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SUMMARY

An extensive review of probabilistic techniques in fatigue analysis indicates that

there is a need for new microstructure-sensitive methods in describing the effects

of notches on the fatigue life reduction in cyclically loaded components. Of special

interest are notched components made from polycrystalline nickel-base superalloys,

which are used for high temperature applications in aircraft gas turbine engine disks.

Microstructure-sensitive computational crystal plasticity is combined with novel prob-

abilistic techniques to determine the probability of failure of notched components

based on the distribution of slip within the notch root region and small crack initia-

tion processes. The key microstructure features of two Ni-base superalloys, a fine and

coarse grain IN100, are reviewed and the method in which these alloys are computa-

tionally modeled is presented. Next, the geometric model of the notched specimens

and method of finite element polycrystalline reconstruction is demonstrated. Shear-

based fatigue indicator parameters are used to characterize the shear-based, mode I

formation and propagation of fatigue cracks. Finally, two different probabilistic ap-

proaches are described in this work including a grain-scale approach, which describes

the probability of forming a crack on the order of grain size, and a transition crack

length approach, which describes the probability of forming and propagating a crack

to the transition crack length. These approaches are used to construct cumulative

distribution functions for the probability of failure as a function of various notch root

sizes and strain load amplitudes.

xii



CHAPTER I

INTRODUCTION

1.1 Introduction

Traditional fatigue analysis schemes used for geometries with stress gradient fields

(such as notches) have required many experiments to determine the probability of

fatigue failure. Due to the extensive amount of scatter in high cycle fatigue (HCF)

analysis, typically fatigue life data are fitted using a significant amount of experi-

ments into an assumed distribution, such as a Weibull or lognormal distribution. The

resulting notch effect on fatigue life is characterized via a notch root fatigue strength

reduction factor, often alternatively called the fatigue notch factor, Kf . The experi-

mental results are beneficial for life prediction of a given geometry and microstructure,

but do not offer predictive insight into the underlying physical mechanisms that ex-

plain scatter, size effects, and gradient effects on fatigue damage. Moreover, if the

material is changed, the fatigue notch factor changes for a given geometry. Com-

putational crystal plasticity models that characterize sensitivity to microstructure

variability, notch size and gradient effects, and extrinsic defects (inclusions, FOD)

can be used to assist in characterizing these fatigue mechanisms and to provide in-

sight into materials design and selection for a given application. The goal of this

research is to develop approaches that combine computational crystal plasticity with

nonlocal notch root plasticity and damage approaches for small crack formation in

HCF, LCF, and mixed conditions, with applications to aircraft gas turbine engine

materials. These approaches combine elements of crystal plasticity with new prob-

abilistic methods for notch sensitivity based on computed slip distributions in the

microstructure at the notch root.

1



1.2 Scope of Thesis

The purpose of this research is to extend microstructure-sensitive nonlocal fatigue

modeling methodology previously conducted in the McDowell research group [1–3] to

next generation notch root analysis. Preliminary efforts within our group [4] formed

the initial foundation for the present work. This method incorporates such effects as

notch size effect, peak stress, stress gradient, and microstructure variability through

characterization of probability distributions of slip and small crack initiation pro-

cesses. These distributions are informed by computational crystal plasticity simu-

lations on realistic microstructures. Additionally, the concept of the fatigue notch

factor, Kf , is extended to include microstructure sensitivity effects resulting from

these probability distributions.

1.3 Layout of Thesis

This thesis is divided into five chapters:

• Chapter II provides the background information for this thesis. Previous ap-

proaches to fatigue notch analysis are introduced and analyzed for their deficien-

cies. Next, the motivation for the development of a new microstructure-sensitive

fatigue notch factor is emphasized based on the need to consider microstructure

effects in fatigue and the experimental time to characterize a given microstruc-

ture. Finally, probabilistic approaches previously used in fatigue analysis are

reviewed.

• Chapter III presents the material model used for analysis. First, the microstruc-

ture of nickel-base superalloys and the crystal plasticity model used to repre-

sent the constitutive response are introduced. Next, this chapter introduces the

means in which different stages of fatigue crack formation and microstructurally

small crack growth are modeled. Finally, this chapter describes the geometric

2



model of the notched specimens used and the method in which the polycrys-

talline microstructure is reconstructed and used in a finite element software.

• Chapter IV describes the probabilistic fatigue notch framework and results from

using this framework. Grain-scale and transition crack length approaches are

presented with justification for each analysis.

• Chapter V summarizes the thesis and offers recommendations for future work.

3



CHAPTER II

BACKGROUND

2.1 Introduction

Notches are prevalent in many different components at many different scales. They

are present at the component scale in locations such as bolt holes and fillets and at

a microstructural scale in the form of an inclusion or void, so-called “micronotches”.

Under loading, these notches induce a stress concentration and a stress gradient

field emanating from the notch root. Typical analyses of notches are relatively out-

dated and characterized by a deterministic notch root strength reduction factor, of-

ten called the fatigue notch factor. The formation and growth of a crack from a

notch is microstructurally dependent. These typical notch root analyses do not ex-

plicitly incorporate the physical mechanisms that account for notch sensitivity and

effects of microstructure. Frequently, the fatigue notch root factor is a determinis-

tic mean value that is estimated using experiments. The goal of this research is to

use computational crystal plasticity constitutive equations and probabilistic schemes

to inform a microstructure-sensitive fatigue notch factor. Prior to introduction of a

new microstructure-sensitive fatigue notch factor, previous approaches to notch root

analysis and probabilistic techniques used for fatigue variability are reviewed.

2.2 Traditional Fatigue Notch Root Analysis Schemes

Traditional simplified notch root analysis techniques employ a global-local approach

to analyzing the fatigue response of notched specimens. If the local stress and strain

components due to a remote applied stress are known within the notch root field,

the fatigue life can be estimated using stress-life or strain-life approaches based on

4



smooth specimen experimental results. Therefore, a significant amount of research

has been devoted to estimating the stress and strain components near the notch root.

2.2.1 Elastic Stress Concentration Factor

Near notches and other stress concentration sites, the maximum local stress near

the notch root, σmax, is larger than the remote applied stress, Sa. In linear elastic

materials, the ratio of these stresses is the theoretical elastic stress concentration

factor

Kt =
σmax
Sa

(2.1)

The theoretical elastic stress concentration factor depends on the geometry of the

specimen and the nature of the loading condition (bending, tensile, torsional, etc.).

A compilation of stress concentration factors can be found in Peterson’s book [5].

2.2.2 Fatigue Notch Factor and Notch Sensitivity Index

When considering fatigue in a stress-life approach, the fatigue strength “knock-down

effect” of notches is depicted through the fatigue notch factor, Kf . The fatigue notch

factor is the ratio of fatigue strength of an unnotched (or smooth) member to the

fatigue strength of a notched specimen at a given life, i.e.,

Kf =
σunnotchedf

σnotchedf

(2.2)

The fatigue notch factor is often measured experimentally at a life of 106 cycles for a

probability of failure of 50%. It depends on geometry, loading condition, and varies

with material. Values of the fatigue notch factor vary from Kf = 1 (no notch effect)

to Kf = Kt (full theoretical elastic stress concentration effect). The relationship

between the elastic stress concentration, Kt, and the fatigue notch factor, Kf , is

often depicted through the notch sensitivity factor, q, i.e.,

q =
Kf − 1

Kt − 1
(2.3)

5



Values of q range from 0 (no notch effect) to 1 (full theoretical elastic stress concen-

tration effect).

2.2.3 Critical Distance Methods

Critical distance methods consider the local or average stress value over a significant

length scale at the notch root when analyzing fatigue potency of a notched component.

These methods can be categorized into point, line, 2D and 3D methods [4].

2.2.3.1 Traditional Peterson and Neuber Methods

Some of the more traditional point and average stress models include the Peterson [5]

and Neuber [6] approaches. Through experimental correlation, Peterson and Neuber

have proposed analytical relationships for finding the notch sensitivity factor. The

Peterson approach is a point stress model that considers the stress at a characteristic

distance (do) away from the notch root. If this value is greater than or equal to the

fatigue strength of a smooth specimen, then fatigue failure is assumed. Assuming

that the stress near the notch root decays linearly, Peterson proposed [5]

q =
1

1 + a/r
(2.4)

where r is the notch root radius and a is a material constant determined through

many experiments. Combining equations 2.3 and 2.4 yields the classical Peterson

equation for the fatigue notch factor,

Kf = 1 +
Kt − 1

1 + a/r
(2.5)

When plotting Kf vs. r, the plot exhibits a characteristic sigmoidal shape [7].

The Neuber approach is different from the Peterson approach in that it compares

the fatigue limit to the average stress over a characteristic length. Neuber proposed [6]

q =
1

1 +
√
ρ/r

, (2.6)

6



where ρ is an experimentally correlated material constant. Combining equations 2.3

and 2.6, the fatigue notch factor becomes:

Kf = 1 +
Kt − 1

1 +
√
ρ/r

(2.7)

The Peterson and Neuber approaches are first order attempts to incorporate a

material length scale in describing notch sensitivity as a function of material (a and

ρ), notch geometry (Kt), notch size (r), and loading condition (Kt). Generally, for

two different sized notches with similar geometries (identical Kt values), the specimen

with a larger notch will have a higher fatigue notch factor and lower fatigue strength.

This phenomenon is often referred to as the notch size effect.

There are many other analytical relationships for the fatigue notch factor that have

been proposed by different researchers. A list of these can be found in review papers

such as Qylafku et al. [8] or Weixing et al. [9]. Each approach is an attempt to simplify

the complex behavior of fatigue in notches to a few geometric and characteristic

material parameters. One major downfall to these approaches is that the fatigue

notch factors are commonly determined through time-consuming, costly experiments

on notched and smooth specimens for very long lives. Also, these techniques do

not consider the effect of microstructure, stress field gradients, and grain size and

orientation on notch size effects.

2.2.3.2 Stress Field Intensity Models

The stress field intensity approach is an attempt to characterize the fatigue damage

of notched components based on the peak stress and the stress field intensity within

the notch root zone. This approach finds the average stress by integrating the notch

root stress distribution, using continuum elastic-plastic finite element analyses, over

a critical distance. The stress intensity function takes the general form [8–11]

σSFI =
1

D

∫
D

f (σij)ϕ (r) dD , (2.8)
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where f (σij) is the equivalent stress as a function of the stress tensor, ϕ (r) is a

weight function that depends on the distance r from the notch root, and D is the

highly stressed volume domain in which fatigue damage is expected. The domain

can be 1D (line), 2D (planar) or fully 3-dimensional, depending on complexity of

the problem/analysis. The weight function is a monotonically decreasing function

that depends on notch geometry, loading type, boundary conditions and material

properties. In this model, fatigue failure is assumed when the stress field intensity

function reaches a critical equivalent stress, i.e., σSFI ≥ σf .

The stress field intensity approach can be used to estimate the fatigue notch

factor [9]. First, the critical stress field intensity is found for the notched and smooth

specimens. For a smooth specimen,

σSFI,cr = Se (2.9)

where Se is the endurance limit of the material. For a notched component, the stress

tensor is a function of the net applied stress (SN), i.e. σij = σij(SN). Thus, if we

define an equivalent stress function as f (σ̂ij) = f (σij) /SN , the critical stress field

intensity for a notched specimen can be written as

σNSFI,cr =
SN
D

∫
D

f (σ̂ij)ϕ (r) dD (2.10)

Combining Equations 2.9 and 2.10, the fatigue notch factor can be calculated using

the stress field intensity approach as

Kf =
Se
SN

=
1

D

∫
D

f (σ̂ij)ϕ (r) dD (2.11)

The stress intensity approach is a more general case of the Peterson and Neuber

approaches [9]. For example, if the weight function is the Dirac delta function of

the form ϕ(r) = δ(r − do) the stress field intensity is equivalent to Peterson’s point

stress model. If the weight function is equal to unity, then the stress field intensity

8



is equivalent to the average stress over the highly stressed domain. In this case, the

stress intensity is equal to Neuber’s approach.

2.2.4 Strain Life Notch Approaches

For notches that are loaded in the low cycle fatigue (LCF) regime, the strain-life

approach is more readily used. Below the yield point at the notch root, the local

stresses and strains at the notch (σ and ε) are linearly related to the remotely applied

loads (S and e), through the stress concentration factor. For notches with localized

plasticity in the notch root region, it is very difficult to experimentally measure the

local stresses and strains in the notch root field. Due to the constraint imposed

by the elastically stressed material surrounding the plastic zone, deformation at the

notch root is close to a strain-controlled condition. Therefore, the strain-life approach

has been developed to estimate the material response at the notch root. Thus, the

basic assumption of the strain-life approach is that a smooth specimen tested under

strain-control (σa,εa) can simulate the damage of a notched specimen exposed to a

remotely applied (Sa, ea) load if they have identical stress-strain loading histories (cf.

Figure 2.1). The smooth specimen is used as a basis for comparison with the critically

stressed zone of the notched specimen. Under strain-life assumptions, the failure of

the laboratory smooth specimen is assumed to correspond to “crack initiation” in the

critically stressed zone of the notched specimen.

2.2.4.1 “Crack Initiation”

The distinction of “crack initiation” is not always well-defined. It depends strongly on

the length scale of interest and the ability to detect a crack at that scale. Traditionally,

crack initiation corresponded to the formation of a crack on the order of 0.5 mm to

2.0 mm in length [12]. This was due impart to the limited ability of the naked eye to

resolve a surface crack to a scale finer than a millimeter. The ability to detect both

surface and subsurface cracks has been augmented by non-destructive techniques.
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S(t), e(t)

σ(t), ε(t)

Critically stressed
zone

Smooth specimen

Notch (ρ)

Figure 2.1: Notch strain-life assumption of equivalent stressed volume of material.
After ref. [7].

However, non-destructive techniques are also limited in their ability to detect cracks

that are less than a millimeter. Following the formation of a crack to this length

(≈ 1 mm), fracture mechanics has traditionally been employed to estimate the growth

of the crack to a critical crack length.

Interestingly, due to the advent of high-powered electron microscopes with the

ability to resolve cracks to a much finer scale, the study of “crack initiation” over

the last 20-30 years has experienced a paradigm shift to the study of formation of

small cracks on the order of micrometers (alternatively, known as microcracks). Con-

sequently, the study of the crack growth behavior of these microcracks from scales of

microns to millimeters has emerged as a significant research topic that is still preva-

lent today. As the microcrack grows from the micron to millimeter scale, the growth

behavior progressively has less dependence on local microstructure. The behavior

of small crack growth can be distinguished into regimes of microstructurally small

crack growth and mechanically or physically small crack growth. Small crack growth
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behavior will be described in more detail in Section 2.3.2.

Thus, based on the current ability to detect cracks at the scale of micrometers, the

strain-life estimation of “crack initiation” in a notched component would constitute

both microcrack nucleation and small crack growth regimes. The crack initiation life

can be estimated through various approaches including the Basquin’s equation for

HCF, Coffin-Manson equation for LCF, or a combination of the two for the full range

of fatigue lives [7].

2.2.4.2 Elastic-Plastic Stress Concentration Factor

In order to find the stress and strain histories near the notch root under elastic-

plastic conditions, many estimation techniques have been developed. Perhaps the

most noteworthy are those proposed by Neuber [6] and Molski and Glinka [13]. Under

fully elastic conditions in the uniaxial case, stress and strain are linearly related

through Hooke’s law, σ = Eε. When plasticity occurs, the uniaxial stress-strain

response becomes non-linear and is typically modeled through other techniques such

as the Ramberg-Osgood relationship [14], i.e.,

ε =
σ

E
+
( σ
H

)1/n

(2.12)

where H is monotonic strength coefficient and n is the strain hardening exponent,

which typically ranges from 0-0.5 [15]. The first and second terms on the right hand

side of Equation 2.12 are the elastic and plastic strains, respectively. Analogously,

the cyclic hysteresis curve can be described by

∆ε

2
=

∆σ

2E
+

(
∆σ

2K ′

)1/n
′

(2.13)

where K
′

and n
′

are the cyclic strength coefficient and cyclic strain hardening expo-

nent, respectively. Here, the Massing hypothesis of tension-compression symmetry is

assumed. These constants are generally not equal to their monotonic counterparts.
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Prior to yielding, the elastic stress concentration factor, Kt, is equal to the local

stress concentration factor, Kσ = σ/S, and the local strain concentration factor,

Kε = ε/e. Due to the material response, when yielding occurs, the local strain is

higher than that predicted by Kt and the local stress is lower than that predicted

by Kt, as depicted by Figure 2.2. The theoretical stress concentration should lie

somewhere in between Kσ and Kε. Based on nonlinear elastic analyses, Neuber [6]

proposed that the theoretical stress concentration should be the geometric mean of

the stress and strain concentration factor, i.e.,

Kt =
√
KσKε (2.14)

Equation 2.14 is known as Neuber’s rule. Under monotonic loading, this relationship

can be restated in a different form using the stress and strain concentration factors

as

(KtS)2

E
= σε =

σ2

E
+ σ

( σ
H

)1/n

(2.15)

Molski and Glinka [13] introduced an energy-based method to estimate the local

stress-strain history near the notch root. Using the Ramberg-Osgood relationship

(Equation 2.12), the local strain energy in the notch root region can be calculated as

Wσ =

ε∫
0

σ (ε) dε =
σ2

2E
+

σ

n+ 1

( σ
H

)1/n

(2.16)

Assuming that localized plasticity near the notch root does not effect the overall

strain energy distribution within the notch root, the stress concentration factor can

be estimated as

Kt =

(
Wσ

WS

)1/2

(2.17)

where Wσ is the strain energy per unit volume due to local stress and strain at the

notch root and WS is the elastic strain energy per unit volume due to the nominal re-

mote applied stress S. Thus, Equations 2.16 and 2.17 can be combined and rearranged
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Figure 2.2: Effect of yielding on stress and strain concentration factors. After
ref. [7].

to give

(KtS)2

2E
=

σ2

2E
+

σ

n+ 1

( σ
H

)1/n

(2.18)

2.3 Motivation for Microstructure Sensitive Fatigue Notch
Factor

2.3.1 Microstructure Effects Not Taken Into Account

The empirical methods described in the previous section can indicate size effects

and notch sensitivity without direct consideration of microstructure. However, these

simplified models do not fully characterize the complexity of the problem. There is a

great deal of uncertainty when estimating Kf and q values using these methods due to

the significant amount of scatter in high cycle fatigue life (2-3 orders of magnitude).

