet the demand.

Fig. 3.3 illustrates the clearing engine mechanism in the NEM. Bids to produce elec-

tricity received by AEMO are stacked for each dispatch period in ascending price order.

Generators are scheduled into production to meet the demand with the least-cost gener-
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ation option. Note that the spot price for each trading period (half hour) is calculated as

the average of the six dispatch prices (every five minutes).

Figure 3.3: The clearing engine mechanism in the NEM (Source: AEMO).

Electricity trade between two regions helps to lower the price difference between

those regions. The interconnectors in NEM are either regulated or unregulated. Regu-

lated interconnectors have passed the Australian Competition and Consumer Comission

(ACCC) devised regulatory test and are eligible to receive fixed annual revenue, but un-

regulated ones derive revenue by trading in the spot market. All interconnectors in NEM

are regulated, while Tasmania is connected via an unregulated interconnector to Victoria.

The inteconnetor capacities existing in NEM are listed in Table C.4 in Appendix C.

3.2 Calibrating the Inverse Demand Functions

In economic theory, price relates to demand in a function called the demand curve. In

this thesis, We have calibrated the inverse demand curves based on NEM’s historical

price and demand data with both linear and non-linear functions.

Two most commonly used inverse demand functions in microeconomics literature

are the linear and iso-elastic models [74], e.g., in [24, 28]. Exponential inverse demand

function has also been used in energy market models [75]. The inverse demand func-

tion of most commodities follows a non-linear downward sloping price versus demand

relation [76] and a linear inverse demand function is just its first order approximation



46 NEM as the Case Study

at an operating price and demand level. The linear function may become invalid when

the operating point changes drastically, e.g., when the price plunges from the very high

amount of 11000 $/MWh to low level of 50 $/MWh.

The iso-elastic and exponential functions can more accurately illustrate the price and

demand relation. In fact, the exponential function, p = α′e−β′q, is the modified version of

the iso-elastic function, ln(p) = α− βln(q) or p = α̃e−βln(q) with α̃ = eα, which substitutes

the logarithmic demand levels with nominal levels. We discuss three reasons privileging

the exponential inverse demand function over the iso-elastic. Firstly, the KKT conditions

(first order optimality conditions) of our developed market game models become highly

non-linear under the iso-elatsic function and it becomes hard to numerically solve them.

The derivative of the exponential inverse demand function with respect to demand is
∂p
∂q = −β′p, while the derivative of the iso-elastic function respect to demand is ∂p

∂q =

−βpq−1. Secondly, the exponential function has a finite price feature while the iso-elastic

function goes to infinity for small levels of demand. Lastly, the exponential function

partially covers the specifications of both linear and iso-elastic functions. Consequently,

we use and calibrate exponential inverse demand functions to characterize the price and

demand relations in our models in Chapters 4, 5 and 6.

In electricity market models, the constant coefficients in the inverse demand func-

tions are usually calibrated based on actual price/demand data , p/q, and price elasticity

levels, ε =
∂q
q

∂p
p

[76], which are given as input to our models. Given two equations of price-

demand function and elasticity function, i.e., p = f (q) and ε = ∂q
∂p

p
q , and two unknowns,

we can find the both parameters in all three discussed inverse demand functions. For

instance, given the price of p = 50 $/MWh, demand of q = 1500 MW and price elas-

ticity of demand ε = −0.3, the linear function p = 650
3 −

1
9 q, the iso-elastic function

ln(p) = 28.28− 10
3 ln(q), and the exponential function p = 50e

10
3 e−

1
450 q can be extracted.

Fig. 3.4 compares the calibrated linear, exponential and iso-elastic inverse demand func-

tions. The properties of the exponential function lie between the linear and iso-elastic

functions.
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Figure 3.4: Calibrated linear, exponential and iso-elastic inverse demand functions at
price 50 $/MWh, demand 1500 MW, and elasticity -0.3.

3.3 Model Calibration with Real Data

In our simulations, we use the technical and financial data on the generation, storage,

and transmission technologies in the NEM (Appendix C), and run our model which is

calibrated with historical data in the market. Moreover, the inverse demand functions

(the relation between price and demand in the market) in our wholesale electricity market

models are calibrated with real data, as explained in Section 3.2.

As an example, the simulation results of our model for hourly price and demand are

compared with the historical data for the average day of 2017 in Fig. 3.5. It can be seen

that the price and demand levels are calculated with the error terms of 6.4% and 4.7%,

respectively.

Note that the NEM market with the assumptions explained is considered as the case

study throughout the whole thesis. Furthermore, we use the non-linear inverse demand

function in Chapters 4, 5 and 6, and use the linear inverse demand function in the elec-

tricity market models developed in Chapters 7 and 8.
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Figure 3.5: Comparing the simulation results (solid lines) of hourly price and demand
with the historical data (dashed lines) (Source: AEMO) for the average day of 2017 in

five states of the NEM.



Part II

Analysis of Price Volatility in
Electricity Markets

49





Introduction to Part II 51

Introduction to Part II

AFTER introducing the Cournot-based electricity market models and embedding

storage firms in those models in Chapter 2, we extend the developed models and

apply them to analyze the price level and price volatility in electricity markets.

In Chapter 4, we develop a multi-region Cournot-based electricity market model

with non-linear inverse demand functions to find the impact of closing a base-load coal

power plant on electricity prices in Australia’s National Electricity Market. Calibrating

the model with real price and demand data and building wind power availability sce-

narios based on the historical daily wind data, we run the market model 365 times and

calculate the price volatility in NEM before and after closing down the coal power plant.

In Chapter 5, a bi-level optimization model is proposed to find the optimal storage

capacity at each node to limit the price volatility in the market to a target level. In the

upper level problem, the total storage capacity required to manage the price volatility is

minimized, and in the lower level problem, the interaction between strategic/regulated

generation, storage and transmission players is modeled using a stochastic (Bayesian)

Cournot-based game with exponential inverse demand functions.

In Chapter 6, a bi-level optimization model is proposed to allocate a fixed amount of

budget on wind and storage capacities to minimize the weighted sum of average price

and price volatility in the market. In the upper level problem, the weighted sum of price

and volatility is minimized by investing on battery and wind, and in the lower level

problem, the non-cooperative interaction between all market players is modeled using a

stochastic (Bayesian) Cournot-based game with exponential inverse demand functions.





Chapter 4

Impact of a Coal Power Plant Closure
on a Multi-region Wholesale

Electricity Market

Closure of a base-load power plant, based on either its aging state, or a national greenhouse re-

duction scheme, or transition to smart grids, may have a significant impact on wholesale electricity

markets. This chapter presents a Cournot-based multi-region game model based on nonlinear inverse

demand functions to formally analyze the impacts of a base-load plant closure on the price level and

volatility (increase), and CO2 emission (decrease). Using the Hazelwood coal plant closure in Victo-

ria, a state of Australia’s National Electricity Market (NEM), as a case study, the simulation results

indicate around 30% and 49% price and volatility increase in the wholesale market, and 210 million

AU$ (+3.5%) higher annual power bills in Victoria for final consumers. However, being the most

stable and least volatile region in NEM, Victoria mostly supports its neighboring regions in terms of

price and volatility reduction even after the Hazelwood closure.

4.1 Introduction

IN THIS chapter, a game-theoretic multi-region electricity market model based on

nonlinear inverse demand functions is proposed. The model is used to analyze the

regional electricity prices after closure of a base-load coal-fueled generator in an electric-

ity market.

The contributions of this chapter are summarized as follows:

• A Mixed Complementarity Problem (MCP) is proposed to find the Nash Equi-

librium solution of a Cournot-based multi-region electricity market model with

53
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nonlinear inverse demand functions, including strategic generators (with market

power) and regulated transmission lines.

• We model the transmission lines as individual market participants likewise the

other players in the game and solve the model as an MCP problem, which is com-

putationally far more convenient than computing the electricity transmissions as

a constraint for market clearing engines in Equilibrium Problem with Equilibrium

Constraints (EPEC) electricity market models.

• The model is applied to the 5-node NEM market, as a case study, with realistic

data from year 2015. Our numerical results explain the actual real-life market data

events, e.g. price and demand, taking into account the market power of generation

firms. The simulation covers 365 days in a year and is calibrated with the real wind

generation and demand fluctuations.

• Lastly, the CO2 emission of gas and coal-fueled power plants, which is affected by

the electricity market price, is compared before and after the Hazelwood closure.

Under the proposed framework, we analyzed the impact of closing the Hazelwood

plant in Victoria on the regional electricity prices in NEM. The price level and price

volatility in different regions of NEM, the total profit the strategic generators make, and

the total CO2 emission are compared before and after the closure in our simulations. This

kind of study can inform the market players and system operator of the consequences

and ramifications of their decisions in advance.

The rest of this chapter is organized as follows. Section 4.2 illustrates the formulation

of the system model and the proposed MCP problem. Section 4.3 presents the simulation

results, and section 4.4 discusses the conclusion remarks.

4.2 System Model

We consider an electricity market consisting of I regions. Our market model includes

synchronous generators, wind firms, and transmission interconnectors. Let N sg
i be the

set of synchronous generators, such as coal, gas, and hydro power plants, installed in
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region i, N ig
i be the set of wind firms installed in region i, and Ni be the set of neighbor-

ing regions of region i connected with interconnectors. We determine the quantities of

electricity generation and transmission and regional prices by solving a Cournot-based

game between all market participants, that is, synchronous generators, wind firms, and

transmission interconnectors, which are introduced in detail in Section 4.2.2.

In this chapter, we propose an MCP problem to solve a Cournot-based game-theoretical

electricity market model with exponential inverse demand functions. This model differs

from earlier ones, as it models a multi-region electricity market considering nonlinear in-

verse demand functions and considering generation and transmission players in a singe

level. We use the model to analyze the impact of closing the existing coal power plants

on the wholesale electricity market prices.

4.2.1 Wholesale Price Function

The market price in region i at time t is modeled by an exponential function:

Pit (qit) = αite
−βit

 ∑
m∈N ig

i

qig
mit+ ∑

n∈N sg
i

qsg
nit+ ∑

j∈N tr
i

qtr
ijt


(4.1)

where the coefficients αit, βit are positive real values in the inverse demand function, qig
mit

is the generation quantity of the mth wind generator installed in region i at time t, qsg
nit is

the generation quantity of the nth synchronous generator installed in region i at time t,

and qtr
ijt is the transmitted quantity from region j to region i at time t via its interconnector.

The collection of strategies of all firms located in region i at time t is denoted by qit.

Section 3.2 explains why we use an exponential inverse demand function instead of a

linear one.

4.2.2 Market Participants

In our game model, the market players consist of synchronous generators and wind firms

deciding on their electricity generation, and transmission lines deciding on their electric-
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ity exchange. In order to find its best response function, each market participant decides

on its decision variables, considering other players’ decision variables as an input, maxi-

mizing its objective function subject to the constraints corresponding to the technical and

operational limitations. The intersection of the best responses of all players is defined as

the Nash Equilibrium (NE) and solution of the game.

In our formulation, the wind firms and the synchronous generators are assumed to be

strategic, but the transmission firms are modeled as either strategic or regulated players.

Definition 4.1. A strategic (price maker) firm decides on its strategies over the operation horizon

{1, ..., NT} maximizing its aggregate profit over the operation horizon. On the other hand, a

regulated (price taker) firm aims to maximize the net market value, i.e. the social welfare [77].

Wind Generators

The best response of the mth wind (intermittent) generator in region i is obtained by

solving the following optimization problem:

max{
qig

mit

}
t
�0

NT

∑
t=1

Pit (qit) qig
mit (4.2a)

s.t.

qig
mit ≤ ωitQ

ig
mi ∀t (4.2b)

Pit (qit) ≤ Pcap ∀t (4.2c)

where qig
mit is the generation level of the mth wind generator installed in region i at time t,

Qig
mi is the capacity of the wind generator mi, ωit is the normalized wind power availabil-

ity coefficient of region i at time t, which represents the regional wind power availability

fluctuations, and Pcap represents the price cap in the market, which is, for example, 11000

$/MWh in Australian NEM. The constraint (4.2b) considers the wind energy availabil-

ity effect on power generation of the individual wind firm mi, and the constraint (4.2c)

secures the price cap in the market.
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Synchronous Generators

The best response of the nth synchronous generator installed in region i is determined by

solving the following optimization problem:

max
{qsg

nit}t
�0

NT

∑
t=1

(
Pit (qit)− csg

ni

)
qsg

nit (4.3a)

s.t.

qsg
nit ≤ Qsg

ni ∀t (4.3b)

qsg
nit − qsg

ni(t−1) ≤ Rup
ni ∀t (4.3c)

qsg
ni(t−1) − qsg

nit ≤ Rdn
ni ∀t (4.3d)

Pit (qit) ≤ Pcap ∀t (4.3e)

where qsg
nit is the generation level of the nth synchronous generator installed in region

i at time t, Qsg
ni is the generation capacity of the synchronous generator ni, and csg

ni is its

marginal cost of generation. The constraint (4.3b) considers the generation capacity of the

synchronous generator ni, the constraints (4.3c) and (4.3d) ensure that the ramping limi-

tations of the synchronous generator ni are always met, and the constraint (4.3e) secures

the price cap in the market.

Transmission Firms

The best response of the transmission firm connecting the regions i and j is determined

by solving the following optimization problem:

max{
qtr

jit,q
tr
ijt

}
t

NT

∑
t=1

(
1− γtr

ij

) (
Pjt
(
qjt
)

qtr
jit + Pit (qit) qtr

ijt

)
+ γtr

ij

(
Pjtw

(
qjt
)

−β jt
+

Pitw (qit)

−βit

)
(4.4a)

s.t.

qtr
ijt = −qtr

jit ∀t (4.4b)

−Qtr
ij ≤ qtr

ijt ≤ Qtr
ij ∀t (4.4c)
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Pkt (qkt) ≤ Pcap k ∈ {i, j}, ∀t (4.4d)

where qtr
ijt is the electricity exchange from region j to region i at time t, and Qtr

ij is the capac-

ity of the transmission line ij. The constraint (4.4b) ensures that the transmission levels

calculated on both directions of a line are identical, the constraint (4.4c) considers the

transmission capacity of the line ij, and the constraint (4.4d) secures the price cap in the

market. Note that the term Pjt
(
qjt
)

qtr
jit + Pit (qit) qtr

ijt is equal to
(

Pit (qit)− Pjt
(
qjt
))

qtr
ijt

which implies that the transmission firm may make profit by trading the electricity from

the node with lower price to the higher price node, and derivative of term
Pjtw(qjt)
−β jt

+

Pitw(qit)
−βit

with respect to qtr
ijt, given qtr

ijt = −qtr
jit, is Pit (qit)− Pjt

(
qjt
)

which implies the firm

may trade electricity without market power. Therefore, when the coefficient γtr
ij is zero,

the transmission firm ij is modeled as a strategic player (profit maximizer), and when the

coefficient γtr
ij is one, the firm is modeled as a regulated player (social welfare maximizer).

Transmission firms or interconnectors are usually controlled by the market operator.

They are regulated to maximize the social welfare in the market. The existing litera-

ture discusses the markets with regulated transmission firms as electricity markets with

transmission constraint, e.g., see [7]. However, there are unregulated transmission firms

in some electricity markets, who make revenue by trading electricity across the regions

[78].

4.2.3 Solution Approach

Here, we seek for the intersection of the best response functions of all players in our

problem, i.e. the solution to the Karush-Kuhn-Tucker (KKT) conditions of all players.

The intersection of the best response functions of all players represents the NE solution.

The existence of a NE point in our problem is stated in Proposition 4.1.

Proposition 4.1. As the objective function of each player in our model is continuous and quasi-

concave in its strategy and their strategy space is compact, convex, and non-empty, our game

model admits a Nash Equilibrium solution.

Proof: The proof follows from Theorem 1.2 in [79].
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Therefore, we look for a solution that satisfies the KKT conditions of wind generators,

(4.2a-4.2c), synchronous generators, (4.3a-4.3e), and transmission lines, (4.4a-4.4d). Note

that deriving the KKT conditions of the players’ optimization problems are discussed in

detail in [52]. The resulting MCP problem is as follows:

KKT (4.2a− 4.2c) , KKT (4.3a− 4.3e) , KKT (4.4a− 4.4d) :

m ∈ {1, ..., Nig
i }, n ∈ {1, ..., Nsg

i }, i, j ∈ {1, ..., I}

t ∈ {1, ..., NT}

where the decision variables are the bidding strategies of all firms, and the set of La-

grange multipliers in KKT conditions. The problem is solved by PATH solver in GAMS

software.

4.3 Case Study and Simulation Results

In this section, we study the impact of closing a coal power plant on wholesale electricity

prices in market NEM.

4.3.1 Model Calibration

We simulated the NEM using a Cournot-based wholesale electricity market model with

exponential inverse demand functions. The coefficients of the inverse demand function

are calibrated with the real data of price and demand in five regions of NEM in 2015.

In order to verify the accuracy of our model in real market simulation, we compared

our simulation results for an average day splitted into 24 hours with the real historical

average price and demand data. The price and demand levels are calculated with the

error terms of 6.4% and 4.7% respectively. Then, we update the coefficients α and β in the

inverse demand functions for each day in all seasons, 365 days, based on the difference

of the historical price and demand at each day (scenario) from the average levels.
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4.3.2 Model Simulation for 365 Days

The stochastic parameters, such as intermittent power generation and demand variation,

are usually modeled by a set of scenarios in scenario-based electricity market models

[32, 33]. Scenario reduction techniques are applied to select any set of scenarios [80].

Instead of incorporating the scenario reduction simplifications, we capture the inter-

mittency and the price volatility existing in the market by repeating our simulations for

all 365 days in our model.

In order to observe the price fluctuations in different days during a year, we repeated

our simulation for all 365 days (24 hours) in year 2015, and captured the intermitten-

cies of wind power availability and demand variation in the model. Fig. 4.1 illustrates

the hourly variations of demand and wind power availability in 2015. The coefficients

αit and βit in the inverse demand function are calibrated with the historical price and

demand data enabling the model to follow the expected price and demand variations.

The normalized wind power availability coefficient wit is also calibrated based on the

historical hourly wind power generation in five regions of NEM during the year 2015.

We conducted our study to find the impact of closing the Hazelwood coal power

plant (1600 MW) in VIC on the electricity prices in different NEM’s regions. Table 4.1

indicates the regional average prices in NEM before and after the Hazelwood closure.

Our simulation results show that the average price of electricity goes up about 30.13% in

VIC and about 6.87% in total NEM after closing the plant Hazelwood, which shows more

price increase in the region in which closure happens. The electricity prices in QLD, the

region that is not directly connected to the region VIC, are almost unchanged after the

closure. Note that given the transmission and distribution cost of 120 $/MWh, the final

consumer prices in VIC goes up about 6.5% compared to the announced amount of 4%

in news (www.abc.net.au).

The electricity transmission direction between interconnected regions, to some extent,

indicates how a coal plant closure in one region affects the electricity prices in other re-

gions. As the region TAS behaves as a net importer of electricity from VIC before the

closure, the Hazelwood closure in VIC increases the prices in TAS notably. The region

SA is also a net importer of electricity from VIC, but the Hazelwood closure does not
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Figure 4.1: Sorted historical data of hourly (a) electricity demand and (b) wind power
availability in five regions of NEM during the year 2015.

increase the average price in SA significantly due to the congestion of the interconnector

between SA and VIC.

Table 4.1: Wholesale electricity prices $/MWh in five-node NEM market, considering the
closure of coal power plant Hazelwood in VIC.

Price
($/MWh)

SA QLD TAS VIC NSW NEM

Before closure 73.10 72.14 49.59 34.18 39.87 48.80
After closure
(change%)

75.06
(2.67%)

72.16
(0.02%)

53.80
(8.50%)

44.48
(30.12%)

40.21
(0.86%)

52.16
(6.87%)

The closure of Hazelwood power plant has different effects on electricity prices in dif-

ferent regions at different times. Fig. 4.2 indicates the probability distribution of hourly

electricity prices in the region VIC and in the total NEM. The probability distributions of

hourly prices in VIC and the total NEM indicate rightward shifts after the Hazelwood

closure. The price increment, i.e. rightward shift of the price probability distribution, is

more notable in VIC compared to the total NEM. The rate of average price increment in
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VIC is almost five times of the rate in total NEM.
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Figure 4.2: Probability distribution of hourly prices in NEM and VIC, considering the
closure of coal power plant Hazelwood in VIC.

The effect of closing the Hazelwood coal power plant on daily peak prices is also

investigated in our work. Fig. 4.3 illustrates the probability distributions of daily peak

prices in the region VIC and the total NEM. Our simulation results show that the daily

peak prices in the region VIC go up significantly after closing the plant Hazelwood. The

daily peak price of 1213 $/MWh is calculated in VIC after the closure, which is almost

twice as high as the pre-closure record of 618 $/MWh. However, the very high prices

close to the cap price of 11000 $/MWh mostly occur in the regions QLD and SA, before

and after the closure. Therefore, the Hazelwood closure although quite often increases

the daily peak prices in NEM, it does not increase the probability of the very high prices

close to the cap price in the market.

The increase of the market price is related to reduction of generation because of the

Hazelwood closure and to increase of the remaining generators’ market power in the

market. In spite of less electricity generation, the generation companies make more profit

after the Hazelwood closure. Table 4.2 compares the regional electricity generation profits

before and after the Hazelwood closure in NEM. Surprisingly, not only do the remaining
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Figure 4.3: Probability distribution of daily peak prices in NEM and VIC, considering the
closure of coal power plant Hazelwood in VIC.

generation companies make higher profits compared to their pre-closure profits, , but also

the total amount of generation profit, including the Hazelwood’s profit, is also higher

after the closure, as a result of market power increase after the Hazelwood closure.

Table 4.2: The annual electricity generation profit (billion$ per year) in five-node NEM
market, considering the closure of coal power plant Hazelwood in VIC.

