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El  set of edges (or links) in Gl 

EL  set of functionally redundant layers 

Ep  set of interlayer edges representing the precursor effect 

f  mapping function 

Gl  graph of layer l 

Hl  matrix in layer l in precursor effect propagation 

k1  killer vector for the kill effect 

k2  killer vector for the precursor effect 

L  number of layers in an IMLN 

ml  column vector derived from Hl 

N  set of natural numbers (non-negative integers) 

N*  set of natural numbers excluding zero 
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*
nN   set of integers from 1 to n 

N  network 

n  total number of vertices in a network N 

lAn   number of elements in adjacency matrix Al 

nC  number of elements in interlayer matrix C 

lEn   number of edges in layer l 

ni  number of item functioning right before t(i) (Part 1) 

nl  total number of vertices in Gl (Part 2) 

nS  number of spacecraft in the network N 

P   sample probability mean 

P0 probability associated with an architecture with a perfect networkable 

subsystem 

PF  probability of being in a failed state 

ip̂   conditional probability of surviving an infinitesimal time after t(i)  

Pij  conditional probability of transitioning from state i to state j 

ijP̂   estimate of Pij 

Pm  probability of being in a minor degradation state 

PM  probability of being in a major degradation state 

PMF  probability of being in a major–failed state (or severe degradation state) 

PmMF  probability of being in a minor–major–failed state (or degraded state) 

PP  probability associated with the payload subsystem 

PS  probability associated with the supporting subsystems 
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1vSP   probability of being in a virtual state 1  

2vSP   probability of being in a virtual state 2  

F
iPU   probability of failure of the wireless unit i 

R(t)  reliability, or survivor function 

)(tR
)

  Kaplan-Meier estimated of the reliability function 

R2  coefficient of determination in a regression analysis 

r j percent contribution of subsystem j to the probability of failure of the 

spacecraft 

s  sample standard deviation 

Si  State i in the transition diagram 

t(i)  i th failure time 

TF  time to failure 

TF,vertex i time to failure of vertex i 

TF,edge j→i time to failure of edge between vertex j and vertex i 

Tij  transition between the state i and state j 

Tm  time to minor degradation state 

TM  time to major degradation state 

TMF  time to major–failed state (or severe degradation state) 

TmMF  time to minor–major–failed state (or degraded state) 

1vST   time to virtual state 1  

2vST   time to virtual state 2  

UT   time to unavailability  
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k
UT   time to unavailability due to the kill effect 

m
UT   minimum time to unavailability after the the kill effect 

p
UT   time to unavailability due to the precursor effect 

r
UT   time to unavailability considering the functional redundancy 

v1  victim vector for the kill effect 

v2  victim vector for the precursor effect 

Vi  set of vertices (or nodes) in Gi 

αF  probability of failure of the networkable subsystem 

αm probability of being in a minor degradation state for the networkable 

subsystem 

αM probability of being in a major degradation state for the networkable 

subsystem 

αMF  probability of being in a major–failed state for the networkable subsystem 

αmMF probability of being in a minor–major–failed degradation state for the 

networkable subsystem 

15
⋅α   value of α . at t = 15 years (F, m, M, MF, mMF) 

αj  weighting coefficient in mixture distribution function 

β  Weibull shape parameter 

γF  relative failure growth 

∆  net gain of the network 

∆0  maximum net gain of the network 

∆P  performance degradation 

η  network efficiency 
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λ  exponential rate parameter 

µ  exponential mean parameter 

υF  probability of failure of the wireless link  
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SUMMARY 

 

Spacecraft fulfill a myriad of critical functions on orbit, from defense and intelligence to 

science, navigation, and telecommunication. Spacecraft can also cost several hundred 

millions of dollars to design and launch, and given that physical access for maintenance 

remains difficult if not impossible to date, designing high reliability and survivability into 

these systems is an engineering and financial imperative.  

While reliability is recognized as an essential attribute for spacecraft, little analysis has 

been done pertaining to actual field reliability of spacecraft and their subsystems. This 

thesis fills the gap in the current understanding of spacecraft failure behavior on orbit 

through extensive statistical analysis and modeling of anomaly and failure data, and then 

leverages these results to develop a theoretical basis and algorithmic tools for the analysis 

of survivability of spacecraft and space-based networks.   

This thesis consists of two parts. The first part provides extensive statistical results of 

recent on-orbit anomaly and failure data of Earth-orbiting spacecraft. Nonparametric 

reliability results are derived, and parametric models, including Weibull and mixture 

distributions, of spacecraft and spacecraft subsystems are developed. These analyses are 

then extended to multi-state failures, accounting for and modeling spacecraft subsystems’ 

degraded states and partial failures. Culprit subsystems driving spacecraft unreliability 

are identified, including major contributors to infant mortality and anomaly, and it is 

suggested that these would benefit most from a revision of their current testing protocol 
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and burn-in procedures. The second part builds on these results to develop a novel 

theoretical basis and algorithmic tools for the analysis of survivability of spacecraft and 

space-based networks. Space-based networks (SBNs) allow the sharing of on-orbit 

resources, such as data storage, processing, and downlink. Spacecraft in SBNs can have 

different subsystem composition and functionality, thus resulting in node heterogeneity 

(each spacecraft being a node in the network). Current tools for network survivability 

analysis assume homogeneous nodes, and as such, they are not suited for the analysis of 

space-based networks. This thesis proposes that heterogeneous networks can be modeled 

with a new approach termed interdependent multi-layer networks, which is then adapted 

for their survivability analysis. The multi-layer aspect enables the breakdown of 

spacecraft according to common functionalities and allows the emergence of 

homogeneous sub-networks, while the interdependency aspect constrains the network to 

capture the physical characteristics of spacecraft. Formal characterization of 

interdependent multi-layer networks, as well as algorithmic tools for the analysis of 

failure propagation across the network are developed and illustrated with space 

applications and proof of concepts. The SBN applications considered consist of several 

networked spacecraft that can tap into other’s Command and Data Handling subsystem 

(C&DH), in case of degradation or failure of its own, including Telemetry, Tracking and 

Command, Control Processor or Data Handling sub-subsystems. Results indicate and 

quantify the incremental survivability improvement of the SBN over the traditional 

monolith architecture. A trade-space analysis is then conducted using non-descriptive 

networkable subsystems/technologies to explore survivability characteristics of space-

based networks and help guide design choices. The trade studies provide important 
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insights into design and architectural choices for enhancing survivability of 

heterogeneous networks in general, and space-based networks in particular. For example, 

it is shown that such networks shield in priority the system from the most severe failures, 

and their incremental survivability decreases with decreasing severity of subsystems 

anomalies at comparable occurrence. Also, network survivability benefits most from 

increasing number of nodes for networkable subsystems with increasingly problematic 

failure behavior. The analysis also demonstrates the criticality of the wireless link 

reliability, and highlights the importance of rooting out infant mortality of this link to 

enable any survivability improvements for space-based networks. 
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CHAPTER 1  

INTRODUCTION 

 

“Tempus edax rerum” 
“Time, devourer of all things” 

 
Ovid, AD 8 

Metamorphoses, XV, 234 
 

 

1.1. A Brief Historical Perspective and Motivation 

On October 4, 1957, a small beeping spacecraft, Sputnik, heralded the beginning of the 

Space Age. From this humble start, the space industry grew into an impressive $100+ 

billion industry. Around 6500 spacecraft were launched in the five decades after Sputnik. 

And although the launch rate has been highly variable (Hiriart and Saleh, 2010), a rough 

estimate would set it at present around 80 to 100 spacecraft launched per year. Spacecraft 

today fulfill a myriad of functions, from Defense and Intelligence missions (early 

warning, reconnaissance, etc.), to Science missions (Earth observation, interplanetary 

probes), Communication functions (Direct-To-Home, Fixed Satellite Services, and 

Mobile Satellite Services) and Navigation services (GPS). 
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Spacecraft can cost several hundred millions of dollars to design and launch1, and as such 

reliability is essential for these systems. More generally, reliability is a critical design 

attribute for high-value systems operating in remote or inhospitable environments such as 

spacecraft or sub-sea installations. Since physical access to these assets is difficult or 

impossible, maintenance cannot be relied upon to compensate for substandard reliability 

(Rausand and Høyland, 2004). As a result, designing high reliability into these systems is 

an essential engineering and financial imperative. 

By an unexpected accident of history, the official birth of reliability engineering and the 

onset of the Space Age took place the same year (1957), and the first part of this 

dissertation is at the intersection of these two developments by bringing reliability 

engineering to bear on space systems. Reliability engineering is founded on several 

essential ingredients such as probability and statistics, theoretically formalized in the 

seventeen century by Blaise Pascal and Pierre de Fermat, or the concept of mass 

production, popularized by Henri Ford but already existing for several years with the use 

of standardized, interchangeable parts. The idea of the stochastic nature of the time to 

failure was not immediately accepted by production engineers, but the stark unreliability 

of the vacuum tube during World War II acted as the catalyst that accelerated the coming 

of reliability engineering, through studies launched by the US Department of Defense. A 

more detailed review of the history of reliability engineering can be found in Saleh and 

Marais (2006) and Saleh and Castet (2011). 

                                                 
1 Except for micro-satellites, which are typically in the $10 – $50 million range, and on-going efforts are 
seeking to significantly reduce this price tag. Whether useful functions can be performed on orbit below 
this range remains to be seen. 
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In the case of space systems, statistical analysis of actual flight data would provide useful 

feedback to the space industry, in relation to part selection, redundancy allocation, testing 

programs, etc. In addition, a better understanding of spacecraft failures, and the 

determination of the existence of infant mortality among spacecraft subsystems is an 

important endeavor for the space industry. Indeed, infant mortality can be traced back to 

design flaws and manufacturing defects, and as such it can be reduced or eliminated 

through proper equipment testing or burn-in. Robertson and Stoneking (2003) however 

warn against over-testing parts that could lead to a decrease in the overall subsystem 

reliability. This raises interesting questions of how to do pre-flight testing, and at what 

level of integration, of subsystems whose components exhibit different failure behaviors 

(e.g., infant mortality for some and wear-out failure for others).  

In its traditional understanding, reliability analysis considers only two states: operational 

and failed. Consequently, the system under consideration is only perceived as being in 

one of these two states. In reality, engineering artifacts can experience partial 

degradations, and not necessary only catastrophic failures. To account for this 

progression from fully operational towards complete loss, multi-state failure analysis 

introduces “degraded states”, and thus provides more insights through finer resolution 

into the degradation behavior of an item. As such, following a reliability analysis of 

spacecraft subsystems, this dissertation provides a theoretical formalization of multi-state 

failure analysis and applies it on spacecraft subsystems. 

Finally, endogenous failures are a subset of the failures a spacecraft can experience: 

exogenous failures such as collisions with orbital debris or attacks from anti-satellite 
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(ASAT) weapons can trigger degradation in functionality, potentially leading to a total 

loss. This broader picture of failure analysis falls in the realm of survivability analysis 

and is applied to spacecraft and space-based networks (SBNs). SBNs are related to a 

novel concept recently introduced in the space industry termed fractionation: by 

physically distributing functions in multiple orbiting modules wirelessly connected to 

each other, this new architecture allows the sharing of resources on-orbit, such as data 

processing, data storage, and downlinks. 

To summarize, spacecraft and space-based networks, as engineering artifacts, degrade 

and fail in time; just how they do so, a particular aspect of their relationship with time, is 

explored in this thesis, and the remainder of this dissertation is organized as follows. 

1.2. Outline and Anticipated Contributions 

This dissertation is articulated in two parts. The first part is a descriptive analysis of 

reliability and multi-state failures of spacecraft and spacecraft subsystems based on 

statistical data analyses (Chapter 2 and Chapter 3). The second part introduces a 

prescriptive or normative analysis of survivability bearing on spacecraft and space-based 

networks (Chapter 4 and following). It also brings a theoretical contribution to this thesis 

by proposing a novel method to represent and analyze networks with node heterogeneity. 

Chapter 2 presents a statistical analysis of spacecraft failure data. As mentioned earlier, 

spacecraft reliability analysis are recognized as important for the space industry, but 

unfortunately, limited empirical data and statistical analyses of spacecraft reliability exist 
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in the literature. A brief literature review of early studies of spacecraft failures is 

conducted and highlights their limitations. This chapter fills the gap by providing a 

formal reliability analysi s based on a large sample and nonparametric spacecraft 

reliability results  are presented. In addition, parametric analyses are conducted and 

single Weibull as well as mixture distribution models are derived. Finally, the statistical 

failure analysis is extended to spacecraft subsystems, and the relative contribution of 

spacecraft subsystems to the global spacecraft unreliability is examined, highlighting 

problematic subsystems that would benefit most from reliability improvements. 

Chapter 3 extends the previous analyses of reliability, in its traditionally binary-state 

understanding, to account for spacecraft anomalies and failures of various severity. 

Partial failures constitute a significant portion of anomalous events a spacecraft can 

experience on-orbit, and as such their analysis is critical to obtain a complete picture of 

the spacecraft and spacecraft subsystems’ failure behavior. This chapter introduces a 

formal multi-state failure analysis of spacecraft subsystems, and provides practical 

implications for the space industry. 

Chapter 4 is a turning point in this dissertation as considerations of survivability 

analysis are brought on spacecraft and the newly introduced concept of space-based 

networks. Chapter 4 provides a literature review on survivability analysis, as well as on 

network analysis. A formal survivability framework  is introduced and limitations of the 

current network analysis to represent and analyze space-based networks are demonstrated. 

To overcome these limitations, a new framework is presented and termed 

interdependent multi-layer network approach. 
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Chapter 5 is devoted to the derivation of the anomaly and failure propagation for the 

interdependent multi-layer network approach introduced in this thesis. Several 

algorithms are introduced and illustrated with a case study space-based network. 

Chapter 6 presents the analyses conducted to validate the failure propagation for 

interdependent multi-layer networks introduced in the previous chapter. This validation 

procedure is important so that the survivability results can be trusted and properly 

analyzed. Chapter 6 also evaluate the precision of the model results, by comparing them 

with results obtained with an alternative modeling technique, namely stochastic Petri nets, 

as well as limited analytical solutions. Finally, Chapter 6 investigates the potential 

scalability of the interdependent multi-layer network modeling. 

Chapter 7 puts to use the validated interdependent multi-layer network approach 

proposed in this dissertation to derive survivability analysis of selected space-based 

network architectures. This chapter then leverages these results to obtain insights on 

design and architectural choices for future space systems. 

Finally, Chapter 8 concludes this works and provides several recommendations for future 

research. 
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PART 1 

STATISTICAL ANALYSIS OF SPACECRAFT RELIABILITY  

AND MULTI-STATE FAILURES 
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CHAPTER 2  

RELIABILITY OF SPACECRAFT AND SPACECRAFT SUBSYSTEMS  

 

For space systems, statistical analysis of flight data, in particular of actual on-orbit (field) 

anomaly and failure data, would provide particularly useful feedback to spacecraft 

designers. For example, such analyses can help guide parts selection and provide an 

empirical basis for subsystem redundancy and reliability growth plans. Analyzing 

spacecraft failure behavior on orbit, and identifying their subsystems’ actual reliability 

profiles, not their reliability requirements—how they actually degrade and fail on-orbit, 

not how they should or are expected to—can help spacecraft manufacturers prioritize and 

hone in on problematic subsystems that would benefit most from reliability 

improvements. Reliability improvements can be achieved through redundancy, increased 

testing prior to launch, or better design and parts selection, and these efforts would result 

in a decreased likelihood of spacecraft experiencing failure events. In addition, 

identifying whether specific spacecraft subsystems experience infant mortality for 

example would provide a clear opportunity for spacecraft manufacturers and equipment 

providers to develop burn-in procedures for weeding out early failures in said subsystems.  

Statistical analysis of on-orbit failure and spacecraft reliability can also provide important 

and actionable information to stakeholders other than spacecraft manufacturers. For 

example spacecraft operators may be particularly interested in the reliability profiles of 

their on-orbit assets, for planning and risk mitigation purposes, and insurers evidently 

rely on such analysis and information to set up their policy and insurance premiums. 
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The importance of statistical analysis of on orbit failure data was recognized early in the 

advent of the space age. The following subsections provide a brief overview of past 

spacecraft reliability studies. 

2.1. On Spacecraft and Reliability: Early Studies 

A few years after the launch of the first spacecraft, statistical analyses of spacecraft 

reliability and on-orbit failures began to appear. As discussed by Bean and Bloomquist 

(1968), statistical analyses based on empirical data from spacecraft on-orbit were an 

essential undertaking for the aerospace industry, for two reasons: gathering data from 

spacecraft and determining the failure behavior of satellites or satellite subsystems 1) 

provides feedback to the industry on the performance (“strengths” or “weaknesses”) of 

designed and manufactured parts and components, and allows efficient reliability 

improvement programs, and 2) allows improving the estimation of “parameters 

commonly used in reliability predictive techniques” by comparing estimated and 

observed reliability/failure rates. One of the earliest reliability studies, according to 

Leventhal et al. (1969), was published in 1962, and it analyzed the failure behavior of 16 

spacecraft launched before November 1961 (ARINC, 1962). Over the years, similar 

analyses would be conducted with larger sample sizes or spacecraft population. For 

example, Bean and Bloomquist (1968) analyzed the failure behavior of 225 spacecraft; 

Timmins and Heuser (1971), and Timmins (1974; 1975) analyzed the failure behavior of 

57 spacecraft; and Hecht and Hecht (1985) and Hecht and Fiorentino (1987; 1988) 

analyzed the failure behavior of some 300 spacecraft. 

More recent studies revolved around specific spacecraft subsystems. For example Cho 
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(2005) and Landis et al. (2006) focused on failures in spacecraft power subsystem, 

Brandhorst and Rodiek (2008) on solar arrays failures, and Roberston and Stoneking 

(2003) on the attitude control subsystem failures. Sperber (2002) and Tafazoli (2009) 

analyzed not a single subsystem’s failures but the comparative contribution of various 

subsystems to spacecraft on orbit failures. And instead of spacecraft subsystems, 

Bedingfield et al. (1996) focused on spacecraft failures only due to the natural space 

environment. 

Early spacecraft reliability studies assumed an exponential distribution and constant 

failure rate (Leventhal et al., 1969; Bean and Bloomquist, 1968; Binckes, 1983). In some 

of these studies however, discrepancies between the values of the observed reliability and 

the predicted reliability of the spacecraft already started to appear: Bean and Bloomquist 

(1968), for example, concluded that observed failures rates were lower than expected 

from prediction. The exponential assumption was challenged by Timmins and Heuser 

(1971) who showed that, for their small sample of 57 NASA Goddard Space Flight 

Center spacecraft, the failure rate was in fact not constant but higher in the early days on 

orbit: 

“The number of failures per spacecraft were abnormally high for the first 

30 days in space. The number of first-day failures departed even more 

from the longer trend.”  

This finding of spacecraft infant mortality and decreasing failure rate was repeated in 

subsequent studies (Timmins, 1974; 1975), and led Baker and Baker (1980) to comment 
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that “those spacecraft that last, last on and on,” which in effect reflects for these authors 

the absence of wear-out failures in spacecraft. 

Hecht and Hecht (1985) analyzed a different population of spacecraft than the one used in 

the previous four studies (the 57 NASA spacecraft). Their sample consisted of some 300 

spacecraft launched between 1960 and 1984, and covered 96 different space programs. 

Their analysis also found decreasing failure rate in their spacecraft sample, and they took 

issue with the constant failure rate models proposed in the military reliability handbook, 

MIL-HDBK-217 as unrealistic for system reliability predictions. MIL-HDBK-217 was 

first developed in 1961 and revised several times afterwards. Similar conclusions were 

advanced by Krasich (1995) and Sperber (1990; 1994) who noted a qualitative agreement 

in prior studies “that as the mission goes on, risk per unit time to surviving spacecraft 

decreases.” 

To better represent this non constant failure rate, several models have been explored, and 

several studies chose the Weibull distribution as suitable for spacecraft or spacecraft 

subsystem reliability (Norris and Timmins, 1976; Baker and Baker, 1980; Hecht and 

Hecht, 1985; Hecht and Fiorentino, 1987; Krasich, 1995). However, given the significant 

technological changes in spacecraft design in the last decades, these models suffer from 

obsolescence and are of limited relevance for today’s spacecraft. As for the more recent 

studies mentioned earlier, they reported failure numbers but they did not provide 

reliability models. Consequently there is a gap in the literature for recent reliability 

models for spacecraft and a need for a thorough statistical analysis of recent flight data to 

answer this fundamental question: How reliable spacecraft and spacecraft subsystems 

have been? 
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2.2. Nonparametric Reliability Analysis of Spacecraft Failure Data 

2.2.1. Database and Data Description 

The SpaceTrak database (see References) was adopted for the purpose of this thesis. This 

database is used by many of the world’s launch providers, spacecraft insurers, operators, 

and spacecraft manufacturers. The database provides a history of on-orbit spacecraft 

failures and anomalies, as well as launch histories since 1957. It should be pointed out 

that this database is not necessarily “complete” in a statistical sense since some military 

or intelligence spacecraft may not have their failures reported. Similarly, the database 

cannot be considered “complete” with respect to anomalies or partial failures since 

spacecraft operators may not report all partial failures, especially, the ones that can be 

recovered from in a timely manner. This being said, the database is considered as one of 

the authoritative databases in the space industry with failure and anomaly data for over 

6400 spacecraft. The statistical analysis in this work is enabled by, and confined to, the 

failure and anomaly information provided in this database. 

The sample analyzed in this section consists of 1584 spacecraft. The sample was 

restricted to Earth-orbiting spacecraft successfully launched between January 1990 and 

October 2008. The observation window has been chosen to obtain a spacecraft sample as 

large as possible, while limiting the effect of technology heterogeneity and obsolescence. 

A failure leading to the spacecraft retirement is identified in the database as a Class I 

failure, that is, a complete failure leading to the loss of the spacecraft. In addition, as will 

be detailed later, eleven spacecraft subsystems are identified in the database. If the cause 
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of a Class I failure is identified and traced back to a particular subsystem, that “culprit” 

subsystem is noted in the database. When the culprit subsystem, whose failure led to the 

spacecraft failure, could not be identified, the failure of the spacecraft is ascribed to an 

“unknown” category in the database. This categorization was used for analyzing the 

relative contribution of each subsystem to the overall spacecraft failures. 

For each spacecraft in the sample, the following information was collected: 1) its launch 

date; 2) its failure date, if failure occurred; 3) the subsystem identified as having caused 

the spacecraft failure, hereafter referred to as the culprit subsystem; and 4) the censored 

time, if no failure occurred. This last point is further explained in the following 

subsection, where data censoring and the Kaplan–Meier estimator are discussed. The data 

collection template and sample data for the analysis are shown in Table 2.1. 

Table 2.1. Data collection template and sample data for the statistical analysis of spacecraft 
reliability 

Sample unit 
number* 

Launch 
date 

Failure date 
(if failure occurred) 

Culprit 
subsystem 

Censored time 
(if no failure occurred) 

Spacecraft #1 11/06/1998 11/15/1998 TTC – 
Spacecraft #2 03/01/2002 – – 10/02/2008 

… … … … … 
Spacecraft #1584 04/26/2004 03/28/2006 Mechanisms – 

* Note that spacecraft are not necessarily arranged/shown in chronological order 

2.2.2. Nonparametric Analysis of Spacecraft Failure Data 

Censoring occurs when life data for statistical analysis of a set of items is “incomplete”. 

This situation occurs frequently in multiple settings (e.g., medical and engineering 

contexts) and can happen because some items in the sample under study are removed 
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prior to failure or because the test or observation window ends prior to all items failing. 

By contrast, a life data set is said to be “complete” if one observes the actual time to 

failure of all the items in the sample under study, that is, if no censoring occurs within the 

data. Censoring introduces particular difficulties in statistical analysis which, if not 

addressed and accounted for, can significantly bias the results. There are multiple 

classifications and types of censoring and different statistical techniques for dealing with 

them. The reader interested in extensive detail is referred to three excellent books on the 

subject: Lawless (2003), Ansell and Phillips (1994) and Meeker and Escobar (1998). In 

the particular case of this study, the sample analyzed is right-censored (random censoring) 

with staggered entry. This means the following: 1) the units in the sample are activated at 

different points in time (i.e. the spacecraft are launched at different calendar dates), but 

all activation times in the sample are known; 2) failures dates and censoring are 

stochastic; and 3) censoring occurs either because a unit (spacecraft) is retired from the 

sample before a failure occurs or because the spacecraft is still operational at the end of 

the observation window (October 2008). This situation is illustrated in Figure 2.1.  
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Figure 2.1. Censored data with staggered entry 

 

Staggered entries are easily handled by shifting all the activation times to t = 0, which 

changes the approach, and the x-axis in Figure 2.1, from a calendar-time to a clock-time 

analysis of spacecraft reliability. Therefore spacecraft reliability is investigated as a 

function of time following successful orbit insertion. 

Censoring of data requires particular attention. Deriving a reliability function from 

censored life data is not trivial, and it is important that is it done properly if the results are 

to be meaningful and unbiased. In this work, the powerful Kaplan–Meier estimator 

(Kaplan and Meier, 1958) is adopted, as it is best suited for handling the type of 

censoring in the sample.  

Starting with n operational units, and because of censoring, only m time to failure (m < n) 

are collected. Assuming no ties between failures times, let  
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 t(1) < t(2) < … <  t(m) (2.1) 

be the failure times organized in ascending order. The goal is to estimate the reliability 

function, defined with respect to the random variable TF (time to failure) as: 

 ( )tTPtR F >≡)(  (2.2) 

The Kaplan–Meier estimator of the reliability function with censored data is given by: 
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where: 
 ni = number of operational units right before t(i) 

    = n – [number of censored units right before t(i)] 

          – [number of failed units right before t(i)] 

(2.4) 

 

The complete derivation of the Kaplan-Meier estimator and the treatment of ties in the 

data are provided in Castet and Saleh (2009a) and Saleh and Castet (2011). Also in these 

references are provided details about the construction of confidence intervals for the 

Kaplan-Meier estimate (here using the Greenwood’s formula, with alternative methods in 

Kalbfleisch and Prentice (1980) and Lawless (2003)). 
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The on-orbit spacecraft reliability from the censored data set can now be analyzed. For 

the 1584 spacecraft in the sample, there are 98 failures times and 1486 censored times. 

The (ordered) failure times are provided in Table 2.2. 

Table 2.2. Failure times (in days) of spacecraft launched between January 1990 and October 2008 

1 1 1 1 2 3 3 4 4 5 5 
7 9 12 15 15 16 16 23 36 51 53 
64 68 73 79 89 102 107 123 128 131 167 
190 197 221 229 237 252 271 309 314 317 334 
364 465 515 696 701 713 722 724 787 1053 1073 
1122 1146 1167 1184 1233 1256 1347 1458 1551 1637 1778 
1797 1836 1967 2009 2091 2097 2098 2181 2191 2237 2429 
2434 2472 2577 2580 2624 2702 2917 2947 2963 3038 3077 
3159 3268 3455 3684 3759 4192 4324 4909 5043 5207  

 

The data is then treated with the Kaplan-Meier estimator (Eq. (2.3)), and the 

Kaplan-Meier plot of spacecraft reliability shown in Figure 2.2 is obtained, with 95% 

confidence intervals (that is, a 95% likelihood that the actual reliability will fall between 

these two bounds, with the Kaplan-Meier analysis providing the most likely estimate).  

Figure 2.2 reads as follows: For example, after two years on-orbit, spacecraft reliability 

will be between 95.4% and 97.8% with a 95% likelihood—these values constitute the 

lower and upper bounds of the 95% confidence interval at t = 2 years. In addition, the 

most likely estimate of spacecraft reliability at this point in time is R̂ = 96.4%. More 

precisely: 

  years 2.155years 1.982  for              964.0)( <≤= ttR
)

 

Spacecraft reliability then drops to approximately 94% after 6 years on-orbit. Past 12 

years, spacecraft reliability lies roughly between 90% and 91%. Complete tabular data 
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are given in Castet and Saleh (2009a) and Saleh and Castet (2011). Comments about the 

confidence interval spread are made in Chapter 3. 

 

Figure 2.2. Kaplan-Meier plot of spacecraft reliability with 95% confidence intervals 

 

These are actual (field) spacecraft reliability results, not reliability specifications, and 

they provide a first answer to “how reliable spacecraft have been?” (between 1990 and 

2008). Several trends can be seen in Figure 2.2, the most noticeable one being the steep 

drop in reliability during the first year of spacecraft operation, which is indicative of 

infant mortality. These trends are better captured further with parametric models. 

2.2.3. Parametric Analysis and Weibull Modeling of Spacecraft Reliability 

Nonparametric analysis provides powerful results since the reliability calculation is 

unconstrained to fit any particular pre-defined lifetime distribution. However, this 

flexibility makes nonparametric results neither easy nor convenient to use for various 
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purposes often encountered in engineering design (e.g., reliability-based design 

optimization). In addition, some failure trends and patterns are more clearly identified 

and recognizable with parametric analysis. Several methods are available to fit parametric 

distributions to the nonparametric reliability results (as provided for example by the 

Kaplan-Meier estimator), or to derive parametric reliability distributions directly from the 

failure and censored times. Probability plotting is used to illustrate that spacecraft 

reliability can be reasonably approximated by a Weibull distribution, and the Maximum 

Likelihood Estimation (MLE) method is used to calculate the parameters of the Weibull 

distribution. However, as discussed below, several trends are present in the 

nonparametric result of spacecraft reliability that can be better captured by more complex 

models, such as mixtures of Weibull distributions. 

Weibull distributions and mixtures. The Weibull distribution is one of the most 

commonly used distribution in reliability analysis. The reason for its wide adoption is that 

it is quite flexible, and with an appropriate choice of one of its two parameters (the shape 

parameter), it can model different kinds of failure behaviors. The Weibull distribution has 

two parameters: the shape parameter β and the scale parameter θ. Its failure rate can be 

written as follows: 

 1

)(
−








=
β

θθ
βλ t

t  with θ > 0, β > 0, t ≥ 0 (2.5) 

The shape parameter β is dimensionless, and the scale parameter θ is expressed in units of 

time. Its probability density function can be expressed as follows: 
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The parametric reliability model with a mixture of Weibull distributions can be expressed 

as follows: 
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Weibull models for spacecraft reliability. Probability plots constitute a simple and 

visually appealing graphical estimation procedure for fitting a parametric distribution to 

nonparametric data. This procedure is based on the fact that some parametric models such 

as the Exponential or Weibull distribution can have their reliability function linearized 

using a particular mathematical transformation. This transformation for the Weibull 

distribution is presented in Castet and Saleh (2009a) and Saleh and Castet (2011). In the 

case of the estimated spacecraft reliability obtained above, its resulting Weibull plot is 

shown in Figure 2.3. 
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Figure 2.3. Weibull plot of spacecraft reliability 

 

The data points are well aligned (R2 = 0.9835) and this provides a first indication that the 

Weibull fit is indeed a good one, and that spacecraft reliability can be justifiably 

approximated by a Weibull distribution. The Maximum Likelihood Estimation (MLE) 

method provides more precise parametric fits than graphical estimation, as long as the 

sample size is not exceedingly small (e.g., in the single digits). The MLE method is 
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determining the right formulation of the Likelihood function for a chosen distribution and 

type of censoring, as will be shown shortly, and, 2) searching for an optimum of this 

function, which can be accomplished through various computational or analytical 

techniques. The values of unknown parameters of the distribution parameters that 

maximize the Likelihood Function are termed the Maximum Likelihood Estimates and 

the method is known as the MLE. The complete analytical derivation of the MLE in the 

case of a Weibull distribution is provided in Saleh and Castet (2011). The resulting 
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The shape parameter of the Weibull distribution (β = 0.4521) is smaller than 1, which 

indicates that spacecraft infant mortality  is a robust finding. 

In addition to the Weibull distribution to parametrically model spacecraft reliability, other 

distributions were investigated, and in particular an MLE lognormal fit was also 

conducted, and the resulting p.d.f. is: 
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with 7646.9=µ  and 2209.5=σ  for t in years 

(2.10) 

The residuals of the lognormal distribution indicate that although it is a relatively 

accurate representation of the nonparametric (benchmark) satellite reliability results, the 

lognormal distribution is less precise and a more biased fit of satellite reliability than the 

Weibull distribution. As a conclusion, the Weibull distribution is retained for the 

remainder of this dissertation. 

In the case of a 2-Weibull mixture distribution, the MLE method yields the following 

(method and step-by-step derivation of the MLE for Weibull mixtures provided in Saleh 

and Castet (2011). Also in that reference are provided alternative methods based on 
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Dempster, et al. (1977), or McLachlan and Krishnan (2008), Titterington, et al. (1985) 

and Kvam and Vidakovic (2007)): 
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Note that the first Weibull shape parameter β1 < 1 captures spacecraft infant mortality, 

whereas the second Weibull shape parameter β2 > 1 captures spacecraft wear-out failures. 

These two parametric models of the spacecraft reliability are shown in Figure 2.4 and 

Figure 2.5, superimposed on the nonparametric reliability results. 

It can be observed that both parametric models provide relatively precise approximation 

of the nonparametric reliability as can been seen from Figure 2.4 and Figure 2.5. 

However, upon closer inspection, it is clear that the 2-Weibull mixture distribution 

follows with a higher accuracy the trends present in the nonparametric spacecraft 

reliability. To quantify this difference in accuracy, a detailed analysis of the residuals of 

both parametric models is conducted with respect to the nonparametric reliability, as 

shown in Figure 2.6. Figure 2.6 presents two box-plots for the residuals of the single 

Weibull and the 2-Weibull mixture distributions. Recall that the box-plot reads as follows: 

the lower boundary of the “box” is determined by the first quartile (25th percentile) of the 

residuals, and the upper boundary by the third quartile (75th percentile). The line within 

the box corresponds to the median value, and the “whiskers” outside the box represent 

the minimum and maximum of the residuals. 
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Figure 2.4. Nonparametric and single Weibull reliability 

 
 
 

 

Figure 2.5. Nonparametric and 2-Weibull mixture reliability 
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Figure 2.6. Box plots of the residuals between the Weibull fits and the nonparametric reliability over 
15 years 

 

Figure 2.6 confirms the higher precision of the mixture of distributions over 15 years. 

The residuals of the mixture distribution have a smaller spread than those of the single-

function parametric fit:  

• The 25th and 75th percentile are less dispersed for the mixture distribution (i.e., 

smaller box); 

• The extreme values are less spread (i.e., shorter whiskers); 

• The residuals of the 2-Weibull mixture distribution are clearly more 

symmetrically dispersed that those of the single Weibull. In addition, the residuals 

between the 2-Weibull and the nonparametric reliability results are quasi-

normally distributed which is a good indication that no bias remains in the 

parametric mixture model and all failure trends have been captured by the 2-

Weibull mixture distribution. This last comment also indicates that it is 

superfluous to fit higher order mixture distributions (k > 2). 

Single Weibul - MLE 2-Weibull mixture - MLE

-1

-0.5

0

0.5

1

R
es

id
u

al
 (

p
er

ce
n

ta
g

e 
p

o
in

ts
)



26 
 

As a conclusion, the following suggestions are made for researchers and industry 

professionals should they wish to use these spacecraft reliability results. First, the use the 

nonparametric results is recommended as the most accurate reflection of actual spacecraft 

reliability. However, if the context of the study is not amenable to manipulating or using 

nonparametric results, then the use of the 2-Weibull mixture fit is recommended. The 

single Weibull MLE fit can be used if simplicity is sought and the study does not require 

a high level of precision. 

2.2.4. Discussion and Limitations 

A discussion is in order regarding the challenges and limitations of statistical analysis of 

spacecraft reliability in general, and the analysis and results in the previous section in 

particular. First note that the results here provided represent the “collective” failure 

behavior of Earth-orbiting spacecraft launched between 1990 and 2008. It can be argued 

however that no two spacecraft are truly alike, and that every spacecraft operates in a 

distinct environment, in different orbits or even within the same orbit, where spacecraft, 

unless they are co-located, are exposed to different space environment conditions. The 

situation of the space industry is different from that for example of the semi-conductor 

industry where data on, say, thousands of identical transistors operating under identical 

environmental conditions are available for statistical analysis, or other industries with 

items for which failure data can be easily obtained from accelerated testing or field 

operation. The consequence is that in the absence of “spacecraft mass production,” 

statistical analysis of spacecraft failure and reliability data faces the dilemma of choosing 

between calculating precise “average” spacecraft reliability or deriving a possibly 
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uncertain “specific” spacecraft platform reliability. This dilemma is explained in the 

following two possible approaches.  

The first approach is to lump together different spacecraft and analyze their “collective” 

on-orbit failure behavior, assuming that the failure times of the spacecraft are 

independent and identically distributed (iid). The advantage of doing so is that one can 

work with a relatively large sample (a few hundred or thousand of units), as done in this 

section, and thus obtain some precision and a narrow confidence interval for the 

“collective” reliability analyzed (a single-digit percentage point dispersion). The 

disadvantage is that the iid assumption can be challenged, and the “collective” reliability 

calculated (with precision) may not reflect the specific reliability of a particular type of 

spacecraft in a particular orbit.  

