
Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection Dissertations and Theses

10-2016

Techniques for identifying mobile platform
vulnerabilities and detecting policy-violating
applications
Mon Kywe SU
Singapore Management University, monkywe.su.2011@phdis.smu.edu.sg

Follow this and additional works at: http://ink.library.smu.edu.sg/etd_coll_all

Part of the OS and Networks Commons, Programming Languages and Compilers Commons,
and the Software Engineering Commons

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
SU, Mon Kywe. Techniques for identifying mobile platform vulnerabilities and detecting policy-violating applications. (2016).
Dissertations and Theses Collection.
Available at: http://ink.library.smu.edu.sg/etd_coll_all/3

http://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/etd_coll_all?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/etd_coll_all?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Techniques for Identifying Mobile Platform
Vulnerabilities and Detecting Policy-Violating

Applications

by
Su Mon Kywe

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Yingjiu LI (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Robert DENG Huijie (Co-supervisor)
Professor of Information Systems
Singapore Management University

Xuhua DING
Associate Professor of Information Systems
Singapore Management University

Tieyan LI

Head of Mobile Security
Security and Privacy Lab
Huawei Technologies Co., Ltd.

Singapore Management University
2016

Copyright (2016) Su Mon Kywe

Techniques for Identifying Mobile Platform
Vulnerabilities and Detecting Policy-Violating

Applications
Su Mon Kywe

Abstract

Mobile systems are generally composed of three layers of software: application

layer where third-party applications are installed, framework layer where Applica-

tion Programming Interfaces (APIs) are exposed, and kernel layer where low-level

system operations are executed. In this dissertation, we focus on security and vul-

nerability analysis of framework and application layers. Security mechanisms, such

as Android’s sandbox and permission systems, exist in framework layer, while mal-

ware scanners protects application layer. However, there are rooms for improvement

in both mechanisms. For instance, Android’s permission system is known to be im-

plemented in ad-hoc manner and not well-tested for vulnerabilities. Application

layer also focuses mainly on malware application detection, while different types of

harmful applications exist on application markets. This dissertation aims to close

these security gaps by performing vulnerability analysis on mobile frameworks and

detecting policy-violating applications. As a result of our analysis, we find various

framework-level vulnerabilities and we are able to launch serious proof-of-concept

attacks on both iOS and Android platforms. We also propose mechanisms for de-

tecting policy-violating applications and camouflaged applications. Our techniques

are shown to improve the security of mobile systems and have several impacts on

mobile industry.

Table of Contents

1 Introduction 1

1.1 Identifying Vulnerabilities in iOS Framework 2

1.2 Identifying Vulnerabilities on Android Framework 3

1.3 Detecting Policy-Violating Applications 5

1.4 Detecting Camouflaged Applications 6

1.5 Contributions and Impact . 6

1.6 Organization of the Dissertation 8

2 Launching Generic Attacks on iOS with Approved Third-Party Appli-

cations 9

2.1 Introduction . 9

2.2 Background and Threat Model . 12

2.2.1 iOS Platform Overview . 12

2.2.2 Threat Model . 14

2.3 Generic Attack Vector . 15

2.3.1 Attacks via Dynamically Loaded Frameworks 16

2.3.2 Attacks via Private C Functions 18

2.3.3 Other Implemented Attacks and Implications 21

2.4 Attack Mitigation . 25

2.4.1 Improving Application Vetting Process 25

2.4.2 Enhancement on iOS Sandbox 26

2.5 Discussions . 29

i

2.6 Related Work . 31

2.7 Conclusion . 32

3 Attacking Android Smartphone Systems without Permissions 34

3.1 Introduction . 34

3.2 Adversary Model . 37

3.2.1 System Services . 37

3.2.2 System Applications . 39

3.2.3 Dynamically Registered Broadcasts 41

3.3 Retrieving Unprotected APIs . 41

3.3.1 Call Graph Analysis on System Services 42

3.3.2 Component Analysis on System Applications 43

3.3.3 Data Flow Analysis on Dynamically Registered Broadcasts . 45

3.4 Attacking without Permissions . 46

3.4.1 System Services . 47

3.4.2 System Applications . 49

3.4.3 Dynamically Registered Broadcasts 54

3.5 Attacking a Different Version . 57

3.5.1 Retrieving Unprotected APIs 57

3.5.2 Attacking without Permissions 58

3.6 Discussions . 59

3.7 Related Work . 60

3.8 Conclusions . 62

4 Dissecting Policy-Violating applications: Characterization and Detec-

tion 63

4.1 Introduction . 63

4.2 Data Collection . 67

4.3 Empirical Analysis . 68

4.4 Detection . 73

ii

4.4.1 Feature Extraction . 73

4.4.2 Detection . 77

4.5 Evaluation . 78

4.6 Related Work . 79

4.7 Conclusion . 80

5 Detecting Camouflaged Applications On Mobile Application Markets 82

5.1 Introduction . 82

5.2 Problem Definition . 84

5.3 Background . 85

5.3.1 Information Retrieval Systems 85

5.3.2 Repackaging and Code-Based Detectors 86

5.4 A Framework for Detecting Camouflaged Applications 87

5.4.1 Crawling . 87

5.4.2 Indexing . 88

5.4.3 Querying and Retrieving 89

5.4.4 Detecting . 90

5.5 Experiment and Results . 91

5.6 Discussion . 93

5.7 Related Work . 95

5.8 Conclusion . 96

6 Dissertation Conclusion and Future Work 97

6.1 Summary of Contribution . 97

6.2 Future Direction . 98

6.2.1 Improvement on Current Vulnerability Analysis 98

6.2.2 Vulnerability Analysis on Other Frameworks 98

6.2.3 Vulnerability Analysis on Third-Party APIs 99

iii

List of Figures

2.1 Threat Model . 15

4.1 Detection Result by Anti-Virus Software from VirusTotal 78

5.1 Framework for Detecting Camouflaged Applications 88

5.2 Number of Camouflaged Applications for Each Detection Method . 91

5.3 Example of Detected Camouflaged Application 92

5.4 Example of False-Positive Camouflaged Applications 93

iv

List of Tables

2.1 The Seven Attacks Implemented and their Applicability 22

2.2 The Frameworks and Key APIs Utilized for the Seven Attacks Im-

plemented . 23

3.1 Analysis Result of System Applications 44

3.2 Information Leakage From System Services 48

3.3 Information Leakage From Dynamically Registered Broadcasts . . . 52

4.1 Empirical Analysis on Policy Violations 70

4.2 APIs Used as Features in our Detection 73

4.3 Evaluation of Our Detection Algorithm 77

5.1 Categorizing Attacks of Camouflaged Applications 86

v

Acknowledgments

I would like to thank Associate Professor Li Yingjiu, Professor Deng Robert, Asso-

ciate Professor Ding Xuhua, and Doctor Li Tieyan for their guidance in completing

my dissertation.

I am also very grateful to Associate Professor Jason Hong, Professor Lorrie

Faith Cranor and Associate Professor Patrick Tague for their mentor-ship during

my exchange program in Carnegie Mellon University.

I am also thankful to Professor Peng Ning, Doctor Zhang Xin Wen, Doctor

Michael Grace, and Doctor Kunal Petal for their advices and feedbacks during my

internship in Samsung Research America.

I also thank my fellow post doctorate researchers, research engineers and re-

search assistants for their research collaboration and suggestions, as well as my

seniors, classmates and juniors for their friendship and their encouragement.

Finally, I would like to thank my family and my friends for always supporting

me and encouraging me with their best wishes.

vi

Dedication

I dedicate my dissertation work to my parents, Hoke Sein and Mya Mya Win.

vii

List of Publications

Conference Papers
Su Mon Kywe, Yingjiu Li, Kunal Petal, and Michael Grace: Attacking Android Smart-

phone Systems without Permissions. The 14th International Conference on Privacy,
Security and Trust (PST 2016), Auckland, New Zealand, December 12-14, 2016.

Su Mon Kywe, Yingjiu Li, Jason Hong, and Yao Cheng: Dissecting Developer Policy
Violating Apps: Characterization and Detection. The 11th International Conference
on Malicious and Unwanted Software (Malcon 2016), Fajardo, Puerto Rico, USA,
October 11-14, 2016.

Chandrasekhar Bhagavatula, Blase Ur, Kevin Iacovino, Su Mon Kywe, Lorrie Faith
Cranor, and Marios Savvides: Biometric Authentication on iPhone and Android: Us-
ability, Perceptions, and Influences on Adoption. The Workshop on Usable Security
(USEC-2015), San Diego, California, February 8, 2015.

Su Mon Kywe, Yingjiu Li, Robert H. Deng, and Jason Hong: Detecting Camouflaged
Applications on Mobile Application Markets. The 17th Annual International Confer-
ence on Information Security and Cryptology (ICISC-2014), Seoul, Korea, Decem-
ber 3-5, 2014.

Su Mon Kywe, Christopher Landis, Yutong Pei, Justin Satterfield, Yuan Tian, and
Patrick Tague: Extending Private Browsing Mode to Android Mobile Applications.
The 13th IEEE International Conference on Trust, Security and Privacy in Comput-
ing and Communication (TrustCom-2014), Beijing, China, September 24-26, 2014.

Jie Shi, Su Mon Kywe, and Yingjiu Li: Batch Clone Detection for RFID-enabled Supply
Chain. The 8th Annual IEEE International Conference on RFID (IEEE RFID 2014),
Orlando, Florida, USA, April 8-10, 2014.

Su Mon Kywe, Yingjiu Li, and Jie Shi: Attack and Defense Mechanisms of Mali-
cious EPC Event Injection in EPC Discovery Service. The 2013 IEEE International
Conference on RFID Technologies and Applications (IEEE RFID TA), Johor Bahru,
Malaysia, September 4-5, 2013.

Jin Han, Su Mon Kywe, Qiang Yan, Feng Bao, Robert H. Deng, Debin Gao, Yingjiu
Li, and Jianying Zhou: Launching Generic Attacks on iOS with Approved Third-
Party Applications. The 11th International Conference on Applied Cryptography
and Network Security (ACNS 2013), Banff, Alberta, Canada, June 25-28, 2013.

viii

Su Mon Kywe, Ee-Peng Lim, and Feida Zhu: A Survey of Recommender Systems
in Twitter. The 4th International Conference on Social Informatics (SocInfo 2012),
Lausanne, Switzerland, December 5-7, 2012.

Su Mon Kywe, Tuan-Anh Hoang, Ee-Peng Lim, and Feida Zhu: On Recommending
Hashtags in Twitter Networks. The 4th International Conference on Social Informat-
ics (SocInfo 2012), Lausanne, Switzerland, December 5-7, 2012

Journal Papers
Su Mon Kywe, Jie Shi, Yingjiu Li, and Raghuwanshi Kailash: Evaluation of Different

Electronic Product Code Discovery Service Models. Advances in Internet of Things
(AIT), 2(2), 37-46, Scientific Research Publishing, 2012.

Posters
Chandrasekhar Bhagavatula, Kevin Iacovino, Su Mon Kywe, Lorrie Faith Cranor, and

Blase Ur: Usability Analysis of Biometric Authentication Systems on Mobile Phones.
The 10th Symposium On Usable Privacy and Security (SOUPS 2014), California,
USA, July 9-11, 2014.

ix

Chapter 1

Introduction

Mobile devices play a critical role in modern life and there are billions of mobile

users around the world. It is a great responsibility of platform providers to ensure

the security and privacy of mobile users. In this dissertation, we study the security of

application layer and framework layer of mobile systems. First, platform providers

incorporate several security mechanisms, such as application sandbox and permis-

sion access control, to the framework layer of mobile devices. Sandbox mechanism

isolates the code execution and data storage of applications on mobile devices to

minimize the damage potentially caused by malicious applications. At the same

time, access control mechanisms allow applications with appropriate permissions

to access important resources on mobile devices. Second, in the application layer,

platform providers inspect the applications when they are uploaded to the appli-

cation stores. They consequently remove the malicious applications once they are

detected.

There are several drawbacks in these mechanisms:

• Currently, there is no standard way of vulnerability analysis on both Android

and iOS frameworks. The lack of framework-specific vulnerability analysis

tools makes the security testing difficult potentially leading to various vulner-

abilities. On the other hand, ensuring security of mobile frameworks is not

trivial due to a wide variety of API types and vast presence of APIs. The

1

frameworks are also constantly modified by various platform providers in a

very fast pace mobile environment.

• Security controls on mobile applications have been focusing on malwares,

which only account for a small percentage of mobile applications in the mar-

kets. There has been negligence over bad applications, which are less aggres-

sive than malwares, but still violate developers policies, such as intellectual

property right violations.

In this dissertation, we take the first step towards systematic analysis of vulnera-

bilities in mobile frameworks and detect policy-violating applications. My first two

work focus on vulnerability analysis of mobile frameworks and my last two work

study the policy-violating applications. In my first work, we perform vulnerability

analysis on iOS framework. In my second work, we perform vulnerability analy-

sis on Android framework. In both work, we consider a third-party application as

attacker. This attacker gains access to mobile resources by bypassing the security

mechanisms of mobile framework. The results of these two work are proof-of-

concept attacks that can be performed on mobile frameworks. In my third work, we

perform empirical analysis on the policy-violating applications and create detection

mechanisms for all applications violating Google Play policies. After that, in my

fourth work, we focus on detecting camouflaged applications, which are also part

of policy-violating applications.

1.1 Identifying Vulnerabilities in iOS Framework

iOS is Apples mobile operating system, which is used on iPhone, iPad and iPod

touch. Any third-party applications developed for iOS devices are required to go

through Apples application vetting process and appear on the official iTunes App

Store upon approval. When an application is downloaded from the store and in-

stalled on an iOS device, it is given a limited set of privileges, which are enforced

2

by iOS application sandbox. Although details of the vetting process and the sand-

box are kept as black box by Apple, it was generally believed that these iOS security

mechanisms are effective in defending against malwares.

In this work, we propose a generic attack vector that enables third-party appli-

cations to launch attacks on non-jailbroken iOS devices. They include attacks via

dynamically loaded frameworks and attacks via private C functions. With these

attack vectors, an attacker obtains access to both public and private APIs of iOS

framework. Following this generic attack mechanism, we are able to construct mul-

tiple proof-of-concept attacks. They include cracking device PIN, blocking phone

calls, taking snapshots without users awareness, sending SMS and emails and post-

ing tweets to Twitter. Our applications embedded with the attack codes have passed

Apples vetting process and work as intended on non-jailbroken devices. Our proof-

of-concept attacks have shown that Apples vetting process and iOS sandbox have

weaknesses which can be exploited by third-party applications.

We further provide corresponding mitigation strategies for both vetting and

sandbox mechanisms, in order to defend against the proposed attack vector. We

suggest using fuzzing tests and dynamic taint analysis during Apple’s vetting pro-

cess. We also believe that iOS sandbox can be improved by dynamic parameter

inspection, privileged IPC verification, service delegation enhancement, and system

notifiers for sensitive functionalities.

1.2 Identifying Vulnerabilities on Android Frame-

work

Android requires third-party applications to request for permissions when they ac-

cess critical mobile resources, such as users’ personal information and system op-

erations. For instance, only applications with android.permission.CAMERA

permission are given access to phone cameras.

3

In this work, we present the attacks that can be launched without permissions.

We group the Android APIs into three categories: system services, system appli-

cations, and dynamically register broadcasts. To identify all vulnerabilities, we

perform inter-procedural call graph analysis on system services and discover all

Android Interface Definition Language (AIDL) interfaces that are not protected by

any permission checking or Linux ID checking mechanisms. We then carry out

a component analysis on system applications so as to locate the exposed and un-

protected broadcast receivers, activities and services. After that, we conduct an

intra-procedural data-flow analysis to find out unprotected dynamically registered

broadcasts from both system services and system applications. The result of our

analysis is a systematic overview of unprotected Android APIs. These unprotected

APIs provide a way of accessing resources without any permissions.

We then exploit selected unprotected APIs and launch a number of attacks on

Android phones. In particular, we launch Java reflection attacks, broadcast injec-

tion attacks, broadcast hijacking attacks, malicious activity launch attacks, activity

hijacking attacks, malicious service launch attacks, and service hijacking attacks.

We discover that without requesting for any permissions, an attacker can access to

device ID, phone service state, SIM card state, Wi-Fi and network information, as

well as user setting information, such as airplane, location, NFC, USB and power

modes of mobile devices. An attacker can also disturb Bluetooth discovery services,

and block the incoming emails, calendar events, and Google documents. Moreover,

an attacker can set volumes of devices and trigger alarm tones and ringtones that

users personally set for their devices. An attacker can also launch camera, mail,

music and phone applications even when the devices are locked.

We compare our research on two Android versions, and discover that as plat-

form providers incorporate more APIs, the number of unprotected APIs increases

and new attacks become possible. This is contrary to the common belief that the

security of a new version should improve, since many security flaws in an old ver-

sion are reported and fixed. We thus suggest platform providers to inspect Android

4

frameworks systematically before releasing new versions.

1.3 Detecting Policy-Violating Applications

To ensure quality and trustworthiness of mobile apps, Google Play store imposes

developer policies that cover various aspects, including intellectual property rights,

spams and advertisements. Once an app is reported for exhibiting suspicious behav-

iors that violate app policies, it is removed from the store to protect users. Currently,

Google Play store relies on mobile users’ feedbacks to identify violations.

Our work takes the first step towards understanding these reported apps by per-

forming empirical analysis on real-life app samples. We crawl 302 policy-violating

Android apps, which are reported in the Reddit forum by mobile users and are later

removed from the Google Play store. Our empirical analysis reveals that many vi-

olating behaviors have not been studied well by industry or research communities.

We discover that 53% of the reported apps are either copying popular apps, such as

Bejeweled Blitz, Candy Crush, Minecraft, Angry Bird, and Fruit Ninja or violating

copy-rights or trademarks of brands, such as Adobe, Disney, Minion, Despicable

Me, and Pikachu. Moreover, 49% of reported apps are violating ads policies by

sending push notifications, adding homescreen icon and changing browser settings.

Many apps also show malware-like behaviors, such as downloading malicious files

to users’ mobile phones, redirecting users to other apps on the market and accessing

to users’ PayPal account.

Based on our empirical analysis results, we extract 208 features for differentiat-

ing bad apps from benign apps. Our features cover use of brand names and other

keywords, third-party libraries, network activities, meta data, permissions, and sus-

picious API calls originated from third-party libraries. The first three groups of

features are derived from empirical analysis of our reported app samples, while the

last three groups of features are based on their bad behaviors. We apply 10 machine

learning classifiers on the extracted features to detect reported bad apps. Our ex-

5

periment result shows that we can detect them with 86.80% true positive rate and

13.6% false negative rate. Our work highlights the problem of policy-violating apps

and suggests reconsidering the current strategy in maintaining good quality mobile

app markets.

1.4 Detecting Camouflaged Applications

Application plagiarism or application cloning is an emerging threat in mobile appli-

cation markets. It reduces profits of original developers and sometimes even harms

the security and privacy of users. In this work, we introduce a new concept, called

camouflaged applications, where external features of mobile applications, such as

icons, screenshots, application names or descriptions, are copied.

We then propose a scalable detection framework, which can find these suspi-

ciously similar camouflaged applications. To accomplish this, we apply text-based

retrieval methods and content-based image retrieval methods in our framework. Our

framework is implemented and tested with 30,625 Android applications from the

official Google Play market. The experiment results show that even the official

market is comprised of 477 potential camouflaged victims, which cover 1.56% of

tested samples.

Our work highlights that these camouflaged applications not only expose poten-

tial security threats but also degrade qualities of mobile application markets. Our

work also analyzes the behaviors of detected camouflaged applications and calcu-

late the false alarm rates of the proposed framework.

1.5 Contributions and Impact

We summarize the contributions of this dissertation in the following:

• We perform different types of vulnerability analysis to uncover APIs that can

be mis-used by malicious applications. Our analysis ranges from reverse en-

6

gineering of iOS framework to call graph analysis and data flow analysis on

Android framework. We use a third-party application as an attacker, which

can bypass default security mechanisms of mobile frameworks. We are able to

launch serious proof-of-concept attacks in both iOS and Android platforms.

These attacks have been reported to respective platform providers, and are

fixed in later versions of mobile frameworks.

• We take the first step towards understanding policy-violating applications by

performing empirical analysis on real-life application samples. We also cre-

ate several detection mechanisms based on machine learning and information

retrieval algorithms. Our mechanisms are shown to be effective in detecting

policy-violating applications.

Our work have great impact on mobile security industry affecting billions of

mobile users worldwide. Our findings on iOS framework have been reported to Ap-

ple security team. Our team engaged in a conference call with them to assist them

in understanding and patching vulnerabilities. Apple assigns Common Vulnerabili-

ties and Exposures (CVE) number “CVE-2013-0957” to the reported vulnerabilities

and publicly acknowledges our contributions [4]. The vulnerabilities are patched in

new iOS versions. Moreover, our discovery has been reported by the news media

including Straits Times [80] and Singapores Today newspapers [70]. Our findings

on Android framework have been reported to Google and Google has publicly ac-

knowledged our contribution in its Security Bulletin in March 2016 [35]. The re-

ported vulnerabilities are also assigned with CVE number “CVE-2016-0831 ” and

later are fixed on new Android version. Moreover, we obtained cash reward from

the Android Security Rewards Program for reporting these vulnerabilities.

7

1.6 Organization of the Dissertation

The reminder of this dissertation is organized as follows: Chapter 2 investigates

vulnerabilities of iOS framework and Chapter 3 studies vulnerabilities of Android

framework. Chapter 4 conducts empirical analysis on policy-violating applications

and discusses their detection algorithm. Chapter 5 proposes a method for detecting

camouflaged applications. Chapter 6 summarizes the contributions of this disserta-

tion and discuss future directions.

8

Chapter 2

Launching Generic Attacks on iOS

with Approved Third-Party

Applications

2.1 Introduction

Digital mobile devices, such as smartphones and tablets, have been increasingly

used for personal and business purposes in recent years. iOS from Apple is one

of the most popular mobile operating systems in terms of the number of users. By

Jan 2013, 500 millions of iOS devices had been sold worldwide and Apples iTunes

App Store contained over 800,000 iOS third-party applications, which had been

downloaded for more than 40 billion times [45].

Third-party applications are pervasively installed on iOS devices as they provide

various functions that significantly extend the usability of the mobile devices. On

the other hand, these third-party applications pose potential threats to personal and

business data stored on the devices. Thus, Apple adopts various security measures

on its iOS platform to protect the device from malicious third-party applications.

Among these security measures, Apples application vetting process and the iOS ap-

plication sandbox are considered as the fundamental mechanisms that protect users

9

from security and privacy exploits.

Each iOS third-party application is required to go through a vetting process

before it is published on the official iTunes App Store, which is the only source

of obtaining applications without jailbreaking an iOS device. Although details of

the vetting process are kept secret, it is generally regarded as highly effective since

no harmful malware on non-jailbroken devices has been reported on iTunes App

Store [75] [29]. Only graywares, which stealthily collect sensitive user data, were

found on iTunes Store. These graywares were immediately removed from the store

upon discovery [81].

When an application is downloaded and installed on an iOS device, it is given a

limited set of privileges [39], which are enforced by the application sandbox. With

the sandbox restrictions, an application cannot access files and folders of other ap-

plications. In order to access the required user data or control system hardware (e.g.