Profit
(b$/year)

SA QLD TAS VIC NSW NEM

Before closure 0.38 1.55 0.32 1.33 1.08 4.68
After closure
(change%)

0.38
(+2.2%)

1.55
(+0.0%)

0.36
(+9.9%)

1.54
(+15.9%)

1.11
(+2.9%)

4.96
(+6.1%)

The standard deviation of electricity prices, consistent with

√
∑

NT
t=1(Pit−P̄i)

2

NT
where P̄i is

the average price in region i, measures the price volatility and roughly indicates in which

regions very high electricity prices happen. Table 4.3 indicates the standard deviation

of electricity prices in different regions of the NEM. The state VIC although faces the

price volatility increment of 49% after the closure, it holds relatively low levels of price

standard deviation in the market NEM before and after the closure, which shows that VIC

is the most stable and least volatile region in NEM. In fact, before and after the closure,
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VIC mostly supports the other regions in terms of reducing their price level and price

volatility by exporting electricity via its interconnectors. It is observed that closing off

a power plant in VIC does not result in the unfavored very high prices close to the cap

price in NEM.

Table 4.3: Standard deviation of wholesale electricity prices $/MWh in five-node NEM
market, considering the closure of coal power plant Hazelwood in VIC.

Deviation
($/MWh)

SA QLD TAS VIC NSW NEM

Before closure 85.67 196.62 16.30 15.15 30.06 97.36
After closure
(change%)

85.57
(-0.1%)

196.49
(-0.07%)

16.70
(+2.4%)

22.62
(+49.2%)

29.90
(-0.5%)

97.59
(+0.2%)

Lastly, closure of the Hazelwood coal power plant in VIC changes the greenhouse

gas emission of CO2 from combustion of each fuel type, e.g. gas and coal, in the market

NEM. Table 4.4 compares the levels and changes of CO2 emission in NEM before and

after the closure of the plant Hazelwood. After the closure, the CO2 emission in NEM

reduces from coal combustion and increases from gas combustion. The decrease of coal-

fueled electricity generation after the plant closure results in higher electricity prices, and

consequently the more expensive gas-fueled electricity generation in the market becomes

more incentivized. In total, assuming the emission factor of 0.93 (tonneCO2 /MWh) for

coal and 0.55 (tonneCO2 /MWh) for gas, the aggregated CO2 emission in NEM from coal

and gas combustion decreases about 5.8% per year after closing the Hazelwood power

plant.

Table 4.4: Greenhouse gas emission of CO2 (million tonne per year) in coal and gas-fueled
power plants in NEM, considering the closure of coal power plant Hazelwood in VIC.

Emission
(mtonne/year)

Coal Gas Total

Before closure 127 8.94 136
After closure
(change %)

118
(-7.0%)

10.0
(+11.8%)

128
(-5.8%)
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4.4 Conclusion

Closing down the base-load coal power plants, due to aging or intensive greenhouse

gas emission or growth of smart grids, is gradually taking place in many countries over

the world. Our study presents an MCP problem which solves a multi-region electricity

market game between wind firms, synchronous generators, and transmission lines before

and after closing a coal power plant in the market. Based on our numerical results, the

impact of closing the Hazelwood coal power plant in VIC on the electricity market NEM

can be summarized as:

• In a multi-region electricity market, coal power plant closure in one region may

affect the electricity prices in different regions. Closing the Hazelwood plant in

VIC has the highest impact on electricity prices in the region VIC and then on its

neighboring regions TAS and SA.

• The interconnectors also determine how a coal power plant closure may affect the

electricity prices in its neighboring regions. Both regions of SA and TAS are net

importers of electricity from VIC, but the price in SA does not change significantly

after the coal plant closure in VIC. The fact that the interconnector between SA and

VIC is usually congested prevents observing immense price changes in SA after the

Hazelwood closure.

• The region VIC faces a bounded price volatility increment inside its own region

after the Hazelwood closure. However, VIC, as the most stable and least volatile

region in NEM, continues to support its neighboring regions in terms of price level

and price volatility reduction even after the closure.

• The electricity generation companies enjoy higher amount of market power after

the Hazelwood closure, especially in VIC. Due to decrease of power generation

capacity in the market after the closure, generation companies may strategically

keep the prices higher and earn more profits.

• Although the closure of the Hazelwood coal plant increases the electricity prices in

NEM and incentivizes more gas fueled power generation and consequently leads



66 Impact of a Coal Power Plant Closure on a Multi-region Wholesale Electricity Market

to more emission from the gas generators, the aggregate effect of closing the Hazel-

wood plant down results in about 5.8% less CO2 emission from the coal and gas-

powered generators after the Hazelwood closure.

We observed in this chapter that closure of a coal power plant may increase the market

price and its volatility significantly. In Chapter 5, we study the integration of storage in

the network to find how it can help to reduce the high levels of electricity prices and price

volatility in the market.



Chapter 5

Impact of Optimal Storage Allocation
on Price Volatility in Electricity

Markets

Recent studies show that the fast growing expansion of wind power generation may lead to ex-

tremely high levels of price volatility in wholesale electricity markets. Storage technologies, regardless

of their specific forms, e.g. pump-storage hydro, large-scale or distributed batteries, are capable of

alleviating the extreme price volatility levels due to their energy usage time shifting, fast-ramping

and price arbitrage capabilities. In this chapter, we propose a stochastic bi-level optimization model

to find the optimal nodal storage capacities required to achieve a certain price volatility level in a

highly volatile energy-only electricity market. The decision on storage capacities is made in the upper

level problem and the operation of strategic/regulated generation, storage and transmission players is

modeled in the lower level problem using an extended stochastic (Bayesian) Cournot-based game. The

South Australia (SA) electricity market, which has recently experienced high levels of price volatility,

and a 30-bus IEEE system are considered as the case studies. Our numerical results indicate that

50% price volatility reduction in SA electricity market can be achieved by installing either 430 MWh

regulated storage or 530 MWh strategic storage. In other words, regulated storage firms are more

efficient in reducing the price volatility than strategic storage firms.

5.1 Introduction

IN THIS chapter, a stochastic optimization framework is proposed for finding the

required nodal storage capacities in electricity markets with high levels of wind pen-

etration such that the price volatility in the market is kept below a certain level. Using

a proper storage allocation framework, the policy makers and market/system operators

can compute the required nodal storage capacities for managing the price volatility level

67
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in electricity markets. Although the current cost of storage systems is relatively high, the

support from governments (in the form of subsidies) and the eventual decline of the tech-

nology cost can lead to large scale integration of storage systems in electricity markets.

The contributions of this chapter are summarized as follows:

• A bi-level optimization model is proposed to find the optimal nodal storage capac-

ities required for avoiding the extreme price volatility levels in a nodal electricity

market.

• In the upper level problem, the total storage capacity is minimized subject to a price

volatility target constraint in each node and at each time.

• In the lower level problem, the non-cooperative interaction between generation,

transmission and storage players in the market is modeled as a stochastic (Bayesian)

Cournot-based game with an exponential inverse demand function. Note that the

equilibrium prices at the lower level problem are functions of the storage capacities.

The operation of storage devices at the lower level problem is modeled without

introducing binary variables.

• The existence of Bayesian Nash Equilibrium (Bayes-NE) [81] under the exponential

inverse demand function is established for the lower level problem.

Under the proposed framework, the size of storage devices at two nodes of South

Australia (SA) and Victoria (VIC) in NEM and also the size of storage in a 30-bus IEEE

system is determined such that the market price volatility is kept below a desired level at

all times. The desired level of price volatility can be determined based on various criteria

such as net revenue earned by the market players, occurrence frequency of undesirable

prices, number of CPT breaches, etc [82].

The rest of this chapter is organized as follows. The system model and the proposed

bi-level optimization problem are formulated in Section 5.2. The equilibrium analysis

of the lower level problem and the solution method are presented in Section 5.3. The

simulation results are presented in Section 5.4. The conclusion remarks are discussed in

Section 5.5.
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5.2 System Model

Similar to the market model in Chapter 5, consider a nodal electricity market with I

nodes. Storage players are also included in our market model in this chapter. Let N sg
i

be the set of synchronous generators, such as coal and gas power plants, located in node

i and N ig
i be the set of wind generation firms located in node i. The set of neighboring

nodes of node i is denoted by Ni. Since the wind availability is a stochastic parameter,

a scenario-based model, with Nw different scenarios, is considered to model the wind

availability in the electricity network. The nodal prices in our model are determined

by solving a stochastic (Bayesian) Cournot-based game among all market participants,

that is, synchronous generators, wind firms, storage firms and transmission interconnec-

tors which are introduced in detail in the lower level problem, given the wind power

availability scenarios. The decision variables, feasible region, and objective function for

each player in our game model are discussed in Section 5.2.2. In a Cournot game, each

producer (generator) competes for maximizing its profit which is defined as its revenue

minus its production cost, given the generation of other players. The revenue of each

player is its production level times the market price. Also, the market price is a func-

tion of total generation. Following the standard Cournot game models, any player in our

model maximizes its objective function given the decision variables of other players (gen-

eration, transmission, and storage firms). Considering different wind power availability

scenarios with given probabilities makes our game model consistent with the Bayesian

game definition. In a Bayesian game, players maximize their expected utility over a set

of scenarios with a given probability distribution [81].

In this chapter, we present a bi-level optimization approach for finding the minimum

required total storage capacity in the market such that the market price volatility stays

within a desired limit at each time.

5.2.1 Upper-level Problem

In the upper-level optimization problem, we determine the nodal storage capacities such

that a price volatility constraint is satisfied in each node at each time. In this chapter,
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estimates of variances are used to capture the volatilities [83], i.e., the variance of market

price is considered as a measure of price volatility. The variance of the market price in

node i at time t, i.e., Var
(

Pitw
)
, can be written as:

Var (Pitw) = Ew

[
(Pitw (qitw))

2
]
− (Ew [P (qitw)])

2

= ∑
w

(
Pitw (qitw)

)2

Ψw −
(

∑
w

Pitw (qitw)Ψw

)2

(5.1)

where Ψw is the probability of scenario w, and Pitw (qitw) is the market price in node i at

time t under the wind availability scenario w, which is a function of the collection of all

players’ strategies qitw, i.e., the decision variables in the lower level game.

The notion of variance quantifies the effective variation range of random variables, i.e.

a random variable with a small variance has a smaller effective range of variation when

compared with a random variable with a large variance.

Given the price volatility relation (5.1) based on the Bayes-NE strategy collection of

all firms q?
itw, the upper-level optimization problem is given by:

min
{Qst

i }i

I

∑
i=1

Qst
i

s.t.

Qst
i ≥ 0 ∀i (5.2a)

Var (Pitw (q?
itw)) ≤ σ2

0 ∀i, t (5.2b)

where Qst
i is the storage capacity in node i, Pitw (q?

itw) is the market price in node i at

time t under the wind availability scenario w, and σ2
0 is the price volatility target. The

price volatility of the market is defined as the maximum variance of market price, i.e.

maxit Var(Pitw(q?
itw)).
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5.2.2 Lower-level Problem

In the lower-level problem, the nodal market prices and the Bayes-NE strategies of firms

are obtained by solving an extended stochastic Cournot-based game between wind gen-

erators, storage firms, transmission firms, and synchronous generators. Our model dif-

fers from a standard Cournot game, such that it includes regulated players in addition to

strategic players in generation, storage and transmission levels.

Definition 5.1. A strategic (price maker) firm decides on its strategies over the operation horizon

{1, ..., NT} such that its aggregate expected profit, over the operation horizon, is maximized. On

the other hand, a regulated (price taker) firm aims to maximize the net market value, i.e. the social

welfare [77].

The market price in node i at time t under the wind availability scenario w is given

by an exponential inverse demand function (Section 3.2):

Pitw (qitw) = αite
−βit

qst
itw+ ∑

m∈N ig
i

qig
mitw+ ∑

n∈N sg
i

qsg
nitw+ ∑

j∈Ni

qtr
ijtw


(5.3)

where αit, βit are positive real values in the inverse demand function, qsg
nitw is the genera-

tion strategy of the nth synchronous generator located in node i at time t under scenario

w, qig
mitw is the generation strategy of the mth wind generator located in node i at time t

under scenario w, qst
itw is the charge/discharge strategy of the storage firm in node i at

time t under scenario w, qtr
ijtw is the strategy of transmission firm located between node

i and node j at time t under scenario w. The collection of strategies of all firms located

in node i at time t under the scenario w is denoted by qitw. Note that the total amount

of power supply from the generation and storage firms plus the net import/export, i.e.,

qst
itw + ∑

m∈N ig
i

qig
mitw + ∑

n∈N sg
i

qsg
nitw + ∑

j∈Ni

qtr
ijtw, is equal to the net electricity demand in each

node, at each time and under each scenario, which represents the nodal electricity balance

in our model.

In what follows, the variable µ is used to indicate the associated Lagrange variable

with its corresponding constraint in the model.
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Wind Generators

The Bayes-NE strategy of the mth wind (intermittent) generator in node i is obtained by

solving the following optimization problem:

max{
qig

mitw

}
tw
�0

∑
w

Ψw

NT

∑
t=1

Pitw (qitw) qig
mitw

(
1− γ

ig
mi

)
+ γ

ig
mi

(
Pitw (qitw)

−βit

)

s.t.

qig
mitw ≤ Qig

mitw : µ
ig,max
mitw ∀t, w (5.4a)

Pitw (qitw) ≤ Pcap : µ
ig,cap
mitw ∀t, w (5.4b)

where qig
mitw and Qig

mitw are the generation level and the available wind capacity of the

mth wind generator located in node i at time t under scenario w. The parameter Pcap

represents the price cap in the market, which is, for instance, 11000 $/MWh in the NEM

market. Setting cap price in electricity markets also aims to limit the price levels and price

volatility levels. Note that the wind availability changes in time in a stochastic manner,

and the wind firm’s bids depend on the wind availability. As a result, the nodal prices

and decisions of the other firms become stochastic in our model [33].

The mth wind firm in node i acts as a strategic firm in the market if γ
ig
mi is equal to

zero and acts as a regulated firm if γ
ig
mi is equal to one. The difference between regulated

and strategic players corresponds to the strategic price impacting capability. In fact, a

regulated firm behaves as a price taker player while a strategic firm behaves as a price

maker player.

Storage Firms

Storage firms benefit from price difference at different times to make profit, i.e. they

sell the off-peak stored electricity at higher prices at peak times. The Bayes-NE strategy

of storage firm located in node i is determined by solving the following optimization
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problem:

max
{qdis

itw,qch
itw}tw

�0

,{qst
itw}tw

∑
w

Ψw

NT

∑
t=1

Pitw (qitw) qst
itw
(
1− γst

i
)
− cst

i

(
qdis

itw + qch
itw

)
+ γst

i

(
Pitw (qitw)

−βit

)

s.t.

qst
itw = ηdis

i qdis
itw −

qch
itw

ηch
i

: µst
itw ∀t, w (5.5a)

qdis
itw ≤ ζdis

i Qst
i : µdis,max

itw ∀t, w (5.5b)

qch
itw ≤ ζch

i Qst
i : µch,max

itw ∀t, w (5.5c)

0 ≤
t

∑
t′=1

(
qch

it′w − qdis
it′w

)
∆ ≤ Qst

i : µst,min
itw , µst,max

itw ∀t, w (5.5d)

Pitw (qitw) ≤ Pcap : µ
st,cap
itw ∀t, w (5.5e)

where qdis
itw and qch

itw are the discharge and charge levels of the storage firm in node i at time

t under scenario w, respectively, cst
i is the unit operation cost, ηch

i ,ηdis
i are the charging and

discharging efficiencies, respectively, and qst
itw is the net supply/demand of the storage

firm in node i. The parameter ζch
i (ζdis

i ) is the percentage of storage capacity Qst
i , which

can be charged (discharged) during time period ∆. It is assumed that the storage devices

are initially fully discharged. The energy level of the storage device in node i at each time

is limited by its capacity Qst
i . Note that the nodal market prices depend on the storage

capacities, i.e. Qst
i s, through the constraints (5.5b)-(5.5d). This dependency allows the

market operator to meet the volatility constraint using the optimal values of the storage

capacities. The storage capacity variables are the only variables that couple the scenarios

in the lower level problem. Therefore, each scenario of the lower lever problem can be

solved separately for any storage capacity amount. The storage firm in node i acts as a

strategic firm in the market if γst
i is equal to zero and acts as a regulated firm if γst

i is equal

to one.

Proposition 5.1. At the Bayes-NE of the lower level game, each storage firm is either in the

charge mode or discharge mode at each scenario, i.e. the charge and discharge levels of each storage

firm cannot be simultaneously positive at the NE of each scenario.
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Proof: See Appendix A.

Synchronous Generators

Synchronous generators include coal, gas, hydro and nuclear power plants. The Bayes-

NE strategy of nth synchronous generator located in node i is determined by solving the

following optimization problem:

max
{qsg

nitw}tw
�0

∑
w

Ψw

NT

∑
t=1

Pitw (qitw) qsg
nitw

(
1− γ

sg
ni

)
− csg

ni q
sg
nitw + γ

sg
ni

(
Pitw (qitw)

−βit

)
s.t.

qsg
nitw ≤ Qsg

ni : µ
sg,max
nitw ∀t, w (5.6a)

qsg
nitw − qsg

ni(t−1)w ≤ Rup
ni Qsg

ni : µ
sg,up
nitw ∀t, w (5.6b)

qsg
ni(t−1)w − qsg

nitw ≤ Rdn
ni Qsg

ni : µ
sg,dn
nitw ∀t, w (5.6c)

Pitw (qitw) ≤ Pcap : µ
sg,cap
nitw ∀t, w (5.6d)

where qsg
nitw is the generation level of the nth synchronous generator in node i at time t

under scenario w, Qsg
ni and csg

ni are the capacity and the short term marginal cost of the nth

synchronous generator in node i, respectively. The constraints (5.6b) and (5.6c) ensure

that the ramping limitations of the nth synchronous generator in node i are always met.

The nth synchronous generator in node i acts as a strategic firm in the market if γ
sg
ni is

equal to zero and acts as a regulated firm if γ
sg
ni is equal to one.

Transmission Firms

The Bayes-NE strategy of the transmission firm between nodes i and j is determined by

solving the following optimization problem:

max{
qtr

jitw,qtr
ijtw

}
tw

∑
w

Ψw

NT

∑
t=1

(
1− γtr

ij

) (
Pjtw

(
qjtw

)
qtr

jitw + Pitw (qitw) qtr
ijtw

)
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+ γtr
ij

Pjtw

(
qjtw

)
−β jt

+
Pitw (qitw)

−βit


s.t.

qtr
ijtw = −qtr

jitw : µtr
ijtw ∀t, w (5.7a)

−Qtr
ij ≤ qtr

ijtw ≤ Qtr
ij : µtr,min

ijtw , µtr,max
ijtw ∀t, w (5.7b)

Pktw (qktw) ≤ Pcap : µ
tr,cap
kk′tw k, k′ ∈ {i, j}, k 6= k′ ∀t, w (5.7c)

where qtr
ijtw is the electricity flow from nodes j to i at time t under scenario w, and Qtr

ij is

the capacity of the transmission line between node i and node j. The transmission firm

between nodes i and j behaves as a strategic player when γtr
ij is equal to zero and behaves

as a regulated player when γtr
ij is equal to one. Note that the term Pjtw

(
qjtw

)
qtr

jitw +

Pitw (qitw) qtr
ijtw in the objective function of the transmission firm is equal to (Pjtw

(
qjtw

)
−

Pitw (qitw))q
tr
jitw which implies that the transmission firm between two nodes makes profit

by transmitting electricity from the node with lower market price to the node with higher

market price. Moreover, the price difference between the paired nodes indicates the con-

gestion on the transmission lines and can be used to set the value of Financial Transmis-

sion Rights (FTR) [84] in electricity markets.

Transmission lines or interconnectors are usually controlled by the market opera-

tor and are regulated to maximize the social welfare in the market. The markets with

regulated transmission firms are discussed as electricity markets with transmission con-

straints in the literature, e.g., see [20,31,35]. However, some electricity markets allow the

transmission lines to act strategically, i.e. to make revenue by trading electricity across

the nodes [78].

5.3 Solution Approach

In this section, we first provide a game-theoretic analysis of the lower-level problem.

Next, the bi-level price volatility management problem is transformed to a single opti-

mization Mathematical Problem with Equilibrium Constraints (MPEC).
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5.3.1 Game-theoretic Analysis of the Lower-level Problem

To solve the lower-level problem, we need to study the best response functions of firms

participating in the market. Then, any intersection of the best response functions of all

firms in all scenarios will be a Bayes-NE. In this subsection, we first establish the existence

of Bayes-NE for the lower-level problem. Then, we provide the necessary and sufficient

conditions which can be used to solve the lower-level problem.

To transform the bi-level price volatility management problem to a single level prob-

lem, we need to ensure that for every vector of storage capacities, i.e. Qst = [Qst
1 , · · · , Qst

I ]
> ≥

0, the lower-level problem admits a Bayes-NE. At the Bayes-NE strategy of the lower-

level problem, no single firm has any incentive to unilaterally deviate its strategy from

its Bayes-NE strategy. Note that the objective function of each firm is quasi-concave in its

strategy and constraint set of each firm is closed and bounded for all Qst = [Qst
1 , · · · , Qst

I ]
> ≥

0. Thus, the lower level game admits a Bayes-NE. This result is formally stated in Propo-

sition 5.2.

Proposition 5.2. For any vector of storage capacities, Qst = [Qst
1 , · · · , Qst

I ]
> ≥ 0, the lower

level game admits a Bayes-NE.

Proof: Note that the objective function of each firm is continuous and quasi-concave

in its strategy. Also, the strategy space is non-empty, compact and convex. Therefore, ac-

cording to Theorem 1.2 in [79], the lower level game admits a Bayes-NE.

Best responses of wind firm mi

Let q−(mi) be the strategies of all firms in the market except the wind generator m located

in node i. Then, the best response of the wind generator m in node i to q−(mi) satisfies

the necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions (t ∈ {1, ..., NT}; w ∈

{1, ..., Nw}):

Pitw (qitw) + (1− γ
ig
mi)

∂Pitw (qitw)

∂qig
mitw

qig
mitw −

µ
ig,max
mitw +

∂Pitw(qitw)

∂qig
mitw

µ
ig,cap
mitw

Ψw
≤ 0 ⊥ qig

mitw ≥ 0

(5.8a)
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qig
mitw ≤ Qig

mitw ⊥ µ
ig,max
mitw ≥ 0 (5.8b)

Pitw (qitw) ≤ Pcap ⊥ µ
ig,cap
itw ≥ 0 (5.8c)

where the perpendicularity sign, ⊥, means that at least one of the adjacent inequalities

must be satisfied as an equality [73].

