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ABSTRACT

Two topics involving irradiation damage in α-iron have been considered. First,

damage cascades representative of those that would be induced by radiation have been

simulated using molecular dynamics (MD). The number and type of defects produced are

compared for pure iron and iron with a small hydrogen concentration. Second, the inter-

action energy between point defects and line dislocations has been calculated for a number

of configurations, using both molecular statics methods and calculations based on linear

elastic continuum theory and the dipole force tensor. Results from both methods are com-

pared. Results from these two topics are relevant for predicting macroscopic behaviors such

as creep and plasticity in reactor structural materials.
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CHAPTER I

INTRODUCTION

1.1 Basics of Radiation Damage

Radiation damage occurs when incident particles transfer some or all of their energy to

atoms in a solid, resulting in a change to the original structure.

The process involves several steps. First, the incident radiation has an interaction with

an atom in the crystal lattice. In a basic model, if the energy transferred in this interaction

is greater than the binding energy of the lattice atom, the lattice atom will be displaced

from its site. This atom is known as the primary knock-on atom (PKA). The PKA then

goes on to interact with other atoms in the crystal, removing them from their sites and

generating a displacement cascade. This process continues until the energy has dissipated,

and all of the atoms have come to rest in the crystal. There may be atoms that come to

rest in between lattice sites, creating interstitials, and leaving holes in their original sites,

creating vacancies.

A typical cascade takes only picoseconds to occur. On a longer time scale, vacancies and

interstitials diffuse through the material and may recombine, healing the material, or may

crowd with other defects or their own kind, generating voids and clusters. More information

on cascades can be found in [57, 49].

1.2 Dislocations in Crystals

A dislocation is a topological irregularity in a crystal structure, due to extra or shifted

planes of atoms. There are two distinct types of dislocations, edge and screw. In real

crystals, dislocations are often have characteristics of both types and are considered mixed.

Consider a perfect crystal cube. An edge dislocation occurs when an extra half-plane of

atoms is inserted into the crystal, causing distortion of nearby planes. A screw dislocation

could be generated by slicing the cube along a plane and displacing the atoms on one side

by an amount b with respect to the other side. This creates a helical path around the
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(a) An edge dislocation (b) A screw dislocation

Figure 1: Basic structures for edge and screw dislocations.

dislocation (the end of the cut) line. Schematics of both types can be seen in Figure 1.

To quantify the distortion, two variables are associated with a dislocation: ξ, the dislo-

cation line, and b, the Burgers vector. The direction of ξ can arbitrarily be assigned; the

direction of b is defined with respect to it. Looking down the positive ξ direction, trace a

clockwise circuit enclosing the dislocation core, beginning in an area of perfect crystal. The

Burgers vector is defined as the vector required to close the circuit.

Dislocations have two methods of locomotion: climb and glide. Climb occurs when a

dislocation emits a vacancy or interstitial. It is dependent on the rate at which defects

diffuse through the material, and it is a non-conservative process. In an unirradiated en-

vironment, climb becomes important only at higher temperatures, because the equilibrium

concentration of point defects is generally low. Under irradiation, defect concentrations are

elevated, and climb leads to creep at lower temperatures.

Glide is not dependent on defect diffusion. It is simply the motion of the dislocation

along its glide plane, and it is caused by the application of shear stress to the bulk. Glide to

the surface of the crystal will result in a step. Screw dislocations can glide in any direction,

since b and ξ are in the same direction. Edge dislocations only have one glide plane along

which they can move, so climb is a more important process.

Additional resources on the basic properties of dislocations are found in [57, 11, 38, 27].
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1.3 Motivation

Damage to materials under irradiation is a problem that spans multiple time and length

scales. Microstructural changes can result in dramatic macroscopic behavioral changes such

as creep, plasticity, radiation-induced segregation, changes in brittle to ductile transition

temperature, hardening, and cracking. Since iron is the main component in steel, an essen-

tial building material for practically any modern nuclear reactor, much is to be gained from

understanding atomic scale damage events and interactions.

In this paper, the investigation of radiation damage cascades at varying energies will

give an understanding of how point defects initially form under irradiation. Then, the

interaction between line dislocations and irradiation induced point defects will be analyzed,

providing insight into one of the most important macroscopic properties of steels, creep.

Movement of dislocations and point defects are the driving force behind creep, a macro-

scopic effect in which a material elongates in a particular direction over time. Creep of

metals and alloys under irradiation has been the subject of many experimental and theo-

retical studies for more than 30 years. Although a vast amount of knowledge of irradiation

creep has accumulated, the database on irradiation creep comes from many relatively small

experiments, and there were often differences in experimental conditions from one study to

the next. Theoretical models are based on linear elasticity. Among the many theories that

exist to describe the driving force for irradiation creep, the most important are the SIPN,

SIPA, and SIPA-AD effects.

Stress Induced Preferential Nucleation of loops (SIPN) [26] is based on the idea that

the application of external stress will result in an increased number of dislocation loops

nucleating on planes of preferred orientations. Interstitial loops will tend to be oriented

perpendicular to the applied tensile stress, while vacancy loops will prefer to be oriented

parallel to the stress. The net result is elongation of the solid in the direction of applied

stress. While there is some experimental support of this theory, it is thought that it cannot

account fully for creep seen in materials.

An alternative theory is Stress Induced Preferential Absorption/Attraction (SIPA) [24,

7, 6]. The essential idea behind SIPA is that interstitials are preferentially absorbed by
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dislocations of particular orientations, resulting in climb; this is described by an elastic

interaction between the stress fields of the defect and dislocation. A variant on SIPA that

accounts for anistropic diffusion is SIPA-AD. This theory uses the full diffusion equations,

derived by Dederichs and Schroder [15], to take into account anisotropic stress fields. Savino

and Tomé developed this theory and found that it generally gives a larger contribution to

dislocation climb than the original SIPA [43]. Thorough reviews of many dislocation creep

models have been prepared by Matthews and Finnis [33] and Bullough and Wood [8].

These models go a long way towards explaining irradiation creep due to dislocations;

however, all models based on linear elasticity break down near a dislocation core due to 1/r

terms in the stress and strain field expressions. Atomistic calculations do not suffer from

this problem, so they can be used to verify the range of validity of theoretical expressions

and successfully predict true behavior at the core.
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CHAPTER II

DAMAGE CASCADES

2.1 Literature Review

The study of irradiation damage cascades has been a popular topic over the last fifteen or

so years. A through literature review of the many different of damage cascade simulations,

such as binary collision approximation and kinetic Monte Carlo, that have been performed

in a variety of materials is beyond the scope of this paper. The following brief review will

concentrate solely on molecular dynamics simulations in α-Fe.

The first published study was performed by Calder and Bacon in 1993 [9]. Eighty

cascades with PKAs of up to 5 keV were analyzed for properties such as percent of defects

surviving relaxation, channeling properties, temperature dependence, and clustering. The

potential used was developed by Finnis and Sinclair [18] and stiffened by Calder and Bacon

to treat small interatomic distance properly. This article established a large base of data

for future papers to compare with.

