# ENVIRONMENTAL COMPARISON OF MICHELIN TWEEL<sup>TM</sup> AND PNEUMATIC TIRE USING LIFE CYCLE ANALYSIS

A Thesis Presented to The Academic Faculty

by

Austin Cobert

In Partial Fulfillment of the Requirements for the Degree Master's of Science in the School of Mechanical Engineering

Georgia Institute of Technology December 2009 Environmental Comparison of Michelin Tweel<sup>TM</sup> and Pneumatic Tire Using Life Cycle Analysis

Approved By:

Dr. Bert Bras, Advisor Mechanical Engineering *Georgia Institute of Technology* 

Dr. Jonathan Colton Mechanical Engineering *Georgia Institute of Technology* 

Dr. John Muzzy Chemical and Biological Engineering Georgia Institute of Technology

Date Approved: July 21, 2009

# Table of Contents

| LIST OF TABL | ES                                        | IV |
|--------------|-------------------------------------------|----|
| LIST OF FIGU | RES                                       | VI |
| CHAPTER 1.   | INTRODUCTION                              | 1  |
| 1.1          | BACKGROUND AND MOTIVATION                 | 1  |
| 1.2          | Тне Problem                               | 2  |
| 1.2.1        | Michelin's Tweel™                         | 2  |
| 1.2.2        | Rolling Resistance                        | 4  |
| 1.2.3        | Product design issues                     | 5  |
| 1.2.4        | Baseline comparison tire                  | 5  |
| 1.2.5        | Geographical Boundary                     | 6  |
| CHAPTER 2.   | RESEARCH BACKGROUND                       | 8  |
| 2.1          | INTRODUCTION TO LIFE CYCLE ANALYSIS (LCA) | 8  |
| 2.2          | SIMAPRO                                   | 10 |
| 2.3          | TIRE LCA LITERATURE REVIEW                | 11 |
| 2.3.1        | Life Cycle Analyses                       | 11 |
| 2.3.2        | Raw materials                             | 16 |
| 2.3.3        | Gasoline emissions                        | 16 |
| 2.3.4        | End of life                               | 18 |
| 2.4          | LITERATURE REVIEW SUMMARY                 | 20 |
| CHAPTER 3.   | GOAL AND SCOPE DEFINITION                 | 21 |
| 3.1          | GOALS OF THE STUDY                        | 21 |
| 3.2          | SCOPE OF THE INVENTORY PHASE              | 22 |
| 3.3          | SCOPE OF THE IMPACT ASSESSMENT            | 26 |
| 3.3.1        | ISO Guidelines                            | 26 |
| 3.3.2        | EcoIndicator99                            | 28 |
| 3.3.3        | EDIP                                      | 32 |
| CHAPTER 4.   | INVENTORY ANALYSIS                        | 34 |
| 4.1          | PRODUCTION OF RAW MATERIALS               | 34 |
| 4.1.1        | Natural Rubber                            | 36 |
| 4.1.2        | Synthetic Rubber                          | 39 |
| 4.1.3        | Carbon Black                              | 40 |
| 4.1.4        | Silica                                    | 42 |
| 4.1.5        | Sulfur                                    | 44 |
| 4.1.6        | Zinc Oxide                                | 45 |
| 4.1.7        | Aromatic Oil                              | 47 |
| 4.1.8        | Stearic Acid                              | 49 |
| 4.1.9        | Coated Wires                              | 50 |
| 4.1.10       | Textile                                   | 51 |
| 4.1.11       | Steel                                     | 52 |
| 4.1.12       | Polyurethane                              | 53 |
| 4.2          | PRODUCTION OF TIRES                       | 55 |
| 4.2.1        | Manufacturing of P205/45R17 tire          | 55 |
| 4.2.2        | Manufacturing of Michelin Tweel™          | 58 |
| 4.2.3        | Heating and Pressurizing Energy           | 60 |

| 4.3        | DISTRIBUTION                | 62  |
|------------|-----------------------------|-----|
| 4.4        | Use Phase                   | 63  |
| 4.4.1      | Fuel Consumption            |     |
| 4.4.2      | Gasoline Emissions          | 69  |
| 4.4.3      | Tire Debris                 |     |
| 4.4.4      | Noise                       | 72  |
| 4.5        | End of Life                 |     |
| 4.5.1      | Processing Routes           |     |
| 4.5.2      | Tire Recycling              |     |
| 4.5.3      | Tweel™ Recycling            |     |
| 4.5.4      | Rubber Derived Fuel         | 81  |
| 4.5.5      | Landfilling                 |     |
| 4.5.6      | Retreading                  | 86  |
| CHAPTER 5. | IMPACT ASSESSMENT           |     |
|            |                             | 22  |
| 5.1        |                             |     |
| 5.1.1.     | Impact Assessment Methods   |     |
| 5.1.2.     | U.S. Energy Impact          |     |
| 5.2        | PRODUCTION PHASE            |     |
| 5.2.1      | Production of Raw Materials |     |
| 5.2.2      | Manufacturing               |     |
| 5.2.3      | Overall Production Impact   |     |
| 5.3        | USE PHASE                   |     |
| 5.4        | END OF LIFE                 |     |
| 5.5        | LIFE CYCLE ANALYSIS         |     |
| CHAPTER 6. | DISCUSSION AND SUMMARY      | 139 |
| 6.1        | LIFE CYCLE ANALYSIS         |     |
| 6.2        | Product Improvements        |     |
| 6.3        | Future Work                 |     |
| APPENDIX A | - LIFE CYCLE INVENTORY      | 146 |
| REFERENCES |                             |     |
|            |                             |     |

# List of Tables

| Table 2.1. Continental's Life Cycle Energy Balance in Liters of Petroleum                                   | 14  |
|-------------------------------------------------------------------------------------------------------------|-----|
| Table 2.2. European vs. American tire disposal routes                                                       | 15  |
| Table 4.1. P295/45R17 tire material composition by weight                                                   | 35  |
| Table 4.2. Michelin Tweel™ material composition by weight                                                   | 36  |
| Table 4.3. Cleaning, adhesive, and release agents used during manufacturing of one 12 kg Tweel <sup>™</sup> | 59  |
| Table 4.4. U.S. energy mix, inputs and emissions to produce 1 MJ, IDEMAT database                           | 61  |
| Table 4.5. DoE EIA energy mix, 2008                                                                         | 61  |
| Table 4.6. Average fuel economy of passenger car fleets                                                     | 64  |
| Table 4.7. Fuel economy (L/100km) changes with increasing RRC                                               | 64  |
| Table 4.8. Total fuel use over lifetime of one tire or Tweel <sup>™</sup>                                   | 68  |
| Table 4.9. Emissions from combustion of gasoline                                                            | 70  |
| Table 4.10. Tread wear rate under differing driving conditions                                              | 71  |
| Table 4.11. General tire life energy requirements                                                           | 75  |
| Table 4.12. Markets and applications for recycled tire rubber                                               | 76  |
| Table 4.13. Tire derived fuel per disposal route (in millions of tires)                                     | 81  |
| Table 4.14. Comparative Fuel Analysis by Weight                                                             | 83  |
| Table 4.15. Environmental costs of landfilling                                                              | 86  |
| Table 5.1. EcoIndicator impact categories                                                                   | 89  |
| Table 5.2. EDIP impact categories                                                                           | 90  |
| Table 5.3. Supplemental data for Figure 5.1                                                                 | 92  |
| Table 5.4. Supplemental data for Figure 5.2                                                                 | 93  |
| Table 5.5. Supplemental data for Figure 5.3                                                                 | 94  |
| Table 5.6. Supplemental data for Figure 5.4                                                                 | 95  |
| Table 5.7. Energy requirements in natural rubber production                                                 | 97  |
| Table 5.8. Energy used in synthetic rubber production                                                       | 97  |
| Table 5.9. Supplemental data for Figure 5.5                                                                 | 98  |
| Table 5.10. Supplemental data for Figure 5.6                                                                | 99  |
| Table 5.11. Supplemental data for Figure 5.7                                                                | 101 |
| Table 5.12. Supplemental data for Figure 5.8                                                                | 101 |
| Table 5.13. Raw materials impact                                                                            | 103 |
| Table 5.14. Supplemental data for Figure 5.9                                                                | 104 |
| Table 5.15. Supplemental data for Figure 5.10                                                               | 106 |
| Table 5.16. Supplemental data for Figure 5.11                                                               | 106 |
| Table 5.17. Contribution of production phase EcoIndicator impact categories                                 | 108 |

| Table 5.18. Greenhouse gas emissions                                                    |     |
|-----------------------------------------------------------------------------------------|-----|
| Table 5.19. Supplemental data for Figure 5.12                                           | 110 |
| Table 5.20. Supplemental data for Figure 5.13                                           | 111 |
| Table 5.21. Supplemental data for Figure 5.14                                           | 113 |
| Table 5.22. Supplemental data for Figure 5.15                                           | 114 |
| Table 5.23 Supplemental data for Figure 5.16                                            | 116 |
| Table 5.24 Supplemental data for Figure 5.17                                            | 117 |
| Table 5.25. Supplemental data for Figure 5.18                                           | 119 |
| Table 5.26. Supplemental data for Figure 5.19                                           | 120 |
| Table 5.27. Supplemental data for Figure 5.20                                           |     |
| Table 5.28. Supplemental data for Figure 5.21                                           | 123 |
| Table 5.29. Supplemental data for Figure 5.22                                           | 126 |
| Table 5.30. Supplemental data for Figure 5.23                                           | 128 |
| Table 5.31. Supplemental data for Figure 5.24                                           | 129 |
| Table 5.32. Supplemental data for Figure 5.25                                           | 130 |
| Table 5.33. Supplemental data for Figure 5.26                                           | 131 |
| Table 5.34. Selected emissions to air per life cycle phase                              | 133 |
| Table 5.35. Total environmental impact over entire life cycle – EcoIndicator (Pt)       | 135 |
| Table 5.36. Total environmental impact over entire life cycle – EDIP (mPt)              | 135 |
| Table 5.37. Climate change impact relative to overall LCA                               | 136 |
| Table 5.38. LCA sensistivity with single fuel database – EcoIndicator                   | 137 |
| Table 5.39. LCA sensitivity with single fuel database – EDIP                            | 137 |
| Table 5.40. Thrust II and III Tweels™ single score environmental impacts – EcoIndicator | 138 |

# List of Figures

| Figure 1.1. Energy flow for average passenger car, highway driving                                    | 2   |
|-------------------------------------------------------------------------------------------------------|-----|
| Figure 1.2. Michelin's Tweel™                                                                         | 3   |
| Figure 2.1. Interdependence of LCA phases                                                             |     |
| Figure 2.2. Life cycle analysis of European carbon black based tire life cycle                        | 14  |
| Figure 2.3. Rolling resistance coefficients sorted by rim diameter                                    | 17  |
| Figure 2.4. U.S. Scrap Tire Management Trends, 1990-2005                                              | 19  |
| Figure 3.1. Flowchart of tire life cycle                                                              | 24  |
| Figure 3.2. Schematic diagram for the selection of impact categories                                  | 27  |
| Figure 3.3. Weighing triangle to compare EcoIndicator99 impact categories                             | 31  |
| Figure 4.1. Silica production process schematic                                                       | 43  |
| Figure 4.2. Sulfur Production by the Claus Process                                                    | 45  |
| Figure 4.3. Processing plan for a petroleum refinery                                                  | 48  |
| Figure 4.4. Polyurethane production process                                                           | 54  |
| Figure 4.5. Tire component breakdown                                                                  | 55  |
| Figure 4.6. Generic tire production process                                                           | 56  |
| Figure 4.7. 2005 U.S. scrap tire disposition                                                          | 75  |
| Figure 4.8. Polyurethane end of life disposal routes, North America.                                  | 80  |
| Figure 5.1. Environmental impact of producing 1 MJ of energy in U.S                                   | 92  |
| Figure 5.2. Environmental impact of producing 1 MJ of energy in U.S                                   | 92  |
| Figure 5.3. Impact of production of 1 kg of each raw material                                         | 94  |
| Figure 5.4. Impact of production of 1 kg of each raw material                                         | 95  |
| Figure 5.5. Weighted impact of raw materials used in one tire                                         | 98  |
| Figure 5.6. Weighted impact of raw materials used in one tire                                         | 99  |
| Figure 5.7. Weighted impact of raw materials used in one Tweel™                                       |     |
| Figure 5.8. Weighted impact of raw materials used in one Tweel™                                       | 101 |
| Figure 5.9. Manufacturing impacts of 10 kg tire and 12 kg Tweel™                                      | 104 |
| Figure 5.10. Overall tire and Tweel™ production impact (10 kg tire, 12 kg Tweel™, both with 1 kg hub) | 105 |
| Figure 5.11. Overall tire and Tweel™ production impact (10 kg tire, 12 kg Tweel™, both with 1 kg hub) | 106 |
| Figure 5.12. Fuel production and use variance, 101 L of gasoline                                      | 110 |
| Figure 5.13. Fuel production and use variance, 101 L of gasoline                                      | 111 |
| Figure 5.14. Use phase environmental impact comparison                                                | 113 |
| Figure 5.15. Use phase environmental impact comparison                                                | 114 |
| Figure 5.16. Environmental impact of 1 kg of rubber per disposal route                                | 116 |
| Figure 5.17. Environmental impact of 1 kg of rubber per disposal route                                | 117 |

| Figure 5.18. Environmental impact of 1 kg of polyurethane per disposal route                                                            | 119      |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 5.19. Environmental impact of 1 kg of polyurethane per disposal route                                                            | 120      |
| Figure 5.20. Tire and Tweel <sup>™</sup> end of life overall impact - EcoIndicator (10 kg tire, 12 kg Tweel <sup>™</sup> , both with1 k | kg steel |
| hub)                                                                                                                                    | 122      |
| Figure 5.21. Tire and Tweel™ end of life overall impact                                                                                 | 123      |
| Figure 5.22. End of life comparison of one Tweel <sup>™</sup> if polyurethane separation is not possible                                | 126      |
| Figure 5.23. P205/45R17 Tire Life Cycle Analysis (10 kg tire w/ 1 kg steel hub)                                                         | 128      |
| Figure 5.24. Tweel™ Life Cycle Analysis (12 kg Tweel™ with 1 kg steel hub)                                                              | 129      |
| Figure 5.25. Tire Life Cycle Analysis                                                                                                   | 130      |
| Figure 5.26. Tweel™ Life Cycle Analysis                                                                                                 | 131      |
| Figure 6.1. LCA Comparisons of P205/45R17 tire and Tweel™ on similar scale                                                              | 140      |

# **Chapter 1. Introduction**

# 1.1 Background and motivation

Passenger car usage and fuel consumption have risen consistently since the invention of the automobile, and with the ever-growing population and increased city sizes it is difficult to find a peak to this upward trend. U.S. automobiles consume over 9 million barrels of oil per day (390 million gallons/day), which is 70% of the crude oil consumed throughout the country.[1] Unleaded gasoline has 8.87 kg of CO<sub>2</sub> per gallon, so daily automobile carbon dioxide emissions surpass 3 million metric tons.[2] People have become more aware of the effects of such carbon emissions, but there is a lot more to automobile usage than meets the eye. All the materials and energy that are used to make a car need to be considered, along with all the other gasoline emissions such as sulfur dioxide and nitrogen oxides. More efficient engines and more aerodynamic and environmentally friendly cars that will consume less gasoline on an average day have begun to be developed, but gasoline usage continues to rise.

It is now important to consider every part of a vehicle to determine from where environmental benefits can arise. The U.S. government has set a goal of an increased average fuel economy to 35 mpg by the year 2020, and the only way to make that happen is to make every part of the vehicle more fuel efficient, from the driveline to the tires.[3] Figure 1.1 shows where all the energy from gasoline is used during highway driving.



Figure 1.1. Energy flow for average passenger car, highway driving [4]

Obviously engine losses are a very important energy sink in this energy flow, but it can be seen that aerodynamics and rolling resistance are also very important in reducing a vehicle's fuel consumption. Specifically, this report will focus on the overall environmental effects of tires, and it will consider everything from the fuel consumption described above to the possible recycling or reuse at the end of a tire's life.

# 1.2 <u>The Problem</u>

# 1.2.1 Michelin's Tweel<sup>TM</sup>

Recently Michelin has been developing a new airless, integrated tire and wheel combination called the Tweel<sup>TM</sup>. The Tweel<sup>TM</sup> (the name is a contraction of "tire" and "wheel") is an airless one-piece wheel-and-tire combination with a rubber tread bonded to a deformable wheel hub with polyurethane spokes as shown in Figure 1.2.



Figure 1.2. Michelin's Tweel<sup>™</sup> [5]

The Tweel<sup>™</sup> promises performance levels beyond those possible with conventional pneumatic technology because of its shear band design, added suspension, and decreased rolling resistance. It delivers pneumatic-like load-carrying capacity, ride comfort, and as it has no pressurized air cavity, it cannot be punctured. Eventually it may be able to outperform conventional tires since it can be designed to have high lateral strength for better handling without a loss in comfort.

However, many questions remain as to what kind of environmental impact this radical new design will have. Currently there are environmental issues all throughout a tire's lifespan from rubber manufacturing emissions to tire disposal, and the rapidly growing method to evaluate all of these points is Life Cycle Analysis (LCA). LCA is the essential tool required by businesses in order to understand the total environmental impact of their products – cradle-to-grave. By considering the entire life cycle of a Tweel<sup>TM</sup> from manufacturing, through use and disposal, and comparing it to knowledge of current tires, an accurate assessment of the entire environmental impact of the Tweel<sup>TM</sup> will be made in this thesis.

# 1.2.2 Rolling Resistance

The main environmental advantage to the Tweel<sup>™</sup> is its very low rolling resistance, or the constant force required to roll a wheel at a constant speed under a certain vertical load. This property, which exists in any tire, is a result of the way rubber interacts with a hard road surface. Under the vertical load, a rubber tire deforms in order to support the entire weight of a vehicle. This allows for the traction, cornering, and comfort that is expected from a tire, but it requires a certain energy expense as a tire repeatedly deforms and recovers during its rotation.

As shown in Figure 1.1 above, the amount of fuel consumed by a vehicle is affected by the efficiency of the vehicle in converting the chemical energy in motor fuel into mechanical energy and transmitting it to the axles to drive the wheels.[6] Most of the energy available in the fuel tank is lost in converting heat into mechanical work in the engine, but about 20% of the energy from the fuel makes it to the tires, and a significant percentage of this is used to overcome the rolling resistance. Most of this rolling resistance energy loss stems from the viscoelastic behavior of rubber materials. Some of the energy required to deform rubber is stored as elastic energy and is completely recovered when it is returned to its original shape, but some is converted to heat and lost due to rubber's partially viscous behavior. This energy loss under a load and unload cycle is called hysteresis.

The more a tire at a given pressure is loaded, the more it deforms, leading to an increase in hysteresis with wheel load. This relationship between rolling resistance and deflection due to load is approximately linear, so increasing the load on a tire results in a near-proportional increase in total rolling resistance. This linear relationship allows rolling resistance to be expressed as a coefficient called the Rolling Resistance Coefficient (RRC), which is traditionally expressed in units of kg/ton. For most passenger tires sold in the U.S., the coefficient of a new tire falls between 0.007 and 0.014, which means under a load of 1,000 kg, a constant horizontal force of 7 to 14 kg is required to maintain the vehicle's speed. The exact reasons for the Tweel<sup>TM</sup> having a lower rolling resistance than these average tires is confidential until the Tweel<sup>TM</sup> is completed, but the estimated rolling resistance coefficient is available and will be discussed later.

# 1.2.3 Product design issues

Since the Tweel<sup>TM</sup> is currently still in the research phase and is not currently manufactured and used, there are uncertainties with respect to end-of-life scenarios and rolling resistance estimates that will affect the LCA. Thus, it will be important to consider a range of options to determine which one will have the most environmental benefits while still keeping the strengths of the Tweel<sup>TM</sup> design intact. Most of the material composition of the Tweel<sup>TM</sup> is known and documented, but there are still uncertainties about tread wear and recycling options that need to be examined by considering a range of possible environmental impacts. For example, will it be more environmentally friendly to recycle Tweels<sup>TM</sup> or burn them as fuel? Or is it even possible to recycle them? These questions will be examined with the help of life cycle analysis tools.

# 1.2.4 Baseline comparison tire

It is necessary to analyze the overall environmental impact of all new products, especially ones that are responsible for as much fuel as Americans automobiles consume, but as will be discussed in more detail later, LCA is a tool that is best used on a simply relative scale. It is simple to demand decreased  $CO_2$  emissions, but when considering the entire life cycle of a product, is it beneficial overall to develop a product that involves harmful chemicals in the production process to save energy while it is being used? In order to answer this question accurately, a system to compare a large range of environmental effects on a single scale is required, but it is also necessary to compare the new product to the product it is replacing in order to observe if the entire life cycle has been improved.

In this report, the baseline tire that will be considered for this comparison will be representative of the most fuel efficient, lowest rolling resistance tire on the market today so that it will be possible to accurately state whether or not the Tweel<sup>TM</sup> will be the most environmentally friendly tire on the market when it is released. The tire chosen for this comparison is a P205/45R17 passenger tire used as an OEM on a BMW Mini Cooper. Further specifications on this tire will be supplied later in the report.

# 1.2.5 Geographical Boundary

Vehicle use differs across the world, but for the purposes of this report only U.S. data and emissions will be used when appropriate. In the case of some of the raw materials needed to produce a tire, the inventory data of required inputs and outputs will come from the country where the material is produced, and then the environmental costs of transporting that material to the U.S. will be added on. For example, natural rubber is almost entirely produced in southeast Asia, so it would be inaccurate to assume it is produced in the U.S. to ignore the transportation emissions. For the majority of the analysis however, American standards and values will be used. The life cycle model will consider a tire and Tweel<sup>TM</sup> made in the U.S., driven by an average American, and disposed of by ratios corresponding to American recycling plants.

Two very important differences arise between an American tire and a European tire. The average driving distance and tire use varies drastically between countries, but more importantly, the energy mix supplied by power plants in the U.S. is very different from that of a European country. The U.S. gets a larger percentage of its electricity from coal plants instead of wind and

water power like some European countries, which directly affects the environmental impact of tire production that takes a large amount of electricity.[7] So, for these reasons it is important to distinguish that this is a U.S. analysis. Thus, all estimates will only be valid for American tires, so conclusions about the environmental effects of European tires should be made with caution.

# **Chapter 2. Research Background**

# 2.1 Introduction to life cycle analysis (LCA)

According to the life cycle analysis (LCA) standard ISO 14040, LCA is defined as "a systematic set of procedures for compiling and examining the inputs and outputs of materials and energy and the associated environmental impacts directly attributable to the functioning of a product or service system throughout its life cycle."[8] LCA is a technique for assessing all of the environmental aspects associated with a product from "cradle-to-grave", or from a product's manufacturing stage through its life, and into its disposal route. This environmental assessment tool is critical to the foundation of this report and will be used extensively to compare the Tweel<sup>TM</sup> to a standard pneumatic, or air-filled, tire by adhering to the standards ISO 14040, 14041, 14042, 14043, 14044.

These standards outline a basic four step process to complete a life cycle analysis consisting of a goal and scope, inventory analysis, impact assessment, and interpretation that are described as follows: [8, 9]

- Goal and Scope This phase has already been discussed a little, but not in a sufficient manner to satisfy the ISO standards. The goal and scope phase identifies the LCA's purpose and determines the boundaries of the assessment by defining exactly why and how the study will be performed. The object of study is described in terms of a "functional unit" that defines a reference unit to help quantify the overall impact of the product.[10]
- Inventory This is the phase in which all the data is collected that models the product system. This encompasses all data related to environmental (e.g., CO<sub>2</sub> emissions) and technical (e.g., intermediate chemicals) quantities for all relevant unit processes

within the boundaries defined in the "goal and scope" phase. The results of the inventory is an LCI (life cycle inventory) that provides information about all inputs and outputs in the form of elementary flow to and from the environment throughout all stages of the functional unit's life.

- 3. Impact Assessment The life cycle inventory contains all the information necessary to analyze the environmental impact of a product, but the impact assessment phase evaluates each elementary input and output flow so that they can be compared on a uniform scale. The inventory results are therefore grouped into a number of impact categories such as climate change, ecotoxicity, and depletion of fossil fuels. These impact categories can then be normalized and weighted to get a better understanding of the relative meaning of each category and an overall environmental score for the entire life cycle.
- 4. Interpretation To validate the results of the impact assessment, in this stage the results are interpreted in relation to the original goals and scope of the study. A number of procedures can be used to check the validity of the conclusions of the study including uncertainty analysis, sensitivity analysis, consistency checks, and varying impact assessment methods.

This approach simplifies a complicated set of environmental inputs and outputs into four steps that are all interrelated as shown in Figure 2.1. There is a logical progression from steps 1 through 4, but changes to any step throughout the analysis will have effects through other stages, so this becomes somewhat of an iterative process until a valid scope is defined that leads to an impact assessment that can be verified with confidence. The analysis in this report will be

performed using this rough outline with a consistent goal to compare Michelin's Tweel<sup>™</sup> to a current pneumatic radial tire.



Figure 2.1. Interdependence of LCA phases

# 2.2 <u>SimaPro</u>

The computer program used to compile and interpret every aspect of a wheel's life cycle in this report is SimaPro (System for Integrated Environmental Assessment of Products) version 7.1 developed by PRé Consultants. Due to the large amount of input and output inventory data through an entire life cycle of a product, SimaPro is necessary to ensure a complete and reliable comparison of every effect. It features a user interface that allows the environmental inventory of any product or process to be modeled by specifying inputs (resources, fuels, electricity) and outputs (emissions to air, water, and soil, etc.) while ensuring the ISO LCA guidelines are followed. Each component of every phase of a product's life can be modeled separately and then combined to form a complete model of the entire life cycle. These components, such as raw materials production or disposal routes, can either be developed as new data sets by the user or existing pre-packaged databases that contain detailed environmental inventory data for thousands of products and processes across the world can be used. These databases (BUWAL, IDEMAT, Franklin USA, etc.) are developed by environmental professionals and are peer reviewed to assure confident data sets describing any potential environmental impact of a process, but each data set is usually geographically specific and may differ if the process is being modeled in a different country.

Not only does SimaPro offer pre-packaged databases describing a wide range of processes, but it also offers several different tools to analyze the environmental impact of the inventory data (step 4 of the general LCA process defined in section 2.1). Data describing the energy requirements and airborne emissions are necessary to the LCA process, but the most helpful trait of SimaPro is its ability to organize all of this data, interpret it with a range of impact assessment methods, and then present the overall environmental effects in an organized manner. Most of the impact assessment methods that are supplied with SimaPro output overall environmental impact results on a uniform scale to help compare different stages of a life cycle, and SimaPro has the capability to present these results in clear graphical form for easy interpretation. For these reasons and its growing use throughout the entire field of life cycle analysis, SimaPro will be used in this report to greatly facilitate the analysis of a large amount of data.

# 2.3 <u>Tire LCA literature review</u>

# 2.3.1 Life Cycle Analyses

Before a proper Tweel<sup>TM</sup> life cycle analysis can be performed, it is first necessary to understand previous LCA's done in the same area. Many papers have been published on the topic of life cycle analysis for roughly the past 10 years while this environmental area of research has developed, specifically in the Journal of Life Cycle Assessment, that not only give insight into environmental impacts of rubber, polyurethane, and tires in general, but also help to understand the progress of life cycle assessment altogether. Guinée, et al, describe the progression of life cycle analysis over the past 15 years starting from a time when the major data source, the Swiss BUWAL Report [11], did not list CO<sub>2</sub> as a pollutant and global warming (climate change) as an impact.[12] Due to this rapid progress in environmental analysis techniques, it is very important to use recent data and impact categorization tools in order to compose a life cycle assessment valid in today's world. The current baseline LCA rules that will help ensure this quality are described in the ISO 14040ff series.[8, 9, 13] These ISO standards lay out the fundamental life cycle analysis process, but do not give precise advice about specific ways to implement the basic rules. For this reason, life cycle analysis is a fairly subjective tool that can produce quite different results depending on the methods chosen to produce the conclusions. Pears, for example, when looking at cement manufacturing plants, found a wide variation in energy efficiency, greenhouse output, and other environmental impacts due to the methods he chose to not only collect the data but also to assess the environmental impact of that data. Depending on the plant, the embodied energy varied between 3.3 and 8 GJ per ton of cement produced. This variation was then compounded when different impact assessment methods were chosen that weighed global warming potential and natural resource depletion differently.[14] Thus, due to the ever-changing field of life cycle analysis and the fairly vague rules that allow differing assessments of environmental effects, a comprehensive analysis that attempts to nullify some of these questions by offering multiple impact assessment methods is necessary for a complete environmental analysis of any product.

