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Summary 

Electricity is critical to the economic and social development of humanity. Significant 

effort has been spent on the effective management thereof and with the growth of the 

renewable energy sector, traditionally regulated markets are no longer sufficient. This has 

resulted in privatization of the sector over the last three decades, and has largely been 

met with success internationally. South Africa however, continues to suffer rolling black-

outs and rising energy costs. Many attribute this to the closed system under which the 

country operates.  

In order for there to be sufficient buy-in for policy-change, key stakeholders such as the 

consumer and retailer must be made aware of the new reality under which they would 

operate, the factors that would affect their interests, and the extent to which they would 

be affected. Furthermore, the conflicting objectives of these parties must also be 

addressed through their simultaneous achievement, taken to be social welfare.    

This dissertation satisfied these aims by creating an accurate depiction of the locally 

unique consumer and retailer’s realities through the development of operations research 

models. The resident’s problem was modelled as a load scheduling one which considered 

the vastly divergent socio-economic status of South Africans and how this affects their 

energy consumption patterns. The spot market dynamics that a retailer is confronted with 

was modelled as a three-regime Markov switching model. Because social welfare was the 

overwhelming interest of the study, a novel problem formulation was proposed to 

combine the resident’s interests in reducing bill payments and inconvenience levels, and 

the utility’s interest in increasing revenues. 

The developed models and problem formulation were applied to South African 

scheduling data for residents operating under a fixed rate tariff. It was found that, under 

the guidelines of Eskom’s pricing boundaries, the relationship of the consumer’s price 

elasticity relative to the retailer was not a linear one. Social welfare was found to be a 

function of this relationship, and static tariffs that achieved optimal social welfare at 

varying degrees of relative price elasticity were identified. It was noted that insufficient 
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research has been conducted on validating the effect of the retail tariff on the resident and 

utility. Furthermore, this effect varies from one society to the next and is dependent on 

factors such as consumer attitudes and electricity profit margins.  

Time-varying tariffs increased model complexity but are capable of achieving demand 

response which are believed to broaden the interests of the retailer and consumer. A trail-

and-error algorithm was proposed as an appropriate tool for demonstrating the effects of 

demand responsiveness under a time-of-use (TOU) tariff. This was applied to the South 

African context with the inclusion of the novel problem formulation.  

The novelty of this thesis is four-fold: firstly, a problem formulation that captures social 

welfare, which has previously not been considered in literature, is proposed. Secondly, 

the assumption of most works in this field that the effect of retail tariff changes on the 

consumer and retailer are the same, is disproved. In fact, this relative sensitivity is shown 

to be far greater for the resident than for the utility. Thirdly, a three-regime Markov 

switching model is successfully applied to the Australian market with no restrictions on 

the transition probability matrix. Finally, initial computations for this unique perspective 

on the problem are conducted with a trial-and-error algorithm and findings will certainly 

assist in guiding future research.  
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1.1 BACKGROUND  

Since its modest beginnings in 600BC, electricity has grown to be an indispensable asset 

in modern society. It is the backbone for economic, social and infrastructural growth and 

success in every nation. Electrification has increased comfort and human activity which 

has resulted in paradigm-shifting inventions such as that of the refrigerator, telephone 

and computer. Every effort has thus been made to effectively manage this precious 

resource in order to derive maximum benefit and with this has come the evolution of the 

energy industry. With the advent of competitive electricity markets over the last thirty 

years and the gradually increasing contribution of renewable energy to power generation, 

this sector has grown to be a complex one with multiple stakeholders, conflicting 

objectives and persisting challenges. At the forefront of these challenges is providing a 

satisfactory and reliable service to consumers consistently, and many deregulated 

markets around the world have not only shown great success in achieving this, but have 

also enjoyed many other benefits in the process.  

Open markets were initially established in the fields of aviation, telecommunications and 

natural gas during the 1970s and 1980s. Soon, they were a common phenomenon 

amongst advanced industrial economies. Their birth was prompted by the increasing 

inefficiencies of government regulation and a sense of distrust and risk that agencies 

under the old regime were manipulating policy for their own benefit at the detriment of 

the general public. A similar international trend has developed for the energy sector and 

in countries such as Australia, the United States, Brazil, Russia, and Denmark where the 

transition had been initiated for similar reasons, significant benefits have resulted. Energy 

providers have enjoyed the freedom to design their own tariff structures which has bred 

industry rivalry and competition, lower retail prices and bill payments for the energy 

consumer have been experienced as a result of this, and system reliability has been 

enhanced through the modernization of infrastructure and the introduction of smart grids 

and smart technology (NRG Expert, 2012, Pentland, 2013). One other interesting and 

slightly more complex benefit has been the growth of new renewable energy and its 

increasingly significant contribution to power supplies. Prior to deregulation it was well-
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known that electric power generation produced more pollution than any other single 

industry in the United States. This pollution was altering global climates and harming 

ecosystems for future generations. The eco-conscious consumer thus became 

increasingly interested in how their energy was produced, but had little option as far as 

choice was concerned. The market restructure has since given small pockets of solar and 

wind energy producers the platform to trade their product sustainably for economic gain. 

Furthermore, the transition has resulted in what is considered to be a cyclical effect in 

that, because renewable energy is also associated with near-negligible generation costs 

(Ziel et al, 2015), it is often associated with the lowest rate. In a market where consumers 

get to shop for their electricity amongst a wide range of options, green energy is an 

obvious choice. With these trends in mind, wind, solar and hydro-electricity have 

collectively seen a market share of 19% as of 2012 (Renewable Energy Global Status 

Report, 2014) and this is expected to rise in the coming years for most industrialised 

countries. However, it makes for a stochastic and intermittent energy source (Zugno et al, 

2013), and needs the infrastructural support and management of a competitive market to 

make a significant and reliable contribution to meeting global needs. The relationship 

between open markets and green energy is thus clearly symbiotic, and society cannot 

move in the direction of one without the other.  

It has been made clear thus far that deregulation has been adopted by many countries and 

global trends indicate that it is both necessary and beneficial for the future of energy. The 

South African electricity industry differs significantly from its international counterparts 

however primarily because of its unique history. Marquard (2006) identifies the 

development of the local electricity system to have unfolded in two main phases. In the 

first phase, electricity was initially generated and distributed at a regional level and based 

in local authorities with the exception of a private initiative that served the emerging 

gold-mining sector. Escom, a state utility, was created to integrate regional systems into a 

national grid that serviced local authorities, industry and mining. In the second phase, a 

distinct division between the generation, transmission and distribution activities of the 

industry was observed, with Escom controlling the generation and transmission rights. 

What enhanced the clout of the utility however was its dominating role in supplying 
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energy to the mining sector and other intensive users, both of which drove the national 

economy at the time. Distribution was in the hands of local authorities and was thus 

fundamentally affected by apartheid so that white households were almost entirely 

electrified whilst black households were left energy-poor. With the transition into 

democracy, Eskom naturally assumed the right of supply to these black households 

which ultimately meant the vast majority of the country, solidifying their status as a 

central player in the local industry. This has however meant a radical increase in demand 

for the utility, one which many argue they were, and still are, ill-prepared for. The energy 

crisis of 2008 for example, which entailed a shortage of electricity, led to rolling 

blackouts, economic losses of R200 million per day (Crowley, 2014a) and numerous 

retrenchments due to the dwindling profits of large, medium and small enterprises. 

Furthermore, had the contributions of renewable energy and private generators to the 

national grid not been capped to 9% by 2030 (which has already been exceeded by other 

BRICS nations) due to government policy, the deficit of supply would not have been felt 

so devastatingly, the crisis would have been more manageable and perhaps, may not even 

have occurred at all (Montmasson-Clair and Ryan, 2014). Indeed, South Africa has a 

promising future in green energy, ranked third amongst thirty-five nations in its potential 

to attract capital for low-carbon energy resources, but the necessary tools are currently 

not in place to nurture its growth or feed its demand (Department of Energy, 2015). Since 

then, the National Energy Regulator of South Africa (NERSA) has approved tariff 

increases of between 8-20% per year (Crowley, 2014b). This has been higher than 

consumer inflation rates in an already struggling economy, with the promise that load-

shedding and blackouts would be a thing of the past and that rising energy demands at 

the time would be met. In this regulated market however, Eskom, the parastatal 

responsible for serving 95% of South Africa’s energy needs, find themselves even worse 

off than they were six years ago.  

Solutions to the current local energy crisis can clearly be sourced from overseas. 

Although the success of deregulation depends heavily on the country in question, 

empirical evidence supports its successful implementation in both progressing and 

developed nations. Furthermore, South Africa proves itself to be a viable and promising 
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candidate due to the failure of the current regulated system, rising energy costs and its 

impressive potential for green energy. Proposing a radical change such as a shift to 

deregulation seems both necessary and inevitable for South Africa’s energy future, but 

also requires, firstly, significant buy-in from key stakeholders, and secondly, knowledge 

of the unchartered. This study thus aims to further this proposition by satisfying these 

two objectives. Before defining exactly how this will be accomplished however, a more 

thorough discussion of some key concepts is required. This is presented in Section 1.2. 

Section 1.3 provides clarity on research objectives and how they fulfil the aims 

highlighted above, and Section 1.4 outlines the contributions. Section 1.5 concludes the 

first chapter with a brief outline of the rest of this dissertation.  

1.2 KEY CONCEPTS  

Energy as a commodity has unique characteristics that must be addressed in its 

management. For example because it cannot be sustainably stored, its supply and demand 

must continuously be balanced in real-time. Trends such as seasonality, time-varying 

volatility, mean reversion and jumps and spikes are also exhibited and must be accounted 

for. These factors amongst others have prompted the development of different market 

structures, stakeholders, tariff structures and decision-making horizons.  Each of these 

aspects play a fundamental role in shaping the dynamic of the industry as will become 

evident throughout the rest of this section. 

1.2.1 Market structure 

There are two types of market structures that exist for every energy industry: vertically 

integrated (regulated) and open market (deregulated) systems. In a regulated market the 

government sets rules that define how an industry and operators in that industry may 

behave (Abhyankar and Khaparde, 2013). Historically all markets were regulated as it 

offered a risk-free way to finance the creation of utilities without the added burden of 

competition and there existed an obligation to serve the people. South Africa still 

operates under a regulated system where electricity supply is dominated by a state-owned 

enterprise and a structure of the local industry is given in Figure 1.1. In a deregulated 
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system rules and economic incentives set up by government to control an industry are 

restructured. This ultimately means that the pricing, generating, distribution and 

transmission activities of the industry are left unregulated. Like any retail product, 

electricity is then purchased at a given rate by end-users, but service providers have a 

number of procurement options at their disposal. Futures or contract trading, in which 

purchases are made in bulk in advance at an agreed-upon price, reduces settlement risk 

and the possibility of insufficient supply. Nevertheless, deviations between supply and 

demand in real-time are guaranteed to occur, usually as a result of fluctuating demand, 

generation or transmission failures, and to ensure that a balance is maintained, trading is 

enabled in spot markets in which retailers may bid to purchase or sell electricity back to 

the grid at some regulating price. Because of the reduced time to delivery in spot markets 

and the resulting reduced capability to circumvent problems as they arise, significant 

attention is paid to spot market price predictions (Weron, 2007). The United States, 

Russia and several Nordic countries shifted toward this structure in recent decades due to 

technological innovations improving efficiency of supply on a smaller scale, the 

historically better performance of other privatized industries and the resulting drop in 

cost when competition is introduced. Figure 1.2 represents the generic structure of an 

open market system. It is clear that any proposition of this structure must be accompanied 

by an appropriate representation of trading in these respective markets so that its effect 

on the retailer may be quantified and analysed.  
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Figure 1.1: The South African Electricity Supply Industry (Department of Minerals and Energy, 

2008) 

 

           *T&D refers to transmission and distribution activities 

Figure 1.2: Deregulated electricity system (Abhyankar and Khaparde, 2013) 
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1.2.2 Stakeholders 

As can be seen in Figure 1.2 several stakeholders exist in the deregulated electricity 

market, each with their own expectations. The degree to which these objectives are 

addressed dominates literature surrounding the energy industry. Some of these key 

objectives have been summarised in Table 1.1. As can be seen, the outcomes of one party 

often times conflict with those of others in the energy value chain, and this is regardless 

of the market structure adopted. For example, the recovery of revenue for the generator 

cannot be maximised without the expense of the retailer, and consumers cannot receive 

an affordable and predictable tariff without the retailer suffering some procurement risk 

and profit losses. The resolution of the conflict between the residential user and the 

retailer requires buy-in and herein lies the focus of this study. Whilst parties accept that a 

certain loss must be incurred due to industry dynamics, little work has been done in the 

way of identifying this so-called tipping point, or the space in which two stakeholder’s 

conflicting objectives are satisfied without the excessive deterioration of the other. If this 

can be found, key stakeholders will be motivated to support change with the knowledge 

that their interests will not be neglected. This concept will be referred to as social welfare 

for the remainder of this dissertation and is taken to be the overwhelming interest of two 

parties whose other objectives are otherwise independently conflicting. Currently, no 

problem formulation exists in literature that prioritises this over individual stakeholder’s 

interests, and it is of the belief that herein lies the solution to sustainable change.    

Table 1.1: Stakeholder objectives 

Stakeholder Objective Description 

Generator Revenue recovery Revenue from sales to the retailer should 

reflect the full cost to supply electricity 

and ensure that the industry is 

economically viable and fundable in the 

short, medium and long-term 

 High generation capacity Capacity should match consumption 

needs to ensure greater potential for 
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revenue  

 Low cost of implementation Operating costs should be minimised to 

ensure higher profit margins 

Transmission and 

distribution utility 

Low cost of maintenance Because these utilities are paid for 

ownership and use of their lines (but not 

operation), management, engineering and 

maintenance costs should be minimised to 

ensure higher profit margins  

Independent System 

Operator (ISO) 

Reliable supply As an independent regulating authority, 

the ISO is responsible for ensuring the 

balance of the system and secure supply    

Retailer Revenue recovery Revenue from sales to the consumer 

should reflect the full cost to purchase and 

transfer electricity from the generator to 

the consumer, and ensure that the industry 

is economically viable and fundable in the 

short, medium and long-term 

 Low procurement risk Power supply options (see decision-

making horizons) should cumulatively 

meet consumption requirements in real-

time 

Consumer/ Resident Affordable tariff Price levels should assume an efficient 

and prudent utility with sufficient thought 

to consumer welfare and in the case of 

dynamic schemes, elasticity 

 Predictable and stable tariff Prevent price shocks and keep consumers 

informed about future trends 

 

1.2.3 Tariff structures 

Broadly a tariff structure can be defined as a set of charges levied to a party for supply of 

a resource. Electricity has been paid by the consumer in the past using a variety of 

structures that can be classified as fixed, static and dynamic. These classifications have 

become increasingly important due to its inextricable link to Demand Response (DR), a 

topic which has garnered significant attention in the energy field of research. DR can be 

defined as “changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over time, or to 

incentive payments” (United States Department of Energy, 2006). In a fixed structure a 

flat-rate is charged to the customer without consideration of variations in supply or 
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demand, seasonality or time-variance. This protects the consumer from price volatility, is 

simple to manage and implement for the retailer, simpler to respond to for the consumer, 

and is often times applied in pilot markets not yet mature enough to respond to more 

advanced schemes. However, it also inhibits the end-user from playing a more active role 

in DR and responding to price signals accordingly. A subsequent improvement of this 

structure has been static time-varying pricing methods. These prices are known months in 

advance and ‘communicate’ with the consumer based on fluctuations in supply or 

demand. For example, in a time-of-use (TOU) tariff, prices vary based on block periods 

of the day that represent high (higher tariffs) and low (lower tariffs) periods of demand. 

Another example is the inclining-block rate tariff which resembles a unit step function. 

Here, energy consumed above certain quantities is charged at increasing premiums. 

Currently, Eskom charges TOU and inclining block rate tariffs to its business and 

residential customers respectively. The primary criticisms of static tariffs have been its 

inadequacy in capturing variations within block periods and the infrequency of price 

adjustments. Real-time pricing (RTP) was developed to address these shortcomings and 

has since been applied extensively in deregulated industries. These tariff structures have 

no pre-set components but apply retail prices, regulated by an ISO, that translate 

wholesale prices to the consumer to achieve effective levels of demand response. An 

example is day-ahead pricing in which rates for a 24-hour period are published a day in 

advance and reflect prices hourly up to five-minute periods. Any imbalances in supply 

and demand are then met in the spot market. It is clear that this tariff structure is the most 

complex to manage and respond to for the consumer, and has thus only been 

implemented in established markets despite its obvious benefits.  

The implications of not achieving DR in a deregulated market can be catastrophic, as was 

seen in the California energy crisis. In June 2000, the state, due to a mere shortage of 

300MW in a grid of 50 000MW, experienced an 800% increase in wholesale prices 

which filtered down to retailers and consumers. This forced the institution of multiple 

large-scale blackouts, saw a drastic cut to profit margins in the industry, and resulted in 

the closure and near-closure of two of the largest energy companies. Clearly, the lack of 

regulation had a cascading and devastating effect on all parties in the market despite 
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customers receiving price signals which served as warnings of the impending crisis. A 

post-analysis by Triki and Violi (2009) indicated that price elasticity, defined as “a 

measure of the effect of a price change or a change in the quantity supplied” 

(Investopedia, January 2015), was insufficient to trigger changes in consumption patterns 

for the consumer, resulting in a shortage of supply. Elasticity demonstrates the sensitivity 

of users to price changes. A higher elasticity means a greater sensitivity and likelihood of 

changes in behaviour, thereby circumventing the California crisis. According to the 

findings of Kirschen (2003), Aalami et al (2008) and Corradi et al (2013), effective 

demand response can only be achieved when price signals reflect a level of change that 

consumers are sensitive to. For example, if an increase of R0.1/kWh was incurred, it is of 

interest as to whether this would result in a reduction of residential users’ loads so as to 

save on bill payments. Only then can a deregulated market operate successfully and 

achieve DR, thereby deriving significant benefits for the consumer and retailer. The 

sensitivity of consumers must therefore be captured so that the selected tariff is capable 

of eliciting appropriate changes. Furthermore in the way of achieving social welfare, the 

price elasticity of consumers relative to the retailer is of critical interest, and has not yet 

been addressed in literature. It is hypothesised that the effect of a change such as, for 

example R1/kWh, has vastly different impacts on each stakeholder’s outcomes. This 

must first be tested then quantified by an appropriate problem formulation that represents 

social welfare instead of favouring one party over another. 

1.2.4 Decision-making horizon 

The sequence of decisions and availability of information for generators, retailers and 

customers in making purchasing and selling decisions is considered in the decision-

making horizon. Figure 1.3 depicts the sequence of decisions made by a retailer in 

procuring and subsequently selling electricity to consumers. Note that in the event of 

demand exceeding the quantity purchased, the market is said to be up-regulated and 

relationships between the day-ahead market and this regulating price are often dependent 

on the country in question. Similarly, in the event of demand being lower than the 
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quantity purchased, the market is said to be down-regulated. Figure 1.4 extends these 

concepts to a decision framework spanning one month.  

 

Figure 1.3: Retailer’s decision-making framework  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Decision framework spanning one month (Carrion et al, 2007) 

Trading in the spot-market 

Deficiencies and excess in supply balanced in real-time via trading 

Retail price announced to end-users  

Information received by Energy Management Systems via a Local Area Network (LAN)  

Wholesale prices announced to market participants 

Price of procurement for retailers announced and transacted 

ISO clears load against bidding strategies 

Demand matched against supply bids pitched by generators 

Retailer makes purchase bid based on forecasted load in day-ahead market 

One of three supply options: forward contract, call option or self-production  
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1.2.5 Summary 

From the above discussion, several conclusions can be drawn:  

 Before the local energy sector can progress to a new era, the retailer and 

consumer must be provided with sufficient buy-in as well as an accurate depiction 

of their locally unique new reality in order to motivate change.  

 Achieving social welfare is integral to creating buy-in, and this occurs when 

consumers neither incur exorbitant charges, nor do retailer revenues suffer 

excessively.  

 No problem formulation that simultaneously addresses both stakeholders’ 

objectives and measures their relative performance is available in literature.   

 One of the primary benefits of deregulation in electricity markets is that of 

demand response which is in turn only achieved through the effective capture of 

consumers’ price elasticity for the country in question. 

 A representation of the consumer and retailer’s problems must encompass 

demand response tools so that its benefits can be quantified and the impact of 

more advanced pricing schemes can be analysed.     

 No problem formulation that seeks to achieve social welfare is available in 

literature, and one that does so must capture the price sensitivity of the consumer 

relative to the retailer.  

 

1.3 OBJECTIVES 

The South African electricity industry has thus far, failed to consistently deliver a reliable 

service to its public. This, coupled with global trends towards deregulation and green 

energy, makes South Africa a natural candidate for change. As a country “for the people” 

even when in a competitive environment, in order to create buy-in as well as preserve the 

interests of independent parties, social welfare must be the prevailing objective. In an 
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open system, the consumer and retailer will also be confronted with uncertainty due to 

new market dynamics and its effect on their outcomes must be quantified. As with all 

forecasting and predictive efforts employed in industry, this will improve the opportunity 

for success of any fledgling deregulated energy market operating in South Africa. With 

these areas of focus in mind, the following sub-objectives have been defined:  

 To contextualise the South African resident’s load scheduling problem with 

regards to existing literature so that a realistic yet tractable model that accurately 

depicts the unique local reality is formulated.  

 To contextualise the retailer problem with regards to existing literature so that the 

dynamics of a deregulated industry, specifically that of spot market and futures 

contract trading, is appropriately formulated in a realistic yet tractable model.   

 To identify and encompass the infrastructural, technological and social 

requirements of demand response so that the deregulated market may operate 

successfully.    

 To develop a novel problem formulation that is capable of capturing the relative 

price elasticity of retailers and consumers, identified as the key to achieving 

social welfare 

 To demonstrate the principle theories of the derived model and problem 

formulation through its application to a South African case study operating under 

a fixed rate tariff.   

 To identify, justify and propose an appropriate solution algorithm that extends the 

model’s application to include more advanced TOU and dynamic pricing schemes 

for a mature deregulated market operating in South Africa.  

1.4 CONTRIBUTIONS 

The main contributions of this thesis can be discussed in a similar fashion and include:  

 The first attempt at modelling a residential load scheduling problem with keen 

interests in the unique challenges of the South African environment, which 

addresses direct load control, battery storage and scheduling inconvenience 
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 The development of a model that simulates the dynamics of an energy retailer 

operating in South Africa  

 The first application of a Markov regime-switching model with a non-restricted 

transition probability matrix to the Australian spot market, which is identified as a 

balancing market similar to one which would operate in the South African 

context, and which acts as an appropriate substitute  

 The proposal of a novel approach to formulating the consumer and retailer 

problem that, when in this format, seeks to maximise social welfare instead of a 

single party’s interests by appropriately capturing the relative price sensitivity of 

both stakeholders  

 The demonstration of this problem formulation and its effectiveness in measuring 

social welfare, as well as demand responsiveness, when applied to a South 

African case study operating under a fixed tariff, as well as the identification of 

other factors requiring further investigation to ensure its success  

 The proposal of a trial-and-error algorithm as a means of demonstrating the 

effects and impacts of demand responsiveness and battery usage on stakeholder 

objectives when operating under a TOU pricing scheme, which is markedly more 

computationally expensive due to the inherent nature of scheduling problems with 

non-convex search spaces.  

1.5 SCOPE 

Chapter 1 is introductory in nature and provides some context as to the energy industry, 

the problems South Africa is confronted with, and how this thesis aims to improve the 

outlook for the application of deregulation so as to curb the current crisis.  

In Chapter 2 presents existing literature to develop an understanding of the energy 

environment with particular interest to the interactions between the consumer and 

retailer. Attention is paid to key features such as load management, battery storage and 

scheduling inconvenience for the resident, and procurement strategies and trading under 

uncertainty in the spot market for the energy provider.  
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The developed retailer and consumer models are presented in Chapter 3. Included is the 

three-regime Markov switching model that was identified as the strategy of choice for 

capturing and forecasting spot prices under uncertainty.  A novel problem formulation 

that captures social welfare, achieved through hypothesising the relative price elasticity 

of retailers and consumers, is also presented.  

In chapter 4 the results of the three-regime Markov switching model are presented and 

analysed. Data for a South African case study which is used as the basis for numerical 

work is also provided, followed by a demonstration of the proposed problem formulation 

to this case study when a fixed rate tariff structure is employed.  

Consideration is given to the application of time-varying tariffs in Chapter 5. To do this, 

a brief overview and analysis of existing solution strategies which may be used to solve 

the electricity market’s social welfare problem is presented. The trial-and-error algorithm 

is identified as an appropriate strategy for demonstrating the effects of demand response 

and battery storage when operating under a TOU tariff (or dynamic pricing scheme in 

future research). Preliminary results when the algorithm is applied to the case study 

under a TOU tariff is also discussed with regards to challenges experienced and 

recommendations for improvement. 

Chapter 6 concludes the thesis with a brief description of major findings and avenues for 

future research. Limitations of the study that were identified during its completion as 

well as assumptions are also presented.  
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2.1 INTRODUCTION   

As has already been established, electric power markets are complex environments 

within which a number of stakeholders and decision-making horizons are considered. In 

recent years the activities of governments, utilities and distributors have focused on 

changing the quantity and demand profile of energy consumption. This can be attributed 

to developments in smart grid technology enabling bidirectional communication between 

utilities and consumers. Holistically, this field of research has been referred to as 

Demand Side Management (DSM) since the 1980s, and now comprises activities such as 

Load Management and Demand Response. The reported benefits of effective DR are 

several-fold. Firstly, a more reliable electricity system is achieved as a result of smaller 

differences between peak and low load periods (Saele and Grande, 2011). This reduced 

volatility is observed due to improved consumer-retailer interactions which ultimately 

protects the user from risk, intermittent supplies and higher probabilities of transmission 

or distribution failures from overloads. Secondly, the consumer is able to incur lower bill 

payments when their load schedules are adjusted accordingly in response to price signals 

that they are sufficiently sensitive to, and herein is buy-in created not only for DR, but 

for deregulation as well. Finally, for the retailer a more uniform and predictable load 

profile is achieved, measured as the peak-to-average ratio (PAR) of demand. This means 

that generators are able to avoid the construction of expensive power plants to satisfy 

only several hours of peak demand per year (Mohsenian-Rad et al, 2010), and these 

heightened fixed costs are not filtered down to the service provider.  

Based on the above discussion, a model that is developed for the consumer and retailer 

must therefore be an accurate depiction of their realities under a deregulated regime, but 

must also be equipped to realise the benefits of DR, and demonstrate and measure its 

effects on stakeholder and social welfare interests. To do this, a thorough understanding 

of the consumer-retailer interaction as well as their respective behaviours within the 

energy context is required, which in turn calls for a review of available literature. Section 

2.2 gives an overview of the consumer problem and discusses some key features in 

detail. Section 2.3 presents the retailer problem in a similar fashion to Section 2.2 with 
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emphasis placed on the prediction of spot prices, a volatile market that has a significant 

impact on retailer revenues. Section 2.4 summarises this chapter.   

2.2 THE CONSUMER PROBLEM    

Table 1.1 identified cost minimisation and a reliable power supply as the primary 

concerns of the residential user. Both outcomes were found to be inextricably linked to 

the load scheduling problem as it is referred to by Mohsenian-Rad and Leon-Garcia 

(2010), Chen et al (2012a) and Wang et al (2013), and which can be considered a 

subsection of DR. The purpose of load scheduling is to create an optimal power 

consumption schedule under a given tariff structure so that the user is able to incur the 

lowest electricity charges. An added benefit to this method is a reported reduction in 

PAR, the benefits of which have already been discussed. A review of literature revealed 

that in the consumer problem there are several key aspects present. They include 

formulating the interaction between the consumer and retailer, discussing the role of 

smart technologies in DR, addressing customer behaviour, managing load, addressing 

consumer inconvenience and evaluating the effect of energy storage facilities on 

consumer and retailer outcomes. Each of these are discussed in further detail in Section 

2.2.1 to Section 2.2.6 respectively. Publications in this field provide a unique mix of 

investigation into each of these aspects to varying degrees, and many have added their 

own improvements. These valuable contributions are noted in the “Present-State-of-Art” 

that follows the subsequent discussions.    

