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ی ی  وج ،ا دا   ون 

ن و یو   ،  از  م؟ه     کا

ده ن   ری  زان   ا

دی ی  و ن خا   ا

ی ه  یآ م    م وا

ی ه  ی و آ مم    وا
  

ی د د ی  درضا  ر    د

  
Do you know why I—like a wave [in the ocean]—

constantly wane while escaping myself?

Because on this dark horizon, on this imminent silence,

I don’t see what I want,

I don’t want what I see . . .

—M. R. Shafiei Kadkani1

1M. R. Shafiei Kadkani is a Distinguished Professor of Persian Literature at the University of
Tehran. The poem is translated from Persian.
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SUMMARY

Electroencephalographic recordings from the scalp provide essential measures of

mesoscopic electrical activity in the neocortex. The rhythmic patterns of variations

observed in the electroencephalogram result from the dynamic activity that occurs,

possibly heterogeneously, in a wide area of the neocortex. Such spatio-temporal

electrical activity can be effectively modeled using mean field theory.

The mesoscopic model of the electroencephalographic activity in the neocortex

developed by Liley, Cadusch, and Dafilis [Network, 13 (2002), pp. 67–113] is a mean

field model that has been widely used in the literature to study different patterns

of rhythmic activity in conscious and unconscious states of the brain. This model

is presented as a system of coupled ordinary and partial differential equations with

periodic boundary conditions.

In this dissertation, a mathematical analysis of this mean field model is provided

using infinite-dimensional dynamical systems theory and the theory of partial dif-

ferential equations. Specifically, existence, uniqueness, and regularity of weak and

strong solutions of the model are established in appropriate function spaces, and the

associated initial-boundary value problems are proved to be well-posed. Moreover,

sufficient conditions are developed for the phase spaces of the model to ensure non-

negativity of certain quantities, as required by their biophysical interpretation.

To analyze the global dynamics of the model, semidynamical system frameworks

are established and the semigroups of weak and strong solution operators are proved

to possess bounded absorbing sets for the entire range of biophysical values of the

parameters of the model. Moreover, challenges involved in establishing a global at-

tractor for the model are discussed, and in particular, it is shown that there exist sets

of parameter values for which the constructed semidynamical systems do not possess

a global attractor due to the lack of the compactness property.
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To demonstrate an application of this model to problems of computational neu-

roscience, the emergence of rhythmic activity in the neocortex is studied using bi-

furcation theory. The results predicted by the bifurcation analysis are verified by

numerically solving the equations of the model using COMSOL Multiphysics R©.

Finally, using the analytical and computational results developed in this disser-

tation, instructive insights are provided into the complexity of the behavior of the

model, and suggestions are made for future research.
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CHAPTER 1

INTRODUCTION

Inspired by the seminal work of Alan Hodgkin and Andrew Huxley on modeling

the flow of ionic currents through the membrane of a giant nerve fiber, numerous

biophysical and mathematical models have been developed towards understanding

the neurophysiology of the central nervous system and the underlying mechanism of

the various phenomena that emerge during its vital operation in the body, many of

which still remain a mystery to researchers [1, 2, 3, 4]. In particular, in exploring

the core component of the central nervous system—the brain—substantial effort has

been devoted to developing models at different levels of scope, from the molecular

and intercellular level, dealing with the transportation of ions and the enzymatic

kinetics of neurotransmitter-receptor binding at ion channels, to the single cell and

intracellular level, dealing with the creation and transmission of action potential, to

the population and neuronal network level, dealing with the average behavior and

synchronized activity of neuronal ensembles, to the system level, dealing with the

systematic operation and interaction between cortical and subcortical components of

the brain, and finally, to the behavioral and cognitive level, dealing with the integrated

mental activity and the creation of mind [5, 6, 7, 8, 9, 10, 11, 12].

As an effective methodology for developing models at the population and network

level, mean field theory has been employed to construct approximate models for

interconnected populations of neurons by averaging the effect of all other neurons on

a given individual neuron inside a population. The resulting averaged neuron can

be used to analyze the overall temporal behavior of a single population of neurons—

leading to a neural mass model—or can be considered as a locally averaged component
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of a continuum of neural populations—leading to a spatio-temporal mean field model.

These models are particularly useful in analyzing the electrophysiological activity of

neuronal ensembles using local field potentials and electroencephalograms (EEGs)

[13, 14, 15, 16].

The evolution equations that describe a mean field model of neural activity in

the cortex are in the form of a system of partial differential equations (PDEs), or a

system of coupled ordinary and partial differential equations. The theory of infinite-

dimensional dynamical systems is hence used to analyze the global dynamics and

longterm behavior of these systems. The classical approach to this problem follows

several steps. First, existence, uniqueness, and regularity of solutions are established

for all positive time in appropriately chosen problem-dependent function spaces, and

the well-posedness of the problem is confirmed. Second, a semidynamical system

framework is constructed over a positively invariant complete metric space—the phase

space for the evolution of the solutions—and is shown to possess bounded absorbing

sets. Asymptotic compactness of the semigroup of solution operators is then ensured

to guarantee the existence of a global attractor, which is a compact strictly invariant

attracting set containing all the information regarding the asymptotic behavior of the

model. Third, the Hausdorff or fractal dimension of the global attractor is estimated

to show that the attractor is finite-dimensional, so that the asymptotic dynamics

of the system is determined by a finite number of degrees of freedom. Fourth, the

existence of an inertial manifold is established, which is a smooth finite-dimensional

invariant manifold containing the global attractor. Consequently, the dynamics on

the attractor can be presented by a finite set of ordinary differential equations (ODEs)

and further characterized to give the overall picture of the longterm behavior of the

system [17, 18, 19, 20, 21].

In this dissertation, we investigate the mean field model proposed in [22] for an

understanding of the electrical activity in the neocortex as observed in the EEG. This
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model, which is comprised of a system of coupled ordinary and partial differential

equations in a two-dimensional space, has been widely used in the literature to study

the alpha- and gamma-band rhythmic activity in the cortex [23, 24], phase transition

and burst suppression in cortical neurons during general anesthesia [25, 26, 27], the

effect of anesthetic drugs on the EEG [28, 29], and epileptic seizures [30, 31, 32,

33]. Open-source tools for numerical implementation of the model and computation

of equilibria and time-periodic solutions are developed in [34]. Complexity of the

dynamics of the model, including periodic and pseudo-periodic solutions, chaotic

behavior, multistability, and bifurcation are studied in [35, 36, 37, 38, 39, 40, 41].

The above results, however, are mainly computational or use approximate ver-

sions of the model. A rigorous analysis of the dynamics of the model in an infinite-

dimensional dynamical system framework as outlined above is not available in the

literature. In particular, the basic problems of well-posedness of the initial-boundary

value problem associated with the model and regularity of the solutions remain un-

investigated. It is not known under what conditions, if any, the components of the

solutions of the model that are associated with nonnegative biophysical quantities

remain nonnegative for all time. The solutions that take negative values for such

quantities—even for a small interval of time in the distant future—cannot represent

a biophysically plausible dynamics of the electrical activity in the neocortex.

The aim of this dissertation is to study the global dynamics of the mean field

model discussed above, to ensure its biophysical plausibility, and to provide the ba-

sic analytical results required for characterization of the longterm dynamics of the

model. Specifically, we follow the first two steps of the classical analysis approach to

investigate the problem of existence or nonexistence of a global attractor.

This dissertation is organized as follows. In Chapter 2, we introduce notation and

recall key definitions that are necessary for developing the results. In Chapter 3, we

give a description of the anatomical structure of the neocortex and the physiological
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interactions that underlie the construction of the model. Moreover, we present the

mathematical structure of the model as a system of coupled ordinary and partial

differential equations with initial values and periodic boundary conditions. In Chapter

4, following the first step of the classical analysis approach, we prove the existence

and uniqueness of weak and strong solutions for the proposed initial value problem

and analyze the regularity of these solutions.

As in the second step of the classical analysis approach, in Chapter 5 we define

semigroups of weak and strong solution operators and show their continuity proper-

ties. Moreover, we establish sufficient conditions on the phase spaces as to ensure

biophysical plausibility of the evolution of the solutions under the associated semidy-

namical systems. In Chapter 6, we show that the semigroups of solution operators

possess bounded absorbing sets for all possible values of the biophysical parameters

of the model. In Chapter 7, we discuss challenges involved in establishing a global at-

tractor for the model, and in particular, we show that there exist sets of values for the

biophysical parameters of the model such that the associated semigroups of solution

operators do not possess a compact global attractor. In Chapter 8 we consider an

application of the model in studying rhythmic oscillations in the electrical activity in

the brain. We conclude the dissertation in Chapter 9 with a discussion on the results

developed in the dissertation and their application to computational analysis of the

model.
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CHAPTER 2

NOTATION AND PRELIMINARIES

The notation used in this dissertation is fairly standard. Specifically, Rn denotes

the n-dimensional real Euclidean space and Rm×n denotes the space of real m × n

matrices. A point x ∈ Rn is presented by the n-tuple x = (x1, . . . , xn) or, when

it appears in matrix operations, by the column vector x =

[
x1 · · · xn

]T

, where

(·)T denotes transpose. The nonnegative cone {x ∈ Rn : xj ≥ 0 for j = 1, . . . , n}

is denoted by Rn
+. A sequence of points in Rn is denoted by

{
x(l)
}∞
l=1

, with the jth

component of x(l) denoted by x(l)
j . Moreover, the trace of a square matrix A ∈ Rn×n is

denoted by trA, and a block-diagonal matrix D with k blocks D1, . . . , Dk is denoted

by diag(D1, . . . , Dk). For x, y ∈ Rn, we write x ≥ y to denote component-wise

inequality, that is, xj ≥ yj, j = 1, . . . , n. For A,B ∈ Rn×n, we write A ≥ B to denote

that A−B is positive semidefinite. Finally, we denote by 0n×n and In×n the zero and

identity matrices in Rn×n, respectively. We write I for the identity operator in other

vector spaces.

For an inner product space U , we denote the associated inner product by (·, ·)U

and the norm generated by the inner product by ‖·‖U . For a Hilbert space U , we

denote the pairing of U with its dual space U∗ by 〈·, ·〉U . In particular, for U = Rn,

we write (·, ·)Rn and ‖·‖Rn for the standard inner product and the Euclidean norm,

respectively. Similarly, for U = Rm×n, we write (·, ·)Rm×n for the standard inner

product and ‖·‖Rm×n for the associated inner product norm. Moreover, we denote the

vector 1-, 2-, and ∞-norms in Rn by ‖·‖1, ‖·‖2 = ‖·‖Rn , and ‖·‖∞, respectively. The

matrix 1-, 2-, and ∞-norms in Rm×n induced, respectively, by the vector 1-, 2-, and

∞-norms in Rn are denoted by ‖·‖1, ‖·‖2, and ‖·‖∞.
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Let Ω be an open subset of Rn denoting the space domain of a given dynamical

system, with x ∈ Ω denoting a spatial point in Ω. The time domain of the system

is given by the closed interval [0, T ] ⊂ R, T > 0, with the temporal point t. For a

function u : [0, T ]→ R, the kth-order total derivative with respect to t at t0 is denoted

by dkt u(t0). For k = 1, we write dtu(t0). For a function u(x, t) : Ω × [0, T ] → R, the

kth-order partial derivative with respect to t at (x0, t0) is denoted by ∂kt u(x0, t0) and

the kth-order partial derivative with respect to xj at (x0, t0) is denoted by ∂kxju(x0, t0),

j = 1, . . . , n. For k = 1, we write ∂tu(x0, t0) and ∂xju(x0, t0). The gradient of u in

Ω is denoted by ∂xu and is given by ∂xu := (∂x1u, . . . , ∂xnu). The Laplacian of

u in Ω is denoted by ∆u and is given by ∆u := (∂2
x1

+ · · · + ∂2
xn). For a vector-

valued function u(x, t) : Ω× [0, T ]→ Rm, we interpret u(x, t) as the m-tuple u(x, t) =

(u1(x, t), . . . , um(x, t)), where each component uj(x, t), j = 1, . . . ,m, is a scalar-valued

function on Ω×[0, T ]. In this case, ∂xu(x, t) ∈ Rm×n is the gradient of u and the vector

Laplacian ∆u is given by ∆u(x, t) := (∆u1(x, t), . . . ,∆um(x, t)) ∈ Rm, assuming

Cartesian coordinates.

For every integer k ≥ 0, the space of k-times continuously differentiable real-

valued functions on Ω is denoted by Ck(Ω). The space Ck(Ω) consists of all functions

in Ck(Ω) that, together with all of their partial derivatives up to the order k, are

uniformly continuous in bounded subsets of Ω. Moreover, for 0 < λ ≤ 1, the Hölder

space Ck,λ(Ω) is a subspace of Ck(Ω) consisting of functions whose partial derivatives

of order k are Hölder continuous with exponent λ; see [42, sect. 1.18] for details. We

use C∞c (Ω) to denote the space of infinitely differentiable real-valued functions with

compact support in Ω. Moreover, we denote by L1
loc(Ω) the space of locally integrable

real-valued functions on Ω. Then, for every function u ∈ L1
loc(Ω) and any multi-index

α with |α| ≥ 1, the weak partial derivative of u in L1
loc(Ω), of order |α|, is defined by
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the distribution uα that satisfies

∫
Ω

uαφ dx = (−1)|α|
∫

Ω

u∂αφ dx for all φ ∈ C∞c (Ω),

where dx = dx1 · · · dxn is the Lebesgue measure on Rn; see [42, sect. 6.3] for details.

With a minor abuse of notation, we use ∂kt and ∂kx to denote the kth-order weak—

as well as classical—partial derivatives with respect to t and x, respectively. The

distinction will be clear from the context, or will otherwise be explicitly specified.

The Hilbert space of vector-valued Lebesgue measurable functions u : Ω → Rm

with finite L2-norm is denoted by L2(Ω;Rm), with the associated inner product and

norm given by

(u, v)L2(Ω;Rm) :=

∫
Ω

(u(x), v(x))Rm dx, ‖u‖L2(Ω;Rm) :=

[∫
Ω

‖u(x)‖2
Rm dx

] 1
2

.

The Banach space of vector-valued Lebesgue measurable functions u : Ω→ Rm with

finite L∞-norm is denoted by L∞(Ω;Rm), with the norm

‖u‖L∞(Ω;Rm) := ess sup
x∈Ω

‖u(x)‖∞ .

The Sobolev space of vector-valued functions u ∈ Lp(Ω;Rm), whose all lth-order weak

derivatives ∂lxu, l ≤ k, exist and belong to Lp(Ω;Rm×nl), is denoted by W k,p(Ω;Rm).

When p = 2, the Sobolev spaces W k,2(Ω;Rm) are Hilbert spaces for all k ∈ [0,∞),

and are denoted byHk(Ω;Rm) := W k,2(Ω;Rm). Specifically,H0(Ω;Rm) = L2(Ω;Rm),

and H1(Ω;Rm) is a Hilbert space with the inner product

(u, v)H1(Ω;Rm) := (u, v)L2(Ω;Rm) + (∂xu, ∂xv)L2(Ω;Rm×n) .
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Moreover, H2(Ω;Rm) is a Hilbert space with the inner product

(u, v)H2(Ω;Rm) := (u, v)L2(Ω;Rm) + (∂xu, ∂xv)L2(Ω;Rm×n) +
(
∂2
xu, ∂

2
xv
)
L2(Ω;Rm×n2 )

.

Let Ω = (0, ω1)× · · · × (0, ωn), ωj > 0, j = 1, . . . , n, be an open rectangle in Rn.

A function u : Rn → R is called Ω-periodic if it is periodic in each direction, that is,

u(x+ ωjej) = u(x), j = 1, . . . , n, x ∈ Rn,

where ej is the unit vector in the jth direction. Define the space C∞per(Ω) as the

restriction to Ω of the space of infinitely differentiable Ω-periodic functions. Then,

the Sobolev space Hk
per(Ω), k ≥ 0, is defined by the completion of C∞per(Ω) in Hk(Ω);

see [20, Def. 5.37] or, for an equivalent definition, [18, p. 50]. A vector-valued function

u : Rn → Rm is Ω-periodic if each of its components uj : Rn → R, j = 1, . . . ,m, is

Ω-periodic. The spaces C∞per(Ω;Rm) and Hk
per(Ω;Rm) are then defined accordingly. It

follows from Green’s formula that

(−∆u, v)L2
per(Ω;Rm) = (∂xu, ∂xv)L2

per(Ω;Rm×n) ,(2.1) (
(−∆ + I)u, v

)
L2
per(Ω;Rm)

= (u, v)H1
per(Ω;Rm) ,(

−∆u, (−∆ + I)u
)
L2
per(Ω;Rm)

= ‖u‖2
H2

per(Ω;Rm) − ‖u‖
2
L2
per(Ω;Rm) ,

‖(−∆ + I)u‖2
L2
per(Ω;Rm) = ‖u‖2

H2
per(Ω;Rm) + ‖∂xu‖2

L2
per(Ω;Rm×n)

= ‖u‖2
H1

per(Ω;Rm) + ‖∂xu‖2
H1

per(Ω;Rm×n) .

In this dissertation, we interchangeably view the function u(x, t), x ∈ Ω, t ∈ [0, T ],

as a composite function of x and t, as well as a mapping u of t to a function of x,
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that is,

[u(t)](x) := u(x, t), x ∈ Ω, t ∈ [0, T ].

With a minor abuse of notation, the same symbol is used to denote both the original

form of the function and the mapping. The distinction becomes evident in the way we

define the space of such mappings or, equivalently, Banach space-valued functions;

see, for example, [43, App. E.5]. For a Banach space U , the space L2(0, T ;U) is

composed of all strongly measurable Banach space-valued functions u : [0, T ] → U

with the finite L2-norm defined by

‖u‖L2(0,T ;U) :=

[∫ T

0

‖u(t)‖2
U dt

] 1
2

.

The space C0([0, T ];U) is composed of all continuous Banach space-valued functions

u : [0, T ]→ U with the finite uniform norm defined by

‖u‖C0([0,T ];U) := max
t∈[0,T ]

‖u(t)‖U .

Accordingly, the spaces Ck([0, T ];U) and Ck,λ([0, T ];U), k ≥ 0, 0 < λ ≤ 1, are defined

as the space of k-times continuously differentiable Banach space-valued functions and

its Hölder-continuous subspace. The Sobolev spacesHk(0, T ;U), k ≥ 0, are composed

of all functions u ∈ L2(0, T ;U), whose lth-order weak derivatives dltu exist for l ≤ k

and belong to L2(0, T ;U). In particular, for k = 1, we have

‖u‖H1(0,T ;U) :=

[∫ T

0

(
‖u(t)‖2

U + ‖dtu(t)‖2
U
)

dt

] 1
2

.

For further details on these spaces, see [43, sect. 5.9.2] and [20, sect. 7.1].

When P : U → Y is a mapping between the Banach spaces U and Y , we denote

9



the kth-order Fréchet derivative of P at u0 by duP (u0). The space Ck(U ;Y) is then

composed of all k-times continuously differentiable mappings from U into Y . For

a mapping P : U1 × · · · × Um → Y , where Y and Uj, j = 1, . . .m, are Banach

spaces, ∂ujP (u0) is the jth partial Fréchet derivative of P at u0 = (u01, . . . , u0m).

The gradient of P at u0 is then written as ∂uP (u0); see [42, sect. 7.1] for details.

Finally, we denote the symmetric difference of two sets X and Y by X 4Y . In a

topological space X , we denote the closure of a set X ⊂ X by X , its interior by X ◦,

and its boundary by ∂X . The characteristic function of X is denoted by χX . When

X is a measure space, |X | denotes the measure of the set X ⊂ X . For normed vector

spaces X and Y , we write X ↪→ Y for continuous embedding of X in Y , and X b Y

for compact embedding of X in Y ; see [42, sect. 6.6] for details. When X is a metric

space and the topology on X is induced by the given metric, B(x,R) denotes the open

ball centered at x ∈ X with radius R > 0, which is a basis element for the topology.

For every bounded measurable set in X , and in particular for B(x,R), we denote by

−
∫
B(x,R)

the averaging operator over B(x,R), that is, −
∫
B(x,R)

:= 1
|B(x,R)|

∫
B(x,R)

.
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CHAPTER 3

MODEL DESCRIPTION

The neocortex has a layered columnar structure consisting mostly of six distinct

layers. Neurons in the neocortex are organized in vertical columns, usually referred

to as cortical columns or macrocolumns, which are a fraction of a millimeter wide and

traverse all the layers of the neocortex from the white matter to the pial surface [44,

45, 46]. Depending on their type of action, neurons are mainly classified as excitatory

or inhibitory, wherein this distinction depends on whether they increase the firing

rate in the destination neurons they are communicating with, or they suppress them.

Inhibitory neurons are located in all layers and usually have axons that remain within

the same area as their cell body resides, and hence they have a local range of action.

Layers III, V, and VI contain pyramidal excitatory neurons whose axons can provide

long-range communication (projection) throughout the neocortex. Layer IV contains

primarily star-shaped excitatory interneurons that receive sensory inputs from the

thalamus. Figure 3.1 shows a schematic of the structure of the neocortex, including

the intracortical and corticocortical neuronal connections; see [44, Chap. 15] for

further details.

On a local scale, within a cortical column, neurons are densely interconnected and

involve all types of feedforward and feedback intracortical connections. Such a dense

and relatively homogeneous local structure of the neocortex suggests modeling a local

population of functionally similar neurons by a single space-averaged neuron, which

preserves enough physiological information to understand the temporal patterns ob-

served in spatially smoothed (averaged) EEG signals without creating excessive the-

oretical complicacies in the mathematical analysis of the model. On a global scale, in
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Layers 
I – III

Layer 
IV

Layers 
V – VI

x

y

Subcortical excitatory input
Subcortical inhibitory input

x 1

Excitatory neurons

Inhibitory neurons
Excitatory populations
Inhibitory populations
Intracortical xcitatory- xcitatory connections
Intracortical xcitatory- nhibitory connections
Intracortical nhibitory- xcitatory connections
Intracortical nhibitory- nhibitory connections
Subcortical xcitatory- xcitatory connections
Subcortical xcitatory- xcitatory connections
Subcortical nhibitory- xcitatory connections
Subcortical nhibitory- nhibitory connections
Corticocortical xcitatory- xcitatory connections
Corticocortical xcitatory- nhibitory connections

Approx. 0.5 mm

Figure 3.1: Schematic of the structure of the neocortex with intracortical and cortic-
ocortical connections.

the exclusively excitatory corticocortical communication throughout the neocortex,

two major patterns of connectivity are observed, namely, a homogeneous, symmetri-

cal, and translation-invariant pattern of connections versus a heterogeneous, patchy,

and asymmetrical distribution of connections. For modeling simplicity and due to the

unavailability of detailed anatomical data, in the model that we investigate in this

dissertation the corticocortical connectivity is assumed to be isotropic, homogeneous,

symmetric, and translation invariant [22].

To establish the mathematical framework of the model, let Ω = (0, ω) × (0, ω),
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ω > 0, be an open rectangle in R2 that defines the domain of the neocortex. Each

point x = (x1, x2) ∈ Ω indicates the location of a local network—possibly repre-

senting a cortical column—modeled by a space-averaged excitatory neuron and a

space-averaged inhibitory neuron. Let e denote a population of excitatory neurons

and let i denote a population of inhibitory neurons. For x ∈ Ω, t ∈ [0, T ], T > 0,

and x,y ∈ {e, i}, we denote by vx(x, t), measured in mV, the spatially mean soma

membrane potential of a population of type x centered at x. We denote by ixy(x, t),

measured in mV, the spatially mean postsynaptic activation of synapses of a popula-

tion of type x centered at x onto a population of type y centered at the same point x.

Moreover, we denote by wex(x, t), measured in s−1, the mean rate of corticocortical

excitatory input pulses from the entire domain of the neocortex to a population of

type x centered at x. Finally, we denote by gxy(x, t), measured in s−1, the mean rate

of subcortical input pulses of type x to a population of type y centered at x. Note

that, by definition, ixy(x, t), wex(x, t), and gxy(x, t) are nonnegative quantities.

Then, as developed in [22], the system of coupled ordinary and partial differential

equations

(τe∂t + 1)ve(x, t) =
Vee − ve(x, t)

|Vee|
iee(x, t) +

Vie − ve(x, t)

|Vie|
iie(x, t),(3.1)

(τi∂t + 1)vi(x, t) =
Vei − vi(x, t)
|Vei|

iei(x, t) +
Vii − vi(x, t)
|Vii|

iii(x, t),

(∂t + γee)2iee(x, t) = eΥeeγee
[
Neefe

(
ve(x, t)

)
+ wee(x, t) + gee(x, t)

]
,

(∂t + γei)
2iei(x, t) = eΥeiγei

[
Neife

(
ve(x, t)

)
+ wei(x, t) + gei(x, t)

]
,

(∂t + γie)2iie(x, t) = eΥieγie
[
Niefi

(
vi(x, t)

)
+ gie(x, t)

]
,

(∂t + γii)
2iii(x, t) = eΥiiγii

[
Niifi

(
vi(x, t)

)
+ gii(x, t)

]
,[

(∂t + νΛee)2 − 3

2
ν2∆

]
wee(x, t) = ν2Λ2

eeMeefe
(
ve(x, t)

)
,[

(∂t + νΛei)
2 − 3

2
ν2∆

]
wei(x, t) = ν2Λ2

eiMeife
(
ve(x, t)

)
, (x, t) ∈ Ω× (0, T ],
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Table 3.1: Definition and range of values for the biophysical parameters of the mean
field model (3.1). All electric potentials are given with respect to the mean resting
soma membrane potential vrest = −70 mV [47].