Bluetooth or WiFi), applications need to call respective iOS APIs which are hooked

by the sandbox so that validations of these API invocations are performed dynam-

ically. The sandbox mechanism serves as the last line of defense which restricts

malicious applications from accessing privileged system services, abusing user data

or exploiting resources of other applications.

Due to the closed-source nature of iOS platform, the implementation details of

security mechanisms used by iOS (including vetting process and application sand-

box) are not officially documented. As a result, to our best knowledge, there is no

systematic security analysis conducted for iOS platform, which has been generally

believed as one of the most secure commodity operating systems [57].

In this work, we make the first attempt in constructing generic attacks on iOS

platform. Existing ad hoc attacks usually require root privilege [62] [63] [18] and

thus work only on jailbroken iOS devices. In contrast, our attacks are intended to

work on non-jailbroken iOS devices, which are protected by both vetting process

and application sandbox. Thus, we propose an attack vector which include two at-

tack stages: 1) In the first stage, malicious applications which are embedded with

10

attack codes need to pass Apples vetting process in order to appear in the official

iTunes App Store; 2) In the second stage, after users have downloaded these appli-

cations onto their iOS devices, the attack codes need to bypass the restriction of the

iOS sandbox in order to perform malicious functionalities. We realize both attack

stages by exploiting the weaknesses of the vetting process and the iOS sandbox.

With the proposed generic attack vector, we implement seven proof-of-concept at-

tacks, such as cracking device PIN and taking screenshots without users awareness,

which impose serious threats to the security and privacy of iOS users. Most of our

attacks implemented work on both iOS 5 and iOS 6. We implement multiple iOS

applications and embed our attack codes into these applications, which are then sub-

mitted to the iTunes App Store. These applications with attack codes have passed

the vetting process and all our attacks work effectively on non-jailbroken iOS de-

vices1. Our proof-of-concept attacks and further validation experiments indicate

that the current vetting process and iOS sandbox have vulnerabilities that can be ex-

ploited by malicious third-party applications to escalate their privileges and launch

serious attacks on non-jailbroken iOS devices.

In order to defend against the proposed attacks, we further discuss several miti-

gation methods which could enhance both vetting process and iOS application sand-

box. Some of these methods utilize existing iOS security features, thus can be con-

veniently implemented and deployed on the current iOS platform. We have notified

Apple all of our findings and shared all our attack codes with Apples product se-

curity team. By the time the paper was accepted, Apple is still in the progress of

addressing the security issues we have discovered.

In summary, this chapter makes the following contributions:

• We provide a generic attack vector which exploits the weaknesses of both

vetting process and iOS application sandbox. The attack vector consists of

two attack stages and can be used to construct serious attacks that work on

1Due to privacy concerns, we embedded secret triggers in our applications so that public users
will not be affected by the attack codes in these applications.

11

non-jailbroken iOS devices.

• We implement seven proof-of-concept attacks with the attack vector pro-

posed. We embed these attack codes into multiple applications we imple-

mented and all the applications are able to pass the vetting process and appear

on official iTunes Store.

• We suggest several mitigation methods to defend against our attacks. These

methods include improvements on both the vetting process and the applica-

tion sandbox, which can be deployed on the iOS platform conveniently.

The rest of the chapter is organized as follows. In Section 3.2, we define the

background and our threat model. In Section 3.3, we describe generic attack vector,

and in Section 3.4, we show a set of proof-of-concept attacks. In Section 2.4, we

discuss mitigation strategies. In Section 3.6, we provide some discussions on our

research. In Section 3.7, we summarize the related work. Finally, we conclude the

chapter in Section 2.7.

2.2 Background and Threat Model

2.2.1 iOS Platform Overview

iOS platform follows a closed-source model, where source code of the underlying

architecture and implementation details of its security mechanisms are not available

to the public. Though it is debatable whether such obscurity provides better security,

iOS has been generally believed as one of the most secure commodity operating

systems [57]. Unlike other mobile platforms, third-party applications on iOS are

given a more restricted set of privileges [39]. In addition, any third-party application

developed for iOS must go through Apples application vetting process before it is

published on the official iTunes App Store. While some users and developers favor

to have such restrictions for better security, others prefer to have more controls

12

over the device for additional functionalities, such as allowing to install pirated

software and allowing applications to change the themes of the device. To attain

such extended privileges, an iOS device needs to be jailbroken. Jailbreaking is a

process of installing modified kernel patches which allow a user to have root access

of the device so that any unsigned third-party applications can run on it. Although

jailbreaking is legal [20], it violates Apples End User License Agreement and voids

the warranties of the purchased devices. Jailbreaking is also known to expose to

potential security attacks [62] [63].

Application Vetting Process. Without jailbreaking a device, the only way of

installing a third-party application on iOS is via the official iTunes App Store. Any

application that is submitted to iTunes Store needs to be reviewed by Apple before

it is published on the store. This review process is known as Apples application

vetting process. The vetting covers several aspects, including detection of malware,

detection of copyright violations, and quality inspection of submitted applications.

Although the vetting process is kept secret by Apple, it is generally regarded as

highly effective as no harmful malware has been reported on iTunes Store [75] [29].

Only grayware (which stealthily collects user data) had been reported and was re-

moved from the store upon reporting [29] [81].

Application Sandbox. iOS utilizes another security measure application sand-

box to restrict privileges of third-party applications running on a device. The sand-

box is implemented as a set of fine-grained access controls, enforced at the kernel

level. Under the sandbox restrictions, an application cannot access files and folders

of other applications. In order to access user data or control system hardware, ap-

plications also need to call respective Application Programming Interfaces (APIs)

provided on iOS. These APIs are hooked by the sandbox so that validations of API

invocations can be performed dynamically. The sandbox serves as the last line of

security defense which limits malicious applications from accessing system services

or exploiting resources of other applications.

iOS Frameworks and APIs. To facilitate development of third-party applica-

13

tions, a collection of frameworks are provided in Cocoa Touch [11], which include

both public frameworks and private frameworks. Public frameworks are application

libraries officially provided to third-party developers while private frameworks are

intended only for Apples internal developers. Each framework provides a set of

APIs with which applications can access required system resources and services.

Similar to frameworks, APIs can also be categorized into public APIs and private

APIs.

Public APIs allow third-party applications to access a limited set of user infor-

mation and control hardware of iOS devices, such as camera, Bluetooth and WiFi.

In contrast, private APIs are the APIs that are meant to be used by Apples internal

developers. Private APIs may exist in both public and private frameworks. Though

not officially documented, private APIs include various functions which could be

used by a third-party application to escalate its restricted privileges. Thus, Apple

explicitly forbids third-party developers from using private APIs and rejects applica-

tions once the use of private APIs is detected. On the other hand, private APIs can

still be used by applications that are designed to run on jailbroken devices. Such

applications are available through Cydia [32], which is an unofficial application

market built for jailbroken iOS devices.

2.2.2 Threat Model

In this work, we are interested in finding out the possible attacks which can be per-

formed by third-party applications on non-jailbroken iOS devices, as illusrated in

Figure 2.1. The success of such attacks depends on two major factors: 1) whether

the corresponding malicious applications can pass Apples vetting process and ap-

pear in the official iTunes App Store; and 2) whether malicious function calls can

bypass the restriction of the iOS sandbox. We embed all our proof-of-concept attack

codes in the applications we develop, which have passed Apples vetting process and

have been digitally signed by Apple. Thus, our attacks embedded in these applica-

14

Figure 2.1: Threat Model

tions are able to work on both jailbroken and non-jailbroken iOS devices.

2.3 Generic Attack Vector

As introduced in Section 2, iOS private APIs exist in both private frameworks and

part of public frameworks. When used by third-party applications, private APIs

may provide additional privileges to the applications and thus are explicitly forbid-

den by the vetting process. We choose to utilize private APIs to construct our attacks

which perform various malicious functionalities. In this section, we first present two

ways of dynamically invoking private APIs which enable the malicious applications

to pass the vetting process without being detected. Such dynamic loading mecha-

nisms guarantee the success of the first stage in the proposed attack vector. For the

second attack stage, in order to identify useful private APIs that are not restricted

by iOS application sandbox, we manually analyze and test each iOS framework.

Utilizing the useful private APIs we identified, we manage to implement multiple

serious attacks that cover a wide range of privileged functionalities. These attacks

can be embedded in any third-party applications, and they work effectively on non-

jailbroken iOS devices. Although our attack vector includes two stages, these two

stages are not isolated - what private API needs to be utilized decides the way of

15

its dynamic invocation. Thus, in the following, we first use SMS-sending and PIN-

cracking attacks as two examples to explain the underlying mechanisms of the entire

attack vector. We then introduce other attacks we implemented utilizing the same

attack vector and discuss the implications of these attacks.

2.3.1 Attacks via Dynamically Loaded Frameworks

When implementing a third-party iOS application that uses private APIs, the

normal process is to link the corresponding framework statically (in the appli-

cations Xcode [23] project), and import the framework headers in the applica-

tions source code. For example, if a developer wants to send SMS programmati-

cally in his application, CoreTelephony.framework needs to be linked, and

CTMessage-Center.h needs to be imported in the application code. After

preparing those preconditions, the SMS-sending private API can then be called as

follows:

1 [[CTMessageCenter sharedMessageCenter]
2 sendSMSWithText:@"A testing SMS"
3 serviceCenter:nil
4 toAddress:@"+19876543210"];

In the above code, the static method sharedMessageCenter returns an

instance of CTMessageCenter class, and then invokes the private API call

sendSMSWithText:serviceCenter:toAddress:, which performs the

SMS-sending functionality on iOS 5. Third-party application can utilize this

method to send premium-rate SMS, and the sent SMS will not even appear in the

SMS outbox (more precisely, it does not appear in the default iOS Message appli-

cation2). Thus, a user would be totally unaware of such malicious behavior until the

user receives his next phone bill.

However, this standard way of invoking private APIs can be easily detected by

2Another way of sending SMS programmatically on iOS 5 is to utilize
MFMessageComposeViewController. However, this method is easy to be noticed as
the SMS sent would appear in the default Message application.

16

the vetting process, even though only the executable binary of the compiled appli-

cation is submitted for vetting. One way of detecting this API call is to simply use

string matching (e.g., grep) on the binary, as the name of the function call appears

in the binarys objc methnamesegment (and also other segments). Moreover,

the framework name and class name also appear in the binary as imported symbols.

In this example SMS-sending code, although CoreTelephony is a public frame-

work, CTMessageCenter.h is a private header (i.e., CTMessageCenter is

a private class); thus, importing it in the source code can be detected by perform-

ing static analysis on the applications binary file. In order to pass Apples vetting

process, the application cannot link the framework statically.

To avoid being detected, the framework has to be loaded dynamically and the

required classes and methods need to be located dynamically. In our attacks, we

utilize Objective-C runtime classes and methods to achieve this goal. The example

SMS attack code that illustrates the dynamic loading mechanism is given as follows:

1 NSBundle *b = [NSBundle bundleWithPath:@"/System/Library
2 /Frameworks/CoreTelephony.framework"];
3 [b load];
4 Class c = NSClassFromString(@"CTMessageCenter");
5 id mc = [c performSelector:NSSelectorFromString(@"sharedMessage
6 Center")];
7 // call "sendSMSWithText:serviceCenter:toAddress:" dynamically
8 by utilizing NSInvocation

In the above code, the first two lines are used to load the CoreTelephony

framework dynamically, without linking this framework in the applications source

code. The path of this library is fixed on every iOS device, which is un-

der the /System/Library/Frameworks/ folder. Note that not only pub-

lic frameworks can be loaded dynamically, private frameworks (which is under

/System/Library/Private-Frameworks/) can also be loaded dynami-

cally using the same method. According to our experiments, Apples sandbox does

not check the parameter of [NSBundle load] to forbid accessing these frame-

works under /System/Library folder.

17

NSClassFromString at the third line is a function which can locate the

corresponding class in memory by passing it the class name, which is similar

to the “Class.forName()” method in Java reflection. At the fourth line,

the sharedMessage-Center method is called via “performSelector:”.

At last, in order to call a method with more than 2 parameters (which

is “sendSMSWithText:serviceCenter:toAddress:”in this case), the

NSInvocation class is utilized.

Although the above code dynamically invokes the private API call, it may need

certain obfuscation in order to avoid the detection from static analysis during the

vetting process3. The last step of generating the actual attack code is to obfuscate

all the strings appearing in the above example code. There are various ways of ob-

fuscating strings in the source code. One simple technique is to create a constant

string which includes all 52 letters (both upper and lower cases), 10 digits and com-

mon symbols. Then all the strings appeared in the above code can be generated dy-

namically at runtime by selecting corresponding positions from this constant string.

Some of our applications utilize this method to obfuscate strings in the attack codes,

and some others adopt a complex obfuscation mechanism, which involves bitwise

operations and certain memory stack operations that are more difficult to be de-

tected.

2.3.2 Attacks via Private C Functions

Information about private Objective-C classes and methods in the Cocoa Touch

frameworks can be obtained from the iOS runtime headers [65], which are gen-

erated using runtime introspection tool such as RuntimeBrowser [67]. An example

of directly utilizing these Objective-C private APIs has been introduced in the previ-

ous subsection. However, Objective-C private classes and methods are not the only

3Actually according to our experiments, obfuscation may not be necessary, as the vetting process
does not seem to check all text segments in the binary. In our experiments, we have tried to embed
this SMS-sending code in one application which does not utilize obfuscation, and the application
passed the vetting process.

18

private APIs we are able to use in third-party applications.

When we reverse engineer the binary files of each framework, we find that there

are a number of C functions in these frameworks that can be invoked by our applica-

tion, which do not appear in the iOS runtime headers [65] and cannot be found with

RuntimeBrowser [67]. In order to invoke these C functions, we need to dynami-

cally load the framework binary and locate the function at runtime. The following

code segment is part of our PIN-cracking code, which illustrates how we realize the

dynamic invocation for private C functions.

1 void *b = dlopen("/System/Library/PrivateFrameworks
2 /MobileKeyBag.framework/MobileKeyBag", 1);
3 int (*f)(id, id, id) = dlsym(b, "MKBKeyBagChangeSystemSecret");
4 ...
5 int r = f(oldpwd, newpwd, pubdict);
6 ...

In the above code segment, we use dlopen() to load the binary file of the

private framework MobileKeyBag, which returns an opaque handle for this dy-

namic library. Utilizing this handle and dlsym(), we are then able to locate the

address where the given symbol MKBKeyBagChangeSystemSecret is loaded

into memory. This address is then casted into a function pointer so that it can be

directly invoked later on in our attack code. Although the above code segment may

look simple, it is actually not easy to identify which C functions we should invoke

to serve for our attack purpose, especially when only framework binary is given.

Even after the C functions are identified and located, it takes further tedious work

to figure out the correct parameter types and values to pass to the C functions. And

in many cases, even all parameters are correct, these functions may be restricted by

iOS sandbox and thus will not function correctly within third-party applications. To

speed up the manual reverse engineering process when analyzing the given frame-

work binaries, we build our own static analysis tool (which is based on IDA Pro.)

to disassemble the framework binary and obtain assembly instructions that are rela-

tively easy to read.

19

By manually analyzing the private framework ManagedConfiguration,

we find out that the changePasscodeFrom:to:outError: method of

MCPasscodeManager is used to reset the password of the iOS device. However,

we are not able to directly invoke this Objective-C method because the device needs

to be “unlocked” first with current device password (possibly due to sandbox re-

strictions). Thus, we need to find a way of bypassing such restriction. Digging into

the assembly code of the changePasscodeFrom:to:outError: method,

we find out that it eventually invokes the MKBKeyBagChangeSystemSecret

C function in MobileKeyBag to reset the password, which is allowed to be

directly invoked under the sandbox restrictions. Further analysis and experi-

ments are then conducted to figure out the correct parameters used to invoke

MKBKeyBagChangeSystemSecret.

Our analysis reveals that the MKBKeyBagChangeSystemSecret func-

tion accepts three parameters, all of which have the type of (NSData*).

The first parameter is the data of the old password, which can be con-

verted from password string. The second parameter is the data of the

new password. The third parameter, however, is an NSDictionary

containing the keyboard type of the current password, which must be

converted into NSData with [NSPropertyListSerialization

dataFromPropertyList:format:errorDescription:]. One

simple way of obtaining this NS-Dictionary data is to utilize the private

framework ManagedConfiguration. However, in our attack code, to

minimize the number of frameworks loaded, we utilize another private C func-

tion MKBKeyBagCopySytemSecretBlob4 in MobileKeyBag to obtain this

NSDictionary, which is then passed to MKBKeyBagChangeSystemSecret

as the third parameter.

4Note that it is not a spelling error in this MKBKeyBagCopySytemSecretBlob function.
The key word “System” in this function name is spelled as “Sytem” by Apples programmers. This
detail further shows that in this attack, we utilize a function which Apple programmers may not
expect to be used by third-party applications.

20

After this MKBKeyBagChangeSystemSecret function is successfully in-

voked, the rest of the attack code is straight forward we simply use brute force

to crack the password. 4-digit PIN has been widely used to lock iOS devices and

has a password space of 104. When using our application to crack a device PIN on

iPhone 5, it takes 18.2 minutes on the average (of 16 trials on two iPhone 5 devices)

to check the whole PIN space (104). This gives an average speed of 9.2 PINs per

second. To further speed up the cracking, we build a PIN dictionary so that common

PINs are checked first. If the given PIN is in birthday format (mmdd/ddmm), it takes

about 40 seconds to crack the PIN on average. Note that since our PIN-cracking at-

tack uses the low level C functions, it will not trigger the “wrong password” event

on the iOS device which is implemented at higher level (Objective-C functions) in

the framework code. Thus, there is no limit on the number of attempts for our brute

force attacks when cracking the device PIN. It is the same procedure to crack 4-digit

PIN and complex password using our method, but the latter will take much longer

time than PIN due to its large password space.

2.3.3 Other Implemented Attacks and Implications

The SMS-sending attack and the PIN-cracking attack introduced above explain how

the entire attack vector is constructed. The former uses private Objective-C func-

tions (Section 3.1), while the latter uses private C functions (Section 3.2). With the

same dynamic invocation mechanisms which are able to bypass the vetting process,

other attacks can also be implemented, as long as we can identify sensitive private

APIs that are overlooked by the iOS sandbox.

We manually analyze the 180+ public and private iOS frameworks and man-

age to identify seven sets of sensitive APIs that are not restricted by iOS sandbox.

Utilizing these APIs and the dynamic invocation mechanisms, we implement seven

attacks, which are listed in Table 2.1. The corresponding frameworks and key APIs

utilized are listed in Table 2 in the appendix. We embed our attack codes in multi-

21

Attack Name Description iOS 5 iOS 6 iPhone iPad
PIN-cracking Crack and retrieve the PIN of

the device
X X X X

Call-blocking Block all incoming calls or
the calls from specified num-
bers

X X X -

Snapshot-
taking

Continuously take snapshots
for current screen (even the
app is at background)

X X - X

Secret-filming Open camera secretly and
take photos or videos without
the users awareness

X X X X

Tweet-posting Post tweets on Twitter with-
out users interaction

X X X X

SMS-sending Send SMS to specified num-
bers without the users aware-
ness

X - X -

Email-sending Send emails using users sys-
tem email accounts without
the users awareness

X - X X

Table 2.1: The Seven Attacks Implemented and their Applicability

ple applications we develop, and all those applications have passed Apples vetting

process and appeared in the official iTunes App Store.

Most of the attacks in Table 2.1 work on both iOS 5 and iOS 6 (which is the

default iOS version on iPhone 5). The call-blocking and SMS-sending attacks do

not work on iPad, simply because iPad does not have corresponding functionalities

since it is not a phone device. The secret-filming attack can be implemented purely

with iOS public APIs. The last two attacks (SMS-sending and email-sending) cur-

rently only work on iOS 5, but not iOS 6. The APIs of sending SMS and emails

on iOS 6 have been substantially changed to prevent such attacks (which will be

further analyzed in Section 4).

The severity of most of our attacks would be significantly increased when the

attack code is embedded in an application that can keep running at the background.

Take the snapshot attack as an example. By calling the private API [UIWindow

createScreenIOSurface], an application can capture the current screen con-

22

Attacks Frameworks Classes Functions
PIN-
cracking

MobileKeyBag - MKBKeyBagChangeSystemSecret
MKBKeyBagCopySytemSecret-
Blob

Call-
blocking

CoreTelephony - CTTelephonyCenterGetDefault
CTTelephonyCenterAddObserver
CTCallCopyAddress
CTCallDisconnect

Snapshot-
taking

UIKit UIWindow
UIImage

createScreenIOSurface
initWithIOSurface:

Secret-
filming

AVFoundation
CoreMedia
CoreVideo

AVCaptureDevice
AVCapture-
DeviceInput
AVCaptureV-
ideoDataOutput
AVCaptureSes-
sion

devices
deviceInputWithDevice:error:
setSampleBufferDelegate:queue:
startRunning

Tweet-
posting

Twitter TWTweetCompose
ViewController

setCompletionHandler:
setInitialText:
send:

SMS-
sending

CoreTelephony CTMessageCenter sharedMessageCenter
sendSMSWith-
Text:serviceCenter:toAddress:

Email-
sending

Message
AppSupport

MailAccount
CPDistribut-
edMessaging-
Center

defaultMailAccountForDelivery
uniqueId
centerNamed:
sendMessageAndReceiveReply-
Name:userInfo:error:

The symbol of “-” in the Class field indicates that the corresponding attack does
not utilize any Objective-C classes, but only utilizes private C functions.

Table 2.2: The Frameworks and Key APIs Utilized for the Seven Attacks Imple-
mented

23

tent of the device. When continuously running at the background, this application

can take snapshots of the device periodically, and send these snapshots back to the

developers server for further analysis5. Such snapshot-taking attack may reveal

users email content, photos and even bank account information, thus it should be

avoided on any mobile devices.

Similar to the snapshot-taking attack, the call-blocking and PIN-cracking attacks

also become more serious when they are used in an application that can continuously

run at the background, which have been verified in our experiments. However, the

secret-filming attack does not work when in background. The current implementa-

tion of the iOS camera service requires that an application utilizing this service be

not in the background status. Nevertheless, even if the secret-filming attack works

only when the application is in the foreground, it is still a serious threat to user

privacy. Considering that when a user is playing a game on the iOS device, and

the game secretly opens the cameras and takes photos periodically without the users

notice. In our experiments, we have verified that both front and back cameras can be

used, and the sound can be muted when taking videos or photos programmatically

in our applications.

We emphasize that all these attacks are implemented with secret triggers in the

applications that are submitted to iTunes Store. The attacks are only launched on

our testing devices after certain sequences of secret buttons have been pressed in

the applications. However, note that in the application codes, such triggers are just

“if-else” statements. Thus, if the trigger conditions were replaced with an “if-true”

condition, these attacks could be launched on any user device with such applica-

tions. Therefore, the secret triggers used in our proof-of-concept applications do

not affect the conclusions drawn from our experiments.

Besides the seven attacks we have implemented, our attack vector can be used to

construct other attacks as long as there are security sensitive functions on iOS that

5The snapshot attack code is embedded into one of our applications which can keep running at
background utilizing audio playing feature. This application also passed Apples vetting process and
it sends out snapshots every 5 seconds once triggered.

24

are not restricted by iOS sandbox. As each iOS version will include new function-

alities to the platform, each iOS update may introduce new attacks from malicious

third-party applications based on our attack vector.

