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SUMMARY 

 

Due to escalating energy costs and limited fossil fuel resources, much attention 

has been given to polymer electrolyte membrane (PEM) fuel cells.  Gas diffusion layers 

(GDLs) play a vital role in a fuel cell such as (1) water removal, (2) cooling, (3) 

structural backing, (4) electrical conduction and (5) transporting gases towards the active 

catalyst sites where the reactions take place.  The power density of a PEM fuel cell in part 

is dependent upon how uniform the gases are distributed to the active sites.  To this end, 

research is being conducted to understand the mechanisms that influence gas distribution 

across the fuel cell.  Emerging PEM fuel cell designs have shown that higher power 

density can be achieved; however this requires significant changes to existing 

components, particularly the GDL.  For instance, some emerging concepts require higher 

through-plane gas permeability than in-plane gas permeability (i.e., anisotropic 

resistance) which is contrary to conventional GDLs (e.g., carbon paper and carbon cloth), 

to obtain a uniform gas distribution across the active sites.  This is the foundation on 

which this thesis is centered. 

A numerical study is conducted in order to investigate the effect of the gas 

permeability profile on the expected current density in the catalyst layer.  An 

experimental study is done to characterize the effects of the weave structure on gas 

permeability in woven GDLs.  Numerical simulations are developed using Fluent version 

6.3.26 and COMSOL Multiphysics version 3.5 to create an anisotropic resistance profile 

in the unconventional GDL, while maintaining similar performance to conventional GDL 

designs.  The effects of (1) changing the permeability profile in the in-plane and through-



 xx

plane direction, (2) changing the thickness of the unconventional GDL and (3) changing 

the gas stoichiometry on the current density and pressure drop through the 

unconventional GDL are investigated.  It is found that the permeability profile and 

thickness of the unconventional GDL have a minimal effect on the average current 

density and current density distribution.  As a tradeoff, an unconventional GDL with a 

lower permeability will exhibit a higher pressure drop.  Once the fuel cell has a sufficient 

amount of oxygen to sustain reactions, the gas stoichiometry has a minimal effect on 

increases in performance. 

Woven GDL samples with varying tightness and weave patterns are made on a 

hand loom, and their in-plane and through-plane permeability are measured using in-

house test equipment.  The porosity of the samples is measured using mercury intrusion 

porosimetry.  It is found that the in-plane permeability is higher than the through-plane 

permeability for all weave patterns tested, except for the twill weave with 8 tows/cm in 

the warp direction and 4 tows/cm in the weft direction, which exhibited a through-plane 

permeability which was 20% higher than the in-plane permeability.  It is also concluded 

that the permeability of twill woven fabrics is higher than the permeability of plain 

woven fabrics, and that the percentage of macropores, ranging in size from 50-400 µm, is 

a driving force in determining the through-plane permeability of a woven GDL. 

From these studies, it was found that the graduated permeability profile in the 

unconventional GDL had a minimal effect on gas flow.  However, a graduated 

permeability may have an impact on liquid water transport.  In addition, it was found that 

graduating the catalyst loading, thereby employing a non-uniform catalyst loading has a 



 xxi

greater effect on creating a uniform current density than graduating the permeability 

profile.



 

1 

CHAPTER 1 

INTRODUCTION 

1.1 Energy Situation and Renewable Energy Sources 

The global energy demand has reached record highs, which has lead to 

unprecedented cost for fossil fuel based energy resources.  Escalating competition 

between established industrial nations and rapidly developing economies for remaining 

fossil fuel resources will continue to drive energy prices to record highs.  In the United 

States (US), the highest demand for energy is along the coast-lines, (e.g., New York, 

Miami, Los Angeles…etc).  The two primary energy resources to harvest electricity were 

coal and natural gas.  As shown in Figure 1, nearly 70 percent of electricity generation is 

based on fossil fuels.  It is well understood that combustion of fossil fuels pumps a 

tremendous amount of carbon dioxide into the atmosphere, and is arguably the greatest 

contributing factor to the rampant global warming of the past century.  Pollution and 

climate change have greatly increased the attention given to renewable energy sources as 

a means to provide clean electrical power in the future. 
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Figure 1: US Electricity Generation by Fuel, adapted from Data Given in [1] 

 

 Most renewable energy resources (e.g., solar, wind, geothermal, etc…) have a 

major disadvantage; they are most efficient or are only usable in locales that cater to their 

method of power generation.  For example, most of the direct solar energy is located in 

the western United States in the Mojave Desert, while much of the reliable wind energy is 

located in the central plains and off the coasts.  Further, while there is an ample supply of 

offshore wind near the coasts, offshore wind has been criticized because it is dangerous 

to navigation vessels, aesthetically unpleasing and much more expensive to build and 

maintain than onshore wind farms [2].  Thus, more flexible types of renewable energy 

resources are desired, such as fuel cells.  Fuel cells offer the benefits of fossil fuels in that 

they can be used at any time regardless of the uncertainty of the forces of nature, and 

some benefits of renewable energy sources such as lower emissions.  However, to 

become viable, many changes must be overcome. 
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1.2 Fuel Cells 

 There are six main types of fuel cells; solid oxide fuel cells, molten carbonate fuel 

cells, alkaline fuel cells, phosphoric acid fuel cells, direct methanol fuel cells and 

polymer electrolyte membrane (PEM) fuel cells.  Similar to combustion engines, ideally 

they do not degrade over time and will run continuously if supplied with a continuous 

stream of reactants.  In addition, a fuel cell’s power capacity and fuel capacity scale 

independently [3].  Due to a lack of moving parts, fuel cells have the potential to provide 

reliable and long lasting systems, and produce significantly lower emissions of 

greenhouse gases than conventional burning of fossil fuels [3-4].  To this end, fuel cells 

have attracted significant attention due to their high efficiency, 40-50%, compared to 

internal combustion engines, which is limited to a range of 30-35% [5-6].  Fuel cells are 

electrochemical systems which directly convert chemical energy into electrical energy.  

However, the means by which this is achieved are different for fuel cells and combustion 

engines, as depicted in Figure 2.  While for fuel cells, this is a direct process, the 

conversion for combustion engines is more cumbersome, i.e., chemical energy is 

converted to thermal energy which is converted into mechanical energy which is finally 

converted into electrical energy.  Since fuel cells directly convert the chemical energy 

into electrical energy there are less opportunities for losses. 
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Figure 2: Energy Conversion Process for (a) Combustion Engine and (b) Fuel Cell 

 

1.2.1 Fuel Cell Types 

Solid oxide fuel cells and molten carbonate fuel cells have higher efficiencies, but 

are primarily used for stationary applications due to high operating temperatures (600-

1000 degrees Celsius) and slow start-up times.  Alkaline fuel cells have high efficiencies, 

for a low temperature fuel cell, but the liquid electrolyte makes it difficult to maintain for 

portable applications.  Phosphoric acid fuel cells are low temperature fuel cells that are 

tolerant of impurities in fuel, but they tend to be bulky and more suitable for stationary 

applications.  Direct methanol fuel cells are convenient because they use methanol as fuel 

which is readily available.  Unfortunately they are subject to high losses from fuel 

crossover in the membrane and low power densities [3-4]. 

PEM fuel cells have a number of advantages over other fuel cells which make 

them attractive for transportation and portable applications.  They operate at a relatively 

low temperature, 60-80 degrees Celsius, which means they ideally have quick start-up 

times.  PEM fuel cells also have a relatively high power density compared to other types 

of fuel cells.  In addition, the solid-state membrane is easier to design and manage in 
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portable systems than a liquid membrane [3-4].  Because of their advantages and 

application flexibility, PEM fuel cells are the focus of this thesis. 

1.3 PEM Fuel Cell Components 

The basic components of a PEM fuel cell are an anode, a membrane, a cathode, 

and bipolar plate.   Specifically, a PEM fuel cell is made up of two bipolar plates, and the 

membrane electrode assembly (MEA), which contains the gas diffusion layers (anode and 

cathode), the catalyst layers, and the membrane electrolyte layer.  Sealing gaskets are 

used in between layers to prevent gas from leaking out of the cell.  The basic operating 

principles and components of a PEMFC are shown in Figure 3.  Fuel, such as hydrogen, 

is oxidized at the anode releasing electrons.  An electrolyte layer separates the anode and 

cathode which only allows ions to pass from the anode to the cathode.  The electrons then 

travel through an external circuit and are collected at the cathode, where a reduction 

reaction occurs recombining the electrons with the ions.  In particular, in a PEM fuel cell, 

hydrogen and oxygen are converted into water, electricity and heat [3-4].  Each of the 

previously described components has a specific responsibility which is further discussed 

in Sections 1.3.1 – 1.3.3. 
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Figure 3: Schematic of a PEM Fuel Cell 

 

1.3.1 Bipolar Plate 

The bipolar plates are typically made of graphite which gives them high electrical 

conductivity to facilitate the transport of electrons with minimal losses, and a high 

thermal conductivity to remove the heat produced by the electrochemical reactions from 

the cell.  Fuel streams are supplied through manifolds along the cell or stack.  Manifolds 

supply fuel streams (hydrogen to the anode and either oxygen or air to the cathode) via 

flow channels which are typically machined into the bipolar plates.  There are three major 

types of flow channel designs, known as flow fields (parallel, serpentine and 

interdigitated), which are shown in Figure 4.  Each flow field design has its own pros and 

cons. 
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Figure 4: Flow Field Designs [7] 

 

Parallel flow field designs allow many paths from the flow inlet to the flow outlet.  

However, if a water droplet blocks a channel, there may not be enough pressure to push 

the droplet through which will cut off flow to the affected part of the fuel cell.  Serpentine 

designs are popular because if a water droplet is stuck in a channel, the pressure buildup 

will push the droplet out.  However, these serpentine flow fields are known to experience 

high pressure drops and require more pumping power.  These flow fields also suffer from 

poor reactant uniformity as there is only one path for the gas to travel.  In interdigitated 

flow fields, the gas is forced into the GDL through convection rather than just diffusing 

to the catalyst due to concentration gradients.  While interdigitated flow fields require 

more pumping power, they can push water out more effectively at higher current 

densities and show better performance over other flow field designs.  It is important to 

achieve a uniform reactant distribution over the face of the cell so regions of the cell far 

from the inlet are not starved for reactants.  This can create gradients in temperature and 

cause poor performance.  To this end, research has been conducted regarding the design 

of flow fields achieve uniform reactant distribution in the catalyst layer [3-4, 8-14], such 

that areas of the electrode near the inlet are not oversaturated with fuel while areas near 
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the outlet are starved for fuel.  Oversaturation can lead to increased water production 

which blocks pores, while reactant starvation can lead to structural integrity issues due to 

heat generation from a lack of water in the membrane [15]. 

1.3.2 Gas Diffusion Layer 

The gas diffusion layer (GDL) is a porous structure either made by pressing 

carbon fibers into a carbon paper or by weaving carbon fibers into a carbon cloth.  The 

GDL must be porous to allow the reactants in the channels of the bipolar plate to diffuse 

to the active sites at the catalyst layer.  The GDL also provides a mechanical backing for 

the MEA, assists in heat and water removal from the cell, protects the catalyst layer from 

corrosion and erosion from flow, and must be electrically conductive to reduce ohmic 

losses in electron conduction [16-18]. 

1.3.3 Catalyst Layer 

 The catalyst layer is a mixture of carbon powder and platinum particles, which 

facilitate the electrochemical reactions.  The 2-3 nm platinum particles are spread onto 

the surface of the larger carbon powder particles to maximize the effective area of the 

platinum, which is expensive and adds substantially to the cost of the cell.  The catalyst 

mixture is then sprayed onto the GDL, or a catalyst paste is painted onto the GDL [17]. 

1.3.4 Membrane 

The polymer electrolyte membrane is responsible for transporting the H
+
 ions 

from the anode to the cathode, while preventing electrons from crossing the membrane 

and short circuiting the cell.  There are two major classes of membrane, low temperature 

perfluoro sulfonic acid (PFSA) membranes and high temperature phosphoric acid doped 
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polybenzamidazole (PA/PBI) membranes.  PFSA membranes consist of a backbone of a 

typical carbon-hydrogen polymer structure with fluorine replacing the hydrogen.  During 

fuel cell operation, the H
+
 ions travel from the anode to the cathode jumping across 

sulfonic acid side groups that protrude from the carbon-fluorine chain.  The hydrophilic 

sulfonic acid side groups allow the H
+
 ions to drag water molecules through the 

membrane, making the structure highly sensitive to drying out which drastically reduces 

performance.  This drying of the membrane limits the operating temperature of these fuel 

cells to less than 100°C, hence the low temperature classification.  Emerging membranes 

that are not sensitive to water content, such as PA/PBI membranes, allow the temperature 

of the fuel cell to increase above 100°C (hence the high temperature classification) to 

operate at higher efficiencies while eliminating the complexity of water management in 

the fuel cell [3-4]. 

1.4  Limitations to Growth 

In order for PEM fuel cells to gain a foothold in the market, they must overcome 

several hurdles such as high cost, low power densities and poor water management.  Cost 

is the most inhibiting factor and is caused by a number of factors, namely the platinum 

catalyst and bipolar plate.  The high cost of platinum has historically been a major 

contributing factor to the total cost of the fuel cell.  Recent advancements have reduced 

the amount of platinum loading by a factor of 10 from 4 mg/cm
2
 to 0.4 mg/cm

2
, which 

has significantly reduced the cost contribution to the cell [17].  Another major cost 

contributor is the bipolar plate.  The machining of the flow channels is so expensive that 

the graphite bipolar plates can comprise half of the cost of the fuel cell [3, 19]. 
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An additional limitation is low power density, which is especially important in 

transport applications.  PEM fuel cells have a higher power density than most other fuel 

cells, but the power density needs to improve further to compete with internal combustion 

engines, which is currently around 1000 kW/m
3 

[4].  Bipolar plates are by far the largest 

component of the fuel cell assembly and can take up to 80% of the volume and mass of 

the cell [19-20].  Because power is increased by stacking cells, this issue can quickly lead 

to heavy, bulky units which are not ideal for transportation or portable applications, also 

negatively affecting performance.  If the size of a single cell could be reduced without 

affecting performance, more cells could be stacked in the same volume, which would 

drastically increase the power density. 

Water management is another challenging issue at the cell level.  On one hand, 

the membrane must be hydrated to allow the protons to jump sulfonic acid sites in the 

membrane.  A lack of water in the membrane will decrease ionic conductivity and cell 

performance.  On the other hand, too much water will flood the pores in the cathode GDL 

and prevent reactants from reaching the platinum sites where the reaction takes place.  

This balance between flooding and drying out is difficult to achieve and is a major 

consideration in design [21]. 

1.5 Motivation for this Work 

As discussed in Section 1.4, reducing the size of the bipolar plate will 

significantly decrease the size of the PEM fuel cell.  Or, the PEM fuel cell will produce 

more power per unit volume, hence increasing the power density.  Bhamidipati et al. 

presented an unconventional PEM fuel cell stack design, shown in Figure 5 (a), which 

theoretically increases the power density of a PEM fuel cell stack while simultaneously 
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decreasing size, volume, mass and cost by replacing the bipolar plate with a flat metal 

sheet [22].  A fuel cell stack is a collection of individual fuel cells compressed together to 

obtain a certain power density.  An example of a traditional PEM fuel cell stack is shown 

in Figure 5 (b), which exhibits internal manifolding. 

 

(a)
 

 

MEA

Cathode

Anode

Air

Hydrogen

Bipolar PlateCell XnCell 1

Fuel Cell Stack

Expanded Cell

(b)

 

Figure 5: (a) Stack Design by Bhamidipati et al. [22] (b) Traditional Stack with Internal Manifolding, adapted 

from [23] 
 

In the unconventional PEM fuel cell stack design, the cells are arranged in two 

columns to increase the number of cells in the stack, thereby increasing power density for 

a similar stack size comparing to a conventional fuel cell stack.  Within a column, the 
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cells are arranged in the conventional manner with the cathode of one cell adjacent to the 

anode of the next cell.  The thin conductive metal sheet acts as a separator and thermal 

conductor and decreases the size and weight of the cell.  No additional machining is 

required for the metal sheet which significantly reduces the manufacturing cost for the 

bipolar plate.  For the unconventional PEM fuel cell, the GDLs take over the role of 

delivering reactants to the active catalyst sites, traditionally performed by the bipolar 

plates, as shown in Figure 6. 

 

Figure 6: Close-up of Manifolds and GDLS in New Stack Design 

 

The fuel manifolds and oxidant manifolds are placed along the length of the stack 

external to the cells (i.e., external manifold).  To provide fuel and oxidant to the active 

catalyst sites, the internal wall of the manifolds are designed such that only ½ of every 

other GDL in the longitudinal direction is exposed.  The preliminary study conducted by 

Bhamidipati et al. compared traditional stack designs having a Z or U shape to the 

unconventional design.  The power densities they found for the three stack configurations 

are shown in Table 1. 
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Table 1: Comparison of Power Density from Different Fuel Cell Stack Designs [22] 

 
 U Design Z Design Unconventional Design 

Power Density (kW/m3) 274.36 274.45 1065.76 

  

 

It was found that the unconventional stack design has a power density almost 4 times 

higher than traditional stack designs.  Since they were able to decrease the size of the 

stack by decreasing the size of the conducting plate, they could stack 4 times as many 

cells in a given volume giving the stack the ability to produce 4 times as much power. 

 In order to realize the potential benefits of the unconventional fuel cell stack, it is 

necessary to (1) develop a GDL that can accommodate the fuel and oxidant distribution 

requirements, (2) understand water management and thermal management issues, and (3) 

understand the transport phenomena involved in the porous GDL.  This thesis will 

address one aspect of these issues; developing a GDL to accommodate the gas 

distribution into a cell.  Since the reactants enter the GDL through the side, it is necessary 

to design a GDL with a graduated permeability and therefore a graduated resistance to 

flow to obtain uniform reactant distribution.  This graduated GDL will have an 

anisotropic permeability profile with a different permeability in the in-plane and through-

plane direction.  The through-plane direction is perpendicular to the electrode face, while 

the in-plane direction is across the face of the GDL.  The objective of this work is to 

characterize a permeability profile for this graduated resistance, using experimental and 

numerical approaches. 
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1.6 Structure of the Thesis 

This thesis is split up into six main parts.  The first part is a literature review, 

followed by two numerical studies, experimental work, conclusions and suggestions for 

future work.  The beginning of Chapter 2, the literature review, focuses on existing fuel 

cell models and numerical studies where the authors investigate graduated porosity.  

After that, papers are studied where the investigators test the permeability of common gas 

diffusion layers to understand pearmeability testing methodology and to obtain reference 

data.  The last part of the literature review covers papers which discuss the permeability 

of woven fabrics. 