Best responses of storage firm i

To study the best response of the storage firm in node i, let q−i denote the collection

of strategies of all firms except the storage firm in node i. Then, the best response of

the storage firm in node i is obtained by solving the following KKT conditions (t ∈

{1, ..., NT}; w ∈ {1, ..., Nw}):

Pitw (qitw) + (1− γst
i )

∂Pitw (qitw)

∂qst
itw

qst
itw +

µst
itw −

∂Pitw(qitw)
∂qst

itw
µ

st,cap
itw

Ψw
= 0 (5.9a)

−ηdis
i µst

itw − µdis,max
itw − ∆ ∑NT

t′=t

(
µst,min

it′w − µst,max
it′w

)
Ψw

− cst
i ≤ 0 ⊥ qdis

itw ≥ 0 (5.9b)

µst
itw

ηch
i
− µch,max

itw + ∆ ∑NT
t′=t

(
µst,min

it′w − µst,max
it′w

)
Ψw

− cst
i ≤ 0 ⊥ qch

itw ≥ 0 (5.9c)

qst
itw = ηdis

i qdis
itw −

qch
itw

ηch
i

(5.9d)

qdis
itw ≤ ζdis

i Qst
i ⊥ µdis,max

itw ≥ 0 (5.9e)

qch
itw ≤ ζch

i Qst
i ⊥ µch,max

itw ≥ 0 (5.9f)

0 ≤
t

∑
t′=1

(
qch

it′w − qdis
it′w

)
∆ ⊥ µst,min

itw ≥ 0 (5.9g)

t

∑
t′=1

(
qch

it′w − qdis
it′w

)
∆ ≤ Qst

i ⊥ µs,max
itw ≥ 0 (5.9h)

Pitw (qitw) ≤ Pcap ⊥ µ
st,cap
itw ≥ 0 (5.9i)
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Best responses of synchronous generation firm ni

The best response of the synchronous generator n in node i to q−(ni), i.e. the collection of

strategies of all firms except the synchronous generator n in node i, is obtained by solving

the following KKT conditions (t ∈ {1, ..., NT}; w ∈ {1, ..., Nw}):

Pitw (qitw)− csg
ni + (1− γ

sg
ni )

∂Pitw (qitw)

∂qsg
nitw

qsg
nitw −

µ
sg,max
nitw +

∂Pitw(qitw)

∂qsg
nitw

µ
sg,cap
nitw

Ψw

+
µ

sg,up
ni(t+1)w − µ

sg,up
nitw + µ

sg,dn
nitw − µ

sg,dn
ni(t+1)w

Ψw
≤ 0 ⊥ qsg

nitw ≥ 0 (5.10a)

qsg
nitw ≤ Qsg

ni ⊥ µ
sg,max
nitw (5.10b)

qsg
nitw − qsg

ni(t−1)w ≤ Rup
ni Qsg

ni ⊥ µ
sg,up
nitw ≥ 0 (5.10c)

qsg
ni(t−1)w − qsg

nitw ≤ Rdn
ni Qsg

ni ⊥ µ
sg,dn
nitw ≥ 0 (5.10d)

Pitw (qitw) ≤ Pcap ⊥ µ
sg,cap
nitw ≥ 0 (5.10e)

Best responses of transmission firm ij

Finally, the best response of the transmission firm between nodes i and j, to q−(ij), i.e. the

set of all firms’ strategies except those of the transmission line between nodes i and j, can

be obtained using the KKT conditions (t ∈ {1, ..., NT}; w ∈ {1, ..., Nw}):

Pitw (qitw) +
(

1− γtr
ij

) ∂Pitw (qitw)

∂qtr
ijtw

qtr
ijtw +

µtr
jitw+µtr

ijtw+µtr,min
ijtw −µtr,max

ijtw − ∂Pitw(qitw)
∂qtr

ijtw
µ

tr,cap
ijtw

Ψw
= 0

(5.11a)

qtr
ijtw = −qtr

jitw (5.11b)

−Qtr
ij ≤ qtr

ijtw ⊥ µtr,min
ijtw ≥ 0 (5.11c)

qtr
ijtw ≤ Qtr

ij ⊥ µtr,max
ijtw ≥ 0 (5.11d)

Pitw (qitw) ≤ Pcap ⊥ µ
tr,cap
ijtw ≥ 0 (5.11e)
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5.3.2 The Equivalent Single-level Problem

Here, the bi-level price volatility management problem is transformed into a single-level

MPEC. To this end, note that for every vector of storage capacities the market price can be

obtained by solving the firms’ KKT conditions. Thus, by imposing the KKT conditions of

all firms as constraints in the optimization problem (5.2), the price volatility management

problem can be written as the following single-level optimization problem:

min
I

∑
i=1

Qst
i (5.12)

s.t.

(5.2a− 5.2b), (5.8a− 5.8c), (5.9a− 5.9i), (5.10a− 5.10e), (5.11a− 5.11e)

m ∈ {1, ..., Nig
i }, n ∈ {1, ..., Nsg

i }, i, j ∈ {1, ..., I},

t ∈ {1, ..., NT}; w ∈ {1, ..., Nw}

where the optimization variables are the storage capacities, the bidding strategies of all

firms and the set of all Lagrange multipliers. Because of the nonlinear complementary

constraints, the feasible region is not necessarily convex or even connected. Therefore,

increasing the storage capacities stepwise, ∆Qst, we solve the lower level problem, which

is convex.

Remark: It is possible to convert the equivalent single level problem (5.12) to a Mixed-

Integer Non-Linear Problem (MINLP). However, the large number of integer variables

potentially makes the resulting MINLP computationally infeasible.

The MPEC problem (5.12) can be solved using extensive search when the number of

nodes is small. For large electricity networks, the greedy algorithm proposed in [85] can

be used to find the storage capacities iteratively while the other variables are calculated

as the solution of the lower level problem. In each iteration, the lower level problem is

solved as a Mixed Complementarity Problem (MCP) [86], which is sometimes termed

as rectangular variational inequalities. The optimization solution method is illustrated

in Algorithm 1. The storage capacity variable is discretized and the increment storage

capacity of ∆Qst is added to the selected node i∗ at each iteration of the algorithm. Once
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the price volatility constraint is satisfied with equality, the optimum solution is found.

Although our greedy algorithm just guarantees a locally optimal storage capacity, we

obtained the same results in NEM market using the extensive search.

Algorithm 1 The greedy algorithm for finding the storage allocation

while maxit Var(Pitw(q?
itw)) > σ2

0 do
iteration=iteration+1
for i′ = 1 : I do

Qst
i′ (iteration)← Qst

i′ (iteration− 1) +4Qst

Qst
−i′(iteration)← Qst

−i′(iteration− 1)
q? ← Lower level problem Bayes−NE
Price Volatility(i′)← maxit Var(Pitw(q?

itw))
end for
i∗ ← find

i
(min(Price Volatility(i)))

Qst
i∗(iteration)← Qst

i∗(iteration− 1) +4Qst

end while

5.4 Case Study and Simulation Results

In this section, we apply our price volatility management framework to two different

types of electricity markets: (i) the NEM market, which has a regional pricing mechanism,

(ii) a 30-bus electricity system with a Locational Marginal Pricing (LMP) mechanism [87].

The most important difference between LMP and regional pricing markets is the number

of settlement prices. Tens or hundreds of pricing nodes may be required to implement

a LMP market whereas in a regional pricing only few settlement prices are considered.

Note that the optimization problem (5.12) can model both regional and LMP markets.

5.4.1 Simulations in NEM

In this subsection, we study the impact of storage installation on price volatility in two

nodes of Australia’s National Electricity Market (NEM), South Australia (SA) and Vic-

toria (VIC), with regional pricing mechanism, which sets the marginal value of demand

at each region as the regional prices. SA has a high level of wind penetration and VIC

has high coal-fueled synchronous generation. Real data for price and demand from the
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year 2015 is used to calibrate the inverse demand function in the model. Different types

of generation firms, such as coal, gas, hydro, wind and biomass, with generation ca-

pacity (intermittent and dispatchable) of 3.7 GW and 11.3 GW were active in SA and

VIC, respectively, in 2015. The transmission line interconnecting SA and VIC, which is

a regulated line, has the capacity of 680 MW but currently is working with just 70% of

its capacity. The generation capacities in our numerical results are gathered from Aus-

tralian Electricity Market Operator’s (AEMO’s) website (aemo.com.au) and all the prices

are shown in Australian dollar.

In our study, we consider a set of scenarios each representing a 24-hour wind power

availability profile. In order to guarantee a high level of accuracy, we do not employ

scenario reduction methods [80] and instead consider 365 daily wind power availability

scenarios, with equal probabilities, using the realistic data from the year 2015 in different

regions of NEM (source of data: AEMO). Fig. 5.1 shows the hourly wind power avail-

ability in SA. On each box in Fig. 5.1, the central mark indicates the average level and the

bottom and top edges of the box indicate the 25th and 75th percentiles of wind power

availability from the 365 scenarios, respectively. It can be seen that in SA the wind power

capacity is about 1200 MW and the wind capacity factor is about 33-42% at different

hours.

In what follows, by price volatility we mean the maximum variance of market price,

i.e. maxit Var(Pitw(q?
itw)). Also, by square root of price volatility we mean the maximum

standard deviation of market price, i.e. maxit

√
Var(Pitw(q?

itw).

One-region model simulations in South Australia

In our one-region model simulations, we first study the impacts of peak demand levels

and supply capacity shortage on the standard deviation of hourly electricity prices (or

square root of hourly price volatilities) in SA with no storage. Next, we study the effect

of storage on the price volatility in SA. Fig. 5.2 shows the average and standard deviation

of hourly prices for a day in SA (with no storage) for three different cases: (i) a regular

demand day, (ii) a high demand day, (iii) a high demand day with coal-plant outage.
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Figure 5.1: SA’s Hourly wind power availability distribution in 2015 (the central marks
show the average levels and the bottom and top edges of the boxes indicate the 25th and
75th percentiles).

An additional load of 1000 MW is considered in the high demand case during hours 16,

17 and 18 to study the joint effect of wind intermittency and large demand variations

on the price volatility. The additional loads are sometimes demanded in the market due

to unexpected high temperatures happening in the region. The coal-plant outage case

is motivated by the recent retirement of two coal-plants in SA with total capacity of 770

MW [88]. This allows us to investigate the joint impact of wind indeterminacy and low

base-load generation capacity on the price volatility.

According to Fig. 5.2, wind power fluctuation does not create much price fluctuation

in a regular demand day. The square root of the price volatility in the regular demand

day is equal to 65 $/MWh. Depending on the wind power availability level, the peak

price varies from 92 $/MWh to 323 $/MWh, with average of 210 $/MWh, in a regular

demand day. Based on Fig. 5.2, the square root of the price volatility in the high demand

day is equal to 1167 $/MWh. The maximum price in a high demand day in SA changes

from 237 $/MWh to 4466 $/MWh, with average of 1555 $/MWh, because of wind power

availability fluctuation. The extra load at peak times and the wind power fluctuation cre-

ate a higher level of price volatility during a high demand day compared with a regular
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demand day.

The retirement (outage) of coal-plants in SA beside the extra load at peak hours in-

creases the price volatility due to the wind power fluctuation. The maximum price dur-

ing the high demand day with coal-plant outage varies from 377 $/MWh to the cap price

of 11000 $/MWh, with average of 5832 $/MWh. The square root of the price volatility

during the high demand day with coal-plant outage is equal to 4365 $/MWh. The square

root of the price volatility during the high demand day with coal-plant outage is almost

67 times more than the regular demand day due to the simultaneous variation in both

supply and demand.
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Figure 5.2: Standard deviation and mean of hourly wholesale electricity prices in SA with
no storage.

Fig. 5.3 shows the minimum required (strategic/regulated) storage capacities for

achieving various levels of price volatility in SA during a high demand day with coal-

plant outage. The minimum storage capacities are calculated by solving the optimization

problem (5.12) for the high demand day with coal-plant outage case. According to Fig.

5.3, a strategic storage firm requires a substantially larger capacity, compared with a reg-

ulated storage firm, to achieve a target price volatility level due to the selfish behavior

of the storage firms. In fact, the strategic storage firms may sometimes withhold their
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available capacities and do not participate in the price volatility reduction as they do not

always benefit from reducing the price. The price volatility in SA can be reduced by 50%

using either 530 MWh strategic storage or 430 MWh regulated storage. Note that AEMO

has forecasted about 500 MWh battery storage to be installed in SA until 2035 [89].
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Figure 5.3: Optimal strategic and regulated storage capacity for achieving different price
volatility levels in SA region for a high demand day with coal-plant outage.

According to our numerical results, storage can displace the peaking generators, with

high fuel costs and market power, which results in reducing the price level and the

price volatility. A storage capacity of 500 MWh (or 500 MW given the discharge coef-

ficient ηdis = 1) reduces the square root of the price volatility from 4365 $/MWh to 2692

$/MWh, almost 38% reduction, during a high demand day with coal-plant outage in SA.

The behaviour of the peak and the daily average prices for the high demand day with

coal-plant outage in SA is illustrated in Fig. 5.4. In this figure, the peak price represents

the average of highest prices over all scenarios during the day, i.e. ∑w Ψw (maxt Ptw(q?
tw))

and the daily average price indicates the average of price over time and scenarios, i.e.
1

NT
∑tw Ptw(q?tw)Ψw. Sensitivity analysis of the peak and the daily average prices in SA

with respect to storage capacity indicates that high storage capacities lead to relatively

low prices in the market. At very high prices, demand is almost inelastic and a small
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amount of excess supply leads to a large amount of price reduction. According to Fig.

5.4, the rate of peak price reduction decreases as the storage capacity increases since large

storage capacities lead to lower peak prices which make the demand more elastic.

Based on Fig. 5.4, the impact of storage on the daily average and peak prices de-

pends on whether the storage firm is strategic or regulated. It can be observed that the

impacts of strategic and regulated storage firms on the daily peak/average prices are al-

most similar for small storage capacities, i.e. when the storage capacity is smaller than

100 MWh (or 100 MW given ηdis = 1). However, a regulated firm reduces both the peak

and the average prices more efficiently compared with a strategic storage firm as its ca-

pacity becomes large. A large strategic storage firm in SA does not use its excess capacity

beyond 500 MWh to reduce the market price since it acts as a strategic profit maximizer,

but a regulated storage firm contributes to the price volatility reduction as long as there

is potential for price reduction by its operation.

Storage capacity (MWh)
0 200 400 600

P
ri

ce
 (

$/
M

W
h
)

350

400

450

500

550

600

650

700

750

800

Daily average price
versus storage capacity

Storage capacity (MWh)
0 200 400 600

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Peak price
versus storage capacity

Regulated storage
Strategic storage

Figure 5.4: Daily peak and average prices in SA versus storage capacity in a high demand
day with coal-plant outage.

Fig. 5.5 depicts the square root of price volatility versus storage capacity in SA during

the high demand day with coal-plant outage. According to this figure, the price volatility

in the market decreases by installing either regulated or strategic storage devices. To
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reduce the square root of price volatility to 3350 $/MWh, the required strategic capacity

is about 100 MWh more than that of a regulated storage. Moreover, a strategic storage

firm stops reducing the price volatility when its capacity exceeds a threshold value. In our

study, a strategic storage firm does not reduce the square root of price volatility more than

32%, but a regulated firm reduces it by 89%. These observations confirm that regulated

storage firms are more efficient than strategic firms in reducing the price volatility.

The impact of the regulated storage firm in reducing the price volatility can be di-

vided into three ranges of initial, efficient, and saturated, as shown in Fig. 5.5. In the

initial range, an increment in the capacity of the regulated firm slightly reduces the price

volatility. Then the price volatility reduces sharply with storage capacity in the second

region. Finally, the price volatility reduction gradually stops in the saturated region. This

observation implies that although storage alleviates the price volatility in the market, it

is not capable to eliminate it completely.
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Figure 5.5: Square root of price volatility in SA versus storage capacity during a high
demand day with coal-plant outage.
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Two-region model simulations in South Australia and Victoria

In the one-region model simulations, we analysed the impact of storage on the price

volatility in SA when the SA-VIC interconnector is not active. In this subsection, we first

study the effect of the interconnector between SA and VIC on the price volatility in the

absence of storage firms. Next, we investigate the impact of storage firms on the price

volatility when the SA-VIC transmission line operates at various capacities. In our nu-

merical results, SA is connected to VIC using a 680 MW interconnector which is currently

operating with 70% of its capacity, i.e. 30% of its capacity is under maintenance. The nu-

merical results in this subsection are based on the two-node model for a high demand

day with coal-plant outage in SA. To investigate the impact of transmission line on price

volatility, it is assumed that the SA-VIC interconnector operates with 60% and 70% of its

capacity.

According to our numerical results, the peak price (the average of highest prices over

all scenarios) in SA is equal to 6154 $/MWh when the SA-VIC interconnector is com-

pletely in outage. However, the peak price reduces to 3328 $/MWh and 2432 $/MWh

when the interconnector operates at 60% and 70% of its capacity. The square root of price

volatility is 4365 $/MWh, 860 $/MWh, and 614 $/MWh when the capacity of the SA-

VIC transmission line is equal to 0%, 60%, and 70%, respectively, which emphasizes the

importance of interconnectors in price volatility reduction.

Simulation results show that as long as the interconnector is not congested, the line

alleviates the price volatility phenomenon in SA by importing electricity from VIC to SA

at peak times. Since the market in SA compared to VIC is much smaller, about three

times, the price volatility abatement in SA after importing electricity from VIC is much

higher than the price volatility increment in VIC. Moreover, the price volatility reduces

as the capacity of transmission line increases.

Fig. 5.6 shows the optimum storage capacity versus the percentage of price volatility

reduction in the two-node market. According to our numerical results, storage is just

located in SA, which witnesses a high level of price volatility as the capacity of trans-
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mission line decreases. According to this figure, the optimum storage capacity becomes

large as the capacity of transmission line decreases. Note that a sudden decrease of the

transmission line capacity may result in a high level of price volatility in SA. However,

based on Fig. 5.6, storage firms are capable of reducing the price volatility during the

outage of the interconnecting lines.
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Figure 5.6: Optimal regulated storage capacity versus the percentage of price volatility
reduction in the two-node market in a high demand day with coal-plant outage in SA.

5.4.2 Simulations for a 30-bus System

In order to assess the functionality of our optimal storage allocation model for markets

consisting relatively high number of nodes, we simulate a standard IEEE 30-bus (30-

node) electricity network with LMP pricing mechanism, which sets the marginal value

of demand at each bus or node as the nodal prices, in this subsection. The generation

and transmission data is based upon [90], which includes six synchronous generators

introduced in Table 5.1. We assume the first two generators are regulated in our system.

To consider the impact of supply scarcity, we retire the synchronous generator at node

5 and install the wind power generation capacity of 2.5 MW at each node, i.e., the total

capacity of 75 MW in the system, in our study. The transmission line limits are set to 50%
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of their values so that some lines would be binding in the solutions.

Table 5.1: Location, capacity and generation cost of synchronous generators in the 30-bus
electricity system.

Unit 1 2 3 4 5 6
Bus 1 2 5 8 11 13
Capacity (MW) 200 80 50 35 30 40
Cost ($/MWh) 15 15 35 35 35 35

We divide a day into the off-peak period (10 hours), the peak period (4 hours) and

the shoulder period (10 hours) times. The demand in the off-peak is 10% more than the

demand in the shoulder period whereas the peak demand is 25% more than the shoulder

demand. Given the demand values in [90], we assume the electricity prices are equal to

40, 75 and 50 $/MWh during off-peak, peak, and shoulder periods, respectively.

In the absence of storage, the square root of the price volatility is equal to 250 $/MWh

in the market due to the joint effect of wind power fluctuation and the power-plant retire-

ment. To compute the storage capacity, we use Algorithm 1 with the increment storage

capacity of 15 MWh. According to our numerical results, Algorithm 1 installs the storage

only at node 5, which is the highest price volatile node in the system, in order to meet the

required price volatility level. Fig (5.7) represents the price volatility level after allocating

the storage capacity, calculated by the greedy algorithm 1. The step size of the increment

storage capacity is considered as 15 MWh in each iteration of the algorithm. For instance,

the total storage capacity of 60 MWh at the node 5 is calculated to address the square

root of the price volatility limit of 90 $/MWh. The joint effect of capacity retirement and

high electricity demand at node 5 leads to high level of price volatility after installing

the intermittent wind power capacities in the market and makes the node 5 the likely

candidate for storage allocation to meet the price volatility requirement.

5.5 Conclusion

High penetration of intermittent renewables, such as wind or solar farms, brings high

levels of price volatility in electricity markets. Our study presents an optimization model

which decides on the minimum storage capacity required for achieving a price volatility
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Figure 5.7: Square root of price volatility level in the 30-bus system after ten iterations of
Algorithm 1 with ∆Qst = 15MWh.

target in electricity markets. Based on our numerical results, the impact of storage on the

price volatility in one-node electricity market of SA, two-node market of SA-VIC and the

standard 30-bus IEEE system can be summarized as:

• Storage alleviates price volatility in the market due to the wind intermittency. How-

ever, storage does not remove price volatility completely, i.e. storage stops reducing

the price volatility when it is not profitable.

• The effect of a storage firm on price volatility reduction depends on whether the

firm is regulated or strategic. Both storage types have similar operation behaviour

and price reduction effect when they possess small capacities. For larger capacities,

a strategic firm may under-utilize its available capacity and stop reducing the price

level due to its profit maximization strategy. On the other hand, a regulated storage

firm is more efficient in price volatility reduction because of its social welfare max-

imization strategy. The price level and volatility reduction patterns observed when

storage firms are regulated provide stronger incentives for the market operator to

subsidize the storage technologies.
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• Both storage devices and transmission lines are capable of reducing the price volatil-

ity. High levels of price volatility that may happen due to the line maintenance can

be alleviated by storage devices.

• Although many parameters affect the price volatility level of a system, penetration

of intermittent wind power generation in a region makes the region or node highly

price volatile when a synchronous generation capacity outage happens or high load

level is demanded.

Although we showed in this chapter that storage can reduce the average price and

price volatility levels in the market, we study how the mixtures of wind and storage

capacities affect the electricity market prices in Chapter 6.





