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SUMMARY 
 
 
 
  Heating of the transmission foil separating the vacuum diodes from the laser gas 

in electron-beam-pumped gas lasers due to high-energy electron beam attenuation 

necessitates an external cooling scheme to prevent its failure under repetitively pulsed 

operating conditions.  Attenuation of the electron beam (typically 500 kV, 100 kA and 

100 ns pulse duration) produces a strong and pulsed volumetric heat source in the 

relatively thin stainless-steel foil (thickness of ~25 μm) causing it to fail.  An 

experimental and numerical investigation has been conducted to study the cooling 

effectiveness of near-wall high-speed jets for a single stainless-steel foil strip that 

simulates the actual foil geometry between two neighboring support ribs in the Electra 

KrF gas laser developed by the Naval Research Laboratory.  The foil is placed inside a 

rectangular channel with continuous gas flow to simulate the circulating laser gas.  The 

foil is electrically heated with the heating power input adjusted to achieve the same foil 

temperatures observed in Electra when no active cooling is applied.  Detailed studies 

include two jet geometries (planar and circular) and two injection methods 

(tangential/parallel or obliquely impinging jets) for two hibachi foil structure designs (flat 

and scalloped).  The planar jet of ~1mm thickness flows parallel to the circulating laser 

gas across the entire foil span.  The other configuration uses circular jets of small 

diameters (0.8 mm, 1.2 mm and 1.6 mm) positioned in two staggered rows located on the 

foil’s two vertical edges with a pitch of 1.25 cm over the entire height of the foil.  For 

both configurations, experiments have been conducted at various jet velocities (or jet 

Reynolds numbers), impingement angles and jet-foil spacing with an aim to identify the 
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optimal operating parameters for the actual hibachi foil cooling.   

  Numerous investigations have been performed that covered a wide range of 

operating parameters.  Local and average heat transfer coefficients for the foil were 

obtained and the data indicate that near-wall jets can enhance convection heat transfer by 

more than one order of magnitude when compared to forced convection that only uses the 

laser gas recirculation.  The locally injected jets only affect the flow field close to the 

foil and the effect on the bulk flow is very limited, which is crucial to preserve the laser 

quality.  The experimental data will provide the designers of the gas laser system an 

efficient and cost-effective option for foil cooling for the anticipated operating 

conditions. 

  Experimental results have also been compared to the predictions from CFD 

simulations using FLUENT® with a well-established k-ε turbulence model.  Good 

agreement has been observed for the planar jet cooling experiments in terms of foil 

temperature and heat transfer coefficients.  For impinging jet cooling experiments, a 

simplified three-dimensional model was developed and qualitative agreement was 

observed. 

  The results show that near-wall jets can effectively cool the foil that separates 

the vacuum diodes from the laser gas under prototypical pulsed (5Hz) operating 

conditions.  The jets can prolong the lifetime of the foil and also minimize impact on 

electron beam quality and laser efficiency. 



1 

CHAPTER 1 
 

INTRODUCTION 
 
 
 
  Near-wall jets, including both tangential and impinging jets, have been widely 

investigated and applied as an effective method for heat transfer enhancement for either 

heated or cooled surfaces.  Previous studies were summarized and reviewed by many 

authors (Goldstein, 1971; Martin, 1977; Jambunathan, et al., 1992; Viskanta, 1993).  

Typical applications include protection of high-temperature gas turbine blades and other 

components, paper drying, annealing of metals, and cooling of electronic components.  

In most applications, the surface is subjected to a high-temperature environment or the 

component has an inherent heat generating source.  To protect the target surface, 

tangential jets are usually injected near the leading edge of the surface and flow parallel 

to the surface, increasing convection heat transfer from the surface to the ambient and 

reducing the surface temperature substantially.  However, the cooling effectiveness 

decays quickly downstream from the injection point due to the mixing of the wall jet with 

the ambient flow.  Additional injection points are desired along the flow direction to 

provide enough cooling for the entire surface.  On the other hand, impinging jets can 

cool the entire surface when multiple discrete jets are used to cover a large portion of the 

surface to be cooled, thereby achieving a more uniform surface temperature profile.  

The enhancement in convection heat transfer of impinging jets depends on jet Reynolds 

number, jet arrangement, and jet impingement angles.  The geometry of the jet also 

affects the overall performance.  The motivation of this dissertation research derives 
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from the development of an electron-beam-pumped gas laser system for inertial 

confinement fusion energy research, where the cooling of the thin transmission foil 

separating the vacuum diodes from the high pressure laser gas presents a formidable 

engineering challenge to the designers of the laser driver system. 

 

1.1 Background 

1.1.1 Inertial confinement fusion and driver technology 

  Nuclear fusion provides the enormous energy source for the sun and other stars 

in the universe.  In a fusion reaction, energy is released when light elements, such as 

hydrogen isotopes, combine to form a heavier element.  Nuclear fusion is believed to be 

capable of providing nearly unlimited energy to the human race because there is a nearly 

inexhaustible supply of the hydrogen isotope deuterium in seawater.  In order to garner 

this energy source for long-term energy supply on earth, researchers around the world 

have been working on controlled nuclear fusion for more than 50 years to solve the 

difficulties involved in initiating and sustaining a fusion reaction. 

  One promising technique for controlled nuclear fusion is inertial confinement 

fusion (ICF), in which nuclear fusion reactions are initiated by compressing and heating a 

fuel pellet comprised of deuterium and tritium atoms through external drivers.  The 

reactions are subsequently maintained by the energy released in previous fusion reactions 

(Figure 1-1).  As a result of change in the mass before and after the fusion reaction, 

energy is released mainly in the forms of fusion products’ kinetic energy.  One of the 

key components in ICF research is the external driver, such as high-energy laser beams, 
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electron beams, or ion beams, which supply energy to the target pellet to initiate the 

reaction.  The outer layer of the fuel pellet is first heated and compressed to a very high 

temperature and pressure by the rapid energy release from the driver, causing it to 

explode outwards.  The explosion creates a reaction force upon the inner target layer.  

This force accelerates the layers inward and also drives shock waves into the center.  If 

the shock waves are powerful enough, the fuel target can be highly compressed and 

heated at its center for a fusion reaction to take place.  Energy released from the fusion 

reaction in the center heat the surrounding fuel and more fusion reactions can occur.  

The aim of ICF is to create an environment in which the reactions are first ignited and 

sustainable reactions are maintained to burn the fuel pellet. 

 

 

 

Figure 1-1 Schematic of inertial confinement fusion process 
 

 

1.1.2 ICF laser driver mechanism  

  Current research activities on ICF driver technology mainly focus on 

high-energy laser driver system development, which include both diode-pumped 
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solid-state lasers and electron-beam-pumped gas lasers (Bayramian, et al., 2003; Sethian, 

et al., 2001, 2003 and 2004).  As one of the key components of ICF driver technology, 

“Electra”, a high-energy krypton fluoride (KrF) laser, has been developed and 

constructed at the Naval Research Laboratory.  Electra is an electron-beam-pumped KrF 

excimer (excited dimer) laser designed to operate at a repetitive rate of 5 Hz with a laser 

energy output of 400-700 J, which is to be scaled to 15-25 kJ laser energy for an inertial 

fusion power plant module (Figure 1-2).   

  The laser generation mechanism shown in Figure 1-3 and Figure 1-4 starts by 

applying a pulsed voltage to the emission diodes to generate two pulsed electron beams 

(~100 ns), which pass through a thin transmission metal foil that isolates the vacuum 

diodes from the laser gas which is pressurized to ~1.5 atm.  Electron beams are fired on 

both sides of the laser cell and excite the krypton fluoride gas in the laser cell.  An input 

laser at low power triggers the system to emit an amplified laser beam at higher intensity 

when KrF* de-excites to its ground state.  The wavelength of the resulting KrF laser is 

248 nm (ultraviolet).  The laser gas, which has a total volume of 9,000 liters, is 

recirculated using a blower in a closed loop system (Figure 1-5).  Gas flowing through 

the laser cell serves to homogenize the laser gas and help cool the transmission foil.  To 

ensure a uniform amplified laser beam, it is important that the gas within the laser cell 

return to a relatively quiescent state between consecutive electron beam firings.  If the 

bulk velocity of the gas in the laser cell is too high, the quality of the laser beam will 

deteriorate. 
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Figure 1-2 Electra at the NRL (laser cell open and recirculator detached, Sethian, et al, 2001) 
 

 

 

 

Figure 1-3 Electra KrF laser generation mechanism in laser cell (Sethian, et al, 2003)
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Figure 1-4 Schematic of the e-beam firing with temperature measuring setup. 

(a). Monolithic cathode; (b). Strip cathode (Hegeler, et al, 2005) 
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Figure 1-5 Schematic of Electra recirculator loop  
(Black arrows showing the flow direction of the laser gas, Sethian, et al, 2003) 
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1.1.3 Hibachi foil and cooling 

  A hibachi-like structure (hereafter, hibachi) is used to support the foil that 

separates the vacuum diodes from the laser gas in the laser cell.  Design of the foil and 

hibachi structure presents a formidable technical challenge, because the foil must be 

highly transparent to the electron beam (≥75% transmission), withstand the static 

pressure force from the laser gas, and also survive the very hostile environment present in 

the laser cell (including cyclic hydrodynamic shock, ultraviolet light, X-rays, electrons, 

fluorine and hydrogen fluoride) (Sethian, et al., 2003).  The search for qualified foil 

materials included testing of materials such as titanium, aluminum, silicon, and alloys 

such as HAVAR and HASTELLOY.  Ultimately, a 25 μm-thick type-304 stainless-steel 

foil was chosen (Sethian, et al, 2004).  The selected material with chosen thickness is 

believed to satisfy the following requirements for rep-rate operation of electron beam 

firing: 

1. High electron transmission efficiency (≥75%) 

2. Long lifetime (>108 shots projected for two years at 5 Hz between major 

maintenance of the laser system) 

3. Operating in a very hostile environment 

 

  However, preliminary experiments at the NRL showed that the stainless steel foil 

quickly reached a very high temperature (>600 oC) and that operation at such elevated 

temperatures caused the foil to fail after a few hundred shots at the 5 Hz rep-rate (Hegeler, 

2007).  Figure 1-6 and Figure 1-7 show an example of a failed foil and its temperature 
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history for 21 shots at 5 Hz when a monolithic cathode was used and the laser gas was 

quiescent.  To improve the durability of the foil, it needs to have good mechanical 

strength and ductility and also be resistant to the laser gas, especially to fluorine.  The 

key to the enhancement of the durability of the foil and the long-term rep-rate operation 

of the laser is to keep the foil sufficiently cool.   

  Several cooling schemes have been proposed and investigated during the past 

years to identify an efficient way for foil cooling; these include: 

1. Radiation cooling (Hegeler, et al., 2005) 

2. Conduction cooling through the water-cooled hibachi ribs (Giuliani, et al., 

2006) 

3. Convection cooling using oscillating louvers (Hegeler, et al., 2005 and 2008) 

4. Convection Cooling using air-water mist flow (Novak, et al., 2005 and 2007) 

 

  Radiation cooling is efficient only if the foil is at very high temperatures, but 

then the mechanical strength of the foil would be substantially reduced, compromising its 

durability.  Conduction cooling is inherent in Electra due to the fact that the hibachi ribs 

were designed to include channels with circulating water to remove the excess heat from 

the ribs.  However, heat removal from the foil by conduction is severely limited because 

of the thinness of the foil and the poor thermal conductivity of type 304 stainless steel.  

Also, the ribs are made of MP35N Carpenter steel which has a relatively low thermal 

conductivity.  This means there is relatively little heat transfer between the water 

flowing in the ribs and the foil pressing against the outer surface of the ribs.  Although 

radiation and conduction cooling help cool the hibachi foil, they only contribute as 
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secondary cooling effects. 

 

 

 

Figure 1-6 A picture of a failed hibachi foil on Electra (Hegeler, F., et al, 2007) 
 

 

 

Figure 1-7 Temperature history of hibachi foil without active cooling after 21 shots at 5 Hz 

(Hegeler, F., et al, 2007) 
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  Another potential foil cooling method is to utilize the flow of laser gas driven by 

the blower, since Electra is designed to recirculate the laser gas between two consecutive 

e-beam shots in order to quench the gas and improve the laser beam quality.  

Experimental studies have been carried out on Electra to test the thermal loads on the 

stainless-steel foil due to e-beam attenuation and to measure the foil temperature under 

various rep-rate operation conditions (Giuliani, et al, 2006; Hegeler, et al, 2005 and 

2008).  To improve forced convection cooling of the foil, louvers were also installed 

upstream of the hibachi window.  These louvers operate in two different 

modes/positions: “open” and “closed,” or “actuated” (Figure 1-8). 

  Experiments showed that without any active cooling schemes except radiation 

and conduction, the foil temperature rose to 480 oC after a short 15-shot burst at 5 Hz.  

When the louvers were fully open and the blower drove the laser gas at a relatively 

uniform velocity of ~7.5 m/s continuously, the foil temperature stabilized at ~430 oC due 

to turbulent forced convection heat transfer.  By actuating the louvers so they were only 

closed for 100 ms between two shots, the foil temperature further decreased to 325 oC.  

This is because the laser gas was forced through two narrow channels, thus significantly 

increasing the gas velocity past the foils.  When the louvers were kept fully closed, the 

best cooling was achieved and the maximum temperature was only 265 oC due to the fact 

that more laser gas flow was diverted towards the foil at relatively high speed, thereby 

increasing the forced convection heat transfer rate.  While achieving acceptable foil 

cooling performance, this setup produced significant heterogeneities in the laser gas that 

both prolonged the time for recovery of the wavefront and severely compromised the 

laser beam uniformity (or focal profile) (Burns, et al, 2009).  
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  Mist cooling was also proposed and found to be highly effective at cooling the 

foil.  This method incorporates a very thin liquid film that is attached to the foil and 

evaporates (Novak, 2005 and 2007).  To prevent the liquid from mixing with the laser 

gas, this method requires a two-foil arrangement which increases the system complexity 

(Figure 1-9).  The e-beam needed to pass through two foils and the water mist, which 

significantly increased the portion of e-beam energy lost to attenuation.  This, in turn, 

decreases the overall system efficiency, and also potentially adds unwanted material 

(such as water) into the laser cell, the diodes, or both in the event of a foil failure.  

  The search for another foil cooling method continued.  Any new method must 

be efficient at cooling the foil using the limited power available for pumping.  It also 

should not affect the laser beam quality significantly.  The idea of using near-wall jets 

was suggested (Lu, et al., 2009).  The advantage of using near-wall jets is that the 

coolant can be the same medium as the laser gas.  Also the effect on the flow field due 

to local near-wall jet injection is nearly negligible, so it has minimum impact on the laser 

beam uniformity compared to those previously investigated methods. 
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Figure 1-8 Foil cooling with louvers installed upstream of the laser window 

 (a). open position mode; (b). closed or actuated position mode (Hegeler, et al, 2008) 
 

 

 
Figure 1-9 Mist cooling for hibachi foil (Novak, et. al., 2007) 
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1.2 Objectives 

  The objective of this dissertation research is to examine the effectiveness of 

near-wall jets applied to foil cooling in electron-beam-pumped gas lasers using 

experimental studies and CFD simulations.  Air jets are used in most experiments at a 

wide range of velocities covering the expected Reynolds number range of the actual 

system.  The foil is electrically heated to achieve the temperature observed in the Electra 

KrF laser when only radiation cooling is used.  A bench-top experimental rig has been 

designed and constructed with the capability of using planar tangential and circular 

impinging jet configurations.  For the flat foil hibachi design, both tangential planar jets 

and impinging jets have been examined, while for a scalloped foil design only the cooling 

effectiveness of impinging jets has been studied.  A 25 μm-thick stainless steel foil strip 

representing the foil geometry and shape between two support ribs in the actual Electra 

hibachi structure is vertically attached to two copper rods acting as electrodes and is 

spring tensioned in order to keep its original shape when it undergoes thermal expansion.  

The foil is either flat or scalloped to match the actual configurations in two different 

hibachi designs.  The rig is equipped with a fan driving a bulk flow to simulate the 

circulating laser gas stream.  Jet diameter, jet velocity, spacing between jet openings, 

and impingement angles are controlled and the corresponding cooled foil temperature 

profiles are measured using either thermocouples or infrared thermal imaging techniques.  

CFD simulations using FLUENT® have been conducted and the results have been 

compared to the experimental data.  CFD tools can be used to predict the flow field and 

heat transfer characteristics which are difficult to measure experimentally.  The aim is to 

identify the optimal configuration parameters for best cooling effects: jet speed, jet 
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diameter, nozzle-target spacing and impingement angles at the acceptable cost of 

pumping power and system complexity. 

  The remainder of this dissertation is organized as follows.  Chapter 2 provides a 

literature review of forced convection heat transfer in both tangential and impinging jets.  

Chapter 3 provides detailed descriptions of the experimental apparatus and procedures 

used in this investigation.  The experimental and numerical results pertaining to planar 

tangential jets are presented in Chapter 4, while those for impinging jets are presented in 

Chapter 5 and Chapter 6 for the flat and scalloped foils, respectively.  Conclusions and 

recommendations are given in Chapter 7.  An uncertainty analysis of the data is given in 

Appendix A, while a detailed listing of all the experimental data obtained in this 

investigation in given in Appendix B. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 
 

2.1 Introduction 

  In this chapter, literature reviews on forced-convection heat transfer for both 

tangential planar jets and impinging jets are presented. 

 

2.2 Tangential Planar Jets  

  Tangential jets have been investigated for many decades to study the effects of 

various design and operational parameters on the convection heat transfer from the target 

surfaces.  The jet flows along the surface either to enhance heat transfer from the surface 

to the ambient or to protect the surface that is exposed to an extremely hot environment 

(Figure 2-1).  The term “film cooling” is exclusively used to refer to the latter case, 

where a second fluid stream is introduced into the boundary layer of the target surface 

which is exposed to a high-temperature gaseous environment.  The jet is used here to 

reduce the heat transfer to the surface and to some extent acts as a shield protecting the 

surface from the surrounding hostile environment.   
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2.2.1 Experimental studies of planar jets 

  Extensive experimental studies on fluid flow and heat transfer characteristics of 

planar jets have been performed that mainly focused on the applications of film cooling.  

This part of the literature review only covers those studies where the jet geometry and 

other operating parameters closely relate to the current research project. 

 

 

 
Figure 2-1 Wall planar jet and its velocity distribution (Launder and Rodi, 1983) 

 

 

  Wieghardt (1946) first experimentally studied the use of injecting a 

two-dimensional slot jet of hot air into the turbulent boundary layer of a wall as a 

de-icing method with the secondary jet parallel to the main stream.  He measured wall 

temperature distribution downstream from the injection slot.  The effect of the coolant 
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entrainment in the mainstream as a function of injection angles was evaluated for 

different blowing ratios.  He also derived a similarity expression for gas phase 

temperature as a function of the local thermal boundary thickness.  Seban (1960) also 

performed experiments using a tangentially injected air jet but with a slightly different 

slot geometry and reported a different correlation for the dimensionless wall temperature 

from Wieghardt’s.  Hartnett, Birkebak and Eckert (1961) extended Wieghardt’s 

experiments with detailed wall temperature and flow measurement at various heat inputs 

while using the same slot geometry.  A correlation for cooling effectiveness was derived 

from their experiments and was shown to be consistent with the theoretical calculation by 

Klein and Tribus (1953), which assumed a line heat source at the leading edge of a flat 

surface and was based on an enthalpy balance.  Seban and Back (1961) again performed 

velocity and temperature measurements on an approximated wall jet and confirmed the 

velocity profile predicted from the wall-jet theory, plus a reasonable agreement between 

the adiabatic temperature profiles. 

  To tackle the discrepancy existing in the experimental results, Stollery and 

El-Ehwany (1965) suggested slot Reynolds number must be taken into account when 

comparing the film cooling effectiveness between different experiments, even though 

there might be only small difference in the slot geometries.  This led to the need to well 

characterize the inlet conditions including mean profiles and turbulence statistics to 

identify effects of turbulence intensity in film cooling performance. 

  For simplicity, the aforementioned correlations all assumed a fully developed 

turbulent boundary layer.  For the developing flow near the injection region, Ballal and 

Lefebvre (1973) developed a correlation based on direct measurement of skin friction 
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coefficients for both low and high blowing ratios.  Goldstein (1971) gave a high-quality 

and comprehensive review of previous experimental studies on film cooling and scaling 

laws, which covered a wide range of jet slot geometries, temperature ratios, and blowing 

ratios.  Another review by Launder and Rodi (1983) focused on the theory and modeling 

of the turbulent wall jet.  The effect of foreign gas injection on the heat transfer was well 

characterized by Burns and Stollery (1969).   