The PSA has been compiled for a period of 11 years, from 2004 to 2015. Table 2.1 is 

divided into five headings: year, author/s, “method used”, “key features” and 

“contributions”. The “method used” identifies the primary modelling technique or 

methodology of the publication and “key features” highlights which salient feature/s 

formed the focus of the study. Finally, the “contributions” outlines the significance of the 

results obtained and forms a valuable basis for comparison in the analysis phase. It is of 

the opinion that this approach gives an accurate overview of the current analytical 

modelling techniques applicable to the consumer problem.     
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2.2.1 Formulating the interaction between the consumer and retailer 

The relationship between the consumer and retailer is a mutually dependent but 

conflicting one. This is because the consumer relies on the energy provider to provide a 

service at a reasonable retail rate so as to minimise their electricity payments, whilst it is 

in the best interest of the retailer to charge a higher tariff so as to achieve higher profit 

margins. Furthermore, the consumer may have other interests apart from a reduced bill 

such as reducing their inconvenience for shifting appliance usage. The same holds true 

for retailers. Two primary setups have been reported in literature to describe the 

interaction between these two parties, as can be seen in the Present-State-of-Art provided 

in Table 2.1. These are Stackelberg games and multi-objective optimisation problems 

(MOOP).  

The more popular approach is that of a Stackelberg game in which the service provider is 

the leader who sets a tariff and residential users are the followers responding to this tariff. 

Mohsenian-Rad et al (2010), the University of British Columbia (2011) study, Chen et al 

(2011) and Chen et al (2012a) apply this technique to depict the power balance between 

these stakeholders. For Chen et al (2011) and Chen et al (2012a), a conventional 

approach is followed as the utility aims to maximise revenue and the follower is some 

automated decision-maker aiming to minimise payments thereafter. Mohsenian-Rad et al 

(2010) focus on the minimisation of PAR, an indicator of aggregated load profile, instead 

of on individual user’s utility. The University of British Columbia (2011) study focus 

their attentions on the pricing scheme rendered to consumers and adopt a two-fold 

structure comprising mismatch and usage pricing. Although not stated explicitly, 

Mohsenian-Rad and Leon-Garcia (2010) also seem to adopt a Stackelberg formulation 

but operate with a pricing structure that combines real-time pricing and inclining block 

rate tariffs. The authors find that RTP creates confusion amongst users not familiar with 

dynamic pricing and contributes to load synchronization, but coupled with inclining 

block rate tariffs, these effects are avoided. The primary benefit of a Stackelberg strategy 

is that a unique and optimal solution known as the Stackelberg or Nash Equilibrium can 

be found, as is reported by Mohsenian-Rad et al (2010), Chen et al (2011) and Chen et al 
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(2012a). These solutions are typically derived using backward induction and in one case, 

a distributed algorithm (Mohsenian-Rad et al, 2010). For the University of British 

Columbia (2011) study, no experimental or numerical results are provided and this poses 

a topic for future research as the price formulation presented is promising. This problem 

formulation is also effective in representing the leader-follower relationship between the 

service provider and user. However, three criticisms of this model setup exist. Firstly, 

only a sequential solution that is scenario-based is permitted, which proves difficult when 

applying such solutions to general cases. Secondly, because the retailer is consistently 

favoured as the party responsible for setting a price signal and the consumer is at its 

mercy, social welfare is not guaranteed. Finally, under this problem formulation both 

parties objectives are studied and satisfied independently. Their relative effect on one 

another is therefore not adequately captured and price elasticity, which is key to 

achieving DR benefits for both parties, is ignored or at best, assumed to be linear.    

Multi-objective optimisation problem setups have been employed frequently in the 

energy industry, and particularly in the direct load control (DLC) context, because of 

their desirable trait of simultaneously considering numerous outcomes. Gomes et al 

(2007) and Pedrasa et al (2009) are two such authors that have done so. In Gomes et al 

(2007), no fewer than seven objectives that consider both the customer and retailer are 

included. In Pedrasa et al (2009) a non-convex, non-continuous objective function is 

derived due to the scheduling of interruptible loads and the presence of binary variables, 

which both significantly increase model complexity. Thus, the authors opt for 

simplifying this to a single aggregate function. Both of these studies make use of 

metaheuristics for sub-optimal but sufficient model solutions due to their inherent 

complexity, and both emphasise the importance of setting well-validated parameter 

values due to their critical impact on results. Therefore, MOOPs increase the required 

number of parameter estimates, as is the case with Gomes et al (2007) whose solution is 

dependent on predetermined aspiration and reservation levels for the consumer, and for 

which no guidelines are offered. This further means that if parameters are not 

appropriately justified and selected, they call into question the integrity of a study’s 

fundamental findings. Lastly, the simplification of MOOPs to aggregate functions also 
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assumes a relative price elasticity between selected parties that is linear, and this has not 

been substantiated in literature.      

Based on the above discussion, it is clear that a completely novel problem formulation 

must be proposed and tested that captures the power balance inherent to the relationship 

between the retailer and consumer, enables the simultaneous consideration of stakeholder 

objectives so that social welfare is maintained, and addresses the relative price elasticity 

of the retailer and consumer so as to appropriately capture this social welfare in a single 

function. For this study the consumer and retailer models will be developed separately 

but will be inextricably linked by the decision of an appropriate tariff. The objective is 

then to determine the relationship between the retailer and consumer as a function of the 

price charged so that the tariff at which optimal social welfare is established can be 

defined. In response to this price, end-users may then respond with an optimal load 

schedule that reduces their bill payments and incurred inconvenience, and retailers may 

enjoy sufficient revenue recovery.  

2.2.2 The role of smart technologies in Demand Response 

Effective demand response cannot be achieved without smart grids that are equipped 

with smart technology. These grids are key infrastructural assets that enables two-way 

communication and in turn facilitates the interaction between consumers and their service 

provider. The installation of devices such as Energy Management Controllers (EMCs) 

and Local Home Area Networks (LHANs) that enable DR is a voluntary effort on the 

part of consumers and this means that sufficient incentive in terms of cost savings must 

be realised (Conejo et al, 2010). On a macro level, these technologies then work in 

coordination with Energy Management Systems (EMS) such as UREM (Cai et al, 2009) 

and CAES (O’Neill et al, 2010) to make planning, generating and capacity decisions (the 

definition of UREM and CAES can be found in the List of Acronyms). Therefore, the 

employment of smart technologies is not only critical to meeting stakeholder objectives, 

but it offers significant benefits for consumers, retailers, distributors and generators. Sou 

et al (2011), like Chen et al (2011), highlight the importance of smart grid technologies 

for enabling information flow between service providers and consumers, and handling 
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the large data volumes and velocities typical of DR. Rastegar et al (2012) give a 

satisfactory description of a variety of smart technologies and EMSs with focus on the 

system data transfer structure. In a context where devices enabling bi-directional 

communication are not available, perhaps for financial and infrastructural reasons or due 

to technological immaturity, Corradi et al (2013) propose a one-way price signal to 

control electricity consumption. This is however not ideal as data gathered on load 

profiles is aggregated and thus not specific to customer behaviour, limiting its 

effectiveness in achieving DR. Finally, Saele and Grande (2011) comment that the use of 

manual practices, such as the ‘El Button’ in their case, to remind customers to avoid 

usage of energy-intensive appliances is also highly recommended.  

What is clear from these works is that the best demand response is achieved when homes 

are equipped with technologies that enable the communication of load and pricing data 

between the retailer and consumer. Furthermore, manual reminders are also a tool for 

affecting change in user consumption patterns that has seen positive results. The 

identification of these requirements speaks to one of this study’s aims of establishing and 

encompassing infrastructural, technological and social parameters that achieve DR in the 

proposed model so that the deregulated market may enhance its success. For this study, it 

will thus be assumed that all residences are equipped with EMCs that hold the data for 

user preferences and which automatically adjust load in response to price signals. This 

will eliminate the need for manual reminders, and the model developed can easily be 

integrated with current EMSs (Conejo et al, 2010). For a review of the functional and 

constructional requirements of smart grid technologies, the reader is referred to 

Schweppe et al (1989).  

2.2.3 Addressing consumer behaviour 

Customer behaviour is fundamentally linked to price elasticity and thus demand 

response. This is evident from the number of publications that have attempted to classify 

their load patterns and predict their attitudes, as can be seen in the Present-State-of-Art 

(see Table 2.1). Criteria such as rated electrical values, activity-type parameters or even 

the socio-economic status of a user have a significant impact on their demand profiles 
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(Chicco et al, 2004). In Gomes et al (2007) loads are classified into 20 groups, each with 

their own distinct profile, but little substantiation is given as to how these groups are 

derived and such a large segmentation could prove tedious. Other factors such as the type 

of pricing scheme, the presence or absence of incentives to participate in DR 

programmes and manual reminders to reduce consumption have also proved to be 

significant (Mohsenian-rad and Leon-Garcia, 2010, the University of British Columbia 

study, 2011, Saele and Grande, 2011). This is due to the varying degrees of flexibility 

and attitudes of users towards energy consumption. For example, an indigent resident 

would be far more willing to incur inconvenience for the sake of a lower bill payment in 

comparison to a wealthy user. According to Baboli et al (2012), incentive-based 

programmes have proved more successful than price-based programmes in achieving 

higher levels of DR due to its foundation as a reward rather than a punishment-based 

system. However, no methods are presented to assist in defining the price of incentives or 

tariff structures, unlike in Aalami et al (2008) where a trial-and-error algorithm is used to 

find the value of incentives required to achieve a reduced peak load equal to a pre-

selected base load line based on price elasticity. Setlhaolo et al (2014) also used the 

guidelines of Wood and Newborough (2003) to define an incentive value. The focus of 

this study however is on the selection of a tariff that delivers optimal social welfare, and 

to this end, price-based studies such as those by Mohsenian-Rad and Leon-Garcia (2010) 

and Saele and Grande (2011) have reported success in achieving better demand response 

as well as benefits for the consumer and retailer.       

Chicco et al (2004), Aalami et al (2008) and Baboli et al (2012) all take different 

perspectives on analysing consumer behaviour. Chicco et al (2004) compare two 

approaches for classifying users by load profile and their technique can be used 

complementarily with tariff structure design to maximise service provider revenue whilst 

meeting consumer demand. In Baboli et al (2012) the psychological element and 

consumer habit formation is emphasised. Importantly, in this work the authors begin to 

explore the effect of customer segmentation and behaviour on energy consumption 

patterns. However, little qualitative or quantitative analysis in the form of questionnaires, 

historical data or socio-economic studies is presented, and no justified basis for 
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classification is provided. Thus, assumptions regarding the customer segmentation 

weighted coefficient (see Table 2.1) and baseline energy consumption levels are made, 

both of which heavily impact the results of the study. Of the four categories by which 

customers are segmented, Baboli et al (2012) neglect to analyse which has the greatest 

impact on energy consumption patterns. Finally, Mohsenian-Rad et al (2010) indicate 

that users might be tempted to act strategically and lie about their load schedules so as to 

maximise personal cost savings, especially when retail prices are based on aggregated 

profiles for a specific region. However, the study proves that this is in fact not in their 

best interests as minimised aggregated energy costs also result in reduced individual 

electricity charges.  

Based on the above findings, it is clear that the diverging attitudes of residents to DR, 

especially in a socio-economically diverse country such as South Africa, must be 

considered in model development so as to depict an accurate representation of reality. To 

this end, price elasticity is acknowledged as key to affecting consumer behaviour, but 

how this should be quantified, managed and related to the service provider so as to 

achieve social welfare has not yet been addressed in literature. Lastly, it is noted that all 

residents considered in this study do not act strategically and that information relayed via 

EMCs is transparent and accurate.   

2.2.4 Load management  

Direct Load Control (DLC) and Remote Load Control (RLC), especially for residential 

consumers, has received significant attention in literature. In fact the bulk of research in 

DR has focused on this strategy, as is indicated in the Present-State-of-Art. This is 

because this sector is more flexible and thus capable of adjusting their demand profiles in 

comparison to industrial users, and because they, together with the commercial sector, 

are the largest contributors to system peaks (Ramanathan and Vittal, 2008). Load 

management is by far the most integral aspect of this study’s model development as it 

dominates the formulation of the consumer’s problem and satisfies one of the key aims as 

stated in Section 1.3. In fact, all other research pertaining to the user (specifically Section 

2.2) simply complements and enhances the realism of the load scheduling problem, the 
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bulk of which is borne of this section. It can be seen from literature that the load 

scheduling problem has four aspects to it, namely the number of loads considered and 

size of time slots, the types of loads considered, the technical and operational appliance 

constraints, and load uncertainty. Each of these now requires some discussion.  

Consideration of the number of loads and time-discretization in a scheduling problem has 

a significant impact on the computational time and thus the feasibility of a model. 

Specifically, increasing the number of appliances in a scheduling problem causes an 

increase in the size of binary decision variables which are notoriously difficult to solve 

and in this context, cannot be relaxed with Lagrangian techniques. In the energy market 

especially, this is an important factor to consider as prices are released on a daily basis. 

Excellent sensitivity analyses are conducted by Sou et al (2011) which give insight into 

the significant effect of the number of appliances and size of time slots on computational 

time. It is however found that whilst the size of time slots greatly increases solving time, 

it has minimal effect on objectives. According to the authors, their study is limited to a 

single household with less than five appliances due to the computational burden that a 

larger problem would cause. This is likely due to their strict time constraints (their model 

is solved in a handful of minutes) as well as the discretization of time into 5-minute 

intervals. In contrast, Pedrasa et al (2009), Mohsenian-Rad and Leon-Garcia (2010) and 

Setlhaolo et al (2014), all of whom model with larger time slots, are able to include 

between 10-40 loads with comparative results.    

End-use devices can be characterised by distinct load profiles, user attitudes towards their 

consumption and from an operations research perspective, their effect on model 

tractability. The classification of appliances by Schweppe et al (1989) seems to be 

appropriately defined based on their scheduling flexibility and consumption patterns. For 

example, authors who focus their attention on thermostatic loads such as electric water 

heaters or air-conditioning systems do not also consider other load types in their study 

due to the limited user discomfort incurred with these devices in contrast to others 

(Ramanathan and Vittal, 2008, Wang et al, 2013). On the other hand, reschedulable, 

discretionary activity and non-reschedulable appliances are often modelled together as 
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can be seen in Chen et al (2011), Sou et al (2011) and Setlhaolo et al (2014). 

Reschedulable devices refer to dishwashers, washing machines and dryers, and are 

named such because of the typically flexible attitude that customers have towards the 

times of their use. The key parameter to consider for these appliances according to 

Schweppe et al (1989) is kW/usage because they vary so greatly from one model to the 

next and are highly dependent on the selected cycle (for example, the wash only or wash 

and dry functions in a dishwasher). These and discretionary activity devices, which are 

broadly categorised as those used for cooking, hobbies and chores, differ primarily 

because the energy consumed per usage in the latter is highly variable and time-

dependent. Finally, the authors state that the modelling of non-reschedulable appliances 

such as lights and televisions is not meaningful, but that if done, the necessary 

parameters be taken from published data as opposed to direct measurement. Other load 

classifications have also been found in literature. Gomes et al (2007) classify loads into 

20 groups, each with its own distinct profile and aggregate power consumption. 

However, little justification is given as to the need for this number of groups or how it 

would vary from one context to the next. In Mohsenian-Rad et al (2010) for example, a 

load is classified as shiftable or non-shiftable but the EMC then has no impact on 

scheduling for a non-shiftable appliance, and its inclusion is merely to capture total 

energy consumption data. For Pedrasa et al (2009) the focus is on interruptible loads. 

These are devices that need not complete their cycle continuously, and the objective is 

then to minimise disruptions. The authors report a non-smooth feasible region and a non-

convex, non-continuous objective function which significantly increases model 

complexity, and from which only a limited number of appliances would benefit.     

The technical and operational constraints for appliance modelling are extremely 

important as they create the feasible region within which optimal results are located. 

Because the objective of this study is also to create a model that accurately reflects 

reality, the permitted and non-permitted behaviours of end-use devices must be 

appropriately defined. The various constraints enforced on appliance behaviour can be 

found in the works of Mohsenian-Rad et al (2010), Mohsenian-Rad and Leon-Garcia 

(2010), Conejo et al (2010), Sou et al (2011) and Setlhaolo et al (2014). Commonly 
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enforced constraints include the appliance-specific minimum duration of operation, 

sequential operation of appliances, maximum daily or hourly consumption and valid 

hours of operation. Several differences exist between these works however. Setlhaolo et 

al (2014) include an incentive in their model which enables them to draw conclusions 

regarding its effect on cost savings. Rastegar et al (2012) and Setlhaolo et al (2014) differ 

from Sou et al (2011) in that their inclusion of valid hours of operation for each appliance 

enables the difference between some pre-specified baseline and optimal schedule to be 

modelled as a binary matrix from which scheduling inconvenience can be calculated (this 

is discussed further in Section 2.2.5). Chen et al (2011), Tarasak (2011) and Chen et al 

(2012a) address appliance scheduling to a lesser extent than Sou et al (2011) and 

Setlhaolo et al (2014). Chen et al (2011) focus their attention on the hours of operation 

for each appliance, whilst Chen et al (2012a) bound the power consumption for each time 

slot. The validity of this assumption remains untested, firstly because consumers are 

typically self-serving and would not limit their consumption unless incentivised (Chicco 

et al, 2004), and secondly because several end-use devices may be non-reschedulable but 

energy-intensive, causing them to exceed consumption boundaries (Schweppe et al, 

1989). Tarasak (2011) provide an improvement on minimum and maximum time 

boundaries by stipulating that they correspond to the power usage of nonstop and all 

appliances respectively. Still, this approach poses challenges in scalability. Setlhaolo et al 

(2014) include a maximum cost that the consumer is willing to incur over a 24-hour 

period, but it is recommended that further analysis be conducted for this value. This is 

because in South Africa particularly where the socio-economic demographic of the 

country is extremely divergent, users may have radically different attitudes and 

behaviours to cost savings, and such a cost ceiling should accurately reflect this. 

Adjustable power ratings and minimum and maximum power standby power levels are 

also modelled by Mohsenian-Rad et al (2010), Mohsenian-Rad and Leon-Garcia (2010) 

and Sou et al (2011). This approach assumes greater flexibility of residential appliances 

than Setlhaolo et al (2014), and perhaps reflects a more realistic residential load 

scheduling problem. However, end-use devices that offer such flexibility only include 

reschedulable and energy-intensive appliances such as dishwashers and washing 
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machines. In general, whilst these methods are effective in capturing the load scheduling 

problem and should certainly be studied during model development, they all offer little to 

no consideration or analysis for the design of tariff structures. In fact, these are largely 

assumed to be input parameters in the above studies. A work that combines both the 

perspective of the retailer in setting such a tariff, and then studies the resultant effect on 

the consumer would be valuable indeed.   

Load uncertainty offers important practical value to demand side problems within the 

energy market. Whilst forecasting and statistical modelling of load demand can certainly 

assist generators and service providers in planning and decision-making, unavoidable 

sources of uncertainty can stem from measurement errors and discrepancies in 

customers’ expected and actual demand. Its effect on utility revenue as well as the retail 

price received by consumers must therefore be considered. Schweppe et al (1989) 

identify several ways for addressing uncertainty, the most promising of which is mini-

max control due to its ease of implementation and computational inexpensiveness. 

Tarasak (2011) and Chen et al (2012a) both consider load uncertainty to be some random 

variable attached to the aggregated expected demand with a given mean and variance. 

Chen et al (2012a) assume a constant value for variance whilst Tarasak (2011) perform a 

comparison of several methods, one of which is variance with a bounded magnitude as 

described by Schweppe et al (1989) as the mini-max approach. Both Tarasak (2011) and 

Chen et al (2012a) found that load uncertainty increased the optimal price and thus 

retailer revenue and Tarasak (2011) indicated that a variance with unknown distribution 

produced a higher optimal price. The finding of Tarasak (2011) that unknown 

distribution of the variance has different effects on consumption depending on the time of 

day hints that higher uncertainty may be associated with peak periods and lower 

uncertainty with off-peak periods, but further analysis to test this hypothesis is required. 

It is also recommended that some comparative study be conducted to quantify the effects 

of uncertainty on retailer revenue. Chen et al (2012a) are the only authors to present the 

adverse effect of load uncertainty on user payoff, due to the fact that it drives up the retail 

price per unit of energy. Finally, Conejo et al (2010) make use of robust optimisation 

techniques in combination with an ARIMA model to develop certainty bounds for hourly 
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loads. Whilst this was found to increase consumer utility, little guidance is given as to 

selecting the robustness parameter value, which has a significant effect on results.   

2.2.5 Addressing scheduling inconvenience 

Much like the financial, oil and natural gas markets, electricity is first and foremost a 

commodity. According to microeconomic theory, this means that there exists a degree of 

price elasticity in which consumers will adjust their demand up to the point where the 

benefit they believe they derive from accessing a resource is equal to the price they pay 

(Kirschen, 2003). For electricity, this derived benefit is subject to the inconvenience 

suffered by a user in adjusting their ideal load pattern. This in turn affects their elasticity 

to prices which must be reflected in their relationship with the retailer through the 

proposed social welfare function. For example, it may be more cost-effective for a 

resident to use the stove during an off-peak hour such as 3AM, but this would be highly 

inconvenient and impractical, and as a result the price signal must be sufficiently loud 

(and large) in order to not be ignored. Too high a retail rate however would detriment 

social welfare as the consumer would be left disgruntled. Studies by Ramanathan and 

Vittal (2008), O’Neill et al (2010),  Mohsenian-Rad and Leon-Garcia (2010), Chen et al 

(2011), Rastegar et al (2012), Wang et al (2013) and Setlhaolo et al (2014) seek to 

appropriately address and quantify this inconvenience and its effect on user behaviour 

and pricing policies. Details on these publications can be found in Table 2.1.   

O’Neill et al (2010) address scheduling inconvenience by assuming that users prefer 

devices to be operated sooner rather than later. The authors thus define an average 

pending workload that is always positive and increasing but must be minimised in 

conjunction with financial costs. It is modelled as an exponentially smoothed, strictly 

convex, parameterized dis-utility function. A diagonal matrix is used to control consumer 

concern for the average delay of a device completing service The primary limitations of 

this method are that developing a utility function that is more effective in capturing 

customer dissatisfaction would require a non-diagonal matrix and the development of 

similar functions for each device owned by the resident, making the technique 

cumbersome. Each individual device’s user constraints could be modelled and this offers 
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the opportunity to better reflect statistical relationships between appliances but this would 

largely differ from one user to the next, once again making the technique tedious. As a 

result, expanding the study to include a more realistic number of residences would 

threaten model scalability and increase parameter requirements. Like O’Neill et al 

(2010), Mohsenian-Rad and Leon-Garcia (2010), Rastegar et al (2012) and Setlhaolo et 

al (2014) also make use of a trade-off parameter to control the importance of consumer 

inconvenience relative to cost savings. For Rastegar et al (2012), this knob is given as a 

cost incurred per watt-hour so that inconvenience and electricity payments are measured 

in the same unit. This coefficient represents the sensitivity of users to DLC shifting and 

the authors provide guidelines for the threshold value used for comparative purposes. 

Interestingly, the study by Setlhaolo et al (2014) revealed that after a trade-off parameter 

value of 25, overall costs incurred by the resident plateaued, indicating an exponential 

flattening effect. Whilst this value may be relative as it depends on factors such as the 

appliances considered and tariff rates, it highlights the strong impact of the waiting 

parameter on the overall consumer objective.  

Mohsenian-Rad and Leon-Garcia (2010) also seek to minimise the waiting time of 

devices but follow a slightly different strategy to O’Neill et al (2010). The authors define 

a ‘valid’ schedule with beginning and ending time intervals representing the hours that a 

user is amicable to appliance usage (thus preventing a stove from being used at 3AM). A 

similar approach is also adopted by Rastegar et al (2012) and Setlhaolo et al (2014). 

Significant benefits of this technique are that it reduces the number of scheduling 

decision variables and is also flexible enough to be implemented in a number of 

residences. In practice, each user would specify what they consider to be valid hours of 

operation for each appliance as input parameters to their EMC. A second control 

parameter is also introduced for each appliance i, enabling a user to, for example, have a 

more flexible attitude towards shifting the operation of a kettle over a geyser. This 

technique is far more representative of reality than the uniform flexibility that O’Neill et 

al (2010) assume of all appliances. The exponential function used by the authors to 

demonstrate the customer’s attitude to increases in waiting time is also a truer 

representation of reality. That is, a user would become progressively more disgruntled as 
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they were forced to wait longer for an appliance, their dissatisfaction resembling that of 

an exponential curve rather than a linear one.  The study also provides a set of guidelines 

for selecting appliance flexibility parameters i , where appliance i ∈ I, and discusses their 

implications for monthly payments (Mohsenian-Rad and Leon-Garcia, 2010):  

1. i =1. This implies a strict cost reduction and the operational flexibility associated 

with this appliance is high, that is, the cost of waiting has no impact on the model 

selecting an optimal schedule. 

2. i >1. This implies a medium cost reduction and the operational flexibility 

associated with this appliance is fair. The study found that an increase in i  from 

1 to 1.01 caused a 19.58% increase in electricity payments whilst the waiting time 

decreased by 75.7% of the valid schedule.  This signifies the strong impact that 

flexibility parameters have on the model objective.  

3. i >>1. This implies no cost reduction and flexibility associated with operating 

this appliance is negligible.  

The primary criticism of this technique is that only the postponement of appliance 

operation from its ideal usage is considered to be an inconvenience, and not the 

advancement. The beginning time interval of the valid schedule for each appliance is thus 

considered to be the optimal period of usage which is not necessarily the case in reality: a 

resident may prefer to use the kettle at 7AM, but is flexible to using it between 6AM and 

8AM. Setlhaolo et al (2014) are the only authors who assume that any deviation from the 

preferred schedule incurs inconvenience for the user. Chen et al (2011) opt not to use 

waiting parameters but rather assume that each time slot representing a delay in device 

operation incurs a cost in dollars, and that this cost may vary from one appliance to the 

next, but remains fixed regardless of the period in the day. A maximum allowable delay 

for each appliance is also specified.  

It was established in Section 2.2.4 that thermostatic loads such as heating and cooling 

devices have been treated differently in literature in comparison to conventional 

household appliances. This too is the case when it comes to quantifying consumer 
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inconvenience. In general, such devices are modelled for research purposes, numerical 

and pilot studies due to minimal end-user discomfort incurred and the ability of the load 

to be disrupted. According to Ramanathan and Vittal (2008), inconvenience is incurred 

with such devices when there is a deviation between the internal temperature and the 

thermostat set points. Wang et al (2013) opt for scheduling electric water heaters and are 

slightly more flexible in their approach to modelling inconvenience. They allow upper 

and lower limits of temperature set points to be specified by each user, and this forms a 

comfort band. The objective is then to keep water temperature in this band with the least 

electricity cost. This technique is far more representative of reality as the attitude of 

residents towards comfortable temperatures is unlikely to be as restrictive as Ramanathan 

and Vittal (2008) propose, and also offers the model more flexibility in generating an 

optimal solution.    

After evaluating the key techniques employed in literature to address consumer 

scheduling inconvenience, it is noted that the work of Mohsenian-Rad and Leon-Garcia 

(2010) best addresses the areas of importance. The user’s appliance-specific attitude 

towards scheduling flexibility, the exponential-like curve resembling customer 

dissatisfaction and the guidelines provided for parameter selection are promising features 

of the study. It is however recommended that in order to more appropriately reflect 

reality, advancing the use of an appliance to incur lower financial cost (and not only 

postponing usage) should also be considered an inconvenience to the consumer, which is 

not the case in the original authors’ work.    