In Chapter 3, the first numerical study, the cathode of a fuel cell is modeled with 

commercial computational fluid dynamics (CFD) software Fluent Version 6.3.26, and the 

effect of permeability on expected current density is investigated.  Average current 

densities are compared to standard deviation of the current density to investigate 

uniformity.  While the study takes into account the equations for gas flow, the current 

density is not coupled to the mass concentrations of oxygen, and the equations for 

potential are not solved.  Thus, a more robust numerical model and solver was needed. 

In Chapter 4, the second numerical study, a fuel cell cathode is modeled with 

another commercial CFD software, COMSOL Mulitphysics version 3.5.  In this model, 

permeability profiles are looked at in more detail throughout the GDL, and the current 

equations are coupled to the mass concentrations.  This more complex model also takes 

into account the charge transport equations. 

In Chapter 5, the experimental section, the design of experiments and the 

methodology for the design of the permeability testing device are discussed.  Following 
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this, the results from the tests of permeability profiles are presented.  Samples were also 

sent to Micromeritics to test the porosity and analyze pore structure.  The pore analysis is 

used to explain experimental data. 

In Chapter 6, conclusions from the preceding 3 chapters are summarized.  In 

Chapter 7, suggestions for future work are discussed.  A preliminary study into 

graduating the catalyst loading is conducted in order to achieve a more uniform current 

density distribution. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this thesis, numerical studies are run to simulate the effect of changing the gas 

diffusion layer permeability and study the effect on performance.  Also, experiments are 

conducted in which GDLs are woven from carbon fibers with varying weave pattern and 

tightness to measure the permeability.  In this chapter, a review on the equations which 

describe fuel cell performance and fuel cell modeling approaches and are discussed.  

Following this, a literature review is presented on permeability modeling, experimental 

methods to test gas permeability in GDLs, and permeability of woven structures. 

2.2 Fuel Cell Performance 

Before fuel cell modeling is discussed, it is important to understand the basics of 

how a fuel cell’s performance is judged.  Thus, a basic overview on how a fuel cell’s 

voltage is calculated and what contributes to losses in voltage and efficiency is given in 

Section 2.2, followed by a detailed description on various modeling approaches used to 

characterize not only PEM fuel cells, but also a porous media. 

2.2.1 Nernst Potential 

When a fuel cell draws no current, the cell voltage is at the reversible Nernst 

Potential, E, which is the maximum potential the cell can obtain before any of the 

irreversible losses take effect.  This voltage takes into account the work potential of the 
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fuel, the temperature, pressure and the electrochemical reaction.  The Gibbs Free Energy, 

G, is the energy required to create an electrochemical system, minus the energy 

contributed by the environment through spontaneous heat transfer.  Since G encompasses 

all the energy used to create the electrochemical system, it is the theoretical maximum 

energy the system can provide [3].  For a hydrogen-oxygen fuel cell at standard 

temperature and pressure (STP) conditions, 25°C and 1 atmosphere respectively, the 

standard Nernst potential, E
0
, is given by Equation 1 [3-4], 

 
nF

G
E

0
0 ∆

−=  (2.1) 

where ∆G
0
 is the change in Gibbs Free Energy at STP, n is the number of electrons 

transferred per reaction and F is Faraday’s constant [3-4].  Therefore, E
0
 is 1.23 V. 

 Most fuel cells do not run at standard conditions, these changes in temperature 

and pressure affect the Nernst Potential.  For a fuel cell operating below 100°C, the 

corrected Nernst Potential is shown in Equation 2.2 [3]. 
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where E is the corrected Nernst Potential, R is the universal gas constant, T is the 

temperature in Kelvin, 
2Hp is the partial pressure of hydrogen in the fuel mixture, and 

2Op is the partial pressure of oxygen in the oxidant mixture. 
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2.2.2 The Polarization Curve and Irreversibilities 

The metric used to measure fuel cell performance is the polarization curve.  The 

polarization curve is a plot showing the drop in voltage as the average current density 

(the amount of current drawn through the cell) increases.  A typical polarization curve is 

shown in Figure 7. 

 

Figure 7: Polarization Curve adapted from [24] 

 

 As shown in Figure 7, the polarization curve is grouped into three regions.  

Region I is the activation loss region.  Activation losses are described by the Butler-

Volmer Equation[3], given by, 

 
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where i is the current density, i0 is the exchange current density, cτ is the concentration of 

the reactant, 
0τc is the reference concentration of the reactant, cγ and 

0γc are the 

I II III 
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concentration and reference concentration of the product, α is the charge transfer 

coefficient and η is the activation voltage drop or voltage loss.  Therefore, this 

relationship tells us there is an exponential relationship between an increase in current 

and the drop in voltage.  This explains the exponential shape of the activation region.  

The kinetics of the hydrogen-oxidation reaction at the anode are much faster than the 

kinetics of the oxygen-reduction reaction at the cathode.  This causes the activation 

voltage losses from the cathode reaction to be dominant over the losses from the anode 

reaction. 

Region II is the ohmic region.  These losses are due to electronic charge transfer 

resistance throughout the GDL, catalyst layer, and bipolar plate and ionic charge transfer 

resistance through the membrane.  The ohmic losses, ηohmic, are given by Equation 2.4 

[25]. 

 ( )ionicelectronicohmicohmic rriir +==η  (2.4) 

where rohmic is the ohmic resistance.  The resistance can be split up into an electronic and 

ionic component.  Since the GDL, catalyst layer, and bipolar plates are made of a 

combination of metal, graphite or carbon fibers, the electronic resistance is low due to the 

high electrical conductivity of these materials.  Therefore, the ionic resistance dominates 

the ohmic resistance [3-4]. 

 Region III is the concentration loss or mass transport loss region.  As the fuel is 

depleted while travelling throughout the cell, there will be a reduction in the partial 

pressure of the hydrogen and oxygen.  Also, as the current density is increased, more fuel 

must be supplied to sustain a higher reaction rate.  At a certain point, all the catalyst sites 
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will be depleted and the current density can no longer increase.  This is a compound 

effect of an inability to increase the current density with a decrease in voltage caused by 

the drop in partial pressure.  This manifests itself as a concentration loss which can be 

estimated by Equation 2.5 [25]. 
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where ηconcentration is the concentration overpotential, il is the limiting current density, or 

the current density at which the concentration losses become dominant.  The limiting 

current density is a somewhat arbitrarily chosen number that will depend on operating 

conditions and the fuel cell’s materials and geometry. The limiting current is better used 

as a curve fitting parameter than an actual modeling parameter [3-4]. 

2.3 Fuel Cell Modeling Methodology 

In general, fuel cell models can be characterized by their physical dimension and 

their level of complexity.  In the following section different levels of modeling 

complexity will be discussed to see the advantages and disadvantages of upgrading 

models. 

2.3.1 Zero Dimensional Models 

The simplest models are zero-dimensional models, which describe the 

polarization with a single equation.  The voltage can be found at a range of current 

densities by subtracting the three types of losses from the Nernst Potential [25], 

 ionconcentratohmicactivationEV ηηη −−−=  (2.6) 
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where V is the operating voltage of the cell.  Zero dimensional models are best suited for 

fitting to empirical data rather than intensive modeling.  They can be helpful to learn 

which type of loss is dominant with a set of operating parameters, but they are not useful 

for optimizing fuel cell performance [25]. 

2.3.2 One Dimensional Sandwich Models 

In 1-D sandwich models, the individual layers of the cell are modeled, but 

transport is only solved in one direction, the direction perpendicular to the cell faces (the 

through-plane direction) as opposed to the in-plane direction which is the direction 

parallel to the cell faces, as seen in Figure 8. 

 

Figure 8: Typical One Dimensional Sandwich Model adapted from [25] 

 

Material properties that affect transport such as electrical conductivity and air 

permeability can be set as 1-D space dependent variables through the layers, while 

boundary conditions for the transport processes that occur between layers can be used to 

couple transport properties across adjacent layers.  While the complexity of the mass 
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transport is reduced, 1-D models allow investigation of other transport phenomena, which 

may be difficult to model in multiple spatial dimensions, at a lower computational cost.  

1-D models are desirable when transport is considered isotropic, and the mass or charge 

distributions throughout the cell are unimportant [25]. 

2.3.3 Two Dimensional Flow Models 

To model effects that can only be seen in multiple dimensions such as velocity 

fields, charge distribution and mass concentration profiles, a 2-D model can be used.  

There are two configurations of 2-D models shown in Figure 9 (a) and (b).   Figure 9 (a) 

is an along-the-channel model.  The inlet and outlet ports of the gas channel are modeled 

as part of the fuel cell sandwich.  In this way, gas consumption and charge distribution 

can are analyzed along the length of the cell as the hydrogen is consumed.  A limitation 

of this approach is that only one channel can be analyzed at a time, and the effects of 

flow through multiple channels in the plate cannot be visualized.  Also flow under-the-

ribs between the channels cannot be analyzed.  To investigate flow into the GDL, one 

could use an under-the-rib model shown in Figure 9 (b), which represents the gas flow 

into the gas diffusion layer and under the section of the bipolar plate between two 

adjacent channels, called the rib.  A limitation of this approach is that the flow cannot be 

analyzed as gas is used up along the channel. 
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(a)

(b)  

Figure 9: (Along the Channel Model and (b) Under-the-Rib Model [6] 

 

2.3.4 Three Dimensional Flow Models 

In 3-D models, it is common to extend the under-the-rib model, illustrated in 9 

(b), along the rest of the channel forming a 3-D pattern, as shown in Figure 10.  Using 

this method, gas consumption can be analyzed along the length of the channel and over 

the face of the cell at cross-sections in the channel.  Unfortunately, modeling transport in 

three dimensions is computationally costly, and 3-D models usually focus on intensive 

modeling of one transport process.  To cut down on computational costs, it is common to 

model one channel rather than an entire cell, as all the channels are symmetrical and 

should show similar velocity and concentration profiles [25]. 
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Figure 10: Three Dimensional Under-the-Rib Model Showing Velocity Profile and Mass Fractions of Oxygen at 

a Cross-Section in a Channel adapted from [26]  

 

2.4 Diffusion Media Modeling 

There are two primary transport mechanisms in the gas diffusion layer, diffusive 

transport and convective transport.  Diffusive transport occurs naturally due to 

concentration gradients as reactants are consumed or produced.  Reactant gases are 

consumed at the catalyst layer which creates a concentration gradient for hydrogen in the 

anode and oxygen in the cathode.  As a result, fuel rich gas will flow towards the catalyst 

layer based on the rate of consumption.  Convective transport occurs when a pressure 

gradient forces a fluid to flow towards a region of lower pressure.  In interdigitated flow 

fields, the gas in an inlet channel must flow through the GDL to reach the lower pressure 

at the outlet.  The pressure builds up in the inlet channel and forces the gas through the 

GDL to the outlet channel. 

 The Maxwell-Stefan Equation for diffusion, Equation 2.7, is often used to 

describe the diffusive flux in the fuel cell [25]. 
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where X is the mol fraction of species i, N is the diffusive flux vector for species i and j, 

cT is the total concentration of the mixture, and Di,j
eff

 is effective diffusion coefficient.  

The diffusion coefficient in the porous media (i.e. the GDL) will be lower than diffusion 

in a non-porous media (i.e. the open flow channels) due to interaction with the pore walls.  

The decrease in the diffusion coefficient is modeled with the Bruggeman expression 

shown in Equation 2.8 [25, 27-31], which relates the bulk porosity, ε, and the binary 

diffusion coefficient, Di,j, between two species to the effective diffusion coefficient. 
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where the diffusion coefficient can be found from a formulation in Kinetic Gas Theory 

[32-33], given by Equation 2.9. 
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where k is a diffusion prefactor, P is the total pressure, ψ is the diffusion volume of 

species i or j, and M is the molecular weight of species i or j. 

In fuel cells with parallel and serpentine flow fields the gas is not forced by a 

pressure gradient into the GDL.  Therefore, diffusion is the dominant transport 

mechanism, and these types of fuel cells are often modeled only considering diffusion.  In 

interdigitated flow fields, the operating principle is based on forced convection into the 
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GDL.  To capture pressure losses throughout the GDL due to convection, the Darcy-

Forchheimer equation is added to models, given by Equation 2.10 [34], 

 2vv
K

P βρ
µ

+=∇−  (2.10) 

where µ is the viscosity of the gas, K is the permeability, v is the velocity, and β is the 

Forchheimer coefficient. The Forchheimer term, βρv
2
, is valid at higher flow velocities.  

At low flow velocities where the Reynolds number is smaller than 1, the Darcy-

Forcheimmer Law reduces to Darcy’s Law and is given by Equation 2.11 [3]. 
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µ

−=∇  (2.11) 

 Darcy’s law is added as a source term in the momentum equation.  It can be seen 

that the value of the permeability in the denominator will significantly affect the velocity 

and the pressure drop through the GDL.  The viscosity will remain nearly constant at a 

constant temperature, which makes the permeability the dominant parameter affecting the 

velocity of the gas.  If the permeability is decreased by a factor of 10, the velocity will 

decrease by a factor of 10 for a given pressure drop.  It is important to note that this 

equation is valid for gas phase flow only.  If two-phase flow were considered, the relative 

permeability of both the liquid and gas phase would need to be addressed in the equation.    

As discussed at the beginning of this section, convective porous media treatment is 

important in interdigitated flow fields.  In the unconventional design considered in this 

thesis, the gas travels due to an in-plane pressure gradient via forced convection through 
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the GDL; while diffusion is still considered, convection is the dominant transport 

mechanism. 

2.5 Models with Varying Porosity and Permeability 

Most models presented in literature treat the GDL with isotropic permeability [28-

32, 35-40].  A few models consider the GDL to have an anisotropic permeability profile 

[41-42], while some other models attempt to create graded porosity models to represent 

different phenomena such as GDL compression and liquid water formation blocking the 

pores [43-44]. 

In the unconventional stack design, it has been hypothesized that the permeability 

in the gas diffusion layer will need to be controlled.  To control the gas permeability, the 

porosity in the gas diffusion layer has to be designed such that desired gas permeability 

profile is created.  Gas permeability is often related to the porosity using the Carman-

Kozeny equation [45], 
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where df is the fiber diameter.  The Carman-Kozeny model does not differentiate between 

isotropic and anisotropic permeability and is reliant on a fitting parameter, kCK, which is 

different for all materials and fiber arrangements.  Tomadakis and Sotirchos developed an 

equation to predict the anisotropic permeability of 1-D, 2-D and 3-D random fiber beds 

[46-48], which only relies on the average porosity and fiber diameter and is given by, 
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 where εp and s are fitting parameters depending on the geometry of the fibrous structure. 

For a 2-D random alignment of fibers, which is analogous to the carbon fiber structure in 

a conventional carbon paper GDL, εp is set to 0.11 while s is set to 0.521 in the in-plane 

direction and 0.785 in the through-plane direction. 

2.5.1 Porosity Gradient Models 

 Chen et al. employ a 1-D, two-phase model with a porosity gradient in the GDL 

to simulate the addition of a microporous layer (MPL) [43].  An MPL is a layer between 

the GDL and the catalyst, which is infused with a hydrophobic material such as PTFE 

and is used to effectively push water away from the membrane and out of the GDL.  The 

MPL has smaller pores than the GDL but bigger pores than the catalyst layer, which 

helps reduce the contact resistance between the GDL and catalyst.  The configuration is 

shown in Figure 11. 

 

Figure 11: Simulation Configuration for Chen et al. adapted from [43] 

 

 The porosity decreases linearly from an initial value of ε1 to a final value of ε2 

based on the following equation developed by Chen et al., 
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The porosity at the catalyst layer/GDL interface is set to 0.2, and the porosity at the gas 

channel/GDL interface is increased over a range of 0.2 to 0.8.  Polarization curves for 

different values of gas channel/GDL interface porosity are shown in Figure 12. 

 

Figure 12: Polarization Curve for Different Values of ε1 adapted from [43] 

 

It was shown that a greater porosity gradient enhances the removal of liquid water, 

freeing up pores in the GDL and improving oxygen transport, which in turn increases the 

limiting current density and performance of the cell significantly [43]. 

 Chu et al. developed a 1-D model to try to model liquid water saturation as a 

gradient in porosity [44].  They ran four simulations with four different porosity gradients 

through the GDL.  In model 1 the porosity was constant at 0.4.  In model 2, there was a 

linear decrease in porosity.  In models 3 and 4, they used a concave and convex 

exponential function to model porosity as a function of position.  The porosity gradients 

used by Chu et al. are shown in Figure 13.  The effect of the porosity change on the 
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polarization curve is shown in Figure 14.  A zero dimensional equation was used to 

generate the polarization curve, which has limitations as discussed in Section 2.2.1. 

 

Figure 13: Porosity Distribution as Function of Position for 4 Models adapted from [44] 

 

 

 

 

Figure 14: Effect of Porosity Change Model on Polarization Curve adapted from [44] 

 

 Model 3 represents the model with the convex exponential shape and the highest 

porosity.  It was shown by Chu et al. that models with higher porosity lead to higher 
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water transport out of the cell and higher oxygen transport into the catalyst [44].  This 

leads to higher operating voltages and power densities.  The rest of the models showed 

similar trends; models with higher porosity performed better. 

2.5.2 Compressed GDL Models 

Nitta et al. investigated the effect of inhomogeneous compression in the GDL on 

the transport properties using a 2-D single-phase flow model [49].  During operation, the 

cell is compressed by the endplates to help with sealing.  Under compression, the sections 

of the GDL under the bipolar plate ribs are compressed while the sections of GDL under 

the open channels are uncompressed, as seen in Figure 15 (a) and (b).  Under 

compression, the pores in the GDL will decrease and the transport of oxygen from the gas 

channel to the catalyst layer will be restricted. 

In the model, the porosity of a compressed sample is related to the level of 

compression by Equation 2.15, given by, 

 ( )
)(

11 0

0
xh

h
c εε −−=  (2.15) 

where εc is the compressed porosity, ε0 is the original porosity, h0 is the original 

thickness and h(x) is the thickness as a function of the x- position, which changes based 

on the amount of compression. The compressed thickness is plotted against the 

compressed porosity, and the compressed permeability is calculated from an equation 

developed from a curve fit.  While the gas permeability changes as a function of x-, the 

permeability is still considered isotropic. 
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Gas Diffusion Layer

Catalyst Layer

Channel

Current Collector (Rib)

(b)  

Figure 15: (a) Photograph of GDL under Compression [49] and (b) Model of GDL Under Compression adapted 

from [27]  

The oxygen molar fraction at the catalyst layer/GDL interface for both a model 

that considers a change in permeability due to compression and a model that does not 

consider compression in the transport properties were studied by Nitta et al. and are 

shown in Figure 16.  They found that there exists no significant change in oxygen molar 

fraction between the compressed GDL and the uncompressed GDL.  They concluded that 

the decrease in permeability under the rib due to compression did not cause a change in 

the mass distribution of oxygen at the catalyst layer. 
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Figure 16: Oxygen Molar Fraction at GDL/Catalyst Layer Interface at a Cell Voltage of 0.5 V [49] 

 

 Sun et al. created a 2-D under-the-rib model to investigate the current density 

distribution under different levels of compression [27].  The area underneath the rib is 

assumed to be 15% thinner than the area under the channel.   A compressed GDL was 

compared to an uncompressed GDL.  They found that the total average current density in 

the uncompressed GDL was 640 mA/cm
2
, while the average current density in the 

compressed GDL was 632 mA/cm
2
, which is an insignificant difference.  Sun et al. 

showed that when the GDL is compressed, mass distribution of oxygen is impeded by 

smaller pores, but electrical conductivity increases.  In this model the effects seem to 

cancel out each other [27].  This illustrates an important trade-off between pore size and 

conductivity.  Increasing pore size will help increase mass distribution, but it will also 

increase contact resistance between the carbon fibers which reduces electrical 

conductivity. 