  Lefebvre (1999) summarized the correlations appropriate for calculation of 

temperature and Nusselt numbers of a film-cooled wall, where 
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  Eq. 2-1 

 

  Here Nux is the local Nusselt number, Res is the Reynolds number defined as: 

/s jet jetRe V sρ μ= , where s is the slot width and x is the distance from the leading edge.  

The parameter “m” is the “blow ratio” and is defined as the mass flux ratio between the 

jet and the bulk flow ( /jet jetm V Vρ ρ∞ ∞= ).  

  The correlations above used assumptions such as constant properties and did not 

account for the effect of turbulence intensity explicitly.  Simon (1986) developed a 

method for calculating film cooling effectiveness, which included the effect of turbulence 

level.  This more sophisticated method was based on a wall-jet analysis (Launder and 

Rodi, 1983), where the turbulence intensity in the slot flow and mainstream flow were 

explicitly used as part of the inputs. 

  More recently, with interest in high-speed aircraft propulsion growing rapidly, 

more effort has been devoted to film cooling studies.  In such aircraft, the engine is 
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exposed to very high heat loads due to a high thrust requirement at launch and 

aerothermal heating at high Mach numbers.  Using detailed and novel turbulence and 

temperature measurements, Cruz and Marshall (2004 and 2007) did detailed studies of 

film-cooled surfaces, examining wall temperature, adiabatic effectiveness, and turbulence 

intensity.  Their results confirmed the previously proposed scaling laws for far-field 

measurements, but underpredicted the significance of temperature ratio between the 

cooling stream and the mainstream. 

 

2.2.2 Numerical simulations of planar jets 

  With increases in computing power, CFD simulations provide a strong 

engineering tool for modeling near-wall tangential jets.  Various turbulence models have 

been adopted in an effort to identify a suitable set that produces good agreement between 

the simulations and experiment results. 

  Zhou, Salcudean and Gartshore (1993) first applied the standard k-ε turbulence 

model plus a near-wall low Reynolds number k model to near-wall jet modeling and 

showed good agreement with experimental data for velocity profiles and heat transfer 

enhancement at relatively low mass flow ratios.  Jansson, et al. (1994) used an algebraic 

stress model and the standard k-ε turbulence model to simulate slot film cooling.  

Numerical results showed excellent agreement with experiments for the velocity profiles 

but not for temperature profiles.  The authors surmised that the difference might be due 

to the way in which the transport equation modeled the temperature field.  A more 

recent CFD study by Roy, et al (2003) adopted detached-eddy simulation (DES), 
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combining Reynolds-averaged Navier-Stokes equations (RANS) near the wall and large 

eddy simulation (LES) for the region further away from the wall when discrete jets were 

used to cool a flat plate. 

 

2.3 Impinging Jets 

  Impinging jets are also widely investigated and employed in various industrial 

applications and research projects for local heat/mass transfer rate enhancement on the 

target surface.  A round/slot single jet, and more frequently an array of jets, impinges on 

the surface with very short flow paths to achieve high convection heat transfer rates.  

Typical industrial applications include the annealing of metal and plastic sheets, glass 

tempering, and paper and textile drying.  Recently, impinging jet cooling has been of 

much interest for cooling electronic components and photovoltaic cells, where high heat 

generation occurs.  A large number of investigations have been carried out in efforts to 

characterize momentum and heat and mass transport processes involved in jet 

impingement by varying jet diameter, jet velocity and distance between the nozzle exit 

and impinging surface. 

 

2.3.1 Experimental studies of impinging jets 

2.3.1.1 Single impinging jet 

  Extensive investigations of flow characteristics and heat transfer exist in the 

literature for the single impinging jet.  When there is no cross flow present, the flow 



22 

structure of an impinging jet is well described by dividing the flow field into three 

different regions: the free jet region (near the jet exit), the impingement region where the 

jet physically impacts on the surface, and the wall jet region where the jet exits after 

interaction with the wall (Figure 2-2) (Incropera and DeWitt, 2003).  The jet is called 

submerged if the jet and the surroundings are of the same fluid, otherwise it is considered 

as a free jet.  The jet can also be classified as a confined jet if the jet spread is confined 

between the impingement surface and the jet plate; it is an unconfined jet if the jet 

expansion is not contained.  Heat transfer in single jet impingement is governed by jet 

Reynolds number, jet-to-plate spacing, and jet impact angle on the target plate, which was 

well documented in many researchers’ work. 

 

 

 

Figure 2-2 Schematic of an axisymmetric single impinging jet (Russell and Hatton, 1972) 
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  An early comprehensive experimental study on impinging jet heat transfer was 

performed by Perry (1954).  Heat transfer measurements were done at various air jet 

impinging angles and a fixed jet-to-plate spacing for temperature differences greater than 

400 oC and Reynolds number varying from 7,000 to 30,000.  The data showed that the 

heat transfer rate at an impingement angle of 90o was approximately twice the value at 

15o at the same Reynolds numbers.  It was also noted that at an attacking angle other 

than 90o, the heat transfer was not maximum at the impacting point but shifted towards 

the forward jet direction.  At fixed jet-to-foil spacing, Nusselt numbers were well 

correlated in the same form as those for forced convection in external flows over a flat 

plate and were power functions of jet Reynolds number.  The relationship was 

confirmed by many other people’s work with varying coefficients mainly due to the 

different ranges of experimental parameters (Martin, 1977; Jambunathan, 1992, Huang 

and El-Genk, 1994, Lin, Chou and Hung, 1997).  A typical plot of stagnant Nu vs. Red is 

shown in Figure 2-3 (Smirnov, Verevochkin and Brdlick, 1961), where Nusselt numbers 

increased linearly with Reynolds numbers in a log-log plot.  

  Smirnov, Verevochkin and Brdlick (1961) studied the stagnant heat transfer from 

a normally impinging water jet to a fixed plate both as a function of jet Reynolds 

numbers and jet-to-plate distances.  They first incorporated the dimensionless 

jet-to-plate spacing in the correlation of Nusselt number and concluded that the Nusselt 

number exponentially and monotonically decreased as the normalized jet-to-foil spacing 

increased.   
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Figure 2-3 Dependence of Nusselt numbers on Reynolds number 
(Smirnov, Verevochkin and Brdlick, 1961) 

 

 

  Gardon and Akfirat (1966) extended the range of jet-to-plate spacing and jet 

Reynolds number in their experimental investigations and concluded that when the jet 

Reynolds number exceeded a certain threshold (~3,000), stagnation Nusselt number first 

increased, reached its maximum, and then decreased when the jet exit move further away 

from the impingement plate (Figure 2-4).  They explained that these disturbances/humps 

were caused by the mixing-induced turbulence, especially in the regions where the 

turbulence was not fully developed, which resulted in the non-monotonic variation of 

stagnation heat transfer coefficients (Gardon and Akfirat, 1965). 

  The local heat transfer coefficients with respect to radial distance away from the 
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impingement point of a normally impinging jet were also very important in understanding 

the distribution and average heat transfer enhancement for the area around the jet 

impingement.  It has been found that local Nusselt numbers generally followed a 

bell-shaped monotonically decreasing trend from the stagnation point when the 

normalized jet-to-plate distance is greater than a certain value.  Gardon and Akfirat 

(1966) reported a value of 14 for a slot jet and Goldstein, et al. (1986) reported a value of 

8 for a circular jet, both of which were unconfined.  Garimella and Rice (1995) and San, 

Huang and Shu (1997) reported a much smaller value of ~2 for a confined and submerged 

circular jet.  However, when the jet-to-plate spacing was further decreased, secondary 

maxima at smaller values emerged in the radial profile of the local heat transfer 

coefficients (Jambunathan, et al, 1992; Garimella and Rice, 1995; Glynn and Murray, 

2005, Zhou and Lee, 2007).  Typical results for the lateral distribution of heat transfer 

coefficient taken from Zhou and Lee (2007) are shown in Figure 2-5.  These studies 

showed that the secondary peaks almost identically appeared near the location with 

r/dh=2 (where r is the radial distance from the impingement point and dh is the hydraulic 

diameter of the jet).  It was explained that the secondary peaks resulted from the 

elevated turbulence level in the wall jet region, where the transition to turbulence 

occurred. 
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Figure 2-4 Correlation of Nusselt numbers of a two-dimensional impinging jet (Gardon and Akfirat, 1965) 



27 

 

 

Figure 2-5 Lateral variation of local Nusselt number at various jet-to-plate spacings (Zhou and Lee, 2007) 
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  As most studies were focused on the heat transfer of an impinging jet for a flat 

surface, heat transfer of a jet impinging on surfaces of other shapes are also of 

engineering significance, in which the curvature effect needs to be taken into 

consideration due to the centripetal force induced flow instability (a.k.a. Taylor-Gortler 

type vortex).  Chupp, et al. (1969) and Metzger, et al. (1969) both measured heat 

transfer coefficients on a parabolic concave surface and studied the effects of the 

curvature of the cooled surface and the nozzle plate.  To further understand the flow 

characteristics, Gau and Chung (1991) visualized the jet flow impinging on both convex 

and concave semi-circular surfaces and found distinct characteristics of both flow field 

and heat transfer on these surfaces.  Yang, et al. (1999) studied slot jet impingement 

cooling on a concave surface and the effects of jet nozzle shape and curvature were also 

identified.  Choi, et al. (2000) extended the study of slot jet impingement cooling on a 

concave semi-circular surface by performing detailed flow measurement using laser 

Doppler anemometry technique (LDA).   

  Another important factor affecting the heat transfer in impinging jets is the 

sweeping effect of a cross flow, which occurs in many engineering problems, such as 

internal turbine blade cooling.  The cross flow modifies the jet flow upon impingement.  

It shifts the stagnation point downstream and also reduces the heat transfer coefficients at 

the stagnation point.  The axisymmetric distribution of heat transfer coefficients around 

the impingement point is also distorted.  Bouchez and Goldstein (1975) first studied the 

effect of a constant cross flow on the impinging jet cooling for various jet blow rates.  

The heat transfer measurement indicated at a larger jet-to-plate distance, the stagnation 

point was more shifted downstream.  Also, the heat transfer coefficients were smaller 
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than those reported in the literature when no cross flow was present and the normalized 

jet-to-plate spacing was greater than 6.  The interaction between the jet and the cross 

flow also created a recirculation zone upstream of the stagnation point.  Goldstein and 

Behbahani (1982) extended the experimental studies by varying the cross flow rate and 

found at small jet-to-plate spacing, moderate cross flow enhanced the stagnation heat 

transfer coefficient.  Cross flow also arises naturally as the spent gas spreads when 

multiple confined impinging jets are used.  A review of these studies is covered in the 

next section. 

 

2.3.1.2 Array of impinging jets 

  The studies on single jet impingement heat transfer indicate that only a very 

small area around the impingement point sees the enhancement in heat transfer rates.  

Far from the stagnation point, the heat transfer coefficient decays rapidly to the same 

value as if there is no jet present due to the mixing with the ambient flow.  For the 

purpose of effectively cooling a large heated surface using impinging jets, multiple jets 

arranged in certain pattern can be used to cover a large part of the target surface and 

elevate the overall heat transfer rate for the surface.  The impinging jets, circular or of 

other shapes, can be ordered in a line, a square array, or a staggered array.  For single jet 

impingement, the heat transfer characteristics are determined by the jet velocity, jet 

hydraulic diameter, jet-to-plate spacing, jet impinging angle, and the magnitude of cross 

flow.  For multiple jet impingement, besides all the parameters above, the jet-to-jet 

spacing also affects the overall heat transfer. 
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  Gardon and Akfirat (1966) first examined the heat transfer of 2 and 3 slot jets 

arranged in a row impinging on an isothermal plate.  They concluded that the smaller 

jet-to-jet spacing increased the interaction between the adjacent jets and decreased the 

heat transfer coefficients.  Kercher and Tabakoff (1970) studied cooling using a square 

array of circular air jets perpendicularly impinging on a heated surface with the spent air 

forming a cross flow interacting with the jets.  Their correlation accounted the relevant 

parameters and was represented in a form similar to single jet impingement heat transfer.  

They concluded that the heat transfer was dominated by the jet Reynolds number and 

jet-to-jet spacing and the cross flow resulting from the spent air decreased the heat 

transfer coefficients.  Metzger, et al. (1979) and Behbahani, et al. (1983) studied heat 

transfer characteristics for both inline and staggered jets and found that the inline pattern 

had higher heat transfer coefficients than the staggered pattern.  Goldstein and Seol 

(1991) experimentally investigated heat transfer between a row of impinging jets and a 

heated flat plate and periodic variation of local heat transfer coefficients was observed 

with the maximum values occurring in the vicinity of the impingement zone. 

  The heat transfer characteristic resulting from the interaction between adjacent 

jets can be related to the flow structure.  Saripalli (1983) visualized multiple jet 

impingement flow using a fluorescent technique, examining the effect of the variation of 

jet-to-jet spacing on the flow field (Figure 2-6).  At small spacing, the adjacent jets 

interfere with each other before impingement and this interference causes the jet to 

decelerate, thus decreasing heat transfer of the jet array.  A fountain (Figure 2-6) can be 

formed if the jets are strong and affects the heat transfer due the recirculation and 

entrainment of spent fluid (San and Lai, 2001). 
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  San and Lai (2001) studied the quantitative effect of jet-to-jet spacing on the heat 

transfer of a staggered jet array of five jets impinging on a flat plate of constant surface 

heat flux to identify the optimum jet-to-jet spacing for maximum heat transfer.  They 

reported the stagnation Nusselt number as functions of jet-to-jet spacing, nozzle-to-plate 

spacing, and jet Reynolds number.  Figure 2-7 plotted the Nusselt number for a case in 

which the dimensionless jet-to-plate spacing was 2.0.  For this case, it clearly showed 

that certain jet-to-jet spacing produced maximized heat transfer coefficients.  When the 

jet-to-jet spacing increased from a very small value, the jet fountain diminished and the 

heat transfer coefficient increased.  While at a large jet-to-jet spacing, the heat transfer 

coefficient dropped because of the increasing heated area to be cooled.  It was also clear 

that the optimal jet-to-jet spacing when the maximum Nu occurred was the same for all 

Reynolds numbers.  When varying jet-to-plate spacing, different values of optimum 

jet-to-jet spacing occurred (San and Lai, 2001). 

 

 

 

Figure 2-6  Jet interaction between two adjacent jets (San and Lai, 2001) 
(Left: interference; Right: fountain forming) 
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Figure 2-7  Effect of Re and jet-to-jet spacing on stagnation Nu (San and Lai, 2001) 
 

 

  Huber and Viskanta (1994) measured the local heat transfer data for a confined 

3×3 square array of isothermal air jets impinging normally to a heated surface with spent 

air exits located between the adjacent jets and discovered that lower jet-to-surface 

spacing enhanced the uniformity of heat transfer coefficients.  Dano, Liburdy and 

Kanokjaruvijit (2005) investigated flow structure and heat transfer characteristics of a 

7×7 square array of jets impinging on surfaces of isothermal condition or uniform heat 

flux with the exhaust discharge acting as a cross flow and concluded the cross flow 

influenced the heat transfer results due to the interaction with jet impingement.  San, 
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Tsou and Chen (2007) extended San and Lai’s studies by including the effect of the width 

of and length of the jet plate and found the Nusselt numbers were strongly dependent on 

the width but only weakly on the length. 

 

2.3.2 Numerical studies of impinging jets 

  Various numerical studies have been performed to model a single jet or an array 

of jets, being laminar or turbulent, which impinge on a heated surface for heat transfer 

enhancement.  Al-Sanea (1992) performed a numerical study to model a laminar 

impinging slot-jet using a control-volume finite-difference method and found the results 

agreed well with the experiments in the literature.  They also included the effect of cross 

flow on the heat transfer and concluded that the presence of a cross flow degraded the 

heat transfer capability of a laminar impinging jet.  Another study on a laminar 

impinging jet was done by Lee, et al. (1997) for a circular liquid jet having a large 

Prandtl number (Pr=337).  Their results showed good agreement with the experiments 

for local Nusselt number and they also reported that the large recovery factor predicted 

was a result of the large Prandtl number used.  Chatterjee and Deviprasath (2001) 

demonstrated the secondary maxima in heat transfer coefficients in the radial direction 

for a small nozzle-to-plate distance for a laminar jet impinging normally on a heated 

surface.  They argued that the phenomena were solely determined by the upstream flow 

development due to vorticity diffusion. 

  For turbulent jet modeling, the well-established k-ε turbulence models were 

predominantly applied to capture the flow structure and heat transfer characteristics.  
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El-Gabry and Kaminski (2005) used the standard k-ε turbulence model to predict the heat 

transfer characteristics of an array of angled jets impinging on a smooth heated surface.  

They compared the results using the k-ε model to those using the Yang-Shih model and 

concluded that these models were able to predict the local and average heat transfer 

coefficients reasonably well.  Salamah and Kaminski (2005) applied the low-Re k-ε 

model for an array of jets impinging on a stationary surface and found reasonably good 

agreement with the experiments.  They found the heat transfer coefficients were 

maximal at the stagnation point and decayed away from the jet impingement point.  

Local off-center secondary maxima between two jets were also successfully predicted, 

which were a consequence of jet-jet interaction.   

  To address the three-dimensional flow field in a inclined jet impingement 

problem, Yang and Wang (2005) performed a three-dimensional numerical simulation of 

fluid flow and heat transfer for an inclined jet impinging on a heated plate with the 

cross-flow effect included (velocity ratio of 3-7).  They used the standard k-ε turbulence 

model and wall function for turbulence modeling and the predictions were validated with 

the available experimental data.  Souris, Liakos and Founti (2004) modeled Choi, et al. 

(2000)’s experiments for a slot jet impinging on a concave surface.  They also applied 

the k-ε model together with the Reynolds stress model and concluded that the models 

were appropriate for the heat transfer enhancement study in impinging jets. 
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CHAPTER 3 
 

EXPERIMENTAL APPARATUS AND PROCEDURES 
 
 
 

3.1 Introduction 

  The purpose of this dissertation is to quantitatively characterize the cooling 

effectiveness of near-wall jets for heated thin metal foils experimentally and numerically.  

As part of the experimental studies, a bench-top experimental apparatus was designed 

and constructed with the capability of employing both planar tangential and circular 

impinging jet configurations for both flat and scalloped foil designs (Figure 3-1).  For 

both foil designs, the apparatus allows variation and control of jet diameter, jet flow rate, 

orientation of the jet, jet-to-foil spacing and jet impingement locations on the foil.  

These variations in the experimental parameters help identify the optimal configuration, 

based on the convective heat transfer characteristics obtained from the experiments.  

Detailed experimental measurements included foil temperature using thermocouples and 

an infrared thermography camera, jet temperature using thermocouples, pressures using 

transducers, and flow velocity using an anemometer.  This chapter provides a detailed 

description of the apparatus components and experimental procedures used in this 

investigation. 
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3.2 Flow Channel 

  To simulate the continuous laser gas flow in Electra, a rectangular channel was 

built from Plexiglas, which is transparent and easy to machine.  The vertically-installed 

channel had a height of ~1.0 m and a square cross section of ~12.0 cm on each side.  

Two axial fans (Fulltech UF-12A12-L) were installed at the entrance and the exit of the 

channel to drive a steady flow in the channel.  The characteristic curve of the fan is 

shown in Figure 3-2.  With both fans turned on, the average bulk velocity through the 

channel was ~4.0 m/s.  The channel also housed the foil fixture (~40 cm high) that was 

bolted to the mid-section of the channel. 

 

3.3 Foil Fixture  

  A foil fixture was designed and constructed to hold the foil strip whose shape 

represented the actual geometry between two hibachi support ribs in the electron beam 

pumped gas laser’s hibachi structure.  Because the foil had a large aspect ratio (~9.0) 

and the change in the length of the foil due to thermal expansion was significant, a 

special spring tensioning mechanism was devised to keep the foil shape constant for both 

the flat and scalloped foil designs (Figure 3-3). 

  For the flat foil design, two round copper rods were used to both conduct 

electricity to ohmically heat the foil and to stretch the foil, aided by an external spring.  

The bottom rod was fixed and when the foil expanded, the spring-actuated rotation of the 

top copper rod kept the foil stretched. 