Chapter 6

Regulated Wind-Storage to Reduce the
Electricity Market Price and Volatility

This chapter investigates the impacts of optimal regulated wind and electricity storage allocation

on the average price and the price volatility in electricity markets. A stochastic bi-level optimization

model is proposed for optimal sizing of wind and battery capacities to minimize a wighted sum of the

average market price and price volatility. A fixed budget is allocated on wind and battery capacities

in an upper level problem. The operation of strategic/regulated generation, storage and transmission

players is simulated in a lower level problem using a stochastic (Bayesian) Cournot-based game model.

The Australia’s National Electricity Market (NEM), which is experiencing occasional price peaks

due to closure of a 1600 MW coal power plant and gas price surge, is considered as the case study.

Our simulation results show that investment on regulated wind is more efficient in reducing the

average price, while investment on regulated storage is more effective in price volatility reduction. A

mixture of wind and storage is optimal in minimizing the weighted sum of both average price and

price volatility.

6.1 Introduction

IN THIS chapter, a bi-level stochastic optimization model is proposed for optimal siz-

ing of regulated wind and storage capacities in a single region (node) to minimize

the weighted sum of average price and price volatility taking into account interdepen-

dencies between regions in a wholesale multi-region electricity market. NEM is used as

a case study and a detailed numerical analysis conducted. Our simulation results show

that investment on regulated wind is more efficient in reducing the average price, while

investment on regulated storage is more effective in price volatility reduction.

93
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The contributions of this chapter are summarized as follows:

• A bi-level optimization model is proposed to optimally allocate a fixed budget be-

tween regulated wind and storage capacities in a single region to minimize the

weighted sum of average price and price volatility, considering nodal interdepen-

dencies.

• In the upper level problem, the weighted sum of average price and price volatility

in the specified region is minimized by allocating a fixed budget on regulated wind

and storage capacities in that region.

• In the lower level problem, the non-cooperative interaction between strategic and

regulated generation, storage and transmission players in the market is modeled as

a stochastic (Bayesian) Cournot-based game. The equilibrium prices at the lower

level problem, which are calculated based on nonlinear inverse demand functions,

are functions of the regulated wind and storage capacities.

• Considering regulated firms in addition to strategic firms distinguishes our model

in the lower level problem from a standard Cournot game.

• The transmission lines are modeled as profit maximizer market players in our de-

veloped multi-region electricity market model in the lower level problem. Finding

the equilibrium point is computationally far more convenient in electricity market

models with profit maximizer transmission players [91] than in electricity market

models which consider the transmission lines as constraints for their clearing en-

gines [34].

• The existence of Bayesian Nash Equilibrium (Bayes-NE) [81] is established for the

lower level problem, which includes nonlinear inverse demand functions.

The rest of this chapter is organized as follows. Section 6.2 illustrates the system

model and the proposed bi-level optimization problem. The solution approach for find-

ing the market equilibrium is presented in Section 6.3. Section 6.4 provides the simulation

results and Section 6.5 presents the concluding remarks.
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6.2 The Problem and Market Model

We consider a regional electricity market including {1, ..., NI} regions (nodes). Let Nwg
i

be the set of intermittent generation firms located in node i, N sg
i be the set of syn-

chronous generators, such as coal, gas, and hydro power plants, located in node i, N s
i

be the set of storage firms, such as pump-hydro and battery, located in node i, and N tr
i

be the set of neighboring nodes of the node i. Since some parameters such as wind

and solar power availabilities, which affect the electricity generation, are stochastic, a

scenario-based model including NW different scenarios is developed to model the inter-

mittent power generation in the electricity network. The strategies of intermittent and

synchronous generators, storage firms, and transmission players as well as the nodal

prices are determined by solving a stochastic (Bayesian) Cournot-based game.

In this chapter, we present a bi-level optimization framework for optimally allocating

a budget on regulated capacities of wind and storage to minimize the weighted sum of

average price and price volatility in a single node taking into account the interdependen-

cies to other nodes in the market. All the market players, which are allowed to be strategic

or regulated, with their decision variables, operating limits, and objective functions are

introduced in detail in the lower level problem, Section 6.2.2.

6.2.1 Upper-level Problem

In the upper-level optimization problem, we minimize the weighted sum of average

price and its standard deviation over the operation horizon {1, ..., NT} and scenario set

{1, ..., NW} at node i∗ ∈ {1, ..., NI} by allocating a fixed budget on regulated storage and

wind generation technologies. The price volatility is measured by the nodal price vari-

ance. Market price variance and mean in node i∗ under a set of scenarios {1, ..., NW}, i.e.,

Var ({Pi∗tw}w) and E ({Pi∗tw}w), are defined as:

Var ({Pi∗tw}w) = ∑
w
(Pi∗tw (.))2 Ψw −

(
∑
w

Pi∗tw (.)Ψw

)2

(6.1a)



96 Regulated Wind-Storage to Reduce the Electricity Market Price and Volatility

E ({Pi∗tw}w) = ∑
w

Pi∗tw (.)Ψw (6.1b)

where Ψw is the probability of scenario w, and Pi∗tw (.) represents the market price in

node i∗ at time t under the scenario w, which is a function of the decision variables, i.e.,

generation, arbitrage and transmission levels, of all players in the lower level problem.

Pi∗tw (.) is a probabilistic function because of the stochastic intermittent generation in our

model.

Given that the wind and storage technologies have unequal lifespans, we compare

their equivalent annual cost and consider the equivalent annual budget in our model.

Considering the relation between the investment cost, I, and its equivalent annual cost,

I, for a technology with lifespan of PL, that is, I = ∑PL
y=1

I
(1+r)y , the equivalent annual

costs of wind and storage technologies, Iig and Is, become as [92]:

Iig =
rIig

1− (1 + r)−PLig (6.2a)

Is =
rIs

1− (1 + r)−PLs (6.2b)

where Iig and Is are the total investment costs, and PLig and PLs are the life spans of wind

and storage technologies, respectively. The parameter r represents the discount rate.

Based on the equivalent annual costs of wind and storage technologies, Iig and Is,

IsQs,reg
i∗ and IigQig,reg

i∗ represent the investment share from the equivalent annual budget,

B, on wind and storage, respectively.

Given the equations for price volatility and average price (6.1a-6.1b), which are func-

tions of the strategy of all firms, and the equations for the equivalent annual cost of wind

and storage technologies (6.2a-6.2b), we define the upper level optimization problem as:

min
Qig,reg

i∗ ,Qs,reg
i∗

(1− k)
√

Var ({Pi∗tw}tw) + kE ({Pi∗tw}tw) (6.3a)

s.t.

IsQs,reg
i∗ + IigQig,reg

i∗ = B$ (6.3b)



6.2 The Problem and Market Model 97

where 0 ≤ k ≤ 1 represents the weighting coefficient, Qig,reg
i∗ is the regulated wind gener-

ation capacity and Qs,reg
i∗ is the regulated storage capacity in node i∗. Var ({Pi∗tw}tw) is the

normalized level of the average of price volatility levels over the horizon {1, ..., NT}, i.e.,

normalized of ∑t Var({Pi∗ tw}w)
NT

, and E ({Pi∗tw}tw) is the normalized level of the average of

mean prices over the horizon {1, ..., NT}, i.e., normalized of ∑t E({Pi∗ tw}w)
NT

. The normalized

levels of price volatility and mean price, which are between zero and one, indicate their

ratio with respect to their base values, i.e., with respect to their amounts when there is no

regulated wind and storage firm in the market.

6.2.2 Lower-level Problem

The lower level problem is similar to the one used in Chapter 5, but differs in including

a regulated wind and storage firm in the market.

In the lower level problem, the strategies of all market players and the nodal mar-

ket prices are obtained by solving a stochastic Cournot-based game between intermittent

generators, synchronous generators, storage firms, and transmission firms. Following

the standard Cournot game models [30], any player in our model maximizes its objective

function given the decision variables of other players. Our game model, which considers

different wind and solar power availability scenarios with given probabilities, is consis-

tent with the Bayesian game definition. Players maximize their utility functions over a

set of scenarios with a given probability distribution in a Bayesian game [81]. Note that

the decision variables in the upper level problem, Qig,reg
i∗ and Qs,reg

i∗ , are the wind and

storage capacity amounts of a regulated wind-storage firm in node i∗.

The market price in node i at time t under scenario w is represented in our model by

an exponential inverse demand function [52]:

Pitw (yitw) = αite−βityitw (6.4)

where αit and βit are positive real values representing in the price function, and yitw is the

net electricity demand in node i at time t under scenario w.
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The equality between electricity supply and demand in each node and at any time,

i.e., the the nodal electricity balance, is ensured in our model with the following equa-

tions:

yitw = ∑
m∈Nwg

i

qig
mitw + ∑

n∈N sg
i

qsg
nitw + ∑

b∈N s
i

qs
bitw + ∑

j∈N tr
i

qtr
ijtw ∀i 6= i∗ (6.5a)

yitw = ∑
m∈Nwg

i

qig
mitw + ∑

n∈N sg
i

qsg
nitw + ∑

b∈N s
i

qs
bitw + ∑

j∈N tr
i

qtr
ijtw + qig,reg

itw + qs,reg
itw i = i∗ (6.5b)

where qig
mitw is the generation strategy of the mth intermittent generator located in node i,

qsg
nitw is the generation strategy of the nth synchronous generator located in node i, qs

bitw

is the charge/discharge strategy of the storage firm b in node i, qtr
ijtw is the transmission

strategy of line between nodes i and j, and qig,reg
itw and qs,reg

itw are the wind generation strat-

egy and the storage strategy of the regulated firm in node i∗, respectively, at time t and

under scenario w.

In what follows, we use Pitw (.) to refer to the market price in (6.4).

Intermittent Generators

The mth intermittent generator (wind or solar) in node i determines its best response

strategy by solving the following profit maximization problem:

max{
qig

mitw

}
tw
�0

NW

∑
w=1

Ψw

NT

∑
t=1

(
Pitw (.)− cig

mi

)
qig

mitw (6.6a)

s.t.

qig
mitw ≤ ωitwQig

mi ∀t, w (6.6b)

Pitw (.) ≤ Pcap ∀t, w (6.6c)

where qig
mitw (decision variable) is the generation level of the intermittent generator m in

node i at time t under scenario w, Qig
mi is its maximum generation capacity, and cig

mi is its
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marginal cost of generation. The constraint (6.6b) limits the electricity generation to the

available generation capacity of the firm, considering the energy availability coefficient

ωitw in node i at time t under scenario w. The constraint (6.6c) ensures that the market

price is always less than the cap price Pcap.

Synchronous Generators

The best response strategy of the nth synchronous generator in node i is obtained by

solving the following profit maximization problem:

max
{qsg

nitw}tw
�0

NW

∑
w=1

Ψw

NT

∑
t=1

(
Pitw (.)− csg

ni

)
qsg

nitw (6.7a)

s.t.

qsg
nitw ≤ Qsg

ni ∀t, w (6.7b)

qsg
nitw − qsg

ni(t−1)w ≤ Rup
ni Qsg

ni ∀t, w (6.7c)

qsg
ni(t−1)w − qsg

nitw ≤ Rdn
ni Qsg

ni ∀t, w (6.7d)

∑
t

qsg
nitw ≤ Gni ∀w (6.7e)

Pitw (.) ≤ Pcap ∀t, w (6.7f)

where qsg
nitw (decision variable) is the generation level of the synchronous generator n in

node i at time t under scenario w, Qsg
ni is its generation capacity, and csg

ni is its marginal

cost of generation. The constraint (6.7b) considers the maximum capacity limit and the

constraints (6.7c-6.7d) consider the ramping up and down limits, Rup
ni and Rdn

ni , respec-

tively. The constraint (6.7e) considers the inter-temporal energy availability Gni, e.g., the

total hydro power generation over a year due to the dam water availability during that

period.
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Storage Firms

The best response strategy of the bth storage firm in node i is the solution of the following

profit maximization problem:

max
{qdis

bitw,qch
bitw}tw

�0

,{qs
bitw}tw

NW

∑
w=1

Ψw

NT

∑
t=1

Pitw (.) qs
bitw−cs

bi

(
qdis

bitw+qch
bitw

)
(6.8a)

s.t.

qs
bitw = ηdis

bi qdis
bitw −

qch
bitw

ηch
bi

∀t, w (6.8b)

qdis
bitw ≤ ζdis

bi Qs
bi ∀t, w (6.8c)

qch
bitw ≤ ζch

bi Qs
bi ∀t, w (6.8d)

0 ≤
t

∑
k=1

(
qch

bikw − qdis
bikw

)
∆ ≤ Qs

bi ∀t, w (6.8e)

Pitw (.) ≤ Pcap ∀t, w (6.8f)

where qch
bitw and qdis

bitw (decision variables) are the charge and discharge levels of the stor-

age firm b in node i at time t under scenario w, respectively, qs
bitw (intermediate decision

variable) is the net charge/discharge level, cs
bi is the marginal cost of charge/discharge,

and ηch
bi and ηdis

bi are the charging and discharging efficiencies, respectively. The equal-

ity (6.8b) indicates the net outflow or inflow of electricity, the constraints (6.8c) and (6.8d)

limit the output/input energy flow of the firm, with coefficients ζdis
bi and ζch

bi , respectively.

The parameters ζch
bi and ζdis

bi indicate the percentage of the storage capacity Qs
bi that can

be charged or discharged during time period ∆. The constraint (6.8e) limits the total

stored energy to its maximum capacity, assuming that the storage devices are initially

fully discharged.
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Transmission Firms

The best response strategy of the transmission line (interconnector) between nodes i and

j is obtained by solving the following profit maximization problem:

max{
qtr

jitw,qtr
ijtw

}
tw

NW

∑
w=1

Ψw

NT

∑
t=1

(
Pjtw (.) qtr

jitw + Pitw (.) qtr
ijtw

) (
1− γtr

ij

)
+ γtr

ij

(
Pjtw (.)
−β jt

+
Pitw (.)
−βit

)
(6.9a)

s.t.

qtr
ijtw = −qtr

jitw ∀t, w (6.9b)

−Qtr
ij ≤ qtr

ijtw ≤ Qtr
ij ∀t, w (6.9c)

Pktw (.) ≤ Pcap k ∈ {i, j}, ∀t, w (6.9d)

where qtr
ijtw (decision variable) is the electricity transmitted from node j to node i at time

t under scenario w, and Qtr
ij is the capacity of transmission line between nodes i and j.

The transmission firm between nodes i and j is a strategic player when γtr
ij is zero and is

a regulated player when γtr
ij is one. It is discussed in [52] that maximizing Pjt (.) qtr

jitw +

Pitw (.) qtr
ijtw is equal to maximizing the profit from electricity transmission between nodes

i and j. Besides, it is shown in Appendix B that maximizing Pjtw(.)
−β jt

+ Pitw(.)
−βit

is equivalent

to maximizing the social welfare when the transmission firm between nodes i and j is

regulated. Note that the electricity markets with regulated transmission firms are called

electricity markets with transmission constraints in the literature, e.g., [20,35]. The constraint

(6.9b) ensures that electricity does not flow simultaneously in both directions of the line,

and the constraint (6.9c) limits the electricity flow between nodes i and j to the capacity

of the line.
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Regulated Wind-Storage Firm

The best response strategy of the regulated wind-storage firm in node i∗ is determined

by solving the following optimization problem:

max{
qig,reg

i∗ tw

}
tw
�0

,
{

qdis,reg
i∗ tw ,qch,reg

i∗ tw

}
tw
�0

,{qs,reg
i∗ tw}tw

NW

∑
w=1

Ψw

NT

∑
t=1

Pi∗tw (.)
−βi∗t

− cig,reg
i∗ qig,reg

i∗tw − cs,reg
i∗

(
qdis,reg

i∗tw + qch,reg
i∗tw

)
(6.10a)

s.t.

qig,reg
i∗tw ≤ ωi∗twQig,reg

i∗ ∀t, w (6.10b)

qs,reg
i∗tw = η

dis,reg
i∗ qdis,reg

i∗tw −
qch,reg

i∗tw

η
ch,reg
i∗

∀t, w (6.10c)

qdis,reg
i∗tw ≤ ζ

dis,reg
i∗ Qs,reg

i∗ ∀t, w (6.10d)

qch,reg
i∗tw ≤ ζ

ch,reg
i∗ Qs,reg

i∗ ∀t, w (6.10e)

0 ≤
t

∑
k=1

(
qch,reg

i∗kw − qdis,reg
i∗kw

)
∆ ≤ Qs,reg

i∗ ∀t, w (6.10f)

Pi∗tw (.) ≤ Pcap ∀t, w (6.10g)

where qig,reg
i∗tw (decision variable) is the wind (intermittent) generation level of the regu-

lated firm in node i∗ at time t under scenario w, Qig,reg
i∗ is its maximum wind generation

capacity, and cig,reg
i∗ is its marginal cost of wind generation. Moreover, qch,reg

i∗tw ,qdis,reg
i∗tw (deci-

sion variables), and qs,reg
i∗tw (intermediate decision variable) are the charge, discharge and

net charge/discharge levels of the regulated firm in node i∗ at time t under scenario w, re-

spectively. The constraint (6.10b) is similar to the constraint in the wind generation prob-

lem (6.6b), and the constraints (6.10c)-(6.10f) are similar to the constraints in the storage

arbitrage problem (6.8b)-(6.8e). The reason why maximizing the Pi∗ tw(.)
−βi∗ t

− cig,reg
i∗ qig,reg

i∗tw −

cs,reg
i∗

(
qdis,reg

i∗tw + qch,reg
i∗tw

)
is equivalent to maximizing the social welfare for the regulated

wind-storage firm in our problem is based on the discussion in Appendix B on regulated

firms.
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6.3 Solution Approach

Here, the bi-level storage and wind allocation problem reducing the average price and

price volatility is transformed into a single-level Mathematical Problem with Equilibrium

Constraints (MPEC). The equivalent single-level (MPEC) problem is solved by a uniform

line search algorithm, which is different from our methodology for solving the single-

level problem in Chapter 5.

6.3.1 Solution Method for the lower level problem

The regulated wind and storage capacities are the only variables that couple the scenar-

ios in the lower level problem. Therefore, for any regulated wind and storage capacity

amounts, each scenario of the lower level problem can be solved autonomously and the

market equilibrium can be obtained by solving the KKT conditions of all firms. The exis-

tence of the Bayes-NE solution at the lower level problem is stated in Proposition 6.1.

Proposition 6.1. For any vector of regulated wind and storage capacity amounts, [Qig,reg
i∗ , Qs,reg

i∗ ],

the lower level game admits a Bayes-NE.

Proof: The objective function of any firm in the game is continuous and quasi-

concave in its strategy, and their strategy space is non-empty, compact and convex. There-

fore, according to Theorem 1.2 in [79], the lower level game admits a Bayes-NE.

In the lower level problem, the nodal market prices depend on the regulated wind

and storage capacities through the constraints (6.10b) and (6.10d-6.10f). This dependency

allows us to minimize the objective function on the upper level problem using the optimal

values of regulated wind and storage capacities.

6.3.2 Solution Method for the equivalent single level problem

Imposing the KKT conditions of all firms as constraints in the optimization problem (6.3),

we can transform our bi-level problem into the following single-level optimization prob-

lem:
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min (1− k)
√

Var ({Pi∗tw}tw) + kE ({Pi∗tw}tw) (6.11a)

s.t.

(6.3b) (6.11b)

KKT (6.6a− 6.6c) (6.11c)

KKT (6.8a− 6.8 f ) (6.11d)

KKT (6.7a− 6.7 f ) (6.11e)

KKT (6.9a− 6.9d) (6.11f)

KKT (6.10a− 6.10g) (6.11g)

where the optimization variables are the regulated wind and storage capacities, the bid-

ding strategies of all firms, and the set of all Lagrangian multipliers. Note that the feasible

region is not necessarily convex or even connected because of the nonlinear complemen-

tary constraints. It is possible to write the equivalent single level problem (6.11) as a

Mixed-Integer Non-Linear Problem (MINLP), but the large number of integer variables

makes the problem computationally infeasible.

Considering the equality constraint (6.3b), there is just one decision variable on the

upper level problem. We perform a uniform line search on the variable Qig,reg
i∗ , i.e., the sin-

gle decision variable of the upper level problem, with N iterations. We increase the reg-

ulated wind capacity by ∆Qig,reg and decrease the regulated storage capacity by ∆Qs,reg,

which is a function of ∆Qig,reg, and find the Bayes-NE solution of the lower level game

at each iteration. Comparing the average price and price volatility calculated at differ-

ent iterations, we find the optimal regulated wind and storage allocation, as described in

Algorithm 2.

6.4 Case Study and Simulation Results

In this section, we apply our bi-level price management framework to Australia’s Na-

tional Electricity Market (NEM). The inverse demand functions in our model are cal-
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Algorithm 2 The line search (N-step) algorithm for finding the wind-storage allocation.

∆Qig,reg = B
NIig

initial point← Qig,reg = 0, Qs,reg = B
Is

for iteration = 0 : N do
iteration=iteration+1
Qig,reg

i∗ (iteration)←Qig,reg
i∗ (iteration− 1)+∆Qig,reg

Qs,reg
i∗ ← B−IigQig,reg

i∗
Is

q?(iteration)← Lower level problem Bayes−NE
E(iteration),Var(iteration)← (6.1b, 6.1a) at Bayes−NE

end for

Qig,reg
i∗

∗
← find

Qig,reg
i∗

(min((1− k)
√

Var
(

Qig,reg
i∗

)
+ kE

(
Qig,reg

i∗

)
))

Qs,reg
i∗

∗ ← B−IigQig,reg
i∗

∗

Is

ibrated with historical demand and price data from the year 2016. Different types of

electricity generation firms, such as coal, gas, hydro, biomass, and wind, with total gen-

eration capacity of 46 GW were active in NEM in 2016 [12]. In our numerical study, we

consider 365 scenarios each representing a 24-hour wind power availability and electric-

ity demand profiles. The realistic data in different regions of NEM from the year 2016 is

used to generate the scenario set (Source of data: AEMO). Note that all the prices are in

Australian dollar.