2.5.3 Anisotropic Permeability Modeling 

Pharoah developed a 3-D model with a serpentine flow field to study the effect of 

isotropic and anisotropic permeability profiles on convective flow between channels in 
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the GDL [42].  It is discussed that GDLs are either made by pressing chopped carbon 

fibers together into a paper, or weaving bundles of carbon fibers together into a cloth, 

which creates a different structure in the in-plane and through-plane.  This would imply 

that the flow characteristics should be different in the in-plane and through-plane 

directions.  The pressure drop in the channel when comparing an isotropic model to two 

orthotropic models, based on Pharoah’s work, can be seen in Figure 17. 

 

Figure 17: Effect of Anisotropic Permeability on Channel Pressure Drop [42] 

  

Pharoah found that once the permeability is decreased to 1 x 10
-12

 m
2
 there is a 

plateau, thus there is no further decrease in pressure drop.  It was concluded that this 

indicates that none of the gas is making it into the GDL.  On the other end, once the 

permeability increases to 1 x 10
-9

 m
2
 there is another plateau, which indicates all of the 

gas is going through the GDL unimpeded [42].  For the two models with anisotropic 

permeability, Pharoah increased the through-plane permeability over two to three orders 

of magnitude while fixing the in-plane permeability.  Pharoah found that significant 
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changes in through-plane permeability do not have a drastic effect on the resulting 

pressure drop, while changing the in-plane permeability by one order of magnitude, from 

1 x 10
-10

 to 1 x 10
-11

 m
2
, dramatically increases the pressure drop.  This shows that the in-

plane permeability has more of an effect on the resultant pressure drop than the through-

plane permeability [42]. 

2.6 Permeability Testing 

In addition to numerical simulations, many groups have conducted tests to 

characterize the air permeability of commercial GDLs.  In this section, the test set-ups 

and results of five experimental studies are discussed. 

2.6.1 Experimental Permeability Testing 

Feser et al. used a radial flow apparatus, shown in Figure 18, to measure the in-

plane air permeability of a carbon paper GDL, a non-woven carbon fiber GDL and a 

woven carbon cloth GDL under various levels of compression [50]. 

 

Figure 18: Radial Flow Apparatus used by Feser [50] 
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An expression relating flow rate to the pressure drop in radial coordinates was 

derived from Darcy’s law.  The original thickness of each sample was measured and 

averaged, then the samples were compressed using a hydraulic press.  Air was pumped 

into an outer ring and through the GDL.  The pressure drop and flow rate were measured 

with pressure gauges and a flow meter.  The permeability of the samples tested is plotted 

against the porosity in Figure 19. 

 

Figure 19: Permeability vs. Compression for Various GDLs [50] 

 

Feser et al. found the non-woven carbon fibers (SGL 31BA) and the carbon cloth 

(Avcarb1071) had higher permeability under different levels of compression than the 

carbon paper (Toray 68-H). 

 Gurau et al. [51] tested the in-plane and through-plane permeability of four 

samples of carbon fiber cloth with different types of microporous layers, and one sample 

without a microporous layer to determine the permeability coefficients of the 

microporous layers.  The permeability was assumed transversely isotropic in the in-plane 

direction, while the through-plane permeability had a different permeability.  The in-

plane and through-plane permeabilities were tested with equipment developed in-house.  
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The equipment allowed the flow rate to be controlled and the pressure drop to be 

measured.  The Darcy-Forchheimer relationship, given by Equation 2.10, was used to 

determine the permeability coefficient using a least-squares fit.  A typical set of data is 

shown in Figure 20. 

 

Figure 20: Pressure Gradient vs. Velocity for Various Carbon Cloth Samples [51] 

 

 The least-squares fit of these curves was set to the Darcy-Forchheimer equation to 

calculate the permeability coefficient.  Gurau et al. found the in-plane and through-plane 

permeability values to be in a range of 1 x 10
-12

 m
2
 to 20 x 10

-12
 m

2
.  They found that 

more PTFE in the microporous layer increased the permeability, which is contrary to 

literature that suggests higher PTFE content blocks pores and decreases air flow.  The 

macroporous GDL exhibits higher permeability than GDLs with mircoporous layers 

which is consistent with literature.  Also, the in-plane permeability tends to be higher 

than the through-plane permeability. 

 Ismail et al. [52] tested the through-plane permeability of a variety of untreated 

and PTFE-treated GDLs using an in-house test device, shown in Figure 21.  They also 

ran a dimensional analysis on the Darcy-Forchheimer equation to study the effect of the 

Forcheimmer term on the permeability value.  They used a mass flow controller to 
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control the flow from an air cylinder into the device and measured the pressure drop 

across the GDL. 

 

Figure 21: Through-Plane Permeability Test Set-Up [52] 

 The pressure drop was measured for at least 10 flow rates for each material and 

the mass flux of air vs. the pressure gradient was plotted for each material, as seen in 

Figure 22.  A curve was fit to data and compared to the Darcy-Forchheimer equation to 

extract out the permeability for each sample. 
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Figure 22: Pressure Gradient vs. Mass Flux for Through-Plane Permeability of GDL Samples [52] 

 

Ismail et al. found there was an optimal amount of PTFE loading where the 

permeability was highest.  Five samples, provided by SGL Technologies, had known 

PTFE loading while two samples provided by Ballard Power Systems had unknown 

properties.  Therefore a comparison could not be made between the loading on the SGL 

materials and the Ballard materials.  A dimensional analysis on the Darcy term and the 

Forchheimer term was conducted for a standard set of operating conditions.  It was found 

that at the operating conditions used in the test, the Forchheimer term had a negligible 

effect on the results.  Ignoring the Forchheimer effect only results in a 0.65% error, so the 

assumption that the Darcy term dominates and can be used to approximate through-plane 

permeability is valid. 

 Williams et al. [53] measured the through-plane permeability of four commercial 

carbon papers, three commercial carbon cloths and a carbon paper manufactured in-

house.  The test set-up was similar to the test set-up used by Ismail et al.  A needle valve 

was used to control flow instead of a mass flow controller, and nitrogen was used as the 

impregnating gas.  Each GDL was tested in a fuel cell.  The limiting current is shown as a 

function of the permeability coefficient in Figure 23. 
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Figure 23: Limiting Current vs. Permeability Coefficient for GDLs [53] 

 

It can be seen from the figure that the limiting current density increases as the 

permeability coefficient increases.  They concluded that the limiting current increases 

because the GDL can remove water from the cell at higher current densities more 

efficiently so it does not block the pores needed for gas transport.  The porosity of the 

GDLs was measured using mercury intrusion porosimetry and from weighing the 

samples before and after immersion in a wetting liquid which fills all the pores.  The 

porosity found from the two techniques differed by less than 3.5%.  A comparison of the 

porosity vs. the permeability coefficient for the materials tested is shown in Figure 24. 
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Figure 24: Pore Volume vs. Permeability Coefficient for Measured GDLs [53] 

  

The graph shows the permeability coefficient increases with increasing pore 

volume, which makes sense because higher pore volume will decrease resistance to gas 

transport.  This also shows that the common pore volumes for commercial GDLs are 

between 50% and 90%, which is an important parameter to consider in modeling.

 Gostick et al. [34] measured the in-plane and through-plane permeability of six 

commercially available GDLs with two testing devices built in-house.  In the in-plane 

testing device, shown in Figure 25 (a) - (c), a flow control valve was used to control the 

inlet flow rate into a channel.  The sample was compressed to a known thickness using 

feeler gauges, and the flow rate was measured using a volumetric flow meter at the outlet.  

A pressure gauge measured the pressure drop between the two parallel channels on either 

side of the sample.  The pressure drop was measured over a range of flow rates and feeler 

gauge thicknesses.  The results for a typical material are shown in Figure 26. 
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Figure 25: (a) In-Plane Permeability Testing Device, (b) Exploded View, and (c) Cutout View of the Inside of the 

Device [34] 

 

 

 

Figure 26: Pressure Gradient vs. Mass Flux for SGL 34BA [34] 

Using a least-squares fit, the curve was compared to the Darcy-Forchheimer 

equation to calculate the permeability.  The original porosity was measured using 

mercury intrusion porositmetry.  After the permeability was calculated at each thickness, 

the permeability was plotted vs. the compressed volume fraction of material and the 

porosity of the material at each thickness, as shown in Figure 27 (a) and (b). 
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Figure 27: Permeabiliity vs. (a) Compressed Volume Fraction and (b) Porosity [34] 

The uncompressed permeability could be backed out of the graph and compared 

to the through-plane permeability.  To measure the through-plane permeability, circular 

samples were placed between two plates and compressed with bolt holes, as seen in 

Figure 28 (a) - (c). 

 

Figure 28: (a) Through-Plane Permeability Measurement Device, (b) Exploded View, and (c) Cutout View [34] 
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The pressure drop was again plotted against the inlet mass flux and the 

permeability coefficient was calculated from fitting the curve to the Darcy-Forchheimer 

equation.  The Carman-Kozeny model and the Tomadakis-Sotirchos model were both 

compared to the curves of permeability vs. porosity and showed reasonable agreement.  

The Tomadakis-Sotirchos model showed better agreement, as it did not rely on a fitting 

parameter.  It was found that the in-plane permeability was twice the through-plane 

permeability of commercial GDLs, which is consistent with the Gurau et al.  Gostick et 

al. also state that the permeability range of typical commercially available GDLs is 

between 1 and 50 x 10
-12

 m
2
, which is consistent with the findings of all the papers and is 

another parameter important for determining limits on modeling GDLs. 

2.6.2 Permeability of Woven Structures 

To the author’s knowledge, there are no studies in literature linking the structure 

of woven GDLs to gas permeability.  However, there are studies in textile research that 

look at the permeability of woven textile fabrics which are likely analogous to carbon 

fiber structures.  The research in textiles exclusively looks at through-plane permeability, 

as through-plane permeability is more important than in-plane permeability in textiles. 

Woven fabrics are manufactured by interlacing warp and weft fibers.  Warp fibers 

are along the length of the fabric, while weft fibers are along the width of the fabric, as 

shown in Figure 29. 
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Figure 29: Diagram of Plain-Woven Fabric adapted from [54] 

 

Ac is the cross sectional area of a pore.  The diameter of the horizontal weft fibers is given 

by dwe, while the distance between the fibers is given by b.  The diameter of the warp 

fibers is given by dwa and the distance between warp fibers is given by a.  The void 

spaces between the yarns and the voids between individual fibers that make up a yarn 

cause permeability of liquids and/or gases [54]. 

Permeability is determined by the structure of the weave, the amount of twist in 

the fibers, the size of the fibers and the density of fibers in the weave [55].  In a plain 

weave, a weft fiber goes over one warp fiber and under the next warp fiber.  This single 

over-under pattern forms one unit which repeats itself.  The same pattern is true for the 

warp direction.  In a twill weave, one weft fiber will go over two consecutive warp fibers 

before going under two consecutive weft fibers, which forms a repeating unit.  A twill-

woven pattern is shown in Figure 30. 
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Figure 30: Twill Weave 

 

Feather and Anderson [55] measured the permeability of plain, twill and hopsack 

weaves with varying tightness by increasing the number of fibers per unit length.  They 

found that the through-plane permeability decreased as the fiber linear density increased.  

They also found that the plain weave had the lowest air permeability of all structures 

tested. 

Epps and Leonas [56] investigated the permeability of ten different woven fabrics 

with a liquid porosimetry technique.  They found that the permeability is highly 

correlated to the minimum pore size, but also depends on the mean pore size and 

porosity.  Ogulata [54] studied the air permeability of woven structures with a different 

number of weft yarns per cm (i.e. tightness).  He also found the permeability decreased 

with an increasing number of weft fibers per cm, which shows a correlation between the 

porosity and the air permeability.  As the number of fibers increase, there is less void 

space between fibers, which decreases porosity and air permeability. 
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2.7 Summary 

In this review, the theory behind PEM fuel cell performance measurement and 

modeling approaches were discussed.  Porous media modeling and GDL modeling was 

discussed in more detail.  Literature detailing the results of numerical simulations of 

permeability in GDLs, and literature detailing methods to test the gas permeability of 

conventional GDLs was presented.  Also, some theory on the permeability of woven 

structures was discussed.  In Chapters 3 and 4 of this thesis, two numerical studies in 

which the permeability of GDLs is varied are developed using the theory discussed in 

Sections 2.2 through 2.5.  In Chapter 5, woven GDLs are made in-house and tested on 

equipment built in-house, which follow the analytical techniques presented in Section 

2.6, in order to enhance our understanding of permeability and flow through GDLs in 

PEM fuel cells. 
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CHAPTER 3 

FLUENT MODEL WITH CHANGE IN PERMEABILITY 

3.1 Motivation 

In the fuel cell stack design proposed by Bhamidipati et al. [22], the GDL needs 

to control the gas distribution over the face of the electrode.  In order to distribute gas 

evenly and create a uniform current density, it is hypothesized that the GDL will need to 

exhibit an anisotropic and controlled resistance to flow.  There is a significant in-plane 

pressure gradient due to the placing of the inlets on the sides of the GDL.  This in-plane 

pressure gradient will cause the air to quickly exit the fuel cell through the outlet before it 

reaches the catalyst layer.  To overcome this pressure gradient, the in-plane resistance 

must be higher to keep the air in the fuel cell. 

In this chapter, the effects of changing the resistance profile, changing the 

thickness of an unconventional GDL and changing the air stoichiometry on the average 

current density and current density distribution are investigated with a numerical model.  

The model is solved using a commercial computational fluid dynamics software, Fluent 

6.3.26.  In the half-cell model of a fuel cell cathode, the gas flow is solved in 3-D, while a 

zero-D equation is used to solve for the expected current density.  The half cell model is 

split into four regions with anisotropic permeability profiles, and the in-plane 

permeability near the inlet is increased.  The purpose of this model is to see how 

permeability profiles affect gas flow trends through the GDL. 
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3.2 Computational Model 

In the following section, the computational modeling domain, assumptions, 

governing equations, boundary conditions and modeling approach are discussed.  A 

model from literature is replicated for validation. 

3.2.1 Modeling Domain 

Only the cathode side of the fuel cell will be modeled, because the kinetics are 

dominant in the region and the computational complexity and time will be significantly 

reduced.  Models that only consider the cathode are called half-cell models and are 

common throughout literature [26-27, 35, 44, 57-58].   These models assume that the 

anode is run at conditions which can fully keep up with the current generated at the 

cathode.  The anode reaction, called the hydrogen-oxidation reaction, involves platinum 

splitting a hydrogen atom into two electrons and two protons, given by the following 

chemical equation, 

 −+ +⇒ eHH 222  (3.1) 

On the cathode, the oxygen-reduction reactions consists of platinum splitting an oxygen 

molecule into two oxygen atoms and combining them with the protons and electrons 

from the anode reaction to form water, which is given by the following chemical 

equation, 

 OHeHO 22 22
2

1
⇒++ −+  (3.2) 
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The kinetics of the oxygen-reduction reaction are much slower than the hydrogen-

oxidation reaction, causing the activation overpotential from the cathode reaction to be 

much higher.  Since fuel cell performance is so dependent on the oxygen transport and 

reaction at the cathode, it is reasonable to model only the cathode.   The modeling domain 

includes the cathode catalyst layer and the cathode GDL, as depicted in Figure 31. 

 

Figure 31: Side View of Modeling Domain 

 

Only the gas flow is modeled in the GDL and catalyst layer.  Electronic and ionic 

transport is considered in a future model.  The model is split into four separate regions, 

labeled 1_1, 1_2, 2_1 and 2_2, where the gas permeability can be controlled in the two 

in-plane directions (x- and y-) and the through-plane direction (z-), as depicted in Figure 

32. 
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Figure 32: GDL and Catalyst with Subdomains Labeled 

 

The placement of the inlets and outlets on the sides of the cell will induce a large 

in-plane pressure gradient which will force flow to go directly from the inlet to the outlet.  

This will create ‘dead zones’ in the corners of the cell furthest away from the inlet and 

outlet.  It is desirable to create a flow resistance profile that will allow the oxygen rich air 

to reach the corners at the same rate it reaches the rest of the cell to attain uniform 

distribution of reactants and consequently, uniform current density. 

3.2.2 Problem Solving Methodology 

The first step is to find a desired point of operation for the fuel cell by generating 

a polarization curve.  The Nernst potential is calculated using Equation 2.2.  The 

operating voltage is found by subtracting the losses using Equation 2.6, and the three 

main types of losses are given in Equations 2.3, 2.4 and 2.5.  The operating conditions 

and design parameters are given in Table 2. 
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Table 2: Operating Conditions and Design Parameters 

 
Operating Condition or Design Parameter [units] Value 

GDL Height [mm] 10 

GDL Width [mm] 10 

Catalyst Layer Thickness [mm] 0.01 

Pop, Operating Pressure [atm] 1 

Pstd, Standard Pressure [atm] 1 

T, Operating Temperature [°C] 80 

R, Gas Constant [J/(mol·K)] 8.314 

F, Faraday’s Constant [C/mol] 96,485 

α, Charge transfer coefficient 0.5 

r, Area specific resistance [Ωcm2] 0.4 

io, Exchange current density [A/cm2] 1 · 10-5 

il, Limiting current density [A/cm2] 1.5 

2OX , Inlet Mol Fraction O2 0.2 

cOHX
2

, Inlet Mol Fraction, H2O cathode 0.1 

2NX , Inlet Mol Fraction, N2 0.7 

2HX , Inlet Mol fraction H2 0.2 

2OM , Molar mass of oxygen [kg/mol] 0.032 

OHM
2

, Molar mass of water [kg/mol] 0.018 

2NM , Molar mass of nitrogen [kg/mol] 0.028 

2Oψ , Diffusion volume O2 [m
3/mol] 16.6 · 10-6 

OH 2
ψ , Diffusion volume H2O [m3/mol] 12.7 · 10-6 

2Nψ , Diffusion volume N2 [m
3/mol] 17.9 · 10-6 

k, diffusion pre-factor [Pa·m2/s] 3.16 · 10-8 

 

Using these operating conditions, Figure 33 is obtained where the polarization curve is 

plotted against the power density.  The power density is calculated by multiplying the 

current density and operating voltage.  The operating point of 1 A/cm
2
 is chosen for this 

study.  At this operating point, the power density is near the maximum power density.  A 

slight increase in current density would cause a significant decrease in voltage and power 

density as the concentration losses would become dominant.  This is a typical operating 

point for modeling studies [35, 59]. 