Following this initial study, many papers came out which utilized both the modified

FS potential mentioned above and competing multi-body potentials including those from

Haftel and Andreadis [22], Johnson and Oh [29], Harrison and Voter [23], and Simonelli et

al. [46]. These papers had three main motivations: to generate data from a new potential,

to compare data between two or more potentials, or to compare damage in α-Fe with that

in another material such as copper. The main difficulties in comparing results from different

authors are defining what makes up a cluster of defects and non-reporting of exactly how

cascades were generated. A through review of these problems, as well as a summary of

results from many papers, was written by Malerba [32].

Many authors contributed to generate databases; some papers of note are described here.

Stoller, Odette, and Wirth [50], using the FS potential modified by Calder and Bacon, ran

a number of cascades at energies up to 40 keV. They found evidence for vacancy clustering,
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a feature not seen in previous works. Bacon, Gao, and Osetsky [3] performed a study

comparing the cascade characteristics of bcc, hcp, and fcc metals. They found that there

were no major differences in interstitial and vacancy production, so concluded that any

differences observed experimentally must be due to evolution following the primary damage

event. Caturla et al. [10] compared bcc Fe with fcc Cu, finding that clustering in Fe was at

least an order of magnitude less than in Cu. Terentyev et al. [51] produced a study looking

solely at differences between four available potentials by applying the same defect counting

criteria to each. They found that the stiffness of a potential, a somewhat arbitrary feature,

was the most important factor in determining cascade properties.

A literature search did not reveal any papers with cascade results for iron infused with

hydrogen, the topic of this paper. However, there are a few studies available on a similar

topic, iron containing helium. Both of these elements have relevance for a fusion reactor

system. Yang et al. [58] found that iron containing substitution helium atoms tends to form

large vacancy clusters, while only a few small ones are seen in pure Fe. Additional papers

from Yu et al. [59] and Schaublin and Baluc [44] confirm this finding and conclude that the

presence of He does not make a difference in the number of defects initially created.

2.2 Computational Methods

2.2.1 Cascade Features

All cascade simulations were performed using the LAMMPS molecular dynamics code

[40]. Cascade energies of interest ranged from 5 keV to 20 keV, although some diagnostics

and checks were run with lower energy cascades.

Periodic boundary conditions were used, so care was taken to ensure the simulation

boxes were large enough to avoid image effects. Cascades were visually inspected to check

for self-interference; in addition, test runs were performed with larger boxes to make sure

the number of defects seen was representative of a cascade in an infinite medium. Table 1

shows the dimensions of the simulation box for the various energies.

For the pure iron cascades, the simulation box was filled with perfect bcc lattice. For

the hydrogen cascades, an appropriate number of tetrahedral interstitial sites [28] were
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Table 1: Simulation box sizes for various cascade energies. The second column indicates
lattice spacings in each direction, creating a cubic simulation box.

Cascade Energy (keV) Lattice Spacings (a0) Number of Fe Atoms
≤3 30 54,000
5 50 250,000
10 60 432,000
20 100 2,000,000

randomly selected to hold H atoms; every regular bcc site still contained an iron atom.

At the beginning of each simulation, equilibration of the lattice was performed at 300

K for 10 ps. A damped Nose-Hoover thermostat was used with a NVT ensemble, in which

the number of atoms, volume of the box, and the temperature are kept constant.

For pure iron, a relatively large timestep of 10 fs was used for this stage of the simulation

since atoms would not be moving very far. The FeH systems were more sensitive, so a

timestep of 1 fs was used. Additionally, before equilibration the FeH systems were minimized

with conjugate gradient methods to allow the atoms nearest to the H interstitials to relax.

To simulate damage from a neutron hitting the bulk, a random atom near the center

of the simulation box is chosen to be the primary knock-on atom. This atom is given a

velocity corresponding to the desired cascade energy, and the simulation is continued.

Cascades were induced in the <1 3 5> direction. This direction is often used in the

literature to be representative of a random direction; it also has the benefit that it reduces

channeling. 1 keV simulations were performed this direction in pure Fe, as well as in the

<1 0 0>, <1 1 0>, and <1 1 1> directions to verify this claim. Six cascades were run in

each direction, in a box which had been equilibrated at 100 K. The results of this test can

be seen in Figure 2, with the horizontal bar indicating the average number of Frenkel pairs

for each direction and the vertical error bar showing the standard deviation. Indeed, the

<1 3 5> direction seems like a good choice to be representative of a random direction.

During this phase a microcanonical ensemble (NVE) was used, in which the number of

atoms, volume of the box, and total energy are conserved. No further attempt was made

to keep the box at 300 K.

A timestep of 0.1 fs was used to ensure that all the physics was captured when the atoms
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Figure 2: Comparison of PKA initial directions for 1 keV cascades. The horizontal lines
show the average number of Frenkel pairs while the error bars show the standard deviation.

had close approaches. This thermal spike phase was simulated for 5 ps.

By 5 ps after the cascade is induced, the crystal has begun to anneal significantly

through recombination of defects, so a the timestep is adjusted to 1.0 fs for computational

efficiency. For the 5 keV cascades, relaxation is performed for 5 more ps; for the 10 and 20

keV cascades, relaxation continues for 20 ps, although the atoms are fully relaxed before

the end of this time. Typical cascade profiles can be seen in Figure 3.

2.2.2 Counting Defects

A post-processing tool, utilizing the well-known Wigner-Seitz supercell method, was

written for counting the number of Frenkel pairs at different stages in the cascade. This

method is a popular one because the entire simulation box is covered; methods that count

based on distance from lattice sites may miss areas of the box. Only iron defects were

counted, since all the hydrogen atoms were set up as interstitials.

First, the simulation box is broken up into cubic supercells, corresponding in size and
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Wigner-Seitz supercells 
o�set from normal 
lattice by 1/4*a  in 
x, y, and z directions

Figure 4: An illustration of the Wigner-Seitz supercell method. Supercells are constructed
to be the same size as traditional bcc cells, with 2 atoms per cell in a perfect lattice. However,
they are offset to eliminate counting errors due to movement about the lattice sites.

shape to, but offset from the unit lattice cubes by 1
4a0 in the x, y, and z directions. This

offsetting is necessary to avoid miscounting of defects as the atoms oscillate around their

lattice sites due to thermal motion. A schematic can be seen in Figure 4.

At t = 0, the supercells record how many iron atoms are within their bounds; this is 2

for a perfect bcc lattice. During the cascade simulation, atoms positions are recorded every

n timesteps. For each of these timesteps, the supercells again calculate the number of iron

atoms within their bounds and compare this number to the number at initialization. A cell

is identified as having vacancies, if there are less than 2 atoms in the cell, or interstitials, if

there are more than 2 atoms in the cell.

All iron atoms in any cell identified as having vacancies or interstitials are then cor-

respondingly plotted to create animations of the cascades. In the setups with hydrogen,

all hydrogen atoms were also plotted at every timestep. Snapshots from a representative

cascade can be seen in Figure 5 for pure iron.