2.2.6 The role of storage facilities in Demand Response   

Energy production and the subsequent storage thereof are two topics that have grabbed 

the attention of governments, policy-makers and businesses worldwide since the 21
st
 

century. Energy production techniques are primarily the concern of generators and thus 

fall beyond the scope of this study. Storage options however are now becoming more 

decentralized and offer promising benefits to the resident. Because of this, their potential 

to reduce consumer’s payments and this resulting effect on social welfare achievement 

must be addressed.    
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Rising energy demands, increasing consumer payments, the development of PHEVs, and 

renewable energy production have been the biggest catalysts for investigating the 

viability of electrical energy storage. The primary driver for rising energy demands is an 

ever-increasing population and according to Francois L’homme of Schneider Electric, a 

multinational corporation specialising in energy management, a 200% increase in 

demand is expected over the next thirty-five years (Mining IQ, 2012). Storing electricity 

will enable a more economical production of the higher required output so that fewer 

facility start-up costs are incurred. Residential storage in particular has seen vast growth 

with companies such as Solar City pioneering viable solar storage and lithium-ion battery 

models, with the biggest take-up to date being in California. Pilot studies performed in 

several countries by Chen et al (2009) indicated that energy storage is extremely effective 

in achieving peak-demand shaving. For the consumer, this means reduced payments as 

they are able to store electricity (or charge their battery) during off-peak, low-cost 

periods of the day and utilize this stored energy during peak-periods without drawing 

from the grid and incurring a higher bill. For the generator, a more uniform and 

predictable demand profile is created, enabling them to better manage capacity and 

reduce or eliminate excessive facility start-up costs required for peak periods. PHEVs 

have also grown in popularity over the past decade due to their ability to allow 

sustainable personal travel without harming the environment. The use of a battery and 

electric motor (instead of a gasoline tank and internal combustion engine) means that a 

resident’s vehicle may be treated as any other household appliance to be optimally 

scheduled for recharge (Mohsenian-Rad and Leon Garcia, 2010). PHEVs reached a 

market share of 0.72% in 2014 in the United States and its limited energy requirements 

(roughly 16KWh for a 65km distance) coupled with future developments in the industry 

make it a significant motivator for residential energy storage. Indeed, works such as 

Rastegar et al (2012) not only attempt to model the effects of PHEV ownership on load 

scheduling, but also highlight that it is often feasible and profitable to return their stored 

energy back to the grid. In South Africa however, PHEVs have not achieved significant 

market share or even publicity and including it in the proposed model would be 

somewhat unrealistic and not reflective of the typical local resident in the medium future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

35 
 

Finally, renewable energy is an environmentally-friendly alternative to fossil fuels and 

crucial to meeting future energy needs. Although unpredictable, these energy sources 

offer great potential in terms of flexibility in global supply chains but this will only be 

possible if effective storage strategies are developed to harness them. This, coupled with 

distribution grid level constraints such as disturbances, transmission limits and voltage 

drops, means that the demand for decentralised energy storage is ever-increasing.   

Typically, battery storage systems comprise a rechargeable battery, bi-directional 

inverter/charger and controller, as can be seen in Figure 2.1 below. According to 

Leadbetter and Swan (2012), when modelling for energy storage the capacity, power and 

cycle life of the selected battery are of key importance. In their study, the authors assume 

the use of lithium-ion batteries due to its extensive application in households, its high 

power and energy density characteristics, long cycle life and limited maintenance costs. 

So as to extend life, the storage system only operates between a 15-85% state of charge 

(SOC), and the battery is assumed to always exist in one of three states: charging, 

discharging or standby. A five-minute time interval is used to sufficiently capture peaks 

and eliminate the averaging effect (Saldanha and Beausoleil-Morrison, 2012), and the 

battery is scheduled to recharge during a five-hour nightly period when tariffs are at their 

lowest. Results indicated that a single optimal battery storage system in terms of size, 

cost and capacity did not exist, but was rather dependent on the household under 

consideration and its respective demand profile. Specifically, it was found that a 4kWh 

system reduced maximum peaks by 40% whilst a battery double the size only achieved a 

51% reduction. Overall, systems ranging from 5kWh for a low-use home to 22kWh for 

an intensive-use home were deemed sufficient. It is believed that this model is 

prescriptive however in that it does not enable the optimised scheduling of the battery 

system similar to any other appliance, thus compromising its ability to reduce costs for 

the user. This is highlighted by results indicating the infrequent usage of the battery, and 

only to one-fifth of its capacity. Furthermore, it is assumed that if the battery is unable to 

meet excess demand, this goes unmet and yet no penalty is imposed for dissatisfying the 

customer. It should also be noted that the choice of time step significantly increases the 

number of considered variables and computational time of the model. It is of the opinion 
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Figure 2.1: Generic battery storage system 

that only three works consider battery storage models in conjunction with load 

scheduling, namely Chen et al (2012a), Chen et al (2012b) and Rastegar et al (2012). The 

studies are similar in their constraint modelling and reported significant cost savings as is 

expected. In the case of Rastegar et al (2012), results also indicated a reduction in 

average load and peak load increment but an increase in PAR. Chen et al (2012b) 

however are the only authors to consider the charging and discharging efficiency of a 

battery. This relates to the inherent loss of energy during these processes to the 

environment in the form of heat. This factor has a significant impact on the amount of 

energy available to appliances and must thus be accounted for. Typically, values range 

between 10-30% and are affected by a number of factors such as rate of charge/discharge 

and energy state of the battery. For the purposes of this study a constant rate will be 

assumed.  

It is clear that the trend towards energy storage is growing, whether for financial, 

environmental or technological reasons, and any effective load scheduling tool must 

consider its effects. From the literature investigated it appears that batteries are the most 

popular and cost-effective means of storage. Guidelines as to model development can be 

found in Chen et al (2012a) and Rastegar et al (2012).    
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Table 2.1: Present State-of-Art: Consumer Problem  

Year Author/s Method used Key features Contributions 

1989 Schweppe et al  Spot price based 

algorithms presented 

for use in smart grid  

technologies to 

enable residential 

load control 

 Describes the four main functions of smart grid 

technologies  

 Defines the basic control actions for end-use 

devices  

 Categorises end-use devices as thermal storage, 

water heating, periodic use requirement, 

reschedulable appliances, discretionary activity 

devices and non-reschedulable appliances    

 Parameter values for each of the end-use device 

categories are discussed  

 Identifies three ways to manage uncertainty, 

namely open loop feedback control, stochastic 

control and mini-max control  

 Identifies customer attitudes and characteristics, 

utility characteristics and communication media 

as deciding factors in selecting an appropriate 

algorithm 

2004 Chicco et al  Customer 

classification by load 

profile 

 Load patterns classified by normalising the 

peak value in a time interval  

 Follow-the-leader algorithm and self-

organizing maps used for customer 

classification 

 Distance threshold (distance between two 

representative load profiles) used by algorithm 

to calculate number of clusters 

 Numerical study conducted for 234 customers 

(industrial, service, small-business) over a 3-

week period in the Romanian market  

 Trial-and-error approach used to calculate 

distance threshold  

 Results were the number of customer classes and 

class composition 

 Follow-the-leader algorithm is superior 
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 Approaches compared using two adequacy 

indicators: mean index adequacy and clustering 

dispersion indicator 

according to both indicators for the number of 

classes ranging between 10 and 30  

 Self-organising map has better visualization of 

results  

2007 Gomes et al  Multi-objective 

optimisation 

problem to identify 

and select direct load 

control actions in a 

distribution network 

 7 objectives considered: customer discomfort, 

peak power demand and loss factor is 

minimised, profits maximised 

 Monte Carlo simulation used to evaluate 

changes in demand provoked by DLC actions 

 Aspiration (optimistic) and reservation 

(unacceptable)  levels for each objective set by 

decision-maker (DM) 

 Loads classified into 20 groups, each with its 

own distinct load profile and power aggregation 

level 

 Interactive evolutionary algorithm applied to 

accommodate progressive articulation of DM’s 

preferences for aspiration and reservation levels   

 Highlights the importance of parameter selection 

when applying evolutionary algorithms  

 Aspiration and reservation levels have a critical 

impact on evaluated non-dominated solutions  

 Each generated solution is only for a particular 

scenario of aspiration and reservation levels  

2008 Aalami et al  DR model with 

single-period and 

multi-period 

elasticity with the 

 Emergency Demand Response and TOU 

programmes evaluated (individually and 

simultaneously) for their effect on demand 

reaction 

 Value of incentive taken to be average price of 

electricity over a given time period 

 Higher elasticity results in greater effectiveness 

of TOU in achieving demand response 
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aim of maximising 

consumer benefit 

 Price elasticity depicted as change in customer 

demand based on value of incentives  

 Numerical study applied to Iranian Power Grid  

 Higher values of incentives result in greater peak 

reduction 

 Reported the occurrence of peak-shifting  

 TOU programme reduced range of the load 

curve (and thus peak-to-average (PAR) ratio) by 

6500MW as well as peak magnitude 

2008 Ramanathan 

and Vittal 

 Framework to 

develop DLC 

programme that 

minimises user 

discomfort under 

stochasticity 

 The effect of different load parameters, ambient 

parameters and artificial constraints on DLC is 

studied  

 Focus is on thermostatically-driven loads, 

specifically air-conditioning 

 Load scheduling: target load levels, minimum 

on and maximum off durations, maximum 

internal temperature specified   

 User discomfort is measured as the difference 

between internal temperature and thermostat 

set-points  

 Monte Carlo-based simulation-cum-optimisation 

framework developed to analyse parameter 

effects 

 Dynamic programming applied 

  Stringent on/off constraints result in better load 

distribution but higher discomfort  

 Smaller differences between min-on and max-

off times result in a better distribution of control 

effects  

 More diverse loads have a positive effect on 

control   

2009 Pedrasa et al  MOO scheduling 

problem to minimise 

 MOOP simplified to single aggregate objective 

function and penalties assigned for violation of 

 Builds on the work of Huang et al (2004) who 

solved the same problem using fuzzy dynamic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

40 
 

total payments and 

frequency of 

interruptions for 

interruptible loads 

constraints  

 Appliance scheduling: interruptible loads 

considered   

 Binary PSO applied when decision variables 

are discrete-valued  

programming, but without the consideration of 

social welfare  

 19 interruptible loads considered over a 16-hour 

horizon 

 BPSO achieved near-optimal solutions in 

manageable computational time-frames 

 Multiple sub-swarms significantly increased the 

probability of arriving at a valid solution   

 The probability of generating a high quality 

solution without interruptible load violations 

decreases as demand increases 

2010 Conejo et al  Linear scheduling 

problem to maximise 

commercial 

consumer utility 

under RTP-based 

scheme 

 Appliance scheduling: minimum daily 

consumption, minimum and maximum hourly 

load levels, ramping limits on load levels 

considered  

 Price uncertainty addressed through robust 

optimisation techniques  

 ARIMA-based model used to define certainty 

intervals for prices  

 Model solved using CPLEX 11.2.1 under 

GAMS on a Linux-based server with four 

processors clocking at 2.6GHz and 32GB of 

RAM 

 A lower robustness parameter value (45% of 

unknown prices) achieved maximised consumer 

utility with the smart grid  than without (75-

100% of unknown prices)  
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 Rolling window model used to optimise power 

consumption on an hourly basis 

 Two scenarios considered: with smart grid 

(hourly adjustments to consumption allowed) 

and without smart grid (only price bounds are 

known and schedule for the whole day must be 

developed)  

 Numerical study applied to Iberian Pensinsula  

 Maximised utility was 5.86% higher with a 

smart grid than without  

 The availability of real-time prices is more 

important than price bound updates to maximise 

consumer utility  

 Robust optimisation results in a 16.22% increase 

in utility than forecasting  

2010 Mohsenian-

Rad et al 

 Load scheduling 

model to reduce 

PAR and minimise 

energy costs  

 Stackelberg game formulation  

 DR should have the objective of minimising 

aggregated properties such as PAR instead of 

individual daily charges  

 Appliance scheduling: predetermined total 

daily energy consumption, valid hours of 

appliance operation, minimum and maximum 

standby power levels for each appliance, non-

shiftable and shiftable devices considered for 

each user 

 Quadratic cost model for generating or 

 1-hour intervals, 10 users, 20-40 appliances 

considered  

 Distributed algorithm used to generate optimal 

schedule and power level of appliances for each 

user 

 Algorithm converged after 22 iterations, that is, 

roughly 2 iterations per user  

 Reduced PAR (by 17%), total energy costs (by 

18%) and individual charges achieved at the 

Nash Equilibrium   

 Proposes that RTP schemes create confusion 
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distributing electricity for each hour developed  amongst users and cause load synchronization  

2010 Mohsenian-

Rad and Leon-

Garcia 

 Load scheduling 

model to minimise 

energy costs and 

waiting time  

 Tariff structure combines RTP and inclining 

block rate  

 Prices predicted by user with a weighted 

average filter developed from real-time data 

that estimates coefficients for each day 

 Appliance scheduling: predetermined energy 

consumption for each device, minimum 

standby and maximum power levels, shiftable 

and non-shiftable devices, valid hours of 

operation considered  

 Scheduling inconvenience is the amount of 

time the consumer waits after their preferred 

usage  

 Various scenarios proposed for future research: 

discrete consumption levels, interruptible and 

uninterruptible loads, multiple retail sources, 

load reduction requests, electricity storage   

 1-hour time slots, 10-20 appliances, 1 user 

considered   

 Interior-point method used for model solution in 

polynomial computational time  

 Price prediction capabilities only necessary for 

the user when exposed to extreme forms of 

dynamic pricing 

 Reduced PAR (by 38%) and user payments (by 

25%) achieved with price predictor and energy 

scheduler  

 Inclining block rate tariff enables the avoidance 

of load synchronization  

 Increasing the number of users further balances 

the aggregated load, and more flexible users 

benefit more in general    

2011 University of 

British 

 Power scheduling  Stackelberg game formulation  Pricing scheme seeks to simultaneously  
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Columbia 

study 

model for multiple 

users under two-fold 

and uniform pricing 

schemes 

 Appliance scheduling: elastic and inelastic 

appliances considered, where elastic loads are 

bounded   

 Interaction amongst end-users also is evaluated 

 Pricing scheme is a combination of mismatch 

and usage pricing  

 Mismatch pricing is used to encourage users to 

adjust elastic load   

 Mismatch and usage pricing are optimised both 

independently (two-fold) and simultaneously 

(uniform) 

maximise profits and match supply and demand 

 No numerical results presented  

2011 Chen et al  Real-Time-Pricing 

(RTP)-based power 

scheduling model for 

residents 

 Stackelberg game formulation  

 Schedule formed on appliance-basis and not on 

hourly aggregate consumption 

 Appliance scheduling: expected duration of 

operation, operating power stipulated  

 Inconvenience modelled as incurred cost of 

mismatch between planned and supply load, 

with maximum allowable delay permitted 

 80 customers, 3 appliances and 10 minute time 

intervals considered  

 Peak periods modelled as appliances being 

requested with higher probability 

 Backward induction used for model solution 

 Cost savings of approximately 10% (versus 6% 

for day-ahead trading), peak reduction of 

approximately 30%, reduced variation between 
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 Retail price modelled as the sum of wholesale 

price and price gap 

 Lower price gap is the result of a larger 

difference between planned and real-time load 

planned and actual supply resulting in stability 

for the service provider reported  

 Peak shifting avoided through sequential 

decision-making  

 

2011 Saele and 

Grande 

 Pilot study for 

demand response of 

electrical water 

heaters in Norway 

 Water heaters selected for the limited 

inconvenience placed on residents  

 Focus was on identifying the times of day that 

load shifting is needed and how to provide 

price signals to customers that reflects power 

situation  

 Time-of-day network tariff considered to be a 

sum of user-specific costs, network losses and 

variable energy costs  linked to DR   

 Retail tariff structure designed to be predictable 

for consumers but dynamic enough to reflect 

market fluctuations 

 Study considered 40 customers over a period of 

1 year  

 DR was more effective in comparison to 

previous studies due to the “El-button” which 

served as a reminder to customers to avoid using 

energy-intensive appliances  

 Predictable price signals, smart technology, 

remote load control and reminders were key to 

achieving good DR results   

2011 Sou et al  MILP scheduling 

problem to minimise 

 Appliance scheduling: expected duration of 

operation, adjustable peak power consumption, 

 Premature termination (for realism purposes) 

produced excellent suboptimal results with 
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cost of operating  

smart home 

appliances, subject 

to consumer 

preferences 

uninterruptible and sequential operation, 

maximum operating power, idle power 

maximum execution time stipulated 

 Spot prices and tariff structure given 

 Perfect supply assumed, that is, demand is 

always less than supply for every time period 

 Numerical study applied to New York City and 

Sweden 

 Solving scenarios such as optimality, first 

feasible solution, appliance operation ASAP are 

evaluated  

relative errors less than 1%  

 To measure model performance objective was 

maximised and difference in results compared 

 Large tariff fluctuations are required to cause 

changes in consumption patterns 

 Length of time slots has a significant impact on 

computational time but minimal effect on 

objective 

 Number of appliances considered has a 

significant impact on computational time 

 

2011 Tarasak  Extends on Samadi 

et al (2010) who 

propose a utility 

framework and 

distributed algorithm 

under RTP scheme 

to include load 

uncertainty 

 Load uncertainty captures measurement error 

from non-ideal transmission of demand 

information 

 Load uncertainty defined as the sum of 

expected energy consumption and some 

random variable 

 Three uncertainty models considered: bounded 

uncertainty, Gaussian and unknown distribution 

 One hour time intervals and ten customers 

considered  

 Model is solved for optimal power consumption 

and optimal energy generation for the user and 

service provider respectively   

 In general, load uncertainty was found to 

increase the optimal price due to increased 

generation requirements 
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 Assumed that customers do not act 

strategically, that is, each acts independently 

 Appliance scheduling: power consumption for 

each time slot is bounded but varied for hours 

of the day 

 Utility assumed to generate energy within 

predetermined boundaries for every time slot 

 Retail price is updated with the gradient 

projection method  

 Bounded uncertainty causes power consumption 

to be consistently lower than generating capacity  

 Load uncertainty with unknown distribution has 

a higher optimal price than the Gaussian model  

 During peak hours, the unknown distribution 

model cannot account for the minimum power 

requirement and will result in outages  

2012 Baboli et al  Customer behaviour-

based DR model 

with single-period 

(self-elastic) and 

multi-period (cross-

elastic) loads 

 Incentive (reward) and price (punishment) –

based programs evaluated for their effect on 

consumer habit formation 

 Weighted coefficient defined as a non-linear 

function of customer size, sector, income level 

and social/cultural level defined to differentiate 

between the two programmes  

 24-bus IEEE Reliability Test System used for 

validation in a numerical study 

 Reward-based programmes lead to significant 

and sustainable improvements in habit formation 

in contrast to punishment-based programmes 

 Education and publicity results in higher 

demand response, even in the face of lower 

incentives  

 Exhaustive socio-economic and psychological 

studies required to more accurately estimate 

weighted coefficient 

 Incentive-programmes have long-run benefits 
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for the consumer but reduce utility revenue 

 Price-based programmes increase retailer 

revenue as well as consumer payments in peak 

periods  

2012 Chen et al  RTP-based power 

scheduling model for 

residents with focus 

on load uncertainty 

 Stackelberg game formulation  

 Appliance scheduling: power consumption for 

each time slot is bounded  

 Load uncertainty defined as the sum of planned 

power supply and some random variable 

 Consumer satisfaction modelled as a weighting 

parameter that varies with  user type and time 

of day 

 Power consumption modelled as a piece-wise 

equality constraint subject to scenarios 

representing supply from the utility  

 10 users  and 2 hour time slots considered 

 Load uncertainty defined with mean of zero and 

variance equal to 0.005 (bounded magnitudes 

subject to sensitivity analysis)  

 Backward induction used to determine the 

Stackelberg Equilibrium  

 Load uncertainty decreases each user’s payoff 

but increases retailer revenue  

 In comparison to Tarasak (2011), load 

uncertainty does not incur lower revenue  

 Service provider revenue increases with higher 

bounded magnitudes placed on load uncertainty  

2012 Rastegar et al  MIP appliance 

scheduling 

framework for 

 Batteries, responsive appliances and plug-in 

hybrid electric vehicles (PHEVs) considered 

  Customer inconvenience modelled as a factor 

 Model outputs are appliance operation periods, 

battery charge/discharge cycle, energy 

purchasing and selling schedule  
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minimising 

residential payment 

with incentives  

restricting complete direct load control  

 Incentives dedicated to customers consenting to 

participate in DLC 

 TOU tariff structure assumed to be given (taken 

from Baltimore gas and electric)   

 Appliance scheduling: elastic and cross-elastic 

devices, valid hours of appliance operation,  

continuous operation considered 

 Several cases involving PHEV and storage 

system status are considered  

 Energy transfer capped for every time period to 

prevent distribution congestion and PAR 

increase  

 10-minute time interval over a six day period, 

11 non-responsive and 3 responsive devices 

considered 

 

 Load control reduces payments but not 

necessarily peak load or PAR   

 Multiple optimal solutions possible under TOU 

tariff  

 Non-identical valid schedules amongst 

households results in a more uniform 

consumption distribution over 24 hours 

 The battery storage system was more effective in 

reducing costs than PHEVs, but not in reducing 

PAR  

 PHEVs and a storage system were most 

effective in reducing cost and PAR  

 Energy transfer limits achieved lowest PAR as 

appliances, batteries and PHEVs could not be 

active simultaneously  

 Level of DLC execution, number of periods in 

which devices could be switched off and 

consequential inconvenience integral to decision 

of participation   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

49 
 

2013 Corradi et al  Data-driven 

approach to 

forecasting price-

elasticity dynamics 

with the objective of 

maintaining constant 

consumption   

 Model for price-responsivity of users must 

evolve to reflect demographic development and 

so forth  

 To reduce communication infrastructure needs, 

consumption is measured at an aggregated 

(grid) level  

 Three models evaluated: effect of external 

variables on price-consumption assumed to be 

linear, non-linear, or autoregressive  

 Applied to heating systems  

 Price-responsiveness reached saturation for price 

changes higher than 1 and lower than -1 (using a 

standardized price)  

 Responsiveness is dependent on the time-of-day, 

reaching maximum levels during periods of high 

heating demand 

 Peak consumption reduced by nearly 5% and 

11% of mean daily consumption was shifted  

 FIR model (linear effect of external variables) 

sufficiently describes price response of 

aggregation of households 

 Response duration is between 5-6 hours   

2013 Wang et al  MINLP load 

scheduling problem 

with consideration of 

payment and 

comfort level 

 Novelty of the proposed algorithm is due to 

combination of original algorithm operation 

and characteristics of the specific appliance 

 Appliance scheduling: electrical water heater, 

upper/lower limits and temperature set point 

considered  

 Real-time prices and hot water use assumed to 

 Novel inferior Traversal-and-Pruning algorithm 

applied due to trade-off between speed and 

optimality  

 The approach can be combined with other 

general algorithms  

 5-minute intervals considered  

 20% more cost savings with the same comfort 
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be obtained from historical data  levels than with the original algorithm  

2014 Setlhaolo et al  MINLP scheduling 

problem to maximise 

social welfare for the 

consumer under 

TOU tariff 

 Social welfare is defined as the sum of costs, 

subject to earned incentives, and consumer 

inconvenience 

 Incentives earned by switching off appliances 

during peak periods  

 Appliance scheduling: minimum appliance 

operation, continuous operation, sequential 

operation, valid hours of appliance operation 

considered  

 Maximum cost that consumers are willing to 

incur over a 24-hour period is defined 

 Case study performed for a South African 

household, with TOU structure adopted from 

Eskom’s Homeflex tariff structure  

 10-minute time interval and 10 appliances 

considered 

 Model solved with Aimms Outer Approximation 

Algorithm  

 Cost savings of more than 25% reported  

 Consumer inconvenience modelled as the 

difference between a user’s preferred schedule 

and the optimal schedule with the aid of a 

weighting factor 

 Sensitivity analysis performed for various 

weighting factors which represents the extent to 

which consumers are willing to be 

inconvenienced  
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2.3 THE RETAILER PROBLEM    

Retailers in the electricity industry have a number of complex decisions to make due to 

their central position in the energy supply chain. Upstream, there are a number of 

suppliers and procurement options from which to select and downstream, there exists a 

large set of end-users to service. Their ultimate intention is thus to manage these 

contracts so that revenue from end-users covers the cost of goods paid to generators. 

Municipalities, which fulfil the same role as retailer in a regulated market, are confronted 

with the same challenge but do not have the same breadth of procurement options neither 

are they exposed to the level of risk and uncertainty as would be the case when operating 

in an open market system. Similar to literature for the consumer’s problem, there are also 

a multitude of objectives that they must address, such as that of minimised settlement 

risk (Gabriel et al, 2004), optimal procurement strategies (Carrion et al, 2007), optimal 

selling price (Hatami et al, 2009) and minimised network losses (Saele and Grande, 

2011). Because the focus of this study is on consumer-retailer interaction, attention will 

only be paid to factors pertaining to the end-user that affect retailer decisions. One such 

factor is that of the balance between supply and demand.  

As was seen in Figure 1.3, retailers are required to submit bids in advance for the 

purchase of electricity. This form of procurement, known as a forward option (or the 

wholesale market) because trading occurs in advance of delivery of the commodity, is 

often associated with less risk and financial expense than other trading options (Gabriel 

et al, 2004). Significant effort is thus spent on appropriately forecasting expected demand 

to take advantage of this option, but the uncertainty associated with supply such as 

transmission failures or unexpected user demand patterns means that deviations often 

occur. In these scenarios, retailers must resort to the spot market to balance supply and 

demand in real-time. When demand is over-estimated, that is, the predicted demand is 

more than the observed demand, the retailer has the opportunity to sell excess electricity 

back to the national grid and when it is under-estimated, they may procure electricity to 

meet consumer load. In works such as Sou et al (2011) and Tarasak (2011) where the 

balancing market for a deregulated industry is not considered, perfect supply is assumed. 
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This means that the predicted and observed demands are always equal to one another. 

Naturally, this is not an accurate depiction of reality because it is an integral part of open 

market dynamics and therefore fails to satisfy objectives stated in Section 1.3. 

Furthermore, the energy provider is interested in maximising net profits and not simply 

revenues, and this spot market dynamic, specifically the prices at which trading occurs, 

has a significant impact on their outcomes.  

According to Gabriel et al (2004), there are six cases that must be analysed when 

considering spot market prices, supplier prices and retail prices in relation to one another 

and these are shown in Table 2.2. The occurrence of these scenarios is however 

stochastic due to uncertainty in load profiles market dynamics. Because these outcomes 

affect delivered profits for the retailer, they in turn affect their price elasticity and the 

identification of a tariff at which social welfare is optimised. These factors are critical to 

the problem at hand and as such, sufficient attention must be paid to selecting an 

appropriate technique that will predict spot market prices.   

The literature available on electricity price modelling is very rich. Two challenges persist 

however. The first is that the South African energy market operates under a vertically 

integrated utility and does not have the historical data necessary for selecting an 

appropriate model to spot prices. In fact, according to Serati et al (2007) and Aiube et al 

(2013), there is no one specific model that has been supported by empirical evidence, but 

rather the suitability of models depends largely on the nature of a market and the 

decision-maker’s problem. The second challenge is that most recent literature in this field 

of study is focused on renewable energy generation, specifically wind and solar power, 

the modified marginal cost structure it introduces, and its reportedly significant effect on 

the dynamics of energy markets (Woo et al, 2011, Wurzberg et al, 2013 and Ziel et al, 

2015). Because the contributions of the local renewable energy industry are capped to a 

meagre 9% by 2030, it would not play a determining role in spot price signals unlike 

other markets in Europe. Indeed, the South African energy market is thus still very much 

operating in a time that is almost a decade behind its global counterparts.    
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To overcome the challenges stated above, a model must be identified that balances 

mathematical convenience but also creates the realism of a South African dynamic 

energy market. In order to achieve this, a brief discussion on the characteristics that make 

electricity distinctive from other commodities is given in Section 2.3.1. In Section 2.3.2 

an overview of the pricing models that have successfully addressed these features and 

been applied to existing markets is presented. Finally, Section 2.3.3 presents the 

justification for the selected technique applied to modelling spot prices under uncertainty.   

Table 2.2: Various outcomes for over- and under-estimating load (Gabriel et al, 2004) 

Prices Load estimate Result 

Pricesupplier < Priceretail < Pricespot  Over Profit  

Pricesupplier < Priceretail < Pricespot Under Loss 

Pricesupplier < Pricespot < Priceretail Over Profit  

Pricesupplier < Pricespot < Priceretail Under Profit 

Pricespot < Pricesupplier < Priceretail Over Profit  

Pricespot < Pricesupplier < Priceretail Under Loss 

 

2.3.1 Characteristics of electricity prices  

The increased availability of supply and demand data since the shift towards deregulated 

industries has enabled the relationships between spot prices and their underpinning 

drivers to be better understood and analysed. Serati et al (2007), Hardle and Truck (2010) 

and Carmona and Coulon (2013) note the following characteristics:  

 Mean-reversion 

Lucia and Schwartz (2002) and Knittel and Roberts (2005) were among the first 

to demonstrate mean-reversion as a classical behaviour of electricity spot market 

prices. In dynamic markets, this is an important stabilising property for reducing 

prices during jumps and allowing them to oscillate around long run averages 

during normal periods (Mari, 2006 and Koopman et al, 2007).   