This scatter can be linked to the variability in material microstructure. In HCF,

cyclic plastic strain is heterogeneously distributed within the notch damage process

zone. The heterogeneous distribution of plastic strain can be due to many factors

including texture, grain size distribution, internal defect localization, proximity to
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the surface and hardening mechanisms. These microstructural attributes in turn

affect the probability of fatigue crack formation and small crack growth from a notch.

Thus, an approach based on average stress or stress field intensity is not a sufficient

driving force for fatigue crack initiation at the notch root. Therefore, a coupled

computational and statistical approach that considers the distribution of slip within

grains among multiple instantiations is needed.

Another issue with the previous Kf and q estimation approaches is that they are

usually determined from the mean of a number of experiments (typically limited)

and are directed toward a probability of failure of 50%. Many fatigue-critical gas

turbine engine components are typically designed for “safe-life” replacement based

on statistical analysis on a large database of fatigue data to estimate life for a desired

probability of failure. When a statistically prescribed number of operating cycles

corresponding to a given probability of failure, for example 0.1%, are used up, the

entire assembly is replaced, even though a majority of the components may have a

considerable amount of life remaining. Therefore, the ability to estimate the fatigue

failure probability distribution, in addition to the mean, is of great importance for

safe-life design components. However, it takes many experiments to build up statistics

for low probability of failure related to the tail of this distribution.

2.3.2 Small Crack Behavior

There have been many investigations into the behavior of small/short fatigue crack

growth. The growth of small cracks may be divided into two regimes, namely,

(1) microstructurally small cracks and (2) physically or mechanically small cracks.

Microstructurally small cracks are fatigue cracks that are comparable in size to a

characteristic microstructure unit size, which could be grain size, average inclusion

spacing, etc. [16]. Mechanically small cracks are those which are physically small

(< 1 − 2 mm) but no longer exhibit significant dependence on microstructure. The
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crack length for this transition to relative microstructure insensitivity is often on the

order of 3-10 grain diameters [12]. Based on multiple small crack growth experiments,

(cf. [12,16–18]) for the same apparent driving force (applied ∆K), small crack growth

rates are significantly higher than large crack growth rates. Also, microstructurally

small cracks (MSCs) grow below the long crack threshold [16, 18]. These conditions

of (1) higher MSC growth rate at the same driving force (applied ∆K) and (2) lower

MSC growth thresholds as compared to large cracks, are observed in crack growth

experiments on Udimet 720 (cf. Figure 2.3), a powder metal nickel-base superalloy

with an average grain size of 10 µm. A majority of the small cracks in Figure 2.3 were

classified as mechanically small and the rest were considered microstructurally small.

The use of a linear elastic fracture mechanics (LEFM) estimation of driving force

(∆K) in a regime in which LEFM is not applicable (conditions for similitude are not

met) is a contributing factor to this small versus large crack growth rate discrepancy.

Figure 2.3: Small Crack (SC) vs. Large Crack (LC) Growth of a PM nickel-base
superalloy Udimet 720 at room temperature [16]. Specimens were single edge notched
specimens loaded under four-point bending with R=0.1 and f=10 Hz.
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Another reason for higher small versus large crack growth rates is a direct con-

sequence of the definition of ∆K. As stated previously in Equation 3.21, for cyclic

loading the change in the stress intensity factor is defined by ∆K = Y∆σ
√
πa. For

microstructurally small cracks, in order to have an equivalent driving force ∆K (as

compared to a “large crack”), a higher local stress is required at the crack tip (as

crack length a decreases, ∆σ needs to increase for an equivalent ∆K). As a conse-

quence, a large crack tip plastic zone and crack tip blunting can occur and LEFM is

not applicable in this case. Thus, a more applicable approach such as elastic-plastic

fracture mechanics (EPFM) where ∆CTD (cyclic crack tip displacement), ∆J (cyclic

J integral), or an equivalent stress intensity factor ∆Keq are used to describe the crack

driving force [19].

A further source for the anomalous behavior of small crack growth is effects from

local microstructure barriers such as a grain boundary. High angle, or large dis-

orientation, grain boundaries have been shown to hinder crack growth to a greater

extent than low angle, or small disorientation, grain boundaries. As a result of these

microstructure barriers, microstructurally small cracks display an oscillatory crack

growth rate. As the MSC approaches a microstructure obstacle, the crack propaga-

tion rate decelerates until sufficient driving force is capable to propagate the crack

past the microstructure barrier (cf. Figure 2.4). Otherwise, the MSC may arrest, cor-

responding to a small crack growth threshold. This effect has been shown in various

materials including aluminum alloys [20, 21], pure titanium [18], and steels [22].

Crack closure can also affect the growth rate of small cracks. There are many possi-

ble sources of crack closure, including oxidation-assisted, plasticity-induced, roughness-

induced, bridging mechanisms and phase transformation-induced crack closure. How-

ever, effects of crack closure, particularly plasticity-induced crack closure, are not

nearly as significant as in the case of physically small and long crack growth. At near

threshold ∆K, oxide formation can cause crack closure and increase the threshold
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Figure 2.4: Example of MSC crack growth behavior (da/dN vs. crack length a)
interaction with grain boundaries in a fine grain low carbon steel [22].
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∆K value [15]. At higher ∆K values, small crack growth can be accelerated due to

embrittlement ahead of the crack tip [23]. In regards to the roughness of the crack

path, generally speaking, the more tortuous the fracture suface, the slower the MSC

growth rate. This has been shown in René88DT, a powder metal processed nickel-

base superalloy, through investigation of the topography of experimentally fractured

crack surfaces [24].

2.3.3 Experimental Time Required to Qualify Microstructures

The time required to qualify a new material or manufacturing process is significant. It

can take 5-10 years to develop and implement a new Ni-base superalloy into existing

products [25]. When using the previous empirical techniques in conjunction with de-

veloping and testing a new material, many fatigue specimens are required. Although

these techniques are dependable, they can be very costly and time-consuming. Also,

these methods cannot support design projections for microstructures that have not

yet been processed or tested.

For aircraft gas turbine disk and blade applications, the maximum operating tem-

perature is strongly dependent on the high temperature performance characteristics

of Ni-base superalloys used in the hot sections (combustion chamber and turbine

blades). In order to improve propulsion and fuel economy of aircraft gas turbine

engines, there is a thrust to develop materials that are able to operate at higher tem-

peratures with improved fatigue response. The ability to model and predict the effects

of different microstructure attributes and tailor these to a given application is essen-

tial to accelerate development and implementation of new materials to satisfy this

demand. Especially critical is the prediction of damage response at stress concentra-

tions such as notches. Therefore, we are motivated to develop computational tools to

assist materials design and modeling, including a new microstructure-sensitive fatigue

notch factor that takes into account stress amplitude, mean stress, stress gradients,
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microstructure length scales, deformation mechanisms and fatigue crack nucleation

and microstructurally small crack growth. These tools can be used in conjunction

with limited numbers of calibration and verification experiments to validate a new

material or process.

2.4 Prior Probabilistic Approaches

In order to account for scatter in HCF, various probabilistic approaches have been

developed. Most probabilistic approaches in HCF are based on weakest link theory

and incorporate probability distributions such as the two parameter Weibull distribu-

tion, three parameter Weibull distribution [26], or a Gumbel distribution [27]. These

approaches are typically based on the distribution of stress or strain found from ex-

perimental results or component finite element analysis.

2.4.1 Defect Distribution - Poisson Point Process

Most probabilistic approaches used by researchers consider the distribution of physical

defects such as inclusions, pores or microcracks that contribute to failure [28–30].

Other approaches consider the distribution of microvoids [31] or microplasticity [32].

The probability of finding a fatigue-critical defect (within the bulk of the material)

such as an inclusion, microcrack, etc., is usually fit to a discrete Poisson distribution

of the form [33]

Pk =
[φV ]k

k!
exp {− [φV ]} , (2.19)

where Pk is the probability of finding k fatigue critical sites in a volume domain

(V ) and φV is the average number (expected value) of fatigue critical sites. An

underlying assumption of randomness of microstructure is assumed in applying the

Poisson distribution. The density per unit volume of active fatigue critical sites, φ,

depends on many factors including applied stress amplitude, stress ratio, grain size,

internal defect size, local anisotropy, and location within a component. The density
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factor φ follows a power law of the stress amplitude and can take various forms.

Typically, for three-parameter Weibull statistical analyses,

φ =
1

Vo

〈
σ − σL
σo

〉m
(2.20)

where σL is the location parameter, σo is the scale parameter, m is the shape pa-

rameter (or Weibull slope), and Vo is a reference volume. For a given value of a, the

Macauley brackets 〈 · 〉 indicate that 〈a〉 = a for a > 0 and 〈a〉 = 0 for a ≤ 0.

2.4.2 Weakest Link Theory

In weakest link theory a volume (V ) is divided into i number of subvolumes (Vi).

The highly stressed volume of interest depends on the specimen geometry. For a

smooth uniaxial specimen, the highly stressed volume would encompass the entire

gauge section, whereas in a notched specimen it would only comprise the highly

stressed volume at the notch root. For surface-dominated crack formation, the highly

stressed volume of the smooth specimen would comprise the volume that is less than

a given depth from the surface of the specimen. Therefore, the volume (V ) in this

case pertains to the highly stressed volume of interest. Using the above density factor

φ (Equation 2.20), the probability of failure of the ith infinitesimal volume is given

as dPfi = φi dVi. Following weakest link theory [34], where an entire chain is only as

strong as its weakest link, the probability of survival of volume (V ) is equivalent to

the probability that all subvolumes dVi within V simultaneously survive, determined

by the product of survival probabilities, i.e.,

Ps =
m∏
i=1

(1− φi dVi) (2.21)

where m is the number of subvolumes (m = V
dVi

). Equation 2.21 assumes that there

is no interaction between critically-stressed subvolumes. In other words, the distance

between critical “defects” is sufficiently large enough that there is no interaction be-

tween defects. This assumption holds true in the high cycle fatigue (HCF) regime,

20



where heterogeneous microplasticity is sparsely scattered throughout the fatigue spec-

imen. If the subvolume size is very small compared to volume V and the density of

sites φ is relatively low for low probabilities of failure, Equation 2.21 can be rewritten

as

Ps ≈ lim
dVi→0

[
m∏
i=1

(1− φi dVi)

]
= exp

−∫
V

φi dVi

 (2.22)

Consequently, combining Equations 2.20 and 2.22 the probability of failure of the

volume V of the specimen becomes

Pf = 1− exp

−∫
V

φi dVi

 = 1− exp

− 1

Vo

∫
V

〈
σ − σL
σo

〉m
dV

 (2.23)

The form of Equation 2.23 has been used extensively to model variability of fa-

tigue strength. The value of σ in this equation can be a maximum principal stress

or equivalent stress, such as Von Mises or Tresca, that varies with position and is

considered as a random parameter. Frequently, Equation 2.23 is rewritten in the

form

Pf = 1− exp

[
−kVth

Vo

(
σmax
σo

)m]
(2.24)

where k =


nV th∑
n=1

〈σ − σL〉m

(σmax)
m

 (2.25)

Here, the concept of an effective volume is introduced (Veff = kVth) that can be linked

to size effects. The threshold volume is defined as the summation of subvolumes that

contain an equivalent stress greater than or equal to a given critical stress. Typically

the reference volume Vo, a material parameter, is merged with σo to form a modified

scaling parameter σ∗o = V m
o σo. As the volume (Vth) of critically stressed locations

increases, so does the probability of failure of the whole specimen. Hence, the effective

volume is indicative of size effects.
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2.4.3 Different Derivatives of the Weibull Stress Function Approach

Various researchers have used variant forms of Equation 2.23 to determine the cumula-

tive distribution function of a component. Some of these approaches are summarized

here and are listed at the end of this section in Table 2.1 on page 35 for quick refer-

ence. Each of these techniques is an attempt to inject a stronger physical basis into

the estimation of the probability of fatigue failure of a component.

2.4.3.1 Strain Energy Density Approach

Motivated by the fact that microdamage can occur at stresses below the conventional

fatigue limit (σth < σe), Delahay and Palin-Luc [35] proposed using an energy ap-

proach based on the stress and strain distributions within a damage process zone.

This zone is comprised of volumes in which an equivalent strain work density Weq

is greater than a given threshold, Wth = σ2
th/E. The resulting strain work density

probability function proposed is

Pf = 1− exp

− 1

Vo

∫
V

〈
Weq −Wth

Wo

〉m
dV

 , (2.26)

where the parameters Wo and m are fit to experiments. This method is a generaliza-

tion of the Weibull approach that can be used for complex strain histories including

in- and out-of-phase loading and multiaxial stresses. The value of Weq is calculated

over the full loading cycle using the elastic strains after elastic shakedown of the

material.

2.4.3.2 Strain-Life Approach

De Jesus et al. [36] proposed a strain-life Weibull model where the fatigue life, Nf , is

a random variable at a constant strain amplitude, εa, and vice versa. They proposed

Pf = 1− exp

[
−
〈
log (Nf/No) log (εa/εao)− xL

xo

〉m]
, (2.27)
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where No and εao are threshold values and xL, xo, and m are the Weibull parameters

fit to strain-life experimental data. De Jesus et al. [36] determined the local stresses

and strains near the notch root using Neuber [6] and Molski and Glinka [13] rules

and modeled the elastoplastic response as a simple Ramberg-Osgood [14] stress-strain

response.

2.4.3.3 Critical Plane/Multiaxial Techniques

Based on phenomenological experimental observations that fatigue cracks form and

propagate on preferential “critical” slip planes, many different critical plane or mul-

tiaxial theories have been developed and studied. An extensive summary of different

multiaxial fatigue models can be found in Kallmeyer et al. [37]. Most multiaxial

parameters consider the combined effects of resolved shear stresses/strains and nor-

mal stresses/strains on a given plane. Theoretically, the normal stresses provide

crack opening, reducing friction between crack surfaces, and resolved shear stresses

support dislocation motion on the dominant slip plane under Stage I propagation.

These multiaxial approaches can be incorporated into Weibull models to estimate the

probability of failure of a specimen under complex, multiaxial and non-proportional

loadings. A couple of these approaches are described below.

With the assumption that fatigue damage is caused by crack formation due to

shear localization at the grain scale, Doudard et al. [33] proposed a Weibull model

based on the distribution of microplasticity within grains. In this approach, Doudard

used Kröners [38,39] self-consistent model and Eshelby’s [40] solution for a spherical

inclusion to determine the local stress tensor at the grain scale. The “inclusion” in

this case is the set of grains where local plasticity occurs while the “matrix” is the

surrounding grains that deform elastically. The density factor, φ, is a function of

the resolved shear stress amplitude, τa, and considers the distribution of activated

slip of all possible slip system planes. Slip becomes active when the resolved shear
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stress amplitude, τa, is greater than a critical resolved shear stress (CRSS) value. In

three-dimensional space, the density factor is integrated over all possible slip plane

normal angles, Θ, and takes the general form

φ =
1

Vo Smo

∫
(2 τa)

m dΘ , (2.28)

where m and VoS
m
o are material parameters. The resulting probability of failure is

given as

Pf = 1− exp

− 1

Vo

∫
V

(
2 τa
So

)m
cos (ζ) dΘ dV

 (2.29)

This probabilistic framework accounts for scatter in HCF fatigue data through the

distribution and variability in the slip system activation level and can be used for

multiaxial and non-proportional loadings.

Flaceliere and Morel [41] considered a non-local multiaxial equivalent stress that

is a superposition function of the resolved shear stress amplitude acting on a slip

plane and the maximum hydrostatic stress, i.e.,

σeq =
√
f (τ 2

a ) + p σH,max (2.30)

where
√
f (τ 2

a ) is the root mean square averaged value of resolved shear stress over

all slip planes and slip plane directions as defined by Papadopoulos [42], p is a ma-

terial constant and σmaxH is the maximum hydrostatic stress over a loading period.

Therefore, the failure probability is given by

Pf = 1− exp

− 1

Vo

∫
V

√
f (τ 2

a ) + p σH,max
σo

dV

 (2.31)

where Vo and σo are typical Weibull stress function parameters.

In addition, Flaceliere and Morel [41] also studied surface and stress gradient

effects in probabilistic fatigue failure through four different experimental loading con-

ditions, including tension, torsion, plane bending and rotating bending. They used an
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equivalent surface stress function based on the normalized gradient of the maximum

hydrostatic stress as

σeq,S(σ, G(σH,max)) =
√
f (τ 2

a ) + p

(
1− β

〈
G(σH,max)

σH,max

〉n)
σH,max (2.32)

where

G(σH,max) =

√(
∂σH,max
∂x

)2

+

(
∂σH,max
∂y

)2

+

(
∂σH,max
∂z

)2

, (2.33)

β is a normalized hydrostatic stress intensity factor, and n is a constant assumed to

be equal to 1. This function was used to define a surface stress Weibull function of

the form

Pf (σeq,S) = 1− exp

− 1

So

∫
S

σeq,S(σ, G(σH,max))

σo
dS

 , (2.34)

where So is a reference surface area and σeq,S(σ, G(σH,max)) is given by Equation

2.32. Using Equation 2.34, Flaceliere and Morel showed good correlation between the

surface model framework and experimental probability of failure for a C36 mild steel

and a GS52 nodular cast iron. However, the surface and volume approaches showed

a significant difference in the nodular csst iron due to the presence of larger defects

in the form of pores ranging in size from 50-1000 µm [41]. Considering surface/defect

interactions is very important in fatigue damage of components containing sizable

defects such as pores and inclusions. This will be demonstrated further in the next

two sections.

2.4.3.4 Inclusion/Matrix Interactions

Processing of nickel-base superalloy materials through powder metallurgy methods

can introduce pores and nonmetallic inclusions into the material. Inclusions play a

dominant role in the fatigue crack formation and propagation in Ni-base superal-

loys [43, 44]. Also, under low cycle fatigue (LCF) conditions, surface inclusions are

typically more detrimental than inclusions in the bulk [43–45]. These inclusions are

often stiffer than the surrounding matrix causing local elastic incompatibility. Under
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fatigue loading, this incompatibility in deformation, combined with lack of constraint

near the surface on plasticity, can promote enhanced cyclic slip at the inclusion/matrix

interface and fatigue crack formation [46]. The probability of initiating and propa-

gating a crack from these inclusions has a significant effect on the overall probability

of failure of Ni-base superalloy components, especially under LCF conditions.