The second approach is to specialize the data, for example for specific spacecraft 

platform or mission type, or for spacecraft in particular orbits. The advantage of doing so 

is that the reliability analyzed is specific to the type of spacecraft considered (it is no 

longer a “collective” on-orbit reliability). The disadvantage is that the sample size is 

reduced, and as a consequence, the confidence interval expands. Given the available 

number of spacecraft (a few thousands), inappropriate data specialization, which could 

reduce the sample size to say fewer than a hundred data points, will result in significantly 

large confidence intervals, and thus highly dispersed and uncertain “specific” spacecraft 

reliability results.  
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This section provided results based on the first approach, the “collective” failure behavior 

of spacecraft recently launched. The second approach is adopted in Castet and Saleh 

(2009b), Hiriart, et al. (2009), and Dubos, Castet and Saleh (2010), where reliability 

results based on careful data specialization by spacecraft mission type, orbit type, and 

mass category are derived. 

2.2.5. Spacecraft Subsystem Reliability and Comparative Contribution to 

Spacecraft Unreliability 

In this subsection, , the previous statistical analysis of spacecraft reliability is extended to 

include spacecraft subsystems, that is, the analysis is narrowed down from the 

system-level to the subsystem-level failures, and reliability results, nonparametric and 

parametric, are derived for spacecraft subsystems. The two broad questions addressed 

here are, 1) what are the reliability profiles of various spacecraft subsystems? And 2) 

to what extent does each subsystem contribute to the overall failures of spacecraft? 

The answer to the second question constitutes a comparative analysis of subsystems 

failure, from an actuarial perspective, and allows for example the identification of culprit 

subsystems driving spacecraft unreliability. The results here provided should prove 

helpful to spacecraft manufacturers by allowing them to hone in on problematic 

subsystems that would benefit most from increased testing and reliability improvements. 
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Spacecraft subsystem identification. The statistical failure data analysis at the subsystem 

level is enabled by, and confined to, the subsystems identified in the database:  

1. Gyro / Sensor / Reaction Wheel (hereafter referred to as Gyro) 

2. Thruster / Fuel (Thruster) 

3. Beam / Antenna Operation / Deployment (Beam) 

4. Control Processor (CP) 

5. Mechanisms / Structures / Thermal (Mechanisms) 

6. Payload Instrument / Amplifier / On-board Data / Computer / Transponder 

(Payload) 

7. Battery / Cell (Battery) 

8. Electrical Distribution (ED) 

9. Solar Array Deployment (SAD) 

10. Solar Array Operating (SAO) 

11. Telemetry, Tracking and Command (TTC) 

Descriptions of these subsystems can be found in textbooks on spacecraft systems 

engineering such as in Fortescue et al. (2003) or Wertz and Larson (1999). When the 

culprit subsystem that led to the failure of the spacecraft could not be identified, the 

failure of the spacecraft is ascribed to an “Unknown” category in the database. Only the 

Beam/Antenna operation/deployment subsystem exhibits no Class I failure in the dataset. 

Thus the following study is confined to the 10 remaining subsystems plus the unknown 

category. 
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Nonparametric reliability of spacecraft subsystems. The subsystem failure data is treated 

with the Kaplan-Meier estimator (Eq. (2.3)), and the Kaplan-Meier plots of the reliability 

of all the spacecraft subsystems along with 95% confidence intervals are shown in Figure 

2.7 and Figure 2.8.  

Figure 2.7 and Figure 2.8 read as follows. Consider the “Gyro” subsystem, its reliability 

is shown in the upper-left corner of Figure 2.7. After a successful launch, the reliability of 

this subsystem drops to approximately 99.5% after four years on-orbit. More precisely : 

          
years 385.5years 3.137    ist        tha                    

 days 1967days 1461  for              9948.0)(

<≤
<≤=
t

ttR
)

 

In addition, the reliability of this subsystem will fall between 99.1% and 99.9%, its 95% 

confidence interval, over this period of time.  

This same “reading grid” regarding the estimated reliability   
) 
R (t)and confidence interval 

applies to all the other subsystems of Figure 2.7 and Figure 2.8. Notice the particular 

nonparametric reliability of the Solar Array Deployment, a constant, which is due to the 

one-shot nature of this “subsystem” (or more precisely, to this phase of the solar array 

subsystem). 
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Figure 2.7. Spacecraft subsystems reliability with 95% confidence intervals (1/2) 
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Figure 2.8. Spacecraft subsystems reliability with 95% confidence intervals (2/2) 
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and the nonparametric results in Figure 2.7 and Figure 2.8. provide a first indication of 

possible subsystem failure patterns to target and remedy. Notice for example the distinct 

and marked infant mortality failures of the Thruster / Fuel and the TTC subsystems, 

which could be eliminated through improved testing or burn-in procedures.  

Weibull modeling of spacecraft subsystem reliability. Weibull distributions have been 

shown previously to be adequate for modeling spacecraft reliability. The same 

observation can be extended to spacecraft subsystems as demonstrated in Castet and 

Saleh (2009c) and Saleh and Castet (2011). The resulting models from the MLE methods 

are given in Table 2.3. It is shown in these two references that the resulting Weibull 

distributions are a good fit for the nonparametric results. Improved accuracy, if needed, 

can be obtained as done previously through the use of mixture distributions. 

Table 2.3. Maximum Likelihood Estimates of the Weibull parameters for subsystem reliability 

Subsystem ββββ 
θθθθ 

years 
Gyro / Sensor / Reaction Wheel 0.7182 3831 
Thruster / Fuel 0.3375 6,206,945 
Control Processor 1.4560 408 
Mechanisms / Structures / Thermal 0.3560 2,308,746 
Payload Instrument / Amplifier / On-board Data / Computer / Transponder 0.8874 7983 
Battery / Cell 0.7460 7733 
Electrical distribution 0.5021 169,272 
Solar Array Deployment – – 
Solar Array Operating 0.4035 1,965,868 
Telemetry Tracking and Command 0.3939 400,982 

 

Note that no values of the Weibull parameters are provided for the Solar Array 

Deployment subsystem. As discussed previously, the “Solar Array Deployment” is a one-

shot “subsystem” and a Weibull fit is not meaningful in this case. A Weibull fit can also 
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be conducted on the data assigned to the “Unknown” category. The resulting Weibull 

parameters are β = 0.4011 and θ = 5836474 years. 

The important result in Table 2.3 is that all spacecraft subsystems, with the exception 

of the Control Processor, suffer from infant mortality  (shape parameter β < 1). This 

finding has important implications for the space industry and should prompt serious 

considerations for improved subsystem testing and burn-in procedures. 

Comparative analysis of subsystem failures. A comparative analysis of subsystem 

failure is provided in this section and the culprit subsystems driving spacecraft 

unreliability are identified. More specifically, the relative contribution of each subsystem 

to the failure of the spacecraft in the sample is quantified. In addition, a time dimension is 

added to this analysis by investigating the evolution over time of the relative contribution 

of each subsystem to the loss of spacecraft. The derivation of the percentage contribution 

of subsystem j to the failure of a spacecraft, named r j, is not trivial and the complete 

original derivation is available in Saleh and Castet (2011) and an illustrative example is 

shown in Kim, Castet and Saleh (2012).  

Deriving r j for all subsystem addresses the second question of this subsection, namely to 

what extent each subsystem contributes to the overall failures of spacecraft. The results of 

the analysis can be displayed in one figure, showing all the r j for j = 1 to 11 as a function 

of time. Doing so however would result in an exceedingly cluttered figure. For 

readability purposes, the results are split into four panels in Figure 2.9. 
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Figure 2.9. Relative contribution of various subsystems to spacecraft failure 

 

Figure 2.9 shows the evolution over time of the contribution of each subsystem to the loss 

of spacecraft. For example, it can be seen in the lower-left quadrant of Figure 2.9, that the 

Control Processor (CP) contributes approximately 6% to the total failures of spacecraft 

over 15 years. Similarly in the upper-left quadrant of Figure 2.9, it is observed that the 
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Gyro and TTC are the major contributors to spacecraft failures with respectively 20% and 

15% of spacecraft failures due to these subsystems over a period of 15 years. 

These results clearly mark the TTC, Gyro, and Thruster/Fuel subsystems as the major 

culprits driving spacecraft unreliability  and the ones that would benefit most from 

reliability improvements. The Gyro and the Thruster/Fuel are the two subsystems of the 

macro spacecraft subsystem Attitude and Orbit Control Subsystem (AOCS). As a side 

node, if the Battery/Cell, ED, SAD and SAO are considered together within the larger 

Electrical Power Subsystem (EPS), their combined contributions to spacecraft 

unreliability class them as major protagonists for spacecraft complete loss, as shown in 

Kim, Castet and Saleh (2012). A complete discussion of the results presented in Figure 

2.9 is available in Saleh and Castet (2011). As a conclusion, Figure 2.9 provides some 

guidance to engineers working on spacecraft design and corresponding reliability 

testing programs. 

Figure 2.10 provides a more readable version of Figure 2.9. Instead of the evolution over 

time of r j, Figure 2.10 provides a snapshot or static picture of the subsystems’ 

contributions to spacecraft failures at four discrete points in time, after 30 days, after 1 

year, after 5 years, and after 10 years on-orbit. Figure 2.10 in effect represents vertical 

cuts across Figure 2.9, and while the dynamical information portrayed in this figure is 

lost, readability and accuracy (or finer resolution) is gained at the discrete points in time 

selected. 
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Figure 2.10. Subsystem contributions to spacecraft failures after 30 days, 1 year, 5 years, and 10 
years on-orbit 

 

Similar observation can be made on Figure 2.10. In addition, note in the upper-left 

quadrant of Figure 2.10 that the Solar Array (Deployment and Operating) and TTC 

account respectively for 20% and 28% of the failures of the first 30 days on-orbit. Thus 

spacecraft infant mortality is driven to a large extent by these two subsystems, followed 

by the Thruster/Fuel subsystem, during the first month on orbit.  

  

  

 

t = 30 days

Gyro
5%

Thruster/Fuel
16%

Electrical 
distribution

11%SAD
10%

SAO
10%

TTC
28%

Unknown
10%

CP
0%

Battery/Cell
5%

Payload
0%

Mechanisms
5%

t = 1 year

Gyro
11%

Thruster/Fuel
23%

TTC
25%

Unknown
6%

Electrical 
distribution

7%

SAD
4%

SAO
11%

Payload
2%Battery/Cell

2%

Mechanisms
9%

CP
0%

t = 5 years

Gyro
10%

Thruster/Fuel
18%

Mechanisms
10%

Payload
3%Battery/Cell

10%

SAD
2%

SAO
7%

TTC
21%

Unknown
6%

Electrical 
distribution

9%

CP
4%

t = 10 years

Gyro
18%

Thruster/Fuel
13%

Battery/Cell
6%

Electrical 
distribution

10%

SAO
9%

TTC
21%

Unknown
5%

Payload
4%

Mechanisms
6%

SAD
2%

CP
6%



38 
 

2.3. Summary 

The technical literature has long recognized the importance of spacecraft reliability, but 

little analysis based on actual extensive flight data has been conducted. The present 

chapter helps to fill this gap by 1) conducting a thorough statistical analysis of recent on-

orbit spacecraft reliability data and on a significantly large sample, 2) fitting parametric 

models to the actual/observed reliability and 3) deriving reliability profiles of spacecraft 

subsystems and quantifying their relative contribution to satellite failures, enabling the 

identification of the subsystems that drive spacecraft unreliability. 

Fundamental results or this chapter includes the following: the spacecraft failures 

examined in this thesis exhibit a clear infant mortality trends, as well most subsystem 

failures (with the exception of the control processor). It was shown that the Weibull 

distribution is an appropriate model (single or mixture) for spacecraft reliability. Finally, 

particular subsystems such as the TTC or the Gyro were outlined as major contributors to 

spacecraft failures, and the time-dependence contribution of each subsystem was clearly 

identified. As such, the TTC and the solar array drive a significant part of the infant 

mortality. These analyses provides helpful feedback to the space industry in providing 

results, but also reproducible reliability methods for redesigning spacecraft and spacecraft 

subsystems, their test and screening programs, and providing an empirical basis for 

subsystem redundancy allocation and reliability growth plans. In the subsequent chapter, 

a more detailed approach to the degradation behavior of spacecraft subsystems is 

developed by accounting for and analyzing their anomalies and partial failures, i.e., 

failures of different severities, not just Class I (total) failures.  
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CHAPTER 3  

MULTI-STATE FAILURE ANALYSIS OF SPACECRAFT SUBSYSTE MS 

 

3.1. Introduction  

The previous section dealt with reliability of spacecraft and spacecraft subsystems, a 

critical design attribute for high value assets. The events considered were catastrophic 

failures (Class I) that lead to the complete loss of the spacecraft. As a result, only two 

states were considered, operational and failed, and the (sub)systems were analyzed and 

modeled as being in one of these two states. In reality, many engineering artifacts, 

spacecraft included, can experience failure events of varying severities, and thus 

transition from fully operational to various states of partial degradations, not necessarily 

complete failures. Indeed, the database used for the statistical analysis in the present work 

identifies four classes of anomaly and failure for each spacecraft subsystem: three 

degraded states, and one failed state (complete failure):  

• Class IV: minor/temporary/repairable failure that does not have a significant 

permanent impact on the operation of the spacecraft or its subsystems; 

• Class III: major non-repairable failure that causes the loss of redundancy to the 

operation of a spacecraft or its subsystems on a permanent basis; 

• Class II: major non-repairable failure that affects the operation of a spacecraft or 

its subsystems on a permanent basis; 
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• Class I: subsystem failure causing spacecraft retirements. This effectively means 

the total failure of the spacecraft due to a (dramatic) subsystem failure. 

All the anomalies and failure events experienced by the spacecraft in the sample were 

collected, and their distribution across the different classes is shown in Figure 3.1. 

 

Figure 3.1. Distribution of anomaly and failure events by severity for spacecraft successfully 
launched between January 1990 and October 2008 

 

Partial failures of different severities constitute a significant portion of anomalous events 

spacecraft experience on orbit, and as such their analysis provides additional and 

important pieces of information toward the understanding of spacecraft and subsystems’ 

failure behavior and propensity. The numbers presented in Figure 3.1 should not be 

overly interpreted beyond the important message that they convey, namely that focusing 

solely on the reliability of spacecraft, defined as the probability of being in an operational 

(not total failure) state, misses an important part of spacecraft on orbit degradation and 

failure behavior. This leads to the following questions: How can the functionality 

degradation of an item be analyzed? and How does specific spacecraft subsystems 

functionality degrade in time?  

Class I, 12.7%

Class II, 46.1%

Class IV-III, 41.3%

Total: 773
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3.2. Setting the Stage for Multi-State Failure Analysis 

To answer these questions, the investigation of failures of spacecraft subsystems is 

extended in a new direction beyond the binary concept of reliability to the analysis of 

anomalies and multi-state failures, or failure events of different severities, as shown in 

Figure 3.2. Multi-state failure analysis introduces “degraded states” or partial failures, 

and thus provides more insights through finer resolution into the degradation behavior of 

an item, and its progression towards complete failure. 

 

Figure 3.2. Progression in the statistical analysis of spacecraft and spacecraft subsystem failures 

 

The failure state diagram for each subsystem is shown in Figure 3.3. State 1 (Class I 

failure) is referred to in stochastic modeling as an absorbing state: it cannot be recovered 

from, and as such no outbound transitions emanate from it. No transitions are shown on 
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Figure 3.3 from a partially failed state towards a higher functional state (i.e., no directed 

arc from Si to S(i+1) for i ≠ 1). In reality, few transitions (3.6%) in the database occur in 

this “healing” direction. Incidentally, the argument in support of on-orbit servicing can be 

made in relation to these “healing” state transitions. This subject however is beyond the 

scope of the present work (see Saleh, et al. (2003) for details about on-orbit servicing). 

 

Figure 3.3. Multi-state and transition diagram for spacecraft subsystem failure behavior 

 

Consider the following notations: 

 Tij: transition between the state i and state j 

 Pij: conditional probability of transitioning from state i to state j 

For example the transition for a subsystem from a fully operational state (S4) to a major 

anomaly (S2) is labeled T42, and the probability of transitioning between these two states 

is P42. How to calculate these probabilities of transitioning is the focus of the next 

section. 

Fully operational 
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3.3. Multi-State Failure Analysis: Theoretical Development and Application to 

Spacecraft Subsystems 

3.3.1. Nonparametric Analyses of Subsystems’ Multi-State Failures 

In this section, the failure and anomaly data from all the states previously defined are 

used to compute the probability of transitioning from one state to another for all the 

spacecraft subsystems. The following data is collected for each subsystem and each state 

transition (i,j): 1) its date of arrival in state i; 2) its date of leaving state i to state j, if this 

transition occurred; and 3) the “censored time” if the state transition (i,j) did not occurred.  

Particular attention is required in handling censoring. In addition, beyond the procedure 

for handling right-censored data in the binary case of reliability analysis described in the 

previous chapter, multi-state failures introduce an additional subtlety in the definition of 

censored data and its handling. The dataset is still random-censored with staggered entry, 

meaning the following: 

• The subsystems in the sample are activated (arriving date in state i or launch date 

for i = 4) at different points in time, but all these activation times are known. 

• Departure dates from state i to state j are stochastic (and so is censoring). 

• Censoring occurs because a spacecraft is retired from the sample before Tij occurs 

or because the end of the observation window is reached (October 2008) without 

the subsystem experiencing to the transition Tij. In addition, in multi-state failure 

analysis, when studying Tij for a given subsystem, censoring also occurs when the 
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subsystem transitions to a state k different from state j. In this case, Tik with k ≠ j 

is considered censoring for the calculation of Tij. For example, when studying T43, 

that is, the transition of a subsystem from the fully operational state to the minor 

anomaly/degradation state, T43 is censored by T42 and T41, the transitions to state 2 

and state 1 (major anomaly/degradation and total failure). 

Accordingly, the Kaplan-Meier estimator needs to be adapted to estimate the conditional 

probability Pij of transitioning from state i to state j in the context of multi-state failures 

with their distinct censoring. To illustrate this point, consider the transition diagram 

shown in Figure 3.4. The following focuses on estimating the probability of transitioning 

from state i to state j, Pij. This in effect is a conditional probability, which means if the 

item is in state i, it is Pij likely to have transitioned to state j by the time t. Recall that 

censoring in the binary reliability analysis implies that an item has been removed from 

observation (for various reasons) prior to the occurrence of failure. In multi-state failure 

analysis, any transition to another state than the one of interest, in the example from state 

i to state j, is also considered censoring. For example, in Figure 3.4, the transitions from 

the state i to the state r or s (r ≠ j and s ≠ j) are considered censoring for the calculation of 

Pij . 

 

Figure 3.4. Censoring of Pij 

 j 
 i 

 s  r 

Pij  
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The estimate ijP̂ of Pij is written as: 

 
∏∏
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where: 
 tij (k): time to kth departure from state i to state j (arranged in ascending 

order) 

nij, k = number of units in state i right before tij (k) 

           = n – [number of censored units right before tij (k)] 

 – [number of units having transitioned to state j right before tij (k)] 

(3.2) 

The treatment of ties in the data in the context of multi-state failures is provided in Castet 

and Saleh (2010) and Saleh and Castet (2011). Also in these references are provided 

details about the construction of confidence intervals for multi-state failure analysis. 

With the background information, the multi-state failure analysis of spacecraft 

subsystems can now be applied to the on-orbit anomaly and failure data of the 1584 

spacecraft in the sample to obtain the nonparametric estimations ijP̂  of Pij. 

How many nonparametric calculations and ijP̂ are there? The combinatorics of the multi-

state problem involves the following: 
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• The multi-state analysis covers 11 spacecraft subsystems and 4 states for each 

subsystem (plus one unknown category). 

• Therefore theoretically, for each subsystem, we should calculate 42 = 16 transition 

probabilities. This number however is reduced because of the following two 

reasons: 

o The probability Pii is a dependent variable on all Pij (i ≠ j) and does not 

require a dedicated nonparametric calculation. The consequence is that we 

are left with 42 – 4 = 12 transition probabilities ijP̂ to estimate (i.e., no 

estimation of ̂  P ii ) 

o With the additional assumption of no transition in the healing direction, 

the transitions from a partially failed state towards a higher functional 

state are eliminated, and 12 – (3 + 2 + 1) = 6 transition probabilities ijP̂ are 

left to estimate for each subsystem, as shown in Figure 3.3. 

With 11 subsystems and 6 possible state transitions for each subsystem to calculate, there 

are 66 nonparametric probabilities to estimate (excluding the unknown category). In 

addition, two (nonparametric) calculations for each transition probability are required to 

estimate the 95% confidence interval. As a result, 198 nonparametric calculations are 

needed to fully characterize the multi-state failure behavior of the satellites in the sample, 

given the number of subsystems and the classes of failures identified. This proliferation 

of transition probabilities is in effect one of the main difficulties in statistically handling 

multi-state failures compared to the simple (binary) reliability analysis, and is rightfully 

described as the “dimension damnation” by Lisnianski and Levitin (2003). However, the 
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insights that emerge from multi-state failure analysis are significantly worth this added 

complexity, as will be shown shortly. 

Figure 3.5 provides an example of the nonparametric calculations. Shown are the six 

transition probabilities of the Gyro / Sensor / Reaction wheel subsystem. Figure 3.5 reads 

as follows. For example, after four years on-orbit, the Gyro subsystem is roughly 4.8% 

likely to have transitioned from state 4 to state 3 (minor anomaly; additionally P43 will 

fall between 3.5% and 6.0% with 95% confidence), 1.3% likely to have transitioned from 

state 4 to state 2 (major anomaly), and 0.3% likely to have transitioned from state 4 to 

state 1 (total failure). The probabilities of transitioning P41, P31 and P21 provide a finer 

resolution in the mechanisms leading to the total loss of the spacecraft, as opposed to 

traditional reliability analyses that lump together these transitions.  

Several transitions between states for various subsystems are not present in the dataset 

here analyzed. For example, for the Thruster / Fuel subsystem has no transition that 

occurred on orbit between a minor anomaly (State 3) and a complete failure (State 1) in 

the dataset. As a result, this transition is not subject to statistical analysis. Other 

transitions also do not occur in the dataset, thus reducing the total number of transitions 

to 48 and a total of 144 nonparametric calculations (excluding the unknown category). 

The absent transitions can be seen in Table 3.1 and Table 3.2 noted as “NA”. All the 144 

calculations are not shown here for convenience, but more are provided in Castet and 

Saleh (2010) and Saleh and Castet (2011). The parametric fits for all these transition 

probabilities are provided next. 
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Figure 3.5. Probabilities of transitioning for the Gyro subsystem 
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3.3.2. Weibull Parametric Models 

Since the interest herein is in the cumulative failure likelihood (the transition to a 

degraded state), the shape and scale parameter of the following are calculated with the 

MLE procedure, and given in and Table 3.1 and Table 3.2: 

 



















−−=
β

θ
t

tPij exp1)(  (3.3) 

Table 3.1. Weibull parameters for the spacecraft subsystems Pij (β is dimensionless, θθθθ is given in years) 

Gyro / Sensor / Reaction wheel Thruster / Fuel 
Beam / Antenna operation / 

deployment 

Pij β θθθθ Pij β θθθθ Pij β θθθθ 

P43 0.4731 2758 P43 0.3827 171879 P43 0.0019 * 

P42 0.3685 336231 P42 0.4763 8591 P42 0.2468 436409190 

P41 0.5635 65547 P41 0.3114 29975357 P41 NA 

P32 1.1950 33 P32 0.6052 46 P32 NA 

P31 0.7551 546 P31 NA P31 NA 

P21 0.4653 134 P21 0.2632 589300 P21 NA 

Control Processor 
Mechanisms / Structures / 

Thermal 

Payload Instrument / Amplifier 
/ On-board data / Computer / 

Transponder 

Pij β θθθθ Pij β θθθθ Pij β θθθθ 

P43 0.6585 3562 P43 0.3840 4952368 P43 0.4474 4065 

P42 NA P42 0.0060 * P42 0.4691 3170 

P41 NA P41 0.3572 19794952 P41 0.6701 119171 

P32 0.5487 1056 P32 NA P32 0.6647 38 

P31 0.7231 45 P31 NA P31 NA 

P21 1 * P21 NA P21 0.2513 169439610 

 
* Due to the constant form of the nonparametric curve, a Weibull fit is not meaningful in these cases. The 
values are the probabilities of transitioning over 15 years. 
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Table 3.2. Weibull parameters for the spacecraft subsystems Pij (β is dimensionless, θθθθ is given in years) 

Battery / Cell Electrical distribution Solar array deployment 

Pij β θθθθ Pij β θθθθ Pij β θθθθ 

P43 0.3855 9946825 P43 0.3663 13753674 P43 0.0015 * 

P42 0.4134 357357 P42 0.3526 11893973 P42 0.0040 * 

P41 0.9239 4431 P41 0.5215 144569 P41 0.0013 * 

P32 NA P32 1.1329 38 P32 NA 

P31 NA P31 NA P31 NA 

P21 0.2353 1936 P21 0.4618 376 P21 NA 

Solar array operating 
Telemetry, Tracking and 

Command2 
Unknown 

Pij β θθθθ Pij β θθθθ Pij β θθθθ 

P43 0.3216 3237079 P43 0.3668 205920 P43 NA 

P42 0.4724 4313 P42 0.5249 19577 P42 0.3766 1471383 

P41 0.2527 3.45E10 P41 0.3098 29482835 P41 0.4020 5578316 

P32 0.7268 16 P32 0.2273 390440 P32 NA 

P31 0.5935 646 P31 NA P31 NA 

P21 0.4307 4501 P21 0.3374 87 P21 NA 

 
* The Solar Array Deployment is a one-shot “subsystem” and a Weibull fit is not meaningful in this case. 
Thus these are the probabilities of transitioning over 15 years. 

Figure 3.6 shows the nonparametric curves (with the 95% confidence interval) for the 43P̂

of the Gyro subsystem, and the 42P̂  of the Thruster / Fuel subsystem, superimposed on 

their respective MLE Weibull fits. Figure 3.6 provides a visual confirmation that the 

Weibull distributions with the MLE parameters provided in Table 3.1 are good fits for the 

43P̂ of the Gyro subsystem and the 42P̂  of the Thruster / Fuel subsystem. Similar results are 

obtained for the other probabilities of transitioning of the spacecraft subsystems using the 

Weibull parameters given in Table 3.1 and Table 3.2. 

                                                 
2 These results exclude the endemic failures of the TTC subsystem of the GLOBALSTAR fleet (47 Class II 
failures). 
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Figure 3.6. Examples of nonparametric probabilities of transitioning and Weibull fits 

 

Given the relative complexity of subsystem models, several tests were devised to verify 

that the parametric models were properly derived, and that they reflected actual on-orbit 

data. This validation procedure is presented in Castet and Saleh (2010) and Saleh and 

Castet (2011). The conclusion of the validation is that the parametric models are 

appropriate and exhaustive. 

3.3.3. Discussion about Uncertainty and Confidence Interval Spread 

For reliability or multi-state analyses, the uncertainty that arises from the censoring in the 

data (or the lack of a complete data set) is captured by the confidence intervals. Indeed, 

the Kaplan-Meier estimator (for reliability or the adapted one for the probabilities of 

transitioning) provides a maximum likelihood estimate, but does not inform about the 

dispersion around that estimate. As a consequence, it is necessary to build confidence 
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intervals to display the uncertainty associated with the best estimate, and their analysis 

yields interesting observations. Note that the confidence interval spread increases with 

time, as seen for example in Figure 2.2 (spacecraft reliability), Figure 2.7 and Figure 2.8 

(spacecraft subsystems reliability) and Figure 3.5 (probabilities of transitioning between 

states for the Gyro subsystem). For example, in Figure 2.2, after two years on-orbit, the 

spacecraft reliability is dispersed over a 2 percentage point interval (with 95% 

confidence), whereas after 12 years on-orbit, the satellite reliability is dispersed over a 

3.7 percentage point interval. In the case of the multi-state analysis, the probability of 

transitioning between the fully operational state and the minor anomaly state, P43, for the 

Gyro subsystem is dispersed over a 1.6 percentage point interval after 1 year on orbit, 

while it is dispersed over 3.9 percentage point interval after 15 years on orbit. This is a 

direct result of the decreasing sample size with time and how it is handled in Eq. (2.3) for 

reliability analysis as more spacecraft fail or are retired from the sample due to censoring 

effects or in Eq. (3.1) for multi-state analysis as more spacecraft transition to the state of 

interest or are retired from the sample due to censoring effects. The spread of the 

confidence intervals remains small and shows that these reliability and multi-state failure 

results are precise. 

Another observation about uncertainty in multi-state analysis can be seen in Figure 3.5: in 

the case of the Gyro subsystem, the confidence interval spread is larger for P32, P31 and 

P21 than for any probabilities of transitioning out of the fully operational state S4 (P43, P42 

and P41). For example, the maximum confidence interval spread is about 11 percentage 

points for P31, while the maximum spread for P42 is about 2.5 percentage points. This is a 

direct consequence of the difference in sample size for deriving probabilities of 
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transitioning: for the transitions out of S4, the sample consists of all the 1584 spacecraft 

in the sample used in Chapter 2, while the samples for the transitions out of S3 and S2 are 

reduced to the spacecraft among the 1584 spacecraft that effectively transitioned to these 

states in the original sample. In the case of the Gyro, 62 spacecraft transitioned to a minor 

degradation state (S3) and 30 to a major degradation state (S2). A similar trend can be 

observed for all the spacecraft subsystems under consideration in this thesis. The impact 

of this uncertainty on the probabilities of residency in degraded states is lessened due to 

the small number of spacecraft that are subjected to these transitions. Decreasing the 

uncertainty (decreasing confidence interval spread) could be obtained by collecting more 

precise and complete data about the degradation and failure behavior of spacecraft 

subsystems for these states, with improved spacecraft state of health (SOH) monitoring, 

or running accelerated life testing (ALT). 

The multi-state results and further simulations in this thesis are confined to the best 

estimates of these probabilities. Propagating their uncertainties to the final results could 

bring an additional piece of information to the degradation and failure behavior of the 

different space systems considered, and could be a fruitful avenue for future 

improvements.  
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3.4. Comparative Reliability and Multi-State Failure Analyses of Spacecraft 

Subsystem: the Thruster/Fuel Subsystem Example 

In this section, complete multi-state failure results are provided, resulting from 

simulations, for a specific spacecraft subsystem: the Thruster / Fuel subsystem. This 

subsystem was chosen in part because it was identified in the previous chapter as a major 

culprit driving spacecraft unreliability. In addition, this subsystem was chosen because its 

multi-state failure analysis clearly identifies key insights that cannot be captured by the 

traditional (binary) reliability analysis. However, multi-state analyses have been 

conducted for all subsystems, and plots are presented in the appendix of this chapter. 

Analyses of more subsystems (e.g., the Gyro or the TTC) are presented in Castet and 

Saleh (2010) and Saleh and Castet (2011). 

The Thruster/Fuel subsystem is a major contributor to spacecraft failures, especially over 

the early years of the spacecraft service life. For example, over the first 10 years on orbit, 

13% of all spacecraft failures are due to the Thruster/Fuel subsystem, and for the first 

year on orbit, 20% of all spacecraft failures are due to this subsystem. Figure 3.7 shows 

on the left the reliability curve and the probability of being in state 4, that is, the 

probability of being fully operational for the Thruster/Fuel subsystem. The reliability 

curve, or survivor function, represents the probability of the subsystem not being in the 

failed state 1. On the right of Figure 3.7 are shown the different probabilities of being in 

degraded states, from state 1 to state 3. 
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Figure 3.7. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Thruster / Fuel subsystem 

 

Figure 3.7 highlights an important distinction that is made in multi-state failure analysis 

but that cannot be captured by the traditional (binary) reliability analysis, namely the 

distinction between being in a fully operation state and being in the non-total failure state. 

To clarify this point, consider the following. The two left curves in Figure 3.7 are 

separated by a distinct and growing gap, with roughly 7 percentage point difference at      

t = 15 years. The upper reliability curve indicates that the subsystem is 98.5% reliable 

after 15 years, that is, the subsystem is 98.5% likely to be operational (not broken), 

whereas the multi-state failure analysis (lower curve) indicates that the subsystem is only 

91.5% likely to be fully operational after 15 years. 

The difference is not negligible and can have important consequences, the most important 

probably being that a 98.5% reliable subsystem after 15 years may not trigger any 

engineering action whereas a 91.5% fully operational subsystem may prompt a careful 

analysis of the subsystem (partial) failure modes and support improvement efforts. 
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The distinction between these two probabilities of a subsystem occupying different states 

(fully operational versus non-total failure states) lies of course in the partial failures that 

are introduced and probed by the multi-state failure analysis. The probabilities of 

occupying any one of the failure states over 15 years are shown on the right of Figure 3.7, 

and read as follows. For example, at t = 10 years, there is a 1.7% probability that the 

subsystem is in a minor anomaly state (S3), 4.4% that the subsystem is in a major 

anomaly state (S2)—these states and probabilities are not visible to the traditional 

reliability analysis—and a 1.1% that the subsystem is totally failed (S1). This last 

probability is in effect the complement of the reliability of the subsystem (the failed curve 

on the right of Figure 3.7 is the complement of the reliability curve on the left of Figure 

3.7). 

The most interesting feature of the multi-state failure analysis of this subsystem is the 

dynamics of the degraded states, and especially the probability of being in the major 

anomaly state (S2). The probability of being in a minor anomaly is low (less than 2%), 

whereas the probability of being in a major anomaly state is significantly higher, 

continuously increasing over the years to eventually reach approximately 5% after 15 

years. The fast increase in the probability of transitioning to state 3 (major anomaly) in 

the early years can be termed “infant severe degradation” of the Thruster/ Fuel subsystem, 

as the multi-state analog of the infant mortality concept in traditional reliability analysis. 

In summary, when the Thruster/ Fuel subsystem (partially) fails, it is likely to “fail hard”, 

i.e., with a transition to a major anomaly/degradation state (S2). The Thruster/ Fuel 

subsystem has previously been identified as one of the major culprits driving spacecraft 
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failures. The present multi-state failure analysis also shows that this subsystem 

experiences significant degradations in its functionality on-orbit. This provides an 

additional indication for spacecraft manufacturers and equipment providers to focus their 

attention on improving the Thruster / Fuel subsystem, and more generally on subsystems 

that either drive spacecraft failures or that have a high propensity for major degradations. 

3.5. Summary 

This chapter provided multi-state failure analyses of spacecraft subsystems as an 

extension of the previous chapter results on spacecraft and spacecraft subsystems 

reliability. Multi-state failure analysis introduces “degraded states” or partial failures and 

provides additional insights on the failure and degradation behavior of an item. In this 

chapter, a formal theoretical framework was established to conduct multi-state failure 

analyses, and applied to gather information about the degradation of spacecraft 

subsystems. The models obtained were shown to appropriately capture the multi-state 

failure characteristics of the subsystems. The results provided by the multi-state failure 

analysis can thus be used to prompt further detailed investigation into the “physics of 

anomaly and failure” of particular spacecraft subsystems and guide technical efforts 

towards the identification of subsystem failure modes and their elimination. 
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3.A. Appendix: Multi-State Failure Analysis of Remaining Subsystems 

Gyro / Sensor / Reaction wheel 

 

Figure 3.A. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Gyro / Sensor / Reaction wheel subsystem 

 

Beam / Antenna operation / deployment  

 

Figure 3.B. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Beam / Antenna operation / deployment subsystem 
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Control processor 

 

Figure 3.C. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Control processor subsystem 

 

 

Mechanisms / Structures / Thermal 

 

Figure 3.D. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Mechanisms / Structures / Thermal subsystem 
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Payload instrument / Amplifier / On-board data / Computer / Transponder  

 

Figure 3.E. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Payload instrument / Amplifier / On-board data / Computer / Transponder 

subsystem 

 

 

Battery / Cell 

 

Figure 3.F. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Battery / Cell subsystem 
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Electrical distribution 

 

Figure 3.G. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Electrical distribution subsystem 

 

 

Solar array deployment 

 

Figure 3.H. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Solar array deployment subsystem 
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Solar array operating 

 

Figure 3.I. (left) Reliability and probability of b eing fully operational and (right) degraded states 
probabilities for the Solar array operating subsystem 

 

Telemetry, Tracking and Command 

 

Figure 3.J. (left) Reliability and probability of being fully operational and (right) degraded states 
probabilities for the Telemetry, Tracking and Command subsystem 
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PART 2 

SURVIVABILITY OF SPACECRAFT AND SPACE-BASED NETWORK S 
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CHAPTER 4  

SURVIVABILITY AND INTERDEPENDENT MULTI-LAYER NETWOR KS: 

SETTING A NOVEL FRAMEWORK FOR ANALYSIS  

 

Modeling, analyzing, and predicting failures is a central focus to many engineering 

disciplines dealing with system design and operations, such as civil, aerospace, and 

electrical engineering. Given the design and development of increasingly complex and 

interconnected systems, it has become even more important to analyze the propensity to 

failures of said systems and whether they would experience catastrophic failures or 

graceful degradations following node or component failures for example. These failures 

may be triggered by endogenous or exogenous causes (e.g., attacks), and the analysis 

would assess, among other things, how localized failures or disruptions would propagate 

throughout the system. These concerns fall within the realm of survivability analysis.  