2.4 Attack Mitigation

Our proof-of-concept attacks have shown that Apples current vetting and sandbox

mechanisms have weaknesses which can be exploited by third-party applications to

escalate their privileges and perform serious attacks on iOS users. In this section,

we first suggest improvements on the vetting process to mitigate the security threats

caused by dynamic invocations. We then propose enhancements on the iOS sandbox

to further defend against our attacks utilizing private APIs.

2.4.1 Improving Application Vetting Process

Static analysis can be used to determine all the API calls which are not invoked

with reflection (i.e., dynamic invocations), and it can provide the list of frameworks

that are statically linked in the application. Thus, an automated static analysis is

able to detect the standard way of invoking private APIs, as what is probably being

used by Apple in its current vetting process. In addition, we suggest to improve

the existing static analysis to detect suspicious applications based on certain code

signatures. For example, one suspicious code signature could be applications con-

taining any dlopen() or [NSBundle load] invocations whose parameters are

not constant strings (which match the cases of our attacks). However, as the static

analysis alone is not sufficient to determine whether a suspicious application is in-

deed a malware or not, manual examination and dynamic analysis should be utilized

to examine such suspicious applications.

In many cases, manual examination may not be able to find malicious behaviors

of the examined applications, because the malicious functions may not be preformed

for every execution. Instead, they can be designed in the way that such functions

25

are only triggered when certain conditions have been satisfied. Examples of such

conditions include time triggers or button triggers (as what have been used in our

applications). When a malicious application uses such trigger strategy, the man-

ual inspection may not find any suspicious behaviors during the vetting process.

Such malicious applications can only be detected by utilizing fuzz testing [45] (or

in the extreme case, using symbolic execution [17]), where different inputs are used

to satisfy every condition of the application code. Furthermore, in order to deter-

mine whether sensitive user data are transferred out of the device, dynamic taint

analysis [48] is an effective approach to serve this purpose. However, since it is

expensive to apply fuzz testing and dynamic taint analysis on every application, the

vetting process may choose to run such examinations only on selected suspicious

applications.

2.4.2 Enhancement on iOS Sandbox

Dynamic Parameter Inspection. From the perspective of iOS sandbox, a straight-

forward defense to our attacks that utilize the dynamic loading functions (such as

[NSBundle load] and dlopen()) is to forbid third-party applications to in-

voke these functions. However, it is not practical to completely forbid the invo-

cation of dynamic loading functions, since frameworks, libraries and many other

resources need to be dynamically loaded for benign purposes at runtime. Even Ap-

ples official code, including both framework code and application code (which is

automatically generated by Xcode), utilizes dynamic loading functions extensively

to load resources at runtime. On the other hand, since sensitive APIs can be hooked

by utilizing the application sandbox, the parameters of these APIs can be checked at

runtime. Thus, it is useful if Apples sandbox is modified in the way that the param-

eter values passed to dynamic loading functions are examined, and accessing files

under a specific folder is forbidden.

One way of implementing this approach is to forbid the third-party ap-

26

plications to dynamically load any frameworks under “/System/Library/”

folder.However, a sophisticated attacker may be able to completely reverse engineer

a given framework binary, locate all the code regions in the binary that are needed

for launching his attack, and then copy only the needed code regions from the binary

and insert into his application code. In this way, he does not need to dynamically

load framework binaries in his malicious applications. Therefore, this parameter-

inspection approach is not able to completely defend against the proposed attacks,

though it can increase the complexity for the adversary to construct these attacks.

Privileged IPC Verification. Another technique of enhancing the sandbox

is to dynamically check the privilege of the identity which makes sensitive API

calls. For example, a third-party application should not have the privilege to invoke

MKBKeyBagChangeSystemSecret API,which is used in our PIN-cracking at-

tack. Such private APIs should only be invoked by processes or services with

the system privilege. However, directly restricting the access to private APIs may

not effectively prevent the attacks. By analyzing the implementation of several

private APIs (in assembly code), we find that the private APIs eventually use

inter-process communication (IPC) methods, which communicate with the sys-

tem service process, to complete the functionalities of the private APIs. For ex-

ample, MKBKeyBagChangeSystemSecret API uses perform command()

method to communicate with the system service (with service bundle id

= ‘‘com.apple.mobile.keybagd’’). This means that instead of invoking

private APIs, an application can also use such IPC method to directly send command

to the system service process to perform the same functionality.

In order to defend against such attacks, for each privileged system service, the

recipient of the command (which is the service process itself) needs to check the

sender of the command to verify whether the sender has the valid privilege to make

such IPC. To enable this IPC verification, the system service process needs to main-

tain a list of privileged IPC commands which are checked dynamically when an IPC

is received. Compared to the parameter-inspection approach, privileged IPC verifi-

27

cation provides better defense against the PIN-cracking, call-blocking and snapshot-

taking attacks as the corresponding privileged functionalities should not be used by

any third-party applications. However, this approach alone is not sufficient to miti-

gate the other four attacks listed in Table 1. For these four attacks, the correspond-

ing functionalities should be provided to applications due to usability reasons, but at

the same time, it needs to be ensured that user interactions are involved when these

functionalities are performed.

Service Delegation Enhancement. On iOS 6, Apple starts using the XPC Ser-

vice, which allows processes to communicate with each other asynchronously so

that it can be used for privilege separation. Originally on iOS 5, the SMS and email

APIs are implemented as “View Controller” classes that are created and used within

a third-party application process. Therefore, applications can manipulate these view

controller classes to send out SMSes and emails programmatically without users in-

teraction. However, on iOS 6, the SMS and email functionalities are now delegated

to another system process utilizing XPC Service, which is completely out of the pro-

cess space of third-party applications. Thus, a third-party application on iOS 6 is no

longer able to send SMSes or emails programmatically without users interaction.

Although currently iOS 6 has not implemented the service delegation mecha-

nism for the Twitter service, the tweet-posting attack can be prevented using this

mechanism, as it follows exactly the same service model as SMS and email. The

secret-filming attack, however, cannot be easily mitigated using such service delega-

tion. Instead of using a unified user interface, iOS enables third-party applications

to create their own customized user interfaces for taking photos or videos. If the

same service delegation mechanism is applied, then the camera interface will be

identical across different applications as it is provided by system service. Thus,

more precisely, service delegation is able to defend against camera device abuse,

but its implementation may greatly impact user experience.

System Notifiers for Sensitive Functionalities. In order to mitigate the threat

of secret filming, while preserving the functionality and flexibility of using camera

28

in third-party applications on iOS, one possible solution is to add a half-transparent

system notifier on the screen (e.g., at the upper-right corner), whenever the camera

device is being used. This notifier can be shown using the XPC mechanism so that

the notifier is handled by a system daemon process, which is outside of the control

of third-party applications. In this way, whenever the camera is being used (either

taking photos or taking videos), the system notifier is shown on the screen to alert

the user.

By enhancing the current iOS platform with the 1) privileged IPC verification, 2)

comprehensive service delegation, and 3) extended system notifiers, it will be able

to defend against all the seven attacks we construct. Note that since iOS is a close-

source platform, it is extremely difficult (if not impossible) for us to implement these

mitigation methods we proposed, and thus it is one of the limitations in our work.

However, we have shared all our mitigation suggestions with Apple so that Apples

product security team may choose some of these methods to fix the sandbox. From

the partial knowledge that is revealed by our attacks and the mitigation analysis,

it may be inferred that the current iOS sandbox implementation is quite complex

and its privilege check is not complete. Due to its complexity and also its trade-off

nature against usability, it may not be easy to completely fix the iOS sandbox to

prevent future attacks.

2.5 Discussions

On the current iOS platform, when an application plays an audio file (e.g.,.mp3),

normally a music-playing notifier (i.e. the I symbol) is shown in the sta-

tus bar on top of the screen. However, this only happens when the applica-

tion is implemented following the standard programming rules, which require

the application code to call [[UIApplication sharedApplication]

beginReceivingRemote-ControlEvents]. This API call registers the ap-

plication in the system service so as to receive remote events, such as when a user

29

presses the control buttons on earphone. In the background running application we

implement, however, this API is not invoked and our application simply calls the

basic audio playing APIs to play a silent music in an infinite loop. As a result,

no notifier is shown on the status bar when our application is running at the back-

ground, thus the iOS user may be totally unaware of the existence of this security

threat. In addition to playing audio, there are other means of enabling background

running, such as VOIP and tracking locations. Thus, besides the system notifier for

the camera functionality (Section 4.2), we suggest to add another system notifier

specifically designed to indicate that an application is running at the background.

Upon seeing this notifier, a user can force close any background applications that

are not being used. This will not only enhance security but also save device battery.

The PIN-cracking attack code introduced in Section 3.2 not only can be used

to steal device PIN and send it to an external server, but can also be used to reset

the current PIN to another value so that the legitimate user is not able to unlock

the device. In iOS settings, there is an option to “erase all data on this device after

10 failed passcode attempts”. If this option is enabled on a device and our PIN-

cracking code resets the PIN, it could make a user panic if he is unable to unlock

the device after several trials of inputting his original password. Again note that our

PIN-cracking attack itself will not trigger the “wrong password” event on the iOS

device and thus, there is no limit on the number of brute forcing trials for our attack

code when cracking the device PIN.

With the attack codes we shared with Apples product security team, the PIN-

cracking vulnerability has been fixed in the newly released iOS 6.1 (January 2013).

However, other security issues we discovered are still in the process of being ad-

dressed. Note that the conclusions about the vetting process and sandbox given in

this work are inferences based on observations from our experiments, as the details

of the vetting process and sandbox are kept as blackbox by Apple. The ground truth

may become available to the public when Apple decides to turn major components

of iOS into open source in the future, as what has been done for Mac OS X [5].

30

2.6 Related Work

Spyphone [66] is a prototype application, developed for iOS 3.1.2, which illustrates

that a wide list of user data can be accessed on iOS by third-party applications.

However, Spyphone does not use any private APIs it only invokes public APIs and

reads public files to access user data in order to enable itself to appear in iTunes

Store, which is completely different from our malicious applications implemented.

In addition, the security enforcement of iOS has been significantly improved since

then so that a large portion of user data that can be accessed by Spyphone on iOS 3

is forbidden to access since iOS 5.

Malwares, such as iKee [62] and Dutch 5 ransom [63] worms, have been found

on iOS. However, these worms only work on jailbroken iOS devices where an SSH

server is installed with the default root password unchanged. Other iOS malwares

known to the public, such as iSAM created by Damopoulos et al. [18] (which fo-

cuses more on malware propagation methods), also exploit vulnerabilities exist only

on jailbroken iOS devices, which are different from our work.

Felt et al. [29] conduct a survey on the modern mobile malware in the wild,

which encompasses all known iOS, Symbian, and Android malwares that spread

between January 2009 and June 2011. They find that (i) all the 4 iOS malwares they

identified work only on jailbroken iOS devices, and none were listed in the iTunes

App Store; and (ii) only graywares are found on iTunes App Store which are then

removed by Apple. These findings are confirmed by Egele et al. [24], in which they

develop a static analysis tool, PiOS, to detect privacy leakages in iOS applications.

They perform static analysis on more than one thousand third-party iOS applications

and find out that only a few applications are graywares which stealthily access user

data without users awareness.

Extensive researches have been conducted on the other popular mobile platform

Android. Privilege escalation attacks on Android are proposed by [31], and the

defense mechanisms for such attacks are introduced by Bugiel et al. [105]. Enck et

31

al. [26] performs static analysis of Android applications using the decompiler they

developed. Dynamic taint analysis on third-party Android applications is performed

by TaintDroid [25]. Comprehensive surveys on mobile security are provided by

Becher et al. [10] and Egners et al. [2].

The closest work to our research is the work by Miller [77]. By exploiting

the security flaw he found, he managed to get iOS devices to run unsigned codes

which are dynamically downloaded by his proof-of-concept malicious application.

Millers attack mechanism provides an alternative for the first stage of our proposed

attack vector. However, Apple has removed his application from the iTunes App

Store and released a fix for the security flaw. Thus, our dynamic invocation used

in the first stage, to our best knowledge, is the only way of bypassing the vetting

process. Although our mechanism is not complex, it is a very effective way of al-

lowing malicious applications appear in the official application store. Furthermore,

by performing sophisticated analysis on all existing iOS frameworks, we identify

seven sets of sensitive APIs which are not restricted by iOS sandbox and thus can

be utilized by any malicious applications.

2.7 Conclusion

The original goal of this work is to answer a simple (but not easy) research question:

is there a generic attack vector which enables third-party applications to launch

attacks on non-jailbroken iOS devices? Two pre-conditions need to be satisfied

in answering this question: (i) the third-party application has to pass the vetting

process and appear on the official application store; and (ii) the corresponding attack

codes must break through the restrictions of iOS sandbox in order to work on non-

jailbroken iOS devices.

In this chapter, we constructed effective mechanisms which allow any third-

party application to invoke private APIs without being detected by the vetting pro-

cess. By utilizing such mechanisms and exploiting the vulnerabilities in the appli-

32

cation sandbox, we implemented seven proof-of-concept attacks which can cause

serious damages to iOS users. Finally, we suggested mitigation mechanisms to en-

hance the current vetting process and iOS sandbox. Our work fills the gap in the

current mobile security literature where most research efforts are conducted on An-

droid platform. We have shared all our findings with Apple’s product security team.

In January 2013, Apple released iOS 6.1 and fixed the PIN-cracking vulnerability

we discovered in iOS 6.0, while other security issues presented in this chapter still

remain unsolved.

33

Chapter 3

Attacking Android Smartphone

Systems without Permissions

3.1 Introduction

Android adopts a permission system to protect users’ security and privacy. To access

resources that are out of application’s sandbox, an application needs to request for

permissions from users. In recent years, it has been reported that the Android per-

mission system suffers from several flaws. For instance, unprivileged applications

may leverage privileged applications to perform privileged tasks due to privilege es-

calation attacks [19] [12]. Several applications may collude to launch attacks with

combined permissions from all of the applications [30] [76]. However, no rigor-

ous study has been made on what potential attacks an application can launch on

Android smartphone systems without requesting for any permissions. Therefore,

in this work, we question the coverage of the current protection mechanisms and

investigate to what extent critical resources are exposed to malicious applications

via APIs without any protection mechanisms. There are two steps in our study. In

the first step, we analyze unprotected Application Programming Interfaces (APIs),

which allow third-party applications without any permissions to interact with mo-

bile system resources, such as GPS and camera, or to access users’ personal infor-

34

mation. In the second step, we demonstrate a number of attacks that can be easily

launched by leveraging on the unprotected APIs obtained in the first step.

To retrieve unprotected APIs from Android framework, we perform the follow-

ing source-code static analysis: (1) inter-procedural call graph analysis on system

services for the discovery of all Android Interface Definition Language (AIDL)

interfaces that are not protected by any permission checking or Linux ID check-

ing mechanisms, (2) component analysis on system applications for identifying

the exposed and unprotected broadcast receivers, activities and services, and (3)

intra-procedural data-flow analysis for locating unprotected dynamically registered

broadcasts in both system services and system applications. We apply our analysis

on Android Open Source Project (AOSP) versions 5.1.0 r1 and 4.4.0 r1. On AOSP

version 5.1.0 r1, we identify 735 unprotected APIs in system services. In system

applications, we discover 612 unprotected components, where 156 are unprotected

broadcast receivers, 423 are unprotected activities and 33 are unprotected services.

Moreover, we discover 206 unprotected dynamically registered broadcasts, where

50 exist in system services and 156 exist in system applications. It is alarming that a

high number of unprotected APIs is discovered in different parts of Android frame-

works. We also compare our analysis results on versions 5.1.0 r1 and 4.4.0 r1. We

discover that the number of unprotected APIs increases on the newer version due to

the newly added functionalities. This is contrary to the common belief that the se-

curity of a new version should improve, since many security flaws in an old version

are reported and fixed.

After obtaining unprotected APIs, we create an adversary third-party application

without any permissions, which launches Java reflection attacks, broadcast injec-

tion attacks, broadcast hijacking attacks, malicious activity launch attacks, activity

hijacking attacks, malicious service launch attacks, and service hijacking attacks.

We discover that on Android version 4.4.0 r1, an attacker can block the synchro-

nization of emails, calendar events, browser bookmarks, browsing history, browser

extension, Google documents, and Google notes. In addition, an attacker can send

35

notifications, set car mode, set night mode, wake up the device at certain time, and

set screen-off time. We reported our attacks on AOSP version 4.4.1 r1 to Google

and some of the reported vulnerabilities are fixed on version 5.0.0 r1. Nonetheless,

we still discovered more attacks on version 5.1.0 r1, which are also subsequently

reported and fixed on version 5.1.1 r35 and version 6.0. This shows that while the

platform providers make their effort in improving the security of Android frame-

work, they need a powerful tool to win the “arms race”.

On version 5.1.0 r1, we discover that an attacker can obtain country, Wi-Fi in-

formation, subscriber information, tether state, airplane mode, NFC state, GSM/

CDMA strength, location mode, USB state, power state and security setting for

lock screens. Moreover, some resources, such as device ID and SIM card state,

which should be accessed by permission-granted applications only, are accidentally

made available to all applications via unprotected APIs. An attacker can arbitrarily

set the volumes of Android phones and play users’ incoming call ringtones, alarms,

and notification sounds. An attacker can block Bluetooth discovery services, and

launch camera, mail, music and phone system applications even when the targeted

devices are locked. An attacker can also hijack various activities of system applica-

tions, including the interfaces for setting VPN (Virtual Private Network), Bluetooth

and Wi-Fi, as well as the interfaces for adding device administrators and user ac-

counts. These attacks show that the negligence in designing API-level permission

enforcement causes various threats to users’ security and privacy. We suggest plat-

form providers to systematically analyze unprotected APIs before releasing new

versions, so that similar attacks are prevented in the future.

The rest of the chapter is organized as follows. In Section 3.2, we define our

adversary model. In Section 3.3, we describe how we retrieve unprotected APIs. In

Section 3.4, we show a set of proof-of-concept attacks on AOSP version 5.1.0 r1.

In Section 3.5, we compare our results with AOSP version 5.1.0 r1. In Section 3.6,

we provide some discussions on our research. In Section 3.7, we summarize the

related work. Finally, we conclude the chapter in Section 4.7.

36

3.2 Adversary Model

Our adversary is a third-party application without any privileges or permissions,

which launches malicious operations using unprotected Android APIs. We refer

to it as “an attacker” in this work. We classify Android APIs into three cate-

gories: (1) normal APIs supported by system services, (2) loosely-coupled APIs

supported by system applications, and (3) dynamically registered broadcasts in both

system services and system applications. In the first category, API calls from ap-

plications are handled by system services, which provide main client-server inter-

faces between system-level processes and third-party application processes. For in-

stance, to exercise a complete control over cameras, such as changing the zoom and

flash light settings, an application may access com.hardware.camera2 API,

which in turn communicates with the system service, android.hardware.

ICameraService. In the second category, loosely-coupled APIs are supported

by system applications, which provide easy access to mobile phone functions. For

instance, to take a photo or a video, an application may call the system application

Camera using intents. Unlike normal APIs and loosely-coupled APIs, dynamically

registered broadcasts in the third category are undocumented APIs. They are mainly

used for internal communications among system services and system applications.

All these types of APIs can be abused by an attacker when they are not properly

protected.

3.2.1 System Services

Third-party applications access APIs of system services by calling the method

getSystemService(name) of the Context class. The parameter name rep-

resents the name of the required system service. The returned object is then casted

into the Manager class. For example, AlarmManager object can be retrieved

by invoking the method with parameter “alarm”. However, security checks per-

formed inside the Manager class can be easily bypassed [27]. Moreover, APIs

37

listed inside the Manager class are not complete; third-party applications can

use Java reflection to invoke private APIs, which are marked with “@hide” an-

notations. Thus, we assume that an attacker may use Java reflection to inter-

act with all unprotected APIs, including public and private APIs. Using Java re-

flection, an attacker invokes the getService(name) method inside the hidden

ServiceManager class. Even though ServiceManager is a hidden class, it

is unlikely to change, as the android.jar library relies on it to support normal

APIs. The getService(name) method returns an IBinder object, which can

be used to invoke any exposed methods inside the corresponding system services.

Listing 1 shows an example attack on AOSP version 4.4.4 r1. In this example,

an attacker attempts to set the maximum screen-off time on mobile devices.

There is no publicly available API for such function inside the PowerManager

class, which is responsible for managing the power state of Android devices.

However, IPowerManager, a hidden Stub class used by PowerManager,

provides such method. To obtain an IBinder instance of IPowerManager,

an attacker may first call ServiceManager.getService("power")

method using Java reflection. After that, it invokes the

setMaximumScreenOffTimeoutFromDeviceAdmin() method of

IPowerManager, which in turn calls similar functions inside

PowerManagerService. In this way, the attacker gains access to the system

service running in privileged process. Since we set the screen-off time to 0, mobile

users have no idea why their phone screens keep fading out. This unprotected API

is originally intended for internal use, as PowerManagerService states in its

comment, “Used by device administration to set the maximum screen off timeout.

This method must only be called by the device administration policy manager.”

However, no security checking is performed inside PowerManagerService,

which makes it vulnerable to malicious third-party applications.

38

Listing 1 An Example Attack using an Unprotected API from a System Service

1 //Invoke ServiceManager.getService("power") method and obtain
IBinder object of PowerManagerService↪→

2

3 Class serviceManagerClass =
Class.forName("android.os.ServiceManager");↪→

4 Method getServiceMethod =
serviceManagerClass.getDeclaredMethod("getService",
String.class);

↪→

↪→

5 IBinder iBinder = (IBinder) getServiceMethod.invoke(null,
"power");↪→

6

7 //Get Stub object of IPowerManager by passing IBinder object to
asInterface() method↪→

8

9 Class stubClass = Class.forName("android.os.IPowerManager$Stub");
10 Method asInterfaceMethod = stubClass.getMethod("asInterface", new

Class[]{IBinder.class});↪→

11 Object IPowerManagerObj = asInterfaceMethod.invoke(null,
iBinder);↪→

12

13 //Invoke
IPowerManager.setMaximumScreenOffTimeoutFromDeviceAdmin(0)
method using Java reflection

↪→

↪→

14

15 Class IPowerManagerClass =
Class.forName("android.os.IPowerManager");↪→

16 Method setScreenOffTimeoutMethod =
IPowerManagerClass.getDeclaredMethod
("setMaximumScreenOffTimeoutFromDeviceAdmin", Integer.TYPE);

↪→

↪→

17 System.out.print(setScreenOffTimeoutMethod.invoke(IPowerManagerObj,
0));↪→

3.2.2 System Applications

System applications provide loosely coupled APIs by exposing their compo-

nents in the applications’ AndroidManifest.xml files. In each XML file,

<application> is the parent element, which contains some sub-elements

for the application’s components, such as <service>, <activity>, and

<receiver>. Several tags and attributes are used to protect the components

of system applications from other applications. They include intent-filter,

exported, permission and enabled. Each exported and enabled component

without any permission protection represents an unprotected API. We consider the

following types of attacks.

• Broadcast Theft: An attacker may eavesdrop normal broadcast intents. This

39

may result in certain user information being stolen by the attacker.

• Malicious Broadcast Injection: An attacker may send broadcasts and trigger

broadcast receivers of system applications. This may result in unintended

actions being performed by the attacker.

• Activity Hijacking: An attacker may launch its own activities when system

activities are invoked. This may result in phishing attacks, where users mis-

take malicious interfaces as system interfaces.