  Similarly, the scalloped foil design also adopted a spring-tensioning method.  
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The foil was first clamped to two half-moon-shaped copper electrodes both on the top 

and bottom.  To shape the foil into the scalloped form, the foil is then pressed tightly 

against a pre-machined insulation block made of type-I Marinite.  The electrode on the 

bottom was fixed, while the other one on the top moved when the foil expanded or 

shrunk.  To guide the movement of the top electrode, two round Garolite rods were 

installed vertically and parallel to the foil.  The movement of the top electrode was 

produced by two compression springs attached to the rods, which helped stretch the foil 

to form the desired scalloped shape.  The thermal insulation block behind the foil was 

machined to form a concave surface representing the desired foil shape between the two 

hibachi ribs (see Figure 3.4 for the shape of the scalloped foil). 

 

3.4 Flow in the Channel 

  Prior to the experiments with jet injection, the flow over the flat foil was 

basically external flow over a flat plate and heat transfer characteristics could be well 

characterized using available external flow heat transfer correlations.  To verify the flow 

condition in the channel, forced convection heat transfer experiments were performed.  

The comparison of experimental and calculated heat transfer coefficients showed good 

agreement within 10%, which indicated that fully turbulent flow had been established in 

the channel (Figure 3-5).  The plot also shows that the heat transfer coefficients are 

independent of applied surface heat fluxes, which is expected in forced-convection heat 

transfer in external flow over a flat surface.  The results also show that the 

instrumentation and data acquisition system are functioning properly. 
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Figure 3-1 Schematic of experimental apparatus for planar jet cooling of a flat foil 

(P: pressure transducer; T: thermocouple; R: shunt; V: voltage measurement) 
 

 

 

Figure 3-2 Fan characteristic curve (Fulltech UF-12A12-L) 
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Figure 3-3 Foil fixture for heat transfer experiments 
 (Left: flat foil; Right: Scalloped foil) 

 

 

 

Figure 3-4 Schematic of the scalloped foil used in the heat transfer experiments 
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Figure 3-5 Comparison of convection heat transfer coefficient between experiments and correlation results 
for external flow 

 

 

3.5 Jet Supply System 

  In addition to the fan-driven mainstream flow over the ohmically heated thin 

stainless steel foil, either a planar jet or impinging jets provided additional cooling for the 

foil in the experiments.  The issuing of a jet started with house air first being regulated 

for depressurization before passing through a needle valve and a gas rotameter for further 

flow control and flow rate measurement.  Air was then supplied to the headers of the jet 

supply system that was attached to the foil fixture to produce high speed jets, either 

planar or circular.   
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3.5.1 Planar jet 

  A planar jet was formed by forcing air to flow out of a square-edged slot 

machined into a brass jet tube (40.0 cm long, 1.25 cm OD and 1.0 mm wall thickness).  

Air was supplied on both ends of the tube through appropriate fittings.  The slot was 1.0 

mm wide (W) and 3.4 cm long (L), which was of the same width as the foil strip (Figure 

3-6).  The orientation of the jet tube was adjusted so that the planar/slab air jet would 

flow parallel to the foil, starting from the leading edge of the foil strip. 

  Average jet velocity (Uavg) was determined from the measured volumetric flow 

rate corrected by the operating pressure of the rotameter and the flow area of the jet.  

The average velocity was used to calculate the slot Reynolds number (Res), 

Re avg
s

U sρ
μ

=   (Eq. 3-1) 

 

3.5.2 Circular impinging jets 

  Impinging jets were produced by forcing air through a row of small circular 

openings on each of two jet tubes that were placed parallel to the two edges of the foil.  

Each 39.4 cm-long jet tube was made of stainless steel tubing that had an OD of 9.6 mm 

and wall thickness of 0.5 mm.  Circular openings of the desired diameter were carefully 

drilled, deburred and evenly spaced 1.25 cm apart.  The holes were aligned to form a 

line of jets.  Figure 3-7 shows a portion of one jet tube with small openings (1.2 mm 

diameter).  Two jet tubes were used to cool the foil.  To provide a better coverage, 51 

jets were directed towards the foil, with 25 jets on one side and 26 on the other.  These 
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two rows of jets were interlaced so that the effective jet-to-jet spacing was reduced by 

half (0.63 cm).  Several sets of jet tubes were machined with hole diameters ranging 

from 0.8 mm to 1.6 mm. 

  Two special rectangular headers were designed to hold the jet tubes on the top 

and the bottom with ports for air intake (Figure 3-8).  The header had a relatively large 

plenum volume upstream of the jet tubes that served as the reservoir for the tubes.  This 

helped produce a relatively uniform distribution of air velocity issuing from the jet holes. 

 

 

 

Figure 3-6 Planar jet tube 
 

 

 

Figure 3-7 Jet tube for impinging jet issuing 
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Figure 3-8 Jet tube and an attached header 
 

 

  Figure 3-9 shows a picture of the impinging jet cooling apparatus for the flat foil.  

Air enters the jet supply system through two headers and jets are produced by the jet 

tubes.  For the scalloped foil, the only difference was in the foil fixture.  The 

double-inlet setup was used in order to produce a relatively uniform jet velocity 

distribution.  A schematic of jets impinging on a flat foil is shown in Figure 3-10, where 

the two opposite jets were actually offset vertically by 0.63 cm. 

 

3.6 Foil Heating 

  The stainless steel foil used in the experiments is the same as that used in Electra 

and was resistively heated by running an AC current through it.  The adjustment of the 

input power was regulated using a Variac power supply to achieve the desired current, 

which was measured using a shunt.  The actual power input was calculated by first 

determining the resistance of the foil strip according to the temperature-dependent 
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resistivity data of type-304 stainless steel that was provided by the manufacturer.  The 

tabulated data was fitted into a second-order formula as a function of temperature (Figure 

3-11). 

  The average foil temperature was calculated from the experimental 

measurements and this value was used to determine the resistivity of the foil. Then the 

resistance of the foil strip was evaluated by the following equation, 

 

LR
S

ρ=   (Eq. 3-2) 

where ρ is the resistivity, L is the foil length and S is the area of the cross section, 

respectively.  Combined with the measured AC current, I, the input power, P, was 

simply calculated using the relation, P=I2R.  Alternatively, the power input was 

determined from the measured current and the measured voltage drop between the two 

electrodes at opposite ends of the foil. 
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Figure 3-9 Jet cooling setup for the flat foil  
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Figure 3-10 Schematic of impinging jet cooling scheme 
 

 

 

Figure 3-11 Temperature-dependent Resistivity of Type-304 stainless steel 
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3.7 Experimental Measurement Techniques 

  Experimental studies involved the measurements of various parameters under 

different experimental conditions.  Measured quantities included AC heating power 

supplied to the foil, mainstream velocity, the total jet flow rate, and jet and foil 

temperatures.  The heating power was determined by measuring the voltage drop 

between two electrodes and the current running through the foil strip using an Agilent 

data acquisition/switch unit (34970A).  The total jet flow rate of the parallel planar jet or 

the 51 impinging jets was measured using a float-type gas rotameter and the average jet 

exit velocities were evaluated based on the flow rate.  The mainstream velocity was 

measured by a hot-wire anemometer.  The air temperature was measured by a type-E 

thermocouple located at the exit of the rotameter. 

  For the foil temperature measurement, an infrared (IR) thermography camera 

was used to provide detailed temperature information over the entire surface of the foil.  

Additionally, a series of thermocouples attached to the back surface of the foil was used 

to determine the temperature distribution along the centerline of the flat foil for planar jet 

cooling experiments.  The thermography camera (FLIR PM280) was set to focus at the 

mid-section of the foil strip that covered about ten impinging jets.  The IR thermography 

imaging technique needed known emissivity values of the foil that were functions of foil 

temperature.  Because the temperature of the foil was not uniform and only one 

emissivity value could be set on the camera, the relationship between emissivity and 

temperature was experimentally obtained for the temperature range covering the expected 

temperature distribution of the foil.  For each thermocouple temperature value, 

emissivity value setting of the camera was adjusted until the camera temperature reading 
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matched the reading from the thermocouple.  Figure 3-12 plots the temperature 

measurements and the corresponding emissivity values used.  It was found that the 

emissivity has an average of 0.31 and standard deviation of 0.04.  The average 

emissivity value of 0.31 was used for all experiments and the uncertainty of emissivity 

values was accounted for in the error analysis.   

 

 

 

Figure 3-12 Determination of emissivity values for the foil 
 

 

  This process captures the appropriate range of emissivity values to assure that IR 

temperature measurement matches the actual thermocouple measurement.  Observed 

changes in “measured” emissivity do not only represent actual physical changes in 

emissivity of the foil.  Instead they convey the random fluctuation in the measured 
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temperature by the IR camera. 

 

3.8 Data and Error Analysis 

  Heat transfer coefficients and Nusselt numbers based on the jet diameter (D) 

were calculated using the following equations, 

"

f j

qh
T T

=
−

   (Eq. 3-3) 

d
hdNu
k

=    (Eq. 3-4) 

 

  Computing the heat transfer coefficients and Nusselt numbers required the 

determination of the surface heat flux removed by convection heat transfer.  Although 

the thin stainless steel foil was efficiently insulated on its backside, it was necessary to 

account for conduction heat losses through the insulation block and thermal radiation heat 

losses to the environment through the thermography imaging optical access window 

particularly at elevated temperatures.  These two terms were subtracted from the electric 

heating power to determine the net convection heat flux. 

  In addition to the heat transfer coefficients and Nusselt numbers, other important 

parameters including jet Reynolds numbers (Red), jet-foil spacing (L) and jet 

impingement angles (Φ) were taken into account to fully characterize the heat transfer 

characteristics associated with the planar jet or impinging jets. 

  Detailed error analysis has been conducted and is summarized in Appendix A.  

The uncertainty in Jet flow rate measurement is estimated to be less than 3%.  The 
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uncertainty in foil temperature measurement using the infrared thermography camera is 

less than 5%, which accounts for the dependence of emissivity on temperature.  Jet 

velocity distribution has a relatively large uncertainty of about 20%.  The uncertainties 

in heat transfer coefficients and Nusselt numbers are calculated using error propagation 

formula and estimated to about 5% and 6%, respectively. 

 

3.9 Experimental Procedures 

  To investigate the heat transfer enhancement of applying near-wall jets to the foil 

subjected to relatively high heat fluxes, the procedures for each experiment were as 

follows, 

1. Install the foil strip. 

2. Install the jet supply system at the desired spacing and impingement angle. 

3. Connect electric heating circuit. 

4. Turn on the fans to drive the main stream flow past the foil. 

5. Adjust the heating power to the desired value. 

6. Issue jets towards the foil. 

7. Measure various experimental parameters after the foil temperature reaches 

steady state. 

8. Turn off the heating power. 

 

  During each experiment, the control valve at the inlet of the gas rotameter was 

periodically adjusted to compensate for any fluctuation in house air supply so that the jet 
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flow rate remained relatively constant while the foil temperature reached steady state. 
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CHAPTER 4 
 

PLANAR JET COOLING OF A HEATED FLAT FOIL 
 
 
 

4.1 Introduction 

  This chapter presents both of the experimental and CFD results obtained from 

forced convection cooling for a heated flat foil using a near-wall high-speed planar jet.  

Various jet velocities and heat fluxes were examined.  Experimental data were 

correlated into similar empirical forms as suggested in the literature.  The experimental 

results were also compared to the predictions from two-dimensional CFD simulations 

using FLUENT®. 

 

4.2 Experimental Studies of Planar Jet Cooling 

4.2.1 Summary of experimental results 

  To investigate the cooling performance of a planar jet that is injected at the 

leading edge of a heated foil, tests were run at various jet flow rates/velocities and surface 

heat fluxes.  In addition to the mainstream flow field at ~4.0 m/s created by the fans, the 

planar jet (s=1.0 mm, W=34.0 mm) enhances heat transfer thereby reducing the foil 

temperatures.  The foil temperatures are measured by a row of nine evenly-spaced (3.0 

cm apart) thermocouples that are glued to the back of the foil along the centerline of the 
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foil.  Experimental parameters used in the various experiments are summarized in Table 

4-1. 

  Heat transfer enhancement as a result of the plane jet injection was examined 

through a comparison between experimental measurements when the jet was on and those 

when the jet was off.  To accurately determine the convection heat flux transferred to the 

coolant, heat losses from the foil due to thermal radiation to the atmosphere and heat 

conduction from the back surface of the foil to the thermal insulation block were taken 

into account. The amount of heat loss was found to be small because relatively low heat 

fluxes were used in the experiments, thereby reducing the foil temperature.  Figure 4-1 

and Figure 4-2 show the foil temperature profiles and corresponding heat transfer 

coefficient profiles respectively along the centerline of the foil for a surface heat flux of 

2.0 kW/m2. 

 

 

Table 4-1 Experimental parameters for the planar jet cooling experiments 

Bulk flow velocity (m/s) Jet velocity (m/s) Surface heat flux (kW/m2) 
4.0 0 2.0 

4.0 0 4.0 

4.0 25.0 2.0 

4.0 25.0 4.0 

4.0 50.0 2.0 

4.0 50.0 4.0 
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Figure 4-1 Foil temperature profile for various jet velocities (q”= 2.0 kW/m2) 

 

 

 
Figure 4-2 Heat transfer coefficient profile for various jet velocities (q”=2.0 kW/m2) 
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  The results shown in Figure 4-1 and Figure 4-2 indicate that near the leading 

edge, the heat transfer coefficient for the jet at 50.0 m/s is about twice the value for the jet 

at 25.0 m/s and four times the value when only the main stream flow of ~4.0 m/s is 

present and the jet is turned off.  Injection of the planar jet decreases the thickness of the 

thermal boundary layer and thus increases the heat transfer rate from the foil to the main 

stream.  The heat transfer coefficient plot also indicates quickly decaying values 

downstream from the injection point, which results in much higher foil temperatures in 

the upper portion of the foil than in the lower portion when a constant surface heat flux is 

applied.  The degradation in the local heat transfer coefficient arises as the jet mixes 

with the main stream and the boundary layer thickness increases. 

  The heat transfer enhancement produced by the near-wall planar jet is plotted in 

Figure 4-3, where the ratio of heat transfer coefficients with the jet turned on to those 

with the jet turned off is shown as a function of non-dimensional downstream distances 

for a heat flux of 4.0 kW/m2.  The loss in the jet’s momentum as it mixes with the main 

stream causes the heat transfer enhancement ratio to decrease quickly.  For the jet 

velocity of 50.0 m/s, a ratio greater than 4.2 was obtained at the leading edge of the foil, 

while the value drops to less than 1.6 near the end of the foil length; for a jet speed of 

25.0 m/s, the ratio drops from ~2.5 to ~1.2.  The plot also indicates that at a higher jet 

velocity, the rate at which the decaying of the heat transfer enhancement ratio decreases 

downstream from the injection point is much faster. 

 



56 

 

Figure 4-3 Heat transfer enhancement ratio using a near-wall planar jet 
 

 

  Further examination of the experimental results reveals that a higher jet flow rate 

provides better heat transfer enhancement for the foil.  However, higher flow rate 

demands larger pumping power, which adversely affects the overall efficiency of the gas 

laser system.  Figure 4-4 shows the pressure drop between the outlet of the rotameter 

and the jet exit, which accounts for the pressure drop in the piping and the planar jet 

supply system.  As expected, the plot shows a nearly second-order growth rate in the 

pressure drop with increasing jet velocities or jet flow rate.   
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Figure 4-4 Pressure drop between the rotameter and jet exit for various jet velocities 
 

 

  The experimental results also show that with only one planar jet injection point, 

the foil does not cool down as uniformly as desired.  The inefficiency of cooling could 

be alleviated by adding more injection points downstream from the first point (Goldstein, 

1977).  However, this method is not feasible for current gas laser systems because it will 

partially block the pathway of the electron beams and decrease the quality of the laser 

beam, which consequently compromises the focal profile and efficiency of the laser. 

 

4.2.2 Effect of surface heat flux on heat transfer coefficients 

  For the single-phase forced external flow without near-wall jet injection, the heat 

transfer coefficients are independent of the applied surface heat flux.  In the current 
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experimental investigations, different surface heat fluxes were applied to check if the heat 

transfer coefficients were still independent of heat flux when a near-wall jet was used.  

Figure 4-5, which plots the computed heat transfer coefficients at different surface heat 

fluxes (2.0 and 4.0 kW/m2), shows that the heat transfer coefficients are also nearly 

independent of surface heat fluxes when near-wall jets are added. 

 

 

 

Figure 4-5 Effect of surface heat fluxes on the heat transfer coefficients 
 

 

4.2.3 Comparison of experimental results with the literature 

  The experimental results shown in the previous sections presented a consistent 

trend in the heat transfer coefficients, which indicated that an empirical correlation could 
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be obtained through curve fitting.  Lefebvre (1999) introduced a formula for calculating 

Nusselt numbers as a function of the slot Reynolds number and the normalized distance 

downstream of the injection slot for film cooling applications.  In his correlation, the 

Nusselt number was based on the downstream distance (x) from the injection point, so the 

value of Nusselt numbers would increase with the distance despite the decreasing local 

heat transfer coefficients.  To directly show the degrading heat transfer capability in the 

jet cooling, the definition of Nusselt number was modified to be based on the width of the 

jet slot; the correlation of Lefebvre was then modified to the following form, 

s s
xNu C Re
s

β
α ⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

  (Eq. 4-1) 

where 

s
hsNu
k

=     (Eq. 4-2) 

jet jet
s

V s
Re

ρ
μ

=    (Eq. 4-3) 

 

  The constants were determined empirically and different sets of constants were 

obtained when the blowing ratio (m) varied, which was defined as follows, 

jet jetV
m

V
ρ
ρ∞ ∞

=    (Eq. 4-4) 

 

  The constants in the correlation (Eq. 4-1) suggested by Lefebvre (1999) and its 

parameter range of validity are summarized in Tables 4-2 and 4-3, respectively. 
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Table 4-2 Constants used in Lefebvre’s formula 
 

 0.5<m<1.3 m>1.3 

C 0.069 0.10 

α 0.7 0.8 

β -0.3 -0.56 

 

 

Table 4-3 Parameter range of Lefebvre’s correlation 
 

Parameter Range 

m 0.5 - 4.0 

ρjet/ρ∞ 0.8 – 2.5 

s 1.9 – 6.4 mm 

x/s 0 - 150 

 

 

  Experimental data obtained from the current investigation were based on the 

experimental parameters beyond those covered by Lefebvre’s correlation.  The heat 

transfer characteristic at higher blowing ratios, smaller slot widths, and larger 

downstream distances were explored.  However, it was expected that a correlation with 

a similar form would exist albeit with different constants.  To derive the correlation for 

the current data, the linear least squares fitting technique was applied after first 

transforming the data logarithmically.  The obtained correlation was as follows. 

0.7395 0.71120.1682 ( )s s
xNu Re s

−=    (Eq. 4-5) 

 

  This correlation was valid for the experimental parameter ranges summarized in 

Table 4-4.  Figure 4-6 shows the comparison between the correlation and the 
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experimental data, where the correlation was shown to match the data within ±15% for 

the ranges of parameters used.  Different correlation parameters from Lefebvre’s 

correlation were obtained because the study encompassed a very different range of 

experimental parameters, well beyond those covered by Lefebvre’s correlation.  A 

comparison of the current correlation and Lefebvre’s correlation under the same 

experimental conditions also produces some interesting results, especially for the 

experimental parameters used in the current study.  In Figures 4-7 and 4-8, slot 

Reynolds numbers of 1623 and 3276 were used to compute the corresponding Nusselt 

numbers using the above two correlations.  For these cases, calculations showed 

Lefebvre’s correlation predicted Nu numbers 65% and 71% higher than the current 

correlation.  The difference is due to the fact that the two correlations were based on two 

very different experimental parameter ranges (slot width, Reynolds number, and blow 

ratio), resulting in very different coefficients in the correlations.   

 

 

Table 4-4 Summary of the parameter range for correlation given by Eq. 4-5 
 

Parameter Range 

m 6.25 - 12.5 

Res 1600 - 3200 

x/s 30 - 270 

ρjet/ρ∞ ~ 1.0 
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Figure 4-6 Nusselt number correlation for planar jet cooling 

 

 

 
Figure 4-7 Comparison of the Nusselt numbers obtained using Eq. 4-1 and Eq. 4-5 (Res=1632) 
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Figure 4-8 Comparison of the Nusselt numbers obtained using Eq. 4-1 and Eq. 4-5 (Res=3276) 

 

 

4.3 CFD Studies of Planar Jet Cooling 

4.3.1 Model description and simulation parameters 

  CFD simulations were performed using the commercial CFD code package, 

FLUENT®, to predict the fluid mechanics and heat transfer behaviors of planar near-wall 

jets.  The model neglected the lateral temperature variation along the foil width because 

of the large aspect ratio of both the planar jet and the foil strip, so a simplified 

two-dimensional grid was proposed and created in GAMBIT®.  As shown in Figure 4-9, 

the flat foil was modeled as a rigid wall of the same length as the actual foil with a 

thermal insulation block attached to the back.  The foil was cooled by the combined 
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convection heat transfer from both the main stream flow at a low speed and the planar jet 

at a much higher speed, both of which were enclosed in a rectangular area serving as the 

modeling boundary of the flow field. 