In this second part, the survivability assessment of spacecraft and what is termed in this 

work Space-Based Networks (SBNs) is sought. SBNs are related to a novel concept 

recently introduced in the space industry termed fractionation (Brown and Eremenko, 

2006a; 2006b). By physically distributing functions in multiple orbiting modules 

wirelessly connected to each other, this new architecture allows the sharing of resources 

on-orbit, such as data processing, data storage, and downlinks. Preliminary analysis 

suggests that such an architecture, under certain conditions and despite some initial 

overhead, offers several advantages over the traditional monolith spacecraft design in 

terms of utility versus cost (details can be found in Dubos and Saleh, 2011).  
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As mentioned above, survivability analysis considers system component failures, and 

among them, endogenous failures. As a consequence, the knowledge from the failure 

models of spacecraft subsystems developed in Part 1 is leveraged in this second part to 

assess the survivability of spacecraft and space-based networks and answer the following 

questions: How can the survivability of spacecraft and SBNs be assessed? and What 

insights for design and architectural choices of spacecraft and SBNs can arise from 

survivability analyses? 

Before describing this thesis’ proposed model for survivability assessment of spacecraft 

and SBNs, an overview of the survivability concept is presented first. The survivability 

framework is then followed by literature highlights on network analysis for introducing a 

new modeling technique for space-based networks.  

4.1. Survivability: Literature Highlights 

In this section, a brief overview of the concept of survivability is provided. Survivability 

is extensively used in the technical literature as multi-disciplinary concept in a variety of 

contexts and often with different meanings.  

4.1.1. Military Context 

Survivability as a system attribute has always been important to the military, and its 

experimental and analytical assessment was probably heightened since the 1960’s (Ball 

and Atkinson, 1995). Survivability in a military context is applied to platforms (e.g., 
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aircraft), people, systems (e.g., military network), and nowadays more generally to 

missions. Several articles show this evolution, from one of the first attempts to assess 

survivability of an aircraft in 1967 (Atkinson, et al., 1969; Ball and Atkinson, 1995) to 

some more general definitions (MIL-STD-2069, 1961; MIL-HNBK-336-1, 1982; MIL-

HDBK-2069, 1997; DoD Regulation 5000.2-R, 1999) as the one provided by the DoD 

Regulation 5000.2-R (1999): “[survivability is] the capability of a system and crew to 

avoid or withstand a man-made hostile environment without sustaining an impairment of 

its ability to accomplish its designated mission. Survivability consists of susceptibility, 

vulnerability, and recoverability.” Susceptibility is “the degree to which a weapon system 

is open to effective attack because of one or more inherent weakness”; vulnerability is 

“the characteristic of a system that causes it to suffer a definite degradation (loss or 

reduction of capability to perform its designated mission) as a result of having being 

subjected to a certain (defined) level of effects in an unnatural (man-made) hostile 

environment”; recoverability is “the ability, following combat damage, to take emergency 

action to prevent the loss of the system, to reduce personnel casualties, or to regain 

weapon system combat mission capabilities.” In addition, several publications addressed 

the issue of survivability of military communication networks, a growing area of interest 

and research since the 1990’s, and for which survivability of the network is defined as the 

“ability to maintain communication among the nodes when it is subject to deliberate 

destruction” (Haizhuang Kang, et al., 1998). 
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4.1.2. Engineering Context 

Following its initial analysis within a military context, the concept of survivability spread 

to other areas than the military, especially to electrical engineering with an emphasis on 

software, telecommunications, and information systems. In particular, survivability has 

become of major interest for network systems designers since society has become 

significantly dependent on a variety of networks, leading to severe consequences in the 

case of network system disruptions or failures. While the use of “survivability” is 

widespread within the technical community, no definition is unanimously adopted. 

Westmark (2004) compiled 53 definitions of survivability from different publications and 

synthesized the following definition: survivability, according to Westmark, is “the ability 

of a given system with a given intended usage to provide a pre-specified minimum level 

of service in the event of one or more pre-specified threats.” One of the more cited 

definitions of survivability is provided by Ellison et al. (1999): survivability, according to 

Ellison et al., is the “capability of a system to fulfill its mission, in a timely manner, in 

the presence of attacks, failures, or accidents”. Knight et al. (2003), while focusing on 

survivability in a telecommunications and network context, found previous definitions 

not precise enough, and proposed a formal definition of survivability based on six 

quantitative parameters (or sextuple). He characterized a system as “survivable if it 

complies with its survivability specification,” and the survivability specification is 

mathematically defined, gathering all acceptable levels of service from the system, the 

associated services values and relative values (perceived by the user), its probabilistic 

requirements and its possible transitions in a specified operating environment. 

Accordingly, survivability definitions teeter between the informal and the formal, and 
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occasionally, they include probabilistic terms. But, as the previous definitions indicate, 

survivability is context-specific, related to the system studied and its environment, the 

services it provides to users, and the requirements that have been set for it. This 

specificity explains why often survivability seems to be a more generic word defined or 

measured in terms of other notions, like availability, performance, traffic capacity, 

connectivity, etc.  

4.1.3. Survivability Concept Summary 

Since the definition of survivability is context-specific, the environment, the threat(s), 

and the performance index have to be specified each time an analysis is conducted. 

Figure 4.1 provides a notional representation of a system response facing a shock or 

disruption. The survivability of the system is related to the performance degradation3 ∆P. 

The extent of the performance drop depends on the survivability features of the system: 

the more survivable (with respect to the defined threat), the smaller the drop (in the 

performance metric of interest). The response of the system after the shock characterizes 

the recoverability of the system, which in simple terms can be thought of as the time 

needed for the system to return within a certain percentage of its initial level of 

performance. However, the study of the system recoverability is out of the scope of the 

thesis and will not be addressed in the following. 

                                                 
3 As a side note, graceful degradation, which is particularly desirable for systems with high-availability 
requirements, allows a system to keep operating and providing some level of service by staging the 
system’s performance degradation over time. 
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Figure 4.1. Notional system response following a shock 

 

4.2. Survivability Framework 

This dissertation introduces a notional framework for survivability analysis  is shown in 

Figure 4.2 and this framework captures the different steps through which survivability 

analysis proceeds. 

 

Figure 4.2. Survivability framework 

 

Figure 4.2 starts to the left with the definition or delineation of the classes of threats or 

types of disruptions the analyst is interested in assessing the system’s survivability with 

respect to. Survivability, like the concept to optimization, remains ill-defined unless an 

additional information is provided: what the system is optimized with respect to for the 
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latter, and what the system is survivable with respect to for the former. The 

characterization of the classes of threats or types of disruptions of interest constitutes the 

first step in a survivability analysis. The second step in Figure 4.2 is design-centric and 

seeks to characterize the architecture of the system under consideration, its (functional) 

structure and design choices (e.g., modularity, coupling, redundancy, etc.), in particular 

the features that pertain to its performance. The third step in Figure 4.2 transforms the 

previous step into an analytical or computational model of the system to assess its 

survivability with respect to the classes of threats or types of disruptions of interest. 

Finally the last step in Figure 4.2 consists in assessing the system’s performance 

degradation—its survivability assessment—following disruptions, using the system 

model previously developed and the characterization of the classes of threats or types of 

disruptions of interest (step 1). 

Step 3 requires the modeling of the architecture for which a survivability assessment is 

desired. This thesis is particularly interested in investigating the survivability features of 

spacecraft and space-based networks. Modeling space-based networks falls in the realm 

of network analysis, and a brief literature review of network analysis is provided next. 

This literature highlights the limitations of the application of current models and tools for 

space-based networks in particular, and stresses the need of introducing a new approach 

to remedy the underlined shortcomings.  
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4.3. Networks: Literature Highlights and Limitations for  Space-Based Networks 

Networks have been widely studied (Newman, 2010; Albert and Barabási, 2002), as they 

can describe a large number of technical, biological or social systems: the World Wide 

Web and the Internet, power grids, telecommunications systems, social relationships, 

food webs, to cite a few. Graph theory and analyses of real networks allowed a better 

understanding of network properties (random graphs, scale-free networks, etc.) and the 

definition of metrics to describe network characteristics (Newman, 2010; Albert and 

Barabási, 2002).  

Networks have also been studied with respect to failure propagation and cascading 

failures (Motter and Lai, 2002; Crucitti, et al., 2004; Ash and Newth, 2007; Kurant and 

Thiran, 2007; Buldyrev, et al., 2010; Zio and Sansavini, 2011; to cite a few). A simple 

model for cascading failures in communication/transportation network was to 

dynamically redistribute the flow on the network after the failure of a node, this 

redistribution leading to the overload of other nodes in a cascading fashion (Crucitti, et 

al., 2004). More recent analyses pointed that the failure behavior of a significant number 

of modern networks could not be independently studied as these networks are coupled 

together: for example, the electrical power network and the Internet network rely on each 

other for communication and control on one hand, and electricity supply on the other 

hand (Buldyrev, et al., 2010). Such analyses showed that while an independent single 

network will break down after the removal of a significant number of nodes, 

interdependent networks can fail catastrophically after the removal of a small fraction. 

This approach led to the introduction of interdependent network analyses to characterize 
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properties of networks (e.g., Rinaldi, 2004; Newman, et al., 2005; Kurant and Thiran, 

2006; Knippel and Lardeux, 2006; Wong-Jiru, et al., 2007; Buldyrev, et al., 2010; 

Donges, et al., 2011; Xu et al., 2011). More particularly, Kurant and Thiran (2006) 

introduced the concept of a two-layered network to study the dynamics of a 

transportation system: they noted that the representation of such systems as a single 

network was inappropriate as it did not allow both the modeling of the physical topology 

of the network and the traffic flow on it. Also, Xu et al. (2011) introduced the concept of 

interconnecting bilayer networks, where networks on both layer could share some 

common nodes (e.g., the networks of scientists and musicians can share similar persons, 

as a person can both be a scientist and a musician).   

However, these analyses and tools cannot be directly applied to the study of space-based 

networks for a fundamental reason pertaining to the nature of SBNs. These analyses 

usually assume homogeneous (or identical) nodes in the networks, while spacecraft in an 

SBN can have different components due to the fractionation of the functionality, resulting 

in node heterogeneity.  

To illustrate this, let us take the example that is going to be a case study later in this 

dissertation: the space-based network (SBN) here considered is simple and consists of 

two networked spacecraft that can tap into the other spacecraft’s TTC in case of damage 

or failure of its own TTC. This architecture is shown in Figure 4.3. In essence, the 

wirelessly connectivity in the SBN enables a new type of redundancy – functional 

redundancy – of the TTC between the two spacecraft in the network. Each spacecraft is 

composed of the following subsystems: 
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• The first spacecraft, S/C#1 contains all subsystems described in Part 1. For an 

easier representation, S/C#1 is composed of three “components”: a payload 

component (generating utility), a TTC component, and a “supporting subsystems 

component” composed of the remaining subsystems (AOCS, EPS, Beam, CP, 

Mechanisms plus Unknown) necessary for the operation of the spacecraft. 

• The second spacecraft, S/C#2, is composed of a TTC component and a supporting 

subsystems component (equivalent of the one of S/C#1). Note that S/C#2 has no 

payload component, as it is envisioned as a backup for S/C#1’s TTC. 

 

Figure 4.3. Example of a space-based network 

 

It is immediately clear that if we were to represent this particular SBN as shown in Figure 

4.4, the nodes could not be considered as identical, as S/C#1 possesses a payload 

component, while S/C#2 does not. The representation shown in Figure 4.4 could be 

adequate at a high-level representation, indicating that S/C#1 and S/C#2 are networked, 

but would be meaningless and misleading for any other purposes: for example, what 

would the link represent from the payload’s perspective? 
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Figure 4.4. Inadequate representation of the case study SBN 

 

Some attempts at considering heterogeneous nodes have been conducted in the literature, 

but are too limited to properly model SBNs. For example, some studies considered nodes 

with different capacities (Motter and Lai, 2002; Crucitti, et al., 2004), but the function of 

the nodes remains identical, when a SBN might have spacecraft with different 

functionalities. The Internet network has raised questions about heterogeneity as it is the 

union of different networks (wireless devices, computers, routers, etc.). However, the 

efforts in these studies were put on the transmission of data among the nodes rather than a 

modeling of heterogeneity in networks. As a consequence, a first question must be 

answered before analyzing the survivability of SBNs: how can networks with 

heterogeneous nodes be represented and analyzed? 

4.4. Introduction to Interdependent Multi-Layer Networks  

Building on the concepts of interdependency and layers in network presented in the 

literature review, we propose in this thesis to represent a network with heterogeneous 

nodes as an interdependent multi-layer network (IMLN), where each layer 

corresponds to a particular node characteristic or functionality and is represented as a 

network with homogeneous (or identical) nodes. The following paragraphs aim to 

introduce and present this new concept, as well as to provide a formal mathematical 

characterization in the next section.  

S/C#1 S/C#2
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To illustrate the proposed concept, let us go back to the case study example: the three 

identified functionalities in that particular SBN are: the payload, the TTC and the 

supporting subsystems. Three layers are then created to represent each of these 

functionalities, and homogeneous networks can be created on each of the layers: a link is 

present between two nodes in the same layer if there is a relationship of sort between 

these nodes (e.g., flow of data, or in this dissertation, a node that provides resources to 

another one). A link can be directed (from the node that provides the resources to the 

receiver node) or undirected (which can be conceived as two opposite directed arcs). A 

multi-layer network representation of the SBN illustrating the previous step is shown in 

Figure 4.5. Note that in each layer, the nodes are now “identical”. However, this 

representation is incomplete because some nodes across the layers physically belong to 

the same spacecraft and are not independent as pictured in Figure 4.5. 

 

Figure 4.5. Incomplete representation of the case study SBN 

 

A complete representation is obtained by adding interdependencies between layers to 

“TTC” LAYER

“SUPPORTING 
SUBSYSTEMS”

LAYER

“PAYLOAD”
LAYER

S/C#1 S/C#2
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capture the breakdown of S/C#1 and S/C#2. Several types of interdependencies can be 

conceived between layers. In the present case, two types of interdependencies exit4: 

• The failure of the supporting subsystems results in the immediate failure of the 

whole spacecraft, leading to the unavailability of other nodes (TTC, payload) in 

different layers belonging to that spacecraft. In this thesis, this effect is called the 

“kill effect” and is represented with solid directed arcs from the “killer node” to 

the “victim node”.  

• The failure of the TTC does not necessarily result in the immediate failure of the 

spacecraft. Indeed, the functional redundancy on the TTC can allow the survival 

of the spacecraft if it can tap in the TTC of the other spacecraft. This is possible if, 

in the TTC layer, both the link to another TTC node and that TTC node are both 

functioning. In this thesis, this effect is called the “precursor effect” and is 

represented with dashed directed arcs from the “killer node” to the “victim node”. 

In the case of S/C#1, the “supporting systems” node failure renders unavailable the “TTC” 

node and the “payload” node through the “kill effect”; the “TTC” node renders 

unavailable the “supporting subsystems” node and the “payload” node through the 

“precursor effect”. The “payload” node failure has no impact on the other nodes as the 

loss of the payload does not doom the spacecraft, only its ability to generate utility. 

In the case of S/C#2, “supporting systems” node failure renders unavailable the “TTC” 

node through the “kill effect”; the “TTC” node renders unavailable the “supporting 
                                                 
4 Similar or other types of interdependencies between layers have been used in the literature: for example, 
Zio and Sansavini (2011) used interdependency links to transfer loads from a failed node, or Gu et al. 
(2011) used interdependent links to model cooperation between sub-networks. The interdependency 
scheme used by Buldyrev et al. (2010) is similar to the kill effect described in this thesis. 
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subsystems” node through the “precursor effect”.  

The complete representation of this SBN as an interdependent multi-layer network is 

shown in Figure 4.6. 

 

Figure 4.6. Interdependent multi-layer network representation for the case study SBN 

 

One last component in the IMLN representation is what is called in this thesis a “virtual 

node”. Let illustrate this node with an example: consider the addition of another 

spacecraft, S/C#3 to the current space-based network. However, this new spacecraft has a 

payload component and a “supporting subsystems” component, but does not have a TTC 

component. S/C#3 can however be operational by tapping into the TTC of the other two 

spacecraft. A node must be added in the “TTC” layer to represent this, but the node does 

not correspond to a physical subsystem, hence called a “virtual node”. Also this node is 

peculiar as S/C#3 does not provide any TTC resources to the other spacecraft, as shown 

by the directed arcs towards that node in the “TTC” layer. This “virtual node” is 

represented by a dashed circle and this space-based network is shown in Figure 4.7. 
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Figure 4.7. Illustration of a “virtual node” 

 

In summary, the IMLN representation consists of nodes placed on several layers 

representing different types of functionality. Within a layer, nodes form a network by 

connecting to other nodes with directed or undirected links. Arcs also connect nodes 

across layers to capture the physical reality of spacecraft and model two types of 

interdependencies related to the kill and precursor effect. A formal definition of 

interdependent multi-layer networks is presented next. 

4.5. Formal Definition of Interdependent Multi-Layer Net works 

4.5.1. IMLN Representation Using Graphs 

Building on the notation of Gu et al. (2011), the interdependent multi-layer network N is 

defined as ( )pkL EEGGN ,,,,1 K , where:  
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 L is the number of layers, each numbered sequentially from 1 to L 

LGG ,,1 K  are the graphs on each layer 

            [ ] ( )lll EVGLl , ,,,1 =∈∀ K  with:  

                                              Vl is the set of nl vertices (or nodes) in Gl  

                                              El is the set of edges (or links) in Gl  

Ek is the set of interlayer edges representing the “kill effect” 

Ep is the set of interlayer edges representing the “precursor effect” 

(4.1) 

The total number of vertices in N is ∑
=

=
L

l
lnn

1

, and the vertices are numbered uniquely and 

sequentially from 1 to n. As indicated in Newman (2010), “it does not matter which 

vertex gets which label, only that each label is unique so that we can use the labels to 

refer to any vertex unambiguously.” However, it is shown later in this chapter that a 

particular scheme for numbering vertices leads to a more efficient way of representing 

IMLNs.  

Figure 4.8 presents the vertices numbered in the case of the case study SBN presented in 

Figure 4.6. For that particular case, the interdependent multi-layer network is 

( )pk EEGGGN ,,,, 321  where: 

• ( )111 ,EVG =  with { }4,11 =V  and ( ) ( ){ }1,4,4,11 =E  is the graph for the “TTC” layer; 

• ( )222 ,EVG =  with { }5,22 =V  and Ø2 =E  is the graph for the “supporting 

subsystems” layer; 

• ( )333 ,EVG =  with { }33 =V  and Ø3 =E  is the graph for the “payload” layer; 
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• ( ) ( ) ( ){ }4,5,3,2,1,2=kE  

• ( ) ( ) ( ){ }5,4,3,1,2,1=pE  

The set of functionally redundant layers EL is defined as: 

 { }Ø* ≠∈= lLL ElE N  (4.2) 

 

Figure 4.8. Interdependent multi-layer network with numbered vertices for the case study SBN 

 

4.5.2. IMLN Representation Using Matrices 

A more practical representation of N is given by using 1) classic adjacency matrices 

LAA ,,1 K  for the respective graphs LGG ,,1 K , 2) what is introduced in this thesis as the 

“interlayer” matrix C, and 3) a mapping function f.  
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As said before, the vertices are numbered from 1 to n: this numbering scheme is called in 

this thesis the “overall numbering”. An additional numbering of the vertices is introduced, 

called the “layer numbering”: for each layer l, the vertices are numbered sequentially 

from 1 to nl. The function f maps the labels kO of each node in the “overall numbering” 

scheme to a pair of integers ( )Lkl,  where l is the layer number, and kL is the label of the 

node in the “layer numbering”. Note that indices in the “overall numbering” scheme have 

a subscript “O”, while the indices in the “overall numbering” scheme have a subscript 

“L”. 

For example, in the case of the case study SBN: 

• In the “TTC” layer, numbered layer 1, the node 1 in the “overall numbering” is 

given the “layer number” 1, while the node 4 in the “overall numbering” is given 

the “layer number” 2; 

• In the “supporting subsystems” layer, numbered layer 2, the node 2 in the “overall 

numbering” is given the “layer number” 1, while the node 5 in the “overall 

numbering” is given the “layer number” 2; 

In the “payload” layer, numbered layer 3, the node 3 in the “overall numbering” is given 

the “layer number” 1. Then the mapping function f is:  
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( )
( )
( )
( )
( )2,2)5(

2,1)4(

1,3)3(

1,2)2(

1,1)1(

=
=
=
=
=

f

f

f

f

f

 (4.3) 

Because of the layers and the nodes in both numbering schemes are numbered uniquely, 

the function f is bijective. As a consequence, the inverse mapping function 1−f  is also 

defined. 

For each layer l, the graph Gl can be represented by the associated adjacency matrix 

[ ]
llLL nn

l
jil aA

×
=  such that: 

 1=l
ji LL

a  if there is an edge from vertex jL to iL 

0=l
ji LL

a  otherwise  
(4.4) 

In the case study SBN example: 

• The adjacency matrix A1 for the “TTC” layer (layer 1) is defined as follows:  

 








=

01

10
1A  (4.5) 

• The adjacency matrices A2 for the “supporting subsystems” layer (layer 2) and A3 

for the “payload” layer (layer 3) are trivial as there is no edge in these layers:  
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 222 0 ×=A and 113 0 ×=A  (4.6) 

The “interlayer” matrix [ ]
nnji OO

cC
×

=  is defined as follows:  

 1=
OO jic  if there is an edge from vertex jO to iO belonging to Ek  

                   (kill effect) 

2=
OO jic  if there is an edge from vertex jO to iO belonging to Ep  

                   (precursor effect) 

0=
OO jic  otherwise 

(4.7) 

In the case study example, the interlayer matrix C is as follows: 

 























=

02000

10000

00012

00002

00010

C  (4.8) 

As mentioned earlier, the overall numbering scheme can be chosen to facilitate the 

representation of the IMLN, and in particular the interlayer matrix C. Indeed, if the 

“overall numbering” is chosen such that vertices belonging to the same spacecraft were 

numbered sequentially (vertices 1, 2 and 3 belongs to S/C#1, and vertices 4 and 5 to 

S/C#2) as in the present case study, the interlayer matrix C can be reduced to a block 

diagonal form: 
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×

×

02

10
0

0

012

002

010

32

23

C  (4.9) 

As the number of spacecraft increases in the space-based network, the interlayer matrix 

growth can be alleviated using this numbering scheme, as only the blocks around the 

diagonal need to be populated. Also, from a computational point of view, this can allow 

for the matrix to be saved as a scarce matrix and save memory during the simulation. 

Examples of larger networks will be shown later in the dissertation. 

The sets Ek, Ep and EL can also be defined from the adjacency matrices and interlayer 

matrix as follows: 

 ( ){ }1, == jik cijE  (4.10) 

 ( ){ }2, == jip cijE  (4.11) 

 { }
ll nnlL AlE ×≠= 0  (4.12) 

As a conclusion, the interdependent multi-layer network N can be uniquely defined as 

( )pkL EEGGN ,,,,1 K  or ( )fCAAN L ,,,,1 K , as the two characterizations are equivalent. 
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4.6. Summary 

This chapter discussed the concept of survivability, from its origin in the military context 

to its expansion to engineering systems. Building on the works published in the literature, 

this thesis introduced a framework for the study of the survivability of engineering 

systems in general, and applied to space systems in this dissertation. The chapter then 

discussed the state of the academic study of network analysis and its practical use for 

understanding real-world network. However, it was highlighted that the classic network 

representation failed to capture an essential aspect of space-based networks, namely, the 

potential heterogeneity in their respective functionalities. To enable the modeling of such 

architectures, a new concept was introduced and this approach describes the space-based 

networks as “interdependent multi-layer networks”. A formal definition of the IMLN 

representation was then introduced. However, one question was not addressed in 

conjunction with the survivability considerations discussed earlier in the chapter: how 

can this new representation be used for survivability analyses? This topic is the subject of 

the following chapter dedicated to the study and modeling of the failure propagation 

across an IMLN. 
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CHAPTER 5  

FAILURE PROPAGATION IN INTERDEPENDENT MULTI-LAYER 

NETWORKS: FORMAL ANALYSIS AND THEORETICAL DEVELOPME NT 

 

Modeling the space-based networks through interdependent multi-layer network has been 

presented in the previous chapter. However, assessing the survivability features of such 

networks requires estimating an objective function related to the failure times of the 

network nodes. Due to the interdependencies in the model, this estimation is not trivial 

and requires understanding the propagation of failures through the network.  Part of the 

failure propagation is due to the kill and precursor effects introduced earlier. The 

following sections are dedicated to study these effects, but note that other cascading 

mechanisms such as the ones described in the literature review can be easily added and 

implemented. How does the failure of one node propagate in the interdependent 

multi-layer network through the kill and precursor effect? 

The proposed method comprises three steps: 

1. Generate the times to failures TF for each vertex and edge5. 

2. Propagate failures through the kill effect 

3. Propagate failures through the precursor effect 

                                                 
5 In the following, the following convention is adopted: TF, vertex i refers to the time to failure of vertex i in 
the overall numbering scheme. Also, TF represents the random variable time to failure, while tF represents 
an instantiation of the random variable TF. 
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Let characterize mathematically the last two steps. Suppose that the interdependent multi-

layer network of interest has been defined as ( )fCAAN L ,,,,1 K . 

The remainder of this chapter is split in two sections: the first section investigates the 

propagation across the network of catastrophic failures only; the second section builds 

onto this propagation scheme and expands the established algorithm for the more 

complex treatment of multi-state failures (minor and major anomalies). 

5.1. Complete Failure Simulation 

5.1.1. Time to Failure Generation 

To propagate failures through the network, one must first generate times to failures for 

the different objects in the space-based network: the vertices and the edges. Using the 

cumulative distribution functions representing the failure behavior of each vertex, 

random times to failure for the vertices TF,vertex i (
*
ni N∈ ) can be generated6. Note that it is 

not necessary for each node in a common layer to share the same failure behavior. 

Two steps are needed to generate the times to failure for the edges TF,edge j→i: the link 

between two spacecraft is established through a wireless unit embedded in each 

spacecraft. For the link to function, both units need to be operational, the failure of one 

leading to the failure of the link. 

                                                 
6 In the case of a virtual node, its failure time is considered as null. 
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• Generate the times to failure of the wireless units on each spacecraft using 

predetermined cumulative distribution functions; 

• Generate the times to failures for each edge TF,edge j→i by taking the minimum of 

the time to failures of the two associated wireless units (unit i and unit j). 

5.1.2. Failure Propagation Through the “Kill Effect” 

The information about the kill effect is contained in the interlayer matrix C, and the first 

step consists in extracting from C the pairs of “killer” and “victim” vertices. As shown in 

the previous chapter, Ek can be defined from C as follows: 

 ( ){ }1, == jik cijE  (5.1) 

Define the “killer” vector k1 and the “victim” vector v1 such that: 

 

( )
( ) ( )
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 (5.2) 

The last step consists in computing time to unavailability Fk
UT ,  of the “victim” vertex 

using the time to failure of the “killer” vertex. Mathematically, this is expressed as: 
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)( vertex ,

,
)( vertex ,

*  , qF
Fk

qUE TTq
k 11 kvN =∈∀  (5.3) 

In the case that a victim vertex has several killers, Fk
UT , is equal to the minimum of the 

times to failure of the killer vertices. 

5.1.3. Failure Propagation Through the “Precursor Effect” 

As for the killer effect, the information about the precursor effect is contained in the 

interlayer matrix C, and C is used to extract the pairs of “killer” and “victim” vertices. As 

defined in the previous chapter, Ep is defined as follows: 

 ( ){ }2, == jip cijE  (5.4) 

The “killer” vector k2 and the “victim” vector v2 are defined as: 
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 (5.5) 

Computing the time to unavailability due to the precursor effect is not as straightforward 

as for the kill effect. Indeed, the failure of a vertex that has a functional redundancy will 

not necessarily propagate immediately to the vertices belonging to the same entity (here, 

spacecraft). The time at which the function represented by the vertex will become 
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unavailable depends on the time to failure of the vertex itself, but also on the times to 

failure of the other vertices and edges part of the same layer. For example, in the case 

study SBN, the failure of node 1 will propagate to nodes 2 and 3 if node 1 is not able to 

tap into the resources of node 4, i.e., if either the link between node 4 and 1, or node 4 

has failed. Hence it is necessary to compare the time to failure of the node, to the ones of 

the pairs link/node it is connected to. Several steps are needed and are described below. 

1. To know when a vertex becomes unavailable after the kill effect, the “minimum 

time to unavailability” Fm
UT , is introduced and is defined as: 
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2. To compare the time to failure of the vertex i and the ones of the pairs             

edge (j→i)/vertex j it is connected to (i.e., edges towards that vertex i) , a useful 

object is introduced – the matrix [ ]
ll nn

Fl
ji

F
l hH

×
= ,  defined as follows for LEl ∈ : 
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This matrix H is helpful as it presents in line the time to failure of the vertex, and 

the ones of the pairs edge/vertex it is connected to. 

3. The time to unavailability considering the functional redundancy Fr
UT , of the 

vertex of interest can be found as the maximum time to failure in the associated 

line. Consider the column vector [ ] 1
,

×=
ln

Fl
i

F
l mm  defined for LEl ∈  as: 

 
 

Fl
ji

j

Fl
iL hmEl ,, max , =∈∀  (5.8) 

4. Fr
UT ,  can now be computed as: 

 
 

Fl
i

Fr
ilfUnL mTiEl

l

,,
),( vertex ,

*
1 ,, =∈∀∈∀ −N  (5.9) 

5. The same process than for the kill effect can be now applied, that is, the 

propagation of the “failure” of a node across layers to nodes belonging to the 

same entity. This step consists in computing time to unavailability Fp
UT ,  of the 

“victim” vertex using the time to failure of the “killer” vertex. Mathematically, 

this is expressed as: 
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qU

Fp
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,
)( vertex ,

,
)( vertex ,

*  ,
11 kvN =∈∀  (5.10) 
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In the case that a victim vertex has several killers, Fp
UT , is equal to the minimum of 

the times Fr
UT , of the killer vertices. 

6. Due to the fact that several layers of redundancy can be considered concurrently, 

the interdependence of the precursor effect between vertices belonging to the 

same spacecraft but in different layers can require an iterative scheme for 

unavailability times to converge to their correct values. The following condition 

indicates if more iterations are required: if Fp
qU

Fm
qU TT ,

 vertex ,
,
 vertex , ≤ , the failure 

propagation due to the precursor effect is complete (skip step 7). If not, continue 

to next step. 

 

7. While Fp
qU

Fm
qU TT ,

 vertex ,
,
 vertex , > , set Fp

qU
Fm

qU TT ,
 vertex ,

,
 vertex , = and repeat steps 2–5. 

5.1.4. Combination of All Effects 

Finally, for each vertex in the interdependent multi-layer network, the time to 

unavailability is obtained as: 

 ( )[ ]Fp
qU

Fk
qU

Fr
qUqF

F
qUn TTTTTq ,

 vertex ,
,
 vertex ,

,
 vertex , vertex , vertex ,

* ,,,maxmin , =∈∀ N  (5.11) 

where Fr
qUT ,

vertex , , Fk
qUT ,

vertex ,  and Fp
qUT ,

vertex ,  are included in if they exist 
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5.1.5. Summary of the Failure Propagation Algorithm 

Below is a summary of the algorithmic process used to propagate catastrophic failures 

across the network. The following inputs are required: the adjacency matrices and 

interlayer matrix, the mapping function (these three elements defining a network 

architecture), and the c.d.f.s for the failure distribution of the vertices and edges. 

1. Generate for each vertex i TF,vertex i (section 5.1.1) 

2. Generate for each edge TF,edge j→i (section 5.1.1) 

3. Compute Ek using Eq. (5.1) 

4. Compute k1 and v1 using Eq. (5.2)  

5. Compute Fk
UT ,  for each victim vertex using Eq. (5.3) 

6. Compute Ep using Eq. (5.4) 

7. Compute k2 and v2 using Eq. (5.5) 

8. Compute Fm
UT ,  for each vertex using Eq. (5.6) 

9. For all LEl ∈ , compute F
lH  using Eq. (5.7) 

10. For all LEl ∈ , compute F
lm using Eq. (5.8) 

11. Compute Fr
UT ,  for each vertex for all layers LEl ∈  using Eq. (5.9) 

12. Compute Fp
UT ,  for each victim vertex using Eq. (5.10) 

13. Repeat steps 9–12 until Fp
qU

Fm
qU TT ,

 vertex ,
,
 vertex , ≤  for all victim vertices q in the 

precursor effect  

14. Compute F
UT  for each vertex using Eq. (5.11) 
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5.1.6. Failure Propagation Examples 

The first example uses the TTC functional redundancy case study, and the IMLN under 

consideration is shown in Figure 4.8. To illustrate how the algorithm is working, 

deterministic times to failures for the nodes and links will be used in this example. These 

times to failures are given in Table 5.1, and shown in Figure 5.1 for clarity purposes. 

Table 5.1. Times to failure of the nodes and link in the case study example 

 Time to failure 
years 

Spacecraft #1  
 TTC 2 
 Supporting subsystems 6 
 Payload 7 
Spacecraft #2  
 TTC 9 
 Supporting subsystems 8 
Link between spacecraft 12 

 

 

Figure 5.1. IMLN representation with node and link times to failure 

 

“TTC” LAYER

“SUPPORTING 
SUBSYSTEMS” 

LAYER

“PAYLOAD” 
LAYER

S/C#1 S/C#2

1

2

3

4

5

tF,1 = 2

tF,2 = 6

tF,3 = 7

tF,4 = 9

tF ,5 = 8

tF ,1↔4 = 12
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If spacecraft #1 was to be by itself, it would have failed at 2 years, when the TTC failed. 

However, in this network configuration, the second spacecraft can help maintaining the 

functionality up to 6 years on-orbit. How this number was obtained is explained below 

using the 14 steps given in section 5.1.5. Steps 1 and 2 are already completed as the times 

to failure for the nodes and link are given in this example. 

3. According to section 4.5.1, 

 
 ( ) ( ) ( ){ }4,5,3,2,1,2=kE  (5.12) 

4. Then, 

  ( )522=1k  and ( )431=1v  (5.13) 

5. Propagating the kill effect yields: 
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 (5.14) 

6. According to section 4.5.1, 

  ( ) ( ) ( ){ }5,4,3,1,2,1=pE  (5.15) 
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7. Then, 

  ( )4112 =k  and ( )5322 =v  (5.16) 

8. The minimum time to unavailability after the kill effect is given as: 
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9. The only functionally redundant layer in this IMLN is the TTC layer. The 

associated H matrix is expressed as: 
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10. Then,  
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11. The times to unavailability for the TTCs due to the functional redundancy are 

expressed as: 
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12. Propagating the precursor effect yields: 
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13. The convergence condition is met in this particular example, so the algorithm 

continues to the final step. 

14. Combining all the effect, the final times to unavailability for the nodes are: 
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5.2. Multi-State Failure Simulation 

In the case of a multi-state failure approach, some additions must be made to the 

algorithm presented in the previous section. Let’s consider two degraded states for each 

vertex and edge: a minor degradation state and a major degradation state. The respective 
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time to event random variable is noted Tm and TM.  It is shown below that modeling 

directly the probability distributions of these two random variables is not practical, and 

two related random variables are used instead in the modeling process: TMF and TmMF. 

The former represents the time at which a vertex or edge is in either the major 

degradation state or the complete failure state; the latter represents the time at which the 

vertex or edge experience any degradation event (minor, major or catastrophic). 

5.2.1. Generation of the Times to Failure and Degradation 

Instantiations to the time to failure TF and the two times to degradation TMF and TmMF 

cannot be generated independently. Knowing TF, how can instantiations to TMF be 

generated? And knowing TF and TMF, how can instantiations to TmMF be generated? This 

subsection is presenting a possible solution to generate these times concurrently. 