• Malicious Activity Launch: An attacker may secretly launch activities from

system applications if the activities are not well-protected. This may result in

changing the state of certain system applications or tricking users.

• Service Hijacking: An attacker may intercept the intents sent to legitimate

services of system applications. The attacker may provide false responses to

the calling applications.

• Malicious Service Launch: An attacker may launch any unprotected ser-

vices of system applications. The damage of this attack depends on the func-

tionality of the unprotected services.

Our work is the first to consider these types of attacks on AOSP system appli-

cations and analyze them as a part of Android framework, although they have been

applied on third-party applications and vendor-customized system applications by

Chin et. al. [15] and Wu et al. [87] respectively. Note that we consider broadcast

receivers of system applications or both broadcast theft and malicious broadcast

injection attacks, so that we can discover as many attacks as possible on AOSP

framework.

In addition to intent-filter, exported, permission and enabled

tags and attributes used in AndroidManifest.xml files, the concept

of protected broadcasts is used for limiting broadcast injection. Pro-

40

tected broadcasts are broadcasts that can only be sent by applications run-

ning in system-level processes. Protected broadcasts are defined in the

AndroidManifest.xml file of AOSP root source code. For exam-

ple, if the file includes the <protected-broadcast android:name =

"android.intent.action.PACKAGE INSTALL"/> tag, Android system

allows no applications except system-level applications to send broadcasts with the

action string, android.intent.action.PACKAGE INSTALL. Thus, when

launching broadcast injection attacks, we exclude these protected broadcasts from

a list of our discovered broadcasts.

3.2.3 Dynamically Registered Broadcasts

Both system services and system applications may regis-

ter broadcast receivers dynamically using APIs, such as

registerReceiver(BroadcastReceiver,IntentFilter) or send

broadcasts using APIs, such as sendBroadcast(Intent). For simplicity,

we refer to these types of broadcast receivers and broadcasts as “dynamically

registered broadcasts” or simply “broadcasts” under related sections. Using them,

an attacker may launch broadcast theft and broadcast injection attacks.

3.3 Retrieving Unprotected APIs

Retrieving unprotected APIs is not trivial due to a wide variety of API types, vast

presence of APIs in Android framework and different protection mechanisms en-

forced. In this section, we apply three types of analysis for retrieving unprotected

APIs: (1) call graph analysis on APIs provided by system services, (2) compo-

nent analysis on APIs supported by system applications ,and (3) data flow analysis

on dynamically registered broadcasts. The result of our analysis provides a broad

overview of unprotected APIs in Android framework. Our analysis is first applied

to AOSP version 5.1.0 r1 with API level 22 (Lollipop). We perform call graph anal-

41

ysis and data flow analysis based on Soot [50] version 2.5, which is an existing Java

source code analysis tool. We also develop our own tool written in Python for scan-

ning and identifying necessary source code files, and for analyzing components of

system applications. We use an LG Nexus 5 for testing.

3.3.1 Call Graph Analysis on System Services

Using Android Debug Bridge (ADB) command, we discover 97 system services in

Android 5.1.0 r1 version, where 11 of them are listed without any interface names.

These 11 system services are designed to communicate with other system-level pro-

cesses only. We identify all the unprotected APIs of system services using call graph

analysis. A call graph is a directed graph, where each node represents a method and

each edge indicates the invocation of one method to another. Our call graph analysis

involves three steps: (1) finding all available APIs from a system service, (2) find-

ing all security checking methods protecting the APIs, and (3) finding whether there

exists at least one method call chain from an exposed API to any security checking

method.

Step 1: Finding Source Methods - The source methods are the public methods

of system services that are exposed via AIDL interfaces. We apply Soot to load a

list of system service classes, and loop through all their public methods. In this way,

we discover 1,751 APIs that are exposed to third-party applications.

Step 2: Finding Sink Methods - The sink methods are the methods that perform

security checks. In this work, we consider permission and Linux ID checking mech-

anisms of system services. Some methods in Andriod framework are dedicated for

permission checking [3], and we identify 35 of them, including 18 methods from

the ContextImpl class, 2 methods from the ActivityManager class and 15

methods from the PackageManagerService class.

There is no specific method dedicated for Linux ID checking. System services

normally perform the following steps for Linux ID checking. First, they obtain

42

the UID or PID of the calling application or process using getCallingPid()

and getCallingUid() methods from the Binder class. After that, they per-

form conditional check, such as “callingUid != Process.SYSTEM UID”,

where SYSTEM UID represents 1000. To locate ID checking methods, we first iden-

tify whether a method calls getCallingPid() and getCallingUid(). We

then determine whether the returned variables are checked against any system-level

Linux IDs in any If statements in the following source code. Note that the UIDs

for system applications range from 0 to 9999. For instance, the UID for root user is

0, and the UID for telephony is 1001. The most commonly used UID is 1000, and

it is used for running system server codes with certain privileges. As long as there

exists at least one check against system-level IDs, we regard this method as a sink

method.

Step 3: Building Call Graph - A context-insensitive inter-procedural call graph

is built using Soot. The set of publicly accessible methods (i.e. source methods)

are marked as entry points of the call graphs. After building the call graph, we loop

through the method calls, and check if each source method ends up with any sink

methods. We then exclude the methods with any security checking. In this way, we

discover a list of methods that are not protected by any security mechanisms. Our

analysis discovers 735 unprotected APIs, which count for 41.98% of total public

APIs of system services. Our call graph analysis shows that a large number of An-

droid APIs are unprotected and accessible by any third-party applications without

any privileges.

3.3.2 Component Analysis on System Applications

We apply component analysis to retrieve unprotected components of system ap-

plications. There are altogether 69 system applications. We extract the compo-

nent information from the AndroidManifest.xml files of system applications.

We discover altogether 110 broadcast receiver components, 414 activity compo-

43

Broadcast
Receivers

Activities Services

No of unprotected action strings 156 423 33
No of unique unprotected action strings 86 189 23
No of unprotected system applications 30 45 9

Table 3.1: Analysis Result of System Applications

nents and 140 service components from 69 system applications. A single system

application component may have multiple <intent-filter> tags with multi-

ple action strings. To discover unprotected action strings of system components,

we first analyze if the system applications implement any application-level permis-

sions. We then explore the components of system applications that satisfy the fol-

lowing conditions: (1) the components’ attributes contain intent-filter, (2)

permission is set to none, and (3) exported is set to none or true. In

our analysis, we do not consider the enabled attribute, since it can be changed

dynamically. Table 3.1 shows the result of our component analysis on system appli-

cations. Activities represent the most common type of unprotected action strings,

followed by broadcast receivers and services.

Unlike other components, broadcasts can be further protected by An-

droid system. Such broadcasts are called protected broadcasts, which

are defined with <protected - broadcast> tag. Only system-level

processes are allowed to send protected broadcasts. We obtain a list

of protected broadcasts from the manifest file located under directory

frameworks/base/core/res/AndroidManifest.xml. In total, we dis-

cover 225 protected broadcasts in the manifest file. Among the 86 broadcast action

strings exposed from system applications, 34 of them are protected system broad-

casts. Thus, an attacker may launch broadcast injection attacks with the remaining

52 broadcasts.

44

3.3.3 Data Flow Analysis on Dynamically Registered Broadcasts

Both system services and system applications may register and send broadcasts dy-

namically. We first retrieve the source code files of system services and system

applications. After that, we apply data flow analysis to obtain the broadcast action

strings from the source code files.

Identifying Dynamically Registered Broadcasts

From the AIDL interfaces obtained from the ADB command, we retrieve the Java

files of system services. For instance, we find AlarmManagerService file from

IAlarmManager AIDL interface. To achieve this, we scan the entire framework,

and obtain Java files that (1) extend AIDL interfaces, (2) create new Stub classes

with AIDL interface names or (3) implement AIDL interfaces and later extend them.

These are the different ways by which system services implement their AIDL inter-

faces. In total, we discover 80 files of system services. The remaining services are

only exposed via native codes, and thus excluded from our analysis. Note that our

analysis does not include the classes called by the service class. A more complicated

analysis will be required if we want to include them, since we will have to determine

which methods are called from the service class. To obtain the source code of sys-

tem applications, we scan the AOSP source code directories, read in every Java file,

and look for package names of system applications. In total, we collect 1,392 source

code files for 69 system applications. From the identified source code files of system

services and system applications, we search for broadcast registering methods, such

as registerReceiver(BroadcastReceiver, IntentFilter), and

broadcast sending methods, such as sendBroadcast(Intent), of Context

class. We apply data flow analysis on these methods so as to obtain the action strings

of dynamically registered broadcasts.

45

Data Flow Analysis

IntentFilter is a parameter of broadcast registering methods, and Intent is

a parameter of broadcast sending methods. Both IntentFilter and Intent

are defined using action strings. IntentFilter can be initialized with an ac-

tion string using new IntentFilter(String action) method, or it can

be initialized first using new IntentFilter() method and later defined using

the addAction(String action) method. We perform a backward data flow

analysis on these methods using Soot so as to identify the required action strings.

In total, we discover 130 unique broadcast action strings (238 instances) from sys-

tem services and 207 unique action strings (424 instances) from system applica-

tions. After that, we determine whether the retrieved action strings are protected.

By extracting protected broadcasts from our discovered broadcasts, we have 50 un-

protected broadcasts in system services and 156 unprotected broadcasts in system

applications, which can be abused by an attacker.

3.4 Attacking without Permissions

Our static analysis provides a list of unprotected APIs from system services, a list

of unprotected components from system applications, and a list of unprotected

dynamically registered broadcasts. We confirm the attacks by exploiting them

with a third-party application without any permissions. In particular, we show

that Java reflection attacks can be launched on APIs supported by system services

and that intent-based attacks can be launched by exploiting the APIs supported by

system applications and dynamically registered broadcasts. The attacks are per-

formed semi-automatically: many codes used in the attacks are generated auto-

matically, while parameters required for some attacks are identified manually. For

instance, we automatically generate the codes, such as sendBroadcast(new

Intent("actionString"));, where actionString is replaced by the

46

real action strings discovered from our static analysis. Note that we aim not to

provide an exhaustive list of all possible attacks but to show how easily serious at-

tacks can be launched to Android smartphone systems without requesting for any

permissions.

3.4.1 System Services

We identify two main types of possible attacks via the unprotected APIs supported

by system services. An attacker may control various audio functions of mobile

devices and steal users’ information.

Audio Control

A system serivce, IAudioService, provides several unprotected APIs for con-

trolling the audio systems. Without requesting for any permissions, an attacker may

trigger call ringtones and alarms that users personally set for their phones. An at-

tacker may produce other special sound effects, such as notification, click, and key-

press sounds. To do so, an attacker first uses the getRingtonePlayer() API

to obtain an IRingtonePlayer object, and then invokes its play() method.

Moreover, an attacker may arbitrarily set the volumes of call ringtone, alarm, no-

tification, music, system and voice call sounds using the setStreamVolume()

API. An attacker abusing both unprotected APIs can be dangerous. For instance,

an attacker may set the devices to their highest volumes and start playing ringtone

or alarm sounds continuously. In such cases, even when devices are set to silent

mode, they start ringing, which may disturb users in various social situations, such

as in meetings. The only way for users to stop such attacks is to shut down their

phones. In similar attacks, an attacker may confuse users by playing notification

sounds without sending any notifications. Alternatively, an attacker may set the

volume to 0 so that users become unaware of any incoming calls or alarms.

47

Leaked In-
formation

Description Exploited Method Exploited Class

Device ID Unique device ID, such as
IMEI for GSM and the MEID
or ESN for CDMA phones

getDeviceId() IPhoneSubInfo

SIM Card
State

Whether SIM card is ready,
absent or requires PIN to un-
lock

getSimStateFor
Subscriber()

iSub

Lock
Setting

Whether user sets password
or pattern lock

havePassword()
and havePattern()

ILockSettings

Call state Whether there is an incom-
ing call, established tele-
phony call, or established au-
dio/video chat or VoIP call

getMode() IAudioService

Ringtone
mode

Whether ringer mode is silent
and vibrate, silent and not vi-
brate or normal

getRingerMode
Internal()

IAudioService

Input
Device

External and internal input
devices, such as joystick or
keyboard type

getInputDevice() IInputManager

Country Current country of user detectCountry() ICountryDetector
Copied
data

Copied data from clip board addPrimaryClip
ChangedLis-
tener()

IClipboard

Table 3.2: Information Leakage From System Services

Information Leakage

An attacker may obtain information about user’s device ID, SIM card state, call

state, ringer mode, input devices, country and copied data from clipboard. The

unprotected APIs exploited for such attacks are shown in Table 3.2. Interest-

ingly, we discover that device ID and SIM card state are accidentally made

available via unprotected APIs, although they are supposed to be protected by

android.permission.READ PHONE STATE permission. An attacker, who

tracks such information continuously, can easily identify individual users and infer

users’ behaviours, which violates users’ privacy.

48

3.4.2 System Applications

By exploiting unprotected APIs of system applications, an attacker may launch

the following attacks: broadcast theft, malicious broadcast injection, activity hi-

jacking, malicious activity launch, service hijacking, and malicious service launch.

Broadcast theft, activity hijacking, and service hijacking attacks occur when an at-

tacker intercepts intents by registering intent filters with unprotected action strings

in its AndroidManifest.xml file. Malicious broadcast injection, malicious ac-

tivity launch, and malicious service launch attacks occur when an attacker sends

intents with sendBroadcast(Intent), startActivity(Intent) and

startService(Intent) methods. Such intents are initialized with unpro-

tected action strings identified in the previous section. The intent theft attacks

normally result in information leakage and component hijacking, while the other

attacks result in unintended changes of Andriod system state.

Broadcast Theft

We discover that an attacker is able to obtain network, alarm, and account related

information by intercepting unprotected broadcast intents. From the broadcast with

action string android.net.conn.CONNECTIVITY CHANGE, an attack may

obtain network name, network state (e.g. connected, disconnected, connecting),

network type (e.g. Wi-Fi or mobile LTE), and roaming status without requesting for

android.permission.ACCESS NETWORK STATE permission. An attacker

may receive android.app.action.NEXT ALARM CLOCK CHANGED

broadcast when a next alarm is set on the device. An attacker can also obtain

android.accounts.LOGIN ACCOUNTS CHANGED broadcast when user ac-

count information (e.g., Gmail, Facebook, Skype account) is changed. Although

some information leakage seems benign, it becomes serious when combined with

other information. For instance, by constantly retrieving device ID and network

name, an attacker may identify an individual user and determine the user’s home

49

and work locations.

Malicious Broadcast Injection

Various attacks can be launched by sending broadcasts with unpro-

tected action strings. An interesting finding is that the action string

android.bluetooth.intent.DISCOVERABLE TIMEOUT is unpro-

tected. By continuously sending broadcasts with this action string, an attacker

can block other Bluetooth phones from discovering the exploited device. This

attack disables the scan mode of the device’s Bluetooth adapter and thus, makes

its Bluetooth service unusable. Another finding is that by exploiting the action

strings, android.btopp.intent.action.OPEN RECEIVED FILES

and android.intent.action.DOWNLOAD NOTIFICATION CLICKED,

an attacker may open the folders where the mobile user receives files from

Bluetooth transfer, and where the downloaded files exist. Finally, an attacker

may launch an input method chooser for different languages using action string

android.settings.SHOW INPUT METHOD PICKER.

Activity Hijacking

During activity hijacking, an attacker launches its own applications

when intents with unprotected action strings are triggered. From our

analysis, we discover that android.intent.action.DIAL and

android.media.action.STILL IMAGE CAMERA SECURE action

strings are not protected by any permissions. Thus, an attacker may hijack

phone and camera applications, when users launch them from their lock

screens. Another finding is that an attacker may hijack Bluetooth, Wi-Fi,

account (e.g. Gmail account), and Virtual Private Network (VPN) setting

pages, when they are launched from the Setting application. The exploited

action strings include android.settings.BLUETOOTH SETTINGS,

android.settings.WIFI SETTINGS, android.settings.ADD

50

ACCOUNT SETTINGS, and android.net.vpn.SETTINGS. However, to

trick users completely, the attacker have to implement full functionalities, which

may requires permissions. Moreover, activity hijacking is hindered by the applica-

tion chooser, which is launched, when there are conflicting applications handling

the same intent. It is thus difficult for an attacker to launch these attacks without

being noticed.

Malicious Activity Launch

Leaked
Informa-
tion

Description Exploited Broadcast Action String

Network
and Wi-Fi

NetworkInfo object -
network name, network state
(e.g. Connected, discon-
nected, connecting), network
type (e.g. Wi-Fi or mobile
LTE)
WifiInfo object- SSID,
BSSID, MAC address, link
speed, frequency
LinkProperties object
- Interface name, link ad-
dress, routes, DNS address,
domains

android.net.conn.CONNECTIVITY
CHANGE
android.net.wifi.STATE CHANGE
android.net.wifi.WIFI STATE
CHANGED

Tether
State

Which portable Wi-Fi hotspot
is on and available

android.net.conn.TETHER STATE
CHANGED

Airplane
Mode

Whether airplane mode is on
or off

android.intent.action.AIRPLANE
MODE

NFC State Whether NFC is on or off android.nfc.action.ADAPTER STAT
E CHANGED

SIM Card
State

Whether SIM card state, such
as ready or absent, changes

android.intent.action.SIM STATE
CHANGED

Phone
Service
State

Whether phone is in service,
out of service, emergency
only or power off

android.intent.action.SERVICE
STATE

51

Subscription
State

Whether data, SMS or voice
subscription changes

android.intent.action.ACTION DEFA
ULT SUBSCRIPTION CHANGED
android.intent.action.ACTION DEFA
ULT DATA SUBSCRIPTION CHA
NGED
android.intent.action.ACTION DEFA
ULT SMS SUBSCRIPTION CHA
NGED
android.intent.action.ACTION DEFA
ULT VOICE SUBSCRIPTION CHA
NGED

GSM/CDMA
Strength

Various measurements in-
cluding LteRsrp, LteRssbr,
LteCqi, CdmaDbm, CdmaE-
cio, GsmSignalStrength,
EvdoDbm, EvdoSnr, EvdoE-
cio, GsmBitErrorRate

android.intent.action.SIG STR

Location
Mode

Whether location mode, such
as high accuracy (use GPS,
Wi-Fi, cellular network to
determine location), battery
saving (use Wi-Fi and cellu-
lar network to determine lo-
cation) or device only (Use
GPS to determine location),
changes

android.location.MODE CHANGED
android.location.PROVIDERS
CHANGED

Volume Volum value and whether
phone is muted

android.media.VOLUME CHANGE
D ACTION
android.media.RINGER MODE
CHANGED
android.media.STREAM MUTE
CHANGED ACTION

USB State Whether USB is connected,
in ADB mode or configured

android.hardware.usb.action.USB
STATE

Power
State

Whether power is connected
or disconnected

android.intent.action.ACTION
POWER CONNECTED
android.intent.action.ACTION
POWER DISCONNECTED

Table 3.3: Information Leakage From Dynamically Regis-
tered Broadcasts

We discover that an attacker may launch several unprotected activities from system

applications. Since some activities are entry points of system applications, this

attack leads to the launching of the corresponding applications. An attacker may

52

launch lock screen, emergency dialer, camera, mail, and music applications in such

attacks. Some attacks, such as launching lock screen and emergency dialer, may

confuse users, while other attacks, such as launching camera, may drain device

batteries. In the following, we provide more details about such attacks for different

system applications.

Warnings: An attacker may launch activities for the following warning mes-

sages: “Network monitoring: A third party is capable of monitoring your network

activity, including emails, apps, and secure websites. A trusted credential installed

on your device is making this possible.”, “‘Attention. You need to set a lock screen

PIN or password before you can use credential storage,” “Attention. Remove all

contents? Cancel or Ok,” “Oops! This device is already set up,” and “To improve

location accuracy and for other purposes, null wants to turn on network scanning,

even when Wi-Fi is off. All this for all apps that want to scan? Deny or Allow.” A

severe consequence of these attacks is that user’s selection from the warning mes-

sages takes real effect on the state of the phone.

Setting UIs: 67 activities of the system setting application are exposed to third-

party applications in our findings. These activities include setting User Interfaces

(UIs) for security (lock screen, encryption, credential storage and device adminis-

tration), privacy (factory reset, restore and backup), developer options, Bluetooth,

Near Field Communication (NFC) payment, Wi-Fi, location, sound, USB, and sys-

tem notification. An attacker may launch these interfaces at any time without re-

questing for any permissions.

Others: Several hidden features can be launched using unprotected action

strings. An example is the colour correction setting. When this activity is launched,

the exploited interface states that this colour correction feature is experimental and

may affect the performance of phones. Another attack is to launch the mobile emer-

gency alert setting page, which lists the threats to life and property (e.g., robbery)

around the area. Other unprotected activities includes the Wi-Fi network choosing

interface, the brightness setting interface, the wallpaper setting interface, the live

53

wallpaper choosing interface, and the downloaded file interface.

Service Hijacking

From Android 5.0 and above, only explicit intents with clearly stated package names

can be used for binding services. Consequently, an attacker cannot launch any ser-

vice hijacking attacks by simply declaring similar services with the same action

strings as those of system applications’ services.

Malicious Service Launch

There are two steps involved in launching the malicious service launch. An attacker

first binds the services exposed from system applications and then invokes the meth-

ods inside. We discover that an attacker can successfully bind 15 services of system

applications, including 14 services from Bluetooth system applications and one me-

dia service. An attacker may search for the class names of the exposed services in

AndroidManifest.xml files of system applications, and use their class names

for binding with explicit intents. After binding, however, an attacker cannot invoke

any exposed methods from these services, because these methods are well-protected

inside the source code of services. For instance, the methods from the Bluetooth

system application are protected by the android.permission.BLUETOOTH

and android.permission.BLUETOOTH ADMIN permissions. Therefore, an

attacker cannot launch any useful attacks by simply invoking these exposed meth-

ods.

3.4.3 Dynamically Registered Broadcasts

We show that several broadcast theft and malicious broadcast injection attacks can

be launched by exploiting unprotected dynamically registered broadcasts.

54

Broadcast Theft

Similar to the broadcast theft attacks to system applications, an attacker may steal

user information from unprotected dynamically registered broadcasts. We discover

that an attacker is able to obtain network and Wi-Fi information, tether state, air-

plane mode, NFC state, SIM card state, phone service state, subscription state,

GSM/CDMA strength, location mode, volume, USB state, and power state. A

detailed description about the information leakage due to broadcast theft is given

in Table 3.3. Although some of the leaked information seems benign, much use-

ful information can be inferred from it. For example, location information can

be inferred from Wi-Fi data and GSM/CDMA strength [64]. Users’ payment and

travel behaviours may be inferred from NFC state and airplane mode. Users’ sleep-

ing patterns can be inferred from USB state and power state [41]. We discover

that some information is available to an attack application without any permis-

sions, even though it is stated in Android API documentation that such informa-

tion must be protected by permissions. For instance, according to Android API

documentation, network and Wi-Fi information should be protected by permis-

sion android.permission.ACCESS NETWORK STATE; the SIM card state,

phone state, and GSM/CDMS signal strength information should be protected by

permission android.permission.READ PHONE STATE. This shows that dy-

namically registered broadcasts leak a lot of information to third-party applications,

and platform providers should take additional steps to protect these broadcasts.