Parameter Definition Range Unit

τe Passive excitatory membrane decay time constant [0.005, 0.15] s
τi Passive inhibitory membrane decay time constant [0.005, 0.15] s
Vee, Vei Mean excitatory Nernst potentials [50, 80] mV
Vie, Vii Mean inhibitory Nernst potentials [−20,−5] mV
γee, γei Excitatory postsynaptic potential rate constants [100, 1000] s−1

γie, γii Inhibitory postsynaptic potential rate constants [10, 500] s−1

Υee, Υei Amplitude of excitatory postsynaptic potentials [0.1, 2.0] mV
Υie, Υii Amplitude of inhibitory postsynaptic potentials [0.1, 2.0] mV
Nee, Nei Number of intracortical excitatory connections [2000, 5000] —
Nie, Nii Number of intracortical inhibitory connections [100, 1000] —
ν Corticocortical conduction velocity [100, 1000] cm/s
Λee, Λei Decay scale of corticocortical excitatory connectivities [0.1, 1.0] cm−1

Mee, Mei Number of corticocortical excitatory connections [2000, 5000] —
Fe Maximum mean excitatory firing rate [50, 500] s−1

Fi Maximum mean inhibitory firing rate [50, 500] s−1

µe Excitatory firing threshold potential [15, 30] mV
µi Inhibitory firing threshold potential [15, 30] mV
σe Standard deviation of excitatory firing threshold potential [2, 7] mV
σi Standard deviation of inhibitory firing threshold potential [2, 7] mV

with periodic boundary conditions provides a mean field model for the electrocortical

activity in the neocortex. Here, e is the Napier constant and fx(·) is the mean firing

rate function of a population of type x and is given by

(3.2) fx
(
vx(x, t)

)
:=

Fx

1 + exp

(
−
√

2
vx(x, t)− µx

σx

) , x ∈ {e, i}.

The definition of the biophysical parameters of the model and the ranges of the

values they may take are given in Table 3.1. For the range of values given in Table

3.1, we have |Vee| = Vee, |Vei| = Vei, |Vie| = −Vie , and |Vii| = −Vii, which we

use to simplify (3.1). Note that, in addition to the notational changes to the original
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Ω 

E

I
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NEE fE(vE(x,t))
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x

E

I

E

I

gIE(y,t)gEE(y,t)

gEI(y,t)gII(y,t)

NIE f I(v I(y,t))NEI fE(vE(y,t))

NEE fE(vE(y,t))

NII f I(v I(y,t))

y

E
N

I

wEE(x,t)
wEE(y,t)

wEI(y,t)wEI(x,t)

Figure 3.2: Cortical inputs to two local networks located at points x and y as modeled
by (3.1).

equations given in [22], we have changed the reference of the electric potential to the

resting potential to avoid the constant terms that would otherwise appear in (3.1).

Figure 3.2 shows a schematic of intracortical, corticocortical, and subcortical inputs

to two local networks located at points x and y, along with their contribution to the

global corticocortical activation as modeled by (3.1). The specific coupling between

the equations of the model is depicted by the block diagram shown in Figure 3.3.

The first two equations in (3.1), that is, the v-equations, model the dynamics of

the resistive-capacitive membrane of the space-averaged neurons located at x. In the

absence of postsynaptic i-inputs, the mean membrane potential decays exponentially

to the resting potential. The fractions appearing in the equations weight the post-

synaptic inputs to incorporate the effect of transmembrane diffusive ion flows into

the model. Specifically, the depolarizing effect of excitatory inputs on the membrane

is linearly decreased by the weights as the membrane potential rises to the Nernst

(reversal) potential. When the membrane potential exceeds the Nernst potential, the

effect is reversed and further excitation tends to hyperpolarize the membrane. The

weights associated with the inhibitory postsynaptic inputs have opposite signs at the
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g EE

g EI

g IE

g II

t v E = P 1(v E, i EE, i IE)

t v I = P 2(v I, i EI, i II)

t
2

 w EE = P 7( t w EE, ∆w EE, v E) t
2

 i EE = P 3( t i EE, v E, w EE, g EE)

t
2

 i II = P 6( t i II, v I, g II)

t
2

 w EI = P 8( t w EI, ∆w EI, v E) t
2

 i EI = P 4( t i EI, v E, w EI, g EI)

t
2

 i IE = P 5( t i IE, v I, g IE)

Figure 3.3: Block diagram of the mean field model (3.1). The operators P1, . . . , P8

represent the eight equations in (3.1), respectively. As in Figures 3.1 and 3.2, the
blocks associated with excitatory populations are shown in red, and the blocks asso-
ciated with inhibitory populations are shown in blue.

resting potential, and hence they have an opposite reversal effect.

The critically damped second-order dynamics of the four i-equations in (3.1) gen-

erates a synaptic α-function—as in the classical dendritic cable theory—in response

to an impulse. As shown in Figure 3.2, these second-order dynamical systems are

driven by three different sources of presynaptic spikes, namely, the inputs Nxyfx(vx)

from local neuronal populations, the excitatory inputs wex from corticocortical fibers,

and the inputs gxy from subcortical regions. As a result, these four equations gener-

ate the postsynaptic responses that modulate the polarization of the cell membranes

according to the v-equations discussed before.

Unlike the conduction through short-range intracortical fibers, the conduction

through long-range corticocortical fibers cannot be assumed to be instantaneous. The

w-equations in (3.1) form a system of telegraph equations that effectively models the

propagation of the excitatory axonal pulses through corticocortical fibers. To derive

these equations, it is assumed in [22] that the strength of corticocortical connections

onto a local population decays exponentially with distance, with the characteristic

scale Λex. Moreover, it is assumed that the spatial distribution of connections is

isotropic and homogeneous all over the neocortex.
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In practical applications, the key variable in the model presented by (3.1) is the

mean membrane potential of excitatory populations ve(x, t), which is presumed to be

linearly proportional to EEG recordings from the scalp [22, 25]. For further details

of the model see [22], or the introductory sections of [26, 25, 36].

Now, let

v(x, t) :=
(
ve(x, t), vi(x, t)

)
∈ R2,

i(x, t) :=
(
iee(x, t), iei(x, t), iie(x, t), iii(x, t)

)
∈ R4,

w(x, t) :=
(
wee(x, t), wei(x, t)

)
∈ R2,

g(x, t) :=
(
gee(x, t), gei(x, t), gie(x, t), gii(x, t)

)
∈ R4,

and note that (3.1) can be represented in vector form in Ω× (0, T ] as

Φ∂tv + v − J1i+ J2vi
TΨJ4 + J3vi

TΨJ5 = 0,(3.3)

∂2
t i+ 2Γ∂ti+ Γ2i− eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg,(3.4)

∂2
tw + 2νΛ∂tw −

3

2
ν2∆w + ν2Λ2w − ν2Λ2MJ8f

(
v
)

= 0,(3.5)

where v, i, and w are Ω-periodic vector-valued functions with the initial values

(3.6) v
∣∣
t=0

= v0, i
∣∣
t=0

= i0, (∂ti)
∣∣
t=0

= i′0, w
∣∣
t=0

= w0, (∂tw)
∣∣
t=0

= w′0,

and

Φ = diag
(
τe, τi

)
, Ψ = diag

(
1

|Vee|
,

1

|Vei|
,

1

|Vie|
,

1

|Vii|

)
,(3.7)

Γ = diag(γee, γei, γie, γii), Υ = diag(Υee,Υei,Υie,Υii),

N = diag(Nee,Nei,Nie,Nii), M = diag(Mee,Mei),

Λ = diag(Λee,Λei), J1 =

[
I2×2 −I2×2

]
,

17



J2 = diag(1, 0), J3 = diag(0, 1),

J4 =

[
1 0 1 0

]T

, J5 =

[
0 1 0 1

]T

,

J6 =

 1 0 0 0

0 1 0 0


T

, J7 =

 1 1 0 0

0 0 1 1


T

,

J8 =

 1 0

1 0

 , f(v) =

 fe
([

1 0
]
v
)

fi
([

0 1
]
v
)
 .

For simplicity of exposition, the dependence of the functions v, i, w, and g on

the arguments (x, t) is not explicitly shown in (3.3)–(3.5). Note that (3.3) and (3.4),

which model the local dynamics of the neocortex, are essentially systems of ODEs.

These equations do not possess any spatial smoothing component, and hence their

solutions are expected to evolve in less regular function spaces [48, 49]. The system of

PDEs (3.5) consists of two telegraph equations coupled indirectly through (3.3) and

(3.4); see Figure 3.3.

Remark 3.1 (Variations in the parameters). In the analysis that follows in the

rest of the dissertation, we assume that all the parameters of the model are constant.

However, in practical applications, certain parameters may be considered to vary in

time or space to model specific physiological situations in the brain. The variations

can occur independently, or can be modeled using additional ODEs or PDEs coupled

with the existing equations. We give all the details of the results—some of which

may, however, be considered fairly standard—along with a careful inclusion of all

parameters. Therefore, in applications it should be possible to easily observe where

the parameters of interest appear in the analysis, and whether or not their particular

variations can affect the validity of the results.
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CHAPTER 4

EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this chapter, we investigate the problem of existence, uniqueness, and regularity of

solutions for (3.3)–(3.5) with the initial values (3.6) and periodic boundary conditions.

We set appropriate spaces of Ω-periodic functions as the functional framework of the

problem by which we include the boundary conditions in the solution spaces. We

view v(x, t), i(x, t), and w(x, t) as Banach space-valued functions and follow the

standard technique of Galerkin approximations [20, 43, 18] to construct weak and

strong solutions in Theorems 4.5 and 4.7. The details of the proof of these results

can be skipped if the reader is proficient in the analysis of the Galerkin method.

First, define the function spaces

L2
v := L2

per(Ω;R2), L2
i := L2

per(Ω;R4), L2
w := L2

per(Ω;R2),(4.1)

L∞v := L∞per(Ω;R2), L∞i := L∞per(Ω;R4), L∞w := L∞per(Ω;R2),

H1
w := H1

per(Ω;R2), H2
w := H2

per(Ω;R2),

L2
∂w := L2

per(Ω;R2×2), H1
∂w := H1

per(Ω;R2×2),

W1,∞
w := W 1,∞

per (Ω;R2),

and denote by L2
v
∗, L2

i
∗, and H1

w
∗ the dual spaces of L2

v, L2
i , and H1

w, respectively.

Note that L2
v and L2

i are, respectively, isometrically isomorphic to L2
v
∗ and L2

i
∗ [50,

Thm. 6.15], which we denote by L2
v
∗

= L2
v and L2

i
∗

= L2
i . By the Rellich–Kondrachov

compact embedding theorems we have H1
w b L2

w ↪→ H1
w
∗; see [42, Thm. 6.6-3] and

[20, Thm. A.4]. Moreover, there exists a dual orthogonal basis of H1
w and L2

w given

by the following lemma. The proof of this lemma is fairly standard and follows the
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general results given in [18, sect. II.2.1].

Lemma 4.1 (Dual orthogonal basis). There exists an orthonormal basis of L2
w

that is also an orthogonal basis of H1
w, and can be constructed by the eigenfunctions

of the linear operator A := −∆ + I.

Now, before proceeding to the main results of this chapter, we define the notions

of weak and strong solutions of (3.3)–(3.6) as used in this dissertation.

Definition 4.2 (Weak solution). A solution (v, i, w) is called an Ω-periodic weak

solution of the initial value problem (3.3)–(3.6) if it solves the weak version of the

problem wherein the equations are understood as equalities in the space of duals

L2(0, T ;L2
v
∗ × L2

i
∗ ×H1

w
∗
). That is, the functions

v ∈ L2(0, T ;L2
v), i ∈ L2(0, T ;L2

i ), w ∈ L2(0, T ;H1
w)

with

dtv ∈ L2(0, T ;L2
v
∗
), dti ∈ L2(0, T ;L2

i ), d2
t i ∈ L2(0, T ;L2

i
∗
),

dtw ∈ L2(0, T ;L2
w), d2

tw ∈ L2(0, T ;H1
w
∗
)

construct an Ω-periodic weak solution for (3.3)–(3.6) if, for every `v ∈ L2
v, `i ∈ L2

i ,

hw ∈ H1
w, and almost every t ∈ [0, T ], T > 0,

〈Φdtv, `v〉L2v + (v, `v)L2v − (J1i, `v)L2v(4.2)

+
(
J2vi

TΨJ4 + J3vi
TΨJ5, `v

)
L2v

= 0,〈
d2
t i, `i

〉
L2i

+ 2 (Γdti, `i)L2i
+
(
Γ2i, `i

)
L2i
− e (ΥΓJ6w, `i)L2i

(4.3)

−e (ΥΓNJ7f(v), `i)L2i
= e (ΥΓg, `i)L2i

,〈
d2
tw, hw

〉
H1
w

+ 2ν (Λdtw, hw)L2w +
3

2
ν2 (∂xw, ∂xhw)L2∂w

(4.4)

+ν2
(
Λ2w, hw

)
L2w
− ν2

(
Λ2MJ8f(v), hw

)
L2w

= 0
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with the initial values

(4.5) v(0) = v0, i(0) = i0, dti(0) = i′0, w(0) = w0, dtw(0) = w′0.

Definition 4.3 (Strong solution). A solution (v, i, w) is called an Ω-periodic

strong solution of the initial value problem (3.3)–(3.6) if it solves the strong version

of the problem wherein the equations are understood as equalities in L2(0, T ;L2
v×L2

i ×

L2
w). That is, the functions

v ∈ H1(0, T ;L2
v), i ∈ H2(0, T ;L2

i ), w ∈ L2(0, T ;H2
w)

with

dtv ∈ L2(0, T ;L2
v), dti ∈ H1(0, T ;L2

i ), d2
t i ∈ L2(0, T ;L2

i ),

dtw ∈ L2(0, T ;H1
w), d2

tw ∈ L2(0, T ;L2
w)

construct an Ω-periodic strong solution for (3.3)–(3.6) wherein they solve the equations

for almost every x ∈ Ω and almost every t ∈ [0, T ], T > 0.

Now, let Bv =
{
`

(l)
v

}∞
l=1

be a basis of L2
v such that

{
Φ

1
2 `

(l)
v

}∞
l=1

is orthonormal

in L2
v. Note that (3.7), with the range of values given in Table 3.1, implies that Φ

is a positive-definite diagonal matrix, and hence such a basis exists. Moreover, let

Bi =
{
`

(l)
i

}∞
l=1

be an orthonormal basis of L2
i , and let Bw =

{
h

(l)
w

}∞
l=1

be an orthogonal

basis of H1
w that is orthonormal in L2

w; see Lemma 4.1 for the existence and structure

of Bw. Finally, construct the set B =
{
b(k)
}∞
k=1
⊂ L2

v × L2
i ×H1

w as

B := Bv × Bi × Bw(4.6)

=
{
b(k) =

(
`(k)
v , `

(k)
i , h(k)

w

)
: `(k)

v ∈ Bv, `
(k)
i ∈ Bi, h(k)

w ∈ Bw
}∞
k=1

.
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For each positive integer m, we seek approximations v(m) : [0, T ]→ L2
v, i(m) : [0, T ]→

L2
i , and w(m) : [0, T ]→ H1

w of the form

v(m)(t) :=
∑m

k=1
c(m)
vk

(t)`(k)
v ,(4.7)

i(m)(t) :=
∑m

k=1
c

(m)
ik

(t)`
(k)
i ,(4.8)

w(m)(t) :=
∑m

k=1
c(m)
wk

(t)h(k)
w ,(4.9)

constructed by the first m components of B and sufficiently smooth scalar-valued

functions c(m)
vk , c(m)

ik
, and c(m)

wk on [0, T ] such that these approximations satisfy

(
Φdtv

(m), `(k)
v

)
L2v

+
(
v(m), `(k)

v

)
L2v
−
(
J1i

(m), `(k)
v

)
L2v

(4.10)

+
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, `

(k)
v

)
L2v

= 0,(
d2
t i

(m), `
(k)
i

)
L2i

+ 2
(

Γdti
(m), `

(k)
i

)
L2i

+
(

Γ2i(m), `
(k)
i

)
L2i

(4.11)

−e
(

ΥΓJ6w
(m), `

(k)
i

)
L2i
− e

(
ΥΓNJ7f(v(m)), `

(k)
i

)
L2i

= e
(

ΥΓg, `
(k)
i

)
L2i
,(

d2
tw

(m), h(k)
w

)
L2w

+ 2ν
(
Λdtw

(m), h(k)
w

)
L2w

(4.12)

+
3

2
ν2
(
∂xw

(m), ∂xh
(k)
w

)
L2∂w

+ ν2
(
Λ2w(m), h(k)

w

)
L2w

−ν2
(
Λ2MJ8f(v(m)), h(k)

w

)
L2w

= 0

for all t ∈ [0, T ] and k = 1, . . . ,m, subject to the initial conditions

c(m)
vk

(0) =
(
v0, `

(k)
v

)
L2v
, c

(m)
ik

(0) =
(
i0, `

(k)
i

)
L2i
, dtc

(m)
ik

(0) =
(
i′0, `

(k)
i

)
L2i
,(4.13)

c(m)
wk

(0) =
(
w0, h

(k)
w

)
L2w
, dtc

(m)
wk

(0) =
(
w′0, h

(k)
w

)
L2w

on the coefficients c(m)
k (t) := (c

(m)
vk (t), c

(m)
ik

(t), c
(m)
wk (t)) ∈ R3.

Equations (4.10)–(4.13) are equivalent to a system of nonlinear 3m-dimensional

ODEs on coefficients c(m)(t) = (c
(m)
1 (t), . . . , c

(m)
m (t)) ∈ R3m. Therefore, by the stan-
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dard theory of ODEs [51, Thm. 2.1], there exists a unique function c(m)(t) that solves

(4.10)–(4.13) for t ∈ [0, Tm), Tm > 0, with the approximations (4.7)–(4.9). Moreover,

Tm = T for all positive integers m, which follows from Proposition 4.4.

The standard Galerkin approximation method involves providing energy estimates

that are uniform inm for all the approximations (v(m), i(m), w(m)). Such a priori energy

estimates then allow construction of solutions by passing to the limits asm→∞. The

following proposition gives the desired estimates for the approximations (4.7)–(4.9).

Proposition 4.4 (Energy estimates). Suppose g ∈ L2(0, T ;L2
i ) and, for every

positive integer m, let v(m), i(m), and w(m) be functions of the form (4.7)–(4.9), re-

spectively, satisfying (4.10)–(4.12) with the initial conditions (4.13). Then there exist

positive constants αv, βv, αi, and αw, dependent only on the parameters of the model,

such that for every positive integer m,

sup
t∈[0,T ]

(∥∥v(m)(t)
∥∥2

L2v

)
+
∥∥dtv

(m)
∥∥2

L2(0,T ;L2v
∗)
≤ κv,(4.14)

sup
t∈[0,T ]

(∥∥dti
(m)(t)

∥∥2

L2i
+
∥∥i(m)(t)

∥∥2

L2i

)
+
∥∥d2

t i
(m)
∥∥2

L2(0,T ;L2i
∗
)
≤ κi,(4.15)

sup
t∈[0,T ]

(∥∥dtw
(m)(t)

∥∥2

L2w
+
∥∥w(m)(t)

∥∥2

H1
w

)
+
∥∥d2

tw
(m)
∥∥2

L2(0,T ;H1
w
∗)
≤ κw,(4.16)

where κv, κi, and κw are positive constants given, independently of m, by

κv := αv

((
1 + (1 +

√
κi)

2T
)

exp (βv
√
κiT )

[
‖v0‖2

L2v
+
√
κi

]
+ κiT

)
,(4.17)

κi := αi

(
(1 + T )

[
‖i′0‖

2
L2i

+ ‖i0‖2
L2i

]
+ (2 + T )

[
T (κw + |Ω|)+ ‖g‖2

L2(0,T ;L2i )

])
,(4.18)

κw := αw

(
(1 + T )

[
‖w′0‖

2
L2w

+ ‖w0‖2
H1
w

]
+ (2 + T )T |Ω|

)
.(4.19)

Proof. Multiplying (4.12) by dtc
(m)
wk and summing over k = 1, . . . ,m yields(

d2
tw

(m), dtw
(m)
)
L2w

+ 2ν
(
Λdtw

(m), dtw
(m)
)
L2w

+
3

2
ν2
(
∂xw

(m), dt∂xw
(m)
)
L2∂w

+ ν2
(
Λ2w(m), dtw

(m)
)
L2w
− ν2

(
Λ2MJ8f(v(m)), dtw

(m)
)
L2w

= 0,
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or, equivalently,

1

2
dt

[ ∥∥dtw
(m)
∥∥2

L2w
+

3

2
ν2
∥∥∂xw(m)

∥∥2

L2∂w
+ ν2

∥∥Λw(m)
∥∥2

L2w

]
+ 2ν

∥∥∥Λ
1
2 dtw

(m)
∥∥∥2

L2w
− ν2

(
Λ2MJ8f(v(m)), dtw

(m)
)
L2w

= 0.

Now, Young’s inequality implies that, for every ε1 > 0,

ν2
(
Λ2MJ8f(v(m)), dtw

(m)
)
L2w
≤ ε1ν

2
∥∥dtw

(m)
∥∥2

L2w
+

ν2

4ε1

∥∥Λ2MJ8f(v(m))
∥∥2

L2w

= ε1ν
2
∥∥dtw

(m)
∥∥2

L2w
+

ν2

4ε1

tr(Λ4M2)

∫
Ω

∣∣fe(v(m)
e )

∣∣2dx

≤ ε1ν
2
∥∥dtw

(m)
∥∥2

L2w
+

ν2

4ε1

|Ω|F2
e tr(Λ4M2).

Therefore,

dt

[∥∥dtw
(m)
∥∥2

L2w
+

3

2
ν2
∥∥∂xw(m)

∥∥2

L2∂w
+ ν2

∥∥Λw(m)
∥∥2

L2w

]
+ 2ν(2Λmin − ε1ν)

∥∥dtw
(m)
∥∥2

L2w

≤ ν2

2ε1

|Ω|F2
e tr(Λ4M2),

where Λmin := min{Λee,Λei} is the smallest eigenvalue of Λ.

Next, setting ε1 = 2
ν
Λmin and integrating with respect to time over [0, t] yields

∥∥dtw
(m)(t)

∥∥2

L2w
+

3

2
ν2
∥∥∂xw(m)(t)

∥∥2

L2∂w
+ ν2

∥∥Λw(m)(t)
∥∥2

L2w

≤
(∥∥dtw

(m)
∥∥2

L2w
+

3

2
ν2
∥∥∂xw(m)

∥∥2

L2∂w
+ ν2

∥∥Λw(m)
∥∥2

L2w

)∣∣∣∣
t=0

+
1

4

ν3

Λmin

|Ω|F2
e tr(Λ4M2)t,

which, using (4.13), implies

∥∥dtw
(m)(t)

∥∥2

L2w
+
∥∥w(m)(t)

∥∥2

H1
w
≤ α̂w

(
‖w′0‖

2
L2w

+ ‖w0‖2
H1
w

+
1

4

ν3

Λmin

|Ω|F2
e tr(Λ4M2)t

)
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for all t ∈ [0, T ] and some α̂w > 0. Since this inequality holds for all t ∈ [0, T ], it

follows that

sup
t∈[0,T ]

(∥∥dtw
(m)(t)

∥∥2

L2w
+
∥∥w(m)(t)

∥∥2

H1
w

)
≤ κ̂w,(4.20)

where

κ̂w := α̂w

(
‖w′0‖

2
L2w

+ ‖w0‖2
H1
w

+
1

4

ν3

Λmin

|Ω|F2
e tr(Λ4M2)T

)
.

Now, fix h̄ ∈ H1
w such that

∥∥h̄∥∥H1
w
≤ 1 and decompose h̄ as h̄ = h + h⊥, where

h ∈ span
{
h

(k)
w

}m
k=1

and
(
h

(k)
w , h⊥

)
L2w

= 0, k = 1, . . . ,m. Since the basis Bw used to

construct B in (4.6) is orthonormal in L2
w, it follows from (4.9) that

〈
d2
tw

(m), h̄
〉
H1
w

=
(
d2
tw

(m), h̄
)
L2w

=
(
d2
tw

(m), h
)
L2w
,

where the first equality holds since d2
tw

(m) ∈ H1
w; see the proof of [43, Thm. 5.9-1].

Therefore, (4.12) gives

〈
d2
tw

(m), h̄
〉
H1
w

=− 2ν
(
Λdtw

(m), h
)
L2w
− 3

2
ν2
(
∂xw

(m), ∂xh
)
L2∂w

− ν2
(
Λ2w(m), h

)
L2w

+ ν2
(
Λ2MJ8f(v(m)), h

)
L2w
.

Since Bw is orthogonal in H1
w, we have ‖h‖H1

w
≤
∥∥h̄∥∥H1

w
≤ 1, and hence the Cauchy–

Schwarz inequality gives

∣∣∣〈d2
tw

(m), h̄
〉
H1
w

∣∣∣ ≤ 2ν
∥∥dtw

(m)
∥∥
L2w

+
3

2
ν2
∥∥∂xw(m)

∥∥
L2∂w

+ ν2
∥∥Λ2w(m)

∥∥
L2w

+ ν2
∥∥Λ2MJ8f(v(m))

∥∥
L2w

≤ α1

(∥∥dtw
(m)
∥∥
L2w

+
∥∥w(m)

∥∥
H1
w

+ ν2
(
|Ω|F2

e tr(Λ4M2)
) 1

2

)
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for some α1 > 0. Therefore, there exists α2 > 0 such that

∫ T

0

∥∥d2
tw

(m)
∥∥2

H1
w
∗ dt ≤ α2

∫ T

0

(∥∥dtw
(m)
∥∥2

L2w
+
∥∥w(m)

∥∥2

H1
w

+ ν4|Ω|F2
e tr(Λ4M2)

)
dt,

which, using (4.20), yields

∥∥d2
tw

(m)
∥∥2

L2(0,T ;H1
w
∗)
≤ α2

(
κ̂w + ν4|Ω|F2

e tr(Λ4M2)
)
T.

This inequality, together with (4.20), establishes the bound (4.16) with (4.19) for

some αw > 0.