A event leads to the major-failed state (MF) either if this event is a major degradation or 

a complete failure of the (sub)system under consideration. As such, there is a competition 

between these two types of severity for which will occur first. A transition diagram of 

this failure and degradation behavior is shown in Figure 5.2a. Both the probabilities of 

being in the failed state (F) and the major-failed state (MF) can be modeled using 

cumulative distribution functions as they are absorbing states. However, the probability 

of being in a major state cannot be modeled similarly: as time goes to infinity, the 

probability of being in that state goes to zero. To get around this problem, an equivalent 

representation for the failed state and the major-failed state is shown in Figure 5.2b. The 

major state (M) has been replaced by a virtual state (Sv1) where the probability of being in 
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that state is represented by a c.d.f. The major-failed state can now be thought as the failed 

state and the virtual state in series from a block diagram point of view. As a consequence, 

the probability of being in the major-failed state can be expressed as: 

 ( )( )
1

111
vSFMF PPP −−−=  (5.23) 

Rearranging the terms yields: 

 ( )
( )F

MF
S P

P
P

v −
−−=

1

1
1

1
 (5.24) 

Then, the random variables for the time to complete failure (TF), major degradation or 

complete failure (TMF) and time to the virtual state (
1vST ) are related as follows: 

 ( )
1

,min
vSFMF TTT =  (5.25) 

 

Figure 5.2. Transition diagram for the major-failed state (a) and its equivalent model (b) 

M

F
MF

MF

Sv1

F
MF

MF
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Let us examine the expression of 
1vSP for different types of distribution for TF and TMF.  

• Exponential distributions: 

Consider that both TF and TMF are modeled as exponential distributions and their c.d.f.s 

are expressed as: 

 ( )tP FF ⋅−−= λexp1  (5.26) 

 ( )tP MFMF ⋅−−= λexp1  (5.27) 

Using these expressions in Eq. (5.24) yields: 

 ( )
( )t

t
P

F

MF
Sv ⋅−

⋅−−=
λ
λ

exp

exp
1

1
 (5.28) 

Simplifying Eq. (5.28) leads to 

 ( )[ ]tP FMFSv
λλ −−−= exp1

1
 (5.29) 

Note that the resulting probability is also exponential with a parameter equal to 

( )FMF λλ − . Generating random times to the virtual state is straightforward and given by: 
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 (5.30) 

• Weibull distributions with the same shape parameter: 

Consider that both TF and TMF are modeled as Weibull distributions sharing the same 

Weibull shape parameter β. Their c.d.f.s can be expressed as follows: 
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Substituting these functions in Eq. (5.24) yields: 
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As shown in Volovoi and Vega (2012), Eq. (5.33) can be reduced to a single Weibull 

distribution characterized by the shape parameter β and the following scale parameter 

1vSθ : 
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Also in this case, generating random times to the virtual state is straightforward: 
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• General Weibull distributions: 

In the case of two different Weibull distributions for TF and TMF,  
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the resulting expression for 
1vSP given in Eq. (5.38) cannot be reduced to an equivalent 

single Weibull distribution. 
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As a consequence, there is no closed-form solution for the time to the virtual state (as 

seen above, a closed-form solution exists if MFF ββ = ). Generating random times requires 

solving for t in Eq. (5.38). In this thesis, a root-finding algorithm (MATLAB fzero 

function) was used and the initial guess was determined by fitting 
1vSP with a single 

Weibull distribution using a non-linear least-square regression. 

Algorithm for TF and TMF. In this thesis, the times to failure and severe degradation TF 

and TMF for each vertex and edge are modeled as Weibull distributions that might or 

might not have the same Weibull shape parameter (Eqs (5.36) and (5.37)). Consequently, 

instantiations to TF and TMF are generated concurrently as follows: 

1. Using Eq. (5.36), generate randomly an instantiation to TF, namely, tF; 

2. If MFF ββ = , generate randomly an instantiation to 
1vST , namely, 

1vSt using the 

straightforward Eq. (5.35). If MFF ββ ≠ , then numerically solve Eq. (5.38) for 
1vSt  

as described above; 

3. From Eq. (5.25), calculate tMF as follows: 

 ( )
1

,min
vSFMF ttt =  (5.39) 

4. To obtain a representative sample, repeat nMC times steps 1–3 in a Monte Carlo 

simulation. 
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After the Monte Carlo simulation, the c.d.f.s for TF and TMF (PF and PMF) can be 

recreated and PM can be obtained as follows: 

 FMFM PPP −=  (5.40) 

Generation of instantiations of TmMF. Knowing TMF, the same process can be applied to 

generate an instantiation of TmMF. A similar equivalent representation involving the MF 

state and another virtual state (Sv2) leads to modify Eq. (5.23) as follows: 

 ( )( )
2

111
vSMFmMF PPP −−−=  (5.41) 

Similarly, Eq. (5.24) is modified, yielding: 

 ( )
( )MF

mMF
S P

P
P

v −
−−=

1

1
1

2
 (5.42) 

In addition, the random variables for the time to major degradation or complete failure 

(TMF), the time to degradation (TmMF) and time to the virtual state (
2vST ) are related as 

follows: 

 ( )
2

,min
vSMFmMF TTT =  (5.43) 

Similarly, assuming that TMF and TmMF are modeled using Weibull distributions, 
2vSP can 

be expressed as follows: 
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In general, 
2vSt  must be solved numerically. If βββ == mMFMF , 

2vSP has a closed-form 

solution given by:  
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(5.46) 

 General algorithm for TF, TMF and TmMF. Assuming Weibull distribution for these 

random variables, instantiations for TF, TMF and TmMF are obtained as follows: 

1. Using Eq. (5.36), generate randomly an instantiation to TF, namely, tF; 

2. If MFF ββ = , generate randomly an instantiation to 
1vST , namely, 

1vSt using the 

straightforward Eq. (5.35). If MFF ββ ≠ , then numerically solve Eq. (5.38) for 
1vSt  

as described above; 

3. From Eq. (5.25), calculate tMF as follows: 
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4. If mMFMF ββ = , generate randomly an instantiation to 
2vST , namely, 

2vSt using the 

straightforward Eq. (5.45). If mMFMF ββ ≠ , then numerically solve Eq. (5.44) for 

2vSt  as described above; 

5.  From Eq. (5.43), calculate tmMF as follows: 

6. To obtain a representative sample, repeat nMC times steps 1–5 in a Monte Carlo 

simulation. 

5.2.2. Algorithm Modification for Failure Propagation in the Multi-State Case 

Both propagations through the kill effect and through the precursor effect need to be 

expanded to take into account the multi-state failures occurring at the vertices and edges. 

Once TF, TMF and TmMF have been generated for each vertex and edge as described in the 

previous subsection, the kill effect and the precursor effect are derived as follows. 

Kill effect. Ek, k1 and v1 are derived as previously using Eqs. (5.1) and (5.2). The time to 

unavailability for the failed case (F) for the victim vertices is given by Eq. (5.3), as 

recalled below: 

 ( )
1

,min
vSFMF ttt =  (5.47) 

 ( )
2

,min
vSMFmMF ttt =  (5.48) 
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 Similarly, the time to unavailability for the major degradation or complete failure case 

(MF) and for the degradation case (mMF) are derived as: 
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*  , qmMF
mMFk

qUE TTq
k 11 kvN =∈∀  (5.51) 

In the case that a victim vertex has several killers, MFk
UT , and mMFk

UT ,  are equal to the 

minimum of the times of the killer vertices. 

Precursor effect. Ep, k2 and v2 are derived as previously using Eqs. (5.4) and (5.5). After 

the kill effect, a victim node becomes unavailable for the failed case as given by Eq. (5.6) 

and rewritten below: 
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(5.52) 

 

However, in the case of the MF and mMF states of the victim vertices, the functionality is 

truly lost only due to the complete failure of the killer vertex (TMF and TmMF have no 

impact on the functionality of the victim vertex). As a consequence, the equivalent 

expression for MFm
UT , and mMFm

UT ,  are modified as follows: 



108 
 

 [ ]

               

else                         

exists  if  ,min
 ,

 vertex ,
,
 vertex ,

,
 vertex ,

,
 vertex , vertex ,

,
 vertex ,*







=

=
∈∀

qMF
MFm

qU

Fk
qU

Fk
qUqMF

MFm
qU

n
TT

TTTT
q N

 (5.53) 

 [ ]

               

else                         

exists  if  ,min
 ,

 vertex ,
,
 vertex ,

,
 vertex ,

,
 vertex , vertex ,

,
 vertex ,*







=

=
∈∀

qmMF
mMFm

qU

Fk
qU

Fk
qUqmMF

mMFm
qU

n
TT

TTTT
q N

 (5.54) 

The matrices [ ]
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are defined for LEl ∈  in the same 

fashion than F
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in Eq. (5.7): 
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(5.56) 

In the same fashion, [ ] 1
,

×=
ln

MFl
i

MF
l mm  and [ ] 1

,
×=

ln
mMFl

i
mMF
l mm  for LEl ∈  are defined as 

F
lm using Eq. (5.8): 



109 
 

 MFl
ji

j

MFl
iL hmEl ,, max , =∈∀  (5.57) 

 mMFl
ji

j

mMFl
iL hmEl ,, max , =∈∀

 
(5.58) 

The times of unavailability due to the functional redundancy in the MF and mMF cases 

( MFr
UT ,  and mMFr

UT ,

 respectively) can now be computed as: 
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*
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Finally, the times to unavailability due to the precursor effect for the MF and mMF cases 

are: 

 MFr
qU

MFp
qUE

TTq
p

,
)( vertex ,

,
)( vertex ,

*  ,
11 kvN =∈∀  (5.61) 

 mMFr
qU

mMFp
qUE

TTq
p

,
)( vertex ,

,
)( vertex ,

*  ,
11 kvN =∈∀  (5.62) 

Once again, in the case that a victim vertex has several killers, MFp
UT , and mMFp

UT ,  are equal 

to the minimum of the times of the killer vertices. 
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Similarly to the failed case (F), the convergence condition of the algorithm is given by   

Fp
qU

MFm
qU TT ,

 vertex ,
,
 vertex , ≤ and Fp

qU
mMFm

qU TT ,
 vertex ,

,
 vertex , ≤  for all victim vertices q in the precursor effect. 

While these conditions are not met, set Fp
qU

MFm
qU TT ,

 vertex ,
,
 vertex , = and Fp

qU
mMFm

qU TT ,
 vertex ,

,
 vertex , =

(precursor times for the failed case for similar reasons with m
UT in Eqs. (5.53) and (5.54)) 

and repeat the precursor effect process outlined above. 

Combination of all effects. The final times to unavailability in the MF and mMF cases 

are derived in a similar way than Eq. (5.11): 
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(5.64) 

where MFr
qUT ,

vertex , , MFk
qUT ,

vertex , , MFp
qUT ,

vertex , , mMFr
qUT ,

vertex , , mMFk
qUT ,

vertex ,  and mMFp
qUT ,

vertex , are included in if 

they exist. 

5.2.3. Summary of the Anomaly and Failure Propagation Algorithm 

Below is a summary of the algorithmic process used to propagate multi-state failures 

across the network. The following inputs are required: the adjacency matrices and 

interlayer matrix, the mapping function (these three elements defining a network 

architecture), and the c.d.f.s for the anomaly and failure distributions of the vertices and 

edges. 
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1. Generate for each vertex i TF,vertex i, TMF,vertex i, and TmMF,vertex i (section 5.2.1) 

2. Generate for each edge TF,edge j→i, TMF,edge j→i, and TmMF,edge j→i (section 5.2.1) 

3. Compute Ek using Eq. (5.1) 

4. Compute k1 and v1 using Eq. (5.2)  

5. Compute Fk
UT , , MFk

UT , and mMFk
UT , for each victim vertex using Eqs. (5.3), (5.50) and 

(5.51) 

6. Compute Ep using Eq. (5.4) 

7. Compute k2 and v2 using Eq. (5.5)  

8. Compute Fm
UT , , MFm

UT , and mMFm
UT , for each vertex using Eqs. (5.6), (5.53) and (5.54) 

9. For all LEl ∈ , compute F
lH , MF

lH and mMF
lH  using Eqs. (5.7), (5.55) and (5.56) 

10. For all LEl ∈ , compute F
lm , MF

lm and mMF
lm using Eqs. (5.8), (5.57) and (5.58) 

11. Compute Fr
UT , , MFr

UT , and mMFr
UT , for each vertex for all layers LEl ∈  using Eqs. 

(5.9), (5.59) and (5.60) 

12. Compute Fp
UT , , MFp

UT , and mMFp
UT , for each victim vertex using Eqs. (5.10), (5.61) 

and (5.62) 

13. Repeat steps 9–12 for victim vertices q in the precursor effect until 

Fp
qU

Fm
qU TT ,

 vertex ,
,
 vertex , ≤ , Fp

qU
MFm

qU TT ,
 vertex ,

,
 vertex , ≤ and Fp

qU
mMFm

qU TT ,
 vertex ,

,
 vertex , ≤  

14.  Compute F
UT , MF

UT and mMF
UT for each vertex using Eqs. (5.11), (5.63) and (5.64) 
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5.2.4. Failure Propagation Example in the Multi-State Case 

Let us revisit the first example presented in section 5.1.6 by considering the MF case 

additionally (the mMF case can be applied in a similar fashion). The times to failures (TF) 

and to MF state (TMF) are given in Table 5.2, and shown in Figure 5.3 for clarity purposes. 

Table 5.2. Times to failure and degradation of the nodes and link in the case study example 

 Time to failure TF TMF 
years years 

Spacecraft #1   
 TTC 2 1 
 Supporting subsystems 6 6 
 Payload 7 5 
Spacecraft #2   
 TTC 9 4 
 Supporting subsystems 8 0.5 
Link between spacecraft 12 11 

 

 

Figure 5.3. IMLN representation with node and link times to failure and degradation 

 

“TTC” LAYER

“SUPPORTING 
SUBSYSTEMS” 

LAYER

“PAYLOAD” 
LAYER

S/C#1 S/C#2

1

2

3

4

5

tF ,1 = 2
tMF ,1 = 1 

tF ,2 = 6
tMF ,2 = 6 

tF ,3 = 7
tMF ,3 = 5 

tF ,4 = 9
tMF ,4 = 4 

tF,5 = 8
tMF ,5 = 0.5

tF,1↔4 = 12
tMF ,1↔4 = 11
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If spacecraft #1 was to be by itself, it would have failed at 2 years and been in a MF state 

at 1 year, when the TTC failed and degraded. However, in this network configuration, the 

second spacecraft can help maintaining the functionality up to 6 years on-orbit for a non-

failed state, and 4 years for a non-MF state. How these numbers were obtained is 

explained below using the 14 steps given in section 5.2.2. Steps 1 and 2 are already 

completed as the times to failure for the nodes and link are given in this example. 

3. According to section 4.5.1, 

 
 ( ) ( ) ( ){ }4,5,3,2,1,2=kE  (5.65) 

4. Then, 

  ( )522=1k  and ( )431=1v  (5.66) 

5. Propagating the kill effect yields: 
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And: 
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6. According to section 4.5.1, 

  ( ) ( ) ( ){ }5,4,3,1,2,1=pE  (5.69) 

7. Then, 

  ( )4112 =k  and ( )5322 =v  (5.70) 

8. The minimum time to unavailability after the kill effect is given as: 
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And: 
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9. The only functionally redundant layer in this IMLN is the TTC layer. The 

associated H matrices are expressed as: 

 [ ]
[ ]

[ ]
[ ] 








=








=












=

→

→

82

82

82,12min

8,12min2

,min

,min
,
4 ,

,
1 ,41,

,
4 ,14,

,
1 ,

1 Fm
U

Fm
UF

Fm
UF

Fm
UF

ttt

ttt
H  (5.73) 

And: 

 [ ]
[ ]

[ ]
[ ] 








=








=












=

→

→

41

41

41,11min

4,11min1

,min

,min
,
4 ,

,
1 ,41,

,
4 ,14,

,
1 ,

1 MFm
U

MFm
UMF

MFm
UMF

MFm
UMF

ttt

ttt
H

 

(5.74) 

10. Then,  
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11. The times to unavailability for the TTCs due to the functional redundancy are 

expressed as: 
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And: 
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12. Propagating the precursor effect yields: 
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And: 
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13. The convergence condition is met in this particular example, so the algorithm 

continues to the final step. 

14. Combining all the effect, the final times to unavailability for the nodes are: 
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And: 
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5.3. Summary 

This chapter was entirely dedicated to the study of the anomaly and failure propagation 

across interdependent multi-layer networks. This chapter developed several contributions: 

• The formal description of the mechanisms that enable the propagation of failures 

and anomalies across the network, supporting a complete survivability analysis of 

the network under consideration; 

• The establishments of several algorithms for: 

o the propagation of complete failures of nodes and links across the network; 

o the concurrent generation of times to failure and degradation in the context 

of multi-state failures; 

o the concurrent propagation of multi-state failures across the network. 

• The illustration of the failure propagation process through case-study examples.  

The following chapter aims to validate the modeling and simulation tool presented in this 

chapter, quantify its precision and its scalability.  
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CHAPTER 6  

VALIDATION AND SCALABILITY OF INTERDEPENDENT MULTI- LAYER 

NETWORK MODELING 

 

6.1. Introduction 

The previous chapters have introduced the need of the interdependent multi-layer 

approach and developed the necessary tools to tackle survivability analyses for space-

based networks. This chapter aims to test that the proposed tool correctly perform what it 

is designed for, as well as quantify the simulation output precision and evaluate the 

scalability of the model.  

The first objective will be tackled using an alternative modeling scheme, namely the 

stochastic Petri nets, as well as analytical solutions that can exceptionally be derived for 

simple forms of networks: the output probabilities of the IMLN approach will be 

compared to the output of these two alternative ways of obtaining them, and it will be 

shown that the IMLN results are in excellent agreement with the other two set of results 

as shown in sections 6.2 and 6.3. Consequently, the IMLN output can be trusted for 

further analysis in the following chapter (Chapter 7). 

The second objective arises from the fact that the results from the IMLN approach are 

obtained by running Monte Carlo simulations. As a consequence, there is an inherent 

variability in the probabilities outputted by the simulation associated with the number of 
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runs selected for the Monte Carlo. Section 6.4 investigates the spread of the confidence 

intervals and ways to maintain the precision of the IMLN results. This discussion is 

continued in section 6.5. 

Finally, section 6.5 also addresses questions relative to the scalability of the IMLN 

approach, such as: how does precision requirements affect the simulation time? How 

flexible is the IMLN representation in handling large network size? How does this 

network size affect the simulation time?  

6.2. Stochastic Petri Nets 

6.2.1. Overview of Stochastic Petri Nets 

Petri nets were introduced in 1962 by the German computer scientist, Carl Adam Petri 

(1926–2010). A Petri net is a bipartite directed graph used to model discrete-event 

systems that can display concurrent or asynchronous processes (Peterson, 1977). The 

Petri net graph has 2 disjoint sets of vertices (or nodes): places and transitions. Directed 

arcs are drawn between a place and a transition (called input arc) or conversely between a 

transition and a place (called output arc). Places connected to a transition by input arcs 

are called input places of that transition, and conversely places connected to a transition 

by output arcs are called output places of that transition. In addition to places, transitions, 

and directed arcs, Petri nets also have “tokens”, or markings that can be associated with 

each place. 
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 As explained by Peterson (1977), a Petri net has “static” and “dynamic” properties: the 

Petri net graph describes its “static properties”, and its “dynamic properties [...] result 

from its execution”. The evolution of the Petri net is marked by the movement of the 

tokens from places to places, through the “firing” of transitions. However, the firing of a 

transition occurs only if this transition has been “enabled” beforehand, i.e., if tokens are 

present in all the input places of the transition. The firing rules of the transitions define 

the dynamic behavior of the system, and the combination of the locations of the tokens, 

called the marking, characterizes the current state of the system. Thus, places model 

particular “conditions” of the system (e.g., subsystem X experienced a major anomaly), 

while transitions model “events” affecting the system (e.g., failure of subsystem X). The 

condition associated with a place is realized when one (or several) token(s) are in that 

place. Formal mathematical definitions of Petri nets can be found in Peterson (1977; 1981) 

or Haas (2002). 

Stochastic Petri Nets (SPNs) are a subfamily of Petri nets, and they add a stochastic 

behavior to the modeling scheme by introducing randomness in the firing of transitions, 

modeled for example with exponential, Weibull, or lognormal distributions. Details about 

stochastic Petri nets, or other Petri net subfamilies (e.g., colored or hierarchical Petri nets) 

can be found in Haas (2002),  or Ajmone Marsan (1989). 

Two additional types of arcs exist in Petri net modeling, the inhibitor and the enabler arcs. 

The inhibitor arc prevents a transition from firing when a token is present in the place 

linking the transition and the place. Its usefulness will be shown in an example shortly. 

Conversely, the enabler arc is a “negative inhibitor” (Volovoi, 2006) that enables or 
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forces the transition to occur. In essence, the inhibitor and enabler arcs “override” the 

stochastic nature of a transition in an SPN model (or a deterministic temporal delay in a 

regular Petri Net). 

To better understand the construction and evolution of a Petri net, consider the following 

example. A system is composed of two subsystems, and each can be in two states: 

operational or failed. After a failure, each subsystem can be repaired and brought back to 

the operational state, but only one subsystem at a time. In other words, only one 

subsystem can be repaired at a time. This system is shown in Figure 6.1. 

 

Figure 6.1. Two-subsystem system with repair queue 

(initial configuration with subsystem 1 (S1) and subsystem 2 (S2) both operational) 

All the elements previously mentioned can be seen in Figure 6.1:  

• six places (shown as circles) representing the possible “states” the subsystems can 

evolve towards;  

S1 operational S2 operational

S1 failed S2 failed

S1 ready 
for repair

S2 ready 
for repair

failure 
transition 1

repair 
transition 1

repair 
transition 2

immediate 
transition 2immediate 

transition 1

failure 
transition 2

inhibitor arcs

token 1 token 2
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• two tokens initially in the operational places for the subsystems, indicating that 

initially the systems is in this configuration/state;  

• the failure and repair transitions are displayed as large black rectangles and 

represent the stochastic or deterministic laws governing the failure and the repair 

time of the subsystems; the immediate transitions are represented differently here 

(with thin black rectangles) to ensure the clarity of the model.  

• These immediate transitions can be overridden by the inhibitor arcs to ensure than 

only one subsystem get repaired at a time: if subsystem 1 (S1) fails first for 

example, the token 1 initially in the place labeled “S1 operational” transitions to 

the place labeled “S1 failed”, and as the subsystem 2 is still operational, the 

immediate transition is enabled and the token 1 immediately transitions to the 

place labeled “S1 ready for repair”. Since now a token is present in that place, the 

inhibitor arc overrides the immediate transition 2. As a consequence, if the 

subsystem 2 fails while the immediate transition 2 is still inhibited, the token 2 

will stay in the place labeled “S2 failed” until the token 1 transitions back to the 

place labeled “S1 operational.”7 

6.2.2. Stochastic Petri Nets for Multi-State Failure and Survivability Modeling 

In multi-state failure or survivability analyses, the finer resolution into the degradation 

and failure behavior of systems introduces additional complexity compared with the 

traditional reliability analysis, and requires as a consequence more advanced analytical 

                                                 
7 As a side note, enabler arcs could have been used instead of inhibitor arcs in this example: an enabler arc 
between “S1 operational” and the immediate transition 2, and another one between “S2 operational” and the 
immediate transition 1 would have modeled the same behavior. 
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techniques for modeling and analysis, such as the IMLN framework proposed in this 

thesis, Markov chains or more broadly stochastic timed automata. 

SPNs have several advantages over Markov chains for modeling and analyzing multi-

state systems. One argument in support of this statement is the following: consider a 

simple example, where a system is composed of k subsystems and each subsystem can be 

in m different states. In the case of a Petri net modelization, “only” km places are 

necessary to model the state evolution of this system (the presence of tokens in places 

will reflect which state the system is in). However, with a Markovian approach, mk states 

are necessary. The ratio of the number of states necessary for a Markovian approach to 

the number of places required in a Petri net approach is plotted in Figure 6.2. The figure 

shows this ratio with respect to the number of subsystems k, and for 4 different values of 

the number of states per subsystem, m, (m = 2 for the lowest curve to m = 5 for the uppest 

curve). The figure is plotted with a logscale y-axis due to the explosion of this ratio for 

higher values of k and m.  

Figure 6.2 reads as follows: for example, for k = 5 and m = 5 (the upper-most curve), a 

Marvokian model requires 125 more states than places in a Petri net model. The 

proliferation of states or places when k or m increases is rightfully described as the 

“dimension damnation” of multi-state failure analysis by Lisnianski and Levitin (2003), 

but is significantly more acute in the case of the Markovian approach. Figure 6.2 also 

shows for example that for systems with 7 or more components, even in the case of the 

traditional binary reliability analysis, Markov Chains require at least an order of 

magnitude more states to model the system than places in an equivalent Petri net. More 
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broadly, this feature of Markov chains—their (acute) dimension damnation—results from 

the fact that Markovian modeling requires “global states” and a “global clock” for the 

system to run the state evolution against. That is, the system can be in only one state at a 

time, and this state describes the status of all the subsystems evolving in time with respect 

to the unique “global” clock. In contrast, Petri nets allow local modeling (places per 

subsystem) and local clocks, where each subsystem evolves with its own token(s) and the 

system state is given by the marking of the Petri net. 

 

Figure 6.2. Numbers of states in Markov Chains versus Petri nets 

(the lower curve represents subsystems with 2 states, and the upper curve represents subsystems with 5 
states) 

Another advantage of SPNs is their intrinsic ability to handle any distribution for the time 

to transition, for example non-exponential transitions such as the Weibull or the 

lognormal, as opposed to the Markovian approach which would require more complex 

and involved operations to manage time-varying failure rate (e.g., systems exhibiting 

infant mortality or wear-out behavior). 
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Although initially used for the modeling and analysis of manufacturing systems and 

computer networks, stochastic Petri Nets are slowly but increasingly being adopted for 

reliability studies, as well as for maintenance and risk analysis, because of the many 

advantages they provide over Markov chains for example (Volovoi, 2004). The adoption 

of SPN is still hampered however by the limited availability of Petri net software, 

especially when compared with the widespread availability of software tools for other 

modeling approaches. In this thesis, the software SPN@ (Volovoi, 2006) was used. 

In the space application developed in this work, we consider 12 subsystems on-board 

spacecraft, and each of these subsystems can be in 4 different states of functionality. Thus 

48 places are necessary in the case of a Petri net to capture the overall state of only one 

spacecraft, whereas more than 16 million states are necessary in a Markovian approach. 

The state space for a Markov chain (or a semi-Markov model) would make it 

unmanageable and impossible to visualize. Also, the number of transition laws to 

calculate and populate in the model would be unmanageable. 

6.2.3. Stochastic Petri Net Representation of a Spacecraft and of the Case Study 

Space-Based Network 

The traditional monolith and the case study SBN architectures were introduced in 

previous chapters but are recalled here for readability purposes. The monolith 

architecture consists of a single spacecraft with the 11 subsystems introduced in Chapter 

2 and Chapter 3, plus the unknown category:  
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1. Gyro / Sensor / Reaction Wheel (hereafter referred to as Gyro) 

2. Thruster / Fuel (Thruster) 

3. Beam / Antenna Operation / Deployment (Beam) 

4. Control Processor (CP) 

5. Mechanisms / Structures / Thermal (Mechanisms) 

6. Payload Instrument / Amplifier / On-board Data / Computer / Transponder 

(Payload) 

7. Battery / Cell (Battery) 

8. Electrical Distribution (ED) 

9. Solar Array Deployment (SAD) 

10. Solar Array Operating (SAO) 

11. Telemetry, Tracking and Command (TTC) 

The Gyro and Thruster subsystems can be lumped together into a macro-subsystem called 

Attitude and Orbit Control Subsystem (AOCS), and the Battery, ED, SAD and SAO 

subsystems are part of the macro-subsystem named Electrical Power Subsystem (EPS). 

The traditional monolith architecture is presented in the upper part of Figure 6.3. The 

case study space-based network consists of two spacecraft (S/C #1 and S/C#2): S/C #1 is 

similar to the spacecraft in the monolith architecture, while S/C #2 possesses all the 

subsystems but the payload. The two spacecraft are networked wirelessly together to 

provide a functional redundancy for the TTC. This SBN is shown in the bottom part of 

Figure 6.3. 
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Figure 6.3. Architecture of the monolith spacecraft (top) and the case study SBN (bottom) 

 

As developed in Chapter 3, four classes of failure events were recognized and analyzed 

for each subsystem:  

• Subsystem state 4 (SubS4): fully operational 

• Subsystem state 3 (SubS3): minor anomaly/degradation 

• Subsystem state 2 (SubS2): major anomaly/degradation 

• Subsystem state 1 (SubS1): total failure 

Each subsystem can transition to a more severe state of degradation or failure and the 

associated probabilities of transitioning were derived in Chapter 3 as Weibull 

distributions. 
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To evaluate the survivability of these two architectures, four states were considered by 

the author at the system level: 

• System state 4 (SysS4): fully operational:  0 – 5% performance loss 

• System state 3 (SysS3): minor degradation:  5 – 35% performance loss 

• System state 2 (SysS2): major degradation:  35 – 85% performance loss 

• System state 1 (SysS1): total failure:   85 – 100% performance loss 

These states determine the level of precision for the survivability analysis of the models. 

Additional precision can be obtained by defining additional states, which comes at the 

cost of increased analytical and computational complexity, as discussed previously. The 

probabilities of being in these four states are the output of the SPN model. Comparisons 

between the probabilities obtained provide the comparative survivability analysis of these 

two architectures, as will be shown shortly.  

In the case of the monolith spacecraft, the following rules are used to link the subsystem 

and system levels of degradations and failures: 

• The system is in the operational state (SysS4) if all the subsystems are in their 

operational states (SubS4); 

• The system is in the failed state (SysS1) if one subsystem is in its failed state 

(SubS1); 

• SubS3 state of the subsystems does not have a direct effect on the system level; 
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• The SubS2 state can lead to minor, major degradation or failed system states  

(SysS3, SysS2 and SysS1 respectively) according to conditional probabilities 

peculiar to each subsystem, as given in Table 6.1 (actual on-orbit data derived 

from the database). The probabilities given in Table 6.1 are “conditional” since 

they represent the probability that the system will transition to a degraded state 

given that a particular subsystem is in SubS2 state. For example, for the Gyro / 

Sensor / Reaction wheel subsystem, given that this subsystem is in SubS2 (major 

anomaly), there is 25.7% chance that the system transitions to a minor 

degradation state (SysS3), 54.3% chance to a major degradation state (SysS2) and 

20% chance to a failed state (SysS1). 

 

Table 6.1. Impact on the system level of subsystem major degradation (conditional probabilities) 

Subsystem 
Conditional probability that a SubS2 state  

leads to system: 
minor degradation major degradation total failure 

Gyro / Sensor / Reaction wheel 25.7% 54.3% 20% 
Thruster / Fuel 50.9% 47.3% 1.8% 
Beam / Antenna operation / deployment 70.6% 23.5% 5.9% 
Control processor 0% 0% 100% 
Mechanisms / Structures / Thermal 100% 0% 0% 
Payload instrument / Amplifier / On-
board data / Computer / Transponder 

33.4% 59.1% 7.5% 

Battery / Cell 56.2% 18.8% 25% 
Electrical distribution 40% 40% 20% 
Solar array deployment 40% 60% 0% 
Solar array operating 61% 31.2% 7.8% 
Telemetry Tracking and Command 43.5% 34.8% 21.7% 
Unknown 58.4% 33.3% 8.3% 
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A summary of the subsystem and system states, and the links between is provided in 

Table 6.2. 

Table 6.2. Summary of subsystem and system state and transitions 

 States Transitions between states 

Subsystem 
level 

 
For each subsystem, four states 
based on subsystem anomalies and 
failures: 
 
SubS4: operational 
SubS3: minor anomaly 
SubS2: major anomaly 
SubS1: total failure 
 
derived from the classes of events 
present in the database (see 
Chapter 3) 
 

Weibull distributions derived from  
statistical data analysis 
(see Chapter 3) 

System 
level 

Four states based on the 
performance degradation of the 
system: 
 
SysS4: operational 
SysS3: minor degradation 
SysS2: major degradation 
SysS1: total system failure 
 
defined in this dissertation  

 
Transitions between system states depend on 
subsystems states: 
 
If a subsystem 
transitions to… 
 

SubS3 
 
 
 

SubS2 
 
 

SubS1 
 

 
 
 
→ 
 
 
 
→ 
 
 
→ 

then the system transitions 
to… 
 
no transition (no impact on 
system states) 
 
    SysS3 
or SysS2     (see Table 6.1) 
or SysS1 
 
SysS1 

 

Given the stochastic transition laws between the different states summarized in Table 6.2, 

the SPN model of a monolith spacecraft facing on-orbit failures and anomalies was 

developed (using SPN@ (Volovoi, 2006)) and is shown in Figure 6.4. To clarify this 

model and enable an easy identification of its different parts, Figure 6.5 is provided 

showing the overall SPN model, the spacecraft architecture, the various subsystem 
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models, and the system transition diagram. In addition, a zoom-in or enlargement of two 

subsystems SPN models is shown in Figure 6.5, those of the Gyro, and the TTC 

subsystems. The system level states are clearly identified and illustrated by a schematic 

transition diagram. The remaining states are labeled “intermediary states” and are used to 

link the subsystem level to the system level according to the empirical data and the 

previously stated rules. 

A similar SPN model has been developed for the case study SBN, and is provided in the 

appendix of this chapter instead of the main body for readability purposes. Its derivation 

is presented in detail in Castet and Saleh (2012) and Saleh and Castet (2011). Also 

explained in these references is the extensive testing done to validate these SPN models. 

 

 

Figure 6.4. SPN model of a monolith spacecraft 
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Figure 6.5. Construction clarification of the monolith spacecraft SPN model 
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Results. Running the Monte Carlo simulation of the SPN model in the case of the 

monolith spacecraft provides the evolution in time of the probabilities of the system 

being in operational or different failed states (i.e., operational, minor and major 

degradation, failed). Figure 6.6 presents these results, shown in two different plots for 

readability purposes given their different ranges on the y-axis. 

 

Figure 6.6. State probability results of the monolith spacecraft SPN model 

 

Figure 6.6 reads as follows: for example after six years on-orbit, a monolith spacecraft 

has a 75.6% likelihood of being fully operational, 8.4% of being in minor degradation, 

8.1% of being in major degradation state, and 7.9% of being in a failed state. Similarly, 

after 10 years for example, a spacecraft has only a 70% likelihood of being fully 

operational, that is, of not experiencing some form of anomaly or degradation. This result 

offers a significant opportunity, can be thought of as a call to arms, to improve spacecraft 

design and testing. 

Operational state Degraded states 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time after successful orbit insertion (years)

P
ro

b
ab

ili
ty

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time after successful orbit insertion (years)

P
ro

b
ab

ili
ty

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time after successful orbit insertion (years)

P
ro

b
ab

ili
ty

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time after successful orbit insertion (years)

P
ro

b
ab

ili
ty

minor degradation
major degradation
failed



135 
 

For the space-based network, running the simulation of its SPN model leads to the same 

kind of plots. This in turns allows the comparison of the probability of residency in each 

state for both architectures. Figure 6.7 for example displays the probability of residency 

in the operational and failed states for the monolith spacecraft and the space-based 

network. 

 

Figure 6.7. Comparison between the monolith spacecraft and the SBN for the fully operational (a) 
and failed (b) states 

 

Figure 6.7a is confined to the operational state and clearly shows that the space-based 

network is more likely to be in an operational state than the traditional monolith 

spacecraft at any point in time, given stochastic on-orbit anomalies and failures. For 

example, after 15 years, there is a 65.9% likelihood that the space-based network will still 

be in the operational state, compared with 63.9% for the monolith spacecraft. This two-

percentage point increment is provided by the networked nature of this architecture and 

the ability of one spacecraft to tap into a resource, in this case the TTC, of the second 

spacecraft. Similarly, Figure 6.7b shows that the space-based network is less likely to be 
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in a failed state than the traditional monolith at any point in time. For example, after 15 

years, there is 11.2% likelihood that the space-based network will be in the failed state, 

compared with 13.1% for the monolith spacecraft. 

A detailed analysis of the implications for design and architectural choice of the results 

presented above is conducted in Chapter 7. As a side note, other space-based network 

architectures were modeled with stochastic Petri nets, as presented in Castet and Saleh 

(2011). As seen above, the SPN modeling allow the generation of probabilities of 

degradation and failure of the space-based network. One might wonder why SPNs were 

not chosen as the principal modeling tool for survivability analysis, in place of the 

proposed IMLN representation. A Petri net is by nature a graphical representation of 

processes, and the generation of even the monolith spacecraft model was complex, as 

attested by Figure 6.5. The simple case study space-based network also required a 

complex SPN model, created manually.  In comparison, the IMLN approach only 

requires the creation of three sets of input: the adjacency matrices, the interlayer matrix 

and the mapping function. As explained in section 6.5.3, their determination can be quite 

simple and the algorithm presented to propagate failures is not specific to any type of 

network. Consequently, the survivability exploration of several architectures is conducted 

by varying inputs in the case of the IMLN framework, while a graph must be specifically 

created for each architecture in the case of the SPN approach. As a conclusion, the IMLN 

approach is superior in terms of generalization, complexity and practicality. The actual 

introduction and use of SPN in the context of the IMLN modeling is presented next. 
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6.2.4. Use of SPN Model to Partially Create and Validate the IMLN Model 

The monolith and space-based network SPN were used to create inputs for the IMLN, as 

well as using SPN results to (partially) validate IMLN models. 