Malicious Broadcast Injection

An attacker may broadcast false information via malicious broadcast injections. We

discover that intended receivers of these unprotected broadcasts are third-party ap-

plications or vendor-customized system applications. However, they are excluded

from our study, as we focus only on Android framework as the attack target. Thus,

although we have confirmed that an attacker can send these broadcasts, further anal-

55

ysis is required to study the impact of the attacks to third-party applications and

vendor-customized system applications.

We discover that an attacker may send false commands for mu-

sic applications, such as “next”, “pause”, “previous”, and “tog-

gle pause”. The exploited action strings in this attack in-

clude com.android.music.musicservicecommand.next,

com.android.music.musicservicecommand.pause,

com.android.music.musicservicecommand.previous, and

com.android.music.musicservicecommand.togglepause.

Moreover, an attacker may send malicious information about the status of cur-

rently running music, such as its metadata, play state, and queue state. The

exploited action strings include com.android.music.metachanged,

com.android.music.playstatechanged, and

com.android.music.queuechanged broadcasts. We also discover that

an attacker may send broadcast android.security.STORAGE CHANGED.

This broadcast is triggered when (i) a new Certificate Authority (CA) is added,

(ii) an existing CA is removed or disabled, (iii) a disabled CA is enabled, or

(iv) the trusted storage is reset. This attack may cause serious problems to the

receiving applications that act according to the received broadcasts. Moreover, an

attacker may maliciously broadcast user log-in account, NFC state, data connec-

tion state, and emergency callback mode changes. The exploited action strings

in these cases are android.accounts.LOGIN ACCOUNTS CHANGED,

android.nfc.action.ADAPTER STATE CHANGED,

android.intent.action.PRECISE DATA CONNECTION STATE CHANGED

and android.intent.action.EMERGENCY CALLBACK MODE CHANGED.

56

3.5 Attacking a Different Version

We apply our study to AOSP version 4.4.4 r1, and compare to what we have discov-

ered on AOSP version 5.1.0 r1. We discover the differences in terms of unprotected

APIs and viable attacks on these two versions. The attacks on version 4.4.4 r1 have

been reported to the Google’s security team, and most of them have been mitigated

in version 5.1.0 r1. Even so, we still discover more unprotected APIs and new at-

tacks in version 5.1.0 r1, which have also been reported to Google. This implies

that the ad-hoc effort in mitigating the reported attacks is not sufficient, and system-

atic analysis would be helpful for platform developers to analyze unprotected APIs

and improve the security of new AOSP versions.

3.5.1 Retrieving Unprotected APIs

We discover 79 system services and 69 system applications on AOSP version

4.4.4 r1. Compared to AOSP version 5.1.0 r1, we have 10 less system services,

and the same number of system applications. Some system services, such as the fin-

gerprint service and the web-view update service are not included in AOSP 4.4.4 r1.

Our analysis reveals 557 unprotected APIs from AIDL interfaces of system services,

which count for 34.77% of all 1,602 public methods on AOSP version 4.4.4 r1.

There are 88 unprotected unique broadcast action strings (150 instances), 165 un-

protected activity action strings (394 instances) and 18 unprotected service action

strings (30 instances) from system applications in our results. It is also discovered

that 47 out of total 114 dynamically registered broadcasts in the source code of sys-

tem services are unprotected, and 124 out of 171 dynamically registered broadcasts

in source code of system applications are unprotected. Compared to AOSP 5.1.0 r1,

the number of unprotected APIs is smaller. This result is alarming, since it indicates

that more unprotected APIs are introduced to the framework as new APIs are added

in the later version.

57

3.5.2 Attacking without Permissions

Our attacks on AOSP previous version 4.4.4 r1 can be summarized as follows.

Denial-of-Service Attacks

By exploiting a single unprotected API, Content.cancel Sync(), an attacker

may launch denial of service attacks on the synchronization of all content providers.

This synchronization API is used for transferring data between an Android device

and web servers. We discover that on Nexus 5, an attacker may block the syn-

chronization of Gmail, Google Calendar, Google Drive, Google Note, Chrome and

etc. By doing so, the attacker can prevent users from receiving new emails, even

when users manually click on “refresh” in email apps. An attacker may also pre-

vent synchronizing new calendar events with users’ desktop computers, receiving

newly shared google drive documents, and synchronizing Google notes, synchroniz-

ing Chrome’s bookmarks, history, tabs, passwords, extensions and many browser-

related information. Moreover, we discover that other popular applications, includ-

ing Dropbox, Twitter, Facebook, Skype and Mozilla Firefox, also use the synchro-

nization API Content.cancel Sync(). For instance, Skype uses the API for

synchronizing contact information, while Firefox uses it for synchronizing book-

marks, history, tab and password information. Thus, their synchronization functions

can be deferred by an attacker.

Other Attacks

An attacker may send notifications to users, set car mode (which is used to open

speaker directly from calls), set night mode (which allows the OS to intelligently

change the color theme depending on the time of day), wake up the device at certain

time (without the wake-lock permission), and set the screen-off time. Moreover, an

attacker may obtain a variety of valuable information from users’ devices, including

what password salts are used, whether users set security for lock screen, whether

58

users use passwords, pins or pattern locks for log-in, whether the lock screen is on

or off, and whether the screen is turned on. Moreover, a false system notification

can be sent to show that devices have entered into the emergency callback mode.

3.6 Discussions

Our research reveals many attacks that can be launched by applications with no

permissions. This discovery is important, because a significant portion of Android

security research focuses on applications that have permissions, and no one has

looked into the unprotected resources, which are easily accessible without permis-

sions. Many of our attacks, after being reported twice for two versions, have been

acknowledged and fixed by the platform provider. This shows that our analysis

on unprotected APIs is necessary in improving the security of Android framework.

Note that we do not suggest to reclassify and protect all the corresponding resources

that are attacked in this work. The reason is that protecting all resources may de-

grade the usability of the framework. For example, usability researchers state that

too many permission requests may cause users to grant permissions without careful

considerations [28]. Therefore, while we highlight the security flaws of unprotected

APIs in this work, we believe that an optimal defense mechanism should consider

not only the security and privacy aspects but also the flexibility and usability aspects

of the framework. Coming up with an optimal solution for this problem is not trivial

and requires involvement from both research and industry communities. Thus, we

leave it as future work to find various ways of protecting the currently unprotected

resources without degrading other aspects of the framework. In the meantime, we

suggest platform providers to systematically analyze unprotected APIs before re-

leasing new versions, so that similar attacks are prevented in the future.

We identify three ways in which our analysis of Android APIs can be improved

and used as a commercial vulnerability analysis tool. First, our work focuses only

on detecting unprotected APIs and exploiting them for attacks. Thus, a natural

59

step forward is to determine whether an unprotected API is indeed vulnerable by

analyzing the nature of the API source code. Second, platform providers may con-

sider analyzing other types of unprotected APIs, such as callback methods, listeners

and class fields. Callback methods and listeners provide alternative ways of inter-

process communication, and they may expose some vulnerabilities from Android

APIs. Third, platform providers may consider a more advanced adversary, which

possesses certain privileges or permissions. Such adversary may be categorized ac-

cording to its permission level, such as normal, dangerous, signature, and

signatureOrSystem, and/or according to the types of Linux users associated

to privileges, such as root, system, keystore, media, nobody, wifi, and

u0 a86. A more advanced adversary would lead to more serious attacks.

3.7 Related Work

The mapping between API calls and permission checks on Android has been inves-

tigated in prior research, including Stowaway by Felt et al. [27], COPES by Bartel

et al. [9] and PScout by Au et al. [6]. Our work is different from these works in

that they focus on permission usage, while our work focuses on unprotected APIs

and potential exploits. Besides permission checking, we also consider Linux ID

checking in our analysis.

The topic of system-level vulnerabilities in Android framework has been studied

before. DexDiff by Mitchell et al. [61] investigates the vulnerabilities in vendor-

customized frameworks by comparing them with the official Android systems in

binary analysis. ADDICTED by Zhou et al. [102] performs the analysis of vendor-

customized components. In particular, it identifies critical Linux files and compares

their protection levels in terms of Linux file permissions between customized frame-

work and AOSP. If a file is less protected on customized framework, then it is more

likely to be attacked. This line of works focuses on the vendor-modified components

of Android frameworks, while we focus on unprotected APIs and their exploits in

60

Android frameworks. Similarly, Wu et al. [87] study vendor customizations of sys-

tem applications. They discover that the vendor-customized applications are vulner-

able to permission re-delegation attacks, confused deputy attacks, passive content

leak attacks, and content pollution attacks. Another way of Android vulnerability

analysis is performed by Yang et al. in IntentFuzzer [90] and Ye et al. in Droid-

Fuzzer [93]. They automatically construct intents and use brute force to discover

vulnerabilities. However, as stated in IntentFuzzer, their research does not pene-

trate deep into application logic nor uncover interesting bugs for launching serious

attacks. Kratos [78] also uses call graph analysis to find vulnerabilities in Android

framework. However, it focuses on the inconsistencies of security checking, while

our work focuses on APIs without any security checking.

Vulnerable components of third-party applications have been investigated be-

fore. ComDroid by Chin et. al. [15] analyze the inter-application communications

among third-party applications so as to identify vulnerable components of third-

party applications. We use a similar threat model in our analysis and apply it on

system applications. Wu et al. [86] use the reachability analysis to identify and cat-

egorize such vulnerabilities. Another work, EPICC, by Octeau et al. [68] show that

over 93% of third-party applications contain vulnerable components. To exploit the

vulnerable components, Li et al. [51] propose an approach which can automatically

generates an attack application. In comparison to these works, part of analysis in

our research focuses on intent-based vulnerabilities of system services and system

applications, rather than third party applications. On the other hand, a line of work

focuses on how to prevent attacks from exploiting vulnerable components of third-

party applications. For example, CHEX by Lu et al. [55] mitigates such attacks by

statically vetting third-party applications. AppSealer by Zhang and Yin [94] focuses

on how to generate security patches automatically so as to prevent the intent-based

attacks to vulnerable components of third-party applications. Oh et al. [69] propose

a solution to address the denial of service attacks on ordered broadcast intents.

Another line of work focuses on how to better manage the security of Android

61

frameworks. Heuse et. al [42] survey different research solutions related to An-

droid access control mechanisms and propose a new general programmable inter-

face, called Android Security Module (ASM), which can be used for managing

access control policies. Likewise, Backes et al. [7] propose an Android Security

Framework (ASF), in which the access control policies for Android APIs can be

modified or extended easily by enterprises or security experts without modifying

the framework. Complementary to these works, our work focuses on unprotected

APIs and potential attacks, which could be mitigated by placing appropriate access

control mechanisms.

3.8 Conclusions

In this chapter, we show how an attacker, which is a third-party application without

any permissions, can attack Android smartphone systems by exploiting various un-

protected Android APIs, including unprotected AIDL interfaces of system services,

unprotected components of system applications, and unprotected dynamically reg-

istered broadcasts. The attacks we discover include blocking Bluetooth and email

services, controlling audio functions, stealing valuable device information, and hi-

jacking system activities and broadcasts. The result of this work suggests that An-

droid platform providers should carefully analyze the exposed APIs, and mitigate

any identified attacks. We envision that with more features added to Android de-

vices, larger source code sizes of Android frameworks, and faster paced releases of

Android versions, such analysis and mitigations are much needed to achieve better

security in Android system development.

62

Chapter 4

Dissecting Policy-Violating

applications: Characterization and

Detection

4.1 Introduction

Google Play store is infected with various types of bad applications, including

malware applications, privacy-violating applications, and repackaged applications.

Google has been trying to take down these applications everyday with the help of

anti-malware technologies, such as Google Bouncer, and inputs from researchers

and users. Previously, researchers have tried to understand malware applications’

behaviors by painstakingly collecting real-life malware application samples [103].

They have also proposed various prevention or detection techniques for malware

applications [36] [1] [72], privacy-preserving applications [92] [106] [91] [88] [58]

[82], and repackaged applications [96] [101] [79] [14] [33] [98]. However, many

applications behave in a manner that is undesirable, and yet less serious than these

applications. For instance, some applications redirect users to share about the appli-

cations on Facebook page. Some are spams. Some applications simply lack proper

functionalists and qualities. These applications violate Google Play developer poli-

63

cies but little has been discovered about the overall picture of these applications.

Therefore, we attempt to answer the following questions in our paper: What cate-

gories of bad applications are the most common ones on Google Play store? What

characteristics and behaviors make them reported by users and removed from the

market? Can the existing anti-virus solutions be used in detecting them?

Our paper makes the following contributions: (1) We collect a set of real-life

applications that are reported by users, and later taken down by Google Play store.

The lack of sample set has been deterring researchers from creating solutions and

evaluating their effectiveness. Our collection of real-life bad applications can serve

as a baseline for various future analysis and research (2) We perform extensive

empirical analysis on the application samples we collected. Comprehending and

characterizing these applications is the first step towards designing defense mecha-

nisms against them. Our empirical analysis provides answers to various questions

left unanswered by previous research (3) We use machine learning approach to de-

tect the collected application samples. Although machine learning algorithms have

been commonly applied for malware applications detection, different feature sets

are required for detecting our application samples due to their unique characteris-

tics and behaviors. In our paper, we also figure out whether the existing anti-virus

solutions can effectively detect these policy-violating applications.

First, we build an automated crawler, which collects real-life applications that

violate Google Play developer policies. Google enforces these policies to maintain

quality and health of mobile ecosystem as well as to provide great experience for

mobile users. Our crawler crawls the posts from Reddit forum under Bad applica-

tion category every 5 minutes. It obtains the links of reported applications from the

posts and immediately downloads them from the Google Play store. After 3 months

of automated crawling, our crawler follows the same links again and checks if the

bad applications are indeed removed from the official Google Play store. In this

way, we are able to collect 302 bad applications that are reported and removed from

the Google Play store.

64

Second, we perform extensive empirical analysis on the application samples we

collected. Out of 302 crawled applications, we discover that 161 applications vi-

olate intellectual property rights of other applications or brands. The most copied

applications include Bejeweled Blitz, Candy Crush, Mine Craft, Angry Bird Rio,

Flappy Bird, Hay Day, Fruit Ninja, Subway Surf, Construction City, Sonic Dash,

Gangster Vegas, and Grand Theft Auto. The most copied trademarks or brands in-

clude Pikachu, Adobe, Pou, Mario, Disney, Mickey, Minion, Counter Strike, and

Despicable Me. The violation normally takes place in applications’ titles, descrip-

tions, icons or screen-shots. We discover that 79 of them use similar titles, 76 use

screen-shots that are different from in-app screen-shots, and 73 use mis-leading

descriptions that are different from applications’ actual functions. Many reported

bad applications use misleading keywords, such as 2, II, Demo, Free, Pro, 3D, and

HD, claiming that they are an enhanced version of original applications. Moreover,

we discover 67 applications that claim to contain certain functions but actually do

nothing. They include fingerprint scanner applications, flash light applications, font

applications, wallpaper applications, bluetooth applications, volume boosters, wifi

boosters, and mp3 downloaders.

Among the crawled applications, 147 applications violate ad policies. We dis-

cover 70 applications with ads that simulate the user interfaces of the applications,

54 applications that modify browser settings or add homescreen shortcuts on the

users’ device as a service to third parties or for advertising purpose, 34 applications

that show ads outside the applications, 17 applications from which users cannot dis-

miss their ads without penalties or inadvertent click-throughs, and 10 applications

that display ads through system level notifications. Our analysis shows that the most

common violating ad libraries include startapp, inmobi, umeng, ironsource and ac-

tionbarsherlock. Moreover, we discover that 30 applications redirect users to install

other applications from Google Play store or third-party markets, 16 applications

violate Youtube policies by downloading videos from Youtube, and 9 applications

download unwanted mp3 files. We also discover 2 applications which are automat-

65

ically created by wizard services, and another 2 applications which offer incentives

to rate the applications.

Third, we apply machine learning algorithms for detecting such misbehaving

applications. To test the effectiveness of our detection, we apply it on 302 real-life

policy-violating applications that we collected and 326 benign applications from

Google Play store. We extract 175 features from the applications’ use of brand

names and keywords, third-party libraries, network activities, meta data, permis-

sions, and misbehaving API calls that are originated from third-party libraries. We

input the extracted features into 10 machine learning classifiers for differentiating

policy-violating applications from benign applications. Three-fold cross validation

is performed, where two-third of our data set is used for training and one-third of

our data set is used for testing. The experimental results show that our detection

algorithm can effectively detect bad applications with 86.80% true positive rate and

13.6% false positive rate. We also test our samples with VirusTotal [84], which

scans the submitted applications with existing 57 anti-virus solutions. We assume

that VirusTotal can detect a policy-violating application as long as one of its anti-

virus software reports it as bad. In this way, we discover that the true positive rate of

VirusTotal is 55.63% and its false positive rate is 17.48%. In terms of individual per-

formance, the best anti-virus solution of VirusTotal can detect the policy-violating

applications with the true positive rate of 36% only. Our research shows that despite

the efforts of industry and research communities in application market regulation,

the problem of policy-violating applications is still prevalent and requires attention

from both industry and research communities.

The rest of the paper is organized as follows. Section 4.2 clarifies our data

collection process. Section 4.3 provides our empirical analysis and findings. Sec-

tion 4.4 describes the details of our detection mechanism, and Section 4.5 discusses

the experiment results. Section 4.6 summarizes the related work and Section 4.7

concludes the paper.

66

4.2 Data Collection

In this section, we describe how we collect policy-violating application samples.

These samples are very useful for analyzing the applications’ behaviors and con-

sequently for designing defense mechanisms and evaluating them. However, ob-

taining a set of policy-violating applications is not trivial. There are two challenges

to it. The first challenge is noticing what applications are violating Google play

policies, because users’ reports to Google Play store are not available to the public.

To solve this, we seek to a public forum, Reddit, for such application reports by

users. The second challenge is that there is a small time frame to crawl or download

policy-violating applications from Google Play, once the report has been made. To

solve this, we develop an automated crawler for downloading bad applications and

creating a database of bad applications. We plan to make the dataset available to the

public, after this paper is published.

To find users’ reports, we first crawl posts from Reddit forum under the

https://www.reddit.com /r/Badapplications URL. This URL is a

subReddit (i.e. sub-forum) used to report inappropriate applications to Google. The

description of the subReddit is as follows. “A subreddit to discuss and coordinate

reporting bad applications to the Google Play Store. Note: A bad application refers

to applications that are fake, pretending to be from different developer, harmful, are

there just to serve annoying ads to you, or steal your info. An application that is just

poorly made should not be posted here, they are fine.” Reddit provides Application

Programming Interfaces (APIs) for various functions, including messaging, editing

posts and reading posts. The returned objects are in JavaScript Object Notation

(JSON) format. We develop a Python crawler, which checks the BadApp subReddit

forum every 5 minutes for latest users’ posts and comments. Once we find a new

link of reported app, we crawl the applications’ metadata, as well as Android Ap-

plication Package (APK) files from the Google Play store. The crawling continues

for over 3 month period. After that, we check the same links of the applications

67

again, and see if they are indeed removed from the Google Play store. In this way,

we crawl about 302 policy-violating applications.

The second set of our data is benign applications from Google Play store. We

randomly download 326 benign applications, which exist for at least 3 months from

the Google Play store with an unofficial Python API.

4.3 Empirical Analysis

In this section, we perform empirical analysis on our bad application samples and

explain our findings on their characteristics and behaviors. To understand their be-

haviors, we first put the Google Play’s developer policies into four main categories:

(1) intellectual property and deception, (2) monetization and ads, (3) spam, store

listing and promotion, and (4) security and privacy. Although restricted content,

such as sexually explicit content and violence, are parts of Google Play policies, we

do not find any applications violating these policies. Table 4.1 shows the results of

our empirical analysis. We discover that more than half of bad applications are vio-

lating copy-rights or trademarks and about half of bad applications are violating ad

policies. Many applications show several other bad behaviors, such as spamming,

violating Youtube policies and downloading external files. The most common types

of policy violations are (i) applications that use similar title to branded applications,

(ii) applications that use photos or screenshots from other brands, (iii) applications

that provide misleading description, (iv) applications that have little or no functions,

and (v) applications that hold ads simulating the user interfaces.

Category Policy Violating Behaviors No of
apps

Icon
(Copy-right)

Same as the icon of original app 4
Similar to the icon of original app 15
Violates copyright or trademark of original app (e.g.
copying title, screenshots, in-app real screenshots of
original app)

52

Violates copyright or trademark of other brands or
websites

32

68

Title
(Copy-right)

Same as the original app 3
Similar to the original app 79
Violates copyright or trademark of other brands or
websites

35

Screenshot
(Copy-right)

Same as the original app 35
Similar to the original app 4
Violates copyright or trademark of original app (e.g.
copying title, in-app real screenshots)

39

Violates copyright or trademark of other brands or
websites

38

Different from the real in-app screen 76

Description
(Copy-right)

Same as the original app 5
Similar to the original app 36
Violates copyright or trademark of original app (e.g.
including other apps brand names)

41

Violates copyright or trademark of other brands or
websites

38

Different from actual function (Misleading descrip-
tions)

73

Irrelevant and excessive keywords in apps descrip-
tions

22

Function
(Copy-right)

Very little or no function (e.g. blank page or a video
keeps playing)

67

Same as the original app 6
Similar to the original app 5
Violates copyright or trademark of original app (e.g.
including other apps resources)

7

Violates copyright or trademark of other brands or
websites

19

The apps primary function is to reproduce or frame
someone elses website (i.e. web-view of anther
website)

19

Ads

Ads simulate or impersonate the user interface of
any app

70

Ads are displayed outside the app (Ads simulate or
impersonate UI notification and warning elements of
the operation system)

34

Displays advertisements through system level noti-
fications (Push notifications)

10

Users cannot dismiss the ads without penalty or in-
advertent click-through (e.g. exit ads)

17

Modifies or adds browser settings or bookmarks,
adds homescreen shortcuts, or icons on the users de-
vice as a service to third parties or for advertising
purpose

54

Spams
Created by an automated tool or wizard service and
submitted to Google Play by the operator of that ser-
vice on behalf of other persons

2

Offer incentives for rating 2

69

Others

Violates Youtube policies 16
Automatically redirects users to install other apps
(including other third-party market apps) from
Google Play

30

Includes buttons in apps to download other apps
from Google Play

49

Forces users to download files or install apps from
sources outside of Google Play

25

Downloads unwanted mp3 files 9
Table 4.1: Empirical Analysis on Policy Violations

Intellectual Property Right Violations

The first five categories of policy-violating behaviors in Table 4.1 are related to copy-right

or trademark violations. Copying may occurs in five places of bad applications: icons,

titles, screenshots, descriptions or functions. An interesting finding is that more copying

applications make their icon, title and descriptions similar to those of original applications,

instead of copying the exact features. Further analysis shows that reported applications tend

to use the keywords, such as 2, II, Demo, Free, Pro, 3D, and HD, in their titles claiming

that they are an enhanced version of original applications. Moreover, we discover that

more bad applications make their icons from the screenshots included in the metadata of

original applications or in-app real screenshots of original applications. However, many

of them use the same screenshots that as the original applications. These findings have

several implications for detecting applications that violate intellectual property rights. For

instance, similarity scores between icons of copying applications, and screenshots of copied

applications should play an important role in detecting such applications. We also discover

that many of them uses screen-shots that are different from in-app screen-shots and mis-

leading descriptions that are different from applications’ actual functions. This suggests

that if we can find discrepancies in these bad applications, we will be able to detect them

well.