Next, multiplying (4.11) by dtc
(m)
ik

and summing over k = 1, . . . ,m yields

(
d2
t i

(m), dti
(m)
)
L2i

+ 2
(
Γdti

(m), dti
(m)
)
L2i

+
(
Γ2i(m), dti

(m)
)
L2i
− e

(
ΥΓJ6w

(m), dti
(m)
)
L2i

(4.21)

− e
(
ΥΓNJ7f(v(m)), dti

(m)
)
L2i

= e
(
ΥΓg, dti

(m)
)
L2i
.

For the second term, we have

(
Γdti

(m), dti
(m)
)
L2i
≥ γmin

∥∥dti
(m)
∥∥2

L2i
,

where γmin := min{γee, γei, γie, γii} is the smallest eigenvalue of Γ. Now, using Young’s

inequality and recalling (4.16) we obtain, for every ε2, . . . , ε4 > 0,

e
(
ΥΓJ6w

(m), dti
(m)
)
L2i
≤ ε2

∥∥dti
(m)
∥∥2

L2i
+

e2

4ε2

∥∥ΥΓJ6w
(m)
∥∥2

L2i

≤ ε2

∥∥dti
(m)
∥∥2

L2i
+

e2

4ε2

‖ΥΓJ6‖2
2

∥∥w(m)
∥∥2

L2w

≤ ε2

∥∥dti
(m)
∥∥2

L2i
+
e2κw
4ε2

‖ΥΓJ6‖2
2 ,
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e
(
ΥΓNJ7f(v(m)), dti

(m)
)
L2i
≤ ε3

∥∥dti
(m)
∥∥2

L2i
+

e2

4ε3

∥∥ΥΓNJ7f(v(m))
∥∥2

L2i

≤ ε3

∥∥dti
(m)
∥∥2

L2i
+

e2

4ε3

‖ΥΓNJ7‖2
2

∥∥f(v(m))
∥∥2

L2v

≤ ε3

∥∥dti
(m)
∥∥2

L2i
+
e2|Ω|
4ε3

(F2
e + F2

i ) ‖ΥΓNJ7‖2
2 ,

e
(
ΥΓg, dti

(m)
)
L2i
≤ ε4

∥∥dti
(m)
∥∥2

L2i
+

e2

4ε4

‖ΥΓg‖2
L2i

≤ ε4

∥∥dti
(m)
∥∥2

L2i
+

e2

4ε4

‖ΥΓ‖2
2 ‖g‖

2
L2i
.

Hence, with the above inequalities, (4.21) implies

dt

[∥∥dti
(m)
∥∥2

L2i
+
∥∥Γi(m)

∥∥2

L2i

]
+ 2(2γmin − ε2 − ε3 − ε4)

∥∥dti
(m)
∥∥2

L2i

≤ e2κw
2ε2

‖ΥΓJ6‖2
2 +

e2|Ω|
2ε3

(F2
e + F2

i ) ‖ΥΓNJ7‖2
2 +

e2

2ε4

‖ΥΓ‖2
2 ‖g‖

2
L2i
.

Now, setting ε2 = ε3 = 1
2
γmin and ε4 = γmin, integrating with respect to time over

[0, t], and taking the supremum over t ∈ [0, T ], we have

sup
t∈[0,T ]

(∥∥dti
(m)(t)

∥∥2

L2i
+
∥∥i(m)(t)

∥∥2

L2i

)
≤ κ̂i,(4.22)

where, for some α̂i > 0,

κ̂i = α̂i

(
‖i′0‖

2
L2i

+ ‖i0‖2
L2i

+

[
e2κw
γmin

‖ΥΓJ6‖2
2 +

e2|Ω|
γmin

(F2
e + F2

i ) ‖ΥΓNJ7‖2
2

]
T.

+
e2

2γmin

‖ΥΓ‖2
2 ‖g‖

2
L2(0,T ;L2i )

)
.

Fix ¯̀∈ L2
i such that

∥∥¯̀
∥∥
L2i
≤ 1 and decompose ¯̀as ¯̀= `+`⊥, where ` ∈ span

{
`

(k)
i

}m
k=1
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and
(
`

(k)
i , `⊥

)
L2i

= 0, k = 1, . . . ,m. Using (4.8) and (4.11), we obtain

〈
d2
t i

(m), ¯̀
〉
L2i

=
(
d2
t i

(m), ¯̀
)
L2i

=
(
d2
t i

(m), `
)
L2i

= −2
(
Γdti

(m), `
)
L2i
−
(
Γ2i(m), `

)
L2i

+ e
(
ΥΓJ6w

(m), `
)
L2i

+ e
(
ΥΓNJ7f(v(m)), `

)
L2i

+ e (ΥΓg, `)L2i
.

The orthogonality of the basis Bi in (4.6) implies ‖`‖L2i ≤ 1, and hence

∣∣∣〈d2
t i

(m), ¯̀
〉
L2i

∣∣∣ ≤ 2 ‖Γ‖2

∥∥dti
(m)
∥∥
L2i

+
∥∥Γ2
∥∥

2

∥∥i(m)
∥∥
L2i

+ e
∥∥ΥΓJ6w

(m)
∥∥
L2i

+ e
∥∥ΥΓNJ7f(v(m))

∥∥
L2i

+ e ‖ΥΓg‖L2i .

Therefore, it follows from the same inequalities used to derive (4.22) that, for some

α3 > 0,

∥∥d2
t i

(m)
∥∥2

L2(0,T ;L2i
∗
)
≤ α3

([
κ̂i + e2κw ‖ΥΓJ6‖2

2 + e2|Ω|(F2
e + F2

i ) ‖ΥΓNJ7‖2
2

]
T

+ e2 ‖ΥΓ‖2
2 ‖g‖

2
L2(0,T ;L2i )

)
.

This, together with (4.22), establishes the bound (4.15) with (4.18) for some αi > 0.

Finally, multiplying (4.10) by c(m)
vk and summing over k = 1, . . . ,m yields

(
Φdtv

(m), v(m)
)
L2v

+
(
v(m), v(m)

)
L2v
−
(
J1i

(m), v(m)
)
L2v

(4.23)

+
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, v

(m)
)
L2v

= 0.

Now, using Young’s inequality and recalling (4.15), we obtain, for every ε5 > 0,(
J1i

(m), v(m)
)
L2v
≤ ε5

∥∥v(m)
∥∥2

L2v
+

1

4ε5

∥∥J1i
(m)
∥∥2

L2v

≤ ε5

∥∥v(m)
∥∥2

L2v
+

1

2ε5

∥∥i(m)
∥∥2

L2v

≤ ε5

∥∥v(m)
∥∥2

L2v
+

κi
2ε5

.
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Moreover, using Hölder’s inequality in R2 and the Cauchy–Schwarz inequality in R4,

we obtain

−
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, v

(m)
)
L2v

= −
∫

Ω

[(
v

(m)
1

)2

i(m)TΨJ4 +
(
v

(m)
2

)2

i(m)TΨJ5

]
dx

≤
∫

Ω

∥∥v(m)
∥∥2

R2 max
{∣∣∣i(m)TΨJ4

∣∣∣ , ∣∣∣i(m)TΨJ5

∣∣∣} dx

≤
∫

Ω

∥∥v(m)
∥∥2

R2

∥∥i(m)
∥∥
R4 max {‖ΨJ4‖R4 , ‖ΨJ5‖R4} dx

≤
√

2κi ‖Ψ‖2

∥∥v(m)
∥∥2

L2v
.

Therefore, (4.23) implies

dt

∥∥∥Φ
1
2v(m)

∥∥∥2

L2v
+ 2

(
1− ε5 −

√
2κi ‖Ψ‖2

) ∥∥v(m)
∥∥2

L2v
≤ κi
ε5

.

Next, setting ε5 = 1 and using Grönwall’s inequality [18, sect. III.1.1.3.] yields

sup
t∈[0,T ]

(∥∥v(m)(t)
∥∥2

L2v

)
≤ κ̂v,(4.24)

where, for some α̂v > 0 and β̂v > 0,

κ̂v = α̂v exp
(
β̂v
√

2κi ‖Ψ‖2 T
)(
‖v0‖2

L2v
+

κi√
2κi ‖Ψ‖2

)
.

Now, fix ¯̀ ∈ L2
v such that

∥∥¯̀
∥∥
L2v
≤ 1 and decompose ¯̀ as ¯̀ = ` + `⊥, where

` ∈ span
{
`

(k)
v

}m
k=1

and
(

Φ`
(k)
v , `⊥

)
L2v

= 0, k = 1, . . . ,m. Note that this decomposition

exists because of the way we construct the basis Bv in (4.6), wherein the elements,
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weighted by Φ
1
2 , are orthonormal in L2

v. Then, it follows from (4.7) and (4.10) that

〈
Φdtv

(m), ¯̀
〉
L2v

=
(
Φdtv

(m), ¯̀
)
L2v

=
(
Φdtv

(m), `
)
L2v

= −
(
v(m), `

)
L2v

+
(
J1i

(m), `
)
L2v

−
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, `

)
L2v
.

Since Bv is a Φ
1
2 -weighted orthonormal set in L2

v, it follows that

‖`‖L2v ≤
∥∥Φ−

1
2

∥∥
2

∥∥Φ
1
2 `
∥∥
L2v
≤
∥∥Φ−

1
2

∥∥
2

∥∥Φ
1
2 ¯̀
∥∥
L2v
≤
∥∥Φ−

1
2

∥∥
2

∥∥Φ
1
2

∥∥
2

∥∥¯̀
∥∥
L2v

≤
∥∥Φ−

1
2

∥∥
2

∥∥Φ
1
2

∥∥
2

and hence, letting α4 :=
∥∥Φ−

1
2

∥∥
2

∥∥Φ
1
2

∥∥
2
and using the Cauchy–Schwarz inequality, we

have

∣∣∣〈Φdtv
(m), ¯̀

〉
L2v

∣∣∣ ≤ α4

(∥∥v(m)
∥∥
L2v

+
∥∥J1i

(m)
∥∥
L2v

+
∥∥∥J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5

∥∥∥
L2v

)
≤ α4

(∥∥v(m)
∥∥
L2v

+
√

2
∥∥i(m)

∥∥
L2i

+ 2
√

2
∥∥v(m)

∥∥
L2v

∥∥i(m)
∥∥
L2i
‖Ψ‖2

)
≤ α4

((
1 + 2

√
2κi ‖Ψ‖2

) ∥∥v(m)
∥∥
L2v

+
√

2κi

)
,

which along with (4.24) implies that, for some α5 > 0,

∥∥dtv
(m)
∥∥2

L2(0,T ;L2v
∗)
≤ α5

((
1 + 2

√
2κi ‖Ψ‖2

)2
κ̂v + 2κi

)
T.

This, together with (4.24), establishes the bound (4.14) with (4.17) for some αv > 0.

Note that constants α1, . . . , α5, α̂v, β̂v, α̂i, and α̂w depend only on the parameters of

the model, which further implies that the constants αv, βv, αi, and αw also depend

only on the parameters of the model and completes the proof.
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Theorem 4.5 (Existence and uniqueness of weak solutions). Suppose that g ∈

L2(0, T ;L2
i ), v0 ∈ L2

v, i0 ∈ L2
i , i′0 ∈ L2

i , w0 ∈ H1
w, and w′0 ∈ L2

w. Then there exists a

unique Ω-periodic weak solution (v, i, w) of the initial value problem (3.3)–(3.6).

Proof. The energy estimate (4.14) implies that the sequence
{
v(m)

}∞
m=1

is bounded

in L2(0, T ;L2
v) and the sequence

{
dtv

(m)
}∞
m=1

is bounded in L2(0, T ;L2
v
∗
). Since

L2
v
∗

= L2
v, it follows that

{
v(m)

}∞
m=1

is bounded in H1(0, T ;L2
v) and

{
dtv

(m)
}∞
m=1

is

bounded in L2(0, T ;L2
v). Similarly, since L2

i
∗

= L2
i , the energy estimate (4.15) implies

that the sequence
{
i(m)
}∞
m=1

is bounded in H2(0, T ;L2
i ), the sequence

{
dti

(m)
}∞
m=1

is

bounded in H1(0, T ;L2
i ), and the sequence

{
d2
t i

(m)
}∞
m=1

is bounded in L2(0, T ;L2
i ).

Finally, the energy estimate (4.16) implies that the sequence
{
w(m)

}∞
m=1

is bounded

in L2(0, T ;H1
w), the sequence

{
dtw

(m)
}∞
m=1

is bounded in L2(0, T ;L2
w), and the se-

quence
{

d2
tw

(m)
}∞
m=1

is bounded in L2(0, T ;H1
w
∗
). Now, it follows from the Rellich–

Kondrachov compact embedding theorems [42, Thm. 6.6-3] that H1(0, T ;L2
v) b

L2(0, T ;L2
v) and H1(0, T ;L2

i ) b L2(0, T ;L2
i ). Therefore, by [42, Thm. 2.10-1b], there

exist subsequences
{
v(mk)

}∞
k=1

,
{
i(mk)

}∞
k=1

, and
{

dti
(mk)

}∞
k=1

such that

v(mk) → v strongly in L2(0, T ;L2
v),(4.25)

i(mk) → i strongly in L2(0, T ;L2
i ),

dti
(mk) → i′ strongly in L2(0, T ;L2

i ).

Moreover, by the Banach–Eberlein–Šmulian theorem [42, Thm. 5.14-4], there exist

subsequences

{
dtv

(mk)
}∞
k=1

,
{

d2
t i

(mk)
}∞
k=1

,
{
w(mk)

}∞
k=1

,
{

dtw
(mk)

}∞
k=1

,
{

d2
tw

(mk)
}∞
k=1
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such that

dtv
(mk) ⇀ v′ weakly in L2(0, T ;L2

v),(4.26)

d2
t i

(mk) ⇀ i′′ weakly in L2(0, T ;L2
i ),

w(mk) ⇀ w weakly in L2(0, T ;H1
w),

dtw
(mk) ⇀ w′ weakly in L2(0, T ;L2

w),

d2
tw

(mk) ⇀ w′′ weakly in L2(0, T ;H1
w
∗
),

where the time derivatives in the above analysis are derivatives in the weak sense.

Next, we show that

v′ = dtv, i′ = dti, i′′ = d2
t i, w′ = dtw, w′′ = d2

tw.

Since L2(0, T ;H1
w) is reflexive, the weak and weak* convergences coincide. Recalling

the definitions of weak* convergence and weak derivatives, it follows that, for every

h ∈ H1
w and φ ∈ C∞c ([0, T ]),

〈∫ T

0

w′′φdt, h

〉
H1
w

=

∫ T

0

〈w′′φ, h〉H1
w

dt = lim
k→∞

∫ T

0

〈
d2
tw

(mk)φ, h
〉
H1
w

dt

= lim
k→∞

〈∫ T

0

d2
tw

(mk)φdt, h

〉
H1
w

= lim
k→∞

〈
(−1)2

∫ T

0

w(mk)d2
tφdt, h

〉
H1
w

= lim
k→∞

(−1)2

∫ T

0

〈
w(mk)d2

tφ, h
〉
H1
w

dt = (−1)2

∫ T

0

〈
wd2

tφ, h
〉
H1
w

dt

=

〈
(−1)2

∫ T

0

wd2
tφdt, h

〉
H1
w

,

which implies w′′ = d2
tw in the weak sense. The other identities are proved similarly.

Now, recall (3.2) and (3.7) and note that the nonlinear map f : R2 → R2 is

bounded and smooth, and in particular is Lipschitz continuous. Therefore, it follows
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from the strong convergence of
{
v(mk)

}∞
k=1

in (4.25) that

(4.27) f(v(mk))→ f(v) strongly in L2(0, T ;L2
v).

For the bilinear term J2vi
TΨJ4, use (4.14) and (4.15) to write

∥∥∥J2

(
viT − v(mk)i(mk)T)

ΨJ4

∥∥∥
L2(0,T ;L2v)

≤
∥∥J2(v − v(mk))iTΨJ4

∥∥
L2(0,T ;L2v)

+
∥∥J2v

(mk)(i− i(mk))TΨJ4

∥∥
L2(0,T ;L2v)

≤
√

2 ‖Ψ‖2

[ ∥∥v − v(mk)
∥∥
L2(0,T ;L2v)

‖i‖L2(0,T ;L2i )

+
∥∥v(mk)

∥∥
L2(0,T ;L2v)

∥∥i− i(mk)
∥∥
L2(0,T ;L2i )

]
≤
√

2 ‖Ψ‖2

[√
κi
∥∥v − v(mk)

∥∥
L2(0,T ;L2v)

+
√
κv
∥∥i− i(mk)

∥∥
L2(0,T ;L2i )

]
.

The same inequality holds for the bilinear term J3vi
TΨJ5 as well. Therefore, (4.25)

gives

J2v
(mk)i(mk)T

ΨJ4 → J2vi
TΨJ4 strongly in L2(0, T ;L2

v),(4.28)

J3v
(mk)i(mk)T

ΨJ5 → J3vi
TΨJ5 strongly in L2(0, T ;L2

v).

Next, fix a positive integer K and choose the functions

v̂ =
∑K

k=1
cvk(t)`

(k)
v ∈ C1([0, T ];L2

v),

î =
∑K

k=1
cik(t)`

(k)
i ∈ C1([0, T ];L2

i ),

ŵ =
∑K

k=1
cwk(t)h

(k)
w ∈ C1([0, T ];H1

w),

where cvk , cik , and cwk are sufficiently smooth functions on [0, T ], and (`
(k)
v , `

(k)
i , h

(k)
w ),

k = 1, . . . , K, are the first K components of B given by (4.6). Set m = mk in (4.10)–

(4.12) and choose mk ≥ K. Then, multiplying (4.10)–(4.12) by cvk , cik , and cwk ,
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respectively, summing over k = 1, . . . , K, and integrating over t ∈ [0, T ] yields

∫ T

0

[〈
Φdtv

(mk), v̂
〉
L2v

+
(
v(mk), v̂

)
L2v
−
(
J1i

(mk), v̂
)
L2v

(4.29)

+
(
J2v

(mk)i(mk)TΨJ4 + J3v
(mk)i(mk)TΨJ5, v̂

)
L2v

]
dt = 0,∫ T

0

[〈
d2
t i

(mk), î
〉
L2i

+ 2
(

Γdti
(mk), î

)
L2i

+
(

Γ2i(mk), î
)
L2i

−e
(

ΥΓJ6w
(mk), î

)
L2i
− e

(
ΥΓNJ7f(v(mk)), î

)
L2i
− e

(
ΥΓg, î

)
L2i

]
dt = 0,∫ T

0

[〈
d2
tw

(mk), ŵ
〉
L2w

+ 2ν
(
Λdtw

(mk), ŵ
)
L2w

+
3

2
ν2
(
∂xw

(mk), ∂xŵ
)
L2∂w

+ν2
(
Λ2w(mk), ŵ

)
L2w
− ν2

(
Λ2MJ8f(v(m)), ŵ

)
L2w

]
dt = 0.

Note that the families of functions v̂, î, and ŵ chosen above are dense in the spaces

L2(0, T ;L2
v), L2(0, T ;L2

i ), and L2(0, T ;H1
w), respectively. Therefore, (4.29) holds for

all functions v̂ ∈ L2(0, T ;L2
v), î ∈ L2(0, T ;L2

i ), and ŵ ∈ L2(0, T ;H1
w). Now, use

(4.25)–(4.28) to pass to the limits in (4.29), which implies that (4.2)–(4.4) hold for

all `v ∈ L2
v, `i ∈ L2

i , hw ∈ H1
w, and almost every t ∈ [0, T ].

It remains to verify the initial conditions (4.5). Choose the functions

v̂ ∈ C1([0, T ];L2
v), î ∈ C2([0, T ];L2

i ), ŵ ∈ C2([0, T ];H1
w)

such that these functions vanish at the end point t = T . Integrating by parts in (4.29)

yields

∫ T

0

[
−
(
Φv(mk), dtv̂

)
L2v

+ · · ·
]

dt =
(
Φv(mk)(0), v̂(0)

)
L2v
,

(4.30)

∫ T

0

[(
i(mk), d2

t î
)
L2i

+ · · ·
]

dt = · · ·+
(

dti
(mk)(0), î(0)

)
L2i
−
(
i(mk)(0), dtî(0)

)
L2i
,∫ T

0

[(
w(mk), d2

t ŵ
)
H1
w

+ · · ·
]

dt =
(
dtw

(mk)(0), ŵ(0)
)
L2w
−
(
w(mk)(0), dtŵ(0)

)
L2w
,
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where “· · · ” denotes terms that are not pertinent to the analysis. Similarly, integrating

by parts in the limit of (4.29) yields

∫ T

0

[
− (Φv, dtv̂)L2v + · · ·

]
dt = (Φv(0), v̂(0))L2v ,(4.31) ∫ T

0

[(
i, d2

t î
)
L2i

+ · · ·
]

dt = · · ·+
(

dti(0), î(0)
)
L2i
−
(
i(0), dtî(0)

)
L2i
,∫ T

0

[(
w, d2

t ŵ
)
H1
w

+ · · ·
]

dt = (dtw(0), ŵ(0))L2w − (w(0), dtŵ(0))L2w .

Now, consider the initial conditions (4.13), pass to the limits in (4.30) through (4.25)–

(4.28), and compare the results with (4.31). Since v̂, î, and ŵ are arbitrary, the initial

condition (4.5) holds and this completes the proof of existence.

To prove uniqueness, assume by contradiction that there exist two weak solu-

tions (ṽ, ĩ, w̃) and (v̂, î, ŵ) for (3.1), initiating from the same initial values, such that

(ṽ, ĩ, w̃) 6= (v̂, î, ŵ). Then, (v, i, w) := (ṽ, ĩ, w̃)− (v̂, î, ŵ) is a weak solution initiating

from the zero initial condition (v0, i0, i
′
0, w0, w

′
0) = 0. Now, fix s ∈ [0, T ] and define,

for 0 ≤ t ≤ T , the functions

(4.32) p(t) :=

∫ t

0

w(r)dr, q(t) :=


∫ s
t
w(r)dr if 0 ≤ t ≤ s,

0 if s < t ≤ T.

Note that p(t) ∈ H1
w and q(t) ∈ H1

w for all t ∈ [0, T ], and hence p and q are regular

enough to be used as the test function hw in (4.4). Moreover, q(s) = 0, q(0) = p(s),

and p(0) = 0. Let ũ and û satisfy (4.2)–(4.4) with the same test functions `v = v(t),

`i = dti(t), and hw = q(t). Subtracting the two sets of equations and integrating over

t ∈ [0, s] yields

∫ s

0

[
〈Φdtv, v〉L2v + (v, v)L2v − (J1i, v)L2v(4.33)

+
(
J2(ṽĩT − v̂îT)ΨJ4 + J3(ṽĩT − v̂îT)ΨJ5, v

)
L2v

]
dt = 0,
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∫ s

0

[ 〈
d2
t i, dti

〉
L2i

+ 2 (Γdti, dti)L2i
+
(
Γ2i, dti

)
L2i
− e (ΥΓJ6w, dti)L2i

(4.34)

−e (ΥΓNJ7(f(ṽ)− f(v̂)), dti)L2i

]
dt = 0,∫ s

0

[ 〈
d2
tw, q

〉
H1
w

+ 2ν (Λdtw, q)L2w +
3

2
ν2 (∂xw, ∂xq)L2∂w

+ ν2
(
Λ2w, q

)
L2w

(4.35)

−ν2
(
Λ2MJ8(f(ṽ)− f(v̂)), q

)
L2w

]
dt = 0.

Next, integrating by parts in the first and second terms in (4.35) yields

∫ s

0

[
− (dtw, dtq)L2w − 2ν (Λw, dtq)L2w +

3

2
ν2 (∂xw, ∂xq)L2∂w

+ ν2
(
Λ2w, q

)
L2w

]
dt

=

∫ s

0

ν2
(
Λ2MJ8(f(ṽ)− f(v̂)), q

)
L2w

dt.

Note that 〈dtw, dtq〉H1
w

= (dtw, dtq)L2w , since dtw ∈ L2
w for almost every t ∈ [0, T ];

see the proof of [43, Thm. 5.9-1]. Now, it follows from the definition of q(t) that

dtq = −w for all t ∈ [0, s]. Therefore,∫ s

0

[
1

2
dt

(
‖w‖2

L2w
− 3

2
ν2 ‖∂xq‖2

L2∂w

)
+ 2ν

∥∥∥Λ
1
2w
∥∥∥2

L2w
+ ν2

(
Λ2w, q

)
L2w

]
dt(4.36)

=

∫ s

0

ν2
(
Λ2MJ8(f(ṽ)− f(v̂)), q

)
L2w

dt.

Using Young’s inequality,

ν2
(
Λ2MJ8(f(ṽ)− f(v̂)), q

)
L2w
≤ 1

4
ν2 ‖q‖2

L2w
+ ν2 tr(Λ4M2)

[
sup

ve(x,t)∈R
|∂vefe(ve)|

]2

‖v‖2
L2v

≤ 1

4
ν2 ‖q‖2

L2w
+

1

8
ν2 F2

e

σ2
e

tr(Λ4M2) ‖v‖2
L2v
,

−ν2
(
Λ2w, q

)
L2w
≤ 1

4
ν2 ‖q‖2

L2w
+ ν2 ‖Λ‖4

2 ‖w‖
2
L2w
,

where the second inequality follows, for x = e, from differentiating (3.2) as

(4.37)

∂vxfx(vx) =

√
2

σx
Fx exp

(
−
√

2
vx − µx

σx

)[
1 + exp

(
−
√

2
vx − µx

σx

)]−2

, x ∈ {e, i},
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which implies supvX(x,t)∈R |∂vxfx(vx)| ≤ Fx
2
√

2σx
.