6.4.1 Impact of Generation Capacity, Gas Price and Transmission Line on Av-
erage Price and Price Volatility in NEM

In this subsection, we first study the average price and price volatility in the NEM by

considering two cases. In our primary case, the NEM market is simulated based on the

available data in 2016. In our secondary case, the Hazelwood coal power plant in VIC is

closed down, the gas price in total NEM is increased, and the Basslink transmission line,

between VIC and TAS, which was under maintenance in 2016, is restarted in compari-

son to the primary case. Table 6.1 compares the simulated wholesale electricity prices in

five regions of NEM in the primary and secondary cases. Our simulation results show

that the average price of electricity increases in all regions, about 14.27% in NEM, due to

Hazelwood power plant closure and gas price surge. The highest rate of price increment
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belongs to VIC, about 40.33%, where the coal plant was located, following by its neigh-

boring region SA with 19.80%. According to our numerical results, restarting the Basslink

interconnector between VIC and TAS reduces the impacts of coal plant closure and gas

price surge on the electricity price in TAS, which increases just by 3.58% in average.

Table 6.1: Wholesale electricity prices ($/MWh) in five-node NEM market in primary
and secondary cases.

SA QLD TAS VIC NSW NEM
Primary Case 108.97 72.32 99.64 57.48 58.81 67.27
Secondary Case 130.55 78.94 103.20 80.66 61.65 76.87
Change% 19.80 9.16 3.58 40.33 4.83% 14.27

Our calculation also shows that price volatility increases in NEM after the coal plant

closure and gas price surge. The square root of price volatility increases by 17.7% in NEM,

where VIC experiences the highest increase rate of 41.5%. The Basslink transmission line

also suppresses the price volatility in TAS due to the Hazelwood closure and gas price

surge.

6.4.2 Managing the Average Price and Price Volatility by Only Regulated Wind
or Only Regulated Storage

In this subsection, we study the impact of installing only regulated wind or only regu-

lated storage on the average price and price volatility in VIC, where the coal power plant

is closed down. We start our simulations with the equivalent annual budget of 300 m$,

and perform the sensitivity analysis with other amounts of the equivalent annual bud-

get, between zero and 300 m$, later. Considering the investment cost of 2400 $/kW and

lifespan of 25 years, the equivalent annual cost is 96 $/(kW.yr) for wind generation. Also,

with the investment cost of 600 $/kWh and lifespan of 10 years, the equivalent annual

cost is 60 $/(kWh.yr) for battery storage. Therefore, the equivalent annual budget of 300

m$ is almost equivalent to 5000 MWh battery capacity or 3125 MW wind capacity.

Fig. 6.1 shows the impact of installing only 5000 MWh regulated battery on the

wholesale electricity prices in VIC. According to this figure, the regulated battery in VIC

charges at off-peak times and discharges at peak hours, i.e., makes profit from electric-
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ity arbitrage. The charge/discharge of the installed battery approximately results in the

average peak price reduction of 47 $/MWh and the average off-peak price increment of

16 $/MWh in VIC. The average wholesale electricity price in VIC decreases from 80.6

$/MWh to 72.9 $/MWh due to the addition of 5000 MWh regulated battery.
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Figure 6.1: Mean (over 365 scenarios) wholesale electricity prices in VIC before and after
addition of only 5000 MWh regulated battery storage capacity.

Fig. 6.2 shows the impact of installing only 3125 MW regulated wind on the wholesale

electricity prices in VIC. The regulated wind in our model with capacity of 3125 MW

generates electricity with average level of 975 MW, i.e., with capacity factor of 31%, in

VIC. The generation of the regulated wind firm results in the average peak and off-peak

wholesale price reductions of 28 $/MWh and 5 $/MWh, respectively, in VIC. The average

wholesale electricity price in VIC decreases from 80.6 $/MWh to 62 $/MWh due to the

3125 MW wind capacity addition. This observation confirms that wind power generators

are more efficient in average price reduction than storage firms.

Fig. 6.3a and 6.3b compare the impact of a regulated wind with that of a regulated

storage on the average price and the price volatility, respectively, in VIC when the equiv-

alent annual budget increases from zero to 300 m$. It can be seen that for different levels

of budget, i.e., different levels of capacity, the regulated storage is more efficient in re-

ducing the price volatility whereas the regulated wind is more efficient in reducing the
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Figure 6.2: Mean (over 365 scenarios) wholesale electricity prices in VIC before and after
addition of only 3125 MW regulated wind generation capacity.

average price. Given the equivalent annual budget of 300 m$, the regulated storage and

the regulated wind reduce the square root of price volatility in VIC by 71.14 % and 53.55

%, respectively. However, with the same equivalent annual budget, regularized storage

and wind firms reduce the average price in VIC by 10.04 % and 29.08 %, respectively. This

observation shows the effectiveness of storage in price volatility reduction and wind in

average price reduction.

Moreover, in addition to mean price and price volatility reduction impacts, the cost

analysis of the regulated wind and regulated storage can affect the investment decisions.

Fig. 6.3c indicates the cost analysis of the regulated wind and regulated storage in VIC

when the equivalent annual budget varies from zero to 300 m$. The life time rate of re-

turn less than 100 % shows a financially unprofitable investment. Based on this figure,

the regulated wind is financially profitable in VIC when the equivalent annual invest-

ment cost is less than 300 m$, but the regulated storage makes profit in VIC when the

equivalent annual investment cost is less than 100 m$. Note that future reduction in

battery cost makes the large investments on batteries profitable.
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Figure 6.3: The mean price, the square root of price volatility, and the life time rate of re-
turn for only regulated wind and only regulated battery allocation versus the equivalent
annual budget in VIC.

6.4.3 Managing the Average Price and Price Volatility by Mixture of Regu-
lated Wind and Storage in VIC

In this subsection, we study the impact of jointly optimal regulated wind and storage

allocation on the mean price and price volatility. Fig. 6.4 illustrates the normalized mean

wholesale price as well as the normalized square roof of price volatility for different mix-

tures of wind and battery allocation with the equivalent annual budget of 300 m$ in VIC.

The mean wholesale prices are normalized with base value of 73 $/MWh, which is the

average price in the market before adding regulated wind-storage capacities, and the

square root of price volatilities are normalized with the base value of 143 $/MWh, which

is the square root of price volatility in the market before adding regulated wind-storage

capacities. According to Fig. 6.4, the increase of the regulated wind share, ξ, (or equiv-

alently, the decrease of regulated storage share, 1-ξ) results in lower average prices but

higher price volatility levels in the market, and vice versa. Therefore, depending on the

importance of average price or price volatility, i.e., the coefficient k, the total budget can

be allocated on a mixture of regulated wind and battery capacities.

Fig. 6.5 shows the budget allocation share between regulated wind (ξ) and regulated
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Figure 6.4: Normalized mean wholesale price and square root of price volatility for differ-
ent mixtures of regulated wind and regulated battery with the equivalent annual budget
of 300 m$ in VIC.

battery (1− ξ) when the weighting coefficient of price volatility and average price in the

upper level problem (6.3), k, varies from zero to one. The logistic shape of the optimal

budget share function with respect to the weighting coefficient k verifies our observa-

tions regarding the impacts of wind and storage firms on the price. The optimal share of

regulated wind is more than that of the regulated storage when average price reduction

is prioritized, i.e., when 0.5 ≤ k ≤ 1. Similarly, when price volatility reduction is more

important, i.e., when 0 ≤ k ≤ 0.5, the optimal share of regulated battery is more than that

of the regulated wind. The decision making on the budget share is highly sensitive with

respect to parameter k when the average price and the price volatility are almost equally

important, i.e., 0.4 ≤ k ≤ 0.6.

6.5 Conclusion

Closure of base-load coal power plants, and gas price surge may increase the average

price and price volatility in electricity markets. Our study presents an optimization

framework which allocates a budget on regulated wind and storage capacities in order
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Figure 6.5: The budget allocation share between the regulated wind and the regulated
battery as a function of the weighting factor k with the equivalent annual budget of 300
m$ in VIC.

to minimize the weighted sum of the average price and the price volatility. Based on our

numerical results in NEM, the impacts of regulated wind and storage on average price

and price volatility can be summarized as:

• In a multi-region electricity market, closure of a coal power plant in one region may

affect the electricity prices in other regions. After the closure of Hazelwood power

plant in VIC, the average price and volatility increased in VIC and its neighbor-

ing regions, but not in TAS. Reopening the Basslink interconnector between VIC

and TAS in 2017 prevented to observe significant price increase in TAS despite the

Hazelwood closure and gas price surge.

• Both storage and wind affect the average price and price volatility in electricity mar-

kets. Storage technologies can reduce the price and the price volatility by electricity

price arbitrage. Being spread across the network, wind turbines can also decrease

the price and volatility in electricity markets. However, storage is more efficient in

price volatility reduction than wind whereas wind is more efficient in average price

reduction.
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• Although disptchable generators are more efficient in reducing the price volatility,

wind turbines, if being spread across the network, can also reduce the price volatil-

ity level in the market. In our model, a single node represents an entire state, and

hence, incorporates diversity of wind generation across a large geographic region

that counteracts natural intermittency of wind generation.

• Based on the importance of average price and price volatility, a mix capacity of

regulated wind and storage can be allocated in a region to reach the desired level

of price and volatility in the market.

• Wind turbine, with small or large capacity, is already a competent technology which

is able to recover its life time cost in the market, but storage technology is econom-

ical just in small to medium size, e.g., battery capacity larger than 1300 MWh in

VIC is not economically profitable. Future reduction of technology costs can make

it economical to install larger batteries in the market.

• Our developed model is generalized to consider any type of storage technology.

However, in our case study, we studied the battery storage, which is likely to pen-

etrate in large scale in Australia’s electricity market in future.

The operation of generators, storage utilities and the transmission lines are the de-

cision variables in our developed operational wholesale electricity market models. In

Chapters 7 and 8, we develop long term electricity market models, which include op-

eration and investment decision variables, and use them to design long-term emission

abatement and fast response capacity support policies in the market.
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Designing Incentive Policies in
Electricity Markets
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Introduction to Part III

IN THIS Part, we develop long-term planning Cournot-based electricity market mod-

els, which are used to design incentive policies on reducing the emission and main-

taining the system reliability in the network. The designed policies are in forms of tax

and subsidy.

In Chapter 7, a generation expansion electricity market model, including strategic

and regulated generation firms, is developed. All players in the game maximize their

utilities subject to a emission cap constraint, the dual variable of which is used to design

the emission tax required to achieve the emission reduction target in the market.

In Chapter 8, an electricity market evolution model, including strategic and regulated

generation, storage and transmission firms, is developed. Any player in the game maxi-

mizes its utility subject to an emission intensity reduction constraint and a fast response

dispatchable generation constraint. The dual variable of the emission constraint is used

to design the tax/subsidy incentives required to achieve the emission intensity target and

the dual variable of the fast response constraint is used to design the tax/subsidy incen-

tives required to achieve the reliability (balance between demand and supply) target in

the market.





Chapter 7

Long-Term Stochastic Planning in
Electricity Markets with a Carbon Cap

Constraint

Carbon price in an electricity market provides incentives for carbon emission abatement and renew-

able generation technologies. Policies constraining or penalizing carbon emission can significantly

impact the capacity planning decisions of both fossil-fueled and renewable generators. Uncertainties

due to intermittency of various renewable generators can also affect the carbon emission policies. This

chapter proposes a Cournot-based long-term capacity expansion model taking into account a carbon

cap constraint for a partly concentrated electricity market dealing with stochastic renewables using

a Bayesian game. The stochastic game is formulated as a centralized convex optimization problem

and solved to obtain a Bayes-Nash Equilibrium (Bayes-NE) point. The stochastic nature of a generic

electricity market is illustrated with a set of scenarios for wind availability, in which three generation

firms (coal, gas, and wind) decide on their generation and long-term capacity investment strategies.

Carbon price is derived as the dual variable of the carbon cap constraint. Embedding the carbon cap

constraint in the game leads to more investment on renewable generators and less on fossil-fueled

power plants. However, higher levels of intermittency from renewable generation leads to higher car-

bon prices required to meet the carbon cap constraint in the market. This paves the way towards

storage technologies and diversification of distributed generation as means to encounter intermittency

in renewable generation.

7.1 Introduction

IN THIS chapter, we theoretically develop a stochastic game-theoretic Cournot-based

model which calculates a Bayes-NE point in partly concentrated electricity markets,

having both strategic and perfectly competitive (fringe) generation players. In addition

117
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to generation portfolio, the firms decide on expanding their capacities during the study

period dealing with the uncertainties due to intermittency of certain renewables, e.g.,

stochasticity of wind and solar. Players decide on new capacity investment and their

generation by considering a set of scenarios for wind and solar availability and a carbon

cap constraint during the study period. The dual variable of the carbon cap constraint

is used to calculate the the carbon price required to meet the targeted carbon emission

cap in the market. The stochastic nature of our model enables us to find the effect of

intermittent renewables on the carbon price.

Moreover, capacity retirement and remaining value of new generation capacities are

considered in our model. It means that power plants become retired once time passes

their plant life and the remaining value of each new invested technology at the end of the

study period is subtracted from its investment cost. For instance, a generator having T′

years plant life pays just 1
T′ of the investment cost in our model if it decides to install a

new capacity exactly at the last year in our model. However, the annualized investment

cost ($/MW/yr) is an alternative way instead of considering the remaining values of

new invested technologies, e.g. in [32]; although it is not hard to construct an unusual

example where this is not true.

The contributions of this chapter include the following:

• A long-term stochastic generation capacity expansion model with an emission cap

constraint is developed which captures the strategic behavior of generation firms.

A set of scenarios is included in the model due to the intermittency of wind and

solar energies.

• The carbon price required to restrict the emission in the market, which is due to the

greenhouse gas control or green network policies, is calculated based on the dual

variable of the emission cap constraint at the Bayes-NE point of the game.

• The structure of our long-term model enables us to find the intertemporal expan-

sion and retirement of the generation capacities and the remaining value of new

generation capacities in the market.

The rest of this chapter presents the wholesale electricity market model with strategic
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and perfectly competitive generation players in Section 7.2, illustrative results in Section

7.3, and ends with a discussion and conclusion in Section 7.4.

7.2 Game-Theoretic Formulation of Long-term Wholesale Elec-
tricity Market

In a Cournot-Nash wholesale electricity market model, the generation players (firms)

make their decisions strategically in order to maximize their utility functions, and the

equilibrium price is equal to the inverse demand function. However, participants in a

partly concentrated liberalized electricity market are either strategic or perfectly compet-

itive. The strategic players decide on their generation to set the price in the market as

price maker players, i.e., they hold market power, while the perfectly competitive play-

ers either are not large enough to affect the price (fringe participants) or are regulated to

not benefit from their market power.

At the same time, the intermittent wind and solar powers are stochastic, which brings

a great deal of uncertainty to the market. Decisions on new capacities have to be made

considering a set of scenarios for wind and solar availabilities during the study period

taking also into account a carbon emission cap constraint. Accordingly, we define the fol-

lowing extended Cournot-based Bayesian game model to find the long-term equilibrium

point of the market.

7.2.1 Game Definition and Bayes-Nash Equilibrium

In the well-known Cournot electricity market model, several strategic generation com-

panies make their generation decisions non-cooperatively given that the price follows

the inverse demand function. However, we study a partly concentrated market in which

there is perfectly competitive generation companies besides the oligopoly generators.

In a Bayesian game, players maximize their expected utility over alternative possibil-

ities with a known probability distribution [81]. Availability of the stochastic renewables

is captured in our model in a set of scenarios with given probabilities, consistent with the

Bayesian game definition.
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Definition 2. A perfectly competitive (PC) player does not have the market power to raise the

wholesale price, where a strategic player may deliberately withholds its available capacity to in-

crease the price.

Let k ∈ K = {1, ..., K} be in the set of generation firms (generators) participating in

the electricity market, y ∈ Y = {1, ..., Y} be in the set of times with length of ∆Yy (yr),

s ∈ S = {1, ..., S} be in the set of load zones (like seasons in a year) with length of ∆Ss

(day
yr ), t ∈ T = {1, ..., T} be in the set of sub-load zones (like off-peak, shoulder and peak

times in a day) with length of ∆Tt (
hr

day ), and w ∈ W be in the set of scenarios on wind

availability in our Bayesian game. Total duration of sub-load zone t that repeats on load

zone s from period y is ∆lyst = ∆Yy∆Ss∆Tt hours.

In our game G, firm k decides on its generation qkystw (∀y, s, t, w) and new capacities

Qnew
ky (∀y) in order to maximize its utility Uk. We assume that the generator k has con-

stant marginal cost of production ($/MWh), ck ≥ 0, constant capacity maintenance cost

($/MW/yr), mk ≥ 0, and constant investment cost ($/MW), Invk ≥ 0.

Definition 3. A non-cooperative Bayesian game among K = {1, ..., K} players having the deci-

sion variables q = [q1, ..., qK] and Qnew = [Qnew
1 , ..., Qnew

K ] that aim to maximize their expected

profit U over scenarios w ∈ W with probabilities Ψw is defined as G = {K, (q, Qnew) � 0, U} .

In a Cournot-based electricity market model, such as [7], the commonly-used linear

price P follows the inverse demand function with intercept of α and slope of β:

Pystw = αyst − βystDystw ∀y, s, t, w (7.1)

where Dystw is the total electricity demand at time (y, s, t) and under scenario w.

Players in the market are categorized into two groups:

• perfectly competitive (γk = 1): which could be a set of fringe participants or a

regulated competitive firm.

• strategic (γk = 0) or Cournot players.
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Player k calculates its best responses, i.e., q∗k = {q∗kystw}y,s,t,w, Qnew
k
∗ = {Qnew

ky
∗}y, by

solving the following utility maximization problem:

max
qk ,Qnew

k
Qtotal

k ,D�0

Uk : ∑
y

1
(1 + r)y

(
∑

w,s,t
Ψw∆lyst

(
(αyst−βystDystw)qkystw + γk

βyst

2
q2

kystw−ckqkystw

)

−mk∆YyQtotal
ky − InvkQnew

ky

)
+

1
(1 + r)Y max(0,

PLk + y−Y− 1
PLk

)InvkQnew
ky (7.2)

s.t.

Dystw = ∑
k

qkystw ∀y, s, t, w (7.3)

qkystw ≤ Qtotal
ky ∀y, s, t, w (7.4)

Qtotal
ky =

y

∑
y′=max(1,y−PLk+1)

Qnew
ky′ +

Y0

∑
y”=Y0−PLk+y+1

Qold
k,y” ∀y (7.5)

qkystw − qkys(t−1)w ≤ Rup
k Qtotal

ky ∀y, s, t, w (7.6)

qkys(t−1)w − qkystw ≤ Rdn
k Qtotal

ky ∀y, s, t, w (7.7)

qkystw ≤ ωkystwQtotal
ky ∀y, s, t, w (7.8)

∑
s,t

qkystw ≤ RAky ∀y, w (7.9)

where qk, Qnew
k are independent variables and Qtotal

k , D are intermediate variables.

For strategic player k, the objective function (7.2) sums the expectation of revenue,

qkystw(αyst − βystDystw), minus the operation cost, ckqkystw, with probabilities of Ψw over

scenarios w ∈ W , the maintenance cost, mkQtotal
ky , and the investment cost on the new ca-

pacity, InvkQnew
ky , excluding its remaining value at the end time, max(0, PLk+y−Y−1

PLk
)InvkQnew

ky .

The revenues and costs over periods Y are discounted with respect to a specific base year

Y0 assuming discount rate r(%/∆Yy). However, for a perfectly competitive player, the

objective function has additional term βyst
2 q2

kystw, which is equivalent to the market sur-

plus loss when the player k is not perfectly competitive.

The supply/demand balance equation (7.3) equalizes the net consumption with the

total generation. Capacity constraint (7.4) binds generation to its total capacity. Equality
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(7.5) (This is the modified version of capacity constraint in [93]) sums the new capacities

Qnew
ky′ and historical ones Qold

k,y” which are not retired at time y as the total capacity Qtotal
ky .

Constraints (7.6) and (7.7) consider the ramping up and down limits of the generator. The

period-by-period power availability limit, applicable to all generators especially intermit-

tent wind turbines, is shown in (7.8). Lastly, constraint (7.9) considers the inter-temporal

generation limits due to planned/forced outages or fuel scarcity.

7.2.2 Carbon Price Calculation as a Dual Variable

Due to local and global concerns on greenhouse gases, there are upper bound restrictions

on carbon emission in electricity generation. When fossil-fueled generators burn coal,

natural gas or petroleum to produce electricity, they emit CO2 gas as a side product.

Considering the policy of pollution generation control in the market, we can calculate the

desired carbon price required to achieve the upper bound on carbon emission constraint:

∑
k,s,t,w

Ψw∆lystEFkqkystw ≤ ECO2
y (1− φ) : µy ∀y (7.10)

where ECO2
y is the upper limit of CO2 (tonne) emission in electricity industry during time

y, and EFk is the CO2 emission coefficient of generator k (tonneCO2/MWh). The dual

variable of constraint (7.10), µy, is proportional to the target carbon price ($/tonneCO2)

at time y that policy makers must announce to control the carbon pollution in the mar-

ket. Note that the dual variable of the carbon cap constraint must be consistent in all

individual profit maximization problems of all players in the NE point. Considering the

first order optimality conditions of all individual problems (Karush-Kuhn-Tucker condi-

tions), it can be shown that the variable (1 + r)yEFkµy is the pollution tax that generator

k pays during time y per each unit of electricity generation qkystw.

7.2.3 Solving the Game as a Centralized Optimization Problem

The Bayes-NE point of the game including both strategic and perfectly competitive play-

ers at generation level, with the objective functions and constraints explained in Section
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(7.2.1), can be computed by solving the following centralized optimization problem:

max
q,Qnew

Qtotal,D
≥0

∑
y

1
(1+r)y

(
∑

s,t,w
Ψw∆lyst

(
(αyst−

βyst

2
Dystw)Dystw−∑

k

βyst

2
(1−γk)qkystw

2+ckqkystw

)

−∑
k

mk∆YyQtotal
ky + InvkQnew

ky

)
+

1
(1 + r)Y ∑

k
max(0,

PLk + y−Y− 1
PLk

)InvkQnew
ky (7.11)

s.t.

(7.3)− (7.10) ∀k

where q, Qnew are independent variables and Qtotal, D are intermediate variables.