  In all simulations, boundary conditions were set appropriately to the previously 

known or experimentally measured values.  The volumetric heat generation rate within 

the foil was specified based on the measured electric power input.  Mass flow rate inlet 

boundary conditions were used for the jet inflow according to the measured flow rate.  

Other boundary conditions, such as the inlet and outlet of the main stream flow, were set 

as regular pressure inlet and outlet conditions accordingly.  For the surfaces in contact 

with the ambient, a low convection heat transfer coefficient (~5.0 W/m2-K) was set to 

accommodate the natural convection heat transfer to the environment.  The meshing of 

the model incorporated a gradually changing scheme, in which very fine meshes were 

created near the foil to increase the resolution of the boundary layer, while relatively 

coarse meshes were applied to the bulk flow to increase the simulation speed.  The 

model employed 160,000 rectangular cells. 
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Figure 4-9 FLUENT model for planar jet cooling simulations 
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  Besides setting appropriate boundary conditions, it was also very crucial to apply 

suitable viscous models for the modeling of turbulence.  Steady-state simulations 

performed in this study adopted both standard and RNG k-ε turbulence models.  The 

RNG k-ε model provides a special formula for the effective viscosity that accounts for 

low-Reynolds-number effect, which is expected to be suitable for the current study since 

the jet Reynolds numbers were relatively low (1600 to 3200).  The results were 

compared to those using the standard k-ε model, which is a high-Reynolds-number model.  

The simulations used the standard wall function for both models and kept the suggested 

model constants.  The simulations ran until the residuals of the continuity equation, the 

momentum equations and the energy equation decreased below the preset values (1E-3 

for the continuity and momentum equations, 1E-6 for the energy equation).  The results 

provided detailed information about both the temperature and flow field distribution, in 

which the calculated heat transfer coefficients were compared to the experimental results.  

The numerical results were in good agreement with the experimental measurements and 

could be used to provide detailed information about the evolution of the jet along the 

flow direction. 

 

4.3.2 Comparison of simulation results with experimental data 

  The measured foil temperature and heat transfer coefficients were compared to 

the CFD predictions for a case with the heat flux set at 2.0 kW/m2 and the jet velocity at 

25.0 m/s.  Figure 4-10 compares the foil temperature profile for the experiment and the 

simulation; good agreement is observed.  The standard k-ε turbulence model performed 
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slightly better than the RNG model.  Figure 4-11 provides a comparison between the 

surface heat transfer coefficients obtained in the experiment and the simulation.  Both 

figures showed that for the first half length of the foil, the CFD predictions were very 

close to the experimental results for both turbulence models, but the difference increased 

when the jet flow proceeded to the top of the foil and mixed with the free stream. 

 

 

 

 

Figure 4-10 Comparison of foil temperature of the experiment and CFD simulations 
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Figure 4-11 Comparison of heat transfer coefficient of the experiment and CFD simulations 

 

 

  The above figures show that the results predicted by the FLUENT model are in 

reasonable agreement with the experimental data.  The agreement suggests that the 

model used here can be used to predict the behaviors of planar jet cooling experiments.  

The CFD simulations also contained detailed information about the flow field, in which 

the change in the velocity component parallel to the foil surface was of most interest.  

This velocity component, or the related momentum flux, was mainly responsible for 

convection heat transfer enhancement for the foil in planar jet cooling.  The reduction in 

heat transfer enhancement along the flow direction was closely correlated to the reduction 

in the parallel momentum flux. 

  Figures 4-12 and 4-13 show the parallel velocity component profiles at various 

elevations and the contour of the velocity magnitude.  The profiles expand and result in 
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a lower velocity gradient at the wall as the jet proceeded upwards.  More importantly, 

the maximum velocity value decreases and the location of the maximum value moves 

away from the foil, i.e. the wall shear stress decreases, which indicates the drop in 

convection heat transfer rate at higher elevations.  A further examination of the contour 

plot shows that at a downstream distance of about 60 times the jet thickness, the 

maximum velocity is only about 30% of the jet exit velocity.  This behavior explains 

why the heat transfer coefficients decay quickly along the length of the foil. 

  Near the top of the foil, the velocity profile becomes flatter because the effect of 

the jet diminishes due to jet deceleration, and the convection heat transfer was much 

more closely governed by the main stream flow.  This was confirmed in the experiments, 

in which the heat transfer coefficients near the foil top with a jet injection were nearly the 

same as the values at the same location when no jet was present.  The variation of the 

maximum parallel velocity component was also experimentally measured using a thermal 

anemometer.  The measurements were compared to the CFD predictions in Figure 4-14.  

The agreement observed here further verifies the rapidly decreasing jet velocity along the 

flow direction, and confirms the suitability of the FLUENT model for predicting the 

behavior of planar jets. 
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Figure 4-12 Normalized parallel velocity at various elevations 
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Figure 4-13 Contour of the parallel velocity inside the channel 
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Figure 4-14 Maximum parallel velocity along the flow direction 
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CHAPTER 5 
 

IMPINGING JET COOLING OF A HEATED FLAT FOIL 
 
 
 

5.1 Introduction 

  To alleviate the shortcomings inherent in the planar jet cooling scheme, namely 

the inadequacy of cooling the top half of the hibachi foil, the concept of impinging jet 

cooling was proposed and investigated as an alternative effective cooling scheme.  

Convection heat transfer rate from the entire surface was elevated when rows or arrays of 

jets were arranged in a fashion such that the surface was uniformly covered.  The heat 

transfer enhancement depended on jet Reynolds number, jet-to-jet pitch, jet-to-foil 

spacing, and jet impingement angles on the foil.  This chapter summarizes both 

experimental and numerical investigations of impinging jet cooling of a flat foil. 

 

5.2 Experimental Studies of Impinging Jet Cooling of a Flat Foil 

5.2.1 Experimental parameters 

  The performance of impingement jet cooling was affected by various 

experimental parameters.  In order to identify the essential factors that controlled heat 

transfer enhancement involved in impinging jet cooling, the jet-to-jet spacing on the jet 

tube in the current investigations was fixed at 1.25 cm in order to reduce the degree of 
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freedom in the experimental parameters.  This spacing was based upon earlier tests to 

maximize foil coverage and produce relatively uniform jet velocities along the length of 

the tube.  Experiments were performed while varying jet flow rate, jet-to-foil spacing, 

jet diameters and jet impingement angles, with the impingement locations determined by 

the spacing and impinging angles.  Surface heat flux values higher than 20.0 kW/m2 

were used in the experiments.  Detailed experimental parameters are summarized in 

Table 5-1, where the impingement distance column refers to the distance of jet 

impingement location on the foil from the foil edge shown as a fraction of the foil width 

(W).  Three jet headers with different jet diameters were used.  Jet flow rates were 

chosen so that the jet Reynolds numbers overlapped for the different jet diameters.  A 

large number of experiments were carried out to cover the ranges of the parameters. 

 

 

Table 5-1 Experimental matrix of impinging jet cooling for a flat foil 
 

Jet diameter 
(mm) 

Spacer thickness 
(mm) 

Impingement 
distance 

Jet velocity 
(m/s) Red 

10 518 
20 1035 
30 1552 0.8 5.0-9.0 1/2W, 1/8W 

40 2070 
10 1552 
20 2329 
30 2717 1.2 5.0-9.0 1/2W, 1/8W 

40 3105 
10 1035 
20 2070 
30 3105 1.6 5.0-9.0 1/2W,1/8W 

40 4140 
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  To characterize the heat transfer enhancement from the impinging jets, data 

analysis was performed for only one portion of the cooled foil that covered 

approximately four jets impinging on the foil.  A typical experimental IR image is 

shown in Figure 5-1, for which both minimum and average temperatures were 

determined and the corresponding maximum and average heat transfer coefficients were 

calculated. 

 

 

 
Figure 5-1 A typical IR image with the highlighted analysis box (shaded rectangle) 

(Vjet=10.0 m/s, djet=1.2 mm, impinging location: 1/8W, spacer thickness=5.0 mm) 
 

 

  The temperature and heat transfer coefficients were characterized as functions of 

jet-to-foil spacing, and impinging angles.  These two variables, in addition to the jet 

Reynolds number, completely dictated the heat transfer rate of impinging jets in the 

current investigation, where the jet-to-jet spacing was fixed.  Figure 5-2 shows the 
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schematic of impinging jet cooling scheme, where L is the distance traveled by the jet 

before impingement, Φ is the impingement angle, and S is the thickness of the spacer 

separating the foil from the jet tubes where the jets are issued.  The impinging angle and 

jet-to-foil spacing was adjusted by the combined effect of the spacer thickness and the 

rotation of the jet tube.  Since the main objective of this study was to investigate the 

extent to which the heat transfer was enhanced with impinging jet impingement, 

experiments were run and IR images were recorded with each image corresponding to a 

distinctive case.  Heat transfer characteristics including maximum and average heat 

transfer coefficients and Nusselt numbers were calculated and analyzed as functions of jet 

Reynolds numbers, jet impingement angles, and jet-exit-to-foil spacing. 

 

 

 

Figure 5-2 Schematic of impinging jet cooling of a flat foil 
 

 

 



77 

5.2.2 Summary of experimental results 

  A total of 96 experiments were run and 96 distinct IR images were generated.  

Each IR image corresponded to a set of experimental parameters, for each of which the 

maximum and average heat transfer coefficients and corresponding Nusselt numbers in 

the analysis box were computed.  Before the jet was turned on, the average heat transfer 

coefficient resulting from the fan-driven bulk flow was first determined to be 59.3 

W/m2-K in the analysis box.  Smirnov, et al. (1961) proposed that for 0.5<L/d<10.0 and 

at a fixed impinging angle, the Nusselt number at the stagnation point is a function of 

Reynolds number and jet-to-foil spacing, and takes the following form, 

( )2 1/3
,max 1 3exp /C

d dNu C Re Pr C L d=   (Eq. 5-1) 

where, 

max
,maxd

h dNu
k

=     (Eq. 5-2) 

jet
d

V d
Re

ρ
μ

=     (Eq. 5-3) 

 
  The correlation indicated that the Nusselt numbers were a power function of 

Reynolds number and also very sensitive to the jet-to-foil distance due to its exponential 

dependence.  The correlation was shown to be in good agreement with the experiments 

of Smirnov, et al. (1961). 

  Experimental results from the current study were expected to follow a similar 

form when correlating the Nusselt numbers.  For the current study, at a fixed impinging 

angle of 47o, a multivariate linear regression analysis rendered the following equation for 

experimental Nusselt numbers at the stagnation point as a function of jet Reynolds 
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numbers and jet-to-foil spacing, 

( ) 0.8403 1/ 3
,max 0.0839exp 0.0994 /d dNu L d Re Pr= −   (Eq. 5-4) 

 

  The above correlation accounted for both the effects of jet-to-foil spacing and 

Reynolds number at a given impact angle.  Figures 5-3 and 5-4 show the correlation 

predictions along with the experimental data in a collapsed form.  Most of the 

experimental data points fall within ±10% of the correlation predictions.  The 

comparison again confirms that the Nusselt number was very sensitive to the jet-to-foil 

spacing due to its exponential dependence. 

  It is also very important to determine the overall and average heat transfer 

enhancement for the entire foil surface.  For this purpose, average heat transfer 

coefficients and Nusselt numbers were obtained.  Figures 5-5 and 5-6 show the average 

Nusselt number as a function of jet Reynolds number and jet-to-foil spacing in collapsed 

forms.  The results were also correlated into the same form as that used for the 

maximum Nusselt number.  The resulting correlation is given in Eq. 5-5: 

( ) 0.7786 1/ 3
, 0.0583exp 0.0691 /d avg dNu L d Re Pr= −   (Eq. 5-5) 

 

  The figures show that the correlation predicted the experimental data reasonably 

well, which indicated the correlation could be used to estimate the average heat transfer 

enhancement for the hibachi foil cooling in the gas lasers. 
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Figure 5-3 Comparison of maximum Nusselt numbers between correlation and experiments 
(Reynolds number as the independent variable) 

 

 

 

 

Figure 5-4 Comparison for maximum Nusselt numbers between correlation and experiments 
(Normalized Jet-to-foil spacing as the independent variable) 
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Figure 5-5 Comparison of average Nusselt numbers between correlation and experiments 
(Reynolds number as the independent variable) 

 

 

 

Figure 5-6 Comparison for maximum Nusselt numbers between correlation and experiments 
(Normalized jet-to-foil spacing as the independent variable) 
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5.2.3 Effect of jet Reynolds numbers 

  The experimental results obtained in this investigation will help determine the 

required total jet flow rate for the actual laser foil to meet the imposed constraint on the 

foil’s maximum temperatures.  However, the requirement of laser efficiency puts a limit 

on the available power of foil cooling, which in turn restricts the allowable pumping 

power.  

  Figures 5-7 and 5-8 show the maximum heat transfer coefficients and 

corresponding maximum Nusselt numbers as functions of jet Reynolds numbers for the 

case where the jets were issued towards the foil at a distance of 8.7 mm and an impinging 

angle of 47o, i.e. the distance between the impingement point and the foil edge is 1/8 of 

the foil width. 

  The plots above show that higher jet Reynolds numbers result in higher heat 

transfer coefficients.  It is also interesting to note that heat transfer coefficients for 

different jet diameters are nearly identical for the same jet Reynolds number.  Figure 5-9 

shows comparison between the experimental data and the correlation obtained in Eq. 5-4.  

The correlation was able to predict most of the experimental data points for this special 

case within an agreement of ±10%.  

  The average heat transfer coefficients for the analysis box were also computed 

for the same case to provide the detailed information about the overall heat transfer 

enhancement.  Figures 5-10 and 5-11 show the average heat transfer coefficients and 

Nusselt numbers as functions of Reynolds number at various jet diameters.  Compared 

with the maximum plots above, the average showed a slower rate of increase with 

Reynolds numbers.  When implementing the actual foil cooling practice in the gas laser, 
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the knowledge on average heat transfer coefficients will provide the information as to 

determine the desired jet flow rate under the constraint of pumping power assigned for 

foil cooling to preserve the required laser efficiency. 

 

 

 

 

Figure 5-7 Maximum heat transfer coefficients at various Reynolds numbers 
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Figure 5-8 Maximum Nusselt numbers at various Reynolds numbers 
 

 

 

Figure 5-9 Comparison between experimental data and correlation  
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Figure 5-10 Average heat transfer coefficients as a function of Reynolds number 
 

 

 

Figure 5-11 Average Nusselt number as a function of Reynolds numbers 
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  Figure 5-12 also provides a comparison between the experimental results and the 

correlation (Eq. 5-5) of the average Nusselt numbers.  The correlation is able to predict 

the experimental data within ±20%, which indicates that the correlation is suitable for 

predicting the cooling performance for the actual foil cooling for the gas laser.  The 

selection of jet flow rate is limited by the available pumping power allocated for foil 

cooling, which is proportional to the product of jet flow rate and the pressure drop.  The 

pressure drop between the exit of the rotameter and jet exits in the apparatus was 

measured for various jet Reynolds numbers for different sizes of jets for one set of two jet 

tubes that contain a total of 51 jets.  Figure 5-13 and Figure 5-14 show the pressure drop 

and the pumping power for various jet Reynolds numbers and jet diameters, respectively.  

The figures show that the pressure drop increases significantly with jet Reynolds number.  

The figures also show that at the same jet Reynolds number, jets of a smaller diameter 

have a much higher pressure drop due to higher jet velocity.  
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Figure 5-12 Comparison of experiments and the correlation for average Nusselt numbers 

 

 

 

Figure 5-13 Pressure drop in the jet supply system at various jet Reynolds numbers 
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Figure 5-14 Pumping power for the jet supply system at various jet Reynolds numbers  

 

 

5.2.4 Effect of jet-to-foil spacing 

  The distance between the jet exit and its impingement point on the foil is one of 

the dominant factors that govern the heat transfer characteristics in impinging jets.  

Nusselt numbers were shown to be strongly dependent on the normalized jet-to-foil 

spacing.  Increasing the jet-to-foil spacing significantly reduces the convection heat 

transfer rate for cooling the heated surface.  Experimental data were obtained at various 

values of jet-to-foil spacing that covered the desired operating parameter range for the 

actual foil cooling in Electra.  Figure 5-15 and Figure 5-16 show the effect of jet-to-foil 

spacing on the heat transfer coefficients and Nusselt number at the stagnation point for 
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different jet Reynolds numbers for jet diameter at 1.2 mm. 

  The plots show that the heat transfer coefficient decreases when the jet-to-foil 

spacing increases for all Reynolds numbers.  Also the heat transfer coefficient decays at 

a faster rate at higher Reynolds numbers than at smaller Reynolds numbers.  This is 

because the jet at higher Reynolds numbers has a longer potential core (i.e. the region 

downstream from the exit within which the uniform exit velocity is preserved) and its 

impingement heat transfer is more sensitive to the change in jet-to-foil spacing than the 

jet at lower Reynolds numbers.  To achieve high heat transfer rate, smaller jet-to-foil 

spacing is desired in Electra. 

  Figure 5-17 and Figure 5-18 also plot the average heat transfer coefficients and 

associated Nusselt numbers for various Reynolds numbers.  The plots show that the 

average quantities also decrease with jet-to-foil spacing but at a lower rate of decreasing.  

The results indicate that for the actual hibachi foil cooling in Electra it is desirable to 

issues the jets as closely as possible to the foil to achieve the maximum heat transfer 

enhancement for the foil.   
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Figure 5-15 Maximum heat transfer coefficients vs. jet-to foil spacing at different Reynolds number 
 

 

 

Figure 5-16 Maximum Nusselt numbers vs. jet-to foil spacing at different Reynolds numbers 
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Figure 5-17 Average heat transfer coefficients vs. jet-to foil spacing at different Reynolds numbers 

 

 

 

Figure 5-18 Average Nusselt numbers vs. jet-to foil spacing at different Reynolds numbers 
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5.2.5 Effect of jet impingement angles 

  Previous experimental studies indicated that maximum heat transfer rate was 

attained when the jet impinges on the surface perpendicularly.  At other obliquely 

impinging angles, the heat transfer rate was reduced; the extent of reduction was 

dependent on the actual impact angle.  For the specific application of gas laser’s hibachi 

foil cooling, jets have to be issued obliquely from two parallel jet tubes that are located 

on the two foil’s edges to minimize the blockage of electron beam.  Also the diameter of 

the jet tube has be less than or equal to the rib width in order not to affect the pathway of 

electron beams.  In the current investigation, where the foil has a large aspect ratio, two 

different impact angles (47o and 24o) were investigated.  At these two angles, the jets on 

each side of the foil were aligned to impinge on two vertical lines.  The first one was 1/8 

of the foil width from the edge, while the other corresponded to jet impinging at the 

centerline between two adjacent ribs.  These two configurations offered a direct 

comparison of the effect of impinging angles on the heat transfer capability.   

  When the impact angle changed from 47o to 24o, the experimental data were 

correlated in a different form due to the dependence of Nusselt number on the impinging 

angle.  The previous correlation accounted for both jet-to-foil spacing and jet Reynolds 

number.  When the impact angle changes, the dependence on jet Reynolds number is not 

expected to change since jet Reynolds number is independent of the impact angle.  

However, the jet-to-foil spacing was affected by the impact angle; hence a change in the 

coefficient was expected for the jet-to-foil spacing. 

  The multivariate linear regression technique was applied to the experimental 

data with an impingement angle of 24o and a correlation was obtained, 
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( )0.8472
, 0.0422 exp 0.0492d max d

LNu Re d= −   (Eq. 5-6) 

 
  Figure 5-19 shows the above correlation and the experimental data in a collapsed 

form.  The correlation was shown to be able to predict most experimental points with an 

accuracy of ±10%. Compared to the correlation for the impact angle at 47o, changes in 

the constants were observed as expected.  The exponent for jet Reynolds number was 

nearly unchanged (0.8472 vs. 0.8403), while the constant in the exponential function for 

the jet-to-foil spacing increased from -0.0994 to -0.0492, and the proportional constant 

decreased from 0.0734 to 0.0422.   