Now, (4.36) implies

1

2
‖w(s)‖2

L2w
+

3

4
ν2 ‖q(0)‖2

H1
w
≤
∫ s

0

[(
− 2νΛmin + ν2 ‖Λ‖4

2

)
‖w‖2

L2w
+

1

2
ν2 ‖q‖2

L2w

+
1

8
ν2 F2

e

σ2
e

tr(Λ4M2) ‖v‖2
L2v

]
dt+

3

4
ν2 ‖q(0)‖2

L2w

where Λmin := min{Λee,Λei} is the smallest eigenvalue of Λ. Noting from (4.32) that

q(t) = p(s)− p(t) for all t ∈ [0, s], it follows that the above inequality can be written

as

1

2
‖w(s)‖2

L2w
+

3

4
ν2 ‖p(s)‖2

H1
w
≤
∫ s

0

[(
− 2νΛmin + ν2 ‖Λ‖4

2

)
‖w(t)‖2

L2w

+
1

2
ν2 ‖p(s)− p(t)‖2

L2w

+
1

8
ν2 F2

e

σ2
e

tr(Λ4M2) ‖v(t)‖2
L2v

]
dt+

3

4
ν2 ‖p(s)‖2

L2w
.

Using the Cauchy–Schwarz inequality, it follows from the definition of p(t) given by

(4.32) that ‖p(s)‖2
L2w
≤ s

∫ s
0
‖w(t)‖2

L2w
dt. Moreover,

‖p(s)− p(t)‖2
L2w
≤ 2 ‖p(s)‖2

L2w
+ 2 ‖p(t)‖2

L2w
≤ 2 ‖p(s)‖2

H1
w

+ 2 ‖p(t)‖2
H1
w
.

Therefore,

1

2
‖w(s)‖2

L2w
+ ν2(

3

4
− s) ‖p(s)‖2

H1
w

(4.38)

≤
∫ s

0

[(
− 2νΛmin + ν2 ‖Λ‖4

2 +
3

4
ν2s
)
‖w(t)‖2

L2w
+ ν2 ‖p(t)‖2

H1
w

+
1

8
ν2 F2

e

σ2
e

tr(Λ4M2) ‖v(t)‖2
L2v

]
dt.

Next, recalling (4.14) and (4.15) and using the Cauchy–Schwarz and Young in-
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equalities, it follows that the fourth term in (4.33) satisfies, for every ε1 > 0,

(
J2(ṽĩT − v̂îT)ΨJ4, v

)
L2v

=
(
J2vĩ

TΨJ4, v
)
L2v

+
(
J2v̂i

TΨJ4, v
)
L2v

≥ −
√

2κĩ ‖Ψ‖2 ‖v‖
2
L2v
− ε1 ‖v‖2

L2v
− 2κv̂

4ε1

‖Ψ‖2
2 ‖i‖

2
L2i
,

where κv̂ and κĩ are in the form of (4.17) and (4.18), respectively. The same inequality

holds for
(
J3(ṽĩT − v̂îT)ΨJ5, v

)
L2v
. Similarly, using Young’s inequality and (4.37),

e (ΥΓNJ7(f(ṽ)− f(v̂)), dti)L2i
≤ ε2 ‖dti‖2

L2i
+

e2

4ε2

‖ΥΓNJ7‖2
2 sup
v(x,t)∈R2

‖∂vf(v)‖2
2 ‖v‖

2
L2v

≤ ε2 ‖dti‖2
L2i

+
e2

32ε2

‖ΥΓNJ7‖2
2 max

{
F2

e

σ2
e
,
F2

i

σ2
i

}
‖v‖2

L2v

for every ε2 > 0. Moreover, for every ε3 > 0 and ε4 > 0,

(J1i, v)L2v ≤ ε4 ‖v‖2
L2v

+
1

2ε4

‖i‖2
L2i
,

e (ΥΓJ6w, dti)L2i
≤ ε4 ‖dti‖2

L2i
+

e2

4ε4

‖ΥΓJ6‖2
2 ‖w‖

2
L2w
.

Substituting the above inequalities into (4.33) and (4.34), and adding the resulting

inequalities to (4.38) yields, for some α > 0,

∥∥∥Φ
1
2v(s)

∥∥∥2

L2v
+ ‖dti(s)‖2

L2i
+ ‖Γi(s)‖2

L2i
+ ‖w(s)‖2

L2w
+ ν2(

3

2
− 2s) ‖p(s)‖2

H1
w

≤ α

∫ s

0

[
‖v(t)‖2

L2v
+ ‖dti(t)‖2

L2i
+ ‖i(t)‖2

L2i
+ ‖w(t)‖2

L2w
+ ‖p(t)‖2

H1
w

]
dt.

Now, setting T1 = 3
4
, it follows from the integral form of Grönwall’s inequality [43,

App. B.2] that (v(s), i(s), w(s)) = 0 for all s ∈ [0, T1]. Repeating the same arguments

for intervals [T1, 2T1], [2T1, 3T1], . . . , we deduce (v(t), i(t), w(t)) = 0 for all t ∈ [0, T ],

and hence (ṽ, ĩ, w̃) = (v̂, î, ŵ) for all t ∈ [0, T ], which is a contradiction and completes

the proof of uniqueness.
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Proposition 4.6 (Regularity of weak solutions). Suppose that the assumptions

of Theorem 4.5 hold, namely, g ∈ L2(0, T ;L2
i ), v0 ∈ L2

v, i0 ∈ L2
i , i′0 ∈ L2

i , w0 ∈ H1
w,

and w′0 ∈ L2
w. Then the Ω-periodic weak solution (v, i, w) of the initial value problem

(3.3)–(3.6) satisfies

ess sup
t∈[0,T ]

(
‖v(t)‖2

L2v

)
+ ‖dtv‖2

L2(0,T ;L2v) ≤ κv,(4.39)

ess sup
t∈[0,T ]

(
‖dti(t)‖2

L2i
+ ‖i(t)‖2

L2i

)
+
∥∥d2

t i
∥∥2

L2(0,T ;L2i )
≤ κi,

ess sup
t∈[0,T ]

(
‖dtw(t)‖2

L2w
+ ‖w(t)‖2

H1
w

)
+
∥∥d2

tw
∥∥2

L2(0,T ;H1
w
∗)
≤ κw,

v ∈ H3(0, T ;L2
v) ∩ C2, 1

2 ([0, T ];L2
v),(4.40)

i ∈ H2(0, T ;L2
i ) ∩ C1, 1

2 ([0, T ];L2
i ), dti ∈ H1(0, T ;L2

i ) ∩ C0, 1
2 ([0, T ];L2

i ),

w ∈ H1(0, T ;L2
w) ∩ C0([0, T ];H1

w), dtw ∈ C0([0, T ];L2
w),

where κv, κi, and κw are given by (4.17)–(4.19). Moreover, if g ∈ C0([0, T ];L2
i ), then

(4.41) v ∈ C3([0, T ];L2
v), i ∈ C2([0, T ];L2

i ), dti ∈ C1([0, T ];L2
i ),

and if g ∈ C1([0, T ];L2
i ), then

(4.42) v ∈ C4([0, T ];L2
v), i ∈ C3([0, T ];L2

i ), dti ∈ C2([0, T ];L2
i ).

Proof. First, recall that L2
v = L2

v
∗ and L2

i = L2
i
∗. Assertion (4.39) follows immedi-

ately from (4.14)–(4.16) by setting m = mk and passing to the limits through (4.25)

and (4.26). The inclusions in H1, H2, and H3 in assertion (4.40) are immediate

from (4.39) and twice differentiation of (3.3). The Sobolev embedding theorems [42,

Thm. 6.6-1] applied to Banach space-valued functions on [0, T ] ⊂ R imply that
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v ∈ C2, 1
2 ([0, T ];L2

v), i ∈ C1, 1
2 ([0, T ];L2

i ), and dti ∈ C0, 1
2 ([0, T ];L2

i ).

Consider the time-independent self-adjoint linear operator A := (−3
2
ν2∆ + I) :

H1
w→ H1

w
∗. Note that f(v) ∈ C2, 1

2 ([0, T ];L∞v ), since f is a bounded smooth function

and v ∈ C2, 1
2 ([0, T ];L2

v). Then, it follows from (3.5) and (4.39) that d2
tw + Aw ∈

L2(0, T ;L2
w). Therefore, by [18, Lem. II.4.1], we have w ∈ C0([0, T ];H1

w) and dtw ∈

C0([0, T ];L2
w), which completes the proof of (4.40). Assertions (4.41) and (4.42) are

now immediate from (3.3), (3.4), and (4.40).

Theorem 4.7 (Existence and uniqueness of strong solutions). Suppose that g ∈

L2(0, T ;L2
i ), v0 ∈ L2

v, i0 ∈ L2
i , i′0 ∈ L2

i , w0 ∈ H2
w, and w′0 ∈ H1

w. Then there exists a

unique Ω-periodic strong solution (v, i, w) of the initial value problem (3.3)–(3.6).

Proof. Uniqueness follows immediately from Theorem 4.5, since every strong solution

of (3.3)–(3.6) is also a weak solution. Moreover, Proposition 4.6 implies that the weak

solutions v ∈ H3(0, T ;L2
v) and i ∈ H2(0, T ;L2

i ) are indeed strong solutions as given

in Definition 4.3. It remains to prove the regularity required for w by Definition 4.3.

Consider (4.12) with the approximation (4.9), let Bw =
{
h

(k)
w

}∞
k=1

be the orthogo-

nal basis ofH1
w consisting of the eigenfunctions of A := −∆+I as given by Lemma 4.1,

and let λk denote the eigenvalue corresponding to the eigenfunction h(k)
w . Multiplying

(4.12) by λkc
(m)
wk and summing over k = 1, . . . ,m yields

(
d2
tw

(m), Aw(m)
)
L2w

+ 2ν
(
Λdtw

(m), Aw(m)
)
L2w

+
3

2
ν2
(
∂xw

(m), A∂xw
(m)
)
L2∂w

+ ν2
(
Λ2w(m), Aw(m)

)
L2w
− ν2

(
Λ2MJ8f(v(m)), Aw(m)

)
L2w

= 0.

Now, Young’s inequality implies that, for every ε1, . . . , ε4 > 0,

−
(
d2
tw

(m), Aw(m)
)
L2w
≤ ε1

∥∥Aw(m)
∥∥2

L2w
+

1

4ε1

∥∥d2
tw

(m)
∥∥2

L2w
,

−
(
Λdtw

(m), Aw(m)
)
L2w
≤ ε2

∥∥Aw(m)
∥∥2

L2w
+

1

4ε2

∥∥Λdtw
(m)
∥∥2

L2w
,
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−
(
Λ2w(m), Aw(m)

)
L2w
≤ ε3

∥∥Aw(m)
∥∥2

L2w
+

1

4ε3

∥∥Λ2w(m)
∥∥2

L2w
,(

Λ2MJ8f(v(m)), Aw(m)
)
L2w
≤ ε4

∥∥Aw(m)
∥∥2

L2w
+

1

4ε4

∥∥Λ2MJ8f(v(m))
∥∥2

L2w

≤ ε4

∥∥Aw(m)
∥∥2

L2w
+

1

4ε4

|Ω|F2
e tr(Λ4M2).

Therefore, using (2.1),

3

2
ν2
∥∥w(m)

∥∥2

H2
w
≤ (ε1 + 2νε2 + ν2ε3 + ν2ε4)

(∥∥w(m)
∥∥2

H2
w

+
∥∥∂xw(m)

∥∥2

L2∂w

)
+

3

2
ν2
∥∥w(m)

∥∥2

L2w
+

1

4ε1

∥∥d2
tw

(m)
∥∥2

L2w
+

ν

2ε2

∥∥Λdtw
(m)
∥∥2

L2w

+
ν2

4ε3

∥∥Λ2w(m)
∥∥2

L2w
+

ν2

4ε4

|Ω|F2
e tr(Λ4M2).

Next, set ε1 = ν2

8
, ε2 = ν

16
, ε3 = 1

8
, and ε4 = 1

8
, and note that, for some β > 0,

(4.43)
∥∥w(m)

∥∥2

H2
w
≤ β

(∥∥d2
tw

(m)
∥∥2

L2w
+
∥∥dtw

(m)
∥∥2

L2w
+
∥∥w(m)

∥∥2

H1
w

+ |Ω|F2
e tr(Λ4M2)

)
.

Bounds on
∥∥dtw

(m)
∥∥
L2w

and
∥∥w(m)

∥∥
H1
w
are given by the energy estimate (4.16). To

establish bounds on
∥∥d2

tw
(m)
∥∥
L2w

and
∥∥dtw

(m)
∥∥
H1
w
, consider (4.12) with the initial

values given in (4.13). Differentiating (4.12) with respect to t, multiplying the result

by d2
t c

(m)
wk , and summing over k = 1, . . . ,m yields

(
d2
t ẇ

(m), dtẇ
(m)
)
L2w

+ 2ν
(
Λdtẇ

(m), dtẇ
(m)
)
L2w

+
3

2
ν2
(
∂xẇ

(m), dt∂xẇ
(m)
)
L2∂w

+ ν2
(
Λ2ẇ(m), dtẇ

(m)
)
L2w
− ν2

(
Λ2MJ8 dtf(v(m)), dtẇ

(m)
)
L2w

= 0,

where ẇ := dtw and dtfe(v
(m)
e ) = ∂vefe(v

(m)
e ) dtv

(m)
e . Now, (4.37) with x = e gives

∥∥Λ2MJ8 dtf(v(m))
∥∥2

L2w
= tr(Λ4M2)

∫
Ω

∣∣dtfe(v(m)
e )

∣∣2 dx(4.44)

≤ tr(Λ4M2)
F2

e

8σ2
e

∫
Ω

∣∣dtv(m)
e

∣∣2 dx

≤ tr(Λ4M2)
F2

e

8σ2
e

∥∥dtv
(m)
∥∥2

L2v
.
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Using similar arguments as in the proof of Proposition 4.4, it follows from the above

inequality and Young’s inequality that, for every ε > 0,

dt

[∥∥dtẇ
(m)
∥∥2

L2w
+

3

2
ν2
∥∥∂xẇ(m)

∥∥2

L2∂w
+ ν2

∥∥Λẇ(m)
∥∥2

L2w

]
+ 2ν(2Λmin − εν)

∥∥dtẇ
(m)
∥∥2

L2w

≤ ν2

2ε

F2
e

8σ2
e

tr(Λ4M2)
∥∥dtv

(m)
∥∥2

L2v
,

where Λmin := min{Λee,Λei} is the smallest eigenvalue of Λ. Next, setting ε = 2
ν
Λmin,

replacing ẇ = dtw, and using Grönwall’s inequality yields

∥∥d2
tw

(m)(t)
∥∥2

L2w
+

3

2
ν2
∥∥dt∂xw

(m)(t)
∥∥2

L2∂w
+ ν2

∥∥Λdtw
(m)(t)

∥∥2

L2w
(4.45)

≤
(∥∥d2

tw
(m)
∥∥2

L2w
+

3

2
ν2
∥∥dt∂xw

(m)
∥∥2

L2∂w
+ ν2

∥∥Λdtw
(m)
∥∥2

L2w

)∣∣∣∣
t=0

+
1

32

ν3

Λminσ2
F2

e tr(Λ4M2)
∥∥dtv

(m)
∥∥2

L2(0,T ;L2v)
.

Finally, it follows from (4.12) and (4.13) that, for some α1 > 0,

∥∥d2
tw

(m)
∥∥2

L2w

∣∣∣
t=0
≤ α1

(
‖w′0‖

2
H1
w

+ ‖w0‖2
H2
w

+ ν2|Ω|F2
e tr(Λ4M2)

)
.

Now, using the energy estimate (4.14) and the above inequality in (4.45), it follows

that

∥∥d2
tw

(m)(t)
∥∥2

L2w
+
∥∥dtw

(m)(t)
∥∥2

H1
w
≤ α2

(
‖w′0‖

2
H1
w

+ ‖w0‖2
H2
w

+ (|Ω|+ κv)F
2
e

)

for some α2 > 0 and all t ∈ [0, T ]. Since this inequality and (4.43) hold for all

t ∈ [0, T ], it follows that

sup
t∈[0,T ]

(∥∥d2
tw

(m)(t)
∥∥2

L2w
+
∥∥dtw

(m)(t)
∥∥2

H1
w

+
∥∥w(m)(t)

∥∥2

H2
w

)
≤ β̂w,(4.46)
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where

β̂w := α
(
‖w′0‖

2
H1
w

+ ‖w0‖2
H2
w

+ (|Ω|+ κv)F
2
e

)

for some α > 0. Now, using the above estimate and passing to the limits, the result

follows by similar arguments as in the proof of Theorem 4.5.

Proposition 4.8 (Regularity of strong solutions). Suppose that the assumptions

of Theorem 4.7 hold, namely, g ∈ L2(0, T ;L2
i ), v0 ∈ L2

v, i0 ∈ L2
i , i′0 ∈ L2

i , w0 ∈ H2
w,

and w′0 ∈ H1
w. Then, in addition to the properties of the weak solution given in

Proposition 4.6, the Ω-periodic strong solution (v, i, w) of the initial value problem

(3.3)–(3.6) satisfies

ess sup
t∈[0,T ]

(∥∥d2
tw(t)

∥∥2

L2w
+ ‖dtw(t)‖2

H1
w

+ ‖w(t)‖2
H2
w

)
+
∥∥d3

tw
∥∥2

L2(0,T ;H1
w
∗)
≤ βw,(4.47)

w ∈ H2(0, T ;L2
w) ∩H1(0, T ;H1

w) ∩ C1, 1
2 ([0, T ];L2

w) ∩ C0, 1
2 ([0, T ];H1

w)(4.48)

∩ C0([0, T ];H2
w) ∩ C0([0, T ];C0,λ

per(Ω,R2)),

dtw ∈ H1(0, T ;L2
w) ∩ C0, 1

2 ([0, T ];L2
w) ∩ C0([0, T ];H1

w),

d2
tw ∈ C0([0, T ];L2

w)

for all λ ∈ (0, 1) and some βw > 0.

Proof. Differentiate (4.12) with respect to t and denote ẇ := dtw. Use (4.44) and fol-

low the same steps used to prove (4.16) in Proposition 4.4 to show
∥∥d2

t ẇ
(m)
∥∥2

L2(0,T ;H1
w
∗)
≤

β̃w for every positive integer m, all t ∈ [0, T ], and some β̃w > 0 proportional to β̂w

in (4.46). Replacing ẇ = dtw, adding the result to (4.46), and passing to the limits

establishes (4.47) for some βw > 0 proportional to β̂w.

The inclusions in H1 and H2 in assertion (4.48) follow immediately from (4.47).
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The inclusions in the Hölder spaces C0, 1
2 and C1, 1

2 are implied by the Sobolev em-

bedding theorems [42, Thm. 6.6-1] applied to Banach space-valued functions on

[0, T ] ⊂ R.

To show dtw ∈ C0([0, T ];H1
w) and d2

tw ∈ C0([0, T ];L2
w), consider the time-

independent self-adjoint linear operator A := (−3
2
ν2∆ + I) : H1

w→ H1
w
∗. Differentiate

(3.5) with respect to t and denote ẇ := dtw. Note that dtf(v) ∈ C1([0, T ];L∞v ), since

∂vf is a bounded smooth function and dtv ∈ C1([0, T ];L2
v), given by Proposition 4.6.

Then, it follows from (3.5) and (4.47) that d2
t ẇ + Aẇ ∈ L2(0, T ;L2

w). Therefore, by

[18, Lem. II.4.1], we have ẇ ∈ C0([0, T ];H1
w) and dtẇ ∈ C0([0, T ];L2

w).

Next, noting that f(v) ∈ C2([0, T ];L∞v ), w ∈ C1, 1
2 ([0, T ];L2

w), dtw ∈ C0, 1
2 ([0, T ];

L2
w), and d2

tw ∈ C0([0, T ];L2
w), it follows from (3.5) that (−∆ + I)w ∈ C0([0, T ];L2

w),

and hence w ∈ C0([0, T ];H2
w). Using the Sobolev embedding theorems applied to

Ω-periodic functions in R2, this further implies that w ∈ C0([0, T ];C0,λ
per(Ω,R2)).

Other than the regularity properties given in Propositions 4.6 and 4.8, bounded-

ness of weak and strong solutions associated with bounded input functions g can also

be established. We defer this result to Chapter 5, as a corollary of Proposition 5.3.

In the remainder of the dissertation, as suggested in [20, sect. 11.1.2], we give

formal arguments for some of the proofs, in the sense that we take the inner product

of (3.5) with functions that belong to L2
w, instead of functions belonging to H1

w as

required for the test functions hw in (4.4). However, the proofs can be made rigorous

using the Galerkin approximation technique based on the dual orthogonal basis of

H1
w b L2

w and then passing to the limits, as in the proofs of Theorems 4.5 and 4.7.

See the discussion and results in [20, sect. 11.1.2] for further details.
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CHAPTER 5

SEMIDYNAMICAL SYSTEMS AND BIOPHYSICAL

PLAUSIBILITY OF THE EVOLUTION

In this chapter, we establish a semidynamical system framework for the initial value

problem presented in Chapter 4. Assume g ∈ L2(0,∞;L2
i ) and let u(t) := (v(t), i(t),

dti(t), w(t), dtw(t)) denote a solution of (3.3)–(3.5) with the initial value u0 := u(0) =

(v0, i0, i
′
0, w0, w

′
0). Recall Definitions 4.2 and 4.3 and the results of Theorems 4.5 and

4.7 to note that the Hilbert spaces

Uw := L2
v × L2

i × L2
i ×H1

w × L2
w,(5.1)

Us := L2
v × L2

i × L2
i ×H2

w ×H1
w

construct, respectively, the phase spaces associated with the weak and strong solu-

tions. Now, for every t ∈ [0,∞), define the mappings

Sw(t) : Uw → Uw, Sw(t)u0 := u(t),

Ss(t) : Us → Us, Ss(t)u0 := u(t).

The existence and uniqueness of solutions given by Theorems 4.5 and 4.7 along with

the time-continuity of solutions given by Propositions 4.6 and 4.8 imply that the above

mappings are well defined for all t ∈ [0,∞). Then,
{
Sw(t)

}
t∈[0,∞)

and
{
Ss(t)

}
t∈[0,∞)

form semigroups of operators which give the weak and strong solutions of (3.1),

respectively. The following propositions show that these semigroups are continuous,

which also ensures that the initial value problems of finding weak and strong solutions

for (3.1) are well-posed.
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Proposition 5.1 (Continuity of the semigroup {Sw}). The semigroup of weak

solution operators
{
Sw(t)

}
t∈[0,∞)

is continuous for all g ∈ L2(0,∞;L2
i ).

Proof. Continuity of the semigroup with respect to t follows immediately from the

continuity of the weak solutions given in Proposition 4.6. It remains to prove con-

tinuous dependence of the solution on the initial values. Let ũ0 and û0 be any two

initial values in Uw that give the solutions ũ(t) = Sw(t)ũ0 and û(t) = Sw(t)û0 for all

t ∈ [0, T ], T > 0. Let u(t) := ũ(t) − û(t) be the weak solution with the initial value

u0 := ũ0 − û0. Now, consider (3.3)–(3.5) satisfied by ũ and û, and take the inner

product of (3.3)–(3.5) in each set with v, dti, and dtw, respectively. Subtracting the

resulting two sets of equations yields

(Φdtv, v)L2v + (v, v)L2v − (J1i, v)L2v(5.2)

+
(
J2(ṽĩT − v̂îT)ΨJ4 + J3(ṽĩT − v̂îT)ΨJ5, v

)
L2v

= 0,(
d2
t i, dti

)
L2i

+ 2 (Γdti, dti)L2i
+
(
Γ2i, dti

)
L2i
− e (ΥΓJ6w, dti)L2i

(5.3)

−e (ΥΓNJ7(f(ṽ)− f(v̂)), dti)L2i
= 0,(

d2
tw, dtw

)
L2w

+ 2ν (Λdtw, dtw)L2w +
3

2
ν2 (∂xw, dt∂xw)L2∂w

(5.4)

+ν2
(
Λ2w, dtw

)
L2w
− ν2

(
Λ2MJ8(f(ṽ)− f(v̂)), dtw

)
L2w

= 0.

As in the proof of uniqueness given in Theorem 4.5,

−
(
J2(ṽĩT − v̂îT)ΨJ4, v

)
L2v
≤
√

2κĩ ‖Ψ‖2 ‖v‖
2
L2v

+ ‖v‖2
L2v

+
1

2
κv̂ ‖Ψ‖2

2 ‖i‖
2
L2i
,

−
(
J3(ṽĩT − v̂îT)ΨJ5, v

)
L2v
≤
√

2κĩ ‖Ψ‖2 ‖v‖
2
L2v

+ ‖v‖2
L2v

+
1

2
κv̂ ‖Ψ‖2

2 ‖i‖
2
L2i
,

e (ΥΓNJ7(f(ṽ)− f(v̂)), dti)L2i
≤ ‖dti‖2

L2i
+

1

32
e2 ‖ΥΓNJ7‖2

2 max

{
F2

e

σ2
e
,
F2

i

σ2
i

}
‖v‖2

L2v
,

ν2
(
Λ2MJ8(f(ṽ)− f(v̂)), dtw

)
L2w
≤ ν2 ‖dtw‖2

L2w
+

1

32
ν2 F2

e

σ2
e

tr(Λ4M2) ‖v‖2
L2v
,

(J1i, v)L2v ≤ ‖v‖
2
L2v

+
1

2
‖i‖2
L2i
,

e (ΥΓJ6w, dti)L2i
≤ ‖dti‖2

L2i
+

1

4
e2 ‖ΥΓJ6‖2

2 ‖w‖
2
L2w
,
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where κv̂ and κĩ are in the form of (4.17) and (4.18). Now, substituting the above

inequalities into (5.2)–(5.4), adding the resulting inequalities together, and using

Grönwall’s inequality yield, for some α, β > 0,

(5.5) ‖u(t)‖2
Uw ≤ βeαT ‖u0‖2

Uw for all t ∈ [0, T ],

which completes the proof.

Proposition 5.2 (Continuity of the semigroup {Ss}). The semigroup of strong

solution operators
{
Ss(t)

}
t∈[0,∞)

is continuous for all g ∈ L2(0,∞;L2
i ).