 

 Non-storability 
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Electricity cannot be stored or transported economically in large quantities 

(Weron, 2007). Since it is often traded hours or at most, days in advance of when 

it is to be consumed, prices are largely determined by the overall costs of 

production, the bulk of which can be attributed to the costs of fossil fuels such as 

coal or natural gas. In the case of substantial renewable energy generation where 

production costs are approximately zero (Ziel et al, 2015), as in the cases of the 

Nord Pool and the European Power Exchange (EPEX), an interesting 

phenomenon of negative pricing has arisen (discussed later in this section). 

Hydro-electric storage in the Nord Pool has also introduced price stability that is 

not necessarily present in other markets. Thus, price formation, as in most 

commodity markets, is strongly driven by the balance of supply and demand, as is 

shown by Carmona and Coulon (2013) with the use of equilibrium pricing.   

 

 Seasonality  

Regular and predictable changes which occur periodically are said to be seasonal. 

In electricity, three types of seasonality are reflected in time series data: annual, 

weekly and intra-day cycles. Market prices are notoriously vulnerable to annual 

seasonality due to the effects of fluctuating temperatures (Jablonska-Sabuka et al, 

2011), sometimes even resembling mirror behaviour; weekly seasonality is 

attributed to different business and social patterns on weekends versus weekdays 

that results in higher demand during the latter (Huisman et al, 2007); and intra-

day periodicity results in hours of peak and off-peak consumption that largely 

correlate with hours of the day and night respectively (Higgs and Worthington, 

2005).   

 

 Extreme volatility 

Daily electricity price volatility is excessively high and is known to frequently 

reach levels of 30%-200% compared to 3%-5% for other commodities such as oil 

and natural gas in the same period (Serati et al, 2007 and Carmona and Coulon, 
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2010). According to Hardle and Truck (2010), spot prices may increase tenfold in 

a single hour before reverting to their mean in a very short period of time.  

 

 Price jumps and spikes  

Spikes are the result of shocks in both the supply and demand of electricity. For 

example, extreme load fluctuations caused by strong seasonality, generation 

outages and transmission failures all culminate in imbalanced supply-demand 

curves. Low marginal production costs but high start-up costs incurred by 

generation facilities during periods of high demand can also often be attributed to 

positive price shocks. This is further exacerbated by the non-storability of 

electricity, network capacity constraints and the inflexibility of electricity 

markets, all of which vary from one market to the next.  

 

 Negative and zero prices  

Negative prices occur in geographic clusters during low-peak months of the year 

and for short periods during the early mornings or late evenings when demand is 

especially low. They occur more frequently in markets with inflexible or 

renewable generation methods because facilities are too costly to shut down 

temporarily or production costs are negligible, resulting in imbalances of supply 

and demand. Other causes identified include errors in load predictions due to high 

temperature volatilities and network congestion that results in an oversupply in 

one area and an undersupply in another. Negative pricing proves problematic 

during modelling as certain transformations such as log transformations are 

unable to handle these values. Schneider (2011) suggests removing these 

observations from time series data, shifting prices or using transformations that 

are equipped to handle non-positive prices.  

 

 Inverse leverage effect  

Spot prices have a tendency of responding asymmetrically to positive and 

negative shocks, that is, volatility is more intense in response to positive price 
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shocks than negative (Karakatsani and Bunn, 2004 and Knittel and Roberts, 

2005). Thomas and Mitchell (2005) reported the effects of inverse leverage in the 

Australian market to be more predominant for intra-day seasonality. Because this 

particular feature is still establishing itself as an inherent descriptor of electricity 

prices, its effects on modelling and model selection are still unknown.  

2.3.2 Modelling of uncertainty: existing techniques  

Modelling the dynamics of electricity prices in the spot and regulating markets means 

addressing each of the characteristics just discussed. One of the first works presented in 

this field was the classic Ornstein-Uhlenbeck process by Lucia and Schwartz (2002). 

This technique was selected to address the mean-reverting characteristics and predictable 

seasonality typical of electricity prices. Here, prices are modelled as the sum of a 

deterministic and stochastic component, and this methodology has been largely adopted 

as the ‘industry standard’ by most researchers in the field (Mari, 2006, Huisman et al, 

2007, Higgs and Worthington, 2008, and Auibe et al, 2013), with techniques varying on 

how the deterministic and stochastic components are found with respect to each market. 

Attention has primarily been paid in the existing literature to modelling the stochastic 

component and Serati et al (2007) propose a classification of the methodologies into 

three broad categories, namely autoregressive models, volatility models and jump 

diffusion and regime-switching models. Section 2.3.2.1 to Section 2.3.2.3 which follows 

provides further discussion on each of these models and Table 2.3 summarizes some 

representative papers.  

2.3.2.1 Continuous stochastic and autoregressive models   

Geometric Brownian motion, otherwise known as the Wiener process, has its roots in the 

modelling of stock market prices with the Black-Scholes model (Black and Scholes, 

1973). It was first extended to electricity markets by Lucia and Schwartz (2002) to model 

stochasticity in the Nord Pool. Since then, the technique has been overlooked in favour of 

other continuous stochastic processes capable of generating spikes and heavy tailed 

random variables, such as the Poisson process (Mari, 2006, Jablonska-Sabuka et al, 2011 
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and Mayer et al, 2015) Nevertheless, Brownian motion is still being used in literature to 

address the normal equilibrium behaviour of prices (Mayer et al, 2015).   

Autoregressive (AR) models were a natural candidate for first generation electricity 

models due to their ability to capture seasonality and significant lags in other commodity 

markets. Early comparative works such as Karakatsani and Bunn (2004) and Misiorek et 

al (2006) soon revealed the limitations of AR models in capturing fluctuating volatility, 

price spikes and other unique characteristics of electricity such as the inverse leverage 

effect.  To overcome this, AR features have since been combined with other volatility, 

mean-reverting and regime switching models to report improved goodness-of-fit results 

and forecasting errors, such as in the cases of Aiube et al (2013) and Ziel et al (2015). 

The AR features prove especially effective in investigating the effects of lags and model 

orders for increasing model accuracy. The finding of Aiube et al (2013) that increasing 

model order and lags improves fit bodes poorly for modellers and researchers seeking 

mathematical convenience. 

2.3.2.2 Volatility models 

Volatility can vary dramatically over time, especially in commodity markets. The most 

popular measurement of volatility, variance, can be classified as homoscedastic 

(constant) or heteroscedastic (non-constant). Homoscedastic models such as ARMA 

models were initially used to model financial markets, but were found to be severely 

lacking due to the fluctuating volatility of data they were unable to capture. This is even 

more so the case for electricity prices (Carmona and Coulon, 2010). Techniques aimed at 

capturing conditional variance and heteroscedasticity, such as GARCH and GARCH-

extension models, have thus garnered much attention in this field of research, as can be 

seen in Table 2.3.  

Karakatsani and Bunn (2004), Misiorek et al (2006) and Aiube et al (2013) indicate 

improved performance of GARCH models when combined with autoregressive and 

seasonality components respectively. This is likely due to the extended models’ ability to 

better anticipate abnormalities in price levels. Of the GARCH-derivative models, 
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EGARCH and TARCH were reported to effectively capture price volatility (Mayer et al, 

2015) and conditional heteroscedasticity (Ziel et al, 2015) in the British and German 

markets, whilst EGARCH and PARCH reported superior results in detecting the inverse 

leverage effect and negative pricing (Thomas and Mitchell, 2005). In Hatami et al 

(2009), little analysis is provided as to the ability of the models in fitting or forecasting 

prices and the GARCH-jump model remains invalidated. The SARMA approach of 

Aiube et al (2013) with lags can be seen as an alternative to panel frameworks (Huisman 

et al, 2007 and Pena, 2012), but is less cumbersome whilst still revealing the effects of 

intra-day seasonality. Overall, the GARCH model has earned its formidable reputation in 

financial markets, which are significantly less volatile than electricity prices. A critical 

flaw of this category of models is thus that whilst they are effective in modelling 

volatility of electricity prices, they prove inadequate in capturing short-lived spikes 

without significantly high parameter values to quickly force prices back to their 

equilibrium state.  

2.3.2.3 Mean-reverting jump diffusion and regime switching models  

Inarguably the biggest shortcoming of Lucia and Schwartz (2002) was the assumption of 

constant mean reversion. Not only did this directly contradict market observations 

(Christensen et al, 2009), but the proposed method was unable to capture the volatility 

and short-lived nature of spikes because they did not follow distinct patterns or have 

stable rates of mean-reversion. To overcome this, Jablonska-Sabuka et al (2011) 

modelled electricity dynamics as three separate states defined as ‘regular, ‘spike’ and 

‘after-spike’ periods, each with their own mean-reversion rates and volatility parameters. 

Across literature, classifying behaviour by these three states  in multiple mean-reversion, 

jump diffusion or regime-switching models has become common practice, as can been 

seen in Karakatsani and Bunn (2004), Mari (2006), Higgs and Worthington (2008) and 

Janczura and Weron (2012). Whilst the authors met their original goal of capturing spike 

behaviour, their inattention to addressing intra-day seasonality could be attributed to the 

24-hour reversion time interval used that ignored the cross-sectional correlation 

identified by Huisman et al (2007) accounting for hourly dynamics in a time series. As 
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Huisman and Mahieu (2003) reflect, jump diffusion models do not distinguish between 

mean-reversion and jump-reversal which can cause mis-specified volatility. Furthermore, 

these models require large parameters to create short-lived spikes and are better suited 

when jumps are sustained. For a general specification of mean-reversion jump diffusion 

models that accounts for many of the features of electricity prices, the reader is referred 

to Weron (2007).   

Huisman et al (2007) focus their study on the effects of intra-day and inter-day 

seasonality. Their work found that prices in peak hours are highly correlated and occur in 

block structured patterns (the same is true for off-peak hours). Pena (2012) also applied a 

panel model to each hourly series but adopted an autoregressive periodic component that 

yielded better results than a standard mean-reverting one. The attention paid to intra-day 

patterns is fairly rare for this category of models due to the parameter estimates required 

for each of the 24 models developed for each hour of the day. More popularly, intra-day 

seasonality has most typically been documented by means of GARCH models such as in 

Aiube et al (2013) and Higgs and Worthington (2005). Naturally, this brings into 

question the mathematical convenience and cumbersome nature of the required 

numerical work.   

Markov Regime Switching (MRS) models extend on the concept of mean-reversion and 

reportedly exceed the performance of its autoregressive, volatility and mean-reverting 

jump diffusion counterparts (Karakatsani and Bunn, 2004, Misiorek et al, 2006 and 

Janczura and Weron, 2010). In applying this approach, separate states are defined to 

model the dynamics of electricity, each characterised by a mean-reversion rate and 

volatility parameter. MRS models are thus able to deliver the short-lived spikes, mean 

reversion and high volatility typical of electricity prices whilst also avoiding the high 

parameter estimate values typical of mean-reversion and diffusion models. According to 

Mari (2006), two different price movements are generally observed: normal periods 

defined by prices fluctuating around a long-run equilibrium, and periods of turbulence 

characterised by jumps and short-lived spikes. Similarities exist between Mari (2006), 

Higgs and Worthington (2008) and Jablonska-Sabuka et al (2011), and all studies 
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disprove the constant mean-reversion assumption of Lucia and Schwartz (2002). In Mari 

(2006) and Higgs and Worthington (2008), regime-switching is controlled by a 

Markovian probability matrix. In contrast, Karakatsani and Bunn (2004) define regimes 

by probabilistic inference, but this is due to their aim of investigating the effects of 

market structures on price volatility. Unlike Mari (2006), Higgs and Worthington (2008) 

model seasonality both weekly and annually but do not account for multiple consecutive 

jumps or intra-day behaviour. In one of few comparative studies in the field of Markov 

Regime Switching, Janczura and Weron (2012) found that threshold type regime 

switching models such as TAR, STAR and SETAR increased modelling risk because the 

threshold variable would need to be specified in advance. Although latent variable 

models were a greater challenge to calibrate, they did not pose the same disadvantage. Of 

the models investigated, a three-regime model with time-varying transition probability 

matrix, heteroscedastic diffusion type base regime dynamics and shifted spike regime 

distributions offered the best results in addressing seasonal spikes, spike intensity and the 

inverse leverage effect. Their goodness-of-fit hypothesis results and descriptive statistics 

also proved superior to other known models. Due to the complexity of the proposed 

model however, it is argued that this be a topic of future research as it falls beyond the 

scope of this study.  

2.3.3 Modelling of uncertainty: selecting an appropriate technique 

In Section 2.3 it was established that model selection depends heavily on the market to 

which it is applied. Because South Africa cannot rely on its own market dynamics or 

historical data for model selection, an appropriate substitute market must be selected. 

Table 2.3 provides an indication of the most popular markets for which spot prices have 

been modelled, namely the cross-continental European exchanges such as Nord Pool, 

EEX and EPEX, Australia and less frequently, the United States. The lack of research 

conducted for emerging markets can be attributed to fewer countries adopting 

deregulation and a resulting lack of data availability. Karakatsani and Bunn (2004) use 

fuel prices as a proxy for seasonal spot price behaviour, but Eydeland (2003) provides 

evidence to suggest that this may not be sufficient to account for actual marginal costs in 
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generation and the resulting supply curve. Furthermore, supply stack structures may be 

complex in markets where there is more than one major fuel source driving dynamics. In  

studies by Mari (2006), Higgs and Worthington (2008) and Jablonska-Sabuka et al 

(2011), it was revealed that volatility was consistently different between cool and warm 

seasons and that this particular aspect of seasonality estimation was crucial to accurate 

price predictions. This entrenched the view that a strong correlation exists between 

temperature and electricity pricing. Along this vein, a comparison of the most popular 

markets for spot price estimation, namely the Nord Pool (representing European market 

dynamics) and Australia, is done in order to determine appropriateness of fit to the South 

African environment.    

Nord Pool currently operates in Norway, Denmark, Sweden, Finland, Estonia, Latvia, 

Lithuania, Germany and the United Kingdom. It is the largest, most mature and 

successful electricity trading market in Europe, with good collaboration efforts amongst 

the parties that enables some of the lowest cost structures in the world. Temperature and 

daylight trends indicate higher demand for lighting and heating facilities in winter, and 

cooling and ventilation facilities in summer, especially in Scandinavian climates where 

temperatures fluctuate annually between -12ºC and 26ºC. Nord Pool are the pioneers in 

renewable energy and hydro-storage, both of which introduce price stability and low 

production costs that are unique to the market. As such, selecting it to simulate the effects 

of a South African environment would create supply, demand and cost curves that are 

poor representations. The work performed with relation to the Australian market is 

indeed promising in comparison to other literature due to similarities with the South 

African market. Seasonally, Australia experiences hot summers and cool winters with 

temperatures averaging 25ºC and 7ºC respectively; similar to the local climate. Daylight 

hours are also comparable to South Africa as both countries fall within the Southern 

Hemisphere, meaning that energy requirements would follow similar seasonal and 

demand patterns. Lastly, both countries rely heavily on coal-sourced energy with little 

renewable fuels capacity, implying that their market resilience, ability to store electricity 

and its effect on supply curves and equilibrium pricing are comparable. For these 
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reasons, the Australian market is selected as a proxy for the South African deregulated 

market.  

Attention must now be paid to model selection. It is proposed that the three-regime 

switching model presented in the work of Higgs and Worthington (2008) be applied due, 

firstly, to its reported success in the Australian market and, secondly, to the superiority of 

regime switching models over other categories of models for the reasons discussed in 

Section 2.2. The primary limitations of the study however were its inattention to intra-

day seasonality and its restrictive assumptions regarding spike behaviour. Their model is 

thus amended to include dummy variables accounting for intra-day seasonality and a 

constant transition probability matrix that allows for multiple consecutive jumps and 

spikes similar to the work of Mari (2006). Such a model applied to the Australian market 

accounts for the stylized features of electricity, specifically mean-reversion, non-

storability, seasonality, volatility and spikes. Although it neglects to address the inverse 

leverage effect and negative pricing, neither of these features have been indicated by past 

literature to be significant for the Australian market. It is further assumed that strategic 

bidding is not allowed which substantially reduces the frequency of negative pricing 

(Ziel et al, 2015) and postulated that the presence of the inverse leverage effect will be 

detected during parameter estimation and analysis.  
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Table 2.3: Representative works: modelling under uncertainty 

Year Author/s Model/s Main features Market Contributions 

2004 Karakatsani  

and Bunn 

 Regression 

model with 

GLE, GARCH, 

time-varying 

parameter, 

regime-

switching 

 The model is implemented for each load 

period (half hourly) 

 Regime-switching is defined by 

probabilistic inference  

 Seasonality approximated with a 

sinusoidal function as a proxy for 

annual fuel price pattern 

 United 

Kingdom 

 Regression-GARCH outperformed GARCH, 

GLE and time-varying parameter extensions 

 Regime-switching was most effective in 

capturing stochastic behaviour 

2005 Thomas and 

Mitchell 

 GARCH 

 TARCH 

 EGARCH 

 PARCH 

 Seasonality and price spikes are filtered 

to study only the underlying volatility 

process 

 The selected models are used to address 

the presence and significance of the 

inverse leverage effect and negative 

prices 

 Australia  Significant ARCH and GARCH effects were 

present in the data  

 PARCH and EGARCH were most successful 

in detecting the inverse leverage effect and 

addressing negative pricing 

 AR effects were significant at specific lags 

and location-dependent  

2006 Mari  2-regime 

switching 

model 

 States modelled as mean-reverting 

processes with unique mean-reversion 

and volatility rates  

 APX 

 EEX 

 Nord Pool 

 Extends on Huisman-Mahieu method (2003) 

to include multiple jumps and consecutive 

spikes  
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 3-regime 

switching 

model 

 Jumps modelled as a Poisson process 

 Constant Markov transitions control 

regime-switching 

 Seasonality is deterministic with 

dummy variables to account for weekly 

behaviour 

 Powernext 

 EXAA 

 3-regime model with multiple jumps was 

most effective in capturing fluctuations for 

all markets except APX, where 2-regime 

model performed better 

 Extreme jump behaviour was observed in 

EEX and APX  

2006 Misiorek et 

al 

 AR/ARX 

 AR-GARCH 

 TAR (non-

linear, threshold 

regime 

switching) 

 Regime-

switching 

model 

 The observed period coincided with the 

Californian market crash 

 Relatively simply time series models 

(AR) were compared with typical 

volatility (GARCH) and regime-

switching models 

 California  The Markov model outperformed its 

counterparts 

 TAR models outperformed linear AR 

models, which in turn produced higher point 

forecasting efficiency than GARCH 

approaches 

  The non-linear regime switching model 

systematically underestimated next-day 

prices 

2007 Huisman et 

al 

 Panel model 

with 24 cross-

sectional hours 

 Mean reversion rates modelled for each 

hour of the day  

 Seasonality is deterministic with 

dummy variables to account for weekly 

 APX 

 EEX 

 PPX 

 Hourly prices in a day behave cross-

sectionally and hourly dynamics over days 

behave as a time series 

 Weekend mean price levels were 
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behaviour significantly lower than average means  

 Peak week hours exhibited slower mean-

reversion and higher volatility 

2008 Higgs and 

Worthington 

 Mean-reverting 

model 

 Stochastic 

model 

 3-regime 

switching 

model 

 States modelled as mean-reverting 

processes with unique mean-reversion 

and volatility rates  

 Constant Markov transitions control 

regime-switching 

 Seasonality is deterministic with 

dummy variables to account for weekly 

and yearly behaviour 

 Australia  Regime-switching was most effective in 

price predictions  

 Prices exhibited stronger mean-reversion 

after price spikes  

 Volatility was higher in spike periods and 

varied from one state to another  

 Higher prices were associated with 

weekdays and peak winter and summer 

months 

2009 Hatami et al  GARCH model 

 GARCH-jump 

model  

 GARCH models retailer load 

 GARCH-jump models spot market 

prices 

--  Joint set of realizations for retailer load and 

spot market prices are generated  

 100 scenarios were found to be sufficiently 

large  

 Highest retailer profits and lowest risk 

yielded from purchasing in spot market, 

forward contracts, call-options and self-
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production  

2011 Jablonska-

Sabuka et al 

 Multiple mean 

reversion jump 

diffusion model 

 Parameters modelled for each hour of 

the day  

 Jumps modelled as a Poisson process 

 Constant Markov transitions control 

mean-reversion switching 

 Mean-reversion switches are 

independent of one another but related 

to price level 

 Seasonality is included in mean hourly 

prices as a fitted linear regression of 

price versus temperature 

 Nord Pool  Builds on classical Ornstein-Uhlenbeck 

process that assumes constant rate of mean-

reversion 

 Effectively modelled spikes and extreme 

behaviour of spot prices 

 Out-of-sample simulations indicated 

weaknesses in driving intra-day seasonality 

and price stability introduced by hydro-

storage 

2012 Janczura and 

Weron 

 3-regime 

switching 

model  

 Focus is on the calibration of mean-

reverting regime switching models 

 Parameter-switching regimes, 

independent mean-reverting processes 

for regimes and a combination of the 

two are compared 

 EEX 

 Australia 

 Australian prices did not exhibit significant 

price drops, unlike EEX prices 

 High speeds of mean-reversion were 

typically associated with parameter estimates 

of 0.20 to 0.44  

 Staying in the same regime resulted in 

parameter estimates of approximately 0.6390 
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(spike regime) and 0.9539 (for the base 

regime) 

 The proposed estimation procedure 

calculated estimates to within a 95% 

confidence of true values for samples of over 

1000 observations 

  Lower errors were presented in comparison 

to that of Huisman and de Jong (2002), and 

allowed for 100 to over 1000 times faster 

calibration 

2013 Aiube et al  SARMA-

GARCH 

 Model presented to forecast hourly spot 

prices for a week  

 SARMA method used to capture 

seasonality through autoregressive 

means 

 Comparisons between varying lags and 

model orders are presented 

 GARCH method used to capture 

volatility  

 Austria 

 Spain 

 SARMA-GARCH model fitted data better 

than the SARMA model but presented with 

higher forecast errors for both countries 

 Static forecasts outperformed dynamic 

forecasts, especially in the presence of 

higher volatility  

 SARMA (7,7) model effectively captured 

weekly seasonality  

 In general, increasing order and lags 
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improves model fit 

2015 Mayer et al  Levy process 

with constant 

volatility 

 Levy process 

with EGARCH 

volatility 

 Annual and weekly seasonality is 

addressed deterministically  

 ‘Normal’ and ‘extreme’ price behaviour 

is modelled as two Levy processes with 

Brownian and Poisson jump motions 

respectively 

 Mean-reversion is modelled as an 

Ornstein-Uhlenbeck process 

 France 

 Germany  

 Scandinavia 

 Great Britain 

 Extends on the work of Benth et al (2003) to 

additionally address stochastic volatility, 

negative prices and self-contained parameter 

estimation 

 The proposed models performed better than 

the Ornstein-Uhlenbeck and jump diffusion 

model of Cartea and Figueroa (2005) in all 

markets 

 EGARCH model performed equally well to 

the constant volatility model in the Nordic 

market, but better in the German and British 

2015 Ziel et al  Periodic VAR-

TARCH model 

 The effects of load, wind and solar 

power on prices are investigated 

 Focus is paid to the inverse leverage 

effect and negative pricing in particular 

  Iteratively reweighted lasso approach is 

used for parameter estimation 

 Over 1000 lags are considered  

 EPEX  The model was tailor-made for hourly EPEX 

data and cannot be generalized 

 TARCH model was effective in capturing 

conditional heteroscedasticity 

 Load, wind and solar power had strong and 

significant impacts on price  

 Lags indicated that prices in the previous 
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two hours and prices one week ago were 

significant 
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2.4 CONCLUSION 

In this chapter the focus of the reviewed literature was on developing an accurate 

depiction of reality for the South African resident and energy provider operating in an 

open market. Furthermore, the infrastructural, technological and social requirements in 

order to achieve demand response needed to be highlighted so that its benefits could be 

realised by the proposed model and quantified for its effect on social welfare. To this 

end, six key factors for the consumer problem were discussed extensively, and this will 

form the basis for the formulated model which is presented in Chapter 3. These elements 

were also identified as the conditions under which effective demand response can be 

achieved. For the retailer, spot market trading and its inherent uncertainty was seen to 

have a significant impact on profits and thus social welfare. As such, an approach to 

predict its effect on the retailer, above and beyond other market dynamics, was required 

and reviewed. It was found that the application of a three-regime Markov model to the 

Australian market is an appropriate representation of the conditions under which a local 

retailer may operate, thereby satisfying the objective outlined in Section 1.3. Finally, it 

was shown that published works on problem formulations found in literature were 

insufficient in capturing the price elasticity of the consumer relative to the retailer, and as 

a result, social welfare. A novel approach is therefore required that lends itself to 

identifying the tariff at which optimal social welfare is achieved, and residents and 

service providers objectives are realised. This chapter thus provides the building blocks 

to construct the proposed model which is presented in the following chapter.  
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MATHEMATICAL MODELS OF 

CONSUMER SCHEDULING 

AND RETAILER PROBLEMS  
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3.1 INTRODUCTION  

It was established in Chapter 2 that there are several important aspects that must be 

considered when developing consumer and retailer models that reflect the South African 

reality under a deregulated market structure. The thread linking the satisfaction of both 

these stakeholders’ aims lies in the achievement of social welfare, and to this end, the 

relative price sensitivity of consumers to their retailer is of integral importance. Neither 

social welfare nor the price-dependent relationship between the user and service provider 

has been appropriately captured or analysed in literature, and herein lies the primary 

contribution of this study. This is a novel approach to viewing the retail tariff as not 

simply a decision to be made by the retailer to the consumer, but rather as a tool for 

creating harmony amongst both parties, as long as the effect of price changes on each 

stakeholder can be quantified. Previous studies have either neglected this concept 

entirely, yet acknowledged its importance (Kirschen, 2003), or assumed this effect to be 

linear (Aalami et al, 2008). In order for social welfare to be addressed, its effect on the 

setting of a tariff to be quantified and hypotheses for relative price elasticity to be tested, 

operations research models for the consumer and retailer must first be proposed. From 

this, valuable analyses can be made that contribute to the existing body of knowledge in 

this field. The formulated models must therefore be sufficiently flexible to lend itself to 

parameter and input adjustments as similar expectations will exist of a model that is 

integrated with an Energy Management System for implementation. This chapter 

presents the numerical model that captures the salient features just discussed.  

The remainder of this chapter is structured as follows: Section 3.2 provides the notation 

necessary for the rest of this chapter. In Section 3.3 the consumer problem is formulated. 

Section 3.4 presents the retailer problem with specific focus paid to the three-regime 

Markov switching model from which results will serve as an input parameter. The 

relationship between the independently developed consumer and retailer models to 

achieve the objective of maximised social welfare is presented in a novel approach in 

Section 3.5. Finally, Section 3.6 concludes this chapter.    
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3.2 NOTATION 

,   the inconvenience factor associated with user  using appliance   at time   :  j

i t j i t
 

 :   the price signal delivered to the consumer by the retail ime  , in R/kWer h at tt t  

   the degree of flexibility associated with the user postponing or advancing the

           use of appliance   from the preferred s

   

c u

 

l

:

hed e

i

i


 

 

   the importance of the waiting cost for user   (ZAR)   :j j  

   the charging efficiency of a user's ba   : tteryc  

   the discharging efficiency of a user's ba   : tteryd  

    :  average wholesale price of electricity purchased by the retailer, obtained from 

           NEM operating in NSW over the period January 2015, converted to R/kWh

q
 

2

,    :  price variance in the day-ahead market for time  q t t  

2

,    :  variance of aggregated load experienced in observed user demand for time C t t  

1 if user  charges their battery at time 
    :

0 otherwise

j

t

j t
b



  

1 if user  discharges their battery at time 
   :

0 otherwise

j

td
j t


  

   :   the initial time segment for the valid schedule in which appliance  may be used 

          by the user

ie i
 

   :   the final time segment for the valid schedule in which appliance  may be used 

          by the user

if i
 

   the initial time segment for which appliance   is used in the preferred schedule

         by the

  :

 user

ih i
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 :    price of electricity purchased (R/kWh) by the retailer in the day-ahead market 

         for time 

tq

t
 

   the price at which electricity is traded in the spot market at ti  e : mts t
 

,

1 if user  uses appliance  at time 
   :

0 otherwise

j

i t

j i t
u



  

,

1 if user 's preference is to use appliance  at time 

0 otherwi
:

se

j

i t

j i t
ubl



  

    :  the maximum allowable energy to be charged/discharged to user 's battery, in kWhjx j  

,

1 if user  uses appliance  at time ,  where  is the first in consecutive segments
   :

0 otherwise

j

i t

j i t t
z



  

 :   the power charged to user 's battery at time ,  in kWj

t jB t
 

* power drawn from the grid by all users at time  , in k :    aggregated W tC t  

   the power drawn from the grid by user    at time    : , in kWj

tC j t
 

  the minimum duration for using appliance  ,  in  u  : ho rsiD i
 

'  the energy state of user  s battery at time  , in kWh  :j

tE j t
 

the assigned capacity o: user 's battery, in kWhf   jEcap j
 

:   the maximum capacity of user 's battery, in kWhj

maxE j
 

:  the minimum capacity of user 's battery, in kWhj

minE j
 

 :   the power discharged to user 's battery at time ,  in kWj

tG j t
 

quantity of electricity sold by the retailer at time   in the sp : ot market   the tN t  

   the power rating of appliance   :   ,  in kWiP i
 

quantity of electricity purchased by the retailer for time   in the day a : hea  the d markett tQ
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quantity of electricity purchased by the retailer at time   in the  : spo  t t m k the ar etS t  

 

3.3 CONSUMER PROBLEM 

In previous works, aspects of the load scheduling problem have been well addressed by 

the likes of Mohsenian-Rad and Leon-Garcia (2010), Chen et al (2012b) and Setlhaolo et 

al (2014). Specifically, each of these authors focused on appliance scheduling and 

consumer inconvenience, battery storage modelling, and incentives respectively. 