2.2.3 Potentials

Three different many-body potentials were used for the simulations. More technical

information about this class of potentials, and specifically the potentials mentioned below,

can be found in Appendix A.
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(a) 0.1 ps (b) 0.9 ps - near peak damage

(c) 4.0 ps - partially relaxed (d) 20.0 ps - fully relaxed

Figure 5: Four snapshots from a 10 keV cascade in pure Fe. Red dots show interstitials,
blue dots show vacancies. All coordinates are scaled from 0 to 1; real box size is 171.31 Å
in each dimension. Times indicated are from a reset t = 0 after equilibration. Note the
vacancy rich core surrounded by interstitials.

For the pure Fe cascades, the embedded atom method (EAM) potential #2 from Mendelev

et al.[35] was used. This potential was generated by fitting to first-principles forces seen in

the liquid state in addition to bulk crystal data and crystal defect information. Using data

from a liquid-like state lets this potential give a better description of interaction at small

separations than had been seen in previous iron potentials, due to the fact that atoms in

liquid iron will often find themselves closer together than atoms in a solid; this is also the sit-

uation with interstitials in iron. As evidence of the effectiveness of this fitting method, this

potential predicts the formation energies of interstitial dumbbells very accurately (within

3%), despite not having been fit to these parameters directly. By comparison, a potential

generated by Ackland et al. [1] that was fit to all the same parameters except the liquid

state overestimates these energies by up to 40% in some directions.

Two FeH potentials, which were developed by Ramasubramaniam et al.[41], were used

for comparison. The first, hereafter referred to as potential A, takes the Fe-Fe interactions

from potential #4 of the above mentioned Mendelev work. This iron potential is similar to

11



#2, however it is fit to experimental liquid structure data instead of first-principles calcu-

lations of liquid states. The two potentials give very close results for a number of physical

properties, including lattice parameter, elastic constants, and vacancy formation energy.

One difference worth noting is that potential #4 predicts interstitial dumbbell formation

energies 9-13% lower than does potential #2. However, the ordering of the directionality of

the dumbbells is consistent; both potentials predict dumbbells in the <1 1 0> direction to

have the lowest formation energy, followed by the <1 1 1> and <1 0 0> directions.

The second FeH potential, referred to as potential B, gets its Fe-Fe interactions from a

2004 potential from Ackland et al.[2]. This potential is simply a slightly improved version

of Mendelev et al.’s potential #2, fitted to eliminate negative thermal expansion.

To fit the Fe-H and H-H interactions, Ramasubramaniam et al. used a variant of the

EAM and Finnis-Sinclair (FS) formalisms to describe the total energy of the system. Using

this general many-body form, the two-body interactions φ and electron densities ρ are

specified independently for each type of interaction. Data from first-principles DFT was

used for fitting. Specifically, dissolution and binding energies for various configurations in

the bulk and in the presence of vacancies were considered. A battery of tests were run to

assess the performance of the potentials for a variety of situations and results were in good

agreement with DFT predictions. It should be noted that two additional potentials were

developed by Ramasubramaniam et al. by additionally fitting to surface data, but these

potentials have inferior performance in the bulk, so they are not considered in this study.

2.3 Results

2.3.1 Cascades in pure Fe at different energies

Cascades were induced with 5, 10, and 20 keV PKAs in pure Fe. As would be expected,

cascades with less energy peaked earlier and had fewer overall defects. The energy of the

cascade does not greatly influence the percentage of defects surviving. For each energy, the

average percentage of surviving defects was between one and two percent, with individual

cascades ranging between 0.43 and 2.12 percent surviving. Data for these energies is found

in Tables 2, 3, and 4.
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Table 2: Data on defects from 5 keV cascades in pure Fe. N is number of Frenkel pairs, t
is time in timesteps.

Case Npeak tpeak Nsurviving % Surviving
1 1013 5800 16.12 1.59
2 1096 6500 5.82 0.53
3 1018 5600 13.50 1.33
4 966 5700 20.43 2.11
5 1049 5700 8.69 0.82

avg 1028.4 12.91 1.27

Table 3: Data on defects from 10 keV cascades in pure Fe. N is number of Frenkel pairs,
t is time in timesteps.

Case Npeak tpeak Nsurviving % Surviving
1 2569 8600 42.95 1.67
2 2993 9000 21.60 0.72
3 1960 5700 41.50 2.12
4 2890 8900 28.85 1.00
5 2990 8900 15.20 0.51
6 1966 6300 37.65 1.92
7 3082 9000 18.10 0.59
8 2957 9200 12.70 0.43
9 2620 8700 21.35 0.81
10 2948 8800 22.45 0.76
avg 2697.5 26.24 1.05

As a PKA is given more energy, the structure of the cascades changes, but the inherent

recombination properties do not. That is, a cascade will tend to branch out as more energy

is given to the PKA so that it takes up a larger area, but defects created will still recombine

at the same rate. For example, a 5 keV cascade can be thought of as an offshoot branch of

a larger 20 keV cascade.

2.3.2 Cascades in pure Fe vs FeH

To compare pure iron to iron containing hydrogen, additional cascades were performed

with 10 keV iron PKAs. This energy was chosen because the size of the simulation box allows

for reasonably fast computations, but there are still enough atoms to get good statistics

with low solubility.

The solubility of hydrogen in iron is 0.01 at.% at 1000 K [42, 5] , and significantly lower

at room temperature. Even though these simulations were run at only 300 K, the above
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Table 4: Data on defects from 20 keV cascades in pure Fe. N is number of Frenkel pairs,
t is time in timesteps.

Case Npeak tpeak Nsurviving % Surviving
1 4851 11200 40.62 0.84
2 6603 11800 71.57 1.08
3 6915 11500 68.13 0.98
4 3968 8300 80.29 2.02
5 6500 11100 53.24 0.82
6 5126 9100 50.44 0.98

avg 5660.5 60.72 1.62

Table 5: Data on defects from 10 keV cascades in Fe with 0.01 at.% H, with potential A.
N is number of Frenkel pairs, t is time in timesteps.

Case Npeak tpeak Nsurviving % Surviving
2 2012 7400 24.58 1.22
3 2295 7600 29.10 1.27
4 2027 7600 15.42 0.76
5 2784 8400 10.46 0.38
6 1596 6000 22.66 1.42
7 2101 6600 21.44 1.02
8 3009 8400 33.22 1.10
9 3261 8200 22.60 0.69
10 2244 7100 9.38 0.42
avg 2369.9 20.98 0.92

mentioned solubility was used with the assumption that in a fusion environment, more

hydrogen may be implanted than would normally be soluble. Runs were performed with

both potentials A and B to check for discrepancies.

Raw data for these simulations can be seen in Tables 3, 5, and 6. The number of

surviving defects is taken as an average over the end of the simulation. At this point, the

crystal is relaxed and the number of defects is fairly constant, but fluctuates slightly due to

the counting method.