Proof. Continuity of the semigroup with respect to t follows immediately from the

time continuity of the strong solutions given by Proposition 4.8. To prove continuous

dependence on the initial values, consider any two initial values ũ0 and û0 in Us and

construct the solutions ũ(t) = Ss(t)ũ0 and û(t) = Ss(t)û0, t ∈ [0, T ], T > 0, for (3.3)–

(3.5). Let u := ũ− û and A := −∆ + I, and take the inner product of (3.3)–(3.5) for

each solution with v, dti, and Adtw, respectively. Subtracting the resulting two sets

of equations gives (5.2), (5.3), and

1

2
dt ‖dtw‖2

H1
w

+ 2ν
∥∥∥Λ

1
2 dtw

∥∥∥2

H1
w

+
3

4
ν2dt ‖∂xw‖2

H1
∂w

+
1

2
ν2dt ‖Λw‖2

H1
w

(5.6)

= ν2
(
Λ2MJ8(f(ṽ)− f(v̂)), Adtw

)
L2w
.

Note that (5.5) also holds since Us ⊂ Uw, and since (5.2) and (5.3) remain unchanged,

the continuity of v and i holds.

Now, it follows from (5.6) by integrating over [0, t] that

‖dtw‖2
H1
w

+ ν2

[
3

2
‖∂xw‖2

H1
∂w

+ ‖Λw‖2
H1
w

]
≤
(
‖dtw‖2

H1
w

+ ν2

[
3

2
‖∂xw‖2

H1
∂w

+ ‖Λw‖2
H1
w

])∣∣∣∣
t=0

+ 2ν2

∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), Adsw

)
L2w

ds,
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which, using (2.1), can be written equivalently for some α1, β1 > 0 as

Q(w(t), dtw(t)) ≤ α1Q(w(0), dtw(0))(5.7)

+ β1

∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), Adsw

)
L2w

ds,

where

(5.8) Q(w(t), dtw(t)) := ‖dtw(t)‖2
H1
w

+ ‖Aw(t)‖2
L2w
.

Integrating by parts in the second term of the right-hand side of (5.7) yields

β1

∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), Adsw

)
L2w

ds(5.9)

= β1

(
Λ2MJ8(f(ṽ)− f(v̂)), Aw

)
L2w

− β1

(
Λ2MJ8(f(ṽ0)− f(v̂0)), Aw0

)
L2w

− β1

∫ t

0

(
Λ2MJ8ds(f(ṽ)− f(v̂)), Aw

)
L2w

ds.

Next, recalling that supvX(x,t)∈R |∂vxfx(vx)| ≤ Fx
2
√

2σx
by (4.37) and using Young’s

inequality, we obtain

β1

(
Λ2MJ8(f(ṽ)− f(v̂)), Aw

)
L2w
≤ 1

2
‖Aw‖2

L2w
+
β2

1

16

F2
e

σ2
e

tr(Λ4M2) ‖v‖2
L2v
,(5.10)

−β1

(
Λ2MJ8(f(ṽ0)− f(v̂0)), Aw0

)
L2w
≤ 1

2
‖Aw0‖2

L2w
+
β2

1

16

F2
e

σ2
e

tr(Λ4M2) ‖v0‖2
L2v
.

Moreover,

− β1

(
Λ2MJ8ds(f(ṽ)− f(v̂)), Aw

)
L2w

= −β1

(
Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂), Aw

)
L2w

≤ 1

2
‖Aw‖2

L2w
+

1

2
β2

1

∥∥Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂)
∥∥2

L2w

=
1

2
‖Aw‖2

L2w
+

1

2
β2

1 tr(Λ4M2)

∫
Ω

|∂ṽef(ṽe)dsṽe − ∂v̂ef(v̂e)dsv̂e|2 dx,
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where, noting that supve(x,t)∈R |∂2
vefe(ve)| < 1

5
Fe
σ2
e
by direct computation of the deriva-

tive of (4.37), we can write

|∂ṽef(ṽe)dsṽe − ∂v̂ef(v̂e)dsv̂e|2dx

= |∂ṽef(ṽe)dsve + (∂ṽef(ṽe)− ∂v̂ef(v̂e))dsv̂e|2

≤ 2|∂ṽef(ṽe)|2|dsve|2 + 2|∂ṽef(ṽe)− ∂v̂ef(v̂e)|2|dsv̂e|2

≤ 1

4

F2
e

σ2
e
|dsve|2 + 2

[
sup

ve(x,t)∈R
|∂2
vefe(ve)|

]2

|ve|2|dsv̂e|2

≤ 1

4

F2
e

σ2
e
|dsve|2 +

2

25

F2
e

σ4
e
|ve|2|dsv̂e|2.

Therefore, it follows that

− β1

(
Λ2MJ8ds(f(ṽ)− f(v̂)), Aw

)
L2w

(5.11)

≤ 1

2
‖Aw‖2

L2w
+
β2

1

8

F2
e

σ2
e

tr(Λ4M2) ‖dsv‖2
L2v

+
β2

1

25

F2
e

σ4
e

tr(Λ4M2) ‖dsv̂‖2
C1([0,T ];L2v) ‖v‖

2
L2v
.

Moreover, (3.3) implies that, for some α2 > 0,

‖dsv(s)‖2
L2v
≤ α2

(
‖v(s)‖2

L2v
+ ‖i(s)‖2

L2i
+ ‖v(s)‖2

L2v
‖i(s)‖2

L2i

)
(5.12)

for all s ∈ [0, T ].

Now, substituting (5.10), (5.11), and (5.12) into (5.9) and using (5.5), it follows
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that there exist some β2, . . . , β6 > 0 such that

β1

∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), dsAw

)
L2w

ds

≤ 1

2

∫ t

0

‖Aw‖2
L2w

ds+ β2

∫ t

0

(
‖v‖2

L2v
+ ‖i‖2

L2i
+ ‖v‖2

L2v
‖i‖2
L2i

)
ds

+
1

2
‖Aw‖2

L2w
+ β3 ‖v‖2

L2v
+

1

2
‖Aw0‖2

L2w
+ β4 ‖v0‖2

L2v

≤ 1

2

∫ t

0

‖Aw‖2
L2w

ds+ β5 ‖u0‖2
Uw

(
1 + ‖u0‖2

Uw

)
t

+
1

2
‖Aw‖2

L2w
+

1

2
‖Aw0‖2

L2w
+ β6 ‖u0‖2

Uw .

Substituting this inequality into (5.7) yields

1

2
Q(w(t), dtw(t)) ≤ 1

2

∫ t

0

Q(w(s), dsw(s))ds+ β5 ‖u0‖2
Uw

(
1 + ‖u0‖2

Uw

)
t(5.13)

+ α1Q(w(0), dtw(0)) +
1

2
‖Aw0‖2

L2w
+ β6 ‖u0‖2

Uw ,

where, using Grönwall’s inequality for the function 1
2

∫ t
0
Q(w(s), dsw(s))ds, we can

write

1

2

∫ t

0

Q(w(s), dsw(s))ds ≤ β5 ‖u0‖2
Uw

(
1 + ‖u0‖2

Uw

) (
et − (t+ 1)

)
+

[
α1Q(w(0), dtw(0)) +

1

2
‖Aw0‖2

L2w
+ β6 ‖u0‖2

Uw

] (
et − 1

)
.

This inequality, along with (5.13) and the definition of Q given by (5.8), implies that,

for some β7 > 0,

Q(w(t), dtw(t)) ≤ β7e
T
[
Q(w(0), dtw(0)) + ‖u0‖2

Uw

(
1 + ‖u0‖2

Uw

)]
for all t ∈ [0, T ].

Now, noting that Q(w(0), dtw(0)) = ‖w′0‖
2
H1
w

+ ‖Aw0‖2
L2w

, it follows from the above
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inequality and (5.5) that, for some α̂, β̂ > 0,

‖u(t)‖2
Us ≤ β̂eα̂T ‖u0‖2

Us

(
1 + ‖u0‖2

Uw

)
for all t ∈ [0, T ],

which completes the proof.

Although the spaces Uw and Us constructed in (5.1) provide the theoretical phase

spaces of the problem for the solutions constructed in Chapter 4, the evolution of the

dynamics of the model is not biophysically plausible on the entire spaces Uw and Us. As

described in Chapter 3, i(x, t), w(x, t), and g(x, t) represent nonnegative biophysical

quantities. In fact, initial functions i′0 ∈ L2
i and w′0 ∈ L2

w can be constructed such that

the solutions i(x, t) and w(x, t), despite starting from nonnegative initial values i0 ∈

L2
i and w0 ∈ H1

w, take negative values over a set X ⊂ Ω of positive measure for a time

interval of positive length. In the following propositions, we establish conditions under

which the dynamics of the model is guaranteed to evolve in biophysically plausible

subsets of Uw and Us.

Proposition 5.3 (Nonnegativity of the solution w(x, t)). Suppose that w ∈

L2(0, T ;H1
w) is the w-component of an Ω-periodic weak solution u(t) = Sw(t)u0 of

(3.3)–(3.6) and define the set Dw ⊂ H1
w × L2

w as

(5.14) Dw :=
{

(w0, w
′
0) ∈ W1,∞

w × L∞w : w′0 + νΛw0 ≥ 0 a.e. in Ω,

and w0(y) + ∂yw0(y)(y − x) ≥ 0 for almost every x ∈ Ω, y ∈ B(x, t), t ∈ (0, T ]} .

Then, for every initial value (w0, w
′
0) ∈ Dw, the solution w(x, t) remains nonnegative

almost everywhere in Ω for all t ∈ (0, T ].

Proof. First, note that the weak and strong solutions coincide for v(t) and they

satisfy (3.3) and (3.4) almost everywhere in Ω for all t ∈ [0, T ], T > 0; see the proof
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of Theorem 4.7. Substituting v(t) into f , we can interpret f(v) in (3.5) as a function

f̂(x, t) := f(v(x, t)) for almost every x ∈ Ω and all t ∈ [0, T ]. Next, using (3.2), (3.7),

and Proposition 4.6, it is implied that f̂ ∈ L∞(0, T ;L∞v ) and f̂ > 0 in Ω × [0, T ].

Now, replace f(v) in (3.5) by f̂ and scale x by the factor
√

3
2
ν to obtain

∂2
t w̃ + 2νΛ∂tw̃ −∆w̃ + ν2Λ2w̃ − f̃ = 0 in Ω̃× (0, T ],

w̃ = w̃0, ∂tw̃ = w̃′0 on Ω̃× {0},

where Ω̃ :=
√

3
2
νΩ, and w̃, w̃0, w̃′0, and f̃ denote w, w0, w′0, and ν2Λ2MJ8f̂ in

the scaled domain Ω̃, respectively. Note that, with the new interpretation of f , the

above equation is a system of two decoupled telegraph equations. Therefore, applying

the same arguments to each of the two equations independently, in what follows we

assume without loss of generality that the above equation is a scalar equation.

Using the change of variable q := eνΛtw̃, the problem can be transformed to the

initial value problem of the standard wave equation given by

∂2
t q −∆q = eνΛtf̃ in R2 × (0, T ],(5.15)

q = w̃0, ∂tq = w̃′0 + νΛw̃0 on R2 × {0}.

Here, the extension from Ω̃ to R2 is done periodically due to the Ω̃-periodicity of the

functions. Let w̃0ε, w̃′0ε, and f̃ε denote, respectively, w̃0, w̃′0, and f̃ after mollification

by the standard positive mollifier φε ∈ C∞c (R2); see [42, sect. 2.6]. Using Poisson’s

formula for the homogeneous wave equation in R2, along with Duhamel’s principle

for the nonhomogeneous problem [43, sect. 2.4], it follows that the function

qε(x, t) :=
1

2
−
∫
B(x,t)

t
[
w̃0ε(y) + (∂yw̃0ε(y), y − x)R2

]
+ t2

[
w̃′0ε(y) + νΛw̃0ε(y)

]
[
t2 − ‖y − x‖2

R2

] 1
2

dy

(5.16)

+
1

2

∫ t

0

(t− s)2eνΛs−
∫
B(x,t−s)

f̃ε(y, s)[
(t− s)2 − ‖y − x‖2

R2

] 1
2

dy ds
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solves (5.15) classically for the forcing term eνΛtf̃ε and initial values w̃0ε and w̃′0ε.

The second term in this solution is nonnegative for all t ∈ [0, T ], since f̃ and

consequently f̃ε are nonnegative on B(x, t) for all x ∈ Ω and all t ∈ [0, T ]. Moreover,

by [42, Thm. 2.6-1] and the definition of the weak derivative, we can write

(∂yw̃0ε(y), y − x)R2 =

(∫
B(y,ε)

∂yφε(y − z)w̃0(z)dz , y − x
)

R2

=

(
−
∫
B(y,ε)

∂zφε(y − z)w̃0(z)dz , y − x
)

R2

=

(∫
B(y,ε)

φε(y − z)∂zw̃0(z)dz , y − x
)

R2

=

∫
B(y,ε)

φε(y − z) (∂zw̃0(z), z − x)R2 dz

+

∫
B(y,ε)

φε(y − z) (∂zw̃0(z), y − z)R2 dz,

where, using Hölder’s inequality and the property
∫
B(0,ε)

φε(x)dx = 1, we have

∣∣∣∣∫
B(y,ε)

φε(y − z) (∂zw̃0(z), y − z)R2 dz

∣∣∣∣ ≤ ‖∂xw̃0‖L∞∂w

∫
B(y,ε)

φε(y − z) ‖y − z‖1 dz

≤
√

2 ‖∂xw̃0‖L∞∂w ε.

Therefore, it follows that

−
∫
B(x,t)

t
[
w̃0ε(y) + (∂yw̃0ε(y), y − x)R2

]
[
t2 − ‖y − x‖2

R2

] 1
2

dy

≥ −
∫
B(x,t)

t

∫B(y,ε)
φε(y − z)

[
w̃0(z) + (∂zw̃0(z), z − x)R2

]
dz[

t2 − ‖y − x‖2
R2

] 1
2

−

√
2 ‖∂xw0‖L∞∂w ε[

t2 − ‖y − x‖2
R2

] 1
2

 dy

≥ −
√

2 ‖∂xw̃0‖L∞∂w ε for all (w̃0, w̃
′
0) ∈ D̃w,
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where D̃w denotes Dw in the scaled domain Ω̃. Note that the last inequality holds

since the first term in the integration on the right-hand side is nonnegative by (5.14),

and t
[
t2 − ‖y − x‖2

R2

]− 1
2 takes the average value 1 over the ball B(x, t). Finally,

note that w̃′0ε(y) + νΛw̃0ε(y) in (5.16) is nonnegative on B(x, t) when (w̃0, w̃
′
0) ∈ D̃w.

Therefore, it follows that

(5.17) qε(x, t) ≥ −
√

2 ‖∂xw̃0‖L∞∂w ε for all (w̃0, w̃
′
0) ∈ D̃w.

Now, taking the limits as ε → 0, it follows from [42, Thm. 2.6-3] that w̃0ε →

w̃0, w̃′0ε → w̃′0, and f̃ε → f̃ in L2(Ω̃t), where Ω̃t := {y ∈ R2 : y ∈ B(x, t), x ∈ Ω}.

Therefore, there exists a subsequence
{
εn
}∞
n=1

, convergent to 0, such that w̃0εn → w̃0,

w̃′0εn → w̃′0, and f̃εn → f̃ almost everywhere on Ωt as n → ∞ [50, Thm. 2.30].

Moreover, since (w̃0, w̃
′
0) ∈ W1,∞

w × L∞w in D̃w, f̃ ∈ L∞(0, T ;L∞v ), and the function[
t2−‖y − x‖2

R2

]− 1
2 is integrable over B(x, t), it follows that the integrands in (5.16) are

uniformly bounded with respect to ε by integrable functions over B(x, t). Lebesgue’s

dominated convergence theorem then implies that q(x, t) := limn→∞ qεn(x, t) exists on

Ω̃t and, by uniqueness of the weak solution, is a weak solution of the wave equation

(5.15). Now, letting ε = εn → 0 in (5.17), it follows that if (w̃0, w̃
′
0) ∈ D̃w, then

q(x, t) ≥ 0 for almost every x ∈ Ω̃ and all t ∈ (0, T ]. This completes the proof, since

the change of variable w̃ = e−νΛtq and space rescaling Ω =
√

2
3
ν−1Ω̃ do not change

the sign of solutions.

Corollary 5.4 (Boundedness of the weak solutions). Suppose g ∈ L∞(0, T ;

L∞i ), v0 ∈ L∞v , i0 ∈ L∞i , i′0 ∈ L∞i , w0 ∈ W1,∞
w , and w′0 ∈ L∞w . Then, in addi-

tion to the regularities given by Proposition 4.6, the weak solution (v(t), i(t), w(t)) of
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(3.3)–(3.6) satisfies

v ∈ W 2,∞(0, T ;L∞v ) ∩ C1,1([0, T ];L∞v ),

i ∈ W 1,∞(0, T ;L∞i ) ∩ C0,1([0, T ];L∞i ),

w ∈ L∞(0, T ;L∞w ).

Proof. The boundedness of w follows immediately from the proof of Proposition 5.3,

since under the assumption w0 ∈ W1,∞
w and w′0 ∈ L∞w the integrands in (5.16) are

integrable and each component of the weak solution w(t) is achieved almost every-

where in Ω as the limit of (5.16) when ε→ 0, followed by the space rescaling from Ω̃

to Ω.

Now, to prove boundedness of v, i, and dti, let x0 ∈ Ω be any Lebesgue point1 of

the initial functions v0, i0, i′0, w0, and g(0). Take the R4-inner product of (3.4) at x0

with dti(x0, t) for every t ∈ (0, T ] to obtain

(
d2
t ix0 , dtix0

)
R4 + 2 (Γdtix0 , dtix0)R4 +

(
Γ2ix0 , dtix0

)
R4

− e (ΥΓJ6wx0 , dtix0)R4 − e (ΥΓNJ7f(vx0), dtix0)R4 = e (ΥΓgx0 , dtix0)R4 ,

where vx0(t) := v(x0, t), ix0(t) := i(x0, t), wx0(t) := w(x0, t), and gx0(t) := g(x0, t).

This equality is similar to (4.21) in the proof of Proposition 4.4, with the L2
i -inner

product being replaced by the R4-inner product, and v(m), i(m), and w(m) being re-

placed by vx0 , ix0 , and wx0 , respectively. Therefore, similar arguments as in the proof

of Proposition 4.4 imply that

sup
t∈[0,T ]

(
‖dtix0(t)‖

2
R4 + ‖ix0(t)‖

2
R4

)
≤ κi,(5.18)

1 The choice of a Lebesgue point is for the sake of definiteness. Almost every point in Ω can be
used as x0.
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where, with κw := ‖w‖2
L∞(0,T ;L∞w ) and for some α1 > 0 independent of x0,

κi = α1

(
‖i′0‖

2
L∞i

+ ‖i0‖2
L∞i

+

[
e2κw
γmin

‖ΥΓJ6‖2
2 +

e2|Ω|
γmin

(F2
e + F2

i ) ‖ΥΓNJ7‖2
2

]
T

+
e2

2γmin

‖ΥΓ‖2
2 ‖g‖

2
L∞(0,T ;L∞i )

)
,

and γmin is the smallest eigenvalue of Γ.

Similarly, taking the R2-inner product of (3.3) at x0 with vx0(t) and using the

arguments following (4.23) in the proof of Proposition 4.4 yields

sup
t∈[0,T ]

(
‖vx0(t)‖

2
L2v

)
≤ κv,(5.19)

where, for some α2, β > 0 independent of x0,

κv = α2 exp
(
β
√

2κi ‖Ψ‖2 T
)(
‖v0‖2

L∞v
+

κi√
2κi ‖Ψ‖2

)
.

Now, note that almost every point x0 ∈ Ω is a Lebesgue point for the locally integrable

initial functions, and the estimates κv and κi are independent of x0. Therefore,

taking the supremum over all Lebesgue points x0 ∈ Ω in (5.18) and (5.19) implies

v ∈ L∞(0, T ;L∞v ) and i ∈ W 1,∞(0, T ;L∞i ), which, recalling (3.3), further imply

v ∈ W 2,∞(0, T ;L∞v ). Finally, it follows by using Morrey’s inequality [43, Thm. 5.6-4

and Thm. 5.6-5] that v ∈ C1,1([0, T ];L∞v ) and i ∈ C0,1([0, T ];L∞i ), which completes

the proof.

Next, we recall and use the following standard result in the theory of ODEs

to establish conditions that guarantee nonnegativity of i(x, t) for all biophysically

plausible values of the input g, that is, for all g ∈ L2(0, T ;Dg), where

(5.20) Dg :=
{
` ∈ L2

i : ` ≥ 0 a.e. in Ω
}
.
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Proposition 5.5 (Invariance of the nonnegative cone [19, Prop. I.1.1]). Let{
S(t)

}
t∈[0,∞)

be the semigroup of solution operators associated with the ODE

dtq(t) = P (q(t)), q(t) ∈ Rn, t ∈ [0,∞),

where P : Rn → Rn is a continuous locally Lipschitz mapping. Then the nonnegative

cone Rn
+ is invariant for

{
S(t)

}
t∈[0,∞)

if and only if P (q) is quasi-positive, that is,

for every j ∈ {1, . . . , n},

Pj(q1, . . . , qn) ≥ 0 whenever qj = 0 and qk ≥ 0 for all k 6= j.

Proposition 5.6 (Positively invariant region for the solution i(x, t)). Suppose

g ∈ L2(0, T ;Dg) and let u(t) = Sw(t)u0 be an Ω-periodic weak solution of (3.3)–(3.6).

Suppose the w-component of the weak solution, w(x, t), is nonnegative for almost

every x ∈ Ω and all t ∈ [0, T ], T > 0, and define the set

(5.21) Di :=
{

(`, `′) ∈ L2
i × L2

i : ` ≥ 0 and `′ + Γ` ≥ 0 a.e. in Ω
}
.

Then, for every (i0, i
′
0) ∈ Di, we have (i(t), dti(t)) ∈ Di almost everywhere in Ω for all

t ∈ [0, T ]. An identical result holds for strong solutions u(t) = Ss(t)u0 of (3.3)–(3.6)

with nonnegative w-component.

Proof. Let b := dti+ Γi and rewrite (3.4) as the first-order system of equations

dti = −Γi+ b,(5.22)

dtb = −Γb+ eΥΓJ6w + eΥΓNJ7f(v) + eΥΓg.

Let x0 ∈ Ω be a Lebesgue point of the initial functions v0, i0, i′0, w0, and g(0),
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and define vx0(t), ix0(t), wx0(t), and gx0(t) as given in the proof of Corollary 5.4.

Accordingly, let bx0(t) := b(x0, t) = dtix0(t) + Γix0(t).

Now, (5.22) implies that the function qx0 := (ix0 , bx0) satisfies the ODE dtqx0(t) =

P (qx0(t)), t ∈ [0, T ], where the mapping P : R8 → R8 given by

P (qx0) = P (ix0 , bx0) := (−Γix0 + bx0 ,−Γbx0 + eΥΓJ6wx0 + eΥΓNJ7f(vx0) + eΥΓgx0)

is Lipschitz continuous. Moreover, note that by assumption we have wx0 ≥ 0 and

gx0 ≥ 0, which, along with the definitions of f , Υ, Γ, N, J6, and J7 given by (3.2)

and (3.7), implies eΥΓJ6wx0(t) ≥ 0, eΥΓNJ7f(vx0(t)) ≥ 0, and eΥΓgx0(t) ≥ 0 for all

t ∈ [0, T ]. Therefore, it follows that P is quasi-positive, and hence by Proposition 5.5

we have qx0(t) ≥ 0 for all t ∈ [0, T ]. This completes the proof, since x0 is an arbitrary

Lebesgue point of the initial functions and almost every point in Ω is a Lebesgue

point for these functions.2

Remark 5.7 (Biophysically plausible set of initial values). It is ensured by

Propositions 5.3 and 5.6 that if g ∈ L2(0,∞;Dg), where Dg is given by (5.20), and

the initial values lie in the set

(5.23) DBio := L2
v ×Di ×Dw,

where Dw and Di are given by (5.14) and (5.21), respectively, then i(x, t) and w(x, t)

2 Note that there are fairly standard results in the literature that ensure the positivity of a C1(Ω×
[0, T ];Rm) function as it evolves in time, provided its time derivative satisfies certain conditions on
the boundary of the positive cone; see, for example, [52, Lem. 6] and [53]. The proofs of these
results are relatively geometrical and usually use continuity of the functions and the compactness
of Ω. However, these proofs are by no means applicable to functions in C1([0, T ];L2(Ω;Rm)). In
fact, functions in C1([0, T ];L2(Ω;Rm)) are allowed to leak through the boundary of the positive
cone on sets of measure zero at every t ∈ [0, T ]. Since any subinterval of [0, T ] is uncountable, it
is not guaranteed that the uncountable union of such leakage sets will have measure zero over a
subinterval. In the proof of Proposition 5.6, we use the additional property that the functions are
governed by a system of ODEs. Therefore, for all t ∈ (0, T ], the Banach space-valued function i(t)
is defined at the same almost every points in Ω as it is initially defined at t = 0. In other words, the
leakage set remains unchanged for all t ∈ (0, T ].
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always remain nonnegative at almost every point in Ω as they evolve in time. However,

it should be noted that this does not imply that the set DBio ⊂ Uw is positively invari-

ant, since Proposition 5.3 does not imply positive invariance of the set Dw. Therefore,

DBio cannot serve as a phase space for the semidynamical system framework of the

problem.