However, none of these works sought to identify the tariff structures at which social 

welfare is optimal, neither did they capture the relative sensitivity of retailers and 

consumers to changes in price. This study aims to do exactly this, with attention paid to 

the incorporation of tools that enable demand response in order to derive and quantify its 

effect on identified outcomes. To achieve this, each stakeholder’s model must be well-

segmented so that their individual and holistic impact on social welfare may be easily 

investigated. On a macro level the resident must firstly further their interests both 

financially and from the perspective of ensuring convenience. Secondly, their appliance 

and battery usage must be modelled realistically and with sufficient flexibility to enable 

optimisation. The unique and diverging socio-economic climate in South Africa which 

has a fundamental impact on whether homes are considered to be energy intensive or 

poor, must also be accounted for. Finally, the fundamental concept of physics, that is the 

Law of Conservation of Energy, must be obeyed so that heat and transfer losses to the 

environment are realistically accounted for. Only then will the proposed model meet the 

objectives outlined in Section 1.3, that is the development of a contextualised consumer 

model for the local environment that is equipped to achieve demand response.    

For the consumer, it has been established that the load scheduling problem must 

encompass their interests which are two-fold, namely to minimise electricity payments 

and scheduling inconvenience. Their utilitymust then be the sum of these two 

components:   

, , ,
1 1 1 1 1
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The first term represents the aggregated cost incurred by all residents for consuming 

electricity charged at retail price t . The presence of this nonlinear term in the user 

objective serves to significantly increase model intractability, as is discussed further 

below. The second term quantifies the inconvenience imposed on the consumer for 

shifting their load from the preferred schedule ,

j

i tubl  to the optimal schedule ,

j

i tu . The 

waiting parameter j and inconvenience factor ,

j

i t are used similarly to Mohsenian-Rad 

and Leon-Garcia (2010).   

The net power drawn from the grid by each user is given in equation (3.2) as the sum of 

power drawn from appliances during usage and the battery during charging, less the 

power supplied by the battery to assist with peak shaving. It is noted that unlike Rastegar 

et al (2010) and Chen et al (2012a), a discharging efficiency is considered. From this 

expression it is clear that model complexity significantly increases and the reasons for 

this are two-fold. Firstly, the introduction of the three-dimensional binary variable ,
j

i tu , 

and two-dimensional continuous variables j
tB and j

tG significantly increases the scale of 

the optimization problem, resulting in a potentially enormous parameter space that often 

is far too computationally expensive to effectively search. In fact, it is well-established in 

literature that many algorithms which have proven to be high-performing with small-

scale problems are less so with large-scale ones, considered to constitute at least one 

thousand variables (Hager et al, 1994, Benson et al, 2003). Secondly, the expression in 

(3.2), when combined with that of t in the consumer utilityfunction, creates a nonlinear, 

non-convex search space when advanced schemes such as TOU and dynamic tariffs are 

employed. This causes the model to become increasingly more difficult and 

computationally expensive to solve as the number of discrete variables increases (Murray 

and Ng, 2010). Whilst in similar formulations Lagrangian relaxation techniques and 

Karush-Kuhn-Tucker conditions may be applied to overcome some of these challenges, 

this is rarely possible for scheduling problems due to their inherent binary nature 

(Grobler, 2008). At such points in research, attention is then turned to the application and 

feasibility of heuristics and metaheuristics, and this is studied further in Chapter 5. Under 
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a fixed rate tariff however, which is far more suitable for a fledgling deregulated market 

operating in South Africa, a substitution approach that delivers global solutions is 

demonstrated in Chapter 4, and this is sufficient to demonstrate the principal theory and 

novelty of the social welfare function proposed in Section 3.5.  

,
1

 
I

j j j j
t i i t t t

i
du GC P B



     (3.2) 

Section 2.2.4 highlighted several technical and operational appliance scheduling 

constraints that must be enforced in order to depict a realistic residential load profile:  
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, , ]0,            [j
i t i iu t e f     (3.7) 

The above constraints follow the work of Conejo et al (2010) and Setlhaolo et al (2014) 

among others by accounting for the typical behaviour of residential loads. Constraint 

(3.3) ensures that each appliance is used for its minimum duration within a valid time 

schedule. (3.4) and (3.5) require that each appliance is operated continuously for its 

minimum duration of operation, that is, an electric water heater cannot operate for two 

hours in the morning and one hour in the evening if its minimum duration of operation is 

three hours. It is noted that continuous operation is modelled slightly differently here in 

comparison to Setlhaolo et al (2014): the introduction of ,
j

i tz enables the constraint to be 

kept linear, unlike the authors’ work who introduce nonlinearity and thus additional 

complexity to the model. Finally, constraints (3.6) and (3.7) ensure that appliances are 

not scheduled for operation during non-valid hours of the day.  
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Scheduling inconvenience is dependent on the flexibility of the end-user to altering a 

particular appliance’s usage:   

, ,     ,                  [ ]
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j

i t

t h

i
i i
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t e
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      (3.8) 

, , ]0,                     [ i i

j
i t ft e      (3.9) 

A resident is considered to be inconvenienced if they delay or accelerate the use of an 

appliance for the sake of a lower electricity bill. (3.8) defines this inconvenience to be 

exponentially increasing the longer a consumer waits or shifts usage forward. Constraint 

(3.9) ensures that no inconvenience is suffered for hours falling outside of the valid 

schedule or hours for which the optimal and preferred schedules coincide. 

The last concept addressed in the consumer’s problem is the inclusion of the battery 

storage system. These are capable of supplying power during peak periods so that the 

consumer incurs minimal inconvenience and cost, and drawing from the grid during off-

peak hours to incur the lowest charges. For the purposes of this study, asset-associated 

costs are not considered. An area for future research is to compare electricity cost savings 

with the capital and maintenance costs of various residential storage facilities over their 

lifespan to evaluate the true financial effect on the consumer. Battery operation is 

modelled as follows:  

1j j
t tb d     (3.10) 

min 0.15j

jE Ecap    (3.11) 

max 0.85j

jE Ecap    (3.12) 

max min
j j

jx E E     (3.13) 

j j
t t jB b x    (3.14) 

j j
t t jG d x    (3.15) 
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1  c

jj j j
t t ttE E B G       (3.16) 

max j j

min

j
tE E E     (3.17) 

, 0 j j
t tGB     (3.18) 

 (3.10) ensures that a battery is not charged and discharged simultaneously. (3.11) and 

(3.12) create boundaries for the energy state of the battery relative to its rated capacity. 

(3.13), (3.14) and (3.15) ensure that the charging and discharging rates of the battery are 

always less than the maximum allowable energy state. Constraint (3.16) indicates the 

energy state of the battery at time t to be the sum of stored energy at time t-1 and the 

power charged, subject to charging efficiency, less the power discharged at time t. 

Finally, the energy state of the battery is constrained in (3.17) is bounded to its minimum 

and maximum capacities at all times so as to ensure low maintenance costs and a long 

storage life. (3.18) accounts for non-negativity.  

3.4 RETAILER PROBLEM 

Retailers are an integral part of the energy value chain. This is because it is their duty to 

procure electricity and supply it to a set of users at a predetermined fee. When social 

welfare is preserved as the overwhelming stakeholder interest, retailers can still be 

granted the freedoms that come with deregulation and consumers may still have the 

opportunity to reduce bill payments. For the retailer problem, creating this new market 

dynamic as described in Table 2.2 is the dominating element for developing a model that 

meets the objective stated in Section 1.3. For this study, only procurement in the form of 

a forward option and trading in the spot market will be considered, and all other 

strategies and their associated risks and/or rewards will be overlooked. The retailer must 

then make decisions regarding bids for the wholesale market and spot market, as well as 

the tariff structure. Their utility is thus the sum of four terms, as in Zugno et al (2013):   

1 1 1

*

1

T T T T

t t t t t t t t
t t t t

R C q Q s S s N
   

          (3.19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

80 
 

The first component represents revenues collected by the retailer for aggregated power 

consumption in real-time. The second term accounts for purchasing electricity in the day-

ahead market. The last two terms in (3.19) represent the losses (gains) of purchasing 

(selling) electricity in the spot market at the regulation price
ts . The inclusion of the last 

two terms implies that any of the outcomes highlighted in Table 2.2 may occur, which is 

an accurate reflection of the uncertainty and risk that the retailer is exposed to.   

Similar to spot market prices, no historical data is available to predict the wholesale price 

tq in the day-ahead market. It is thus assumed, with motivations already described in 

Section 2.3.3, that prices are taken to be the average wholesale price in the NSW market, 

subject to variance 
2

,q t .  Thus  

2

,~ ( , )t q q tq N      (3.20) 
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    (3.21) 

In order to prevent the retailer from acting strategically, (3.21) ensures that only the 

predicted demand is purchased from the forward option. A similar assumption is made by 

Zugno et al (2013). Such strategic practices are often times prohibited by regulating 

bodies in a market, but the reader is referred to Philpott and Pettersen (2006) as an 

example in which strategic demand bidding is investigated.  

It was previously hypothesised that demand uncertainty increases with load. Thus, load 

uncertainty is given as  
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  (3.22) 

(3.22) ensures that total realised load is subject to some uncertainty at every time t. This 

volatility, which can only be met in the spot market because of (3.21), increases with the 

magnitude of aggregated load for time t of users’ preferred schedules.   
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The quantity of electricity to be purchased and sold in the spot market is given by (3.23) 

and (3.24) respectively. These piecewise definitions ensure that demand left unsatisfied 

or any excess of supply after transactions in the day-ahead market can be resolved. 

Constraint (3.25) is enforced to ensure that all realised demand is satisfied between the 

day-ahead and spot markets, and (3.26) accounts for non-negativity.  

* *,  if 0

0,            otherwise

t t t t

t

C Q C Q
S

   



    (3.23) 

* *,  if 0

0,              otherwise

t t t t

t

Q C C Q
N

   



    (3.24) 

*
    t t t tC Q S N      (3.25) 

, , 0 t t tQ N S     (3.26) 

Prices in the spot market, st serve as an input parameter to the retailer problem and are 

predicted with a three-regime Markov switching model, presented next.  

3.4.1 Three-regime Markov switching model 

In Section 2.3 the theoretical requirements for an effective three-regime Markov 

switching model that captures the stylized features of electricity were developed. It was 

found that because of the significant impact that trading in the spot market has on retailer 

profits, their price elasticity and thus social welfare, effort must be made to accurately 

predicting these regulating rates. This section presents the numerical model to satisfy 

these requirements. It should be noted that the natural logarithm of hourly spot prices, tn

is applied due to its stabilising effect on data values and its ease of interpretation. Then tn

is defined as the sum of a deterministic and stochastic component such that 

t t tn r X     (3.27) 

The deterministic component, tr , accounts for seasonality and reflects a constant mean-

reverting process. This price formation is an improvement on the work of Higgs and 
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Worthington (2008) in that all three aspects of seasonality identified in Section 2.3.1, 

namely annual, weekly and intra-day cycles, are captured in equation (3.28). 

Furthermore, this is achieved without the development of separate models as in Huisman 

et al (2007), due likely to developments in software that are capable of computing a 

larger volume of parameters. One such tool is MS Regress (Perlin, 2014), a MATLAB-

compatible package for Markov Regime Switching models that was used to solve this 

model. Let seasonality be:  

12 23

0 1
2 1

t t y ytl lt
l y

r W M H
 

           (3.28) 

where 

0 = long-run equilibrium mean spot price  

tW = dummy variable representing weekday/weekend seasonality (weekdays are the 

reference category) 

ltM = dummy variable representing monthly seasonality (January is the reference 

category) 

ytH = dummy variable representing hourly seasonality (Hour 1 is the reference category) 

l for l=1,2,…12 and y for y=1,2,…23 are parameter coefficients to be estimated by 

maximum likelihood 

The stochastic component tX  is then given as 

1t ttX X dX     (3.29) 

Changes in the stochastic component, tdX , are governed by a three-regime Markov 

switching model that follows the work of Huisman and Mahieu (2003). The framework 

assumes that the spot price demonstrates one of three tendencies: normal price dynamics 
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(regime 0), sudden peaks or troughs (regime +1) and reversion to normal price dynamics 

(regime -1). It is defined as 

0 1 0

1 1

1 1 1

            in regime 0

                      in regime +1

          in regime -1

t t

t

t t

t

X

X

dX



  

   

   
   

    (3.30) 

where  

0 = rate of mean-reversion in regime 0 

0 = volatility of changes in regime 0 

1 = mean price level in regime +1 

1 = volatility of changes in regime +1 

1 = rate of mean-reversion in regime -1 

1 = volatility of changes in regime -1 

~ (0,1)t N   

The shift from one regime to another is controlled by a constant Markovian transition 

matrix in which probabilities are estimated by maximum likelihood:   

11 12 13

21 22 23

11 21 12 22 13 231 1

   
   
 
             

 

Unlike Higgs and Worthington (2008), no constraints are placed on the jump behaviour 

of spot prices, and this implies that shifts may occur bi-directionally from any one regime 

to another.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

84 
 

3.5 SOCIAL WELFARE ACHIEVEMENT  

The consumer and retailer utilities have been presented in Section 3.3 and Section 3.4 

respectively. It is now required that an objective function be defined that measures the 

simultaneous achievement of both stakeholder’s utilities represented by social welfare. 

To do this, the sensitivity of the consumer to changes in price relative to the retailer must 

be quantified and this is done by expressing social welfare F(𝜌𝑡) as an objective to be 

minimised. It is defined as the ratio of consumer utility to retailer profits, both expressed 

as functions of the retail price, such that 

,

,
= t

t

U( x )
min F

R( y )




    (3.31) 

, 0tU( x )     (3.32) 

, 0tR( y )     (3.33) 

where  ,, , , , , ,j j j j

t t i t t

j j
i t tb d z Bx Gu  are the consumer’s set of decision variables, 

 , ,t t tQ N Sy  are the retailer’s and ε is a weighting factor controlling the importance of 

each stakeholder’s respective utility.  

The objective function above is defined in this way so that optimal social welfare is 

achieved when residents’ utility is at its lowest and a service provider’s profits are at their 

highest. It should be noted that this entirely novel approach to expressing consumer and 

retailer interests will be key to establishing their relative effects on one another under 

various price elastic conditions. This will be a valuable contribution to the body of 

knowledge in this field as it will assist regulating bodies and other stakeholders in 

determining the effect of relative price elasticity on consumer and retailer outcomes, 

desirable levels of relative price elasticity, and inversely, it may be used to define tariff 

floor and ceiling constraints for varying levels of price sensitivity.  
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3.6 CONCLUSION   

In this chapter the objective was to formulate the consumer and retailer models with 

specific focus on spot market price formulation in the latter. This was so that the 

objectives of a contextualised model for the user and service provider could be met, as 

well as that of the first proposal of a problem formulation that represents their respective 

outcomes in a social welfare function dependent on relative price elasticity. To do this, 

various factors of the energy environment were incorporated, namely load scheduling, 

tariff design and market dynamics. The consumer problem addresses the user’s cost 

minimisation and scheduling convenience interests. The retailer problem incorporates the 

revenues and costs associated with servicing end-users and trading to balance supply and 

demand. The Markov-model analyses spot market prices and provides a sound means for 

predictions and forecasts. Lastly, the formation of the social welfare objective ensures 

policy buy-in from users and energy providers so that both party’s outcomes can be met.  
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4.1 INTRODUCTION 

Numerical evaluations form the basis upon which hypotheses are proved or disproved. It 

also reveals the conditions under which these hypotheses are valid which may not have 

been as easily discernible during theoretical justifications. As a result, this section applies 

the consumer-retailer model as well the proposed social welfare function to a South 

African case study of residents operating in an open market system. The aim is then to 

demonstrate the ability of the three-regime Markov switching model to predict spot 

prices and satisfy the objective of it being an appropriate tool for contextualising the 

retailer problem. The tools that were incorporated into the consumer problem to achieve 

demand response must also be validated, and most importantly, the ability of the novel 

problem formulation to capture relative price elasticity and study the effect of various 

tariffs on retailer and consumer outcomes must be demonstrated. To achieve this, Section 

4.2 presents the Markov switching model whose results serve as input to the retailer 

problem. Section 4.3 presents data relevant to the case study and Section 4.4 provides the 

results of applying the model when a fixed rate tariff is used. Section 4.5 summarises.  

4.2 THREE-REGIME MARKOV SWITCHING MODEL 

In order for a model to be an accurate predictor of any real-time data under study, it must 

first adequately capture the key features of the commodity. In Section 2.3.3 it was 

established that a three-regime Markov switching model would be an effective tool for 

capturing the salient features of electricity spot market prices. Specifically, seasonality, 

mean-reversion, volatility and short-lived spike characteristics as prices fluctuate 

between their ‘normal’, ‘spike’ and ‘after-spike’ states were identified as key descriptors 

(Jablonska-Sabuka et al, 2011). The aim of this section is thus to validate the presence of 

these features for the selected sample of data and demonstrate the ability of the model to 

capture and forecast these values for an out-of-sample period. In order to achieve this, 

Section 4.2.1 provides a statistical description of in-sample data. Section 4.2.2 presents 

the results and subsequent analysis of applying the regime-switching model. Finally, 

Section 4.2.3 summarises the contribution of this section to the greater retailer-consumer 

problem.    
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4.2.1 Data and descriptive statistics 

The data employed is that of daily spot prices from the Australian National Electricity 

Market (NEM) for the arbitrarily selected region of New South Wales (NSW). Because 

the NEM publishes data on a half-hourly basis but this study uses an hourly sample time, 

hourly arithmetic means have been calculated from the trading interval data. A sample 

period from 1 January 2013 to 31 December 2014 is selected for the purposes of 

parameter estimation. To perform an out-of-sample forecast, the hourly log spot prices 

for the period 1 January 2015 to 31 July 2015 are computed and compared against actual 

observations. As was hypothesized in Section 2.3.3, no negative or zero values were 

present in the data, but four extreme values were excluded from the sample set to prevent 

distortion of results. In order to estimate the hourly spot market price st which serves as 

an input parameter to the retailer problem, the forecasted values for an arbitrarily chosen 

weekday in January are then converted to South African Rands (ZAR) based on the 

arithmetic average exchange rate for the selected period.  

Table 4.1 provides a summary of descriptive statistics for the in-sample data. Based on 

these statistics it is clear that the hourly spot prices of the NEM do indeed demonstrate 

the typical characteristics of electricity identified above. The data is extremely widely 

spread across a range of A$4012.86/MWh with a relatively high standard deviation of 

A$35.89/MWh. This corroborates the findings of Carmona and Coulon (2013) that price 

volatility is excessively high in electricity markets. The coefficient of variation expresses 

the standard deviation as a portion of the mean and confirms the large extent (almost 

75%) to which stochasticity contributes to price formation. The kurtosis far exceeds 

three, indicating a leptokurtic distribution with heavier tails and values concentrated 

around the mean. This is supported by the findings of Knittel and Roberts (2005) and 

Higgs and Worthington (2008). The Jarque-Bera (J-B) test statistic and p-value together 

reject the null hypothesis of distributional normality at a significance level of 0.01. 

Finally, the Augmented Dickey-Fuller test, an effective unit root test for measuring 

whether time series data is stationary over time, concurs with Lucia and Schwartz (2002) 

in that the null hypothesis is rejected at a 0.01 level of significance, indicating that hourly 
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spot market prices are indeed stationary. Additionally, Figure 4.1 provides a visual 

representation of the selected in-sample data from which the characteristics of mean-

reversion and short-lived spikes are apparent. It is thus clear that the NEM is an 

appropriate representation of spot market prices in that the identified key features typical 

of the electricity market are present.  

Table 4.1: Descriptive statistics of hourly spot prices (A$/MWh) for 1 January 2013-31 

December 2014 

Statistic Price ln Price 

Number of observations  17520 17520 

Mean 48.340 3.841 

Minimum 4.280 1.454 

Maximum  4017.135 8.298 

Standard deviation 35.887 0.256 

Coefficient of variation 0.742 0.067 

Tenth percentile  31.989 3.465 

Fiftieth percentile  49.860 3.909 

Ninetieth percentile  56.670 4.037 

Skewness 86.251 -0.366 

Kurtosis 8960.222 11.867 

J-B statistic  5.86E+10 1.03E+05 

J-B p-value 0 0 

ADF t-statistic -19.974 -- 

ADF p-value 0.01 -- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

90 
 

01-Jan-2013 00:00:00 10-Jun-2013 00:00:00 17-Nov-2013 00:00:00 26-Apr-2014 00:00:00 03-Oct-2014 00:00:00
0

500

1000

1500

2000

2500

3000

3500

4000

4500
NSW - from 1 January 2013 to 31 December 2014

01-Jan-2013 00:00:00 10-Jun-2013 00:00:00 17-Nov-2013 00:00:00 26-Apr-2014 00:00:00 03-Oct-2014 00:00:00
1

2

3

4

5

6

7

8

9
ln NSW- from 1 January 2013 to 31 December 2014  

 

Figure 4.1: Hourly spot prices (A$/MWh) and natural logarithms of spot prices for the 

period 1 January 2013 to 31 December 2014 in the NSW region 
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4.2.2 Results and analysis 

This section firstly presents and discusses the estimated coefficients and standard errors 

obtained via the model. Secondly, it applies the developed model to a set of out-of-

sample data so as to validate its ability to predict hourly spot market prices. The three-

regime Markov switching model was coded in MATLAB, version 2013a, on a standard 

personal computer with the aid of a user-friendly, open source software package called 

MS Regress (Perlin, 2014). The tool is capable of estimating, forecasting and simulating 

Markov Switching regression models. Table 4.2 presents the empirical results of 

applying the model to the selected in-sample data.  

Table 4.2: Estimation results for the three-regime Markov switching model 

Parameter Coefficient Standard error 

Deterministic component 

µ0 3.9359*** 0.0018 

β1 -0.0715*** 0.0005 

β2 0.0039** 0.0011 

β3 -0.0074*** 0.0011 

β4 0.0039** 0.0011 

β5 0.0198*** 0.0012 

β6 0.0296*** 0.0012 

β7 -0.0751*** 0.0014 

β8 -0.1569*** 0.0014 

β9 -0.1253*** 0.0013 

β10 -0.2404*** 0.0013 

β11 -0.2361*** 0.0013 

β12 -0.2545*** 0.0013 

τ1 -0.0325*** 0.0021 

τ2 -0.0974*** 0.0020 

τ3 -0.1369*** 0.0020 

τ4 -0.1398*** 0.0020 
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τ5 -0.0990*** 0.0021 

τ6 -0.0499*** 0.0021 

τ7 0.0072** 0.0022 

τ8 0.0642*** 0.0021 

τ9 0.0799*** 0.0021 

τ10 0.0652*** 0.0020 

τ11 0.0403*** 0.0020 

τ12 0.0340*** 0.0020 

τ13 0.0275*** 0.0020 

τ14 0.0317*** 0.0020 

τ15 0.0342*** 0.0020 

τ16 0.0458*** 0.0020 

τ17 0.0679*** 0.0022 

τ18 0.0866*** 0.0023 

τ19 0.1376*** 0.0023 

τ20 0.0807*** 0.0021 

τ21 0.0466*** 0.0021 

τ22 0.0148*** 0.0020 

τ23 0.0177*** 0.0021 

Stochastic component 

ω0 0.0115*** 0.0025 

σ0 0.0006*** 7.3435e-06 

µ1 -0.0735* 0.0385 

σ1 0.5869*** 0.0126 

ω-1 0.0762*** 0.0063 

σ-1 0.0110*** 0.0002 

Transition matrix 
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11  
0.9222*** 0.0058 

21  
0.0041** 0.0016 

12  
0.1507** 0.0551 

22  0.4060*** 0.0439 

13  0.1679*** 0.0094 

23  0.0349*** 0.0045 

LnL 27312.6108  

AIC -54523.2215  

BIC -54126.9101  
 

*** indicates significance at a 0.001 level 

** indicates significance at a 0.01 level 

* indicates significance at a 0.05 level  

LnL, AIC and BIC are Log Likelihood, Akaike Information Criterion and Bayesian Information 

Criterion respectively 

 

Overall, estimates proved to be significant at least at a 95% confidence level. The long-

run equilibrium price µ0 is only slightly higher (2.47%) than the mean value presented in 

Table 4.1 and translates to A$51.21/MWh. This indicates a strong similarity between the 

modelled and raw data as the equilibrium price falls within one standard deviation. The 

effect of whether a spot price falls on a working day or holiday is indicated by β1 and is 

significant and negative. This is in line with Higgs and Worthington (2008) as well as 

Huisman et al (2007) and indicates that, as would be expected, prices are 6.9% lower on 

holidays than weekdays after holding all other factors constant, due likely to lower 

anticipated demand.  

All monthly effects (β2, β3… β12) were found to be significant and results show a close 

correlation to seasonal trends. Prices between February and April deviated less than 1% 

from January’s (the reference category), indicating the still-present effects of summer 

characterised by lower demand. During the winter months of May and June when 

demand is at its peak, spot prices were between 2-3% higher than January. Interestingly, 

prices were significantly lower during the months July-December, despite July and 

August being considered winter months which are typically characterised by higher spot 
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prices. A closer inspection revealed however that 2014 marked the warmest year for 

NSW, during which there were several significant heat waves and the warmest Spring 

maximum temperatures (September to November) were recorded (Australian 

Government: Bureau of Meteorology, 2015). In light of this, the fact that results indicate 

uncharacteristically low electricity prices throughout the latter half of the year is indeed 

feasible. Overall, the highest spot prices are experienced in June (3% higher than in 

January) and the lowest in December (22.45% lower than in January).  

Intra-day seasonality is addressed with parameters τ1, τ2… τ23 and with the exception of 

hour 8, all effects are significant at a 99.9% confidence. Overall, the standard errors 

associated with the hourly coefficients are less than 0.0025, indicating a fair degree of 

certainty. The estimates indicate that from 2AM-7AM, prices are between 3.20%-13.05% 

lower than hour 1 (the reference category). This is to be expected due to the correlation 

between lower spot prices and off-peak periods typically associated with the early hours 

of the morning. It is also corroborated by the work of Huisman et al (2007). 7AM-10AM 

is considered to be the peak morning period and prices steadily increase, likely as a result 

of residents waking up and preparing for the working day. Thereafter, hourly prices 

continue to decay until 2PM, but are still comparatively higher than tariffs in hour 1, 

before once again increasing in preparation for the peak evening period, from 5PM-9PM. 

As the evening wears on and residents end the day, prices steadily decrease once again. 

Based on these estimates, the highest spot prices are experienced at 7PM (14.75% higher 

than in hour 1) and the lowest at 4AM (13.05% lower than in hour 1). Based on these 

analyses it is clear that electricity spot prices follow the trends of demand, whether it be 

affected by annual, weekly or hourly seasonality.  