The objective function (7.11) sums the total surpluses of demand and supply in the

market minus the market surplus loss regarding the suppliers’ strategic behaviors. The

centralized optimization problem is subjected to the constraints of all individual players’

profit maximization problems.

In this chapter, the centralized quadratic optimization problem is solved to find the

Bayes-NE point of the game. However, it is possible to write the KKT conditions of indi-

vidual profit maximization problems and solve it as a Linear Complementarity Problem

in distributed fashion.

7.3 Numerical Analysis

For illustrative purposes, we numerically investigate a generic single-node system com-

prising three generation firms- coal, gas, and wind- planning for capacity installation

during next 25 years, including 5 time steps (∆Yy=5 years), consisting of peak (∆Tpeak=4

hours a day), shoulder (∆Tshoulder=10 hours a day) and off-peak (∆Toff-peak=10 hours a

day) load zones for a whole year (∆S=365 days in a year). The parameters for the inverse

demand function (7.1) are listed in Table 7.1, which indicate the highest values for α and

the lowest values for β at peak load zones. Assuming electricity demand increases over

years, the parameter α is raised with rate of 5% every 5 years.

Considering investment, maintenance, operation and fuel costs in addition to life time

of technologies and their ramping up and down specifications, which are listed in Table
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Table 7.1: The parameters for the inverse demand function.

y,
∆y = 5 years

1 2 3 4 5

αy,t

peak 240 252 264 277 291
shoulder 200 210 220 231 243
off-peak 160 168 176 185 194

βy,t

peak .08 .08 .08 .08 .08
shoulder .1 .1 .1 .1 .1
off-peak .12 .12 .12 .12 .12

7.2 [94], the generation firms decide on participating in the market. The parameter γ is

zero for coal and gas-fueled generators, which shows they play strategically, and is one

for the wind firm, which means that it plays perfectly competitively.

Table 7.2: Costs and technology specifications of generation firms.

firms Investment
($/kW)

Maintenance
($/kW/yr)

Operation
& Fuel
($/kWh)

Plant Life
(5years)

RampUp &
Dn

coal 2500 25 0.015 8 0
gas 1000 10 0.055 6 0.9
wind 3000 30 0 4 1

The base values for wind power availability is assumed 40% at off-peak times, 30%

at shoulder times, and 10% at peak times. In wind availability scenarios, wind power

availability is assumed to vary σ% above and under its base values as shown in Figure

7.1.

Employing the commercial solver CONOPT in GAMS software [95], the centralized

quadratic optimization problem is solved with the mentioned input data to calculate the

Bayes-NE point of the game.

7.3.1 Impact of Carbon Cap on Capacity Planning

Total carbon production of the system without any pollution control policy is calcu-

lated in our model based on the emission factors of 0.93 tonneCO2 /MWh for coal and

.55 tonneCO2 /MWh for gas as listed in Table 7.3.

The simulation is repeated for two different values of carbon reduction percentage

φ ∈ {20, 40%} and is compared with no carbon cap scenario in Figure 7.2. Total car-
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Figure 7.1: Normalized wind capacity availability (ωt) during off-peak, shoulder, and
peak load zones, distributed on [(1-σ)E(ω), (1+σ)E(ω)] with the given expected value
E(ω) .

Table 7.3: Total CO2 emission every five years in the system with no carbon cap con-
straint.

y (5-years) 1 2 3 4 5
ECO2

y
(million tonne)

31.8 33.0 34.3 35.6 37.0

bon emission in the system becomes restricted, using the constraint (7.10) in the game

model. Restricting the total carbon emission in the system leads to more investment on

renewables and less on fossil-fueled power plants, especially coal-fueled generators. The

price increase motivates renewables to invest more in our game model with carbon cap

constraint.

7.3.2 Impact of Wind Stochasticity on Carbon Price

The dual variable of the carbon cap constraint at the Bayes-NE point is used to calcu-

late the carbon price. Policy makers can announce the carbon price as a tax to make

the power plants comply with the pollution policies in the market. Stochasticity arising

from intermittent generators impacts the values of carbon price. Figure 7.3 represents the

calculated carbon price at every five-year period respectively for φ ∈ {20%, 60%} car-

bon emission reduction policies in two scenarios of deterministic (σ = 0) and stochastic



126 Long-Term Stochastic Planning in Electricity Markets with a Carbon Cap Constraint

Figure 7.2: Capacity investment Qtotal and its change ∆Qtotal due to carbon cap constraint
with coefficient φ ∈ {20, 40%}.

(σ = 60%) wind power availability. Simulation results show that higher carbon prices are

calculated when stricter emission reduction is targeted in the market, and also higher car-

bon prices are required to meet the carbon cap constraint when the intermittentcy from

renewable generators is higher in the market.

7.3.3 Impact of Wind Player’s Strategic Behavior on Capacity Planning

We compare the capacity planning of all generators when wind firm participating in the

market is strategic or perfectly competitive. The wind player representing all wind tur-

bines in our model is a profit maximizer player in the strategic wind case and a fringe

player in the perfectly competitive wind case. It is observed that proportionally the coal

firm installs more generation capacity, the gas firm slightly lowers its capacity expansion

rate, and the wind player installs much less new generation capacity in the strategic wind

case compared to the perfectly competitive wind case, as is shown in Figure 7.4.
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Figure 7.3: Carbon pricing for different CO2 emission reduction scenarios (φ ∈ {20 %, 60
%}).
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Figure 7.4: New capacity installation Qnew considering wind strategy (perfectly compet-
itive and strategic).
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7.3.4 Impact of Remaining Value on Capacity Planning

In our simulations, we assume that there is no existing generation capacity (incumbent

capacity) in the network. The generation firms consider the remaining value of new

capacities when they make their generation expansion decisions. Figure 7.5 indicates

that ignoring the remaining values biases the new capacity installation decisions. In fact,

it leads to more new capacity installation in the earlier periods so that generation firms

being able to recover their costs on new capacities. The reason is that without considering

the remaining values a firm cannot return its investment cost during the study period if

it decides to add installations at the ending periods.
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Figure 7.5: New capacity installation considering remaining value.

Considering the remaining values, the coal firm and the gas firm install most of their

new capacities in the first period, but the wind firm renews its capacity in the fifth period

as its technology retires after four periods. Further technological maturity of renewable

technologies, i.e., achieving longer plant life, would lessen their annualized investment

cost and increase their competitiveness in the market.
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7.4 Conclusion

New capacity expansion is dependent on the market price expectation, which is highly

affected by renewable energies availability. Moreover, policy makers can intervene in the

market via setting tax on carbon emission to meet their goals. The modeling analysis pre-

sented in this chapter studies the impacts of carbon cap constraint on long-term capacity

investment decisions of generation firms facing stochastic renewable power availability.

Based on our model and the simulation results, the impacts of carbon cap on capacity

expansion of three coal, gas and wind generation firms are as following:

• Carbon cap constraint in the game model results in proportionally more new re-

newable and less fossil-fueled generation capacity, especially less coal-fueled ca-

pacity.

• Dual variable of the carbon cap constraint at the Bayes-NE point is used to calculate

the carbon price in our model. Policy makers can announce it in the market as

carbon emission tax, which leads to invest more on renewable capacities.

• Higher levels of intermittency from renewables makes them financially less attrac-

tive. Higher tax on carbon emission can make renewables able to compete with

fossil-fueled generators even if renewables are highly intermittent. The difference

in the carbon price can be used towards storage technologies and diversification of

distributed generation as means to encounter intermittency in renewable genera-

tion.

• We intend to extend our stochastic game model to study the long term investment

on storage technologies and transmission lines in addition to generation technolo-

gies. In the future, storage technologies, similar to renewables, are expected to

achieve longer plant life and experience high capacity expansion due to reduction

in their annualized investment costs.

• The input data in our model and simulations is consistent with the real data in

Australias electricity market, and we can accept the conclusions in this chapter for

the electricity markets which are similar to NEM.
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By considering a carbon cap constraint in our developed long-term electricity market

model, we designed the carbon tax amounts required to achieve the carbon abatement

policies in the market. In Chapter 8, we design tax/subsidy policies required to achieve

emission intensity reduction and fast response capacity support policies in the market by

extending our long-term electricity market model.



Chapter 8

Designing Tax&Subsidy Incentives
Towards a Green and Reliable

Electricity Market

Incentive schemes and policies play an important role in reducing carbon emissions from electricity

generation. This chapter investigates tax and subsidy incentives towards a reliable and low emis-

sion electricity market, using Australia’s National Electricity Market (NEM) as a case study. A

game-theoretical Cournot-based electricity market expansion model is developed, which calculates the

capacity investment and retirement of any strategic/regulated generation, storage, and transmission

player for multi investment periods, taking into account Emission Intensity Reduction and Fast Re-

sponse Dispatchable Capacity constraints. Based on the dual variables of the emission reduction and

the fast response generation constraints at the Nash Equilibrium solution of the game, the incentive

policies (tax/subsidy) on emission and fast response capacity are designed, respectively. The simula-

tion results for Australia’s NEM during 2017-2052, indicates how large investment on thermal solar

technology, battery storage and transmission lines supports high level of Variable Renewable Energy,

wind and solar, penetration in a green and reliable electricity market. Improvement of new technolo-

gies and their cost reduction trajectory show that NEM does not need any emission incentive policy

for up to 45% emission intensity reduction by 2052. However, higher emission reduction targets

require imposing taxes on pollutant generators and subsidizing clean generators.

8.1 Introduction

IN THIS chapter, a strategically competitive electricity market expansion model, which

includes the emission intensity reduction and fast response dispatchable capacity

constraints, is proposed. The Nash Equilibrium (NE) solution of our model is used to

131
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design the incentive policies on emission reduction and fast response dispatchable ca-

pacity support. The dual variable of the emission constraint at the Nash Equilibrium

solution of the game is used to design the emission incentive policies and the dual vari-

able of the fast response dispatchable capacity constraint at the NE point is used to design

the capacity incentive policies. In other words, the model is developed to illustrate the

pathway towards a reliable and low emission future.

The contributions of this chapter are summarized as follows:

• A game-theoretical Cournot-based electricity market expansion model is proposed,

which solves an unified operation and installation problem, to find the future ca-

pacity mix of generation, storage and transmission players in the market. All play-

ers in our model can be either strategic or perfectly competitive.

• Using the dual variable of the emission intensity reduction constraint at the NE

point of our model, we calculate the emission tax and subsidy that generators are

required to pay and receive for a targeted low emission market.

• Using the dual variable of the fast response generation constraint at the NE point

of our model, we calculate the capacity tax and subsidy that generators and storage

firms are required to pay and receive in order to maintain the system reliable.

Under the proposed framework, an electricity generation mix for Australia’s NEM is

designed such that the emission intensity target is achieved and the reliability is main-

tained. The incentive policies on emission and fast response capacity are also calculated

using the NE solution of the game.

The rest of this chapter is organized as follows. The strategically competitive electric-

ity market expansion model is formulated in Section 8.2. The equilibrium analysis of the

problem and the solution method are presented in Section 8.3. The simulation results are

presented in Section 8.4. The conclusion remarks are discussed in Section 8.5.
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8.2 Strategically Competitive Electricity Market Expansion Model

In this section, we develop an electricity market expansion model which consists of

generation, storage and transmission firms trading electricity in a multi-node energy-

only wholesale electricity market. Let N ig
i be the set of intermittent generators, such as

wind/PV farms and roof-top PVs, located in node i, N sg
i be the set of synchronous gen-

erators, such as coal, gas, hydro and thermal solar power plants, located in node i, N st
i

be the set of storage firms, such as pump-hydros and batteries (cooperatively controlled

or non-cooperative), located in node i, andN tr
i be the set of transmission lines connected

to node i.

The market expansion problem is formulated as a Cournot-based game among the

generation, storage and transmission players, which are introduced in detail in Section

8.2.4. At the NE solution of the game, the capacity investment strategies of the firms,

their biding strategies as well as the equilibrium nodal prices are calculated. The market

expansion game is solved under the emission intensity and fast response generation con-

straints, which their dual variables are used to calculate the tax and subsidy incentives.

8.2.1 Inverse Demand Functions

In our model, the electricity price in node i at investment period y, with duration of five

years, and load time t, with duration of one hour, is given by the following, commonly-

used linear inverse demand function:

Piyt
(

Diyt
)
= αiyt − βiytDiyt, (8.1)

Diyt = ∑
m∈N ig

i

qig
miyt + ∑

n∈N sg
i

qsg
niyt + ∑

b∈N st
i

qst
biyt + ∑

j∈N tr
i

(
ηtr

ij qtr
ijyt − qtr

jiyt

)
∀i, y, t (8.2)

where αiyt and βiyt are positive real values for the inverse demand function in node i

at period y, and load time t. Besides, qig
miyt is the electricity generation of intermittent
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generator m in region i , qsg
niyt is the electricity generation of synchronous generator n in

region i, qst
biyt is the electricity flow from storage firm b in node i, and qtr

ijyt is the electricity

flow from node j to node i at period y, and load time t. Note that the total amount of

power supply from the generation, storage and transmission firms in node i is equal to

the nodal net electricity demand, which represents the nodal electricity balance in our

work.

Although roof-top PVs and residential batteries do not participate in the wholesale

market, their operation affects the market price, i.e., shifts the inverse demand function

up or down. Thus, instead of modeling the roof-top PVs and residential batteries on the

demand side, we equivalently model them on the supply side as perfectly competitive

players.

8.2.2 Total Capacity and Investment Functions

In our model, any player can retrofit its capacity at any investment period y. The total

capacity of each firm at period y, Qy, is the sum of incumbent (old) capacities, Qold
y , which

are given as exogenous input to the model, and new capacities, Qnew
y , which are decision

variables of players, as:

Qy(Qnew
y′≤y) =

y

∑
y′=max(1,y−PL+1)

Qnew
y′ +

Y0

∑
y′′=Y0−PL+y+1

Qold
y′′ (8.3)

where PL denotes the plant life of the corresponding technology of the firm, and Y0 is the

base year in our study. Note that firms in our model are able to decommission their ca-

pacities at any period before they reach their plant life and each technology must become

retired in our model when it reaches its plant life.

Market expansion models which assume annualized investment cost for technolo-

gies do not take capacity retirement into account [32]. Instead of using the annualized

investment cost, we consider the whole technology costs and deduct the end of period

remaining value of new capacities [33] from their investment costs in our model as:
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Invy =

(
1− max(0, PL + y− NY − 1)

PL

)
˜Inv (8.4)

where ˜Inv is the actual investment cost of a unit and Invy is the modified value of invest-

ment cost at period y in our model. For instance, in a 25-year period simulation study,

NY = 25, if a firm with the technology plant life of 20 years decides to install a new unit

at year 21, it just pays 1
4 of the actual investment cost in our model. Note that we include

the yearly maintenance costs of technologies as part of their investment costs and do not

consider them separately.

8.2.3 The Emission and Capacity Incentive Policies

An upper bound on the emission intensity is considered in our model to ensure the emis-

sion intensity reduction in the market as:

∑
i,t

∑
n∈N sg

i

qsg
niytEFni

∑
i,t

∑
n∈N sg

i

qsg
niyt + ∑

m∈N ig
i

qig
miyt

≤
(

1− αER
y

)
EICO2

Y0
: µER

y ∀y (8.5)

where EICO2
Y0

is the CO2 emission intensity of the whole electricity sector at base (refer-

ence) year Y0, αER
y is the desired percentage of emission intensity reduction at period y

relative to the base period Y0, EFni is the emission factor of fossil-fueled synchronous gen-

erator n in node i. The dual variable associated with this constraint, i.e., µER
y , corresponds

to the required emission tax/subsidy (first incentive policy) to achieve a level of emission

intensity, as shown in Section 8.3.3.

The second incentive policy is calculated based on the fast response dispatchable ca-

pacity constraint. The constraint limits the total VRE generation to a proportion of fast

response generation during each investment period to ensure adequacy of fast response

capacity in the network as:
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∑
t

 ∑
n∈N sg

i

α
sg,FR
ni qsg

niyt + ∑
b∈N st

i

αst,FR
bi qdis

biyt

 ≥ αFR ∑
t

∑
m∈N ig

i

qig
miyt : µFR

iy ∀i, y (8.6)

where αFR is the fast response proportion coefficient, α
sg,FR
ni is a binary coefficient which

is one if firm n in region i is a fast response synchronous generator, such as gas-fired or

hydro, αst,FR
bi is a binary coefficient which is one if firm b in region i is a pump-hydro or a

cooperatively controlled battery, and qdis
biyt is the electricity discharge level of the storage

firm b in node i. It is also shown in Section 8.3.3 that the required annual capacity sub-

sidy/tax to ensure that there is enough fast response capacity in the network is calculated

based on the dual variable of the fast response constraint, µFR
iy :

Note that we can reduce the coefficient αFR, i.e., the need for fast response capacity

to achieve diversity dividends, by spreading the wind and solar generation across the

network, which smooths the generation and ramping up and down of the total regional

intermittent electricity generation [96].

8.2.4 The Market Expansion Game

In this subsection, we introduce the market expansion game, the utility function of play-

ers and their decision variables. In our model, each firm decides on its expansion capacity

and bidding strategies over the planning horizon, being either strategic or regulated.

Definition 8.1. A strategic (price maker) firm sets its strategies over the time horizon maximizing

its aggregate expected profit, but a regulated (price taker) firm aims to maximize the social welfare

[77].

In what follows, the variable µ indicates the associated Lagrange or dual variable of

its corresponding constraint, the price function Piyt (.) refers to (8.1) and the total capacity

function Q(.) refers to (8.3).
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Intermittent Generation Firms

The mth intermittent generator, i.e., wind or solar farm or roof-top PVs, in node i maxi-

mizes its profit by solving the following optimization problem:

max{
qig

miyt

}
yt{

Qig,new
miy

}
y

�0

∆l ∑
y,t

Piyt (.) qig
miyt −

(
cig

miq
ig
miyt +

dig
mi
2 qig

miyt
2
)
+ γ

ig
mi

βiytq
ig
miyt

2

2

(1 + r)y −∑
y

Invig
miyQig,new

miy

(1 + r)y

(8.7a)

s.t.

qig
miyt ≤ Aig

mitQ
ig
miy(.) : µ

ig
miyt ∀y, t (8.7b)

Qig
miy(.) ≤ C̄ig

mi : µ
ig,C̄
miy ∀y, t (8.7c)

(8.5), (8.6) (8.7d)

where Qig,new
miy and Qig

miy(.) are the new capacity (variable) and the total generation capac-

ity (function) of the intermittent (VRE) firm m in node i at period y, respectively. The first

term in the summation in (8.7a) is the net present value of electricity generation revenue,

the second term represents the generation cost, which is quadratic (with coefficients cig
mi

and dig
mi) and reflects that cheaper renewable energy sites are deployed first, the third

term denotes the regulation surplus when γ
ig
mi is one, given the discount rate r over the

periods y ∈ {1, ..., NY}. The last term in (8.7a) is the total investment cost of new capac-

ities, with unitary investment cost of Invig
miy, over the periods. Depending on the binary

parameter γ
ig
mi, the mth intermittent generation firm in node i behaves strategically or in a

regulated manner. The firm acts strategically when γ
ig
mi is zero or acts as a regulated firm

when γ
ig
mi is one. Considering the

βiytq
ig
miyt

2

2 in the objective function, the firm becomes reg-

ulated (price taker), which helps to increase the competition and consequently the social

welfare in the market. The constraint (8.7b) considers the regional intermittent energy

availability coefficient in load time t, Aig
mit, and the constraint (8.7c) limits the electricity

generation to the maximum potential capacity, C̄ig
mi, e.g., the roof-top PV installation area
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limit.

Synchronous Generation Firms

The strategy of the nth synchronous generator, i.e., coal, gas, biomass, hydro or thermal

solar firms, in node i is obtained by solving the following optimization problem:

max{
qsg

niyt

}
yt{

Qsg,new
niy

}
y

�0

∆l ∑
y,t

Piyt (.) qsg
niyt − csg

ni q
sg
niyt + γ

sg
ni

βiytq
sg
niyt

2

2

(1 + r)y −∑
y

Invsg
niyQsg,new

niy

(1 + r)y (8.8a)

s.t.

qsg
niyt ≤ Asg

ni Q
sg
niy(.) : µ

sg
niyt ∀y, t (8.8b)

qsg
niyt − qsg

niy(t−1) ≤ Rup
ni Asg

ni Q
sg
niy(.) : µ

sg,up
niyt ∀y, t (8.8c)

qsg
niy(t−1) − qsg

niyt ≤ Rdn
ni Asg

ni Q
sg
niy(.) : µ

sg,dn
niyt ∀y, t (8.8d)

∑
t

qsg
niyt ≤ RAsg

niy : µ
sg,RA
niy ∀n, i, y (8.8e)

(8.5), (8.6) (8.8f)

where Qsg,new
niy and Qsg

niy(.) are the new capacity (variable) and total generation capacity

(function) of the synchronous firm n in node i at period y. The parameter csg
ni represents

the firm’s marginal operation and fuel cost of electricity generation and the parameter

Invsg
niy is its unitary investment cost. Depending on the binary parameter γ

sg
ni , the nth

synchronous generator in node i acts strategically when γ
sg
ni is zero or acts as a regulated

firm when γ
sg
ni is one. The constraint (8.8b) limits the electricity generation to its energy

flow capacity with availability coefficient Asg
ni . Constraints (8.8c) and (8.8d) ensure that

the nth synchronous generator meets its ramping limits, with ramping up and down co-

efficients Rup
ni and Rdn

ni , and constraint (8.8e) limits the electricity generation during period

y to energy availability limit RAsg
niy, e.g. the dam water availability limit for hydros.
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Storage Firms

The strategy of the bth storage firm, i.e., pump-hydro, or cooperatively controlled or

non-cooperative batteries, in node i is obtained by solving the following optimization

problem:

max{
qdis

biyt,q
ch
biyt

}
yt
�0{

Qstf,new
biy ,Qstv,new

biy

}
y
�0{

qst
biyt

}
yt

∆l ∑
y,t

Piyt (.) qst
biyt + γst

bi
βiytqst

biyt
2

2

(1 + r)y −∑
y

Invstv

biyQstv,new
biy + Invstf

biyQstf,new
biy

(1 + r)y

(8.9a)

s.t.

qst
biyt = ηdis

bi qdis
biyt −

qch
biyt

ηch
bi

: µst
biyt ∀y, t (8.9b)

qdis
biyt ≤ Ast

biQ
stf

biy(.) : µdis
biyt ∀y, t (8.9c)

qch
biyt ≤ Ast

biQ
stf

biy(.) : µch
biyt ∀y, t (8.9d)

0 ≤
t

∑
t′=1

(
qch

biyt′ − qdis
biyt′

)
∆ ≤ Ast

biQ
stv

biy(.) : µst,min
biyt , µst,max

biyt ∀y, t (8.9e)

qdis
biytq

ch
biyt = 0 : µdis/ch

biyt ∀y, t (8.9f)

(8.6) (8.9g)

where Qstv,new
biy and Qstf,new

biy are the new volume and flow capacity (variable), and Qstv

biy(.)

and Qstf

biy(.) are the total volume and flow capacity (function) of the storage firm b in node

i at period y, respectively. Note that the unit for volume capacity is MWh (energy) and

for flow capacity is MW (power). The parameters Invstv

biy and Invstf

biy are the firm’s unitary

volume and flow investment costs, respectively. Depending on the binary parameter γst
bi,

the bth storage firm in node i acts strategically when γst
bi is zero and acts as a regulated

firm when γst
bi is one. The equality (8.9b) defines the net output/input flow of electricity,

qst
biyt, from/to storage firm b in node i. The constraints (8.9c) and (8.9d) limit the energy

flow (discharge qdis
biyt and charge qch

biyt) of the firm to its flow (discharge/charge) capacity
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with availability factor Ast
bi. Constraint (8.9e) ensures the volume capacity limit of the

storage firm is always met. Finally, constraint (8.9f) prevents the storage firm charge and

discharge simultaneously, which is the only non-linear constraint in our model.