Specifically in the tire industry however, today tire manufacturers and raw material suppliers are continuously challenged to develop economically and environmentally sustainable products, and a lot of research has already been completed attempting to minimize the overall environmental impact of this industry by adhering to the ISO standards of life cycle assessment.

Tire manufacturers are faced with a fundamental dilemma when environmental factors are considered, so weighing the pros and cons of each in a consistent manner has drawn much attention. On one hand, the tire industry is urged to provide tires with steadily improved on-the-road performances (wet / dry traction for safety reasons, wear resistance for durability, and rolling resistance for fuel economy). On the other hand, the tire industry is willing to develop tires with minimal impact on the environment. For the most part, these two are mutually exclusive. An increase in comfort or traction usually results in increased environmental load. By applying LCA techniques, the tire industry is recording all ecological aspects of the interaction of a tire and the environment during the lifetime of the tire. This global approach is considering the added contributions of raw materials, as extraction of fossil and mineral materials, manufacturing of additives such as fillers, curing package, and silanes, the tire production in plants, and the tire use on the road until the end of its life so that confident conclusions can be made about product improvements that have different environmental effects.

According to the European Tire and Rubber Manufacturers Association, the major environmental impact throughout a car tread's life cycle consists in the tire use phase with carbon dioxide emission linked to the fuel consumption of the car, attributed to the rolling resistance.[15] This conclusion is agreed upon by several other sources including a brief overview done by Continental and an in-depth, detailed report from PRé Consultants titled *Life Cycle Assessment of an Average European Car Tire*.[16, 17] As shown in Table 2.1 from Continental's analysis and Figure 2.2 from PRé Consultants it is easy to see that the use phase of a tire's life cycle is the most environmentally harmful. This environmental load results from the rolling resistance described in section 1.2.2, and is the focus of most of today's tire manufacturers.[18] According to these studies, reducing the rolling resistance by a small percentage will have a noticeable impact on the overall environmental performance of the tire.

| Process                      | Energy Input (MJ) | Global Warming Potential    | Acidification               |
|------------------------------|-------------------|-----------------------------|-----------------------------|
|                              |                   | (kg CO <sub>2</sub> equiv.) | (kg SO <sub>2</sub> equiv.) |
| Acquisition of raw materials | 211               | 14                          | 0.0718                      |
| Transport                    | 16                | 1.5                         | 0.0123                      |
| Production                   | 104               | 7.3                         | 0.0103                      |
| Use                          | 7520              | 601                         | 0.54                        |

Table 2.1. Continental's Life Cycle Energy Balance in Liters of Petroleum[16]



Figure 2.2. Life cycle analysis of European carbon black based tire life cycle [17]

The study performed by PRé Consultants assessed the overall environmental impact of an average European P185 car tire, and establishes a good foundation for an analysis done in the United States. U.S. tire manufacturers have been slower to adopt LCA techniques for product improvement, so there is minimal documentation of the differences between American and European tire production, but small differences between the European P185 tire and the fuel efficient P205 tire will be seen throughout this report. The most important differences between European tire LCA and this American version are the use mileage for an average tire and the end

of life processing. Small differences occur in the material composition of the two tires and the production of these raw materials as will be seen in the inventory collection phase of this report, but the European tire producers used an average life of 40,000 km while the American average is over 40,000 miles. There are also obvious differences between the fuel use over the life cycle of a tire because the PRé study analyzed the environmental contributions of an average European tire, while the most fuel efficient American tire is used in this report to be able to state whether or not a Tweel<sup>TM</sup> would be the most environmentally friendly wheel if it was released today. The last major differences between this European analysis and this U.S. report is the end of life disposal route differences. As shown in Table 2.2, a much larger percentage of tires is landfilled in Europe instead of being incinerated for energy.

|                  | Material Reuse | Energy | Landfill |
|------------------|----------------|--------|----------|
| France           | 52%            | 35%    | 13%      |
| U.K.             | 60%            | 20%    | 20%      |
| European Average | 35%            | 39%    | 26%      |
| U.S.A.           | 34%            | 52%    | 14%      |

Table 2.2. European vs. American tire disposal routes [19]

PE Product Engineering GmbH cooperated with the University of Stuttgart prior to the PRé study, but their LCA also focused solely on the environmental profiles of two different average European car tires – a silica-based and a carbon black-based tire.[20] In much the same way as the other European tire analyses they contacted European automobile producers and their suppliers to quantify the energy, raw materials, emissions, waste, and cost needed in every stage of a tire's life cycle, but most of the data found in these reports are not valid for an American tire production plant due to some of the differences in energy production, tire manufacturing, and tire use.[21] Even though there are no tire LCA reports published for American tires that cover an entire life span, there are still details available from every stage of a tire's life from raw materials

to disposal, and this data will help to compare tire production and use between Europe and the United States. The key in this report will be to assemble all this American data spread across different industries into a clean, comprehensive report to fully understand not only the potential environmental impact of a Tweel<sup>™</sup>, but also that of a tire manufactured and used in the United States.

# 2.3.2 Raw materials

The environmental effects of the production of the raw materials needed to produce a tire or Tweel<sup>TM</sup> (rubber, polyurethane, carbon black, etc.) are documented in both the SimaPro databases and also some literature detailing the production methods of each material. Due to the differences in energy requirements and environmental emissions in different countries, the SimaPro databases should not be used as the only source of inventory data and will thus need aid from reports like the Encyclopedia of Chemical Processing and data from the International Rubber Research and Development Board (IRRDB).[22, 23] Several sources detail the production of both natural and synthetic rubber, but even reports that discuss the production of steel wires and sulfur are important.[24, 25] Each of these materials will be discussed in more detail in the inventory collection section of this report, but it is important to realize that sources beyond the packaged SimaPro databases are available for comparison and necessary for confidence in each raw material production process.

# 2.3.3 Gasoline emissions

Vehicle fuel economy has been the focus of intense discussion recently due to growing oil demands and increasing environmental consciousness, and tires play an often overlooked part in this problem. Tires are responsible for a noticeable percentage of a vehicle's fuel use because of the force required to overcome rolling resistance, but exactly how much of an effect this

16

causes varies between different types of tires and has been under debate with some sources estimating a range of 5 to 20% of all fuel use.[6, 26, 27] Quantifying the specific amount of fuel use attributable to one tire or Tweel<sup>TM</sup> will be a key part of this LCA since the use phase has been documented as the most environmentally harmful stage of a tire's life, and such a large range of possible fuel use could have drastic effects on the overall environmental load of a tire or Tweel's<sup>TM</sup> life. Deciding on the precise amount of fuel use throughout a tire's life can be aided by the large number of rolling resistance coefficients (RRC) documented for a wide range of tires though, such as the data set assembled by the Transportation Research Board who compared over 200 tires of varying sizes and brands to try to understand the relationship between rolling resistance and tire size, tread quality, aspect ratio, etc.[28] Charts such as Figure 2.3 below from their report titled *Tires and Passenger Vehicle Fuel Economy* can help begin to develop a picture of the effects of tire rolling resistance on fuel use.



Figure 2.3. Rolling resistance coefficients sorted by rim diameter [28]

Although quantifying the amount of fuel used by a tire is under debate, the amount of overall fuel use by a vehicle and the corresponding tailpipe emissions are very well documented and easily agreed upon. Not only are national CAFE standards published enforcing a limit on the minimum fleet fuel economy [29], but details of gasoline emissions have also been closely monitored. Airborne emissions per gallon of gasoline are documented in several sources including reports from the Environmental Protection Agency and Energy Information Administration in which carbon dioxide, nitrogen oxides, and other potential environmentally damaging particles are quantified.[1, 30, 31] Each of these reports discusses the importance of minimizing the gasoline use and corresponding emissions from passenger vehicles, but the overall environmental effects require a broader life cycle approach.

# 2.3.4 End of life

There are several works about the impact of the increasing number of used tires in the waste stream, because excessive landfill use is the fastest growing environmental concern among the public.[32] As described by life cycle analysis efforts and shown in Figure 2.2, this may be an unrealistic concern compared to rolling resistance and gasoline use, but nonetheless it has sparked much progress and documentation in the literature about the impact of different disposal methods and their relative environmental impacts. Finding ways to reuse the growing 300 million tire landfill stockpiles has produced new innovations in rubber shredding and incineration out of necessity to reduce these excessive scrap tire numbers.[33] Figure 2.4 from the Rubber Manufcaturers Association describes the growing excess scrap tire production problem and the inability to utilize these stockpiles without resorting to landfilling.



Figure 2.4. U.S. Scrap Tire Management Trends, 1990-2005 [34]

Morris concluded that for most recycling methods, recycling consumes less energy and imposes lower environmental burdens than disposal of solid waste via landfilling or incineration, even after accounting for energy that may be recovered from waste materials at either type of disposal facility.[35] However, due to the thermoset nature of rubber tires, markets simply do not exist to reuse hundreds of millions of pounds of shredded rubber. Research has been performed to find ways to reuse ground rubber in civil engineering, athletic and sport surface applications, rubber modified asphalt, etc., but currently only a relatively small percentage of rubber can be reused in this manner.[36] So, other methods of cleanly disposing of tires for beneficial means have had to be developed, and the best way to do this is by incineration.

One kg of tire rubber contains 36 MJ of energy (4 MJ more than the same mass of coal), so tire incineration has become a reliable method of disposing of large stockpiles of tires.[37] Not only does tire incineration produce a large amount of energy, but it also avoids the mining of coal or other energy production methods, so incineration has been shown to have an overall positive environmental effect.[38] However, as described by Reisman, the consequences of not cleanly and efficiently burning rubber can have serious environmental consequences.[37] Open tire fires that occur infrequently in landfills dispense large amounts of particulates, carbon monoxide, sulfur oxides, nitrogen oxides, and volatile organic compounds (VOCs) due to the incomplete combustion of whole tires in an uncontrolled environment, so the EPA has set strict emission standards on tire incineration plants to assure an environmentally beneficial process.[39] It has been well documented that rubber landfilling should be avoided whenever possible, so these standards and disposal methods are always being modified and updated to reflect the governmental environmental demands and the overall sustainability of the tire and rubber industries.

# 2.4 <u>Literature review summary</u>

All of these reports and standards give a good summary of the overall life cycle of a tire and its environmental impact in each stage of its life, but minimal knowledge is available on the environmental effects of Tweels<sup>TM</sup>. A strong foundation has been set detailing each stage of a tire's life cycle from raw material production through various disposal routes, but the Tweel<sup>TM</sup> manufacturing process is constantly changing through its development stages, and since it is not in full production or use yet, it is impossible to compile an array of sources describing the environmental effects of Tweel<sup>TM</sup> use or disposal route percentages as is possible with tires. However, many of the literature sources that reference a particular stage of a tire's life cycle may be a helpful first step in analyzing the effects of Tweels<sup>TM</sup>. The most current knowledge about the life cycles of both products will be compiled in this report through the help of SimaPro, literature sources, and Michelin processes and data in order to present an accurate environmental profile and corresponding environmental impacts of both products.

# **Chapter 3. Goal and Scope Definition**

# 3.1 <u>Goals of the study</u>

As indicated in the introduction, this study intends to perform an environmental analysis of a Tweel<sup>TM</sup>, but there are two main goals to this thesis. First, the main aim of the thesis is to present a detailed overview of the environmental profile of a low rolling resistance American car tire throughout its entire life cycle and compare its impact to that of a Michelin Tweel<sup>TM</sup>. The environmental performance of these two tires is intended for external use by car tire users, environmental regulators, and suppliers by providing detailed information about the overall environmental effect of these two products so that external audiences can make their own judgments that meet their desires. Every part of the life cycle (production, transportation, use, and end of life) will be considered in order to present the most information possible so that consumers and suppliers will be able to make the most educated decision. Although a comparison with other products is not intended in the scope of this project, showing the relative contribution of a Tweel<sup>™</sup> to a reference can enhance this information and help the external education. To help show someone the relative importance of the environmental load of tires and Tweels<sup>TM</sup>, a reference impact will be set as the environmental load of the average European citizen. This will help to quantify the impact of the life of either product.

A specific comparison of end of life processes, such as land filling and energy recovery, will not only inform tire users of the most environmentally friendly way of disposing their used tires, but will also help to inform disposal companies about how to possibly improve their processes. It is important for tire consumers to understand the environmental impact of the products that they buy, but the second goal of this thesis, a product improvement goal that provides insight for Michelin for improvement of their Tweel<sup>TM</sup> design, is just as meaningful.

This goal is not directly part of an LCA, but an environmental comparison between a fuel efficient tire and a Tweel<sup>TM</sup> can show which stages of the life of a Tweel<sup>TM</sup> are most environmentally harmful, and can hypothetically show if a potential product improvement is beneficial to the environment. From this information, a prioritization of possible Tweel<sup>TM</sup> improvements can be developed to streamline the rest of the Tweel<sup>TM</sup> design process.

One issue that affects the project scope, however, is the confidentiality of some raw material production and tire manufacturing methods. Specific company techniques and processes are very important to a company in order to sustain their competitive advantage, so some of the collected data must remain confidential, and some data specific to a particular company may be impossible to obtain at all.[40] In the case of a confidentiality problem that limits the production knowledge of a particular process, a wider industry standard will be used that considers the average production process over a large number of companies. This will limit the precise results from an exact Tweel<sup>TM</sup> or P205/45R17 tire and may shift the results toward an average tire, but it will provide a good estimate for the actual environmental impact of each product. A more quantitative discussion of this effect will be discussed throughout the report when confidentiality issues arise.

# 3.2 <u>Scope of the inventory phase</u>

As discussed above, the main goal of this thesis is to compare the potential environmental impact of a Tweel<sup>™</sup> to that of an environmentally friendly tire. Specifically, the functional unit of this analysis will be one P205/45R17 tire including its hub compared with what will potentially replace it – one Michelin Tweel<sup>™</sup> and its hub. For this analysis, it is assumed that these functional units are produced, used, and disposed of in the United States. All of the energy considered will be assumed to come from the United States except in cases like natural rubber

production where all the material is produced in Southeast Asia. The IDEMAT database has well documented energy mixes from every major area of the world but it is outdated by a few years and more recent energy mix percentages are available through the US Energy Information Agency. Both of these sources, which describe the percentages of American energy derived from coal, crude oil, etc., will be compared to assure an accurate energy environmental impact. The amount of gasoline use that can be attributed to one tire throughout its life will be considered as part of the material flow of the LCA. The analysis of these tires will be conducted under average American driving conditions – an average car is driven an average amount per year on average roads. As driving behavior and landscape characteristics varies across the country, national averages are used in the model to construct the most probable representative production and use of Tweels<sup>TM</sup>. It will be important to note that environmental impacts will change with aggressive driving. Tire wear can increase as much as 300% with aggressive driving on rough, winding roads as compared to the average wear, but transforming this decrease in tire life to fuel use is problematic due to the difficulties in determining how much the fuel efficiency of a car declines with this increase in aggression.[17] Thus, only the average tire wear will be considered in order to match up with the national average fuel efficiency.

Rolling resistance also will change with poor tire care, but this aspect of the life cycle inventory will be ignored. The Transportation Research Board suggests that rolling resistance decreases about 1% with every 1 psi that a tire is underinflated.[28] Thus, if a tire is significantly underinflated, it will require more force to make it roll at a specific speed, causing an increase in the amount of fuel being used by the car. This fuel would then be directly attributable to the tire and thus would be included in the LCI. This effect may be offset by the reduction in the tire's life due to this usage without proper maintenance, but for the purposes of

this thesis it will be assumed that tires always remain properly inflated as the exact quantity of underinflated tires on the road is impossible to determine.

The overall scope of the inventory data that will need to be determined is shown in Figure 3.1 below. Small variations will exist between the life cycle of a tire and a Tweel<sup>TM</sup>, but the overall basic structure will remain the same.



Figure 3.1. Flowchart of tire life cycle

In considering the entire life cycle of both a tire and a Tweel<sup>TM</sup>, it will be necessary to construct an inventory of each of the blocks shown in Figure 3.1. All material inputs and outputs to the air, water, and land will be considered where appropriate and entered into the SimaPro program described earlier in order to analyze the results. The production phase of the life cycle will consider the production of the specific amounts of raw materials used in a tire or Tweel<sup>TM</sup> and then the process of transforming these raw materials into the final product that is place on a vehicle. The manufacturing of each tire will be discussed in more detail throughout the analysis, but it can be broken down into 3 steps: manufacturing of semi-finished products (tread, belts, sidewalls, etc.), tire building, and vulcanization. Manufacturing the semi-finished products will

incorporate the use of the raw materials while tire building and vulcanization are mostly just energy inputs.

After the product assembly is considered, the distribution and use phases are added to the inventory. Tires are distributed to car manufacturing plants and to replacement tire shops, and traveling this distance in large trucks uses diesel fuel and expels the corresponding emissions while the tires are being transported. This same fuel usage is to be considered in the use phase (the time that a tire is being used on a car), but instead of diesel trucks, gasoline powered passenger cars will be considered. Other important aspects that need to be considered while a tire is being used is the environmental load of the tire wear and the emission of noise due to tire/road contact. Not only is wear important in determining the life of a tire, but the small parts of the tire tread that pile up on the side of roads and get washed away into water systems have very important environmental impacts. The noise on the other hand, is not so easy to consider. Currently there is no way to quantify the environmental effects of sound as can be done with carbon dioxide, but a qualitative analysis of noise will be useful as a side project.

To conclude the inventory data collection, four end-of-life disposal methods will be considered: land filling, incineration in cement kilns, incineration in power plants, and recovery through grinding. Current data for tires disposed of in the United States will provide appropriate numbers for the ratios of tires that are disposed of in each of these manners, but as Tweels<sup>TM</sup> are neither produced nor disposed of, this stage of the life cycle will be analyzed through a range of possible Tweel<sup>TM</sup> disposal routes. This uncertainty will make it difficult to draw any concrete conclusions about the overall environmental impact of Tweel<sup>TM</sup> disposal, but it will allow for product improvement information and tips about what needs to be done in the future to minimize the environmental impact of this end-of-life phase.

Typically the hub is left out of tire life cycle analysis due to its relative longevity compared to the life of the rubber, but it will be included in the analysis for both products in this thesis because of the way it is molded to the spokes of a Tweel<sup>TM</sup>. Separating a Tweel<sup>TM</sup> from its hub is not as simple as the process for a tire because the polyurethane spokes of a Tweel<sup>TM</sup> are molded directly to the steel hub with a bond that is not easily broken, so for consistency the hub will be included in both life cycle analyses. Both products use a steel hub weighing roughly 4 kg, but the entire environmental impact of this large amount of steel should not be considered as part of one tire or Tweel<sup>TM</sup> life cycle because each hub lasts much longer than the rubber or polyurethane components of a tire or Tweel<sup>TM</sup> and can be used through roughly 4 tire life cycles.[41] For this reason, only <sup>1</sup>/<sub>4</sub> of the environmental impact of the 4 kg hub from each product will be considered in this analysis. The entire life cycle of the steel hub will be considered in this analysis. The entire life cycle of the steel hub will be considered in the considered to the rest of a tire or Tweel<sup>TM</sup>.

# 3.3 <u>Scope of the impact assessment</u>

# 3.3.1 ISO Guidelines

Once the life cycle inventory data are collected, the wide range of inputs and outputs must be combined using a uniform scale that is able to compare the impact of say 1 kg of  $CO_2$  emission to the air against 1 m<sup>2</sup> of land use. The general procedure for this process is described in the ISO 14042 document and is shown in Figure 3.2 below. This figure outlines a general procedure from constructing a wide range of possible impact categories that are consistent with the goal and scope of the thesis to selecting the impact categories that should be addressed and

describing each of these categories so that they can be compared with each other using a uniform scale.



Figure 3.2. Schematic diagram for the selection of impact categories [13]

The ISO 14040 and 14046 documents provide a solid framework to assess the impact of the life cycle inventory, but their generalizations provide room for a variety of different impact assessment techniques. A number of different impact assessment methodologies are available to the LCA practitioner, and several of them are implemented in software commercially available on the market. For the purposes of this report, the EcoIndicator99 method will be the primary impact assessment tool used, but the EDIP2003 method will be used for validation to ensure that the results are not skewed simply because of the wrong choice of impact assessment methods. A fundamental difference between these two methods is that the EDIP method has a problemoriented approach to impact assessment as opposed to the EcoIndicator method, which has a damage-oriented approach.[42] This means that whereas the EDIP method models the impacts between emissions and damages, EcoIndicator aims its assessment directly at the damages caused by the emissions. This difference in approach will give two very different views on the collected life cycle inventory, which will greatly contribute to the validity of the results if the two assessments agree on the relative environmental impacts of the Tweel<sup>TM</sup> compared to the tire.

# 3.3.2 EcoIndicator99

There are many ways to combine a wide range of environmental impacts associated with creating a product, but the process of weighing all these effects to develop with one concise score can be quite difficult. The first question to answer in this complicated method of combining all sorts of environmental impacts is to define what exactly the term "environment" means.[43] The EcoIndicator99 method breaks up this very broad term and all the impacts that couple it into three impact categories: Human Health, Ecosystem Quality, and Resources.[44] These three categories were determined to be sufficient to encapsulate the effects of most of the emissions and products, so it will be beneficial to understand each with greater detail. Of course this method can't be absolutely complete and can't capture all effects and all categories such as damage to cultural heritage but it is a good way to group effects for most products and processes.

The Human Health category includes the number and duration of diseases, and life years lost from environmental causes that result in premature death such as infectious diseases, cancer as a result of radiation, cancer due to ozone depletion, and respiratory diseases from airborne particles. There are a wide range of emissions that can damage human health in a number of ways, but, health damages from allergic reactions, noise, and odor cannot yet be modeled and are not included in this EcoIndicator. To aggregate all these different types of damage to human health that can be quantified into one number that can be compared to ecosystem quality and resources, a tool for comparative weighting of disabilities is needed. The EcoIndicator99
developers chose to use the DALY (Disability Adjusted Life Years) scale, which has been developed by Murray, et al [45], for the World Health Organization (WHO) and World Bank. This weighting scale lists many different disabilities on a scale between 0 and 1 (0 meaning perfectly healthy and 1 meaning death).

A quick example calculation with DALYs will attempt to clear up exactly how this human health weighting is performed. This example is taken from the EcoIndicator99 manual written by PRé, which is available for download at http://www.pre.nl/eco-indicator99/ei99-reports.htm.[46] First consider carcinogenic substances that cause a number of deaths each year. In the DALY health scale, death has a disability rating of 1. If a type of cancer is (on average) fatal ten years prior to the normal life expectancy, we would count ten lost life years for each case. This means that each case has a value of 10 DALYs. For comparison consider a smog period during a summer where many people have to be treated in hospitals for a number of days. This type of treatment in a hospital has a rating of 0.392 on the DALY scale. If the hospital treatment lasts 0.01 years on average (3.65 days) each case would be weighted 0.004 DALYs. In this way all diseases and harmful effects on human health can be combined into one measurement of DALYs, which can then be weighed against the other two impact categories in a method that will be described below.

Some of these Human Health factors overlap into the Ecosystem Quality category, but to avoid double counting things such as the greenhouse effect and ozone layer depletion, most of these are grouped in the Human Health category because this is most likely the most important piece for all of us. These could just as well be grouped in the Ecosystem Quality category, but that category is focused more on the effects on species diversity, especially for vascular plants and lower organisms. Some of these effects include ecotoxicity, acidification, eutrophication, and land use. An important difference between this Ecosystem Quality and Human Health is that even if we could determine all the complex damages inflicted upon the ecosystem, we are not really concerned with the individual organism, plant, or animal. Instead, the species diversity is used as an indicator for ecosystem quality. The EcoIndicator99 method expresses the ecosystem damage as a percentage of species that are threatened or that disappear from a given area during a certain time.[47]

Finally, the Damage to Resources category combines the effects on mineral resources and fossil fuels. The problem with determining how much impact that removing a certain amount of a mineral from the ground has on the environment is the uncertainty of the amount available. It is obvious that there is a limit on the human use of these resources and removing resources with a smaller availability will have a greater environmental impact, but to pin down these exact numbers would be rather arbitrary. Instead of considering Damage to Resources as a percentage of that resource available, the EcoIndicator99 method looks at the concentration of a resource as the main element of resource quality. Market forces will assure that the most concentrated, easily mine-able areas are depleted first, so Chapman and Roberts developed an assessment procedure for the seriousness of resource depletion, based on the energy needed to extract a mineral in relation to the concentration.[48] As more minerals are extracted, the energy requirements for future mining will increase. The unit of the Resources damage category is the "surplus energy" in MJ per kg extracted material that describes the increased energy needed to extract a kg of a mineral from a more difficult location in the future.

Now that all three impact categories are defined, the most difficult question must be answered: How does one weigh these categories against each other to be able to combine them into one score when they have completely different units and describe completely different

30

effects? The answer that the EcoIndicator99 employed was to first normalize each category and then construct a panel of 365 members to determine a ranking and weighing procedure. They concluded that the damage to Human Health and damage to Ecosystem Quality should be weighed with equal importance while damages to Resources is considered about half as important.[46] Different people have different views on the correct way to weigh these categories against each other, but as shown in Figure 3.3 which was taken from the EcoIndicator99 manual, this 40/40/20 method of weighing is closest to the average, most agreed-upon ratio.



Figure 3.3. Weighing triangle to compare EcoIndicator99 impact categories[47]

In this weighing scheme, the normalized Ecosystem Quality score, for example, will be multiplied by 40% and combined with the other weighted impact categories to come to a final single score result called the environmental "indicator", as described in Equation 3.1,

$$Pt = 0.4(EQ) + 0.4(HH) + 0.2(R)$$
(3.1)

where EQ is the normalized Ecosystem Quality score, *HH* is the normalized Human Health score, and *R* is the normalized Resources score. This gives a number that lies on a fairly arbitrary scale, but the EcoIndicator99 developers chose the scale in such a way that the value of 1000 Pts is representative of the yearly environmental load of one average European inhabitant.[47] This point scale can now be applied to any material or any process so that every possible input and output of a product can be combined to form one overall, generalized environmental impact score.

# 3.3.3 EDIP

The EDIP (Environmental Design of Industrial Products) method that will be used to verify the results of the EcoIndicator99 method follows the same framework set up by the ISO standards, but develops different impact categories with a different point of view. Whereas the EcoIndicator starts at the end and first identifies the areas of concern (damage categories) and then works backwards to determine what causes damage to these areas, the CML method works in a more linear fashion grouping inputs and emissions into impact categories directly without insight into future broader damage categories. Not only does this result in different impact groups, but it also requires a different method to weigh the non-dimensionalized versions of these groups to compare the impacts and obtain an overall environmental impact score.

There are too many CML impact categories to discuss in detail for the purposes of this thesis, but the main concepts are the same as the EcoIndicator groups. The weighting method on the other hand is quite different in that it uses a distance-to-target method to express scores in terms of Person Equivalents Targeted for a given year in the future (PET).[42] The goal of the weighting methods in both the EDIP and EcoIndicator is to reflect the society's view on which damages or potential impacts are of greatest importance, but both methods arrive at different

ways of achieving this. This distance-to-target method examines the ratio between the actual impact potential and the political target level at some point in the future.[49] A contribution to the overall flow of a certain impact where the levels of contributors are far above the target level is thus given more weight than contributions to flows where the distance-to-target is smaller. So, rather than trying to discern the thoughts of the greater public from a group of a few hundred, the EDIP method considers well documented political targets and determines the importance of each impact category on the effect it will have on the overall environmental target of that group in the future.

#### **Chapter 4. Inventory Analysis**

In order to organize a large amount of inventory data throughout the entire life cycle of a tire and a Tweel<sup>™</sup>, five sub-categories will be created: production of raw materials, tire/Tweel<sup>™</sup> manufacturing, distribution, use, and end-of-life. The production of raw materials and tire manufacturing categories will be combined later in the analysis to provide a better understanding of the overall environmental effects of the entire production process, but they will remain separated here.

All inventory data (energy inputs, emissions, etc.) will be derived from external sources whenever possible, but when limited data exist, the databases packaged with the SimaPro program will be used. Some of the databases used include BUWAL250, IDEMAT 2001, and EcoInvent. These databases are all peer reviewed and contain reliable information on a wide range of raw materials and processes. The only downfall of these SimaPro databases, however, is their lack of transparency. Limited citations are supplied, and it is very difficult to understand from where the inventory quantities are derived, so when at all possible these databases are not be used. When they are used though, an attempt to combine multiple databases will be tried to average out any errors or skewed data. Producing a material in one place can give different energy requirements and different emissions for example, so it is important to use data representative of national averages and to avoid trusting only one database representative of only one part of the world.