The simulation boxes containing hydrogen do not show markedly different results from

those without. The average number of Frenkel pairs at peak time in systems with hydrogen

was 2463.1, with a standard deviation of 613.8. The data from both potentials A and B

was lumped to generate this figure. For pure iron, the average was 2697.5, with a standard

deviation of 420.2. Even though slightly more defects are initially created in a pure iron

system, the number remaining after relaxation is no greater than in systems with hydrogen.
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Table 6: Data on defects from 10 keV cascades in Fe with 0.01 at.% H, with potential B.
N is number of Frenkel pairs, t is time in timesteps.

Case Npeak tpeak Nsurviving % Surviving
2 1328 5500 32.72 2.46
3 2766 7600 31.54 1.14
4 2829 8800 21.76 0.77
5 2697 8000 24.76 0.92
6 3398 8300 10.00 0.29
7 3307 8500 15.12 0.46
8 2176 8100 30.56 1.40
9 2839 8800 39.84 1.40
10 1666 5500 44.72 2.68
avg 2556.2 27.89 1.28

Comparing potentials involving hydrogen, the use of potential A generally results in a

simulation with fewer defects compared to potential B, at both peak and final times. Also,

a smaller percentage of the defects created survive. Overall, potential A gives a slightly

smaller percent defects remaining number than does pure Fe, while potential B predicts a

larger percentage. It is difficult to determine which trend is correct because experiments on

this timescale and lengthscale are extremely hard to conduct.

A negative correlation between the percentage of surviving defects and the number of

defects created at peak time is observed (see Figure 6). This trend is particularly obvious

for pure iron and FeH systems with potential B and can be understood in the following

way. Generally, systems with a larger number of peak defects also exhibit less branching

structure, with the energy being spread out to more atoms within a smaller area. Thus

in this type of system, the probability of a vacancy being near an interstitial is enhanced

during relaxation, and the chances of recombination are greater.

It should be noted that the longterm behavior of iron systems containing hydrogen may

be markedly different than that of pure iron systems. Hydrogen atoms diffuse through the

bulk at a higher rate than self interstitials and vacancies and are likely to cluster together on

the timescale of nanoseconds. These may be initiation sites for voids or interstitial clusters,

resulting in different macroscopic properties than those seen in pure iron. This is an active

area of research, however more thorough analysis of this topic is beyond the scope of this

paper.
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CHAPTER III

INTERACTION OF DEFECTS WITH DISLOCATIONS

3.1 Literature Review

Computer modeling of dislocations has a long history, beginning in the late 1960s with

Vitek and Duesbery [17, 54, 55, 56]. Since then, many authors have studied how edge

and screw dislocations move through material, interact with point defects, and influence

macroscopic behavior.

One important quantity that has been studied is the interaction energy. The interaction

energy between a point defect and a line dislocation is a measure of the favorability of the

positioning of the defect with respect to the dislocation, and it is also a predictor of how

the dislocation and defect may eventually combine to result in climb behavior. A negative

interaction energy indicates that the defect is in a favorable position; that is, placing a

defect at this particular position in the crystal lowers the system’s total energy.

A theoretical model to calculate interaction energy based on the dipole tensor (discussed

in more detail in the next section) was developed by Meissner et al. [34] in an anisotropic

medium. This model was the basis for work by Tomé et al. [53] in which interaction energy

in hexagonal close packed materials was studied near edge and screw dislocations. Both of

these papers used lattice Green’s functions to calculate the dipole tensors. Further works

invoking this theoretical framework and the model of diffusion of point defects of Dederichs

and Schoeder [15] include those of Tomé et al. [52], Monti et al. [36], and Smetniansky-de

Grande et al. [21].

Also based on Meissner’s theoretical formulation, a study of the migration of point

defects towards line dislocations in bcc Fe was conducted by Sivak et al. [47]. This paper

presents values of the dipole tensor that differ from the ones presented below. This is

attributed to the fact that basic pair potential is used, which may give less accurate results

than those from an EAM potential. Shastry and de la Rubia [45] looked at the interaction
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between point defects and edge dislocations. Their results qualitatively agree with the ones

presented in this chapter, but take far fewer cases into consideration.

Osetsky et al. [39] compare results from isotropic elasticity theory to atomistics, as

applied to edge dislocation interactions with large self-interstitial clusters in iron and copper.

They conclude that theory is not sufficient to explain the behavior of these systems at small

distances from the core. There is also a large body of literature existing that describes

the interactions between glissile line dislocations and point defects or large self-interstitial

clusters. These papers do not directly calculate the interaction energy, but concentrate

on the different types of structures that may be formed when various types of defects run

into each other. Liu and Biner performed one such study for screw dislocations and self-

interstitial clusters [31], finding two main mechanisms of transformation. Fujita et al. [20]

and Bacon et al. [4] performed similar studies for edge dislocations and screw dislocations,

respectively. It is beyond the scope of this paper to review all existing literature on computer

simulations of dislocations. A recent review was conducted by Moriarty et al. [37].

In this chapter, the interaction energy will be calculated in two different ways and then

compared. The first method involves linear elastic continuum theory and the dipole force

tensor. The second method involves atomistic calculations using molecular statics.

3.2 Linear Elastic Theory and the Dipole Tensor

According to continuum theory, the interaction energy between the point defect and a

dislocation a distance r from each other is given by

E(r) = −εij(r)Pij (1)

where ε is the strain field of the dislocation [34] and P is the dipole tensor, described in

the next section. The interaction energy is defined by setting E = 0 at the point where

the defect is far enough away from the dislocation to feel no influence; in other words, the

defect sees essentially bulk material. So, defects of different configurations may be shifted

by different amounts. For example, the total energy of a system with a <1 1 0> dumbbell

will be lower than for a system with a <1 1 1> dumbbell.
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For an edge dislocation, the non-zero components of the strain tensor in an isotropic

medium [38] are given by

εxx = − b

4π(1− ν)r
sin θ cos 2θ − b

2πr
sin θ

εyy =
b

4π(1− ν)r
sin θ(2 cos2 θ + 1)− b

2πr
sin θ

εxy =
b

4π(1− ν)r
cos θ cos 2θ (2)

where b is the magnitude of the Burgers vector and ν is Poisson’s ratio. Also, εyx = εxy to

give a symmetric tensor. The dislocation line ξ is defined to be in the z direction, with a

Burgers vector in the x direction.

For a screw dislocation, the non-zero components are

εxz = − b

4πr
sin θ

εyz =
b

4πr
cos θ. (3)

Again, the tensor is symmetric. The dislocation line is again in the z direction, with a

parallel Burgers vector.

3.2.1 Constructing the Dipole Tensor

The influence that a point defect, either a vacancy or interstitial, has on its neighbors

can be characterized by the dipole tensor P. Components are calculated by

Pij =
N∑

k=1

[S(k)
i + d

(k)
i ]F (k)

j

where the sum is over N neighbors of the defect, S denotes the perfect lattice position of a

neighbor with respect to the defect, d is the displacement from the perfect lattice position

caused by the defect’s presence, and F is the Kanzaki force [30]. Kanzaki forces are defined

as the forces on neighbors of the defect that must be applied to maintain the displaced

structure when the defect is removed, or the portion of the total force on a neighbor due to

the defect when in a relaxed position.