 53

 

Figure 33: Polarization Curve 

 

 After choosing an operating point, the mass flux, q, of oxygen consumed at the 

electrode is calculated using Faraday’s law, which relates the flux of oxygen consumed at 

the electrode to the current density, 

 
F

iM
q

O

4

2=  (3.3) 

The mass flow rate, mɺ , into the cell is found using the mass flux of oxygen consumed at 

the electrode, the amount of oxygen in the air stream and the air stoichiometry, 

 

2O

electrode

x

qA
m

ξ
=ɺ  (3.4) 

where ξ is the air stoichiometry.  After the model is run, the mass flux of oxygen at the 

interface between the catalyst layer and GDL from the simulation is put back into 

Equation 3.3 to find the expected current density. 

3.2.3 Modeling Assumptions 

The modeling assumptions for the simulations include:  
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• Sufficient cooling is provided to consider the cell isothermal, 

• Steady state conditions, 

• Ideal gas conditions, 

• The current equations are not solved.  Reactions are modeled in a thin catalyst 

layer as finite-rate volumetric source or sink terms (source terms for water 

production and sink terms for oxygen consumption), 

• The flow is laminar and incompressible, and 

• Water is treated as a single phase in its vapor form. While this assumption is a 

significant limitation, many investigators assume single-phase flow models [28-

30, 35-36, 39-40, 49].  Since the operating point was chosen to stay away from 

the concentration loss region of the polarization curve, it is assumed water 

flooding effects will not be significant. 

3.2.3.1 Isothermal Assumption 

To justify the assumption of isothermal conditions, sufficient cooling must be 

provided to remove the heat generated by the electrochemical reactions.  For a small 

system, air could be blown over cooling fins placed in between the two stacks.  Equation 

3.5 can be used as an approximation for how much heat is generated by a fuel cell stack. 

 )25.1( VIQ −=  (3.5) 

where Q is the heat flow, I is the current and V is the operating voltage.  For the cell 

considered in this study, this heating rate is 0.65 watts.  Since the heat will be removed by 

a cooling fan blowing over a fin, heat transfer will be due to convection, which is 

represented by Equation 3.6, 
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 )( ∞−= TTAhQ sc  (3.6) 

where hc is the convection coefficient, A is the area of the cooling fin, Ts is the 

temperature of the cell and T∞ is the temperature of the surroundings, which are assumed 

to be 25 degrees Celsius.  The convection coefficient is calculated using the equation for 

the Nusselt number for laminar flow over a flat plate, 

 3/12/1 PrRe664.0==
T

c

k

Lh
Nu  (3.7) 

where Nu is the Nusselt number, L is the length of the plate, kT is the thermal 

conductivity of the metal, Re is the Reynolds number, given by Equation 3.8, and Pr is 

the Prandtl number, which is assumed to be 0.707 for air at room temperature. 

 
µ

ρvL
=Re  (3.8) 

To cool a system on this scale, a small case fan could be used, which have volumetric 

flow rates between 20 and 80 ft
3
/min.  This translates to velocities between 1.9 and 7.5 

m/s.  Assuming a velocity of 5 m/s, the heat removal rate, calculated by Equation 3.6, is 

0.95 W.  This shows that a small case fan could easily cool this system and justifies the 

isothermal assumption. 

3.2.4 Governing Equations 

To solve for the reactant distribution in the porous media, fundamental equations 

of mass conservation, momentum conservation and species transport must be solved.  In 
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this section, the governing equations for species transport and momentum transport are 

discussed. 

3.2.4.1 Continuity 

Mass conservation is modeled using the continuity equation given by, 

 ( ) mSv =∇ ρ  (3.9) 

The source term, Sm, is given by the reaction rate in the catalyst layer.  The source terms 

for oxygen consumption and water production are calculated from the form of Faraday’s 

law given in Equation 3.3.  Equation 3.3 is mulitiplied by the active area of the electrode 

and divided by the volume of the catalyst.  For oxygen consumption and water 

production, this turns out to be Equations 3.10 and 3.11 respectively, 
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where V is the volume of the catalyst layer.  The average mixture density is calculated 

by, 

 ∑
=

=
k

i

iiX
1

ρρ  (3.12) 
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3.2.4.2 Momentum and Mass Transport 

The pressure drop in the porous medium is modeled using Darcy’s Law, given in 

Equation 2.11, which is discussed in Section 2.3.  The species transport is governed by 

the species transport conservation equation, 

 ( ) iii RNvY +⋅−∇=⋅∇ ρ  (3.13) 

where Yi is the mass fraction of species i, Ni is the diffusion flux of species i, and Ri is the 

net rate of production of species i through chemical reaction.  The diffusion flux vector 

can be solved for in the Maxwell-Stefan equation given in Equation 2.7 in Section 2.3. 

3.2.5 Boundary Conditions 

The boundary conditions at the inlet, outlet and walls for species and momentum 

transport include: 

• Inlet 

 At the inlet, the mass flow rate is specified as the result of Equation 3.4.  The 

mass fraction of oxygen and water are specified at the inlet for the Maxwell 

Stefan diffusion equations. 

 Mass Fraction O2 : 0.230 

 Mass Fraction H2O : 0.065 

 The remaining mixture is nitrogen. 

• Outlet 

 At the outlet, a pressure outlet is specified as gauge = 0 

• Walls 
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 A no-slip condition based on a Darcy factor of 10
-6

 is used.  The no-flux condition 

is used for species transport at the walls. The wall conditions are applied at the 

top, bottom and side walls of the modeling domain. 

In a porous medium, the gas interacts with the pore walls and the walls of the conducting 

plate, which is inconsistent with the no-slip boundary condition [60].  Parvazinia et al. 

showed that at low Darcy factors, which correspond to low permeability, the results 

between the slip and no-slip boundary conditions were negligible [60].  In this study, low 

permeabilities are considered, thus the no-slip boundary condition is used. 

3.2.6 Validation Study 

To validate the proposed operating conditions and boundary conditions, a 

comparative study has been conducted with work conducted by Wang et al. [61].  They 

developed a model to study the effects of the shape of the flow channels on the cell 

performance.  They compared the interdigitated flow channel design to a parallel flow 

channel at two different operating voltages, 0.3 V and 0.7 V.  The dimensions of the cell 

are 23 mm x 23 mm with a 0.4 mm thick GDL and a 0.005 mm thick catalyst layer and 

12 gas channels.  Wang et al. developed a polarization curve for the model shown in 

Figure 34. 
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Figure 34: Interdigitated Flow Field Polarization Curve Developed by Wang et al. [61] 

 

For an operating point of 0.3 V, an average current density of 26,000 A/m
2
 was used as 

the desired current density.  Wang et al. reported the oxygen mass flux between the 

cathode catalyst layer and the cathode GDL.  The validation model was run under the 

operating conditions given in Table 3 in addition to the governing equations and 

boundary conditions discussed in the preceding sections. 

 

Table 3: Operating Conditions for Validation Model 

 
Operating Condition [units] Value 

Temperature [K] 323 

Relative Humidity of Air 100% 

Inlet Flow Rate [cm3/min] 700 

Operating Pressure [atm] 1 

GDL Permeability [m2] 1.76 x 10-11 

 

The mass flux of oxygen into the cathode catalyst layer from the validation study was 

compared to the results reported by Wang et al.  The mass flux of oxygen is plotted 

against the x- position through the cell at a cross section of 11.5 mm in Figure 35. 
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Figure 35: Mass Flux of Oxygen into Cathode Catalyst Layer vs. Position at 11.5 mm Cross Section 

 

Wang et al. considers liquid water transport, fully coupled charge transport and a 

full cell model, while the validation model used in this study is single-phase, with a zero-

D polarization model of a cathode half-cell.  While the values from the validation model 

do not match the values given by Wang et al., as would be expected given the 

simplification of the half-cell model, the trend was in very good agreement.  Since the 

purpose of this study is to see how changes in permeability affect gas flow trends, and the 

model used in this study can predict similar flow behavior, this model is considered 

sufficient for the purposes of this study.  The next study in Chapter 4 considers a model 

with fully coupled charge transport in the GDL and the membrane. 

3.3 Simulations 

In this section, four permeability conditions for the half-cell model were 

considered in this study.  As was discussed in Section 3.2.1, the model is split into four 

rectangular modeling domains where the permeability can be independently modified in 

the x-,y- and z- direction.  The upper and lower limit for the range of chosen permeability 
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values, 1 x 10
-10

 to 1 x 10
-12

 m
2
, was chosen based on values reported by groups that 

tested permeability of GDLs [34].  With the inlet and outlet on either side of the gas 

diffusion layer, there is a large in-plane pressure gradient which will cause the air to 

travel quickly through the GDL from the inlet to the outlet.  The goal is to transport the 

oxygen-rich gas in the through-plane direction to the catalyst sites and achieve uniform 

distribution.  To combat this in-plane pressure gradient, the GDL structure will be 

manipulated such that the in-plane permeability is much lower than the through-plane 

permeability.  This is the opposite resistance profile seen with conventional GDLs [34]. 

The permeability in all four permeability test cases is transversely isotropic, 

meaning the permeability in the x- and y- direction is the same.  The permeability values 

in the four regions for each test case are shown in Table 4.  Region 1_1 is closest to the 

inlet, while region 2_2 is closest to the outlet.  Since the region near the inlet is exposed 

to the most oxygen rich air, it is desirable to transport the fuel to the regions away from 

the inlet before the oxygen is consumed to help distribute reactants more uniformly.  In 

Cases 1 - 3, the in-plane permeability is 1 x 10
-12

 m
2
 and the through-plane permeability 

is 1 x 10
-10

 m
2
 in every region except the region directly next to the inlet (Region 1_1).  

In Region 1_1, the through-plane permeability is set to 1 x 10
-12

 m
2
, while the in-plane 

permeability is increased from 1 x 10
-12

 to 5 x 10
-12

 m
2
.  It is expected that as the in-plane 

permeability near the inlet increases, the average permeability throughout the GDL will 

decrease as the gas can reach the outlet easily.  It is also expected that the uniformity will 

be better as the in-plane permeability in Region 1_1 increases because there will be less 

resistance for the air to reach the dead zones in the corners of the GDL. 
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The permeability values in Case 4 are representative of the permeability of a 

conventional GDL.  The in-plane and through-plane permeability were calculated from 

the Tomadakis-Sotirchos equation, Equation 2.13, assuming a fiber diameter of 8 µm and 

a porosity of 0.8, which are typical values for common GDL materials [34]. 

Table 4: Permeability Values in GDL (m2) 

 
GDL region Case 1 Case 2 Case 3 Case 4 

1_1 in-plane 1E-12 2E-12 5E-12 1.1E-11 

1_1 through-plane 1E-12 1E-12 1E-12 7E-12 

1_2 in-plane 1E-12 1E-12 1E-12 1.1E-11 

1_2 through-plane 100E-12 100E-12 100E-12 7E-12 

2_1 in-plane 1E-12 1E-12 1E-12 1.1E-11 

2_1 through-plane 100E-12 100E-12 100E-12 7E-12 

2_2 in-plane 1E-12 1E-12 1E-12 1.1E-11 

2_2 through-plane 100E-12 100E-12 100E-12 7E-12 

 

3.3.1 Effects of Graduating Permeability on Distribution 

The effects of the changing the permeability in the region near the inlet (Case 1-3) 

on the average current density and the uniformity of the current density distribution are 

compared to the traditional GDL (Case 4).  Figure 36 (a-d) shows the expected current 

density distribution at the catalyst layer/GDL interface.  Refer to Figure 32 for a 

reference on the position of the inlets and orientation of the modeling domain. 
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(a)
 

(b)
 

(c)
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(d)

 

Figure 36: Effects of Varying Permeability on Current Density Distribution with a 0.4 mm Thick GDL at 1.33 

Gas Stoichiometry: (1) Case 1, (b) Case 2, (c) Case 3, and (d) Conventional Case [62] 

 

One trend seen in all the cases is high current densities in Region 1_1 near the 

inlet.  Current density is dependent on the mol fraction of oxygen and the velocity at 

which oxygen is provided to the catalyst site.  In Region 1_1, the oxygen has not been 

consumed which leads to higher mol fractions of oxygen and higher current densities.  

The current spikes near the inlet and outlet are due to high velocities as the gas flows 

around the edges at the corners of the manifold.  Another similar trend is a 70-90% 

current density drop in the dead zones.  The easiest path for the gas to travel is directly to 

the outlet which leads to lower velocities in the corners of the cell and lower current 

densities [62]. 

 Further comparing the cases, Case 1 shows higher current densities near the inlet, 

where the in-plane permeability is lower, which causes more in-plane resistance as the air 

moves towards the outlet.  This leaves more oxygen available for reactions near the inlet, 

which leads to higher current densities.  In Cases 2 and 3, the current density values drop 

20-40% because the air can travel with less resistance to other parts of the cell, but the 



 65

uniformity of the current density distribution is better [62].  The current density 

distribution in Case 4, the traditional case, appears more uniform than Cases 1-3, but the 

average current density values are 85% lower than Case 1.  In conventional GDLs, the in-

plane permeability is higher than the through-plane permeability, which allows the air to 

exit the cell before it can reach the catalyst sites. 

 To better understand the uniformity, it is necessary to look at how much the 

magnitude of the current density throughout the cell deviates from the average.  The 

standard deviations of current density and average current density for each case are 

plotted in Figure 37. 

 

Figure 37: Average Current Density with Standard Deviation of Current Density for Each Case 

  

A larger standard deviation of current density means current densities are further 

from the average value, which is a result of a non-uniform distribution.  In Case 1, it can 

be concluded there is a non-uniform distribution at the catalyst layer due to the high 

standard deviation of current density, as seen in Figure 36 (a).  Considering all 4 cases, it 

can be concluded there is a trade-off between standard deviation of current density and 

the magnitude of the average current density.  As in-plane permeability increases, the 
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magnitude of the average current density and the standard deviation of current density 

both decrease.  This shows that the distribution is more uniform, but the average amount 

of current produced is lower.  There is a 21% drop in average current density between 

Cases 2 and 3, but the standard deviation only decreases 13%.  This means the 

permeability profile in Case 2 can produce a higher average current density without a 

substantial decrease in uniformity [62].  This region will serve as a starting point for 

further optimization. 

3.3.2 Effect of Changing Thickness 

 To study the effect changing GDL thickness has on performance, simulations 

were run at three different thicknesses (0.4, 0.5, and 0.6 mm).  The mass flow rate is 

calculated at a gas stoichiometry of 1.33.  The average current density as a function of 

GDL thickness is plotted in Figure 38, for all four cases. 

 

Figure 38: Average Current Density at Different Thicknesses 

 

As the GDL thickness increases, the average current density decreases, as seen in 

Figure 38.  In a thicker GDL, the same amount of air is supplied at a lower velocity due 

to the larger cross sectional area of the GDL.  Thus, the rate at which each region is 
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supplied with fuel decreases resulting in lower current densities.  This result is consistent 

with literature, which suggests thinner GDLs perform better.  In order to study the 

uniformity, the standard deviation was considered as a metric to quantify the deviation in 

current density from the average current density at the catalyst sites.  To better 

understand the mechanisms affecting overall uniformity, a ratio, defined by the standard 

deviation of current density /average current density, is introduced.  For example, 

consider two cases with the same standard deviation of current density and different 

average current densities.  The case with the higher average current density has a better 

overall uniformity because the current density deviates by the same amount from a higher 

average.  In Table 5, the ratio of the standard deviation of current density to average 

current density is shown for the simulations in Figure 38. 

 

Table 5: Ratio of Standard Deviation of Current Density at Varying Thicknesses 

 
Thickness (mm) Case 1 Case 2 Case 3 Case 4 

0.4 0.70 0.56 0.62 0.74 

0.5 0.69 0.55 0.63 0.75 

0.6 0.69 0.55 0.64 0.76 

 

 

A lower ratio is desirable because a lower ratio results from a lower standard 

deviation or a higher average current density.  When comparing the standard deviations 

of current density between the four cases in Figure 37, Case 4, the conventional GDL, 

appears to have a better uniformity due to a lower standard deviation of current density.  

However, Case 4 has a much lower average current density than the other cases, which is 

undesirable.  Case 4 represents conventional GDL material properties, which exhibit 

higher in-plane permeability than through-plane permeability.  Thus, it is necessary to 
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design a GDL with higher through-plane permeability than in-plane permeability for the 

unconventional design.  Case 2 is found to have the best overall uniformity when 

comparing the average values.  This indicates the in-plane permeability near the inlet 

must be slightly higher than the in-plane permeability in the rest of the cell in order to 

transport the air to starved regions of the electrode.  As shown in Table 5, the ratio is 

independent of the thickness.  This means that as the GDL thickness increases and the 

average current density decreases, the standard deviation decreases at the same rate [62]. 

A limitation of this type of analysis is that the ratio does not necessarily provide a 

quantitative indication of the best conditions.  For example, if a cell were running at an 

average current density of 10 mA/cm
2
 with a standard deviation of 2 mA/cm

2
, the ratio 

would be 0.2.  This low ratio indicates good overall uniformity, but the average current 

density is too low for any realistic application.  Therefore, the average current density 

must be considered per application when looking for the best conditions. 

3.3.3 Effect of Gas Stoichiometry 

To study the effect of changing the gas stoichiometry on current density and 

overall uniformity, simulations were run at a single thickness, 0.4 mm, at three different 

gas stoichiometries.  The average current density as a function of stoichiometry is shown 

in Figure 39. 
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Figure 39: Gas Stoichiometry vs. Average Current Density 

 

As expected, the average current density increases as the gas stoichiometry increases, 

because more air is pumped into the GDL.  Similarly, the cases with the higher in-plane 

resistance show higher average current densities.  In Table 6, the ratio of standard 

deviation of current density to average current density is shown. 

 

Table 6: Ratio of Standard Deviation of Current Density to Average Current Density for Different Gas 

Stoichiometries 

 
Stoichiometry  Case 1 Case 2 Case 3 Case 4 

1.54 0.63 0.53 0.63 0.68 

1.33 0.70 0.56 0.62 0.74 

1.18 0.79 0.63 0.63 0.85 

 

 

In contrast to changing thickness, which was shown to have an overall uniformity 

independent of GDL thickness, it can be seen in Table 6 that the ratio increases as the 

stoichiometry decreases.  From this, it can be concluded that as the stoichiometry 

decreases and the average current density decreases, the standard deviation does not 

decrease at the same rate.  Thus, a better uniformity can be achieved by operating at 
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higher current densities.  Similar to the thickness study, Case 2 has the lowest ratio and 

best overall uniformity.  In Case 3, the ratio does not change significantly with a change 

in stoichiometry.  It is desirable for the ratio to be independent of gas stoichiometry, as 

the overall uniformity will not be affected if more gas is pumped into the cell in an 

attempt to increase the average current density.  It can be concluded that an optimum 

permeability profile exists between Case 2 and Case 3, which provides efficient overall 

uniformity and is robust with changes in gas stoichiometry [62]. 