  It is interesting to graphically show the variation of these two correlations over 

the spacing at a fixed jet Reynolds number.  Figure 5-20 shows the change of Nusselt 

number as a function of normalized jet-to-foil spacing at a fixed Reynolds number of 

3000 for the two impingement angles.  For the larger angle, Nusselt number decreased 

exponentially at a faster rate than at the smaller angle.  When the normalized jet-to-foil 

spacing was less than 10.0, Nusselt numbers were larger at the bigger impact angles.  

For normalized jet-to-foil spacing greater from 10.0, Nusselt numbers at the smaller 

impact angle became larger than those with the larger impact angle.  For the cooling of 

the hibachi foil, the impinging jets were restricted to issue from two jet rows that sit 

parallel to the two edges of the vertically-installed foil.  By this configuration and at a 

fixed spacer thickness, the actual jet-to-foil spacing was much larger at a smaller impact 

angle, which resulted in much lower heat transfer coefficients.  The jet-to-foil spacing 

can be adjusted by placing “spacers” between the header tube and the foil plane (see 

Figure 5-2).  Figure 5-21 shows the normalized Nusselt number as a function of the 

spacer thickness used in the experiments for a jet diameter of 1.2 mm.  The figure shows 
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that the normalized Nusselt number at 47o was about twice the values at 24o, which 

implied that it was desirable to issue the jets at large angles and near the edges of the foil 

to effectively cool the gas laser’s hibachi foil.  The figure also shows that the Nusselt 

number gradually decreases as the spacer thickness increases. Hence, the hibachi cooling 

system design should minimize the distance between the header tubes and the foil plane 

(i.e. the ribs). 

 

 

 

Figure 5-19 Comparison between experimental data and the correlation for Nud, max  
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Figure 5-20 Comparison of Nusselt number variation at different impingement angles 
 

 

 

Figure 5-21 Comparison of Nusselt number at different impinging angles 
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5.2.6 Effect of impingement location on average heat transfer rates 

  The proposed impinging jet cooling scheme issues small-diameter circular jets 

obliquely towards the foil from two parallel jet tubes that are attached to the edges of the 

foil.  Jets impinge on the foil at locations either very close to the edges or near the 

centerline, which have very different flow path and impact angles before impingement.  

At a fixed jet Reynolds number, these two configurations presented very different heat 

transfer characteristics due to their different flow path and impact angles.  It was shown 

in the previous section that at the same spacer thickness and jet Reynolds number, jets 

that impinge near the foil edge produced larger stagnation Nusselt numbers than those 

impinging on the centerline of the foil due to the dominance of the jet-to-foil spacing.  It 

was also shown that when the jet-to-foil spacing increases, Nusselt numbers at large 

impact angles decayed exponentially at a faster rate than those at a smaller angle.  This 

may affect the average cooling effectiveness when it comes to the consideration of 

overall cooling performance. 

  Average Nusselt numbers at these two different impinging locations were 

computed at various Reynolds numbers.  Figure 5-22 shows the average Nusselt 

numbers over the analysis box as a function of jet Reynolds numbers with jet diameter of 

1.2 mm and the same spacer thickness of 0.5 cm for both impingement locations.  Due 

to the shorter flow path, jets impinging near the edge of the foil produced much higher 

average heat transfer coefficients (i.e. Nusselt numbers) than jets issued towards the 

centerline of the foil.  It again confirms that for the application of foil cooling in gas 

lasers it is desirable to issue the jets that impinge very close to the foil edge, which offers 

better overall heat transfer enhancement for the hibachi foil. 
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Figure 5-22 Average Nusselt number at different impingement locations 
 

 

5.3 CFD Studies of Impinging Jet Cooling for the Flat Foil 

5.3.1 Model geometry 

  CFD simulations of impinging jet cooling for a flat foil require a 

three-dimensional model due to its three-dimensional flow field.  The large ratio 

between the bulk flow area and the small jet area presents a big challenge in the 

nodalization of the model to avoid generating many highly skewed cells.  A 

three-dimensional model was created in GAMBIT® for CFD simulations in FLUENT®, 

which included the following simplifications: 
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 The geometry of the model had a smaller bulk flow area and a shorter foil length 

than the actual flow channel to decrease computational demands; 

 A total of 20 interlacing jets were modeled with ten jets on each side; 

 The impinging jets were modeled as issuing all at the same velocities from 

circular openings on two vertical side surfaces, with the specified mass flow rate 

and at the specified orientations; 

 The foil was modeled as a wall under constant surface heat flux that was set at 

the estimated value from the measured power input; 

 The bulk flow was simulated by imposing an inflow with a uniform velocity 

profile. 

 

  Figure 5-23 shows the rectangular parallelepiped model created using 

GAMBIT® for CFD simulations in FLUENT®.  The model is 12.5 cm high, 3.4 cm wide 

and 4.1 cm deep.  Jets are evenly spaced along the length of the two sides at intervals of 

1.25 cm.   Each jet diameter is 0.8 mm and is separated from the foil by a horizontal 

distance of 0.5 cm.  These parameters are fixed for the simulation performed here.  The 

Reynolds numbers and jet impingement angles are the variables. Since the model 

geometry is smaller than the actual geometry of the test section, the boundary conditions 

at the side surfaces (except the foil surface) are set such that there is gas entering and 

leaving.  This is a reasonable approximation for the phenomena occurring in the 

experiments. 

  The meshing of the model needs to resolve the jets that are of very small area, 

which requires a large number of nodes to be used.  A total of 408,400 cells are 
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generated for the 3D model.  A close-up view of the meshing nearing the jet is shown in 

Figure 5-24.  An unstructured mesh was generated for the jet surface to provide good 

resolution for the area in the vicinity of the jet inlet.  The meshing of the 3D model is 

performed by sweeping horizontally between two side walls and generating a regular grid 

of hexahedral elements, which helps improve the speed of convergence in the 

simulations. 

 

5.3.2 Boundary conditions 

  The main boundary conditions used in the steady-state CFD simulations in 

FLUENT® are specified as follows: 

 q": The uniform surface heat flux specified at the foil surface (W/m2). 

 inm : The mass flow rate at the jet exit with appropriate orientations (kg/s).  

For turbulence modeling, the turbulence intensity at the inlet is calculated 

using an empirical correlation suggested in the FLUENT® user manual: 

0.1250.16I Re= . 

 Tin: The air temperature at the inlet (oC). 

 hconv: The convection heat transfer coefficient at the side walls to account for 

the heat loss to the surroundings due to natural convection (W/m2-K). 

 Pressure outlet: This boundary condition is set at the top and three side 

surfaces to allow the spent air resulting from jet impingement to leave and 

enter. 
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Figure 5-23 CFD model for impinging jet cooling for the flat foil 
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Figure 5-24 Close-up of the computation grid for impinging jet cooling for the flat foil 

(29 unstructured elements were generated for the jet for good resolution) 

 

 

  In addition to the boundary conditions, air is used in all the simulations and is 

regarded as an ideal gas for the compressible flow. 

 

5.3.3 Simulation parameters and results 

  CFD simulations performed in the current investigations use a simplified 3D 

model plus simplified boundary conditions, so it is not surprising that the results from 

these simulations deviate from the current experimental results.  The purpose of the 

CFD simulations is to show that CFD tools can predict the heat transfer characteristics of 

impinging jet cooling.  In the simulations, the jet orientation is adjusted so that the 

impingement locations are the same as in the experiments.  The mass flow rates of the 
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jets, the bulk flow, and the surface heat flux of the foil are set to the corresponding 

experimental values.  Also, the second-order upwind differencing scheme is applied for 

solving continuity, momentum energy, turbulence kinetic energy, and turbulent 

dissipation rate equations for a more accurate solution.  The convergence criteria for all 

the variables, i.e. the residual limits, are set at 1e-6 for the energy equation and 1e-3 for 

all the other equations. 

  Realizable k-ε turbulence model with non-equilibrium wall function was used in 

the simulation, which was suggested by FLUENT® manuals for impinging jet modeling 

(Shih, et. al., 1995).  This modified turbulence model incorporates a new formulation for 

the turbulent viscosity and a new transport equation for the turbulent kinetic energy 

dissipation rate (ε) that was derived from the exact formulation for the transport modeling 

of the mean-square vorticity fluctuation.  This model offers an immediate benefit in 

more accurately predicting the spreading of the impinging jets.  For near-wall treatment 

in the simulations, the non-equilibrium wall functions were invoked, which is based on a 

two-layer concept to compute turbulent kinetic energy in the near-wall cells and can 

partly account for the non-equilibrium effect that is neglected in the standard wall 

function (Kim and Choudhury, 1995).  The non-equilibrium wall functions are 

suggested to be used in complex flows where the mean flow and turbulence changes 

rapidly, such as in the impingement zone of an impinging jet.  

  In the simulation, air jets of 0.8 mm diameter and 30.0 m/s (Red=1552) are 

aimed to impinge on the foil at an impinging distance of 1/8W with a spacer thickness of 

0.5 cm, which corresponds to the non-dimensional jet-to-foil spacing of 8.8.  The bulk 

flow was imposed at the inlet of the model.  The surface heat flux at the foil is set at 
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20.0 kW/m2, which is a typical experimental value. 

  Figure 5-25 shows the contour of the foil temperature for the above case.  It is 

obvious that there is a strong periodic behavior in the distribution of foil temperature.  

However, the area near the channel inlet is strongly affected by the boundary condition 

and model geometry (the bottom and top jets are very close to the inlet and outlet).  To 

illustrate the jet impinging cooling characteristic, the analysis was restricted to four jets 

located on the jet row on each side to reduce the entrance effects on the simulation results, 

which corresponded to a smaller foil area for analysis (3.4 cm wide and 5 cm high, black 

dotted area in Figure 5-25). 

  Figure 5-26 and 5-27 show the contours of foil temperature and heat transfer 

coefficients of the analysis rectangle, respectively.  Areas of hot spots are found to be 

near the centerline of the foil due to the limited spread of the jet.  The maximum and 

average heat transfer coefficients are 98.1 and 73.1 W/m2-K, respectively.  However, the 

contours do not show the normal elliptic shape of spread, but shows a distorted shape, 

indicating the irregular jet spread predicted by the turbulence model.  The predicted heat 

transfer characteristics are closely related to the jet flow distribution upon impingement.  

Figure 5-28 shows the pathlines of the jets coming out of the left row of holes before and 

upon impingement.  It clearly shows that the jet first spreads out before impingement 

and a split in the jet is formed that causes the distortion in the heat transfer characteristics 

upon impingement. 

  An experimentally obtained IR image with similar parameters as the simulated 

case is shown in Figure 5-29.  Comparing it to the simulated temperature contour, the 

CFD model is able to predict the similar pattern of temperature distribution, though it 
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predicts higher foil temperature.  This is because this model is much smaller in size than 

the actual experimental setup and less heat can be dissipated or transferred to the ambient, 

which produces higher foil temperatures even though the same surface heat flux is used 

in the simulations. 

 

 

 
Figure 5-25 Simulated foil temperature contour (K) 
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Figure 5-26 Contour of foil temperature (K) of the analysis rectangle 

 

 

 
Figure 5-27 Contour of heat transfer coefficients (W/m2-K) of the analysis box 
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Figure 5-28 Predicted pathlines (colored by velocity magnitude) of the impinging jets 

 

 

 
Figure 5-29 Experimental IR image 

(ε=0.31, d=0.8 mm, Vjet=30.0 m/s, impinging distance: 1/8W) 
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CHAPTER 6 
 

IMPINGING JET COOLING OF A HEATED SCALLOPED FOIL 
 
 
 

6.1 Introduction 

  A new hibachi foil design was proposed and developed by the Naval Research 

Laboratory that utilized a scalloped-shape foil to improve the performance of the hibachi 

foil by minimizing the thermal and mechanical stresses resulting from rep-rate operation.  

Compared to the flat foil, the concave foil was pre-stressed during the installation and 

could better accommodate both the large pressure force applied on the foil by the laser 

gas and the thermal stress resulting from the large temperature rise in the foil due to 

e-beam attenuation.  Numerical stress analysis showed reduced thermal and mechanical 

stress for the scalloped design under the projected rep-rate operating conditions (Aoyama, 

et al., 2008).  However, even with this improved design, the heating of the foil due to 

electron beam attenuation still raises the foil temperature above the allowable 

temperature limits.  Hence, it is anticipated that an external cooling scheme would be 

necessary to effectively control the foil temperature during e-beam firing. 

  Impinging jet cooling has been shown to be able to effectively enhance 

convection heat transfer for the flat foil.  Preliminary experiments also indicated that 

impinging jets also substantially reduced the temperature of a heated scalloped foil.  

This chapter summarized the experimental studies of impinging jet cooling for the 

scalloped hibachi foil under the simulated operating conditions of the Electra gas laser.  
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CFD simulations of impinging jet cooling for the scalloped foil are also summarized and 

discussed. 

 

6.2 Experimental Studies of Impinging Jet Cooling of a Scalloped Foil 

6.2.1 Experimental parameters 

  Similar to the impinging jet cooling for the flat foil, the heat transfer 

performance of cooling a scalloped foil is governed by those common parameters, mainly 

jet Reynolds number, jet-to-foil spacing, and impingement angles.  The only difference 

lies in the shape of the foil: curved versus flat.  To understand the extent of heat transfer 

enhancement resulting from the impinging jets, experiments were carried out by varying 

jet flow rate, jet-to-foil spacing, jet diameters and jet impingement locations.  Detailed 

experimental parameters are summarized in Table 6-1, where the number shown in the 

impingement column represents the fraction of the foil width corresponding to the 

distance between the jet impingement location and the edge of the foil.  As indicated by 

the numbers, two impingement locations were used so that jets were issued towards either 

the centerline of the foil or the edges of the foil.  Three sets of jet tubes of different jet 

diameters were used with 51 holes on each set.  Jet flow rates were chosen so that the jet 

Reynolds numbers overlapped for different jet diameters.  A large number of 

experiments were carried out to cover the entire parameter range described in Table 6-1. 

  To characterize the heat transfer enhancement, the same data analysis was 

performed for only one portion of the cooled foil that covered about four impinging jets 

on the foil.  Figure 6-1 shows the detailed impinging jet cooling scheme for the 



108 

scalloped foil, where L is the distance traveled by the jet before impingement and S is the 

thickness of the spacer used in the experiments.  The impingement locations and 

jet-to-foil spacing were adjusted by the combined effect of the spacer thickness and the 

rotation of the jet tube, with the angle of rotation pre-calculated and marked on the jet 

tube.  A sample IR image is shown in Figure 6-2 for data analysis.  For the analysis 

box, both minimum and average temperatures were extracted and the corresponding 

maximum and average heat transfer coefficients were calculated.  The temperature and 

heat transfer coefficients were characterized as the functions of jet Reynolds numbers, 

jet-to-foil spacing, and impingement locations.  These three variables completely 

characterized the heat transfer capability of impinging jets.  . 

 

 

Table 6-1 Experimental matrix of flat foil jet cooling 

Jet diameter 
(mm.) 

Spacer thickness 
(cm.) 

Impingement 
distance 

Jet velocity 
(m/s) Red 

10 518 
20 1035 
30 1552 0.8 0.13-0.50 1/2W, 1/8W 

40 2070 
10 1552 
20 2329 
30 2717 1.2 0.13-0.50 1/2W, 1/8W 

40 3105 
10 1035 
20 2070 
30 3105 1.6 0.13-0.50 1/2W, 1/8W 

40 4140 
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Figure 6-1 Schematic of impinging jet cooling for the scalloped foil 
 

 

 

Figure 6-2 A typical IR thermal image for data analysis (white rectangular box) 
(Vjet=10.0 m/s, d=1.2 mm, Impinging distance: 1/8W, Spacer thickness= 1.27 mm) 
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6.2.2 Summary of experimental results 

  A total of 96 experiments were carried out which produced 96 distinctive IR 

thermal images, each of which represented a separate set of experimental parameters.  

For each image, the maximum and average heat transfer coefficients and corresponding 

Nusselt numbers in the analysis box were calculated.  It was shown previously in 

Chapter 5 that for a flat foil, the Nusselt numbers depend only on the Reynolds numbers, 

jet-to-foil spacing, and jet impingement locations.  However, the scalloped foil has a 

curved shape, which in turn affects the performance of impinging jet cooling.  Before 

the jet was turned on, average heat transfer coefficient resulted from the fan-driven flow 

was first determined to be 61.5 W/m2-K in the analysis box serving as the reference value 

for heat transfer enhancement from impinging jet. 

  The same method was applied to correlate the experimental data as the one for 

the flat foil cooling.  At the impingement distance of 1/8W with an impingement angle 

at 33.5o, the stagnation Nusselt number was correlated using multi-variate regression 

fitting and took the following form, 

( ) 0.8818 1/3
,max 0.0553exp 0.0631d d

LNu Re Prd= −   (Eq. 6-1) 

where 

max
,maxd

h dNu
k

=   (Eq. 6-2) 

jet jet
d

V d
Re

ρ
μ

=   (Eq. 6-3) 

 

  The correlation took into account both the effects of jet-to-foil spacing and 
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Reynolds numbers.  Figures 6-3 and 6-4 compare the correlation and the experimental 

data in collapsed forms, with jet Reynolds number and jet-to-foil spacing as the 

independent variables, respectively.  The correlation is shown to be capable of 

predicting most of the experimental data within ±20% agreement.  

  Besides the stagnation Nusselt numbers that are useful for the validation of the 

experiments, the average heat transfer enhancement of the scalloped foil is also very 

important to the designers of electron-beam pumped gas lasers, which helps prolong the 

lifetime of the hibachi foil.  The average Nusselt numbers from the experiments were 

also correlated into the same form as a function of jet Reynolds number and jet-to-foil 

spacing.  By applying the same multivariate regression fitting method, a correlation for 

the average Nusselt number was obtained for jets impinging near the edge (1/8 foil 

width), 

( ) 0.9351 1/3
, 0.0196exp 0.0571 /d avg dNu L d Re Pr= −   (Eq. 6-4) 

 

  Figures 6-5 and 6-6 plot the correlations together with the experimental data in 

collapsed forms as functions of jet Reynolds number and jet-to-foil spacing, respectively.  

The plots indicate that the correlation is able to predict the experimental results within 

reasonable agreement.  The correlations for maximum and average Nusselt numbers 

both show that Nusselt numbers are very sensitive to the jet-to-foil spacing due to its 

exponential dependence, with the average Nusselt number decreases at a slower rate with 

increasing jet-to-foil spacing. 
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Figure 6-3 Comparison between experiments and the correlation for Nusselt numbers 
 

 

 

Figure 6-4 Comparison between experiments and the correlation for maximum Nusselt numbers 
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Figure 6-5 Empirical correlation of average Nusselt numbers  
 

 

 

Figure 6-6 Empirical correlation of average Nusselt numbers 
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6.2.3 Effect of the foil curvature 

  The scalloped foil design was proposed in an aim to reduce both the mechanical 

and thermal stress within the foil resulting from the rep-rate operation of the gas laser.  

With the application of impinging jet cooling, the scalloped foil was better protected from 

the e-beam attenuation.  The same jet supply system as the one for the flat foil, 

including the jet tubes and the jet configuration, was used.  The only difference is that at 

the same spacer thickness, the jet-to-foil spacing for the scalloped foil is larger than the 

one for the flat foil due to the concave shape of the scalloped foil.  The different shape 

also makes the impact angle larger for the flat foil than for the scalloped foil when the jets 

impinge on the same locations.  The change in the experimental parameters resulted in 

different heat transfer coefficients in the two different schemes of impinging jet cooling. 

  Figure 6-7 compares the experimental average Nusselt numbers for the jets of 

1.2 mm diameter impinging on the vertical lines 1/8 width of the foil from the edges for 

both the flat foil and the scalloped foil.  The data indicate that the Nusselt numbers were 

much larger for the flat foil than the scalloped foil at the same jet flow rate (or Reynolds 

number).  This was due to the fact that the actual jet-to-foil spacing for the scalloped foil 

was larger than the flat foil resulting from the concave surface of the scalloped foil and 

the exponential dependence of Nusselt numbers on the jet-to-foil spacing.  The 

comparison indicates that it is desirable to reduce the jet-to-foil spacing in the actual 

hibachi foil cooling in e-beam pumped gas lasers to achieve high heat transfer 

enhancement for the foil. 
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Figure 6-7 Effect of the curvature of the foil on heat transfer capability of impinging jets 
 

 

6.2.3 Effect of jet Reynolds number 

  One of the purposes of this investigation was to identify the appropriate jet flow 

rate required for the foil cooling during the nominal rep-rate operation of the gas laser.  