To find these forces and displacements, atomistic simulations were performed in which a

defect was introduced into a perfect lattice. Conjugate gradient minimization was performed
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(a) S and d are indicated for one
neighbor. The tensor is created by
summing over all neighbors; the 8
nearest are shown.

(b) After the defect is removed, F is
the force needed to keep the neigh-
bors in their displaced positions.

Figure 7: Schematic for generating the dipole tensor for a generic defect in a bcc lattice.
Dotted circles denote perfect lattice positions. Red circles denote displaced atom positions
caused by the presence of the defect.

to relax the lattice. Care must be taken that the lattice is fully relaxed; this was checked

by ensuring that no component of force on any atom was larger than 1×10−15 eV/Å. Then,

the defect was removed and the lattice restored to its original state, but with the neighbors

maintaining their displacements. The force produced by the defect site on the neighbors

can then be measured; it is equal in magnitude but opposite in sign to the force produced

by the defect itself. A schematic of the process can be seen in Figure 7. The multi-body

potential used to find the values of S, d, and F is from Ackland et al [2].; this is the same

potential which provides the Fe part of potential B referred to in the previous chapter.

Advantages of this potential for dislocation calculations are discussed in the next section.

It is clear that the number of neighbors taken into consideration can influence the values

of the components of P. Convergence testing was done by considering successive neighbor

shells in the calculation. A cube of iron, 20a0 in each dimension, was modeled, with the

simulation box divided into two regions. A smaller cube of dimensions 17a0 was centered

in the larger box, and surrounded by atoms frozen in their perfect sites to simulate pure

bulk material. Periodic boundary conditions were applied, however the box size was large

enough to eliminate any artifacts from Images of the defect. All calculations of P were done

in the crystal coordinate system (x = [1 0 0], y = [0 1 0], z = [0 0 1]).

For a vacancy in an isotropic medium such as bcc iron, P will be a symmetric diagonal
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Figure 8: Pii calculated considering different neighbor shells for a vacancy in bcc iron.
Points denote neighbor shells. Convergence to -2.71185 eV is reached after considering 9
neighbor shells.

matrix, with Pxx = Pyy = Pzz and all other components equal to zero. It was found that

for this potential in bcc iron, Tr(P) = -8.13555 eV, or Pii = -2.71185 eV in the crystal

coordinate system. This value is reached when 9 or more neighbor shells, or atoms up to

2.4495a0 away, are considered. A graph of Pii considering different numbers of neighbor

shells can be seen in Figure 8. The full matrix is

P(vacancy) =


−2.71185 0 0

0 −2.71185 0

0 0 −2.71185

 eV (4)

The dipole tensor can also be calculated for the saddle point of a vacancy undergoing

diffusion. A vacancy trading places with one of its nearest neighbors is the most likely

case; this is a movement in a <1 1 1> direction. To find the saddle point configuration,

temperature accelerated dynamics (TAD) [48] was used to detect the transition of a system

with one vacancy in it. The nudged elastic band method [25] was employed to measure

where along the path a saddle point was located, and the forces and displacements were
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calculated as before. It was found that there is a local minimum halfway between the two

regular lattice positions, with symmetric saddle points on either side. The vacancy must

overcome a barrier of 0.6395 eV to reach this intermediate minimum, at 0.5488 eV above

the reference state. Moving in the <1 1 1> direction, the tensor for the intermediate local

minimum is

P(vacancylm) =


−4.242 −1.467 −1.467

−1.467 −4.242 −1.467

−1.467 −1.467 −4.242

 eV. (5)

and the tensor for the saddle point is

P(vacancysp) =


−5.43 −2.59 −2.59

−2.59 −5.43 −2.59

−2.59 −2.59 −5.43

 eV. (6)

Vacancy hops in other directions are much less likely to occur. Nudged elastic band

calculations predict a barrier of 2.63 eV for <1 0 0> hops and 4.91 eV for <1 1 0> hops.

For interstitial dumbbells, anisotropy exists in the dipole tensor and the off diagonal

components may be non-zero in the crystal coordinate system. The dipole tensors, calcu-

lated with 2890 neighbors, for the three interstitial dumbbell configurations in bcc iron are

given below:

P([1 1 0]) =


10.2056 4.7428 0

4.7428 10.2056 0

0 0 10.9080

 eV (7)

P([1 0 0]) =


8.7977 −1.0332 −1.0332

−1.0332 8.1689 2.9766

−1.0332 2.9766 8.1689

 eV (8)

P([1 1 1]) =


8.5493 4.6977 4.6977

4.6977 8.5493 4.6977

4.6977 4.6977 8.5493

 eV (9)

It should be noted that the <1 1 1> dumbbell is rather unstable. With thorough

minimization, it consistently reconfigured into some variant of a <1 1 0> dumbbell. When
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calculating this P, minimization was allowed to run long enough to allow the <1 1 1>

dumbbell to come to its equilibrium distance, then the dumbbell atoms were frozen for

further minimization. In this case, no component of force was allowed to be larger than

1×10−9 eV/Å.

The tensor is sensitive to the direction in which a vacancy is moving or a dumbbell is

lying. Tensors can easily be generated for alternative directions following two simple rules:

1. Permutations of direction vector components result in the switching of appropriate

rows and columns of the tensor.

2. Any sign change in a particular component of the direction vector will result in a sign

change of the off-diagonal elements of the tensor that correspond to that component.

For example, the dipole tensor for a [1 0 1̄] dumbbell would be:

P([1 0 1̄]) =


10.2056 0 −4.7428

0 10.9080 0

−4.7428 0 10.2056

 eV

3.2.2 Transformation Matrix

Before the interaction energy can be calculated, the dislocation strain field and the

dipole tensor must be described in the same coordinate system. The crystal coordinate

system is the most intuitive, and the strain tensor is easily described into this system via a

transformation matrix:

εC = TεDT† (10)

where T has the normalized box vectors of the dislocation coordinate system as its columns,

and T† is the transpose of T. The coordinate systems used to describe the dislocations are

described in the next section.

Individual direction vectors can be translated between coordinate systems in a similar

way:

vC = TvD.
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3.3 Atomistic Methods

Dislocations were introduced into bulk iron following linear elastic displacement theory.

Periodic boundary conditions are used in the direction of the dislocation line; the other

two boundaries are frozen some distance from the core to preserve the linear elastic field.

Following initial displacement by theory, the atoms near the core are allowed to relax under

conjugate gradient minimization to correctly find the core configuration, while atoms on

the boundaries are frozen to preserve the linear elastic field. Details for particular types of

dislocations are given below.

The potential used for both the above dipole tensor calculations and the following atom-

istic calculations is from Ackland et al [2].; this is the same potential which provides the Fe

part of potential B referred to in the previous chapter. This potential is one of the few avail-

able multi-body potentials to predict the non-degenerate compact core structure of a screw

dislocation in bcc iron [16], as seen in Frederiksen and Jacobsen’s ab initio calculations [19].