3.3.4 Conclusions 

The effect of changing permeability, thickness and gas stoichiometry on current 

density magnitude and overall uniformity were investigated for an unconventional GDL.  

Results indicate that as the in-plane permeability increases, the magnitude of the current 

density decreases.  For the unconventional design, it is necessary for the GDL to have an 

in-plane permeability, which is much lower than the through-plane permeability, such 

that the in-plane resistance is increased in order for the fuel cell to run at a reasonable 

current density and achieve better overall uniformity.  As thickness increases, the 

magnitude of the current density decreases, while reactant distribution is independent of 

thickness.  As a general trend, a decrease in gas stoichiometry leads to an increase in the 

magnitude of the current density while uniformity decreases [62]. 

From this study it has been learned that the permeability can be optimized to 

provide a higher current density and better uniformity.  More work is needed to 

understand how different parameters affect different designs and the conditions which 

provide the highest overall current density with the optimal uniformity.  Ideally, a more 

robust model that solves the partial differential equations for current, coupled to the mass 
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transport would give more accurate results.  Also, a model that looks at spatially varying 

permeability rather than regions with a constant permeability is desired.  The model in 

Chapter 4 considers a more robust 3-D flow model with the partial differential equations 

for potential coupled to the mass transport. 
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CHAPTER 4 

FULLY COUPLED 3-D COMSOL MODEL 

4.1 Motivation 

In the previous model, gas flow trends were analyzed in four different regions of a 

GDL with varying permeability in four separate regions of the GDL.  While this model 

was useful to see how permeability affects flow resistance, it utilized a simple equation 

for assessing the current density throughout the GDL which was not coupled to the 

equations describing the gas transport.  The model also had four separate regions with 

abrupt changes in permeability.  It is desirable to investigate the effect of a gradual 

change in a permeability profile to truly assess the effect the permeability has on the 

current density. 

In this chapter, a model is developed which considers a gradual change in the 

permeability profile with space-varying permeability.  The permeability changes as a 

function of position based on one of three polynomial expressions; a linear decreasing 

permeability, a convex parabolic decrease and a concave parabolic decrease.  In the 

model considered in this chapter, the mass transport is coupled to the charge transport, 

and the partial differential equations for current are directly solved.  The effect of the 

graduated permeability profile, changes in thickness and changes in gas stoichiometry on 

average current density and uniformity of current density are investigated and discussed.  

The unconventional fuel cell design is then compared to a traditional design with parallel 

flow channels in the bipolar plate. 
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4.1.1 Changes from Previous Model 

COMSOL Multiphysics version 3.5 was chosen to model a half cell.  Unlike the 

Fluent software package COMSOL has multiple types of physics built into the software 

making it easier to couple fluid dynamics to charge transport.  Furthermore, the modeling 

domain is extended to include the membrane, thereby capturing more complex behavior 

of the fuel cell.  Ionic charge transport is modeled in the membrane and electronic charge 

transport is captured in the GDL.  The ohmic losses are captured from the ohmic 

resistance in the membrane, while the cathode activation losses are captured at the 

catalyst layer between the membrane and the GDL. 

4.2 Modeling Parameter Study (Operating Conditions) 

Fuel cell models throughout literature include many modeling parameters that can 

be altered to change the charge distribution or the trend of results. Some of these 

quantities, such as the charge transfer coefficient, are derived from theory and are hard to 

measure.  However a small change in this value has a major impact on the 

electrochemical behavior.  Measureable operating conditions such as humidity levels, 

reactant composition and operating temperature vary throughout numerical studies as 

well.  Min et al. [24] conducted a parameter sensitivity analysis on a fuel cell model, 

systematically varying 13 parameters over a range of values presented in literature.  They 

found that parameters directly related to the cathode reaction and the cathode kinetics 

have a high impact on the cell performance, while anode kinetics are not as important.  In 

addition, they found that the conductivity of the membrane phase also had a significant 

impact on the cell polarization. 
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In order to choose reasonable modeling parameters for the simulations considered 

in this chapter, a thorough literature review was conducted to determine what numerical 

values are commonly assigned to various modeling parameters.  The results of this 

review are shown in Table 7. 

Table 7: Modeling Parameter Study 

 
Parameter Symbol Range Reference 

Permeability [m2] K 1 x 10-15 to 1 x 10-9 [63]-[37] 

Stoichiometry ξ 1.5-3 [30]-[35] 

Current Density [A/m2] i 10,000 – 12,000 [59]-[32] 

Pressure [atm] P 1-3 [32]-[59] 

Reference Concentration O2 cO2, ref 0.85-35.7 [27]-[35] 

Porosity ε 0.3-0.8 [30]-[37] 

Temperature [K] T 343-353 [59]-[31] 

Weight Fraction O2 
2OX  0.178-0.21 [32]-[64] 

Weight Fraction H2O 
OHX

2

 0-0.5 [27]-[36] 

Weight Fraction N2 
2NX  0.69-0.79 [64]-[27] 

Electronic Conductivity [S/m] σe 100-1000 [32]-[36] 

Ionic Conductivity [S/m] σi 1-17 [36]-[32] 

Cathode charge transfer coefficient α 0.5-1.15 [30]-[59] 

(Specific Surface Area of Catalyst) x (Exchange 

Current Density) [A/m3] 

ai0c 10-1 x 107 [65]-[66] 

Cell Voltage [V] V 0.3-0.7 [V] [31]-[67] 

  

 

 As presented in Table 7, the permeability values, K, span over a range of six 

orders of magnitude, 1 x 10
-15

 to 1 x 10
-9

 m
2
.  For this study, values will range from 1 x 

10
-12

 to 1 x 10
-10

 m
2
 which were used in the previous study and were found to be a 
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reasonable range from experimental papers [34, 50].  The air stoichiometry, ξ, varies 

from 1.5 to 3.  In this study, a nominal stoichiometry of 2 will be used unless otherwise 

stated.  The nominal current density at which to run the cell will be 1 A/cm
2
.  This is a 

common operating point chosen in literature, and the point chosen for the Fluent study 

based on the polarization curve.  This will help determine the amount of air needed at the 

inlet to supply the cell with fuel. 

 The inlet composition of oxygen, water and nitrogen in the air supplied to the cell 

varies throughout literature [27, 32, 36, 64].  Dry air has an oxygen/nitrogen ratio of 

about 21/79.  Many numerical studies use dry air at the inlet.  Other studies use 

humidified air while retaining a ratio of 21/79 for the weight fraction of the remaining 

dry air.  Still other studies have seemingly random inlet conditions.  For this study, dry 

air will be used.  This study considers flow only in the gas phase, in practice using dry air 

would help prevent water clogging.  A range of values (0.85-35.7 mol/m
3
) for the 

reference concentration of oxygen, 
refOc

,2
, , was found throughout literature.  While it is 

unclear where these values come from, a reference concentration for this study will be 

chosen based on the concentration of oxygen in the air supply using the ideal gas law, 

given by, 

 2

2

O

O

X P
c

RT
= . (4.1) 

 The temperature, T, used throughout literature is almost unanimously 80 degrees 

Celsius, which will also be used in this study.  Porosity, ε, values used throughout 

literature are generally low values around 0.4.  However, research conducted by Gostick 
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et al. [34] and Williams et al. [53] of actual GDLs shows the actual porosity of GDLs to 

be much higher (0.6 – 0.88).  A porosity of 0.7 will be used in this study. 

 The electric conductivity of the GDL, σe, varies from 100 to 1000 S/m in 

literature.  Simulations were run to study the difference between the final current density 

over the range of GDL conductivity (100-1000 S/m).  The difference was negligible 

considering the conductivity of the GDL is much higher than the conductivity of the 

membrane.  Since the effect of GDL conductivity was insignificant, a value of 1000 S/m 

will be used in this study.  The ionic conductivity of the membrane, σi, varies over a 

range of 1 to 17 S/m.  Based on Min et al.’s work [24], a value of 6 S/m will be used in 

this study, since it was used as the nominal value in their simulations.  The charge 

transfer coefficient, α, tells the proportion of electrical energy applied that is harnessed in 

changing the rate of an electrochemical reaction.  In literature, the value typically varies 

between 0.5 and 1.  Weber et al. [25] reported that theoretical and experimental slopes of 

activation overpotentials fit well to a charge transfer coefficient of 1, which will be used 

in this study.  The specific surface area of the catalyst multiplied by the exchange current 

density, ai0c, describes how fast the oxygen is consumed at the cathode.  A higher value 

means a higher rate of consumption.  The value of 120 A/m
3
 will be used based on Min et 

al.’s work [24], where a nominal value of 120 A/m
3
 was chosen for simulations.  The cell 

voltage will be 0.6 V in this work.  This is a commonly used mid-operation for a steady 

state cell [39] and matches with the operating point from the polarization curve in 

Chapter 3.  The initial operating conditions and modeling parameters that will be used in 

this study are given in Table 8. 
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Table 8: Operating Conditions and Modeling Parameters 

 
Parameter Symbol Value 

Gas Stoichiometry ξ 2 

Current Density [A/m2] i 10,000 

Operating Pressure [atm] P 1 

Reference concentration O2 [mol/m3] 
refOc ,2

 6.51 

GDL Porosity [-] ε 0.7 

Temperature T 353 

Weight Fraction O2 
2Ox  0.21 

Weight Fraction H2O 
OHx

2
 0 

Weight Fraction N2 

2Nx  0.79 

Electronic Conductivity [S/m] σe 1000 

Ionic Conductivity [S/m] σi 6 

Charge Transfer Coefficient α 1 

(Specific Surface Area of Catalyst) x (Exchange 

Current Density) [A/m3] 

ai0c 120 

Operating Voltage [V] V 0.6 

Cell Height [mm] hcell 10 

Cell Width [mm] wcell 10 

GDL Thickness [mm] δGDL 0.4 

Catalyst Thickness [mm] δcatalyst 0.025 

Membrane Thickness [mm] δmembrane 0.1 

 

4.3  Computational Model  

In the following section, the computational modeling domain is discussed.  

Following this, the governing equations, boundary conditions and modeling approach are 
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related.  A mesh convergence study and a validation are presented to test the validity of 

the mesh and equations. 

4.3.1 Modeling Domain 

The modeling domain is a half cell model which consists of a membrane, catalyst 

layer and GDL, where the membrane and GDL interface with the anode and bipolar plate 

respectively.  The modeling domain is shown in Figure 40. 

Gas Diffusion Layer

Catalyst Layer

Membrane

GDL/Conducting Plate Interface

Membrane/Anode Interface

Kx

Ky

 

Figure 40: Modeling Domain 

 

The permeability, K, changes as a function of position in the x- direction.  The 

inlet and outlet are extended to cover the entire side of a GDL, as illustrated in Figure 41, 

which helps to eliminate high gradients around corners and spread the distribution more 

evenly.  The addition of the membrane makes it possible for the ohmic losses in the 

membrane to add to the polarization losses, which are a function of the amount of water 

in the membrane [24].  Since liquid water transport is not considered in this study, the 

ohmic resistance will be assumed constant.  The primary focus of this study is to 

understand the permeability of gas flow through the GDL to understand the charge 

transport through the half cell. 
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Inlet

Outlet

Ky

Kx

Kz

 

Figure 41: 3-D Modeling Domain with GDL, Catalyst and Membrane 

 

4.3.2 Modeling Assumptions 

The modeling assumptions for the simulation include: 

• Sufficient cooling is provided to consider the cell isothermal, 

• Steady state conditions, 

• Ideal gas conditions, 

• The flow is laminar and incompressible, 

• Water is treated as a single phase in its vapor form, and 

• The conductivity in the anode GDL is high enough to cause minimal ohmic losses 

and the activation overpotential in the anode is much smaller than the activation 

overpotential in the cathode. 

4.3.3 Governing Equations 

The governing equations for mass conservation, momentum and species transport and 

charge transport are presented in the following section. 
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4.3.3.1 Continuity 

The continuity equation given in Equation 3.5 governs mass conservation.  The 

reactions are modeled in the catalyst layer, so the source terms (
2OS  and OHS

2
), given by 

Equations 4.2 and 4.3 respectively, are only active in the catalyst layer.  In this model, the 

reaction rate, jc, is used as a variable to account for the changes in the source terms based 

on changes in the concentration of oxygen in the air and the potential of the membrane 

and GDL.  Using this instead of the current density allows the source terms in the 

continuity equation to be calculated directly from Faraday’s Law on a volumetric basis.  

The mass source terms are equal to 0 in the GDL and membrane because the reactions are 

considered to take place in the catalyst. 
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4.3.3.2 Charge Transport 

jc is a measure of the electrochemical reaction rate and is derived from the Butler-

Volmer Equation [31-32, 36, 39, 68], given by, 
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where the overpotential, η, is calculated by the expression, 

 OCVie E−−= φφη  (4.5) 
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 The Butler-Volmer equation is valid for H2 transport in a hydrated membrane 

[69], but has been used throughout literature to characterize dry conditions [30]. While 

the full form of the Butler-Volmer Expression captures the total cell polarization the 

Tafel expression has been found to be a good first approximation [28-30, 35, 49] and is 

given by, 

 
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2

2
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 This study was originally run with the Tafel expression.  However, after an 

analysis into the accuracy of this formulation, it was decided to rerun the study with the 

full form of the Butler-Volmer Expression.  This is discussed in Section 4.3.6.  Both ionic 

and electronic charge transport are considered.  Ionic transport is active in the membrane 

and catalyst layer, while electronic transport is active in the GDL and catalyst layer.  

Charge transport is described by the conservation of charge equation for ionic transport 

and electronic transport in Equations 4.7 and 4.8 respectively, 

 ( ) cii j=∇−⋅∇ φσ  (4.7) 

 ( ) cee j−=∇−⋅∇ φσ  (4.8) 

4.3.3.3 Mass and Momentum Transport 

Darcy’s Law, Equation 2.11, is used to describe the relationship between the 

velocity and the pressure drop in porous media.  The species transport equation, Equation 

3.9, governs species transport and the Maxwell-Stefan equation, Equation 2.7, governs 

the gas diffusion in the GDL. 
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 The binary diffusion coefficients are still calculated using Equation 2.9 from 

kinetic gas theory.  In a porous medium, the diffusion is impeded by the pore walls.  The 

Bruggeman correlation, given in Equation 2.8, is used to account for the resistance from 

the pore walls.  

4.3.3 Boundary Conditions 

In this section, the boundary conditions are presented. 

• Inlet 

 At the inlet, the velocity is specified according to Equation 4.9 [39, 70-71], 

  
inletO

membrane

avg

AP

RT

x
A

F

i
v

11

4
2

ξ= . (4.9) 

 The mass fractions of oxygen, water and nitrogen in the dry air are specified for 

the Maxwell-Stefan Equations: 

  Mass Fraction of Oxygen: 0.23 

  Mass Fraction of Water: 0 

  Mass Fraction of Nitrogen: 0.77 

 The inlet is set as an insulation boundary for the electronic charge transport. 

• Outlet 

 At the outlet, the pressure is specified at 0 gauge pressure.  The outlet is also 

electrically insulated. 

• GDL/Conducting Plate Interface 
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 A no-slip condition is set for the momentum transport at the bipolar plate 

interface.  An insulation boundary condition is set for mass transport.  To solve 

for the electronic charge balance, an operating voltage is set at this wall as 

  Vcell = 0.6 V 

• Anode/Membrane Interface 

 The ionic transport is solved in the membrane.  The anode voltage is set to 0V. 

• Walls 

 At all the other walls, a no-slip condition is set for momentum transport, an 

insulation boundary is set for mass transport, and electrical insulation is set for 

charge transport. 

4.3.4 Model Solution 

The conservation equations are solved using the PARDISO solver which utilizes a 

finite element method approach to directly solve the complex system of linear equations 

in COMSOL version 3.5.  An LU-decomposition pre-conditioner is used to solve the 

non-linear equations iteratively.  The Newton-Rhapson method is used to solve close 

coupled groups, while Gaussian elimination is used to solve the linear system of 

equations for each iteration [36].  Convergence is reached when the ratio of residuals to 

the maximum flux across a control surface is below 1 x 10
-6

.   Figure 42 shows a 

graphical representation of the solution method. 
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Figure 42: Solution Method adapted from [38] 

4.3.5 Grid Independence and Validation 

In this section, the results of a grid independence study and a model validation are 

presented to validate the accuracy of the mesh and model. 

4.3.5.1 Grid Independence 

The modeling domain is made up of three sudomains; the GDL, catalyst layer and 

membrane.  For the PARDISO solver, a mesh with less than 100,000 degrees of freedom 

is necessary to avoid non-convergence.  Hexadhedral mesh elements with an aspect ratio 

greater than 0.1 will maintain sufficient solution quality [72].  The aspect ratio is defined 

as, 

 

∑
=

=
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1

2

324

i

i
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h

V
a  (4.10) 

where hi are height of the edge elements. 

It is desired to have multiple nodes in the through-plane direction in each layer to 

capture the reactions.  However, adding elements in the through-plane direction reduces 
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the element quality because the aspect ratio will be much smaller than 0.1.  Increasing in-

plane elements will increase the aspect ratio and element quality because the longer in-

plane elements will have lengths comparable to the much shorter through-plane elements 

(the in-plane direction is geometrically longer and consequently will have larger element 

lengths).  In the following mesh convergence study, the number of elements in the 

through-plane and in-plane directions was varied to investigate the effect of the aspect 

ratio and element number on the average current density.  Each simulation either had 1, 2, 

3 or 4 through-plane elements in each of the three subdomains (i.e., GDL, catalyst and 

membrane).  Three different grid patterns of in-plane meshes were used; 13 x 13, 19 x 19 

and 24 x 24.  The 24 x 24 mesh was only run with 1 element per subdomain in the 

through-plane direction, while the 19 x 19 mesh was run with 1, 2 and 3 elements per 

subdomain, and the 13 x 13 mesh was run with up to 4 elements per subdomain.    The in-

plane (x- and y-) and through-plane (z-) elements were varied systematically and are 

shown in Table 9 with the corresponding aspect ratio. 

 

Table 9: Different Mesh Patterns and Corresponding Aspect Ratio 

 
 Number of Through-Plane Elements 

1 2 3 4 

 

Number of In-

Plane Elements 

13 x 13 0.0597 0.0298 0.0199 0.0149 

19 x 19 0.0871 0.0436 0.0291 - 

24 x 24 0.1099 - - - 

 

The only mesh with an aspect ratio over 0.1 is the 24 x 24 x 1 mesh, which contains 

60,025 degrees of freedom.  Additional through-plane elements for a 24 x 24 in-plane 

grid resulted in too many degrees of freedom and thus were not considered.  The effect of 
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increasing the number of elements in the in-plane and through-plane on the average 

current density was of interest.  The mesh quality with respect to the average current 

density for various mesh element configurations that had less than 100,000 degrees of 

freedom is presented in Figure 43. 