Based on the above considerations, Pineau [47] proposed a model that uses the

statistical distribution of inclusion sizes present in a PM nickel-base superalloy and a

fatigue crack growth law (of the Paris-Erdogan form [48]) to determine the probability

of failure of different sized components. This model considers both surface/volume

effects and the formation and propagation of cracks from an inclusion to a critical

size. Much like the technique described in Section 2.4.1, the inclusions are assumed to

be randomly distributed throughout the matrix and observe a known size probability

distribution function.

Prior to introduction of the probability framework, a few definitions of dimensions

are introduced here to maintain consistency among different inclusion/matrix and

inclusion/surface probabilistic approaches. The diameter (or equivalent diameter for

non-spherical particles) of a spherical inclusion isD and the distance that the inclusion

is embedded in the matrix relative to the surface is denoted as d. For a fully embedded

inclusion, the depth of the inclusion relative to the free surface is h. These dimensions

are illustrated in Figure 2.5.

For a uniform size distribution of spherical inclusions randomly dispersed within

a volume, the probability of any one inclusion intersecting the free surface is given

as [47]

Psurf (D,n, S, V ) = 1−
(

1− DS

V

)nV
(2.35)

where D is the inclusion diameter, n is the number of inclusions per unit volume, and

S and V are the highly stressed surface area and volume of the specimen, respectively.

For a distribution of inclusion sizes, the inclusion sizes are divided into k number of
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Figure 2.5: Definition of inclusion dimensions relative to the free surface.

classes or bins. Thus, for a given bin size (k), Equation 2.35 can be rewritten as the

probability that an inclusion of bin size (k) intercepts the surface, i.e.,

Pk,surf (Dk, nk, S, V ) = 1−
(

1− DkS

V

)nkV
(2.36)

To consider interactions between the inclusion and the surface, Equation 2.36 is

modified to incorporate the extent (depth) in which the inclusion is embedded in the

material relative to the surface, via

Pk,surf (Dk, d, nk, S, V ) =

{
1−

(
1− DkS

V

)nkV}[Dk − d
Dk

]
(2.37)

where d is the depth in which the inclusion is embedded with respect to the surface.

The form of Equation 2.37 is based on the premise that an inclusion located in the

subsurface region is biased to have a higher probability of failure by virtue of fatigue

crack formation and propagation process physics. Another assumption for Equation

2.37 is that Dk ≥ d. Thus, the probability that the life of a specimen, Nf , is less than
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a potential life, No is given as

Pf (Dk, d, nk, S, V ; Nf < No) = 1−
Nclasses∏
k=1

[1− Pk,surf (Dk, d, nk, S, V )] (2.38)

Substituting Equation 2.37 into Equation 2.38 gives

Pf = 1−
Nclasses∏
k=1

[
1−

{
1−

(
1− DkS

V

)nkV}[Dk − d
Dk

]]
(2.39)

Here, the potential life No as a function of flaw size Dk and depth d is calculated

using a Paris crack growth law. A schematic of this relationship is shown in Figure

2.6. For the Paris crack growth law, a semi-elliptical initial crack shape was assumed

to form during the first cycle. The major and minor axes of the initial semi-elliptical

crack depend on the depth (d) in which the inclusion is embedded in the material

relative to the surface (cf. Figure 3 in ref. [47]).
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Figure 2.6: Number of cycles to failure as a function of the normalized position of
the inclusion d/Dk for different size classes Dk. After ref. [47].

Using this approach, Pineau [47] estimated the probability of failure of three dif-

ferent sized components made from René 95, (from largest to smallest) corresponding

to a large disc size, a small disc size, and a specimen size. Results similar to that

28



shown in Figure 2.7 were found which indicates that the probability of failure of a

component is highly size dependent. Therefore, a strain-life approach in which the

fatigue crack initiation in a large component is estimated through the failure of a

small smooth specimen may not be sufficient. Figure 2.8 shows that the life-limiting

inclusion size causing crack initiation increases with the size of the component. This

is expected because the probability of finding a larger-sized inclusion increases with

the size of the component. Considering the results shown in Figures 2.7 and 2.8, it

is easy to see the importance in close control of the manufacturing process in order

to limit the size and frequency in which nonmetallic inclusions are present in the

microstructure.
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sized specimens of René 95 [49].
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An extension of the above approach to include the micro-mechanics of inclu-

sion/matrix deformation was proposed by Deyber et al. [50]. In addition to using

the statistical distribution of particle size, Deyber et al. [50] estimated the proba-

bility of failure based on deterministic inclusion/matrix micro-mechanisms of crack

initiation and propagation. Two different fatigue crack initiation modes were con-

sidered. Transgranular stage I fatigue crack initiation along intense slip bands was

observed in larger grain sizes, while fatigue crack formation at second phase particles

was observed in grain sizes smaller than about 10 µm [51]. For the formation of cracks

at particle/matrix interfaces, an equivalent Weibull stress function was proposed [50]

as

Pf (σd) = 1− exp
(
−
[

Σ1 + β 〈σeq − σy〉
σo

]m)
(2.40)

where Σ1 is the maximum principal stress, β is the particle shape factor, σeq is the

equivalent Von Mises stress, σy is the yield stress, and σo is a scaling parameter. Fail-

ure is considered when the numerator in Equation 2.40 reaches a critical decohesion
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stress, i.e., σd = Σ1 + β 〈σeq − σy〉. Following crack initiation, a micro-crack propa-

gation law based on the Tomkins model [52] was used to model crack propagation,

i.e.,

da

dN
= ω a , where ω =

∆εpσ
2π2

32T 2

(
1 +

∆σ2π2

32T 2

)
(2.41)

Here, T is the ultimate tensile stress in the plastic zone of the crack. From this

model, the probability that a particle of a potential diameter, Do, would propagate

in a potential number of cycles (No) was determined. The probability of a given

propagation life is therefore equivalent to the probability of finding a particle of size

greater than the potential diameter, Do. The overall global probability of survival

was equal to the product of the probabilities of survival of particles at the surface

(surf), subsurface (subsurf), and within the bulk (bulk) of the material. Thus, the

global probability of failure (Pf = 1− Psurvival) is given by

Pf = 1−

{
Nel,surf∏
n=1

[
(1− Pf (σd)P (D ≥ Do))

Np,surf
]

∗
Nel,subsurf∏

n=1

[
(1− Pf (σd)P (D ≥ Do))

Np,subsurf
]

∗
Nel,bulk∏
n=1

[
(1− Pf (σd)P (D ≥ Do))

Np,bulk
]}

(2.42)

where Pf (σd) is given by Equation 2.40, and Npart and Nel are the number of

particles contained in the computational mesh elements, repectively, in each location

(surface, subsurface, and bulk).

2.4.3.5 Inclusion/Surface Considerations

As stated previously, proximity of inclusions to the surface is very important in design-

ing against low cycle fatigue failure of powder metal nickel-base superalloys. Another

extension to Pineau’s [47] framework was introduced by de Bussac and Lautridou [53].

They considered the probability for an individual particle to have a depth greater than
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a critical depth dc, i.e.,

P (d > dc) =
S(D − dc)

V
(2.43)

Considering particles of different size classes (much like that described above) and

imposing weakest link statistics over each class, the probability that the number of

cycles to failure of the entire component (Nf ) is less than a potential life (No) is given

as

Pf (Nf < No) = 1−
Nclasses∏
k=1

[exp {−nkS (Dk − dc)}] (2.44)

In a later publication, de Bussac [45] proposed that there was competition between

the largest defect at the free surface and the largest defect within the bulk of the

material. The total probability of failure of a component was proposed to be equal

to the product of the individual probabilities of each failure mechanism, i.e.,

Pf = 1− {[1− PS] [1− PV ]} (2.45)

where PS and PV are the probabilities of surface and bulk volume failure, respectively.

This probabilistic model was evaluated by using a large amount of LCF data of

N18, a PM nickel-base superalloy, which is used for high-temperature jet engine disk

applications. The LCF fracture surfaces were examined through scanning electron

microscopy (SEM) to determine the size of the life-limiting defect as a function of the

depth (h) in which the defect was embedded relative to the free surface (cf. Figure

2.9). The typical defect diameters found from the LCF fracture surfaces were in the

20-100 µm range [45]. From Figure 2.9 it is easy to see that there is a “sweet spot”

at around 5 µm from the surface in which an inclusion will cause the most damage.

This can be concluded because the critical defect size at this depth is the smallest.

Thus, the near-surface initiation is more damaging than surface initiation. This can

be attributed to the fact that a crack formed beneath the surface will propagate

through the surface and effectively introduce a larger surface defect. Also, the critical

defect size causing fatigue crack initiation increases as a function of depth from the
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surface up to a size of about 100 µm. At depths larger than this transition depth

(100 µm), the critical defect size is relatively constant [45]. This indicates that there

is a significant surface effect on the probability of forming a crack in this PM Ni-base

superalloy.
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Figure 2.9: Crack initiation size versus distance from surface for a PM nickel-base
superalloy N18 [45].

Similarly, Jha et al. [54] noticed a competition between mean-controlling and life-

limiting probability density functions over different stress amplitudes in experiments

on IN100, a Ni-base superalloy of interest. They categorized the total fatigue lifetime

as a superposition of the surface-dominated (life-limiting) and interior-dominated

(mean-controlling) mechanisms in fatigue. Also, they noted increased separation

between these two populations with decreasing applied stress amplitude (cf. Figure

2.10). They proposed the total probability function as

Pf,t(x) = Psurffsurf (x) + Pinternalfinternal(x) (2.46)

where f(∗)(x) is the probability density function of each mechanism (*) and P(∗) is the

weighted probability of occurrence of each individual response. Note that in Equation
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2.46, Psurf + Pinternal = 1.
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Table 2.1: Some Expressions for Probabilistic Life Approaches
Authors CDF Function Eqn. Description Ref.

Weibull Pf = 1− exp

− 1

Vo

∫
V

〈
σ − σL
σo

〉m
dV

 (2.23)
Weibull stress
function [26,34]

Delahay,
Palin-Luc

Pf = 1− exp

− 1

Vo

∫
V

〈
Wg −Wth

Wo

〉m
dV

 (2.26)
Strain energy
density function

[35]

De Jesus, Pinto,
Fernández-
Canteli, Castillo,
Correia

Pf = 1− exp

−〈 log
(
Nf
No

)
log
(
εa
εao

)
− xL

xo

〉m (2.27)
Strain-life
Approach

[36]

Doudard, Hild,
Calloch

Pf = 1− exp

− 1

Vo

∫
V

(
2 τa

So

)m
cos (ζ) dΘ dV

 (2.29) CRSS function [33]

Flaceliere, Morel Pf = 1− exp

− 1

Vo

∫
V

√
f (τ2

a ) + p σH,max

σo
dV

 (2.31)
Multiaxial
equivalent stress
function

[41]

Flaceliere, Morel Pf = 1− exp

− 1

So

∫
S

σeq,S(σ, G(σH,max))

σo
dS

 (2.34)

Surface and
gradient of
hydrostatic
stress function

[41]

Pineau Pf = 1−
Nclasses∏
k=1

[
1− Pk,surf (Dk, d, nk, S, V )

]
(2.38)

Statistical
distribution of
inclusions and
crack growth
law

[47]

Deyber,
Alexandre,
Vaissaud, Pineau

Pf = 1− exp
(
−
[

Σ1 + β 〈σeq − σy〉
σo

]m)
(2.40)

Critical stress
to form cavity
in inclu-
sion/matrix
material

[50]

de Bussac(1994);
Jha, Caton,
Larsen(2008)

Pf,t(x) = Psurffsurf (x) + Pinternalfinternal(x)
(2.45,
2.46)

Competing
surface and
internal fatigue
mechanisms

[45,54]
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2.5 Summary

This chapter provides the background information for this thesis related to statistical

approaches to size effects of notches. Stress- and strain-life approaches to notch fa-

tigue analysis were introduced. Most of these approaches require many experiments

to phenomenologically fit a number of microstructure constants. These approaches do

not take into account the microstructure scale fatigue mechanisms when describing

material variability and size effects. Also, the time required to determine these ex-

perimental fits necessitates the use of computational and probabilistic strategies and

experimental verification in parallel to improve fatigue notch analyses and confidence

ratios. Many probabilistic schemes were described in this section, most of which

are derivatives of the Weibull stress function [26, 34]. Each probabilistic strategy is

an attempt to inject a stronger physical basis into the estimation of the probability

density function. When considering the different micro-mechanisms for fatigue, one

extremely important takeaway is that the traditional approach to fatigue variability

as the fatigue distribution about the mean-lifetime behavior may not be sufficient in

view of the extreme value nature of the problem. Also, very few of these studies, if

any, have attempted to combine computational materials design tools with probabilis-

tic approaches. A probabilistic approach based on the physical mechanisms of fatigue

damage formation and propagation and the competition between these mechanisms

should be used for all physically based models. Therefore, in the following chapters

a probabilistic model based on the physical mechanisms of fatigue crack formation

and growth is introduced to try to improve fatigue notch response prediction and

modeling.
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CHAPTER III

MATERIAL MODELING

3.1 Introduction

Nickel-base superalloys are processed through various techniques, depending on the

end product characteristics and microstructure desired. The two means of preparing

billets are casting and powder metallurgy techniques. These billets can be further pro-

cessed through hot-isostatic pressing, extrusion, forging, machining and final protec-

tive coating application. Over the years, casting techniques have drastically improved

the creep characteristics of Ni-base superalloys. The advent of directionally solidified

and single-crystal superalloys greatly suppress or eliminate the grain boundary dif-

fusional creep mechanism at higher temperatures. These types of casting processes

allow for preferential orientation of the crystals to maximize fatigue resistance in that

orientation.

For components made of many different chemical constituents, powder metallurgy

processes are preferred in order to reduce individual phase segregation. The use of

very fine powder can help decrease the number of nonmetallic inclusions and pores,

which have a significant effect on fatigue crack nucleation and crack growth, as ev-

idenced in the previous chapter. Powder metallurgy has also been used to process

very fine-grained microstructures with very high strength and structural homogeneity.

These microstructures are typically used for components operating in the interme-

diate temperature (∼ 650◦C) regime such as disks, spacers and seals. The overall

manufacturing process to create a PM nickel-base superalloy is summarized in Figure

3.1.

Nickel has a face-centered cubic (FCC) crystalline structure that is stable from
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room temperature to its melting point. Nickel-base superalloys are often strengthened

through solid solution strengthening of the γ matrix and precipitation strengthening

using L12 (ordered FCC) γ
′

precipitates in the austenitic γ matrix. Typically there

can be three different size distributions of γ
′

precipitates (≈1.0, ≈0.1, and ≈0.01

µm in diameter), often referred to as primary, secondary, and tertiary γ
′

precipi-

tates, respectively. The larger primary γ
′

precipitates form during the first step of

heat treatment (for subsolvus heat treatment) and typically form high-angle grain

boundaries between the primary γ
′

precipitates and the γ matrix. The secondary

and tertiary precipitates form during cooling and subsequent aging. These two pre-

cipitates are coherent with the γ matrix. Due to the unique deformation mechanisms

in the ordered Ni3Al precipitates, these alloys display an anomalous yield strength

with increasing temperature, up to about 800◦C.

One of the limiting factors in fatigue performance in PM nickel-base superalloys

is the presence of nonmetallic ceramic inclusions that serve as crack initiation sites

[43,44]. These inclusions are often introduced to the molten metal, due to erosion or

spalling of the crucible, tundish or nozzle, prior to the gas atomization process used

to create the powder [49, 53]. To reduce the size and frequency of these particles,

the metal powder is repeatedly sieved with screens of progressively finer mesh size

to remove the largest harmful oxide particles [49, 53]. This screening process also

removes the largest metal particles which reduces usable metal particle yield and

increases overall production cost.
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Figure 3.1: Typical manufacturing process of a PM nickel-base superalloy [49].
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3.2 Key Features for Microstructures of Consideration

In this study, two different families of the Ni-base superalloy Inconel 100 (IN100)

will be modeled. IN100 was first developed in cast form in the early 1960s and has

been significantly improved due to PM processing. The use of PM processing is

appropriate when considering the chemically complex microstructure with over 10

constituent elements (ref. Table 3.1). IN100 is used extensively for intermediate

temperature (∼ 650◦C) applications such as turbine engine disks due to its enhanced

strength, creep, fatigue, and corrosion resistance at these temperatures. The two

different microstructures that will be studied here are the fine grain (FG) sister disk

and the coarse grain (CG) super weak microstructures, as outlined in Milligan et

al. [55]. These two microstructures represent the bounds of subsolvus and supersolvus

microstructures. These microstructures were thoroughly characterized through the

work of Wusatowska-Sarnek and coworkers [56, 57].

Table 3.1: Chemical Constituents of IN100 and Its Phases (Weight Percent) [58]

Alloy/Phase Ni Al Cr Co Mo Ti V Fe C Zr B

IN100 56.0 4.9 12.3 18.3 3.3 4.3 0.70 0.10 0.06 0.02 0.02
γ matrix 38.7 2.25 24.5 27.8 5.73 0.93 0.05
γ

′
ppt 71.8 7.06 2.59 8.94 1.42 6.97 1.23

Following the forging process, the PM-processed Ni-base superalloy is heat-treated

to create the final desired microstructure. The microstructure features differ depend-

ing on the heat treatment process. A typical heat treatment for IN100 consists of

a subsolvus (at 1143◦C) or supersolvus (at 1205◦C) heat treatment for 2 hours, fol-

lowed by subsequent stabilization (at 982◦C) for 1 hour and aging (at 732◦C) for 8

hours [58], as shown in Figure 3.2. The γ
′

solvus temperature, or the temperature at

which the phase transformation of γ → (γ+γ
′
) occurs upon cooling, is approximately

1185◦C. Often Ni-base superalloys are characterized based on whether the first heat

treatment is above or below the solvus temperature (respectively, supersolvus and
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subsolvus). The heat treatment is selected based on the desired material properties

of the end product. The strength of IN100 is highly dependent on a number of inter-

related microstructure features including the volume fraction, particle size, particle

distribution, and grain sizes of the γ matrix and γ
′

precipitate phases.

Figure 3.2: Typical heat treatment for subsolvus and supersolvus IN100 microstruc-
tures [58].

Other minor phases are present in these alloys including carbides and borides.

These phases are present in very low quantities (total volume fraction equal to about

1.6 %). Elongated carbides of the M23C6 type tend to form at the grain boundaries

while smaller spherical particles of MC type are more predominantly located within

the grain structure. Although it is possible to form topologically close-packed (TCP)

phases σ, µ, and Laves phases in IN100, the exposure time required to form such

phases is longer than the typical processing regime of these microstructures [57].