Attention is now turned to the parameters governing stochasticity. Once again, all 

estimates are significant at a 99.9% confidence level, with the exception of the mean 

price level in regime 1 which is significant at a 95% confidence level. The rates of mean-

reversion across all regimes is apparent, and is a clear indicator that this stylised feature 

is present in all states of hourly spot prices, but to differing degrees. As is expected of 

normal price dynamics (regime 0), the rate of mean-reversion is relatively low, indicating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

95 
 

a slower return of prices to the long-run equilibrium due to its already ‘normal’ tendency. 

This corroborates Janczura and Weron (2012) who found that parameter estimates 

typically associated with high speeds of mean-reversion fell between 0.20 and 0.44. It 

appears that as prices shift out of state 2 they have already reverted to a large extent back 

to their equilibrium level as the rate of mean-reversion for the after-spike regime is 

relatively low at 0.0762, but still higher than that of the first state. Overall, the studies of 

Janczura and Weron (2012), Mari (2006) and Higgs and Worthington (2008) displayed 

the same relativity of each regime’s mean-reversion parameters that is captured here. The 

magnitudes of mean-reversion are however significantly lower than those found by Higgs 

and Worthington (2008) who postulated that these rates depend largely on the nature of 

the spike regime. Specifically, higher rates are associated with incidents such as 

generator breakdowns or transmission failures that are quickly reparable but have a 

profound effect on supply in the market. Lower rates are likely the result of abnormal 

weather conditions (Blanco and Soronow, 2001) which take longer to stabilise.  

The size of the price jump µ1 is slightly lower (0.0735) than the long-run equilibrium. 

This is contrary to Huisman and Mahieu (2003) and Higgs and Worthington (2008), both 

of whom found the magnitude of price spikes to cause an increase in the mean price 

level. However, in light of the warm temperatures experienced by the region in 2013 and 

2014 as well as the drop in spot prices observed after May 2014 (see Figure 4.1), these 

results once again seem feasible. Volatility of price changes in the normal state is 

extremely low (0.0006), significant and has an almost negligible standard error. This 

indicates that prices in the normal regime are relatively certain with little variance, which 

bodes well for the consumer as they are better able to manage their demand in the face of 

predictable price signals. These findings are also corroborated by Mari (2006) and Higgs 

and Worthington (2008). In stark contrast, almost 1000 times more volatility is 

experienced in the spike-regime, as well as higher uncertainty indicated by a standard 

error of 0.0126. Although volatility is also present in the after-spike regime, it is to a 

significantly lesser extent and with a higher degree of certainty.   
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A Markov transition matrix defines the probability, π(i,j), of a switch from regime j to 

regime i in one time period. A steady-state probability, that is the probability of 

remaining in the same regime, is thus indicated by diagonal elements. Based on this, it is 

clear that hourly spot prices are most likely to occur, and stay, in the normal state, as 

indicated by
11  (92.2%) and the expected duration of regime 0 (12.85 time periods). 

Interestingly, the probability of transitioning from the normal to the spike regime is 

extremely low at 0.0041. This indicates the poor likelihood of a spike occurring, which 

can be explained by the warm temperatures experienced in the region that keeps demand 

at a predictable minimum. Once in the spike regime however, spot prices primarily stay 

in this state (0.4060) or transition to the after-spike state (0.4434). This, coupled with the 

duration of the regime (1.68 time periods) indicates that spikes may stretch across more 

than one hour, which is feasible as repair times for system breakdowns may last longer 

than this. The strong presence of mean-reversion in the spike regime however would 

make more pronounced spikes short-lived, as is indicated in Table 4.1. Lastly, the 

probability of hourly prices staying in an after-spike state after one hour (0.7971) is 

higher than Mari (2006), due likely to the difference in time periods. The author uses a 

period of one day, whereas in this study it is better expected that the effects of one 

regime will still be felt an hour later.  

Overall, it can be concluded that the magnitude, frequency and duration of jumps 

occurring in the NEM within NSW are extremely low, due likely to the warm 

temperatures experienced in the region as well as the stabilising effect of the coastline, 

but that the volatility and uncertainty associated with the spike state is fairly high. 

Finally, the maximised log likelihood value compares favourably to the work of Mari 

(2006), Huisman et al (2007) and Higgs and Worthington (2008). In fact, the highest log 

likelihood value achieved by these authors was by Mari (2006) who realised a value of 

2167.4 with the use of a Huisman-Mahieu model extended to include Poisson jumps and 

applied to the Nord Pool. The AIC and BIC, both of which provide a means of 

comparing the explanatory power of models, are comparatively lower than the 

abovementioned works, once again indicating this models’ superiority.  
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The above model was used to compute out-of-sample forecasts which were compared 

against actual observations for the same period. Hourly spot prices and simulated 

trajectories can be seen in Figures 4.2 and 4.3 respectively. Four measures of accuracy 

were used to validate the effectiveness of the model in predicting hourly spot prices and 

results are presented in Table 4.3. Deviations between predicted and actual observations 

are slight, as indicated by the comparison of these statistics to those of Higgs and 

Worthington (2008). This study outperforms the latter with regards to all measures of 

forecast accuracy. The TIC statistic, which is a measure of the effectiveness of the 

forecasting technique, is 0.0862 in Higgs and Worthington (2008), twelve times lower 

than the computed value for this study.  

 

Figure 4.2: Natural logarithm of hourly spot prices for the period 1 January 2015 to 31 July 2015 
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Table 4.3: Measures of out-of-sample forecast accuracy 

 

 

 

 

 

MSE, MAE, RMSE and TIC are mean squared error, mean absolute error, root mean squared 

error and Theil inequality coefficient respectively 

4.2.3 Summary  

This study has confirmed that seasonality and uncertainty play important roles in 

predicting hourly spot prices. The three-regime Markov switching model proved superior 

in comparison to similar studies conducted, both with regards to parameter estimation 

and forecasting accuracy. This can likely be attributed to the lack of limitations placed on 

the spike behaviour of hourly spot prices, as it is clear that there is no distinct pattern (or 

exclusion) of transition from one regime to another. The introduction of dummy variables 

model, despite it incurring higher parameter requirements, was also able to appropriately 

capture hourly, daily and annual seasonality, all of which had significant effects on 

Statistic  

MSE 0.0310 

MAE 0.0941 

RMSE 0.1762 

TIC 0.0071 

Figure 4.3: Simulated trajectory of hourly spot prices for the period 1 January to 31 July, generated 

from estimated parameters  
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results. It is thus an appropriate tool for estimating st, the hourly spot prices required as 

input to the retailer problem.    

4.3 DATA 

Typically in scheduling problems the number and types of variables selected have a 

significant impact on model complexity, computing time and whether an optimal or sub-

optimal solution can be derived. In load scheduling, the selection of parameters and input 

data play an especially important role. In fact, the presented solutions are only optimal 

for the set of gathered data relevant to the study in hand (Mohsenian-Rad and Leon-

Garcia, 2010, Setlhaolo et al, 2014). This should not be confused with a lack of 

scalability however; demand responsiveness is consumer and load-profile specific which 

means that varying levels of success will always be achieved amongst residential users. 

The selection of arbitrary (but realistic) parameters, such as appliance data and baseline 

schedules for example, demonstrates a model’s capability as well as its flexibility for 

real-life applications. With this in mind, the work that follows presents the data that was 

used for solving the consumer-retailer problem. 

For the purposes of this study, time is discretized into 1 hour intervals over a 24-hour 

period. This is in keeping with Sou et al (2011) who reported huge computational 

burdens but little improvement in results when smaller time segments were used. Ten 

users are considered, each of which is assigned with a predefined probability to a specific 

income bracket. Such a strategy has been employed so as to accurately reflect the 

divergent socio-economic status of South African residents. For example, users who are 

classified as indigent are extremely unlikely to own a dishwasher, whereas affluent users 

would likely own all of the appliances considered in the study. Furthermore, according to 

Leadbetter and Swan (2012), the size of a battery used for electricity storage in a 

residence is dependent on the household in question. Specifically, energy-poor homes 

would find a smaller storage system sufficient for their consumption needs in comparison 

to an energy-intense home. Low-income users would also be more flexible to adjusting 

their schedules for the sake of a lower electricity payment in comparison to higher-

income residents for which bill payments may be less important than the inconvenience 
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they incur. This is corroborated by Chicco et al (2004) who indicated that qualitative data 

regarding the socio-economic standards of users was necessary to make significant and 

realistic classifications of residential load profiles. Along these lines, according to Finn et 

al (2012), a South African homeowner has a 66.2% likelihood of falling in a low income 

(or energy poor) bracket, 29.9% likelihood of falling in the middle income bracket, and a 

3.9% probability of being a high income earner (or an energy intensive user). These 

probabilities have formed the basis upon which appliances, battery size and waiting 

flexibility have been allocated to each user, and have been summarised in Table 4.4. It 

should be noted that an inclusion such as this is what makes the formulation of this 

consumer problem novel and uniquely contextualised to the South African market. In 

fact, other studies have failed to create this link between energy intensity (or poverty) and 

consumer classification but have nevertheless acknowledged its importance (Chicco et al, 

2004).     

Table 4.3: User-specific data 

User 

type no. 

User 

type 

Probability that 

user j is assigned to 

a user type 

Number of 

owned 

appliances  

Rated battery 

capacity (KWh) 

Importance of 

waiting, 𝝀𝒋 

1 Lower 0.662 3 5 2 

2 Middle  0.299 6 10 1 

3 Upper  0.039 10 20 0.5 

 

In a load scheduling problem, the data governing appliance usage must be realistic and 

comprehensive so that the generated results appropriately reflect the demand profiles of 

users. Table 4.5 presents this data. It is clear that the selected appliances range from those 

that would be found in low to middle income residents, such as a stove and microwave 

respectively, to those that would only be purchased by more affluent consumers, such as 

a dishwasher and tumble dryer. Power ratings can be obtained from manufacturers or on 

the device in question (Setlhaolo et al, 2014). The consumption patterns, depicted by the 

beginning and ending time intervals, indicate that most household activities occur in the 

morning (such as preparing breakfast and getting ready to start the day) and after work 
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(when chores such as cooking and cleaning, and relaxation occur). Some appliances may 

be used more than once a day such as the electric water heater which is scheduled for at 

least 3 hours between 4AM-9AM and again between 3PM and 11PM. In such instances, 

the device is modelled as two separate appliances. Those listed in Table 4.5 are 

schedulable and non-interruptible, whilst still reflecting the discretionary and non-

discretionary activities typical of a residence, as outlined in Schweppe et al (1989). 

Following the same authors, non-schedulable end-use devices have not been included 

due to their reported non-meaningful impacts on results. Finally, the number of 

considered appliances is in keeping with the work of Mohsenian-Rad and Leon-Garcia 

(2010), who recommend a consideration of 10-20 end-use devices. However, this results 

in the classification of the problem as being large scale in that the number of variables in 

the model exceeds one thousand (Benson et al, 2003), as can be seen in Table 4.6.   

Table 4.5: Appliance data 

No. Appliance, i Power rating, 

𝑷𝒊  

Duration of 

operation, 𝑫𝒊 

Beginning of 

interval, 𝒆𝒊 

End of 

interval, 𝒇𝒊  

1 Stove 3 1 6 9 

   1 16 21 

2 Microwave 1.23 1 15 21 

3 Kettle 1.9 1 6 9 

   1 15 21 

4 Toaster 1.01 1 6 9 

5 Steam iron 1.235 1 15 24 

6 Vacuum cleaner 1.2 1 15 24 

7 Electric water 

heater 

2.6 3 4 9 

   3 15 23 

8 Dishwasher 2.5 2 16 24 

9 Washing machine 3 1 16 24 

10 Tumble dryer 3.3 1 16 24 
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Table 4.6: Number of decision variables in consumer problem 

Decision variable description Classification Number of variables   

𝑢𝑖,𝑡
𝑗

 Binary 3120 

𝑧𝑖,𝑡
𝑗

 Binary 3120 

𝑏𝑡
𝑗
 Binary 240 

𝑑𝑡
𝑗
 Binary 240 

𝐵𝑡
𝑗
 Continuous 240 

𝐺𝑡
𝑗
 Continuous 240 

Total  7200 

 

Table 4.7 indicates which of the above-listed appliances are owned by a low, middle or 

high-income user, as well as the baseline or preferred schedule for the operation of each 

appliance. It also presents the degree of inflexibility associated with an appliance. High 

income users are seen to own all of the appliances under study, whereas low-income 

homeowners own the bare essentials, such as a stove, kettle and electric water heater. 

Lastly, a higher degree of inflexibility, such as that of the stove in comparison to a 

toaster, indicates that a user has a higher predisposition to shifting the usage of one 

appliance over another. This reflects the reality that a stove is required to prepare a meal 

whereas the non-immediate use of a toaster would be less devastating.   

Table 4.7: Appliance scheduling data 

No. Appliance, i User types owning 

appliance i 

Baseline schedule, 

𝒖𝒃𝒍𝒊,𝒕
𝒋

 

Degree of 

inflexibility, 𝜹𝒊 

1 Stove 1,2,3 7 1.25 

  1,2,3 19 2 

2 Microwave 2,3 17 1.25 

3 Kettle 1,2,3 7 1.75 

  1,2,3 17 1 

4 Toaster 2,3 7 1 
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5 Steam iron 3 20 1.25 

6 Vacuum cleaner 3 21 1.25 

7 Electric water heater 1,2,3 5-7 2 

  1,2,3 17-19 1.75 

8 Dishwasher 3 20-21 1.5 

9 Washing machine 2,3 20 1.5 

10 Tumble dryer 3 21 1.5 

 

As per the guidelines of Chen et al (2012b), battery-specific data is presented in Table 

4.8.  

Table 4.8: Battery data 

Charging efficiency, 

𝝎𝒄 

Discharging 

efficiency, 𝝎𝒅 

Maximum battery 

capacity, 𝑬𝒎𝒂𝒙
𝒋

 

Minimum battery 

capacity, 𝑬𝒎𝒊𝒏
𝒋

 

0.8 0.89 0.85*rated battery 

capacity 

0.15*rated battery 

capacity 

 

Attention is now turned to input parameters for the retailer’s problem. As was previously 

stated, because the local energy market is regulated, data reflecting the dynamics of 

electricity prices in the wholesale and spot markets is not available. As such, the 

Australian NEM was seen to be a fair representation of a hypothetical South African 

competitive industry for reasons discussed in Section 2.3.3. According to the NSW 

Parliamentary Research Service (2014), the average first quarterly futures contract price 

for 2015 is A$37.5/MWh. This, associated with a variance 
2

,q t that is 10% of the average 

cost of contract prices, and subject to an arithmetic month’s average exchange rate of 

R9.328 to the Australian Dollar, is used to derive the wholesale price qt. The prediction 

of the spot market price st with the Markov switching model in Section 4.2 is also 

incorporated into the retailer’s problem with the use of the monthly average exchange 

rate, with data selected from forecasted results for an arbitrarily chosen working day, 15 

January 2015.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

104 
 

Figure 4.4 presents the contract and spot market prices for the selected 24-hour period. It 

is clear that the spot market price follows the trend of energy consumption in a 24-hour 

period, with peaks experienced in the morning and then in the evening after work with a 

roughly uniform profile in-between, and troughs experienced during the early hours of 

the morning when demand is typically low. The volatility of contract prices can be 

attributed to the variance 
2

,q t . The behaviour of contract and spot prices relative to one 

another can be explained by economic theory (Shahidehpour and Alomoush, 2001). 

Commodity markets such as stock options and crude oil are known to demonstrate 

contango, an effect in which shorter-dated contracts (where delivery of the commodity is 

almost immediately after purchase) are priced lower than longer-dated contracts. This is 

due to the higher holding and inventory costs associated with delayed delivery. Whilst 

this is not the case with electricity as production can only occur in real-time and no cost 

to carry is incurred, a higher settlement risk is indeed associated with trading directly 

from the spot market. This is because supply is highly variable if not secured in advance 

and thus infrequently guaranteed, which means that retailers are better suited to service 

their consumers from forward contracts. As such, wholesale prices that are higher than 

spot prices are observed. Conversely, the electricity market also experiences the opposite 

of contango, called backwardation, in which prices increases as the time to delivery 

decreases, and contract prices are thus lower than spot prices. This trend is also necessary 

to drive down futures prices in order to attract speculators (buyers) to enter into trades 

with hedgers (sellers). Because both these phenomena are present in electricity trading 

they must be adequately represented, as is the case here (see Figure 4.4). For this study it 

is assumed that there is sufficient supply to service consumers from the spot market.  

Furthermore, it is noted that strategic bidding is not permitted and profits made by the 

retailer cannot be derived from manipulating the respective markets.   
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Lastly, an appropriate feasible region for the selection of the retail price 𝜌𝑡 must be 

defined. According to Eskom’s Tariff and Charges Booklet for 2014/15, the Home Power 

Standard local authority rate is 101.12c/kWh for energy consumption less than 600kWh 

and 155.66c/kWh thereafter. These rates will form the minimum and maximum 

boundaries respectively for the retail rate as it reflects the decisions of local energy 

authorities. Whilst the implementation of minimum tariff policies is not regular practice, 

regulating bodies in competitive industries have placed ceilings on retail prices in order 

to stabilise the market and protect the exposed consumer from exorbitant fees during 

supply or transmission failures (Triki and Violi, 2009).  

4.4 FIXED RATE TARIFF 

In order to demonstrate the principle theory of the proposed problem formulation, a fixed 

rate scheme is rendered to the consumer by the retailer. This means that a flat rate is 

charged per kilowatt hour consumed, independent of time. The residents’ and service 

provider’s models were solved in MATLAB version 2013a with the YALMIP interface, 

and the instruction set can be found in Appendix A. The problem was solved using an 

academically-free version of Gurobi Optimizer, a state-of-the-art solver that can be 

applied to all major model types including linear programmes (LP), mixed integer linear 

programmes (MILP), mixed integer quadratic programmes (MIQP) and of most 

relevance, mixed integer nonlinear programmes (MINLP).  

Figure 4.4: Wholesale and spot market electricity price data for the period 15 January 2015 
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It should be noted that under a fixed pricing tariff, demand responsiveness is not 

achieved, despite the resident being equipped with tools such as a storage system and 

EMC to enable automated appliance shifting. This is because the selecting pricing 

scheme does not serve to communicate with the consumer as to when to reduce energy 

consumption based on peak periods. The primary reasons for evaluating this pricing 

scheme are thus three-fold. Firstly, it serves as a benchmark for future research that 

measures the performance of TOU and dynamic pricing strategies in terms of achieving 

demand responsiveness, reducing costs for the resident, generating revenues for the 

retailer and maximising social welfare. Secondly, it serves as a means of model 

validation in that the generated results for this tariff structure can be easily verified. 

Lastly, it is used as the basis for demonstrating the relationship of price elasticity 

between the consumer and retailer so as to achieve social welfare. Using more advanced 

pricing schemes to do this would not only be impractical for an immature deregulated 

market operating in South Africa, but would also be computationally expensive due to 

the resulting non-convex search space that results. It is thus highlighted as an area for 

future research but recommendations, preliminary findings and challenges are discussed 

in Chapter 5.    

The effect of a fixed tariff on the identified key outcomes must first be quantified and 

analysed so that the price at which a maximum social welfare ratio is achieved can be 

established. In the formulation of (3.31), it is hypothesised that relative price-elasticity is 

a one-to-one ratio following assumptions in literature (Mohsenian-Rad and Leon-Garcia, 

2010, Corradi et al, 2013) and indicated by the expression of both consumer and retailer 

interests as first degree polynomial functions of the tariff 𝜌𝑡. Under the conditions of a 

fixed rate tariff, preliminary results indicated that both consumer utility and retailer 

profits could be expressed as a linear function of the fixed rate charged. To confirm this, 

several rates within the established boundaries were evaluated for the consumer and 

retailer and have been presented in Figure 4.5 and Figure 4.6 respectively. In the case of 

the consumer, this linear representation is due to the fact that, regardless of the rate 

employed, residents are not financially motivated to deviate from their preferred 
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schedules; in fact, the user has an incentive to maintain their preferred schedule so as to 

not incur an inconvenience penalty and increase their pain. This concept is illustrated in 

Figure 4.7 where it is clear that the baseline and optimal predicted schedules are 

identical. As a result, the PAR for aggregated loads is 6.716 and is also independent of 

the retail rate. Furthermore, it is reasonably assumed that at the commencement of the 

study period, all residences are fitted with storage systems that are at their minimum 

capacity. This means that a battery must first be charged and incur added expenses before 

it can dispense energy to end-use devices around the home. Also taking into account the 

charging and discharging efficiencies of a battery in which heat loss occurs, the derived 

benefit of it being used as an alternative energy source during expensive periods of high 

demand is not realised. As such, the residential storage systems too remain inactive 

which means that PAR does not experience any improvement under this pricing scheme 

and that the aggregated consumer utility can now be expressed as a function of the retail 

price charged, thus the shape seen in Figure 4.5. In the case of the retailer, revenues 

earned are once again independent of the consumer schedule due to the flat rate charged. 

This means that because the sum of all users’ loads over a 24-hour period remains fixed 

regardless of the profile it adopts, profits may be expressed as a linearly increasing 

function, subject to trades made in the spot market in which unpredicted demand is 

satisfied.    
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275.165𝜌𝑡 

Figure 4.5: Consumer utility as a function of retail rate under a fixed pricing scheme 

Figure 4.6: Retailer profits as a function of retail price under a fixed pricing scheme 

267.62𝜌𝑡 -96.687 
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*Observed demand is a function of uncertainty and optimal demand, calculated by the piecewise 

function in (3.22), and indicates that both positive (increases) and negative (decreases) deviations 

in expected demand may occur  

Attention is now turned to the key interest of this study, social welfare. Under conditions 

of a fixed pricing scheme, this ratio can be generalized to a first degree polynomial 

rational function, as seen in (4.1). Under this formulation, a one-to-one relationship 

regarding price elasticity is assumed, that is an increase of R1/kWh in the retail rate 

would affect both parties equally. The asymptote is found to be 𝜌𝑡=R0.361/kWh, which 

means that as the retail price tends towards its asymptotic value, social welfare degrades. 

Figure 4.8 provides a graphical representation of the social welfare ratio within the floor 

and ceiling constraints, R1.0112/kWh and R1.5566/kWh respectively.  

275.165

267.62 96.687

t

t

F






    (4.34) 

 

 

 

 

Figure 4.7: One-day aggregated load profile of predicted and observed demand under a fixed 

rate tariff 
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A lower ratio indicates that a lower payment has been achieved by users whilst the 

retailer has simultaneously enjoyed higher revenues, which is the desired outcome. 

Results thus reveal that social welfare is maximised under a fixed rate tariff of 

R1.5566/kWh when the interests of the retailer are favoured slightly over those of 

residents, indicated by a weighting factor of 0.9. Similarly, social welfare is lowest when 

the retail rate is set to R1.0112/kWh, the lowest possible tariff, and the interests of the 

consumer take precedence. Based on the tendency of the plots in Figure 4.8, two 

conclusions can be drawn. Firstly, if data is extrapolated to extend beyond the predefined 

boundaries for 𝜌𝑡, then based on the laws of limits a maximum social welfare is achieved 

when social welfare tends to zero, that is, when the retail rate tends to infinity. Secondly, 

assigning various weighting factors to the consumer’s utility does not serve to alter the 

profile of social welfare, but only stretches it vertically. Thus, it is clear that the current 

problem formulation favours the service provider excessively over the consumer because 

it is intuitively and realistically infeasible for social welfare to be achieved when retail 

prices are continuously on the rise. The sensitivity of the consumer to price changes 

relative to retailers is therefore not appropriately captured by (4.1), neither is the use of a 

weighting factor a sufficient tool for circumventing this problem. The initial problem 

formulation proposed in (3.31) is thus deemed an inadequate tool for capturing social 

welfare and relative price elasticity amongst parties and the hypothesis of a one-to-one 

Figure 4.8: Social welfare as a function of retail rate under a fixed pricing scheme 
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relationship is disproved. A trial-and-error approach is now adopted and an alternative 

formulation is proposed, in which it is updated to 

,

,
=

n

t

t

U( x )
min F

R( y )




   (4.35) 

where the power n is positive. This results in the re-formulation of (4.1) to    

275.165

267.62 96.687

n

t

t

F






   (4.36) 

The inclusion of a power term for consumers’ sensitivity to price changes and not the 

retailer’s proposes an alternative hypothesis that consumers suffer more with an increase 

in tariff than retailers enjoy the benefits. This is based on the understanding that utility 

providers around the globe typically enjoy relatively high profit margins due to their 

pseudo-monopoly of markets in regions where they operate. As such, they are less likely 

to experience profit cuts as harshly as other low-margin sectors such as the aviation 

industry. It should be noted however that there exists no literature studying the price 

elasticity of consumers relative to retailers in order to corroborate or disprove this theory. 

This, coupled with the knowledge of far-reaching socio-economic poverty in South 

Africa (Finn et al, 2012), intuitively supports the newly proposed problem formulation 

that consumers be categorised as far more sensitive than their service providers to price 

deltas. Figure 4.9 presents a graphical illustration of (4.3) with varying degrees of price 

sensitivity for the consumer, that is, when n is subject to change. It is clear that as the 

power of the retail rate for residents increases beyond a global minimum, the rate of 

social welfare degrades and this is confirmed by the rules of transformation (in which 

translating a function in various ways results in shifting its graph). This is far more 

representative of reality than the initial formulation presented in (4.1) as the presence of a 

global minimum for powers of n > 1 means that an optimal solution for social welfare 

may indeed be established. Table 4.9 demonstrates the use of the necessary condition to 

find these global minima over the selected domain as well as their associated prices for 

varying degrees of n.  
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Table 4.9: Global minima for F(𝜌𝑡) over the domain 𝜌𝑡 ∈ (0.361,3.5] 

n F′(𝝆𝒕) Roots 

1 

2

26604878355

(267620 96687)t
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1.1 10
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Figure 4.9: Social welfare as a function of the retail rate, subject to price-sensitive consumers 
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Of the identified roots which represent the retail rates at which social welfare is 

optimised, those of n=1.3, n=1.4 and n=1.5 are the only roots to fall within the 

predefined boundaries for 𝜌𝑡. Under the guidelines of ceiling and floor constraints for the 

retail price set out by Eskom, social welfare can be optimised in the South African 

energy market under the conditions of n and 𝜌𝑡 listed in Table 4.10. For example, when 

consumers’ sensitivity can be quantified by a power of 1.4 relative to the retailer, social 

welfare is optimised when a rate of R1.2645/kWh is charged. Under this tariff structure, 

consumer payments amount to R347.95 and retailer profits amount to R241.72. It can be 

seen that the less elastic a consumer is to price, the higher the retail rate that is charged. 

At this stage the importance of the selection of n should be emphasised. In the absence of 

price boundaries, the n can take on a multitude of values, several of which are indicated 

in Table 4.9. In the presence of these price boundaries, still there are several options from 

which retailers may choose based on results in Table 4.10, each of which is based on 

consumer sensitivity. This dependency of price setting on demand elasticity is also 

testified to in other studies by Nwokoye (1975) and Gourville and Koehler (2004). 

Furthermore, research by Chicco et al (2004) indicates that demand elasticity is a highly 

qualitative field that depends on the market in question. Based on this literature and 

findings, it is recommended that the selection of parameter n be well justified by an 

extensive socio-economic profile of the consumer market in question as well as their 

demonstrated price elasticity in other commodity and retail sectors.      

Table 4.10: Optimal social welfare and stakeholder outcomes for varying degrees of relative price 

elasticity, n 

 

 

n Retail price, 𝝆𝒕 Social welfare 

ratio 

Consumer 

utility (ZAR) 

Retailer 

profits (ZAR) 

1.3 R1.5655/kWh 1.529 R430.77 R322.27 

1.4 R1.2645/kWh 1.581 R347.95 R241.72 

1.5 R1.084/kWh 1.672 R298.279 R193.42 
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4.5 CONCLUSION 

The aim of this chapter was to demonstrate the effectiveness of the developed consumer 

and retailer models in accurately depicting reality through its application to a South 

African case study. It also demonstrated the ability of the proposed problem formulation 

to represent user price elasticity relative to the retailer so that a tariff that achieves 

optimal social welfare could be identified. A fixed pricing scheme was used for its 

computational ease, but more advanced structures can also be evaluated with no change 

to the problem setup and with the use of a metaheuristic that is discussed in Chapter 5. It 

was found that price boundaries and the selection of parameter n are of key importance 

when establishing a tariff that achieves social welfare, and both of these are identified to 

be areas for future study as they are specific to the market in question and require 

extensive field research.   
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CHAPTER 5 

 

A SOLUTION STRATEGY FOR 

TIME-VARYING TARIFFS: 

TRIAL-AND-ERROR 

ALGORITHM  
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5.1 INTRODUCTION 

Until now, the relative price elasticity of two stakeholders was a concept that was neither 

theoretically nor numerically explored in energy literature. This study has developed the 

basis for its application to the South African context, but to do so, a static tariff was 

employed for its computational ease and ability to express social welfare as a first degree 

polynomial. It also satisfied the requirement of an easy-to-implement pricing scheme for 

an immature deregulated market operating in South Africa. However, because of the lack 

of communication between the retailer and resident under this tariff, it is not able to 

derive the benefits of demand response such as reduced PAR for the retailer, and lower 

bill payments for the consumer as a result of peak load shifting and storage facilities. 