In the analysis of the following chapters, nonnegativity of the solution i(x, t) is

essential. Moreover, it would be of no practical value to analyze the dynamics of the

model out of the biophysical regions of the phase space. Therefore, we define

Dw := {u0 ∈ Uw : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Sw(t)u0} ,

(5.24)

Ds := {u0 ∈ Us : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Ss(t)u0}

as the maximal closed subsets of Uw and Us for the initial values of the weak and strong

solutions, respectively, such that i and w initiating from the points in these sets evolve

nonnegatively over time. Note that Dw and Ds are nonempty since DBio ⊂ Dw and

DBio ∩ Us ⊂ Ds when g ∈ L2(0,∞,Dg). Moreover, Dw and Ds are closed sets since{
Sw(t)

}
t∈[0,∞)

and
{
Ss(t)

}
t∈[0,∞)

are continuous semigroups, as given by Propositions

5.1 and 5.2. Moreover, it follows immediately from the definitions given by (5.24) that

Dw and Ds are positively invariant sets. Therefore, endowed with the metric induced

by the norm in Uw and Us, the sets Dw and Ds form positively invariant complete

metric spaces and can be considered as biophysically plausible phase spaces of the

model, based on which we construct the semidynamical systems

(
Dw,

{
Sw(t)

}
t∈[0,∞)

)
,
(
Ds,
{
Ss(t)

}
t∈[0,∞)

)

associated with the weak and strong solutions of (3.3)–(3.6), respectively, and inves-

tigate their global dynamics in the remainder of the dissertation.
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CHAPTER 6

EXISTENCE OF ABSORBING SETS

In this chapter, we prove the existence of bounded absorbing sets for the semigroups{
Sw(t)

}
t∈[0,∞)

and
{
Ss(t)

}
t∈[0,∞)

acting on Dw and Ds, respectively. First, we recall

the following definition of an absorbing set for an operator semigroup.

Definition 6.1 (Absorbing set [19, Def. II.2.3]). A set B0 in a complete met-

ric space D is called an absorbing set for the semigroup
{
S(t) : D → D

}
t∈[0,∞)

if for

every bounded set B ∈ D there exists t0(B) ∈ (0,∞) such that S(t)B ⊂ B0 for all

t ≥ t0(B).

Theorem 6.2 (Existence of absorbing sets in Dw). Assume that g ∈ L∞(0,∞;

Dg) and that there exists θ > 2γ−3
min such that

(i) 4
3
θe2Υ2

eeγmax(νΛee)−3 < 1,

(ii) 4
3
θe2Υ2

eiγmax(νΛei)
−3 < 1,

where γmin := min{γee, γei, γie, γii} and γmax := max{γee, γei, γie, γii} are the small-

est and largest eigenvalues of Γ, respectively. Then the semigroup
{
Sw(t) : Dw →

Dw

}
t∈[0,∞)

associated with the weak solutions of (3.3)–(3.6) has a bounded absorbing

set Bw. Specifically, consider the functions Q−w : Dw → [0,∞) and Q+
w : Dw → [0,∞)
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defined by

Q−w(u) :=
∥∥∥Φ

1
2v
∥∥∥2

L2v
+ θ

∥∥∥∥dti+
3

2
Γi

∥∥∥∥2

L2i

+
1

4
θ ‖Γi‖2

L2i
+

∥∥∥∥dtw +
3

2
νΛw

∥∥∥∥2

L2w

(6.1)

+
1

4
ν2 min{6,Λ2

min} ‖w‖
2
H1
w
,

Q+
w(u) :=

∥∥∥Φ
1
2v
∥∥∥2

L2v
+ θ

∥∥∥∥dti+
3

2
Γi

∥∥∥∥2

L2i

+
1

4
θ ‖Γi‖2

L2i
+

∥∥∥∥dtw +
3

2
νΛw

∥∥∥∥2

L2w

+
1

4
ν2 max{6,Λ2

max} ‖w‖
2
H1
w
,

and a scalar ε such that

(6.2) max

{
4

3
θe2Υ2

eeγmax(νΛee)−3,
4

3
θe2Υ2

eiγmax(νΛei)
−3

}
< 2γmaxε < 1.

Let τmax := max{τe, τi} denote the largest eigenvalue of Φ, and let Λmin := min{Λee,Λei}

and Λmax := max{Λee,Λei} denote the smallest and largest eigenvalues of Λ, respec-

tively. Let ρ2
w := βw

αw
, where

αw := min

{
2

3
τ−1

max,

(
1

2
γ−1

max − ε
)
γ2

min, 3θ
−1
(
θγmin − 2γ−2

min

)
,
1

2
νΛmin,

(6.3)

3νΛ−2
max min

{
Λ3

ee −
2

3

θe2

ν3ε
Υ2

ee,Λ
3
ei −

2

3

θe2

ν3ε
Υ2

ei

}}
,

βw :=
4θe2

γ−1
max − 2ε

[
|Ω|(F2

e + F2
i ) ‖ΥNJ7‖2

2 + ‖Υ‖2
2 ‖g‖

2
L∞(0,∞;L2i )

]
+ 2ν3|Ω|F2

e tr(Λ3M2).

(6.4)

Then, for all ρ > ρw, the bounded sets Bw := {u ∈ Dw : Q−w(u) ≤ ρ2} are absorbing

in Dw. Moreover, for every bounded set B ⊂ Dw, there exists R > 0 such that

Q+
w(u0) ≤ R2 for all u0 ∈ B, and S(t)B ⊂ Bw for all t ≥ tw(B), where

(6.5) tw(B) = tw(R) := max

{
0,

1

αw

log
R2

ρ2 − ρ2
w

}
.
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Proof. First, taking the inner product of (3.3) with v yields

1

2
dt

∥∥∥Φ
1
2v
∥∥∥2

L2v
+ ‖v‖2

L2v
− (J1i, v)L2v +

∫
Ω

(
v2

1i
TΨJ4 + v2

2i
TΨJ5

)
dx = 0.

The integral term in this equation is nonnegative in Dw for all t ∈ [0,∞); see (3.7) and

(5.24). Therefore, dropping the integral term and using Young’s inequality yields, for

every ε1 > 0,

dt

∥∥∥Φ
1
2v
∥∥∥2

L2v
≤ −2(1− ε1) ‖v‖2

L2v
+

1

ε1

‖i‖2
L2i

(6.6)

≤ −2(1− ε1)τ−1
max

∥∥∥Φ
1
2v
∥∥∥2

L2v
+

1

ε1γ2
min

‖Γi‖2
L2i
.

Next, let b := dti+ 3
2
Γi and rewrite (3.4) as

dtb+
1

2
Γb+

1

4
Γ2i− eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg.

Taking the inner product of the above equality with b yields

1

2
dt ‖b‖2

L2i
+

1

2
(Γb, b)L2i

+
1

8
dt ‖Γi‖2

L2i
+

3

8

∥∥∥Γ
3
2 i
∥∥∥2

L2i

− e (ΥΓJ6w, b)L2i
− e (ΥΓNJ7f(v), b)L2i

= e (ΥΓg, b)L2i
.

Note that

(Γb, b)L2i
≥ γ−1

max ‖Γb‖
2
L2i
,∥∥∥Γ

3
2 i
∥∥∥2

L2i
≥ γmin ‖Γi‖2

L2i
,

and, using similar arguments as in the proof of Proposition 4.4, it follows that for
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every ε2, ε3, ε4 > 0,

e (ΥΓJ6w, b)L2i
≤ ε2 ‖Γb‖2

L2i
+

e2

4ε2

‖ΥJ6w‖2
L2i

e (ΥΓNJ7f(v), b)L2i
≤ ε3 ‖Γb‖2

L2i
+
e2|Ω|
4ε3

(F2
e + F2

i ) ‖ΥNJ7‖2
2 ,

e (ΥΓg, b)L2i
≤ ε4 ‖Γb‖2

L2i
+

e2

4ε4

‖Υ‖2
2 ‖g‖

2
L2i
.

Therefore,

dt

[
‖b‖2
L2i

+
1

4
‖Γi‖2

L2i

]
≤ −

(
γ−1

max − 2(ε2 + ε3 + ε4)
)
‖Γb‖2

L2i
− 3

4
γmin ‖Γi‖2

L2i
(6.7)

+
e2

2ε2

‖ΥJ6w‖2
L2i

+
e2

2ε3

|Ω|(F2
e + F2

i ) ‖ΥNJ7‖2
2

+
e2

2ε4

‖Υ‖2
2 ‖g‖

2
L2i
.

Next, let q := dtw + 3
2
νΛw and rewrite (3.5) as

(6.8) dtq +
1

2
νΛq − 3

2
ν2∆w +

1

4
ν2Λ2w − ν2Λ2MJ8f(v) = 0.

Taking the inner product of this equality with q yields

1

2
dt ‖q‖2

L2w
+

1

2
ν
∥∥∥Λ

1
2 q
∥∥∥2

L2w
+

3

4
ν2dt ‖∂xw‖2

L2∂w
+

9

4
ν3
∥∥∥Λ

1
2∂xw

∥∥∥2

L2∂w
+

1

8
ν2dt ‖Λw‖2

L2w

+
3

8
ν3
∥∥∥Λ

3
2w
∥∥∥2

L2w
− ν2

(
Λ2MJ8f(v), q

)
L2w

= 0.

Using similar arguments as in the proof of Proposition 4.4, we can write, for every

ε5 > 0,

(
Λ2MJ8f(v(m)), q

)
L2w
≤ ε5

∥∥∥Λ
1
2 q
∥∥∥2

L2w
+

1

4ε5

|Ω|F2
e tr(Λ3M2),
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and hence it follows that

dt

[
‖q‖2

L2w
+

3

2
ν2 ‖∂xw‖2

L2∂w
+

1

4
ν2 ‖Λw‖2

L2w

]
(6.9)

≤ −ν(1− 2νε5)
∥∥∥Λ

1
2 q
∥∥∥2

L2w
− 3ν

(3

2
ν2
∥∥∥Λ

1
2∂xw

∥∥∥2

L2∂w
+

1

4
ν2
∥∥∥Λ

3
2w
∥∥∥2

L2w

)
+

ν2

2ε5

|Ω|F2
e tr(Λ3M2).

Now, set ε1 = 2
3
in (6.6), set ε3 = ε4 = 1

8
(γ−1

max − 2ε) in (6.7) with ε := ε2, and set

ε5 = 1
4ν

in (6.9). Then, multiplying (6.7) by θ > 0 and adding the result to (6.6) and

(6.9) yields

dtQw ≤ −
2

3
τ−1

max

∥∥∥Φ
1
2v
∥∥∥2

L2v
− θ

(
1

2
γ−1

max − ε
)
‖Γb‖2

L2i

− 3

4

(
θγmin − 2γ−2

min

)
‖Γi‖2

L2i
− 1

2
ν
∥∥∥Λ

1
2 q
∥∥∥2

L2w

− 3ν

(
3

2
ν2
∥∥∥Λ

1
2∂xw

∥∥∥2

L2∂w
+

1

4
ν2

([
Λ3 − 2

3

θe2

ν3ε
JT

6 Υ2J6

]
w,w

)
L2w

)
+ βw,

where βw is given by (6.4) and

Qw(u) =
∥∥∥Φ

1
2v
∥∥∥2

L2v
+ θ ‖b‖2

L2i
+

1

4
θ ‖Γi‖2

L2i
+ ‖q‖2

L2w
+

3

2
ν2 ‖∂xw‖2

L2∂w
(6.10)

+
1

4
ν2 ‖Λw‖2

L2w
.

Note that for θ > 2γ−3
min we have θγmin − 2γ−2

min > 0, and for the range of values of ε

given by (6.2), we have 1
2
γ−1

max− ε > 0. Moreover, assumptions (i) and (ii) along with

(6.2) ensure that Λ3 − 2
3
θe2

ν3ε
JT

6 Υ2J6 > 0. Therefore, with the decay rate αw given by

(6.3),

(6.11) dtQw(u) ≤ −αwQw(u) + βw,
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and hence, using Grönwall’s inequality [18, sect. III.1.1.3.],

(6.12) Q−w(u(t)) ≤ Q+
w(u(0))e−αwt + ρ2

0

(
1− e−αwt

)
,

where Q−w and Q+
w are given in (6.1) and lim supt→∞Q

−
w(u(t)) ≤ ρ2

0 := βw
αw

. Now, since

the mapping

(6.13)

(v, i, i′, w, w′) 7→
(

Φ
1
2v,

1

2
θ

1
2 Γi, θ

1
2 [i′ +

3

2
Γi],

1

2
ν[max{6,Λ2

max}]
1
2w,w′ +

3

2
νΛw

)

is a linear isomorphism over Uw, for every bounded set B ⊂ Dw there exists R > 0

such that Q+
w(u0) ≤ R2 for all u0 ∈ B. Hence, it is immediate from (6.12) that

Sw(t)B ⊂ Bw for all t ≥ tw(B), where tw(B) is given by (6.5).

Theorem 6.3 (Existence of absorbing sets in Ds). Suppose the assumptions of

Theorem 6.2 hold, namely, assume that g ∈ L∞(0,∞;Dg) and that there exists θ >

2γ−3
min such that the biophysical parameters of the model satisfy

(i) 4
3
θe2Υ2

eeγmax(νΛee)−3 < 1,

(ii) 4
3
θe2Υ2

eiγmax(νΛei)
−3 < 1,

where γmin and γmax are the smallest and largest eigenvalues of Γ, respectively. Then

the semigroup
{
Ss(t) : Ds → Ds

}
t∈[0,∞)

associated with the strong solutions of (3.3)–

(3.6) has a bounded absorbing set Bs. Specifically, consider the function Q−s : Ds →

[0,∞) defined by

Q−s (u) :=
∥∥∥Φ

1
2v
∥∥∥2

L2v
+ θ

∥∥∥∥dti+
3

2
Γi

∥∥∥∥2

L2i

+
1

4
θ ‖Γi‖2

L2i
+

∥∥∥∥dtw +
3

2
νΛw

∥∥∥∥2

H1
w

(6.14)

+
1

8
ν2 min{6,Λ2

min} ‖(−∆ + I)w‖2
L2w
,

and denote by Λmin and Λmax the smallest and largest eigenvalues of Λ, respectively,
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and by τmax the largest eigenvalue of Φ. Let ρ2
s := 2βs

αs
with

αs := min

{
2

3
τ−1

max,

(
1

2
γ−1

max − ε
)
γ2

min, 3θ
−1
(
θγmin − 2γ−2

min

)
, νΛmin,(6.15)

3νΛ−2
max min

{
Λ3

ee −
2

3

θe2

ν3ε
Υ2

ee,Λ
3
ei −

2

3

θe2

ν3ε
Υ2

ei

}}
,

βs :=
4θe2

γ−1
max − 2ε

[
|Ω|(F2

e + F2
i ) ‖ΥNJ7‖2

2 + ‖Υ‖2
2 ‖g‖

2
L∞(0,∞;L2i )

]
(6.16)

+ 2ν2

[
1

32ε1

F2
e

σ2
e

tr(Λ4M2)ηρ2
w(1 + ρ2

w) +
1

4
|Ω|F2

e tr(Λ4M2)

(
1

ε1

+
αs

ε2

)]
,

where η is a positive constant, ρ2
w := βw

αw
is the same constant as given in Theorem

6.2, the scalar ε takes values within the same range as given by (6.2), and

(6.17) ε1 :=
1

32
αs min{6,Λ2

min}

(
1 +

∥∥∥∥3

2
νΛ− αI

∥∥∥∥2

2

)−1

, ε2 :=
1

16
min{6,Λ2

min}.

Then, for all ρ > ρs, the bounded sets Bs := {u ∈ Ds : Q−s (u) ≤ ρ2} are absorbing in

Ds.

Proof. Let A := −∆ + I and take the inner product of (6.8) with Aq to obtain

1

2
dt ‖q‖2

H1
w

+
1

2
ν
∥∥∥Λ

1
2 q
∥∥∥2

H1
w

+
3

4
ν2dt ‖∂xw‖2

H1
∂w

+
9

4
ν3
∥∥∥Λ

1
2∂xw

∥∥∥2

H1
∂w

+
1

8
ν2dt ‖Λw‖2

H1
w

+
3

8
ν3
∥∥∥Λ

3
2w
∥∥∥2

H1
w

− ν2
(
Λ2MJ8f(v), Aq

)
L2w

= 0.

This equality, along with the inequalities (6.6) and (6.7) derived in the proof of

Theorem 6.2 and the same values of ε1, . . . , ε4 therein, implies that

dtQs ≤ −
2

3
τmax

∥∥∥Φ
1
2v
∥∥∥2

L2v
− θ

(
1

2
γ−1

max − ε
)
‖Γb‖2

L2i
− 3

4

(
θγmin − 2γ−2

min

)
‖Γi‖2

L2i

− ν
∥∥∥Λ

1
2 q
∥∥∥2

H1
w

− 3ν

(
3

2
ν2
∥∥∥Λ

1
2∂xw

∥∥∥2

H1
∂w

+
1

4
ν2

([
Λ3 − 2

3

θe2

ν3ε
JT

6 Υ2J6

]
w,w

)
H1
w

)

+ 2ν2
(
Λ2MJ8f(v), Aq

)
L2w

+ β,

66



where

Qs(u) :=
∥∥∥Φ

1
2v
∥∥∥2

L2v
+ θ ‖b‖2

L2i
+

1

4
θ ‖Γi‖2

L2i
+ ‖q‖2

H1
w

+
3

2
ν2 ‖∂xw‖2

H1
∂w

+
1

4
ν2 ‖Λw‖2

H1
w
,

β :=
4θe2

γ−1
max − 2ε

[
|Ω|(F2

e + F2
i ) ‖ΥNJ7‖2

2 + ‖Υ‖2
2 ‖g‖

2
L∞(0,∞;L2i )

]
,

and ε takes values within the range given by (6.2). Now, using similar arguments as

in the proof of Theorem 6.2, it follows from assumptions (i) and (ii) with θ > 2γ−3
min

that

(6.18) dtQs(u) ≤ −αsQs(u) + 2ν2
(
Λ2MJ8f(v), Aq

)
L2w

+ β,

where the decay rate αs is given by (6.15). Then, Grönwall’s inequality [18, sect.

III.1.1.3.] implies

Qs(u(t)) ≤ Qs(u(0))e−αst + 2ν2

∫ t

0

(
Λ2MJ8f(v), Aq

)
L2w
eαs(s−t)ds(6.19)

+
β

αs

(
1− e−αst

)
.

Replacing q := dtw + 3
2
νΛw in the integral term in the above inequality and

integrating by parts yields

∫ t

0

(
Λ2MJ8f(v), Aq

)
L2w
eαs(s−t)ds = −

∫ t

0

(
Λ2MJ8dsf(v), Aw

)
L2w
eαs(s−t)ds

+

∫ t

0

(
Λ2MJ8f(v), (

3

2
νΛ− αsI)Aw

)
L2w

eαs(s−t)ds

+
(
Λ2MJ8f(v), Aw

)
L2w

−
(
Λ2MJ8f(v0), Aw0

)
L2w
e−αst.

Next, noting that dsf(v) = ∂vf(v)dsv and supve(x,t)∈R |∂vefe(ve)| ≤ Fe
2
√

2σe
by (4.37),
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it follows that, for every ε1, ε2 > 0,

∫ t

0

(
Λ2MJ8f(v), Aq

)
L2w
eαs(s−t)ds ≤ ε1

(
1 +

∥∥∥∥3

2
νΛ− αsI

∥∥∥∥2

2

) ∫ t

0

‖Aw‖2
L2w
eαs(s−t)ds

+
1

32ε1

F2
e

σ2
e

tr(Λ4M2)

∫ t

0

‖dsv‖2
L2v
eαs(s−t)ds

+ ε2 ‖Aw‖2
L2w

+
1

4
|Ω|F2

e tr(Λ4M2)

(
1

αsε1

+
1

ε2

)
−
(
Λ2MJ8f(v0), Aw0

)
L2w
e−αst.

Moreover, it follows from Theorem 6.2 that for every bounded set B ⊂ Ds there exists

a time tw(B), given by (6.5), and positive constants η1 and η2 such that ‖v(t)‖2
L2v
≤

η1ρ
2
w and ‖i(t)‖2

L2i
≤ η1ρ

2
w for all t ≥ tw(B). Therefore, using the estimate (5.12), we

can write

∫ t

0

‖dsv‖2
L2v
eαs(s−t)ds ≤

∫ tw(B)

0

‖dsv‖2
L2v
eαs(s−t)ds+

1

αs

ηρ2
w(1 + ρ2

w)(6.20)

≤ κ0(B)e−αst +
1

αs

ηρ2
w(1 + ρ2

w),

where η is a positive constant and, for some α > 0,

κ0(B) := α

∫ tw(B)

0

(
‖v(s)‖2

L2v
+ ‖i(s)‖2

L2i
+ ‖v(s)‖2

L2v
‖i(s)‖2

L2i

)
eαssds <∞.

Now, using the above estimate for the integral term in (6.19) with ε1 and ε2 given

by (6.17) yields

(6.21) Q−s (u)eαst ≤ 1

2
αs

∫ t

0

Q−s (u)eαssds+ κ(B) +
βs

αs

eαst,

where βs := β+2ν2
[

1
32ε1

F2
e
σ2
e

tr(Λ4M2)ηρ2
w(1 + ρ2

w) + 1
4
|Ω|F2

e tr(Λ4M2)
(

1
ε1

+ αs

ε2

)]
as given
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in (6.16), Q−s (u) is given in (6.14), and

κ(B) := Q+
s (u(0)) + 2ν2

[
1

32ε1

F2
e

σ2
e

tr(Λ4M2)κ0(B)−
(
Λ2MJ8f(v0), Aw0

)
L2w

]
− β

αs

,

Q+
s (u) :=

∥∥∥Φ
1
2v
∥∥∥2

L2v
+ θ ‖b‖2

L2i
+

1

4
θ ‖Γi‖2

L2i
+ ‖q‖2

H1
w

+
1

4
ν2 max{6,Λ2

max} ‖Aw‖
2
L2w
.

Next, using Grönwall’s inequality for the function
∫ t

0
Q−s (u)eαssds in (6.21) gives

∫ t

0

Q−s (u)eαssds ≤ 1
1
2
αs

[
κ(B)

(
e

1
2
αst − 1

)
+
βs

αs

(
eαst − e

1
2
αst
)]

,

which along with (6.21) implies

(6.22) Q−s (u) ≤ κ(B)e−
1
2
αst + ρ2

s

(
1− 1

2
e−

1
2
αst

)
,

where lim supt→∞Q
−
s (u(t)) ≤ ρ2

s := 2βs
αs

.

Finally, considering the linear isomorphism (6.13) over Us, it follows that for every

bounded set B ⊂ Ds there exists R > 0 such that κ(B) ≤ R2 for all u0 ∈ B.

Therefore, (6.22) implies that Ss(t)B ⊂ Bs for all t ≥ ts(B) and some ts(B) > 0,

which completes the proof.

Note that an estimate similar to (6.5) given in Theorem 6.2 can also be obtained

for ts(B) in the proof of Theorem 6.3. However, this would be of limited practical

value since the bound (6.20) is very conservative for times t� tw(B).

Remark 6.4 (Conditions on parameter sets). For the range of values given in

Table 3.1, the maximum value that the left-hand side of the inequalities in assump-

tions (i) and (ii) of Theorems 6.2 and 6.3 may take is 39.4083 θ, which is achieved

when Υee = 2, Υei = 2, Λee = 0.1, Λei = 0.1, ν = 100, and γmax = 1000. As-

sumptions (i) and (ii) then require that θ < 1
39.4083

= 0.0254. Moreover, Theorems

6.2 and 6.3 allow for θ > 2γ−3
min ≥ 0.002, in accordance with Table 3.1. This implies

69



that—for the entire range of values that the biophysical parameters of the model may

take—the conditions imposed by Theorems 6.2 and 6.3 are satisfied at least for any

0.002 < θ < 0.0254, and the model (3.1) possesses bounded absorbing sets as given

by these theorems.
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CHAPTER 7

EXISTENCE AND NONEXISTENCE OF A GLOBAL

ATTRACTOR

In this chapter, we investigate the problem of existence of a global attractor for the

semigroups
{
Sw(t) : Dw → Dw

}
t∈[0,∞)

and
{
Ss(t) : Ds → Ds

}
t∈[0,∞)

of solution

operators of (3.3)–(3.6). First, we recall the definition of a global attractor, and a

widely used theorem for establishing the existence of a global attractor. See [21, Chap.

1] for the motivation behind this definition, and [21, Chap. 3] for further results.

Definition 7.1 (Attracting set [19, Def. II.2.4]). A set P in a complete metric

space D is called an attracting set for a semigroup
{
S(t)

}
t∈[0,∞)

acting in D if, for

every bounded set B ∈ D, distD(S(t)B,P) → 0 as t → ∞. Here, distD(G ,H ) :=

supg∈G infh∈H mD(g, h) is the Hausdorff distance between the two sets G ,H ⊂ D,

where mD denotes the metric on D.

Definition 7.2 (Global attractor [19, Def. II.3.1]). A bounded set A in a com-

plete metric space D is called a global attractor for a semigroup
{
S(t)

}
t∈[0,∞)

acting

in D if it satisfies the following conditions:

(i) A is compact in D,

(ii) A is an attracting set for
{
S(t)

}
t∈[0,∞)

,

(iii) A is strictly invariant with respect to
{
S(t)

}
t∈[0,∞)

, that is, S(t)A = A for all

t ∈ [0,∞).

Definition 7.3 (Asymptotic compactness [19, Def. II.2.5]). The semigroup{
S(t)

}
t∈[0,∞)

acting in a complete metric space D is called asymptotically compact

if it possesses a compact attracting set K b D.
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Theorem 7.4 (Global attractor [19, Thm. II.3.1]). Let
{
S(t)

}
t∈[0,∞)

be an

asymptotically compact continuous semigroup in a complete metric space D, possess-

ing a compact attracting set K b D. Then
{
S(t)

}
t∈[0,∞)

has a global attractor

A ⊂ K given by A = ω(K ), where ω(K ) is the ω-limit set of K .

7.1 Challenges in Establishing a Global Attractor

In this section, we discuss some of the standard approaches available in the literature

for establishing a global attractor based on Theorem 7.4, and identify reasons that

make these approaches rather unpromising for the model (3.3)–(3.5).