The experimental results helped reveal the minimum jet flow rate required to control the 

foil temperature under the imposed temperature constraints.  On the other hand, the 

requirement of laser efficiency also sets a limit on the available power for foil cooling, 

which in turn restricts the allowable pumping power for the jets. 

  Figure 6-8 shows the stagnation Nusselt numbers for three different jet diameters 

as a function of jet Reynolds numbers, which show that higher jet Reynolds numbers 
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result in higher heat transfer coefficients in a linear trend for the range of Reynolds 

number involved. 

  The average heat transfer coefficients for the foil provide the detailed 

information about the overall heat transfer enhancement.  Figure 6-9 shows the average 

Nusselt number as a function of Reynolds number for the same cases as above.  

Compared to the maximum plots above, the average plot shows a slower rate of increase 

with Reynolds numbers and lower Nusselt numbers.  The results will suggest the 

selection of appropriate jet flow rate for the actual foil cooling on Electra under the 

constraint of available pumping power.  As indicated in Figures 5-13 and 5-14, pressure 

drop in the jet supply system increases as a second-order function of Reynolds number.  

For smaller jet diameters, the rate of increase is much higher than the one for large jet 

diameters. 

 

 

 
Figure 6-8 Maximum Nusselt number of impinging jet cooling for the scalloped foil 
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Figure 6-9 Average Nusselt number of impinging jet cooling for the scalloped foil 

 

 

6.2.4 Effect of jet-to-foil spacing 

  As shown in the correlation (Eqs. 6-1 and 6-4), both the maximum and average 

Nusselt numbers were exponentially dependent on the normalized jet-to-foil spacing with 

negative coefficients, which indicated that increasing the spacing would significantly 

decrease the heat transfer coefficients.  Figure 6-10 shows the stagnation Nusselt 

number at various jet-to-foil spacing values for the jet diameter of 1.2 mm and jets 

impinging on the 1/8W location.  It was interesting to note that the Nusselt numbers 

decreased at a much slower rate than the one for the flat foil.  This might be explained 

by examining the range of jet-to-foil spacing in these two cases.  The range of L/d was 

7.3-11.7 for the flat foil and 10.8-15.7 for the scalloped when the same jet diameter and 



118 

the same spacer thickness were considered.  At the smaller values of jet-to-foil spacing, 

Nusselt number was more sensitive to the spacing than at the larger values.  This was 

also apparent in the exponential coefficient, where the correlation for the flat foil had a 

more negative value (-0.0994) than the one for the scalloped foil (-0.0631). 

  Figure 6-11 also shows the average Nusselt number at various jet-to-foil spacing 

and jet Reynolds numbers for the jet of 1.2 mm.  Compared to the plot of the stagnation 

Nusselt number, the average plot showed a much smaller rate of change as the jet-to-foil 

spacing increased, with the smallest value producing the best overall cooling 

performance. 

 

 

 

Figure 6-10 Maximum Nusselt number at different jet-to-foil spacing (d=1.2 mm) 
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Figure 6-11 Average Nusselt number at different jet-to-foil spacing (d=1.2 mm) 
 

 

6.2.5 Effect of jet impinging location on the foil 

  Experiments were performed to investigate the effect of different impinging 

locations on the performance of foil cooling to identify the best configuration for foil 

cooling.  Jets were aligned to impinge on the foil either very close to the edges or the 

centerline of the foil.  These cases offered a direct comparison of the cooling 

performance for the two limiting jet issuing configurations.  The configuration with jets 

impinging on the edges of the foil had shorter flow path before impingement than the one 

with jets directed to the centerline of the foil, while the latter was expected to have bigger 

spread due to the expansion of the jets after exiting the jet tubes.  The average heat 
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transfer characteristics for the above cases would help to identity the better configuration 

for the actual foil cooling in the gas lasers. 

  Figure 6-12 shows the average Nusselt number for two different impinging 

locations for the jet diameter of 1.2 mm and the same spacer thickness of 1.27 mm.  The 

case with jets impinging on the edges produced higher heat transfer enhancement than the 

one with jets aimed at the foil centerline at the same jet Reynolds number.  This was 

because of the dominance of jet-to-foil spacing in determining the heat transfer capability.  

The average Nusselt numbers for jets impinging on the edges increased by approximately 

300% when jet Reynolds number increased from ~770 to ~3100, while the average 

Nusselt numbers increased only ~200% for the same jet Reynolds number range. 

 

 

 

Figure 6-12 Comparison of average Nusselt number at different impinging locations 
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6.3 CFD Studies of Impinging Jet Cooling for a Scalloped Foil 

6.3.1 Model geometry 

  CFD simulation of impinging jet cooling for a scalloped foil also requires a 

three-dimensional model due to its three-dimensional flow distribution.  The large ratio 

between the bulk flow area and the small jet area also presents a challenge in the 

modeling to generate as few highly skewed cells as possible.   

  A simplified three-dimensional model was created in GAMBIT® for CFD 

simulations using FLUENT®, which included the following simplifications similar to 

those applied for modeling the flat foil, 

 The geometry of the model had a smaller bulk flow area and a shorter foil length 

than the actual flow channel to decrease computational demands; 

 A total of 20 interlacing jets were modeled with ten jets on each side; 

 The impinging jets were modeled as issuing in specified orientations at the same 

velocities from circular openings on two vertical side surfaces at the specified 

mass flow rate; 

 The foil was modeled as a concave wall under constant surface heat flux set at 

the estimated value removed by convection heat transfer; 

 The bulk flow was simulated by imposing an inflow with a uniform velocity 

profile. 

 

  Figure 6-13 shows the parallelepiped model created using GAMBIT® that is 

used for CFD simulations in FLUENT®.  The model is 12.5 cm high, 4.1 cm long and 



122 

4.0 cm deep.  Jets are evenly spaced at 1.25 cm on two sides. 

  The meshing of the model needs to resolve the definition of a jet of very small 

area, which requires a relatively large number of nodes to be used.  A total of 721,600 

cells are generated for the reduced 3D model.  A close-up of the meshing near the jet is 

shown in Figure 6-14.  An unstructured mesh similar to the one for flat foil cooling was 

generated for the jet surface to provide good resolution for the area in the vicinity of the 

jet exit.  The meshing of the 3D model is performed by sweeping horizontally between 

two side walls and generating a regular grid of hexahedral elements, which helps improve 

the speed of convergence in the simulations. 

 

6.3.2 Boundary conditions 

  The main boundary conditions used in the steady-state CFD simulations in 

FLUENT® are specified as follows, 

 

 q": The uniform surface heat flux specified at the foil surface (determined 

from the heat input, kW/m2). 

 inm : The mass flow inlet at the jet exit with appropriate orientations (kg/s). 

 Tin: The air temperature in the inlet flow (oC). 

 hconv: The convection heat transfer coefficient for the heat loss from the 

model to the surroundings due to natural convection (W/m2-K). 

 

  Most of the boundary conditions are based on their respective experimentally 
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measured typical values, with the convection heat transfer coefficient estimated from 

natural convection correlations for vertical walls.  In addition to the boundary conditions, 

air is used in all the simulations and is regarded as an ideal gas for compressible flow 

simulations. 

 

6.3.3 Simulation results and discussions 

  CFD simulations performed in the current investigations use a simplified 3D 

model plus simplified boundary conditions, so it is not surprising that the results from 

these simulations deviate substantially from the current experimental results.  The 

purpose of the CFD simulations is to show that CFD tools can predict the essential heat 

transfer characteristics of impinging jet cooling.  In the simulations, the jet orientation is 

adjusted so that the impingement locations are the same as in the experiments.  The 

mass flow rates of the jets, the bulk flow, and the surface heat flux of the foil are set to 

the corresponding experimental values.  Also, the second-order upwind differencing 

scheme is applied for solving continuity, momentum energy, turbulence kinetic energy, 

and turbulent dissipation rate equations for a more accurate solution.  The convergence 

criteria for all the variables, i.e. the residual limits, are set at 1e-6 for the energy equation 

and 1e-3 for all the other equations. 
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Figure 6-13 CFD model for impinging jet cooling for the flat foil 
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Figure 6-14 Close-up of the computation grid for impinging jet cooling for the flat foil  

(29 unstructured elements were generated for the jet for a good resolution) 
 

 

  In the simulation, air jets of 0.8 mm diameter and 30.0 m/s are aimed to impinge 

on the foil at an impinging distance of 1/8W and a spacer thickness of 0.5cm, which 

corresponds to the non-dimensional jet-to-foil spacing of 8.8.  The bulk flow was 

imposed at the inlet of the model.  The surface heat flux at the foil is set at 20.0 kW/m2, 

which is a typical experimental value used. 

  As for the modeling of impinging jet cooling of a flat foil, the realizable k-ε 

turbulence model with non-equilibrium wall function was used in the simulation, which 

was suggested in the FLUENT® manuals for impinging jet modeling (Shih, et. al., 1995).  

This modified turbulence model incorporates a new formulation for the turbulent 

viscosity and a new transport equation for the turbulent kinetic energy dissipation rate (ε) 

that was derived from the exact formulation for the transport modeling of the 
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mean-square vorticity fluctuation.  This model offers an immediate benefit in more 

accurately predicting the spreading of the impinging jets.  For near-wall treatment in the 

simulations, the non-equilibrium wall functions were invoked, which is based on a 

two-layer concept to compute turbulent kinetic energy in the near-wall cells and can 

partly account for the non-equilibrium effect that is neglected in the standard wall 

function (Kim and Choudhury, 1995).  The non-equilibrium wall functions are 

suggested to be used in complex flows where the mean flow and turbulence changes 

rapidly, such as in the impingement zone of an impinging jet. 

  In the simulation, jets of 0.8 mm diameter are issued to impinge on the foil at the 

impinging distance of 1/8W, which correspond to the non-dimensional jet-to-foil spacing 

of 11.7.  Figure 6-15 shows the contour of the foil temperature, in which there is a 

strong periodic behavior in the distribution of foil temperature.  However, the area near 

the channel inlet is strongly affected by the boundary condition and model geometry (the 

bottom and top jets are too close to the inlet and outlet).  To illustrate the jet impinging 

cooling characteristic, the plot was restricted to four jets located on the jet row on each 

side to reduce the entrance effects on the simulation results, which corresponded to a 

smaller foil area for analysis (3.4 cm wide and 5 cm high, black dotted area in Figure 

6-15). 

  Figures 6-17 and 6-18 show the contours of foil temperature and heat transfer 

coefficients of the analysis rectangle, respectively.  Areas of hot spots are found to be 

near the centerline of the foil.  The maximum and average heat transfer coefficients are 

151.3 and 55.8 W/m2-K, respectively.  However, the contours do not show the regular 

elliptic shape of spread, but shows a distorted shape.  The predicted heat transfer 
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characteristics are closely related to the jet flow distribution upon impingement.  Figure 

6-18 shows the pathlines of the jets coming out of the left row of holes before and upon 

impingement.  It clearly shows that the jet first spread out before impingement and is 

diverted upwards by the cross flow that causes the distortion in the heat transfer 

characteristics upon impingement. 

 

 

 

 
Figure 6-15 Simulated foil temperature contour (K) 
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Figure 6- 16 Contour of foil temperature (K) of the analysis rectangle 

 

 

 

 
Figure 6-17 Contour of heat transfer coefficients (W/m2-K) of the analysis box 
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Figure 6-18 Predicted pathlines (colored by velocity magnitude) of the impinging jets 

 

 

  An experimental obtained IR image with similar parameters is also shown in 

Figure 6-19.  Compared to the simulated temperature contour, the CFD model is able to 

predict a similar pattern of temperature distribution but different temperature values.  

This is because this model is much smaller in size than the actual experimental setup and 

less heat can be dissipated or transferred to the ambient, which produces higher foil 

temperatures even the same surface heat flux is used in the simulations.   
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Figure 6-19 Experimental IR image 

(ε=0.31, d=0.8 mm, Vjet=30.0 m/s, V∞=4.0 m/s, impinging distance: 1/8W) 
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CHAPTER 7 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
 
  This chapter summarizes the conclusions drawn from the experimental and 

numerical investigations of gas laser hibachi foil cooling using both tangential and 

impinging near-wall jets.  Recommendations for future work are also presented. 

 

7.1 Conclusions 

  This dissertation research proposed and investigated an effective and feasible 

forced-convection cooling scheme using near-wall high speed jets for the hibachi foil in 

gas lasers.  This foil serves as the transmission foil for the electron beam.  The research 

was motivated by the necessity of identifying a reliable and cost-effective way to protect 

the transmission foil from the induced thermal load resulting from attenuation of a high 

energy, high intensity electron beam passing through the foil.  Two types of jets 

(tangentially planar and circular impinging) were investigated for two types of foil design 

(flat and scalloped).  The purpose of this dissertation research was to experimentally and 

numerically show the efficacy of cooling a heated metal foil using near wall jets that were 

injected locally. 

  The main conclusions to be conveyed to the Electra designers are, 

1) Planar jet is inappropriate for the hibachi foil cooling; 

2) Impinging jets should be placed as close as possible to the foil with impact 
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point as close as possible to the rib edge; 

3) While scalloped foils may be advantageous from a stress analysis standpoint, 

the scalloped geometry will result in lower heat transfer coefficients, hence 

higher temperatures. 

 

7.1.1 Flat foil cooling with a planar Jet 

  The method of tangentially injecting a planar jet was first proposed to effectively 

cool the hibachi foil.  Various jet flow rates and surface heat fluxes were examined 

experimentally and numerically. 

  A 1.0 mm-thick 3.4 cm-wide near-wall parallel planar jet at various velocities 

was superimposed upon a main recirculating laser gas flow to provide additional 

convection heat transfer capability for the foil strip that represents the actual geometry of 

the hibachi foil between ribs.  Foil temperature profile was measured and heat transfer 

coefficients were obtained to characterize heat transfer enhancement resulting from the 

planar jet injection.   

  Experimental results show that heat transfer rates from the foil to the gas flow 

were significantly enhanced with the injection of a planar jet.  Near the leading edge, the 

heat transfer coefficient for a jet at 50.0 m/s is about twice the value for a jet at 25.0 m/s 

and four times the magnitude when only the main stream flow of ~4.0 m/s is present and 

the jet is turned off.  Experimental results also show that heat transfer coefficients 

quickly decay downstream from the injection point, which results in much higher 

temperatures in the upper portion of the foil than in the lower portion when a constant 
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surface heat flux is applied.  This observation indicates that more injection points are 

needed downstream from the first point to offer better cooling performance for the entire 

foil.  However, this would interfere with the e-beam.  Thus, a single planar jet located 

at the bottom edge of a foil is not suitable for the application. 

  Experimental results were well correlated with the recommended forms from the 

literature.  The correlation has good agreement with the experiments and can be used to 

predict the heat transfer enhancement for the entire foil from planar jet injection.  CFD 

simulations were also performed.  The two-dimensional model was validated by 

comparing the heat transfer coefficients, which indicates the standard and RNG k-ε 

turbulence models are applicable in the modeling of near-wall planar jets. 

 

7.1.2 Flat foil cooling with impinging jets 

  Jet impingement cooling was proposed as an alternative cooling scheme for the 

flat hibachi foil.  Impinging jets were arranged to cover the entire surface of the foil, so 

that the foil was cooled over its entire surface.  The experimental studies used two 

parallel jet tubes issuing discrete circular jets obliquely towards the foil, which covered 

the foil lengthwise in a staggered fashion.  A wide range of jet velocities, jet-to-foil 

spacing, and jet impingement locations/angles were examined to explore the heat transfer 

enhancement associated with the impinging jets.   

  Nusselt numbers obtained from the experiments were shown to increase with jet 

Reynolds number approximately following the trend of a power function.  Nusselt 

numbers were also shown to be very sensitive to the variation of jet-to-foil spacing, 
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where a slight increase in the spacing reduced Nusselt numbers significantly.  The 

header tubes were also adjusted so that jets impinged on the foil at various locations.  

Experimental results showed the foil was better cooled when the jets impinged on the 

edges of the foil due to shorter jet-to-foil spacing and the forward spread of the jet. 

  Both stagnation and average Nusselt numbers obtained from the experiments 

were correlated empirically using the same formulae existing in the literature.  The 

correlations were able to predict the experimental results within 20%. 

  CFD simulations were also performed using a simplified three-dimensional 

model for impinging jet cooling for the flat foil.  The simulation results show that the 

CFD tools were able to predict the essential heat transfer and flow characteristics of the 

impinging jet cooling for a heated flat foil, with a qualitative agreement observed.. 

 

7.1.3 Scalloped foil cooling with impinging jets 

  The scalloped hibachi foil was proposed and developed to improve the 

performance of the foil by reducing the thermal and mechanical stresses under the 

rep-rate operation conditions.  Jet impingement cooling was explored as an active 

cooling scheme for this new hibachi foil design.  Impinging jets were arranged in a 

fashion to cover the entire surface of the foil.  The experimental studies used two 

parallel jet tubes that issued two rows of discrete circular jets obliquely towards the foil, 

which covered the foil lengthwise in a staggered fashion.  A wide range of jet velocities, 

jet-to-foil spacing, and jet impingement locations/angles were examined to explore the 

heat transfer enhancement associated with the impinging jets.   
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  Nusselt numbers obtained from the experiments were shown to increase with jet 

Reynolds number approximately following the trend of a power function.  As in the 

cooling of the flat foil, Nusselt numbers were also shown to be very sensitive to the 

variation of jet-to-foil spacing, where a slight increase in the spacing reduced Nusselt 

numbers significantly.  Jet tubes were also adjusted so that jets impinged on the foil at 

various locations.  Experimental results showed the foil was better cooled when the jets 

were made to impinge on the edges of the foil due to shorter jet-to-foil spacing and the 

forward spread of the jet. 

  Both stagnation and average Nusselt numbers obtained from the experiments 

were correlated empirically using the same formulae existing in the literature.  The 

correlations were able to predict the experimental results within 20%. 

  CFD simulations were also performed using a simplified three-dimensional 

model for impinging jet cooling for the scalloped foil.  The simulation results show that 

the CFD tools were able to predict the essential heat transfer and flow characteristics of 

the impinging jet cooling for a heated scalloped foil, with a qualitative agreement 

observed. 

 

7.2 Recommendations for Future Work 

  This investigation involved the measurement of a large number of experimental 

quantities and used various measurement techniques.  The experimental measurements 

can be improved and extended by the following suggestions: 

 Impinging jets were produced through the circular openings on two jet tubes, 
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which had a thin wall and relatively long length.  Header tubes with larger 

hydraulic diameters will help produce more uniform jet flow rate among the 

jets.  However, jet tubes should not be any wider than the hibachi ribs to 

avoid interference with the e-beam. 

 In the actual foil cooling, laser gas will be extracted, cooled and reused as 

the coolant for the foil.  Bench top tests with gas similar to the laser gas 

would offer direct information on the cooling performance of near-wall jets. 

 The IR imaging area only covered a limited portion of the foil due to the 

limited angle of view.  It would be more informative if a much larger 

portion of the foil is imaged.  This will also reduce the uncertainty 

resulting from the non-uniformity of jet velocities. 

 The impingement location was adjusted by the rotation of the jet tube.  Due 

to the small jet-to-foil spacing, the location is very sensitive to the rotation 

of the tube.  A new mechanism to accurately control the jet impingement 

position will improve the accuracy of heat transfer measurement. 

 More detailed CFD models that closely simulate the actual experimental 

setup will improve the simulation performance.  
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APPENDIX A 
 

 UNCERTAINTY ANALYSIS 
 
 
 
  This section summarizes the uncertainty analysis methods and results for various 

experimental quantities that are measured directly or indirectly.  Uncertainties were 

derived using the well-known error propagation formula (Eq. A-1), 

2 2 2
2
X A B C

f f fU U U U
A B C
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + ⋅⋅⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (Eq. A-1) 

 

where ( ), ,X f A B C= . UX, UA, UB, and UC are the uncertainty in X, A, B and C, 

respectively. 

 

A.1 Jet Flow Rate Uncertainty 

  The flow rate of the jets is measured by a calibrated float-type gas rotameter.  