Because of this, consideration must be given to future research that may pave the way for 

the achievement of these benefits under more advanced tariffs such as TOU and dynamic 

pricing (Mohsenian-Rad and Leon-Garcia, 2010, Rastegar et al, 2012). When a static 

tariff was employed the effects of battery charge/discharge were nullified and optimal 

and consumer baseline schedules were seen to be identical. Under a dynamic tariff this is 

not the case. Furthermore, when 𝜌𝑡 assumes a multitude of values, the size of the 

decision variable, and dimension of the consumer problem, increases. All of these factors 

result in greater model complexity and an alternative solution strategy to the one applied 

for a fixed rate tariff must be considered. To do this, an overview of existing strategies is 

required. Based on this literature, a local search greedy heuristic is found to be an 

appropriate tool for demonstrating the capabilities of the model that were overlooked 

under a static regime. This algorithm is applied under a TOU tariff, and results are 

presented in Section 5.3. Section 5.4 discusses challenges and recommendations for 

improvement and Section 5.5 concludes this chapter.   

5.2 AN OVERVIEW OF SOLUTION STRATEGIES 

The literature review presented in Chapter 2 found that a number of strategies have been 

applied to resolve the consumer’s load scheduling problem. More generally, Feoktistov 

(2006) classifies approaches as those that deliver optimal or approximate solutions. From 

this wide array of options, the suitability of a method depends heavily on the complexity 
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of a problem which is in turn, amongst other factors, a function of the number and type of 

variables that affect whether it may be solved in polynomial time (Christensen, 2007).  

 Optimal solution strategies  5.2.1.

According to Grobler (2008), optimal solution strategies garnered popularity in the 

1960s, and the overwhelming algorithm of choice soon became the branch-and-bound 

approach. Here, nodes are assembled to form a tree, each of which represents a subset of 

the solution space, and the algorithm systematically searches through these nodes for the 

optimal solution via implicit enumeration (Land and Doig, 1960). The branch-and-bound 

method has formed the basis for many exact solvers of LPs, MILPs and MINLPs. This 

approach, as well as derivatives of dynamic programming which follow a similar but less 

general ‘divide-and-conquer’ strategy, have been used by Mohsenian-Rad et al (2010), 

Chen et al (2011) and Chen et al (2012a) to determine Nash Equilibriums, and Huang et 

al (2004) and Ramanathan and Vittal (2008) to determine other forms of optimal 

solutions. The algorithm is however computationally expensive and performance is 

highly sensitive to the selection of initial upper and lower bounds. The objective of 

optimising social welfare, a function of conflicting utilities, is also novel and no literature 

is available to corroborate the use of these optimal approaches. Furthermore, Christensen 

(2007) shows load scheduling problems to be NP-complete which means that their 

optimal solutions cannot be found in a polynomial time. This is further supported by 

Garey and Johnson (1979) who state that such an algorithm does not exist and that NP-

complete problems can only be solved optimally in reasonable time frames when their 

sizes are reduced. Unfortunately, this is not a viable option as the solution strategy must 

be capable of managing the appliance schedules of entire grids of smart homes. 

Approximate techniques have thus become an attractive alternative and have been 

applied to scheduling problems by Gomes et al (2007) and Pedrasa et al (2009). Despite 

the uncertainty of obtaining a global optimum, larger problems can be solved more 

efficiently (Grobler, 2008) making them more relevant to real-world applications.  

According to Engelbrecht (2005), an algorithm is said to converge to a local optimum 

and can be classified as an approximate solution strategy if it satisfies the algorithm 
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condition and convergence condition. This means that the new solution suggested by an 

algorithm’s function must be no worse than the current solution, and that with every time 

step, the algorithm moves some variable x closer to the optimality region. To accomplish 

this, both problem-dependent and problem-independent techniques have been developed 

and these are known as heuristics and metaheuristics respectively. Because the purpose 

of applying such a technique in this study is purely to demonstrate the effect of time-

based tariffs on demand responsiveness and consumer and retailer outcomes, and because 

metaheuristics are typically more complex, only heuristics will be discussed further.  

5.2.2 Heuristics 

Heuristics aim to obtain “good enough” solutions by iteratively progressing to a superior 

solution under a given instruction set. Criticisms of heuristic methods include their 

tendency of being too greedy in taking advantage of the specificities of a problem, 

resulting in entrapment in a local optimum and limited likelihood of finding a global 

solution. However, because the purpose of applying a heuristic in this study is to 

demonstrate the effects of demand responsiveness as well as the behaviours and 

shortcomings of the model when operating under a TOU tariff, these criticisms can be 

addressed in future research and with more advanced metaheuristics. In support of this 

theory, several heuristics, some of which have been tailored to the problem under study, 

have been applied with great numeric success in energy-related literature. Among these 

are the generic cost model, the local search (greedy) heuristic and the trial-and-error 

algorithm.   

Generic cost model 

In the proposed algorithm appliances are scheduled sequentially based on a greedy 

strategy without back-tracking (Ogwumike et al, 2015). The cost is then evaluated for 

each feasible start time and this is then fixed before continuing to the next un-scheduled 

appliance. Simulations revealed negligible cost differences between the heuristic and 

exact method, but in the worse-case scenario deviations were closer to 32%.  
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Local search (greedy) algorithm 

Priority-based rules specified by the resident are used as the basis for appliance 

scheduling (Ogwumike et al, 2014). Priority can be assigned in terms of constraint 

satisfaction or minimum cost incurred based on start times. Findings indicated that costs 

from the algorithm fell within 5% of the optimal cost and that computational growth was 

linear with the number of controllable appliances.  

Trial-and-error algorithm 

According to Bei et al (2015), the trial-and-error algorithm is a key technique in problem 

solving and knowledge acquisition. Although there may exist other more refined or 

advanced solution strategies, it can be used as a relatively simple, time-effective means 

of achieving insights into problems that are otherwise untested. In the energy sector, it 

has been applied by Aalami et al (2008) in order to obtain the value of a parameter 

controlling peak loads, and by Chicco et al (2004) to calculate the distance between two 

representative load profiles.  

The objective of the selected heuristic is primarily to explore the behaviour and 

shortcomings of the consumer-retailer model when operating under a time-based tariff. It 

is also to demonstrate the model’s capability in capturing and measuring demand 

response and battery activity. Because these tasks are knowledge-finding in nature and 

little attention is paid to solution refinement at this stage, the trial-and-error algorithm is 

found to be an appropriate tool for satisfying these objectives in a reasonable time frame.  

5.3 TIME-OF-USE TARIFF 

In Section 4.4 a flat rate tariff was used to demonstrate the interaction between the 

consumer and retailer as well as the impact on their respective outcomes and social 

welfare. However, it was found that under this regime the effects of demand response 

and battery charge/discharge status were nullified due to the lack of communication 

between the parties. In this section a time-varying programme is implemented to 

demonstrate these key features of the proposed problem formulation. In order to do this, 
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the retail rate 𝜌𝑡 is randomly selected within the given price range for peak, shoulder and 

off-peak periods of demand in the day. With each iteration of the local heuristic (in 

which 𝜌𝑡varies), the optimisation problem is then resolved. With this technique, the 

consumer-retailer problem approaches a better solution as time progresses, as will be 

seen further on.  

 Table 5.1 provides a comparison of the peak, shoulder and off-peak periods as per 

Eskom’s tariff booklet (2014) against the periods used in this study. Whilst these blocks 

are comparable, an alternative regime to the one used by Eskom was employed to 

provide greater flexibility for retail price prediction, and better opportunity for demand 

responsiveness and battery charge/discharge. As an example for illustrative purposes, the 

first iteration which represents an initial guess for 𝜌𝑡 over a 24-hour cycle can be seen in 

Figure 5.1. Here, it can be seen that higher (lower) retail rates correspond with the 

approximate periods of higher (lower) demand in Figure 4.7. At this point it should be 

noted that TOU prices in policy typically reflect the production costs associated with a 

specific period, but this has not been considered in this study. Specifically, Figure 4.4 

does not indicate higher and lower production (wholesale) costs associated with times of 

peak and off-peak demand, as the determining factors of generation costs fall beyond the 

scope of this dissertation. As a result, 𝜌𝑡 had the freedom to take on any value within the 

given price range (R1.0112-R1.5566/kWh), regardless of the state of demand.  

Table 5.1: Comparison of selected TOU block periods against Eskom block periods 

TOU block Eskom time periods  Selected time periods 

Peak 8AM-10AM 

6PM-8PM 

6AM-10AM 

6PM-10PM 

Standard 6AM-7AM 

10AM-6PM 

8PM-10PM 

10AM-6PM 

Off-peak 12AM-6AM 

10PM-12AM 

12AM-6AM 

10PM-12AM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

121 
 

 

Due to the nature of the algorithm, a local heuristic experiences greater success as its 

number of iterations increases (Ogwumike et al, 2014). To achieve this within a 

reasonable computational time, a more powerful machine than the one used for a fixed 

tariff was employed. The consumer-retailer problem was run over a 30-hour period on an 

i7-3970X Core processor with 8 CPUs and a speed of 3.50GHz. 176 iterations were 

resolved in this time frame and their respective social welfare ratios can be seen in Figure 

5.2. Because 𝜌𝑡was randomly generated with each iteration, social welfare performance 

is irregular, neither increasing nor decreasing with time, which is to be expected. It has a 

social welfare range of 0.2635 (1.6284 to 1.3649), comparable to 0.2609 when a fixed 

rate tariff (1.59976 to 1.3380) is applied, and this serves to validate the integrity of the 

model under a time-varying tariff. For ease of analysis, iterations have been re-ordered in 

Figure 5.3 to illustrate the improvement of social welfare. The corresponding retailer 

profits and consumer utilities have also been captured for comparison purposes and will 

now be analysed further. 

Figure 5.1: Initial guess for 𝜌𝑡over a 24-hour cycle 

Figure 5.2: Social welfare over a 30-hour period when greedy algorithm is applied 
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Several observations can be made from Figure 5.3. Under the current problem 

formulation, a locally optimal solution is realised when social welfare is at a minimum of 

1.3649, retailer profits are at a near maximum of R293.55, and consumer losses are also 

at a near maximum of R400.67. From these findings, it can be concluded that, similar to 

when a fixed rate tariff is applied, the best social welfare is achieved when this ratio 

tends to zero, that is, when retailer profits tend to infinity. This also implies that 

consumer utility would continue to increase, as can be seen from the trend in data. Under 

the current problem formulation, even when operating under a time-based tariff, the 

model continues to favour the service provider excessively over residents. This is clearly 

an intuitively infeasible representation of social welfare.  

Upon closer inspection of the locally optimal solution, it is found that the consumer does 

not incur any inconvenience, that is, , ,
j j

i t i tubl u =0, or the optimal and baseline 

schedules are once again equal. As such, PAR remains at a maximum of 6.716 as there is 

no load shifting to ensure a reduction in peak loads, and the residential battery remains 

inactive. Finally, Figure 5.4 demonstrates that the retail price 𝜌𝑡 adopts relatively high 

values within the tight pricing boundaries, no less than R1.4/kWh, regardless of the time 

of day. It is clear that higher retail prices do not directly and clearly correspond to peak 

periods of demand. In fact, across the 24-hour cycle the retail rate deviates very little and 

the desired ‘block periods’ of demand are not mirrored by a diversified pricing regime. 

Despite being locally optimal, these findings indicate poor communication between the 

parties and a lack of demand responsiveness from the consumer due to poor price signals 

Figure 5.3: Iterations re-ordered from worst-to-best performing in terms of social welfare 
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Figure 5.4: Locally optimal solution demonstrating retail price and load schedule over a 24-hour 

cycle 

delivered by the retailer. Promising recommendations for improvement have however 

been made in Section 5.4.  

Due to the nature of results, the effect of the battery on consumer and retailer outcomes 

could not be appropriately addressed until now. As can be seen from Figure 5.3, only 19 

of 176 iterations saw activity in residential battery usage. This can likely be attributed to 

the fact that a costlier bill from charging a battery could not compensate for the energy 

savings from it being discharged to appliances. This in turn was due to, firstly, the loss of 

energy as a result of charging/discharging inefficiency (parameters 𝜔𝑐 and 𝜔𝑑). It could 

also be attributed to the lack of designated peak and off-peak periods characterised by 

higher and lower retail rates respectively, which could have otherwise enabled battery 

activity. For improvements to the current formulation in order to achieve higher levels of 

demand responsiveness through energy storage, the reader is referred to Section 5.4. 

Nevertheless, a comparative study of those computations in which battery activity was 

present will be conducted, and Table 5.2 presents the best, median and worst performing 

iterations.  

Table 5.2: Comparison of the best, worst and median performing computations with battery 

activity in terms of social welfare 

Category Best performing 

iteration with 

battery usage  

Median performing 

iteration with battery 

usage 

Worst performing 

iteration with 

battery usage 

Social welfare, 1.4358 1.4875 1.6284 
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It is clear from the data that battery usage results in a reduction in PAR, which in turn 

assists the service provider in managing production planning and costs. This is 

corroborated by the findings of Chen et al (2012a) and Chen et al (2012b), who also 

reported significant cost savings. Although the high levels of reduction reported by 

Mohsenian-Rad and Leon Garcia (2010) of 38% cannot be boasted, results are still 

comparable to that of Mohsenian-Rad et al (2010) who were able to achieve a 17% 

decrease. With the implementation of improvements suggested in Section 5.4, it is of the 

belief that the current consumer problem formulation is still a powerful tool to achieve a 

lower PAR. It is also interesting to note that a reduction in PAR is not necessarily 

achieved through an increase in scheduling inconvenience, as one would assume 

intuitively. This is due to higher levels of dissatisfaction being experienced by a 

consumer in shifting a more essential appliance over another, as modelled by the 

parameter i . For example, using a kettle at a less convenient time than a water heater 

would still reduce PAR, but would also have a less significant effect on consumer 

dissatisfaction. As such, a resident may select low-priority appliances to shift whilst still 

achieving a more uniform load profile and reducing their incurred inconvenience. To 

further demonstrate this, Figure 5.5 presents the optimal schedule in response to the 

given retail price of the best performing iteration with battery usage (column 1 of Table 

5.2), and Figure 5.6 illustrates the energy state of each user type’s battery. From here, it 

can be seen that user type 3’s (poorest energy user) battery is charged at 2AM, and user 

min F 

Consumer 

losses 

R385.22 R363.99 R342.47 

Retailer profits R268.30 R244.70 R210.31 

Inconvenience 

factor, 

, ,
j j

i t i tubl u  

4 34 50 

PAR 5.885 6.402 6.410 

% reduction in 

PAR 

12.37% 4.66% 4.56% 
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type 1 and 2’s batteries are charged at 5AM when the retail price is at its lowest. The 

electric water heater is used between 4AM-6AM instead of 5AM-7AM, thus accounting 

for the slight inconvenience factor incurred. All users’ batteries are then discharged at 

5PM when the tariff is at its highest to reduce the power drawn from the grid and thereby 

save costs. A similar phenomenon occurs at 8PM for user type 2 and at 9PM for user 

type 1 until all batteries reach their minimum energy state once again. As a result of this 

load shifting and battery activity, power consumption is reduced by 17.64kW (or 4.52%), 

which translates to R5.86 in cost savings for the consumer base, or a reduction of 1.5%. 

Whilst this is fairly insignificant in comparison to the work of Mohsenian-Rad and Leon 

Garcia (2010), Rastegar et al (2012) and Chen et al (2012b), under this problem 

formulation the constraining factors that reduce performance, such as strict pricing 

boundaries, have been able to be identified and are addressed in Section 5.4.  Finally, it 

cannot be concluded that a reduction in PAR is accompanied by an increase in consumer 

losses and retailer profits, despite the results of Table 5.2. This is because in other 

computations in which the battery was inactive and PAR remained at a maximum, 

residents’ and the service provider’s objectives still continued to rise, as can be seen in 

Figure 5.3.     

 

 

 

 

 

 

 

 

 

Figure 5.5: Optimal and baseline schedule as well as retail price over a 24-hour cycle when the 

battery is active 
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5.4 RECOMMENDATIONS FOR IMPROVEMENT OF 

SOLUTION STRATEGY 

The above analysis indicated shortcomings in firstly, the current formulation of social 

welfare and secondly, in eliciting appropriate levels of demand response and battery 

usage from the resident, despite operating under a TOU tariff. The following 

recommendations can be made to improve these efforts in future research:  

 An investigation of the power term n similar to the one conducted in Section 4.4 

as a means of re-formulating the social welfare ratio. This will serve to once again 

propose, test and quantify the hypothesis that consumers suffer more than 

retailer’s benefit during TOU tariff increases and that their relative sensitivity is 

indeed much higher. Because this technique has already been applied to a fixed 

rate tariff however, its implementation under a time-based tariff is considered to 

be fairly straight-forward and can be identified as an area for future research.  

 Creating pricing boundaries for each block period instead of over a 24-hour cycle 

(for example, 12AM-6AM, 6AM-10AM and so on) would ensure that the retail 

price deviates sufficiently during anticipated high and low levels of demand. This 

would serve to represent the high (low) production costs associated with peak 

(off-peak) usage periods and would also encourage a shift in consumption by the 

user in order to reduce bill payments.  

Figure 5.6: Energy state of user j’s battery over a 24-hour cycle 
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 As an alternative to focusing on the consumer, a weighting parameter could be 

assigned to the wholesale price, tq , in the retailer problem so as to simulate the 

effects of higher generation costs during peak periods and lower costs during off-

peak periods. This would serve to not only better represent reality, but would also 

assist in resolving the imbalanced price sensitivity (and associated social welfare 

skewness) of the consumer relative to the retailer as their profit margins would 

now be smaller.  

 Findings revealed that a TOU tariff is not sufficient to prompt changes in 

consumption patterns. Rather, thought must also be given to the size of disparity 

of the retail rate during high and low demand periods; that is, a resident would 

only be demand responsive if the reduction in payments is larger than the 

inconvenience suffered in shifting their load. The pricing boundaries of R1.0112-

R1.5566/kWh proved to be too tight in order to elicit a significant enough 

reduction in cost and as such, inconvenience suffered was always greater than 

payment. Thus, the optimal and baseline schedules were found to be equal and 

inconvenience was equal to zero. It is thus recommended that these floor and 

ceiling constraints be relaxed in future simulations. 

 From an alternative perspective, a lack of demand responsiveness could also be 

attributed to the heavy weighting of inconvenience in comparison to the tight 

pricing boundaries. Reducing the size of parameters j and i , both of which 

control the importance of postponing or advancing the use of an appliance, would 

create a larger incentive for the resident to shift their load instead of incurring a 

high bill. To better investigate this, a sensitivity analysis could be conducted to 

identify the boundaries or values that best achieve this load shifting. It should be 

noted that such a strategy would have an impact on both retailer profits and social 

welfare, and that this too would require further investigation.   

 Under the current regime pricing boundaries are too strict, scheduling 

inconvenience is weighted too heavily in comparison, and retail prices do not 

reflect peak and off-peak periods of demand. This resulting imbalance of the 

interacting variables caused battery inactivity in the large majority of evaluations 
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when the trial-and-error algorithm was applied (in 157 of 176 iterations, the 

battery was not used by any residents). It should be noted that no direct strategy 

can be applied to activate the battery as it acts only as a tool, at the disposal of the 

consumer, to behave optimally in reducing bill payments. As such, implementing 

any of the recommendations suggested above would help to rectify the imbalance 

currently present, which would in turn improve the performance of the battery in 

achieving demand responsiveness.  

 The battery analysis revealed the possibility of new ‘peaks’ being created during 

the recharging process, as at 2AM and 5AM in Figure 5.5. In order to reduce the 

occurrence of peak-shifting, a sequential decision-making tool similar to that of 

Chen et al (2011) could be introduced.  

 A metaheuristic, as referred to in Section 5.2.1, can be viewed as a higher-

performing heuristic which take a more generalised approach to solving an 

optimization problem. As a result they are often applied to a variety of contexts 

and sectors, making their performance more reliable and verifiable. In the energy 

market, evolutionary algorithms and swarm intelligence computations have been 

used extensively. It is thus recommended that their merit in being applied to the 

problem under study be explored. For a further investigation of metaheuristics 

and specifically Particle Swarm Optimisation (PSO), the reader is referred to 

Appendix B. 

5.5 CONCLUSION 

A review of literature revealed that the trial-and-error algorithm was the most appropriate 

solution strategy for application to the consumer-retailer problem operating under a TOU 

tariff so as to satisfy the objectives highlighted above. It was able to demonstrate the 

effect of the battery in achieving demand responsiveness and cost savings for the 

consumer, as well as a reduced PAR for the retailer. Furthermore, the criteria under 

which a TOU tariff realises its benefits were identified as when there is a sufficient 

discrepancy between prices from one block period to another so as to delivery load 

shifting. It also found that an imbalance in the interacting variables of the consumer 
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problem had a significant effect on the low levels of battery activity, load shifting and 

consumer savings. Once these conditions were satisfied, suggestions for refinement of 

the selected technique as well as the investigation and application of other superior 

solution strategies were identified as areas for future research. Pursuing these avenues 

will certainly contribute to the body of knowledge pertaining to the effect of time-varying 

schemes on service provider and residents’ outcomes when social welfare is prioritised.
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The electricity market is a complex one with various stakeholders interacting with one 

another at different stages of the decision-making horizon. This dissertation highlighted a 

number of factors that must be considered when addressing the consumer and retailer’s 

interests with specific focus on social welfare. This chapter summarises main findings of 

the study, comments on limitations encountered, and presents avenues for future 

research.  

6.1 SUMMARY 

The aim of this dissertation was to identify the tariff rate at which optimal social welfare 

for the consumer and retailer was achieved. Social welfare was defined as the stage at 

which these two stakeholder’s conflicting objectives are satisfied without the excessive 

deterioration of the other. To do this, the South African energy market operating under a 

deregulated system was considered.  

The consumer’s problem was considered to be one of significant complexity due to its 

formation as a load scheduling problem. Interests lay in reducing bill payments and 

inconvenience levels whilst operating a minimum set of appliances in response to price 

signals received from the retailer. A review of literature revealed that six primary aspects 

required consideration, namely formulating the interaction between the consumer and 

retailer, discussing the role of smart technologies in DR, addressing consumer behaviour, 

managing load, addressing consumer inconvenience and evaluating the effect of energy 

storage facilities. Based on these findings, a model representing the load scheduling 

problem faced by the consumer fitted with a residential EMC was developed. In 

addressing each of these aspects in the model, consideration was given to the South 

African socio-economic climate and its effect on the energy poverty or energy-intense 

status of a household. This was thus used as the basis for resource allocation in terms of 

owned appliances, attitude towards scheduling inconvenience and the size of battery 

storage facilities.  

The retailer’s problem required the consideration of new competitive market dynamics. 

Two procurement options were considered, namely forward-contracts and trading in the 
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spot market. A review of literature revealed that volatility, mean-reversion, seasonality 

and spike tendencies were apparent with spot market electricity prices and that these 

transactions had a significant effect on a utility’s profits. The most challenging aspect of 

the retailer problem was identifying an appropriate tool that could accurately forecast 

these spot prices. To do this, a substitute market that mirrored the seasonal and supply 

trends of South Africa needed to be identified to serve as a source of historical data for 

the selected time series model. A three-regime Markov switching model with no 

parameter restrictions was applied to the Australian market. An analysis of results 

revealed that the selected method was capable of accurately predicting spot prices at a 

95% confidence interval. This, coupled with the inclusion of a stochastic demand 

component and forward-contract trading, was used to develop the utility’s decision-

making reality.  

 The focus of this study was on the achievement of social welfare and not simply the 

optimisation of a singly party’s outcomes. The consumer-retailer problem could not be 

classified as a Stackelberg game due to the independent optimisation of each party’s 

interests, meaning that the consumer’s satisfaction would be subject to the retailers. It 

could also not be classified as a MOOP due to the requirement of well-validated 

weighting coefficients that aim to quantify qualitative concepts but which are most often 

inadequate. A novel problem formulation that represented social welfare as a ratio of 

consumer and retailer utility was thus proposed.  

The proposed model was applied to South African scheduling data in order to determine 

the fixed rate that would achieve optimal social welfare. Under the guidelines of Eskom’s 

tariff booklet (2014), floor and ceiling constraints for the retail price were enforced. 

Results indicated that both consumer and retailer utilities could be represented as linear 

functions of the retail rate. In the first application of the social welfare formulation the 

resident and service provider responded with equal sensitivity to deltas in the retail rate. 

This was expressed as a first degree polynomial. This proved to be an inaccurate 

representation of reality as results indicated that optimal social welfare was achieved 

when the tariff continued to rise. Thus, the sensitivity of the consumer to price changes, 
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relative to the retailer, could not be expressed as an equal relationship. The proposed 

problem formulation was thus amended to include a power term that increased if the 

resident was less price elastic. Based on this, the fixed rate tariffs that achieved optimal 

levels of social welfare for varying degrees of consumers’ elasticity relative to the retailer 

were identified. The importance of a well-validated parameter that measures the impact 

of price changes on the resident with the retailer serving as point of reference was 

highlighted. This work has served to assist in establishing the evident relationship 

between the achievement of social welfare outcomes and relative price elasticity. 

Furthermore, neither of these concepts has thus far been explored in literature, and this 

work serves as a valuable foundation for this topic of research.  

It was noted that the benefits of DR such as reduced PAR for the retailer and lower bill 

payments for the consumer could not be enjoyed under a fixed rate tariff. The 

determination of time-varying tariffs that achieved optimal social welfare could not be 

tackled in a similar fashion to that of the fixed rate however, due to added complexities 

such as the presence of discrete variables, nonlinear terms and a non-convex search 

space. To this end, a trial-and-error algorithm was proposed as a means of demonstrating 

the capabilities of the developed model in capturing demand response and battery 

storage. Results indicated a similar challenge to that experienced under a fixed rate tariff, 

that is, a continuously increasing retail price resulted in optimal social welfare under the 

current problem formulation. Recommendations for re-formulation and adjustment of 

key parameters were made, and attention was turned to the cases in which demand 

response and battery activity were achieved, resulting in reduced PAR and cost savings 

for the consumer. The algorithm was identified as a tool that fulfilled its knowledge-

acquiring purpose in establishing the behaviour of the model and its effects on party 

outcomes under a time-based tariff.    

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

This work has formed the basis for future efforts of optimising social welfare and 

considering the price elasticity of consumers relative to their utility. Above the 
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recommendations presented in Section 5.4, the following opportunities to expand this 

research can be categorised into five main focus areas and are discussed further below.  

 Expanding analysis to include more than one dataset so as to evaluate the effect 

of the number of users and appliances on model and algorithm performance.  

 Validating the parameter controlling the relative price elasticity of the consumer 

and retailer: this parameter has a significant impact on tariff selection and social 

welfare achievement. Validation efforts would require qualitative research in the 

form of questionnaires, surveys and in particular, pilot studies.  

 Validating floor and ceiling constraints for the retail tariff: these served as 

guidelines for determining the feasible regions from which optimal rates could be 

selected at varying degrees of relative price elasticity. Cross-validation techniques 

should be explored to ensure that both the parameter n and these pricing 

boundaries communicate the same social welfare outcomes and price sensitivities 

to the consumer.  

 Investigating differentiating problem characteristics and their effect on consumer, 

retailer and social welfare outcomes as a form of sensitivity analysis. This may 

include the effect of various factors such as consumer flexibility, appliance-

related inconvenience parameters, and forward-contract prices for the retailer, and 

should be quantified and analysed for their relative impacts on identified 

objectives. 