 

 

Figure 43: Effect of Changing Number of Elements in the In-Plane and Through-Plane 

 

 It can be seen in Figure 43 that the number of elements in the in-plane has no 

effect on the final average current density since the current densities in a given series are 

the same, regardless of the number of in-plane elements.  However, increasing the 

number of elements in the through-plane direction causes the average current density to 

decrease.  The change in current density due to increasing the number of through-plane 

elements is within a 1.6% difference.  From this, it can be concluded that 1 element in the 

through-plane direction is sufficient.  While there is virtually no difference between the 

current densities with different numbers of elements in the in-plane, a mesh of 24 x 24 x 
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1 will be used to maintain an aspect ratio greater than 0.1.  The meshes used from this 

point forth will be 24 x 24 x 1 with 60,025 degrees of freedom. 

4.3.5.2 Validation 

 A fuel cell model in the COMSOL library was used to validate the model in this 

study.  It was desirable to investigate the effect of using the simplified Tafel expression 

for the charge transfer current vs. the full Butler-Volmer expression (BV).  In addition, 

the effect of using the half cell model vs. the full cell with the anode was considered.  The 

COMSOL modeling domain contained a single bipolar plate channel with the anode and 

cathode GDLs and the membrane.  The current density at the cathode catalyst layer was 

plotted for a range of cell operating voltages.  The results are shown in Figure 44. 

 

 

Figure 44: Validation 

 

 The first trend that can be seen in the graph is that the Tafel equation does not 

capture the exponential shape of the activation polarization.  The exclusion of this portion 
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of the irreversible activation loss causes a significant over prediction of the current 

density by 20% at the operating voltage considered in this study, 0.6 V.  It can also be 

seen that the half cell model also over predicts the current density compared to the full 

cell model, especially at lower operating voltages.  Even at the lowest operating voltage 

of 0.2 V, the half cell model over predicts the current density by about 15%, although at 

0.6 V the over prediction is about 10%.  While the over prediction is around 10%, the 

half cell model with the full Butler-Volmer expression more accurately predicts the 

behavior of the polarization curve (i.e., voltage vs. current curve). 

 It can be concluded that using the Tafel expression instead of the Butler-Volmer 

expression to describe the charge transfer current has a much greater effect on over 

predicting the current density than using a half cell model as opposed to a full cell model.  

For the rest of the study, the full Butler-Volmer expression will be used with the half cell 

model. 

4.4 Results 

In order to study the effects of the permeability profile with a gradually changing 

permeability for the unconventional fuel cell design on the current distribution, a 

systematic study has been conducted.  First the permeability profiles used in the 

simulations are discussed.  Next, a study is conducted to understand the effect of the cell 

changing size.  Following this, the effects of changing the permeability profiles, changing 

the thickness and changing the gas stoichiometry on the current density distribution are 

discussed.  Then, the unconventional GDL is compared to a conventional parallel flow 

channel.  Finally, there is a discussion about tradeoffs between pressure drop and current. 
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4.4.1 Permeability Profiles 

From the previous study, it was learned that due to the high in-plane pressure 

gradient, there is a need have an in-plane resistance to keep the maximum amount of 

oxygen-rich air in the fuel cell for reactions to take place.  In the present study, three 

different models of in-plane permeability are considered, and are described by functions 

based on position.  In Section 2.4.1, Chu et al. ran simulations with four models each 

representing different amounts of water saturation [44].  A model with a linear decreasing 

porosity profile, a convex parabolic decreasing porosity profile, a concave parabolic 

decreasing porosity profile and a constant porosity profile were compared, shown in 

Figure 13 in Section 2.4.1.  In this study, a linear decreasing, convex parabolic decreasing 

and concave parabolic decreasing permeability profile are used.  The models were 

developed by inputting points to describe the desired shape into a Microsoft Excel 2007 

spreadsheet and fitting a curve to the points.  In each model, the permeability decreases 

from 1 x 10
-10

 m
2
 to 1 x 10

-12
 m

2
. 

1) Model 1 is a linear decreasing permeability profile described by, 

 109 101109.9 −− ×+×−= xK x  (4.11) 

2) Model 2 is a convex decreasing permeability profile.  Halfway through the 

GDL in the x-direction (0.005 m), the permeability is at 75% the original 

value.  This profile is described by, 

 101027 101101108.9 −−− ×+×−×−= xxK x  (4.12) 
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3) Model 3 is a concave decreasing permeability profile.  Halfway through the 

GDL in the x-direction (0.005 m), the permeability is at 25% the original 

value.  This profile is described by, 

 10826 1011001.21002.1 −−− ×+×−×= xxK x  (4.13) 

Model 1, 2 and 3 for the in-plane permeability are shown in Figure 45.   

 

x- permeability

at the inlet

x- permeability

at the outlet

 

Figure 45: In-Plane x- Permeability Profiles as a Function of x- Position 

 

In the through-plane direction, it is desirable to inhibit the air from reaching the 

catalyst near the inlet because the air is oxygen rich.  Near the outlet it is desirable for the 

air to move forward to the catalyst layer rather than exit the cell through the outlet.  In 

this study, three different models of through-plane permeability with an increasing 

permeability are considered.  The models are developed by fitting a polynomial to points 

which make up the desired shape.  In each model, the permeability increases from           

1 x 10
-12

 m
2
 to 1 x 10

-10
 m

2
. 
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A) Model A is a linear increasing permeability profile described by, 

 129 101109.9 −− ×+×= xK z  (4.14) 

B) Model B is a convex increasing permeability profile.  Halfway through the 

GDL in the x-direction (0.005 m), the  z- permeability is at 75% the final 

value.  This profile is described by, 

 12827 1011097.1108.9 −−− ×+×+×−= xxK z  (4.15) 

C) Model C is a concave increasing permeability profile.  Halfway through the 

GDL in the x-direction (0.005 m), the z- permeability is at 25% the final 

value.  This profile is described by, 

 121026 1011031002.1 −−− ×+×−×= xxK z  (4.16) 

Model A,B and C for the through-plane permeability are shown in Figure 46. 

z- permeability

at the inlet

z- permeability

at the outlet

 

Figure 46: Through-Plane z- Permeability as a Function of x- Position 
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Since there is no flow in the y-direction, it is assumed the permeability in the y-

direction will not affect the results.  The y-permeability is given the value of 5 x 10
-11

 m
2
, 

which is between the lowest and highest permeability considered. 

4.4.2 Scaling of the Cell 

Originally, the simulations were going to be run with a 4 cm x 4 cm cell, which is 

close to the size of a medium sized fuel cell.  Numerically, this was a relatively large cell 

size causing the distance between the mesh nodes to produce an erroneous numerical 

effect along the lines in the grid pattern. 

As such, the size of the cell was reduced until the nodes were close enough that 

the numerical effect was insignificant, which was determined to be a 1 cm x 1 cm cell.  It 

is still desirable to know if the results change significantly when the size of the cell 

increases or decreases.  The results of a 1 cm cell are compared to a 0.5 cm cell and a 

1.25 cm cell.  In cells larger than 1.25 cm, the ribbing effect is very noticeable, so no 

simulations were conducted for a larger cell.  Each simulation was run with the same 

permeability profile, linear decreasing for the in-plane permeability, Model 1, and linear 

increasing for the through-plane permeability, Model A.  The effect of changing the size 

on the average current density is shown in Figure 47.  It can be seen from Figure 47 that 

the average current density is very close regardless of the size of the cell.  The uniformity 

can be investigated by looking at the ratio of standard deviation of current 

density/average current density, which is shown in Table 10.  The ratio in each case is 

small, showing that the uniformity is good and independent of the size of the cell.  From 

this, it can be concluded that the current density distribution scales well when the size of 

the cell changes. 
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Figure 47: Effect of Changing the Size of the Cell on the Average Current Density 

 

 

 
Table 10: Ratio of Standard Deviation of Current Density/Average Current Density at Different Cell Sizes 

 

Size Ratio 

0.5 cm 0.045 

1 cm 0.047 

1.25 cm 0.047 

 

4.4.3 Effect of Changing Permeability Profiles 

To study the effect of changing the in-plane and through-plane permeability 

profile, each in-plane profile was run with each through-plane profile for a total of 9 

simulations, employing a partial factorial design of experiments.  A diagram of the 

simulations is shown in Table 11.  The effect of the different permeability profiles on the 

current density can be seen in Table 12.    The numbers 1, 2, and 3 refer to different in-



 94

plane permeability profiles, where as the letters A, B, and C refer to different through-

plane permeability profiles.   

Table 11: Design of Experiments for Simulations 

 
In-Plane All Decreasing Through-Plane All Increasing 

 

Model 1 

Model A 

Model B 

Model C 

 

Model 2 

Model A 

Model B 

Model C 

 

Model 3 

Model A 

Model B 

Model C 

 

 

 
Table 12: Effect of Graduating Permeability with Unconventional GDL 

 
Simulation Average Current Density 

(A/cm2) 

Standard Deviation of Current 

Density (A/cm2) 

Ratio 

Standard Deviation/ 

Average Current Density 

1A 1.015 0.048 0.047 

1B 1.015 0.048 0.047 

1C 1.015 0.048 0.047 

2A 1.016 0.049 0.048 

2B 1.016 0.049 0.048 

2C 1.016 0.049 0.047 

3A 1.018 0.047 0.047 

3B 1.018 0.047 0.047 

3C 1.018 0.047 0.047 
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 The first conclusion that can be drawn is that the through-plane permeability 

profile has no effect on the final current density.  When the in-plane permeability is held 

constant and the through-plane permeability is changed, there is no difference in the 

results.  The through-plane direction is very thin compared to the length of the in-plane 

direction.  Since the gas only has to travel a short distance, the permeability does not 

affect the distribution noticeably.  This is consistent with the results of Pharaoh et al. [42] 

who showed that through-plane permeability has less of an impact than the in-plane 

permeability. 

 The next conclusion that can be drawn is that the lower the in-plane permeability, 

the higher the average current density.  Model 3 has the lowest in-plane permeability and 

has the highest current density.  However, the difference in average current density and 

uniformity between the different in-plane permeability profiles is less than 0.3%, which is 

an insignificant change. 

 Four cases with constant permeability were run to compare the permeability 

profiles that change with position to isotropic permeability profiles.  Values were chose at 

the lowest permeability used in the study, 1 x 10
-12

 m
2
, the highest permeability 1 x 10

-10
 

m
2
, and two intermediate points.  The results are shown in Table 13. 

Table 13: Current Density with GDLs of Varying Isotropic Permeability 

 
Simulation [m2] 

 

Average Current Density 

(A/cm2) 

Standard Deviation of 

Current Density (A/cm2) 

Ratio 

Standard Deviation/Average 

Current Density 

1 x 10-12 1.040 .034 0.033 

2 x 10-12 1.028 .041 0.040 

5 x 10-11 1.012 .050 0.050 

1 x 10-10 1.012 .051 0.050 
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 The simulation with the lowest isotropic permeability, 1 x 10
-12

, produces a 

current density 2.7% higher than the case with a permeability of 1 x 10
-10

.  Thus, two 

orders of magnitude difference in permeability changes the current density by a very 

small amount.  Although it was hypothesized that the models with lower in-plane 

permeability would exhibit higher current densities because the air would move towards 

the catalyst layer rather than out of the cell, these results show that permeability has 

relatively no impact. 

4.4.4 Effect of GDL Thickness 

The effect of the thickness of the GDL on the average current density was studied 

by running Model 1A with three different GDL thicknesses, 350, 400 and 450 µm.  

Model 1A was chosen because both the in-plane and through-plane profiles are linear 

instead of parabolic, making it easier for the solver to converge.  The GDL thickness is 

plotted against the average current density in Figure 48. 

 

Figure 48: Effect of GDL Thickness on Average Current Density 
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 As the thickness of the GDL decreases, the average current density increases, 

although insignificantly.  The difference between a 450 micron GDL and a 350 micron 

GDL is less than 1%.  With a thinner GDL, the air is closer to the catalyst sites and there 

is a higher concentration gradient causing more diffusion into the catalyst layer.  The 

ratio of standard deviation of current density to average current density is shown in Table 

14. 

Table 14: Current Density at Varying GDL Thickness 

 
Thickness [mm] 

 

Average Current Density 

(A/cm2) 

Standard Deviation of 

Current Density (A/cm2) 

Ratio 

Standard Deviation/Average 

Current Density 

0.350 1.019 0.048 0.047 

0.400 1.015 0.048 0.047 

0.450 1.010 0.048 0.048 

 

 

 The ratio confirms that the uniformity of current density across the cell is 

independent of thickness.  This is the same trend seen in the Fluent study discussed 

Chapter 3. 

4.4.5 Effect of Gas Stoichiometry 

The effect of increasing the gas stoichiometry on the current density is 

investigated using Model 1A for four different gas stoichiometries.  The gas 

stoichiometry vs. the average current density is shown in Figure 49. 
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Figure 49: Stoichiometry vs. Average Current Density 

 

At a stoichiometry of 1, the oxygen is depleted from the air near the inlet, and 

there is not enough oxygen to sustain a higher current density near the outlet.  This results 

in a 12% difference in current density between a stoichiometry of 1 and 2.  As the 

stoichiometry of air increases, there is an increase in the average current density.  

Between a stoichiometry of 2 and 4, there is only a 4.2% increase in the average current 

density.  Yuan et al. [71] saw an increase in the stoichiometric ratio helped cell 

performance at high current densities, but had little effect at low current densities.  They 

employed a two-phase model and hypothesized increased air flow rate helped remove 

liquid water from the GDL.  Hung et al. [70] came to a similar conclusion, showing a 

20% decrease in the air stoichiometry only had a 1.7% decrease in the average current 

density.  At lower current densities where there is no liquid water, the air stoichiometry 

does not affect the final current density as long as there is enough air to sustain the 

reaction.  The uniformity of the current density is considered in Table 15. 
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Table 15: Current Density at Different Air Stoichiometries 

 
Stoichiometry 

 

Average Current Density 

(A/cm2) 

Standard Deviation of 

Current Density (A/cm2) 

Ratio 

Standard Deviation/Average 

Current Density 

1 0.900 0.133 0.148 

2 1.015 0.048 0.048 

3 1.045 0.030 0.029 

4 1.059 0.023 0.021 

 

 

 As the air stoichiometry increases, the ratio is lower revealing the uniformity is 

better.  In the case with a stoichiometry of 1, the ratio was 0.148, which is 3-5 times 

higher than the ratio at higher stoichiometries.  Between a stochiometry of 2 and 3, the 

average current density only increases by 3%, while the ratio drops by 40%.  From a 

stoichiometry of 3 to 4, there is a 1.3% increase in current density with a 27% drop in the 

ratio.  This is further evidence that as the stoichiometry increases, its effect on the current 

density decreases. 

4.4.6 Comparison to Parallel and Serpentine Flow Field 

In order to quantify the benefits of the unconventional GDL with a side inlet, it 

was necessary to compare to a conventional fuel cell of the same size.  The 

unconventional GDL was compared to a state-of-the-art fuel cell with a parallel flow 

field in the bipolar plate.  The parallel flow field is shown in Figure 50.  The permeability 

profile used in the unconventional GDL was Model 1A, while the permeability for the 

state-of-the-art GDL was set to an isotropic permeability of 5 x 10
-12

 m
2
.  The operating 
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parameters and inlet conditions were the same as in Table 8, with the exception of air 

stoichiometry, which was set to 4.  The results are shown in Table 16, and the current 

density distribution on the GDL/catalyst layer interface for the unconventional model and 

the parallel flow field model are shown in Figure 51 (a) and (b) respectively. 

1 cm

 

Figure 50: Parallel Flow Field 

 

 

 
Table 16: Current Density Comparing the Unconventional Model with Graduated Permeability to a State-of-

the-Art Parallel Channel Model 

Simulation 

 

Average Current Density 

(A/cm2) 

Standard Deviation of 

Current Density (A/cm2) 

Ratio 

Standard Dev: Average 

Unconventional Model 1.059 0.023 0.021 

State-of-the-Art Parallel 

Channel 

0.462 0.328 0.709 
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Inlet

Outlet

 

Inlet

Outlet

 

Figure 51: Current Density Profile for (a) Unconventional GDL and (b) Parallel Flow Field 

  

The unconventional GDL design (which has a graduated permeability) performed 

better than the parallel flow channel in every metric.  The average current density in the 

parallel channel design was 56% lower than the unconventional GDL design, and the 

ratio of the standard deviation to the average current density was 97% lower for the 

unconventional GDL, which can be seen when comparing Figure 51 (a) and (b).  This 

suggests that an unconventional GDL with a side inlet and a graduated GDL drastically 

increases the performance by forcing the air through the GDL.  In the parallel flow field, 
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the oxygen is transported to the catalyst through diffusion, and most of the oxygen rich 

air leaves the system through the outlet channels before it reaches the catalyst.  Low 

current densities near the outlet for the parallel flow field in Figure 51 (b) show that there 

was little oxygen present for the electrochemical reactions. 

 The range of the current density distributions of the graduated GDL were then 

compared to serpentine flow fields, based on three existing studies.  Only the range is 

reported because the standard deviation of current density could not be calculated from 

the information given in the literature.  The results of this study are shown in Table 17. 

 

Table 17: Comparison of Range of Current Density Distribution 

 
Simulation Current Density Distribution (A/cm2) Average Current Density 

(A/cm2) 

Unconventional 

(graduated) GDL 

1.12-0.93 1.02 

Zhang et al. [39] 1.2-0.5 0.75 

Shimaplee et al. [37] 1.33-0.85 1.14 

Al-Baghdadi [32] 1.35-0.7 N/A 

 

 

 The graduated GDL shows the highest uniformity.  The difference in current 

density distribution is 0.7 A/cm
2
 for Zhang et al., 0.5 A/cm

2
 for Shimaplee et al., and 0.65 

A/cm
2
 for Al-Baghdadi et al, while the difference in the graduated GDL is approximately 

0.2 A/cm
2
.  This suggests that the unconventional design may exhibit higher uniformity.  

It is important to note that the operating voltages for the simulations were not the same, 

but they ranged from 0.6 to 0.7 V.   

Interdigitated flow fields have been shown to provide a more uniform current 

distribution with the forced convection through the GDL.  This suggests that the 
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graduated GDL has promise in producing a more uniform current density than 

conventional flow channels, as the graduated GDL shares the advantage of forcing flow 

into the GDL with interdigitated flow fields. 