The measured flow rate was corrected for the operating pressure and was used to 

calculate the average jet velocity.  For the calibration of the gas rotameter, a 

positive-displacement gas volume flow meter was used to record a fixed volume of air 

passing through the rotameter at a fixed float rotation.  A stopwatch measured the 

elapsed time.  The calibration curve for the gas rotameter (Brooks Instrument, Model: 

R-8M-25-4F, S/N: 8402H32654, Tube type: R-8M-25-4F, Float type: 8-RS-31) used in 

the experiments is shown in Figure A-1.   
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  The uncertainty in jet flow rate measurement was determined by the error 

propagation formula, 

measured

elapsed

VV
t

⋅

=           (Eq. A-2) 

22
elapsedmeasured tVV

measured elapsed

U UU
V t

V

⋅

⋅

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (Eq. A-3) 

 

  The uncertainty in volume measurement takes the minimum resolution (0.05 ft3) 

of the gas volume meter for a typical recorded volume of 4.0 ft3, which corresponds to a 

relative uncertainty of 1.25%.  Though the stopwatch has a resolution of 0.01 s, the 

uncertainty in the time elapsed is set at 0.5s to account the response time the 

experimenter used to operate the stopwatch.  The two uncertainties above combine to 

give a maximum relative uncertainty in volumetric flow rate of 2.6% over all the float 

positions. 

 

A.2 Jet Velocity Distribution Uncertainty 

  The flow rate of each individual jet varies due to pressure drop inside jet tube 

and the random variation in the jet diameter.  The uncertainty in jet exit velocity is 

determined first by experimentally measuring the jet velocity using a thermal 

anemometer.  If assuming that the jet velocity distribution is a Gauss distribution, the 

uncertainty corresponding to twice the standard deviation results in a 95% confidence 

interval.   

  Figures A-2 and A-3 shows the distribution of nominal jet velocity and the 
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normalized jet velocity of 26 jets, respectively, where the air is supplied from two ends of 

the jet tube.  From the plots of jet velocity distribution, it is obvious that the velocity 

distribution is strongly influenced by the location of the jet relative to the header.  

Statistical analysis of the jet velocity distribution showed that the uncertainty in jet 

velocity is 18% for jet diameter of 0.8 mm and velocity at 33.2 m/s, 12% for jet diameter 

of 1.2 mm and jet velocity at 29.3 m/s, and 15% for jet diameter of 1.6 mm and jet 

velocity at 35.3 m/s. 

 

 

 

Figure A-1 Calibration curve for the gas rotameter (Model: R-8M-25-4F) 
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Figure A-2 Jet velocity distribution for 26 jets of one jet tube 
 

 

 

Figure A-3 Normalized jet velocity distribution for 26 jets for various jet diameters 
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A.3 Temperature Uncertainty 

  Two temperature techniques were used in the experiments to for both gas and 

foil temperature measurement: type-E thermocouples from OMEGA® and FLIR PM-280 

Infrared thermography camera. 

  The uncertainty in the thermocouple reading was obtained from the manufacture 

provided uncertainty of 1.7 oC and the statistical fluctuations in the experimental 

measurement.  For a typical case where the average foil temperature was at 110 oC, the 

standard deviation was 1.5 oC.  These two terms combined to give an uncertainty in the 

thermocouple reading of 2.3 oC.   

  The IR camera used in the experiments has a resolution of 1.0 oC in temperature 

measurement.  The camera computes the surface temperature based on a preset and 

constant emissivity for the entire target surface.  Since the emissivity of the foil varies at 

different temperatures, the fixed emissivity value will give rise to the uncertainty in the 

temperature measurement.  This uncertainty component in the temperature was 

accounted for by varying the emissivity values according to its range and determining the 

corresponding temperature change, which was used as the uncertainty resulting from the 

non-uniform emissivity of the foil.  For a change of emissivity of 0.04 around the 

average value of 0.31, the resulting uncertainty in the temperature is under 5.0%.   

 

A.4 Surface Heat Flux Uncertainty 

  The surface heat flux of the foil was determined by measuring the voltage drop 

(V), the current in the foil (I) and the area of the foil (Af), where 
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"
f

V Iq
A
×

=   (Eq. A-4) 

 

  The uncertainty in surface heat flux was determined using the error propagation 

formula, 

22 2
"

"
fq AV I

f

U UU U
V I Aq

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
  (Eq. A-5) 

 

  The voltage was measured by an Agilent 34970A data acquisition system with a 

measurement accuracy of 0.01%; the current was measured using a shunt (Deltec 

MKB-300-100) with 0.25% measurement accuracy; the uncertainty in the foil area was 

determined by the resolution of the ruler (1mm) to be 2.95%.  For a typical case where 

V has a average of 9.64V and uncertainty of 0.13% and I has a average of 25.11 A and 

uncertainty of 0.36% that corresponds to a 95% confidence interval, Eq. A-5 gives the 

uncertainty in surface heat flux of 2.99%. 

 

A.5 Heat Transfer Coefficient Uncertainty 

  The uncertainty in heat transfer coefficient (h) was determined using the error 

propagation formula, 

"

f j

qh
T T

=
−

        (Eq. A-6) 
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 (Eq. A-7) 
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  For the same case as in the above section, where Tf=361.1±15.6oC and 

Tj=22.2±1.7 oC, the uncertainty in heat transfer coefficient was calculated using Eq. A-7 

at 5.51%. 

 

A.6 Nusselt Number Uncertainty 

  The uncertainty in Nusselt number is similarly calculated using the error 

propagation formula, where 

2 2
DNu h D

D

U U U
Nu h D

⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  (Eq. A-8) 

 

  The uncertainty in the diameter of a circular jet or the width of a slot jet was 

0.05mm (based on the machining tolerances) and 0.025mm (measuring accuracy), 

respectively.  For the same case as above, Eq. A-8 computes the uncertainty in Nusselt 

number to be 8.33% for the circular jet at 0.8 mm diameter and 6.05% for the slot jet of 

1.0 mm width. 

 

A.7 Jet Impingement Location Uncertainty 

  The alignment of jets towards the foil is adjusted by the rotation of the jet tube to 

a pre-calculated angle.  Figure A-3 shows the jet impingement cooling scheme for the 

flat foil.  The uncertainty in impingement location on the foil is mainly caused by the 
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uncertainty in controlling the rotation angle of the jet tube, which is at least the angle that 

the opening on the jet tube subtends at the axis of the jet tube.  So the uncertainty in jet 

impingement location for the flat foil is approximately as follows, 

 

2
2

jetloc tube

foil tube foil

DU L D
W D W

+
=   (Eq. A-9) 

 

 

 

Figure A-4 Jet impinging scheme 
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  The uncertainty for jet impingement location at various jet-to-foil spacing and jet 

diameters is summarized in Table A-1. 

 
Table A-1 Uncertainty in impingement locations 

 
djet (mm) L (mm) Uloc (mm) Uloc/W (%) 

8.7 2.2 6.61% 
10.4 2.5 7.46% 
12.2 2.8 8.31% 

0.8 

13.9 3.1 9.16% 
8.7 3.4 9.91% 

10.4 3.8 11.19% 
12.2 4.2 12.46% 

1.2 

13.9 4.7 13.74% 
8.7 4.5 13.22% 

10.4 5.1 14.92% 
12.2 5.7 16.62% 

1.6 

13.9 6.2 18.32% 
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APPENDIX B 
 

SUMMARY OF EXPERIMENTAL RESULTS OF FOIL COOLING 
USING PLANAR AND IMPINGING JETS 

 
 
 
  This appendix section summarizes the experimental results for all the tests of foil 

cooling using both planar and impinging jets.  Detailed experimental parameters, 

including foil temperature, heat transfer coefficient, Nusselt number and other physical 

quantities, are tabulated. 

 

B.1 Experimental Results of Flat Foil Cooling with a Planar Jet 

  Directly and indirectly measured experimental quantities included foil 

temperature, jet temperature and Reynolds number, bulk flow temperature and velocity, 

surface heat flux, heat transfer coefficient and Nusselt number.  A total of six sets of 

experiments are summarized. 
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Table B-1 Experimental result for test case 1 
(q”=2076.49W/m2, Res=0, Vbulk=4.0 m/s, Tjet=23.05oC, Tbulk=22.10oC, S=1.0 mm) 

 
T/C Location (m) Tf (oC) h (W/m2-K) Nus 

0.03 72.34 38.32 1.41 
0.06 83.36 30.88 1.12 
0.09 92.08 26.66 0.96 
0.12 97.05 24.69 0.88 
0.15 101.98 22.98 0.81 
0.18 106.86 21.48 0.76 
0.21 109.50 20.74 0.73 
0.24 112.56 19.94 0.70 
0.27 109.90 20.63 0.73 

 

 

Table B-2 Experimental result for test case 2 
(q”=2107.16 W/m2, Res=1623, Vbulk=4.0 m/s, Tjet=22.68 oC, Tbulk=21.83 oC, S=1.0 mm) 

 
T/C Location 

(m) Tf (oC) h (W/m2-K) Nus 

0.03 45.00 87.91 3.36 
0.06 59.12 53.50 2.00 
0.09 69.66 41.04 1.52 
0.12 80.34 33.00 1.20 
0.15 86.00 29.82 1.08 
0.18 90.99 27.45 0.99 
0.21 92.41 26.84 0.96 
0.24 95.78 25.48 0.91 
0.27 95.03 25.77 0.92 

 

 

Table B-3 Experimental result for test case 3 
(q”=2150.85 W/m2, Res=3276, Vbulk=4.0 m/s, Tjet=21.15 oC, Tbulk=21.30 oC, S=1.0 mm) 

 
T/C Location 

(m) Tf (oC) h (W/m2-K) Nus 

0.03 34.81 156.20 6.06 
0.06 41.41 103.90 3.99 
0.09 44.79 88.55 3.39 
0.12 55.68 59.55 2.24 
0.15 61.81 50.08 1.87 
0.18 71.91 39.48 1.46 
0.21 72.54 38.96 1.43 
0.24 78.03 34.90 1.28 
0.27 79.18 34.14 1.25 
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Table B-4 Experimental result for test case 4 
(q”=4390.16 W/m2, Res=0, Vbulk=4.0 m/s, Tjet=23.24 oC, Tbulk=22.07 oC, S=1.0 mm) 

 
T/C Location 

(m) Tf (oC) h (W/m2-K) Nus 

0.03 124.80 39.72 1.37 
0.06 147.40 32.01 1.07 
0.09 164.24 27.87 0.91 
0.12 173.87 25.91 0.84 
0.15 182.78 24.30 0.78 
0.18 192.72 22.71 0.72 
0.21 198.13 21.92 0.69 
0.24 204.16 21.10 0.66 
0.27 195.61 22.28 0.71 

 

 

Table B-5 Experimental result for test case 5 
(q”=4338.07 W/m2, Res=1619, Vbulk=4.0 m/s, Tjet=23.07 oC, Tbulk=22.32 oC, S=1.0 mm) 

 
T/C Location 

(m) Tf (oC) h (W/m2-K) Nus 

0.03 45.34 91.23 3.38 
0.06 58.04 57.72 2.07 
0.09 67.98 44.49 1.55 
0.12 78.07 35.9 1.22 
0.15 85.19 31.49 1.05 
0.18 91.24 28.46 0.94 
0.21 92.98 27.68 0.91 
0.24 96.89 26.07 0.85 
0.27 95.60 26.59 0.87 

 
 

Table B-6 Experimental results for test case 6 
(q”=4335.21 W/m2, Res=3279, Vbulk=4.0 m/s, Tjet=21.0 oC, Tbulk=22.17 oC, S=1.0 mm) 

 
T/C Location 

(m) Tf (oC) h (W/m2-K) Nus 

0.03 35.23 162.96 6.20 
0.06 41.25 110.64 4.14 
0.09 46.44 86.29 3.19 
0.12 56.05 60.96 2.19 
0.15 61.36 52.30 1.86 
0.18 71.65 40.80 1.41 
0.21 72.54 40.03 1.38 
0.24 78.15 35.71 1.22 
0.27 78.35 35.57 1.21 
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B.2 Experimental Results of Flat Foil Cooling with Impinging Jets 

  Experimental results include the original IR images, jet temperature, typical foil temperatures (min, max and mean) and 

corresponding heat transfer coefficient and Nusselt number computed for the analysis box.   

 

 

Table B-7 Summary of experimental data for test case 1 
(djet=0.8 mm, L=8.7 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.1 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
517 21633.7 151.2 330.3 240.8 65.4 155.2 92.2 2.1 4.9 2.9 

1035 22634.9 120.0 256.5 188.3 92.5 221.4 130.5 2.9 7.0 4.1 
1535 23195.2 97.0 190.0 143.5 134.6 302.0 186.2 4.2 9.8 5.8 
2067 23604.5 79.5 180.5 130.0 145.7 401.9 213.9 4.6 12.6 6.7 

 
 

 

Table B-8 Summary of experimental data for test case 2 
(djet=0.8 mm, L=10.4 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.5 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
517 21855.5 191.8 344.3 268.1 62.3 118.4 81.65 2.0 3.7 2.6 

1033 22891.7 120.0 265.2 192.6 90.2 224.3 128.7 2.8 7.0 4.0 
1546 23262.1 106.3 197.6 152.0 130.2 272.7 176.1 4.1 8.5 5.5 
2061 23663.8 88.7 182.5 135.6 144.7 350.3 204.8 4.5 11.0 6.4 
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Table B-9 Summary of experimental data for test case 3 

(djet=0.8 mm, L=12.2 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.5 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 21757.0 203.2 351.1 277.2 60.4 109.8 77.9 1.9 3.4 2.4 

1032 22622.5 128.3 265.6 197.0 88.8 204.0 123.8 2.8 6.4 3.9 
1547 23023.3 116.8 220.2 168.5 111.8 234.3 151.4 3.5 7.4 4.8 
2061 23324.1 97.9 205.8 151.9 123.8 301.8 175.6 3.9 9.5 5.5 

 

 

Table B-10 Summary of experimental data for test case 4 
(djet=0.8 mm, L=13.9 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.5 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 21757.0 220.2 364.7 292.5 57.7 99.8 73.1 1.8 3.1 2.6 

1032 22622.5 165.5 290.2 227.9 79.7 149.1 103.8 2.5 4.7 3.3 
1547 23023.3 120.0 250.2 185.1 97.5 227.7 136.5 3.1 7.1 4.3 
2061 23324.1 118.0 246.6 182.3 99.8 234.4 140.0 3.1 7.4 4.4 
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Table B-11 Summary of experimental data for test case 5 
(djet=0.8 mm, L=19.3 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.5 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 22243.7 260.1 361.1 310.6 58.5 83.4 68.8 1.8 2.6 2.2 

1032 22824.2 220.1 351.1 285.6 63.2 105.1 79.0 2.0 3.3 2.5 
1547 23262.5 125.9 309.9 217.9 76.7 213.2 112.8 2.4 6.7 3.5 
2061 23389.9 112.4 296.1 204.3 81.0 246.9 122.0 2.5 7.7 3.8 

 

 

 

Table B-12 Summary of experimental data for test case 6 
(djet=0.8 mm, L=22.4 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.6 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 21248.4 215.5 351.5 283.5 58.6 99.7 73.7 1.8 3.1 2.3 

1032 21884.7 224.4 347.3 285.9 61.1 98.3 75.4 1.9 3.1 2.4 
1547 22489.4 127.9 328.7 228.3 69.1 201.0 102.9 2.2 6.3 3.2 
2061 23202.3 107.5 287.7 197.6 83.7 261.8 126.8 2.6 8.2 4.0 
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Table B-13 Summary of experimental data for test case 7 
(djet=0.8 mm, L=25.5 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.4 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 21670.2 265.8 376.0 320.9 55.0 79.9 65.2 1.7 2.5 2.1 

1032 22191.9 217.9 358.9 288.4 61.1 105.1 77.2 1.9 3.3 2.4 
1547 22768.3 192.1 332.4 262.3 67.9 124.0 87.7 2.1 3.9 2.8 
2061 23287.8 125.9 320.0 223.0 74.0 213.0 109.8 2.3 6.7 3.5 

 

 

 

Table B-14 Summary of experimental data for test case 8 
(djet=0.8 mm, L=28.6 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.4 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 21410.2 261.7 367.5 314.6 54.9 79.1 64.8 1.7 2.5 2.0 

1032 21784.7 246.0 350.4 298.2 59.6 87.5 70.9 1.9 2.7 2.2 
1547 22354.2 200.0 341.2 270.6 64.4 115.6 82.7 2.0 3.6 2.6 
2061 22894.9 166.5 301.3 233.9 77.2 149.4 101.7 2.4 4.5 3.2 
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Table B-15 Summary of experimental data for test case 9 
(djet=1.2 mm, L=8.7 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.0 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 21231.1 140.9 318.6 241.1 71.7 179.5 97.2 3.4 8.4 4.6 

1545 21874.7 90.7 199.2 145.0 128.1 328.1 184.2 6.0 15.4 9.7 
2317 22914.2 71.9 120.7 96.3 240.2 471.4 318.2 11.3 22.3 15.0 
3118 23494.0 58.3 107.5 82.9 272.5 634.8 381.3 12.9 30.0 18.0 

 

 

 

Table B-16 Summary of experimental data for test case 10 
(djet=1.2 mm, L=10.4 mm, Impact number=1/8, Impacting angle=47o, Tjet=21.8 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 21878.0 151.6 335.6 243.6 65.2 158.4 92.4 3.1 7.4 4.3 

1557 23010.3 100.9 203 152.0 123.2 281.6 171.4 5.8 13.3 8.1 
2336 23410.4 79.9 151.2 115.6 177.1 393.1 244.2 8.4 18.7 11.5 
3119 23807.7 62.8 123.3 93.1 230.3 565.6 327.3 10.9 26.7 15.5 
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Table B-17 Summary of experimental data for test case 11 
(djet=1.2 mm, L=12.2 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.1 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 20146.4 161.6 334.8 248.2 64.7 145.6 89.6 3.0 6.8 4.2 
1557 22178.6 110.9 215.2 163.1 114.7 249.0 157.1 5.4 11.7 7.4 
2336 22695.7 87.3 199.9 143.6 127.4 346.3 186.3 6.0 16.3 8.8 
3119 23167.8 71.4 179.5 125.5 146.8 466.1 223.3 6.9 22.0 10.5 

 

 

 

Table B-18 Summary of experimental data for test case 12 
(djet=1.2 mm, L=13.9 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.2 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 22862.3 174.1 374.0 274.1 62.4 145.2 87.3 2.9 6.8 4.9 

1557 24229.6 120.0 302.8 211.4 86.2 246.7 127.8 4.1 11.6 6.0 
2336 24974.4 115.0 272.7 193.9 99.6 268.3 145.3 4.7 12.6 6.8 
3119 25715.2 92.0 241.0 166.5 117.3 366.6 177.8 5.5 17.3 8.4 
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Table B-19 Summary of experimental data for test case 13 
(djet=1.2 mm, L=19.3 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.0 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 20215.6 249.6 347.7 298.7 62.3 89.4 73.4 2.9 4.2 3.4 

1557 22131.9 121.4 313.4 217.4 75.9 222.1 113.1 3.6 10.5 5.3 
2336 22620.7 120.0 303.5 211.8 80.3 229.9 119.0 3.8 10.8 5.6 
3119 23188.7 109.2 266.9 188.1 94.5 264.1 139.2 4.5 12.5 6.6 

 

 

 

Table B-20 Summary of experimental data for test case 14 
(djet=1.2 mm, L=22.4 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.2 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 21928.9 260.9 392.9 326.9 59.4 92.4 72.3 2.8 4.3 3.4 

1557 22101.8 158.0 350.8 254.4 67.1 176.7 103.5 3.2 8.3 4.9 
2336 22183.7 104.4 328.3 216.4 72.4 268.9 114.1 3.4 12.7 5.4 
3119 26069.6 115.7 261.6 188.7 108.7 277.5 156.2 5.1 13.1 7.4 
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Table B-21 Summary of experimental data for test case 15 
(djet=1.2 mm, L=25.5 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.3 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 19483.4 267.8 373.6 320.7 55.6 79.7 56.5 2.6 3.7 3.1 

1557 21548.4 146.2 337.2 241.7 68.3 173.0 97.9 3.2 8.2 4.6 
2336 22366.0 120.0 294.3 207.2 82.1 227.6 120.6 3.9 10.7 5.7 
3119 23204.7 107.0 204.4 155.7 127.1 272.2 173.2 6.0 12.8 8.2 

 

 

 

Table B-22 Summary of experimental data for test case 16 
(djet=1.2 mm, L=28.6 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.2 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
772 19060.4 269.7 369.6 319.7 55.0 77.3 64.3 2.6 3.6 3.0 