Continuity of
{
Sw(t)

}
t∈[0,∞)

and
{
Ss(t)

}
t∈[0,∞)

, as required by Theorem 7.4, is

established in Propositions 5.1 and 5.2, respectively. To prove asymptotic compact-

ness of a semigroup
{
S(t)

}
t∈[0,∞)

acting in D, a general approach is to first show

that the semigroup possesses a bounded absorbing set and then to show that the

semigroup is κ-contracting, meaning that limt→∞ κ(S(t)B) = 0 for any bounded set

B ∈ D, where κ denotes the Kuratowski measure of noncompactness; see [54, 55]

and [21, Chap. 3]. An effective way to establish the latter property is through a

decomposition S(t) = S1(t) + S2(t) such that for every bounded set B ∈ D the com-

ponent S1(t)B converges uniformly to 0 as t → ∞, and the component S2(t)B is

κ-contractive or is precompact in D for large t [48, 18].

As the first step towards proving the asymptotic compactness property stated

above, existence of bounded absorbing sets for
{
Sw(t)

}
t∈[0,∞)

and
{
Ss(t)

}
t∈[0,∞)

is

established in Theorems 6.2 and 6.3, respectively. However, it turns out that the

κ-contracting property is hard to achieve for the model (3.3)–(3.5) with parameter

values in the range given in Table 3.1, due to the lack of space-dissipative terms in

the ODEs (3.3) and (3.4), the nature of nonlinear couplings in (3.3) and (3.4), and

the range of values of the biophysical parameters of the model.

The uniform compactness of the component S2(t) in the decomposition approach
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stated above is usually verified by establishing energy estimates in more regular func-

tion spaces and then deducing compactness from compact embedding theorems. This

approach, although successfully used in [49] to prove existence of a global attractor

for a coupled ODE-PDE reaction-diffusion system, is not very promising here. In [49],

the ODE subsystem is linear and the energy estimates in a higher regular space are

achieved by taking space derivatives of the ODEs and constructing energy functionals

for the resulting equations. As seen in the proof of Theorem 6.2, the nonnegativity

of i(x, t) is a key property that permits elimination of the sign-indefinite quadratic

term in the energy equation of (3.3), which results in the energy variation inequality

(6.6). This nonnegativity property, however, is not preserved in the derivative or any

other variations of i(x, t), leaving some sign-indefinite quadratic terms in the analysis.

Moreover, it can be observed from the range of parameter values given in Table 3.1

that the sign-indefinite nonlinear terms that would appear in the energy equations of

any variations of (3.3) and (3.4) have significantly larger coefficients compared with

the sign-definite dissipative terms. This makes it challenging to balance the terms

in the energy functional in order to absorb the nondissipative terms into dissipative

ones. Finally, the nonlinear terms appearing in (3.3) and (3.4) do not satisfy the usual

assumptions, as in, e.g., [56, sect. 11.1], that enable shaping the energy functional to

eliminate the nondissipative terms that would otherwise appear in the equations.

Some other techniques are available in the literature to avoid energy estimations

in higher regular spaces. In [54], for instance, the notion of ω-limit compactness is

used to develop necessary and sufficient conditions for existence of a global attractor.

This is accomplished by decomposing the phase space into two spaces, one of which is

finite-dimensional, and then showing that for every bounded set B ⊂ D the canonical

projection of S(t)B onto the finite-dimensional space is bounded, and the canonical

projection on the complement space remains arbitrarily small for sufficiently large

t ≥ t0 for some t0 = t0(B) > 0. These decomposition techniques, however, rely
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on the spectral decomposition of the space-acting operators to construct the desired

phase space decomposition. Such operators do not exist in the ODE subsystems (3.3)

and (3.4) in our problem.

7.2 Nonexistence of a Global Attractor

As discussed in Section 7.1, establishing a global attractor for (3.3)–(3.5) is a chal-

lenging problem. In fact, in this section we show that there exist sets of parameter

values, leading to physiologically reasonable behavior in the model, for which the

semigroups
{
Sw(t)

}
t∈[0,∞)

and
{
Ss(t)

}
t∈[0,∞)

do not possess a global attractor.

We first use [56, Prop. 11.11] to prove Theorem 7.5 below, which gives sufficient

conditions for noncompactness of the equilibrium sets of (3.3)–(3.5) in Uw and Us.

However, before embarking on the technical details of this theorem, we delineate the

main idea using the following intuitive discussion.

Assume that the ODE components (3.3) and (3.4) are decoupled from the PDE

component (3.5) by freezing w(x, t) in space and time in (3.4). In this case, (3.3) and

(3.4) can be viewed pointwise as an uncountable set of dynamical systems governed

by ODEs that are enumerated by points x ∈ Ω. To distinguish this pointwise view,

let (vx(t), ix(t)) denote the solution of the dynamical system located at x ∈ Ω, in

contrast with (v(x, t), i(x, t)) that denotes the solution of the decoupled ODEs (3.3)

and (3.4) defined over Ω. Note that the pointwise-defined dynamical systems are fully

decoupled from each other, which means the solutions (vx(t), ix(t)) and (vy(t), iy(t))

evolve totally independently in time for every x 6= y ∈ Ω.

Now, assume further that the decoupled ODE system (3.3) and (3.4) possesses

more than one equilibrium, two of which are denoted by (ve, ie) and (v0, i0). Then,

all pointwise defined dynamical systems correspondingly possess more than one equi-

librium, in particular (vxe, ixe) = (ve(x), ie(x)) and (vx0, ix0) = (v0(x), i0(x)) for the

system located at x. This implies that the solutions (vx(t), ix(t)) can converge inde-
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pendently to different values at different points x ∈ Ω. Therefore, when composed

together, they form a solution (v(x, t), i(x, t)) for the decoupled ODE system (3.3)

and (3.4), which can possibly develop drastic discontinuities over Ω as it evolves in

time. Note that such discontinuities in the solutions can occur even though the initial

values are smooth. Moreover, it follows in particular that the ODE system (3.3) and

(3.4) possesses an uncountable discrete equilibrium set. In fact, any function com-

posed arbitrarily of either values (vxe, ixe) and (vx0, ix0) at each point x ∈ Ω would

be an equilibrium.

The idea of Theorem 7.5 is to prove that the space-smoothing effect of the coupling

with the PDE component (3.5) is not sufficiently strong to rule out the discontinuities

of the above nature in (v, i) and, in particular, having a noncompact equilibrium set.

Define the mappings

Pv(v, i) := v − J1i+ J2vi
TΨJ4 + J3vi

TΨJ5,(7.1)

Pi(v, i) := (eΥ)−1Γi− NJ7f(v)− g,

and let (ve, ie, we) be an equilibrium of (3.3)–(3.5), that is, Pv(ve, ie) = 0 and Pi(ve, ie) =

J6we. Assume that there exists (v0, i0) 6= (ve, ie) such that Pv(v0, i0) = 0 and

Pi(v0, i0) = Pi(ve, ie). In this case, (ve, ie) and (v0, i0) are both equilibria of the

system (3.3) and (3.4) if we assume that it is decoupled from (3.5) by freezing w at

w = we. Therefore, motivated by the discussion above, we can construct a new equi-

librium (v̄, ī) for this decoupled system by letting (v̄, ī) = (v0, i0) over an arbitrary set

Ω0, and (v̄, ī) = (ve, ie) over the complement set Ωe. This construction is illustrated

in Figure 7.1.

Since w is not actually frozen at w = we, the function (v̄, ī) is not necessarily

a component of a new equilibrium of the coupled system (3.3)–(3.5). However, if

it is certain that w remains close to we, then we can expect that there exists a
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Figure 7.1: Illustrative construction of new equilibria as given by Theorem 7.5. To
avoid unnecessary complexity in the graph, only one representative curve out of the
six curves in the (v, i) components of the solutions is shown.

new equilibrium (v∗, i∗, w∗) of (3.3)–(3.5) whose component (v∗, i∗) is close to (v̄, ī).

Since the w-component of an equilibrium of (3.3)–(3.5) is continuous over Ω, we may

postulate that, provided the sets Ω0 are sufficiently small, updating (ve, ie) by (v̄, ī)

in the equilibrium equations would not greatly deviate the w-component from we and

the above expectation is satisfied. This postulation is indeed true, and it is proved in

Theorem 7.5 that under certain conditions a new equilibrium (v∗, i∗, w∗) exists such

that (v∗, i∗) are arbitrarily close to (v̄, ī) provided Ω0 is sufficiently small. The proof

is relatively involved and constitutes the core part of the proof of Theorem 7.5. It

relies strongly on the L∞w -boundedness of the space-acting operator A−1 that appears

in the equilibrium equations, and on assumption (iv) of Theorem 7.5. Figure 7.1 gives

an illustration of the component (v∗, i∗) lying uniformly closer than ε to (v̄, ī).

Finally, the noncompactness of the equilibrium set of (3.3)–(3.5) follows if we show

that the existence of equilibria (v∗, i∗, w∗) is uniform with respect to the shape of the

sets Ω0, that is, as long as only the size of Ω0 is smaller than a uniform bound. In

this case, we take ε small enough such that the distance between (ve(x), ie(x)) and

(v0(x), i0(x)) is larger than 3ε. Then, for any two sufficiently small sets Ω̃0 and Ω̂0,
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we can construct new equilibria as discussed above, having components closer than

ε to their associated estimates (v̄, ī). It can be observed from Figure 7.1 that the

associated components (v∗, i∗) of these two equilibria would certainly be at a distance

larger than ε from each other, at least on the difference between the two sets Ω̃0 and

Ω̂0. Therefore, since this construction is independent of the shape of the sets Ω̃0 and

Ω̂0 and we have uncountably different choices for these sets, it follows that we can

construct an uncountable set of disjoint equilibria. This implies noncompactness of

the equilibrium set of (3.3)–(3.5). Theorem 7.5 below gives rigorous arguments for

the above discussion.

Theorem 7.5 (Noncompactness of equilibrium sets). Suppose g is bounded and

constant in time, that is, g(x, t) = g(x) for all (x, t) ∈ Ω × [0,∞) and g ∈ L∞i . Let

ue := (ve, ie, 0, we, 0) be an equilibrium of (3.3)–(3.5) such that ve ∈ L∞v , ie ∈ L∞i ,

and we ∈ H2
w. Define the mapping P = (Pv, Pi) : L∞v × L∞i → L∞v × L∞i as in (7.1)

and let A := −3
2
∆ + Λ2I. Assume that the following conditions hold.

(i) Λee and Λei take the same values, that is, Λ = ΛeeI2×2 = ΛeiI2×2.

(ii) There exists (v0, i0) ∈ L∞v × L∞i such that

ess inf
x∈Ω

‖(ve(x), ie(x))− (v0(x), i0(x))‖∞ > 0

and

(7.2) Pv(v0, i0) = 0, Pi(v0, i0) = Pi(ve, ie).

(iii) ∂(v,i)P (ve, ie) and ∂(v,i)P (v0, i0) are nonsingular almost everywhere in Ω.

(iv) There exists α > 0 such that, for every b = (bv, bi) ∈ L∞v × L∞i , the system of
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equations

∂(v,i)Pv(ve, ie)φ = bv,(7.3)

∂(v,i)Pi(ve, ie)φ− J6A
−1Λ2MJ8∂vf(ve)φv = bi

has a unique solution φ = (φv, φi) ∈ L∞v × L∞i that satisfies

(7.4) ‖φ‖L∞v ×L∞i ≤ α ‖b‖L∞v ×L∞i .

Then, for a measurable partition Ω = Ωe ∪ Ω0 and

(7.5) v̄ := veχΩe + v0χΩ0 , ī := ieχΩe + i0χΩ0 ,

the following assertions hold.

I) For every ε > 0 there exists δ > 0 and an equilibrium u∗ := (v∗, i∗, 0, w∗, 0) of

(3.3)–(3.5) such that

‖(v∗, i∗)− (v̄, ī)‖L∞v ×L∞i ≤ ε whenever |Ω0| ≤ δ.

II) The equilibrium sets of (3.3)–(3.5) are noncompact in Us and Uw.

Proof. The proof is organized in three steps.

Step 1. We show that there exists ᾱ > 0 such that, for every b = (bv, bi) ∈

L∞v × L∞i , the system of equations

∂(v,i)Pv(v̄, ī)φ = bv,(7.6)

∂(v,i)Pi(v̄, ī)φ− J6A
−1Λ2MJ8∂vf(v̄)φv = bi

has a unique solution φ ∈ L∞v × L∞i that satisfies ‖φ‖L∞v ×L∞i ≤ ᾱ ‖b‖L∞v ×L∞i . This
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provides the required conditions of the implicit function theorem that is used in Step

2 to prove the existence of the equilibrium u∗. The proof proceeds by iteratively

constructing a solution by starting from the solution of (7.3) and applying certain

corrections at each iteration.

Let φ(0) = (φ
(0)
v , φ

(0)
i ) be the solution of (7.3) for a given b ∈ L∞v × L∞i and

construct an approximate solution for (7.6) of the form φ(1) := φ(0) + φ
(1)
r , where

φ
(1)
r = (φ

(1)
rv , φ

(1)
ri ) is the unique solution of

∂(v,i)P (v0, i0)φ(1)
r =

(
∂(v,i)P (ve, ie)− ∂(v,i)P (v0, i0)

)
φ(0)χΩ0 .(7.7)

Note that by assumption (iii) the unique solution φ(1)
r exists and belongs to L∞v ×L∞i .

The approximate solution φ(1) solves

∂(v,i)Pv(v̄, ī)φ
(1) = bv,

∂(v,i)Pi(v̄, ī)φ
(1) − J6A

−1Λ2MJ8∂vf(v̄)φ(1)
v = bi + b(1)

ri
,

where b(1)
r = (0, b

(1)
ri ),

(7.8) b(1)
ri

:= J6A
−1Λ2MJ8

[
(∂vf(ve)− ∂vf(v0))φ(0)

v − ∂vf(v0)φ(1)
rv

]
χΩ0

is the remainder resulting from the approximation error in φ(1).

Now, note that by assumption (iv) there exists α0 := α > 0 such that

(7.9)
∥∥φ(0)

∥∥
L∞v ×L∞i

≤ α0 ‖b‖L∞v ×L∞i .

Moreover, since by assumption (ii) we have (v0, i0) ∈ L∞v ×L∞i , it is immediate from

the definition of Pv and Pi, given by (7.1), that ∂(v,i)P (v0, i0) is bounded. This, along

79



with assumption (iii) and (7.9), implies that the solution φ(1)
r of (7.7) satisfies

(7.10)
∥∥φ(1)

r

∥∥
L∞v ×L∞i

≤ ζ1

∥∥φ(0)
∥∥
L∞v ×L∞i

≤ α1 ‖b‖L∞v ×L∞i

for some ζ1, α1 > 0.

Next, note that since A−1 : L2
w → H2

w is a bounded operator and f is smooth, the

definition of b(1)
ri , given by (7.8), implies that b(1)

ri ∈ H2
per(Ω;R4). Moreover, it further

implies by the Sobolev embedding theorems [42, Thm. 6.6-1] that b(1)
ri ∈ C0,λ

per(Ω,R4)

for all λ ∈ (0, 1) and, in particular,
∥∥∥b(1)

ri

∥∥∥
L∞i
≤ ζ2

∥∥∥b(1)
ri

∥∥∥
H2

per(Ω;R4)
for some ζ2 > 0.

Therefore, using (7.9) and (7.10), there exist ζ3, ζ4, ζ5, β1 > 0 such that

∥∥b(1)
r

∥∥
L∞v ×L∞i

≤ ζ2

∥∥b(1)
ri

∥∥
H2

per(Ω;R4)
≤ ζ3

(∥∥φ(0)
v

∥∥
L2v

+
∥∥φ(1)

rv

∥∥
L2v

)
(7.11)

≤ ζ4

∥∥φ(0)
∥∥
L2v×L2i

≤ ζ5|Ω0|
1
2

∥∥φ(0)
∥∥
L∞v ×L∞i

≤ β1|Ω0|
1
2 ‖b‖L∞v ×L∞i .

Now, for m = 2, 3, . . . , let φ(m) := φ(m−1) +φ
(m)
r , where φ(m)

r is the unique solution

of

∂(v,i)P (v0, i0)φ(m)
r = −b(m−1)

r χΩ0 .

It follows immediately that, for some η > 0,

(7.12)
∥∥φ(m)

r

∥∥
L∞v ×L∞i

≤ η
∥∥b(m−1)

r

∥∥
L∞v ×L∞i

, m = 2, 3, . . . .

Moreover, φ(m)
r solves the system of equations

∂(v,i)Pv(v̄, ī)φ
(m) = bv,

∂(v,i)Pi(v̄, ī)φ
(m) − J6A

−1Λ2MJ8∂vf(v̄)φ(m)
v = bi + b(m)

ri
,
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where

b(m)
ri

:= −J6A
−1Λ2MJ8∂vf(v0)φ(m)

rv χΩ0 , m = 2, 3, . . . .

Using the Sobolev embedding theorems and (7.12), the remainder b(m)
r = (0, b

(m)
ri )

satisfies, for some ζ6, ζ7, ζ8, β > 0,

∥∥b(m)
r

∥∥
L∞v ×L∞i

≤ ζ6

∥∥b(m)
ri

∥∥
H2

per(Ω;R4)
≤ ζ7

∥∥φ(m)
r

∥∥
L2v×L2i

≤ ζ8|Ω0|
1
2

∥∥φ(m)
r

∥∥
L∞v ×L∞i

≤ β|Ω0|
1
2

∥∥b(m−1)
r

∥∥
L∞v ×L∞i

, m = 2, 3, . . . ,

which, letting κ := β|Ω0|
1
2 and recalling (7.11), implies

(7.13)
∥∥b(m)

r

∥∥
L∞v ×L∞i

≤ β1|Ω0|
1
2κ(m−1) ‖b‖L∞v ×L∞i , m = 2, 3, . . . .

Now, let |Ω0| < δ̄, δ̄ > 0, and choose δ̄ such that κ < 1. Note that β, and

consequently the choice of δ̄ and the value of κ, do not depend on b and the specific

form of the partition Ω = Ωe ∪ Ω0. Therefore, it follows that
∥∥∥b(m)

r

∥∥∥
L∞v ×L∞i

→ 0 as

m→∞, and hence φ(m) converges to a solution φ for (7.6) when |Ω0| < δ̄. Moreover,

(7.9)–(7.13) imply

∥∥φ(m)
∥∥
L∞v ×L∞i

≤
∥∥φ(0)

∥∥
L∞v ×L∞i

+
∥∥φ(1)

r

∥∥
L∞v ×L∞i

+
m∑
l=2

∥∥φ(l)
r

∥∥
L∞v ×L∞i

≤

[
α0 + α1 + ηβ1|Ω0|

1
2

m∑
l=2

κ(l−2)

]
‖b‖L∞v ×L∞i ,

and hence, taking the limit as m → ∞, there exists ᾱ > 0, independent of the form

of the partition, such that

(7.14) ‖φ‖L∞v ×L∞i ≤ ᾱ ‖b‖L∞v ×L∞i .
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To prove the solution constructed above for (7.6) is unique, first note that by as-

sumption (i) the operator A becomes a scalar operator given by A = (−3
2
∆ + Λ2

eeI).

Then, considering the structure of the matrix parameters given by (3.7) and rein-

specting the expanded form (3.1), the system of equations (7.6) can be transformed

to a system composed of five algebraic equations and one PDE by pre-multiplying

the second equation in (7.6) by the elementary matrix


1 0

−Mei

Mee
1

02×2

02×2 I2×2

 .

This follows from the fact that the scalar operator (−3
2
∆ + Λ2

eeI)−1 acts only on one

of the unknowns, namely, φve . Now, since ∂(v,i)P (v̄, ī) is nonsingular by assumption

(iii), the five unknowns φi = (φiee , φiei , φiie , φiii) and φvi can be uniquely determined

in terms of φve by elementary algebraic operations. Consequently, (7.6) is reduced to

a scalar PDE of the form

p(v̄, ī)φve −
(
−3

2
∆ + Λ2

eeI

)−1

Λ2
eeMee∂vef(v̄e)φve = ĥ,

where ĥ ∈ L∞per(Ω,R) is given by the same elementary operations on b, and p(v̄, ī)

is nonzero almost everywhere in Ω, since elementary operations do not disrupt the

nonsingularity of ∂(v,i)P (v̄, ī).

Next, dividing by p(v̄, ī), the above equation can be written as

(7.15) (I −K)φve = h,

where K := p(v̄, ī)−1Λ2
eeMee∂vef(v̄e)(−3

2
∆ + Λ2

eeI)−1 and h := p(v̄, ī)−1ĥ. The oper-

ator K : L2
per(Ω,R)→ L2

per(Ω,R) is linear, self-adjoint, and compact by the Rellich–
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Kondrachov compact embedding theorems [42, Thm. 6.6-3]. The existence of solu-

tions of (7.6) proved above guarantees the existence of a solution φve ∈ L∞per(Ω,R)

for every h ∈ L∞per(Ω,R), which implies L∞per(Ω,R) ⊂ Range(I − K). However,

Range(I − K) = Kernel(I − K∗)⊥ = Kernel(I − K)⊥ by the Fredholm alternative

[43, Thm. 5, App. D], and hence L∞per(Ω,R) ∩ Kernel(I − K) = {0}. This proves

the uniqueness of bounded solutions of (7.15), and consequently the uniqueness of

solutions of (7.6) for every b = (bv, bi) ∈ L∞v × L∞i .

Step 2. We prove assertion (I) using the implicit function theorem. Note that

since ue := (ve, ie, 0, we, 0) is an equilibrium of (3.3)–(3.5), we have

(7.16) Pv(ve, ie) = 0, Pi(ve, ie) = J6we, we = A−1Λ2MJ8f(ve).

We seek an equilibrium u∗ := (v∗, i∗, 0, w∗, 0) such that

v∗ = v̄ + φv, i∗ = ī+ φi,

where φ := (φv, φi) ∈ L∞v × L∞i is a small corrector function that satisfies

(7.17) Pv(v
∗, i∗) = 0, Pi(v

∗, i∗) = J6w
∗, w∗ = A−1Λ2MJ8f(v∗).

Note that (7.2), (7.5), and (7.16) imply

Pv(v̄, ī) = 0, Pi(v̄, ī) = J6we, ve = v̄ − (v0 − ve)χΩ0 .

Therefore, the system of equations (7.17) is equivalent to

Pv(v̄ + φv, ī+ φi)− Pv(v̄, ī) = 0,

(7.18)

Pi(v̄ + φv, ī+ φi)− Pi(v̄, ī) = J6A
−1Λ2MJ8

(
f(v̄ + φv)− f(v̄ − (v0 − ve)χΩ0)

)
,
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which, by the implicit function theorem [42, Thm. 7.13-1], has a unique solution

φ ∈ L∞v ×L∞i , since (7.6) has a unique solution in L∞v ×L∞i for every b ∈ L∞v ×L∞i ,

as proved in Step 1. Moreover, it is immediate from the definition of the Fréchet

derivative of the mappings Pi and Pv that the solution of (7.18) is arbitrarily close to

the solution of (7.6) with

b := (0, J6A
−1Λ2MJ8∂vf(v̄)(v0 − ve))χΩ0 ,

provided these solutions are sufficiently small. This is ensured by (7.14) for small

|Ω0|, since ‖b‖L∞v ×L∞i ≤ ζ|Ω0|
1
2 for some ζ > 0. Therefore, it follows that assertion (I)

holds for some δ = δ(ε) ≤ δ̄.

Step 3. We prove assertion (II) using the fact that δ = δ(ε) > 0 in assertion (I)

is independent of the specific form of the partition Ω = Ωe ∪ Ω0. Figure 7.1 can be

used to visualize the arguments of the proof.

Let

(7.19) ε :=
1

3
ess inf
x∈Ω

‖(ve(x), ie(x))− (v0(x), i0(x))‖∞ > 0

in assertion (I), and let δ = δ(ε) > 0 be the corresponding bound on the size of the

partitions that satisfies the result of assertion (I). Note that ε > 0 by assumption (ii).

Moreover, let M (Ω) denote the set of all measurable subsets of Ω and define

Pδ(Ω) := {(Ωe,Ω0) ∈M (Ω)×M (Ω) : Ωe = Ω \ Ω0, |Ω0| ≤ δ} .

Let Θδ(Ω) ⊂ Pδ(Ω) such that, for every θ̃ = (Ω̃e, Ω̃0) ∈ Θδ(Ω) and θ̂ = (Ω̂e, Ω̂0) ∈

Θδ(Ω), we have |Ω̃0 4 Ω̂0| > 1
2
δ. Note that Θδ(Ω) is an uncountable set that can be

viewed as an index set enumerating all measurable partitions Ω = Ωe ∪ Ω0, |Ω0| ≤ δ,

which are distinct in the sense of measure by a factor of at least 1
2
δ.
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Now, it follows from assertion (I) that, for every θ̃ 6= θ̂ ∈ Θδ(Ω), there exist

equilibria uθ̃ := (vθ̃, iθ̃, 0, wθ̃, 0) and uθ̂ := (vθ̂, iθ̂, 0, wθ̂, 0) such that

ess sup
x∈(Ω̃e∩Ω̂0)

‖(vθ̂(x), iθ̂(x))− (v0(x), i0(x))‖∞ ≤ ε,

ess sup
x∈(Ω̃0∩Ω̂e)

‖(vθ̂(x), iθ̂(x))− (ve(x), ie(x))‖∞ ≤ ε,

ess sup
x∈(Ω̃e∩Ω̂0)

‖(vθ̃(x), iθ̃(x))− (ve(x), ie))‖∞ ≤ ε,

ess sup
x∈(Ω̃0∩Ω̂e)

‖(vθ̃(x), iθ̃(x))− (v0(x), i0))‖∞ ≤ ε.