IMLN input creation. Remember that the required inputs for the IMLN models are based 

on design and architectural choices of the network (adjacency matrices A1, …, AL, the 

interlayer matrix C and the mapping function f) as well as on the failure behaviors of the 

vertices and edges of the network. The formers are immediately defined from an arbitrary 

architecture, while the latters are not trivial in their derivation. In this dissertation, it was 

chosen to represent the failure behavior of the vertices and the edges using cumulative 

distributions functions of the random variables TF, TMF and TmMF (all three of them for a 

complete multi-state failure simulation, or a subset for other simulations (e.g., a complete 

failure simulation requires only the c.d.f.s for TF)). These c.d.f.s are represented 

parametrically here using single Weibull distributions characterized by two Weibull 

parameters each: βF, θF, βMF, θMF, βmMF and θmMF. 

In this dissertation, deriving βF, θF, βMF, θMF, βmMF and θmMF is not trivial as the severity 

levels at the subsystem level do not match the severity of the impact at the system level. 

Indeed, as summarized in Table 6.2, a subsystem in a minor degradation state (SubS3) 

does not translate in the overall spacecraft transitioning to the system minor degradation 

state (SysS3) for example. However, the IMLN inputs characterize the impact of failure 

behavior of the vertices and nodes at the system level. Hence, for example in the case 

study, the Weibull c.d.f. for the total failure (PF) of TTC vertex is not defined by the 
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results derived in Chapter 3 (that correspond to probability of the TTC being in SubS1), 

as Table 6.1 and Table 6.2 clearly show that the spacecraft will experience a total failure 

(SysS1) due to the TTC if the TTC experiences a total failure (SubS1) or a major 

degradation event (SubS2) that leads to a system total failure in 21.7% of the occurrences 

of such event. 

The SPN model of the monolith spacecraft becomes extremely helpful in determining the 

Weibull parameters of the c.d.f.s for TF, TMF and TmMF of the vertices in the IMLN 

models. For example, in the case of the case study IMLN, the required c.d.f.s are the ones 

of the TTC vertex, the supporting subsystems vertex and the payload vertex. These 

probabilities can be obtained by running subsets of the SPN monolith model with the 

subsystems of interest and tracking the resulting system state probability output of the 

Monte Carlo simulation. For example, in the case of the supporting subsystems vertex, 

the subset of subsystem under consideration consists of the AOCS, EPS, Beam, 

Mechanisms and CP subsystems; the arcs in the SPN model for the remaining subsystems 

modeling their impact on the system level being disconnected. To obtain the Weibull 

parameters βF, θF, βMF, θMF, βmMF and θmMF, a non-linear least-square regression is used to 

fit single Weibull distributions to the output of the SPN simulation. In this space 

application, these Weibull models are very precise: for example, in the case of the TTC 

vertex, the average errors of the Weibull models with respect to the probability output of 

the SPN simulation are 0.003, 0.02 and 0.04 percentage points for TF, TMF and TmMF 

respectively. The resulting Weibull parameters for the case study are shown in Table 6.3. 
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Table 6.3. Weibull parameters for TF, TMF and TmMF of vertices in the IMLN case study model 

Vertex PF PMF PmMF 

TTC 
βF = 0.4650 

θF = 47700 years 
βMF = 0.4680 

θMF = 28040 years 
βmMF = 0.4402 

θmMF = 28210 years 

Supporting subsystems 
βF = 0.5529 

θF = 918.5 years 
βMF = 0.5052 

θMF = 435.0 years 
βmMF = 0.4638 

θmMF = 203.6 years 

Payload8 
βF = 0.5921 

θF = 30150 years 
βMF = 0.5561 

θMF = 1731 years 
βmMF = 0.5599 

θmMF = 813.3 years 

 

Partial validation of the IMLN model. Now that a subset of the SPN model has been 

used to create inputs for the IMLN model, it is possible to use the complete SPN model 

and its results to partially validate the IMLN simulation results.  

A Monte Carlo simulation of the SPN model of the case study space-based network was 

run (5 million runs, as justified in Castet and Saleh (2012)), and the results are provided 

in Table 6.4. For example, according to the SPN model, after 5 years on-orbit, the 

probability that the space-based network has completely failed (PF) is 6.0 percentage 

points, that it is in a major degradation state (PM) is 7.3 percentage points, and that it is in 

a minor degradation state (Pm) is 7.7 percentage points. 

The IMLN model using the Weibull distributions given in Table 6.3 and assuming a 

perfect link between spacecraft was run 100,000 times (see section 6.4 for more details 

about the number of runs). The results are also presented in Table 6.4. Similarly, 

according to the IMLN model, after 5 years on-orbit, the probability that the space-based 

                                                 
8 In this particular example, the “payload” vertex consists of the payload instrument, as well as data 
handling components. These components will be analyzed separately later in the dissertation. 
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network has completely failed (PF) is 6.1 percentage points, that it is in a major 

degradation state (PM) is 7.4 percentage points, and that it is in a minor degradation state 

(Pm) is 7.7 percentage points. 

Table 6.4 gives the full results for all degradation and failure states at four times in the 

lifetime of a spacecraft (1, 5, 10 and 15 years) for both models. Table 6.4 also provides 

the absolute difference (in percentage points) between the results of the two models. It 

can be seen that these results are similar, as the maximum error is 0.29 percentage point 

and the average error over all the results is 0.1 percentage point, a significantly small 

difference. A detailed analysis of the results is presented in Chapter 7. 

Table 6.4. Results from the SPN and IMLN simulations of the case study and comparison (in 
percentage points) 

Time 
on-orbit 

SPN IMLN Absolute difference 
PF PM Pm PF PM Pm F M m 

1 year 2.78 3.70 4.36 2.53 3.50 4.34 0.24 0.19 0.02 
5 years 5.96 7.32 7.66 6.09 7.38 7.69 0.12 0.07 0.03 
10 years 8.78 9.89 9.71 8.79 9.88 9.74 0.01 0.04 0.03 
15 years 11.22 11.78 11.04 10.93 11.66 11.00 0.29 0.13 0.04 

 

The small, but existing differences can be explained from two sources: 

• The IMLN model was simulated with 100,000 runs. Increasing the number of 

runs will increase the precision of the results, but at the cost of computing time. 

This source of error is investigated in the following section. Also the Monte Carlo 

simulation can introduce some variability in the SPN results, even if 5 million 
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runs were chosen to reduce it as much as possible with a reasonable simulation 

time.  

• The Weibull laws derived in Table 6.3 are close approximations of subsets of the 

SPN model, hence the fitting errors mentioned above are introduced in the IMLN 

simulation. 

6.3. Comparison with Limited Analytical Solutions 

In the case of the simple space-based network from the case study, a closed-form solution 

for the probabilities of being in a total failure state, a major degradation state or a minor 

degradation state can be derived analytically. Note that the existence of a closed-form 

solution is not generalizable to all space-based networks, justifying the need of the 

general interdependent multi-layer approach presented in this dissertation. 

Assuming that the link is perfectly reliable, they can be expressed as: 

 ( )( ) ( )( )( ){ }FFFFF
F PPPPPP TTCsub. supp.TTCpayloadsub. supp. 1111111 −−−−−−−=  (6.1) 

 ( )( ) ( )( )( ){ }MFFMFMFMF
MF PPPPPP TTCsub. supp.TTCpayloadsub. supp. 1111111 −−−−−−−=  (6.2) 

 ( )( ) ( )( )( ){ }mMFFmMFmMFmMF
mMF PPPPPP TTCsub. supp.TTCpayloadsub. supp. 1111111 −−−−−−−=  (6.3) 

Plugging in the Weibull models shown in Table 6.3, it is then possible to investigate the 

precision of the IMLN results from 100,000 runs. The numerical results from the 
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equations are presented in Table 6.5. Note that these values differ from the SPN results 

presented in Table 6.4 as the Psupp. sub., Ppayload and PTTC are modeled using the same 

Weibull distributions than the IMLN model. As a side node, the SPN results can be found 

by plugging instead the SPN simulated values.  

Table 6.5. Results from the analytical and IMLN models of the case study and comparison (in 
percentage points) 

Time 
on-orbit 

Analytical solution IMLN Absolute difference 
PF PM Pm PF PM Pm F M m 

1 year 2.51 3.55 4.25 2.53 3.50 4.34 0.02 0.05 0.09 
5 years 6.08 7.39 7.76 6.09 7.38 7.69 0.01 0.01 0.07 
10 years 8.86 9.93 9.72 8.79 9.88 9.74 0.06 0.04 0.02 
15 years 11.01 11.69 10.93 10.93 11.66 11.00 0.08 0.03 0.07 

 

The IMLN simulation results are in good agreement with the analytical results: the 

maximum error for all degradation and failure states and for all time is 0.1 percentage 

point and the average error is 0.05 percentage point. 

It results that the comparison of the IMLN results with the SPN and analytical results 

yields very good agreement, partially validating the IMLN approach and establishing 

trust for the IMLN outputs. 

6.4. IMLN Model Precision 

The IMLN results presented in Table 6.5 were obtained by using a Monte Carlo 

simulation with 100,000 runs. However, due to the variability associated with Monte 

Carlo simulations, these results are not fully representative of the precision of the IMLN 
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model. This precision was investigated on the case study by running 10 times the same 

Monte Carlo simulation with 100,000 runs. Then confidence intervals can be built to 

characterize the variability associated with the IMLN simulation. For each on-orbit time 

(1, 5, 10 and 15 years) and for each degradation or failure state, a sample of 10 

probabilities P is gathered: the sample mean is defined as P and the sample standard 

deviation is s. Then, using the Student’s t-distribution with 9 degrees of freedom, the 

two-sided 95% confidence interval is expressed as: 
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where 262.29,025.0 =t as ( ) 95.09,025.09,025.0 =≤≤− tTtP for 9 degrees of freedom 

The sample averages and the confidence interval spreads are provided in Table 6.6. The 

spread of the confidence interval is relatively small: the maximum spread is 0.15 

percentage point and the average spread is 0.10 percentage point, with most of the 

analytical results falling between the confidence interval bounds. 

Table 6.6. Confidence intervals for 100,000 runs results 

Time 
on-orbit 

Sample average Confidence interval spread 
PF PM Pm F M m 

1 year 2.48 3.54 4.21 0.08 0.10 0.08 
5 years 6.03 7.40 7.76 0.11 0.13 0.07 
10 years 8.79 9.91 9.77 0.11 0.13 0.08 
15 years 10.94 11.68 10.99 0.13 0.15 0.07 
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Improving the accuracy of the results can be obtained by increasing the number of runs in 

the simulation, hence increasing the computational burden. This is discussed in more 

details in the following section. 

6.5. Model Scalability 

6.5.1. Confidence Interval and Simulation Time 

For the case study IMLN (2-spacecraft network represented with 5 nodes), four series of 

Monte Carlo simulations were conducted to determine the accuracy improvement of the 

IMLN model results with the increase in the number of runs by tracking the spread of the 

confidence intervals, as well as the impact of this increase on the computational time. 

Each series of Monte Carlo consists in running 10 times the total failure simulation (no 

degradation states considered) in order to build confidence interval with that sample. The 

number of runs for each series is increasing from 10,000 runs for the first series to 

100,000 runs for the second series, 500,000 runs for the third series and 1,000,000 runs 

for the fourth series. The resulting variation in confidence interval spread (average and 

maximum over four on-orbit dates: 1, 5, 10 and 15 years) is presented in Figure 6.8. Also 

shown on the secondary y-axis in Figure 6.8 is the time required for propagating the 

failures across the IMLN depending on the number of runs. The configuration used in 

this thesis consists of the MATLAB software running on an Intel Core 2 Duo 2.66 GHz 

processor with 2 GB of RAM. 
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Figure 6.8. Confidence interval spread and simulation time variations with the number of runs for 
the case study IMLN 

 

Figure 6.8 shows an exponential decrease in the spread of the confidence interval (both 

for the average and the maximum values) by increasing the number of runs, trend that can 

be translated in an increase in accuracy for the IMLN model. For example, the average 

confidence interval spread is 0.4 percentage point for 10,000 runs and 0.04 percentage 

point for 500,000 runs. Figure 6.8 suggests that choosing a too high number of runs will 

not translate in a significantly higher accuracy (plateau effect after 500,000 runs in this 

particular example). This is all the more significant as Figure 6.8 shows that the 

simulation time linearly increases with the number of runs, from 0.2 second for 10,000 

runs to 24 seconds for 1 million runs. Consequently, a medium number of runs associated 

with most of the precision improvement and an acceptable computational time can be 

selected as a trade-off. The simulation times shown here remain low, but the IMLN under 

consideration consists of a small number of nodes. The next paragraph investigates how 

the simulation time increases with the complexity of the network. 
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6.5.2. Network Size and Simulation Time 

Four different space-based network architectures are considered here, each with four 

layers: two layers of functional redundancy (layers 1 and 2), one layer of supporting 

subsystems (layer 3) and one layer for the payload (layer 4). The first network consists of 

3 networked spacecraft (3-IMLN), the second of 4 spacecraft (4-IMLN), the third of 5 

spacecraft (5-IMLN) and the fourth of 10 spacecraft (10-IMLN). These IMLNs are not 

intended to be realistic space architectures: they were chosen to increase the complexity 

of the failure propagation and observe its impact on the simulation time. The IMLN 

models (graph representation, adjacency matrices, interlayer matrix and mapping 

function) of these four architectures are shown in the Appendix of this chapter, instead of 

the main body for readability purposes. The number of vertices increases from 8 in the 3-

IMLN, to 11 in the 4-IMLN, 14 in the 5-IMLN and 29 in the 10-IMLN. The simulation 

times necessary to propagate total failures (these are not multi-state failure simulations) 

across the networks during Monte Carlo simulations with 100,000 runs are given in Table 

6.7. Even in the most complex IMLN (10 spacecraft), the simulation time for 100,000 

runs remain low with a value of about 13 seconds. A shorter simulation time or the 

possibility of considering a higher number of runs could be obtained by using a more 

efficient programming language or a more powerful computer configuration. 

Table 6.7. Simulation time variation with number of vertices 

Network type Number of vertices 
Simulation time 

seconds 
3-IMLN 8 4.8 
4-IMLN 11 5.8 
5-IMLN 14 6.9 
10-IMLN 29 12.8 
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In addition to the results for the architectures considered above, the failure propagation 

took about 2.3 seconds for 100,000 runs in the case of the 2-IMLN case study as shown 

in Figure 6.8. The previous calculations were obtained for total failure simulations. In the 

case of a full multi-state analysis (here including the MF and mMF degraded states), the 

degradation and failure propagation takes about 5.4 seconds, short of three times the time 

necessary for the total failure simulation. As a consequence, the computational burden 

remains low even for the multi-state simulation. 

However, an additional computational time exists for the generation of TF, TMF and TmMF 

for the vertices (and edges). In the case of the total failure simulation, only TF is required 

to be generated from Weibull distributions, and only a fraction of second (0.2 second) is 

added to the 2.3 seconds required for the failure propagation across the network in the 2-

IMLN case. This is not the case for the multi-state approach, as TF, TMF and TmMF need to 

be generated concurrently using the algorithm presented in section 5.2.1. In the case of 

the 100,000-run Monte Carlo simulation for the case study IMLN, 585 seconds are 

necessary to generate TF, TMF and TmMF for the vertices (the link between spacecraft is 

assumed to be perfectly reliable). This generation is significantly time consuming for 

vertices with Weibull distributions for TF, TMF and TmMF that do not share the same shape 

parameter and thus require the use of a potentially slow root-solving algorithm9 . 

Increasing the number of runs to high levels with a high number of such vertices in the 

network might lead to a significantly high simulation time that might become prohibitive. 

To balance this problem, it was shown in Figure 6.8 that considering a too high number 

                                                 
9 The vertices with Weibull distributions sharing the same shape parameters induce a low computational 
burden as TF, TMF and TmMF can be generated using straightforward equations presented in 5.2.1. 
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of runs might not significantly improve the accuracy of the results. To help improve the 

time necessary for the generation of TF, TMF and TmMF, several paths can be considered: 

using a more efficient programming language, using a more efficient root-finding 

algorithm, approximating the failure behavior models with Weibull with the same shape 

parameters as much as possible or using a more powerful hardware configuration. Also, 

one might consider creating in parallel a library of times to degraded states for pre-

determined node and link anomaly and failure behaviors, so that the changes in the 

architecture and reruns of the simulations can be done within the order of times presented 

in Table 6.7 (i.e., uncoupling the generation of TF, TMF and TmMF and the failure 

propagation algorithm). 

6.5.3. Network Size and Scalability of Adjacency and Interlayer Matrices 

Another consequence of scaling up the network size lies with the increasing size of the 

adjacency and interlayer matrices. This increase can pose significant issues for creating 

and stocking matrices as well as performing efficient matrix operations. However, it is 

shown below that most interlayer matrices can be considered as sparse matrices, as well 

as some adjacency matrices. A sparse matrix is a matrix mainly populated with zeros, and 

it is extremely useful for lowering the computational burden associated with large 

matrices, as only the non-zero elements need to be considered. 

The maximum number of elements in an adjacency matrix grows as the square of the 

number of spacecraft nS in the network: for example, in the case of the IMLN with nS = 4 

spacecraft (4-IMLN) presented in the appendix, the adjacency matrix A1 has 
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1644
1

=×=An elements (maximum possible size), while the A2 matrix has 422
2

=×=An  

elements. The actual size of the adjacency matrix depends on the number of nodes nl in 

the associated layer l (bounded by the number of spacecraft), and the number of non-zero 

elements in it depends on the number of edges in that layer ( lE En
l

=  with El defined in 

Eq. (4.1)). For undirected edges with no self-edges, the maximum number of edges is 

given by ( ) 21max, −= llE nnn
l

 (Newman, 2010). As a consequence, the associated 

adjacency matrix is symmetric, its diagonal only consists of zero, and there are 

( ) 21−ll nn  remaining elements to fully define Al. In the case of a low connectance (or 

density) of the layer (i.e., a low number of edges), Al can be considered as a sparse matrix. 

For example in the case of the 10-IMLN presented in the appendix, the adjacency matrix 

A1 has 100 elements, but only 5 elements are necessary to fully characterized it. 

The number of elements nC in the interlayer matrix C scales with the square of the 

number of vertices n in the network. For example, in the case of the 5-IMLN presented in 

the appendix, 1961414 =×=Cn elements. This number can grow very quickly and 

determining, entering and stocking the interlayer matrix elements can pose significant 

practical and computational issues. However, the number of non-zero elements (*Cn ) in 

the interlayer matrix is generally relatively low. Table 6.8 shows for each of the 

architectures considered in the appendix the total number of elements in C, the total 

number of non-zero elements in C and the ratio of these two numbers. For example, in 

the case of the 10-spacecraft network, the interlayer matrix has 841 elements, but only 55 

of them are non-zero: in other words, 7% of the elements in that specific matrix are non-

zero. For all four of the architectures, this ratio stays below 20 %. As a consequence, the 
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interlayer matrix C can be considered as a sparse matrix to improve the computational 

treatment of this matrix. 

Also, as mentioned in section 4.5.1, a particular scheme of numbering the vertices in the 

network can help determining more easily elements of the interlayer matrix: if the 

vertices belonging to a same spacecraft are numbered in sequential order, the interlayer 

matrix can be written with a block diagonal form. It can be seen in the appendix that the 

interlayer matrix for the 10-IMLN architecture is simply written, despite its 29×29 size. 

Note that the seven 3×3 non-zero blocks are similar, as the two 2×2 blocks. To 

summarize, the fact that the interlayer matrix can be considered as a sparse matrix, and 

that an informed numbering scheme can significantly reduce the issues of scaling up the 

network size. 

 Table 6.8. The interlayer matrix as a sparse matrix 

Network 
type 

Number of 
vertices 

Total number of 
elements in the C 

matrix ( nC) 

Number of non-zero 
elements in the C 

matrix ( *
Cn ) 

Ratio C
*
C nn  

3-IMLN 8 64 13 20% 
4-IMLN 11 121 19 16% 
5-IMLN 14 196 25 13% 
10-IMLN 29 841 55 7% 

 

6.6. Summary 

This chapter explored technical considerations related to the IMLN representation and 

simulation tool: (partial) validation of the IMLN outputs, relationship between precision 

and number of runs in the Monte Carlo simulation, and its impact on scalability through 
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the simulation time and matrix size. It was demonstrated that the IMLN concept 

introduced in this thesis is able to handle properly the exploration of the design space of 

space-based networks. Indeed, the results from the IMLN simulation were shown to be in 

good agreement with results derived from an equivalent stochastic Petri net model, as 

well as analytical solutions, for a reasonable number of runs and simulation time. It was 

also shown that the precision of the results, through the proxy of the spread of confidence 

interval, is increasing (smaller confidence intervals) with the number of runs in the Monte 

Carlo simulation. However, the incremental benefits in precision are also decreasing with 

an increase in the number of runs, while the simulation time increases. A resulting 

compromise between precision and simulation time is necessary, but it was demonstrated 

that the failure propagation algorithm is sufficiently efficient so that the simulation time 

remains acceptable. Finally, through an informed way of numbering nodes in the network 

and the fact that most matrices considered are sparse, it was shown that the determination 

of the elements of the adjacency matrices and the interlayer matrix could be significantly 

simplified, allowing for the consideration of complex space-based networks. 
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6.A. Appendix 

6.A.1. Stochastic Petri Net of the Case Study Space-Based Network 

 

Figure 6.A. SPN model for the case study space-based network 
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Figure 6.B. Construction clarification of the space-based network SPN model 
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6.A.2. IMLN Models of the Four Architectures in 6.5.3 3-IMLN architecture 

3-IMLN architecture 

 

Figure 6.C. IMLN representation for the selected 3-IMLN architecture 
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4-IMLN architecture 

 

Figure 6.D. IMLN representation for the selected 4-IMLN architecture 

• Adjacency matrices: 
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5-IMLN architecture 

 

Figure 6.E. IMLN representation for the selected 5-IMLN architecture 

• Adjacency matrices: 
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10-IMLN architecture 

 

Figure 6.F. IMLN representation for the selected 10-IMLN architecture 

 

• Adjacency matrices: 
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• Interlayer matrix:  
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CHAPTER 7  

RESULTS, ANALYSES AND INSIGHTS ON DESIGN AND ARCHIT ECTURAL 

CHOICES FOR SPACE-BASED NETWORKS 

 

7.1. Introduction 

Chapter 4 introduced a new concept to enable the modeling of space-based networks and 

Chapter 5 described a framework to assess the survivability of such architectures. 

Chapter 6 investigated the ability of this framework to properly capture subsystem 

anomaly and failure propagation across the network (a validation process) and its 

scalability. The objectives of this chapter are twofold: the first is to provide examples of 

application of the survivability framework and tools introduced in this dissertation 

through the evaluation of specific space-based networks as a proof of concept; the second 

is related to the purpose behind the introduction of this framework, that is, exploring the 

survivability features of a new concept for space systems, namely space-based networks, 

and their implications for conceptual design. Through the use of the survivability 

framework and the interdependent multi-layer network approach developed in this thesis, 

what insights can be gathered for the design and the architecture selection of space 

systems for which survivability is a metric of interest?  

Before providing more details about the two objectives of this chapter, a caveat is in 

order to clarify the use of the tool introduced in this thesis, as well as the interpretation of 

the results provided in this chapter. This thesis does not advocate for or against the 
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development of space-based networks by the space industry. This thesis introduces and 

develops a framework and tools to explore the survivability of space-based networks, in 

the case that space-based networks are under consideration by the designer due to 

particular drivers. This thesis enables the analysis of survivability implications of 

networks for design, and helps inform the design and architectural choices of space 

systems. The survivability tools and results presented here are not the only elements that 

will determine the design decision of the retained architecture: other considerations, such 

as cost, complexity, technology maturity, delivery schedule, customer requirements or 

shareholder risk tolerance, will also influence the designer’s decision. In summary, this 

thesis provides the means to explore the survivability aspect and implications of space-

based networks, if networks are one option amongst others on the design table, as part of 

a decision support process.  

The first objective is tackled in section 7.2 where two particular cases of functional 

redundancy are explored, leveraging the subsystem probabilities of experiencing 

anomalies and failures derived earlier in this dissertation from a 1584-Earth orbiting 

spacecraft sample. The first case of functional redundancy is devoted to the Telemetry, 

Tracking and Command (TTC) subsystem: the role of the TTC is critical in the proper 

operation of a spacecraft as it links the spacecraft to the ground station and operators, 

enabling the proper tracking of the spacecraft, the monitoring of its subsystems and the 

upload of commands from the operators. The TTC function is a good candidate for 

fractionation, as the communication link with the ground can be distributed among 

neighboring spacecraft: through the network, the spacecraft could either pool their 
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computing and communication capabilities or step up to support a networked spacecraft 

that lost its ability to communicate with the control center.  

The second case builds on the TTC and adds two more subsystems for consideration of 

functional redundancy: the Control Processor subsystem (the computer “brain” of the 

spacecraft) and the Data Handling subsystem (the “hard-drive” of the spacecraft that 

stores and handles data). This aggregation of subsystems is termed the “Command and 

Data Handling subsystem” (C&DH) and Berget summarizes its function as the subsystem 

that “receives, validates, decodes, and distributes commands to other spacecraft systems 

and gathers, processes, and formats spacecraft housekeeping and mission data for 

downlink” (Berget, 1999). Consequently, the C&DH subsystem appears also as a good 

candidate for networking and sharing on-orbit resources among a constellation of co-

located spacecraft. The TTC and C&DH examples are explored by considering specific 

types of networks, with two or three spacecraft, and serve as a proof of concept of the 

survivability evaluation process designed in this dissertation. 

The second objective extends the survivability analysis of the TTC and C&DH in a more 

general direction in section 7.3, by considering a general non-descriptive networkable 

subsystem or technology and the parameterization of its anomaly and failure behavior to 

explore broader and more general survivability characteristics of space-based networks 

and insights gleaned for design and architectural choices of future space systems. Section 

7.3 also demonstrates advanced capabilities of the modeling setup and simulation and 

introduces useful tools to the conceptual design analysis. 
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Before pursuing the stated objectives, the survivability framework and its application in 

four steps introduced in Chapter 4 is briefly recalled below: 

• Step 1: definition of the classes of threats or types of disruptions for the 

survivability analysis; 

• Step 2: functional characterization of the architecture of the system under 

consideration; 

• Step 3: transformation of the functional characterization into an analytical or 

computational model of the system to assess its survivability with respect to the 

classes of threats or types of disruptions of interest; 

• Step 4: assessment of the system’s performance degradation—its survivability 

assessment—following disruptions, using the system model previously developed 

and the characterization of the classes of threats or types of disruptions of interest. 

7.2. C&DH Survivability Analysis 

7.2.1. Telemetry, Tracking and Command Functional Redundancy 

The first space-based network considered in this first subsection is simple and is the case 

study model used in previous chapters (for example shown in Figure 6.3), which consists 

of a network of two spacecraft that can share their TTC resource. As seen in previous 

chapters, the TTC subsystem is a major driver of spacecraft unreliability. The wireless 

connectivity in the SBN enables a type of redundancy in the TTC between the two 

spacecraft in the network.  This space-based network has already been discussed at 
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length in previous chapters, but it was used in a specific fashion to illustrate the definition 

and construction of the IMLN modeling, its (partial) validation with stochastic Petri nets 

and analytical solutions, the IMLN modeling precision and its scalability. In this 

subsection, the focus is on showing the complete survivability analysis process, the 

results themselves, and their implications for design and architectural choices. 

The four steps in the survivability analysis are presented below. 

Step 1. The focus of this section is on endogenous failures, enabling the leverage of the 

studies conducted in earlier chapters on the anomaly and failure behavior of spacecraft 

subsystems. The models used to represent these behaviors are presented in step 3. As a 

consequence, the survivability results are limited to this particular class of threat, and 

they should not be extrapolated to other classes of on-orbit shocks. 

Step 2. A compact representation of the SBN architecture is provided in Figure 7.1. 

 

Figure 7.1. Simplified representation of the space-based network architecture 

 

Step 3. The anomaly and failure behavior of the subsystem was derived in Chapter 6 

(subsection 6.2.4), but the single Weibull models are recalled below in Table 7.1 for 

readability purposes. 



164 
 

Table 7.1. Weibull parameters for TF, TMF and TmMF for the case study space-based network 

Functionality Severity level 
Weibull shape 
parameter β 

Weibull scale 
parameter θ 

years 

Telemetry, Tracking, 
and Command (TTC) 

total failure 0.4650 47,770 
severe degradation 0.4680 28,040 

any degradation 0.4402 28,210 

Supporting subsystems 
total failure 0.5529 918.5 

severe degradation 0.5052 435.0 
any degradation 0.4638 203.6 

Payload11 
total failure 0.5921 30,150 

severe degradation 0.5561 1731 
any degradation 0.5599 813.3 

 

The IMLN representation of this space-base network is shown in Figure 7.2, and the 

different elements necessary to define the IMLN are listed below: 

• Adjacency matrices: 
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11 In this particular example, the “payload” vertex consists of the payload instrument, as well as data 
handling components. These components will be analyzed separately later in the dissertation. 
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Figure 7.2. IMLN representation of the case study space-based network 

 

Step 4. The survivability analysis here consists of investigating the utility generation 

capability of the space system, that is, the probability that the payload node (node 3) 

remains fully operational for full performance, or the probability that this node degrades 

or fails and results in performance degradation. As a consequence, the metrics of interest 

are ( )tTP F
U <3, , ( )tTP M

U <3,  and ( )tTP m
U <3,  (or the equivalent combination ( )tTP F

U <3, , 

( )tTP MF
U <3,  and ( )tTP mMF

U <3, ). Also here, the survivability results are limited to these 

specific metrics and should not be generalized to any other performance metrics. 

After running a 500,000-run simulation, the resulting output is shown in Figure 7.3 for TF, 

TMF and TmMF. The probabilities for being in the minor degradation state (Tm) and the 

major degradation state (TM) are obtained by linear combinations of the previous results, 

and are shown along with the probability of total failure in Figure 7.4.  
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Figure 7.3 and Figure 7.4 share the same formatting. For example, Figure 7.4 reads as 

follows: after 5 years on orbit, the probability that the space-based network will have 

ceased to generate utility (failed state) is 6.08%, the probability that it will have a major 

degradation in performance is 7.38% and a minor degradation 7.69%. As a consequence, 

the complementary probability that the space system will be fully operational is 78.85% 

after 5 years on-orbit. 

 

 

Figure 7.3. Output probabilities for TF, TMF and TmMF of the payload node with TTC redundancy 
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Figure 7.4. Processed probabilities for TF, TM and Tm of the payload node with TTC redundancy 

 

The equivalent survivability analysis of the monolith architecture was conducted in the 

previous chapter and the results are recalled in Figure 7.5.  

 
Figure 7.5. Survivability characteristics of the monolith architecture 
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At the same on-orbit time, the probability of the monolith space system will have ceased 

to generate utility (failed state) is 7.31%, the probability that it will have a major 

degradation in performance is 7.57% and a minor degradation 7.97%. As a consequence, 

the complementary probability that the space system will be fully operational is 77.15% 

after 5 years on-orbit. 

The difference between the probability of residency in each state between the two 

architectures (PSBN – Pmonolith) and it can be computed to conduct a comparative 

survivability analysis. This is shown in Figure 7.6. 

 

Figure 7.6. Survivability superiority of the space-based network with TTC redundancy over the 
monolith spacecraft 
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• The probability that, in this specific case (TTC functional redundancy and 

endogenous failures), the space-based network will be able to generate utility 

at full capacity is higher at any point in time than the one of the monolith 

architecture (the difference between the two is positive on Figure 7.6). After 15 

years, the incremental likelihood is about 2 percentage points. A careful cost-

benefit analysis should be conducted to assess whether this incremental 

probability of remaining fully operational is worth the cost of obtaining it. While 

such studies are beyond the scope of this dissertation, it is worth pointing out in 

this regard that communication satellites for example can generate in excess of 

$50 million per year and these increments in lowering the probability of failure 

can represent the equivalent of several months’ worth of revenues. Similarly, it 

can be of significant importance for defense or intelligence space assets. 

• Regarding the distribution of this incremental gain among the reduction in the 

probability of entering degraded states, the major improvement was related to a 

decrease in the probability of total failure of the architecture by about 1.9 

percentage points. This decrease represents a 14% variation compared to the 

probability of total failure of the monolith architecture, which could be regarded 

as a significant improvement over the current design paradigm. 

• A significant share of the difference occurs early in the life of the space-based 

network, consistent with the fact that most spacecraft subsystems suffer from 

infant mortality. This shows that the networking has a high efficiency as soon as 

the operational life starts (this notion of efficiency will be revisited later in the 

dissertation). 
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As a consequence, adding a networked spacecraft to the traditional monolithic 

spacecraft will increase the survivability aspect the space system with respect to 

endogenous failures in the case of the TTC functional redundancy. 

The previous analysis was conducted with a network of 2 spacecraft (2-IMLN). The 

following explores the addition of a third spacecraft to the network (3-IMLN) in order to 

root out the anomaly and failure behavior of the TTC subsystem, as illustrated in Figure 

7.7. Note that the S/C #2 and #3 do not communicate with each other. The associated 

IMLN representation is given in Figure 7.8. 

 

Figure 7.7. Architecture of the space-based network with 3 spacecraft (3-IMLN) for TTC 
redundancy 

 

 

Figure 7.8. IMLN representation of the space-based network with 3 spacecraft for TTC redundancy 
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The different elements necessary to define the IMLN model are listed below: 

• Adjacency matrices: 
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After running the IMLN simulation, the probabilities PF, PMF and PmMF are obtained for 

the survivability features of the 3-IMLN, that is, features related to the performance 

degradation of the utility generation (Figure 7.9).  

The probabilities shown in Figure 7.9 can be processed to obtain PF, PM and Pm for the 

payload node in the network. These probabilities are given in Figure 7.10. 
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Figure 7.9. Output probabilities for TF, TMF and TmMF of the payload node with TTC redundancy (3-
IMLN case) 

 

 

Figure 7.10. Processed probabilities for TF, TM and Tm of the payload node with TTC redundancy (3-
IMLN case) 
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After 5 years on-orbit for example, the probability of the 3-IMLN space system will have 

ceased to generate utility (failed state) is 5.92%, the probability that it will have a major 

degradation in performance is 7.43% and a minor degradation 7.79%. As a consequence, 

the complementary probability that the space system will be fully operational is 78.86% 

after 5 years on-orbit. How does this 3-spacecraft network compare with the 2-spacecraft 

network? Figure 7.11 presents the probability of a total failure (total loss of utility due to 

the complete unavailability of the payload node) for the monolith architecture, the 2-

IMLN and the 3-IMLN space systems. This probability is chosen as it is the one that 

presents the greatest difference with the monolith spacecraft. 

 

Figure 7.11. Comparison of the probability of unavailability of the payload for the monolith, 2-IMLN 
and 3-IMLN architectures 
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10.98% chance and the 3-IMLN with a 10.74% chance. It is clear that the incremental 

benefit of adding a spacecraft to the 2-IMLN architecture decreases sharply compared to 

the benefit of networking a monolith spacecraft (2-IMLN): adding one spacecraft to the 

traditional monolith spacecraft for TTC functional redundancy improves by 1.86 

percentage points the probability of payload unavailability, but adding two spacecraft to 

the monolith for the same purpose improves it only by an additional 0.24 percentage 

point. This indicates that, if networks are an option considered by the designer, a three-

spacecraft network for mitigating the TTC anomaly and failure behavior might not 

be worth it compared to the cheaper and slightly less survivable two-spacecraft 

network. Note that this comment holds in the case of a perfectly reliable wireless link 

between spacecraft in the network. The impact of the link failures is treated later in the 

dissertation.  

7.2.2. C&DH Functional Redundancy 

Other spacecraft subsystems can be selected for sharing on-orbit resources: for example, 

the Control Processor (main computer of the spacecraft) can be a good candidate as 

spacecraft could pool their processing power, or one spacecraft could run processes and 

command another spacecraft if the Control Processor (CP) subsystem of that spacecraft 

failed, given that sufficient processing power margin is built into the supporting 

spacecraft. An additional fractionable subsystem could be the Data Handling subsystem 

(DH) (responsible for storing and exchanging data): for example, one spacecraft could be 

envisioned as the “hard drive” of the constellation, on which networked modules upload 

their data, data then sent to the ground station by the collector spacecraft. 
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The macro subsystem combining the TTC, the CP and DH is also referred to as the 

Command and Data Handling (C&DH) subsystem. The associated Weibull models are 

presented in Table 7.2. 