Therefore, the TCP phases are not present in the IN100 microstructures used in this

study.

3.2.1 Fine Grain IN100

The fine grain IN100 used in this study is processed using a subsolvus heat treatment.

The primary γ
′

precipitates created in this step help control the grain size of the γ
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matrix through grain boundary pinning. As stated previously, the secondary and

tertiary γ
′

precipitates are formed during subsequent cooling and aging processes.

An example of a fine grain IN100 microstructure is shown in Figure 3.3. Note that

the size of the primary γ
′

is of the same order of magnitude as the γ matrix grain

size. The key microstructure details of the subsolvus fine grain IN100, including size

and volume fractions of each phase, are summarized in Table 3.2.

(a) Grain structure showing γ matrix (lighter
gray) and primary γ

′
precipitate (darker gray)

distribution [56].

(b) Grain structure showing closer view of γ
matrix (lighter gray) and primary γ

′
precipi-

tate (darker gray) distribution. The inset is a
dark-field TEM image which shows morphol-
ogy of cuboidal secondary (large white) and
tertiary (small white dots) γ

′
distribution [57].

Figure 3.3: SEM and TEM images of a fine grain subsolvus IN100 microstructure.

3.2.2 Coarse Grain IN100

Coarse grain IN100 microstructures are created through supersolvus heat treatment.

During this heat treatment the primary γ
′
are dissolved, resulting in a bimodal distri-

bution of precipitates. An example of a coarse grain IN100 is shown in Figure 3.4. As

seen in these SEM images, the coarse grain IN100 has a bi-modal distribution of sec-

ondary and tertiary γ
′

precipitates. These precipitates are formed in the cooling and

aging processing steps after the supersolvus heat treatment. The key microstructure

details of the supersolvus coarse grain IN100 are summarized in Table 3.2.
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(a) Grain structure showing secondary γ
′

distribution.
(b) Grain structure showing secondary
and tertiary γ

′
distribution.

Figure 3.4: SEM images of a coarse grain supersolvus IN100 microstructure [24].

Table 3.2: Microstructural Details for IN100 [55]

Primary Secondary Secondary Tertiary Tertiary Grain
Material γ

′
fp1 γ

′
d2(nm) γ

′
fp2 γ

′
d3(nm) γ

′
fp3 dgr(µm)

Coarse Grain (CG) - 340 0.46 11 0.137 34
Fine Grain (FG) 0.25 109 0.32 21 0.024 4.2

3.3 Crystal Plasticity Model

To model the complex behavior of the coarse and fine grain IN100 microstructures,

a fully three-dimensional computational crystal plasticity model is used. The crys-

tal plasticity model used here follows that of Przybyla and McDowell [59]. This

model is a rate-dependent, microstructure-sensitive model used to capture the first

order effects on the macroscopic stress-strain response due to grain size, γ
′
precipitate

size distribution and γ
′

precipitate volume fraction. These microstructure features

all greatly affect the material and fatigue response of nickel-base superalloys. This

model was calibrated to complex cyclic stress-strain data of multiple microstructure

variations at an operating temperature of 650◦C with and without hold times [1].
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Physically-based hardening models are used based on dislocation/precipitate interac-

tions evidenced from experiments.

The kinematics of deformation are based on the fundamental multiplicative de-

composition of the deformation gradient, F, into an elastic portion, Fe, and a plastic

portion, Fp, i.e. F = Fe ·Fp. The elastic portion, Fe takes into account the elastic lat-

tice distortion and rotation and Fp addresses dislocation glide along crystallographic

slip planes. The elastic Green strain and second Piola-Kirchhoff stress tensor are

denoted by Ee = 1
2

(
FeT ·Fe − 1

)
and σpk2 = det (Fe) Fe−1 ·σ ·Fe−T , respectively.

Assuming small elastic strains, (εe ≈ Ee), the linear hyperelastic relation is given by

σpk2 = C : Ee, where C is the fourth rank anisotropic elasticity tensor of the crystal.

In the reference configuration, the slip plane unit normal vector m
(α)
o and slip

direction unit vector s
(α)
o for each slip system (α) frame the plastic velocity gradient

in the intermediate configuration via

Lp = Ḟ
p ·Fp−1 =

Nslip∑
α=1

γ̇(α)
(
s(α)
o ⊗m(α)

o

)
(3.1)

where γ̇(α) is the shearing rate for each slip system (α). The slip system normals and

directions in the current configuration are respectfully related to that in the reference

configuration s(α) = Fe · s(α)
o and m(α) = m

(α)
o ·Fe−1. Thus, the resolved shear stress

on each slip system is τ (α) = σ :
(
s(α) ⊗m(α)

)
, where σ is the Cauchy stress.

The shearing rate on each slip system is given by a two-term potential flow rule [60]

γ̇(α) =

[
γ̇1

〈∣∣τ (α) − χ(α)
∣∣− κ(α)

D(α)

〉n1

+ γ̇2

〈∣∣τ (α) − χ(α)
∣∣

D(α)

〉n2
]

sgn
(
τ (α) − χ(α)

)
(3.2)

Here γ̇1 and γ̇2 are constants, n1 and n2 are flow exponents, κ(α) is the threshold stress,

and Dα is an average drag resistance. The first term in Equation 3.2 captures the

dominant cyclic behavior with the threshold stress playing the role of yield strength.

The second term incorporates the effect of thermally activated creep at lower stresses.

At lower stresses, the first term may not be active, and the dominant flow mechanisms
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are controlled by heterogeneous partial dislocation dissociation and matrix faulting.

The use of a two term flow rule is necessary to model complex cyclic stress-strain

histories.

The anomalous yield behavior of nickel base superalloys can be attributed to the

unique deformation mechanisms in its constituent phases. As mentioned previously,

the γ matrix is an FCC crystalline lattice. At lower temperatures, dislocation motion

within the matrix is often limited to planar slip along the 12 octahedral slip planes

〈110〉 {111}, which is typical for the FCC lattice structure. At higher temperatures,

macroscopic slip traces have shown evidence of an additional activation of 6 “cube”

slip systems 〈110〉 {001}. Upon further investigation through transmission electron

microscopy (TEM), Bettge and Österle [61] discovered that this cube slip was actually

due to thermal activation of “zig-zag” cross slip of screw dislocations. As the screw

dislocations migrate through γ
′

precipitate channels, they are blocked at the γ/γ
′

interface causing the zig-zag cross slip mechanism (cf. Figure 3.5). Thus, at higher

temperatures, cross slip creates complicated forest dislocation interaction which in-

creases the dislocation density and restricts further motion of mobile dislocations.

Therefore, we employ two internal state variables (ISVs) to describe the microstruc-

ture evolution of IN100, namely dislocation density, ρ(α), and the back stress, χ(α).

Based on the above considerations, we model 12 octahedral slip systems 〈110〉 {111}

and 6 “cube” slip systems 〈110〉 {001} in IN100.

Figure 3.5: Schematic of zig-zag {111} slip in the {100} γ′ channels [61].
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The hardening of the threshold stress on each slip system is assumed to follow the

Taylor relation

κ
(α)
λ = κ

(α)
o,λ + αt µ̃ b̃

√
ρ

(α)
λ (3.3)

In Equation 3.3, λ represents either octahedral or cube slip systems and ρ(α) is the

dislocation density on each slip system. The shear modulus µ̃ follows a rule of mixtures

µ̃ = (fp1 + fp2 + fp3)µγ′ + fmµm, where fp1, fp2, fp3, and fm are the volume fractions

of the primary γ
′
, secondary γ

′
, tertiary γ

′
and matrix phases respectively, and µγ′

and µm are the shear moduli of the precipitate and matrix phases. Similarly, an

effective burgers vector is employed, b̃ = (fp1 + fp2 + fp3) bγ′ + fm bm, where bγ′ and

bm are the burgers vectors of the γ
′

precipitates and matrix, respectively. Also, αt

is a statistical coefficient that accounts for spatial arrangements of the dislocation

population. The initial critical resolved shear stress (CRSS), κ
(α)
o,λ is based on the

work of Reppich and co-workers [62,63] and is given as:

κ
(α)
o,oct =

[(
τ

(α)
o,oct

)nκ
+ Ψoct (fp1, d2, fp2, d3, fp3)nκ

]1/nκ
+ (fp1 + fp2) τ (α)

ns

κ
(α)
o,cub =

[(
τ

(α)
o,cub

)nκ
+ Ψcub (fp1, d2, fp2, d3, fp3)nκ

]1/nκ
(3.4)

where

Ψoct = Ψcub

=

cp1
√
ζ
f
′
p1

d1

+ cp2

√
ζ
f
′
p2

d2

+ cp3

√
ζ f

′
p3 d3 +

cgr√
dgr

 (3.5)

In this equation, ζ = ΓAPB
ΓAPB,ref

where ΓAPB is the anti-phase boundary energy. Also,

d1, d2, and d3, are the sizes of the primary, secondary, and tertiary γ
′

precipitates,

respectively, while dgrn is the grain size. The exponent nκ ranges from 1-1.2, and cp1,

cp2, cp3, and cgr are determined by fitting the initial yield strength to the experimental

data. The non-Schmid stress dependence of the octahedral slip systems is given by

τ
(α)
ns = hpeτ

(α)
pe + hcb

∣∣∣τ (α)
cb

∣∣∣+ hseτ
(α)
se [64–66], where τ

(α)
pe , τ

(α)
cb , and τ

(α)
se are the resolved

shear stresses on the primary, cube and secondary slip systems, respectively and hpe,
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hcb, and hse are constants. The normalized precipitate volume fractions are defined

by

f
′

p1 =
fp1

fp1 + fm
, f

′

p2 =
fp2

fp2 + fm
, f

′

p3 =
fp3

fp3 + fm
. (3.6)

During plastic deformation partial dislocations travel in pairs in order to retain

order in the crystalline structure. When a pair of partial dislocations encounter a γ
′

precipitate obstacle, the dislocations can shear the obstacle, pile up at the obstacle,

loop around the obstacle, or avoid the obstacle through cross slip. In Ni-base superal-

loys these precipitate dislocation interactions depend strongly on the precipitate size:

(1) for underaged precipitates (< 100 nm), shearing takes place by weakly coupled

dislocation pairs and the CRSS increases with precipitate size, (2) for slightly larger

particles (100 nm < dp < 400 nm), shearing occurs by strongly coupled dislocation

pairs and the CRSS decreases as a function of the precipitate size, and (3) for over-

aged particles (> 400 nm), dislocation looping can occur depending on precipitate

distribution, and is promoted by increasing temperature. The relationship between

weak and strong dislocation pairs as a function of precipitate size is schematically

shown in Figure 3.6.

The first two terms in Equation 3.5 account for increase of the CRSS by the shear-

ing of the (small) primary and secondary precipitates by strongly coupled dislocation

pairs and the third term represents shearing of tertiary precipitates by weakly coupled

dislocation pairs as evidenced by TEM observations of deformation of KM4, a similar

Ni-base superalloy, at a temperature of 650◦C [68]. The last term in Equation 3.5

is based on the Hall-Petch relationship in which the CRSS increases with decreasing

grain size.
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dc,ws(~70-100 nm) dc,o(~300-500 nm)

Figure 3.6: Schematic of theoretically expected CRSS as a function of particle size.
After ref. [67].

In this model, hardening is assumed to be a function of dislocation storage, dy-

namic recovery, and the size and spacing of γ
′

precipitates. Dislocation storage in-

cludes statistically stored dislocations (SSDs) and geometrically necessary disloca-

tions (GNDs) [69]. Dynamic recovery is due to dislocation annihilation and rear-

rangement. The rate of dislocation recovery is assumed to be directly proportional

to the dislocation density [70]. Thus, the evolution of dislocation density is given by

ρ̇
(α)
λ = ho

{
Zo + k1

√
ρ

(α)
λ − k2 ρ

(α)
λ

} ∣∣γ̇(α)
∣∣ (3.7)

and

Zo =
kδ

b̃ dδeff

, dδeff ≈
(

2

d2δ

)−1

(3.8)

where the k1
√
ραλ represents dislocation storage and k2ρ

α
λ represents dynamic recovery.

Also, k1, k2, and kδ are constants and d2δ and dδeff represent secondary and equivalent

precipitate spacing, respectively. In Equation 3.7, the hardening coefficients for the

octahedral and cube slip systems are ho = 4.8 and ho = 2.4, respectively.
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To capture the Bauschinger effect, a back stress term, χ(α), is used. The evolution

of back stress follows the form

χ̇
(α)
λ = Cχ

{
η µ̃ b̃

√
ρ

(α)
λ sgn

(
τ (α) − χ(α)

λ

)
− χ(α)

λ

} ∣∣∣ ˙γ(α)

∣∣∣ (3.9)

and

η =
ηo Zo

Zo + k1

√
ρ

(α)
λ

(3.10)

where Cχ is a fitting parameter, and η reflects the relative proportion of GNDs to

total dislocation density.

A summary of the constitutive equations are shown in Table 3.3. The above

constitutive model is implemented as a user defined material (UMAT) subroutine in

ABAQUS [71].

3.3.1 Model Calibration

Using the above framework, Shenoy et al. [1] used fully 3D finite element analysis to fit

the above constitutive responses to very complex cyclic stress-strain behavior. Strain

histories with and without hold periods at maximum strain were used to estimate

the time-dependent behavior of the stress strain curve at a temperature of 650◦C,

the intended gas turbine disk operating temperature. See Figures 12-15 in ref. [1]

for stress-strain response calibration of the coarse grain (super weak) and fine grain

(sister disk) IN100 microstructures used in the current study. The microstructure-

sensitive crystal plasticity constants fitted through experiments are listed in Table

3.4.
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Table 3.3: Microstructure-sensitive crystal plasticity constitutive equations

Flow rule with back stress, threshold stress and drag stress

γ̇(α) =

[
γ̇1

〈∣∣τ (α) − χ(α)
∣∣− κ(α)

λ

D(α)

〉n1

+ γ̇2

〈∣∣τ (α) − χ(α)
∣∣

D(α)

〉n2
]

sgn
(
τ (α) − χ(α)

)
Threshold Stress

κ
(α)
λ = κ

(α)
o,λ + αt µ̃ b̃

√
ρ

(α)
λ for λ = oct, cub,

where µ̃ = (fp1 + fp2 + fp3) µγ′ + fm µm, b̃ = (fp1 + fp2 + fp3) bγ′ + fm bm

Initial Thresholds

κ
(α)
o,oct =

[(
τ

(α)
o,oct

)nκ
+ Ψoct (fp1, d2, fp2, d3, fp3)nκ

]1/nκ
+ (fp1 + fp2) τ (α)

ns

κ
(α)
o,cub =

[(
τ

(α)
o,cub

)nκ
+ Ψcub (fp1, d2, fp2, d3, fp3)nκ

]1/nκ
where
τ (α)
ns = hpeτ

(α)
pe + hcb

∣∣∣τ (α)
cb

∣∣∣+ hseτ
(α)
se (non-schmid term)

Ψoct = Ψcub =

cp1
√
ζ
f

′
p1

d1
+ cp2

√
ζ
f

′
p2

d2
+ cp3

√
ζ f

′
p3 d3 +

cgr√
dgr

 ,
ζ =

ΓAPB
ΓAPB,ref

, f
′

p1 =
fp1

fp1 + fm
, f

′

p2 =
fp2

fp2 + fm
, f

′

p3 =
fp3

fp3 + fm
,

Internal State Variables

(a) Dislocation Density:

ρ̇
(α)
λ = ho

{
Zo + k1

√
ρ

(α)
λ − k2 ρ

(α)
λ

} ∣∣∣γ̇(α)
∣∣∣ (self-hardening)

Zo =
kδ

b̃ dδeff

, dδeff ≈
(

2
d2δ

)−1

(b) Back Stress:

χ̇
(α)
λ = Cχ

{
η µ̃ b̃

√
ρ

(α)
λ sgn

(
τ (α) − χ(α)

λ

)
− χ(α)

λ

} ∣∣∣ ˙γ(α)
∣∣∣ (self-hardening)

η =
ηo Zo

Zo + k1

√
ρ

(α)
λ
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Table 3.4: Parameters of the microstructure-sensitive crystal plasticity model at
650◦C [59].

Material αt Cχ d1δ( nm) d2δ( nm) γ̇1(x10−10s−1)

Coarse Grain IN100 0.1 2 - 15 0.417
Fine Grain IN100 0.0 8 358 19.4 0.157

Common parameters for all microstructures

τ
(α)
o,oct( MPa) τ

(α)
o,cub( MPa) cp1 cp2 cp3 cgr( MPa

√
mm) nκ

85.1 170.2 1.351 1.351 1.22 x 105 9.432 1

b
γ
′ ( nm) bγ( nm) µ

γ
′ ( MPa) µγ( MPa) k1( mm−1) k2 ρ

(α)
λ,o( mm−2) ho

0.25 0.41 81,515 130,150 2.6 x 105 8.2 1.0 x 105 4.8(oct), 2.4(cub)

hpe hcb hse ΓAPB(= ΓAPB,ref) ( J/m2) ηo kδ

0.8 0.0 -0.4 164 x 10−3 2.82 2.5 x 10−3

C11, γ
′
( MPa) C12, γ

′
( MPa) C44, γ

′
( MPa) C11, γ( MPa) C12, γ( MPa) C44, γ( MPa)

135,000 59,210 81,515 158,860 73,910 130,150

n1 n2 γ̇1( s−1) γ̇1( s−1) D(α)( MPa)

15 9 8.7 3.9 x 10−11 150(oct), 180(cub)
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3.4 Modeling Stages of Fatigue Crack Formation and Growth

Three stages of fatigue crack formation and growth are modeled in the present inves-

tigation, including fatigue crack incubation, microstructurally small crack growth and

linear elastic fracture mechanics (LEFM) crack growth. In this study, deterministic

approaches based on the physical mechanisms of fatigue crack formation and growth

are used to compare multiple instantiations for specimens with different notch root

sizes. The concept of a fatigue indicator parameter (FIP) is introduced in this section.

These FIPs are computable response parameters that are used here to characterize

the multiaxial micromechanics of damage accumulation within a microstructure.