Therefore, noting that Ω̃0 4 Ω̂0 = (Ω̃0 ∩ Ω̂e) ∪ (Ω̃e ∩ Ω̂0) and recalling the definition

of ε given by (7.19),

ess inf
x∈(Ω̃04Ω̂0)

‖(vθ̃(x), iθ̃(x))− (vθ̂(x), iθ̂(x))‖∞ ≥ ε,

which further implies

‖(vθ̃, iθ̃)− (vθ̂, iθ̂)‖L2v×L2i ≥ |Ω̃04 Ω̂0|
1
2 ess inf
x∈(Ω̃04Ω̂0)

‖(vθ̃(x), iθ̃(x))− (vθ̂(x), iθ̂(x))‖∞

>

(
1

2
δ

) 1
2

ε.

Since θ̃ and θ̂ are arbitrary, it follows that the set E :=
{
uθ
}
θ∈Θδ(Ω)

composed of the

equilibria uθ constructed as above is an uncountable discrete subset of the equilibrium

sets of (3.3)–(3.5) in Us and Uw. This completes the proof.

Remark 7.6 (Alternative assumptions for Theorem 7.5). According to the

proof of Theorem 7.5, some of the assumptions of this theorem can be relaxed or

replaced by alternative assumptions as follows.

• Assumption (i) is used to prove the uniqueness of solutions of (7.6). Without
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this assumption, the operator A is not a scalar operator and (7.6) cannot be

reduced to a scalar PDE using elementary algebraic operations. The operator

K representing the system of PDEs in this case would not be self-adjoint, and

hence, application of the Fredholm alternative would not immediately imply

uniqueness of the solutions. However, an alternative assumption to assumption

(i) can be made on the adjoint of the operator K, so that the uniqueness of

the solutions of (7.6) is still ensured using the Fredholm alternative. We avoid

this complication, since the fiber decay scale constants Λee and Λei are always

assumed to be equal in the practical applications of the model [47].

• In assumption (ii), it suffices to have ess infx∈X ‖(ve(x), ie(x))− (v0(x), i0(x))‖∞

> 0, where X is any measurable subset of Ω with positive measure. Corre-

spondingly, it suffices that the nonsingularity in assumption (iii) holds almost

everywhere on an open subset Y ⊃X of Ω. In this case, the proof is modified

by restricting Pδ(Ω) to its subset consisting of partitions with Ω0 ⊂ X . The

index set Θδ(Ω) remains uncountable, and the noncompactness result of the

theorem holds with no change.

Remark 7.7 (Nonexistence of a global attractor). Suppose that the assump-

tions of Theorem 7.5 hold for an input g and an equilibrium ue that further satisfy

ie, we > ε1, ε1 > 0, almost everywhere in Ω and g ∈ Dg, where Dg is given by (5.20).

Note that ue then belongs to Ds. Then, the equation Pi(ve, ie) = J6we in the equi-

librium equations (7.16) implies that Pi(ve, ie) ≥ 0, and hence Pi(v0, i0) ≥ 0 in (7.2).

Therefore, it follows from the definition of Pi given by (7.1) that every solution i0 of

(7.2) satisfies i0 > ε2, ε2 > 0, almost everywhere in Ω. Then, by definition of (v̄, ī),

given by (7.5), all equilibria u∗ constructed by assertion (I) of Theorem 7.5 satisfy

i∗ > 0 almost everywhere in Ω when δ is sufficiently small. Also, the equilibrium
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Table 7.1: A set of biophysically plausible parameter values for the model (3.1) for
which Theorem 7.5 implies nonexistence of a global attractor [47, Table VI, col.
2]. The parameters ḡee, ḡei, ḡie, and ḡii are, respectively, the mean values of the
physiologically shaped random inputs gee, gei, gie, and gii used in [47].

Parameter τe τi Vee Vei Vie Vii γee

Value 11.787×10−3 138.25×10−3 61.264 51.703 −7.127 −12.679 816.04

Parameter γei γie γii Υee Υei Υie Υii

Value 261.29 219.09 40.575 0.92695 1.3012 0.19053 0.94921

Parameter Nee Nei Nie Nii ν Λee,Λei Mee

Value 3893.0 3326.8 839.39 682.41 101.78 0.96545 4013.5

Parameter Mei Fe Fi µe µi σe σi

Value 1544.3 266.44 300.65 30.628 19.383 5.6536 3.3140

Parameter ḡee ḡei ḡie ḡii

Value 83.190 6407.5 0 0

equations we = A−1Λ2MJ8f(ve) and w∗ = A−1Λ2MJ8f(v∗) imply that

‖w∗ − we‖L∞w ≤ β1 ‖w∗ − we‖H2
w
≤ β2 ‖v∗ − ve‖L2v ≤ β2

(
‖v∗ − v̄‖L2v + ‖v̄ − ve‖L2v

)
≤ β2

(
|Ω|

1
2 ‖v∗ − v̄‖L∞v + |Ω0|

1
2 ‖(v0 − ve)χΩ0‖L∞v

)

for some β1, β2 > 0, and hence w∗ > 0 almost everywhere in Ω, when δ is sufficiently

small. Therefore, assertion (II) of Theorem 7.5 ensures existence of a biophysically

plausible noncompact set of equilibria E ⊂ Ds ⊂ Dw. This, in particular, implies that

in the case where the assumptions of Theorem 7.5 are satisfied for some ue and g as

given above, the semigroups
{
Sw(t) : Dw → Dw

}
t∈[0,∞)

and
{
Ss(t) : Ds → Ds

}
t∈[0,∞)

are not asymptotically compact, and hence they do not possess a global attractor.

The assumptions of Theorem 7.5 are relatively straightforward to check for the

spatially homogeneous equilibria of (3.3)–(3.5). Consider the set of values given in

Table 7.1 for the parameters of the model, which are suggested in [47, Table VI, col.

2] as a set of parameter values leading to physiologically reasonable behavior of the

model. The parameters ḡee, ḡei, ḡie, and ḡii are the mean values of the physiologically
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shaped random signals used in [47] as the subcortical inputs gee, gei, gie, and gii,

respectively. Here, we set g(t, x) = (ḡee, ḡei, ḡie, ḡii) for all x and t, and check the

assumptions of Theorem 7.5 for a spatially homogeneous equilibrium of (3.3)–(3.5).

Assumption (i) holds with Λee = Λee = 0.96545, as given in Table 7.1. Solv-

ing the equations Pv(ve, ie) = 0, Pi(ve, ie) = J6we, and we = MJ8f(ve), a spatially

homogeneous equilibrium is calculated as

ve = (1.9629, 6.5150),

ie = (5.2552, 100.2372, 2.4493, 53.5665),

we = (821.7136, 316.1760).

Note that the numbers given here should actually be regarded as constant functions

over Ω. Assumption (ii) then holds by finding a solution (v0, i0) 6= (ve, ie) for (7.2) as

v0 = (10.9417, 7.7148), i0 = (25.9005, 177.5837, 4.0757, 89.1352).

Assumption (iii) also holds with the following nonsingular matrix-valued functions:

∂(v,i)P (ve, ie) =



1.4294 0 −0.9680 0 1.2754 0

0 7.1635 0 −0.8740 0 1.5138

−199.2222 0 323.8625 0 0 0

−170.2472 0 0 73.8727 0 0

0 −440.3409 0 0 423.0237 0

0 −357.9898 0 0 0 15.7254


,
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∂(v,i)P (v0, i0) =



1.9946 0 −0.8214 0 2.5352 0

0 11.4648 0 −0.8508 0 1.6085

−1858.395 0 323.8625 0 0 0

−1588.109 0 0 73.8727 0 0

0 −730.7260 0 0 423.0237 0

0 −594.0680 0 0 0 15.7254


.

To check assumption (iv), note that, for every b = (bv, bi) ∈ L∞v ×L∞i , elementary

algebraic operations reduce (7.3) to

φve = 0.6287φiee + hve , φvi = 0.0521φiee + hvi ,(7.20)

φiei = 2.4834φiee + hiei , φiie = 0.0543φiee + hiie , φiii = 1.1870φiee + hiii ,

and the scalar PDE

(7.21) (I −D)φiee = hiee , D := 0.6060

(
−3

2
∆ + 0.965452I

)−1

,

where h = (hv, hi) ∈ L∞v ×L∞i is the result of the same algebraic operations on b. Now,

note that since−∆ is a nonnegative operator inH2
per(Ω;R), it follows from the spectral

theory of bounded linear self-adjoint operators [43, App. D.6] that the spectrum of the

operator (I−D) : L2
per(Ω;R)→ L2

per(Ω;R) lies entirely above 1−0.6060×0.96545−2 =

0.3498 > 0. Therefore, the PDE (7.21) has a unique solution φiee ∈ L2
per(Ω;R) for

every hiee ∈ L2
per(Ω;R) ⊃ L∞per(Ω;R), and hence it follows from (7.20) that (7.3) has

a unique solution φ = (φv, φi) ∈ L∞v × L∞i for every b ∈ L∞v × L∞i .

It remains to check (7.4). Using the spectral theory of bounded linear self-adjoint
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operators and the Cauchy–Schwarz inequality, we can write

‖φiee‖
2
L2
per(Ω;R) ≤

1

0.3498
((I −D)φiee , φiee)L2

per(Ω;R) =
1

0.3498
(hiee , φiee)L2

per(Ω;R)

≤ 1

0.3498
‖hiee‖L2

per(Ω;R) ‖φiee‖L2
per(Ω;R) .

Therefore, there exists α1 = 1
0.3498

> 0 such that

‖φiee‖L2
per(Ω;R) ≤ α1 ‖hiee‖L2

per(Ω;R) .

Now, using (7.21) and the Sobolev embedding theorems, we can write, for some

α2, α3 > 0,

‖φiee‖L∞per(Ω;R) ≤ ‖hiee‖L∞per(Ω;R) + ‖Dφiee‖L∞per(Ω;R)

≤ ‖hiee‖L∞per(Ω;R) + α2 ‖Dφiee‖H2
per(Ω;R)

≤ ‖hiee‖L∞per(Ω;R) + α3 ‖φiee‖L2
per(Ω;R)

≤ ‖hiee‖L∞per(Ω;R) + α1α3 ‖hiee‖L2
per(Ω;R)

≤ (1 + α1α3|Ω|
1
2 ) ‖hiee‖L∞per(Ω;R) ,

which, along with the algebraic equalities (7.20), implies (7.4). Hence, assumption

(iv) holds.

It is now implied by Theorem 7.5 that the equilibrium sets of (3.3)–(3.5) are

noncompact in Us and Uw. Moreover, it follows immediately from the equilibrium

equations (7.16) and the definition of Pi given by (7.1) that, in general, all spatially

homogeneous equilibria ie and we are positive and, in particular, belong to DBio∩Ds.

Therefore, by Remark 7.7, the semigroups
{
Sw(t) : Dw → Dw

}
t∈[0,∞)

and
{
Ss(t) :

Ds → Ds

}
t∈[0,∞)

associated with (3.3)–(3.5) with parameter values given by Table 7.1

do not possess a global attractor.
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It can be shown by similar calculations as above that the assumptions of Theorem

7.5 are satisfied by spatially homogeneous equilibria of the model for 3 other sets of

parameter values out the 24 sets available in [47, Tables V and VI], namely, the sets

given in [47, Table V, col. 2] and [47, Table VI, col. 10 and col. 12]. Moreover, it is

likely that these assumptions or their possible alternatives suggested in Remark 7.6

would also hold for other sets of parameter values if we consider equilibria ue and

inputs g that are not homogeneous over Ω. Checking the assumptions of Theorem

7.5 in this case is, however, not straightforward.
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CHAPTER 8

APPLICATION OF THE MODEL IN A COMPUTATIONAL

STUDY OF THE RHYTHMIC ACTIVITY IN THE

NEOCORTEX

The rhythmic patterns of variations in the electroencephalographic recordings from

the scalp (EEG), or the electrocorticographic recordings from the surface of the neo-

cortex (ECoG) demonstrate a salient feature of mesoscopic electrical activity in the

neocortex. These brain rhythms correlate with the numerous states of healthy op-

eration of the brain, and their possible distortion or disruption can be a signature

of a certain disease. However, the physiological mechanism of generating the brain

rhythms is not well-understood.

Brain rhythms are traditionally classified into five bands of frequency, namely,

0.5 − 4 Hz delta band, 4 − 8 Hz theta band, 8 − 13 Hz alpha band, 13 − 30 Hz

beta band, and 30 − 80 Hz gamma band. Moreover, slow rhythms of frequency

0.025 − 0.5 Hz and fast rhythms of frequency 80 − 600 Hz are also observed in the

brain and have recently been classified into several bands [57].

The rhythmicity in the electrocortical activity is a dynamic phenomenon that can

occur, possibly heterogeneously, in a wide area of the neocortex. Hence, a mathemati-

cal model of the brain rhythms should capture both spatial and temporal dynamics of

the neocortex, as in the case of the mean field model investigated in this dissertation.

To show the potentiality of the model in studying the mechanism of the generation

of brain rhythms, in this section we rederive some of the computational results in

[24] and analyze them in more detail. These results show that the model can gen-

erate alpha-band oscillations at the resting state, and gamma-band oscillations as a
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Table 8.1: The set of biophysically plausible parameter values used for the compu-
tational analysis of the model (3.1) [47, Table V, col. 11]. The parameters ḡee, ḡei,
ḡie, and ḡii are, respectively, the mean values of the physiologically shaped random
inputs gee, gei, gie, and gii used in [47].

Parameter τe τi Vee Vei Vie Vii γee

Value 32.209×10−3 92.260×10−3 79.5513 77.0967 −8.404 −9.413 122.68

Parameter γei γie γii Υee Υei Υie Υii

Value 982.51 293.10 111.40 0.29835 1.1465 1.2615 0.20143

Parameter Nee Nei Nie Nii ν Λee,Λei Mee

Value 4204.4 3602.9 443.71 386.43 116.12 0.60890 3228.0

Parameter Mei Fe Fi µe µi σe σi

Value 2956.9 66.433 393.29 27.771 24.175 4.7068 2.9644

Parameter ḡee ḡei ḡie ḡii

Value 2250.6 4363.4 0 0

result of a Hopf bifurcation in its dynamics. We use MatCont [58] to perform the

numerical bifurcation analysis and solve the equations of the model using COMSOL

Multiphysics R©.

8.1 The Framework for the Numerical Computations

For the computational analysis of the next sections, we consider (3.1) with a rectan-

gular domain Ω = (0, 500)×(0, 500) [mm2] and with the set of parameter values given

in Table 8.1. The spatially homogeneous equilibrium of the model can be calculated

as

(ve, vi)e = (12.6326, 13.319),(8.1)

(iee, iei, iie, iii)e = (49.0506, 28.3164, 11.4371, 4.1846),

(wee, wei)e = (2245.7, 2057.1),

where the numbers are regarded as constant functions over Ω. We set the time horizon

of the numerical computations as T = 500 ms, and use COMSOL Multiphysics R© to
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(a) (b)
Figure 8.1: Comparison of the random input gee and the excitatory membrane po-
tential ve at the resting state. (a) The random input gee at t = 500 ms. (b) The
excitatory membrane potential ve at t = 500 ms.

solve (3.1) with the initial values and input variables as specified in the following

sections.

To make quantitative observations on the transitions of the computed solutions

in time, we extract samples from the solution data at different locations over Ω. To

approximately simulate the averaging effect of an EEG probe, we extract solution data

over squares of size 10× 10 [mm2], which we refer to as probes. We then consider the

measurement of a probe as the average value of the solution over the square domain

of the probe, which gives a scalar-valued signal over [0, T ].

8.2 Alpha Rhythms in the Resting State

To observe alpha-band oscillations, we consider the resting state with the nomi-

nal parameter values as given in Table 8.1. We drive the model by an input gee

which varies randomly in space and time about the mean value ḡee given in Table

8.1. A snapshot of gee that depicts a sample of its pattern of variations over Ω is

shown in Figure 8.1a. The other inputs gei, gie, and gii take the constant values

ḡei, ḡie, and ḡie given in Table 8.1, respectively. Finally, we set the initial values

94



 

0 100 200 300 400 500
2100

2150

2200

2250

2300

2350

0 100 200 300 400 500
12.5

12.55

12.6

12.65

12.7

0 20 40 60 80 100

0 20 40 60 80 1009.8

Figure 8.2: Time and frequency analysis of the alpha oscillations. Left: Measurements
of the random input gee and the excitatory membrane potential ve at a randomly
chosen probe location. Right: Power spectral density of the measurements of 10
probes located randomly over the domain of the neocortex Ω. The solid black curve
is the average of the power densities of the 10 measurements. The zero-frequency
components (mean value) of all signals are removed.

(ve, vi, iee, iei, iie, iii, wee, wei)
∣∣
t=0

equal to their equilibrium values given by (8.1), and

the initial values dt(iee, iei, iie, iii, wee, wei)
∣∣
t=0

equal to zero.

Figure 8.1b shows the result of the numerical computations for ve at the final time

step t = 500 ms. As compared with 8.1a, we observe that ve does not develop any

specific spatial pattern of activity and essentially shows a similar pattern of random

variations as observed in the input gee. However, as shown in Figure 8.2, oscillations

in ve are primarily in the alpha band whereas the random input is oscillating at

distinctively higher frequencies.

8.3 Emergence of Gamma Rhythms

In this section, we show that oscillations in gamma-band can emerge in the solutions

of the model as a result of a Hopf bifurcation. In order to effectively use the available

numerical bifurcation analysis tools, we consider a spatially homogeneous version
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e

Figure 8.3: The bifurcation diagram associated with the spatially homogeneous ODE
version of (3.1). The bifurcation parameter η indicates the percentage of the deviation
of Nii from its nominal value. The curve of equilibria is shown in blue, and the curves
of the maximum and minimum values of the limit cycles are shown in red. Solid lines
denote stable equilibria and limit cycles, and dashed lines denote unstable equilibrai
and limit cycles. The two Hopf bifurcation points are marked by H.

of the model (3.1). This corresponds to the solutions of the model with spatially

homogeneous initial values and input variables. As a result, (3.1) is transformed to a

fourteenth-order system of ODEs by setting −3
2
ν2∆ = 0.

Then, as in [24], we consider the bifurcation analysis of the resulting ODE sys-

tem with respect to variations in the number of inhibitory to inhibitory intracortical

connections Nii. The excitation of interneurons in layer IV by thalamic afferents is

suggested in [24] as a mechanism for presynaptic facilitation of the inhibitory to in-

hibitory connections, which can be modeled by increasing Nii. Let Nii ⇒ ηNii denote

such variations, where η > 0 adjusts the percentage of the deviation of Nii from its

nominal value given in table 8.1.

We use MatCont to rederive the bifurcation analysis given in [24]. The results are

shown in Figure 8.3. As we see in Figure 8.3, increasing Nii from its nominal value by

a factor of η = 1.0676, results in a Hopf bifurcation and the dynamics of the model
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(b)
Figure 8.4: (a) The initial value of ve in mV. (b) The locations of the measurement
probes used to extract signals for the time and frequency analysis of the gamma
oscillations.

undergoes a phase transition from damped oscillations about the stable equilibrium,

to sustained oscillations on a stable limit cycle. These results, which are derived based

on the spatially homogeneous ODE version of the model, predict the emergence of

oscillatory patterns of activity in the original model (3.1) as a result of an increase

in Nii. In the following, we verify this prediction by computing the solutions of (3.1),

and we show that the frequency of these oscillations is in the gamma band.

For the numerical computations, we set Nii equal to η = 1.07 times the nominal

value given in Table 8.1. We set (gee, gei, gie, gii) = (ḡee, ḡei, ḡie, ḡie) and perform the

computations by considering the initial value of ve equal to the function shown in

Figure 8.4a, and the initial value of other variables equal to their equilibrium values

given by (8.1).

Figure 8.5 shows snapshots of ve at different instances of time. We observe that

specific patterns of oscillations emerge spontaneously and propagate throughout the

neocortex. To measure the power spectral density of these oscillations, we set eight

measurement probes F1–F8 at the focal points of these spatial patterns, as shown in

Figure 8.4b. Moreover, we set eight measurement probes B1–B8 at other background
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Figure 8.5: Emergence of gamma-band rhythmic activity. Snapshots are taken from
ve at every 50 ms.

locations to observe the oscillations in regions of the neocortex that do not develop

any salient patterns of activity during the time horizon of the computation. The

measurements of the probes are shown in Figures 8.6 and 8.7, and their power spectral

densities are shown in Figure 8.8. We observe that the power spectrum of the spatial

patterns of oscillations that emerge locally in the neocortex lies essentially in the

gamma band, whereas oscillations at other areas remain in the alpha band. This

observation shows that gamma oscillation can occur locally in the cortex, possibly in

regions that are engaged with certain cognitive tasks.
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Figure 8.6: Measurements of F1–F8 probes at the locations shown in Figure 8.4b.

 

 

 

   

Figure 8.7: Measurements of B1–B8 probes at the locations shown in Figure 8.4b.
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Figure 8.8: Power spectral density of the measurements of F1, F2, and B1–B8 probes
shown in Figures 8.6 and 8.7. The zero-frequency components (mean value) of all
signals are removed. Power densities are calculated based on the last 256 ms mea-
surements of F1 and F2 probes, and the last 400 ms measurements of the B1–B8
probes, to remove the effect of the initial period of transitions on the spectrum.
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CHAPTER 9

CONCLUSION AND POSSIBLE FUTURE RESEARCH

In this dissertation, we developed basic analytical results to establish a global attrac-

tor theory for the mean field model of the electroencephalogram proposed by Liley,

Cadusch, and Dafilis [22]. We showed that the initial-boundary value problem as-

sociated with the model is well-posed in the weak and strong sense, and established

sufficient conditions for the nonnegativity of the i(x, t) and w(x, t) components of the

solution over the entire time horizon. Moreover, we proved existence of bounded ab-

sorbing sets for semigroups of weak and strong solutions, and discussed the challenges

involved in proving the asymptotic compactness property for these semigroups. We

showed that the equilibrium sets of the model are noncompact for some physiologi-

cally reasonable sets of parameter values which, in particular, implies nonexistence

of a global attractor. Finally, we used the model to computationally study the emer-

gence of fast gamma oscillations as a result of increases in the number of the inhibitory

to inhibitory intracortical connections.

The conditions developed in this dissertation for ensuring nonnegativity of the

solution components i(x, t) and w(x, t) over the entire infinite time horizon can be

useful for computational analysis o f the model. Without using such mathematical

analysis, it is impossible to ensure that the solutions computed numerically over a

finite time horizon are biophysically plausible since, evidently, negativity might occur

for time intervals beyond the finite time horizon of numerical computations. This fact

has been overlooked in most of the available computational analysis of the model.

However, in these computational studies, the initial values are usually set equal to

a numerically computed spatially homogeneous equilibrium of the model, or equal
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to zero when no equilibrium is found numerically. In both cases, the preset initial

values satisfy the sufficient conditions developed in Chapter 5 of this dissertation for

biophysical plausibility of the solutions. It is perhaps an intractable problem to specify

a set of biophysical initial values for a model of the EEG; however, analyzing a more

diverse set of reasonable initial values satisfying the sufficient conditions developed

in Chapter 5 can be beneficial in observing different behaviors of the model.

Existence of bounded absorbing sets is a desirable global property for a model

of electrical activity in the neocortex. As stated in Remark 6.4, the EEG model

investigated in this dissertation possesses this global property for its entire range of

parameter values given in Table 3.1. Moreover, this property holds independently of

the parameters of the firing rate functions, the number of intracortical and cortico-

cortical connections, the mean Nernst potentials, and the membrane time constants,

as observed in assumptions (i) and (ii) of Theorems 6.2 and 6.3.

The lack of space-dissipative terms in the ODE components (3.3) and (3.4) of

the model is one of the major sources of difficulty in establishing a global attractor.

Indeed, as discussed in Section 7.2, the v(x, t) and i(x, t) components of the solution

can evolve discontinuously in space despite continuous evolution of the w(x, t) compo-

nent. Other than disrupting the asymptotic compactness property of the semigroups

of solution operators, these space irregularities can predict sharp transitions in the

v(x, t) and i(x, t) components of the solution, which can potentially be problematic

in numerical computation of the solutions.

Slight modifications to the model that result in the presence of additional space-

dissipative terms in the ODEs can improve the regularity of the solutions and can

be of particular advantage in numerical computations. The fact that some of the

equations of the model appear as ODEs is partially due to the simplifying assump-

tion of instantaneous conduction through short-range fibers. Removing such simpli-

fying assumptions, or considering a singularly perturbed version of (3.3) and (3.4)
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by artificially including additional diffusion terms ε∆, with sufficiently small ε, can

be considered as potential modifications. Any such modifications should, however,

maintain the neurophysiological plausibility of the model.

The regularization made by appropriate modifications to the model may result

in the possibility of establishing the asymptotic compactness property. However, the

analysis in Section 7.2 suggests that the resulting compact attractor would be of very

high dimension for some sets of parameter values. Based on this observation, we can

speculate that the noncompactness of the attracting sets shown in this dissertation

can provide an explanation for the possibility of having a rich variety of behaviors

for this model. Such diversity of complicated behaviors is indeed what one would

expect from a model of the neocortex, the part of the brain that is presumed to be

responsible for the extremely complicated perceptual and cognitive functionality of

the brain.

The discussion in Section 7.1 provides an overview of some challenges involved in

establishing the asymptotic compactness property of the global attracting set of the

model using some standard approaches. However, it certainly does not totally rule

out the possibility of establishing such results. Besides considering the regulariza-

tion discussed above, further research can be done by using more advanced analysis

techniques and different topologies, which may succeed in establishing the compact-

ness property, and hence the existence of a global attractor. The complexity and the

structure of the attractor can then be investigated, which can potentially result in im-

portant observations about the evolution of the spatio-temporal patterns of activity

in the neocortex.

Finally, it should be noted that although the model investigated in this dissertation

captures some major biophysical interactions in neuronal populations, it assumes an

isotropic and homogeneous pattern of connectivity throughout the neocortex, which

is not sufficiently realistic for some applications. Further research can be done on
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improving this model by considering anisotropic and sparse patterns of connectiv-

ity. Although such improvements may highly affect the analytical tractability of the

model, they can yield more realistic computational results in practical applications

of the model.
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