### 4.1 <u>Production of raw materials</u>

The production of a new tire is a fairly complicated process that involves many steps at a manufacturing plant, but before they can be considered, it must be understood how the necessary raw materials made it to the plant in the first place. Table 4.1 and Table 4.2 describe the material

composition of both functional units (P205/45R17 and Tweel<sup>TM</sup>) that will be analyzed throughout their life cycles. The details of the production processes of each of these raw materials are described in this section and all the LCI data quantifying the material inputs and emissions are provided in Appendix A.

|                  | Carcass | Tread | Total tire | Hub |
|------------------|---------|-------|------------|-----|
| Raw material     | wt %    | wt %  | wt %       | wt% |
| Synthetic rubber | 15.78   | 41.72 | 24.17      | 0   |
| Natural rubber   | 24.56   | 3.53  | 18.21      | 0   |
| Carbon Black     | 23.40   | 9.54  | 19.00      | 0   |
| Silica           | 0.80    | 28.07 | 9.65       | 0   |
| Sulfur           | 1.60    | 0.80  | 1.28       | 0   |
| ZnO              | 1.83    | 0.91  | 1.58       | 0   |
| Oil              | 4.02    | 10.64 | 6.12       | 0   |
| Stearic Acid     | 0.87    | 1.47  | 0.96       | 0   |
| Recycled rubber  | 0.60    | 0     | 0.50       | 0   |
| Coated wires     | 17.2    | 0     | 11.4       | 0   |
| Textile          | 7.0     | 0     | 4.7        | 0   |
| Steel            | 0       | 0     | 0          | 100 |
| Totals %         | 100.0   | 100   | 100        | 100 |
| Weight (kg)      | 7.25    | 2.75  | 10.0       | 4.0 |

Table 4.1. P295/45R17 tire material composition by weight [50]

|                  | Shear band | Tread | Spokes | Hub   | Total<br>Weight |
|------------------|------------|-------|--------|-------|-----------------|
| Daw matarial     |            |       |        |       | weight          |
| Kaw materiai     | WL 70      | WL 70 | WL 70  | WL 70 | кд              |
| Synthetic rubber | 0          | 41    | 0      | 0     | 1.15            |
| Natural rubber   | 0          | 4     | 0      | 0     | 0.10            |
| Carbon Black     | 0          | 10    | 0      | 0     | 0.26            |
| Silica           | 0          | 28    | 0      | 0     | 0.77            |
| Sulfur           | 0          | 1     | 0      | 0     | 0.02            |
| ZnO              | 0          | 1     | 0      | 0     | 0.03            |
| Oil              | 0          | 11    | 0      | 0     | 0.29            |
| Stearic Acid     | 0          | 1     | 0      | 0     | 0.04            |
| Recycled rubber  | 0          | 0     | 0      | 0     | 0               |
| Coated wires     | 10         | 0     | 0      | 0     | 0.62            |
| Textile          | 0          | 0     | 0      | 0     | 0               |
| Polyurethane     | 90         | 0     | 100    | 0     | 8.44            |
| Steel            | 0          | 0     | 0      | 100   | 4.00            |
| Totals %         | 100.0      | 100   | 100    | 100   |                 |
| Weight (kg)      | 6.35       | 2.75  | 2.65   | 4     | 15.75           |

Table 4.2. Michelin Tweel<sup>™</sup> material composition by weight [50]

### 4.1.1 Natural Rubber

Natural rubber (NR) products are made with an initial source of latex, a milky white liquid drained from rubber trees or *Hevea Brasiliensis*. These trees reach 20-30 meters in height and are able to produce commercial quantities of latex at about seven years of age and are used for about 20 years, but this lifespan can increase with proper latex extraction techniques. Rubber trees were originally only found in the Amazonian regions of Bolivia and Peru, but the beginning of the 20<sup>th</sup> century rubber tree farming moved to Southeast Asia, and the industry now uses approximately 9.5 million hectares of land.[23] Virtually no efficient, large scale rubber tree farms exist, so most natural rubber is produced on small family farms. Smallholders play a critical role by producing more than 85% of the world's total NR production. The average size of these uneconomic smallholdings in many countries is less than two hectares.[23] The small size of these farms has several negative impacts, both environmental and social.

smallholders are locked in poverty without the ability to noticeably improve and optimize their methods for obtaining latex, which results in inefficient land use. Rubber trees usually are not correctly spaced; so on average about 500 trees per hectare are planted with some spacing between rows less than 9 meters apart. This inefficient tree spacing yields less than <sup>1</sup>/<sub>2</sub> cup of latex per tree per day.[51] Thus, one tree produces about 6 to 10 kg of latex per year.

Ammonia is immediately added to the tapped latex in order to prevent early coagulation during transport. When the latex is ready to be processed, a dilute acid such as formic acid is added, and then the coagulated latex is kneaded and rolled to obtain the final consistency and to remove any waste water. Latex straight from a rubber tree contains between 25 and 40% natural rubber, so on average this transition from latex to natural rubber removes approximately 2/3 of the original weight. Combining the production of one tree and the density of trees on an average smallholder's farm yields an annual production of natural rubber between 1000 and 2000 kg/ha.[52] On average, one square meter produces about 0.15 kg of natural rubber every year. Thus, the production of 1 kg of natural rubber can be attributed to 7 m<sup>2</sup> of land annually.

The low income of these smallholders benefits the environmental efficiency of this latex production process in a small way in that mostly natural animal manure is used, but a lack of knowledge about proper crop rotation limits the productivity of the land used between the trees and yields low latex outputs. Because of the poor spacing between trees other crops, such as corn or other leafy vegetables, can only be planted among the rubber trees for the first 2 or 3 years.[53] Once the rubber trees grow tall enough, it is impossible to support other plants. So, because of this mild short term benefit, intercropping is not a common practice among smallholders and the minute amount of benefit from the small percentage of farms that take part in this practice can be ignored. Therefore, it can be assumed for the purposes of this environmental analysis that 100% of the land on these farms is dedicated to rubber production. Although the land used to produce latex is replaced with more trees that appear to have the same environmental effects as the original forest, this land use must be considered as an environmental impact because of the transition from natural forest to land with only one plant that eradicated all other plant life in the area.

Although these trees transform vibrant forests into a mono-cropped field, they still benefit the environment by converting carbon dioxide to oxygen through photosynthesis. As natural rubber is roughly 90% carbon, producing 1 kg of natural rubber results in a net intake of 0.9 kg of carbon from the atmosphere.[36] This carbon is separated from carbon dioxide, which has a carbon content by mass of 27%. Thus, to remove 0.9 kg of carbon from the atmosphere, an uptake of 3.3 kg of  $CO_2$  is required and is modeled in this analysis as a negative emission to the air. This carbon uptake should counteract some of the energy costs and land use associated with the production of natural rubber, but the overall impact will be discussed in section 5.

After the life of a rubber tree is complete and no more latex can be drained, the tree is cut down and usually burned as cheap fuel. Some of this fuel is used to power the machines that process the latex liquid into natural rubber, but it is possible that it would be more environmentally friendly to use the wood to make furniture. Hevea wood is strong, flexible, and resistant to fungus, bacteria, and mold. Sources estimate that selling Hevea wood instead of burning it could add 30% to the economic value of each tree.[23] However, because of the inefficiencies associated with latex draining, many times the wood is very badly damaged and not suitable for furniture. If more smallholders improved their draining techniques and began using their wood for furniture, some of the land use associated with producing rubber could be diminished. The majority of the land would be allocated to the production of rubber, but some of

the 7  $m^2$  used to produce 1 kg of natural rubber every year instead could be allocated to the production of furniture. This would be a benefit to both the tire and furniture industries because the tire industry would see less environmental impact and the furniture industry would not have to devote other unused land space to the production of trees whose only output is wood. For this analysis however that wood reuse scenario will be ignored due to the small percentage trees used for that purpose, but it is an important aspect to consider to improve the environmental effects of tire production.

#### 4.1.2 Synthetic Rubber

Although there are several different kinds of synthetic rubber produced today, the vast majority of the market is dominated by styrene-butadiene rubber (SBR), especially in the tire industry. So, for this analysis it will be assumed that all synthetic rubber used in tires is SBR. Within the SBR category however there are two different production techniques: emulsion and solution polymerization.

Solution polymerization is a polymer chain building reaction that takes place in a solvent. The small monomers are dissolved in a hydrocarbon solvent, usually hexane or cyclohexane, and polymerized using a catalyst such as butyl lithium.[54] Polymers made in solution generally have more linear molecules, and they also have a narrower distribution of molecular weight. These characteristics allow the elastomer to flow more easily after production, and the ability to carefully monitor the concentration of monomers in the solution gives better control over the molecular weight and overall molecular structure of the polymer. However, because it can be difficult to remove solvent from the finished viscous polymer, solution polymerization is used less in the tire industry and more in industries that can use the solution form, such as adhesives and surface coatings.[55]

Emulsion polymerization is therefore used more in the tire industry because of its ease of production, but it inherently has less molecular structure control. Emulsion polymerization involves the formation of a stable emulsion of a monomer in water using a soap or detergent (e.g., sodium stearate) as the emulsifying agent and a water-soluble catalyst such as potassium persulfate. After the desired amount of polymerization is reached, the reaction is stopped by adding an inhibitor.[56] This produces the same type of liquid latex material that is produced from rubber trees. From this stage the synthetic rubber progresses through the same coagulation and drying process as natural rubber.

Because of this wide range of polymerization techniques, there is not much specific data on a general synthetic rubber production method. The only trustworthy source that contains a complete inventory of all the inputs and outputs of this process is the Franklin USA database (1998).[57] This database has been updated since 1998, and all of its data are peer reviewed and can be trusted to be quality, up-to-date information. This inventory of synthetic rubber is contained in SimaPro; it contains all materials and energy inputs as well as the emissions to air, water, and soil. Its energy grid and transportation are based on US data, so knowing the quality of this database qualifies it as a good source for all SBR inventory data for tires produced in the US. A quantitative comparison of this energy grid data with U.S. DoE Energy Information Administration data will be presented in section 4.2.3 to ensure an accurate energy profile.

#### 4.1.3 Carbon Black

Carbon black is virtually pure elemental carbon in the form of fine particles or dust that are produced by the incomplete combustion of gaseous or liquid hydrocarbons under controlled conditions. It is produced by two simple and fairly similar production techniques: furnace black and thermal black.[58] The furnace black process uses heavy aromatic oils as its feedstock. These oils are inserted into a furnace where temperature and pressure can be carefully monitored in order to atomize the feedstock. This atomized oil then is introduced into a hot gas stream where it vaporizes and then pyrolyzes into microscopic carbon particles. Pyrolysis is a similar process to charring but it does not involve reaction with oxygen. Pyrolysis results in carbon black with a carbon content greater than 97% whereas soot and black carbon contain less than 60% carbon.[59] So, this simple process requires only heat and oil, and it produces a relatively clean carbon product with only small traces of polycyclic aromatic hydrocarbons (PAHs) that cannot be extracted.

The thermal black process on the other hand uses natural gas as its feedstock material. This gas is injected into a refractory brick-lined furnace, and in the absence of air, the heat from the high melting point materials that line the furnace decomposes the natural gas into carbon black and hydrogen. This decomposed mixture is quickly cooled and the carbon black is filtered away from the hydrogen. The hydrogen gas is then burned to heat the furnace in an attempt to reduce energy costs. Again, this process is relatively simple, but its high production level uses a large amount of fossil fuels such as oil and natural gas.

Approximately 90% of carbon black is used in rubber applications, 9% as a pigment, and the remaining 1% as an essential ingredient in many applications.[60] So, because of this large carbon black demand by the tire industry and the overall preference for the furnace black process, about 95% of all carbon black produced is furnace black. It is uncertain whether the IDEMAT database takes this into account, but all the inventory data seem to match up with simple furnace black calculations, so this source can be trusted. Sources estimate that about 2000 cubic feet of gas and 2.5 liters of oil are needed to produce one pound of carbon black.[58] [59] These rough numbers are very comparable to the inventory in the IDEMAT database,

which gives these numbers further validation and support. For that reason the IDEMAT inventory data are used in this thesis to analyze the impact of carbon black production for rubber use. The data describing the environmental emissions are supplied in Appendix A.

#### 4.1.4 Silica

Silica, also known as silicon dioxide (SiO<sub>2</sub>), is found naturally in the environment in several different sources including industrial sand and gravel, quartz crystal (a form of crystalline silica), special silica stone products, and Tripoli and is used in tires to improve rubber characteristics by increasing traction and reducing rolling resistance.[61] All of these silica production techniques are discussed in the U.S. Geological Survey (USGS) Minerals Yearbook. Included in these annual reports is an explanation of the production process of amorphous silica. Precipitated amorphous silica is the form most widely used in the tire industry because of its reinforcing characteristics. This precipitated silica is produced by two different methods: thermal and wet, but only the wet route produces the precipitated silica that is modeled in this analysis for use in tire treads and sidewalls.[22]

The first step in the production process is the raw materials storage that involves collecting an alkali metal silicate dissolved in water (e.g. waterglass or sodium silicate) and an acid, generally sulfuric acid. The process can be completed with hydrochloric acid or a different silicate, but these represent very small percentages of the precipitation process. To produce the waterglass, sand and soda ash are collected in a furnace heated to 1300 C.[62] The resulting solid then is dissolved in water to produce an aqueous solution of sodium silicate called waterglass. Waterglass and sulfuric acid are combined in neutral conditions, and the silicat precipitates out of the mixture according to Equation 4.1

$$Na_2O \cdot nSiO_2 + H_2SO_4 \rightarrow nSiO_2 + Na_2SO_4 + H_2O \quad (n=2-4)$$

$$(4.1)$$

42

The precipitated silica then is continuously filtered through a belt or drum filter. After filtration, the silica is washed to remove salts that result from the acidic reactions, and then it is dried. Approximately 400 to 600 kg of water has to be evaporated for each 100 kg of final product, so this represents a considerable fraction of the total production costs.[63] The final energy intensive step is to mill the non-regular silica clumps into quantifiable sizes for use in different applications. A schematic overview of the entire precipitation process is shown below.



Figure 4.1. Silica production process schematic [62]

The basic process of producing 1 kg of silica involves the combination of 1.46 kg of sodium silicate and 445 g of sulfuric acid as presented in a report from the ECETOC.[62] Combining the rest of the processes shown in Figure 4.1 to get to the final desired product requires a total of 1.76 MJ of energy. As there are no other emissions in the production of this material, simply the required raw materials and energy use compose the environmental inventory for silica, which is assembled in Appendix A.

### 4.1.5 Sulfur

Sulfur is used in the tire industry to aid the vulcanization process while helping to maintain the rubber's desired flexibility and toughness characteristics. Until recently, a significant amount of the world's pure sulfur supply came from sulfur-bearing limestone deposits found in the gulf coast region of North America. By a process called the Frasch process, sulfur was released from depths of 500 to 3000 feet by superheated water that was pumped down under great pressure to melt the sulfur.[64] Air pressure then forces this sulfur to the surface where it is then cooled. This process of directly removing sulfur as a resource from the Earth is still performed but at a much slower rate.

Currently about 75% of the total elemental sulfur market is comprised of sulfur manufactured by the Claus process.[25] This process begins with hydrogen sulfide (H<sub>2</sub>S), which is commonly found in natural gas and is also made at oil refineries, especially if the crude oil contains a lot of sulfur compounds. The environmental impacts of processing this crude oil or natural gas are contained in their respective process. The sulfur recovery process is treated separately and is not impacted by the energy requirements of oil or gas processing, but the amount of  $H_2S$  recovered is important.

The first step of the Claus process of transforming hydrogen sulfide into elemental sulfur is separating the H<sub>2</sub>S from the host gas stream using amine extraction, which uses amines such as MEA (monoethanolamine) that have a natural affinity to H<sub>2</sub>S, to remove it from the rest of the gases.[65] Once the gas has been separated, it is partially oxidized with air at high temperatures (1000-1400 C). A small amount of sulfur is formed, but some H<sub>2</sub>S remains unreacted, and some SO<sub>2</sub> is made. The resulting H<sub>2</sub>S is reacted with the SO<sub>2</sub> at lower temperatures (200-300 C) with the help of a catalyst.[66] Al<sub>2</sub>O<sub>3</sub>-supported metal oxides, cobalt and molybdenum oxides in particular, are used to catalyze this reduction reaction described below, provided the metals have been transferred into sulfides through a pre-treatment in H<sub>2</sub>S/H<sub>2</sub>.[67]

$$2H_2S + SO_2 \rightarrow 3S + 2H_2O \tag{4.2}$$

Even with these catalysts, the reaction does not go to completion, and some hydrogen sulfide is left untouched. So this process is repeated two or three times as shown in the schematic below, and the elemental sulfur is removed between each step. The trace amounts of  $H_2S$  remaining in the tail gas is recycled to the start of the process.



Figure 4.2. Sulfur Production by the Claus Process [66]

The process description above allows one to make some general estimations about raw material and energy requirements, but more reliable information can be found in the IDEMAT database. The rough input estimations compare quite well with the more detailed database values, so the IDEMAT database appears to be a good source for this sulfur production process. It appears that this inventory data does not account for the limestone deposit recovery method, but its Claus method seems accurate, so this source can be trusted.

# 4.1.6 Zinc Oxide

Almost all of the zinc oxide (ZnO) manufactured throughout the world is produced in two ways: the French process and the direct method. Both methods produce the same inorganic compound that usually appears as a white powder and is nearly insoluble in water. This fairly unreactive compound is used in small amounts to allow a quicker and more controllable rubber cure and is also used to protect the rubber from degrading due to fungus and UV light.

The French process is approximately four decades old and is the cheapest and most highly productive method to produce large quantities of ZnO, which makes it the main source of about 75% of manufactured zinc oxide. In the French process, molten zinc is vaporized at 1000-1400 °C and instantly oxidized in air into ZnO powder.[68] This newly created ZnO then is cooled in large cooling ducts and then transported to a machine that processes the random clumps of powder into a more uniform, smooth powder. The zinc vaporization stage of this process is very energy intensive. It takes roughly 200 liters of fuel oil with a calorific value of 9200 Cal/liter and 850 kg of raw zinc metal to produce 1000 kg of ZnO.[69] As this requires so much energy, the powder processing stage can be ignored because the energy requirements are so low and no other materials are input or released.

The American process on the other hand has been around for over 100 years and produces zinc oxide directly from oxidized ore. This process is slowly losing ground to the French process because of its mass production capability, but it still has its use to produce a product that has a little lower pH.[70] The zinc ore raw materials are reduced to the condition of coarse sand and mixed with powdered anthracite coal. This mixture is spread over perforated grate bars in a sealed furnace, and when the coal is ignited an air blast is forced through the perforations in the grate bars and the overlying zinc ore. The heat volatilizes the metallic zinc in the ore releasing metallic vapors that combine with air as in the French process. The vaporized zinc again transforms into a white ZnO powder and is cooled.

These fairly simple processes can be weighted with respect to the percentage of total worldwide production each process is responsible for (75% French process, 25% American

46

process), but the main resource, raw zinc metal or zinc ore, is constantly changing. Pure zinc ore used to be the only raw material used in these processes, but again because of the economic concerns with optimizing the processes, more and more primary and secondary zinc is being recycled and reused. For the purposes of this study it can be estimated that a general zinc raw material contains 75% pure zinc and zinc ore and 25% primary and secondary zinc.[71] The data describing the materials needed to produce zinc oxide and the resulting production emissions are detailed in a report by the Chemical Substance Bureau of the Netherlands and supported by the tire life cycle analysis report from PRé Consultants.[17, 72] The processes are weighed together, and the inventory for the average production of 1 ton of zinc oxide is assembled in the appendix.

### 4.1.7 Aromatic Oil

Aromatic oils, also known as aromatic extracts or process oil, are highly viscous liquids that are used in the tire industry to improve the physical properties of natural and synthetic rubber to increase durability and flexibility. They are also used to aid processing of polymers during milling, mixing, and extruding by providing lubrication of the rubber molecules. Very large quantities are employed in tire manufacturing, greatly outweighing the quantity used in applications such as asphalt and seal coatings. They are also a key feedstock component and precursor for synthesis of hydrocarbons such as carbon black.[73]

Aromatics oils are produced as byproducts in the refining of crude oil into lubricating oil as described in Figure 4.3. Crude oil goes through two basic steps in a petroleum refinery: atmospheric and vacuum distillation. In atmospheric distillation, the crude oil is heated to 300°C and the more volatile components, e.g., gasoline and kerosene, are distilled off.[74] This leaves a residue that is further distilled under vacuum causing evaporation of the volatile liquids with

the lowest boiling points. Due to the stable physical properties of aromatic oils, they do not boil off and remain as byproducts of the vacuum distillation process. The lubricating oil basestock (before the vacuum distillation process) must first be combined with a solvent such as furfural or phenol to ensure complete removal of the undesirable aromatic compounds from the lubricating oil.[74] After the distillation process, the solvent is stripped from the resulting aromatic extracts and reused for further distillation.



Figure 4.3. Processing plan for a petroleum refinery

So, to determine the share of the environmental impact of aromatic oils out of the entire range of crude oil processing, it is first necessary to ignore any impact of the atmospheric distillation process as that must be contributed to the effects of producing gasoline and kerosene. This results in a simple process that has only two inputs: vacuum distillates from atmospheric distillation of crude oil and energy used to create a vacuum and process the extracts. The furfural or phenol solvent can be ignored because it is completely reused. Reliable inventory data for vacuum distillates are contained in the BUWAL database, and energy data are supplied by the American Petroleum Institute.[75] Both of these are combined to produce a full inventory of inputs and emissions from the aromatic oils production process, and this inventory is provided in the appendix.

#### 4.1.8 Stearic Acid

Stearic acid is a saturated fatty acid that is used in the tire industry as a rubber softener that is produced from animal fat. The major fat used in the production of stearic acid, beef fat or tallow, is subjected to a process known as hydrolysis, which involves heating the fat in an alkaline solution (usually sodium hydroxide) to yield soaps.[76] These soaps are the sodium or potassium salts of fatty acids; pure acid is then obtained by removing these impurities through vacuum distillation.

This fatty acid soap solution is reduced to a pressure of about 35 mmHg and is heated to about 250°C.[77] When distilling tallow, the overhead products from the first distillation process are low-boiling impurities and small amounts of myristic acid. The remaining stock is pumped into a second stage where the pressure is reduced to 5 mmHg. A small amount of injected steam is necessary to minimize decomposition, and the overhead product distilled away from the tallow in this step is almost pure palmitic acid. The highest boiling fraction of the raw fatty acid soap is moved into a third step that again operates at 5 mmHg, and stearic acid is left as the only remaining substance.[77]

In order to understand the entire impact of producing stearic acid both the acquisition of the tallow and its processing must be analyzed. Producing tallow from cows or pigs is well documented in the EcoInvent database, but supporting material is difficult to find.[78] Very few sources exist that describe the details of this process, so this source will have to be trusted. It turns out that acquiring tallow contributes only a small percentage to the overall impact of stearic acid production however because of the high energy costs to distill the fat. The energy data for the vacuum distillation process are described in Wootthikanokkhan's paper on rubber mixing schemes.[79] Both the tallow acquisition and processing data are combined to give the overall raw material inputs and emissions for the stearic acid production process and this combined inventory is provided in the appendix.

#### 4.1.9 Coated Wires

Thin steel wires are used in the tire industry to provide reinforcement so the rubber does not wear as quickly or fail catastrophically. However, because rubber does not bond well to plain steel it is necessary to coat the steel wires with brass or zinc. Zinc-coated wire is used for the bead and brass-coated wire is used for the belt wires. For both of these products, the first step is to cold draw piano wire to a diameter of about 2 mm.[80] Then a thin coating of 0.15 mm of zinc or brass is electro-deposited onto this steel wire and treated by a thermal diffusion process to ensure good bonding between the metals.[24] Further drawing of the wire then reduces the overall diameter of the wire to 1 mm with a zinc or brass coating of only 2  $\mu$ m.[81] This process is the same for both coating materials, so for the environmental purposes of this analysis this can be modeled as one cohesive production process with a steel wire core a 50/50 mixture of brass and zinc coating, which is a rough estimate of the average wire composition used in several tire models. The input and output inventory data for this coated wire production process begins with the very well documented cold drawing technique in the EcoInvent database. This inventory includes everything from the raw unalloyed steel to cooling water to transportation. Electroplating of zinc and brass are included in the IDEMAT database and its calculations that show that plating an area of  $1 \text{ m}^2$  requires 0.035 kg of plating material and 9.8 MJ of electricity match very well with data from other sources.[81] The final drawing process of the coated wire can be modeled with the EcoInvent data again, and the complete inventory of all the inputs and emissions of the combination of these processes is provided in the appendix.

### 4.1.10 Textile

Textile cords are used in tires in conjunction with coated steel wires to provide strength and support and to increase the durability and mileage capabilities of rubber. Traditionally two types of textiles are used to reinforce a standard radial tire: nylon and polyester. Both fabric types are produced in nearly the same way from the raw fabric cord to weaving the fabric, but creating the nylon and polyester fibers differ somewhat. So, it is important to consider the fabrication inventory of both processes and average them to provide a consolidated impact score for all textiles included in the production of a tire.

Nylon is produced on when crude oil and natural gas are converted to plastic through a number of chemical processes. During the processing of the polyamide 6.6 materials into nylon fibers, lubricants are added in the form of spindle oil and antistatic agents.[82] Nylon production begins with polyamide 6.6 granules, which are heated and extruded into endless yarns called filament yarns. Then the yarns are split into very thin fibers called microfibers with the help of lubricants in the form of spindle oil and antistatic agents. The nylon microfibers are then woven into fabric and dipped in an adhesive coating to ensure the fibers stay intact.[83] It is assumed in

this thesis that half of the textiles used in tire manufacturing is nylon while the other half is polyester. The EcoInvent database supplies a reliable inventory of the nylon production process while the polyester manufacturing is documented in the IDEMAT database.

#### 4.1.11 Steel

Steel comprises the hubs of both tires and Tweels<sup>TM</sup>, and since Tweels<sup>TM</sup> are manufactured directly onto a hub without a designed method to separate the steel from the polyurethane spokes, the hubs from both products must be considered as part of their life cycle analyses. Previous environmental analyses of tires have ignored the hub production because new tires can be easily mounted on old hubs, but this may not be that simple for Tweels<sup>TM</sup>. So, an average steel production and casting process will be considered for both products assuming a 4 kg hub for both products.

Steel is manufactured by the chemical reduction of iron ore through a basic oxygen furnace (BOF) to produce high-tonnage steel or an electric arc furnace (EAF) to produce lowtonnage specialty steels. As the specific steel composition of tire rims vary, a worldwide average steel production process that considers both of these reduction methods from the IDEMAT database is used in this analysis. The World Bank Group wrote an article that describes some of the emissions of the steel production process, but the IDEMAT database is much more robust because it considers a wider range of emissions to both air and water.[84] The World Bank Group report is useful though to ensure the database inventory is accurate, but the IDEMAT database is much more thorough in its assessment of emissions with smaller concentrations such as sulfides and fluoranthene. Their report presents steel of 800 mg of particulate matter, 1500 mg of sulfur oxides, 1150 mg of nitrogen oxides, and 5 mg of flourides to produce 1 kg of steel along with several other emissions such as wastewater and lead. These emissions compare very well to the 888 mg of particulates, 1.6 g sulfur dioxide, 1.1 g nitrogen dioxide, and 8 mg of fluorides in the IDEMAT database, which gives confidence to the quality of the full IDEMAT database inventory that is presented in Appendix A.

### 4.1.12 Polyurethane

Several types of polyurethane exist today from solid elastomers to flexible foam for car seats. Only minimal data are available in SimaPro's databases, but as the manufacturing processes can vary greatly between different types of polyurethane, it is important to analyze the specific production process used by Michelin instead of finding data from other sources. Polyurethane makes up the spokes and the majority of the shear band in a Tweel<sup>TM</sup>, and Michelin's process of molding this product is different from other major polyurethane producers. As described in Figure 4.4, the basic process involves the combination of a prepolymer (composed of two parts polyols and one part diisocyanate) with a curative. The curative only makes up 10% of the mass of the final polyurethane, but is very important in solidifying final molded product to the right properties. The reaction between these two components is an exothermic reaction, so although the prepolymer is held at 70 °C and the curative at 40 °C, no extra energy is required during the curing process.