3.4.1 Fatigue Indicator Parameters

There have been many multiaxial parameters that have been introduced to correlate

fatigue damage and cyclic stress-strain state [72]. The multiaxial fatigue indica-

tor parameters (FIPs) that are relevant to fatigue crack formation and small crack

growth consider the combined effects of resolved shear stresses/strains and normal

stresses/strains on a given plane. The normal stresses provide crack opening, reduc-

ing friction between crack surfaces, and resolved shear stresses support dislocation

motion on the slip plane. In this study we characterize the Stage I, shear-dominated

formation and growth of cracks through the use of the Fatemi-Socie (FS) parame-

ter [72,73]. The FS parameter has demonstrated robust correlation of crack initiation

in polycrystals under various multiaxial loading conditions [74,75]. Using the crystal

plasticity constitutive equations described above the plastic strain tensor is computed

based on the multiplicative decomposition of the deformation gradient into plastic

(dislocation slip) and elastic parts (lattice rotation and distortion), i.e., F = F e ·F p.

The plastic strain tensor is then used to calculate the FS Parameter. This FIP takes

into account the plane of maximum plastic shear and the stress normal to this plane,
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i.e.,

PFS =
∆γp∗max

2

(
1 +K

′ σmax∗n

σy

)
= ∆Γ (3.11)

where ∆γp∗max is the maximum range of plastic shear strain over a fatigue cycle, K
′

is a constant that controls the effect of normal stress in fatigue crack formation and

early growth, and σmax∗n

σy
is the ratio between the maximum tensile stress normal to

this plane and the cyclic yield strength. For consistency, the FIPs are averaged over

the fine grain scale (4 µm) for both IN100 microstructures and are calculated over

the third fatigue cycle in each simulation. In the present work, K
′

= 1.0, which has

been correlated to a wide variety of multiaxial loading histories for the fatigue life of

IN718, a similar nickel-base superalloy [73].

3.4.2 Crack Incubation

In the present study, we consider crack incubation as the formation of a crack on the

order of grain size. Many models involving the formation of cracks within a grain

are based on the Tanaka and Mura model proposed for Stage I crack incubation [76].

The range of cyclic shear stress on the shear plane is assumed to drive the fatigue

damage accumulation. This model assumes that two parallel, closely-spaced slip

planes partake in dislocation dipole accumulation via a ratcheting mechanism (ex:

layer I and layer II). Upon loading, dislocations on layer I move until they encounter

an obstacle and pile up to form a back stress. This back stress equilibrates the applied

shear stress on that plane. During load reversal, the back stress on layer I assists the

applied shear stress on layer II and is balanced by the back stress on layer II (in the

positive layer I direction). Next, this back stress on layer II becomes a forward stress

on layer I. This cyclic ratcheting model and associated increase in dislocation density

per fatigue cycle increases the potential energy of the layer I and layer II dislocation

dipole. The energy balance between this dislocation dipole energy and the surface
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energy to form a crack are related by [76]

2Ni∆U = 4aWs (3.12)

where Ni is the number of cycles to form the crack, 2∆U is the potential energy of

the dislocation dipole, 2a is the size of the grain, and 2Ws is the energy to form the

crack surface. This equivalence was expanded to arrive at the following

(∆τ − 2k)2Ni =
4µWs

π (1− ν) a
(3.13)

Here, ∆τ is the applied shear stress range, k is the lattice friction stress, µ is the

shear modulus, and ν is the Poisson ratio. A simplified form of this model has been

extended to microplasticity by Shenoy et al. [2] to estimate the incubation life for

IN100 for a crack on the order of a grain size

Ninc

(
avg (∆γpmax)

2

)2

=
αg
dgr

, (3.14)

where αg is a parameter fit to experiments.

3.4.3 Microstructurally Small Crack Growth

The growth of microstructurally small cracks depends strongly on the local mi-

crostructure. In the HCF regime, a large portion of fatigue life is spent forming

and propagating a small crack. Therefore, accurate modeling of small crack growth

is very important in HCF fatigue life estimation. The most important condition for

analysis is whether a crack, regardless of its size, will or will not propagate. Therefore,

in this context, the fatigue limit is not related to the incubation of a crack, but to

the threshold condition which determines whether the crack will continue to grow to

failure.

The fluctuation of the crack growth resistance for the microstructurally small

crack is often attributed to the retardation of crack growth by grain boundaries [16].

As seen in previous sections (ref. Figure 2.4), a decrease in growth rate can be ob-

served when a crack-tip approaches a grain boundary and can even be arrested at
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the boundary. This small crack growth threshold depends on microstructure features

(such as mean distance between particles and grain size) and loading condition. Once

the crack crosses the grain boundary, growth accelerates, and this oscillatory behavior

may be repeated until microstructure effects are negligible and a condition of simili-

tude is reached. Consequently, the growth of small cracks varies from microstructure

to microstructure. There is no unique relationship between the range of stress in-

tensity factor, ∆K, and the crack growth rate da/dN of small cracks. Frequently, a

phenomenological mean value of the fluctuating small crack growth rate is used in

small crack growth models.

For the growth of small fatigue cracks other fracture mechanics techniques have

been used, namely microstructural fracture mechanics (MFM) and elastic-plastic frac-

ture mechanics (EPFM). In the MFM regime, microstructure effects dominate small

crack growth. As the cracks grow, the effects of microstructure on growth decrease

and the regimes of MFM, EPFM and LEFM merge into one crack growth curve. One

relationship for MFM takes the form [77]

da

dN
= A∆γα (d− a) (3.15)

where A and α are material constants and ∆γ is the cyclic shear strain range. The

value of d depends on material length scales and the dominating microstructure bar-

rier. This parameter is dependent on stress state, stress level and material microstruc-

ture. The growth of a crack under elastic-plastic fracture mechanics can be described

by [77]

da

dN
= B∆γβa−D (3.16)

where B and β are material constants and D is an EPFM threshold value. Using

Equations 3.15 and 3.16, Miller et al. [78] compared experimental data of a 0.4%

carbon steel and the results are shown in Figure 3.7. This figure shows the non-

uniqueness of the small crack growth rate and the model that is used to estimate the
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mean small crack growth rate.

Figure 3.7: Comparison of experimental crack growth of a steel and predicted crack
growth rates [78].

Previous work on fatigue crack propagation (FCP) life under multiaxial stress

states have been done by many researchers. Fatemi and Kurath [72] and Fatemi and

Socie [73] have demonstrated robust correlation of FCP life in a Ni-base superalloy

IN718 using a shear-based multiaxial parameter, the Fatemi-Socie parameter, as an

indication of microstructurally small crack (MSC) growth rate. A modified form of

the MSC growth law with the Fatemi-Socie parameter, ∆Γ, used as the driving force

was proposed by Shenoy et al. [2], i.e.,

da

dN
= AFS τy ∆Γ a− ηb ≈ ∆CTD −∆CTDth (3.17)

Here, AFS is a parameter fitted through experiments, τy is the critical resolved re-

solved shear stress given by τy = σy/M , where M = 3.06 is the Taylor factor for a

randomly textured FCC polycrystalline aggregate [79], a is the crack length, ∆Γ is

56



the Fatemi-Socie FIP found through simulations, η is a constant (≈ 1), and b is the

magnitude of the burgers vector. In the current study, the FS parameter is averaged

over the fine-grain IN100 scale. The form of Equation 3.17 is consistent with the ∆J

based approach to address the growth of small cracks along critical planes [80]. The

value of AFS is calibrated through experiments and is determined to be 8.1 x 10−4

(MPa−cycle)−1 [2]. A modified form of Equation 3.17 is used in the present study

to estimate the propagation life due to MSC growth, i.e.,

da

dN
= AFS τy ∆Γ a (3.18)

For incremental crack extension, the modified MSC growth law in Equation 3.18 can

be integrated and rearranged to determine the number of cycles to propagate a crack

from aj−1 to aj

Nprop,MSC(aj−1 → aj) =
ln
(

aj
aj−1

)
AFS τy ∆Γave(aj−1, aj)

, (3.19)

where aj−1 and aj is the crack length at increment j − 1 and j, respectively.

3.4.4 Linear Elastic Fracture Mechanics Crack Growth

Linear elastic fracture mechanics (LEFM) is used to model the growth of a crack

from an initial size (ai ≈ 1 mm) to a final crack size at failure (af ). For LEFM to

be applicable, the conditions for similitude and small scale yielding must be met.

Similitude is the concept in which crack tip conditions are similar as long as the

magnitudes of the characterizing parameter (in this case the stress intensity factor

∆K) are identical [15]. The growth of a crack in LEFM is typically modeled through

the use of the Paris-Erdogan law [48], a power law relationship between crack growth

of “long” cracks (where LEFM is applicable) and the range of mode I stress intensity

factor over one cycle (∆K), i.e.,

da

dN
= C (∆K)m (3.20)
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where C and m are material constants and ∆K = Kmax−Kmin is the stress intensity

range. The stress intensity range depends on crack geometry, crack length, crack

location in the specimen, and loading condition. The general form for the stress

intensity factor range is

∆K = Y∆σ
√
πa (3.21)

Here, Y is a function of crack geometry and loading condition, ∆σ is the remote

applied stress range, and a is the crack length.

The growth rate of cracks also depends greatly on the load ratio (R-ratio) or the

ratio of minimum to maximum applied stress. Generally, for the same stress intensity

range, the crack growth rate is higher for a higher R-ratio. To account for load ratio

dependence of the da/dN versus ∆K, several empirical models have been proposed.

The most widely used are approaches of Forman, Kearney, and Engle [81] defined by

da

dN
=

Ca∆K
ma

(1−R)Kc −∆K
, (3.22)

and Walker [82]

da

dN
= Cb[(1−R)nbKmax]

mb (3.23)

In the above equations, Kc is the stress intensity factor at failure and Ca, Cb, ma, mb,

and nb are Paris-type material constants.

The number of cycles to failure of the specimen can be estimated through rear-

rangement and integration (often numerically) of the Paris-Erdogan law, e.g.,

Nprop,LEFM =

af∫
ai

da

C (∆K)m
(3.24)

Therefore, the total life of a component can now be estimated using the crack growth

equations described for crack incubation (ref. Equation 3.14), microstructurally small

crack growth (Equation 3.19), and long crack growth lives (Equation 3.24), i.e.,

Ntotal = Ninc + Nprop,MSC + Nprop,LEFM . Each of these regimes has different crack

growth characteristics based on the distinctive deformation mechanisms observed in
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each regime. These deterministic methods will be used to model crack formation and

propagation on a notched specimen loaded under cyclic tension/compression loading.

3.4.5 Fatigue Crack Formation and Growth Calibration to Experiments

3.4.5.1 Experimental Data and Trends

To calibrate the above crack incubation and MSC growth models, a simple computa-

tional model was used and compared to experimental “initiation” lives. For the LCF

regime, the experimental data used for comparison are from the work by Cowles et

al. [83, 84]. They performed an extensive study to determine the high-temperature

cyclic behavior of several Ni-base superalloys used for gas turbine engine disks. Sev-

eral cyclic and cyclic/dwell tests were conducted on cylindrical “dog bone” specimens

and compact tension specimens to determine crack initiation and propagation lives

at 650◦C in air. Of particular interest here are the fully reversed, strain-controlled

fatigue tests conducted on the cylindrical specimens to determine fatigue crack “ini-

tiation” life. The fatigue crack initiation life in these experiments was defined as the

number of cycles to produce a 5% drop in the cyclic load range. The specimens had

a minimum gage section diameter of 5.36 mm. For further details on the specimen di-

mensions or test results refer to ref. [84]. The cyclic tests used a triangular strain-time

waveform at a frequency of 0.33 Hz (ε̇ ≈ 0.004-0.013 s−1 depending on applied strain

range). For this study, the fine grain IN100 microstructure is compared to the exper-

iments performed on “Gatorized IN100” and the coarse grain IN100 microstructure

is compared to the experiments performed on a hot isostatic pressed (HIP) Astroloy,

which has a similar grain size (30-70 µm [85]) as that of coarse grain IN100 (34 µm).

Another experimental study was used to compare fatigue lives in the HCF (∼ 106)

to VHCF (∼ 109) regimes. Bathias and Paris [86, 87] reported stress-life data in the

HCF/VHCF range for a PM Ni-base superalloy N18 at 450◦C for different R ratios

(ref. Figure 3.8). In order to obtain S-N data within the 106 − 109 fatigue life range

in a reasonable amount of time, ultrasonic fatigue testing at 20 kHz is necessary. The
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N18 alloy has a grain size of ∼ 7− 15 µm. Figure 3.8 shows stress-life data for both

a standard N18 alloy, which contains fewer than 20 inclusions per kilogram, and a

seeded N18 alloy, which has 30,000 ceramic inclusions of Al2 and MgO of size ∼ 80 µm

in one kilogram of the alloy. As seen from Figure 3.8, the R ratio has a significant

effect on the fatigue life of this alloy. For comparison purposes, the applied strain

amplitude was surmised by dividing the stress amplitude by the elastic modulus of

E = 170 GPa. The standard N18 fatigue data at R = −1 is contrasted with the

computational model described in the next section.
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Figure 3.8: S-N curves for N18 at 450◦C in HCF/VHCF regime [86].

One concern with running experiments at such a high frequency is the strain rate

effects on the fatigue of a component. For example, experimental work on BCC low

carbon steel shows that the crack growth rate under ultrasonic fatigue tests (f=20 kHz)

is slower than that of conventional tension-compression fatigue tests (f=10 Hz) [88].

This can be attributed to the limited ability of slip bands to form at such a high

strain rate, causing the plastic zone at the crack tip to be smaller than that of a

fatigue test at a slower rate. Also, the fatigue strength for components subjected to

ultrasonic fatigue tests were higher than those under conventional fatigue tests for the
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same number of cycles to failure [88]. In contrast, room temperature fatigue testing

of a Ni-base superalloy Udimet 500 show little effect of frequency on the fatigue life

in the 106 − 109 fatigue life regime (ref. Figure 3.9). However, based on the limited

number of data points in the HCF/VHCF regime, the slope of the S-N curve for

ultrasonic fatigue testing (f=20 kHz) is larger than the that of a more conventional

fatigue testing loading rate (f=10 Hz) for the same Ni-base superalloy.
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Figure 3.9: S-N curves for Udimet 500 at room temperature in HCF/VHCF regime,
R = −1 [89].

3.4.5.2 Computational Calibration to Experiments

Two different blocks of material that contain 64 cuboidal grains (4 grains x 4 grains

x 4 grains) and 1000 cuboidal grains (10 grains x 10 grains x 10 grains) with random

orientation distribution were used to simulate the smooth fatigue specimens used in

experiments. Each grain is composed of 8 C3D8 elements (2 elements x 2 elements x

2 elements) in both models. The two models used are shown in Figure 3.10. These

idealized microstructures are loaded in uniaxial tension/compression fully reversed

loading (Rε = −1) for three cycles at a strain rate of (ε̇ = 10−3 s−1) and at various

strain amplitudes. Periodic boundary conditions are imposed on each block so that

opposite faces of the block have the same deformation. Periodic boundary conditions
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tessellates the volume of the block to simulate overall bulk response of a given ma-

terial. This model is used to simulate the response of a smooth test specimen. The

maximum cyclic plastic shear strain is calculated over the third loading cycle. A value

of αg = 0.056 µm-cycle is used in Equation 3.14 to find the number of cycles to crack

initiation to the grain size and Equation 3.19 is used for MSC growth to a desired

length. In this study, MSC growth was considered through 3 grains from the initial

cracked grain. This value provided good correspondence between computational and

experimental strain-life data.

X

Y

Z

(a) 64 grain block model

X

Y

Z

(b) 1000 grain block model

Figure 3.10: Finite element meshes used to simulate a “smooth” specimen (figures
not to scale).

Comparison of smooth specimen experimental and computational data is shown

in Figure 3.11 for the fine grain IN100 microstructure and Figure 3.12 for the coarse

grain IN100 microstructure. Note that the experimental data is only plotted for the

regime in which experimental tests were conducted. There are several interesting

conclusions that arise from this computational study:

• Considering the MSC growth of a crack through 3 neighboring grains from an

initial crack on the order of a grain, the computational strain-life curves depict

the experimental data well in the LCF to HCF regime.
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Figure 3.11: Comparison of experimental and computational fatigue crack “ini-
tiation” for Rε = −1 loading of a fine grain (FG) IN100. Experimental data for
Gatorized IN100 are from [83] and N18 data are from [86].
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• The slope of the strain-life curve in the HCF/VHCF regime (106 − 1010 cycles)

found through the computational study is very close to that seen in experimental

ultrasonic fatigue testing. As indicated in Figure 3.9, the slope of the strain-life

in the “elastic” region for a Ni-base superalloy varied little for cyclic loading

frequencies of 20 Hz and 20 kHz.

• The computational model predicts that there is another transition in the strain-

life curve in the regime of ∼ 1012 cycles and beyond. This can indicate that

there is an absence of plasticity within the grain level response. Further investi-

gation of the grain level FIP shows an interesting characteristic. In Figure 3.13,

the maximum, minimum, and average FIP values as a function of the applied

strain amplitude are shown for 1-10 cycles. As indicated from the diagram, at

low strain amplitudes, the FIP distribution is relatively stationary as indicated

from the relative distance between the maximum, minimum and average lines.

The change in FIP response as a function of strain amplitude at lower applied

strains is relatively linear on the semi-log plot, reflecting the overall nominal

elastic response. In addition, at lower applied strain amplitudes there is no

difference in the computed FIP values among 1-10 cycles, which indicates that

there is no cyclic ratcheting within the microstructure. This further displays

that the grain level response is elastic. As the strain amplitude is increased,

the FIP versus strain amplitude reaches an inflection point and a subsequent

separation of the maximum, minimum, and average FIP curves occurs. This

inflection point occurs at εa ≈ 0.75εy = 0.32% (σa = 560 MPa) for coarse grain

IN100, where εy is the macroscopic proportional limit for each material. This

separation indicates that at this inflection point, localized slip can occur which

signifies a threshold strain amplitude value in which the grain level response

transforms from fully elastic to a mostly elastic/slightly plastic. This threshold

strain amplitude is below the macroscopic proportional limit. Thus, a plot of
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the macroscopic cyclic stress-strain data may not be sufficient to indicate mi-

croplasticity and microcrack formation at the grain level (ref. Figure 3.14). For

a strain amplitude of εa = εy, the macroscopic stress-strain response is elastic

as shown in Figure 3.14, but the grain level FIP values indicate localized plas-

ticity (ref. Figure 3.13). It is also interesting to note that the inflection point

at a strain amplitude of εa ≈ 0.75εy = 0.32% in Figure 3.13 corresponds to the

downturn in the strain-life plot at ∼ 1012 cycles in Figure 3.12. Since experi-

ments are not available at this point for regimes past 1010 cycles, we are unable

to verify the slope of the strain life curve beyond 1010 cycles in Figures 3.11

and 3.12. In addition, the number of cycles to fatigue crack initiation is found

through Equation 3.14. This equation uses the plastic shear strain tensor, which

is not relevant in this regime based on the above FIP argument, to calculate

the cycles to crack initiation. Further investigation is required to determine the

dominant fatigue mechanisms (if any) that are active in this ultra high cycle

fatigue regime. However, we can conclude that the grain level response of a per-

fect material (without inclusions or other microdefects) is elastic for a smooth

specimen loaded below the threshold strain amplitude of εa ≈ 0.75εy = 0.32%

(σa = 560 MPa) for coarse grain IN100.
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• It is recognized that this model has several limitations. Instead of using similar

Ni-base superalloys such as HIP Astroloy and N18, the computational model

could be better calibrated by comparing to actual coarse grain and fine grain

IN100 material fatigue data in all strain-life regimes. Another limitation is the

limited number of data points for experimental S-N plots reported in literature.