Transmission Firms

The strategy of the transmission line between nodes i and j, which buys and sells elec-

tricity in regions it connects, is obtained by solving the following optimization problem:

max{
qtr

jiyt,q
tr
ijyt

}
yt{

Qtr,new
ijy ,Qtr,new

jiy

}
y

�0

∑
y,t

∆l

((
ηtr

ij Pjyt (.)− Piyt (.)
)

qtr
jiyt

(1 + r)y +

(
ηtr

ij Piyt (.)− Pjyt (.)
)

qtr
ijyt

(1 + r)y +

γtr
ij

(
ηtr

ij
2
βiyt + β jyt

) qtr
ijyt

2

2 +
(

ηtr
ij

2
β jyt + βiyt

) qtr
jiyt

2

2 − ηtr
ij

(
β jyt + βiyt

)
qtr

ijytq
tr
jiyt

)
(1 + r)y −

∑
y

Invtr
ijy

2

(
Qtr,new

ijy + Qtr,new
jiy

)
(1 + r)y (8.10a)

s.t.

qtr
ijyt ≤ Atr

ij Q
tr
ijy(.) : µtr

ijyt ∀y, t (8.10b)

Qtr,new
ijy = Qtr,new

jiy : µtr,Q
ijy ∀y (8.10c)

where Qtr,new
ijy and Qtr

ijy(.) are the new capacity (variable) and the total transmission ca-

pacity (function) of the transmission firm between nodes i and j at period y. The first

term in summation in (8.10a) is the electricity profit of transmitting electricity from node

i to node j, the second term is the backward profit, the third term denotes the regula-

tion surplus and the last term is the total investment cost of new capacities, with uni-

tary investment cost of Invtr
ijy. Depending on the binary parameter γtr

ij , the transmission

line between nodes i and j acts strategically when γtr
ij is zero or acts as a regulated firm

when γtr
ij is one. Note that the electricity markets with regulated transmission lines are

discussed as electricity markets with transmission constraints in the literature, e.g., [20, 35].
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The constraint (8.10b) limits the electricity flow to the capacity of transmission lines with

availability coefficient Atr
ij , and the constraint (8.10b) ensures that transmission capacity

on both directions of the line is equal in our model.

Note that the profit maximization problem (8.10a) looks more complex than our pre-

vious formulation in [52] because of considering the transmission efficiency, ηtr
ij , which

was missing before.

8.3 Solution Methodology

In this section, we first provide a game-theoretic analysis of the market expansion game

between generation, storage and transmission players. Next, we explain a method for

solving the game based on a Mixed Complementarity Problem (MCP).

8.3.1 Game-theoretic Analysis of the Market Expansion Model

To solve the market expansion game, we need to study the best response functions of

all firms participating in the market. Then, any intersection of all firms’ best response

functions will be a NE. At the NE strategy of the game, no player has any incentive to

unilaterally deviate its strategy from the NE point.

Note that (8.9f), which is nonlinear, is the only constraint in our model that violates

the sufficient conditions of Theorem 4.4 in [71] for existence of NE point. However, in

our numerical results, we find the NE point of the game by varying the initial point of

the optimization algorithm.

The orthogonal constraints corresponding to emission and fast response capacity with

dual variables of µER
y and µFR

iy , respectively, which exist in best response equation sets of

all players, are given by:

∑
i,t

∑
n∈N sg

i

qsg
niytEFni

∑
i,t

∑
n∈N sg

i

qsg
niyt + ∑

m∈N ig
i

qig
miyt

≤
(

1− αER
y

)
EICO2

Y0
⊥ µER

y ≥ 0 (8.11a)
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∑
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αst,FR
bi qdis

biyt

 ≥ αFR ∑
t

∑
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qig
miyt ⊥ µFR

iy ≥ 0 (8.11b)

Best Responses of Intermittent Generation Firms

The best response of the intermittent generator m in node i, given the strategies of other

firms in the market, satisfies the necessary and sufficient Karush-Kuhn-Tucker (KKT)

conditions (t ∈ {1, ..., NT}; y ∈ {1, ..., NY}):

∆l
Piyt (.)−

(
cig

mi + dig
miq

ig
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)
− βiytq

ig
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(
1− γ

ig
mi

)
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)
EICO2
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miyt ≥ 0 (8.12a)
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qig
miyt ≤ Aig

mitQ
ig
miy(.) ⊥ µ

ig
miyt ≥ 0 (8.12c)

qig
miyt ≤ C̄ig

mi ⊥ µ
ig,C̄
miyt (8.12d)

where the perpendicularity sign, ⊥, indicates that one of the adjacent inequalities must

at least be satisfied as an equality [73].

Best Responses of Synchronous Generation Firms

The best response of the synchronous generator n in node i, given the collection of strate-

gies of other firms in the market, is obtained by solving the following KKT conditions

(t ∈ {1, ..., NT}; y ∈ {1, ..., NY}):

∆l
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1− αER
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)
µER

y + α
sg,FR
ni µFR

iy ≤ 0 ⊥ qsg
niyt ≥ 0 (8.13a)
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niyt ≥ 0 (8.13c)

qsg
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ni Asg

ni Q
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niy(.) ⊥ µ
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niyt ≥ 0 (8.13d)

qsg
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ni Q
sg
niy(.) ⊥ µdn

niyt ≥ 0 (8.13e)

∑
t

qsg
niyt ≤ RAsg

niy ⊥ µ
sg,RA
niy ≥ 0 (8.13f)

Best Responses of Storage Firms

The best response of the storage firm b in node i, given the collection of strategies of other

firms in the market, is obtained by solving the following KKT conditions (t ∈ {1, ..., NT};

y ∈ {1, ..., NY}):

∆l
Piyt (.)− βiytqst

biyt

(
1− γst
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)
(1 + r)y + µst

biyt = 0 (8.14a)
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Best Responses of Transmission Firms

Finally, the best response of the transmission firm between nodes i and j, given the collec-

tion of strategies of other firms in the market, can be obtained using the KKT conditions

(t ∈ {1, ..., NT}; y ∈ {1, ..., NY}):

∆l
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qtr
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tr
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Qtr,new
ijy = Qtr,new

jiy (8.15d)

8.3.2 The Mixed Complementarity Problem

The NE solution is by definition the intersection of best responses of all players. There-

fore, it satisfies the KKT conditions of all market players, that is, (8.11a-8.11b), (8.12a-

8.12d), (8.13a-8.13f), (8.14a-8.14k), and (8.15a-8.15d). Consequently, the NE solution is

the result of the following Mixed Complementarity Problem (MCP):

(8.11a− 8.11b), (8.12a− 8.12d), (8.13a− 8.13 f ), (8.14a− 8.14k), (8.15a− 8.15d)

m ∈ {1, ..., Nig
i }, n ∈ {1, ..., Nsg

i }, b ∈ {1, ..., Nst
i }, i, j ∈ {1, ..., I}, t ∈ {1, ..., NT}, y ∈ {1, ..., NY}
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where the decision variables are the bidding strategies of all players, and set of Lagrange

multipliers or dual variables in KKT conditions. We used the PATH solver in GAMS

software to solve the MCP problem.

8.3.3 Interpreting the Dual Variables as Tax and Subsidy

In this subsection, based on dual variable of the emission constraint (8.5), µER
y , and dual

variable of the fast response constraint (8.6), µFR
iy , at the NE point of the game, we cal-

culate the CO2 emission tax/subsidy and the economic value of fast response capacity,

respectively, in our model.

Firstly, we explain the carbon taxing/subsidizing mechanism in our model. From

equation (8.13a), it is observed that the term (1+r)y
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)
EICO2

Y0

)
µER

y consti-

tutes a portion of the price function, Piyt (.), when qsg
niyt is positive, which can be inter-

preted as the tax/subsidy the synchronous generator n in node i must pay/receive per

each MWh electricity generation at period y. Similarly, it can be seen in equation (8.12a)

that the term (1+r)y
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)
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Y0
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y is equal to the subsidy the intermittent renew-

able generator m in node i, which is wind or solar, receives per each MWh electricity

generation at period y.

Secondly, we explain the fast response capacity mechanism in our mode. The term

αFRµFR
iy in equation (8.12a), the term α

sg,FR
ni µFR

iy in equation (8.13a), and the term αst,FR
bi µFR

iy

in equation (8.14b) constitute a portion of the price function, Piyt (.), when qig
miyt, qsg

niyt and

qdis
biyt are positive, respectively. Therefore, at the NE solution the term
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is equal

to the fast response capacity tax that in average one MW intermittent generator pays

per each period y, and
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, and
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t
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bi µFR
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are equal to the fast response

capacity subsidy that in average one MW synchronous generator and one MW storage

firm receives per each period y, respectively.

8.3.4 The Market Expansion Model in Practice

Based on the dual variables of the emission constraint (8.5) and the fast response con-

straint (8.6) at the NE point of the game, i.e., µER∗
y , and µFR∗

iy , the market players solve
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the corresponding optimization problems with their new objective functions, disregard-

ing the emission and fast response constraints. Therefore, in practice, the intermittent

generator m in region i, disregarding the constraints (8.5), (8.6), equivalently solves its

optimization problem (8.7) with the following additional term in its objective function:

+ ∑
y,t

(
1− αER

y

)
EICO2

Y0
µER∗

y qig
miyt −∑

y,t
αFRµFR∗

iy qig
miyt,

the synchronous generator n in region i, disregarding the constraints (8.5), (8.6), equiv-

alently solves its optimization problem (8.8) with the following additional term in its

objective function:

−∑
y,t

(
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(
1−αER

y

)
EICO2

Y0

)
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y qsg
niyt+∑

y,t
α

sg,FR
ni µFR∗

iy qsg
niyt,

the storage firm b in region i, disregarding the constraint (8.6), equivalently solves its

optimization problem (8.9) with the following additional term in its objective function:

+ ∑
y,t

αst,FR
bi µFR∗

iy qdis
biyt,

and the transmission line between nodes i and j solves the same optimization problem

(8.10). Note that the solution of the updated market expansion model with the tax and

subsidy terms is exactly equal to the NE solution of the game.

Note that the market operator or a government entity solves our game model and

calculates the equilibrium values of µER∗
y , and µFR∗

iy . Any inaccurate information used in

calculating the tax/subsidy amounts may lead to significant deviation from the desired

emission and reliability levels in the market.
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8.4 Case Study and Simulation Results

In this section, we apply our Market Expansion framework to the Australia’s NEM. The

investment is calculated every five years from 2017 to 2052 in our model, considering a

representative (averaged) 24-hour operation time (load time) horizon. The coefficients

α and β in (8.1) are calibrated based on average levels of historical demand and price

recorded in five states of NEM in 2016-2017. The technology characteristics of the incum-

bent synchronous and intermittent generation capacities existing in NEM are listed in Ta-

bles C.1 and C.2, respectively, in Appendix C. Synchronous generators include classical

coal, gas, hydro, and biomass plants in addition to the new emerging technology of ther-

mal solar, and the intermittent generators consist of wind farms, PV farms and roof-top

PVs. The technology characteristics of different storage types, including pump-hydros,

cooperatively controlled and non-cooperative batteries, with their incumbent capacity

levels are listed in Table C.3 in Appendix C. Finally, the interconnectors between differ-

ent states of NEM and their associated characteristics are listed in Table C.4 in Appendix

C.

The investment cost of any technology reduces as time goes on with the given de-

escalation rates, which are input to our model. Fig. 8.1 shows the trajectory of investment

cost reduction of generation and storage technologies [12]. It can be seen that mature gen-

eration technologies like coal, gas, biomass and hydro do not show significant investment

cost reduction, whereas wind, PV, and thermal solar are expected to have 30%, 42%, and

53% investment cost reduction by 2052, respectively. The largest investment cost reduc-

tion is forecast for battery storage technology, which is about 68% by 2052.

8.4.1 Impact of Emission Reduction Policy on Market Expansion

In our study, the coefficient αER, is set to force 0% up to 100% emission intensity reduction

by 2052 compared to 2017. Fig. 8.2 compares the net increase or decrease of capacity for

generation, Fig. 8.2(a), storage and transmission, Fig. 8.2(b), technologies by 2052 in

NEM, given the emission intensity reduction target. Based on this figure, increasing the

emission intensity target up to 45% will not affect the net generation capacity. This is
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Figure 8.1: Normalized investment cost of generation and storage technologies during
2017-2052 (Normalization is compared to the costs in 2017).

because clean electricity technologies are competitive enough to penetrate and reduce

the emission intensity at least by 45% by 2052. However, to achieve a higher level of

emission reduction target, it is required to set emission tax/subsidy incentive policies.

The emission tax/subsidy incentives lead to accelerate the closure of coal and gas plants,

from -10.9 GW and -5.5 GW to -19.9 GW and -8.3 GW, respectively, and the addition of

renewable generators, from 9.3 GW to 22.2 GW for synchronous renewables and from

26.8 GW to 40.8 GW for intermittent renewables, in the network by 2052.

The high penetration of intermittent generation technologies is accompanied by high

levels of storage in both forms of pump-hydro and cooperatively controlled batteries,

which increase at most by 9.5 GW and 12.1 GW until 2052, respectively, and also high

levels of interconnector between states, which increases at most by 3.7 GW until 2052. The

non-cooperative batteries, which just make profit from energy arbitrage, cannot compete

with cooperatively controlled batteries which make profit from both energy arbitrage

and fast response support. In high emission intensity reduction target cases, very low
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level of investment is made on batteries without fast response provision capability (non-

cooperative batteries) in the network.
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Figure 8.2: Net increase/decrease of capacity for (a) generation and (b) storage and trans-
mission technologies by 2052 in NEM for different target levels of emission intensity re-
duction.

In the following subsections, we compare our simulation results for just two cases of

(i) No Emission Intensity Reduction policy (ii) 80% Emission Intensity Reduction policy

in NEM by 2052 (zero emission scenarios in Australia until 2050 and 2070 are discussed

in [12]). Note that even in the first case the emission intensity reduces almost by 45%,

which means that emission intensity reduction will happen even without any emission

policy.

8.4.2 Impact of Emission Reduction Policy on Electricity Prices and Demands

The emission intensity reduction target affects the trajectory of electricity prices and de-

mands in NEM during 2017-2052. Fig. 8.3(a) illustrates the average wholesale prices in
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NEM by 2052 with and without implementing the emission reduction policy. It can be

seen that the market price is extremely high in 2017, which is the consequence of exercis-

ing market power by coal and gas generation firms. The price reduction trend continues

for the next twenty years, i.e., until 2037. In fact, investment on renewable technologies

increases the competition and reduces the prices for that period. By 2037, a large portion

of coal power plants are closed down in our model and the cost of installing new gen-

eration capacities rises the wholesale prices again during 2037-2052. Surprisingly, in the

price declining period, i.e., 2017-2037, imposing the emission intensity reduction policies

comparatively lowers the prices by 5%, which is related to the market power level. Pene-

tration of renewables increases the competition (reduces the market power) and leads to

lower prices.

Fig. 8.3(b) compares the average wholesale and net demand levels in NEM by 2052

with and without implementing the emission reduction policy. Note that the net demand

includes the roof-top PV generation in addition to the wholesale demand. The divergence

of the net and wholesale demand levels is caused by penetration of roof-top PVs in the

network. Roof-top PV generation increases by 3.93 times in No Emission Reduction Pol-

icy case and by 4.84 times in 80% Emission Reduction Policy case until 2052, which shows

that roof-top PV is competent enough to penetrate enormously by 2052 with or without

emission incentive policy.

8.4.3 Carbon Tax&Subsidy Design

We design the emission incentives based on the dual variable of the emission intensity

constraint, which is called carbon price, at the NE point in our model. Implementing

80% Emission Intensity Reduction policy, the emission intensity must uniformly decrease

from the base year level of 0.727 tonneCO2 /MWhe in 2017 to 0.145 tonneCO2 /MWhe in

2052. Fig. 8.4 (a) shows the calculated carbon price at different years to reach 80% emis-

sion intensity reduction by 2052. The carbon price moves upward in the beginning stage,

up to year 2032, then decreases during 2032-2042, and goes up again at the final stage,

2042-2052. The closure down of coal and gas power plants, which are at their end of life,

mostly happens during 2032-2042, which reduces the emission intensity and carbon price
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Figure 8.3: The average yearly (a) wholesale prices and (b) net and wholesale demands
in NEM, without or with emission reduction policy (net demand =wholesale demand +
roof-top PV).

level. However, higher levels of carbon price is calculated in our model to achieve higher

levels of emission intensity reduction at the final stage, regarding the uniform reduction

of emission intensity from 2017 to 2052.

Fig. 8.4 (b) indicates the average amounts of tax and subsidy that any type of gen-

erator pays or receives each year based on their electricity generation emission intensity

and the calculated carbon price of that year. As coal-fueled generators have emission

intensities much higher than the emission intensity target levels, they always pay carbon

tax in the market. The gas-fueled generators have lower emission intensities and do not

pay significant carbon penalty until 2042. The renewable generators, including wind, PV,

thermal solar, bio-fueled, and hydro, receive the carbon subsidy in the market, as their

generation emission intensity is zero. One kW capacity of thermal solar and bio-fueled

generators are more efficient in reducing the emission intensity than one kW of wind, PV

or even hydro, and thus receive higher emission subsidy in average.
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Figure 8.4: The trajectory of (a) carbon price, (b) carbon tax (positive) and subsidy (nega-
tive) of different generation types during 2017-2052.

8.4.4 Fast Response Capacity Tax&Subsidy Design

The other tax and subsidy incentive is calculated based on the dual variable of the fast

response dispatchable generation constraint at the NE point in our model. Intermittent

generators, i.e., wind and PV, are vulnerable to generation fluctuation due to wind and

solar energy availability. Therefore, there must be adequate fast response generation ca-

pacity to dispatch even out of merit, i.e., even when their marginal cost of generation

is above the market price, if wind or solar is lacking. As fast response generators may

dispatch out of merit, they need to be subsidized. The subsidy is provided by taxing the

intermittent generators. Fig. 8.5 indicates the level of fast response tax and subsidy for

different generation types during 2017-2052, with and without emission intensity reduc-

tion policy. It can be seen that implementing the emission reduction policy, which leads

to higher levels of intermittent generation in the market, we calculate higher amounts

of fast response tax and subsidy for all generators. Moreover, the subsidy level is not

the same for different generation types. One kW pump-hydro receives higher subsidy
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for fast response provision than one kW battery as pump-hydros generally have larger

energy storage tanks (kWh). However, the battery’s fast response subsidy becomes more

than the pump-hydro’s in 2052 due to the decline in investment cost of the battery tanks.

The subsidy on hydro plants uniformly increases by time, but the subsidy on gas-fueled

plants increases significantly after 2042, as they have to pay considerable amounts of

emission tax at those times.
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Figure 8.5: The trajectory of fast response capacity tax (positive) and subsidy (negative)
for (a) No Emission Reduction policy, (b) 80% Emission Intensity Reduction policy.

8.4.5 Impact of Market Power on Market Expansion

In this subsection, we compare our simulation results with the scenario when market

power is disregarded in the game, i.e., a perfectly competitive market. Fig. 8.6 illustrates

our simulation results for the generation, storage and transmission capacities in NEM

at the end of 2052 with and without market power consideration when there isn’t any

emission policy, Fig. 8.6(a), and when 80% emission intensity reduction policy is imple-

mented, Fig. 8.6(b). It can be seen that disregarding the market power, the investment on
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intermittent renewables, i.e., wind and solar PV, reduces almost by 60% in both emission

policy cases due to lower market prices. Lower market prices decreases the investment

attraction on intermittent renewables. Disregarding the market power results in more in-

vestment on synchronous generation, specifically coal and thermal solar in without and

with emission reduction policy cases, respectively, in our model. When market power is

disregarded, investment on gas generation is almost zero in our model due to its high

operation and fuel cost. Investment on storage technologies also decreases without con-

sidering the market power.
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Figure 8.6: Technology capacity mix in NEM with and without considering market power
for (a) No Emission Reduction policy, (b) 80% Emission Intensity Reduction policy.

8.5 Conclusion

• Numerous factors, such as technology investment cost, maintenance, operation and

fuel costs, and different types of tax/subsidy incentive policies, affect the future

generation technology mix in an electricity market. The future of market prices,
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generation and demand levels are very sensitive to those factors. For instance, the

total capacity of non-cooperative batteries, which just make profit from energy ar-

bitrage, is much less than that of the cooperatively controlled batteries, which make

profit from both energy arbitrage and fast response service provision, despite hav-

ing similar investment costs.