Table 7.2. Weibull parameters for TF, TMF and TmMF for the space-based network with C&DH 
redundancy 

Functionality Severity level 
Weibull shape 
parameter β 

Weibull scale 
parameter θ 

years 

Control Processor (CP)12 
total failure 1.251 691.2 

severe degradation – – 
any degradation – – 

Data Handling (DH) 
total failure 0.6266 350,000 

severe degradation 0.5603 119,900 
any degradation 0.5571 67,940 

Telemetry, Tracking, 
and Command (TTC) 

total failure 0.4650 47,770 
severe degradation 0.4680 28,040 

any degradation 0.4402 28,210 

Supporting subsystems 
total failure 0.5181 1405 

severe degradation 0.4856 543.5 
any degradation 0.4523 230.2 

Payload13 
total failure 0.5767 49,990 

severe degradation 0.5529 2117 
any degradation 0.5568 981.4 

 

The IMLN model needs to account for these new separate functionalities: there are now 

five functionalities to represent: the CP, DH, TTC, supporting subsystems and payload. 

As a consequence, the IMLN representation will consist of five layers, one for each of the 

aforementioned functionalities. Two spacecraft are part of the network: the first 

spacecraft has all the subsystems, while the second has all the subsystems but the payload 

and acts as a functional redundancy for the first spacecraft for the CP, DHS and TTC. 

The associated IMLN representation is then shown in Figure 7.12. 

                                                 
12 The CP subsystem only impacts the complete failure of the spacecraft: as such, TF = TMF = TmMF. 
13 In this particular example, the “payload” vertex consists only of the payload instrument. Data handling 
components are analyzed separately in the DH layer. 
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Figure 7.12. IMLN representation of the space-based network with C&DH redundancy 
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• (Inverse) mapping function: 
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Running a 500,000-run IMLN simulation yield the following results presented in Figure 

7.13 for the probabilities PF, PMF and PmMF for the payload node. The processed 

probabilities of residency in each degraded state (PF, PM and Pm) are shown in the 

following figure, Figure 7.14.  

The difference in the probability of residency with the monolith spacecraft                 

(PSBN – Pmonolith) can be computed and Figure 7.15 demonstrates the survivability 

improvements brought by the “networkness” introduced in the C&DH subsystems. 

 

Figure 7.13. Output probabilities for TF, TMF and TmMF of the payload node with C&DH redundancy 
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Figure 7.14. Processed probabilities for TF, TM and Tm of the payload node with C&DH redundancy 

 

 

 

Figure 7.15. Survivability superiority of the space-based network with C&DH redundancy over the 
monolith spacecraft 
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For example, it can be seen in Figure 7.15 that after 15 years, the space-based network 

under consideration here has 3.1 percentage points more chance to be fully operational 

and generate utility at full performance than the monolith architecture. Regarding the 

total failure of the architectures, the network decreases the risk of payload unavailability 

by 2.6 percentage points. This represents a 20.5% decrease compared to the monolith 

risk of losing payload utility (with respect to C&DH endogenous failures), and could 

be one of the elements justifying the consideration of space-based networks into the 

conceptual design process of the acquisition of a new space system. The fractionation of 

the three subsystems in the C&DH subsystem might be realized in upcoming space 

systems, but extending this paradigm shift to other subsystems such as the Electrical 

Power Subsystem or the Attitude and Orbit Control Subsystem might require 

technological breakthroughs. However, the results presented with the C&DH demonstrate 

certain survivability advantages of such architectures over the traditional monolithic 

design, but they should not be generalized to all designs of space-based networks or 

monolith architectures and they should not be extrapolated to other classes of on-orbit 

shocks. Also, survivability is one design aspect among others under consideration by the 

designers, and survivability advantages alone will not determine the final design decision. 

Complementary analyses on the cost and utility comparisons between space-based 

networks and monoliths can be found in Dubos and Saleh (2011). 

7.3. General Subsystem/Technology Survivability Analysis 

The previous section explored the survivability characteristics of specific subsystems 

associated with specific failure behavior derived from a 1584-Earth orbiting spacecraft 
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sample. However, spacecraft designers might be interested in the impact of various 

subsystem or technology failure behaviors and links on design choices for the selection of 

networked architectures. To capture this variation, the anomaly and failure behavior of a 

general subsystem/technology, and further of the wireless link, is parameterized in this 

section, and the survivability characteristics of two architectures are explored. These two 

space-based networks are termed “2-IMLN” and “3-IMLN” in the remainder of this 

section and their complete representation is given below. The 2-IMLN and 3-IMLN 

architectures are similar to the ones used studied previously in the dissertation, and 

consist of two or three spacecraft networked to provide functional redundancy for the 

general subsystem/technology. Their representations are recalled in Figure 7.16 and 

Figure 7.17, and their adjacency matrices, interlayer matrices and mapping functions are 

given in section 7.2.1.  

 

Figure 7.16. IMLN representation of the 2-IMLN 
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Figure 7.17. IMLN representation of the 3-IMLN 

 

These specific architectures are simple but are extremely useful to explore the 

survivability trends of space-based networks in general as they illustrate the basic 

building blocks of a more complex network. The failure behavior of the supporting 
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Weibull distributions for their respective TF, TMF and TmMF are recalled below in Table 
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case will be investigated in this section. 

Table 7.3. Weibull parameters for TF, TMF and TmMF for the supporting subsystems and payload 

Functionality Severity level 
Weibull shape 
parameter β 

Weibull scale 
parameter θ 

years 

Supporting subsystems 
total failure 0.5181 1405 

severe degradation 0.4856 543.5 
any degradation 0.4523 230.2 

Payload14 
total failure 0.5767 49,990 

severe degradation 0.5529 2117 
any degradation 0.5568 981.4 

                                                 
14 In this section, the “payload” vertex consists only of the payload instrument (no data handling).  
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As previously done, the survivability of each architecture is benchmarked by the 

traditional monolithic architecture, and the survivability metric is defined as the 

probability of being in a degraded state (PF, PM and Pm) for the payload node. As a 

consequence, the results and design implications provided next are limited to these 

choices. 

7.3.1. Parameterization of Probability of Total Failure 

The parameterization of the probability of failure of the networked subsystem/technology 

is conducted as follows. Let assume that the probability of failure is given by )(tFα . Five 

different failure behaviors are modeled in this dissertation, from a subsystem/technology 

that experiences few anomalies and failures to a subsystem/technology that is plagued by 

anomalies and failures. Let us first look into total failures. To characterize the different 

levels of severity of the failure behavior, the probability of total failure of the networked 

subsystem/technology after 15 years is used: 15)years 15( FF t αα == . Five values of  15
Fα  

are chosen here, from a low severity level to a high one: 0.01, 0.05, 0.10, 0.15 and 0.20. 

In this dissertation, )(tFα  is modeled using a single Weibull distribution, with a fixed 

shape parameter βF = 0.5, and a varying scale parameter θF to match the different 15
Fα  

values. The choice of a single Weibull distribution is justified as this distribution type 

was shown in the previous chapters to be appropriate to model spacecraft subsystems. 

The shape parameter is chosen to be common to all distributions so that only one 

parameter in the Weibull distribution varies at a time, and its value is set at 0.5 as it is in 
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the range of the shape parameters derived for most of the spacecraft subsystems in 

previous chapters. θF can be calculated using the expression of the Weibull c.d.f. as 

follows: 

 

( )[ ] 







−−
=

Ft

t

F

F
βα

θ
1

)(1ln
 (7.1) 

Using Eq. (7.1), setting t = 15 years and βF = 0.5 yields: 
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θ
−−

=
 

(7.2) 

The different values of θF are given in Table 7.4. 

Table 7.4. Weibull scale parameter values for the networked subsystem/technology’s failure behavior 

15
Fα  

Scale parameter θF 
years 

0.01 148,501 
0.05 5,701 
0.10 1,351 
0.15 568 
0.20 301 

 

The choice of a Weibull distribution affects the numerical results, but the IMLN models 

are general enough so that the reader can use and directly plug in different distributions to 

compute his own results. 
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7.3.2. IMLN Probability of Total Failure 

The probabilities of catastrophic failure of the space-based networks under consideration 

are obtained by running the IMLN models, as well as using analytical expressions. 

Analytical expressions are possible in some cases here, but are already significantly 

complex for the relatively simple IMLN models presented in this section. Analytical 

expressions generally do not exist for interdependent multi-layer networks15, and in the 

case they exit, they can be difficult to derive and use. Analytical expressions are used 

when possible in this section, as they provide insights complementary to the IMLN 

simulation on the survivability features of the space-based networks. 

 The probability of catastrophic failure of the traditional monolith architecture is given by: 

 ( )( ) F
F

P
F

S
F PPP α−−−= 111monolith  (7.3) 

where: F
SP is the probability of total failure of the supporting subsystems and FPP is the 

probability of total failure of the payload. 

Similarly, the probabilities of catastrophic failure for the 2-IMLN and 3-IMLN 

architectures are given by: 

                                                 
15 For example, in the case of the IMLN presented in Figure 7.12, no closed-form solution exists. 
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 ( )( ) ( )( )( ){ }F
F

SF
F

P
F

S
F PPPP αα −−−−−−−= 1111111IMLN-2  (7.4) 

 ( )( ) ( )( )( ){ }F
F

SF
F

P
F

S
F PPPP αα 2

IMLN-3 1111111 −−−−−−−=  (7.5) 

Eqs. (7.3), (7.4) and (7.5) can be calculated for any time t spent on-orbit as shown in 

Figure 7.18. Also, for readability purposes here, four on-orbit times have been selected to 

compare architectures: 1 year, 5 years, 10 years and 15 years on-orbit. The probabilities 

of catastrophic failure (in percentage points) for the three architectures at these times are 

shown in Table 7.5. Note that no results are provided for the monolith architecture using 

the IMLN simulation as the interdependent multi-layer approach was proposed in this 

thesis for networked architectures (it is however possible to build a trivial model for the 

monolith case). The IMLN simulation results and the analytical results are in very good 

agreement, as the average error is 0.008 percentage point, a significantly low difference. 

Table 7.5. Probabilities of failure for monolith and networked architectures (in percentage points) 

15
Fα  

Architecture 
PF – IMLN simulation PF – Analytical results 

Time spent on-orbit (years) Time spent on-orbit (years) 
1 5 10 15 1 5 10 15 

0.01 
Monolith – – – – 2.76 6.26 8.85 10.82 
2-IMLN 2.51 5.73 8.16 10.00 2.51 5.74 8.16 10.01 
3-IMLN 2.50 5.71 8.11 9.93 2.50 5.71 8.11 9.93 

0.05 
Monolith – – – – 3.79 8.46 11.87 14.42 
2-IMLN 2.54 5.93 8.53 10.54 2.55 5.93 8.53 10.53 
3-IMLN 2.50 5.73 8.16 10.02 2.50 5.73 8.15 10.00 

0.10 
Monolith – – – – 5.12 11.28 15.68 18.93 
2-IMLN 2.63 6.30 9.23 11.54 2.63 6.31 9.24 11.56 
3-IMLN 2.51 5.77 8.27 10.21 2.51 5.78 8.27 10.22 

0.15 
Monolith – – – – 6.51 14.15 19.52 23.43 
2-IMLN 2.77 6.88 10.28 13.00 2.76 6.87 10.26 12.99 
3-IMLN 2.52 5.86 8.49 10.60 2.52 5.87 8.51 10.62 

0.20 
Monolith – – – – 7.96 17.11 23.42 27.94 
2-IMLN 2.94 7.63 11.61 14.84 2.93 7.62 11.60 14.83 
3-IMLN 2.54 6.04 8.91 11.27 2.54 6.03 8.90 11.26 
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Figure 7.18. Probabilities of failure for monolith and networked architectures for 0.0515 =Fα  

 

Figure 7.19 provides a visual representation of Table 7.5 for the case 05.015 =Fα .  

 

 

Figure 7.19. Snapshot of Figure 7.18 at four on-orbit times: 1, 5, 10 and 15 years 
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Figure 7.18 and Figure 7.19 read as follows: for example, after 5 years on-orbit, the 

probability of catastrophic failure is 0.085 for the monolith spacecraft (i.e., 8.5% chance 

of experiencing a catastrophic failure during the first 5 years on-orbit), 0.059 for the 2-

IMLN architecture and 0.057 for the 3-IMLN architecture. In this particular example, the 

2-IMLN architecture allows reducing the probability of a catastrophic failure during the 

first 5 years on-orbit by 2.53 percentage points and the 3-IMLN by 2.73 percentage 

points over the monolith architecture. These differences between the networked 

architectures and the monolith one is referred in this dissertation as the net gain and is 

labeled as ∆. The net gain is an interesting indicator to the designer as it represents 

the absolute improvement or decline in survivability of one architecture with 

respect to another (with respect to the chosen performance metric and the class of 

threat of interest). It is mathematically defined as follows in the IMLN approach: 

 FFF PP IMLN-2monolithIMLN-2 −=∆  (7.6) 

 FFF PP IMLN-3monolithIMLN-3 −=∆  (7.7) 

Developing the terms in Eqs. (7.3), (7.4) and (7.5) yields for the analytical solutions: 

 ( )( ) ( )( )F
P

F
S

F
P

F
SF

F PPPPP −−−+−−= 11111monolith α  (7.8) 

 ( ) ( ) ( ) ( )( ) ( )( )F
P

F
S

F
P

F
S

F
SF

F
P

F
SF

F PPPPPPPP −−−+−−+−−= 1111111
22

IMLN-2 αα  (7.9) 
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Substituting in Eqs. (7.6) and (7.7) results in: 
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Figure 7.20 shows that for that particular setting and for this range of on-orbit time shown 

in Figure 7.19, the net gain increases in time. This suggests that the longer the space 

architecture is planned to operate, the greater the benefit of the space-based 

architecture for survivability  in the case studied here. Indeed, if the architecture is 

designed to operate 1 year, then a networked architecture does not significantly improve 

over the traditional architecture (about 1 percentage point improvement), while an 

architecture designed to operate 15 years might benefit from the space-based network 

option (about 4 percentage points, to balance with the cost of adding spacecraft). Note 

that this trend is not valid for all times, as when time goes to infinity, ∆ goes to zero. Also 

in this particular example, the difference between ∆2-IMLN and ∆3-IMLN is relatively small 

(0.53 percentage point after 15 years), suggesting that adding a third spacecraft to the 

network might not be the best option. 



189 
 

 

Figure 7.20. Net gain for the 2-IMLN and 3-IMLN compared to the monolith spacecraft for 

0.0515 =Fα  

 

Another way to look at the data presented in Table 7.5 is to observe the impact of the 

failure behavior of the networked subsystem/technology on the probability of 

catastrophic failure of the monolith and networked architectures, i.e., its variation with 
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Fα . Figure 7.21 shows this variation after 5 years on-orbit.  

Figure 7.21 reads as follows: for example, after 5 years on-orbit, and for 05.015 =Fα , the 

monolith architecture has 11.3% chance of experiencing a catastrophic failure, while the 
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Figure 7.21. Variation of the probability of failure of architectures with 15
Fα  

 

As expected, the probability of a catastrophic failure at the system level increases with 

15
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where: )(0 tPF is the probability of a catastrophic failure for the architecture with a 

perfectly reliable networkable subsystem/technology (αF = 0)16. 

γF represents the relative error between a system with a perfectly reliable networkable 

subsystem/technology and the system under consideration with a networkable 

subsystem/technology prone to failures. In the present case, 0.0571years) 5(0 ==tPF , and 

using the values at 5 years presented in Table 7.5, the values for γF can be computed and 

are presented in Table 7.6. The results from Table 7.6 are also presented graphically in 

Figure 7.22. Table 7.6 results and Figure 7.22 confirm that the monolith architecture is 

severely affected by the failure behavior of the networkable subsystem/technology, with 

its probability of failure varying by 9.6% for a subsystem/technology failing little to 

almost 200% with a severely degrading subsystem/technology. On the other hand, the 

networked architectures handle better the failure of the networked subsystem/technology, 

as in the worst case considered here ( 20.015 =Fα ), the 2-IMLN architecture has a relative 

failure growth of 33.6% after 5 years, an order of magnitude lower than the one of the 

monolith spacecraft, and the 3-IMLN probability of catastrophic failure varies only by 

5.7%, one additional order of magnitude lower.  

                                                 
16 FP0 is common to the three architectures 
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As a conclusion, the networked architectures have a “shielding effect” (in the sense 

that they shield the system from the failures of the networked subsystem/technology), 

and this effect grows stronger with the addition of spacecraft to the network. 

Consequently, this positive behavior of the network can allow the design of a system with 

unproven subsystems or technologies, for example for technology testing, as it limits the 

sensitivity of the network to (potentially) problematic subsystems/technologies. Also, the 

relative failure growth can help informing the decision about the relevance of a 

networked architecture (and its number of spacecraft) according to shareholder risk 

tolerance. 

Table 7.6. Relative failure growth (in percentage) of the architectures at t = 5 years 

Architecture 
5
Fγ  

15
Fα : 0.01 0.05 0.10 0.15 0.20 

Monolith  9.6% 48.2% 97.5% 147.9% 199.7% 
2-IMLN  0.4% 3.8% 10.3% 20.5% 33.6% 
3-IMLN  0.0% 0.4% 1.1% 2.6% 5.7% 

 
 

 

Figure 7.22. Relative failure growth after 5 years on-orbit with a logarithmic scale 
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7.3.3. Network Efficiency Relative To Failure 

Another way to look at the shielding effect of the networked architecture is to investigate 

how efficiently they capture and eliminate catastrophic failures. The network efficiency 

is an interesting indicator to the designer as it represents how much of the potential 

improvement (or decline) in survivability available is actually realized by the 

architecture (with respect to the chosen performance metric and class of threat of 

interest). The maximum net gain a monolith can capture is limited to the complete 

elimination of the networkable subsystem/technology failures: 

 )()()( 0monolith0 tPtPt FFF −=∆  (7.14) 

On the other hand, the net gain of a networked architecture over the monolith architecture 

is defined using Eqs. (7.11) and (7.12). The efficiency of the networked architecture 

compared to the monolith in rooting out failure is then defined in the ILMN approach as: 
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Specifically for the 2-IMLN and 3-IMLN architectures: 
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As analytical expressions exist in this particular case of space-based networks, Eqs. 

(7.14), (7.16) and (7.17) can be expended using Eqs. (7.9), (7.11), (7.12) and the 

following: 
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Then: 
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These last two equations can be further manipulated to highlight the dependence on αF: 
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The IMLN simulation was run to determine the efficiencies of the two space-based 

networks, and the results at 4 points in time (as previously, 1, 5, 10 and 15 years) were 

selected for readability purposes. 100,000 runs were repeated 10 times to obtain average 

efficiencies and confidence intervals on the simulation results. In addition, plugging in 

the equations above the distributions for αF and PS, the efficiency of the 2-IMLN and 3-

IMLN architectures is also obtained for all times up to 15 years in orbit, for comparison 

with the IMLN results. Figure 7.23 shows the efficiency of the 2-IMLN architecture and 

Figure 7.24 for the 3-IMLN, with the solid line showing the analytical results, and the x-

mark showing the simulation results. The numerical values for the simulation are given in 

Table 7.7, along with their equivalents from the analytical formulas. Also Table 7.8 

presents the confidence interval spread for the simulation results. The simulation and 

analytical results are well in agreement, with an average difference of 0.003 for the 2-

IMLN and 0.001 for the 3-IMLN. Note that on Figure 7.23 the simulation results are 

following closely the solid lines for 15
Fα from 0.05 to 0.20 (for the 0.01 case, the 

simulation results are less precise); similarly for the 3-IMLN in Figure 7.24, the 

simulation and analytical results are close for 15
Fα from 0.10 to 0.20 (the cases 0.05 and 

0.01 are less precise). The less precise results correspond to the simulation results with 

larger confidence intervals, and their precision could be largely improved by running 
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simulations with higher numbers of runs (at the expense of time and hardware power, not 

done here as the absolute precision of the results is nevertheless high).  

 

Table 7.7. Efficiency for the networked architectures 

15
Fα  

Architecture 
η

F – IMLN simulation η
F – Analytical results 

Time spent on-orbit (years) Time spent on-orbit (years) 
1 5 10 15 1 5 10 15 

0.01 
2-IMLN 0.981 0.956 0.921 0.907 0.974 0.942 0.918 0.900 
3-IMLN 1.000 0.996 0.988 0.987 0.999 0.997 0.993 0.990 

0.05 
2-IMLN 0.969 0.922 0.888 0.862 0.964 0.920 0.888 0.864 
3-IMLN 0.999 0.992 0.984 0.979 0.999 0.994 0.987 0.981 

0.10 
2-IMLN 0.952 0.894 0.852 0.820 0.951 0.892 0.849 0.818 
3-IMLN 0.997 0.989 0.978 0.967 0.998 0.988 0.977 0.967 

0.15 
2-IMLN 0.934 0.861 0.809 0.772 0.937 0.863 0.811 0.773 
3-IMLN 0.996 0.982 0.966 0.949 0.996 0.981 0.964 0.948 

0.20 
2-IMLN 0.920 0.832 0.771 0.727 0.922 0.833 0.772 0.727 
3-IMLN 0.994 0.971 0.947 0.925 0.994 0.972 0.948 0.926 

 

Table 7.8. Confidence intervals on the efficiency of the networks from the IMLN simulation 

15
Fα  

Architecture 

Confidence interval spread on ηF 
IMLN simulation 

Time spent on-orbit (years) 
1 5 10 15 

0.01 
2-IMLN 0.058 0.036 0.046 0.048 
3-IMLN 0.025 0.040 0.034 0.029 

0.05 
2-IMLN 0.006 0.008 0.004 0.006 
3-IMLN 0.016 0.014 0.012 0.010 

0.10 
2-IMLN 0.008 0.006 0.004 0.004 
3-IMLN 0.008 0.004 0.004 0.004 

0.15 
2-IMLN 0.008 0.006 0.004 0.004 
3-IMLN 0.004 0.004 0.004 0.002 

0.20 
2-IMLN 0.006 0.004 0.004 0.004 
3-IMLN 0.004 0.002 0.004 0.004 
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Figure 7.23. Efficiency of the 2-IMLN architecture 

 

 

Figure 7.24. Efficiency of the 3-IMLN architecture 
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Figure 7.23 reads as follows: for example, after 10 years on-orbit and for 10.015 =Fα , the 

efficiency of the 2-IMLN architecture is about 0.85, i.e., the network was successful in 

capturing 85% of F
0∆ . Similarly on Figure 7.24, for the same conditions, the efficiency of 

the 3-IMLN architecture is about 0.98. It can immediately be seen that in all the 

conditions explored here, the architecture with a higher number of spacecraft has a 

higher efficiency. Nevertheless here, as seen on Figure 7.23, the efficiency of the 2-

IMLN remains relatively high for all times, even for the worse-case 

subsystem/technology failure under consideration here: the lowest efficiency recorded is 

about 0.73. This shows that the addition of a networked spacecraft to the traditional 

monolith spacecraft allows capturing at least 73% of the failure probability share of the 

networked subsystem/technology, which is quite significant. The 3-IMLN architecture 

performs even better, as the lowest efficiency recorded here is about 0.93. This could 

suggest that adding a fourth or more spacecraft to network would not be the best option in 

this case as the 3-IMLN almost capture all the failures that can be. However, a 

networkable subsystem/technology with a worse failure behavior than studied here could 

warrant more spacecraft for a more efficient network. As a consequence, the efficiency 

can be a useful tool to the designer to select networked architectures depending on 

performance requirements. 

Several trends can be seen in both figures. First, the efficiency decreases with time: it 

means that the networks are more successful in shielding the system of failures early in 

the orbital life rather than later. Second, the efficiency also decreases with 15
Fα  increasing: 
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the networks are more efficient in shielding the system from a subsystem/technology 

failing little than from a heavily degrading subsystem/technology.  

These two observations means that, if an efficiency lower bound is fixed, then a time 

horizon exists for the network, and this horizon will occur earlier with major 

contributors to failure than with minor ones. For example, considering two systems in 

a 2-IMLN configuration with 10.015 =Fα  and 20.015 =Fα  respectively, if a 85% efficiency 

threshold is required, then the first architecture meets this requirement for about 10 years 

on-orbit, while the second meets it only for the first 4 years. This time horizon will also 

occur later for architectures with more spacecraft. For example, considering 

20.015 =Fα , if a 95% efficiency threshold is required, then the 2-IMLN architecture will 

meet this requirement for only half a year, while the 3-IMLN will meet it for 9.5 years. 

It is mentioned above that the 3-IMLN architecture has a higher efficiency for the same 

15
Fα –level than the 2-IMLN architecture. Compares these two efficiencies after 15 years 

on orbit when varying 15
Fα . This figure is obtained by a direct application of Eqs. (7.22) 

and (7.23): indeed, when t is fixed (here at 15 years), then F
SP  is also fixed, and the 

efficiency becomes only a function of 15
Fα  (linear effect for the 2-IMLN and quadratic for 

the 3-IMLN). Figure 7.25 clearly shows that the efficiency decreases with 15
Fα , but more 

sharply for the 2-IMLN than the 3-IMLN in the 0–0.20 range (due to the quadratic effect, 

there is a range of high15
Fα  for which the slope is higher for the 3-IMLN).  
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Figure 7.25. 2-IMLN versus 3-IMLN efficiency as a function of 15
Fα  

 

7.3.4. Efficiency Versus Net Gain 

While it can be tempting to choose architectures with the highest efficiency, the net gain 

should also be considered in the decision process, as an architecture with a high 

efficiency but a very small net gain might not be the best candidate from a cost-benefit 

point of view. To combine both pieces of information, a new graph is introduced in this 

thesis and presents the network efficiency on the x-axis and the net gain from the network 

on the y-axis. Four notional areas can be envisioned on the η–∆ graph as shown in Figure 
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• the area marked with a number 1 encircled corresponds to a network that has a 

high efficiency and a high net gain: it means that the monolith architecture failure 

behavior is such that a significant potential improvement exists and is fully 

captured by the space-based network under consideration. As a consequence, the 

architecture can be considered as insensitive to the failure of the networked 

subsystem/technology and is potentially a better choice than the monolith 

architecture for survivability considerations; 

• the area marked with a number 2 encircled corresponds to a network that has a 

low efficiency and a high net gain: it means that the monolith architecture failure 

behavior is such that a significant potential improvement exists but the space-

based network under consideration failed to capture a significant share of it. 

Contrary to the case in the previous point, the architecture is significantly affected 

by the failure of the networked subsystem/technology. Despite its low efficiency, 

the space-based network remains worth considering as it fares significantly better 

than the monolith architecture (high net gain) from a survivability point of view; 

• the area marked with a number 3 encircled corresponds to a network that has a 

high efficiency and a low net gain: it means that the monolith architecture failure 

behavior is such that not much of a potential improvement exists in terms of 

reducing the probability of failure of the system; but however small is this 

improvement, it is fully captured by the space-based network under consideration. 

The failure behavior of the networked subsystem/technology is eradicated, but it 

was not affecting the monolith architecture in the first place; 
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• the area marked with a number 4 encircled corresponds to a network that has a 

low efficiency and a low net gain. Two possible cases arise: the potential 

improvement over the monolith architecture in terms of reducing the probability 

of failure of the system can be either low or high, but in both cases, the space-

based network under consideration failed to capture it. In the first case, the space-

based network might not be worth considering as the cost of adding a spacecraft 

does not buy a significantly better probability of failure. In the second case, the 

space-based network might be worth considering given some modifications to the 

network as explained in the following.  

 

Figure 7.26. η–∆ graph with four types of architecture performance 

 

The practical implications of the η–∆ graph are given below, and visually represented in 

Figure 7.27.  
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• In the case of high efficiencies, the practical implication consists of not 

adding more spacecraft to the network for mitigating the failure of the 

networked subsystem(s)/technology(ies) as the current architecture fully capture 

the shortcomings of the monolith architecture (areas 1 and 3 in the η–∆ graph). 

Removing some functionally redundant modules might also be an option to be 

considered according to the performance of that updated architecture. 

• The fact that a space-based network has a low efficiency should translate in 

considering the addition of functionally redundant modules for the 

networked subsystem(s)/technology(ies): as seen earlier, networks with a higher 

number of networked spacecraft have a higher efficiency (areas 2 and 4). 

• The previous two points should be adapted in function of the net gain. A 

space-based network with high efficiency gains and high gain efficiency (area 1 in 

the η–∆ graph) does not require any improvement and can be considered as is: as 

a consequence, it should follow the “do not add spacecraft” implication. A space-

based network high efficiency but with low gain (area 3) might not be cost-

effective as is, and consequently no more spacecraft should be added to the 

network for the benefit of the networked subsystem/technology failure behavior 

(other modules such as payloads for example might be considered). The case of a 

space-based network with low efficiency but high gain (area 2) implies that a 

significant share of a high potential improvement is not captured by the current 

version of the network. More spacecraft should then be considered being added to 

the network. Finally, actions on space-based networks with low efficiencies but 

high gains (area 4) are not straightforward, as the potential improvement over a 
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monolith architecture is not readily observable due to the low efficiency of the 

network. If the potential improvement is high, then adding spacecraft to the 

network might result in significant gains; however if it is low, then the space-

based network might not be a worthwhile alternative to the monolith spacecraft 

from a survivability point of view. 

 

Figure 7.27. Practical implications of the η–∆ graph for survivability considerations  
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Figure 7.28. η–∆ graph for the 2-IMLN architecture as a function of time for 0.0515 =Fα  

(the black solid line corresponds to the evolution in time of the efficiency and net gain of the 2-IMLN 
architecture, and the grey dashed lines correspond to instant in the orbital life of the system: 1, 5, 10 and 

15 years from bottom to top. The square markers at the intersections of the solid line and dashed lines give 
(η,∆) for the specified time (ageing from lighter to darker colors). The diamond-shaped markers represent 

the time-associated maximum net gains ∆0 (also referred to as potential improvements from monoliths) 

 

Figure 7.28 reads as follows: after 5 years on orbit (light-grey square), the efficiency of 

the 2-IMLN is 0.92 and the associated net gain is 2.53 percentage points. The maximum 

net gain possible at the same time is 2.75 (light-grey diamond). Note that the numbers are 

consistent as 53.292.075.2 =× . As observed previously, it can be seen that high gains 

come at the expense of efficiency and time. The η–∆ graph for the 3-IMLN for 05.015 =Fα  

can be compiled in the same fashion, and is added to the 2-IMLN curve in Figure 7.29. 
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Figure 7.29. η–∆ graph for the 2-IMLN (square) and 3-IMLN (triangle ) architectures as a function of 

time for 0.0515 =Fα  

(Same formatting than the previous figure) 

 

Figure 7.29 shows that the 3-IMLN architecture has higher gains and higher efficiencies 

than the 2-IMLN for the same time. Also, the 3-IMLN curve stays closer to the “ideal” 

vertical curve at η = 1. A two-point comparison yields the following: 

• After 5 years on-orbit, having added one spacecraft to the 2-IMLN architecture 

improves efficiency from 0.920 to 0.994, but the relative net gain associated is 

limited to 0.20 percentage point (from 2.53 to 2.73 percentage points). 

• After 15 years on-orbit, the same operation yields an improved efficiency of 

0.981 from 0.864, and the relative associated gain is 0.53 percentage point (from 

3.89 to 4.42 percentage points). 
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A careful cost-benefit analysis should be conducted to assess whether these incremental 

improvements (from a monolith architecture to a 2-IMLN, and from a 2-IMLN to a 3-

IMLN) are worth the cost of obtaining them.  

Impact of 15
Fα . Let us now vary 15

Fα , that is, modify the failure behavior of the networked 

subsystem/technology (an increase in 15
Fα  translates in a networked subsystem/ 

technology more prone to failure). As previously, 15
Fα  varies from 0.01 to 0.20 and the 

resulting η–∆ graph is shown in Figure 7.30 for the 2-IMLN and Figure 7.31 for the 3-

IMLN (the lowest curve has the lowest 15
Fα  and the highest curve the highest 15

Fα ). 

 

Figure 7.30. Variations of the 2-IMLN network efficiency and net gain with 15
Fα  

(As previously, the color of the square markers corresponds to the on-orbit times, 1, 5, 10 and 15 years, 

from lighter to darker colors. The different curves correspond to the variation of 15
Fα , from 0.01 in the 

bottom curve to 0.20 in the top curve) 
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Figure 7.31. Variations of the 3-IMLN network efficiency and net gain with 15
Fα  

(Same formatting than the previous figure) 

 

Several interesting trends can be seen on Figure 7.30 and Figure 7.31: increasing 15
Fα  

results in increasing net gains at all times. For example, increasing 15
Fα  from 0.05 to 0.15 

increases the net gain from 2.53 to 7.28 at 5 years for the 2-IMLN architecture, and from 

2.73 to 8.28 for the same time for the 3-IMLN architecture. This trend comes from the 

fact that increasing 15
Fα  means that the probability of failure of the networked 

subsystem/technology increases and it results in higher potential net gains. Note that the 

3-IMLN net gains are higher than the 2-IMLN as seen previously, and also that the 

relative net gain increase is higher in proportion for the 3-IMLN than for the 2-IMLN. 

Finally, in the case of a problematic subsystem/technology (such as 20.015 =Fα ), the net 
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gain reaches 13 percentage points after 15 years for the 2-IMLN and almost 17 points for 

the 3-IMLN, a significant improvement over the monolith architecture. 

In parallel, increasing 15
Fα  results in decreasing efficiency at all times. Continuing the 

same example than above, the efficiency of the 2-IMLN architecture at 5 years decreases 

from 0.920 to 0.863, and from 0.994 to 0.981 for the 3-IMLN architecture by increasing 

15
Fα  from 0.05 to 0.15. The 2-IMLN experienced a 6.2% loss in efficiency relative to the 

05.015 =Fα  value, while the 3-IMLN limited its loss to 1.3%. This results is consistent 

with the fact the 3-IMLN architecture is more insensitive to the networked 

subsystem/technology failures than the 2-IMLN: in the worst case considered here, the 

efficiency lower bound for the 3-IMLN is a relatively high 0.926, when it is 0.727 for the 

2-IMLN. Figure 7.32 presents a compact version of the trends discussed above. 

Figure 7.32 clearly shows the impact of the networked subsystem/technology’s 

probability of failure and the difference between the networks with 2 or 3 spacecraft here 

under consideration. Figure 7.32 highlights the potential interest in adding a spacecraft 

for networkable subsystems/technologies with a high probability of failure. For the range 

of times and 15
Fα  considered here, networks with more than 3 spacecraft for the same 

functionality are difficult to justify, as the 3-IMLN performance is significantly high in 

capturing the networkable subsystem/technology failures. 
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Figure 7.32. 2- and 3-IMLN comparison for 0.0515 =Fα  and 0.2015 =Fα  

(The grey curves correspond to 0.05F =15α and the black curves correspond to 0.20F =15α .  The square 

markers represent the 2-IMLN, and the triangle markers represent the 3-IMLN. As previously, the color of 
the markers represents the on-orbit times, 1, 5, 10 and 15 years from lighter to darker colors) 

 

By fixing the time (called here time horizon), the variations of the network efficiency and 

net gain are solely function of αF as seen in Eqs (7.11), (7.12), (7.22) and (7.23). In the 

previous paragraph, only the 0.01–0.20 range was examined. The full range from 0 to 1 is 

examined in Figure 7.33 for the 2- and 3-IMLN architectures with a time horizon of 15 

years (αF becoming 15
Fα  in the equations mentioned above17). 

                                                 
17 Generating Figure 7.33 for times other than 15 years here is more delicate, but feasible: the values of αF 
at other times used in the equations need to be consistent with the Weibull distributions for αF. 
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Figure 7.33. Variations of network efficiency versus net gain for a time horizon of 15 years 

 

Figure 7.33 reads as follows: the black curve represents the 2-IMLN architecture, while 

the grey curve represents the 3-IMLN one. The dashed lines represent different values for 

15
Fα , the upper one being represented with a different type of dashed line as it is the 

limiting case. Indeed, a pair of network efficiency and net gain in the space above that 

line is not physically possible. Looking at the 0.50 dashed line, the values for the network 

efficiency and net gain for the 2-IMLN and 3-IMLN can be read: (0.455, 20.5) for the 2-

IMLN and (0.703, 31.6) for the 3-IMLN.  

If the probability of failure of the networkable subsystem/technology is known and 

fixed, then adding more spacecraft to the network make the pair (network efficiency, 

net gain) moves up and right along the associated dashed line for a specified time 

horizon.  
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Another effect can be noted on Figure 7.33: for each architecture, a unique maximum for 

the net gain exists for a specific value of 15
Fα : 0.50 for the 2-IMLN maximum net gain of 

20.5 percentage points (with an associated efficiency of 0.455) and 0.58 for the 3-IMLN 

maximum net gain of 32.3 percentage points (with an associated efficiency of 0.629). 