Experimentally and computationally, there is a significant amount of scatter in

fatigue life data in the HCF/VHCF regimes. The current model could be more

robust with additional data points for curve fitting. Another aspect that could

be improved is to consider the grain size distribution and to increase the number

of elements per grain. Larger grains in a microstructure are typically more

favorable for fatigue crack formation as compared to smaller grains. The smooth

specimen model used here is an idealized microstructure that has a uniform

grain size distribution and contains only 2 elements through the thickness of

the grain. Using only 2 elements though the thickness of the grain can limit the

ability to detect gradients in plastic slip distribution within a given grain. These

plastic slip gradients arise due to combined effects of the anisotropic behavior

of the nearest neighbor grains and the requirements of strain compatibility.

Other defects and microstructure characteristics not taken into account in this

model are inclusions, pores, initial residual stress distributions, and triple point

junctions, which all have an effect on strain localization and thus, fatigue crack

formation.

Considering the above limitations, the computational “smooth specimen” model fit-

ted to experiments in this section is sufficient for the purposes of this study. The

smooth specimen is used to establish a baseline comparison to notched specimens.

The notched specimen computational model is described in the following section.
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3.5 Finite Element Implementation

The crystal plasticity response described above is used to model the cyclic deforma-

tion of a notched specimen. Due to the stress concentration effect, fatigue cracks

within a notched component usually form at the notch root. Therefore, we are inter-

ested in both the microstructure-sensitive response within the notch root region and

the stress gradient effect on formation and propagation of a crack to a characteristic

length. These simulations capture both the essence of the notch root stress concentra-

tion and the complexity of realistic microstructures. Notch size effects will be explored

by simulating different size notches subjected to fully reversed tension/compression

loading at different strain amplitudes. Using the crystal plasticity formulations de-

scribed previously in conjunction with the deterministic crack formation and propa-

gation techniques described in the previous section, the distribution of slip within the

notch region will be used to identify the probability of failure of the notched com-

ponents. The notched components simulated in this study are double edge notched

tension/compression specimens. The implementation strategy in ABAQUS [71] is

described in the following section.

3.5.1 Geometric Model Details

Simulations were conducted in ABAQUS CAE [71] on various notched specimen ge-

ometries. To improve computational efficiency, the notched specimen is decomposed

into three regions: (1) the outermost region, which is far from the notch root, imposes

an isotropic linear elastic response using the elastic modulus found from macroscopic

experimental stress strain curves; (2) an intermediate region employs both macro-

scopic J2 cyclic plasticity theory and isotropic linear elasticity in order to minimize

effects of discontinuity between the fully elastic outer region and (3) the innermost

3D crystal plasticity region. Since symmetry conditions exist, only one half of the
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double edge-notched specimen was modeled to render the simulations less compu-

tationally expensive. The dimensions of the crystal plasticity region are selected so

that the distribution of microslip within the notch region is fully encapsulated for

the applied loading conditions. For higher strain amplitude loading, the size of the

crystal plasticity zone would have to be increased. For consistency in fatigue indica-

tor parameter analysis, the fine grain IN100 mesh size was used near the notch root

region. Thus, the fine grain microstructure crystal plasticity (CP) zone contains 1

element per grain (see Figure 3.15 for example) and the coarse grain microstructure

CP zone has an average of 530 elements per grain near the notch root. The coarse

grain model employs the fine grain mesh size in a localized region near the notch root

(0.15ρ away from notch root, where ρ is the notch root radius) and contains a gra-

dient mesh that gradually increases to the coarse grain size at the outside barrier of

the crystal plasticity zone. The modeling strategy for simulated double edge-notched

specimens is summarized in Figure 3.16.

Figure 3.15: Assignment of grains for fine grain microstructure for a notch root
radius of 0.2 mm.
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Figure 3.16: Modeling strategy for fine grain and coarse grain IN100 microstruc-
tures.

3.5.2 Polycrystalline Model Reconstruction

The fine grain shape is idealized as tetrahedral while the coarse grains employ a spher-

ical packing algorithm to fit the grains to a lognormal distribution. The reason this

algorithm was used was because it offers more control over grain sizing as compared

to a more traditional random seed Voronoi type tessellation, which results in a normal

distribution. The lognormal distribution takes the form:

f(x;µ, σ) =
1

xσ
√

2π
exp

[
−(ln(x)− µ)2

2σ2

]
(3.25)

The values of µ = −0.1 and σ = 0.4 were chosen for the target lognormal distribution

based on previous publications of fine grain IN100 grain size distributions [2,57,59,90].

The grain size distribution for the coarse grain microstructure is not available in the
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literature, so the same normalized lognormal distribution was assumed. Also, as a

first order approximation, the grain shape was assumed to be equiaxed. The goal of

this research is to establish general trends of fatigue potency based on key microstruc-

ture attributes including grain size distribution. These computationally created mi-

crostructures can be considered as statistically representative volume microstructures

that contain equiaxed grain structures. In addition, random grain orientations were

assumed, lacking information regarding orientation distribution functions (ODF) and

misorientation distribution functions (MODF) in the literature for the coarse grain

microstructure.

Once the grain size distribution is known, a spherical packing algorithm was used.

First, using the lognormal distribution function an array of sphere sizes was created

based on random sampling from the distribution function. The number of spheres

created is equal to the volume of the crystal plasticity region divided by the average

grain size volume, i.e., Ngrn = VCP
<Vgrn>

. This ensures that the average volume of all

grains is equal to the target overall average volume of the microstructure. In order to

pack all of these spheres into the crystal plasticity volume, the volume of the spheres

was decreased by 25% to account for the inherent packing factor of randomly placed

spheres. In other words, when randomly packing spheres within a volume there is

going to be open space between the spheres. The ratio of sphere volume over total

volume is referred to as the packing factor. The reduced size spheres were placed inside

the volume of the CP region in order of largest to smallest while ensuring no overlap

between any two spheres. Next, the mesh created in ABAQUS [71] was superimposed

in space on the spheres. Those elements that contained centroids that fell within a

given sphere were assigned to that sphere as a grain. The remaining unassigned

elements were assigned according to their proximity to the nearest spherical surface

of a grain. This is analogous to uniform growth of each grain until all space is filled up.

The general method for creation of the coarse grain IN100 polycrystalline structure
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is illustrated in Figure 3.17. An example of a resulting grain size distribution using

this technique is shown in Figure 3.18. As seen from Figure 3.18, the actual grain

size distribution (solid line) takes the same shape as the target grain size distribution

(dotted line) with minimal error.

Figure 3.17: Method for creating spherical grains with given grain size distribution.
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3.5.3 Mesh Size Convergence

3.5.3.1 Coarse Grain (Super Weak) IN100

To determine the necessary FIP averaging volume size and element size, a conver-

gence study was performed on a 50 µm notched coarse grain specimen. Each grain

was assigned a random crystallographic orientation and was maintained during mesh

refinements. Tetrahedral elements were used because they are used for all models of

the notched specimens since they work well for meshes with gradient mesh sizes. The

disordered nature of tetrahedral element meshing can cause a large volume variance in

grains between mesh refinements (ref. Figure 3.19) when using a traditional voronoi

grain assignment method. Also, for the coarsest meshes, there may be some voronoi

seeds without any assigned elements. Therefore, in this mesh refinement study, a

modified voronoi tessellation approach was used to maintain consistency in grain size

between mesh refinements. Prior to tetrahedral element meshing, the volume of the

specimen was partitioned into mostly cuboidal grains. This resulted in identical grain

element volumes among all convergence study simulations. The modified voronoi tes-

sellation technique is shown in Figure 3.20.

(a) 40 µm mesh seed size (∼ 6 elements/grain)

Z

Y

X

(b) 10 µm mesh seed size (∼ 229 elements/grain)

Figure 3.19: Conventional voronoi tessellation grain assignment for a coarse mesh
and fine mesh showing a large variation in grain volume due to mesh refinement.
Each specimen contains a 100 µm notch.
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(a) 34 µm mesh seed size (∼ 13 elements/grain) (b) 11 µm mesh seed size (∼ 233 elements/grain)

Figure 3.20: Modified voronoi tessellation grain assignment of a coarse and fine
mesh showing no variation in grain volume due to mesh refinement. Each specimen
contains a 50 µm notch.

For the purposes of the convergence study, FIP values were averaged over the

entire grain. The specimens were fatigue cycled under displacement control with a

strain ratio Rε = −1, a strain rate ε̇ = 10−3(s−1), and a strain amplitude of εa = 1.2 εy,

where εCGy = 0.42% is the macroscopic proportional limit of the coarse grain IN100

microstructure, identified through experimental stress strain data. Four mesh seed

sizes were used, namely, 34 µm (grain size), 17 µm (grain size/2), 11.3 µm (grain

size/3), and 8.5 µm (grain size/4). These mesh seed sizes correspond to a minimum

of 1, 2, 3, and 4 elements through the thickness of each grain, respectively. For

comparison purposes, the grain averaged FIP for each grain are sorted from largest

to smallest FIP to display the differences in mesh refinements (ref. Figure 3.21). As

shown in Figure 3.21 there is great correlation between the FIP values when using

233 and 450 elements per grain (3 and 4 elements through the thickness of the grain).

It is very interesting to note that there is a large difference in the maximum FIP

value for the most coarse mesh. This can be due to the inability of a single element

to capture the complex deformation behavior within a grain. The error between each
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level of mesh refinement was calculated for each grain as

errori =
abs(FIP coarse mesh

i − FIP refined mesh
i )

max(FIP coarse mesh
all , F IP refined mesh

all )
(3.26)

These errors were then averaged for each level of mesh refinement. The results are

shown in Table 3.5.
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Figure 3.21: Grain averaged FIP sorted from largest to smallest as a function
of grain number for coarse grain IN100. Rε = −1, ρ = 0.05 mm, ε̇ = 10−3(s−1),
εa = 1.2 εy.

From this study, a minimum of 3 tetrahedral elements through the thickness of a

grain (11.3 µm mesh seed size) is recommended for the coarse grain IN100 microstruc-

ture to obtain a converged average FIP value over each grain. This mesh resulted in

an average error of 0.5% in FIP calculation as compared to the model with 4 tetra-

hedral elements through the thickness of the grain. In addition to the grain scale

mesh convergence study, element scale convergence can be qualitatively shown from

contour plots. Figure 3.22 shows the contour plots of Von Mises equivalent stress

and effective plastic strain for the 4 mesh cases used in this study. The contour plots

are from the maximum tensile load during the third fatigue cycle. The Von Mises
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Table 3.5: Mesh convergence study results for coarse grain and fine grain IN100

Elements through Mesh seed Average number of Maximum FIP Average FIP error
grain thickness Size(mm) elements per grain over grain over grain

Coarse Grain IN100:
1 0.034 12.8 1.72e-7 2.2%
2 0.017 60.9 5.05e-6 1.5%
3 0.011 232.8 8.69e-6 0.5%
4 0.009 450.1 8.22e-6 -
Fine Grain IN100:
1 0.0042 12.8 5.08e-4 1.5%
2 0.0021 61.0 3.44e-4 1.6%
3 0.0014 231.9 2.00e-4 0.7%
4 0.0011 444.7 1.73e-4 -

uniaxial equivalent stress is given by σ = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

while the cumulative Von Mises effective plastic strain is εp =
√

2
3
εpijε

p
ij. The values

of effective plastic strain below a value of εp = 10−7 were dropped from the contour

plots to display the heterogeneity of plastic slip in the microstructure. This value was

chosen because it is on the same order of magnitude as the FIP threshold in which the

grain level response transferred from an elastic to elastic/plastic condition as shown

in Figure 3.13. Also in Figure 3.22, the same scale was used for each refinement to

show the differences in contour plots among mesh refinements. Based on these con-

tour plots, convergence of the Von Mises stress and the effective plastic strain at the

element scale is obtained for a mesh seed size of 11.3 µm, which is identical to the

results shown at the grain scale. Therefore, a mesh seed size that is less than or equal

to 11.3 µm (3 elements through the thickness of the grain; 233 elements per grain)

is recommended for coarse grain IN100 in order to capture the complex deformation

behavior within a grain. For the parametric studies on the notched specimens used

in the current work, a mesh seed size of 8 µm is used because it corresponds to the

fine grain mesh size.
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(h) Effective Plastic Strain - 9 µm seed

Figure 3.22: Coarse grain IN100 contour plots used for mesh convergence study.
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3.5.3.2 Fine Grain (Sister Disk) IN100

The maximum possible element size for the fine grain IN100 microstructure is its

grain size. This seed size (a) is chosen so that the tetrahedral volume is equal to the

volume of a cube with side lengths equal to the grain size (dgrn), i.e.

V tetrahedron
grn =

√
2

12
a3 = dgrn

3 = V cube
grn (3.27)

Thus, based on Equation 3.27, an 8 µm tetrahedral seed size is equivalent to a 4.2 µm

cubic seed size. Applicability of continuum crystal plasticity becomes suspect at

scales below 1 µm due to its homogenization of both dislocation substructures and

slip banding; this sets the lower limit of mesh size. Similar to the previous section,

a convergence study was performed on the fine grain IN 100 microstructure. The

results for the fine grain averaged FIP convergence are shown in Table 3.5 and Figure

3.23. The contour plots of Von Mises equivalent stress and effective plastic strain are

shown in Figure 3.24. As shown in these figures and tables, convergence is obtained

both for the grain scale averaged FIP and the elemental scale for a mesh seed size

of 1.4 µm (3 elements through the thickness of the grain; 232 elements per grain).

However, using a mesh size of 1.4 µm will be too computationally intensive for the

present purposes of this project. To compare the different microstructures (coarse

grain and fine grain IN100) in a consistent manner, the same element size and av-

eraging volume needs to be used. Therefore, the equivalent tetrahedral fine grain

mesh size of 8 µm will be used for both microstructures. This mesh size provides

convergence for the coarse grain model, but is lacking convergence in the fine grain

model. This mesh size requires the least amount of computational time to maintain

the physically-based crystal plasticity model. It is recognized that this assumption

involves a limitation of the resolution that can be achieved of the intragranular slip

distribution in the fine grain case, but it is necessary to facilitate parametric studies

that include multiple microstructure instantiations/realizations for each notch root
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radius to build up statistics to demonstrate the methodology.
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Figure 3.23: Grain averaged FIP sorted from largest to smallest as a function of
grain number for fine grain IN100. Rε = −1, ρ = 0.006 mm, ε̇ = 10−3(s−1), εa = 1.2 εy.
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(h) Effective Plastic Strain - 1.1 µm seed

Figure 3.24: Fine grain IN100 contour plots used for mesh convergence study
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3.5.4 Loading and Boundary Conditions

For application to Ni-base superalloys, simulations of 20 different realizations per

notch root radius were performed on the coarse grain and fine grain IN100 microstruc-

tures. The specimens were fatigue cycled under displacement control with a strain

ratio Rε = −1, a strain rate ε̇ = 10−3(s−1), and various strain amplitudes (ε = 0.4 εy,

ε = 0.5 εy, and ε = 0.6 εy), where εCGy = 0.42% and εFGy = 0.60% are the macroscopic

proportional limits of the coarse grain and fine grain microstructures, respectively,

identified through experimental stress strain data. The fatigue indicator parameters

were calculated over the third fatigue cycle. A summary of the loading and boundary

conditions is shown in Figure 3.25 and Table 3.6. The height (H = 10ρ) and width

(W = 10ρ) of the double edge-notched specimens depend on the notch root size (ρ).

εa(t)

ρ

t

W/2

H

Figure 3.25: Loading and Boundary Conditions for Simulations.
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Table 3.6: Geometric and Loading Variables and Material Constants

Variables

Microstructure CG, FG
Notch Radius - ρ (mm) 0.2, 0.4, 0.6, 0.8, 1.0
Strain Amplitude (εa / εy) 0.4, 0.5, 0.6

Constants

Proportional Limits εCGy = 0.42%, εFGy = 0.60%
Strain Rate ε̇ = 10−3(s−1)
R-Ratio (strain-controlled) Rε = −1

3.5.5 Contour Plots of Stress and Plastic Strain within Notch Root Re-
gion

Prior to application of the probabilistic framework, it is useful to view the grain

structure and the resulting contour plots of stresses and equivalent plastic strains

within the notch root region for a fine grain and coarse grain IN100 microstructure.

Only data from the crystal plasticity region were recorded during the large scale

simulation process, since the crystal plasticity region within the notch root is the area

of interest. Prior to these large scale simulations, a few simulations were performed in

which the stresses and strains for all elements were recorded. In these simulations it

was found that there were no severe discontinuities in the stress and strain response

at the CP/J2 and J2/EL boundaries due to the differences in material modeling

constitutive response. In other words, the crystal plasticity region size was chosen to

be large enough so that the overall response of the localized crystal structure response

was elastic at the boundary between the crystal plasticity and J2 plasticity regions.

The J2 plasticity region was required in order to smear the anisotropic elastic behavior

of the outer edge of the crystal plasticity zone to a fully isotropic elastic condition.