1557 21251.7 149.6 334.8 242.2 67.9 166.3 96.4 3.2 7.8 4.5 
2336 22230.0 125.0 287.8 206.4 83.7 215.8 122.2 3.9 10.5 5.8 
3119 23175.5 109.0 200.0 154.5 130.1 266.2 174.8 6.1 12.5 8.2 
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Table B-23 Summary of experimental data for test case 17 
(djet=1.6 mm, L=8.7 mm, Impact number=1/8, Impacting angle=47o, Tjet=23.3 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 22146.7 120.0 278.3 199.2 86.8 228.9 125.9 5.4 14.3 7.9 
2075 23396.6 77.9 168.1 123.0 159.7 415.6 230.8 10.0 26.1 14.5 
3116 24046.4 58.9 102.7 80.8 295.8 641.2 404.8 18.6 40.3 25.5 
4159 24320.5 47.3 100.7 74.0 306.0 932.2 460.7 19.3 58.7 29.0 

 

 

 

Table B-24 Summary of experimental data for test case 18 
(djet=1.6 mm, L=10.4 mm, Impact number=1/8, Impacting angle=47o, Tjet=22.9 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 21569.5 125.0 255.1 190.1 92.9 211.2 129.0 5.8 13.2 8.1 
2075 22747.7 80.7 197.6 139.2 128.9 382.2 192.8 8.1 24.1 12.1 
3116 23715.3 62.3 137.0 99.7 205.1 579.6 303.0 12.9 36.5 19.1 
4159 23779.3 51.0 102.6 76.8 294.2 813.5 432.1 18.5 51.1 27.2 
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Table B-25 Summary of experimental data for test case 19 
(djet=1.6 mm, L=12.2 mm, Impact number=1/8, Impacting angle=47o, Tjet=23.2 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 21105.2 128.3 252.1 190.2 92.2 200.8 126.4 5.8 12.6 7.9 
2075 22106.9 86.2 209.3 147.8 117.7 341.7 175.1 7.4 21.5 11.0 
3116 22708.9 67.4 155.9 111.7 169.1 496.0 252.2 10.6 31.2 15.9 
4159 23130.1 54.9 111.3 83.1 258.4 698.6 377.3 16.2 43.9 23.7 

 

 

 

Table B-26 Summary of experimental data for test case 20 
(djet=1.6 mm, L=13.9 mm, Impact number=1/8, Impacting angle=47o, Tjet=23.5 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 21094.9 132.8  275.8  204.3  83.6  193.0  116.4  5.2  12.1  7.3  
2075 22463.6 92.5  213.3  152.9  117.4  318.5  171.6  7.4  20.0  10.8  
3116 23015.9 73.8  174.0  123.9  151.5  445.0  226.0  9.5  27.9  14.2  
4159 23473.6 63.3  144.5  103.9  191.4  566.4  286.1  12.0  35.6  18.0  
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Table B-27 Summary of experimental data for test case 21 
(djet=1.6 mm, L=19.3 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.5 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 20281.7 147.9  270.3  209.1  82.7  163.8  119.6  5.2  10.3  7.5  
2075 21614.2 108.7  201.4  155.1  121.7  254.6  164.7  7.6  15.9  10.3  
3116 22315.6 84.1  176.3  130.2  144.3  357.1  205.5  9.1  22.4  12.9  
4159 22877.1 70.9  152.8  111.9  174.1  462.2  252.9  11.0  29.1  15.9  

 

 

 

Table B-28 Summary of experimental data for test case 22 
(djet=1.6 mm, L=22.4 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.2 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 20212.9 199.9  313.9  256.9  69.6  114.6  86.6  4.4  7.2  5.4  
2075 21764.0 120.0  252.1  186.1  94.6  222.1  132.7  5.9  13.9  8.3  
3116 22631.7 100.7  196.8  148.8  129.3  286.6  178.2  8.1  18.0  11.2  
4159 23283.0 83.7  144.5  114.1  189.4  374.7  251.6  11.9  23.6  15.8  

 

 



160 

 

 

Table B-29 Summary of experimental data for test case 23 
(djet=1.6 mm, L=25.5 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.6 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 20351.4 217.8  329.1  273.5  66.6  104.7  81.4  4.2  6.6  5.1  
2075 22093.7 130.0  261.2  195.6  92.4  204.6  127.3  5.8  12.8  8.0  
3116 22878.0 98.9  201.4  150.2  127.6  297.9  178.7  8.0  18.7  11.2  
4159 23283.2 85.9  170.5  128.2  157.6  369.0  220.9  9.9  23.1  13.8  

 

 

 

Table B-30 Summary of experimental data for test case 24 
(djet=1.6 mm, L=28.6 mm, Impact number=1/2, Impacting angle=24o, Tjet=22.0 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 19895.4 236.6  343.1  289.9  62.0  92.8  74.4  3.9  5.8  4.7  
2075 21774.2 140.0  292.6  216.3  80.4  184.1  111.9  5.1  11.6  7.0  
3116 22725.6 107.9  225.0  166.5  111.9  264.3  157.2  7.0  16.6  9.9  
4159 23242.5 91.0  177.3  134.2  149.6  336.4  207.1  9.4  21.1  13.0  
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B.3 Experimental Results of Scalloped Foil Cooling with Impinging Jets 

  Experimental results include the original IR images, jet temperature, typical foil temperatures (min, max and mean) and 

corresponding heat transfer coefficient and Nusselt number computed for the analysis box.   

 

 
Table B-31 Summary of experimental data for test case 25 

(djet=0.8 mm, L=8.1 mm, Impact number=1/8, Impacting angle=33.5o, Tjet=22.8 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
514.9 22121.6 206.9 392.3 315.1 59.9 120.2 75.7 1.9 3.8 2.4 
1031 24260.5 107.5 319.3 233.3 81.8 286.6 115.3 2.6 9.0 3.6 
1548 25930.7 98.9 243.6 171.3 117.2 339.1 174.2 3.7 10.6 5.5 
2063 27125.2 92.0 215.2 153.6 140.8 390.7 207.0 4.4 12.2 6.5 

 

 

 

Table B-32 Summary of experimental data for test case 26 
(djet=0.8 mm, L=10.1 mm, Impact number=1/8, Impacting angle=35.3o, Tjet=22.7 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

514.5 22121.6 222.3 395.8 332.7 59.8 111.9 72.0 1.9 3.5 2.3 
1030 24340.1 121.4 326.2 248.6 80.2 246.7 107.8 2.5 7.7 3.4 
1545 25731.3 102.7 244.1 173.4 116.2 321.8 170.8 3.6 10.1 5.4 
2062 26484.0 97.0 220.2 158.6 134.0 356.1 194.8 4.2 11.2 6.1 
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Table B-33 Summary of experimental data for test case 27 

(djet=0.8 mm, L=12.0 mm, Impact number=1/8, Impacting angle=37.0o, Tjet=22.7 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
514.5 23944.0 278.2 414.1 353.1 61.2 93.8 72.5 1.9 2.9 2.3 
1030 26181.0 163.8 339.2 273.3 82.7 185.8 104.5 2.6 5.8 3.2 
1545 27989.0 120.0 278.7 199.4 109.4 287.9 158.5 3.4 9.0 5.0 
2060 28350.0 107.5 270.3 188.9 114.6 334.8 170.7 3.6 10.5 5.4 

 

 

 

Table B-34 Summary of experimental data for test case 28 
(djet=0.8 mm, L=13.9 mm, Impact number=1/8, Impacting angle=38.7o, Tjet=22.7 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

514.9 23331.0 273.4 408.2 362.2 60.6 93.1 68.8 1.9 2.9 2.2 
1030 25535.0 188.6 351.9 290.1 77.6 154.0 95.5 2.4 4.8 3.0 
1546 27414.0 112.4 285.3 218.4 104.4 305.7 140.0 3.6 9.6 4.4 
2061 28660.0 109.2 261.2 185.2 120.2 331.5 176.4 3.8 10.4 5.5 
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Table B-35 Summary of experimental data for test case 29 
(djet=0.8 mm, L=22.1 mm, Impact number=1/2, Impacting angle=35.4o, Tjet=22.7 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 22871.0 331.6 412.9 371.1 58.6 74.0 65.6 1.8 2.3 2.1 

1031 24778.0 252.3 366.4 318.6 72.1 107.9 83.7 2.3 3.4 2.6 
1545 26167.0 204.3 282.5 282.5 83.6 144.1 100.7 2.6 4.5 3.2 
2060 28029.0 149.6 304.0 238.6 99.7 221.1 129.9 3.1 6.9 4.1 

 

 

 

Table B-36 Summary of experimental data for test case 30 
(djet=0.8 mm, L=24.2 mm, Impact number=1/2, Impacting angle=38.4o, Tjet=22.7 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
516 22575.0 336.8 406.1 375.4 58.9 71.8 64.0 1.9 2.3 2.0 

1031 24479.0 264.2 358.9 311.5 72.8 101.3 84.7 2.3 3.2 2.7 
1545 25739.0 200.0 337.6 275.9 81.8 145.3 101.7 2.6 4.6 3.2 
2058 27388.0 128.3 286.5 220.7 103.9 260.1 138.5 3.3 8.1 4.3 

 

 



164 

 
 
 

Table B-37 Summary of experimental data for test case 31 
(djet=0.8 mm, L=26.2 mm, Impact number=1/2, Impacting angle=41.2o, Tjet=22.9 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

515.6 23157.0 333.6 405.0 378.4 60.6 74.5 65.1 1.9 2.3 2.0 
1030 25107.0 276.9 353.8 315.3 75.6 98.4 85.5 2.4 3.1 2.7 
1543 26343.0 200.0 318.8 271.9 89.1 148.9 105.9 2.8 4.7 3.3 
2054 29069.0 123.3 273.5 214.8 112.2 280.7 146.6 2.5 8.8 4.6 

 

 

 

Table B-38 Summary of experimental data for test case 32 
(djet=0.8 mm, L=28.1 mm, Impact number=1/2, Impacting angle=43.9o, Tjet=22.8 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

515.4 22616.0 287.1 394.4 366.3 60.8  85.5  65.8  1.9  2.7  2.1  
1030 24365.0 273.4 354.5 309.5 73.5  97.2  85.0  2.3  3.1  2.7  
1545 25805.0 215.2 309.7 267.1 90.0  134.1  105.6  2.8  4.2  3.3  
2059 27600.0 152.8 271.1 223.3 111.2  212.5  137.7  3.5  6.7  4.3  
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Table B-39 Summary of experimental data for test case 33 
(djet=1.2 mm, L=8.1 mm, Impact number=1/8, Impacting angle=33.5o, Tjet=22.0 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

769.4 22790.0 158.0  376.0  299.7  64.7  169.4  82.5  3.0  7.9  3.9  
1554 25055.0 113.5  261.6  187.4  104.5  273.2  151.3  4.9  12.9  7.1  
2334 26010.0 89.5  194.3  141.9  150.6  383.0  216.2  7.1  18.1  10.2  
3118 26993.0 71.9  261.2  103.4  237.5  533.0  328.6  11.2  25.2  15.5  

 

 

 

Table B-40 Summary of experimental data for test case 34 
(djet=1.2 mm, L=10.1 mm, Impact number=1/8, Impacting angle=35.3o, Tjet=22.3 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
769 22559.0 176.4  372.3  303.4  64.7  147.6  80.6  3.0  6.9  3.8  

1559 24751.0 116.8  266.1  191.5  101.1  259.2  145.4  4.8  12.2  6.9  
2332 25893.0 88.9  181.5  135.2  162.1  385.7  228.2  7.6  18.2  10.8  
3100 26982.0 72.4  114.8  93.6  291.6  538.2  378.3  13.7  25.3  17.8  
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Table B-41 Summary of experimental data for test case 35 

(djet=1.2 mm, L=12.0 mm, Impact number=1/8, Impacting angle=37.0o, Tjet=21.7 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
770  23812.0 206.9  395.5  325.8  64.0  129.8  78.8  3.0  3.7  6.1  

1563  26862.0 120.0  276.9  198.5  104.9  270.9  151.2  5.0  7.1  12.8  
2342  28198.0 100.7  198.4  149.6  159.0  354.1  219.4  7.5  10.4  16.7  
3115  29505.0 83.7  137.0  110.4  255.4  474.1  331.8  12.0 15.7  22.4  

 

 

 

Table B-42 Summary of experimental data for test case 36 
(djet=1.2 mm, L=13.9 mm, Impact number=1/8, Impacting angle=38.7o, Tjet=22.0 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
769  22732.0 217.9  390.8  327.1  61.9  117.0  74.9  2.9  5.5  3.5  

1560  25634.0 125.0  260.3  191.7  107.2  246.9  149.4  5.1  11.7  7.1  
2335  26666.0 101.7  181.5  141.6  166.7  332.7  222.1  7.9  15.7  10.5  
3109  27602.0 82.8  120.7  101.8  279.1  452.4  345.2  13.2 21.3  16.3  
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Table B-43 Summary of experimental data for test case 37 

(djet=1.2 mm, L=22.1 mm, Impact number=1/2, Impacting angle=35.4o, Tjet=21.6 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
770.7 23776.0 272.6  362.5  325.3  70.1  95.3  78.7  3.3  3.7  4.5  
1563 26056.0 162.9  275.0  227.9  102.5  183.4  125.8  4.8  6.0  8.7  
2344 26541.0 102.7  230.1  180.6  126.9  324.5  166.2  6.0  7.9  15.3  
3114 27993.0 90.0  206.5  148.3  151.3  408.7  220.8  7.1  10.4  19.3  

 

 

 

Table B-44 Summary of experimental data for test case 38 
(djet=1.2 mm, L=24.2 mm, Impact number=1/2, Impacting angle=38.4o, Tjet=22.2 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

768.6 23511.0 291.2  358.2  328.4  70.3  87.9  77.2  3.3  4.1  3.6  
1555 25636.0 201.5  287.1  247.5  96.6  142.6  113.6  4.6  6.7  5.4  
2331 27032.0 130.6  233.5  192.6  127.7  248.5  158.3  6.0  11.7  7.5  
3114 28244.0 120.0  209.3  164.7  150.4  286.7  197.2  7.1  13.5  9.3  
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Table B-45 Summary of experimental data for test case 39 

(djet=1.2 mm, L=26.2 mm, Impact number=1/2, Impacting angle=41.2o, Tjet=21.7 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
770.6 23284.0 304.3  373.0  337.1  66.6  82.8  74.2  3.1  3.9  3.5  
1564 25649.0 216.7  293.9  253.1  93.9  130.9  110.4  4.4  6.2  5.2  
2340 27120.0 139.0  248.1  201.4  119.5  230.1  150.5  6.5  10.9  7.1  
3109 28317.0 125.0  214.6  169.8  146.8  274.3  191.3  6.9  12.9  9.0  

 

 

 

Table B-46 Summary of experimental data for test case 40 
(djet=1.2 mm, L=28.0 mm, Impact number=1/2, Impacting angle=43.9o, Tjet=22.0 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

770.2 21840.0 282.8  356.0  323.8  65.6  84.2  72.7  3.1  4.0  3.4  
1558 23916.0 198.4  282.2  236.4  91.7  135.1  111.2  4.3  6.4  5.3  
2335 24999.0 111.3  250.2  180.0  109.3  278.5  157.8  5.2  13.1  7.4  
3109 26033.0 95.0  199.2  147.1  146.7  355.6  207.7  6.9  16.8  9.8  
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Table B-47 Summary of experimental data for test case 41 

(djet=1.6 mm, L=8.1 mm, Impact number=1/8, Impacting angle=33.5o, Tjet=21.8 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
1024 23932.0 104.4  319.7  238.1  80.9  297.0  111.7  5.1  18.6  7.0  
2077 25623.0 86.5  188.2  137.4  153.7  393.9  221.1  9.7  24.8  13.9  
3121 26440.0 66.4  114.8  90.6  282.2  583.3  380.5  17.8  36.8  24.0  
4166 26894.0 56.3  110.0  83.2  302.0  760.6  432.0  19.0  47.9  27.2  

 

 

 

Table B-48 Summary of experimental data for test case 42 
(djet=1.6 mm, L=10.1 mm, Impact number=1/8, Impacting angle=35.3o, Tjet=22.1 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1026 23687.0 112.4  308.7  234.6  83.0  266.1  112.2  5.2  16.6  7.0  
2071 25465.0 90.0  181.5  135.8  159.5  373.9  223.5  10.0  23.5  14.0  
3110 26258.0 69.4  132.8  101.1  236.3  550.5  330.7  14.9  34.6  20.8  
4154 27000.0 47.6  120.0  88.9  273.9  746.5  400.8  17.2  46.9  25.2  
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Table B-49 Summary of experimental data for test case 43 
(djet=1.6 mm, L=12.0 mm, Impact number=1/8, Impacting angle=37.0o, Tjet=22.0 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1027 25391.0 138.2  334.4  262.5  81.6  221.1  106.2  5.1  13.8  6.6  
2078 27568.0 99.9  205.1  152.5  150.0  350.8  210.2  9.4  22.1  13.2  
3113 28531.0 81.0  164.2  122.6  200.0  480.1  282.4  12.6  30.2  17.8  
4145 29565.0 68.4  130.6  199.5  271.7  634.4  380.5  17.2  39.9  23.9  

 

 

 

Table B-50 Summary of experimental data for test case 44 
(djet=1.6 mm, L=13.9 mm, Impact number=1/8, Impacting angle=38.7o, Tjet=21.6 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1026 25638.0 180.8  362.2  295.4  75.7  162.9  94.3  4.7  10.2  5.9  
2083 28234.0 110.5  212.7  161.6  147.8  316.4  201.4  9.3  19.9  12.7  
3121 29195.0 86.5  169.3  127.9  197.1  446.7  273.5  12.4  28.1  17.2  
4163 29677.0 70.9  139.0  105.0  251.6  595.3  353.5  15.8  37.5  22.3  
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Table B-51 Summary of experimental data for test case 45 

(djet=1.6 mm, L=22.1 mm, Impact number=1/2, Impacting angle=35.4o, Tjet=21.8 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
1028 22514.0 201.5  304.3  262.9  80.1  126.3  93.9  5.9  7.9  5.0  
2074 24231.0 150.0  205.8  177.9  131.6  188.8  155.1  8.3  11.9  9.8  
3116 25001.0 119.2  165.5  142.4  173.5  255.6  206.6  10.9  16.1  13.0  
4166 25693.0 100.7  130.6  115.7  234.5  322.6  271.5  14.8  20.3  17.1  

 

 

 

Table B-52 Summary of experimental data for test case 46 
(djet=1.6 mm, L=24.2 mm, Impact number=1/2, Impacting angle=38.4o, Tjet=21.9 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1028 24576.0 231.7  320.1  284.3  82.8  117.8  94.1  5.2  7.4  5.9  
2080 26395.0 142.7  283.3  200.0  121.6  217.3  147.6  7.7  13.7  9.3  
3116 27609.0 125.0  195.2  160.1  158.9  266.5  199.1  10.0  16.8  12.5  
4146 28504.0 116.5  158.8  137.7  208.1  301.0  245.9  13.1  18.9  15.5  
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Table B-53 Summary of experimental data for test case 47 

(djet=1.6 mm, L=26.2 mm, Impact number=1/2, Impacting angle=41.2o, Tjet=21.5 oC) 
 

Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 
1031 24162.0 235.6  317.9  281.0  81.8  113.4  93.5  5.1  7.1  5.9  
2081 27407.0 149.6  255.0  205.0  111.2  202.5  141.6  7.0  12.8  8.9  
3122 27044.0 135.0  227.3  181.2  151.1  237.4  168.9  8.3  14.9  10.6  
4163 27931.0 116.0  190.9  153.5  164.5  294.2  210.9  10.4  18.5  13.3  

 

 

 

Table B-54 Summary of experimental data for test case 48 
(djet=1.6 mm, L=28.1 mm, Impact number=1/2, Impacting angle=43.9o, Tjet=21.5 oC) 

 
Red q"(W/m2) Tmin(oC) Tmax(oC) Tavg(oC) hmin(W/m2-K) hmax(W/m2-K) hmean(W/m2-K) Nud,min Nud,max Nud,mean 

1030 24148.0 258.4  331.2  292.2  78.3  102.5  89.6  4.9  6.4  5.6  
2081 27811.0 157.3  251.6  210.2  114.5  193.8  139.6  7.2  12.2  8.8  
3124 28327.0 140.0  214.6  177.3  140.7  228.9  174.3  8.9  14.4  11.0  
4162 29133.0 112.3  168.1  140.2  193.2  311.4  238.4  12.2  19.6  15.0  
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