We discover that there exist not only applications which copy other original applications

but also applications which violate the copy-rights or trademarks of other brand or websites.

For instance, some applications include intellectual properties of Pokemon or Play Station

although these original companies do not have any related applications in the Google Play

70

store. We further analyze applications and brands that these bad applications normally copy.

They include Bejeweled Blitz, Candy Crush, Mine Craft, Angry Bird Rio, Flappy Bird, Hay

Day, Fruit Ninja, Subway Surf, Construction City, Sonic Dash, Gangster Vegas, and Grand

Theft Auto. The brands or trademarks that are violated include Pikachu, Adobe, Pou, Mario,

Disney, Mickey, Minion, Counter Strike, and Despicable Me.

Interestingly, we only find 11 repackaged applications whose functions are exactly the

same or similar to original applications. This shows that although bad applications are one

of the main distribution channels of malware, they are only a small portion of entire policy-

violating applications. applications that claim to contain some functions but actually doing

nothing include fingerprint scanner, flash light applications, font applications, wallpaper

applications, bluetooth applications, volume boosters, wifi boosters, MP3 downloaders, and

other music downloaders. The primary functions of some bad applications are to redirect

users to other websites. We also find 22 applications which use irrelevant and excessive

keywords in application descriptions. For example, some font applications use “Samsung

Galaxy” keyword extensively in their descriptions to direct mobile users to their applications

during the search. Such applications mostly reduce the quality of the application market.

Ad Policy Violations

The past studies on ad libraries have been focusing on privacy issues, such as phone ID

and location collection by ad libraries. However, our empirical analysis results show a

different set of policy-violating ad libraries. Our data set includes 70 applications with ads

which simulate or impersonate user interfaces of the applications. We also discover 54 ad-

policy violating applications that modify browser bookmarks or add homescreen shortcuts

on users’ mobile phones. Moreover, we find 34 applications, which display ads outside the

applications using warning elements of Android. We also discover 17 applications where

users cannot dismiss ads without penalty or inadvertent click-through and 10 applications

where ads are sent via system notifications.

The most common policy-violating ad libraries are Start App, Inmobi, Umeng, and

IronSource. Start App library shows interstitial ads, splash ads, exit ads, native ads and re-

ward ads. Inmobi ad library includes interstitial ads and native ads. Umeng ad library sends

71

ads via system notification bar, downloads and requests installation of new applications, and

send information to a remote location about currently running applications, installed appli-

cations, and device information such as International Mobile Station Equipment Identity

(IMEI), kernel version, phone manufacturer, phone model details, location (such as GPS

coordinates, cell tower location), and network operator information. Ironsource library dis-

plays native ads and video ads.

In addition to ad libraries, we discover other common types of libraries among

bad applications, including (i) com.unips, which provide live wallpaper adware, (ii)

com.monotype, which claims to provide free font, (iii) com.rahul, which provides

Youtube downloader, (iv) com.unity3d and org.andengine, which are game de-

veloping libraries, and (v) io.card credit card scanning library under the URL https:

//github.com/card-io/card.io-Android-SDK.

Spams

Some applications violate policies by applying automated application creation tools, such

as https://www.applicationsgeyser.com/, or offering incentives for rating the

applications. We find only 2 applications in each category. Despite this small number,

we notice during crawling that some Reddit-forum users report developers who are spam-

ming the market by creating hundreds of similar applications. Studying these spammers

requires different kind of analysis on developer accounts in addition to applications them-

selves. Thus, we leave them as future work.

Others

We discover other applications that misbehaves, but Google’s developer policies do not

cover. They include applications that violate Youtube policies, redirect users to other ap-

plications, and force users to download unwanted files. We discover that 25 applications

force users to download mobogenie.apk file, which enables control from a remote com-

puter. Mobogenie may also be used to download applications, images, videos or music

to mobile phones, manage SD cards, create backups on computer, and edit phone con-

tacts. We find 30 applications, which redirect users to spearmintbrowser.com, which

72

https://github.com/card-io/card.io-Android-SDK
https://github.com/card-io/card.io-Android-SDK

claims to provide AdBlock and build-in Flash support features. We also discover 10 ap-

plications, which download APK file named as flash player, 80 bad applications, which

redirect users to download other applications from Google play and other third-party mar-

kets, and 12 applications, which connect to and grab data from Youtube. Many applica-

tions also access mobile users’ accounts by obtaining authentication tokens: 118 applica-

tions access to Google account, 8 to PayPal account and 24 to Twitter account. Moreover,

we find out that 29 bad applications attempt to share posts on users’ Facebook account

using URLs, such as https://m.facebook.com/dialog/feed?app id={0}&link={1}&picture=

{2}&name={3}&description={4}&redirect uri={5}.

4.4 Detection

Our detection includes two steps: (1) extracting typical features from both bad applications

and benign applications and (2) applying selected machine learning algorithms to detect bad

applications. The detection can be performed by either security researchers or Google Play

Store managers for vetting submitted applications before they are officially released.

4.4.1 Feature Extraction

Classes Methods
android.app.NotificationManager notify()
android.app.AlertDialog.Builder show()

android.widget.Toast show()
android.provider.Browser saveBookmark()
android.provider.Browser sendString()
android.content.Context startActivity()

android.net.Uri parse()
java.lang.ClassLoader loadClass()

java.lang.Class forName()
java.lang.Class getDeclaredMethod()
java.lang.Class getMethod()

java.lang.reflect.Method invoke()
dalvik.system.PathClassLoader init()
dalvik.system.DexClassLoader init()

dalvik.system.DexFile loadDex()

Table 4.2: APIs Used as Features in our Detection

73

https://m.facebook.com/dialog/feed?app_id={0}&link={1}&picture={2}&name={3}&description={4}&redirect_uri={5}
https://m.facebook.com/dialog/feed?app_id={0}&link={1}&picture={2}&name={3}&description={4}&redirect_uri={5}

We extract six groups of features from mobile applications, including the use of brand

names, third-party libraries, network activities, meta data, permissions, and API calls. The

features can be grouped into two. The first category includes features derived from our

empirical findings, such as popular brands or application names, network activities and

third-party libraries. The second category is based on behavior-based features, such as per-

mission and API-based features. Our feature extraction is implemented in Python, and

detection algorithms are run in Java. In particular, Androguard library [21] is used to

reverse engineer the application codes, and extract the information about third-party li-

braries, network activities, permissions and API calls. To obtain third-party libraries, we

first use the dx.get tainted packages().get packages() method of Andro-

guard to obtain package lists from applications and then, we exclude the package names

of the applications. To analyze the network activities, we first obtain the String values of

APK files via the d.get strings() method, and then, filter out the values starting with

“http://” or “https://”. For searching the API calls from third-party libraries, we

apply dx.tainted packages.search methods() method, and determine whether

they are originated from application source codes or third-party libraries’ source codes.

Use of Brand Names and Other Keywords

We blacklist a list of popular brands and application names that we have obtained from our

empirical analysis. Each brand name represents a feature for our detection. We also include

other keywords, such as 2, II, Demo, Free, Pro, 3D, and HD as features. Overall, we use

the following 56 words as features in our detection: ’flash’, ’light’, ’bejeweled’, ’blitz’,

’wAsk’, ’racing’, ’live’, ’wallpaper’, ’construction’, ’city’, ’studio’, ’candy’, ’bluetooth’,

’free’, ’game’, ’sniper’, ’crime’, ’craft’, ’mine’, ’pikachu’, ’font’, ’farm’, ’app’, ’video’,

’download’, ’tube’, ’pou’, ’gangster’, ’bird’, ’flappy’, ’subway’, ’surf’, ’dash’, ’grand’,

’theft’, ’sonic’, ’rio’, ’ninja’, ’demo’, ’pro’, ’3D’, ’2’, ’II’, ’hay’, ’day’, ’flv’, ’adobe’, ’in-

stall’, ’despicable’, ’font’, ’galaxy’, ’monotype’, ’volume’, ’boost’, ’mp3’, and ’music’.

74

Third-Party Libraries

We blacklist the following 16 third-party ad libraries that are shown to include aggressive

ad behaviors: ’startapp’, ’inmobi’, ’umeng’, ’ironsource’, ’actionbarsherlock’, ’millennial-

media’, ’adsdk’, ’revmob’, ’chartboost’, ’fmod’, ’furry’, ’mobclix’, ’appflood’, ’tapjoy’,

’jirbo’, and ’squareup’. The presence of each library is regarded as one feature in our detec-

tion.

Network Activities

We maintain the following 20 blacklisted servers, and determine whether applications

connect to them in their APK files: ’admob’, ’gstatic’, ’startappexchange’, ’ad-market’,

’search-results’, ’inmobi’, ’umeng’, ’googleapis’, ’akamaihd’, ’applicationsdt’, ’spearmint-

browser’, ’mobilecore’, ’avazutracking’, ’cloudfront’, ’youtube’, ’rightyoo’, ’iron’, ’scm-

pacdn’, ’airpush’, and ’ytimg’.

Meta Data

From the metadata of an app, we extract the number of downloads, the app’s APK file

size, the number of ratings, the average star rating, the number of users rating one star, the

number of users rating two star, the number of users rating three star, the number of users

rating four star and the number of users rating five star. Thus, the meta data contribute 9

features for our detection.

Permissions

We use the the following 20 permissions as features in our detection. The first six per-

missions are derived from our empirical analysis of bad applications, which shows that

many reported applications ask for credentials, contact list and hardware control, such as

camera, audio or video. The next six permissions, such as INSTALL SHORTCUT and

WRITE HISTORY BOOKMARKS, are relevant to adware behaviors. The rest of the permis-

sions, such as BILLING and SEND SMS, are relevant to malware behaviors.

• android.permission.USE CREDENTIALS

• android.permission.READ CONTACTS

75

• android.permission.RECORD AUDIO

• android.permission.CAMERA

• android.permission.CAPTURE VIDEO OUTPUT

• android.permission.CAPTURE SECURE VIDEO OUTPUT

• android.permission.ACCESS FINE LOCATION

• com.android.launcher.permission.INSTALL SHORTCUT

• android.launcher.permission.INSTALL SHORTCUT

• com.android.browser.permission.READ HISTORY BOOKMARKS

• com.android.browser.permission.WRITE HISTORY BOOKMARKS

• android.permission.WRITE SETTINGS

• android.permission.INTERNAL SYSTEM WINDOW

• android.permission.BILLING

• android.permission.SEND SMS

• android.permission.CALL PHONE

• android.permission.PROCESS OUTGOING CALLS

• android.permission.INSTALL PACKAGES

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.WRITE EXTERNAL STORAGE

API Calls

We identify 15 API calls that are required to complete specific behaviors of bad applications.

Table 4.2 shows the list of API calls used in our detection. The first six API calls are required

for adware behaviors, such as sending ads as notifications and changing browser settings.

The rest of the APIs are used for Java reflection and dynamic code loading, since they

are normally used by malicious applications to avoid being detected in static analysis. We

extract 3 features from each API calls: presence of identified API calls, number of calls and

whether the class files making the API calls are obfuscated. In total, we extract 45 features

from API calls.

76

Others

There are other 4 types of features that we use for our detection. The first feature is whether

the applications import cryptographic package javax.crypto because many malicious

applications are known to encrypt and decrypt their codes. Another feature is whether the

application files overwrite the onBackPressed() method, since this API is called by

applications with exit ads. We also determine whether the APK codes include suspicious

strings, such as com.android.launcher. action.INSTALL SHORTCUT, since

homescreen shortcuts may be added via intents with the above action strings. The final

feature is whether applications include any string literals ending with “.apk”, because many

bad applications force users to download and install external APK files. Similar to API

calls, we derive 3 types of information for each feature: presence of identified API calls,

number of calls and whether the class files making the API calls are obfuscated

Algorithm True Positive False Positive Precision Recall F-Measure
Naive Bayes 0.780 0.216 0.785 0.780 0.780

Logistic regression 0.774 0.228 0.774 0.774 0.774
SMO 0.868 0.136 0.871 0.868 0.867

Lazy-Ibk 0.828 0.177 0.833 0.828 0.827
Random Committee 0.855 0.148 0.857 0.855 0.855

Decision Table 0.750 0.256 0.754 0.750 0.748
PART 0.812 0.190 0.812 0.812 0.812

J48 0.815 0.188 0.817 0.815 0.815
LMT 0.854 0.151 0.857 0.854 0.853

Random Forest Tree 0.852 0.152 0.855 0.852 0.851

Table 4.3: Evaluation of Our Detection Algorithm

4.4.2 Detection

We apply 10 commonly used machine learning classifiers using Weka library [38]. The

classifiers include Naive Bayes, Logistic, Sequential Minimal Optimization (SMO), Lazy-

Ibk, Random Committee, Decision Table, Decision Part, J48, Logistic Model Tree (LMT),

and Random Forest Tree. Naive Bayes is a family of simple probabilistic classifiers based on

the Bayes’ theorem. Logistic classifier applies the regression model, SMO applies Support

Vector Machines (SVM), and Lazy - Ibk classifier applies K-nearest neighbours algorithm.

77

Figure 4.1: Detection Result by Anti-Virus Software from VirusTotal

Random Committee classifier uses a group of base classifiers, and the result is the average of

the predictions generated by the individual base classifiers. Decision Table classifier uses a

simple decision table. J48 Tree classifier, LMT classifier and Random Forest Tree classifier

are algorithms based on decision trees.

4.5 Evaluation

In our evaluation, we apply the 10 classifiers to 628 applications used for our evaluation,

including 302 reported bad applications and 326 benign applications. The 3-fold cross-

validation is used for reducing over-fitting in our evaluation, where two-third of our data set

is used for training and one-third is used for testing. Table 4.3 shows the weighted average of

true positives, false positives, precision, recall and f-measures of our detection algorithms.

True positive rates indicate the percentage of real malicious bad applications among the

reported bad applications. False positive rates indicate the percentage of bad applications

that are reported but are not really malicious. Precision is the ratio of true positives to true

positives plus false positives. Recall is the ratio of true positives to true positives plus false

negatives. F-measure combines precision and recall, and can be used as an overall measure

for evaluation. For true positive rate, precision, recall and f-measure, the higher the scores

are, the better the algorithm performs. The reverse is true for false positive rate.

In terms of f-measure, SMO classifier performs the best, followed by Random Commit-

78

tee and LMT classifiers. SMO classifier uses SVM, which is known to be the best classifier

in many general cases. At the same time, Random Committee and LMT classifiers are good

at dealing with binary and multi-class target variables, numeric and nominal attributes as

well as missing values. Thus, they seem to be well-suited for our data set. The least effec-

tive classifiers are Naive Bayes, Logistic regression, and Decision Table classifiers. This is

mainly due to the fact that Naive Bayes and Logistic regression classifiers perform the best

for categorical dependent variables, while our dependent variables include non-categorical

features, such as star ratings and numbers of downloads. Moreover, simple decision table

classifier may not capture the complex rules of our feature set. We expect our results to be

improved by focusing on the individual types of policy-violating applications. By doing so,

we can select the features based on the behaviors specific to the types of applications. For

instance, we can apply text and image similarity features for detecting intellectual property

right violating applications. We leave this as future work, since the purpose of this paper is

to characterize and detect all policy-violating applications.

We also compare our result with VirusTotal, which scans the uploaded applications with

57 anti-virus software. We submitted our 302 policy-violating applications to VirusTotal an

retrieved the scanned report. Overall scan report shows that VirusTotal can detect only 168

of the submitted applications with its 57 anti-virus software. The remaining 134 applications

are never alerted by any of the anti-virus software. At the same time, VirusTotal falsely

reports 57 benign applications as policy-violating applications. Thus, we can say that the

true positive rate of VirusTotal is 55.63% and the false positive rate of VirusTotal is 17.48%.

The numbers of reported policy-violating applications (i.e. true positives) by individual

anti-virus solutions are shown in Figure 4.1.

4.6 Related Work

Although there are limited studies on intellectual property right violating applications, there

are many studies on the repackaged applications. Repackaged applications are the clones

created from the reverse-engineered codes of original applications. Balanza et al.[8] analyze

a repackaged malware, called DroidDreamLight, and Jung et al. [47] launch repackaging

attack on bank applications. Chen et al. [13], and Gibler et al. [34] study the impact of

79

repackaged applications and find out that 14% of original developers’ revenues and 10%

of user are redirected to the attacker. Potharaju et al. [74] use permission information and

estimate that 29.4% of applications are likely to be plagiarized.

Since repackaged applications contain similar source codes as original applications,

their detection mechanisms focus on the source code similarities. DroidMOSS [101] and

Juxtapp [40] [52] apply fuzzy hashing on program instruction sequence and derive the sim-

ilarity score by calculating the edit distance between two generated fingerprints. Crussell

et al. [?] propose DNADroid, which uses Program Dependence Graph(PDG) to determine

code similarity. AnDarwin [17] applies Locality-Sensitive Hashing (LSH), Lin et al. [54]

use thread-grained system call sequences and Zhou et al. [100] propose linearithmic search

algorithm in a metric space to detect repackaged applications. Deckard [46] uses a tree-

based detection algorithm for detection. Huang et al. [43] propose an evaluation framework

for detection algorithms of repackaged applications by measuring their resilience to obfus-

cation methods. Different from other approaches, Zhou et al. [99] propose to use software

watermarking to prevent repackaging. Since these methods only focuses on code similarity,

they cannot detect applications, which copy the external features of original applications

and not their source codes.

Similar to our paper, several previous work highlights various issues of ad libraries.

However, they focus more on privacy, security and usability issues, and not on their aggres-

siveness for showing ads or obtaining clicks from users. Adrisk [37] applies static analysis

on top 100 commonly used ad libraries, and shows that most ad libraries collect private in-

formation, including users’ location, call logs, phone number, browser bookmarks, and the

list of installed applications on the phone. Moreover, some libraries directly fetch and run

code from the Internet. Book et al. [11] make a longitudinal analysis of permissions used

by ad libraries, and discovers that dangerous permission usage by ad libraries are increasing

over time.

4.7 Conclusion

In this paper, we perform extensive empirical analysis on bad applications that are reported

and removed from Google Play store. These bad applications are diligently collected by

80

crawling Reddit forum posts and Google Play store over a three-month period. Our anal-

ysis of the data set provides a comprehensive overview of reported bad applications and

their policy-violating behaviors. Our findings show that detecting copy-right violating ap-

plications and ad-aggressive applications is important for maintaining good quality of future

mobile application market. Thus, we urge industry and research communities to give more

attention to these areas. Our paper also includes detection of bad applications using ma-

chine learning classifiers. We derive features based on the results of our findings as well

as behavior-based features. Although our current solution is performing well for detecting

policy-violating applications, we believe that better solutions can be invented by focusing

on each type of policy-violating applications.

81

Chapter 5

Detecting Camouflaged Applications

On Mobile Application Markets

5.1 Introduction

With the growing number of third-party applications on mobile market places, it becomes

increasingly hard to manage these applications and ensure that they are authentic, secure

and of high quality. One of the emerging problems that the market owners encounter is

plagiarism or cloning of mobile applications. During cloning, malicious parties copy all or

parts of original applications and create similar applications or the clones. Such application

plagiarism causes two main problems in mobile application markets. Firstly, it allows ma-

licious parties to siphon revenues from original developers by replacing the advertisement

libraries of plagiarised applications or by selling the clones with different prices to users.

It has been shown that original developers, who are the victims of plagiarism, lost 14% of

their advertising revenues and 10% of their user base to the attackers [34]. Secondly, there

are cases, where attackers add malicious payloads to the clones of popular applications and

threaten the security and privacy of mobile application users. In a recent study by Zheng

M. et. al [104], cloning is even regarded as one of the main distribution channels of mobile

malwares.

Thus, to hinder application plagiarism, a number of clone detection methods have been

proposed in [101] [40] [52] [16]. However, these methods only focuses on repackaged

82

applications, which are the clones created from the reverse-engineered codes of original

applications. As such, these methods only search for code similarities among applications,

consequently missing out a different set of clones, called camouflaged applications. Hence,

in this chapter, we introduce the concept of camouflaged applications. Camouflaged appli-

cations are applications whose external information, such as application names, icons, user

interfaces or application descriptions, are cloned. These clones may or may not have sim-

ilar codes as original applications but like other clones, they plagiarise and take advantage

of other applications without consensus from original developers. They are not only con-

fusing and harmful to the users but also discourage application development by affecting

developers’ reputation and monetary profits.

Therefore, in this chapter, we propose a detection framework for finding camouflaged

applications. Our method is based on external features of applications and applies text

similarity and image similarity measurements, calculated by information retrieval systems.

Although information retrieval systems have been applied to detect phishing web pages,

we are the first to apply these technologies to efficiently detect camouflaged applications

in mobile platforms. Our detection framework is tested with 30,625 Android applications

from Google Play market. The experiment shows that 477 applications (1.56%) are poten-

tial camouflaged applications. We further analyze the behaviors of detected camouflaged

applications and inspect the false alarms rate of our detection method. A total of 44 false

positives, which is 9.22% of tested application samples, are identified.

This chapter is organized as follows. Problem definition of camouflaged applications

and threat model are provided in Section 5.2. Background information about information

retrieval systems and repackaged applications are given in Section 5.3. Our detection frame-

work is proposed in Section 5.4 and our experiment results are shown in Section 5.5. Dis-

cussion about our findings, limitations of our method and future direction are provided in

Section 5.6. After that, related work on repackaged applications are summarized in Sec-

tion 5.7 and we conclude the chapter in Section 5.8.

83

5.2 Problem Definition

Informally, camouflaged applications are defined as “copycat” applications or “confusingly

similar” applications. There have been a lot of such applications on both official Google

Play store and Apple’s iTunes store. Generally, the features being cloned in camouflaged

applications are icons, names, screenshots and descriptions. For instance, there are cam-

ouflaged applications with very similar names, such as “Irate Birds” for the official “Angry

Birds” and “Snip the Rope” for the official “Cute the Rope” 1. Moreover, some camouflaged

applications focus on screenshots to deceive users. For example, fake Pokemon Yellow ap-

plication used Nintendo’s popular Game Boy RPG as its application screenshots. It even

managed to rise to top 3 position on iTunes store before being removed [71].

Camouflaged applications may exist on different application markets of the same plat-

forms or across different platforms. According to Zhou et al. [101], 5-13% of the applica-

tions from unofficial Android market places are cloned from the official Google Play mar-

ket. In addition, some clones may also spans across different platforms, such as Android

or iOS. For instance, fake versions of popular iOS applications, such as Infinity Blade II 2

and Temple Run 3, appeared on Google Play, even before their official releases in Android

version.

Market owners have imposed various developer policies for trademarks, copyrights, and

patents of applications. For instance, Google Play has a policy for impersonation, stating

(1) not to pretend as another company, (2) not to link to another website to represent itself

as another application and (3) not to use another application’s branding in title and descrip-

tion [73]. Moreover, Google Play’s Trademark Infringement policy suggests to use distinct

name, icon and logo and not to use those that are “confusingly similar” to another com-

pany’s trademark. However, according to Liebergeld et al. [53], there is insufficient market

control in Google Play market, because uploaded applications are not checked upfront on

whether they indeed follow the policies. The policy enforcement relies heavily on feedbacks

from users and developers.