Vacancies and interstitials were introduced into the fully relaxed configurations, then

minimized again with conjugate gradient methods before measuring the energy of the sys-

tem. Both LAMMPS [40] and Art Voter’s clsman codes were used for minimization and

analysis. In the following sections, all atomistics were performed at 0 K.

3.3.1 Edge

Edge dislocations were created with Burgers vector b = 1
2 [1 1 1] and the dislocation line

ξ in the [1 1 2̄] direction. Box vectors are given by [1 1 1], [1 1̄ 0], and [1 1 2̄], respectively

x, y, and z. A system of 118,244 atoms was used, 61,368 of which are allowed to move.

The full setup can be seen in Figure 9. A zoomed in view of the core can be seen in Figure

10(a).

3.3.2 Screw

Screw dislocations were created in the coordinate system with box vectors [1 1̄ 0], [1̄ 1̄ 2],

and [1 1 1]. The Burgers vector has magnitude
√

3a0/2 in the [1 1 1] direction; the dislocation

line is parallel. A system of 100,095 atoms was used, 64,005 of which are allowed to move.
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Figure 9: The edge dislocation. Frozen atoms are in blue, free are red. The simulation
box is about 206 Å wide, 207 Å tall, and 27.98 Å deep in the periodic direction.

The setup can be seen in Figure 11.

3.4 Comparison of Dipole Tensor Calculations with Atomistics

It is extremely valuable to be able to compare atomistic simulations with calculations

utilizing Equation 1 (referred to in this paper as dipole tensor calculations, or DTC) for

interaction energy between defects and dislocations. Continuum theory is known to break

down very close to the core, where equations predict singularities, but atomistics provides

a reliable way to gain information in these regions. The distance from the core at which

DTC becomes reliable can also be judged from comparison.

3.4.1 Edge

3.4.1.1 Vacancy

To create the graph shown in Figure 12(a), in turn each atom in the system is removed,

the system is minimized, and the energy is measured. Although DTC and atomistics agree

quite well far from the core (Figure 12(c)), close to the core there is much disagreement.

For vacancies placed in the tensile region, below the half plane, DTC predicts that the
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Figure 10: Edge dislocation geometry
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(a) Frozen atoms are in blue, free are red. The black line denotes the
cut plane; white lines indicate direction for the three partials.

[1 1 2]

[1 1 0]S

cut plane

(b) The screw coordinate system. <1 1 1> is into the
page.

Figure 11: The screw dislocation. The radius of the free region is about 80 Å, and the
radius of the entire simulation area is 100 Å. The cylinder is 37.091 Å deep in the periodic
direction.
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interaction energy will consistently go up the closer the defect is to the core. Atomistics

predict the interaction energy rising as the vacancy gets closer, but only until about 6-10

Å from the core. Within this distance, interaction energy becomes negative, indicating

a preference to have a vacancy in this part of the tensile region. DTC also predicts no

interaction when the defect is on the glide plane, but atomistics disagrees. As far as 20 Å

from the core, a negative interaction energy is seen, and less than 10 Å away, the core tends

to reorganize to a much lower energy structure, with the vacancy tending to move closer to

the core along the glide plane. All results can be seen in Figure 12.

3.4.1.2 Interstitial

A variety of interstitial configurations were tested atomistically. Although in an ideal

situation, one can imagine that an interstitial would prefer to be in the tensile half sphere

surrounding an edge dislocation, in a realistic damage situation, interstitials will be created

in the compressive region as well. Therefore, we have tested dumbbells in both regions.

Dumbbells were created along the y-axis in the dislocation coordinate system, the con-

figuration was minimized, and the energy measured. Results for these [1 1̄ 0] dumbbells can

be seen in Figure 13. In the graph, ‘distance from core’ is defined as the original distance

that the center of the created dumbbell was from the core. Some dumbbells tended to

rearrange under minimization - these are seen in the figure as points with energy close to

-3.0.

Again, far from the core atomistic results agree well with theory. At 90◦, the interaction

energy is slightly higher than predicted beginning near 25 Å. As we get closer to the core,

the predicted interaction energy has a peak at about 7 Å before beginning to slightly fall.

The same trend, with opposite signs, is seen for 270◦, directly below the extra half plane.

At 180◦ no interaction is predicted, but there is actually a strong interaction below 10

Å, resulting in climb of the dislocation. All dumbbells created within this distance tended

to reorganize the core, giving the same low-energy structure in each case. This close-up of

this structure transition can be seen in Figure 14. The upper member of the dumbbell slid

down and joined the glide plane, restoring the ‘perfect’ compression. The lower half of the

28



(a) Atomistics include a wider range of angle than DTC, as shown below.
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Figure 12: DTC vs atomistics for vacancies near an edge dislocation.
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Figure 13: Interaction energies from (initially) [1 1̄ 0] dumbbells near an edge dislocation
along with DTC calculations.

dumbbell fits into the row of atoms below the glide plane. This generates a crowdion in the

<1 1 1> direction, effectively creating two jogs in the dislocation,
√

6a0/6 apart, along the

direction of the dislocation line. This is illustrated in perspective view in Figure 15. The

same behavior is seen for other angles, but only for the atoms closest to the core, within 5

Å or less.

In the dislocation coordinate system, [1 1̄ 0] and the equivalent [1̄ 1 0] dumbbells have

extent in only the y-direction, while [1 1 0] and equivalent [1̄ 1̄ 0] dumbbells have extent

(a) Initial configuration (b) A few timesteps later (c) Final configuration

Figure 14: A [1 1̄ 0] dumbbell at 180◦ reorganizes into a jog. The core location is indicated.
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Figure 15: Jogs in an edge dislocation after reorganization of a dumbbell near the core.

in the x and z directions. This could lead to a difference in energy between the two

configurations. This was tested at 270◦. In fact, there are extremely minimal differences in

energy between these two cases, except for very near the core when there are differences in

whether or not the dumbbells rearrange into the aforementioned jog configuration. Similar

patterns hold true for the other 4 possible <1 1 0> orientations. As can be seen in Figure

16, all of the variations are closely spaced in energy, with <1 1 0> and <1 0 1> orderings

lying mostly on top of each other in energy. All of the dumbbells have stronger interactions

than predicted by DTC by approximately 0.25 eV near the core, with DTC and atomistics

agreeing better at long distances.

The <1 1 1> configuration was also tested. This shape is known to be less stable in bulk

crystal and has a higher formation energy; these features are replicated well by the chosen

potential. The majority of these dumbbells converted to variants of <1 1 0> dumbbells

under minimization, while the rest would presumably also convert if any dynamics were

run.