Figure 4.4. Polyurethane production process [85]

In this analysis it will be assumed that the energy required to heat the prepolymer and curative before they are poured together into the Tweel<sup>TM</sup> spoke mold is part of the environmental impact of the raw material production process. It could be considered as part of the manufacturing of a Tweel<sup>TM</sup>, but instead this energy will be allocated to the polyurethane production in order to more accurately compare the total impacts of creating each raw material needed for a Tweel<sup>TM</sup>. Assuming a room temperature of 20 °C, heating 0.9 kg of prepolymer (heat capacity 1200 J/kg-K) and 0.1 kg of curative (heat capacity 1100 J/kg-K) to produce 1 kg of polyurethane would require roughly 56 kJ of energy.[86] This energy is added to the manufacturing inventory of the prepolymer and curative that uses the required inputs and resulting emission outputs (which are documented in the IDEMAT database) to determine the overall environmental inventory to create 1 kg of polyurethane. This inventory is included in Appendix A, but for confidentiality reasons Michelin does not want the specifics of their prepolymer components revealed, so the table presented describes the production of each of these polyurethane components combined with the energy inventory to conceal details about each component.

# 4.2 Production of tires

# 4.2.1 Manufacturing of P205/45R17 tire

The tire construction process is a complicated one that involves several complex parts that are mated together. The general process of constructing a tire involves assembling the numerous components of a tire shown in Figure 4.5, and then vulcanizing these parts together to achieve the desired properties. The details of the production process of each tire manufacturer are difficult to find because of the confidentiality of their specific process, so for the purposes of this thesis, an average tire production process will be modeled. Combining this generic process with the specific material breakdown of a P205/45R17 tire described in section 4.1 will represent an average tire built anywhere across the country with the given specifications of a section width of 205 mm, aspect ratio of 45%, and a wheel rim diameter of 17 in. This generic and somewhat simplified tire production process is outlined in Figure 4.6. Each of these numbers, only a summation of all the processes into one tire manufacturing inventory is presented in Appendix

A.



Figure 4.5. Tire component breakdown [28]



Figure 4.6. Generic tire production process [17]

The process begins with the mixing of basic rubbers with process oils, carbon black, accelerators and other additives. The environmental inventory of these basic ingredients has been described above, so simply considering the correct proportions described in Table 4.1 is all that is necessary to analyze the environmental impact of the raw materials entering the mixing process in the manufacturing plant. It is out of the scope of this thesis to consider the transport of most of the raw materials to the tire manufacturing facility due to the difficulty of modeling the distribution of raw materials from multiple production sites to multiple tire production sites across the country. As a result, it will be assumed that the raw materials are produced near the manufacturing plant so this transportation can be ignored. Thus, the only thing to consider in this mixing stage is the intense heat and pressure required in this process, the water required to cool the mixing so that vulcanization does not occur prematurely, and any emissions that result from these extreme conditions. Details for the required heat and pressure are not well-documented, so the only source available for the environmental inventory of this mixing process

is the EcoInvent database. PRé Consultants documented the entire tire production process in their life cycle analysis of an average European tire, but due to some possible differences between European and American tire production, these values are only used as a comparison.[87]

This mixed rubber then takes all the different forms shown in Figure 4.5 – sidewalls, tread, liner, etc. Most of these sub-components are made by rolling the cooled rubber into the desired dimensions, but traditionally the tread is extruded. Rough assumptions about the energy requirements and necessary lubricants in these two rubber processing techniques are taken from J.L. White's book titled *Rubber Processing*.[88] Transporting these rubber components around the factory takes place on rollers, so minimal energy or ancillary materials are required; as a result this transportation can be ignored. So, modeling the assembly process of all the components of Figure 4.3 can be simplified to the rubber mixing process combined with the necessary lubricants and adhesives that secure the coated wires and textiles in place.

Once all the components are assembled, the "green" tire is cured or vulcanized to glue everything together and to achieve the final dimensions and rubber properties. This curing process takes place under conditions of roughly 350 degrees Fahrenheit with pressures around 350 psi for 15 minutes.[88] Details for the energy requirements of this curing process are modeled in Han's report titled *Dynamic Simulation of the Tire Curing Process*.[89] After the curing process is complete, the completed tires are inspected (which requires no extra environmental resources), and are sent out for distribution. Again, details of these intermediate steps are not listed here in order to simplify the inventory, but the inventory data from these small processes are combined and presented in Appendix A.

#### 4.2.2 Manufacturing of Michelin Tweel<sup>TM</sup>

Two problems limit the ability to present a complete environmental inventory of the Tweel<sup>TM</sup>: Michelin's confidentiality and the incompleteness of the Tweel<sup>TM</sup> production process. Michelin does not want company information being presented to the public, so much of the Tweel<sup>TM</sup> production details analyzed in this report will be kept secret. But more importantly, the Tweel<sup>TM</sup> is not being mass produced yet, so there is only a theoretical knowledge of the process requirements and capabilities available. The manufacturing inventory will be as thorough as possible, though.

Tweels<sup>™</sup> are produced in three steps: tread, hub, and polyurethane. In the first step, the tread is constructed by a similar method as the tire tread manufacturing process. The tread on a Tweel<sup>™</sup> is exactly the same as a tire and is extruded in the same way, and it is mated to layers of belts in the same manner as tires. The process of rolling plies onto a drum to achieve the correct diameter currently is performed manually, but the same basic process that is performed on tires will be mimicked when the Tweel<sup>™</sup> production is fully automated. In this fairly simple process, rectangular sheets of rubber and steel cord are rolled onto a steel drum, and the excess material from each sheet is removed. Once the desired base thickness is achieved in this matter, the extruded tread is rolled onto the top, and the entire assembly is vulcanized at 160°C degrees for 75 minutes. The second step is a very simple 4 kg steel hub casting that is well documented in several databases including BUWAL250.

In the third step, the hub and the tread are secured concentrically and polyurethane is poured into a spoke and shear band mold while the entire assembly spins so that the polyurethane will sufficiently fill the mold in the radial direction. The energy needed to spin the Tweel<sup>TM</sup> assembly and polyurethane mold for just 5 minutes while the polyurethane is poured is

considered irrelevant compared to the large amount of energy required to heat and pressurize the ovens needed to cure the shear band and then solidify the entire assembly after the polyurethane is poured, so it can be ignored in this inventory. Before the pouring process occurs though, all the surfaces that contact the polyurethane are cleaned and covered with either an adhesive or a mold release for the shear band and spoke mold, respectively. The quantities of these additives were supplied by Michelin, and are listed in Table 4.3.

Table 4.3. Cleaning, adhesive, and release agents used during manufacturing of one 12 kg Tweel<sup>TM</sup>

| Additive      | Mass (g) |  |  |
|---------------|----------|--|--|
| Ethyl acetate | 26.7     |  |  |
| Adhesive      | 3.3      |  |  |
| Chemlok 7701  | 30       |  |  |
| Stoner M-804  | 250      |  |  |

As discussed in section 4.1.13, the polyurethane pre-polymers and curative are stored separately until they are heated and combined at this point in the manufacturing process, but this chemical process is considered part of the raw materials production in order to analyze which material is causing the most amount of environmental harm. The combination of the heated pre-polymers and curative could be considered in this Tweel<sup>TM</sup> manufacturing section, but in order to organize the impacts of the raw materials it is treated as part of the raw material production of polyurethane.

After the polyurethane is poured and the assembly is allowed to stop spinning, the entire Tweel<sup>TM</sup> (shear band, spokes, and hub) is placed into another oven. This final solidification cooking occurs at 100°C degrees for 4 hours so that the polyurethane solidification process is accelerated and to assure all the Tweel<sup>TM</sup> components are securely bonded together. To save some energy this solidification process could take place at room temperature, but it would take

much longer to complete and during this time it would be susceptible to being bumped and permanently damaged, so this possible environmental benefit to save the energy required to heat and pressurize the oven is not a plausible option for Michelin. So, this energy must be considered along with all the other process inputs mentioned, and all of these are organized with the rest of the life cycle inventory in Appendix A.

### 4.2.3 Heating and Pressurizing Energy

In both of these manufacturing processes, the most important factor that affects the environmental impact of these processes is the energy required to heat and pressurize the ovens and molds used to cure rubber and solidify polyurethane. As stated in the section 3.2 in the scope of this project, the energy produced in the United States comes from a mix of coal, natural gas, nuclear power, etc. The details of this mix vary across the world, but the IDEMAT database does a good job of keeping updated records of these inputs and emissions for every country. However, their databases have not been updated in the past 5 years, while the U.S. DoE's Energy Information Administration (EIA) updates the United States' energy mix numbers every year.[90] The energy mix from both sources is displayed in Tables 4.4 and 4.5. The data from the IDEMAT database give the raw material inputs to produce 1 MJ and the corresponding emissions when they are converted into energy while the U.S. EIA only supplies the percentages of each energy production process.

| Resources                               | Mass (kg) | Energy (MJ)<br>0.322<br>0.22<br>0.263<br>0.07 |  |  |
|-----------------------------------------|-----------|-----------------------------------------------|--|--|
| Coal, 29.3 MJ per kg, in ground         | 0.011     | 0.322                                         |  |  |
| Oil, crude, 41 MJ per kg, in ground     | 0.0055    | 0.22                                          |  |  |
| Gas, natural, 30.3 MJ per kg, in ground | 0.0087    | 0.263                                         |  |  |
| Energy, from hydro power                |           | 0.07                                          |  |  |
| Energy, from uranium                    |           | 0.103                                         |  |  |
|                                         |           |                                               |  |  |
| Emissions to air                        |           |                                               |  |  |
| Sulfur oxides                           | 0.000227  |                                               |  |  |
| Nitrogen dioxide                        | 0.000141  |                                               |  |  |
| Carbon monoxide                         | 0.000009  |                                               |  |  |
| Carbon dioxide                          | 0.0695    |                                               |  |  |
| Hydrocarbons, unspecified               | 0.00008   |                                               |  |  |
| Soot                                    | 0.000099  |                                               |  |  |
| Particulates, SPM                       | 0.000013  |                                               |  |  |

Table 4.4. U.S. energy mix, inputs and emissions to produce 1 MJ, IDEMAT database [91]

Table 4.5. DoE EIA energy mix, 2008 [90]

|                                         | Coal       | Natural Gas | Crude Oil  | Nuclear   | Hydro     |
|-----------------------------------------|------------|-------------|------------|-----------|-----------|
| 2008 Energy Production<br>(Billion Btu) | 23,855,916 | 21,150,164  | 10,519,487 | 8,455,236 | 2,452,073 |
| Percentage of Total                     | 36%        | 32%         | 15%        | 13%       | 3%        |

These tables differ slightly in that the U.S. has made a conscious effort over the past 20 years to reduce the energy dependence on crude oil while increasing the energy derived from nuclear power. The IDEMAT database is representative of data from around the year 2001, and in the time since then the U.S. has made more progress in reducing the percentage of crude oil used to create energy. According to these two tables, the percentage of energy from crude oil dropped from 22% to 15% in these 7 years, which closely matches the EIA's numbers which show a decrease from 20% to 15% from 2001 to 2008.[90] These differences are large enough to consider the IDEMAT database out of date for this constantly changing energy mix, so the American energy data used throughout this report will be representative of the EIA's numbers shown in Table 4.5. A comparison of the impact of these differences in energy percentages will

be presented in the impact assessment method section (section 5) to compare the potential environmental impacts of various phases of each product's life cycle if either energy mix source is used.

The energy inputs for rubber curing ovens have been recorded and analyzed by tire manufacturers, and the average tire curing process requires about 1.1 kWh of energy for a tire weighing 10 kg, which means roughly 0.11 kWh of energy is needed to vulcanize 1 kg of rubber.[92] At the early stages of Tweel<sup>TM</sup> manufacturing, Michelin is using the same type of oven that is used to cure radial tires, so it is assumed in this analysis that the same energy will be required to cure 1 kg of rubber in a Tweel<sup>TM</sup> as 1 kg of tire rubber. The thickness of rubber in these two products varies slightly, but the curing temperature and time is close enough to assume the same energy requirements per kg of rubber. So, the required energy to cure the shear band in the Tweel<sup>TM</sup> is roughly (6.35 kg)\*(0.11 kWh/kg), which equals 0.7 kWh. The energy required to heat, mix, and solidify the polyurethane is allocated to the raw material production of polyurethane, so this 0.7 kWh is all the energy that is needed in the Tweel<sup>TM</sup> manufacturing inventory.

# 4.3 <u>Distribution</u>

The transport of raw materials to the manufacturing plant was ignored in the production of both a tire and a Tweel<sup>TM</sup> due to its complexity and minimal impact as described in the PRé Consultants report, but it is important to analyze the required fuel expensed in distributing the final products to car dealerships and repair shops. The distribution of tires from the production site to the retail point has been recorded by Franklin USA, and it includes a mix of 28 and 16 ton trucks, delivery vans, and ships.[57] This database detailing the average environmental impact to transport 1 ton of material over 1 km in the United States is combined with an analysis done by Continental Tire North America which determined the average distance one tire must travel from its production site to its retail point.[16] These average distances are listed in the appendix.

# 4.4 <u>Use Phase</u>

### 4.4.1 Fuel Consumption

The first and most important part of the use phase of a tire, or the lifetime the tire is used on a car, is the amount of fuel it consumes. The amount of fuel consumed by a vehicle over a distance is affected by the overall efficiency of the vehicle in converting the chemical energy in motor fuel into mechanical energy and transmitting it to the axles to drive the wheels. However, not all of the fuel used by a car is used to drive the wheels, so only a certain percentage of the fuel used by a car should be allocated to the wheels and used in this analysis. Sources estimate that the rolling resistance of tires accounts for about 5 to 10% of the fuel used in a passenger vehicle, so only this percentage of fuel used over the entire life of the wheel should be included in this inventory.[27, 93] Rolling resistance is defined as the amount of force needed to roll a vertically loaded tire at a constant speed, and is represented in terms of a rolling resistance coefficient (RRC) in units of kg/ton (required thrust force/vertical load), which is constant for a given wheel under any vertical load. Wind resistance is not a factor here, simply the energy loss due to repeated loading and unloading of viscoelastic rubber.

Below are two tables of data supplied by Michelin that describe the effects of rolling resistance on fuel economy.

| MODEL             | Total            | Curb Weight<br>(Ibs) | City Economy<br>(mpg) | HW Economy<br>(mpg) |  |
|-------------------|------------------|----------------------|-----------------------|---------------------|--|
| CAMRY             | 4380631          | 3260                 | 21                    | 31                  |  |
| ACCORD            | 4327067          | 3400                 | 21                    | 31                  |  |
| CIVIC             | 3546835          | 2770                 | 25                    | 36                  |  |
| COROLLA           | 2995572          | 2820                 | 26                    | 35                  |  |
| TAURUS            | 2818465          | 3640                 | 18                    | 28                  |  |
| IMPALA            | 2338172          | 3680                 | 18                    | 29                  |  |
| ALTIMA            | 2280732          | 3130                 | 23                    | 31                  |  |
| MALIBU            | 2167215          | 3300                 | 22                    | 30                  |  |
| FOCUS             | 2070687          | 2588                 | 24                    | 33                  |  |
| Total             | 26925376         |                      |                       |                     |  |
| Weighted Avenue   | US (lbs, mpg)    | 3186                 | 22.0                  | 31.7                |  |
| weighted Averages | SI (kg, l/100km) | 1445                 | 10.7                  | 7.4                 |  |

Table 4.6. Average fuel economy of passenger car fleets [94]

Table 4.7. Fuel economy (L/100km) changes with increasing RRC

|             | RRC (kg/ton) |       |       |       |       |       |       |
|-------------|--------------|-------|-------|-------|-------|-------|-------|
| Drive Cycle | 3            | 4     | 5.5   | 6     | 8     | 10    | 11.5  |
| FTP 75      | 9.98         | 10.08 | 10.24 | 10.29 | 10.49 | 10.70 | 10.85 |
| HWFET       | 6.61         | 6.72  | 6.89  | 6.95  | 7.17  | 7.40  | 7.56  |
| Combined    | 8.46         | 8.57  | 8.73  | 8.79  | 9.00  | 9.22  | 9.37  |
| NEDC        | 10.47        | 10.58 | 10.73 | 10.79 | 11.00 | 11.21 | 11.36 |

Table 4.6 lists the top nine passenger vehicles on the road today and their average city and highway fuel economy. So, compiling a weighted average of these numbers gives the fuel economy of the average car on the road to be 10.7 L/100km in the city and 7.4 L/100km on the highway. These two average fuel economy values are imported into Table 4.7 under the rolling resistance coefficient of 10 kg/ton in their corresponding rows where FTP 75 labels city driving, and HWFET labels highway driving. The NEDC row is the European fuel efficiency at each RRC value, and is presented for comparison. The rolling resistance for a wide range of tires is supplied in the Transportation Research Board's report titled *Tires and Passenger Vehicle Fuel Economy*, which presents an average RRC of 10 kg/ton, so it is valid to assume that RRC as the coefficient of an average tire.[28] In that same report, it is stated that 55% of driving occurs on
urban roads while 45% is done on highways, so by taking 55% of 10.7 L/100km and combining that with 45% of 7.4 L/100km gives the 9.22 L/100km value shown in Table 4.7 under the RRC of 10.[28] Note that all of the vehicles listed in Table 4.6 run on gasoline, so this inventory assumes no diesel fuel use and 100% gasoline use. The rest of Table 4.7 was populated by Michelin using their own rolling resistance calculating methods with respect to this baseline average tire, and although the fuel economies with a RRC below 6 are purely theoretical, they are still relatively reliable. No standard deviation or uncertainty was supplied with this table, so it will be assumed that these calculations are accurate, although it is important to note that these values were derived from a theoretical formula and currently there are no tires with a low enough rolling resistance to check the very small RRC fuel economy values.

The main purpose of this report is to compare the theoretically lower rolling resistance Tweels<sup>TM</sup> to proven low rolling resistance tires. Concluding that a Tweel<sup>TM</sup> has lower environmental impact than an average tire would be only mildly useful to consumers looking to buy the most environmentally friendly wheel available. So, in this analysis a Tweel<sup>TM</sup> will be compared against a tire with the best rolling resistance characteristics on the market today. According to the Transportation Research Board's report this low end of the spectrum occurs at a rolling resistance of about 6 kg/ton.[28] Bridgestone's B381 tire has a rolling resistance of 6.2 kg/ton while Michelin's Symmetry tire is measured around 6.5 kg/ton.[95] Thus by the values supplied in Table 4.7, the combined fuel economy for the P205/45R17 tire analyzed in this report is 8.79 L/100km (26.8 mpg).

At this point it is necessary to point out that Michelin has a few different Tweel<sup>™</sup> models in preparation, all of which have different theoretical rolling resistance coefficients. The "Thrust 1" Tweel<sup>™</sup> is expected to have roughly 10% lower rolling resistance than a fuel efficient tire

65

through the use of conventional tire materials and commercially available polyurethanes. The goal for the "Thrust 2" Tweel<sup>™</sup> is around a 30% lower rolling resistance by using advanced polyurethanes or other elastomers, while the "Thrust 3" Tweel<sup>™</sup> research target hopes to obtain a 50% reduction in rolling resistance by using meta-materials to replace the elastomers in the shear band. The research targets for these three Tweel<sup>™</sup> models are to have rolling resistance coefficients of 5.5, 4, and 3 kg/ton respectively, but the 4 and 3 kg/ton RRCs are still very uncertain since the Thrust II and III Tweels<sup>™</sup> are still early in development. Table 4.7 reports the overall fuel economy of the vehicle for each of these Tweels<sup>™</sup> as 8.73, 8.57, and 8.46 L/100km. The confidence in these potential coefficients decreases with the more complex materials (Thrust II and III) because they are simply educated guesses of the expected performance of Tweel<sup>TM</sup> products that do not yet exist for testing, but those are the RRC values that will be assumed in this analysis. The differences in these materials are not known yet because these are only goals for the future development of the Tweel<sup>TM</sup>, so the raw material production and Tweel<sup>TM</sup> manufacturing data are assumed to be the same for all three thrusts. This will require more work in the future, but as there are very limited data available at this point, it is impossible to create fully accurate manufacturing profiles of each Tweel<sup>TM</sup> thrust. The three Tweel<sup>TM</sup> thrusts will have the same production inventory for modeling purposes without full manufacturing profiles available, but the use phase will consume different amounts of fuel.

Table 4.7 can now be used to evaluate the amount of fuel used by the wheels by comparing the relative fuel savings from differing levels of rolling resistance. The key fact in the fuel economy table is that everything on the vehicle is held constant except the rolling resistance, so all fuel savings with a decreased RRC is a result of only the wheel. Comparing

this knowledge between the average fuel consumption of a 6 kg/ton tire and 5.5 kg/ton Tweel<sup>TM</sup> having fuel economies of 8.79 and 8.73 L/100km respectively, shows that the 5.5 kg/ton Tweel<sup>TM</sup> is responsible for a fuel savings of 0.06 L/100km. The 5.5 kg/ton Tweel<sup>TM</sup> has a 10% lower rolling resistance than the tire, so the associated fuel use by the tire also should drop by roughly 10%. The only appropriate two numbers for the fuel use by each wheel that differ by both 10% and 0.06 L/100km are 0.60 and 0.54, so the reference tire is responsible for consuming 0.60 L of gasoline every 100 km. Equation 4.3 checks this value to assure that the tire's rolling resistance is responsible for between 5% and 10% of the total fuel used by a vehicle.

$$\frac{0.60 \text{ L/100km}}{8.79 \text{ L/100km}} = 0.068 = 6.8\%$$
(4.3)

So, according to the above calculations, the reference tire is responsible for 0.60L/100 km or 6.8% of the total fuel use of a vehicle, which falls within the documented range of rolling resistance fuel use. But, the Tweels<sup>TM</sup> use a smaller percentage due to their decreased rolling resistance, so simply taking 6.8% of the reported fuel economy for each Tweel<sup>TM</sup> will not work. Instead, the overall fuel savings must be subtracted from the 0.60 L/100km fuel use by the reference tire. For example, a RRC of 4 kg/ton decreases the vehicle fuel consumption from 8.79 to 8.57 L/100km, which means a Thrust 2 Tweel<sup>TM</sup> saves 0.22 L/100km. Thus, instead of being responsible for 0.60 L/100km, the Thrust 2 Tweel<sup>TM</sup> uses only 0.60 − 0.22 L/100km, or 0.38 L/100km. Each Tweel<sup>TM</sup> fuel consumption is calculated in this way and is listed in Table 4.8 in terms of L/km.

The fuel consumption units were converted to L/km because the last step of the process of determining the total amount of fuel used by one wheel is to multiply the fuel consumption rate by the average lifetime mileage of a tire. The average life of a tire is determined by finding the ratio of the number of vehicles in the United States to the national replacement tire sales. This ratio (175 million/200 million = 0.88) suggest that a motorist can expect to purchase a replacement tire an average of every 0.88 years, or a complete set of four tires about every 3.5 years. (4 x 0.88 = 3.52).[28] Multiplying this by the average annual vehicle mileage of 12,000 miles, the total life of a tire is found to be roughly 42,000 miles (3.5 years x 12,000 miles/year).[30, 96] Multiplying the fuel consumption rate of a wheel by this lifetime mileage give the total fuel used by all four tires, so this final number must be divided by 4 to find the total fuel consumption by one tire over its life. In this analysis it is assumed that the Tweels<sup>TM</sup> have the same lifespan of 42,000 miles, but there is some evidence to suggest that a lower rolling resistance and different construction altogether may increase the life of a Tweel<sup>TM</sup>. Data are limited on this topic and entirely theoretical, so that possible difference will be ignored in this thesis, but it may deserve some extra research in the future. A sample calculation for the total fuel consumed by the reference 6 kg/ton tire is shown in Equation 4.4

$$(0.006 \text{ L/km})(42,000 \text{ mi})\left(\frac{1.61 \text{ km}}{\text{mi}}\right)\left(\frac{1}{4}\right) = 101 \text{ L}$$
 (4.4)

Note that the total fuel use does match fairly well with the intended 10%, 30%, and 50% reductions in rolling resistance that Michelin is trying to achieve with these three Tweel<sup>TM</sup> models. The model isn't quite linear, but a 50% reduction in rolling resistance does correspond to roughly a 50% decrease in fuel consumption as expected.

| Wheel                         | Rolling<br>Resistance<br>(kg/ton) | Vehicle Fuel<br>Economy (L/km) | Tire Fuel<br>Consumption<br>(L/km) | Total Fuel<br>Use (L) |
|-------------------------------|-----------------------------------|--------------------------------|------------------------------------|-----------------------|
| P205/45R17 Tire               | 6                                 | 0.0879                         | 0.006                              | 101                   |
| Tweel <sup>™</sup> – Thrust 1 | 5.5                               | 0.0873                         | 0.0054                             | 91                    |
| Tweel <sup>™</sup> – Thrust 2 | 4                                 | 0.0857                         | 0.0038                             | 64                    |
| Tweel <sup>™</sup> – Thrust 3 | 3                                 | 0.0846                         | 0.0027                             | 46                    |

Table 4.8. Total fuel use over lifetime of one tire or Tweel<sup>™</sup>

# 4.4.2 Gasoline Emissions

The amount of fuel used by a wheel throughout its life is important, but for a life cycle inventory the environmental effects of producing the gasoline and then the corresponding emissions when it is burned are also necessary to develop a full environmental profile of gasoline use. In the production of a tire, both the production of the raw materials and the processing of those materials once they reach the manufacturing plant are considered as part of the life cycle inventory. In the same way with the inventory of gasoline usage, not only do the emissions that come out of a tailpipe need to be considered, but producing the gasoline is just as important.

In considering the life cycle inventory of the gasoline used by a tire, the data detailing the production, storage, and transport of crude oil and gasoline are taken from three SimaPro databases: BUWAL250, IDEMAT, and Franklin USA.[57, 91, 97] Each of these define the refining of crude oil into gasoline, but they all obtain slightly different results most likely due to the differing geographical regions from where the data were taken. Each database can be trusted to give accurate data, but to be completely sure, all three databases are averaged together in the life cycle analysis to minimize any potential error in one database and to assure the best use phase inventory possible. To understand the potential range of environmental impacts if only one of the three databases is used, a comparison of each database will be presented in the impact assessment section, but for the overall life cycle effects an average of these sources describing the production of gasoline will be combined with tailpipe emissions once the gasoline is burned.

Those databases supply the complicated and rarely supplied details about the production and transport of gasoline, but the emissions that result after that gasoline is burned is well documented in several places, the most reliable of which is the EPA. The EPA supplies the emissions from 1 kg of burned gasoline, so in order to find how much of each compound is released into the air throughout the entire life of a tire these values are multiplied by the density of gasoline which varies slightly with temperature but is about 0.74 kg/L.[98] Both of these values are included in Table 4.9. The emissions per liter of gasoline are finally multiplied by the corresponding gasoline usage described in Table 4.8 to determine the overall gasoline emissions corresponding to each respective tire or Tweel<sup>TM</sup>. Then, combining these emissions with the gasoline production inventory provided by the specified databases gives the overall inventory of the gasoline used in the use phase of each wheel.

| Emissions to air                | Mass (kg) / kg of gas | Mass (kg) / L of gas |
|---------------------------------|-----------------------|----------------------|
| Sulfur dioxide                  | 0.000494              | 0.000366             |
| Nitrogen oxides                 | 0.022147              | 0.016389             |
| Carbon dioxide                  | 3.407155              | 2.521295             |
| Carbon monoxide                 | 0.098807              | 0.073117             |
| VOC, volatile organic compounds | 0.014140              | 0.010464             |
| Soot                            | 0.000239              | 0.000177             |
| Dinitrogen monoxide             | 0.000681              | 0.000504             |

Table 4.9. Emissions from combustion of gasoline [30]

### 4.4.3 Tire Debris

An inherent environmental problem with tire use is the debris that results from tire wear. The tread on any rubber tire naturally wears away during normal use due to the frictional contact with road surfaces, and this debris can become airborne and cause respiratory problems, or it can accumulate on the ground or in water causing substances to leach into the environment as the rubber degrades. The problem with collecting the effects of this debris however is the difficulty in quantifying the rate of tread wear under a range of driving conditions and the total tread worn off when the tire reaches the end of its life. Typically a tire loses about 10-20% of its weight during its use phase, but this range is too large for any confident results in this thesis.[41]

So instead of using the total amount of material removed from differing tread depths, several sources will be used that have studied the specific rate of debris produced during a range

of driving scenarios.[99-101] The most complete and reliable data on the tread wear throughout a tire's life are documented in PRé Consultant's *Life Cycle Assessment of an Average European Car Tyre*, where data were collected from several papers and tire manufacturers and were averaged to find an average tread wear rate of roughly 3 g/100km as shown in Table 4.10.[17] Using the average driving distance established above as 42,000 miles, the average amount of wear over a tire's lifetime results in 2 kg.