1http://arstechnica.com/gaming/2012/08/google-play-cracks-down-on-confusingly-similar-
apps/

2http://www.pocketgamer.co.uk/r/Android/Infinity+Blade+II/news.asp?c=43572
3http://m.androidcentral.com/temple-run-android-still-isnt-out-anything-else-just-malware

84

Threat Model: The main goal of attackers is to trick users into installing their cam-

ouflaged applications. There are two ways by which users can install applications on their

mobile devices. One way is to use default installer applications, such as Play Store or iTune

Store, on mobile devices. Another way is to use desktop browsers, download applications

from the providers’ websites and later synchronize the applications to their mobile devices.

In both cases, there are two situations in which user can be tricked to install the camouflaged

applications. One is during the search and another is after the user goes to the detailed in-

formation page.

• When browsing applications or searching for an application, users can only observe

application icons, application names and publishing company names. Some users

download applications directly from the search results, instead of going to the de-

tailed pages. Therefore, these three pieces of information play an important role in

tricking the users. Although the ranking algorithm used by the Google also plays a

role, it is out of scope of this work.

• In the detailed information pages, application descriptions and screenshots are the

main visual elements for users. Thus, they also play a critical role in tricking the

users by attackers.

There are several ways in which attackers can gain profit for creating camouflaged ap-

plications. Table 5.1 summarizes different attackers’ motivations as well as various possible

attacks from camouflaged applications. Attack type may vary from mild copy-right viola-

tion and information theft to severe phishing and malware attacks. From the table, we can

see that in addition to users and developers, other third-parties, such as banks and telecom

providers, can be adversely affected by camouflaged applications.

5.3 Background

5.3.1 Information Retrieval Systems

Information retrieval systems are used for retrieving relevant information from a collection

of information resources. Most information retrieval systems includes two processes: in-

85

Attacker Motivation Attack
Type

Mainly Affected Parties

Replacing advertise libraries Copy-right
violation

Developers

Creating paid version of free ap-
plications

Copy-right
violation

Developers

Selling users’ information to
third parties

Information
theft

Users

Stealing users’ bank credentials Phishing Users and banks
Sending premium SMSes Malware Users and telecom providers

Table 5.1: Categorizing Attacks of Camouflaged Applications

dexing and retrieving. During indexing, the systems process documents that are either text

documents or image, and extract useful information from them. During retrieving steps,

query objects that are also processed, cleaned and their useful information are extracted.

Then, similarity distance are measured between the query document and a collection of

documents by using their representations. Ranked or sorted results are then returned to the

users, together with the similarity scores.

Information retrieval techniques have also been used to detect phishing websites [95]

[89]. However, the traditional phishing detection methods cannot be applied directly on

platform providers’ websites, such as Google Play Store. This is because camouflaged

applications and original applications can be featured on the same official website. Thus,

meta-data analysis of web contents, such as hyper-links, web titles, web links, etc, cannot

be applied in detecting camouflaged applications.

5.3.2 Repackaging and Code-Based Detectors

Cloned applications are often the result of repackaging, which includes recovering source

codes of original applications and illegally re-compiling them with different developers’

certificates. Repackaging is common in Android application platform. In Android applica-

tions, Java source code are compiled into the Dalvik executable (DEX) format and run in

Dalvik virtual machines. Dalvik byte codes can be easily reverse engineered by publicly

available online tools, such as dex2jar and jd-gui.

As the repackaged clones are created from source codes of original applications, their

source codes are similar to certain extent. Thus, code-based detectors can be used to de-

86

tect repackaged applications. Generally, there are three types of code similarity detectors:

feature-based, structure-based and PDG (Program Dependence Graph)-based. Feature-

based detectors extracts features, such as number or size of classes, methods, loops, vari-

ables, from the applications and detects their similarities. Structure-based detectors convert

applications into a stream of tokens and compare their streams. On the other hand, PDG-

based detectors construct PDGs from the applications and compare them to derive the sim-

ilarity scores. Many other code-based detectors, that have been proposed for repackaged

applications, will be discussed more in Section 4.6.

5.4 A Framework for Detecting Camouflaged Appli-

cations

Accuracy and scalability are the key factors, considering the number of third-party applica-

tions in mobile markets. Thus, the goal of this work is to have a lightweight simple detection

system, which can efficiently detects the camouflaged applications. The implementation of

our framework should allow developers to check their applications before submitting to the

application stores. It can also used by Google Play for vetting before or after the application

submission.

Our system leverages on the light-weight information retrieval systems, such as text re-

trieval and content-based image retrieval systems. There are four features with which we

try to find camouflaged applications: application name, description, icon and screenshot.

Application name and descriptions are handled by text retrieval systems, while application

icon and screenshots are handled by image retrieval system. Figure 5.1 shows the archi-

tecture of our detection system. Our detection system includes four main steps: crawling,

indexing, querying and detecting.

5.4.1 Crawling

First, we need a collection of existing applications, with which the potential camouflaged

applications are compared. This application collection can be from different markets of

different mobile platforms, depending on where we want to detect camouflaged applica-

87

Figure 5.1: Framework for Detecting Camouflaged Applications

tions. For instance, if we want to detect camouflaged applications, which are uploaded

on unofficial Android markets, existing application collection should be crawled from offi-

cial Google Play market and tested applications should be crawled from unofficial Android

markets. However, if we want to detect camouflaged applications on Google Play’s Android

market, which are copied from iTunes market, the existing application collection should be

from official Google Play market and tested applications should be from Apple’s iTunes

market.

Our framework is independent of mobile platform and application market. It can be

used on any platforms or markets as long as the market displays application names, icons,

screenshots and descriptions. In our experiment, we crawled applications from official An-

droid market and detect camouflaged applications within the same market. We use unofficial

Google API to crawl App info, such as id, name, developer, rating as well as application

description, icon and screenshots. Total of 30,625 applications are crawled for the experi-

ment.

5.4.2 Indexing

The second step of most information retrieval systems is indexing. During indexing, a col-

lection of documents are cleaned and processed to get ready for queries. We call both texts

and images as “documents”. Indexing can be done offline and just one time. Therefore, it

is suitable for a large collection of documents. For each application in our 30,625 crawled

88

applications, we create a name index, description index, icon index and screenshot index.

Name and description indexes are created by text retrieval engines, while icon and screen-

shot indexes are handled by image retrieval engine.

Text Indexing

There are many types of text retrieval systems, such as boolean model, vector space model,

probabilistic models. Most of them can be plugged and played in our detection framework.

However, in our experiment, vector space model is used as it applies similar-word matching

instead of exact-word matching algorithm. In the vector space model, each document is

represented by a weighted vector in high-dimensional space. The weights from vectors are

measured by TF-IDF scheme, which stands for Term Frequency (TF) and Inverse Document

Frequency (IDF). Open-source software, such as Lucene [60], can be used to implement TF-

IDF scheme. Tokenizing, stemming and removal of stop words are all handled by Lucene.

Image Indexing

Similar to text retrieval methods, there are also many types of image retrieval methods.

They extract visual features from the images and index those features with a pointer to the

parent image. The extracted features include colors, color distributions, textures or joint

histograms, which involve both color and texture information. Different algorithms have

their own advantages and disadvantages on performance and robustness depending on the

applied scenarios and types of images. We choose auto color correlogram algorithm [44],

which uses the spatial correlation of colors. The algorithm is tested using SIMPLIcity data

set [85] and is shown to be both effective and inexpensive in general purpose situations [59].

Note that our framework can also be easily modified to use other visual information retrieval

algorithms. We use an open-source software, LIRE [56], to perform the visual information

retrieval.

5.4.3 Querying and Retrieving

The third step is to query the index databases with potential camouflaged applications. In

our case, the same 30,625 crawled applications are used as potential camouflaged applica-

89

tions. For each queried application, we retrieved applications, which have similar user inter-

faces but are from different developers. Information retrieval systems are used to calculate

the similarity scores, and developer ID information, obtained from Google Play website, is

used to ensure that similar applications are not from the same developer.

For each query, information retrieval systems calculate the cosine similarity score be-

tween query document and a set of indexed documents. The cosine similarity score mea-

sures the similarity distance between two vector representations of documents. The score

ranges from 0 to 1, where similarity score of 0 represents two totally different documents

and similarity score of 1 represents two totally similar documents. The retrieved similar-

ity score are then used to rank the documents. In our case, retrieved set of applications is

sorted based on the decreasing similarity scores, meaning the most similar ones are on the

top of the list. We only use top-ten similar applications in each retrieved set to reduce false

positives.

The output of each queried application is four sets of similar applications, namely I, S,

N and D, where

• I is a set of applications that have similar icons as queried application,

• S is a set of applications that have similar screenshots as queried application,

• N is a set of applications that have similar names as queried application and

• D is a set of applications that have similar description as queried application.

Each set contains at most ten similar applications and many sets have fewer than ten

applications. Note that although we use the same application set for indexing and querying,

different application set can also be applied in our architecture if we want to differentiate

camouflaged applications across different markets.

5.4.4 Detecting

The fourth step of our framework is detection. Our detection method is different intersection

sets of the four retrieved set I, S, N and D. This step generates the following five different

result sets for each potential camouflaged application.

90

Figure 5.2: Number of Camouflaged Applications for Each Detection Method

• Intersect(I,S,N,D) is a set of applications that have similar icons, screenshots, names

and descriptions as queried application,

• Intersect(I,S,N) is a set of applications that have similar icons, screenshots and names

as queried application but are not included in Intersect(I,S,N,D),

• Intersect(I,S,D) is a set of applications that have similar icons, screenshots and de-

scriptions as queried application but are not included in Intersect(I,S,N,D),

• Intersect(I,N,D) is a set of applications that have similar icons, names and descrip-

tions as queried application but are not included in Intersect(I,S,N,D),

• Intersect(S,N,D) is a set of applications that have similar screenshots, names and

descriptions as queried application but are not included in Intersect(I,S,N,D).

Since these sets contain very similar applications from different developers, they are

considered as camouflaged applications. Nonetheless, there can also be false alarms, where

the result set contains non-camouflaged applications. False alarms are created because in-

formation retrieval methods cannot differentiate them, although they are obvious to normal

users that they are not camouflaged applications.

5.5 Experiment and Results

Out of 30,625 applications, we find that 477 applications (1.56%) have 1 to 6 camouflaged

applications. Figure 5.2 shows the exact number of camouflaged application from each

result set. According to the figure, we can see that Intersect(I,S,N,D), Intersect(I,N,D)

91

Figure 5.3: Example of Detected Camouflaged Application

and Intersect(S,N,D) reports more camouflaged applications than Intersect(I,S,N) and In-

tersect(I,S,D) methods.

An example of detected camouflaged applications, namely “VTX Mobile Dialer” and

“OneSuite Mobile Dialer”, is shown in Figure 5.3. The two applications have the very

similar screenshots, application name and description. Thus, they are reported in Inter-

sect(S,N,D) set. However, they use different developer IDes as well as different con-

tact information. The developer website and email address of “VTX Mobile Dialer” are

https://www.vtxtelecom.com/ and mobileapp@vtxtelecom.com. On the other hand, the de-

veloper website and email address of “VTX Mobile Dialer” are http://www.onesuite.com/

and mobileapp@onesuite.com. Although they claim to be from different companies, their

user interfaces are suspiciously similar. Therefore, they are regarded as camouflaged appli-

cations.

Determining the False Alarms: Determining the false positives and false negatives for

camouflaged applications is a challenge, as we do not have any ground truth samples. Thus,

we decide to do manual inspection on the result sets to determine the false positives. Though

tedious, expert manual inspection has been a common way to test the efficiencies of infor-

mation retrieval systems. To our surprise, a lot of the reported camouflaged applications

have almost identical user interfaces. This makes our manual inspection easier.

Our manual inspection shows that the result sets contain a total of 44 false positives,

92

https://www.vtxtelecom.com/
http://www.onesuite.com/

Figure 5.4: Example of False-Positive Camouflaged Applications

which is 9.22% of reported camouflaged applications. However, false positives exist only in

the Intersect(I,N,D) and Intersect(S,N,D). Intersect(I,N,D) contains 21 false positive sam-

ples and Intersect(S,N,D) contains 23 false positive samples. No false positive applications

have been identified in Intersect(I,S,N,D), Intersect(I,S,N) and Intersect(I,S,D), which con-

sider the similarity of both icons and screeenshots. This indicates that icons and screenshot

similarity measures are great indicators of camouflaged applications.

Figure 5.4 shows an example of false alarm applications, called “Fake Coin - You always

win!” and “Coin Toss”. Although their user interfaces are similar, it is quite obvious to the

real users that they provide different functions: the former application is for tricking friends

and the latter application is for randomly tossing the coin. Therefore, these two applications

should not be regarded as camouflaged applications.

5.6 Discussion

In this section, we will discuss about our findings on camouflaged applications as well as

limitations of our method and future work.

Feature Selection in Detection Method: Our detection method is limited to camou-

flaged applications with at least three similar features. Nonetheless, there can still be cam-

93

ouflaged applications with only one or two similar features. For instance, there are camou-

flaged applications with only similar icons. Although our method can be easily extended to

find applications with one or two similar features, many applications use very simple and

easily searchable icons, such as a light bulb. Consequently, there are a lot of false alarms

when we use only two features. Thus, it is still a challenge on how to ensure quality control

on icons and names of applications in the market.

Applications from Open-Source Projects: Our result shows that there are applica-

tions, which are modified from open-source projects, such as e-book readers, music players

and map applications. Although they use different contents, such different books or songs,

and change the themes, the applications are still highly similar as they use source codes

from the same projects. Thus, although they do not copy from each other, they are still

considered as camouflaged applications in our framework.

Applications with Different Versions: We find out that some camouflaged applications

claim to be different versions from one another. They use version differentiating words, such

as “HD” (High Definition), “full”, “II” (two), “plus” and “pro”. However, many of them

do not provide additional functionalities, although they claim to be upgraded versions. It

is possible that a malicious attacker tries to attract more customers by claiming to provide

upgraded version of the victim application. To solve this problem, application markets

should enforce that developers use the same account, when they claim to provide upgraded

version of an existing application. Our detection framework for camouflaged applications

can serve as an automatic policy enforcement mechanism for these kind of applications.

Internationalized Applications: Another finding of our experiment is that many in-

ternational companies, such as banks, have different applications developed for different

countries and languages. Unfortunately, they also use different developer ID in Google Play

to update them. For instance, “Banco Weng Hang, S.A.” application uploaded by “Banco

Weng Hang, S.A.” provides banking services in Chinese, while “Wing Hang Bank” appli-

cation uploaded by “Wing Hang Bank Ltd” provides the same services in English. This

is actually a vulnerability, which allows attackers to impersonate as legitimate applications

and launch phishing attacks.

94

5.7 Related Work

Studies on the repackaged applications have become popular recently. Zhou et. al. [104]

studies 1260 Android malwares and finds out that 1083 malwares are repackaged appli-

cations. Balanza et al.[8] analyzes a repackaged malware, called DroidDreamLight and

states that trojanizing or repackaging is common form of infection in Android market. Jung

et al. [47] launches repackaging attack on bank applications. Moreover, Vidas et al. [83]

shows that some malwares are even repackaged with the valid certificates from original de-

velopers. It also proposes an authentication protocol for market applications which makes

it difficult for an attacker to perform repackaging.

Chen et al. [13] also studies the underground economy of Android application plagia-

rism. Similarly, Gibler et al. [34] studies the impact of repackaged applications and finds

out that 14% of original developers’ revenues and 10% of user based are redirected to the

attacker. Zheng et al. [97] presents various obfuscation techniques which allow automatic

repackaging of original malwares to different variants. Transformed malwares are then used

to test the robustness of Android anti-virus systems. Potharaju et al. [74] uses permission

information and estimates that 29.4% of applications are likely to be plagiarized. They also

detect repackaged applications using Deckard [46], which is a tree-based detection algo-

rithm of cloned codes.

DroidMOSS [101] and Juxtapp [40] [52] and apply fuzzy hashing on program instruc-

tion sequence and derive the similarity score by calculating the edit distance between two

generated fingerprints. Crussell et al. [16] proposes DNADroid, which uses Program De-

pendence Graph(PDG) to determine code similarity. DNADroid is similar to our approach

because it filters the applications based on application names, packages, markets, owners

and descriptions. However, such filtering is performed only to make the PDG comparison

more scalable for determining the similarity between two applications.

AnDarwin [17] applies Locality-Sensitive Hashing (LSH) to detect the repackaged ap-

plications. Zhou et al. [100] calls repackaged applications as “piggybacked” applications

and proposes linearithmic search algorithm in a metric space to detect them. Desnos et

al. [22] proposes an algorithm, which uses Normalized Compression Distance (NCD) to

analyze the similarity and differences between two Android applications. Similarly, Lin et

95

al. [54] apply thread-grained system call sequences to detect repackaged applications. Ko et

al. [49] extract k-gram based software birthmarks from the dissembled codes and measure

the similarity of DEX files.

Huang et al. [43] proposes an evaluation framework for detection algorithms of repack-

aged application by measuring their resilience to obfuscation methods. Different from other

approaches, [99] proposes to use software watermarking to prevent repackaging. In sum-

mary, researchers have proposed different ways of detecting repackaged applications by

measuring the source code similarity or software watermarking. However, none of them

have yet considered camouflaged applications, which have very similar user interfaces, in-

stead of similar source codes.

5.8 Conclusion

This chapter highlights the existence of camouflaged applications in mobile application mar-

kets as well as their exposed risk on application users and developers. Although there have

been papers about repackaged applications and their copy-right infringement, our work is

the first to introduce the concept of camouflaged applications and consider their user in-

terface similarity. Our work describes a proper threat model of camouflaged applications,

including their attack scenarios and attackers’ motivations. Moreover, we propose a sim-

ple, yet effective, detection framework, which applies text and image retrieval systems that

are accurate and scalable in detecting camouflaged applications. The proposed framework

is tested and the experiment result shows that 477 applications are camouflaged. We ana-

lyze these camouflaged applications, discuss their behaviors and calculate the false alarm

rates. Our work shows that detecting camouflaged applications is important, not only for

maintaining a safe mobile application market but also for controlling the quality of mobile

applications.

96

Chapter 6

Dissertation Conclusion and Future

Work

6.1 Summary of Contribution

This dissertation makes contributions on vulnerability analysis of mobile application frame-

works and detection mechanisms on policy-violating applications.

Our first work focuses on finding vulnerabilities and launching attacks on iOS frame-

work. We proposes generic attack vectors that can be launched on iOS by an approved

third-party application. During attacks, an attacker bypasses vetting process and sandbox

mechanisms by dynamically loading frameworks and invoking C functions. We provide

several proof-of-concept attacks using these attack vectors. The results of our first work

have been reported to Apple’s iOS security team. They have been acknowledged by Ap-

ple and included in news media. The work has also published in the 11th International

Conference on Applied Cryptography and Network Security (ACNS 2013).

Our second work proposes to find vulnerabilities in Android framework by uncovering

unprotected APIs. Several analysis, including call graph analysis, component analysis and

data flow analysis, are performed to retrieve unprotected APIs. After that, we launched

several proof-of-concepts attacks on Android devices. Our findings have been reported to

Google and Google has publicly acknowledged our contribution in its Security Bulletin.

This work has been published in the 14th International Conference on Privacy, Security and

97

Trust (PST 2016).

Our third work performs empirical analysis on policy-violating applications. This is the

first time in literature to analyze the categories and behaviors of real-life samples of policy-

violating applications. We also propose several features that can be used to detect policy-

violating applications with machine learning algorithms. This work has been published in

the 11th International Conference on Malicious and Unwanted Software (Malcon 2016). It

is also filed for patent with Hua Wei at the time when this dissertation was submitted.

Our fourth work detects camouflaged applications, which violate intellectual property

policies of application markets. Text similarity and image similarity scores are used to detect

these applications. The work is published in the 17th Annual International Conference on

Information Security and Cryptology (ICISC-2014).

This dissertation shows several weaknesses in the security of mobile frameworks, and

proposes various ways of improvements in ensuring security and privacy of mobile users.

6.2 Future Direction

We identify the following future directions:

6.2.1 Improvement on Current Vulnerability Analysis

An interesting way to extend our analysis is to assign a risk level to each vulnerability

discovered. Clearly, not every unprotected API poses a high risk. The risk level may be

calculated based on the nature of an exposed API, such as whether it accesses Kernel files.

We may also use heuristics in categorizing vulnerable APIs. For example, if an exposed API

contains source codes related to accessing Content Provider and returning results, it should

be categorized as potential privacy leakage. More effort in this aspect should be made so as

to develop an industry standard for evaluating and protecting mobile framework APIs.

6.2.2 Vulnerability Analysis on Other Frameworks

One of our future directions in this field is to discover framework-level vulnerabilities in

smart watches, smart TVs and smart cars, since they are also based on Android mobile

98

systems, such as Android Auto and Android Wear. IOT platforms, such as Brillo, are also

interesting to explore for security vulnerabilities. When new systems are added into mobile

infrastructure, it make it more difficult and complex to preserve the security and privacy of

mobile users. Currently, there are no standard vulnerability analysis tools specifically de-

signed for these new systems, and creating these tools will be extremely helpful in ensuring

security and privacy of mobile users. ach vulnerability analysis will be tailored towards

specific systems, since their security mechanisms are different from others.

6.2.3 Vulnerability Analysis on Third-Party APIs

Another interesting future direction is to extend our study to third-party applications. Like

system services, some third-party applications provide AIDL interfaces to other third-party

applications. For example, many APIs are provided by Google Play services, including

Google Map, Google Plus, In-App Billing, and Google Wallet. Although such services are

not part of Android platform, they are supported by most Android mobile devices. Another

example is Dropbox, which allows other applications to access and manipulate a user’s

Dropbox account. It remains interesting to investigate the unprotected APIs of the AIDL

interfaces provided by vendor applications, such as Google Play services and other third-

party applications, such as Dropbox.

99

Bibliography

[1] Y. Aafer, W. Du, and H. Yin. Security and Privacy in Communication Networks:
9th International ICST Conference, SecureComm 2013, Sydney, NSW, Australia,
September 25-28, 2013, Revised Selected Papers, chapter DroidAPIMiner: Min-
ing API-Level Features for Robust Malware Detection in Android, pages 86–103.
Springer International Publishing, Cham, 2013.

[2] U. M. André Egners, Björn Marschollek. Hackers in your pocket: A survey of
smartphone security across platforms. Number AIB-2012-07, may 2012.

[3] Android. Enforcing permissions in androidmanifest.xml. http://developer.android.
com/guide/topics/security/permissions.html. [Online; accessed 9-October-2014].

[4] Apple. About the security content of ios 7. https://support.apple.com/en-sg/
HT202816. Accessed: 2016-07-01.

[5] apple.com. Apple open source projects. http://www.apple.com/opensource/. Ac-
cessed: 2013-01-01.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: Analyzing the android
permission specification. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 217–228, New York, NY, USA,
2012. ACM.

[7] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. Android security
framework: Enabling generic and extensible access control on android. CoRR,
abs/1404.1395, 2014.

[8] M. Balanza, O. Abendan, K. Alintanahin, J. Dizon, and B. Caraig. Droiddreamlight
lurks behind legitimate android apps. In Proceedings of the 2011 6th International
Conference on Malicious and Unwanted Software, MALWARE ’11, pages 73–78,
Washington, DC, USA, 2011. IEEE Computer Society.

[9] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Automatically securing
permission-based software by reducing the attack surface: An application to an-
droid. In Proceedings of the 27th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2012, pages 274–277, New York, NY, USA,
2012. ACM.