4.4.7 Tradeoff with Pressure Drop 

 After investigating the effect of different permeability profiles, changing 

thickness and changing gas stoichiometry, it can be concluded that the current density 

and uniformity will remain nearly the same regardless of the changing conditions, as long 

as the cell is provided with enough fuel to operate.  This can be explained by the velocity 

boundary condition.  At the inlet, a velocity is prescribed which prescribes a mass flow 

rate of air at the inlet.  Regardless of the fluid resistance, the model will provide the 

prescribed amount of air to the cell.  According to Darcy’s Law, setting the permeability 

and velocity will increase the pressure gradient.  The effect of changing the permeability 

profile on the pressure drop across the cell is shown in Table 4.18. 

 It is shown that as in-plane resistance increases, pressure drop will increase.  Of 

the graduated models, the concave parabolic model (Model 3) has the lowest in-plane 

permeability and highest in-plane resistance.  This model has the highest pressure drop of 

the graduated models. 

 

 

 

 

 



 104

 

Table 18: Effect of Permeability Profile on Pressure Drop 

 
 Simulation Pressure Drop (Pa) Average Current 

Density (A/cm2) 

 

 

 

 

Anisotropic 

(Graduated 

Models) 

1A 1800 1.015 

1B 1800 1.015 

1C 1800 1.015 

2A 1100 1.016 

2B 1100 1.016 

2C 1100 1.016 

3A 6400 1.018 

3B 6400 1.018 

3C 6400 1.018 

 

 

Isotropic 

1.00E-12 42,800 1.040 

2.00E-12 20,000 1.028 

5.00E-11 800 1.012 

1.00E-10 400 1.012 

 

 The highest pressure drop, 42,800 Pa, corresponds to the simulation with the 

highest current density (1.04 A/cm
2
) and lowest permeability, (1 x 10

-12
 m

2
).  The 

simulation with the lowest pressure drop, 400 Pa, is the cell with the highest permeability 

(1 x 10
-10

 m
2
) which also corresponds to the lowest current density (1.012 A/cm

2
).  A 

decrease of 2.7% in current density corresponds to a 99% decrease in pressure drop 

between the case with the highest and lowest current density.  The pressure drop of the 

graduated models is compared to pressure drops of some common gas diffusion layer 

designs taken from literature in Table 19. 
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Table 19: Effect of Flow Field Design on Pressure Drop 

 
Simulation Type of Flow Field Pressure Drop Distance over Drop (cm) 

Pharoah [42] Serpentine 0-125 4-8 

Yi and Nguyen [30] Interdigitated 3000 0.3 

Yi and Nguyen Scaled Interdigitated 10,000 1 

Model 1 Graduated 1800 1 

Model 2 Graduated 1100 1 

Model 3 Graduated 6400 1 

 

 

 The serpentine flow field exhibits the smallest pressure drop.  This is because the 

air is not forced into the GDL.  There is only diffusion through the GDL so the drop is 

through the length of the channel.  Yi and Nguyen reported a pressure drop of 3000 Pa in 

a 0.3 cm long channel.  Darcy’s Law was used to scale this result to the 1 cm long GDL 

in the unconventional design with the graduated GDL.  Darcy’s Law states that the 

pressure drop is directly related to the distance over the drop.  Therefore, if the distance 

increases, the pressure drop must increase by the same factor.  In the interdigitated flow 

field and the graduated GDL, the pressure drops are much higher because the gas is 

forced into the GDL.  The graduated GDL showed a lower pressure drop than the 

interdigitated when the distance of the pressure drop is considered, but both models were 

much higher than the serpentine design. 

4.5 Conclusions 

In practice, a fuel cell would be provided with fuel using a device which regulates 

flow, such as a mass flow controller, to provide enough fuel for the cell under different 

loading conditions.  These devices also regulate the pressure at the inlet to prescribe a 
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flow rate regardless of the resistance to flow.  If the pressure is set as a constant at the 

inlet, and the permeability of the GDL is changed, the velocity through the GDL will 

follow the path of least resistance.  However, in a real world system with flow 

controllers, the pressure would be regulated to overcome the resistance. 

This study shows that as long as the cell has enough fuel to run, the permeability 

will not affect the final current density or the uniformity of the current density for the 

graduated GDL design.  The trade-off is an increased pressure and parasitic power loss to 

push the gas through the small inlet and into the porous GDL. 

In the parameter sensitivity study by Min et al. [24], the permeability was varied 

over 7 orders of magnitude.  The pressure drop across the flow channels was not 

reported, and they did not use a cell with forced convection as the dominant transport 

mechanism.  They found that the permeability had almost no influence on the average 

current density, which is consistent with the results of this study. 

The previous two numerical studies addressed graduating the permeability in 

GDLs, but they were numerical studies where the permeability can be adjusted to the 

desired values.  In order to manufacture an anisotropic GDL with the desired 

permeability characteristics, the structure of the GDL must be designed to control the 

flow of the reactant gases.  In the following chapter, woven GDLs are manufactured in-

house using a hand loom in an attempt to characterize the relationship between the 

structure of a GDL and its in-plane and through-plane permeability. 
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CHAPTER 5 

EXPERIMENTAL PERMEABILITY TESTING 

5.1 Introduction and Motivation 

In chapters 3 and 4, computational models were developed to investigate the 

effect of graduating the permeability profile on the current density distribution in the cell.  

While the models looked at theoretical permeability profiles, there was no discussion as 

to how a graduated GDL would be manufactured. 

The permeability of a porous structure is dependent on the pore structure and 

overall porosity.  In this chapter, GDLs with anisotropic permeability profiles are woven 

using a hand loom.   The in-plane permeability and through-plane permeability are tested 

using a permeability testing device made in-house, and the permeability is characterized 

for two different weave types.  In addition to weave type, the tightness of the fibers in the 

weave is varied to create different pore structures, which will results in different 

permeability.  The purpose of this study is to characterize the in-plane and through-plane 

permeability based on weave type and tightness. 

5.2 Methodology 

In this section, the experimental test set-up for the in-plane and through-plane 

tests and the experimental test method for each set-up along with the materials used for 

verification and testing are discussed. 



 108

5.2.1 Through-Plane Permeability Test Set-up 

The through-plane permeability was measured using the test set-up shown in 

Figure 52 (a) and (b).  In this arrangement, air was supplied from a compressor at 100 psi 

gauge.  A pneumatic regulator with a 15 micron filter removed water and particulates 

from the incoming air stream and reduces the pressure to 40 psi gauge.  Using a mass 

flow controller (Alicat 0-2 SLPM, accuracy ± 0.4% reading ± 0.2% full scale), the mass 

flow rate into the device was adjusted.  The samples were clamped between two 

aluminum plates with a 1cm x 1cm channel cut in the center of the plates to allow air to 

pass through the sample.  A mixture of soap and water was applied to the outsides of the 

device to insure a gas tight seal, which was possible without further sealing due to the 

low pressures involved.  A differential pressure sensor (Omega PX653, accuracy ± 0.1% 

full scale) spanning a range of -0.05 to 0.05 in. of water column corresponds to -12.5 to 

12.5 Pa.  The local barometric pressure was taken from the mass flow controller and was 

assumed to be the outlet pressure in the calculations.  At least ten pressure measurements 

were taken for each sample, corresponding to ten flow rates.  Four different samples for 

each weave design were measured. 
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Compressor

(a)

 

Differential 
Pressure Sensor

Through-Plane Permeability
Testing Device

Mass Flow Controller

(b)

 

Figure 52: (a) Through-Plane Permeability Set-up and (b) Close up of the Device with Mass Flow Controller and 

Differential Pressure Sensor 

 

5.2.2 In-Plane Permeability Test Set-up 

The in-plane permeability was measured using the set-up shown in Figure 53 (a) 

and (b).  Like the through-plane set up, a compressor provided air to a pneumatic 

regulator which reduced the pressure from 100 psi gauge to 40 psi gauge and filtered out 

water and particulates in the air.  The flow rate was set on the mass flow controller to 
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supply the air to the inlet channel of the permeability testing device.  Rubber gaskets 

sealed the gaps between the top and bottom of the test rig, and plumbers putty was used 

to seal the back of the channels, as seen in Figure 53 (b).  The top and bottom of the test 

rig were compressed onto steel feeler gauges of a known thickness to determine the 

compressed thickness of the sample.  After the air entered the inlet channel, it flowed 

through the 1.5cm x 1.5 cm samples, which were compressed between the top and bottom 

of the test rig, in the in-plane direction.  The inlet pressure was extracted from the mass 

flow controller, and the outlet pressure was assumed to be atmospheric pressure.  At least 

ten measurements were taken for each sample.  Calibration tests were run without a 

sample to ensure the pressure drop in the channel and between the plates was negligible.  

In addition, the system was pressurized at 40 psi gauge before each test to ensure the 

system was free of leaks.  In-plane permeability data was obtained for three levels of 

compression for each sample. 

Compressor

(a)
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(b)

 

Figure 53: (a) In-Plane Permeability Test Set-up and (b) In-Plane Permeability Test Device 

 

5.2.3 Hand Loom 

 

The woven carbon fibers structures tested in this study were made in-house on a 

16” Ashford 8 Harness hand loom, which is shown in Figure 54.  The warp fibers were 

fixed onto a ruler with tape at the desired spacing corresponding to the desired tightness.  

The weft fibers were inserted between the warp fibers and perpendicular to the length of 

the warp fibers.  After each weft fiber was inserted between the warp fibers, the beater 

was used to push the weft fiber into the pattern.  After two weft fibers were added to the 

pattern, a ruler was used to ensure the desired tightness was achieved. 
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Warp Fibers

Weft Fibers

Ruler

Beater  

Figure 54: Hand Loom Used to Weave the Woven GDLs 

5.2.4 Materials 

To determine the accuracy of the through-plane and in-plane test equipment, a 

non-woven carbon paper, SGL 34BA made by SGL Technologies GmbH, was used to 

compare the experimental permeability results to those found in literature.  The original 

thickness of the SGL 34BA was 285 microns, which was provided by the manufacturer 

and verified with a Mitutoyo micrometer (± 0.01 mm).  The woven samples were made 

from T-300 carbon fibers provided by Cytec Inc.  Each carbon fiber tow was comprised 

of 3000 carbon fibers. 

5.3 Analysis 

In the following section the approach used to analyze the permeability and 

compressed porosity of the samples are discussed.  From this analysis, the through-plane 

and in-plane permeability profiles for woven samples of different tightness can be 

classified. 
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5.3.1 Darcy-Forchheimer Formulation: Permeability 

 

The Darcy-Forchheimer equation, which was discussed in Section 2.3, describes 

the relationship of pressure drop and velocity through a porous medium.  Using this 

relationship, given in Equation 2.10, the permeability of gas (air) through the samples can 

be obtained.  The velocity of the gas flowing through the pores is given by Equation 5.1, 

which holds for 1-D flow of compressed air.  Air is compressible and if one-dimensional 

flow is assumed, this is a reasonable assumption given the uni-directional pressure 

gradient in the test set-ups. 

 
ρρ
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 (5.1) 

where mɺ is the mass flow rate, Aperpendicular is the area of the GDL perpendicular to the 

flow and m’ is the mass flux.  Assuming the air is an ideal gas, which is a reasonable 

assumption at standard conditions, the density (ρ) can be represented by, 
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If Equation 5.2 is substituted back into Equation 5.1, the velocity can be represented by, 
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Substituting Equation 5.3 back into Equation 2.10 (the original Darcy-Forchheimer 

equation) and simplifying gives, 
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Separating variables and integrating, Equation 5.4 becomes, 
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 (5.5) 

where L is the length the gas travels through the sample. 

 In order to obtain the permeability term, the mass flow rate is increased over 10-

15 data points within a range of 0.001 standard liters per minute (SLPM) to 2 SLPM, and 

the corresponding pressure drop across the sample is recorded.  Increasing the mass flow 

rate increases the mass flux, which can be calculated based on the cross sectional area 

perpendicular to the flow.  The inlet pressure was measured using the mass flow 

controller based on the pressure drop between the inlet and outlet.  Then, the mass flux 

was plotted against the pressure term on the left hand side of Equation 5.5, which was 

used to generate a plot similar to Figure 55.  A 2
nd

 order polynomial was fit to the data, 

which was compared to Equation 5.5.  Assuming a constant gas viscosity of 1.85 x 10
-5

 

Pa-s [73], the permeability can be calculated from the linear term in the polynomial fit 

from the graph. 
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Figure 55: Representative Plot for Permeability Test 

 

5.3.2 Calculation of Uncompressed Porosity for In-Plane Tests 

A relationship between permeability and porosity is desired to determine the in-

plane permeability of an uncompressed GDL.  In order to relate permeability to porosity, 

the porosity needs to be related to the bulk volume while the sample is compressed to a 

known thickness because the volume during compression can be measured.  It is assumed 

the compression is one-dimensional.  To this end, the in-plane permeability of the 

samples was tested under three levels of compression which was dictated by compressing 

the sample down to steel feeler gauges of known thickness.  The pressure gradient term 

was plotted against the mass flux for each sample at each level of compression, as seen in 

Figure 56 for a twill 8x4 weave.  A least-squares fit was used to match an equation to 

each data set.  The equation is fit to the Darcy-Forchheimer equation using the analysis in 

Section 5.3.1 to calculate the permeability at each level of compression. 
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Figure 56: Mass Flux vs. Pressure Gradient Term for Twill 8x4 at 3 Levels of Compression 

 

It is assumed that the fibers are incompressible, that is all the reduction in volume 

is due to a reduction in the open space between the fiber [34].  Under these assumptions, 

the compressed thickness can be determined by Equation 5.6 [34]. 

 0,0,,, )1( bCbsCbCp VVVVV ε−−=−=  (5.6) 

where V p,C is the compressed pore volume, V b,C is the compressed volume of the bulk 

volume of the sample, V s is the volume of the solid, ε0 is the original porosity and V b,0 is 

the original bulk volume of the sample.  Rearranging Equation 5.6, the porosity of the 

compressed sample is given by, 
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where εC is the compressed porosity.  After calculating the compressed porosity, the 

porosity can be compared to the permeability at different levels of compression.  An 

exponential equation is fit to the plot of permeability vs. porosity, as seen in Figure 57, 

which gives the permeability as a function of porosity at each level of compression.  

Using this equation and the uncompressed porosity, the uncompressed in-plane 

permeability can be determined in both in-plane directions. 
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Figure 57: Permeability vs. Porosity for a Twill 8x8 Weave 

 

5.4 Design of Experiments 

Samples of two different types of weaves (i.e., plain and twill) at three different 

tightnesses (i.e., 8x8, 8x6, and 8x4) were manufactured using a hand loom.  In this 

section, the weave types and design of experiments are discussed. 

 The two types of weave structures considered are the plain weave and twill 

weave, which were discussed in Section 2.5.2.  To characterize the permeability with 

respect to tightness, a maximum tightness for the weave was determined.  The individual 
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fiber tows of the T-300 3K tow carbon fibers are 1.25 mm in length, as shown in Figure 

58.  Each tow comprises 3000 individual fibers.  The maximum number of tows that can 

be woven without deforming the carbon fibers is 8 tows/cm.  Thus, 8 tows/cm was 

chosen as the maximum tightness.  A woven structure with 8 tows/cm in the warp 

direction and 8 tows/cm in the weft direction will be classified with a tightness of 8x8. 

1 tow
1.25 mm

1 tow
1.25 mm

Warp

Weft

 

Figure 58: Plain-Woven Fabric with a Tightness of 8x8 

 

 The linear fiber density (i.e., the number of fibers per unit length) was varied over 

a range of tightness for the plain and twill woven fabrics.  For instance, 8 tows were 

maintained in the warp direction while the number of tows in the weft direction ranges 

from 4 to 8, where an 8x4 is classified as the loosest weave.  When the linear density of 

fibers was less than 4 fibers in the weft direction, the individual tows fall apart, and the 

sample could not sustain its structure.  The samples also could not sustain their structure 

when the warp fiber linear density was decreased below 8 tows/cm.  The two weave types 

and the respective weave tightnesses are illustrated in Table 20. 

 

Table 20: Weave Samples 
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Plain (tows/cm,  

warp x weft) 

Twill (tows/cm,  

warp x weft) 

8x8 8x8 

8x6 8x6 

8x4 8x4 

 

 

 During through-plane testing, the permeability was independent of the weave’s 

placement in the testing device because the flow was perpendicular to the weave pattern.  

However, during in-plane testing, the flow entered the side of the sample and was parallel 

to the weave pattern.  Thus, the samples were tested in both in-plane directions to 

investigate the anisotropic in-plane permeability. 

5.5 Through-Plane Permeability Results 

The through-plane test results are discussed.  The test set-up was validated by 

comparing to results for the same material in literature.  Next, the through-plane 

permeability is tested for 6 types of woven samples (2 weave patterns at 3 tightnesses).  

The tests are repeated 3 times to ensure repeatability. 

5.5.1 Validation 

To validate the through-plane test set-up, the through-plane permeability of a SGL 

34BA carbon paper was compared to results reported by Gostick et al. [34].  The pressure 

gradient term was plotted against the mass flux and is shown in Figure 59 for both the 

validation and data adapted from Gostick et al. 
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Figure 59: Pressure Gradient Term vs. Mass Flux for Validation 

 

The through-plane permeability of SGL 34BA carbon paper was found to be 8.4 x 10
-12

 

m
2
, while Gostick et al. reported a value of 16.1 x 10

-12
 m

2
 for the same material [34].  

While the permeability is ½ the permeability reported by Gostick et al., this is seen as a 

reasonable result.  Because, for a similar material (SGL 10BA), Gostick et al. reported a 

permeability of 37.4 x 10
-12

 m
2
, while Ihonen et al reported a value of 18 x 10

-12
 m

2
 [74], 

which are off by a factor of 2 also.  Although the permeability is off by a factor of 2, it is 

believed that this is insignificant because the range of experimental through-plane 

permeability reported in the literature is from 10
-12

 to 10
-10

 m
2
.  Therefore, the through-

plane test equipment is considered accurate for the desired measurements. 

5.5.2 Through-Plane Permeability of Woven GDLs 

The through-plane permeability for the 6 woven samples is shown in Table 21.  

The reported permeability values are the average permeabilities from 3-4 samples. 
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Table 21: Through-Plane Permeability of Woven Samples 

 
 Plain Weave Twill Weave 

 Permeability x 10-12 

(m2) 

Average Deviation x 10-

12 (m2) 

Permeability x 10-12 

(m2)  

Average Deviation x 10-12 

(m2) 

8x4 12.5 ±0.65 57 ±3.44 

8x6 0.95 ±0.10 14.1 ±1.4 

8x8 2.15 ±0.63 5.8 ±0.035 

 

 

 It can be seen from Table 21 that the through-plane permeabilities of the twill 

weaves are higher than the permeabilitoes of the plain weaves.  The permeability of 8x4, 

8x6, and 8x8 twill weaves compared to the 8x4, 8x6, and 8x8 plain weaves are 4.6, 14.8, 

and 2.7 times higher respectively.  This is consistent with the literature, which states that 

plain weaves have the lowest permeability. 