Table 4.10. Tread wear rate under differing driving conditions

| Driving Condition                  | Wear Rate (g/100km) |
|------------------------------------|---------------------|
| Highway, Moderate Driving          | 0.5                 |
| Winding Road, Professional Driving | 10                  |
| Median                             | 3                   |

It is not sufficient to simply model the effects of 2 kg of tire tread in the environment because tire debris occurs in a wide range of sizes, each of which has different environmental effects. Two main categories of tire debris are created here: particles small enough to remain airborne and large particles that remain on the ground. The particle size distribution of airborne particles of tire debris is very important because particles with a diameter smaller than 10 microns (PM<sub>10</sub>) can penetrate the human lungs and cause respiratory effects, irrespective of their chemical composition.[102] Details about this distribution are difficult to obtain though because of the difficulty in distinguishing tire particles from other types of road dust. In most field studies the fraction of airborne particles that could be attributed to tire wear was less than 10%.[103, 104] Sources have tested tread wear in a laboratory setting to avoid this problem, but the difficulty in modeling a range of driving conditions decreases the validity of these studies.[41, 105] Not only is it difficult to recreate the complex range of wear rates during actual driving, but the smallest  $PM_{10}$  particles exhibit completely different settling characteristics in a calm laboratory as compared to the real environment with wind and rain.

Due to these uncertainties, the data collected by PRé Consultants in their European tire LCA are used in this analysis.[17] Their data collection technique is kept somewhat confidential, but the final life cycle inventory of an average tire's debris is provided. This inventory includes both airborne and soil deposited particles of both rubber and metal from the tire cords, and is used in this report for both the tire and Tweel<sup>TM</sup>. The Tweel<sup>TM</sup> wear rate has not been studied yet, but it will be assumed to be the same as that of a standard European tire. This is a valid assumption due to the similarities in the tread between a tire and a Tweel<sup>TM</sup> considering that the tread wear accounts for over 90% of the rubber debris from a tire.[41] There may be some differences due to the greater contact patch between the tread and road because of the increased spoke deformation, but these effects have not been studied yet so they will be kept out of this analysis. The only change made to the inventory from the PRé report is a change from their average European driving distance of 40,000 km to 42,000 miles. This change results in a proportional increase in the tread debris over the life of a tire of roughly 1.6. As with the rest of the LCI, the tire debris inventory is organized in Appendix A.

#### 4.4.4 Noise

Traffic noise resulting from tire to road contact typically averages around 75 dBA on the highway, and can be considered a type of environmental emission leading to adverse effects on a large percentage of the human population including hearing impairment, interference with speech communication leading to stress, sleep disturbance, and mental health effects.[106] However, noise effects are not considered yet as part of either the EcoIndicator or EDIP impact assessment method, so they will be left out of this analysis. Müller-Wenk developed a method

for assessing the impact of Switzerland vehicle noise on human health aggregated in DALY (Disability Adjusted Life Years, as in the EcoIndicator99 method), but a comprehensive technique to compare these effects to more tangible effects from emissions to the atmosphere is under scrutiny and remains only a qualitative discussion point in life cycle assessments using EcoIndicator or EDIP. Müller-Wenk's method assesses the environmental damage of noise in the same manner as other emissions by four modules of fate analysis, exposure analysis, effect analysis, and damage analysis, but the assessment of health effects from sleep disturbance and annoyance however is still under debate because effects are not measurable and of a more psychological nature.[107] Evidence on cardiovascular disease caused by additional stress is measureable through hospital admissions and physiological changes, but due to the uncertainty of the noise level of a Tweel<sup>TM</sup> and the questions around the assessment of the effects of noise on human health, this will be left out of the life cycle analysis.[108] Preliminary tests hint that Tweels<sup>TM</sup> may produce a greater amount of road noise and thus a larger overall environmental impact, but these effects are too difficult to quantify at this point. If a better method of modeling the effects of noise is produced in the future, then this area could be updated to be a part of the environmental impact of tires on human health during the use phase.

### 4.5 <u>End of Life</u>

#### 4.5.1 Processing Routes

During the past few years there has been substantial progress in the recycling of polymeric materials. Unfortunately, progress in the area of recycling thermosetting polymers such as rubbers has not been as successful because these materials, by definition, cannot be reformed once they have been "set" or crosslinked. Effort has been made to increase the effectiveness of recycled rubber, and markets now exist for over 80 percent of scrap tires – up

from 17 percent in 1990.[30] States have played a major role in tackling the problem of almost 300 millions scrap tires in stockpiles in the U.S. by regulating the hauling, processing, and storage of scrap piles, and by working with industry to recycle and beneficially use scrap tires. In 2003, instead of sending used tires to landfills, 38 states banned whole tires from landfills, eleven banned all tires from landfills, seventeen allowed processed tires, and eight states had no restrictions. However, tire recycling benefits still remain limited due to the limited uses of thermoset materials. The Rubber Manufacturers Association documents the progress of the uses of used tires, and their data from 2005 are shown below in Figure 4.7. The four main processing techniques that are used in the United States are tire derived fuel (TDF), civil engineering uses, landfill, and ground rubber used in other products. Scrap tires are either incinerated and used as fuel, ground into crumb rubber, or thrown away intact. The rough energy requirements for these processes are described in Table 4.11, which shows that there is no perfect way to recycle scrap tires. Burning a tire produces less than 30% of the energy required to produce a new tire, crumb rubber requires a noticeable amount of energy but has limited uses, and landfilling occupies land space and breeds insects. Details of each major disposal route will be discussed below.



Figure 4.7. 2005 U.S. scrap tire disposition [34]

| Energy needed to manufacture a tire                                      | 32.0 | kWh/kg |
|--------------------------------------------------------------------------|------|--------|
| Energy needed to produce tire rubber compound                            | 25.0 | kWh/kg |
| Thermal energy released when incinerating scrap tires                    | 9.0  | kWh/kg |
| Energy consumed in the process of grinding scrap tires into crumb rubber | 1.2  | kWh/kg |

Table 4.11. General tire life energy requirements [19]

Tire recycling has always been well documented, but as Tweels<sup>™</sup> are not even produced yet, let alone being recycled in mass quantities, it is difficult to assess the overall environmental impact of the end of life phase of a Tweel<sup>™</sup>. It appears that the shear band, spokes, and hub will all be able to be separated with a little bit of effort, but it is difficult to predict the demand for Tweel<sup>™</sup> re-use. Preliminarily, the same percentages as shown in Figure 4.7 will be used for Tweel<sup>™</sup> processing routes, but some of these routes will have different environmental impacts due to the large amount of polyurethane, so the demanded percentage of, say, ground Tweels<sup>™</sup> may change. With each potential disposal route defined separately it will be helpful to compare each route to decide which is most environmentally friendly and which should be pursued by not

only Michelin but also by recycling plants or landfills. A comparative analysis of these potential disposal routes will be compared in the impact assessment chapter (section 5), but first an understanding of each is necessary to produce a hypothetical inventory that is as close as possible to future Tweel<sup>TM</sup> end of life requirements.

# 4.5.2 Tire Recycling

The term "recycling" defines a group of tire disposal techniques that reuse tire materials in different applications as a substitute for producing new raw materials. According to the data in Figure 4.7, 18% of scrap tires are recycled by five methods: export, stamping, agricultural, baled, grinding. The first four methods are all less than 2% of the total and will be ignored due to their minimal impact on the overall end of life phase, but the grinding of used tires is a widely used process that must be considered. In this market, whole scrap tires are processed, removing the wire and textile to create ground rubber for sport surfaces and floors, asphalt, and molded or extruded consumer products by one of two processes: grinding at ambient temperature or cryogenic grinding.[34] Table 4.12 describes the markets for crumb rubber in 2001.

Table 4.12. Markets and applications for recycled tire rubber [19]

| Application/Market                       | Million lbs. | Metric tons |
|------------------------------------------|--------------|-------------|
| Rubber Modified Asphalt (RMA)            | 292          | 132,727     |
| Molded Products                          | 307          | 139,545     |
| Athletic Surfaces                        | 141          | 64,091      |
| Tires/Automotive                         | 112          | 50,909      |
| Devulcanized and Surface Modified Rubber | 36           | 16,364      |
| Plastic/Rubber Blends                    | 38           | 17,273      |
| Construction and Miscellaneous           | 70           | 31,273      |
| Total                                    | 996          | 452,727     |

Prior to grinding to the mesh size specifications of these recycled rubber markets, the tire is cut up into relatively large pieces and then shredded into pieces less than ½ inch in size. Ambient grinding is carried out on a two-roll cracker-mill that has sharp edges to tear the rubber

into small pieces. This general process can produce a wide range of rubber particle sizes as small as 80 mesh but usually involves the general activities of coarse crumb sizing, ultra fine sizing, metal separation, fiber separation, bagging, and weighing.[33] Cryogenic grinding, by comparison, first cools the coarsely shredded rubber pieces with liquid nitrogen until the rubber freezes. The frozen shreds are then passed through an impact mill such as a hammer or pin mill where is it shattered, pulverized, and ground into finer mesh grids. After the shattered pieces are dried, the fibers and metal pieces are separated, and the pieces are organized by various mesh sizes at which time they are bagged and ready to be reused in a number of applications described in Table 4.12.

PRé Consultants performed a rigorous study of four different tire recycling processes assuming that roughly 80% of the rubber is ground at ambient temperature while 20% is first cryogenically frozen.[17] Myhre and MacKillop support these percentages and the rough energy requirements of 1.2 kWh/kg, but fail to provide more details to add to the life cycle inventory of this process.[33] PRé assembled data from IFEU (Institut für Energie und Umweltforschung) and several tire manufacturers to provide full inventories of raw materials, energy consumption, emissions to air and water, and solid waste. Data for ambient grinding include mostly emissions of dust and use of electricity which seem to be the two most important parameters, while data for cryogenic grinding models the details of nitrogen and electricity. The most complete report on all types of rubber recycling, however, is presented by Corti and Lombardi in their work entitled *End Life Tyres: Alternative tire disposal processes compared by LCA*, but they fail to mention the large civil engineering category.[109] The PRé Consultants report describes the grinding of rubber into course pieces for civil engineering purposes, but the data describing rest of the rubber recycling scenarios are taken from the Corti and Lombardi report. Due to the slightly different

size of the recycled rubber and the resultant use, the civil engineering category will be left separate from the other recycling methods even though it uses the same basic rubber grinding process as the more general recycled rubber category. Both are presented in different sections in Appendix A. The avoided product in this inventory is synthetic rubber because the production of 1 kg of recycled ground rubber enables the users of this rubber to avoid purchasing or producing 1 kg of new synthetic rubber. The avoided product category in each of the end of life inventories describes the product or raw material that does not need to be manufactured from scratch because the recycled product can be used in its place. These will produce an environmental benefit to counteract the impact from the energy requirements and other inputs or emissions.

The hub recycling impact through one tire life cycle includes only 25% of the hub mass because the steel can be used about four times as long as the rubber. For that reason, only 1 kg of recycled steel is considered in the life cycle of one tire. Recycled steel is documented in the BUWAL database and is combined with the recycling of rubber to give an overall tire recycling profile.

### 4.5.3 Tweel<sup>TM</sup> Recycling

As with all other potential Tweel<sup>TM</sup> end of life scenarios, Tweel<sup>TM</sup> recycling begins with separating the three main components: hub, polyurethane spokes and shear band, and rubber tread. This can either be done by roughly cutting the polyurethane away from the hub and the rubber tread leaving a small amount of polyurethane still attached to both, or they can all be separated by heating the entire assembly to a temperature of about 150 °C for 2 or 3 hours to allow the adhesives to break down and the polyurethane to relax and shrink away from the hub and tread. Obviously the second method is more energy intensive, but results in clean separation of each component without the need to use harmful cleaners to remove the excess polyurethane

from the steel and rubber that was not able to be cut off. Because of this clean, easy separation, and the uncertainty of the methods necessary to completely clean the excess material that could not be cut off, the heating method of separation will be preferred by Michelin and will be the only method considered in this analysis. The energy required to maintain an oven at this temperature for 2 to 3 hours is documented in the Franklin USA database for a general oven, and since the size and characteristics of the oven needed for this component separation is not know, this database is the only option available. This oven inventory will be added to each disposal route as a prerequisite for processing.

Once the three components have been separated, each can be considered to follow their own disposal routes. The hub can go straight back to being reused in another Tweel<sup>TM</sup> an estimated four times following the same cleaning and adhesion method described in section 4.2.2, so only 25% of the steel hub's recycling impact will be included with one Tweel<sup>TM</sup>. Due to the similarities between the Tweel<sup>TM</sup> shear band and the rubber in a tire, shear band recycling will be considered to be the same as tire rubber and will follow the same disposal route percentages as described in Figure 4.7. The processing of a Tweel<sup>TM</sup> shear band may be somewhat different than processing tire rubber, but because the details of these differences are unknown, the best option to provide a reliable analysis of the shear band disposal is to use the inventory for rubber disposal. As with tires, each disposal route (landfill, incineration, etc.) will be weighted together to give one overall environmental inventory.

This only leaves the polyurethane spokes, which are recycled in much the same way as rubber – shredding for reuse or incineration. As shown in Figure 4.8 however, polyurethane recycling occurs in much smaller percentages than rubber recycling. These percentages will probably change however because a 300 million Tweel<sup>™</sup> stockpile has the potential to pressure

polyurethane producers and others to use more recycled materials. For this reason, it will be important to analyze the environmental impact of each polyurethane disposal route so that qualitative observations can be made about the different options rather than using Figure 4.8 to weigh everything together into one inventory that may give misleading results.





Recycled polyurethane must be shredded into much smaller granules than recycled rubber because usually it is reused by adding it to the liquid (polyol/polyether) reactant. Foam polyurethane can be recycled in several different ways including adhesive pressing, compression molding, and injection molding, but the more rigid, solid polyurethane used in Tweels<sup>™</sup> must be ground into fine pellets.[111] Due to the thermoset nature of polyurethane, these finely grinded pieces do not melt and homogenously mix with the liquid reactant. Instead, the recycled material enhances the new polyurethane in a composite-like manner. For this reason, the energy requirement to grind polyurethane to these small sizes on the order of 0.2 mm is about twice that of rubber.[110] A rough outline of the energy requirements for polyurethane recycling is presented in Zevenhoven's report.[112] Due to the similarities between the two roll systems of grinding polyurethane and rubber, one can expect a proportional environmental impact between

the two processes. The overall environmental inventory of Tweel<sup>™</sup> recycling is assembled in Appendix A by combining the appropriate weight percentages seen in one Tweel<sup>™</sup> of polyurethane and rubber recycling (9.0 kg polyurethane, 2.8 kg rubber tread, 1 kg steel hub).

### 4.5.4 Rubber Derived Fuel

Tires contain more than 90% organic materials and have a higher heat value than coal, so a widely used option to process discarded tires is to use them as fuel.[33] The market is generally called the tire derived fuel (TDF) market, but because both the processing of tires and Tweel<sup>TM</sup> shear bands will be analyzed in this report, that term will be generalized to rubber derived fuel. Environmental effects of rubber combustion can be grouped into uncontrolled and controlled sources. Uncontrolled sources are open tire fires which will not be considered in this analysis for reasons discussed in section 4.5.5, while controlled combustion sources include boilers and kilns specifically designed for the efficient combustion of solid fuel. These controlled atmospheres not only produce energy in the place of traditional coal or oil plants, but they are also able to control the quantity of air emissions. As shown in Table 4.13, the TDF market has consistently growed over the past 20 years, with the highest percentage of tires incinerated in cement kilns.

|                    | 1990 | 1992 | 1994 | 1996 | 1998 | 2001 | 2003  | 2005 | 2007 |
|--------------------|------|------|------|------|------|------|-------|------|------|
| Cement Kilns       | 6    | 7    | 37   | 34   | 38   | 53   | 53    | 58   | 66   |
| Pulp & Paper       | 13   | 14   | 27   | 26   | 20   | 19   | 26    | 39   | 42   |
| Industrial Boilers |      | 6    | 10   | 16   | 15   | 11   | 17    | 21   | 35   |
| Utility Boilers    | 1    | 15   | 12   | 23   | 25   | 18   | 23.7  | 27   | 26   |
| Tires-to-Energy    | 4.5  | 15   | 15   | 16   | 16   | 14   | 10    | 10   | 10   |
| Total Fuel         | 24.5 | 57   | 101  | 115  | 114  | 115  | 129.7 | 155  | 179  |

Table 4.13. Tire derived fuel per disposal route (in millions of tires) [34]

In general there are two methods of using rubber as fuel – whole tires or incineration of pre-processed rubber. Some plants are established to burn whole tires, while some need preprocessing into rubber shreds in order to burn efficiently and meet EPA standards. These standards control the potentially hazardous act of burning rubber so that emissions are minimized. Sources indicate that properly designed existing solid fuel combustors can supplement their normal fuels (coal, wood, and various combinations of fuel) with 10 to 20% TDF and still satisfy environmental compliance emissions limits. Furthermore, results from a dedicated tires-to-energy (100% TDF) facility indicate that it is possible to have emissions much lower than produced by existing solid fuel-fired boilers when properly designed and the facility is controlled.[37] One or the other of these cases will be considered in this rubber derived fuel analysis because the number of devices that are not well-designed for scrap tire combustion is negligible. Air emissions from these types of devices are likely more similar to open tire fires in a landfill than large controlled burning facilities, but these devices will be ignored.

The air emissions from all the rubber derived fuel sources defined in Table 4.13 are described in a report from the EPA titled *Air Emissions from Scrap Tire Combustion* that considers source test data from 22 industrial facilities that use TDF are presented: 3 kilns (2 cement and 1 lime) and 19 boilers, all of which have some type of particulate control. Based on the results from a rotary kiln incinerator simulator, with the exception of zinc emissions, potential emissions from TDF are not expected to be very much different than other conventional fossil fuels, as long as combustion occurs in a well-designed, well-operated, and well-maintained combustion device.[37] As these efficient devices are all that will be considered in this analysis, it should be expected that the overall environmental impact of rubber derived fuel should be close to zero because the avoided product will have close to the same environmental impact,

negating any overall effects. Table 4.14 illustrates the similarities between rubber and coal. Note that rubber derived fuel produces about 36 MJ/kg, whereas coal is only capable of producing 31 MJ/kg.

| Fuel | Composition (percent) |          |        |          |      |        |          | Heating | g Value |
|------|-----------------------|----------|--------|----------|------|--------|----------|---------|---------|
|      | Carbon                | Hydrogen | Oxygen | Nitrogen | Ash  | Sulfur | Moisture | kJ/kg   | Btu/lb  |
| TDF  | 83.87                 | 7.09     | 2.17   | 0.24     | 1.23 | 4.78   | 0.62     | 36,023  | 15,500  |
| Coal | 73.92                 | 4.85     | 6.41   | 1.76     | 1.59 | 6.23   | 5.24     | 31,017  | 13,346  |

Table 4.14. Comparative Fuel Analysis by Weight [37]

Depending on the design of the combustion device, a small amount of extra energy may be needed to process the rubber by dewiring and shredding, but some specially designed boilers and cement kilns have had their feed systems designed to accept whole tires. In either case, this processing energy is added to the air emissions in the EPA's report to give an overall inventory of each of the 22 facilities. Some of the facilities differ slightly from other traditional combustion plants, but it is important to make the distinction between burning rubber and burning coal or other raw materials. To complete the overall rubber derived fuel inventory for this analysis, a weighted average of the EPA data is used in correspondence with the disposal route percentages described in Table 4.13, and the results of this weighted average are listed in Appendix A. This inventory takes into account the energy required to process the rubber, the air emissions from the combustion process, and the avoided energy production from the U.S. average energy grid. As described in Table 4.14, the avoided energy production for 1 kg of rubber is 36 MJ, which is modeled as the average energy mix in the United States.

Due to the similarities between the rubber compounds, this inventory will be used for both tires and Tweel<sup>TM</sup> shear bands. Incinerating the polyurethane spokes from a Tweel<sup>TM</sup> however requires a different analysis. Polyurethane releases 25.6 MJ/kg when incinerated, so avoiding that energy production will be offset by roughly the same amount through the air emissions described in Zevenhoven's paper titled *Treatment and Disposal of Polyurethane Wastes*.[112] A much less comprehensive data set is available that compares several methods of incineration like what is available for rubber derived fuel, but Zevenhoven's source of emissions data is sufficient and will be combined with the rubber derived fuel data discussed above to complete the overall inventory for Tweel<sup>TM</sup> incineration.

### 4.5.5 Landfilling

Problems associated with scrap tire disposal have been widely documented and discussed in the media, and most people greatly fear the dangers of ever-growing piles of tires in landfills. These views of the general public are often times exaggerated due to emotional prejudice sparked by pictures of mounds of tires or out of control tire fires. Performing an objective, scientific analysis of tire landfilling is thus important to understand the real environmental effects beyond the pictures that spark fear. The three main environmental pressures from landfilling any substance are as follows:

- 1. Toxic substances and nutrients leaching into surface and ground water.
- 2. Contribution to the greenhouse effect by emission of methane.
- 3. Land use.

Tires also present the rare risk of tire fires. Tire fires are difficult to fight because tires represent a high-energy content hydrocarbon fuel and have 75% void space, which provides oxygen and a perfect source for a blaze that is difficult to extinguish, and due to their smoldering, low temperature pyrolytic nature, these fires are responsible for uncontrolled pollution by releasing toxic fumes.[113] As a tire fire is not common and not predictable however, it can only be treated as an accidental side effect; therefore no quantitative assessment will be included in the analysis. Normal everyday use of landfills however, will be analyzed by considering both controlled and uncontrolled landfills. Landfill technology has attempted to improve two of the major environmental pressures listed above through the use of impermeable liners, the collection and treatment of leachates, and the collection of methane, but some small landfills remain uncontrolled.[114] Sources estimate the number of uncontrolled landfills in the United States to be about 25%.[35] This is from where most of the environmental impact of landfilling comes. As tires can be stacked on top of each other as high as necessary, each tire is only responsible for a small percentage of its area, which can be assumed to be roughly 10%. The overall diameter for both a tire and Tweel<sup>TM</sup> is roughly 0.3 m, so 10% of its circular area is only about 0.03 m<sup>2</sup>. This area is obviously important because of the rate it can accumulate with 300 million scrap tires, but perhaps more important are the materials that may leach into the environment in the uncontrolled landfills. As tire fires are not being considered in this analysis, the only things to consider in controlled landfills are the land use and the energy required to control and treat the gaseous emissions and leached substances that are caught by the lining.

Both of these inventories are compared in Table 4.15. However, these are only simplified short term inventories that do not take into consideration the long-term degradation of rubber and metal. PRé Consultants analyzed the entire LCI of both controlled and uncontrolled landfills in a more detailed and more long term approach by creating a model based on a report from BUWAL 250 entitled *Life Cycle Inventories*.[17, 115] Their analysis assumes energy produced in Europe, but as the energy required to sort the scrap and to treat the emissions is only about 5 or 10%, this difference is acceptable. The overall environmental inventory for mixed landfilling, which assumes 25% uncontrolled landfills, is supplied in Appendix A.

|                  | Controlled Landfill | Uncontrolled Landfill |
|------------------|---------------------|-----------------------|
| Land Use         | $0.03 \text{ m}^2$  | $0.03 \text{ m}^2$    |
| Energy           | 2.5 kWh             | 0 kWh                 |
| Leached plastics | 0 g                 | 25 g                  |
| Leached metals   | 0 g                 | 5 g                   |
| Methane          | 0 g                 | 15 g                  |

Table 4.15. Environmental costs of landfilling

The same analysis is performed to model the landfilling of the tread of the Tweel<sup>TM</sup> due to its similarities to the rubber compound of a tire, but the polyurethane must be considered separately because it will have different environmental effects. The only reliable data that could be found that includes the entire inventory necessary for this LCA are in the BUWAL database. However, due to the lack of transparency or explanation about the origins of the data, it is unclear whether controlled or uncontrolled landfills were assumed. The general idea of polyurethane landfilling though is maintained, so it will suffice for the purposes of this analysis. These data are added to the tire landfill data with appropriate weights representative of the relative mass of the spokes with respect to the shear band.

# 4.5.6 Retreading

There are currently more than 1900 retreading facilities in the U.S. and Canada.[116] However, the number is shrinking because of decreased markets for passenger retreads due to the low prices of new tires and a declining trust in modified used tires. Truck tires often are retreaded three times before being discarded and thus the truck tire retreading business is increasing, but the difference between truck tires and passenger tires in this respect is great. Although passenger tires are retread in small percentages in Europe, passenger tires in the United States today rarely are retread, so the environmental effects or benefits of retreading tire will not be included in this analysis. Preliminary research reveals that Tweels<sup>™</sup> may have higher incentives to be retread, and consumers may take this option more often due to a change in perception of the safety of retreading. This possibility is purely hypothetical at this point though, and no data have been gathered to support this opinion, so retreading is not considered an end of life option for either tires or Tweels<sup>TM</sup>.

### **Chapter 5. Impact Assessment**

# 5.1 Introduction and Overview

#### 5.1.1. Impact Assessment Methods

The inventory collected through the process discussed in this thesis provides all the details concerning the inputs and outputs and potential environmental hazards, but assembling this information in an organized manner that allows comparisons to be made between different products or different emissions in a given life cycle phase requires more analysis that assesses the impacts of each portion of the life cycle inventory. It is a useful exercise to compare specific emissions such as CO<sub>2</sub> or nitrogen oxides throughout each phase of a product's life cycle, but in order to most accurately weigh the pros and cons of each phase, impact assessment methods that weight the environmental factors using a single, relative, uniform scale, such as EcoIndicator99 and EDIP, must be used. Both of these methods determine relative environmental impacts between 1 kg of methane vs. 1 kg of sulfur or any other compound listed in the life cycle inventory by assembling them into similar impact categories and then weighting the importance of each category against the others. As described in Table 5.1, the EcoIndicator method groups the 11 impact categories determined by its developers into three broader "damage categories" and then weights these human health, ecosystem quality, and resources categories using a 40/40/20 ratio. Table 5.2 lists the categories used by the EDIP method and its weights that describe the relative importance of each category. Although these methods differ slightly, the goal of both methods is to group together similar environmental effects and then compare the relative importance of each category against the others to be able to weight each category to present a single value that encompasses every environmental impact of a product or process. This value is presented in units of Pt, or EcoPoints, a relative scale that is determined by each

impact assessment method's creators. One thousand EcoIndicator Pts is equivalent to the yearly environmental impact of the average European, but is not the same scale on which the EDIP method is presented With a life cycle as complicated as a tire that includes the large amount of raw materials, fuel use, and a variety of possible disposal routes, the use of these two methods to combine the environmental effects of each stage will facilitate the overall comparison between a conventional tire and a Tweel<sup>TM</sup>.

| Damage Category   | Impact Category                         | Weighting |
|-------------------|-----------------------------------------|-----------|
| Human Health      | Carcinogenic effects on humans          | 40%       |
|                   | Respiratory effects caused by organic   |           |
|                   | substances                              |           |
|                   | Respiratory effects caused by inorganic |           |
|                   | substances                              |           |
|                   | Damage caused by climate change         |           |
|                   | Effects caused by ionizing radiation    |           |
|                   | Effects caused by ozone layer           |           |
|                   | depletion                               |           |
| Ecosystem Quality | Damage caused by ecotoxic effects       | 40%       |
|                   | Damage caused by the combined effect    |           |
|                   | of acidification and eutrophication     |           |
|                   | Damage caused by land occupation and    |           |
|                   | land conversion                         |           |
| Resources         | Damages caused by extraction of         | 20%       |
|                   | minerals                                |           |
|                   | Damages caused by extraction of fossil  |           |
|                   | fuels                                   |           |
| Total             |                                         | 100%      |

Table 5.1. EcoIndicator impact categories

| Impact Category                     | Weighting |
|-------------------------------------|-----------|
| Global warming                      | 1.3       |
| Ozone depletion                     | 23.0      |
| Ozone formation from vegetation     | 1.2       |
| Ozone formation from humans         | 1.2       |
| Acidification                       | 1.3       |
| Terrestrial eutrophication          | 1.2       |
| Aquatic eutrophication              | 1.2       |
| Human toxicity from air pollution   | 2.8       |
| Human toxicity from water pollution | 2.5       |
| Human toxicity from soil pollution  | 2.5       |
| Hazardous waste                     | 1.1       |
| Slags/ashes                         | 1.1       |
| Bulk waste                          | 1.1       |
| Radioactive waste                   | 1.1       |
| Total                               | 42.6      |

Table 5.2. EDIP impact categories

Both of these methods present the overall environmental impact of a product or process for useful comparison against other impacts, but some processes result in a negative environmental impact score, or an environmental benefit. When a tree consumes  $CO_2$  from the atmosphere, for example, a negative climate change or global warming score will arise because of the benefit to this category instead of the negative impact that the assessment methods are designed to compare. Some processes will contain both categories that have an overall benefit to the environment (negative score) and impact categories with a negative environmental impact (positive score). In the graphs below that describe the overall impact of every life cycle phase, the environmental load of each impact category listed in Tables 5.1 and 5.2 are displayed to help determine which category contributes the most to the environmental impact. So, instead of directly subtracting the negative scores from the positive scores to give one overall assessment of each phase, one column (or environmental impact score) may present both a positive and a negative component from different categories. This will help to establish details about the most environmentally problematic categories. Once these observations have been made, it will be possible to combine the positive and negative values together into one environmental impact score.