[10] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and C. Wolf. Mo-
bile security catching up? revealing the nuts and bolts of the security of mobile
devices. In Proceedings of the 2011 IEEE Symposium on Security and Privacy, SP
’11, pages 96–111, Washington, DC, USA, 2011. IEEE Computer Society.

[11] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal analysis of android ad library
permissions. CoRR, abs/1303.0857, 2013.

100

http://developer.android.com/guide/topics/security/ permissions.html
http://developer.android.com/guide/topics/security/ permissions.html
https://support.apple.com/en-sg/HT202816
https://support.apple.com/en-sg/HT202816
http://www.apple.com/opensource/

[12] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker: Analyzing android applications
for capability leak. In Proceedings of the Fifth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WISEC ’12, pages 125–136, New York,
NY, USA, 2012. ACM.

[13] H. Chen. Underground economy of android application plagiarism. In Proceedings
of the First International Workshop on Security in Embedded Systems and Smart-
phones, SESP ’13, pages 1–2, New York, NY, USA, 2013. ACM.

[14] N. Chen, S. C. Hoi, S. Li, and X. Xiao. Simapp: A framework for detecting similar
mobile applications by online kernel learning. In Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining, WSDM ’15, pages 305–
314, New York, NY, USA, 2015. ACM.

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in android. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’11, pages 239–252, New
York, NY, USA, 2011. ACM.

[16] J. Crussell, C. Gibler, and H. Chen. Attack of the clones: Detecting cloned applica-
tions on android markets. In Proceedings of 17th European Symposium on Research
in Computer Security, pages 37–54, 2012.

[17] J. Crussell, C. Gibler, and H. Chen. Scalable semantics-based detection of simi-
lar android applications. In 18th European Symposium on Research in Computer
Security, ESORICS ’13, Egham, U.K., 2013.

[18] D. Damopoulos, G. Kambourakis, and S. Gritzalis. isam: An iphone stealth air-
borne malware. In J. Camenisch, S. Fischer-Hbner, Y. Murayama, A. Portmann, and
C. Rieder, editors, SEC, volume 354 of IFIP Advances in Information and Commu-
nication Technology, pages 17–28. Springer, 2011.

[19] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege escalation at-
tacks on android. In Proceedings of the 13th International Conference on Informa-
tion Security, ISC’10, pages 346–360, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] K. DAVID. Jailbreaking iphone legal, u.s. government says. http://abcnews.go.com/
Technology/story?id=11254253. Accessed: 2013-01-01.

[21] A. Desnos. Androguard, 2011.

[22] A. Desnos. Android: Static analysis using similarity distance. In Proceedings of the
2012 45th Hawaii International Conference on System Sciences, HICSS ’12, pages
5394–5403, Washington, DC, USA, 2012. IEEE Computer Society.

[23] A. Developer. Xcode, apples integrated development environment for creating apps
for mac and ios. https://developer.apple.com/xcode/. Accessed: 2013-01-01.

[24] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks in ios
applications. In NDSS. The Internet Society, 2011.

[25] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’10, pages 1–6, Berkeley, CA, USA, 2010.
USENIX Association.

101

http://abcnews.go.com/Technology/story?id=11254253
http://abcnews.go.com/Technology/story?id=11254253
https://developer.apple.com/xcode/

[26] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android application
security. In Proceedings of the 20th USENIX Conference on Security, SEC’11,
pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

[27] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions de-
mystified. In Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM.

[28] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner. How to ask for per-
mission. In Proceedings of the 7th USENIX Conference on Hot Topics in Security,
HotSec’12, pages 7–7, Berkeley, CA, USA, 2012. USENIX Association.

[29] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile mal-
ware in the wild. In Proceedings of the 1st ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, SPSM ’11, pages 3–14, New York, NY, USA,
2011. ACM.

[30] A. P. Felt, S. Hanna, E. Chin, H. J. Wang, and E. Moshchuk. Permission re-
delegation: Attacks and defenses. In In 20th Usenix Security Symposium, 2011.

[31] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission re-
delegation: Attacks and defenses. In Proceedings of the 20th USENIX Conference
on Security, SEC’11, pages 22–22, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

[32] J. Freeman. Cydia, an alternative to apples app store for jailbroken ios devices.
http://http://cydia.saurik.com/. Accessed: 2013-01-01.

[33] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi. Adrob: Exam-
ining the landscape and impact of android application plagiarism. In Proceeding
of the 11th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’13, pages 431–444, New York, NY, USA, 2013. ACM.

[34] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi. Adrob: Exam-
ining the landscape and impact of android application plagiarism. Proceedings of
11th International Conference on Mobile Systems, Applications and Services, 2013.

[35] Google. Nexus security bulletin - march 2016. https://source.android.com/security/
bulletin/2016-03-01.html. Accessed: 2016-07-01.

[36] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: Scalable and accu-
rate zero-day android malware detection. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages
281–294, New York, NY, USA, 2012. ACM.

[37] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis of
mobile in-app advertisements. In Proceedings of the Fifth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WISEC ’12, pages 101–
112, New York, NY, USA, 2012. ACM.

[38] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, Nov.
2009.

102

http://http://cydia.saurik.com/
https://source.android.com/security/bulletin/2016-03-01.html
https://source.android.com/security/bulletin/2016-03-01.html

[39] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng. Comparing Mobile Privacy Pro-
tection through Cross-Platform Applications. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), San Diego, CA, February 2013.

[40] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song. Juxtapp: a scalable sys-
tem for detecting code reuse among android applications. In Proceedings of the 9th
international conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, DIMVA’12, pages 62–81, Berlin, Heidelberg, 2013. Springer-Verlag.

[41] T. Hao, G. Xing, and G. Zhou. isleep: Unobtrusive sleep quality monitoring using
smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’13, pages 4:1–4:14, New York, NY, USA, 2013. ACM.

[42] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi. Asm: A programmable inter-
face for extending android security. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 1005–1019, San Diego, CA, Aug. 2014. USENIX Association.

[43] H. Huang, S. Zhu, P. Liu, and D. Wu. A framework for evaluating mobile app
repackaging detection algorithms. In M. Huth, N. Asokan, S. apkun, I. Flechais,
and L. Coles-Kemp, editors, Trust and Trustworthy Computing, volume 7904 of
Lecture Notes in Computer Science, pages 169–186. Springer Berlin Heidelberg,
2013.

[44] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image indexing using
color correlograms. In Proceedings of the 1997 Conference on Computer Vision
and Pattern Recognition (CVPR ’97), CVPR ’97, pages 762–, Washington, DC,
USA, 1997. IEEE Computer Society.

[45] A. P. Info. App store tops 40 billion downloads with al-
most half in 2012. http://www.apple.com/pr/library/2013/01/
07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html.
Accessed: 2013-01-01.

[46] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of the 29th international conference
on Software Engineering, ICSE ’07, pages 96–105, Washington, DC, USA, 2007.
IEEE Computer Society.

[47] J.-H. Jung, J. Y. Kim, H.-C. Lee, and J. H. Yi. Repackaging attack on android bank-
ing applications and its countermeasures. Wirel. Pers. Commun., 73(4):1421–1437,
Dec. 2013.

[48] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: dynamic taint
analysis with targeted control-flow propagation. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2011, San Diego, California, USA,
6th February - 9th February 2011, 2011.

[49] J. Ko, H. Shim, D. Kim, Y.-S. Jeong, S.-j. Cho, M. Park, S. Han, and S. B. Kim.
Measuring similarity of android applications via reversing and k-gram birthmark-
ing. In Proceedings of the 2013 Research in Adaptive and Convergent Systems,
RACS ’13, pages 336–341, New York, NY, USA, 2013. ACM.

[50] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot framework for java pro-
gram analysis: a retrospective. Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), 2011.

103

http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html

[51] L. Li, A. Bartel, J. Klein, and Y. Le Traon. Automatically exploiting potential com-
ponent leaks in android applications. In Proceedings of the 13th International Con-
ference on Trust, Security and Privacy in Computing and Communications (Trust-
Com 2014). IEEE, 2014.

[52] S. Li. Juxtapp and dstruct: Detection of similarity among android applications.
Master’s thesis, EECS Department, University of California, Berkeley, May 2012.

[53] S. Liebergeld and M. Lange. Android security, pitfalls and lessons learned. In
ISCIS, pages 409–417, 2013.

[54] Y.-D. Lin, Y.-C. Lai, C.-H. Chen, and H.-C. Tsai. Identifying android malicious
repackaged applications by thread-grained system call sequences. Computers and
Security, Greenwich, CT, USA, 2013.

[55] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Statically vetting android apps for
component hijacking vulnerabilities. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pages 229–240, New York,
NY, USA, 2012. ACM.

[56] M. Lux and S. A. Chatzichristofis. Lire: lucene image retrieval: an extensible java
cbir library. In Proceedings of the 16th ACM international conference on Multime-
dia, MM ’08, pages 1085–1088, New York, NY, USA, 2008. ACM.

[57] macgasm.net. It professionals rank ios as most secure mobile os. http://www.
macgasm.net/2012/08/17/it-professionals-rank-ios-as-most-secure-mobile-os/.
Accessed: 2013-01-01.

[58] C. Mann and A. Starostin. A framework for static detection of privacy leaks in an-
droid applications. In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC ’12, pages 1457–1462, New York, NY, USA, 2012. ACM.

[59] O. Marques and M. Lux. Visual information retrieval using java and lire. In W. R.
Hersh, J. Callan, Y. Maarek, and M. Sanderson, editors, SIGIR, page 1193. ACM,
2012.

[60] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action, Second Edi-
tion: Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA,
2010.

[61] M. Mitchell, G. Tian, and Z. Wang. Systematic audit of third-party android phones.
In Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, CODASPY ’14, pages 175–186, New York, NY, USA, 2014. ACM.

[62] NakedSecurity. First iphone worm discovered - ikee changes wallpa-
per to rick astley photo. https://nakedsecurity.sophos.com/2009/11/08/
iphone-worm-discovered-wallpaper-rick-astley-photo/. Accessed: 2013-01-01.

[63] NakedSecurity. Hacked iphones held hostage for 5 euros. https://nakedsecurity.
sophos.com/2009/11/03/hacked-iphones-held-hostage-5-euros/. Accessed: 2013-
01-01.

[64] L. T. Nguyen, Y. Tian, S. Cho, W. Kwak, S. Parab, Y. S. Kim, P. Tague, and
J. Zhang. Unlocin: Unauthorized location inference on smartphones without be-
ing caught. In 2013 International Conference on Privacy and Security in Mobile
Systems, PRISMS 2013, Atlantic City, NJ, USA, June 24-27, 2013, pages 1–8, 2013.

104

http://www.macgasm.net/2012/08/17/it-professionals-rank-ios-as-most-secure-mobile-os/
http://www.macgasm.net/2012/08/17/it-professionals-rank-ios-as-most-secure-mobile-os/
https://nakedsecurity.sophos.com/2009/11/08/iphone-worm-discovered-wallpaper-rick-astley-photo/
https://nakedsecurity.sophos.com/2009/11/08/iphone-worm-discovered-wallpaper-rick-astley-photo/
https://nakedsecurity.sophos.com/2009/11/03/hacked-iphones-held-hostage-5-euros/
https://nakedsecurity.sophos.com/2009/11/03/hacked-iphones-held-hostage-5-euros/

[65] S. Nicolas. ios 6 runtime headers. https://github.com/nst/iOS-Runtime-Headers.
Accessed: 2013-01-01.

[66] S. Nicolas. iphone privacy. Black Hat DC (2011). Accessed: 2013-01-01.

[67] S. Nicolas. Objective-c runtime browser, for mac os x and ios. https://github.com/
nst/RuntimeBrowser/. Accessed: 2013-01-01.

[68] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon.
Effective inter-component communication mapping in android with epicc: An
essential step towards holistic security analysis. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, pages 543–558, Berkeley, CA, USA,
2013. USENIX Association.

[69] J.-S. Oh, M.-W. Park, and T.-M. Chung. The solution of denial of service attack on
ordered broadcast intent. In Advanced Communication Technology (ICACT), 2014
16th International Conference on, pages 397–400, Feb 2014.

[70] T. Online. Local researchers help fix ios security flaws. http://www.todayonline.
com/tech/local-researchers-help-fix-ios-security-flaws. Accessed: 2016-07-01.

[71] K. Orland. Fake pokemon yellow rises to no. 3 position on itunes app charts, 2012.

[72] N. Peiravian and X. Zhu. Machine learning for android malware detection using
permission and api calls. In Proceedings of the 2013 IEEE 25th International Con-
ference on Tools with Artificial Intelligence, ICTAI ’13, pages 300–305, Washing-
ton, DC, USA, 2013. IEEE Computer Society.

[73] G. Play. Intellectual property.

[74] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang. Plagiarizing smartphone
applications: attack strategies and defense techniques. In Proceedings of the 4th
international conference on Engineering Secure Software and Systems, ESSoS’12,
pages 106–120, Berlin, Heidelberg, 2012. Springer-Verlag.

[75] Safe and Savvy. How secure is your iphone. http://safeandsavvy.f-secure.com/2012/
06/29/how-secure-is-your-iphone/. Accessed: 2013-01-01.

[76] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia, and X. Wang.
Soundcomber: A stealthy and context-aware sound trojan for smartphones. In
NDSS. The Internet Society, 2011.

[77] N. Security. Apple lets malware into app store. https://nakedsecurity.sophos.com/
2011/11/08/apples-app-store-security-compromised/. Accessed: 2013-01-01.

[78] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao. Kratos: Discovering Inconsis-
tent Security Policy Enforcement in the Android Framework. In Proceedings of the
23rd Network and Distributed System Security Symposium (NDSS’16), San Diego,
CA, February 2016.

[79] C. Soh, H. B. K. Tan, Y. L. Arnatovich, and L. Wang. Detecting clones in android
applications through analyzing user interfaces. In Proceedings of the 2015 IEEE
23rd International Conference on Program Comprehension, ICPC ’15, pages 163–
173, Piscataway, NJ, USA, 2015. IEEE Press.

105

https://github.com/nst/iOS-Runtime-Headers
https://github.com/nst/RuntimeBrowser/
https://github.com/nst/RuntimeBrowser/
http://www.todayonline.com/tech/local-researchers-help-fix-ios-security-flaws
http://www.todayonline.com/tech/local-researchers-help-fix-ios-security-flaws
http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone/
http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone/
https://nakedsecurity.sophos.com/2011/11/08/apples-app-store-security-compromised/
https://nakedsecurity.sophos.com/2011/11/08/apples-app-store-security-compromised/

[80] S. Times. Apple fixes ios 7 after singapore researchers identify flaws.
http://www.straitstimes.com/singapore/apple-fixes-ios-7-after-singapore-
researchers-identify-flaws.

[81] TrendLabs. Malware for ios? not really. http://blog.trendmicro.com/
trendlabs-security-intelligence/malware-for-ios-not-really/. Accessed: 2013-01-
01.

[82] O. Tripp and J. Rubin. A bayesian approach to privacy enforcement in smartphones.
In 23rd USENIX Security Symposium (USENIX Security 14), pages 175–190, San
Diego, CA, Aug. 2014. USENIX Association.

[83] T. Vidas and N. Christin. Sweetening android lemon markets: measuring and com-
bating malware in application marketplaces. In Proceedings of the third ACM
conference on Data and application security and privacy, CODASPY ’13, pages
197–208, New York, NY, USA, 2013. ACM.

[84] VirusTotal. Virustotal public api v2.0.

[85] J. Z. Wang, J. Li, and G. Wiederhold. Simplicity: Semantics-sensitive integrated
matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell., 23(9):947–
963, Sept. 2001.

[86] D. Wu, X. Luo, and R. K. Chang. A sink-driven approach to detecting exposed
component vulnerabilities in android apps. arXiv preprint arXiv:1405.6282, 2014.

[87] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor customiza-
tions on android security. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’13, pages 623–634, New York, NY,
USA, 2013. ACM.

[88] N. Xia, H. H. Song, Y. Liao, M. Iliofotou, A. Nucci, Z.-L. Zhang, and A. Kuz-
manovic. Mosaic: Quantifying privacy leakage in mobile networks. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages
279–290, New York, NY, USA, 2013. ACM.

[89] G. Xiang and J. I. Hong. A hybrid phish detection approach by identity discovery
and keywords retrieval. In Proceedings of the 18th international conference on
World wide web, WWW ’09, pages 571–580, New York, NY, USA, 2009. ACM.

[90] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan. Intentfuzzer: Detecting ca-
pability leaks of android applications. In Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’14, pages
531–536, New York, NY, USA, 2014. ACM.

[91] Z. Yang and M. Yang. Leakminer: Detect information leakage on android with
static taint analysis. In Proceedings of the 2012 Third World Congress on Software
Engineering, WCSE ’12, pages 101–104, Washington, DC, USA, 2012. IEEE Com-
puter Society.

[92] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Appintent: analyzing
sensitive data transmission in android for privacy leakage detection. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications
security, CCS ’13, pages 1043–1054, New York, NY, USA, 2013. ACM.

106

http://blog.trendmicro.com/trendlabs-security-intelligence/malware-for-ios-not-really/
http://blog.trendmicro.com/trendlabs-security-intelligence/malware-for-ios-not-really/

[93] H. Ye, S. Cheng, L. Zhang, and F. Jiang. Droidfuzzer: Fuzzing the android apps
with intent-filter tag. In Proceedings of International Conference on Advances in
Mobile Computing and Multimedia, MoMM ’13, pages 68:68–68:74, New York,
NY, USA, 2013. ACM.

[94] M. Zhang and H. Yin. Appsealer: Automatic generation of vulnerability-specific
patches for preventing component hijacking attacks in android applications. Pro-
ceedings of the 21th Annual Network and Distributed System Security Symposium
(NDSS’14), 2014.

[95] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a content-based approach to de-
tecting phishing web sites. In Proceedings of the 16th international conference on
World Wide Web, WWW ’07, pages 639–648, New York, NY, USA, 2007. ACM.

[96] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, and E. Moser. Data
and Applications Security and Privacy XXVIII: 28th Annual IFIP WG 11.3 Working
Conference, DBSec 2014, Vienna, Austria, July 14-16, 2014. Proceedings, chapter
FSquaDRA: Fast Detection of Repackaged Applications, pages 130–145. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[97] M. Zheng, P. P. C. Lee, and J. C. S. Lui. Adam: an automatic and extensible plat-
form to stress test android anti-virus systems. In Proceedings of the 9th interna-
tional conference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, DIMVA’12, pages 82–101, Berlin, Heidelberg, 2013. Springer-Verlag.

[98] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang. Divilar: Diversifying intermediate lan-
guage for anti-repackaging on android platform. In Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy, CODASPY ’14, pages
199–210, New York, NY, USA, 2014. ACM.

[99] W. Zhou, X. Zhang, and X. Jiang. Appink: Watermarking android apps for repack-
aging deterrence. In Proceedings of the 8th ACM SIGSAC Symposium on Informa-
tion, Computer and Communications Security, ASIA CCS ’13, pages 1–12, New
York, NY, USA, 2013. ACM.

[100] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast, scalable detection of ”pig-
gybacked” mobile applications. In Proceedings of the third ACM conference on
Data and application security and privacy, CODASPY ’13, pages 185–196, New
York, NY, USA, 2013. ACM.

[101] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smartphone ap-
plications in third-party android marketplaces. In Proceedings of the Second ACM
Conference on Data and Application Security and Privacy, CODASPY ’12, pages
317–326, New York, NY, USA, 2012. ACM.

[102] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The peril of fragmentation:
Security hazards in android device driver customizations. In Proceedings of the
2014 IEEE Symposium on Security and Privacy, SP ’14, pages 409–423, Washing-
ton, DC, USA, 2014. IEEE Computer Society.

[103] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolu-
tion. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12,
pages 95–109, Washington, DC, USA, 2012. IEEE Computer Society.

107

[104] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolu-
tion. In IEEE Symposium on Security and Privacy, pages 95–109. IEEE Computer
Society, 2012.

[105] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Trust and Trustworthy Computing:
4th International Conference, TRUST 2011, Pittsburgh, PA, USA, June 22-24, 2011.
Proceedings, chapter Taming Information-Stealing Smartphone Applications (on
Android), pages 93–107. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[106] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Trust and Trustworthy Computing:
4th International Conference, TRUST 2011, Pittsburgh, PA, USA, June 22-24, 2011.
Proceedings, chapter Taming Information-Stealing Smartphone Applications (on
Android), pages 93–107. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

108

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2016

	Techniques for identifying mobile platform vulnerabilities and detecting policy-violating applications
	Mon Kywe SU
	Citation

	1 Introduction
	1.1 Identifying Vulnerabilities in iOS Framework
	1.2 Identifying Vulnerabilities on Android Framework
	1.3 Detecting Policy-Violating Applications
	1.4 Detecting Camouflaged Applications
	1.5 Contributions and Impact
	1.6 Organization of the Dissertation

	2 Launching Generic Attacks on iOS with Approved Third-Party Applications
	2.1 Introduction
	2.2 Background and Threat Model
	2.2.1 iOS Platform Overview
	2.2.2 Threat Model

	2.3 Generic Attack Vector
	2.3.1 Attacks via Dynamically Loaded Frameworks
	2.3.2 Attacks via Private C Functions
	2.3.3 Other Implemented Attacks and Implications

	2.4 Attack Mitigation
	2.4.1 Improving Application Vetting Process
	2.4.2 Enhancement on iOS Sandbox

	2.5 Discussions
	2.6 Related Work
	2.7 Conclusion

	3 Attacking Android Smartphone Systems without Permissions
	3.1 Introduction
	3.2 Adversary Model
	3.2.1 System Services
	3.2.2 System Applications
	3.2.3 Dynamically Registered Broadcasts

	3.3 Retrieving Unprotected APIs
	3.3.1 Call Graph Analysis on System Services
	3.3.2 Component Analysis on System Applications
	3.3.3 Data Flow Analysis on Dynamically Registered Broadcasts

	3.4 Attacking without Permissions
	3.4.1 System Services
	3.4.2 System Applications
	3.4.3 Dynamically Registered Broadcasts

	3.5 Attacking a Different Version
	3.5.1 Retrieving Unprotected APIs
	3.5.2 Attacking without Permissions

	3.6 Discussions
	3.7 Related Work
	3.8 Conclusions

	4 Dissecting Policy-Violating applications: Characterization and Detection
	4.1 Introduction
	4.2 Data Collection
	4.3 Empirical Analysis
	4.4 Detection
	4.4.1 Feature Extraction
	4.4.2 Detection

	4.5 Evaluation
	4.6 Related Work
	4.7 Conclusion

	5 Detecting Camouflaged Applications On Mobile Application Markets
	5.1 Introduction
	5.2 Problem Definition
	5.3 Background
	5.3.1 Information Retrieval Systems
	5.3.2 Repackaging and Code-Based Detectors

	5.4 A Framework for Detecting Camouflaged Applications
	5.4.1 Crawling
	5.4.2 Indexing
	5.4.3 Querying and Retrieving
	5.4.4 Detecting

	5.5 Experiment and Results
	5.6 Discussion
	5.7 Related Work
	5.8 Conclusion

	6 Dissertation Conclusion and Future Work
	6.1 Summary of Contribution
	6.2 Future Direction
	6.2.1 Improvement on Current Vulnerability Analysis
	6.2.2 Vulnerability Analysis on Other Frameworks
	6.2.3 Vulnerability Analysis on Third-Party APIs