It is expected that the permeability will increase as the number of weft fibers 

decreases.  This is due to the fact that there is less solid volume and larger pores for the 

air to pass through.  More pores will create less resistance, which should cause higher 

permeability.  This trend is seen with the twill weave, and is shown in Figure 56.  

However, the same trend is not seen with the plain weave, as shown in Figure 61. 



 122

 

Figure 60: Through-Plane Permeability of Twill Woven GDL with Varying Tightness 

 

 

 

Figure 61: Through-Plane Permeability of Plain Woven GDL with Varying Tightness 

 

In both cases, the permeability was highest for the 8x4 pattern, which was 

expected.  However, for the plain weave the permeability was 2.26 times higher for the 

8x8 pattern than the 8x6 pattern, as seen in Figure 61.  However, the 8x8 pattern has the 

most solid volume of carbon fiber per unit area and should have the lowest permeability.  

To ensure manufacturing error did not play a role in obtaining the unexpected trend, 
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another batch of plain 8x8 and plain 8x6 samples was made and tested.  The same trend 

was found for the second batch confirming the results from the first tests. 

The plain 8x6 and plain 8x8 samples were examined under a microscope to look 

more closely at the pore structure.  It was seen that the 8x8 sample had larger pores 

between the fibers, which possibly caused the higher permeability.  One explanation for 

this is that the fibers deformed in the in-plane direction during the weaving process. 

5.6 In Plane Permeability Results 

The in-plane permeability was tested for 6 woven structures at three levels of 

compression.  The permeability at each level of compression was calculated and plotted 

against the compressed porosity.  Using a curve fit and the uncompressed porosity, the 

uncompressed permeability was calculated.  The uncompressed porosity was measured 

using mercury intrusion porosimetry (MIP).  The results of the MIP tests are discussed 

and related to the calculated permeability values. 

5.6.1 Validation 

To validate the in-plane test set-up, the in-plane permeability of SGL 34BA by 

SGL Technologies at a compression of 230 microns was compared to results reported by 

Gostick et al. [34].  The pressure gradient term was plotted against the mass flux in 

Figure 62 for both the validation and data adapted from Gostick et al.  As seen in Figure 

62, the in-plane permeability test set-up built in house was able to closely match the 

pressure gradient reported by Gostick et al. for SGL 34BA. 
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Figure 62: Pressure Gradient Term vs. Mass Flux for Validation 

 

5.6.2 In-plane Permeability of Woven GDLs 

The in-plane permeability was measured under three levels of compression over a 

range of 250-400 µm for the six designs shown in Table 20.  The feeler gauge used for 

each test was dictated by the original thickness of the sample.  Tests were repeated for 

each design, and tests were run to ensure the permeability of the 8x8 samples were 

transversely isotropic.  Samples with a different number of tows/cm in the warp and weft 

direction (i.e., 8x4, 8x6) were measured in both in-plane directions.  To distinguish which 

direction is measured, the direction reported is the number of tows/cm perpendicular to 

the flow (e.g., in an 8x4 sample, the 4 direction is the in-plane direction where the 

impregnating air will encounter 4 tows/cm perpendicular to the direction of flow.)  This 

is illustrated in Figure 63. 
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Figure 63: Naming Convention for 8x4 Sample 

 

The uncompressed in-plane permeability for each weave pattern is shown in 

Table 22.  It can be seen that in an anisotropic pattern (i.e., 8x4 or 8x6) the in-plane 

permeability is consistently higher in the direction where the air flows perpendicular to 

more tows/cm (i.e., the permeability is higher in the 8 direction than in the 4 direction for 

an 8x4 pattern).  It would be reasonable to assume that the permeability in an 8x4 pattern 

would be higher than the permeability in an 8x8 pattern.  Since there are fewer fibers in 

an 8x4 pattern, there is less resistance to flow.  This trend is seen with the plain weave, 

where the in-plane permeability for a plain 8x4 in the 8 direction is 39 times higher than 

the in-plane permeability of a plain 8x8 pattern.  However, for the twill weave, the in-

plane permeability in the 8-direction has a 2.5% variation between the 8x4 and the 8x6 in 

the 8 direction.  The in-plane permeability is also higher for 8x6 than the 8x4 twill weave 

in the 8 direction, which is contrary to the expected results. 
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 The inconsistency of in-plane results can be due to the difficulty in testing the 

samples in the in-plane direction.  If the sample is not cut to the exact dimension of the 

in-plane testing device (1.5 cm x 1.5 cm), air can flow around the sample instead of 

through the sample.  Since the air does not pass through the sample, there is less 

resistance, and this effect will appear as a decrease in pressure drop, as seen in Figure 64.  

Care was taken to avoid this problem by placing a sample slightly larger than 1.5 cm into 

the test platform and cutting the sample down to size while it was in the device.  Other 

causes of error can be the destructive nature of the tests.  The same sample was used for 

all tests of a single pattern.  This cycle of recompressing the sample could permanently 

damage the sample and affect the succeeding results. 

Table 22: Uncompressed In-Plane Permeability for Woven Patterns 

 
 8 direction  (Permeability 

x 10-12 m2) 

6 direction (Permeability 

x 10-12 m2) 

4 direction (Permeability 

x 10-12 m2) 

Twill 8x8 61.6 X X 

Twill 8x6 117 109 X 

Twill 8x4 114 X 47.4 

Plain 8x8 126 X X 

Plain 8x6 248 116 X 

Plain 8x4 4860 X 321 

 

 

 

 

Figure 64: Example of a Sample Slightly Smaller than the In-Plane Test Device Allowing Air to Pass around the 

Sample Resulting in a Decreased Pressure Drop 
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 Comparing Tables 21 and 22, it can be seen that the in-plane permeabilities are all 

higher than the through-plane permeabilities with the exception of one weave design, the 

twill 8x4.  The through-plane permeability of the twill 8x4 in the 4 direction is 47.4 x 10
-

12
 m

2
, while the in-plane permeability of the twill 8x4 is 57 x 10

-12
 m

2
, which shows it is 

possible to create a weave pattern with lower in-plane permeability.  To the author’s 

knowledge, there is limited research on the in-plane permeability of woven carbon fiber 

structures, but research has shown that the permeability of non-woven carbon fibers and 

carbon papers have a higher in-plane permeability as discussed in Section 2.5.1.  From 

this work, it appears this trend holds true for woven structures, also. 

5.6.3 Mercury Intrusion Porosimetry Measurements 

To calculate the compressed porosity using the analysis in Section 5.3.2, the 

uncompressed porosity of the sample is needed.  The goal of the study is to find the in-

plane permeability of a sample under no compression.  However, the in-plane 

permeability can only be measured under compression because the flow is perpendicular 

to the direction of compression in an in-plane test.  Thus, the uncompressed porosity is 

needed to calculate the level of compression for each test to extrapolate the 

uncompressed permeability.  Mercury intrusion porosimetry (MIP) is one method to 

measure the porosity of a porous material.  In MIP, a sample is placed in a test chamber, 

which is evacuated of air.  The chamber is filled with mercury, which has a high surface 

tension, and thus is reluctant to adhere to surfaces.  As the pressure is increased, mercury 

is pushed into the smaller pores.  At each incremental pressure increase, the amount of 

mercury which has not been forced into the pores is measured, and the size of the pores 

can be calculated.  The MIP tests were conducted by Micromeritics Corp., USA, on 2 cm 
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x 4 cm strips of each weave sample.  A hardening resin was spread around the edges of 

each 2 cm x 4 cm sample on a master sheet of each weave pattern and then cut out to 

prevent fraying.  Further, the resin was used to ensure the weave patterns did not fall 

apart during transport and testing.  The pore size distribution of a plain 8x8 sample is 

shown in Figure 65, which is typical for other weave designs as well. 

 

 

Figure 65: Pore Size Distribution for an 8x8 Plain Weave 

 

 From the graph of pore size distribution, Figure 65, four distinct peaks can be 

seen, which correspond to four different dominant pore sizes.  The macropores, 50-400 

µm, represent the interfiber pores, or the pores between the individual fiber tows.  The 

mesopores, 5-50 µm, correspond to the pores between the interlacing layers of individual 

tows, shown graphically in Figure 66.  The micropores, 0.5-5 µm, are the intrafiber pores, 

which are the pores between the individual fibers that make up a single tow.  The 

nanopores, smaller than 0.01 µm, correspond to the actual pores inside a single carbon 
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fiber and possibly the resin.  A plain 8x8 weave pattern is shown under a microscope in 

Figure 67 (a) and (b), with the macro, micro and nanopores labeled.  The mesopores 

could not be imaged because a cross section would need to be cut from a sample and 

placed vertically in the microscope.  In this configuration, the tows at the edge of the 

material will fray and make it difficult to see between the interlacing tows. 

Pore Between
Interlacing Tows

 

Figure 66: Graphical Representation of the Pores Between Interlacing Tows 
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Micropores

Nanopores

Within the Fiber

 

Figure 67: High Resolution Microscope Image of (a) Macropores and (b) Micropores and Nanopores 

 

 To find the percentage of each type of pore, the cumulative pore distribution 

graph, shown in Figure 68, can be used to calculate the percentage of pores in each range.  

The percentage of each type of pore is shown in Table 23. 
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Figure 68: Cumulative Pore Distribution for an 8x8 Plain Weave 

 

 

Table 23: Percentage of Each Type of Pore Based on Mercury Intrusion Porosimetry 

 
Weave Type Macro Meso Micro Nano 

  50-400 (µm) 5-50 (µm) 0.5-5 (µm) .005-.03 (µm) 

Plain 8x8 29.09% 12.73% 36.36% 21.82% 

Plain 8x6 25.00% 17.86% 35.71% 21.43% 

Plain 8x4 31.43% 34.28% 20.00% 14.29% 

Twill 8x8 30.30% 30.31% 27.27% 12.12% 

Twill 8x6 36.84% 26.32% 23.68% 13.16% 

Twill 8x4 42.86% 21.42% 21.43% 14.29% 

 

 

It can be seen from Table 23 that the plain 8x8 sample has a higher percentage of 

macropores than the plain 8x6 sample.  The plain 8x4 sample has the highest number of 

macropores of the plain weave samples.  Referring back to Figure 61, this explains why 

the through-plane permeability for plain 8x6 weave was lower than the plain 8x8 weave.  

The percentage of macropores seems to be the driving factor in through-plane 

permeability.  This trend follows for the twill weave samples.  The twill 8x4 has the 

highest percentage of macropores, followed by the twill 8x6 and the twill 8x8.  When 

referring to Figure 60, the twill 8x4 had the highest through-plane permeability, followed 
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by the twill 8x6 and the twill 8x8, which confirms that the number of macropores is 

important in determining the through-plane permeability. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Overall Conclusions 

In this thesis, two numerical studies were conducted to investigate the effect of 

introducing a graduated permeability profile in the GDL of an unconventional PEM fuel 

cell on the uniformity of the current density distribution.  In addition to permeability, the 

effect of changing the thickness of the GDL and the stoichiometry of the air supply were 

considered.  An experimental study was also conducted to study the in-plane and 

through-plane permeabilities through the unconventional GDL to ensure that the 

permeability of gas through the structure could be controlled. 

In the first numerical study, a half-cell model of a PEMFC cathode was built in 

Fluent version 6.3.26 and used to analyze 3-D single-phase gas flow, and a zero-D 

equation was used to calculate the gas flow to the current density distribution.  It was 

found that higher in-plane resistance resulted in higher current densities, while the effect 

of changing the permeability profile on the uniformity could be optimized with different 

permeability patterns.  Thicker GDLs showed higher average current densities due to 

higher velocities, but the uniformity was independent of thickness.  GDLs with a higher 

air stoichiometry had higher average current densities due to higher velocitites, however 

the uniformity of the current distribution was not directly correlated to the stoichiometry.  

A limitation of this model was that the current transport equations were not solved, and 

the current density was not directly coupled to the mass transport.  As such, a second 
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numerical study was conducted which couples the current equations to mass transport and 

solves the equations for the electrochemical reactions. 

 In the second numerical study, a half-cell model of a PEMFC cathode was built in 

COMSOL Multiphysics version 3.5 and was used to analyze 3-D single-phase flow, 

which coupled the mass transport to the charge transport.  It was found that the 

permeability profile through the GDL had little effect on the average current density or 

the uniformity of the current density distribution.  The permeability profile had a minimal 

effect on the current density distribution because the solver increased the pressure at the 

inlet to overcome the increase in resistance.  The pressure profile through the GDL was 

recorded, and it was found that cases with lower permeability resulted in a higher 

pressure drop due to increased resistance.  Changes in thickness also had little effect on 

the current density distribution.  When studying the effect of changing the gas 

stoichiometry, it was found that at a stoichiometry of 1, the air was deficient of oxygen 

near the outlet and the average current density was lower.  When increasing the 

stoichiometry to 2, the average current density increased by 12%.  Further increases in 

stoichiometry from 2 to 4 resulted in only a 4.2% increase in the current density.  It can 

be concluded that once the fuel cell has enough oxygen to sustain the reactions, pumping 

more oxygen into the cell will not significantly increase the average current density. 

 In the experimental study, the through-plane permeability and in-plane 

permeability were measured for 6 different weave patterns.  The pore structure was 

analyzed with mercury intrusion porosimetry and a high resolution microscope.  It can be 

concluded that the plain weave has a lower through-plane permeability than the twill 

weave.  According to the analysis of the pore structure, the macropores, pores greater 
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than 50 microns, are a driving factor in determining the through-plane permeability.  The 

in-plane permeability for the woven structures was higher than the through-plane 

permeability, with the exception of the twill 8x4 weave in the 4 direction which showed a 

through-plane permeability which was 20% higher than the in-plane permeability.  This 

shows it is possible to create a weave pattern with higher through-plane permeability than 

in-plane permeability.  However, the woven structures generally followed the same trend 

of non-woven structures, which show higher in-plane permeability than through-plane 

permeability. 

6.2 Contributions 

While it was found that a graduated permeability does not affect the performance 

when considering gas flow, this thesis lays the ground work for a future study in which 

two-phase (i.e., gas and liquid water) permeability in the GDL of the unconventional 

GDL is considered.  When comparing the results in Chapter 3 and 4, the expected current 

densities at the GDL/catalyst interface were very different.  This underlines the 

importance of coupling current transport to differential equations that govern mass 

transport in electrochemical modeling. 

This thesis shows it is possible to create a GDL with a higher through-plane 

permeability than in-plane permeability, which has not been shown in literature.  While 

work has been conducted to study permeability of commercial GDLs, this is the first 

study to try to characterize a relationship between the in-plane and through-plane 

permeability of woven GDLs based on structure (i.e., weave pattern and tightness).  This 

thesis serves as a starting point for future studies to quantify the relationship between the 
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structure and the permeability, and also the correlation between the pore structure and the 

permeability. 
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CHAPTER 7 

FUTURE WORK 

7.1 Simulations 

 

The goal of the numerical simulations discussed in Chapters 3 and 4 was to 

regulate the permeability to create a uniform current density profile.  Since the 

permeability was found to have little effect on the current density profile, other factors 

that affect the permeability should be considered.  One factor that affects the current 

density is the reaction rate at the catalyst layer.  There are several ways to increase the 

reaction rate at the catalyst layer such as increasing the platinum loading or increasing the 

surface area of the catalyst active area by increasing the roughness of the surface [3, 75].  

Increasing the reaction rate is captured by the modeling parameter, ai0c, which represents 

the surface area multiplied by the exchange current density.  For the study in chapter 4, 

this variable was kept constant at 120 A/m
3
.  It would be interesting to see if graduating 

the consumption rate would help produce a more uniform current density, which is 

suggested by Baghdadi [32].  A graphical representation of this concept is shown in 

Figure 69. 

 

Inlet Outlet

High concentration of O2

Low reaction rate

Low concentration of O2

High reaction rate

 

Figure 69: Graded Reaction Rate due to Non-Uniform Catalyst Loading as Oxygen is Consumed through the 

Cell 
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A preliminary study was run in which ai0c was increased as a linear function 

based on position.  This is much like the increasing permeability profile in the 

aforementioned simulations.  At the exit, ai0c is set to 120 A/m
3
.  The starting values of 

ai0c, the average current density and the ratio are shown in Table 24. 

 

Table 24: Current Density as a Function of Rate of Consumption, ai0c 

 
Range of ai0c (A/m3) Average Current Density 

(A/cm2) 

Standard Deviation of 

Current Density (A/cm2) 

Ratio of Std. 

Deviation/Average 

Current Density 

10 – 120 0.871 0.094 0.108 

40 – 120 0.930 0.027 0.029 

50 – 120 0.944 0.016 0.017 

55 – 120 0.950 0.012 0.013 

60 – 120 0.957 0.011 0.011 

65 – 120 0.963 0.012 0.012 

70 – 120 0.968 0.015 0.015 

120 (constant) 1.015 0.048 0.047 

 

 

 It is observed that as the value of ai0c near the inlet increases, the average current 

density increases.  This is because the catalyst can utilize more of the fuel.  When 

comparing the standard deviation of current density and the ratio of the standard 

deviation to the average current density for all simulations, it is found that there exists an 

optimum, as evidenced by the lower ratio.  The optimum occurs when the starting value 

of ai0c is at 60 [A/m
3
].  This suggests that it is possible to obtain a better current density 

distribution with non-uniform catalyst loading.  This study does not take into account 

effects of non-uniform heat generation and the effects on conductivity.  A future study 
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which takes into account the heat generation coupled to two-phase water transport will be 

necessary for further optimization. 

7.2 Permeability Testing 

 

The goal of chapter 5 was to create an anisotropic permeability pattern with 

higher through-plane permeability than in-plane permeability by varying the weave 

tightness for two different weave patterns.  It was found that the in-plane permeability 

was higher than the through-plane permeability, which is consistent with literature on 

non-woven GDLs.  One exception is an 8x4 twill weave in the 4 direction, in which the 

through-plane permeability was 20% higher than the in-plane permeability.  This shows it 

is possible to manufacture a GDL with higher through-plane permeability.  In future 

work, different woven materials could be tested.  Materials with a lower number of fibers 

per tow could be tested, and the durability of the materials could be tested to make sure 

the GDL will be able to sustain the stresses of operation and compare to the lifetime of 

conventional systems.  Two weave patterns, plain and twill weave, were considered in 

this study.  In future work, more weave patterns could be tested.  Since water is created in 

fuel cell cathodes, water could be used as the impregnating fluid to test the relative liquid 

permeability and compare to the gas permeability.  It would also be interesting to test the 

conductivity of different woven structures.  While a more porous structure improves gas 

transport, higher porosity causes an increase in contact resistance due to lower electrical 

conductivity of air.  Ideally, GDLs with different woven patterns could be tested in a fuel 

cell to investigate the trade-off between conductivity and air permeability. 
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