### 5.1.2. U.S. Energy Impact

As energy is used in almost every phase of the life cycle of both of these products (except the burning of gasoline), it is important to model the environmental impact of producing energy in the U.S. before each phase is analyzed. As discussed previously, the two most reliable sources for the energy mix are the IDEMAT database and the DoE Energy Information Administration, but the percentages in the IDEMAT database are outdated and represent values closer to the American energy grid in 2001. The production process to create the raw materials of a tire or a Tweel<sup>TM</sup> have not changed much over the past 7 or 8 years, so a database that is a couple years old is acceptable for their purposes. Yet as the energy production (energy from crude oil in particular) has noticeably changed this decade, it is important to use up-to-date data.

The differences between Table 4.4 and Table 4.5 illustrate the recent attempt to reduce electricity production from crude oil and replace it with more domestic and environmentally friendly means of energy production. However, it is difficult to quantify this tradeoff in terms of an overall environmental effect without impact assessment methods that can weigh, say, a reduction in CO<sub>2</sub> emissions against an increased demand for the planet's natural resources. Figure 5.1 and Figure 5.2 (with corresponding tables that document the exact impact numbers) compare the overall environmental impact of the production of 1 MJ of energy according to both the IDEMAT database and the EIA percentages using the two impact assessment methods previously described.



Figure 5.1. Environmental impact of producing 1 MJ of energy in U.S. (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Energy US - EIA | Energy US - IDEMAT |
|-------------------------------|------|-----------------|--------------------|
| Carcinogens                   | mPt  | 0.000           | 0.000              |
| Respiratory organics          | mPt  | 0.000           | 0.000              |
| Respiratory inorganics        | mPt  | 0.524           | 0.512              |
| Climate change                | mPt  | 0.301           | 0.283              |
| Radiation                     | mPt  | 0.000           | 0.000              |
| Ozone layer                   | mPt  | 0.000           | 0.000              |
| Ecotoxicity                   | mPt  | 0.000           | 0.000              |
| Acidification/ Eutrophication | mPt  | 0.107           | 0.102              |
| Land use                      | mPt  | 0.000           | 0.000              |
| Minerals                      | mPt  | 0.000           | 0.000              |
| Fossil fuels                  | mPt  | 1.920           | 2.172              |
| Total                         | mPt  | 2.853           | 3.069              |

| Table 5.3. | Supp | lemental | data | for | Figure   | 5. | 1 |
|------------|------|----------|------|-----|----------|----|---|
|            |      |          |      |     | <u> </u> |    |   |



Figure 5.2. Environmental impact of producing 1 MJ of energy in U.S. (Method: EDIP 2003 V1.00 / Default / single score)

| Impact category              | Unit | Energy US - EIA | Energy US - IDEMAT |
|------------------------------|------|-----------------|--------------------|
| Global warming 100a          | μPt  | 10.04           | 10.40              |
| Ozone depletion              | μPt  | 0.00            | 0.00               |
| Ozone formation (Vegetation) | μPt  | 0.01            | 0.00               |
| Ozone formation (Human)      | μPt  | 0.01            | 0.00               |
| Acidification                | μPt  | 0.70            | 0.72               |
| Terrestrial eutrophication   | μPt  | 0.00            | 0.00               |
| Aquatic eutrophication EP(N) | μPt  | 1.32            | 1.35               |
| Aquatic eutrophication EP(P) | μPt  | 0.00            | 0.00               |
| Human toxicity air           | μPt  | 0.01            | 0.01               |
| Human toxicity water         | μPt  | 0.00            | 0.00               |
| Human toxicity soil          | μPt  | 3.26            | 3.33               |
| Ecotoxicity water chronic    | μPt  | 0.00            | 0.00               |
| Ecotoxicity water acute      | μPt  | 0.00            | 0.00               |
| Ecotoxicity soil chronic     | μPt  | 0.00            | 0.00               |
| Hazardous waste              | μPt  | 0.00            | 0.00               |
| Slags/ashes                  | μPt  | 0.00            | 0.00               |
| Bulk waste                   | μPt  | 0.00            | 0.00               |
| Radioactive waste            | μPt  | 0.00            | 0.00               |
| Resources (all)              | μPt  | 0.00            | 0.00               |
| Total                        | μPt  | 15.34           | 15.82              |

Table 5.4. Supplemental data for Figure 5.2

Even though the two energy mixes differ by a substantial amount, the overall difference in the environmental load of producing energy between these two sources is only 7% according to the EcoIndicator method and 3% according to EDIP. These differences are small and will not be fully felt by the most environmentally significant life cycle phase, the use phase, because energy is only required to produce gasoline while the other half of the environmental impact, the emissions resulting from burned gasoline, requires no energy input, so either source may be acceptable for this analysis. However, these small differences may have noticeable impacts on the overall life cycle of a tire or Tweel<sup>TM</sup> because energy is used in the production of the raw materials, manufacturing, and most disposal routes, so the most recent data should be used to assure as much accuracy as possible. The EIA energy grid percentages and the corresponding impacts described above will be used to model the energy requirements throughout the impact analysis of each of the different phases of each product's life cycle and is signified in Appendix A as "Energy US I".

# 5.2 Production Phase

# 5.2.1 Production of Raw Materials

The environmental impact of producing 1 kg of each raw material used in either a tire or a Tweel<sup>TM</sup> is illustrated in Figure 5.3 and Figure 5.4 (again with corresponding tables that document the exact numbers presented in each graph). Figure 5.3 evaluates each raw material inventory through the use of the EcoIndicator99 method, whereas Figure 5.4 uses the EDIP method.



Figure 5.3. Impact of production of 1 kg of each raw material (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

Table 5.5. Supplemental data for Figure 5.3

| Impact category               | Unit | Natural Rubber | Synthetic Rubber | Steel Cord, Coated | Textile | Zinc Oxide | Aromatic Oils | Carbon Black | Silica | Stearic Acid | Sulfur | Polyurethane | Steel | Total |
|-------------------------------|------|----------------|------------------|--------------------|---------|------------|---------------|--------------|--------|--------------|--------|--------------|-------|-------|
| Carcinogens                   | Pt   | 0.000          | 0.000            | 0.013              | 0.001   | 0.001      | 0.001         | 0.002        | 0.000  | 0.000        | 0.000  | 0.000        | 0.001 | 0.020 |
| Respiratory organics          | Pt   | 0.000          | 0.001            | 0.000              | 0.000   | 0.000      | 0.000         | 0.000        | 0.000  | 0.000        | 0.000  | 0.000        | 0.000 | 0.002 |
| Respiratory inorganics        | Pt   | 0.001          | 0.076            | 0.040              | 0.044   | 0.020      | 0.015         | 0.075        | 0.014  | 0.005        | 0.067  | 0.075        | 0.019 | 0.450 |
| Climate change                | Pt   | -0.013         | 0.013            | 0.017              | 0.178   | 0.009      | 0.004         | 0.010        | 0.002  | 0.001        | 0.001  | 0.015        | 0.004 | 0.242 |
| Radiation                     | Pt   | 0.000          | 0.000            | 0.000              | 0.000   | 0.000      | 0.000         | 0.000        | 0.000  | 0.000        | 0.000  | 0.000        | 0.000 | 0.001 |
| Ozone layer                   | Pt   | 0.000          | 0.000            | 0.000              | 0.000   | 0.000      | 0.000         | 0.000        | 0.000  | 0.000        | 0.000  | 0.000        | 0.000 | 0.000 |
| Ecotoxicity                   | Pt   | 0.000          | 0.001            | 0.025              | 0.004   | 0.057      | 0.004         | 0.007        | 0.000  | 0.001        | 0.001  | 0.001        | 0.004 | 0.105 |
| Acidification/ Eutrophication | Pt   | 0.000          | 0.012            | 0.006              | 0.008   | 0.004      | 0.003         | 0.014        | 0.002  | 0.001        | 0.006  | 0.009        | 0.004 | 0.068 |
| Land use                      | Pt   | 0.561          | 0.000            | 0.005              | 0.000   | 0.001      | 0.000         | -0.002       | 0.000  | 0.000        | 0.000  | 0.001        | 0.007 | 0.573 |
| Minerals                      | Pt   | 0.000          | 0.000            | 0.003              | 0.000   | 0.002      | 0.000         | 0.000        | 0.000  | 0.000        | 0.000  | 0.000        | 0.002 | 0.006 |
| Fossil fuels                  | Pt   | 0.009          | 0.212            | 0.176              | 0.166   | 0.064      | 0.155         | 0.275        | 0.022  | 0.014        | 0.009  | 0.216        | 0.051 | 1.370 |
| Total                         | Pt   | 0.559          | 0.314            | 0.285              | 0.402   | 0.156      | 0.182         | 0.382        | 0.041  | 0.023        | 0.083  | 0.317        | 0.093 | 2.837 |
| Total                         | Pt   | 0.559          | 0.314            | 0.285              | 0.402   | 0.156      | 0.182         | 0.382        | 0.041  | 0.023        | 0.083  | 0.317        | 0.093 | 2.837 |



Figure 5.4. Impact of production of 1 kg of each raw material (Method: EDIP 2003 V1.00 / Default / single score)

Table 5.6. Supplemental data for Figure 5.4

| Impact category              | Unit | Natural Rubber | Synthetic Rubber | Steel Cord, Coated | Textile | Zinc Oxide | Aromatic Oils | Carbon Black | Silica | Stearic Acid | Sulfur | Polyurethane | Steel | Total |
|------------------------------|------|----------------|------------------|--------------------|---------|------------|---------------|--------------|--------|--------------|--------|--------------|-------|-------|
| Global warming 100a          | mPt  | -0.47          | 0.48             | 0.63               | 5.82    | 0.32       | 0.16          | 0.39         | 0.07   | 0.06         | 0.04   | 0.56         | 0.16  | 8.21  |
| Ozone depletion              | mPt  | 0.00           | 0.00             | 0.28               | 0.18    | 0.03       | 0.78          | 1.56         | 0.01   | 0.04         | 0.07   | 0.12         | 0.00  | 3.08  |
| Ozone formation (Vegetation) | mPt  | 0.00           | 0.30             | 0.26               | 0.19    | 0.08       | 0.13          | 0.42         | 0.02   | 0.02         | 0.01   | 0.26         | 0.09  | 1.80  |
| Ozone formation (Human)      | mPt  | 0.00           | 0.30             | 0.27               | 0.19    | 0.08       | 0.14          | 0.43         | 0.02   | 0.02         | 0.01   | 0.25         | 0.09  | 1.80  |
| Acidification                | mPt  | 0.00           | 0.07             | 0.05               | 0.09    | 0.10       | 0.02          | 0.09         | 0.01   | 0.01         | 0.00   | 0.13         | 0.09  | 0.66  |
| Terrestrial eutrophication   | mPt  | 0.00           | 0.18             | 0.11               | 0.14    | 0.07       | 0.05          | 0.25         | 0.01   | 0.01         | 0.01   | 0.20         | 0.07  | 1.11  |
| Aquatic eutrophication EP(N) | mPt  | 0.00           | 0.12             | 0.07               | 0.16    | 0.05       | 0.04          | 0.17         | 0.01   | 0.01         | 0.00   | 0.18         | 0.06  | 0.87  |
| Aquatic eutrophication EP(P) | mPt  | 0.00           | 0.00             | 0.37               | 0.02    | 0.01       | 0.00          | 0.02         | 0.00   | 0.01         | 0.00   | 0.00         | 0.00  | 0.43  |
| Human toxicity air           | mPt  | 0.00           | 0.06             | 0.36               | 0.75    | 0.25       | 0.21          | 0.52         | 0.03   | 0.01         | 0.09   | 0.15         | 0.09  | 2.51  |
| Human toxicity water         | mPt  | 0.00           | 4.92             | 7.05               | 0.75    | 0.73       | 0.04          | 0.32         | 0.06   | 0.04         | 0.02   | 0.66         | 1.30  | 15.90 |
| Human toxicity soil          | mPt  | 0.05           | 0.74             | 2.30               | 4.82    | 0.68       | 2.52          | 5.15         | 0.33   | 0.13         | 0.23   | 0.52         | 0.59  | 18.05 |
| Ecotoxicity water chronic    | mPt  | 0.00           | 0.00             | 0.00               | 0.00    | 0.00       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 0.00         | 0.00  | 0.00  |
| Ecotoxicity water acute      | mPt  | 0.00           | 0.00             | 0.00               | 0.00    | 0.00       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 0.00         | 0.00  | 0.00  |
| Ecotoxicity soil chronic     | mPt  | 0.00           | 0.00             | 0.00               | 0.00    | 0.00       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 0.00         | 0.00  | 0.00  |
| Hazardous waste              | mPt  | 0.00           | 0.00             | 0.00               | 0.07    | 0.03       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 2.07         | 0.06  | 2.22  |
| Slags/ashes                  | mPt  | 0.00           | 0.00             | 0.00               | 0.06    | 0.58       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 0.09         | 0.00  | 0.74  |
| Bulk waste                   | mPt  | 0.00           | 0.14             | 0.00               | 0.03    | 2.78       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 0.16         | 0.01  | 3.11  |
| Radioactive waste            | mPt  | 0.00           | 0.00             | 0.00               | 0.00    | 0.00       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 0.00         | 0.00  | 0.00  |
| Resources (all)              | mPt  | 0.00           | 0.00             | 0.00               | 0.00    | 0.00       | 0.00          | 0.00         | 0.00   | 0.00         | 0.00   | 0.00         | 0.00  | 0.00  |
| Total                        | mPt  | -0.40          | 7.32             | 11.75              | 13.27   | 5.78       | 4.09          | 9.31         | 0.58   | 0.36         | 0.48   | 5.35         | 2.61  | 60.50 |

Both of these figures evaluate the same inventory data described in section 4.1, but the environmental impact results are not exactly the same due to the differences in what each method stresses as more environmentally harmful. The EcoIndicator and EDIP methods are evaluated on different scales (EDIP synthetic rubber = 7.32 mPt from Table 5.6, EcoIndicator synthetic rubber = 314 mPt from Table 5.5), but the comparative impacts within each impact assessment method is the only practical information because of the arbitrary way in which the overall vertical scales were chosen. Taking this into account, both methods relatively agree that synthetic rubber, steel wire, carbon black, and polyurethane are the most harmful materials per kilogram for the environment, but there is a large discrepancy in the environmental load of the production of

natural rubber. Even though the EcoIndicator impacts are determined by categories such as respiratory inorganics and fossil fuels, and EDIP uses different categories like human toxicity water and bulk waste, the relative impacts of most of the raw materials are relatively equal because most of the inputs and outputs from the environmental inventory are considered in the same manner but under a different category name. The one glaring difference however is the EcoIndicator's evaluation of land use. The EDIP method attributes an overall negative score (environmental benefit) to natural rubber due to the Hevea tree's carbon uptake and ability to be used as firewood when it can no longer produce rubber. The EcoIndicator though evaluates the 7  $m^2$  land area needed to produce 1 kg of natural rubber as more environmentally harmful than the entire synthetic rubber production process. Natural rubber production takes place on 9.5 million hectares of tropical land that usually thrives with life due to a wide variety of plant sources [23], so this land use should be recognized as an environmental impact, but quantifying this in an impact assessment method for general use is difficult and can easily be argued against by claiming that the land required to produce natural rubber is not being transformed from a forest to a concrete parking lot but is instead simply using a specific type of tree to replace the previous trees.

This debate about land use has legitimate arguments on both sides, so to quantify the impact of natural rubber in relation to synthetic rubber, the energy required to produce each is another helpful tool. Table 5.7 and Table 5.8 list the raw energy requirements to produce both natural rubber and synthetic rubber. It must be mentioned that this is a very simplified approach that does not include the land use and carbon uptake from natural rubber or the oil requirements for or production emissions from synthetic rubber, but this simple analysis can help to establish fundamental differences between the two production methods.

| Process                 | Energy (MJ/kg) |
|-------------------------|----------------|
| Crepe preparation       | 0.32           |
| Crumb drying            | 4.2            |
| Transport from Malaysia | 1.5            |
| Total                   | 6.02           |

Table 5.7. Energy requirements in natural rubber production [117]

Table 5.8. Energy used in synthetic rubber production [117]

| Energy source         | Energy (MJ/kg) |
|-----------------------|----------------|
| Electricity           | 13.67          |
| Refined oil products  | 66.57          |
| Natural gas           | 75.14          |
| Byproduct fuel credit | -16.01         |
| Net Total             | 139.37         |

As shown in Table 5.7 and Table 5.8, the production of synthetic rubber requires more than 20 times the amount of energy than natural rubber. Considering simply the amount of  $CO_2$ emissions that result from this energy production (see Table 4.4), 1 kg of synthetic rubber is responsible for 9.6 kg of  $CO_2$ , whereas the energy to produce 1 kg of natural rubber only emits 0.4 kg, which results in a net  $CO_2$  output of -2.9 kg when the carbon uptake of the Hevea trees is added. These fundamental differences outline the contrasting impacts seen in Figure 5.3 and Figure 5.4, which show that natural rubber is much less environmentally harmful as compared to the rest of the raw material production methods when land use is not considered. For this reason, a more in depth analysis of the effects of natural rubber land use and the changes in the land when Hevea trees are planted in mass quantities may be required to establish a reliable overall environmental impact of natural rubber. For the purposes of this thesis however, this conflict will just have to be qualitatively noticed in the differences between the impact assessment methods. It appears however that this is the only fundamental difference that causes large deviations between the results, as the rest of the raw material environmental impacts are relatively similar between the EcoIndicator and EDIP methods.

Now that an environmental impact profile has been established for each raw material production inventory, Figure 5.5 and Figure 5.6 consider weighted impact of the differing masses of raw materials required to assemble one tire. Figure 5.5 is an impact assessment using the EcoIndicator99 method, whereas Figure 5.6 uses the EDIP method. Both of these include 1.8 kg of natural rubber, 2.4 kg of synthetic rubber, etc. as described in Table 4.1.



Figure 5.5. Weighted impact of raw materials used in one tire (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Synthetic Rubber | Natural Rubber | Carbon Black | Silica | Sulfur | Zinc Oxide | Aromatic Oils | Stearic Acid | Steel Cord, Coated | Textile | Steel | Total |
|-------------------------------|------|------------------|----------------|--------------|--------|--------|------------|---------------|--------------|--------------------|---------|-------|-------|
| Carcinogens                   | Pt   | 0.001            | 0.000          | 0.003        | 0.000  | 0.000  | 0.000      | 0.001         | 0.000        | 0.015              | 0.001   | 0.001 | 0.022 |
| Respiratory organics          | Pt   | 0.001            | 0.000          | 0.001        | 0.000  | 0.000  | 0.000      | 0.000         | 0.000        | 0.000              | 0.000   | 0.000 | 0.003 |
| Respiratory inorganics        | Pt   | 0.184            | 0.002          | 0.143        | 0.014  | 0.009  | 0.003      | 0.009         | 0.000        | 0.045              | 0.041   | 0.019 | 0.470 |
| Climate change                | Pt   | 0.031            | -0.023         | 0.019        | 0.002  | 0.000  | 0.001      | 0.002         | 0.000        | 0.019              | 0.167   | 0.004 | 0.224 |
| Radiation                     | Pt   | 0.000            | 0.000          | 0.001        | 0.000  | 0.000  | 0.000      | 0.000         | 0.000        | 0.000              | 0.000   | 0.000 | 0.001 |
| Ozone layer                   | Pt   | 0.000            | 0.000          | 0.000        | 0.000  | 0.000  | 0.000      | 0.000         | 0.000        | 0.000              | 0.000   | 0.000 | 0.000 |
| Ecotoxicity                   | Pt   | 0.001            | 0.000          | 0.014        | 0.000  | 0.000  | 0.009      | 0.002         | 0.000        | 0.029              | 0.004   | 0.004 | 0.064 |
| Acidification/ Eutrophication | Pt   | 0.029            | 0.000          | 0.026        | 0.002  | 0.001  | 0.001      | 0.002         | 0.000        | 0.007              | 0.008   | 0.004 | 0.079 |
| Land use                      | Pt   | 0.000            | 1.021          | -0.003       | 0.000  | 0.000  | 0.000      | 0.000         | 0.000        | 0.006              | 0.000   | 0.007 | 1.031 |
| Minerals                      | Pt   | 0.000            | 0.000          | 0.000        | 0.000  | 0.000  | 0.000      | 0.000         | 0.000        | 0.003              | 0.000   | 0.002 | 0.005 |
| Fossil fuels                  | Pt   | 0.513            | 0.017          | 0.522        | 0.022  | 0.001  | 0.010      | 0.095         | 0.001        | 0.201              | 0.156   | 0.051 | 1.588 |
| Total                         | Pt   | 0.760            | 1.018          | 0.726        | 0.039  | 0.011  | 0.025      | 0.111         | 0.002        | 0.325              | 0.377   | 0.093 | 3.487 |

Table 5.9. Supplemental data for Figure 5.5



Figure 5.6. Weighted impact of raw materials used in one tire (Method: EDIP 2003 V1.00 / Default / single score)

| Table 5.10. | Supplemental | data for Figure 5.6 |
|-------------|--------------|---------------------|
|-------------|--------------|---------------------|

| Impact category              | Unit | Synthetic Rubber | Natural Rubber | Carbon Black | Silica | Sulfur | Zinc Oxide | Aromatic Oils | Stearic Acid | Steel Cord, Coated | Textile | Steel | Total |
|------------------------------|------|------------------|----------------|--------------|--------|--------|------------|---------------|--------------|--------------------|---------|-------|-------|
| Global warming 100a          | mPt  | 1.16             | -0.85          | 0.74         | 0.07   | 0.00   | 0.05       | 0.10          | 0.01         | 0.72               | 5.47    | 0.16  | 7.62  |
| Ozone depletion              | mPt  | 0.00             | 0.00           | 2.96         | 0.01   | 0.01   | 0.00       | 0.48          | 0.00         | 0.32               | 0.17    | 0.00  | 3.96  |
| Ozone formation (Vegetation) | mPt  | 0.72             | 0.00           | 0.80         | 0.02   | 0.00   | 0.01       | 0.08          | 0.00         | 0.30               | 0.18    | 0.09  | 2.22  |
| Ozone formation (Human)      | mPt  | 0.72             | 0.00           | 0.81         | 0.02   | 0.00   | 0.01       | 0.09          | 0.00         | 0.31               | 0.18    | 0.09  | 2.23  |
| Acidification                | mPt  | 0.16             | 0.01           | 0.18         | 0.01   | 0.00   | 0.02       | 0.01          | 0.00         | 0.06               | 0.08    | 0.09  | 0.61  |
| Terrestrial eutrophication   | mPt  | 0.45             | 0.00           | 0.48         | 0.01   | 0.00   | 0.01       | 0.03          | 0.00         | 0.13               | 0.13    | 0.07  | 1.31  |
| Aquatic eutrophication EP(N) | mPt  | 0.30             | 0.01           | 0.32         | 0.01   | 0.00   | 0.01       | 0.02          | 0.00         | 0.08               | 0.15    | 0.06  | 0.95  |
| Aquatic eutrophication EP(P) | mPt  | 0.00             | 0.00           | 0.03         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.42               | 0.02    | 0.00  | 0.48  |
| Human toxicity air           | mPt  | 0.15             | 0.01           | 0.98         | 0.03   | 0.01   | 0.04       | 0.13          | 0.00         | 0.41               | 0.70    | 0.09  | 2.55  |
| Human toxicity water         | mPt  | 11.90            | 0.00           | 0.61         | 0.06   | 0.00   | 0.12       | 0.02          | 0.00         | 8.04               | 0.71    | 1.30  | 22.77 |
| Human toxicity soil          | mPt  | 1.79             | 0.09           | 9.78         | 0.32   | 0.03   | 0.11       | 1.54          | 0.01         | 2.62               | 4.53    | 0.59  | 21.40 |
| Ecotoxicity water chronic    | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00    | 0.00  | 0.00  |
| Ecotoxicity water acute      | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00    | 0.00  | 0.00  |
| Ecotoxicity soil chronic     | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00    | 0.00  | 0.00  |
| Hazardous waste              | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.06    | 0.06  | 0.13  |
| Slags/ashes                  | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.09       | 0.00          | 0.00         | 0.00               | 0.06    | 0.00  | 0.15  |
| Bulk waste                   | mPt  | 0.33             | 0.00           | 0.00         | 0.00   | 0.00   | 0.44       | 0.00          | 0.00         | 0.00               | 0.03    | 0.01  | 0.81  |
| Radioactive waste            | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00    | 0.00  | 0.00  |
| Resources (all)              | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00    | 0.00  | 0.00  |
| Total                        | mPt  | 17.69            | -0.74          | 17.69        | 0.56   | 0.06   | 0.91       | 2.50          | 0.03         | 13.40              | 12.47   | 2.61  | 67.19 |

Again, correcting for the differences in the assessment of natural rubber production, Figure 5.5 and Figure 5.6 are very similar in that they both stress the environmental impacts of synthetic rubber, carbon black, coated wires, and textiles used in one tire. The rest of the raw materials have a much smaller relative environmental impact in some cases because only small amounts are used in the production of a tire (like sulfur and ZnO), while others have a smaller impact due to their environmentally safe production process as described in Figure 5.3 (e.g. silica). Similarly, Figure 5.7 and Figure 5.8 illustrate the weighted environmental impacts of each mass of raw material used in the production of one Tweel<sup>TM</sup> from Table 4.2, but in these figures almost the entire environmental load of Tweel<sup>TM</sup> raw materials is attributable to polyurethane because of the large amount needed relative to the 1.2 kg of rubber. As described in the inventory collection section of this report though, the energy needed to heat the prepolymers and curative before the polyurethane is mixed and poured into a Tweel<sup>TM</sup> mold and the energy needed to hold the mold at an elevated temperature while the polyurethane hardens is considered along with the production of the prepolymers themselves. This may falsely inflate the impact of the pure polyurethane, so it has been considered part of the raw material production process. As with Figure 5.5 and Figure 5.6 that describe the impact of the tire raw materials, each of the impacts shown in Figure 5.7 and Figure 5.8 can be added together because they are presented on a uniform scale to assess the overall impact of the raw material production phase of one Tweel<sup>TM</sup>. This overall assessment will be presented in section 5.2.3 below.