The results for a coarse grain and a fine grain IN100 notched specimen are shown

in Figures 3.26 and 3.27, respectively. As stated previously, the Von Mises uniaxial

equivalent stress is given by σ = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 while the
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cumulative Von Mises effective plastic strain is εp =
√

2
3
εpijε

p
ij. The contour plots show

the Von Mises equivalent stress and effective plastic strain for the maximum tensile

load during the third cycle. The values of effective plastic strain below a value of

εp = 10−7 were dropped from the contour plots to display the heterogeneity of plastic

slip in the microstructure. This value was chosen because it is on the same order

of magnitude as the lower bound FIP behavior which will be described in Section

3.4.5.2. As expected, the effective plastic strain is most significant at certain grain

boundaries, which is due to the incompatibility of deformation between grains of

different orientation.
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(c) Effective Plastic Strain

Figure 3.26: Coarse Grain IN100 Contour Plots - ρ = 0.6 mm, εa = 0.6εy.
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(a) Grain Structure
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(c) Effective Plastic Strain

Figure 3.27: Fine Grain IN100 Contour Plots - ρ = 0.6 mm, εa = 0.4εy.
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3.6 Summary

In this chapter, the key microstructure features of the Ni-base superalloy IN100 are

reviewed. Two different microstructures are considered, a fine grain and a coarse grain

IN100. A computational crystal plasticity [1] model based on physical mechanisms

of deformation and particle strengthening is used to inform the fatigue potency of

notched specimens through the use of multiaxial fatigue indicator parameters, such as

the maximum plastic shear strain range and Fatemi-Socie parameters. This model is

used in conjunction with the probabilistic models introduced in the following chapter

to estimate a microstructure-sensitive fatigue notch factor.
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CHAPTER IV

PROBABILISTIC FATIGUE NOTCH TECHNIQUES

4.1 Introduction

Many of the most recent probabilistic approaches for fatigue crack initiation have

placed an emphasis on including the effects of the size distribution of defects such as

inclusions, the proximity of these defects to the surface, and the competition between

these mechanisms [45,47,50,53,54]. It can be imagined that in the presence of many

different fatigue damage mechanisms occurring simultaneously, one could propose a

total probability of component failure function that is a superposition of all n number

of active fatigue mechanisms, i.e., Pf,t(x) = PIfI(x) + PIIfII(x) + ... + Pnfn(x). In

order to do this, however, the probability density function of each mechanism must be

known. Experimentally performing parametric studies in order to distinguish each in-

dividual mechanism can be a very daunting task, especially for extremely complicated

microstructures such as the Ni-base superalloys in this study. Also, the statistically

weakest “defect” size within a volume can change with the size of the volume [47,49].

Finite element analysis can be used to qualitatively compare each failure mechanism

and determine the relative contribution of each mechanism to the overall fatigue fail-

ure response. Concepts previously introduced within our group [4] are extended to

include the effects of the notch root gradient field and local microstructure effects

on the formation and growth of fatigue cracks to the scale of the transition crack

length. Therefore, the goal of this probabilistic framework is to characterize the

microstructurally-sensitive notch root effect on the high cycle fatigue life of notched

components. The intent of this research is to use probabilistic techniques to improve

the prediction of HCF fatigue life of notched components employing materials with
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complex microstructures.

The idea of a fatigue indicator parameter (FIP) was introduced in the previous

Chapter to describe the Stage I, shear-dominated formation and growth of small fa-

tigue cracks. The computational crystal plasticity model described previously is used

in this section to determine the FIP distribution functions within the notch root re-

gion as a function of notch root size and applied strain amplitude. These distributions

are applied to the probabilistic framework described here to find the overall probabil-

ity of failure of the component and to find a microstructure-dependent probabilistic

fatigue notch factor. Two different probabilistic frameworks are investigated in this

work: (1) The “Grain Scale Approach” is based on preliminary efforts within our

research group [4] and considers the probability of crack formation within a grain;

(2) The “FIP-Based Transition Crack Length Approach” considers the FIP intensity

over a characteristic length scale to estimate the probability that a crack will form

and propagate from the notch root to a transition crack length.

4.2 Grain Scale Approach

The grain scale approach is an extension of previous work by Owolabi et al. [4]. In

this approach, failure is defined as the formation of a crack on the order of grain

size. This method is applicable in the high cycle fatigue regime because a majority

of life is spent forming a crack to the grain scale. The microstructure effect on the

fatigue notch resistance reduction is taken into account by the distribution of FIPs

(∆Γ) within a damage process zone, defined as the smallest contiguous volume (Vd)

enclosing grains with FIP levels above some threshold level (ref. Figure 4.1).

4.2.1 Framework

4.2.1.1 Probability of Failure

Imposing weakest link theory, Weibull statistics, and the assumption that the fatigue

driving force parameter, (∆Γ), is a random variable, the probability of formation and
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dV

iV

i th

Figure 4.1: Schematic showing definition of damage process zone (Vd).

growth of a crack takes the form [4]:

Pf = 1− exp

− 1

Vo

∫
Vd

〈
∆Γ(εa or σa, R, r)−∆Γth(εa or σa, R, r)

∆Γo(εa or σa, R, r)

〉bΓ
dV

 (4.1)

where Vo is the volume of a reference smooth specimen, ∆Γo is the scale parameter,

bΓ is the shape parameter, Vd is the damage process zone, and ∆Γth is the thresh-

old FIP below which no microdamage will occur at a given number of cycles in the

HCF regime. Note that Equation 4.1 is of the same form as the Weibull distribu-

tion function introduced in the Background section (ref. Equation 2.23). However,

this distribution function is based on physically motivated parameters that have been

correlated to fatigue crack propagation data of nickel-base superalloy specimens sub-

jected to complex multiaxial loading conditions with and without hold times [72,73].

The threshold FIP value is found using MSC Equation 3.17 and the assumption

that at the threshold, no crack growth is expected, i.e., da/dN = 0. This results in

the threshold condition

∆Γth =
ηb

AFSτya
(4.2)

Since cracks typically form at the surface of a notch, we consider the crack length a in

Equation 4.2 to be equivalent to the grain size dgrn of each microstructure. Using val-

ues of AFS = 8.1x10−4 ( MPa−cycle)−1 [2], η = 1, b = 0.25 nm, τFGy = (1025/M) MPa,
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τCGy = (750/M) MPa (where M=3.08 is the Schmid factor for a random FCC poly-

crystalline aggregate [79]), dFGgrn = 4.2 µm, and dCGgrn = 34 µm [55], the threshold

FIP values for the fine grain and coarse grain IN100 are ∆ΓFGth = 2.21x10−4 and

∆ΓCGth = 3.73x10−5 , respectively.

As indicated in the Equation 4.1, the cyclic FIP values are a function of the strain

or stress amplitude (εa or σa), stress ratio R, and the distance from the notch root

r. For simplification, these dependencies are removed from further derivations, but

are implicitly inferred. Applying the concept of an effective volume (Veff = k Vth),

Equation 4.1 can be rewritten as:

Pf = 1− exp

{
−kVth

Vo

(
∆Γmax
∆Γo

)bΓ}
(4.3)

where k =


nth∑
n=1

〈∆Γ−∆Γth〉bΓ

(∆Γmax)
bΓ

 (4.4)

In this equation, nth denotes the number of subvolumes at or above the threshold FIP

and Vth is the sum of all these subvolumes given by Vth =
∑nth

i=1 Vi. Consequently, by

the definition of Vd and Vth, Vth/Vd < 1.

4.2.1.2 Microscopic Fatigue Notch Factor

The formulation of the microscopic fatigue notch factor is similar to that proposed

in [4] with a few modifications. For this approach, a modified version of the CDF

formulation in Equations 4.3 and 4.4 is used, i.e.,

Pf = 1− exp

{
−K

µ
Γ Vth
Vo

(
∆Γmax
∆Γo

)bΓ}
(4.5)

where Kµ
Γ =


nth∑
n=1

〈∆Γ−∆Γth〉bΓ(
∆Γmax

)bΓ
 (4.6)

where ∆Γmax = ∆Γmax − ∆Γth. The traditional fatigue notch factor is the ratio

of unnotched to notched fatigue strength at the same probability of failure (usually
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50%). Therefore, the probability of failure of a smooth (unnotched) specimen and a

notched specimen will be the same when

Kµ
Γ,N Vth,N

Vo

(
∆Γmax,N

∆Γo

)bΓ
=
Kµ

Γ,S Vth,S

Vo

(
∆Γmax,S

∆Γo

)bΓ
(4.7)

where the subscripts N and S denote the respective values for a notched and smooth

specimen. The ratio of smooth to notched microscopic fatigue driving force param-

eters (FIP values) are used to construct a microscopic fatigue notch factor of the

form

Kµ
f =

∆Γmax,S

∆Γmax,N
=

(
Kµ

Γ,N Vth,N

Kµ
Γ,S Vth,S

)1/bΓ

(4.8)

For the case of a smooth specimen that is loaded at a lower strain amplitude (HCF

regime), the number of critically stressed grains will be significantly low. Considering

the life-limiting case in which only one grain with volume Vgrn is critically stressed

above the threshold FIP value, the value of Kµ
Γ,S = 1. Therefore, a new quantitative

definition of the fatigue notch factor for the formation and growth of a crack on the

order of the grain size in HCF is obtained as

Kµ
f =

(
Kµ

Γ,N

Vth,N
Vgrn

)1/bΓ

(4.9)

This Kµ
f value follows the essence of the traditional definition of Kf , i.e., the

ratio of unnotched to notched values of driving force for a given HCF life and same

probability of failure, but is rooted in probabilistic arguments. In [4], this proba-

bilistic model was applied to polycrystalline OFHC copper and adequately predicted

the trends observed in the experimental results for the average values of the notch

sensitivity as a function of the notch root radius.

4.2.2 Estimation of Parameters

There are a few different means to estimate the parameters of the Weibull distribution.

Typical techniques include the least squares technique (2-parameter Weibull only), the

maximum likelihood estimation (MLE) [91], and the moments estimation (ME) [92].
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For this investigation, the modified moment estimation (MME) technique is used as

outlined in Cohen et al. [93] and more recently in Whitten et al. [94]. The mean ∆Γ̄m

and variance ∆Γ̄2
var are found by modifying expressions in the MME method used

in [94] to account for notch size effect. These expressions are given by

∆Γ̄m = ∆Γo

(
Vo
kVth

) 1
bΓ

ζ1 (4.10)

and

∆Γ̄2
var = ∆Γ2

o

(
Vo
kVth

) 2
bΓ (

ζ2 − ζ2
1

)
(4.11)

In Equations 4.10 and 4.11, ζj = ζ
(

1 + j
bΓ

)
where j = 1, 2 and ζ ( · ) is the gamma

function defined by

ζ (s) =

∫ ∞
0

ts−1e−tdt (4.12)

Fully three-dimensional finite element analysis was used to find the ∆Γ distribution

and solve for the probability of failure at the scale of a grain.

4.2.3 Computational Results

The resulting probability of failure and corresponding microscopic fatigue notch fac-

tor versus notch size is shown in Figures 4.2 and 4.3, respectively. Also plotted in

these Figures is the shape of the estimated distribution functions of Pf and Kµ
f as a

function of notch root radius using a kernel density smoothing function (KDF) [92].

Each geometry has the same theoretical elastic stress concentration, Kt = 2.41, based

on the net cross section. As indicated in Figure 4.3, the average microscopic fatigue

notch factor as a function of notch size takes on a characteristic sigmoidal shape and

varies significantly with notch size. At an applied strain amplitude of 0.6 times the

proportional limit, a notch root size of 1.0 mm does not reach the full theoretical

elastic stress concentration, Kt, value. However, this Kµ
f is related to the distribution

of microplasticity whereas the traditional Kf is based on stress. Therefore, the mi-

croscopic and macroscopic fatigue notch factors may not be directly comparable. At
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the same amplitude, notch sizes of less than 0.5 mm show little effect on the overall

fatigue strength behavior. These trends need to be compared to experiments and

perhaps a few more simulations need to be run at a higher strain amplitude to fur-

ther verify these results. Also, notch sizes larger than 1 mm should be run in order to

investigate whether the microscopic fatigue notch factor merges with the macroscopic

one.
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Figure 4.2: Probability of failure vs. notch root radius for 20 different instantiations
of coarse grain IN100 (εa = 0.6 εy, σa = 450 MPa).
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Figure 4.3: Microscopic fatigue notch factor vs. notch root radius for 20 different
instantiations of coarse grain IN100 (εa = 0.6 εy, σa = 450 MPa).

4.2.4 Applications of Grain Scale Approach

One of the limitations of this approach is that it is hard to verify the Kµ
f experimen-

tally because it is difficult to nondestructively measure crack formation at the scale

of a grain. Also, the traditional Kf incorporates crack formation and growth to spec-

imen failure, which is not accounted for in this framework. Another issue is that this

framework is not applicable in the low cycle fatigue and transition fatigue regimes,

where a majority of the life is spent in small crack growth across multiple grains and

coalescence to failure. Regardless of these limitations, this probabilistic approach

can be used for qualitative comparison of various notch geometries for a range of

microstructures (including ones that have not already been processed). To account

for the formation and small crack growth regimes of failure, the FIP distribution over

the transition crack length approach was developed.

96



4.3 FIP-Based Transition Crack Length Approach

This approach considers the probability of forming and growing a crack to transition

crack length, Ld. Once the crack length exceeds the transition crack length, linear

elastic fracture mechanics (LEFM) techniques can be applied. Therefore, the number

of cycles to crack initiation (from a fracture mechanics standpoint) constitutes the

number of cycles to crack incubation Ninc combined with the number of cycles to

propagate the incubated crack from an initial size at crack incubation to the transition

crack length, denoted by NLd. The number of cycles required to form the initial crack

on the order of grain size can be found from previous techniques [2] based on the

distribution of microplasticity within grains (ref. Equation 3.14). Thus, the total

number of cycles to failure can be found as Nf = Ninc +NLd +NLEFM .

The transition crack length is the distance in which a crack growing from a notch

escapes the influence of the notch root stress concentration. In the present study, the

definition of transition crack length follows that of Smith and Miller [95] with a few

exceptions. For a semi-circular notch, using the Smith and Miller approach Ld is equal

to 0.13ρ [95]. For smaller notches that are less than 0.5 mm, this may only constitute

1 or 2 grain diameters in the present coarse grain IN100 microstructure. However,

experiments have shown that crack growth data curves (da/dN vs. ∆K) for small

crack (EPFM) and long crack (LEFM) curves merge at crack lengths on the order of

3-10 grain diameters [12]. This is typically referred to as the microstructurally-small

crack growth regime [12]. Therefore, a transition crack length in which LEFM is

applicable must constitute at least 3 grain diameters. This value may be arbitrary

depending on the grain size. For example, experiments on a fine-grained IN100 mi-

crostructure have shown that the transition from oscillatory microstructurally-small

crack growth behavior to crack growth characteristic of LEFM occurs at a crack

length of about 100 µm [96], which is on the order of 20-25 grain diameters for the

fine grain microstructure. This transition length of 100 µm coincides with a value of
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3 grain diameters for the coarse grain IN100 microstructure. Considering the above

arguments, the transition crack length values used in this study are summarized in

Table 4.1.

Table 4.1: Transition Crack Length Values

Notch Size (mm) Ld (mm)

0.2 0.100
0.4 0.100
0.6 0.100
0.8 0.104
1.0 0.130

4.3.1 Cumulative Distribution Function Framework

The proposed probability of failure of formation and growth of a crack to the transition

crack length is a function of the applied stress amplitude, the notch root size, and

the mechanisms of microstructurally small crack growth. Since the probability of

formation of a crack on the order of transition crack length depends on the size of

a preexisting crack at a given number of cycles, the cumulative distribution function

(CDF) used in this analysis takes the form

CDF (Sa;Ld, N) = 1− exp

[
−η an
Ld

]
(4.13)

where Sa is the nominal applied stress and an is the crack length at a given number

of cycles N . The parameter η = − ln(0.5) provides normalization to the case for

which the CDF = 0.5 when the crack reaches a transition crack length, Ld. The

crack length an can be found by integrating the da/dN crack growth relationship.

The CDF becomes

CDF (Sa;Ld, N) = 1− exp

[
− η

Ld

∫ N

Ninc

da

dN
dN

]
(4.14)

where the assumed initial crack length (ai) is the size at crack incubation, or on the

order of the grain size in this study. A modified form of the microstructurally small

98



crack (ref. Equations 3.17 and 3.18) growth law da/dN is employed, i.e.,

da

dN
= AFS τy ∆Γmax(x) a (4.15)

where ∆Γmax(x) is the maximum FIP value as a function of x-distance away from the

notch root. The value of ∆Γmax(x) is found through simulations and is associated

with an exponential decay controlled by the parameter ξ, i.e.,

∆Γmax(x) = ∆Γmax(0) exp

(
−ξx
Ld

)
(4.16)

The exponential decay function in Equation 4.16 can be linearized by taking the

natural log of each side of the equation, resulting in

ln [∆Γmax(x)] = ln [∆Γmax(0)]− ξx

Ld
(4.17)

Thus, a log-linear plot of ∆Γmax(x) versus x distance from the notch root would result

in a linear function. Plotted in Figure 4.4 is the distribution of the maximum fatigue

indicator parameter, ∆Γmax(x), as a function of x distance from the notch root for

different notch root sizes and the coarse grain IN100 microstructure. Also plotted in

this Figure is the best fit line (Equation 4.17) for the data points located within a

distance, Ld, from the notch root. As seen from the best fit lines in Figure 4.4, the

parametrization of the maximum FIP value as an exponential decay with distance

from notch root works well for the desired regime (x = 0 to x = Ld).
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Figure 4.4: Maximum FIP distribution versus x-distance from notch root for 5
different notch root sizes for the coarse grain microstructure, strain amplitude ε = εy.

The exponential decay function (Equation 4.16), determined from the log-linear

best fit (ref. Figure 4.4) of the FIP distribution, is used here to determine the CDF

function for each simulation run. First, the FIP distribution is divided into m dis-

crete bins (∆Γmax(x1), ∆Γmax(x2), . . ., ∆Γmax(xm)). Next, the number of cycles to

incrementally grow a crack from bin xj−1 to xj is determined by integrating and

rearranging Equation 4.15, i.e.,

Nprop,MSC(aj−1 → aj) =
ln
(

aj
aj−1

)
AFS τy ∆Γmax,ave(xj−1, xj)

(4.18)

Here, AFS is a parameter fit through experiments, τy is the critical resolved resolved

shear stress given by τy = σy/M , where M is the Taylor factor, and aj−1 and aj are

the crack lengths at bins xj−1 and xj, respectively. Subsequently, the number of cycles

100



for each increment of crack propagation is determined and used to construct an an

versus number of cycles N relationship. Finally, Equation 4.13 is used to determine

the CDF as a function of the number of cycles, the remotely applied stress amplitude,

and the transition crack length. This method for determining the CDF function for

the transition crack length approach is summarized in Figure 4.5.