 Investigating the ability of DR tools such as EMCs and battery storage facilities 

to reduce bill payments and improve PAR. Their respective effect on various user 

types require further investigation in order to determine if the asset management 

costs associated with their installation are recovered.   

 Investigating multi-objective optimisation techniques as a means of addressing 

and combining the conflicting objectives of consumers and retailers such that 

social welfare is defined as a single utility function.  

 Investigating the performance of alternative heuristics and metaheuristics when 

applied to the proposed problem formulation. Such an exploration, similar to the 
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one conducted in Appendix B on Particle Swarm Optimisation, may reveal 

complementary problem and algorithm characteristics that enhance performance.  

6.3 LAST WORDS 

South Africa’s energy sector, in its current structure, is fast approaching its finite 

capacity to satisfy public demands for a reliable and cost-effective service. Fear of 

privatisation in the local climate has been attributed to a lack of knowledge regarding 

closed market systems as well as a lack of guarantee of social welfare achievement. This 

dissertation has attempted to depict an accurate reality for the consumer and retailer 

operating in this market. It has aimed to contribute towards the body of knowledge 

regarding the requirements and conditions under which social welfare can be achieved. In 

doing so, several opportunities for future research in the field of energy have been 

identified.   
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MATLAB CODE: 

CONSUMER-RETAILER 

PROBLEM 
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 % This programme models the consumer and retailer problems 

 

%Sets 

I=13; 

T=24; 

J=10; 

 

%Decision variables 

u=binvar(I,T,J); 

b=binvar(T,J); 

d=binvar(T,J); 

z=binvar(I,T,J); 

B=sdpvar(T,J);   

G=sdpvar(T,J); 

E=sdpvar(T,J);  

C=sdpvar(T,J);  

A=sdpvar(I,T,J); 

 

%Parameters 

%Price of purchasing electricity in the day-ahead market   

%q=0.3498+normrnd(0,0.1*0.3498,T,1); 

q=[0.367;0.386;0.375;0.339;0.360;0.322;0.381;0.310;0.312;0.321; 

0.247;0.400;0.361;0.323;0.398;0.290;0.346;0.341;0.361;0.361;0.319; 

0.348;0.344;0.372]; 

 

u_bl=zeros(I,T);  

u_bl(1,7)=1;u_bl(2,19)=1; u_bl(3,17)=1; u_bl(4,7)=1; u_bl(5,17)=1; 

u_bl(6,7)=1; u_bl(7,20)=1; u_bl(8,21)=1; u_bl(9,5:7)=1; 

u_bl(10,17:19)=1; u_bl(11,20:21)=1; u_bl(12,20)=1; u_bl(13,21)=1; 

u_bl=repmat(u_bl,[1 1 J]); 

h=[7;19;17;7;17;7;20;21;5;17;20;20;21]; 

e=[6;16;15;6;15;6;15;15;4;8;16;16;16]; 

f=[9;21;21;9;21;9;24;24;9;23;24;24;24]; 

P=[3;3;1.23;1.9;1.9;1.01;1.235;1.2;2.6;2.6;2.5;3;3.3]; 

P=repmat(P,[1,24,J]); 

D=[1;1;1;1;1;1;1;1;3;3;2;1;1]; 

gamma=[2;2;1.25;1.75;1;1;1.25;1.25;2;1.75;1.5;1.5;1.5]; 

alpha=zeros(I,T); 

lambda=zeros(1,J); 

%Randomly generated numbers for assignment of users to classes  

n=[0.995;0.3320;0.297;0.062;0.298;0.046;0.505;0.761;0.631;0.089]; 

 

E_cap=zeros(1,J); 

E_max=zeros(1,J); 

E_min=zeros(1,J);  

n_c=0.8;  

n_d=0.89; 

%Price of trading in the spot market, calculated by the Markov 

%switching model  

s=[0.297;0.284;0.228;0.202;0.188;0.202;0.253;0.286;0.357;0.389; 

0.349;0.349;0.357;0.342;0.343;0.341;0.345;0.345;0.331;0.313;0.355; 

0.335;0.329;0.320]; 

 

%Consumer objective  
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obj=sum(ro.*sum(C'))+sum(lambda.*reshape(sum(sum(alpha.*A)),1,J)); 

 

%Subject to:  

ro_t =1.0112:(1.5566-1.0112)/4:1.5566; 

 

for o=1:5  

ro=repmat(ro_t(o), [1 T 1]); 

 

%Minimum usage of appliances 

min_usage=[];     

 

%Continuous operation of appliances                                                    

      cont_usage1=[];                                                      

      cont_usage2=[]; 

 

 for j=1:J 

            if n(j)<=0.662 

                for i=[1,2,4,5,9,10] 

u_bl(3,:,j)=0;u_bl(6:8,:,j)=0;u_bl(11:13,:,j)=0;                            

min_usage=min_usage+[sum(u(i,1:T,j))>=D(i)];             

cont_usage1=cont_usage1+                

[sum(z(i,e(i):f(i)-D(i)+1,j))==1]; 

                    for t=e(i):f(i)-D(i)+1 

cont_usage2=cont_usage2+           

[sum(u(i,t:t+D(i)-1,j))>=D(i)*z(i,t,j)]; 

                    end 

                end 

                E_cap(j)=5; 

                E_min(j)=0.15*E_cap(j); 

                E_max(j)=0.85*E_cap(j); 

                x(:,j)=E_max(j)-E_min(j); 

                lambda(j)=2; 

            elseif n(j)<=0.961 

                for i=[1:6,9,10,12] 

                    u_bl(7:8,:,j)=0;u_bl(11,:,j)=0;u_bl(13,:,j)=0; 

                    min_usage=min_usage+[sum(u(i,1:T,j))>=D(i)]; 

  cont_usage1=cont_usage1+                      

[sum(z(i,e(i):f(i)-D(i)+1,j))==1]; 

                    for t=e(i):f(i)-D(i)+1 

cont_usage2=cont_usage2+           

[sum(u(i,t:t+D(i)-1,j))>=D(i)*z(i,t,j)]; 

                    end 

                end 

                E_cap(j)=10; 

                E_min(j)=0.15*E_cap(j); 

                E_max(j)=0.85*E_cap(j); 

                x(:,j)=E_max(j)-E_min(j); 

                lambda(j)=1; 

            else  

                for i=1:I 

                  min_usage=min_usage+[sum(u(i,1:T,j))>=D(i)]; 

cont_usage1=cont_usage1+                 

[sum(z(i,e(i):f(i)-D(i)+1,j))==1]; 

                    for t=e(i):f(i)-D(i)+1 
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  cont_usage2=cont_usage2+                

[sum(u(i,t:t+D(i)-1,j))>=D(i)*z(i,t,j)]; 

                    end 

                end 

                E_cap(j)=20; 

                E_min(j)=0.15*E_cap(j); 

                E_max(j)=0.85*E_cap(j); 

                x(:,j)=E_max(j)-E_min(j); 

                lambda(j)=0.5; 

            end 

        end 

 

%No appliance usage during non-valid hours  

zero_usage=[]; 

for j=1:J 

            for i=1:I 

                zero_usage=zero_usage+[u(i,1:e(i)-1,j)==0]; 

                zero_usage=zero_usage+[u(i,f(i)+1:T,j)==0]; 

                zero_usage=zero_usage+[u(i,1:e(i)-1,j)==0]; 

                zero_usage=zero_usage+[z(i,f(i)+1:T,j)==0]; 

            end 

        end 

 

%Power balance  

power_bal=[];                                                         

power_bal=power_bal+[C>=reshape(sum(P.*u),T,J)+B-(n_d*G)]; 

 

 %Non-simultaneous battery charge/discharge 

char_dis=[];                                                               

char_dis=char_dis+[b+d<=1]; 

 

 %Battery's minimum charge of power at time t 

min_charge=[];     

%Battery's maximum discharge of power at time t                                                          

max_charge=[];                                                       

 

for t=1:T 

    for j=1:J 

        min_charge=min_charge+[iff(B(t,j)>=1e-5,b(t,j)==1)]; 

        min_charge=min_charge+[iff(B(t,j)<=1e-6,b(t,j)==0)]; 

        max_charge=max_charge+[iff(G(t,j)>=1e-5,d(t,j)==1)]; 

        max_charge=max_charge+[iff(G(t,j)<=1e-6,d(t,j)==0)]; 

    end 

end 

         

 %Battery's energy balance  

batt_bal=[];                                                         

      batt_bal=batt_bal+[E(1,:)==E_min+n_c*B(1,:)-G(1,:)];                 

      for t=2:24 

          batt_bal=batt_bal+[E(t,:)==E(t-1,:)+n_c*B(t,:)-G(t,:)]; 

      end 

 

 %Maximum energy state of battery        

up_limit=[];   
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%Minimum energy state of battery                                                              

low_limit=[];                                                        

      for t=1:T                                                

          up_limit=up_limit+[E(t,:)<=E_max];                                                           

          low_limit=low_limit+[E(t,:)>=E_min]; 

      end 

 

 %Creating the matrix for scheduler inconvenience 

for i=1:I                                                                       

for t=e(i):f(i) 

               alpha(i,t)=(gamma(i)^abs(t-h(i)))/(P(i)*D(i));       

           end 

      end  

      alpha=repmat(alpha,[1 1 J]); 

 

 %Creating the dummy variable A 

dum_var=[];                                                          

      dum_var=dum_var+[A==abs(u-u_bl)]; 

 

 %Non-negativity constraints 

non_negative=[];                                                            

non_negative=non_negative+[B>=0]; 

      non_negative=non_negative+[G>=0]; 

      non_negative=non_negative+[C>=0]; 

      non_negative=non_negative+[E>=0]; 

 

 %Summation of constraints 

constraints=min_usage+cont_usage1+cont_usage2+zero_usage+ 

power_bal+char_dis+min_charge+max_charge+batt_bal+up_limit+ 

low_limit+dum_var+non_negative; 

 

%Solver 

options=sdpsettings('solver','gurobi','verbose',0); 

sol=optimize(constraints,obj,options); 

 

%Analyze error flags 

if sol.problem == 0 

   obj=value(obj); 

else 

   display('Hmm, something went wrong!'); 

   sol.info 

   yalmiperror(sol.problem) 

end 

 

 %Retailer problem  

  

%Uncertainty in observed demand: if demand=0 at time t, then 

%uncrt~N(0,1), otherwise uncrt~N(0,total demand of baseline 

%schedule/10); 

uncrt=[-1.1750 0.8558 -0.3362 -0.2742 -0.9810 -2.7033 -5.4561 -

0.1192 2.1694 -0.3766 0.7987 -0.9420 0.8731 0.8960 0.7155 0.3716 

-8.6624    -0.3682 3.3678 -1.7613 -0.2932 1.1975 0.0338 1.3563]; 

 

for t=1:T 

      if sum(C’)(t)+uncrt(t)<=0 
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            C_actual(t)=0; 

      else 

            C_actual(t)=dummy1(t)+uncrt(t); 

      end 

end 

 

Q=sum(C’); 

S=C_actual-Q; 

ret=sum(ro.*C_actual)-sum(Q.*q')-sum(S.*s'); 

end
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METAHEURISTICS 

Metaheuristics are typically effective because they do not exploit problem-specific 

parameters, they are able to avoid the entrapment of local optima, even allowing non-

improving feasible moves around the search space to improve exploration, and can be 

seen as black box algorithms that only require fine-tuning of intrinsic parameters to 

improve performance (Puchinger and Raidl, 2005). Within this branch of optimization 

evolutionary algorithms and swarm intelligence algorithms have shown the most 

promise. 

Evolutionary algorithms  

Evolutionary algorithms (EA) are a population-based metaheuristic that simulate 

environmental pressures to cause natural selection and improve the fitness of the 

population (Eiben and Smith, 2003). These natural pressures can take the form of 

reproduction, mutation, recombination and selection, resulting in an array of subsidiary 

algorithms. Gomes et al (2007) applied an interactive evolutionary algorithm to capture 

the decision maker’s changing preferences. The EA was also able to accommodate 

external changes such as profit and demand forecasts, but was not compared to optimum 

results and its ability in this regard remains untested. A genetic algorithm (GA) is used 

by Piccolo et al (2001) to optimally coordinate the charging of PHEVs using natural 

sequences. The selection of the metaheuristic is well-justified and the solution delivered 

is optimal. However, the repeated evaluation of the fitness function and the exposure of 

good solutions to destructive mutations can significantly slow down the simulation, 

especially for complex real-world applications in which a single evaluation may take 

hours or days. GAs have however enjoyed more success in optimal power flow problems.  

Swarm intelligence algorithms  

Swarm intelligence refers to the problem-solving social behaviour of a group of 

individuals who communicate with one another based on interactions with their local 

environment (Engelbrecht, 2005). This behaviour mirrors that of biological swarm 
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systems such as ants (ant colony optimisation) and bird flocks (particle swarm 

optimisation). Of these metaheuristics, particle swarm optimisation (PSO) has been 

applied extensively in the energy and scheduling fields, and reported significant findings 

(Balci and Valenzuela, 2004, dos Santos Coelho and Lee, 2008, Pedrasa et al, 2009, 

Pedrasa et al, 2010). For Pedrasa et al (2009), results obtained were comparable to those 

derived from fuzzy dynamic programming. In Pedrasa et al (2010), the algorithm was 

enhanced to include static repulsion amongst particles which served to improve 

exploration of the search space and generated solutions more efficiently. It has thus 

established itself as an easy-to-implement and computationally efficient tool for 

optimisation, both of which are key requirements for the selected strategy. Of the 

approaches discussed, PSO has experienced significant improvements and adjustments 

since the basic algorithm was implemented by Kennedy and Eberhart (1995). Its 

application to a variety of problem contexts such as neural networks and manufacturing 

has proven its adaptability (Eberhart and Shi, 2001). The literature available on its 

application to scheduling and electricity also provides a sound basis for parameter 

selection, which has a significant impact on results, results comparison and validation. 

For these reasons, it is recommended that PSO be applied to the consumer-retailer 

problem when operating under time-varying tariffs.   

PARTICLE SWARM OPTIMISATION 

Basic algorithm 

PSO has its foundations in the social sciences and was originally intended to graphically 

illustrate the graceful but unpredictable movements of a bird flock (Eberhart and Shi, 

2001). After realising that conceptually it in fact acted as an optimiser, the algorithm was 

streamlined and first implemented for this purpose by Eberhart et al (1995). Recent 

modifications to the original algorithm have involved improving convergence and 

increasing the diversity of the swarm (Engelbrecht, 2005).  

In the basic PSO algorithm a swarm (population) of disorganized particles (individuals) 

exists, each of which represents a potential solution. At each iteration or time step the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

x 
 

movement of these particles through the search space is directed by its velocity. This 

velocity drives the optimisation process by including the personal experiences of the 

particle (known as the pbest), the experiences of other particles in the swarm (known as 

the gbest) gained through socially exchanged information and the velocity at time t-1 

(Engelbrecht, 2005). Herein lies the swarm intelligence of the algorithm. The position of 

a particle i in dimension j at time t, denoted by ( )ijx t  , is then updated in the search space 

by adding a velocity that determines its magnitude and direction. This is given by  

( 1) ( ) ( 1)ij ij ijx t x t v t       (5.37) 

*

1 1 2 2( 1) ( ) ( )[ ( ) ( )] ( )[ ( ) ( )]ij ij j ij ij j j ijv t v t c r t y t x t c r t y t x t        (5.38) 

where ( )ijv t is the velocity of the particle i in dimension j at time step t,   is the weight 

of inertia, 
1c  and 2c  are positive cognitive and social acceleration constants respectively, 

1 ( )jr t  and 2 ( )jr t  are randomly generated values within the range [0,1] and following a 

uniform random distribution, U(0,1), and ( )ijy t is a particle’s personal best position. Two 

basic variations of the algorithm exist which account for the global best position,
* ( )jy t , 

by evaluating the entire swarm (gbest PSO) or subsets called neighbourhoods (lbest 

PSO). More detail regarding their differentiating features and neighbourhood formation 

can be found in Engelbrecht (2005).  

The primary shortcoming of the original PSO algorithm is its inability to guarantee 

convergence (van den Bergh and Engelbrecht, 2002). This is because, when the current, 

personal best and global best positions of the particle are equal to one another, as seen in 

(5.3), position updates are solely based on momentum. This can lead to stagnation of the 

search process and convergence to a point that is not necessarily a local optimum. 

*( ) ( ) ( )ij ij jx t y t y t     (5.39) 

To overcome this, van den Bergh and Engelbrecht (2002) proposed a derivative of the 

original algorithm, called the Guaranteed Convergence Particle Swarm Optimiser 

(GCPSO), which forces the position of the global best particle to change when (5.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

xi 
 

holds true. GCPSO has proven its effectiveness in van den Bergh and Engelbrecht (2002) 

and Grobler (2008), and it is recommended that this derivative of the original algorithm 

be applied to the problem at hand when a time-varying tariff is employed.  

Guaranteed Convergence PSO  

In GCPSO, all particles’ positions are updated as usual by (5.1) and (5.2), except that of 

the global best particle which is forced to search in a confined region for a better 

position. The gbest particle’s trajectory is then governed by 

*( 1) ( ) ( ) ( )(1 2 ( ))j j j jx t y t v t t r t         (5.40) 

*( 1) ( ) ( ) ( ) ( )(1 2 ( ))j j j j jv t x t y t v t t r t           (5.41) 

where   is the index of the global best particle, ( )jr t forces the random search of the 

space surrounding 
* ( )jy t , and ( )t is a scaling factor that controls the diameter of the 

confined region based on past performance.  With this in mind, the algorithm for GCPSO 

is presented in Algorithm A.1.  
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Create and initialise an nx-dimensional swarm of S particles  

t=1 

( )t =1 

 =0      % number of successes  

=0       % number of failures 

repeat  

for each particle i do 

  if f( ( )ijx t )<f( ( )ijy t ) then  % set the personal best position 

   ( )ijy t = ( )ijx t  

  end 

if f( ( )ijy t )<f(
* ( )jy t ) then  % set the global best position 

   
* ( )jy t = ( )ijy t  

    = +1 

   =0 

  else 

 =0 

   =+1 

  end 

end 

for each particle i =  do 

Update the gbest particle velocity with equation (5.5) 

Update the gbest particle position with equation (5.4) 

end 

Update the particle velocity with equation (5.2) 

Update the particle position with equation (5.1) 

t=t+1 

until stopping condition is true 

 

 

 

 

   

Algorithm A.1: The guaranteed convergence PSO algorithm (Grobler, 2008) 
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Modifications to the PSO algorithm and its derivatives have been made with the intention 

of improving the speed of convergence and quality of solutions. To do this, an optimal 

balance between exploration of different regions in the search space and exploitation of 

efforts in a promising area to refine the solution must be found. Several variations and 

aspects of the optimisation algorithm aim to control this trade-off and require further 

discussion.  

 Particle dimension, size of the swarm, ns, and maximum number of iterations, 

Kmax, determine the computational burden of the algorithm. Larger swarms imply 

greater diversity but more complexity and a smaller number of iterations is less 

strenuous but risks premature termination.      

 Clamping is applied to prevent velocities from exploding, resulting in particles 

leaving the boundaries of the search space. The maximum velocity, Vmax, is 

typically set to larger values during initial iterations to enable exploration and is 

progressively reduced to facilitate concentrated searches of the optimal region.     

 Inertia weight controls the memory of a particle’s previous flight direction 

(Engelbrecht, 2005). Values are problem-dependent with larger magnitudes 

favouring exploration. Dynamic variation can also applied with similar guidelines 

for velocity clamping followed here.   

 The acceleration coefficients, c1 and c2, control the stochastic influence of the 

cognitive and social components on a particle’s velocity. Velocities with a 

stronger cognitive and weaker social influence update particle positions based 

almost exclusively on independent experiences.   

Guidelines for these parameters can be found in Engelbrecht (2005). It is recommended 

that the GCPSO algorithm be applied with the inclusion of these variations so as to 

achieve higher levels of exploration and diversity during initial iterations, and higher 

levels of exploitation and solution refinement towards the latter stages of convergence. 
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PRELIMINARY FINDINGS 

Time-varying tariffs introduce an additional complexity to the consumer-retailer 

problem. Nevertheless, when applied they are capable of achieving levels of demand 

response that assist the user and service provider in meeting their respective outcomes. 

These effects, as well as those on the objective of social welfare, must be quantified. The 

GCPSO algorithm was applied to the problem under study in order to determine the TOU 

tariff that would achieve optimal social welfare. Algorithm parameters were selected 

based on guidelines from Engelbrecht (2005) and have been summarised in Table A.1.  

Table A.1: Parameters used in the application of GCPSO to improve performance 

 

 

 

 

 

 

 

The instruction set, which can be found below, was modelled in MATLAB version 13a 

and run on an i7-3970X Core processor with 8 CPUs and a speed of 3.50GHz. Based on 

preliminary computations, the primary, and significant, limitation of applying this 

algorithm was found to be computational time: 

 After a 72-hour period the run was terminated. It was found that only 36 iterations 

had been performed in this time, and literature suggests approximately 200 or 

more to be sufficient for convergence to an optimal solution. It should also be 

borne in mind that all computations were performed on an advanced 8 core 

processor with 12 threads. This means that it is superior to many regular personal 

computers both in terms of operating frequency and overall computational power.  

Parameter Value used 

ns 15 

Kmax 200 

Vmax 0.5454 

c1 2.5           0.5 

c2 0.5           2.5 

  0.9           0.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

xv 
 

 By extrapolating the computational time of 36 iterations and assuming a linear 

performance, running a full simulation would require approximately 16 days. 

This is however infeasible and realistically impractical for the current application 

as, in a deregulated market, tariffs require updates far more frequently. 

Furthermore, this time estimate is optimistic because when a programme runs on 

MATLAB, it uses a computer’s memory, known as RAM, and this usage is 

exacerbated over time. This ultimately slows down the performance of a 

computer significantly, resulting in exponential increases in computational time.  

To reduce the computational time, alternative avenues were explored and the 

following suggestions are made to improve the performance of the GCPSO algorithm 

applied to the consumer-retailer problem:  

   The instruction set given in Appendix A was coded using syntax 

compatible with the YALMIP platform. This is a user-friendly and easy-to-

interpret interface wherein constraints and objectives functions can be 

written as an operations research model. MATLAB however was designed 

for, and thus performs optimally, when data and constraints adopt a matrix 

format. 

 Loops, in which certain instructions are performed repeatedly, are used 

extensively in the consumer-retailer problem. These calculations are only 

performed sequentially however, thus resulting in large computational times. 

An advanced technique to overcome this challenge is to apply parallel 

computing. Here, certain tasks in data-intensive problems are carried out 

simultaneously by operating on the principle that larger problems can be 

divided into independent sub-problems. Thus, the full power of multicore 

processors, grid computing services and computer clusters can be realised. In 

order to apply parallel computing, the Parallel Computing Toolbox, a 

product of Mathworks, is required. 
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% This programme models the GCPSO algorithm  

  

% Initialise size of swarm  
Ns=15;                                                                         
T=24;                                                                         
kmax=200; 

k=1;                                                                     

  
% Initialise GCPSO parameters 

r1=rand(kmax,1); 
r2=rand(kmax,1);                                                

sf=zeros(1,kmax);  

sf(1)=1;  

 

% Scaling factor to control random search of area surrounding global   

best position 
no_successes=0; 
no_failures=0; 
f_prime=zeros(1,kmax);                                                       
 

% Calculation of w, inertia weight, equation (12.24) 
para_null=0.9; 
para(kmax)=0.4; 
para=@(k) (para_null-para(kmax))*((kmax-k)/kmax)+para(kmax);                
w=para(1:kmax); 
 

% Calculation of c1 and c2, the cognitive and social constants 

c_min=0.5;                                                                  
c_max=2.5; 
dummy1=@(k)((c_min-c_max)*(k/kmax)+c_max); 
dummy2=@(k)((c_max-c_min)*(k/kmax)+c_min); 
c1=dummy1(1:kmax); 
c2=dummy2(1:kmax); 
 

% Price formations 
ro=zeros(Ns,T,kmax);                                                         
ro_min=repmat(1.0112,[Ns T kmax]);                                           
ro_max=repmat(1.5566, [Ns T kmax]);                                         

ro(:,7,1)=ro_min+rand()*(ro_max-ro_min);  
ro(:,8:10,1)=repmat(ro_min+rand(Ns,1)*(ro_max-ro_min),[1 3 1]);  
ro(:,11:18,1)=repmat(ro_min+rand(Ns,1)*(ro_max-ro_min),[1 8 1]);  
ro(:,19:20,1)=repmat(ro_min+rand(Ns,1)*(ro_max-ro_min),[1 2 1]);  
ro(:,21:22,1)=repmat(ro_min+rand(Ns,1)*(ro_max-ro_min),[1 2 1]);  
ro(:,23:24,1)=repmat(ro_min+rand(Ns,1)*(ro_max-ro_min),[1 2 1]); 

 
% Initialise particle position and particle personal best position at 

k=0; 
PBest=zeros(Ns,T,kmax);                                                      
 

                                                     

% Initialise global best position 

GBest=zeros(T,kmax); 
GConBest=zeros(1,kmax);  

GRetBest=zeros(1,kmax); 
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GFitBest=zeros(1,kmax); 
 

% Measure the diversity of searches 

diversity=zeros(1,kmax);  

diff=zeros(Ns,T); 

 
 

% Initialise velocity  
v=zeros(Ns,T,kmax); 

v_prime=zeros(Ns,T,kmax);                                                    

 

% Initialise velocity clamping        
V_max=zeros(1,kmax);                                                      
velparam=1; 
V_max(1)=velparam*(ro_max(1,1,1)-ro_min(1,1,1)); 
T_stroke=5; 
 

% Calculation of beta, factor that decreases V_max 
beta_null=1; 
beta_param(kmax)=0.01; 
beta_param=@(k)(beta_null-beta_param(kmax))*(kmax-(k/kmax))+ 

beta_param(kmax); 

beta=beta_param(1:kmax); 
 

% Run GCPSO  

while (k<kmax)||(f_prime(k)>0.0001)   
       for m=1:Ns  
          diff(m,:)=(ro(m,:,k)-mean(ro(:,:,k))).^2; 
          save('C:\Users\User\yaj\PSOv2.mat'); 
          [ff(k,m) cons(k,m)]=fitness(ro(m,:,k)) 
        PBest(m,:,k)=ro(m,:,k); 
             [row,col]=find(ff==min(min(ff))); 

  GFitBest(k)=min(min(ff)); 
        GBest(:,k)=ro(col(1),:,row(1)); 
       GConBest(k)=cons(row(1),col(1)); 

           if fitness(PBest(m,:,k))<=fitness(GBest(k,:)) 
               no_successes=no_successes+1; 
               no_failures=0; 
                  else 
               no_failures=no_failures+1; 
               no_successes=0; 

     end 
end 

      if col==m 
ro(m,:,k+1)=GBest(:,k)'+w(k)*v(m,:,k)+sf(k)*(1-

2*r2(k)); 
v_prime(m,:,k+1)=-ro(m,:,k)+GBest(:,k)'+ 

w(k)*v(m,:,k)+ sf(k)*(1-2*r2(k));   

v(m,:,k+1)=(abs(v_prime(m,:,k+1))<V_max(k)).* 

v_prime(m,:,k+1))+(abs(v_prime(m,:,k+1))>=V_max(k)).* 

(V_max(k)*tanh(v_prime(m,:,k+1)/V_max(k))); 

         else  
v_prime(m,:,k+1)=w(k)*v_prime(m,:,k)+c1(k)*r1(k).* 

(PBest(m,:,k)-ro(m,:,k))+c2(k)*r2(k).*(GBest(:,k)'-

ro(m,:,k));          
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v(m,:,k+1)=(abs(v_prime(m,:,k+1))<V_max(k)).* 

(v_prime(m,:,k+1))+(abs(v_prime(m,:,k+1))>=V_max(k) 

.*(V_max(k)*tanh(v_prime(m,:,k+1)/V_max(k))); 

             ro(m,:,k+1)=ro(m,:,k)+v(m,:,k+1); 

end 
diversity(k)=(1/(max(ro(:,1,k))-min(ro(:,1,k))))*(1/Ns) 

*sum(sqrt(sum(diff'))); 
       if no_successes>15 
          sf(k+1)=2*sf(k); 
       elseif no_failures>5 
          sf(k+1)=0.5*sf(k); 
       else 
          sf(k+1)=sf(k); 
       end 
       V_max(k+1)=V_max(k); 

k=k+1; 
end 
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