Figure 5.7. Weighted impact of raw materials used in one Tweel<sup>™</sup> (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)


## Table 5.11. Supplemental data for Figure 5.7

Figure 5.8. Weighted impact of raw materials used in one Tweel<sup>™</sup> (Method: EDIP 2003 V1.00 / Default / single score)

Table 5.12. Supplemental data for Figure 5.8

| <i></i>                      |      |                  |                |              |        |        |            |               |              |                    |              |       |       |
|------------------------------|------|------------------|----------------|--------------|--------|--------|------------|---------------|--------------|--------------------|--------------|-------|-------|
| Impact category              | Unit | Synthetic Rubber | Natural Rubber | Carbon Black | Silica | Sulfur | Zinc Oxide | Aromatic Oils | Stearic Acid | Steel Cord, Coated | Polyurethane | Steel | Total |
| Global warming 100a          | mPt  | 0.55             | -0.05          | 0.10         | 0.06   | 0.00   | 0.01       | 0.05          | 0.00         | 0.39               | 4.76         | 0.16  | 6.04  |
| Ozone depletion              | mPt  | 0.00             | 0.00           | 0.41         | 0.01   | 0.00   | 0.00       | 0.23          | 0.00         | 0.17               | 1.00         | 0.00  | 1.83  |
| Ozone formation (Vegetation) | mPt  | 0.34             | 0.00           | 0.11         | 0.02   | 0.00   | 0.00       | 0.04          | 0.00         | 0.16               | 2.19         | 0.09  | 2.96  |
| Ozone formation (Human)      | mPt  | 0.34             | 0.00           | 0.11         | 0.02   | 0.00   | 0.00       | 0.04          | 0.00         | 0.17               | 2.14         | 0.09  | 2.91  |
| Acidification                | mPt  | 0.08             | 0.00           | 0.02         | 0.00   | 0.00   | 0.00       | 0.01          | 0.00         | 0.03               | 1.11         | 0.09  | 1.35  |
| Terrestrial eutrophication   | mPt  | 0.21             | 0.00           | 0.07         | 0.01   | 0.00   | 0.00       | 0.02          | 0.00         | 0.07               | 1.68         | 0.07  | 2.13  |
| Aquatic eutrophication EP(N) | mPt  | 0.14             | 0.00           | 0.04         | 0.01   | 0.00   | 0.00       | 0.01          | 0.00         | 0.05               | 1.49         | 0.06  | 1.80  |
| Aquatic eutrophication EP(P) | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.23               | 0.00         | 0.00  | 0.24  |
| Human toxicity air           | mPt  | 0.07             | 0.00           | 0.14         | 0.02   | 0.00   | 0.01       | 0.06          | 0.00         | 0.22               | 1.23         | 0.09  | 1.84  |
| Human toxicity water         | mPt  | 5.66             | 0.00           | 0.08         | 0.05   | 0.00   | 0.02       | 0.01          | 0.00         | 4.39               | 5.57         | 1.30  | 17.09 |
| Human toxicity soil          | mPt  | 0.85             | 0.00           | 1.35         | 0.26   | 0.01   | 0.02       | 0.74          | 0.01         | 1.43               | 4.35         | 0.59  | 9.59  |
| Ecotoxicity water chronic    | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00         | 0.00  | 0.00  |
| Ecotoxicity water acute      | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00         | 0.00  | 0.00  |
| Ecotoxicity soil chronic     | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00         | 0.00  | 0.00  |
| Hazardous waste              | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 17.47        | 0.06  | 17.53 |
| Slags/ashes                  | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.01       | 0.00          | 0.00         | 0.00               | 0.80         | 0.00  | 0.81  |
| Bulk waste                   | mPt  | 0.16             | 0.00           | 0.00         | 0.00   | 0.00   | 0.07       | 0.00          | 0.00         | 0.00               | 1.34         | 0.01  | 1.57  |
| Radioactive waste            | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00         | 0.00  | 0.00  |
| Resources (all)              | mPt  | 0.00             | 0.00           | 0.00         | 0.00   | 0.00   | 0.00       | 0.00          | 0.00         | 0.00               | 0.00         | 0.00  | 0.00  |
| Total                        | mPt  | 8.42             | -0.04          | 2.44         | 0.45   | 0.01   | 0.14       | 1.20          | 0.01         | 7.31               | 45.14        | 2.61  | 67.70 |

Figure 5.5 through Figure 5.8 assess the environmental impact of the production of the required amount of each raw material used to create both products, but the addition of the

impacts of each material together to give a profile of the impact of producing all the materials necessary for one tire or one Tweel<sup>TM</sup> returns surprisingly similar results between the two products. Table 5.13 describes the relative importance of each raw material in relation to the overall environmental impact of all the materials needed to produce both products, and there are two interesting results found. First of all, although the material breakdown differs greatly between the two products (Tweel's<sup>TM</sup> polyurethane production is 70% of the overall score compared to a tire's 0%) and a Tweel<sup>™</sup> weighs 12 kg while a tire only weighs 10 kg (without considering the hub), both methods agree that producing all the raw materials necessary for a Tweel<sup>™</sup> is almost exactly as environmentally harmful as the necessary tire materials. According to the EcoIndicator method, the Tweel's™ materials account for only 2% more environmental load as a Tweel's<sup>TM</sup> materials produce as environmental impact of 3.55 Pts compared to a tire's 3.49 Pts. The EDIP method supports this similarity with only a 1% difference (Tweel -67.7 mPt vs. tire -67.2 mPt). There is a second interesting point that there is a very clear similarity also between the scores for each product from both methods, but this will be discussed more later when the scales of each of the two impact assessment methods are compared against each other in the overall view of the life cycle. Since the two scales are relative to their own developed methods, a tire raw material's 3.49 Pt EcoIndicator score is difficult to compare to the EDIP's 67.7 mPt, but it will be seen that these two numbers agree quite well when the scales are compared against each other in section 6.

|                    | Tire - Eco |        | Tire - EDIP |        | Tweel - Eco |        | Tweel - EDIP |        |
|--------------------|------------|--------|-------------|--------|-------------|--------|--------------|--------|
| Unit               | Pt         | %      | mPt         | %      | Pt          | %      | mPt          | %      |
| Synthetic Rubber   | 0.760      | 21.8%  | 17.69       | 26.3%  | 0.362       | 10.2%  | 8.42         | 12.4%  |
| Natural Rubber     | 1.018      | 29.2%  | -0.74       | -1.1%  | 0.054       | 1.5%   | -0.04        | -0.1%  |
| Carbon Black       | 0.726      | 20.8%  | 17.69       | 26.3%  | 0.100       | 2.8%   | 2.44         | 3.6%   |
| Silica             | 0.039      | 1.1%   | 0.56        | 0.8%   | 0.032       | 0.9%   | 0.45         | 0.7%   |
| Sulfur             | 0.011      | 0.3%   | 0.06        | 0.1%   | 0.002       | 0.1%   | 0.01         | 0.0%   |
| Zinc Oxide         | 0.025      | 0.7%   | 0.91        | 1.4%   | 0.004       | 0.1%   | 0.14         | 0.2%   |
| Aromatic Oils      | 0.111      | 3.2%   | 2.50        | 3.7%   | 0.053       | 1.5%   | 1.20         | 1.8%   |
| Stearic Acid       | 0.002      | 0.1%   | 0.03        | 0.1%   | 0.001       | 0.0%   | 0.01         | 0.0%   |
| Steel Cord, Coated | 0.325      | 9.3%   | 13.40       | 19.9%  | 0.178       | 5.0%   | 7.31         | 10.8%  |
| Textile            | 0.377      | 10.8%  | 12.47       | 18.6%  | 0.000       | 0.0%   | 0.00         | 0.0%   |
| Polyurethane       | 0.000      | 0.0%   | 0.00        | 0.0%   | 2.675       | 75.3%  | 45.14        | 66.7%  |
| Steel              | 0.093      | 2.7%   | 2.61        | 3.9%   | 0.093       | 2.6%   | 2.61         | 3.9%   |
| Total              | 3.487      | 100.0% | 67.19       | 100.0% | 3.553       | 100.0% | 67.70        | 100.0% |

Table 5.13. Raw materials impact

The hub for both a tire and Tweel<sup>™</sup> has lifespan of roughly 4 times that of the product which it supports, so only 25% of the environmental impact of the 4 kg steel hub is considered to impact the life cycle of one product.[41] Thus, only 1 kg of cast steel is considered in both the impact of the raw material production and manufacturing stages of the life cycle. Steel is used in the hub of both tires and Tweels<sup>™</sup>, so the same steel production impact scores are seen between both products.

### 5.2.2 Manufacturing

As discussed in the inventory collection, the production phase has been divided into two sections – raw material production and tire or Tweel<sup>™</sup> manufacturing. The manufacturing step describes the environmental impact of the conversion of the raw materials into a tire or a Tweel<sup>™</sup> and the final product. The environmental impacts of these manufacturing processes are shown in Figure 5.9.



Figure 5.9. Manufacturing impacts of 10 kg tire and 12 kg Tweel<sup>™</sup> (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tire Manufacturing | Tweel Manufacturing |
|-------------------------------|------|--------------------|---------------------|
| Carcinogens                   | Pt   | 0.009              | 0.003               |
| Respiratory organics          | Pt   | 0.001              | 0.002               |
| Respiratory inorganics        | Pt   | 0.303              | 0.392               |
| Climate change                | Pt   | 0.048              | 0.072               |
| Radiation                     | Pt   | 0.000              | 0.000               |
| Ozone layer                   | Pt   | 0.000              | 0.000               |
| Ecotoxicity                   | Pt   | 0.075              | 0.008               |
| Acidification/ Eutrophication | Pt   | 0.086              | 0.109               |
| Land use                      | Pt   | 0.001              | 0.001               |
| Minerals                      | Pt   | 0.002              | 0.000               |
| Fossil fuels                  | Pt   | 0.603              | 0.612               |
| Total                         | Pt   | 1.129              | 1.199               |

Table 5.14. Supplemental data for Figure 5.9

As expected due to the similarities in the manufacturing processes, the environmental impact of a 10 kg tire and a 12 kg Tweel<sup>TM</sup> (both with a 1 kg hub) are relatively equal. The EcoIndicator method scores the impact of the tire manufacturing process as 1.13 Pt, while the Tweel<sup>TM</sup> process is only rated 6% higher at 1.20 Pt. The manufacturing of the tread was modeled in the same way between both products and the overall energy requirement to manufacture a tire is 117 MJ and a Tweel<sup>TM</sup> requires roughly 100 MJ, while the energy to

produce the raw materials necessary for either product is roughly 1100 MJ.[38] This 17% energy difference between the manufacturing processes is offset by the extra mold release and adhesives needed in the Tweel<sup>TM</sup> manufacturing process, resulting in a very minimal difference in environmental impact according to the EcoIndicator99 impact assessment method.

#### 5.2.3 Overall Production Impact

Combining the production of all the required raw materials and the manufacturing inventory gives the overall production environmental impact shown in Figure 5.10 and Figure 5.11. As discussed in section 5.2.1, the total impact of the raw materials for each product is assembled by simply adding up the weighted impacts of the quantity of each material used to make a tire or a Tweel<sup>TM</sup> as described in Figure 5.5 through Figure 5.8. The addition of the impact of the manufacturing process on top of that gives the overall production impact labeled "Tire – production" and "Tweel<sup>TM</sup> – production" in Figure 5.10 and Figure 5.11 below.



Figure 5.10. Overall tire and Tweel<sup>™</sup> production impact (10 kg tire, 12 kg Tweel<sup>™</sup>, both with 1 kg hub) (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tire - Manufacturing | Tire - Production | Tire - Raw Materials | Tweel - Manufacturing | Tweel - Production | Tweel - Raw Materials |
|-------------------------------|------|----------------------|-------------------|----------------------|-----------------------|--------------------|-----------------------|
| Carcinogens                   | Pt   | 0.009                | 0.032             | 0.022                | 0.003                 | 0.016              | 0.013                 |
| Respiratory organics          | Pt   | 0.001                | 0.004             | 0.003                | 0.002                 | 0.004              | 0.003                 |
| Respiratory inorganics        | Pt   | 0.303                | 0.780             | 0.477                | 0.392                 | 1.193              | 0.801                 |
| Climate change                | Pt   | 0.048                | 0.276             | 0.228                | 0.072                 | 0.235              | 0.163                 |
| Radiation                     | Pt   | 0.000                | 0.001             | 0.001                | 0.000                 | 0.000              | 0.000                 |
| Ozone layer                   | Pt   | 0.000                | 0.001             | 0.000                | 0.000                 | 0.000              | 0.000                 |
| Ecotoxicity                   | Pt   | 0.075                | 0.139             | 0.064                | 0.008                 | 0.038              | 0.030                 |
| Acidification/ Eutrophication | Pt   | 0.086                | 0.166             | 0.080                | 0.109                 | 0.213              | 0.103                 |
| Land use                      | Pt   | 0.001                | 1.032             | 1.031                | 0.001                 | 0.075              | 0.072                 |
| Minerals                      | Pt   | 0.002                | 0.007             | 0.005                | 0.000                 | 0.004              | 0.004                 |
| Fossil fuels                  | Pt   | 0.603                | 2.519             | 1.915                | 0.612                 | 3.116              | 2.505                 |
| Total                         | Pt   | 1,129                | 4.958             | 3.828                | 1,199                 | 4.894              | 3.695                 |

# Table 5.15. Supplemental data for Figure 5.10



Figure 5.11. Overall tire and Tweel<sup>™</sup> production impact (10 kg tire, 12 kg Tweel<sup>™</sup>, both with 1 kg hub)

## (Method: EDIP 2003 V1.00 / Default / single score)

|                              | 1    |                      |                       |                      |                       |                   |                    |
|------------------------------|------|----------------------|-----------------------|----------------------|-----------------------|-------------------|--------------------|
| Impact category              | Unit | Tire - Raw Materials | Tweel - Raw Materials | Tire - Manufacturing | Tweel - Manufacturing | Tire - Production | Tweel - Production |
| Global warming 100a          | mPt  | 7.79                 | 6.11                  | 0.72                 | 0.67                  | 8.51              | 6.78               |
| Ozone depletion              | mPt  | 3.97                 | 1.83                  | 0.68                 | 0.50                  | 4.65              | 2.32               |
| Ozone formation (Vegetation) | mPt  | 2.31                 | 2.99                  | 1.05                 | 0.78                  | 3.36              | 3.77               |
| Ozone formation (Human)      | mPt  | 2.33                 | 2.95                  | 1.01                 | 0.75                  | 3.34              | 3.70               |
| Acidification                | mPt  | 0.62                 | 1.36                  | 0.30                 | 0.24                  | 0.93              | 1.60               |
| Terrestrial eutrophication   | mPt  | 1.34                 | 2.14                  | 0.84                 | 0.63                  | 2.17              | 2.77               |
| Aquatic eutrophication EP(N) | mPt  | 0.97                 | 1.81                  | 0.58                 | 0.45                  | 1.55              | 2.26               |
| Aquatic eutrophication EP(P) | mPt  | 0.48                 | 0.24                  | 0.01                 | 0.00                  | 0.49              | 0.24               |
| Human toxicity air           | mPt  | 2.55                 | 1.85                  | 1.19                 | 0.85                  | 3.75              | 2.70               |
| Human toxicity water         | mPt  | 23.71                | 17.48                 | 0.12                 | 0.08                  | 23.83             | 17.55              |
| Human toxicity soil          | mPt  | 21.61                | 9.68                  | 5.03                 | 10.33                 | 26.64             | 19.99              |
| Ecotoxicity water chronic    | mPt  | 0.00                 | 0.00                  | 0.00                 | 0.00                  | 0.00              | 0.00               |
| Ecotoxicity water acute      | mPt  | 0.00                 | 0.00                  | 0.00                 | 0.00                  | 0.00              | 0.00               |
| Ecotoxicity soil chronic     | mPt  | 0.00                 | 0.00                  | 0.00                 | 0.00                  | 0.00              | 0.00               |
| Hazardous waste              | mPt  | 0.13                 | 17.53                 | -0.05                | 0.00                  | 0.08              | 17.53              |
| Slags/ashes                  | mPt  | 0.15                 | 0.81                  | -0.05                | 0.00                  | 0.10              | 0.82               |
| Bulk waste                   | mPt  | 0.81                 | 1.57                  | 0.11                 | 0.10                  | 0.92              | 1.69               |
| Radioactive waste            | mPt  | 0.00                 | 0.00                  | 0.00                 | 0.00                  | 0.00              | 0.00               |
| Resources (all)              | mPt  | 0.00                 | 0.00                  | 0.00                 | 0.00                  | 0.00              | 0.00               |
| Total                        | mPt  | 68.76                | 68.35                 | 11.55                | 15.39                 | 80.31             | 83.71              |

### Table 5.16. Supplemental data for Figure 5.11

Both of these figures above show a remarkable similarity between the overall environmental impact of tires and Tweels<sup>™</sup> considering the great difference in raw materials and the increased overall weight of a Tweel<sup>™</sup> from 10 kg to 12 kg. Again, it is difficult to compare the two methods because they are presented on different scales, but the 4% difference between the EDIP production impacts of 80.31 and 83.71 mPt only disagrees with the EcoIndiactor's 1% difference between 4.96 and 4.89 Pt by a small amount. The EDIP method attributes a slightly higher environmental impact to the Tweel<sup>TM</sup> production process because of the 'human toxicity soil' category in the manufacturing phase which is due to the mold release and adhesives necessary to mold the polyurethane. Similarities do exist though between both assessment methods. Both methods agree that producing all the raw materials has a much larger (about four times higher) impact on the environment than the actual tire or Tweel<sup>TM</sup> manufacturing, attributing between 75% and 80% of the total production impact to the raw material production. Again however, a similar difference arises as seen before due to the land use considered in the EcoIndicator method. The EcoIndicator method assesses the overall impact of both products as approximately equal, but the land use category accounts for 21% of the tire's production impact (1.03 of 4.96 points as shown in Table 5.17). If this category is ignored, then the impact of producing one tire would be approximately 20% lower than producing one Tweel<sup>TM</sup>.

| Impact category               | Tire - Production (Pt) | Tweel <sup>TM</sup> - Production (Pt) |
|-------------------------------|------------------------|---------------------------------------|
| Carcinogens                   | 0.032                  | 0.016                                 |
| Respiratory organics          | 0.005                  | 0.005                                 |
| Respiratory inorganics        | 0.780                  | 1.193                                 |
| Climate change                | 0.276                  | 0.235                                 |
| Radiation                     | 0.001                  | 0.000                                 |
| Ozone layer                   | 0.001                  | 0.000                                 |
| Ecotoxicity                   | 0.139                  | 0.038                                 |
| Acidification/ Eutrophication | 0.166                  | 0.213                                 |
| Land use                      | 1.032                  | 0.075                                 |
| Minerals                      | 0.007                  | 0.004                                 |
| Fossil fuels                  | 2.519                  | 3.116                                 |
| Total                         | 4.958                  | 4.895                                 |

Table 5.17. Contribution of production phase EcoIndicator impact categories

Due to this uncertain land use impact again, it is useful to examine a few specific greenhouse gas emissions in order to assess the differences in the environmental impact of each product's production phase. Four of the major greenhouse gases, carbon dioxide, methane, nitrous oxide, and CFC-12, are listed in Table 5.18 along with the corresponding emissions for the overall production of either one tire or one Tweel<sup>TM</sup> due to both raw material production and product manufacturing.

Table 5.18. Greenhouse gas emissions

|                     | $CO_2(kg)$ | Methane (g) | $N_2O(g)$ | CFC-12 (µg) |
|---------------------|------------|-------------|-----------|-------------|
| Tire                | 42         | 158         | 2.51      | 2.44        |
| Tweel <sup>TM</sup> | 58         | 180         | 0.75      | 0.83        |

These results are most useful when they are incorporated into an impact assessment method, but the raw data for each emission can also be useful to note that fabricating one Tweel<sup>TM</sup> produces 16 kg more CO<sub>2</sub> while avoiding less than half the N<sub>2</sub>O and CFC-12 emissions as compared to a tire. It is difficult to quantify this tradeoff, but on an elementary level there are pros and cons to each production method, so the overall environmental impacts of both products

roughly even out when all the factors are considered. Figure 5.10 and Figure 5.11 support this by assessing the overall production of both a tire and a Tweel<sup>TM</sup> as relatively equal. The small production differences between the 4.96 Pt tire score and the 4.89 Pt Tweel<sup>TM</sup> score from the EcoIndicator method (1%) and the 80.31 mPt tire production score and the 83.71 mPt Tweel<sup>TM</sup> score by the EDIP method (4%) show only minor differences between the entire production process of these two products, but it will be seen later whether these small differences effect the overall LCA. It may be argued that producing a Tweel<sup>TM</sup> is slightly more harmful to the environment due to any number of factors such as the large percentage of polyurethane, the ancillary products needed to mold the product, or the basic increase in mass, especially when the land use of the natural rubber used in tires is not taken into account, but as will be seen in the overall life cycle of each product, this difference is almost negligible compared to the impacts of the other life cycle stages.

#### 5.3 <u>Use Phase</u>

The use phase of both a tire and a Tweel<sup>™</sup> entails the gasoline use attributable to rolling resistance as described in Table 4.8 and the debris from both products' rubber treads. The gasoline tailpipe emissions are well documented by the EPA and described in Table 4.9, but there is a small amount of uncertainty in the environmental impact of producing gasoline before it is used by a vehicle. Three reliable databases describe the production of gasoline from oil refineries, but as shown in Figure 5.12 and Figure 5.13 below, they do not all agree on the environmental impact of producing enough fuel to roll a tire through its entire lifespan. Both figures describe the total environmental impact of both producing and burning (the resulting tailpipe emissions) 101 L of gasoline as defined by the BUWAL, IDEMAT, and Franklin databases separately. Then all three databases are equally averaged together to minimize the

potential error of any one inventory data set, denoted by "Tire Fuel Use – Average". This averaged fuel use impact is what will be used in the overall life cycle analysis, but an understanding of the variance is an important aspect of this very important phase.



Figure 5.12. Fuel production and use variance, 101 L of gasoline (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tire Fuel Use - BUWAL | Tire Fuel Use - Franklin | Tire Fuel Use - IDEMAT | Tire Fuel Use - Average |
|-------------------------------|------|-----------------------|--------------------------|------------------------|-------------------------|
| Carcinogens                   | Pt   | 0.00                  | 0.01                     | 0.00                   | 0.00                    |
| Respiratory organics          | Pt   | 0.05                  | 0.02                     | 0.01                   | 0.03                    |
| Respiratory inorganics        | Pt   | 7.83                  | 6.90                     | 6.85                   | 7.05                    |
| Climate change                | Pt   | 2.71                  | 2.42                     | 2.29                   | 2.36                    |
| Radiation                     | Pt   | 0.00                  | 0.00                     | 0.00                   | 0.00                    |
| Ozone layer                   | Pt   | 0.01                  | 0.00                     | 0.00                   | 0.00                    |
| Ecotoxicity                   | Pt   | 0.47                  | 0.03                     | 0.00                   | 0.17                    |
| Acidification/ Eutrophication | Pt   | 2.20                  | 2.00                     | 2.06                   | 2.12                    |
| Land use                      | Pt   | 0.00                  | 0.00                     | 0.07                   | 0.03                    |
| Minerals                      | Pt   | 0.00                  | 0.00                     | 0.00                   | 0.00                    |
| Fossil fuels                  | Pt   | 20.23                 | 18.16                    | 18.72                  | 19.28                   |
| Total                         | Pt   | 33.66                 | 29.58                    | 29.99                  | 30.88                   |

Table 5.19. Supplemental data for Figure 5.12



Figure 5.13. Fuel production and use variance, 101 L of gasoline (Method: EDIP 2003 V1.00 / Default / single score)

| Impact category              | Unit | Tire Fuel Use - BUWAL | Tire Fuel Use - Franklin | Tire Fuel Use - IDEMAT | Tire Fuel Use - Average |
|------------------------------|------|-----------------------|--------------------------|------------------------|-------------------------|
| Global warming 100a          | mPt  | 91.8                  | 89.8                     | 84.6                   | 87.2                    |
| Ozone depletion              | mPt  | 0.0                   | 0.1                      | 0.0                    | 0.0                     |
| Ozone formation (Vegetation) | mPt  | 67.4                  | 67.0                     | 63.0                   | 64.9                    |
| Ozone formation (Human)      | mPt  | 64.8                  | 65.2                     | 60.1                   | 61.9                    |
| Acidification                | mPt  | 20.6                  | 18.6                     | 21.0                   | 21.6                    |
| Terrestrial eutrophication   | mPt  | 54.6                  | 50.7                     | 52.9                   | 54.5                    |
| Aquatic eutrophication EP(N) | mPt  | 36.1                  | 33.5                     | 35.0                   | 34.9                    |
| Aquatic eutrophication EP(P) | mPt  | 0.0                   | 0.1                      | 0.0                    | 0.0                     |
| Human toxicity air           | mPt  | 12.7                  | 12.2                     | 11.4                   | 11.7                    |
| Human toxicity water         | mPt  | 0.8                   | 2.3                      | 0.0                    | 1.0                     |
| Human toxicity soil          | mPt  | 19.6                  | 18.9                     | 17.5                   | 18.0                    |
| Ecotoxicity water chronic    | mPt  | 0.0                   | 0.0                      | 0.0                    | 0.0                     |
| Ecotoxicity water acute      | mPt  | 0.0                   | 0.0                      | 0.0                    | 0.0                     |
| Ecotoxicity soil chronic     | mPt  | 0.0                   | 0.0                      | 0.0                    | 0.0                     |
| Hazardous waste              | mPt  | 0.0                   | 0.0                      | 0.0                    | 0.0                     |
| Slags/ashes                  | mPt  | 0.0                   | 0.0                      | 0.0                    | 0.0                     |
| Bulk waste                   | mPt  | 0.6                   | 2.0                      | 0.0                    | 0.9                     |
| Radioactive waste            | mPt  | 0.0                   | 0.0                      | 0.0                    | 0.0                     |
| Resources (all)              | mPt  | 0.0                   | 0.0                      | 0.0                    | 0.0                     |
| Total                        | mPt  | 369.0                 | 360.3                    | 345.7                  | 355.9                   |

Table 5.20. Supplemental data for Figure 5.13

As shown in Figure 5.12 and Figure 5.13, there are slight differences in the overall impact of producing and burning enough gasoline to overcome a tire's rolling resistance throughout its life, but combining all three database values into one impact gives a more reliable average fuel use impact. It is helpful though to consider a range of values that this single impact score can take from the average 30.88 Pts from the EcoIndicator method and 355.9 mPt from the

EDIP method. According to the EcoIndicator method, considering only one of the three database inventories could give an overall environmental impact value anywhere from 29.58 to 33.66 Pt (+9% or -4%). The EDIP method on the other hand gives a much smaller relative range of impacts from 345.7 to 369 mPt (+3% or -4%). Again, the average gasoline impact will be used throughout this report, but it will be examined in the life cycle analysis section 5.5 whether or not these 4% or 9% differences would have an impact on the overall life cycle comparison between a tire and a Tweel<sup>TM</sup>.

As little is known about the wear characteristics of the Tweel<sup>TM</sup>, it has been assumed that the tread wears at the same rate resulting in the same amount of particulates and emissions to the atmosphere. So, Figure 5.14 illustrates the impact of each product's fuel use (baseline tire, Thrust 1 Tweel<sup>TM</sup>, Thrust 2 Tweel<sup>TM</sup>, Thrust 3 Tweel<sup>TM</sup>, respectively) alongside the impact of the rubber debris as a result of being driven 42,000 miles. The Thrust 1 Tweel<sup>TM</sup> is the only version of the Tweel<sup>TM</sup> being analyzed throughout its entire life cycle because it is the only version that has reliable production data. The other two versions are much more hypothetical at this point so they have not been included in the production phase analysis, but their fuel saving goals have been documented and the relative environmental benefit of this fuel savings is shown in Figure 5.14.



Figure 5.14. Use phase environmental impact comparison (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tire Fuel Use | Tweel I Fuel Use | Tweel II Fuel Use | Tweel III Fuel Use | Tread Debris |
|-------------------------------|------|---------------|------------------|-------------------|--------------------|--------------|
| Carcinogens                   | Pt   | 0.00          | 0.00             | 0.00              | 0.00               | 0.01         |
| Respiratory organics          | Pt   | 0.01          | 0.01             | 0.02              | 0.02               | 0.00         |
| Respiratory inorganics        | Pt   | 7.05          | 6.37             | 4.49              | 3.21               | 1.97         |
| Climate change                | Pt   | 2.36          | 2.13             | 1.50              | 1.08               | 0.00         |
| Radiation                     | Pt   | 0.00          | 0.00             | 0.00              | 0.00               | 0.00         |
| Ozone layer                   | Pt   | 0.00          | 0.00             | 0.00              | 0.00               | 0.00         |
| Ecotoxicity                   | Pt   | 0.00          | 0.00             | 0.00              | 0.00               | 2.44         |
| Acidification/ Eutrophication | Pt   | 2.12          | 1.91             | 1.35              | 0.96               | 0.00         |
| Land use                      | Pt   | 0.07          | 0.06             | 0.04              | 0.03               | 0.00         |
| Minerals                      | Pt   | 0.00          | 0.00             | 0.00              | 0.00               | 0.00         |
| Fossil fuels                  | Pt   | 19.28         | 17.46            | 12.23             | 8.78               | 0.00         |
| Total                         | Pt   | 30.88         | 27.95            | 19.62             | 14.08              | 4.42         |

| Table 5 21   | Supplemental | data for | · Figure | 5  | 14    |
|--------------|--------------|----------|----------|----|-------|
| 1 4010 5.21. | Suppremental | uutu 101 | 1 Iguit  | υ. | - I I |





| Impact category              | Unit | Tire Fuel Use | Tweel I Fuel Use | Tweel II Fuel Use | Tweel III Fuel Use | Tread Debris |
|------------------------------|------|---------------|------------------|-------------------|--------------------|--------------|
| Global warming 100a          | mPt  | 87.2          | 78.9             | 55.3              | 39.8               | 0.0          |
| Ozone depletion              | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Ozone formation (Vegetation) | mPt  | 64.9          | 58.6             | 41.3              | 29.5               | 0.0          |
| Ozone formation (Human)      | mPt  | 61.9          | 56.0             | 39.4              | 28.2               | 0.0          |
| Acidification                | mPt  | 21.6          | 19.5             | 13.7              | 9.8                | 0.0          |
| Terrestrial eutrophication   | mPt  | 54.5          | 49.2             | 34.7              | 24.8               | 0.0          |
| Aquatic eutrophication EP(N) | mPt  | 36.1          | 32.6             | 22.9              | 16.4               | 0.0          |
| Aquatic eutrophication EP(P) | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Human toxicity air           | mPt  | 11.7          | 10.6             | 7.4               | 5.3                | 0.1          |
| Human toxicity water         | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.1          |
| Human toxicity soil          | mPt  | 18.0          | 16.4             | 11.5              | 8.2                | 1.0          |
| Ecotoxicity water chronic    | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Ecotoxicity water acute      | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Ecotoxicity soil chronic     | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Hazardous waste              | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Slags/ashes                  | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Bulk waste                   | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Radioactive waste            | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Resources (all)              | mPt  | 0.0           | 0.0              | 0.0               | 0.0                | 0.0          |
| Total                        | mPt  | 355.9         | 321.8            | 226.2             | 162.2              | 1.3          |

As expected, the 10%, 30%, and 50% fuel savings from the three different Tweel<sup>™</sup> versions result in a proportional decrease in the environmental impact from 30.9 to 28, 19.6, and

14.1 Pts on the EcoIndicator scale. Again the vertical Pt scale is fairly arbitrary, so the exact numbers do not represent much, but the relative impacts not only between the use phases of both products but also between the different life cycle phases are the important points to notice. As shown in the Figure 5.14 above, the relative impact of the rubber debris on the environment is only about 15% of the impact of the gasoline used by the low rolling resistance tire chosen for this analysis. So in designing a new tire or Tweel<sup>™</sup> with the environmental impact of the use phase in mind, it is important to develop a product that has a minimal rolling resistance coefficient even if that correlates with a larger amount of rubber debris over its life, especially since the EDIP method values the importance of the tread debris much lower than the EcoIndicator method. This relationship between RRC and rubber wear is complicated and cannot be simply modeled, but hypothetically if a new tire is developed with 10% lower rolling resistance but 10% more rubber debris develops, an overall environmental savings of 8% would result due to the relative environmental importance of a tire's fuel use compared to its wear debris as shown in Figure 5.14. Both of these use phase components will be compared with the other phases of each product's life cycle in section 5.5 below to give an overall relative importance of this fuel use.