• Emission intensity reduction policies do not necessarily increase the average elec-

tricity prices all the times. Considering the Emission Intensity Reduction policy

in our model, we calculated lower prices relative to No Emission Reduction pol-

icy scenario in the market until 2042. We also found that the price increase due to

implementing the emission policies after 2042 happens at off peak times and even

slightly reduces the peak time prices. This discussion is similar to the recent find-

ings in [68].

• Emission incentive policies, which are calculated based on the dual variable of the

emission constraint, can be used to penalize the pollutant generators and to re-

ward the renewables and clean technologies. It is observed in our simulations that

the retirement of the incumbent coal-fueled and gas-fueled generators reduces the

carbon price level and subsequently the emission incentive policy levels in 2042.

Thereafter, carbon price rises again to retain the emission intensity reduction trend

in the market.

• The incentive policies of fast response capacity tax and support, which are calcu-

lated based on the dual variable of the fast response generation constraint, can be

used to penalize the intermittent generators and subsidize the fast response capac-

ities. Gradual retirement of the incumbent gas-fueled plants and penetration of in-

termittent generators lead to higher levels of subsidy to ensure existence of enough

fast response capacity in the market.

• Considering the market power in a market expansion model significantly affects the

technology expansion decisions. Disregarding the market power, high electricity

prices are not calculated in the model, which does not provide enough incentive

for more recent technologies, like intermittent generators and batteries, to highly
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penetrate in the market.

• The high level of investment on synchronous renewable capacity, like thermal so-

lar, which may have heat energy storage system or may be a hybrid system that

use other fuels during periods of low solar radiation, and battery storage can also

prevent the inertia and frequency response problems in electricity networks with

high level of intermittent generation, as discussed in [15].

In Chapter 9, we summarize the wholesale electricity market models we developed

in this thesis and highlight the important findings from this research as dot points.



Chapter 9

Conclusions

9.1 Summary of Chapters and Conclusions

IN THIS thesis, operational and planning Cournot-based wholesale electricity market

models are developed and used to analyze the supply, demand and price variations

in real-world electricity markets. Australia’s National Electricity Market is studied as the

case study, which is experiencing high levels of intermittent electricity generation and

price volatility in recent years. We extended the existing Cournot-based electricity market

models to analyze the price volatility in the market and find how storage can facilitate the

integration of renewable electricity in power networks. Moreover, we developed long-

term wholesale electricity market models to design tax and subsidy policies required to

achieve the emission and dispatchable capacity goals in the market.

In Chapter 2, a classic Cournot-based electricity market model including strategic

generation firms is introduced. The model is extended to consider storage and transmis-

sion players and states that:

• Strategic storage players maximize their profit from energy arbitrage and the strate-

gic transmission lines maximize their electricity trading profit based on the price

difference at their terminals.

• Any regulated generation, storage and transmission player maximizes the market

surplus or social welfare, which is the profit or surplus for both generators and

consumers, in our model.

• The defined game is developed as a centralized optimization problem to find the

157



158 Conclusions

NE solution as the game model just includes linear inverse demand functions.

In Chapter 3, we briefly introduce the National Electricity Market in Australia and ex-

plain its pricing mechanism. Then we compare the linear and non-linear inverse demand

functions and show that

• Accurate calibration of the inverse demand functions reduces our simulation error

terms (comparing to historical price and demand data).

In Chapter 4, a multi-region Cournot-based electricity market model with nonlin-

ear inverse demand functions is developed, which is solved as a Mixed Complementary

Problem. The transmission lines are modeled as individual market players likewise the

other firms in the game, which leads to far more convenient computations than when the

transmission lines are considered as constraints for a market clearing engine. The model

is applied to the 5-node NEM market, and is calibrated with realistic data from year

2015. The market is simulated with and without considering a large coal power plant

in the game under 365 intermittent energy availability scenarios to find how a base-load

power plant closure impacts the market price and volatility. Our simulations in the NEM

market show:

• The highest proportional change in average price, peak price and price volatility

happens in the region (VIC) where the closure happens and then in its neighboring

regions TAS and SA.

• Depending on the capacity of interconnectors, the impact of coal plant closure may

differ in different market regions.

• The aggregate CO2 emission of gas and coal power plants in the market, which is

affected by the electricity market prices, reduces by 5.8% after the coal power plant

closure.

In Chapter 5, a bi-level optimization model is proposed to find the minimum storage

capacity required to achieve a price volatility level in an electricity market. In the upper

level problem, the optimal regional storage capacities are found, and in the lower level
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problem, the Bayes-NE solution of the market under a set of scenarios is calculated. The

non-cooperative interaction between regulated/strategic generation, storage and trans-

mission players in the market is calculated using a stochastic Cournot-based game with

a non-linear inverse demand function. The exponential inverse demand function is ac-

curate enough to model the impact of storage on reducing the very high prices in the

market. The existence of Bayes-NE is established for the lower level problem under the

exponential inverse demand function. The bi-level problem is converted into a single

level problem as a MPEC and is solved by a greedy algorithm. The simulation results in

the NEM market show that:

• Storage alleviates the price volatility but does not remove it completely.

• Regulated storage firms are more efficient in reducing the price volatility than strate-

gic storage firms.

• Although both storage and transmission capacities are able to reduce the price

volatility level in the market, regulated storage can effectively alleviate high lev-

els of price volatility when transmission lines are under maintenance.

• As a rule of thumb, a region with highest share of intermittent electricity in its total

generation is the candidate to install storage capacity to reduce the price volatility

in a multi-region electricity market.

In Chapter 6, a bi-level optimization model is proposed to allocate a fixed budget on

regulated storage and wind capacities in order to minimize the weighted sum of average

price and price volatility in a single region taking into account the interdependency be-

tween different regions. In the upper level problem, the weighted sum of average price

and price volatility is minimized by allocating a budget on regulated wind and storage

capacities in the specified region. In the lower level problem, a stochastic Cournot-based

electricity market model with non-linear inverse demand functions is used to model the

non-cooperative interaction between regulated/strategic generation, storage and trans-

mission firms. The bi-level problem is converted into a single-level problem as a MPEC

and is solved by a line-search algorithm. Based on our simulations, in the NEM market:
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• Both storage and wind are capable of reducing the average price and price volatility,

but storage is more efficient in reducing the price volatility and wind in reducing

the average price.

• Based on the importance of average price and volatility, a mixed combination of

storage and wind can optimally minimize the weighted sum of price and volatility

in the market.

• Wind turbine is almost a mature generation technology and is competent enough

to penetrate in the market in large scales.

• The future reduction in investment cost of battery storage also enables this technol-

ogy to penetrate economically in the market in large scales.

In Chapter 7, a long-term stochastic Cournot-based generation expansion model with

a carbon cap constraint is developed which considers a set of scenarios due to wind

power intermittency. Generation players decide on their long-term capacity addition and

retirement as well as their operation in our model considering a carbon cap constraint in

the market. The dual variable of the carbon cap constraint at the Bayes-NE point is used

to calculate the carbon price in the market. The game model includes linear inverse de-

mand functions and is solved as a centralized optimization problem. The simulation

results, in a generic electricity market with three generation firms of coal, gas and wind,

show that:

• Carbon cap constraint leads to proportionally more renewable and less fossil-fueled

generation capacity in the market.

• Higher tax on carbon emission is required to install renewables when they are

highly stochastic.

• The higher levels of carbon tax can be spent on adding storage technologies to en-

counter intermittency in renewable generation.

• Comparing the strategic and perfectly competitive behaviors for the wind firm, we

observe that the coal firm adds more capacity and the gas firm slightly decreases
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its new capacity decisions when wind player strategically reduces its new capacity

investment plan.

In Chapter 8, a long-term Cournot-based market expansion model with emission in-

tensity reduction and fast response dispatchable capacity constraints is developed. The

regulated/strategic generation, storage and transmission players decide on their long

term capacity expansion and their operation in the model considering the emission in-

tensity and fast response capacity constraints. Based on the KKT equations of the game,

it is explained how dual variables of the emission and fast capacity constraints at the NE

point is used to calculate the tax and subsidy policies required to achieve the emission

and reliability goals in the market. The simulation results, in the NEM market, shows

that:

• Setting emission reduction policies does not necessarily lead to higher prices and

even may decrease the electricity prices at peak hours.

• The incentive policies of fast response capacity can ensure existence of enough dis-

patchable capacity to balance the supply and demand at any time in the market.

• Considering the market power in expansion models leads to high electricity prices

and more investment on expensive technologies in the market.

9.2 Future Research

We used the availability factor for any technology in our developed models to consider

the maintenance of power plants, storage technologies and transmission lines in our cal-

culations. The availability factor indicates that the corresponding technology is not avail-

able during its maintenance time. However, power plants may make strategic mainte-

nance decisions, which can impact the market prices significantly. In future works, the

impact of strategic maintenance decisions [22] of power-plants on market prices, espe-

cially when a coal plant is closed down, can be studied.

Furthermore, our proposed storage allocation model can be extended by considering

the ancillary services and capacity markets. The impact of ancillary service markets [21]



162 Conclusions

and capacity markets [23] on the integration of storage systems in electricity networks

is left as an open problem. It is also interesting to study the wind correlation analysis

to look at volatility reduction effectiveness in future works. Moreover, future research

can include the optimal storage siting problem subject to the line congestion constraint

to alleviate the congestion problem.

Although we did not discuss the ancillary service markets in our electricity market

models, Cournot-based models are able to find the value of any ancillary services that

are provided in the market. For instance, considering a constraint on minimum electric-

ity supply in the market, one can find the value of providing the minimum level of elec-

tricity generation at all times in the market. Using the dual value of the minimum supply

constraint at the NE point, it can be calculated that how much must be paid to generators

in order to provide the minimum electricity supply service in the market. Moreover, con-

sidering a constraint on the existence of reserve capacity in the market, one can calculate

the value of reserve capacity based on the dual variable of the constraint at the NE point.

Finally, in our developed electricity market models in this thesis, consumers (retailers)

are all considered as price taker players, i.e., perfectly competitive firms. However, if a

large retailer with load curtailment ability exists in an electricity market, it possesses

market power on the demand side and bids strategically to reduce the price. Existence

of market power on the demand side may have a counter effect on the exercise of market

power on the supply side and may make the market more competitive. To the best of our

knowledge, the strategic behavior of consumers in a wholesale electricity markets, i.e., in

two sided electricity markets, remains an open problem.



Appendix A

Charging/Discharging

In this appendix, we show that the charge and discharge levels of any storage device

cannot be simultaneously positive at the NE of the lower level game under each scenario

in Chapters 5 and 6. Consider a strategy in which both charge and discharge levels of

storage device i at time t under scenario w, i.e. qdis
itw, qch

itw, are both positive. We show that

this strategy cannot be a NE strategy of scenario w as follows. The net electricity flow of

storage can be written as qst
itw = ηdis

i qdis
itw −

qch
itw

ηch
i

. Let q̄dis
itw and q̄ch

itw be the new discharge and

charge levels of storage firm i defined as
{

q̄dis
itw = qdis

itw −
qch

itw
ηdis

i ηch
i

, q̄ch
itw = 0

}
if qst

itw > 0, or{
q̄dis

itw = 0, q̄ch
itw = qch

itw − qdis
itwηdis

i ηch
i

}
if qst

itw < 0. The new net flow of electricity can be

written as q̄st
itw = ηdis

i q̄dis
itw −

q̄ch
itw

ηch
i

. Note that the new variables q̄st
itw, q̄ch

itw and q̄dis
itw satisfy the

constraints (5.5a-5.5d).

Considering the new charge and discharge strategies q̄dis
itw and q̄ch

itw, instead of qdis
itw and

qch
itw, the nodal price and the net flow of storage device i do not change. However, the

charge/discharge cost of the storage firm i, under the new strategy, is reduces by:

cst
i

(
qch

itw + qdis
itw

)
− cst

i

(
q̄dis

itw + q̄ch
itw

)
> 0

Hence, any strategy at each scenario in which the charge and discharge variables are

simultaneously positive cannot be a NE, i.e. at the NE of the lower game under each

scenario each storage firm is either in the charge mode or discharge mode.
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Appendix B

Regulated Transmission Firms

In this appendix, we show how the objective function of any transmission player in Chap-

ter 6 is generalized to be either strategic (profit maximizer) or regulated (social welfare

maximizer). When γtr
ij in (6.9a) is zero, the player maximizes its profit and when γtr

ij is

one, the player equivalently maximizes the social welfare (SW). The definition of social

welfare, under any scenario w in our problem, is the total surplus of consumers and pro-

ducers as:

SWw = ∑
i,t

∫ yitw

0
Pitw (.) ∂yitw − Total Costsit

= ∑
i,t

Pitw (.)− αit

−βit
− Total Costit

where Total Cost is the total cost of electricity generation, storage, and transmission.

The derivative of the social welfare function respect to qtr
ijtw, given the constraint

(6.9b), that is, qtr
ijtw = −qtr

jitw, is:

∂SWw

∂qtr
ijtw

= Pitw (.)− Pjtw (.) ,

and the derivative of regulated term in (6.9a) respect to qtr
ijtw is:

∂
(

Pjtw(.)
−β jt

+ Pitw(.)
−βit

)
∂qtr

ijtw
= Pitw (.)− Pjtw (.)
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which shows that based on the first order optimality conditions, maximizing the regu-

lated term is equivalent to maximizing the social welfare for the transmission player.



Appendix C

Technology Characteristics

All financial and technical information on intermittent and synchronous generators, stor-

age technologies and Interconnectors are from [12, 54, 97] in Chapter 8.

Table C.1: Financial and Technical Information on Intermittent Generators in NEM.

Generator
Type:

wind
Turbine

Farm
PV

Roof-
top
PV

Qig
2017 (GW) 3.733 0.356 4.826
˜Invig ( $

kW )
(a),(b)

2400(1.5%) 2190(3.5%) 2100(3.5%)

cig ( $
MWh ) 5 2 2

dig (
$

MWh
MWh ) 0.00125 0.00125 0

PLig (yr) 25 20 20
C̄ig (GW) n.a n.a 24.266

(a) Yearly maintenance cost is approximated by 1 percent of investment cost for all generation, storage
and transmission technologies in our calculations.
(b) Investment cost de-escalator rate (%). After 2037 the de-escalator used for wind and all the different
solar technologies drops to 0.3% since they are considered mature technologies.
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Table C.2: Financial and Technical Information on Synchronous Generators in NEM.

Plant: Qsg
2017

(GW)
˜Invsg

( $
kW )(a)

csg ( $
MWh )

operation
+ fuel

PLsg

(yr)
Rup,
Rdn

( %
hr , %

hr )

Asg

(%)
EF
(

tCO2
MWh )

RAsg

( TWh
yr )

αsg,FR

∈
{0, 1}

Black Coal 18.440 4285(0.1%) 3+18 50 10 75 1 n.a 0
Brown Coal 4.730 5715(0.1%) 3+16.5 50 10 75 1.2 n.a 0
Thermal Gas 1.837 1910(0.2%) 7.5+84 30 10 75 0.62 n.a 0
CC Gas Turbine 3.402 2100(0.2%) 6.1+56 30 10 75 0.41 n.a 0
OC Gas Turbine 6.076 1720(0.2%) 9+84 30 100 75 0.62 n.a 1
Solar Thermal
with Storage

0 8500(2.5%) 25+0 35 10 75 0 n.a 0

Biomass 1.014 6500(0.5%) 8+42 30 10 75 0 7.8 0
Hydro 5.711 3600(0.5%) 5+0 35 100 70 0 23.96 1

(a) Capital cost de-escalator rate (%). After 2037 the de-escalator used for solar thermal drops to 0.3%.

Table C.3: Financial and Technical Information on Storage Technologies in NEM.

Storage Type: Pump-
hydro

Cooperative
battery

Non-
cooperative
battery

Qst,f
2017 (GW) 2160 0 0

Qst,v
2017 (GWh) 21600 0 0
˜Invst,f ( $

kW )(a) 800(0.5%) 225(3.1%) 150(3.1%)

˜Invst,v ( $
kWh ) 70(0.5%) 225(3.1%) 225(3.1%)

PLst,f (yr) 30 10 10
PLst,v (yr) 50 10 10
ηdis,ηch (%,%) 85,85 95,95 95,95
Ast (%) 70 90 90
αsg,FR ∈ {0, 1} 1 1 0

(a) Investment cost de-escalator rate (%).

Table C.4: Financial and Technical Information on Interconnectors in NEM.

Interconnector: SA-
VIC

TAS-
VIC

VIC-
NSW

QLD-
NSW

Qtr
2017 (GW)

Forward
510 478 150 800

Qtr
2017 (GW)

Reverse
680 594 500 1400

˜Invtr ( $
kW ) 1000 1600 700 1100

PLtr (yr) 50 50 50 50
ηtr (%) 95 95 95 95
Atr (%) 70 70 70 70



Bibliography

[1] A. G. Kagiannas, D. T. Askounis, and J. Psarras, “Power generation planning: a

survey from monopoly to competition,” International Journal of Electrical Power &

Energy Systems, pp. 413–421, 2004.

[2] IEA, “Technology Roadmap, Hydro Power,” International Energy Agency, Tech.

Rep., 2012.

[3] H. Lund and B. Mathiesen, “Energy system analysis of 100% renewable energy

systems-The case of Denmark in years 2030 and 2050 ,” Energy, vol. 34, no. 5, pp.

524 – 531, 2009.

[4] J. C. Ketterer, “The impact of wind power generation on the electricity price in Ger-

many,” Energy Economics, vol. 44, pp. 270–280, 2014.

[5] D. Wozabal, C. Graf, and D. Hirschmann, “The effect of intermittent renewables on

the electricity price variance,” OR spectrum, pp. 1–23, 2014.

[6] C.-K. Woo, I. Horowitz, J. Moore, and A. Pacheco, “The impact of wind generation

on the electricity spot-market price level and variance: The Texas experience,” En-

ergy Policy, vol. 39, no. 7, pp. 3939–3944, 2011.

[7] D. Chattopadhyay and T. Alpcan, “A Game-Theoretic Analysis of Wind Generation

Variability on Electricity Markets,” Power Systems, IEEE Transactions on, vol. 29, no. 5,

pp. 2069–2077, Sept 2014.

[8] S.-J. Deng and S. S. Oren, “Electricity derivatives and risk management,” Energy,

vol. 31, no. 6, pp. 940–953, 2006.

169



170 BIBLIOGRAPHY

[9] H. Higgs and A. Worthington, “Stochastic price modeling of high volatility, mean-

reverting, spike-prone commodities: The Australian wholesale spot electricity mar-

ket,” Energy Economics, vol. 30, p. 31723185, 2008.

[10] A. Tishler, I. Milstein, and C.-K. Woo, “Capacity commitment and price volatility in

a competitive electricity market,” Energy Economics, vol. 30, no. 4, pp. 1625 – 1647,

2008.

[11] P. Williams, “Power Price Spike Hits Australia as Coal Plant Shuts Down,” March

2017. [Online]. Available: www.bloomberg.com/news

[12] W. Gerardi and P. Galanis, “Emissions mitigation policies and security of electricity

supply,” Jacobs Group (Australia), Tech. Rep., June 2017.

[13] S. Borenstein, “Understanding competitive pricing and market power in wholesale

electricity markets,” The Electricity Journal, vol. 13, no. 6, pp. 49 – 57, 2000.

[14] “Paris Agreement,” United Nations Treaty Collection, 8 July 2016.

[15] P. Mancarella, “Power system security assessment of the future National Electricity

Market,” Melbourne Energy Institute, Tech. Rep., 2017.

[16] X. Hu, G. Grozev, and D. Batten, “Empirical observations of bidding patterns in

Australias National Electricity Market,” Energy Policy, vol. 33, p. 20752086, 2005.

[17] R. Loulou, U. Remne, A. Kanudia, A. Lehtila, and G. Goldstein, “Documentation for

the TIMES Model PART I,” Energy Technology Systems Analysis Programme, Tech.

Rep., 2005.

[18] W. Jing-Yuan and Y. Smeers, “Spatial Oligopolistic Electricity Models with Cournot

Generators and Regulated Transmission Prices,” Operations Research, vol. 47, no. 1,

pp. 102–112, 1999.

[19] D. Chattopadhyay, “Modeling Greenhouse Gas Reduction From the Australian Elec-

tricity Sector,” Power Systems, IEEE Transactions on, vol. 25, no. 2, pp. 729–740, May

2010.

www.bloomberg.com/news


BIBLIOGRAPHY 171

[20] W. W. Hogan, “A Market Power Model with Strategic Interaction in Electricity Net-

works,” The Energy Journal, vol. 18, no. 4, pp. 107–141, 1997.

[21] D. Chattopadhyay, “Multicommodity spatial Cournot model for generator bidding

analysis,” Power Systems, IEEE Transactions on, vol. 19, no. 1, pp. 267–275, Feb 2004.

[22] ——, “A game theoretic model for strategic maintenance and dispatch decisions,”

Power Systems, IEEE Transactions on, vol. 19, no. 4, pp. 2014–2021, Nov 2004.

[23] D. Chattopadhyay and T. Alpcan, “Capacity and Energy-Only Markets Under High

Renewable Penetration,” Power Systems, IEEE Transactions on, vol. PP, no. 99, pp.

1–11, 2015.

[24] W.-P. Schill, C. Kemfert et al., “Modeling strategic electricity storage: the case of

pumped hydro storage in Germany,” Energy Journal-Cleveland, vol. 32, no. 3, p. 59,

2011.

[25] J. de Hoog, T. Alpcan, M. Brazil, D. Thomas, and I. Mareels, “Optimal Charging

of Electric Vehicles Taking Distribution Network Constraints Into Account,” Power

Systems, IEEE Transactions on, vol. 30, no. 1, pp. 365–375, Jan 2015.

[26] W. Saad, Z. Han, H. Poor, and T. Basar, “A noncooperative game for double auction-

based energy trading between PHEVs and distribution grids,” in Smart Grid Com-

munications (SmartGridComm), 2011 IEEE International Conference on, Oct 2011, pp.

267–272.

[27] N. Lu, J. Chow, and A. Desrochers, “Pumped-storage hydro-turbine bidding strate-

gies in a competitive electricity market,” Power Systems, IEEE Transactions on, vol. 19,

no. 2, pp. 834–841, May 2004.
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