This means that for a specific time horizon, space-based networks have a limiting 

capability to handle the failure of the networkable subsystem/technology (this 

limited capability increasing with the size of the network), over which the 

advantages of the network fade. For example here, a probability of failure at 15 years 

superior to 0.50 for the networked subsystem/technology results in a net gain for the 2-

IMLN smaller than the maximum value and on a decreasing trend (higher 15
Fα  will result 

in decreasing net gain values). 

Families of curves for different types of network can be generated in the same fashion on 

Figure 7.33 and are of great help to inform the selection of a space architecture, by 

providing network efficiency and net gain trends and values. Indeed, these trends and 

values can be mapped to the risk tolerance of the shareholders and complementary cost 

studies can bring the last piece to choose an “optimal” solution. 

7.3.6. Impact of Variations in the Probability of Failure of the Supporting 

Subsystems 

In the subsections above, the probabilities of failure for the supporting subsystems and 

the payload were assumed to be equal to the ones derived from our sample of the 

SpaceTrak database (hereafter referred to as “nominal” case). However, these 
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probabilities might be different for some specialized space platforms and this section 

investigates the impact on the efficiency of the network if these probabilities are changed. 

It can be seen in Eqs. (7.22) and (7.23) that the efficiency of the networks under 

consideration actually depends only on the probability of failure of the supporting 

subsystems, and not on the one of the payload. Assuming that the probability of failure of 

the supporting subsystems at 15 years varies by ±20% from the nominal case, while 

keeping the same shape parameter (βS = 0.5181), the new values for the scale parameter 

are: 969=+F
Sθ  years and 2202=−F

Sθ  years. Generating again the network efficiencies for 

the 2-IMLN and 3-IMLN architectures for 05.015 =Fα  and 20.015 =Fα  yields the following 

results, shown in Figure 7.34 and Figure 7.35.  

 

Figure 7.34. Effect of a ±20% variation in F
SP on the 2-IMLN efficiency 

(The “nominal” case is represented with solid lines and the “perturbed” cases are represented with 

dashed lines. The family of grey curves represents the 0.05F =15α and the family of black curves 

corresponds to 0.20F =15α ) 
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Figure 7.35. Effect of a ±20% variation in F
SP on the 3-IMLN efficiency 

(Same formatting than the previous figure) 

 

The maximum deviation from the nominal case occurs at 15 years and is equal to 2% for 

the 2-IMLN and 0.4% for the 3-IMLN at 05.015 =Fα , 2% for the 2-IMLN and 0.8% for 

the 3-IMLN at 20.015 =Fα . As a consequence, the efficiency results change but remains 

close to the nominal case. Thus, the results presented in the previous section give a good 

approximation for the trends of the network efficiency. 

7.3.7. Impact of the Probability of Failure of the Wireless Link Between 

Spacecraft 

Another assumption made in the previous sections was related to the perfect reliability of 

the wireless link between spacecraft. In reality, this may not be the case, and, as a result, 
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the survivability advantages of the space-based network over the monolith spacecraft 

may not be fully realizable. This section investigates the impact of an imperfect wireless 

link on the network efficiencies and net gains. Let assume that the wireless link between 

spacecraft is generated by two units in each spacecraft: the link works only if both units 

work (no link attenuation from distance for example is considered). The probability of 

failure of the link is labeled as υF(t), and the probability of failure of the unit i is labeled 

F
iPU . The two probabilities are related as follows: 

 ( )( )FF
F PPt U2U1 111)( −−−=υ  (7.24) 

Two types of distributions are considered for F
iPU : exponential and single Weibull. For the 

exponential distribution, the probability of failure of the unit is expressed as: 
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For a 2-IMLN with identical wireless units on both spacecraft: 
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As was done with αF, υF is parameterized according to its values at 15 years, labeled 15
Fυ : 

0.05, 0.10, 0.20, 0.50, 0.90. The associated values for µF are given in Table 7.9. 

Table 7.9. Exponential parameter values for the wireless link’s failure behavior 

15
Fυ  

Exponential mean parameter µF 
years 

0.05 584.8 
0.10 284.8 
0.20 134.4 
0.50 43.28 
0.90 13.02 

 

The probability of failure given in Eq. (7.4) for the 2-IMLN can be modified to include 

the probability of failure of the link between the spacecraft as follows: 

 ( )( ) ( )( )( )( ){ }FF
F

SF
F

P
F

S
F PPPP αυαυ −−−−−−−−= 11111111IMLN,-2  (7.27) 

This equation can be reduced to (as done for Eq. (7.9)): 
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 (7.28) 

 

2-IMLN architecture’s probability of complete failure – exponential case. Let us look at 

an example: assuming 05.015 =Fα , and 50.015 =Fυ  (the link has a 50% chance to be 

operational after 15 years), Figure 7.36 gives the probabilities of failure of the monolith 
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architecture, of the 2-IMLN architecture with a perfect link ( 015 =Fυ ), and of the 2-IMLN 

with a 50% reliability link after 15 years ( 50.015 =Fυ ). 

 

Figure 7.36. Impact of an imperfect link (exponential case) 

 

Figure 7.36 clearly show that the probability of a complete failure is significantly 

impacted by the unreliability of the link: the two curves for the 2-IMLN architecture 

depart from each other from year 2 approximately. The gap continuously increases in 

time as the imperfect link curve tends towards the monolith curve. At 15 years, the 

probability of failure of the 2-IMLN with a 50% unreliable link is 0.125, compared to the 

perfect link case at 0.105. The monolith probability of total failure at 15 years is 0.144: as 

a consequence, of the 3.9 percentage point improvement by considering an ideal 2-IMLN, 

only 1.9 percentage points are effectively realized with a 50% reliable link. 
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2-IMLN architecture’s net gain and efficiency – exponential case. Equations for the net 

gain and network efficiency can also be derived in this particular case as done previously: 

 ( ) ( )( )( ) FFF
F

P
F

S
F PP ααυυ −−−−=∆ 1111

2

IMLN,-2  (7.29) 

 ( )( )( ) FFF
F

S
F P ααυη υ −−−= 111IMLN,-2  (7.30) 

Figure 7.37 shows the impact of an imperfect link on the network efficiency of the 2-

IMLN architecture in the case 05.015 =Fα . For low values of 15
Fυ , the efficiency remains 

close to its ideal value: for a link reliability around the same order of reliability of 

spacecraft subsystems, the efficiency slightly dropped to 0.821 for 05.015 =Fυ  from its 

ideal value of 0.864, or to 0.777 for 10.015 =Fυ . However, the efficiency dramatically 

drops with an significant increase in 15
Fυ : with a 50% chance of link failure at 15 years 

( 50.015 =Fυ ), the efficiency dropped to 0.432 from its ideal value of 0.864; in a more 

extreme case, with a 10% of still working after 15 years ( 90.015 =Fυ ), the efficiency is 

down to 0.086. As a consequence, the reliability of the link is critical in capturing th e 

survivability advantages of the space-based networks. 

The information about the net gain is also of interest to assess the interest of an 

architecture. Combing the results about the efficiency above with net gain calculations, 

the η–∆ graph can be generated and is given in Figure 7.38. 
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Figure 7.37. Impact of the link unreliability on the 2-IMLN efficiency ( 0.0515 =Fα ) 

 

 

 

Figure 7.38. Variation of the probability of failure of the link (exponential, 0.0515 =Fα ) 
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Figure 7.38 shows a family of curves for the 05.015 =Fα  case with the dashed lines 

representing four on-orbit times: 1, 5, 10 and 15 years from the lower line to the upper 

one. Increasing 15
Fυ  results in a decrease in efficiency as seen in the previous figure. An 

additional piece of information yields with the net gain: the higher the probability of 

failure of the link, the smaller the net gain of the architecture. For the 0.10 and 0.20 cases, 

the maximum gain is obtained at 15 years, while the 0.50 maximum gain is reached at 

about 9 years and the 0.90 maximum gain at about 3 years. In the last two cases, the 

maximum gain is not reached at the end of the observation period, indicating a time 

horizon for an “effective performance” of the network. For example, in the case of 

90.015 =Fυ , the network becomes less attractive past 3 years and the net gain captured 

continuously decline past that point. 

2-IMLN architecture’s probability of complete failure – Weibull case. The failure of the 

link was assumed to be exponential above. A more flexible distribution to model the link 

failure is the Weibull distribution. Two types of failure behavior are investigated in the 

following: an infant mortality behavior with a shape parameter equal to 0.5 (less than 1), 

and a wear-out behavior with a shape parameter of 3 (more than 1). In the case of the 

single Weibull distribution, the probability of failure of the unit can be expressed as: 
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For a 2-IMLN with identical wireless units on both spacecraft: 
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This can be further reduced to: 
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An illustrative case is explored around 50.015 =Fυ : the values of the shape and scale 

parameter for the Weibull distribution are given in Table 7.10. 

Table 7.10. Weibull parameters values for the wireless link’s failure behavior 

15
Fυ  

Weibull shape parameter β 
Weibull scale parameter θ 

years 

0.50 
0.5 124.88 
3 21.36 

 

The probability of failure of the 2-IMLN architecture can be computed and is shown in 

Figure 7.39. 
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Figure 7.39. Impact of an imperfect link (Weibull case) 

 

As it was the case above with the exponential failure distribution, the probability of 

failure for the 2-IMLN architecture with an imperfect link diverges from its ideal case, 

for both failure behavior (infant mortality and wear-out). The divergence however does 

not occur at the same time for the two failure behaviors: in the case of the infant mortality, 

the gap between the curves become noticeable before 1 year on-orbit, while in the case of 

a wear-out behavior, the divergence occurs between year 5 and 6. Thus it is clearly 

shown that an infant mortality behavior for the link will be significantly more 

problematic than the wear-out behavior. Despite the fact that at 15 years, both failure 

behaviors result in the same probability of failure, the wear-out case allowed to fully 

capture the survivability advantage of the space-based network for the first 5 years on 

orbit. As a consequence, infant mortality failures in the link should be rooted out for 

the space-based network option to be of interest.  
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2-IMLN architecture’s net gain and efficiency – Weibull case. The trend mentioned 

above can also be shown with the evolution of network efficiency in time shown in 

Figure 7.40. Figure 7.40 presents the ideal 2-IMLN efficiency (link with a perfect 

reliability), the exponential link failure case (β = 1 makes the Weibull distribution 

equivalent to the exponential distribution), the infant mortality case (β = 0.5) and the 

wear-out failure case (β = 3). It can be seen on the figure that increasing the shape 

parameter β from 1 results in shifting the efficiency curve towards the right (hence 

retaining higher efficiency value at the same on-orbit time), while decreasing the shape 

parameter from 1 results in shifting the efficiency curve towards the left (and hence 

worsening the efficiency at a comparable on-orbit time). 

 

 

Figure 7.40. Impact of the link unreliability on the 2-IMLN efficiency ( 0.0515 =Fα  and 0.5015 =Fυ ) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time after successful orbit insertion (years)

N
et

w
o

rk
 e

ff
ic

ie
n

cy

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time after successful orbit insertion (years)

N
et

w
o

rk
 e

ff
ic

ie
n

cy

perfect link

β = 0.5

β = 1

β = 3



224 
 

Including the information about the net gain, the associated η–∆ graph can be generated 

as shown in Figure 7.41. Again, the dashed lines represent four on-orbit times: 1, 5, 10 

and 15 years from the lower line to the upper one. An additional figure is given, Figure 

7.42, to give a comparative case with a less problematic link ( 10.015 =Fυ ) relative to the 

case studied above ( 50.015 =Fυ ). 

 

 

Figure 7.41. η–∆ graph for the 2-IMLN with an imperfect link, 0.5015 =Fυ  

(exponential and Weibull cases) 
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Figure 7.42. η–∆ graph for the 2-IMLN with an imperfect link, 0.1015 =Fυ  

 

Figure 7.41  and Figure 7.42 confirm that the infant mortality case is the worst in terms of 

network efficiency and net gain. However, in the case of a more problematic link (i.e., a 

link that fails more), the difference between the infant mortality case and the wear-out 

behavior is more pronounced (Figure 7.41 versus Figure 7.42). As a consequence, the 

more the link fails, the more critical the infant mortality failures become. In addition, 

note that in the 50.015 =Fυ  case, a maximum in the net gain appears for the wear-out and 

exponential cases around 9 years on-orbit. This could indicate that a time horizon for a 

true effective performance of the network can be defined in these cases. Finally, it can be 

seen that varying the failure behavior of the link from 50.015 =Fυ  to 0.10 results in 

shifting the end points of the efficiency–net gain curves along the 15-year dashed line, as 

seen in Figure 7.38. 
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All the figures above were generated such that the probability of failure of the networked 

subsystem/technology is equal to 0.05 after 15 years ( 05.015 =Fα ). A final examination of 

the behavior of the 2-IMLN network with respect to the link failure is to explore whether 

the sensitivity of the efficiency to the failure of the networked subsystem/technology is 

impacted by the failure of the link (exponential case), and this is shown in Figure 7.43. 

 

Figure 7.43. 2-IMLN efficiency variations due to the failures of the networked subsystem/technology 
and link 
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problematic link is smaller than for a healthy link. This is consistent with the fact that the 

more failure-prone the link is, the less networked the spacecraft are, and the less relevant 

the failure of the networked subsystem/technology is. Note that αF and υF have a similar 

role on efficiency as shown in Eq. (7.30). 

3-IMLN architecture. The previous results were generated for the 2-IMLN architecture. 

In the case of the 3-IMLN, the analytical solution is not obvious or possible, and the 

IMLN simulation is the only solution to generate the probability of failure of the network 

in presence of link failure. Indeed, the two links in the 3-IMLN do not fail independently: 

the failure of the wireless unit on board of the main spacecraft (with the payload) causes 

the failure of both links. Hence the time to failure of the links are computed by generating 

the times to failure of the 3 units, and taking the minimum of the times to failure of the 

two respective units for both links. The IMLN model handles very easily this 

computation and the probability of failure of the system, the network efficiency and the 

net gain can be simulated. In the case of 05.015 =Fα , three simulations were run, for 15
Fυ  

equal to 0.20, 0.50 and 0.90 (exponential distributions with parameters given in Table 7.9) 

to obtain a representative sample of the impact of the link failures on the 3-IMLN 

architecture, presented in Figure 7.44.  
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Figure 7.44. η–∆ graph for the 3-IMLN with an imperfect link (exponential case) 

 

Figure 7.44 presents four curves: the black dotted line without “plus” markers is the 

perfect case (i.e., the links are perfectly reliable), and the curves with “plus” markers are 

the cases with links prone to failure. For readability purposes, it was chosen to output the 

results of the simulation every on-orbit year (15 markers per curve for 15 years spent on-

orbit). The black short-dash lines link the markers on a curve, but do not represent results 

from the simulation (their unique purpose is to highlight the curve). Figure 7.44 shows 

that the 3-IMLN architecture is also affected by the failure of the links, although to a 

lesser extent than the 2-IMLN, as demonstrated in Figure 7.45 for 50.015 =Fυ .  

Finally, Weibull distributions were considered for the link failure behavior, with the 

Weibull parameters given in Table 7.10. Similar comments than for the 2-IMLN can be 

made regarding the results of Figure 7.46. 
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Figure 7.45. Comparison of the 2- and 3-IMLN architectures with link failures (exponential case) 

 

 

Figure 7.46. η–∆ graph for the 3-IMLN with an imperfect link, 0.5015 =Fυ  

(exponential and Weibull cases) 
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7.3.8. Multi-State Considerations: IMLN Behavior Facing Major Degradation 

Up to this point, section 7.3 considered only the catastrophic failure of the monolith or 

space-based network architectures. However, as mentioned in earlier chapters and in 

section 7.2, other types of events can occur on-board the space systems that lead to a 

degradation of its functionality, and not necessary its complete loss. In this subsection, 

another level of severity in the performance degradation is investigated, namely, the 

major degradation state. Assuming that the probability of major degradation of the 

networked subsystem/technology is given by αM(t), the impact of such an event is 

investigated in a similar fashion than for the complete failure, by parameterizing the 

value of the probability of major degradation at 15 years: 15)years 15( MM t αα == . Four 

levels are explored in this subsection, with 15
Mα  equal to 0.05, 0.10, 0.15, 0.20. 

This probability αM is not directly useable in the IMLN model and simulation, as 

explained in Chapter 5. The state considered in the simulation is not the “major 

degradation” state directly, but the aggregation of the “major degradation” and “total 

failure” states into the “major–failed” state (also referred to as “severe degradation” state). 

The probability of being in a major degradation state for the space architecture is then 

calculated by taking the difference between the probability of being in the aggregated 

major–failed state, labeled αMF(t), and the probability of being in the total failure state 

(simulated in the previous subsections), as evidenced by Eq. (5.40). In similar fashion, we 

have for αF, αM and αMF: 
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  )()()( ttt FMFM ααα −=  (7.34) 

Note that the value of αMF is bounded by 1, constraining the values αF and αM can take 

concurrently ( 6.015 =Fα  and 7.015 =Mα  at the same time is not physically possible). 

To investigate potential changes in the probability of major degradation for the space 

architecture due to variations in the probability of total failure of the networkable 

subsystem/technology, two levels for 15
Fα  were chosen, representative of 

subsystems/technologies with lower or higher tendency to complete failures: 0.05 and 

0.20. Table 7.11 presents a summary of the levels used in the following simulations. It is 

interesting to note that the 15
MFα  value of 0.25 can be obtained by two different 

combinations of 15
Fα  and 15

Mα ((0.05, 0.20) and (0.20, 0.05) respectively). 

Table 7.11. Parameterization of the failed, major and major–failed probabilities 

15
Fα  

15
Mα  

15
MFα  

0.05 

0.05 0.10 
0.10 0.15 
0.15 0.20 
0.20 0.25 

0.20 

0.05 0.25 
0.10 0.30 
0.15 0.35 
0.20 0.40 

 

As done for the probability of failure of the networkable subsystem/technology, the 

probability of being in a major–failed state of the networkable subsystem/technology is 

modeled using single Weibull distributions (with a constant shape parameter β = 0.5), and 
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the values of the scale parameters associated to the specified values are given in Table 

7.12. 

Table 7.12. Weibull scale parameter values for the αMF distribution of the networked 
subsystem/technology 

15
MFα  

Scale parameter θMF 
years 

0.10 1,351 
0.15 568 
0.20 301 
0.25 181 
0.30 117.9 
0.35 80.8 
0.40 57.5 

 

Using the IMLN models, simulations were run for each 15
MFα  value, and generated as 

output the probability of being in a  major–failed state of the space architecture (as 

previously: monolith, 2-IMLN and 3-IMLN). Also as done previously, analytical results 

can be found as the subscripts and superscripts “F” can be replaced by “MF” (except in 

some cases of the supporting subsystems probability18) in the equations derived for the 

probability of complete failure. They are modified as follows: 

 ( )( ) MF
MF

P
MF

S
MF PPP α−−−= 111monolith  (7.35) 

 ( )( ) ( )( )( ){ }MF
F

SMF
MF

P
MF

S
MF PPPP αα −−−−−−−= 1111111IMLN-2  (7.36) 

                                                 
18 In the case of the functional redundancy, special attention must be given to the supporting subsystem 
state: the functional redundancy is inhibited only if the supporting subsystems fail completely, its major 
degradation having no impact in this representation. 
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 ( )( ) ( )( )( ){ }MF
F

SMF
MF

P
MF

S
MF PPPP αα 2

IMLN-3 1111111 −−−−−−−=  (7.37) 

For readability purposes again, four on-orbit times have been selected to compare 

architectures: 1 year, 5 years, 10 years and 15 years on-orbit. The probabilities of being in 

a major–failed state (in percentage points) for the three architectures at these times are 

shown in Table 7.13. 

Table 7.13. Probabilities of being in a major–failed state for monolith and networked architectures 
(in percentage points) 

15
MFα  

Architecture 
PMF – IMLN simulation PMF – Analytical results 

Time spent on-orbit (years) Time spent on-orbit (years) 
1 5 10 15 1 5 10 15 

0.10 
Monolith – – – – 8.49 18.02 24.53 29.18 
2-IMLN 6.08 13.42 18.75 22.72 6.09 13.44 18.77 22.75 
3-IMLN 5.97 12.95 17.91 21.58 5.97 12.94 17.91 21.58 

0.15 
Monolith – – – – 9.83 20.68 27.97 33.12 
2-IMLN 6.20 13.94 19.67 23.98 6.21 13.95 19.69 24.00 
3-IMLN 5.98 13.04 18.12 21.93 5.98 13.03 18.12 21.92 

0.20 
Monolith – – – – 11.23 23.42 31.46 37.06 
2-IMLN 6.36 14.62 20.88 25.61 6.37 14.64 20.88 25.61 
3-IMLN 5.99 13.16 18.46 22.47 5.99 13.18 18.47 22.49 

0.25 
Monolith – – – – 12.70 26.22 34.98 41.00 
2-IMLN 6.58 15.49 22.35 27.56 6.59 15.52 22.37 27.58 
3-IMLN 6.04 13.41 18.99 23.31 6.02 13.40 18.99 23.31 

0.30 
Monolith – – – – 14.23 29.10 38.53 44.92 
2-IMLN 6.87 16.59 24.17 29.92 6.86 16.59 24.16 29.90 
3-IMLN 6.06 13.72 19.73 24.43 6.06 13.73 19.73 24.44 

0.35 
Monolith – – – – 15.86 32.07 42.15 48.86 
2-IMLN 7.20 17.90 26.25 32.58 7.21 17.89 26.26 32.58 
3-IMLN 6.13 14.20 20.72 25.92 6.12 14.19 20.72 25.92 

0.40 
Monolith – – – – 17.58 35.13 45.80 52.79 
2-IMLN 7.64 19.42 28.68 35.61 7.63 19.43 28.69 35.62 
3-IMLN 6.20 14.82 22.03 27.82 6.20 14.81 22.02 27.81 

 

It can be seen in Table 7.13 that the results from the IMLN simulation and from 

analytical solutions are in strong agreement: the average difference is 0.01 percentage 

point and the maximum difference is 0.03 percentage point. As given by Eq. (5.40), 
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combining the results from Table 7.13 and Table 7.5 (probability of complete failure), the 

probability of being in a major degradation state for the architecture under consideration 

can be computed, and the final result is given in Table 7.14.   

Table 7.14. Probabilities of being in a major degradation state for monolith and networked 
architectures (in percentage points) 

15
Fα

 

15
Mα

 

15
MFα

 
Architecture 

PM – IMLN simulation  PM – Analytical results 
Time spent on-orbit (years) Time spent on-orbit (years) 
1 5 10 15 1 5 10 15 

0.05 

0.05 0.10 
Monolith – – – – 4.70 9.56 12.66 14.76 
2-IMLN 3.53 7.49 10.23 12.18 3.54 7.51 10.25 12.21 
3-IMLN 3.46 7.22 9.75 11.56 3.46 7.21 9.76 11.57 

0.10 0.15 
Monolith – – – – 6.04 12.22 16.10 18.69 
2-IMLN 3.66 8.02 11.14 13.44 3.66 8.02 11.16 13.46 
3-IMLN 3.47 7.31 9.96 11.91 3.47 7.30 9.97 11.92 

0.15 0.20 
Monolith – – – – 7.44 14.95 19.59 22.63 
2-IMLN 3.82 8.70 12.35 15.07 3.82 8.71 12.36 15.07 
3-IMLN 3.49 7.43 10.30 12.45 3.49 7.45 10.32 12.48 

0.20 0.25 
Monolith – – – – 8.91 17.76 23.11 26.57 
2-IMLN 4.04 9.56 13.82 17.02 4.04 9.59 13.85 17.05 
3-IMLN 3.53 7.68 10.83 13.29 3.51 7.67 10.84 13.31 

0.20 

0.05 0.25 
Monolith – – – – 4.73 9.11 11.57 13.06 
2-IMLN 3.64 7.86 10.74 12.71 3.66 7.90 10.77 12.74 
3-IMLN 3.50 7.38 10.08 12.04 3.48 7.37 10.09 12.05 

0.10 0.30 
Monolith – – – – 6.27 11.98 15.12 16.98 
2-IMLN 3.93 8.96 12.56 15.07 3.94 8.98 12.56 15.06 
3-IMLN 3.52 7.69 10.82 13.16 3.52 7.70 10.82 13.18 

0.15 0.35 
Monolith – – – – 7.90 14.96 18.73 20.92 
2-IMLN 4.26 10.27 14.64 17.74 4.28 10.28 14.66 17.75 
3-IMLN 3.60 8.16 11.81 14.66 3.58 8.16 11.82 14.66 

0.20 0.40 
Monolith – – – – 9.62 18.02 22.38 24.84 
2-IMLN 4.70 11.79 17.07 20.76 4.70 11.82 17.09 20.78 
3-IMLN 3.66 8.79 13.12 16.55 3.67 8.78 13.12 16.55 

 

A more practical representation of the results presented in Table 7.5, Table 7.13 and 

Table 7.14 is shown in Figure 7.47, for the case 10.015 =MFα  ( 05.015 =Fα  and 05.015 =Mα ) 

for example. 
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Figure 7.47. Probabilities of complete failure and major degradation for monolith and networked 
architectures 

 

Figure 7.47 reads as follows. For each of the four on-orbit times, three bars are 

represented:  the leftmost of the three represents the monolith architecture (“M” on the 

figure), the middle bar represents the 2-IMLN architecture (“2”) and the rightmost bar of 

the three represents the 3-IMLN architecture (“3”). The numbers associated with the 

black part of the stacked bars represent the probability of catastrophic failure of the 

associated architecture, while the grey part of the stacked bars represents the probability 

of being in a major degradation state for the associated architecture. As a consequence, 

the numbers on top of the bars resulting from the addition of the other two represent the 

probability of being in a major–failed state (or severe degradation state) for the 

architecture of interest. An example of the information read on the figure is, after 5 years 

on-orbit: 
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• The monolith architecture has a probability of being in a failed state (PF) of 

8.46%, a major degradation state (PM)  of 9.56% and a total probability of being 

in a severe degradation state (PMF) of 18.02%; 

• The 2-IMLN architecture has a probability of being in a failed state of 5.93%, a 

major degradation state of 7.51% and a total probability of being in a severe 

degradation state of 13.44%; 

• The 3-IMLN architecture has a probability of being in a failed state of 5.73%, a 

major degradation state of 7.21% and a total probability of being in a severe 

degradation state of 12.94%. 

In this particular case, the space-based networks improve on both the failed and the major 

degradation states, but with a small difference between the networks of 2 and 3 spacecraft. 

The next step consists in looking at results in Table 7.13 and Table 7.14 obtained by 

increasing 15
Mα  while keeping 15

Fα  constant, to observe the effect of increasing the 

probability of being in a major degradation state for the networkable 

subsystem/technology on the system level. The resulting change is presented in Figure 

7.48, with 25.015 =MFα  ( 20.015 =Fα  and 05.015 =Mα ): 15
Mα  was increased from 0.05 to 0.20, 

while keeping 15
Fα  constant at 0.05. 
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Figure 7.48. Increase in the probability of major degradation for the networkable 
subsystem/technology 

 

As expected, the probability PM (represented in grey) has increased while PF (in black) 

remained constant: from Figure 7.47 where, at 5 years on-orbit, PM for the monolith was 

equal to 9.56%, it is now 17.76%; in the case of the 2-IMLN, it went from 7.51% to 9.59% 

and for the 3-IMLN, it increased from 7.21% to 7.67%. Note that the increase was the 

most dramatic for the monolith spacecraft, while the 3-IMLN was the least affected. This 

result mirrors the behavior of the networks in the case of total failures. Also note that for 

higher 15
Mα , the difference between architecture becomes more apparent: for example at 

15 years, there is now a difference of 4.27 percentage points in PMF, while it was only 

1.17 percentage points for 05.015 =Mα . 
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Let investigate the complementary effect: keeping 15
Mα  fixed at 0.05 (as in Figure 7.47), 

let us increase 15
Fα  from 0.05 to 0.20. This is shown in Figure 7.49. 

 

Figure 7.49. Increase in the probability of total failure for the networkable subsystem/technology 

 

Several interesting phenomena occur in Figure 7.49. First, as the combination of 15
Fα  and 

15
Mα  were chosen to add up to 0.25, the same 15

MFα  than in Figure 7.48 (obtained with the 

reverse combination), the probabilities of being in a major–failed state (PMF, given by the 

numbers on top of the stacked bars) for the three architectures are the same than in Figure 

7.48. The splits between the black share and the grey share changed to accommodate for 

the new degradation and failure behavior of the networked subsystem/technology: PF 

increased (in black) while PM (in grey decreased). A more interesting finding lies in 

carefully examining Figure 7.47 and Figure 7.49: in both cases, 05.015 =Mα ; the variable is 
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15
Fα  which increased from 0.05 to 0.20. As expected, PF increased, but PM was also 

impacted: for example, after 15 years, the probability of major degradation for the 

monolith architecture shifted from 14.76% to 13.06%, from 12.21% to 12.74% for the 2-

IMLN and from 11.57% to 12.05% for the 3-IMLN. This implies that for a constant 

probability of major degradation for the networkable subsystem/technology (αM), the 

probability of major degradation of the complete architecture is affected by the variation 

in the probability of total failure of the networkable subsystem/technology (αF). As a 

consequence, PM is not solely a function of αM, but depends on both αM
 and αF. 

As mentioned above, and similarly for catastrophic failures, the space-based networks 

studied here are less sensitive to the variation in the degradation and failure behavior of 

the networkable subsystem/technology. This shielding effect from major anomalies and 

failures is clearly shown in Figure 7.50 (t = 5 years).  

In the worst-case scenario here after 5 years on-orbit with ( ) ( )20.0,20.0, 1515 =MF αα , PM varies 

by 151% for the monolith (from an ideal value of 7.17% (perfect subsystem/technology, 

with no anomaly or failures, i.e., ( ) ( )0,0, 1515 =MF αα ) to 18.02%), by 65% for the 2-IMLN 

(from the ideal value of 7.17% to 11.82%) and by 22% for the 3-IMLN architecture 

(from the ideal value of 7.17% to 8.78%). Overall, the probability of severe degradation 

for the space system, PMF, varies by 173% for the monolith, 51% for the 2-IMLN and 15% 

for the 3-IMLN. As a conclusion, the networked architectures confirm their 

“shielding effect” for severe anomalies in addition to failures, and this effect grows 

stronger with the addition of spacecraft to the network . 
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Figure 7.50. Sensitivity of the architectures to the anomaly and failure behavior of the networkable 
subsystem/technology (after 5 years on-orbit) 
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Net gain and network efficiency in the case of major anomalies. Net gains for the 

major–failed state ∆MF can be defined for the IMLN approach in a similar fashion than 

for catastrophic failure as: 

 MFMFMF PP IMLN-2monolithIMLN-2 −=∆  (7.38) 

 MFMFMF PP IMLN-3monolithIMLN-3 −=∆  (7.39) 

Using Eqs. (7.35), (7.36) and (7.37), these expressions can be manipulated to obtain: 

 ( )( )( )( ) MFMF
MF

P
MF

S
F

S
MF PPP αα−−−−=∆ 1111IMLN-2  (7.40) 

 ( )( )( ) ( ) ( )[ ] MF
F

S
F

SMF
F

SMF
MF

P
MF

S
F

S
MF PPPPPP ααα ++−−−−−−=∆ 121111 2

IMLN-3  (7.41) 

 

Due to the relationship between PF, PM and PMF established in Eq. (5.40), the net gain for 

the major degradation state ∆
M can be computed from the knowledge of ∆

F and ∆MF: 

 FMFMMM PP IMLN-2IMLN-2IMLN-2monolithIMLN-2 ∆−∆=−=∆  (7.42) 

 FMFMMM PP IMLN-3IMLN-3IMLN-3monolithIMLN-3 ∆−∆=−=∆  (7.43) 
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Note that the values of ∆M are also dependent on the choice of 15
Fα . In addition, network 

efficiency for major–failed state, ηMF, can also be defined for the IMLN approach in the 

same way than for catastrophic failures as: 

 
MF

MF
MF

0

IMLN2
IMLN2 ∆

∆
= −

−η  (7.44) 

 
MF

MF
MF

0

IMLN3
IMLN3 ∆

∆
= −

−η  (7.45) 

with: 
 MFMFMF PP 0monolith0 −=∆  (7.46) 

where )(0 tPMF is the probability of a major anomaly or catastrophic failure for the 

architecture with a networkable subsystem/technology without anomalies or failure     

(αMF = 0). As: 

 ( )( )MF
P

MF
S

MF PPP −−−= 1110  (7.47) 

Eq. (7.46) can be manipulated to obtain: 

 ( )( )MF
P

MF
SMF

MF PP −−=∆ 110 α  (7.48) 

Using Eqs. (7.40), (7.41) and (7.48), Eqs. (7.44) and (7.45) can be expressed as: 
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 ( ) F
S

F
SMF

MF PP −+−−=− 11IMLN2 αη  (7.49) 

 ( ) ( ) ( ) ( )222
IMLN3 1121 F

S
F

S
F

SMF
F

SMF
MF PPPP −+−−−−=− ααη  (7.50) 

Similarly, the network efficiency with respect to major degradation, ηM, can be obtained 

for the IMLN approach as: 

 
M

M
M

0

IMLN2
IMLN2 ∆

∆
= −

−η  (7.51) 

 
M

M
M

0

IMLN3
IMLN3 ∆

∆
= −

−η  (7.52) 

where ∆M are found in Eqs. (7.42) and (7.43) and M
0∆  is simply computed as: 

 FMFM
000 ∆−∆=∆  (7.53) 

Note that the values of ηM and M
0∆ are also dependent on the choice of 15

Fα . 

Net gain and network efficiency known, η–∆ graphs can be generated to investigate the 

reaction of the architecture to anomalies and failures in the networkable 

subsystem/technology. Let us start with the global major–failed state. Figure 7.51 

presents the family of curves obtained from the variation of 15
MFα  from 0.10 to 0.40 by 

0.05 increments in the case of the 2-IMLN architecture. 
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Figure 7.51. Network efficiency versus net gain for the major–failed state for the 2-IMLN 

(As previously, the color of the square markers corresponds to the on-orbit times, 1, 5, 10 and 15 years, 

from lighter to darker colors. The different curves correspond to the variation of 15
MFα , from 0.10 in the 

bottom curve to 0.40 in the top curve) 

 

It can be seen in Figure 7.51 that the η–∆ graph presents similar results for (η
MF, ∆MF) 

than for (ηF, ∆F): for the same on-orbit time, the efficiency decreases, but the net gain 

increases with 15
MFα  increasing. Network efficiency continuously decreases as the 

spacecraft ages on-orbit, and the net gain initially increases, then decreases (the inflexion 

in the curve is only visible for the highest value of 15
MFα ). Finally, the more severe the 

degradation is for the networkable subsystem/technology, the steeper the decrease in the 

network efficiency. 
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The 2-IMLN and 3-IMLN can also be compared for the severe degradation state, and this 

is shown in Figure 7.52. As previously seen for η
F and ∆F, the 3-IMLN handles better the 

decrease in efficiency, as well as provides higher net gains. 

 

Figure 7.52. 2- and 3-IMLN comparison for 0.1015 =MFα  and 0.4015 =MFα  

(The grey curves correspond to 0.10MF =15α and the black curves correspond to 0.40MF =15α .  The square 

markers represent the 2-IMLN, and the triangle markers represent the 3-IMLN. As previously, the color of 
the markers represents the on-orbit times, 1, 5, 10 and 15 years from lighter to darker colors) 

 

How does compare the efficiency of space-based network in rooting catastrophic failures 

with major anomalies? This question is investigated in the following by considering 

equivalent values for 15
Fα  and 15

Mα , at two levels (0.05 and 0.20). As such, the 

networkable subsystem/technology has an equal probability to be in a total failed state 

and in a major degradation state. Figure 7.53 shows the resulting network efficiencies ηF 

and ηM for the 2-IMLN architecture, and Figure 7.54 for the 3-IMLN architecture.  
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Figure 7.53. Comparison of ηF and ηM for the 2-IMLN architecture 

(The grey curves correspond to15
Fα  and 15

Mα equal to 0.05, while the black curves correspond to both 

parameters equal to 0.20. The triangle markers represent ηF (network efficiency for catastrophic failures), 
and the circle markers represent ηM (network efficiency for major anomalies)) 

 

Figure 7.54. Comparison of ηF and ηM for the 3-IMLN architecture 

(Same formatting than the previous figure) 
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It can be seen on Figure 7.53 that the 2-IMLN is more efficient at rooting out catastrophic 

failures than major anomalies in the networkable subsystem/technology (at both levels, 

0.05 and 0.20): for example, after 15 years on orbit at the 0.05-level, the network 

efficiency ηF is equal to 0.864, while ηM is equal to 0.757, a value 12% lower. In the most 

problematic case considered here (15
Fα  and 15

Mα  at 0.20), ηF is equal to 0.727, while ηM is 

equal to 0.302, a value 58% lower. This suggests that in the case of more and more 

problematic subsystem/technology, the space-based network concentrate more and more 

of its efforts on catastrophic failures, to the increasing detriment of major anomalies19. 