3.4.2 Screw

3.4.2.1 Vacancy

εD has no diagonal components and even under transformation to the crystal coordinate

system maintains its zero trace. Thus, DTC predicts no interaction of a vacancy with a screw
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Figure 16: Energies for a variety of <1 1 0> dumbbell permutations, compared to DTC,
near an edge dislocation. All dumbbells are positioned at 270◦.

dislocation in an isotropic medium where P has only diagonal components. Atomistics,

however, do show an interaction when the vacancy is close to the core, up to a distance of

about 28 Å away. To create the graph shown in Figure 17, the same method as for the edge

was followed. The variation in energy, larger near the core, is due to the split structure of

the core. Slightly positive interaction energies are seen at 0◦, 120◦, and 240◦, or [1 1̄ 0],

[1̄ 0 1], and [0 1 1̄] respectively. Negative interaction energies are seen at 60◦, 180◦, and

300◦, or [0 1̄ 1], [1̄ 1 0], and [1 0 1̄] respectively. Energies for all other angles fall between

these two extremes. Very near the core, all interaction energies become negative.

3.4.2.2 Interstitial

Dumbbells of various orientations were inserted around screw cores and the system

minimized. First, [1 1̄ 0] were considered. At 0◦ and 180◦, dumbbells were pointed directly

into the core. The former angle yielded the strongest negative interaction energies, while

the latter showed the most positive interaction energies. Positive interaction energies were
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Figure 17: Interaction energy of vacancies with a screw dislocation as a function of distance
from the core and angle. DTC predicts no interaction, but non-negligible interaction is seen
up to about 28 Å from the core.
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seen for all angles between approximately 140◦ and 220◦; very slightly positive interaction

were also seen near 60◦ and 300◦. Interactions were symmetric about the [1 1̄ 0] axis.

A color representation of interaction energies can be seen in Figure 18. For comparison,

a similar graph from DTC is shown in Figure 19. DTC predicts much stronger energies

than atomistics shows near the core (where we would expect linear elastic theory to break

down). In addition, the patterns of positive and negative regions are different between DTC

and experiment. DTC predicts a clear break between positive and negative energies about

the y-axis, however that is not what is seen in atomistics. Although the directions of the

strongest positive and negative interactions are consistent, there are differences in strength

of the interactions.

Next, [1̄ 1 0] dumbbells were tested; this corresponds to a dumbbell lying along θ=120◦.

A similar pattern was seen, with 120◦ having the strongest negative interactions and the

opposing direction having the strongest positive. This demonstrates that the tri-fold sym-

metry is still in effect, with dumbbells rotated by 120◦ showing the same energy patterns.

Under minimization, <1 1 0> dumbbells tended to reorient slightly to fit in with the helical

nature of a screw dislocation, but still essentially maintained their character.

Additionally, [1 1 2̄] dumbbells were tested, to see if the same pattern mentioned above

could be arbitrarily rotated. This configuration is unstable in most of the locations around

the core. Between 0◦ and 180◦, dumbbells reoriented to the [1̄ 0 1] direction; between 180◦

and 360◦, they became [0 1 1̄] dumbbells. These are the lowest energy structures within the

angles given, due to the tri-fold symmetry. Around 0◦, the [1 1̄ 0] would actually give the

lowest energy, but reaching this orientation would require a rotation of 90◦ instead of 30◦,

so no dumbbells acquire this shape under simple minimization. Dumbbells that happened

to lie within the most favorable angles (that is, 120◦ for [1̄ 0 1] and 240◦ for [0 1 1̄]) had

the strongest negative interaction energies, as would be expected from above evidence. At

180◦, all dumbbells maintained their original orientation, unless within 5 Å of the core. At

0◦, all dumbbells farther than 50 Å from the core are also metastable; dumbbells within this

distance sometimes fell to one of the <1 1 0> variants, depending on the exact θ. Under

even more stringent minimization, most of the dumbbells at this angle could be expected to
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(a) View down the core, which is marked with an X. Orientation of axes is the same as
above. Each point denotes a relaxed lattice position in a core without defects, about which
a dumbbell was generated. Missing points near the core indicate that the dumbbell was
not a stable configuration, and the core reorganized to a lower energy structure that is
off-scale.

(b) A view of position along the <1 1̄ 0> axis vs energy. This
picture gives an idea of the variation in energy values.

Figure 18: Color representation of interaction energies of (stable) [1 1̄ 0] dumbbells with
a screw dislocation from atomistics. Distance are in Å energies in eV.
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(a) View down the core. Orientation of axes is the same as above.

Figure 19: Color representation of interaction energies of [1 1̄ 0] dumbbells with a screw
dislocation from theory. Distance are in Å energies in eV. The colors correspond between
the above graph and this one.
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Figure 20: The most favorable orientations and positions for defects around a screw
dislocation.

reorient. For dumbbells that kept the [1 1 2̄] shape, the total system energy was about 0.5

eV higher than for the systems that rearranged themselves, confirming that this structure

is metastable at best. Due to the reorientation to favorable configurations, only neutral or

negative interaction energies were observed.

In summary, dumbbells oriented towards the core on any of the tri-fold splitting direc-

tions (0, 120, and 240◦) have the strongest negative interaction energies; dumbbells across

the core from these, and within approximately 40◦ on either side, have positive interac-

tions. Other orientations that lie within the the plane perpendicular to ξ will reorient to

one of the low energy structures. Figure 20 shows the most energetically favorable positions

and orientations for interstitial dumbbells and vacancies around the dislocation. Since it

is energetically favorable for vacancies and SIAs to lie in different regions around the core,

recombination may be slowed down and higher numbers of defects that would be expected

from continuum theory may exist.
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3.5 Discussion

Dipole tensors have been calculated for a number of different point defect orientations.

These allow for prediction of interaction energies between dislocations and defects accord-

ing to continuum elasticity theory. Because this theory breaks down near the core of a

dislocation, comparison with atomistics is needed for accurate modeling of irradiation creep

in structural materials. Significant differences were found between DTC and atomistics for

many important configurations.

In the edge dislocation, <1 1 0> dumbbells were found to be the most stable configura-

tion in many locations around the core. However, under minimization some reorganized to

create a double jog, resulting in climb. This phenomenon was most prevalent on the glide

plane. <1 1 1> dumbbells were also investigated, but most converted to <1 1 0> shapes,

even in the 0 K test environment. Vacancies also interacted more strongly than would be

expected according to DTC, including having negative interaction energies in the expansive

region below the glide plane, when within about 10 Å from the core. Vacancies on the glide

plane were absorbed by the core more readily than vacancies lying at other angles.

The atomistics were able to reveal the true split nature of the bcc screw dislocation, a

feature not predicted by the elastic strain field of equation 3. Vacancies do have a weak, but

non-negligible, interaction with the dislocation; DTC predicts none at all. This interaction

is dependent on the positioning of the vacancy due to the core splitting. Self-interstitial

dumbbell interactions also strongly depend on the angle and orientation about the core;

dumbbells on the plane perpendicular to the dislocation line have three stable configurations,

pointed in towards the core at 0, 120, and 240◦. For a particular orientation, the energy

profile with angle varies between negative and positive twice, when further than about 8

Å from the core (energies are mostly negative within this distance). However, DTC only

predicts a single change from negative to positive at 90◦; also the interactions are predicted

to be much stronger at many angles. Due to the different preferred positions of vacancies

and interstitials around the core, recombination may be impeded; this effect is ignored in

continuum theory.