Divide FIP Values into Discrete Bins 

x

maxln( )

1j jx x

Log-Linear FIP Fit Line

Calculate Cycles to 
Incrementally Extend Crack

, 1( )prop MSC j jN a a

Calculate CDF

( ; , ) 1 exp n
a d

d

a
CDF S L N

L

Construct Crack Length versus 
Number of Cycles Function

na

dLa

N
incN

ia

dLN

Crack
Inc.

MSC/PSC

LEFM

max, 1( , )ave j jx x

Figure 4.5: Method for determining CDF for transition crack length approach.

Once the crack reaches a transition crack length, LEFM conditions are used to

determine crack extension. A modified form of the Paris-Erdogan equation is used,

i.e.,

da

dN
= C(∆Keff )

m (4.19)

Here, crack growth is considered to occur only for the tensile portion of the loading cy-

cle, i.e., ∆Keff = Y Sa
√
πa and the constants employed are estimated from fine grain
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IN100 long crack growth data (C = 2x10−7 and m = 3.3 for T=650◦C, f=0.33 Hz,

R=0.05, and ∆K and da/dN are in units of MPa−m1/2 and mm/cycle [96]). It is

noted that crack closure effects could be taken into account, but it is not the empha-

sis of the current study. Similar to previous arguments, the calculated propagation

life determined through incremental iteration of the crack growth law is used. The

general form for LEFM propagation life is given by

Nprop,LEFM =
2

(m− 2) C Y m Sma πm

[
1

a
(m−2)/2
i

− 1

a
(m−2)/2
f

]
(4.20)

4.3.2 Results and Comparison to Experiments

4.3.2.1 FIP distribution versus distance from notch

Plotted in Figure 4.4 above is the distribution of maximum FIP with respect to x-

distance from the notch root for five different notch root sizes and the coarse grain

microstructure. As seen in this plot, there is a significant difference in FIP intensity

between the five different notch root sizes. In addition, the maximum FIP at the

notch root is higher for larger notch sizes. This indicates that larger notch sizes have

a higher probability of forming and propagating cracks to failure. Also plotted in

Figure 4.4 are the logarithmic-linear fit lines for the maximum FIP level over the

transition crack length. These lines are fit using least squares linear fitting. The least

squares fitting lines were calculated for 20 simulations for each notch size (0.2 mm,

0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm) and each strain amplitude (0.4εy, 0.5εy, 0.6εy).

Comparing the least squares fitting of multiple instantiations indicates that there is a

significant amount of scatter for the same notch root size and amplitude application

(cf. Figure 4.6).
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Figure 4.6: Logarithmic fit lines for maximum FIP vs. x-distance from notch for
notch root radii of (a) ρ = 0.2 mm, (b) ρ = 0.4 mm, (c) ρ = 0.6 mm, (d) ρ = 0.8 mm
and (e) ρ = 1.0 mm at strain amplitudes of 0.4 εy, 0.5 εy, and 0.6 εy.
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Using the mean logarithmic fits (solid lines) in Figure 4.6 and replotting these

curves on one plot versus a normalized x-distance away from the notch root, several

interesting observations are made (Figure 4.7). First, at a given strain amplitude,

the slope of these lines are virtually identical. Since these slopes are the same for

each strain amplitude, the notch root size effect can clearly be deduced. Another

notable feature is that the slopes of the lower applied strain amplitudes (0.4εy and

0.5εy) differ significantly from that of the higher applied strain amplitude (0.6εy). As

shown in the next section, this can indicate a transition from a very high cycle fatigue

(VHCF) regime to a high cycle fatigue (HCF) regime.
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Figure 4.7: Mean value of logarithmic fit lines of maximum FIP vs. x-distance from
notch normalized by transition crack length for five different notch root radii and
strain amplitudes of 0.4 εy, 0.5 εy, and 0.6 εy.
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4.3.2.2 Notched Specimen Strain-Life Data

The crack “initiation” estimation techniques described previously (ref. Equation 3.14

and 3.19) are used here to compare the notched and smooth specimen strain-life data.

The smooth specimen data are from experiments [83, 84, 86] and the computational

data were created using the computational crystal plasticity model as previously

discussed in Section 3.4.2 and 3.4.3. The coarse grain IN100 results are shown in

Figures 4.8-4.12 for each notch root radius and Figure 4.13 compares the median

data for all notch root sizes on a single plot. The median data point was used for

comparison in this instance due to the large span of fatigue lives for a given strain

amplitude. If the mean values were used, the behavior would be highly biased by

the largest fatigue life value due to the logarithmic scale. As seen in the Figures,

a notch effectively shifts the strain-life graph downward. It is interesting to note

that the notch effect causes a significant drop in life for specimens loaded at a strain

amplitude of εa = 0.6εy. For a smooth specimen loaded at this amplitude, a crack

may not initiate even for a very high number of cycles (109 and beyond), if at all.

This corresponds to the very high cycle fatigue range. On the other hand, a notched

specimen at this strain amplitude exhibits a crack initiation life more consistent with

the transition or HCF regime (∼ 105 − 107 cycles).
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Figure 4.8: Coarse Grain IN100 strain-life plot comparing smooth and ρ = 0.2 mm
notched specimens, Rε = −1.
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Figure 4.9: Coarse Grain IN100 strain-life plot comparing smooth and ρ = 0.4 mm
notched specimens, Rε = −1.
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Figure 4.10: Coarse Grain IN100 strain-life plot comparing smooth and ρ = 0.6 mm
notched specimens, Rε = −1.
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Figure 4.11: Coarse Grain IN100 strain-life plot comparing smooth and ρ = 0.8 mm
notched specimens, Rε = −1.
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Figure 4.12: Coarse Grain IN100 strain-life plot comparing smooth and ρ = 1.0 mm
notched specimens, Rε = −1.
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Figure 4.13: Coarse Grain IN100 strain-life plot comparing smooth and all notched
specimens, Rε = −1.
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4.3.2.3 Cumulative distribution function

Applying the above framework for 20 different instantiations per notch root radius

of the coarse grain IN100, the results are shown in Figures 4.14-4.19. As can be

seen from these Figures, the benefit of using this approach is that the cumulative

distribution function can be calculated for any number of cycles and any probability

of failure. This approach can be applied to low cycle fatigue (LCF), HCF and tran-

sition fatigue regimes to find the total component failure. Once the crack forms to

the transition length, linear elastic fracture mechanics can be used to find the total

component failure. This framework predicts that larger notch sizes will tend to fail be-

fore smaller notch sizes, which is consistent with general experimental trends. These

computationally created cumulative distribution functions need to be compared with

experiments.

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
110

0.2

0.4

0.6

0.8

1

Cycles(N)

P
f

 

 

Mean, ρ = 0.2mm

Figure 4.14: Cumulative distribution function for coarse grain IN100 with ρ =
0.2 mm (εa = 0.6 εy, σa = 450 MPa, Rε = −1).
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Figure 4.15: Cumulative distribution function for coarse grain IN100 with ρ =
0.4 mm (εa = 0.6 εy, σa = 450 MPa, Rε = −1).
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Figure 4.16: Cumulative distribution function for coarse grain IN100 with ρ =
0.6 mm (εa = 0.6 εy, σa = 450 MPa, Rε = −1).
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Figure 4.17: Cumulative distribution function for coarse grain IN100 with ρ =
0.8 mm (εa = 0.6 εy, σa = 450 MPa, Rε = −1).
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Figure 4.18: Cumulative distribution function for coarse grain IN100 with ρ =
1.0 mm (εa = 0.6 εy, σa = 450 MPa, Rε = −1).
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4.3.2.4 Equivalent Weibull Stress Function

An equivalent stress distribution function is introduced to link the applied stress

level to the probability of forming a crack to the transition crack length. The CDF in

Equation 4.13 is equivalently expressed in terms of an equivalent Weibull distribution

as

CDF (Sa;Ld, N) = 1− exp

(
−
(
Ld
Lo

)c〈
σ

σo

〉b)
(4.21)

Here, σ is an equivalent stress function, σo and b are the Weibull parameters, Lo is

a normalization length parameter, and c is a scaling exponent for size effects. The

equivalent stress function in this study takes the form of σ = KtSa− σL, where Kt is

the theoretical stress concentration factor, Sa is the remotely applied stress, and σL

is the Weibull location parameter.

The Weibull parameters in Equation 4.21 are determined by using the variability

in computed FIP values (cf. Figure 4.4 and 4.6) among multiple realizations, along

with the recognition of equivalence with Equation 4.13. The equivalent Weibull stress

function can be rewritten in terms of a two-parameter equivalent Weibull stress func-

tion as

F = 1− exp

[
−
(
σ

σ∗o

)b]
(4.22)

where σ∗o = σo

(
Lo
Ld

)c/b
. For the transition crack length and the equivalent two-

parameter Weibull stress distribution functions (Equation 4.13 and 4.22, respectively)

to be equivalent, the terms within the exponential function must be equal, hence,

η an
Ld

=

(
σ

σ∗o

)b
(4.23)

One technique for finding the Weibull constants in a two-parameter Weibull distri-

bution function is linear rank regression. Linearization of the transition crack length

and equivalent two-parameter Weibull stress distribution functions results in

ln

[
ln

(
1

1− Fm

)]
= b lnσ − b lnσ∗o = ln(η an)− ln(Ld) (4.24)
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This expression is now in the form of a line y = Ax + B, where y = ln
[
ln
(

1
1−Fm

)]
,

A = b, x = lnσ, and B = −b lnσ∗o . Ranking the values found from the transition

crack length approach (ln(η an)− ln(Ld)) from smallest to largest, we can determine

the corresponding estimators for Fm using the median rank statistic as

Fm =
m− 0.3

n+ 0.4
(4.25)

for the mth ranked observation in a sample size n [92]. Therefore, in order to deter-

mine the two-parameter equivalent Weibull parameters, the values of ln
[
ln
(

1
1−Fm

)]
are first plotted versus the values of ln[η an

Ld
] sorted from smallest to largest. As

shown in Figure 4.20, the slope corresponds to the Weibull slope parameter, b, and

the y-intercept is equal to b lnσ∗o .
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1 mF

*ln ln( ) ln( )n
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d
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L
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Figure 4.20: Method for determining two-parameter equivalent Weibull stress func-
tion parameters using values from transition crack length approach.

Using the technique shown in Figure 4.20, the values of the Weibull slope b and

Weibull shape factor σ∗o are shown in Figures 4.21 and 4.22, respectively. For the

estimation of parameters, only data points that had values of η an
Ld

> 0 were used.

These correspond to the specimens that had initiated cracks. Thus, there was a
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transition regime in which only a fraction of the twenty simulated specimens were

used in Weibull parameter estimation. It is interesting to note that the Weibull slope

and shape parameters increase as a function of the number of cycles. This supports

the general trend that variance in fatigue response increases with number of load

cycles. The Weibull location parameter, σL, is plotted as a function of number of

cycles in Figure 4.23. Once the value of the shape factor σ∗o = σo

(
Lo
Ld

)c/b
is known,

the length scale exponent, c is found by linear regression. In this case, the notch root

size, ρ, is used in place of Ld because it shows better correlation. In effect, this only

changes the scaling factor, Lo. The equation for the shape factor can be written as

ln [σ∗o ] = −c
b

ln(ρ) +
c

b
ln(L∗o) (4.26)

The shape factor values in the 109 to 1011 cycle range were used for the estimation of

the length scale exponent c. In this regime, the change in shape factor as a function

of cycles (the slope of the line) appears to be very similar among all notch root radii

sizes. In Figure 4.24, the natural log of the shape factor is plotted as a function of

the natural log of the notch root radius. Each line in the plot represents the least

squares fitting of data points for a given number of cycles. As seen from the graph,

the slope (c/b) of these lines is very similar for each data set and is approximately

0.1 in each case. These computationally estimated Weibull parameters and statistical

trends need to be verified with experiments.
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Figure 4.21: Weibull slope (b) vs. number of cycles for various notch root radii for
CG IN100.
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4.3.3 Applications of Transition Crack Length Approach

One limitation of the transition crack length approach is that it simplifies the com-

plex nature of 3D crack formation, growth and nearest neighbor interactions into

a simplified model that considers the FIP intensity over a characteristic transition

length, similar to average stress models used to analyze notch components. Another

issue is that in reality stress redistributes during crack growth and the driving forces

for crack propagation increase as the crack size increases, which is not considered in

this particular formulation. For this reason, an approach to approximate the FIP

redistribution due to crack advance will be developed in future work.

4.4 Summary

In this chapter, two different methods were used to analyze the fatigue potency of

notched specimens as a function of notch size and applied strain amplitude. The

microstructure effect on the fatigue notch factor was taken into account by the dis-

tribution of multiaxial-based fatigue indicator parameters. The grain scale approach,

which is an extension of previously introduced work within our research group [4],

considers the probability of forming a crack on the order of grain size. This approach

is applicable to the high cycle fatigue regime in which a majority of life is spent form-

ing a crack to the grain scale. The FIP-based transition crack length approach was

used to characterize the probability of microstructurally small crack growth to a tran-

sition crack length. Microstructure-sensitive computational crystal plasticity models

were used to describe the distribution of FIPs within the notch root region. These

distributions were applied to the probabilistic framework described above to find the

probability of failure of a notched component and to find a microstructure-dependent

probabilistic fatigue notch factor.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Two probabilistic approaches were developed to determine the probability of forming

and propagating a crack to a characteristic length. The first approach can be ap-

proximated as a fatigue limit approach because it considers the probability of crack

formation to the scale of a grain. This is indicative of very high cycle fatigue in which

microplasticity or microdamage is very heterogeneous and may only be confined to

very few grains. For fatigue cracks propagating past the influence of the first grain,

a transition crack length approach was considered. This technique considers the ef-

fects of microstructure on the growth of small cracks. These microstructure effects

were informed by physically-based crystal plasticity models that are based on key

characteristics of the microstructure including grain size, precipitate size, and pre-

cipitate volume fraction. Strengthening due to dislocation particle interactions are

also considered in this computational model. This model was used to determine the

distribution of slip within the notch root region to capture such effects as the notch

size effect, peak stress, stress gradient, and microstructure within a notch root zone.

These effects are depicted through the use of multiaxial fatigue indicator parameters,

such as the maximum plastic shear strain range and the Fatemi-Socie parameter,

which are used to describe the stage I, shear-dominated formation and growth of

cracks. From simulations, it was shown that the local driving force for fatigue crack

nucleation and propagation can vary significantly between different specimens.

Fully three-dimensional finite element analysis is used in this study to qualitatively

compare various notch sizes and the relative effect of fatigue strength reduction factor

119



(a.k.a. the fatigue notch factor) due to the notch effect. The heterogeneity in plastic

slip within the notch root region is demonstrated through the use of a three-dimension

crystal plasticity model. Using deterministic crack incubation and microstructurally

small crack growth models, the probability of specimen failure was determined for each

probability framework. It was shown that the crack initiation life was significantly

reduced with the introduction of a notch into a specimen.

The techniques employed in this thesis can be used to improve the prediction of

HCF life of notched components employing materials with complex microstructures.

These techniques can be used in conjunction with experiments to help validate a new

material or manufacturing technique to create a variant form of an existing mate-

rial. Typically, very few experiments are conducted in the high cycle fatigue regime.

The time required to experimentally determine the high cycle and very high cycle

fatigue response of Ni-base superalloy components necessitates the use of computa-

tional and probabilistic strategies and experimental verification in parallel to improve

the prediction of fatigue damage due to a notch. The caveat with the probability

approaches described above is that more experimental data is needed to verify the

computationally created failure probability distribution functions. Especially critical

is the characterization of the tails of these distribution functions when designing for

minimum life approaches. This extreme value problem is of particular importance in

the minimum life design of components loaded under high cycle fatigue [59]. Although

the probabilistic framework developed in this thesis was applied to notched Ni-base

superalloy components, the framework is general enough that it can be applied to

any material system and can be used for multiple failure mechanisms.

5.2 Recommendations for Future Work

As alluded to in the background section of this thesis, nonmetallic inclusions and

pores play a critical role in the failure of components made from Ni-base superalloy
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materials [43, 44]. These inclusions are often introduced into the molten metal prior

to the gas atomization process used to create the powder metal [49, 53]. Thus, a

probabilistic formulation to determine the failure potency of Ni-base superalloy com-

ponents should include a consideration for nonmetallic inclusions. However, the main

purpose of this thesis was to develop a framework that is able to take into account

the effect of microstructure, stress gradient field, and notch acuity on the variability

in cyclic fatigue response of a notched component. Therefore, inclusions were not

considered in this work so that the effects of the notch root stress field could be

distinguished. The techniques employed in this research can be combined with other

existing probabilistic formulations that consider the size distribution of defects such as

inclusions, the proximity of these defects to the surface, and the competition between

different competing damage mechanisms [45,47,50,53,54]. Also, a close consideration

of component size effect must be considered. It has been shown that the statistically

weakest “defect” size within a volume can change with the size of the volume [47,49].

Another direct extension of the current work is to consider the effect of stress

redistribution with crack advance. One way to estimate the FIP redistribution due

to crack growth is to run simulations on both a cracked and uncracked specimen with

the same polycrystalline microstructure within the crystal plasticity zone. The crack

can be induced by eliminating elements within the notch root region of an uncracked

notched specimen. Other approximation schemes could be developed to estimate the

redistribution of FIP values. Another consideration that should be investigated is

the effect of neighboring grains on the probability of crack advance. This approach

provides an added level of complexity in which the neighboring grain disorientation

becomes a factor in the probability of crack advance.

Finally, a consideration for residual stress effects due to surface treatments such

as shot peening should be investigated in the future. Shot peening and other forms of

compressive pre-stressing of components are extensively used to improve the fatigue
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resistance of components subjected to high cycle fatigue. Through shot peening the

component surface is strengthened and hardened by the localized cold-working of the

material at the surface. The near-surface compressive residual stresses can help offset

the tensile portion of an applied load up to a certain depth from the surface. Past

this characteristic depth, a residual tensile stress is induced to counteract the surface

compressive residual stress. This residual tensile stress within the bulk of the material

can be detrimental if not accounted for in component design for fatigue resistance.

Also, under higher loads and/or higher temperatures the effect of shot peening may

become insignificant due to stress relaxation. These factors will be considered in

future work.
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