Figure 7.54 confirms a similar phenomenon for the 3-IMLN architecture: for example, 

after 15 years on orbit at the 0.05-level, the network efficiency ηF is equal to 0.981, while 

η
M is equal to 0.948, a value 3% lower. In the most problematic case considered here 

( 15
Fα  and 15

Mα  at 0.20), ηF is equal to 0.926, while ηM is equal to 0.616, a value 33% lower. 

However, the sacrifice of the major anomalies is less pronounced in the case of the 3-

IMLN compared to the 2-IMLN architecture. 

As a conclusion, the space-based networks demonstrate an interesting quality: the 

networks attempt to eliminate anomalous events by decreasing levels of severity, 

catastrophic failures first, then major anomalies. This “sacrifice” is less pronounced 

in architectures with more networked spacecraft. 

                                                 
19 In the case of very high probability of failure of the networkable subsystem, the probability of being in a 
major degradation state for the space system can even increase between a monolithic architecture and a 
space-based network, leading to negative efficiencies. However, the overall probability of being in a 
major–failed state remains lower for the space-based network (the network completely sacrificed major 
anomalies to the advantage of catastrophic failures). 
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To complete this analysis, two more cases are studied for the 2-IMLN architecture with 

the same value of the probability of being in a major–failed state for the networkable 

subsystem/technology ( 25.015 =MFα ): case 1 consists in a networkable subsystem/ 

technology that has a higher tendency to experience major anomalies over catastrophic 

failures ( 05.015 =Fα  and 20.015 =Mα ); case 2 consists in the reverse situation where the 

networkable subsystem/technology that has a higher tendency to experience catastrophic 

failures over major anomalies ( 20.015 =Fα  and 05.015 =Mα ). Figure 7.55 allows the 

comparison of the network efficiencies η
F and ηM resulting from cases 1 and 2. 

 

Figure 7.55. Comparison of ηF and ηM for the 2-IMLN architecture with 0.2515 =MFα  

(The grey curves correspond to case 1(15
Fα  and 15

Mα equal to 0.05 and 0.20 respectively), while the black 

curves correspond to case 2 (15
Fα  and 15

Mα equal to 0.20 and 0.05 respectively). The triangle markers 

represent ηF (network efficiency for catastrophic failures), and the circle markers represent ηM (network 
efficiency for major anomalies)) 
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Figure 7.55 confirms that the behavior of the network is different for catastrophic failures 

and major anomalies. For case 1 (grey curves), η
F is consistently higher than ηM at 

comparable on-orbit times (circle markers are always to the left of the triangle markers 

with the same color on the grey curves), but the net gains are higher in the case of major 

degradation compared to catastrophic failures (consistent with the fact that the 

networkable subsystem/technology is more prone to major anomalies). For case 2 (black 

curves), ηF is also consistently higher than ηM at comparable on-orbit times, but in this 

case the net gains are higher in the case of catastrophic failures (consistent with the fact 

that the networkable subsystem/technology is more prone to major anomalies). For the 

same 15
MFα –level, the network had the potential in case 1 to significantly help in terms of 

major degradation despite its associated lower efficiency, while in case 2, the network 

almost completely focused its efforts on rooting out catastrophic failures, resulting in a 

marginal improvement for the major degradation state. 

7.3.9. Multi-State Considerations: IMLN Behavior Facing Minor Degradation 

The last part of the multi-state analysis lies with the consideration of minor anomalies in 

the networkable subsystem/technology. As it was done for the major anomaly case, we 

assume that the probability of minor degradation of the networked subsystem/technology 

is given by αm(t), the impact of such an event is investigated in a similar fashion, by 

parameterizing the value of the probability of major degradation at 15 years: 

15)years 15( mm t αα == . Only two levels are explored to give a sense of the type of analysis 

enabled by this dissertation: 15
Mα  equal to 0.05 and 0.20.  
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Again, the state considered in the simulation is not the “minor degradation” state directly, 

but the aggregation of the “minor degradation”, “major degradation” and “total failure” 

states into the “minor–major–failed” state (also simply referred to as “degraded” state). 

The probability of being in a minor degradation state for the space architecture is then 

calculated by taking the difference between the probability of being in the aggregated 

minor–major–failed state, labeled αmMF(t), and the probability of being in the major 

degradation state and the total failure state (simulated in the previous subsections). As a 

consequence, we have for αF, αM, αm, αMF and αmMF: 

  )()()()()()( tttttt mMFmMFmMF αααααα +=++=  (7.54) 

Note that the value of αmMF is bounded by 1, constraining the values αF, αM and αm can 

take concurrently. 

Three representative cases are investigated to expose trends associated with minor 

degradation: 

• Case 1: 05.015 =Fα , 05.015 =Mα , 05.015 =mα and resulting in 10.015 =MFα  and 

15.015 =mMFα ; 

• Case 2: 20.015 =Fα , 05.015 =Mα , 05.015 =mα and resulting in 10.015 =MFα  and 

30.015 =mMFα : only αm was increased from case 1; 

• Case 3: 20.015 =Fα , 20.015 =Mα , 20.015 =mα and resulting in 40.015 =MFα  and 

60.015 =mMFα : only αMF was increased from case 2. 
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As done for the probability of failure and major anomaly of the networkable 

subsystem/technology, the probability of being in a minor–major–failed state of the 

networkable subsystem/technology is modeled using single Weibull distributions (with a 

constant shape parameter β = 0.5), and the values of the scale parameters associated to 

the specified values are given in Table 7.15. 

Table 7.15. Weibull scale parameter values for the αmMF distribution of the networked 
subsystem/technology 

15
mMFα  

Scale parameter θMF 
years 

0.15 568 
0.30 117.9 
0.60 17.87 

 

Using the IMLN model, simulations were run for each 15
mMFα  value, and generated as 

output the probability of being in a  minor–major–failed state of the space architecture (as 

previously: monolith, 2-IMLN and 3-IMLN). Also as done previously, analytical results 

can be found as the subscripts and superscripts can be replaced by “mMF” (with the same 

exceptions than previously). The equations are modified as follows: 

 ( )( ) mMF
mMF

P
mMF

S
mMF PPP α−−−= 111monolith  (7.55) 

 ( )( ) ( )( )( ){ }mMF
F

SmMF
mMF

P
mMF

S
mMF PPPP αα −−−−−−−= 1111111IMLN-2  (7.56) 

 ( )( ) ( )( )( ){ }mMF
F

SmMF
mMF

P
mMF

S
mMF PPPP αα 2

IMLN-3 1111111 −−−−−−−=  (7.57) 
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For readability purposes again, four on-orbit times have been selected to compare 

architectures: 1 year, 5 years, 10 years and 15 years on-orbit. The probabilities of being in 

a major–failed state (in percentage points) for the three architectures at these times are 

shown in Table 7.16. 

Table 7.16. Probabilities of being in a minor–major–failed state for monolith and networked 
architectures (in percentage points) 

15
mMFα  

Architecture 
PmMF – IMLN simulation PmMF – Analytical results 
Time spent on-orbit (years) Time spent on-orbit (years) 

1 5 10 15 1 5 10 15 

0.15 
Monolith – – – – 13.84 27.65 36.40 42.35 
2-IMLN 10.39 21.51 29.08 34.48 10.38 21.51 29.08 34.49 
3-IMLN 10.17 20.67 27.71 32.71 10.16 20.66 27.70 32.70 

0.30 
Monolith – – – – 18.05 35.32 45.72 52.52 
2-IMLN 11.00 23.92 33.04 39.58 11.01 23.91 33.03 39.58 
3-IMLN 10.24 21.32 29.14 34.88 10.24 21.30 29.12 34.87 

0.60 
Monolith – – – – 29.08 53.18 65.63 72.87 
2-IMLN 14.49 34.95 48.87 58.06 14.48 34.95 48.87 58.07 
3-IMLN 11.15 26.92 39.45 48.65 11.14 26.90 39.45 48.65 

 

It can be seen in Table 7.16 that the results from the IMLN simulation and from 

analytical solutions are again in strong agreement: the average difference is less than 0.01 

percentage point and the maximum difference is 0.02 percentage point. 

In a similar fashion than for other severity levels, the probability of being in a minor 

degradation state for the architecture is given by: 

 MFmMFm PPP −=  (7.58) 

From the results given in Table 7.13 and Table 7.16, it can be calculated and the results 

are shown in Table 7.17. 
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Table 7.17. Probabilities of being in a minor degradation state for monolith and networked 
architectures (in percentage points) 

15
Fα  

15
Mα  

15
mα  

Architecture 
Pm – IMLN simulation Pm – Analytical results 

Time spent on-orbit (years) Time spent on-orbit (years) 
1 5 10 15 1 5 10 15 

0.05 0.05 0.05 
Monolith – – – – 5.36 9.62 11.86 13.17 
2-IMLN 4.32 8.09 10.33 11.76 4.30 8.07 10.31 11.74 
3-IMLN 4.20 7.72 9.79 11.13 4.20 7.72 9.79 11.13 

0.05 0.05 0.20 
Monolith – – – – 9.57 17.30 21.19 23.34 
2-IMLN 4.93 10.50 14.28 16.86 4.93 10.48 14.25 16.83 
3-IMLN 4.27 8.37 11.22 13.30 4.28 8.36 11.21 13.29 

0.20 0.20 0.20 
Monolith – – – – 11.50 18.04 19.83 20.08 
2-IMLN 6.85 15.53 20.18 22.46 6.85 15.52 20.18 22.45 
3-IMLN 4.96 12.09 17.43 20.83 4.94 12.09 17.43 20.84 

 

All the results regarding the total failure, major degradation and minor degradation can be 

presented in a more practical representation, for example for the case 15.015 =mMFα  

( 05.015 =Fα , 05.015 =Mα  and 05.015 =mα ) as shown in Figure 7.56. 

 

Figure 7.56. Probability of being in degraded states for the space architectures in case 1 
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Figure 7.56 represents the probability of total failure of the architecture in black, of major 

degradation in grey and minor degradation in white. The total probability to be in a 

degraded state (i.e., not fully operational) is shown at the top of the stacked bars. Figure 

7.56 gives a complete comparative survivability analysis of the architectures under 

consideration in the case of the considered endogenous failures and performance 

metric, as all the degraded states are represented together. For example, it can be seen in 

Figure 7.56 that after 15 years on orbit, the probability of being in a degraded state has 

been reduced by 7.9 percentage points by considering a 2-IMLN architecture, and by 9.7 

percentage points with a 3-IMLN. This reduction directly translates in a gain in the 

probability of being fully operational. In the same way than for total failures and major 

anomalies, the networked architectures behave better with respect to minor anomalies in 

this particular setting, with an advantage to networks with more spacecraft related to the 

networkable subsystem/technology. 

 The results for case 2 and case 3 are given Figure 7.57 and Figure 7.58 respectively. 
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Figure 7.57. Probability of being in degraded states for the space architectures in case 2 

 

 

Figure 7.58. Probability of being in degraded states for the space architectures in case 3 

0.038 0.025 0.025

0.085
0.059 0.057

0.119
0.085 0.082

0.144
0.105 0.100

0.047
0.035 0.035

0.096

0.075 0.072

0.127

0.102 0.098

0.148

0.122 0.116

0.096

0.049 0.043

0.173

0.105
0.084

0.212

0.143

0.112

0.233

0.168

0.133

0.181

0.110 0.102

0.353

0.239

0.213

0.457

0.330

0.291

0.525

0.396

0.349

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
ro

b
ab

ili
ty

1 year 5 years 10 years 15 years

Time after successful orbit insertion

Total failure
Major degradation
Minor degradation

M      2      3 M      2      3 M      2      3 M      2      3

0.080
0.029 0.025

0.171

0.076 0.060

0.234

0.116 0.089

0.279

0.148
0.113

0.096

0.047 0.037

0.180

0.118
0.088

0.224

0.171

0.131

0.248

0.208

0.166

0.115

0.068
0.049

0.180

0.155

0.121

0.198

0.202

0.174

0.201

0.225

0.208

0.291

0.145
0.111

0.532

0.349

0.269

0.656

0.489

0.395

0.729

0.581

0.487

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
ro

b
ab

ili
ty

1 year 5 years 10 years 15 years

Time after successful orbit insertion

Total failure
Major degradation
Minor degradation

M      2      3 M      2      3 M      2      3 M      2      3



256 
 

In carefully examining Figure 7.57 and Figure 7.58, a familiar phenomenon can be 

observed, as it was the case for PM: in both cases (case 2 and case 3), 20.015 =mα ; the 

variable is 15
MFα  which increased from 0.10 to 0.40. As expected, PF and PM increased, but 

Pm was also impacted: for example, after 15 years, the probability of minor degradation 

for the monolith architecture shifted from 23.34% to 20.08%, from 16.83% to 22.45% for 

the 2-IMLN and from 13.29% to 20.84% for the 3-IMLN20. This implies that for a 

constant probability of minor degradation for the networkable subsystem/technology (αm), 

the probability of minor degradation of the complete architecture is affected by the 

variation in the probability of being in a severe degradation state of the networkable 

subsystem/technology (αMF). As a consequence, Pm is not solely a function of αm, but 

depends on αm, αM
 and αF. 

Net gain and network efficiency in the case of minor anomalies. Net gains for the 

minor–major–failed state ∆mMF can be defined for the IMLN approach in a similar 

fashion than for other severity level. 

 mMFmMFmMF PP IMLN-2monolithIMLN-2 −=∆  (7.59) 

 mMFmMFmMF PP IMLN-3monolithIMLN-3 −=∆  (7.60) 

Due to the relationship between PF, PM and Pm, the net gain for the minor degradation 

state ∆m can be computed as: 
                                                 
20 Note that the probabilities of being in a minor degradation state are higher for the space-based networks 
than for the monolith architecture. This phenomenon is commented in more depth later with efficiency 
considerations. 
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 MFmMFmmm PP IMLN-2IMLN-2IMLN-2monolithIMLN-2 ∆−∆=−=∆  (7.61) 

 MFmMFmmm PP IMLN-3IMLN-3IMLN-3monolithIMLN-3 ∆−∆=−=∆  (7.62) 

Note that the values of ∆m are also dependent on the choice of 15
MFα . 

In addition, network efficiency for minor–major–failed state, ηmMF, can also be defined as: 

 
mMF

mMF
mMF

0

IMLN2
IMLN2 ∆

∆
= −

−η  (7.63) 

 
mMF

mMF
mMF

0

IMLN3
IMLN3 ∆

∆
= −

−η  (7.64) 

with: 
 mMFmMFmMF PP 0monolith0 −=∆  (7.65) 

where )(0 tPmMF is the probability of an anomaly or failure for the architecture with a 

networkable subsystem/technology without anomalies or failure (αmMF = 0). 

Finally, the network efficiency with respect to major degradation, ηm, can be obtained as: 

 
m

m
m

0

IMLN2
IMLN2 ∆

∆
= −

−η  (7.66) 
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m

m
m

0

IMLN3
IMLN3 ∆

∆
= −

−η  (7.67) 

where: 
 MFmMFm

000 ∆−∆=∆  (7.68) 

The network efficiency in the case of the minor–major–failed state (ηmMF) behaves in the 

same fashion than ηMF and ηF with their corresponding15α : it decreases with 15
mMFα  

increasing. Let us concentrate instead on η
m: this efficiency represents how well the 

network tackles minor anomalies in the networkable subsystem/technology. Figure 7.59 

presents the variations of ηm according to the anomaly and failure behavior of the 

networkable subsystem/technology. 

 

Figure 7.59. Network efficiency ηm for the 2-IMLN architecture 
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In Figure 7.59, the light grey curve corresponds to case 1, the dark grey curve 

corresponds to case 2 and the black curve to case 3. It can be seen that the network 

efficiency for minor degradation decreases between case 1 and case 2, where the 

probability of minor anomaly in the networkable subsystem/technology increases while 

keeping constant major anomaly and total failure probabilities. A more dramatic decrease 

occurs between case 2 and case 3: minor anomalies are kept at the same level of 

occurrence, but the major anomalies and total failures are drastically increased. It results 

in a large decrease in efficiency for rooting out minor anomalies. The efficiency even 

becomes negative for longer periods on-orbit, translating the fact that the space-based 

architecture has a higher probability of being in a minor degradation state than the 

monolith architecture at these times. This phenomenon can be observed in Figure 7.58 at 

10 and 15 years on-orbit. This dependence of η
m with major anomalies and total failures 

mirrors the one for major anomalies with total failures. A similar effect is shown in 

Figure 7.60 for the 3-IMLN architecture, in a lesser way. 
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Figure 7.60. Network efficiency ηm for the 3-IMLN architecture 
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Figure 7.61. Comparison of network efficiencies of different severity levels for the 2-IMLN 
architecture in case 1 

 

 

Figure 7.62. Comparison of network efficiencies of different severity levels for the 3-IMLN 
architecture in case 1 
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7.3.10. Survivability Analysis and Use of the η–∆ Graph 

All the degradation states defined in this dissertation have been investigated in the 

previous subsections, and a global evaluation of the survivability of the architectures can 

be conceived through the η–∆ graph. Indeed, for a chosen performance metric, the η–∆ 

graph visualizes the potential gains or losses of an architecture under consideration with 

respect to the reference monolith architecture. In addition, if several architectures are 

under studied concurrently, the η–∆ graph allows a quick comparative analysis of the 

survivability characteristics of these architectures. As a consequence, the η–∆ graph 

introduced in this thesis is a useful tool for the designers to explore the design space 

for survivability considerations and help inform architectural choices based on 

shareholder preferences. 

Some examples of the ways the η–∆ graph can be used are presented next by considering 

the three cases introduced in section 7.3.9. They are recalled below: 

• Case 1: 05.015 =Fα , 05.015 =Mα , 05.015 =mα and resulting in 10.015 =MFα  and 

15.015 =mMFα ; 

• Case 2: 20.015 =Fα , 05.015 =Mα , 05.015 =mα and resulting in 10.015 =MFα  and 

30.015 =mMFα : only αm was increased from case 1; 

• Case 3: 20.015 =Fα , 20.015 =Mα , 20.015 =mα and resulting in 40.015 =MFα  and 

60.015 =mMFα : only αMF was increased from case 2. 
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For a given time and for each architecture, the net gains ∆F, ∆M, ∆m, ∆MF and ∆mMF, as 

well as the associated network efficiencies η
F, ηM, ηm, ηMF and ηmMF. For the case 1 

and at t = 5 years, the resulting η–∆ graph is shown in Figure 7.63. 

 

Figure 7.63. Complete η–∆ graph for 2-IMLN and 3-IMLN in case 1 
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o The square markers represent the 2-IMLN architecture; 

o The triangle markers represent the 3-IMLN architecture. 

• Marker color: 

o The white markers represent the network efficiencies and net gains 

associated with minor degradation, i.e., η
m and ∆m; 

o The solid grey markers represent the network efficiencies and net gains 

associated with major degradation, i.e., η
M and ∆M; 

o The black markers represent the network efficiencies and net gains 

associated with total failure, i.e., ηF and ∆F; 

o The markers with dense dots represent the network efficiencies and net 

gains associated with major degradation or total failure, i.e., ηMF and ∆MF; 

o The markers with scarce dots represent the network efficiencies and net 

gains associated with any type of degradation, i.e., ηmMF and ∆mMF. 

As an example, it can be seen on Figure 7.63 for the 2-IMLN architecture that the 

network efficiencies and net gains (in percentage points) at 5 years on-orbit are: 

• (ηm, ∆m) = (0.787, 1.55); 

• (ηM, ∆M) = (0.859, 2.05); 

• (ηF, ∆F) = (0.920, 2.53); 

• (ηMF, ∆MF) = (0.892, 4.58); 

• (ηmMF, ∆mMF) = (0.863, 6.14); 
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This shows that, for example, the space-based network with two spacecraft improves the 

probability of experiencing a severe degradation (major degradation or total failure) of 

the on-orbit performance by 4.6 points with respect to the monolith architecture under the 

considered conditions. This architecture performs reasonably well for this level of 

severity as the associated efficiency is about 0.9. 

In addition of assessing the survivability improvements related to the consideration of a 

2-spacecraft network, Figure 7.63 allows the comparison with an additional architecture 

consisting of a 3-spacecraft network. It can be seen for example, that the 3-IMLN 

architecture provides an additional half percentage point on the net gain for the severe 

degradation state ( 08.53 =∆ −
MF

IMLN ), with a much higher efficiency (about 0.99 compared to 

the 0.9 efficiency of the 2-IMLN). In the same fashion, the 3-IMLN adds an additional 

0.8 percentage point ( 98.63 =∆ −
MF

IMLN ) with a 0.98 efficiency. These high efficiencies do 

not translate in significantly higher gains, and as a consequence, adding a third spacecraft 

(or more) to the network might not be the best option from the survivability point of view 

in this particular case. 

Let us now consider case 2: the probabilities of the networkable subsystem/technology 

experiencing a major anomaly and a total failure remain the same, but the probability of 

experiencing a minor anomaly increased significantly. The resulting η–∆ graph is shown 

in Figure 7.64. 
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Figure 7.64. Complete η–∆ graph at 5 years for 2-IMLN and 3-IMLN in case 2 
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change, to reflect the change in 15
mα . The net gains at 5 years associated with the minor 
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As explained before, the associated network efficiencies are lower than in case 1 due to 

the increase in 15
mα . The difference between the 2-IMLN and 3-IMLN remains small for 

severe degradation states, but becomes potentially significant for any type of degradation: 

the 3-IMLN adds an additional 2.6 percentage points ( 02.143 =∆ −
MF

IMLN ) with a 0.95 

efficiency, only 0.8 percentage points from the ideal case. For stakeholders with high 

requirements on spacecraft to be fully operational, the 3-IMLN architecture might be a 

good candidate to consider. Adding more spacecraft to the network might not be 

interesting as the 3-IMLN performance is very close to the ideal case. Figure 7.64 clearly 

shows that the differences between 2-IMLN and 3-IMLN architectures mainly come from 

the minor anomalies in the networkable subsystem/technology. 

The last case, case 3, is obtained from case 2 by increasing the probabilities of the 

networkable subsystem/technology experiencing major anomalies or total failures. The 

resulting η–∆ graph is shown in Figure 7.65. 
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Figure 7.65. Complete η–∆ graph at 5 years for 2-IMLN and 3-IMLN in case 3 

 

Figure 7.65 clearly shows a significant jump in net gains for the major degradation state, 

the total failure state, the severe degradation state (the sum of the previous two) and the 

degraded state. For example, the net gain at 5 years for the severe degradation state is 

15.7 percentage points for the 2-IMLN architecture, with an associated efficiency of 0.71, 

while it is 20.3 points for the 3-IMLN architecture with an associated efficiency of 0.91. 

For this type of severity, the space-based network has a clear advantage over the 

monolith spacecraft (over 18 or 26 percentage point difference with the 2-IMLN and 3-

IMLN for all types of anomalies and failures), with a significant edge for the 3-IMLN 

over the 2-IMLN. The 2-IMLN suffers from low efficiencies as it can be seen in Figure 

7.65.  Also note that the net gains and efficiencies for the minor degradation state are 

lower in case 2 than in case 3. This is consistent with previous findings that show that the 

networks prioritize their shielding effect to the most severe degradation type with higher 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
et

 G
ai

n
 (p

er
ce

n
ta

ge
 p

o
in

ts
)

Network Efficiency



269 
 

15α . Finally, it can be observed that the results from the 3-IMLN are significantly 

different from the ideal case, indicating that networks with more spacecraft could be 

considered for survivability improvements. 

The three η–∆ graphs shown above present interesting trends to the designer, especially 

when considered dynamically, as illustrated in Figure 7.66. This figure gathers the three 

previous figures and can be considered as the result of tweaking 15
Fα , 15

Mα  and 15
mα . This 

could be for example integrated in a real-time simulation interface (see future work 

section for more details). Note that the scale has been altered so that it is common to all 

graphs for an easier visualization of the trends. 

 

Figure 7.66. Evolution of the η–∆ graph at 5 years for 2-IMLN and 3-IMLN with the fa ilure behavior 
of the networkable subsystem/technology 
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time axis is shown in Figure 7.67, for case 1, and it highlights all the trends discussed in 

the previous sections. 

 

Figure 7.67. Evolution of the η–∆ graph for 2-IMLN and 3-IMLN with respect to on-orb it time 
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7.4. Summary of selected results 

This chapter provided a significant amount of results and this conclusion summarizes a 

selected number of them. The first section investigated specific subsystems: the 

Telemetry, Tracking and Command (TTC) subsystem, and then proceeded to analyze the 

bigger Command and Data Handling (C&DH) subsystem. It was demonstrated that the 

consideration of a simple 2-spacecraft network provides a significant improvement in 

terms of survivability with respect to endogenous failures within these subsystems. 

Adding more spacecraft to the network for this purpose was shown to provide limited 

incremental benefits. 

The following section then took a more general approach by considering a general non-

descriptive networkable subsystem/technology and investigated the survivability 

characteristics of space-based networks chosen as they represent the building brick of 

more complex space-based networks. Several implications for space-based network 

design were observed, and a selected number is presented below. For example, it was 

shown that the worse degradation and failure behavior the networkable 

subsystem/technology has, the biggest benefit from a survivability point of view comes 

by adding more spacecraft to the network. It was also demonstrated that the space-based 

networks shield in priority from the worse failures, and then progress towards anomalies 

with decreasing levels of severity. A final example resides with the conclusion that the 

reliability of the wireless links in the network is critical to ripe all the survivability 

advantages enabled by the network, and especially infant mortality failures should be 

rooted out. 
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It is important to keep in mind the settings (e.g., class of threat, architecture functional 

structure, performance metric) of the survivability analysis to interpret the domain of 

applicability of the results provided in this chapter and not over-estimate their generalities. 

The results should not be generalized without proper analysis to all designs of space-

based networks or monolith architectures and extrapolated to other classes of on-orbit 

shocks or threats to space systems. The survivability framework proposed in this thesis 

offers fruitful venue for further research and adaptation towards the survivability analysis 

of a broad range of architectural and design choices for space systems (and other 

engineering artifacts) and given different classes of shocks. Indeed, beyond survivability 

analyses pertaining to chosen architectures in this dissertation, this chapter introduced 

useful tools and metrics for the spacecraft designer to conduct his own conceptual design 

analyses, such as the net gain, the network efficiency and the dynamically evolving η–∆ 

graph. In conclusion, beyond specific results, this dissertation introduced a general 

framework and techniques that allow precisely quantifying survivability features of 

spacecraft and space-based networks. 
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CHAPTER 8  

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

 

8.1. Summary 

This dissertation explored the relationship of spacecraft and space-based networks with 

time, and more particularly how they degrade and fail in time. The focus of this 

dissertation was twofold: the first part dealt with reliability and multi-state failure 

analyses based on the statistical analysis of a large sample of Earth-orbiting satellites, 

when the second part introduced a novel framework for the survivability analysis of 

space-based networks. 

Chapter 2  and Chapter 3 are the two installments of Part 1. Chapter 2 was devoted to 

spacecraft catastrophic failures and presented an extensive reliability analysis of 

spacecraft and spacecraft subsystems, through nonparametric studies, parametric model 

development and comparative analyses of subsystem contribution to spacecraft 

unreliability. Chapter 3 extended the reliability analysis beyond the binary approach of 

reliability analysis in its traditional understanding (an item being either operational or 

failed) to analyze anomalies (or partial failures that do not necessary result in the total 

loss of the spacecraft) of spacecraft subsystems. Chapter 3 presented both a theoretical 

approach to conduct multi-state analyses and its practical application to spacecraft 

subsystems. The results refined the comprehension of the progression towards complete 
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failure of the spacecraft subsystems, and help identify problematic subsystems (in 

addition to the results in Chapter 2) for spacecraft designers to hone in. 

As mentioned above, Part 2 was dedicated to the survivability analysis of space-based 

networks, a newly introduced concept in the space industry that promotes the sharing of 

on-orbit resources with neighboring orbiting spacecraft. After reviewing the survivability 

concept and the current state of network analysis, Chapter 4 introduced a survivability 

framework and proposed an approach to model space-based networks, namely the 

interdependent multi-layer network approach, to compensate for the perceived 

shortcomings of current tools. As survivability is the focus of this part, Chapter 5 

established the theoretical basis for anomaly and failure propagation across the network 

interdependent multi-layer model. Chapter 6 was dedicated to the technical validation and 

characteristics of the survivability analysis using the interdependent multi-layer network 

modeling, by comparing its performance to alternative modeling techniques such as 

stochastic Petri nets, or by exploring the scalability of the proposed model. As the 

validation process demonstrated that the output of the interdependent multi-layer network 

modeling can be trusted, Chapter 7 presented survivability analyses of specific and non-

descriptive subsystems/technologies, and then leveraged these results to provide insights 

into the conceptual design of future space systems, and potentially space-based networks, 

from a survivability point of view. 

8.2. Contributions 

In summary, the contributions of this thesis are as follows: 
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• Development of reliability models for spacecraft and spacecraft subsystems, in 

response of the identified need for recent and flight-based spacecraft reliability. 

This will provide a useful feedback to the space industry and help spacecraft 

manufacturers prioritize and hone in on problematic subsystems that would 

benefit most from reliability improvements;  

 
• Development of formal techniques to evaluate multi-state failure behavior and 

their application to spacecraft subsystems, to improve the understanding of the 

spacecraft subsystems failure behavior beyond the traditional binary approach of 

reliability; 

 
• Introduction of a survivability framework, as well as an interdependent multi-

layer approach to represent and analyze networks with heterogeneous nodes; 

 
• Development of theoretical foundations for the definition of interdependent multi-

layer network proposed in this dissertation, for the anomaly and failure 

propagation across the network through algorithm, and its validation of for 

survivability analyses ; 

 

• Leverage of the survivability results from the interdependent multi-layer network 

approach to gain insights for architectural choices of space-based networks. 
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8.3. Recommendations for future work 

8.3.1. Spacecraft Failure Data, Further Reliability Analyses and Physics of 

Failure Considerations 

As mentioned in the thesis, failure data for spacecraft is limited and the current publicly 

available databases are not complete, in particular with respect to minor or temporary 

failures. It is worth addressing a common argument, which is that competitive sensitivity 

is one reason for the lack of published data and statistical analysis of on-orbit reliability. 

Although this might be true for spacecraft manufacturers, it is not the case for spacecraft 

operators (private or government agencies) whose interests are better served by 

transparent reliability analyses of different spacecraft buses. Furthermore, spacecraft 

manufacturers could also benefit, in the long-term, in having spacecraft reliability 

analyzed and published. For example, such studies would constitute a transparent 

benchmark against which spacecraft manufacturers can compete and hence improve their 

products. The creation of such databases would allow using the tools presented in this 

thesis to improve the reliability and multi-state failure models. It could also be interesting 

to have access to the raw telemetry data, instead of the already processed information 

shown in current databases. Another reason for the incompleteness of spacecraft failure 

databases lies with the following: Chapter 2 showed that 5% to 10% of on orbit failures 

are ascribed to an “unknown” cause and subsystem. This is indicative of the extent of 

spacecraft State Of Health (SOH) monitoring and telemetry points. Spacecraft health 

monitoring and diagnostic issues deserve to be carefully analyzed and discussed in future 

work.  
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In this dissertation, it was implicitly assumed that subsystem failures are independent. In 

reality, some subsystems may have dependent anomalies and failures, for example the 

thermal and power subsystems. Unfortunately, the information available in the database, 

and sometimes in the satellite operator’s incident report itself, does not explicitly address 

failure dependence. For example, a spacecraft Class I failure is ascribed to only one 

subsystem, and a partial failure of a subsystem has its timing and severity recorded. As 

noted previously, the statistical analysis in this work is enabled by and confined to the 

data available. As a result, common-cause and dependent anomalies and failures of 

spacecraft subsystems cannot be clearly identified and statistically analyzed. Such 

analyses however are of importance and constitute fruitful avenues for future research 

when the requisite data are collected. 

Finally, the statistical approach adopted in this work pushed the limit in the development 

of actionable results of spacecraft reliability and subsystems multi-state failures. The next 

step ought to focus on and investigate the physics of failure of spacecraft and spacecraft 

subsystems—their actual failure modes and mechanisms. 

8.3.2. Interdependent Multi-Layer Network Tool 

This dissertation presented the theoretical foundations of the interdependent multi-layer 

networks, as well as the failure propagation across space-based networks. This thesis also 

introduced metrics and tools to efficiently gauge the survivability characteristics of the 

architectures under consideration. Future work on the subject could be related to the 

creation of an integrated software with a graphical interface to allow the quick building of 
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the space-based network and dispense of the manual creation of the adjacency and 

interlayer matrices and the mapping function. This integrated tool could also be coded in 

a more performing language, such as C or Fortran, to compensate for the memory and 

speed shortcomings of MATLAB, used in this dissertation. The use of these languages 

could enable the use of Monte Carlo simulations with higher numbers of runs for an 

enhanced output precision, and bring the simulation time to allow quasi-real time 

network modifications. Finally, a graphic interface for the presentation of the simulation 

output, using the η–∆ graph dynamically by exploring different on-orbit time horizons, or 

subsystems failure behaviors as done in 7.3.10 could be a useful tool for the spacecraft 

designer. 

8.3.3. Generalization and Extension of Applicability 

In this thesis, non-repairable subsystems were considered: it can be seen in the multi-state 

failure diagram (Figure 3.3) as there is no arc towards less severe degradation states. This 

choice comes from the fact that maintenance is quasi-impossible on spacecraft (no easy 

physical access) and that very few actual transitions occurred in the “healing” direction in 

the spacecraft sample studied in this dissertation. In addition, the definition of some 

classes of events in the SpaceTrak database clearly specifies that the anomalies or failures 

pertaining to these classes were non-repairable.  However, the multi-state approach 

presented in this thesis could be applied to repairable systems as part of future work by 

extending the process to derive their associated probabilities of transitioning (in the same 

fashion than for the transitions presented in this dissertation). Further work could also 

capture additional aspect of different repair policies (corrective versus preventive 
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maintenance, or different types of repairs (e.g., as good as new)) by modulating the 

probability distributions. In the case of the interdependent multi-layer approach, repairs 

could also be handled by considering an additional effect that would re-enable the node 

functionality that was rendered unavailable through the interdependency effects. 

Also in this thesis, all the nodes belonging to the same layer were assumed to share the 

same degradation and failure behavior. Dissimilar redundancy (i.e., the redundant node 

does not have the same degradation and failure behavior) can be considered in future 

work by implementing different probability distributions for the nodes of interest. 

Finally, the interdependent multi-layer approach was applied to space-based networks 

and the modeling of the nodes and links, as well as the interdependency effects were 

tailored to this type of systems. However, the interdependent multi-layer approach has a 

potential broad appeal to the modeler, as it could be extended in future work to model 

different types of networks, or even other engineering systems (not necessary networks in 

the traditional sense) where clear functionalities can be defined and are distributed across 

the architecture: the proposed approach in this thesis can be adapted to these systems by 

properly defining the nodes and links, as well as introducing other interdependency 

schemes if need be. For example in the case of space systems, it is suggested that the 

interdependent multi-layer framework can be adapted to analyze redundancy within 

monolith spacecraft subsystems. 
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8.3.4. Multi-Criteria Analysis 

In this dissertation, the survivability characteristics were studied by determining the 

probability of unavailability of the payload node. More complex architectures with 

several payloads for example, might require more advanced survivability metrics and part 

of the future work on space-based network survivability could be related to the 

investigation of appropriate metrics pertaining to these cases. 

All the analyses conducted in this dissertation were done from a survivability point of 

view by considering endogenous failures, implying that the failures arising in the network 

were generated according to failure distributions internal to the spacecraft subsystems. 

However, recall that survivability can be defined as the “capability of a system to fulfill 

its mission, in a timely manner, in the presence of attacks, failures, or accidents” (Ellison, 

et al., 1999). As a consequence, another aspect of the survivability of space-based 

networks is their ability to withstand targeted attacks, such as collisions with orbital 

debris, or anti-satellite (ASAT) attacks from antagonist entities. Exploring the space-

based network response with respect to the modulation of the threat profile (random or 

targeted failures) might lead to interesting insights for the choice or design of 

architectures. 

Also, survivability enhancements are usually coming at a cost. In the case study, the 

survivability improvement was obtained by designing, manufacturing and launching an 

additional spacecraft. Future work would be in the form of systematically evaluating the 

cost of space-based networks in addition to its survivability metrics. 
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The consideration of survivability metrics, cost and potentially other performance metrics 

for space-based networks paves the way for multi-criteria or multi-objective analyses, 

with the use of multi-criteria decision support tools for the spacecraft designer. 
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