For both types of dislocation, atomistics shows a negative interaction energy very near
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the core at all angles. DTC often shows a positive interaction energy for some angles all

the way up to the core.

Overall, continuum theory and DTC explain some features of interactions between dis-

location and point defects but fail in many respects when compared to atomistics. Future

work needs to be done to determine how influential these differences are in macroscopic

creep calculations and the implications for reactor structural component lifetimes.
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CHAPTER IV

CONCLUSIONS

Two studies of irradiation damage in iron have been presented. First, damage cascade

molecular dynamics simulations were performed in pure iron and iron with hydrogen in-

terstitials at a variety of PKA energies. It was found that the percentage of defects that

survive relaxation is approximately 1.25%, averaging over all systems. No significant dif-

ference was found in the character of the primary damage state between systems with and

without hydrogen. This does not necessarily mean that the long term behavior of these two

systems will be the same, however.

Second, interaction energies between point defects and edge and screw dislocations were

calculated with atomistic simulations and with a dipole tensor and continuum theory based

method. It was shown that dipole tensor calculations miss important information that

atomistic calculation reveal, particularly relevant to the screw core structure. Linear elastic

theory breaks down near the core of either type of dislocation, so atomistic simulations are

a valuable tool in this region. Evidence for climb and creep was seen in the case of the edge

dislocation.

In conclusion, atomistics can be a valuable tool for analysis of defect structures. Un-

derstanding both the processes that create defects and how defects interact after creation

is necessary to predict macroscopic behavior of materials in irradiated environments.
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APPENDIX A

MANY-BODY EAM AND FS POTENTIALS

Choosing an appropriate potential is essential for obtaining quality results in any atom-

istic calculation. The traditional formalism of a pair potential, such as a Lennard-Jones or

Morse potential, assumes that the total energy of the solid, Ecoh, can be expressed as a sum

over all of the individual pair bonds. However, this is just an assumption, one that turns

out to be impossible to prove theoretically.

In reality, a many-body potential is needed to account for the influence that bonds

between atoms have on each other. To deal with this, the embedded-atom method (EAM)

was developed by Daw and Baskes in 1983 [12, 13, 14] for metallic solids. Essentially, each

atom is treated as if it were a defect embedded in an electron gas created by the presence

of all the other atoms. The cohesive energy of the system can be described in two parts

by an embedding energy and an electrostatic interaction with a sum over all atoms in the

system:

Ecoh =
∑

i

Gi

∑
j 6=i

ρa
j (Rij)

 +
1
2

∑
i,j(j 6=i)

φij(Rij)

where G is the embedding energy, ρa is the spherically averaged atomic electron density, Rij

is the distance between atoms i and j, and φ is an electrostatic, two-atom interaction. With

this formulation, atoms that are near defects or surfaces, for example, will feel a different

density profile than atoms in the bulk, allowing the potential to treat significantly more

complex systems than pair potentials alone.

While more complex systems can be treated, implementing the method is no more

difficult than implementing a pair potential. The functions G(ρ) and φ(R) can be found

either from first principles or using semi-empirical methods. Normally, they are fit to

data from a particular (pure) metal, such as lattice constants, elastic constants, or defect

formation energies.
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A similar method was developed simultaneously by Finnis and Sinclair (FS) [18]. For

pure metals, the two methods are exactly equivalent. For alloys, the FS ansatz requires dif-

ferent functionals ρ for interactions between different elements, while EAM uses an averaged

one.
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[43] Savino, E. and Tomé, C., “Irradiation creep by stress-induced preferential attraction
due to anisotropic diffusion (SIPA-AD),” J. Nuc. Mat., vol. 108 & 109, pp. 405–416,
1982.

[44] Schaublin, R. and Baluc, N., “Radiation damage in ferritic/martensitic steels for
fusion reactors: a simulation,” Nucl. Fusion, vol. 47, pp. 1690–1695, 2007.

[45] Shastry, V. and de la Rubia, T., “The interaction between point defects and edge
dislocation in bcc iron,” Journal of Engineering Materials and Technology, vol. 121,
p. 126, 1999.

[46] Simonelli, G., Pasianot, R., and Savino, E., “Point-defect computer-simulation
including angular forces in bcc iron,” Physical Review B, vol. 50, pp. 727–738, Jan
1994.

45



[47] Sivak, A. B., Chernov, V. M., Dubasova, N. A., and Romanov, V. A.,
“Anisotropy migration of self-point defects in dislocation stress fields in bcc Fe and
fcc Cu,” Jan 2007.

[48] Sørensen, M. and Voter, A., “Temperature-accelerated dynamics for simulation of
infrequent events,” The Journal of Chemical Physics, vol. 112, p. 9599, 2000.

[49] Stoller, R., “Primary damage formation in irradiated materials,” JOM(USA),
vol. 48, no. 12, pp. 23–27, 1996.

[50] Stoller, R., Odette, G., and Wirth, B., “Primary damage formation in bcc iron,”
Journal of Nuclear Materials, vol. 251, pp. 49–60, 1997.

[51] Terentyev, D., Lagerstedt, C., Olsson, P., Nordlund, K., Wallenius, J.,
Becquart, C., and Malerba, L., “Effect of the interatomic potential on the features
of displacement cascades in alpha-fe: A molecular dynamics study,” Jan 2006.

[52] Tome, C., Cecatto, H., and Savino, E., “Point-defect diffusion in a strained crys-
tal,” Physical Review B, vol. 25, no. 12, pp. 7428–7440, 1982.

[53] Tome, C. and Savino, E., “Interaction between point-defects and straight disloca-
tions in hexagonal crystals,” Mater Sci Eng, vol. 24, pp. 109–122, Jan 1976.

[54] Vitek, V., “Computer-simulation of screw dislocation-motion in bcc metals under
effect of external shear and uniaxial stresses,” P Roy Soc Lond A Mat, vol. 352, pp. 109–
124, Jan 1976.

[55] Vitek, V., “Structure of dislocation cores in metallic materials and its impact on their
plastic behavior,” Prog Mater Sci, vol. 36, pp. 1–27, Jan 1992.

[56] Vitek, V., “Core structure of screw dislocations in body-centred cubic metals: relation
to symmetry and interatomic bonding,” Philos Mag, vol. 84, pp. 415–428, Jan 2004.

[57] Was, G. S., Fundamentals of Radiation Materials Science: Metals and Alloys.
Springer, 2007.

[58] Yang, L., Zu, X., Xiao, H., Gao, F., Heinisch, H., Kurtz, R., and Liu, K.,
“Atomistic simulation of helium-defect interaction in alpha-iron,” Applied Physics Let-
ters, vol. 88, p. 091915, 2006.

[59] Yu, J., Yu, G., Yao, Z., and Schaublin, R., “Synergistic effects of PKA and helium
on primary damage formation in Fe–0.1% He,” Journal of Nuclear Materials, vol. 367,
pp. 462–467, 2007.

46