#### 5.4 End of Life

Since the polyurethane can be separated from the rubber tread in a Tweel<sup>TM</sup> at the end of its life, this analysis will assume both materials will be disposed of separately, which simplifies the environmental assessment to a combination of rubber (whole tire and Tweel<sup>TM</sup> tread) and polyurethane treated separately. The national average disposal route percentages for both materials (Figure 4.5 and Figure 4.6) are analyzed individually and then combined in the appropriate weight percentages for both a tire and a Tweel<sup>TM</sup>. Considering the rubber first, the

tread separated from a Tweel<sup>TM</sup> by the heating method described in section 4.5.3 is assumed to have the same material properties and composition as rubber from a tire in order to group both rubber sources together for simplification and minimal Tweel<sup>TM</sup> recycling data purposes. The tread from a Tweel<sup>TM</sup> has no wires and thus will produce no scrap metal upon grinding, but all other properties are assumed to be equal. So, considering Tweel<sup>TM</sup> tread and tire rubber in the same disposal route categories, the environmental impacts of each are described in Figure 5.16 and Figure 5.17 by the EcoIndicator and EDIP methods respectively. Both figures describe the environmental impact of 1 kg of tire rubber or Tweel<sup>TM</sup> tread per disposal route.



Figure 5.16. Environmental impact of 1 kg of rubber per disposal route (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Rubber Derived Fuel | Civil Engineering | Landfill of Tires | Tire Recycling |
|-------------------------------|------|---------------------|-------------------|-------------------|----------------|
| Carcinogens                   | mPt  | -0.1                | -0.4              | 0.4               | -0.5           |
| Respiratory organics          | mPt  | 0.0                 | -0.9              | 0.0               | -1.1           |
| Respiratory inorganics        | mPt  | -2.2                | -113.7            | 17.5              | -138.1         |
| Climate change                | mPt  | -0.7                | -18.8             | 2.0               | -29.1          |
| Radiation                     | mPt  | 0.0                 | 0.0               | 0.0               | 0.0            |
| Ozone layer                   | mPt  | 0.0                 | 0.0               | 0.0               | 0.0            |
| Ecotoxicity                   | mPt  | 0.2                 | -0.9              | 832.7             | -1.2           |
| Acidification/ Eutrophication | mPt  | 0.1                 | -17.7             | 2.8               | -21.6          |
| Land use                      | mPt  | 0.1                 | 0.0               | 0.0               | 0.0            |
| Minerals                      | mPt  | -0.2                | 0.0               | 0.0               | 0.0            |
| Fossil fuels                  | mPt  | -10.0               | -316.3            | 2.7               | -385.7         |
| Total                         | mPt  | -12.9               | -468.7            | 858.1             | -577.3         |

| Table 3.25 Supplemental data for Figure 3.10 | Table 5.23 | Supplemental | data for | Figure | 5.16 |
|----------------------------------------------|------------|--------------|----------|--------|------|
|----------------------------------------------|------------|--------------|----------|--------|------|



Figure 5.17. Environmental impact of 1 kg of rubber per disposal route (Method: EDIP 2003 V1.00 / Default / single score)

| Impact category              | Unit | Rubber Derived Fuel | Civil Engineering | Landfill of Tires | Tire Recycling |
|------------------------------|------|---------------------|-------------------|-------------------|----------------|
| Global warming 100a          | mPt  | -0.03               | -0.71             | 0.08              | -1.07          |
| Ozone depletion              | mPt  | 0.01                | 0.00              | 0.01              | -0.01          |
| Ozone formation (Vegetation) | mPt  | -0.02               | -0.45             | 0.05              | -0.54          |
| Ozone formation (Human)      | mPt  | -0.02               | -0.45             | 0.05              | -0.54          |
| Acidification                | mPt  | 0.00                | -0.10             | 0.13              | -0.12          |
| Terrestrial eutrophication   | mPt  | 0.00                | -0.28             | 0.01              | -0.34          |
| Aquatic eutrophication EP(N) | mPt  | 0.00                | -0.18             | 0.03              | -0.23          |
| Aquatic eutrophication EP(P) | mPt  | 0.00                | 0.00              | 0.00              | 0.00           |
| Human toxicity air           | mPt  | 0.03                | -0.10             | 0.44              | -0.14          |
| Human toxicity water         | mPt  | -0.02               | -7.36             | 2.76              | -8.87          |
| Human toxicity soil          | mPt  | -0.14               | -1.10             | 3.02              | -1.50          |
| Ecotoxicity water chronic    | mPt  | 0.00                | 0.00              | 0.00              | 0.00           |
| Ecotoxicity water acute      | mPt  | 0.00                | 0.00              | 0.00              | 0.00           |
| Ecotoxicity soil chronic     | mPt  | 0.00                | 0.00              | 0.00              | 0.00           |
| Hazardous waste              | mPt  | 0.00                | 0.00              | 0.00              | 0.00           |
| Slags/ashes                  | mPt  | 0.00                | 0.00              | 0.00              | -0.01          |
| Bulk waste                   | mPt  | 0.10                | -0.14             | 0.00              | -0.17          |
| Radioactive waste            | mPt  | 0.00                | 0.00              | 0.00              | 0.00           |
| Resources (all)              | mPt  | 0.00                | 0.00              | 0.00              | 0.00           |
| Total                        | mPt  | -0.08               | -10.87            | 6.57              | -13.54         |

Table 5.24 Supplemental data for Figure 5.17

As agreed upon by most experts [35] and shown in the Figure 5.16 and 5.17, simply disposing of rubber from either a tire or Tweel<sup>TM</sup> tread into a landfill is by far the most

environmentally harmful end of life option. According to the EcoIndicator method, landfilling 1 kg of rubber gives an environmental impact of 858 mPt while rubber derived fuel, civil engineering, and tire recycling all give environmental benefits (-13, -469, and -577 mPt respectively). Rubber landfilling should be avoided whenever possible, but as stated previously there is simply not a market available for the large amount waste rubber that results from old tires, so this may be difficult to achieve. It is apparent that the best way to dispose of rubber is to grind it and reuse it in civil engineering purposes or other applications. This requires minimal energy but avoids the production of rubber from scratch resulting in an overall benefit to the environment. The same tradeoff is seen with incinerating rubber for fuel, but the benefits of avoided energy production by other means does not quite outweigh the particulates and other emissions let into the air. In fact, according to the figures above, this is a fairly equal tradeoff resulting in a negligible net environmental impact. So, grinding rubber for recycling is preferred above incineration with landfilling as a last resort, but each disposal route will be weighed according to American averages and combined to give an overall picture of the rubber disposal industry today.

Before those rubber disposal routes are combined together though, the same analysis must be performed on polyurethane so that the overall impact of disposing both the rubber and polyurethane in a Tweel<sup>TM</sup> can be discussed. Figure 5.18 and Figure 5.19 show the environmental impact of 1 kg of polyurethane per disposal route in the same manner as the rubber disposal routes, and similar results are found.



Figure 5.18. Environmental impact of 1 kg of polyurethane per disposal route (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | PU Landfill | PU Incineration | PU Grinding |
|-------------------------------|------|-------------|-----------------|-------------|
| Carcinogens                   | mPt  | 1.3         | 1.6             | -0.6        |
| Respiratory organics          | mPt  | 0.1         | 0.0             | -0.4        |
| Respiratory inorganics        | mPt  | 4.2         | -1.7            | -142.2      |
| Climate change                | mPt  | 17.7        | 17.0            | -26.4       |
| Radiation                     | mPt  | 0.0         | 0.0             | 0.0         |
| Ozone layer                   | mPt  | 0.0         | 0.0             | 0.0         |
| Ecotoxicity                   | mPt  | 0.8         | 9.8             | -0.6        |
| Acidification/ Eutrophication | mPt  | 0.7         | -0.1            | -9.9        |
| Land use                      | mPt  | 0.0         | 0.0             | -1.1        |
| Minerals                      | mPt  | 0.0         | 0.0             | -0.1        |
| Fossil fuels                  | mPt  | 4.0         | -11.4           | -302.6      |
| Total                         | mPt  | 28.8        | 15.3            | -483.9      |

| Table 5.25. Supplemental data for Figure 5.16 | Table 5.25. | Supplemental | data for | Figure 5.18 |
|-----------------------------------------------|-------------|--------------|----------|-------------|
|-----------------------------------------------|-------------|--------------|----------|-------------|



Figure 5.19. Environmental impact of 1 kg of polyurethane per disposal route (Method: EDIP 2003 V1.00 / Default / single score)

| Impact category              | Unit | PU Landfill | PU Incineration | PU Grinding |
|------------------------------|------|-------------|-----------------|-------------|
| Global warming 100a          | mPt  | 0.52        | 0.47            | -0.74       |
| Ozone depletion              | mPt  | 0.02        | 0.00            | -0.18       |
| Ozone formation (Vegetation) | mPt  | 0.36        | 0.01            | -0.39       |
| Ozone formation (Human)      | mPt  | 0.41        | 0.01            | -0.38       |
| Acidification                | mPt  | 0.01        | 0.00            | -0.19       |
| Terrestrial eutrophication   | mPt  | 0.02        | 0.01            | -0.30       |
| Aquatic eutrophication EP(N) | mPt  | 0.03        | 0.00            | -0.25       |
| Aquatic eutrophication EP(P) | mPt  | 0.00        | 0.00            | 0.00        |
| Human toxicity air           | mPt  | 0.01        | 0.05            | -0.22       |
| Human toxicity water         | mPt  | 0.41        | 0.51            | -0.99       |
| Human toxicity soil          | mPt  | 0.12        | 0.11            | -0.74       |
| Ecotoxicity water chronic    | mPt  | 0.00        | 0.00            | 0.00        |
| Ecotoxicity water acute      | mPt  | 0.00        | 0.00            | 0.00        |
| Ecotoxicity soil chronic     | mPt  | 0.00        | 0.00            | 0.00        |
| Hazardous waste              | mPt  | 0.00        | 0.00            | -3.11       |
| Slags/ashes                  | mPt  | 0.00        | 0.00            | -0.14       |
| Bulk waste                   | mPt  | 0.00        | 0.00            | -0.16       |
| Radioactive waste            | mPt  | 0.00        | 0.00            | 0.00        |
| Resources (all)              | mPt  | 0.00        | 0.00            | 0.00        |
| Total                        | mPt  | 1.91        | 1.18            | -7.79       |

Table 5.26. Supplemental data for Figure 5.19

Clearly grinding polyurethane so that it can be reused as a composite-like filler for new plastic products or other purposes discussed previously is the most environmentally friendly option due to the minimal energy required to avoid the production of new polyurethane, similar to the benefits of tire recycling. The impact of incineration varies slightly between the two assessment methods, but the offset of risks and benefits results in an overall impact relatively close to zero as in the case of rubber incineration. Polyurethane incineration results in 2.5 kg of  $CO_2$  emissions and 118 mg of CO while the net emissions for rubber when the avoided product is subtracted are 0.03 kg of  $CO_2$  and 12 mg of CO. Thus, incinerating polyurethane is slightly more harmful to the environment, but both can be considered roughly a zero gain or zero loss process.

The only large difference between the disposing of rubber and that of polyurethane is the environmental effects of landfilling. According to Figure 5.18 and Figure 5.19, polyurethane landfilling is only slightly more harmful than incineration (29 mPt vs. 15 mPt on the EcoIndicator scale and 1.91 mPt vs. 1.18 mPt on the EDIP scale), but this is mostly likely because no data was available regarding polyurethane in uncontrolled landfills. Some polyurethane will end up in uncontrolled landfills without proper liners or gas emission controls, and these landfills will have much larger impacts on environmental categories like ecotoxicity in the EcoIndicator method and human toxicity in the EDIP method, but as no data are available on the frequency of this uncontrolled landfilling or on polyurethane's uncontrolled environmental effects, these have been left out of the analysis. It was estimated in this thesis that 25% of used tires are disposed of in uncontrolled landfills, but it is uncertain whether this will be the case for polyurethane disposal when large amounts of Tweel<sup>™</sup> spokes need to be disposed. Due to this exemption, landfilling of polyurethane does not appear to be as much of an environmentally harmful option as with rubber, but more data may be needed to evaluate the possibility of disposing polyurethane into uncontrolled landfills and its corresponding environmental effects.

By combining both the material disposal methods (52% of rubber incinerated for fuel, 14% landfilled, etc.) and the material composition of both products (Tweel<sup>TM</sup> 77% polyurethane, etc.), an overall picture of the entire end of life processing of both a tire and a Tweel<sup>TM</sup> can be analyzed. These overall impacts of this end of life stage for both products are shown in Figure 5.20 and Figure 5.21 below.



Figure 5.20. Tire and Tweel<sup>TM</sup> end of life overall impact - EcoIndicator (10 kg tire, 12 kg Tweel<sup>TM</sup>, both with1 kg steel hub) (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tire End of Life | Tweel End of Life |
|-------------------------------|------|------------------|-------------------|
| Carcinogens                   | Pt   | -0.002           | 0.002             |
| Respiratory organics          | Pt   | -0.004           | -0.002            |
| Respiratory inorganics        | Pt   | -0.557           | -0.286            |
| Climate change                | Pt   | -0.111           | -0.024            |
| Radiation                     | Pt   | 0.000            | 0.000             |
| Ozone layer                   | Pt   | 0.000            | 0.000             |
| Ecotoxicity                   | Pt   | 0.931            | 0.274             |
| Acidification/ Eutrophication | Pt   | -0.050           | -0.023            |
| Land use                      | Pt   | 0.000            | -0.001            |
| Minerals                      | Pt   | -0.001           | 0.000             |
| Fossil fuels                  | Pt   | -1.249           | -0.639            |
| Total                         | Pt   | -1.043           | -0.700            |

Table 5.27. Supplemental data for Figure 5.20



Figure 5.21. Tire and Tweel<sup>TM</sup> end of life overall impact (Method: EDIP 2003 V1.00 / Default / single score)

| Impact category              | Unit | Tire End of Life | Tweel End of Life |
|------------------------------|------|------------------|-------------------|
| Global warming 100a          | mPt  | -3.10            | -0.66             |
| Ozone depletion              | mPt  | 0.03             | -0.14             |
| Ozone formation (Vegetation) | mPt  | -1.72            | -0.50             |
| Ozone formation (Human)      | mPt  | -1.72            | -0.46             |
| Acidification                | mPt  | -0.21            | -0.23             |
| Terrestrial eutrophication   | mPt  | -1.03            | -0.54             |
| Aquatic eutrophication EP(N) | mPt  | -0.64            | -0.39             |
| Aquatic eutrophication EP(P) | mPt  | -0.03            | -0.01             |
| Human toxicity air           | mPt  | 0.38             | -0.03             |
| Human toxicity water         | mPt  | -23.99           | -6.89             |
| Human toxicity soil          | mPt  | -0.95            | -0.73             |
| Ecotoxicity water chronic    | mPt  | 0.00             | 0.00              |
| Ecotoxicity water acute      | mPt  | 0.00             | 0.00              |
| Ecotoxicity soil chronic     | mPt  | 0.00             | 0.00              |
| Hazardous waste              | mPt  | 0.00             | -2.84             |
| Slags/ashes                  | mPt  | -0.01            | -0.13             |
| Bulk waste                   | mPt  | 0.00             | -0.15             |
| Radioactive waste            | mPt  | 0.00             | 0.00              |
| Resources (all)              | mPt  | 0.00             | 0.00              |
| Total                        | mPt  | -32.99           | -13.69            |

Table 5.28. Supplemental data for Figure 5.21

Due in part to the slight variation in landfill impacts between polyurethane and rubber and in part to the small percentage of polyurethane recycling in the United States today, the Tweel<sup>TM</sup> end of life scenario is shown to be slightly less environmentally beneficial. Also, extra energy is required to heat a Tweel<sup>™</sup> enough to separate the polyurethane from the rubber tread even before any of the processing is performed, which will offset some of the benefits due to the recycling of both components. The EDIP method estimates that disposing of one Tweel<sup>™</sup> (considering the national averages of both polyurethane and rubber disposal methods) is only about 45% as beneficial to the environment as a tire (-13.7 mPt score for Tweel<sup>TM</sup> end of life compared to -33.0 mPt for a tire). Combining the environmental benefits and impacts (positive and negative scores) shown by the EcoIndicator model however is not so easy to quantify. Figure 5.20 shows both a positive and negative environemntal impact because all the impact categories remain separated and not combined into one score. It can be argued that adding the 1.1 impact points from the tire's ecotoxicity category to the -1.8 points from the rest of the categories results in a net impact of -0.7 points for a tire and similarly -0.6 net points for a Tweel<sup>TM</sup>, but this may be oversimplifying the scenario. Releasing 1 kg of  $CO_2$  into the air through a process that avoids the need for a similar process that releases the same amount of CO<sub>2</sub> is easy to combine into a net zero environmental impact. However, if that same 1 kg of CO<sub>2</sub> is released while avoiding the introduction of a small amount lead into the water, that nullification is not as easily accepted. Hypothetically each category is weighed properly so that 1 point of ecotoxicity harm is negated by 1 point of fossil fuel benefit, but in this case it may be more helpful to leave the picture more complicated so that the conclusions remain that there are both positive and negative environmental effects instead of a score near zero if these positive and negative impact categories are added together. According to the EcoIndicator method, disposing of a Tweel<sup>TM</sup> has a lower ecotoxicity impact, but also a lower environmental benefit in fossil fuel savings and respiratory inorganics like dust, nitrogen oxides, and sulfur oxides. In either case it

seems that recycling a tire is slightly more beneficial to the environment, but the overall scenario may be too complicated to summarize this entire life cycle stage into one number.

As stated previously in section 4.5.3 however, the overall results of the end of life phase used in the overall life cycle analyses of a Tweel<sup>TM</sup> as described in Figure 5.21 only considers the scenario in which the polyurethane spokes and shear band can be separated from the rubber tread. According to Michelin this will most likely be possible and desirable, but in the case of some unforeseen change in the bonding between the two components, it will be useful to compare the overall environmental effects of this stage if the polyurethane and rubber cannot be separated and must be processed together. In this case, grinding would most likely be impossible due to the difficulty of sorting small polyurethane and rubber pieces after the entire Tweel<sup>TM</sup> was shredded and the lack of a market that would be able to use such an unsorted mixture of materials with different properties. So, with grinding not an option, Figure 5.22 compares the established Tweel<sup>TM</sup> end of life environmental impact with a scenario in which the only Tweel<sup>TM</sup> disposal options are landfilling and incineration. All of the rubber and polyurethane that was shredded through the established grinding processes is instead incinerated.



Figure 5.22. End of life comparison of one Tweel<sup>™</sup> if polyurethane separation is not possible (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tweel End of Life | Tweel End of Life - No Grinding |
|-------------------------------|------|-------------------|---------------------------------|
| Carcinogens                   | mPt  | 1.6               | 4.6                             |
| Respiratory organics          | mPt  | -1.6              | 0.1                             |
| Respiratory inorganics        | mPt  | -286.3            | 2.4                             |
| Climate change                | mPt  | -24.0             | 51.7                            |
| Radiation                     | mPt  | 0.0               | 0.0                             |
| Ozone layer                   | mPt  | 0.0               | 0.0                             |
| Ecotoxicity                   | mPt  | 274.2             | 288.0                           |
| Acidification/ Eutrophication | mPt  | -22.8             | 1.5                             |
| Land use                      | mPt  | -1.0              | 0.1                             |
| Minerals                      | mPt  | -0.4              | -0.6                            |
| Fossil fuels                  | mPt  | -639.2            | -44.4                           |
| Total                         | mPt  | -699.7            | 303.4                           |

Table 5.29. Supplemental data for Figure 5.22

As shredding, the most environmentally beneficial method of disposing both components, has been deemed impossible in this scenario, this allows only landfilling and whole incineration of Tweels<sup>™</sup>, which results in a much higher environmental impact. According to the EcoIndicator method when all the positive and negative impact category scores are added together, avoiding the grinding option results in a 303 mPt environmental harm for one Tweel<sup>™</sup> while the previously established end of life processing case where each component is isolated

and treated separetely results in a -700 mPt environmental benefit. The Tweels<sup>TM</sup> are not reused in any sort of beneficial manner, so the negative environmental impact scores disappear and the only major impact left is the ecotoxicity resulting from landfills. Therefore, this scenario is undesirable. In order to maximize the end of life Tweel<sup>TM</sup> disposal impact on the environment, it is necessary to design a method to cleanly separate the polyurethane from the rubber so that they can be processed separately. It seems that this should not be a problem with the current Tweel<sup>TM</sup> model, so this will not be considered in the overall life cycle of the product, but it is a useful comparison for internal product improvement purposes.

#### 5.5 <u>Life Cycle Analysis</u>

By combining all of the stages described above from "cradle to grave," a picture of the overall environmental effects of the entire life cycle can be assembled. This life cycle analysis presents the environmental impact of one tire or Tweel<sup>™</sup> beyond simply the energy required to manufacture either, for example. Figure 5.23 and Figure 5.25 describe the relative environmental effects of each stage of a P205/45R17 tire's life cycle, while Figure 5.24 and Figure 5.26 illustrate the life cycle analysis for one Tweel<sup>™</sup>. The production phase combines the production of raw materials with the manufacturing of a tire or Tweel<sup>™</sup>, and similarly the end of life phase combines all the disposal routes as discussed in section 5.4. The use phase on the other hand is separated into the effects of tread wear and gasoline usage so that the most important aspect of each product's life cycle, the fuel use, can be accurately compared to both of the other main phases, production and disposal. The distribution phase assumes most of the raw materials are produced near the tire or Tweel<sup>™</sup> manufacturing plants, but it illustrates the effect of transporting one product from the manufacturer to the retailer at the start of its life combined with the transportation from the retailer to the disposal site and the end of its life.



Figure 5.23. P205/45R17 Tire Life Cycle Analysis (10 kg tire w/ 1 kg steel hub) (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tire - Production | Distribution of Car Tires | Tread Debris | Tire Fuel Use | Tire End of Life | Total  |
|-------------------------------|------|-------------------|---------------------------|--------------|---------------|------------------|--------|
| Carcinogens                   | Pt   | 0.032             | 0.000                     | 0.007        | 0.000         | -0.001           | 0.038  |
| Respiratory organics          | Pt   | 0.004             | 0.000                     | 0.000        | 0.011         | -0.003           | 0.012  |
| Respiratory inorganics        | Pt   | 0.780             | 0.001                     | 1.974        | 7.053         | -0.417           | 9.391  |
| Climate change                | Pt   | 0.276             | 0.000                     | 0.000        | 2.356         | -0.083           | 2.549  |
| Radiation                     | Pt   | 0.001             | 0.000                     | 0.000        | 0.000         | 0.000            | 0.001  |
| Ozone layer                   | Pt   | 0.001             | 0.000                     | 0.000        | 0.000         | 0.000            | 0.001  |
| Ecotoxicity                   | Pt   | 0.139             | 0.000                     | 2.436        | 0.000         | 1.163            | 3.739  |
| Acidification/ Eutrophication | Pt   | 0.166             | 0.000                     | 0.000        | 2.117         | -0.063           | 2.220  |
| Land use                      | Pt   | 1.032             | 0.000                     | 0.000        | 0.069         | 0.000            | 1.101  |
| Minerals                      | Pt   | 0.007             | 0.000                     | 0.000        | 0.001         | -0.001           | 0.007  |
| Fossil fuels                  | Pt   | 2.519             | 0.001                     | 0.000        | 19.275        | -1.249           | 20.546 |
| Total                         | Pt   | 4.958             | 0.002                     | 4.418        | 30.882        | -0.655           | 39.605 |

| Table 5.30. | Supple | mental o | data foi | Figure | 5.23 |
|-------------|--------|----------|----------|--------|------|
|             |        |          |          | 0      |      |



Figure 5.24. Tweel<sup>TM</sup> Life Cycle Analysis (12 kg Tweel<sup>TM</sup> with 1 kg steel hub) (Method: EcoIndicator99(E) V2.05 / EuropeEI99E/E / single score)

| Impact category               | Unit | Tweel - Production | Distribution of Car Tires | Tread Debris | Tweel I Fuel Use | Tweel End of Life | Total  |
|-------------------------------|------|--------------------|---------------------------|--------------|------------------|-------------------|--------|
| Carcinogens                   | Pt   | 0.016              | 0.000                     | 0.007        | 0.000            | 0.001             | 0.024  |
| Respiratory organics          | Pt   | 0.004              | 0.000                     | 0.000        | 0.010            | -0.001            | 0.013  |
| Respiratory inorganics        | Pt   | 1.193              | 0.001                     | 1.974        | 6.373            | -0.215            | 9.326  |
| Climate change                | Pt   | 0.235              | 0.000                     | 0.000        | 2.132            | -0.018            | 2.349  |
| Radiation                     | Pt   | 0.000              | 0.000                     | 0.000        | 0.000            | 0.000             | 0.000  |
| Ozone layer                   | Pt   | 0.000              | 0.000                     | 0.000        | 0.000            | 0.000             | 0.000  |
| Ecotoxicity                   | Pt   | 0.038              | 0.000                     | 2.436        | 0.000            | 0.343             | 2.817  |
| Acidification/ Eutrophication | Pt   | 0.213              | 0.000                     | 0.000        | 1.912            | -0.029            | 2.097  |
| Land use                      | Pt   | 0.075              | 0.000                     | 0.000        | 0.062            | -0.001            | 0.136  |
| Minerals                      | Pt   | 0.004              | 0.000                     | 0.000        | 0.001            | 0.000             | 0.004  |
| Fossil fuels                  | Pt   | 3.116              | 0.001                     | 0.000        | 17.462           | -0.639            | 19.939 |
| Total                         | Pt   | 4.894              | 0.002                     | 4.418        | 27.952           | -0.559            | 36.707 |



Figure 5.25. Tire Life Cycle Analysis (Method: EDIP 2003 V1.00 / Default / single score)

| Impact category              | Unit | Tire - Production | Distribution of Car Tires | Tread Debris | Tire Fuel Use | Tire End of Life | Total |
|------------------------------|------|-------------------|---------------------------|--------------|---------------|------------------|-------|
| Global warming 100a          | mPt  | 8.5               | 0.0                       | 0.0          | 87.2          | -3.1             | 92.6  |
| Ozone depletion              | mPt  | 4.7               | 0.0                       | 0.0          | 0.0           | 0.0              | 4.7   |
| Ozone formation (Vegetation) |      | 3.4               | 0.0                       | 0.0          | 64.9          | -1.7             | 66.5  |
| Ozone formation (Human)      |      | 3.3               | 0.0                       | 0.0          | 61.9          | -1.7             | 63.5  |
| Acidification                | mPt  | 0.9               | 0.0                       | 0.0          | 21.6          | -0.2             | 22.3  |
| Terrestrial eutrophication   | mPt  | 2.2               | 0.0                       | 0.0          | 54.5          | -1.0             | 55.7  |
| Aquatic eutrophication EP(N) | mPt  | 1.5               | 0.0                       | 0.0          | 36.1          | -0.6             | 37.0  |
| Aquatic eutrophication EP(P) |      | 0.5               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.5   |
| Human toxicity air           | mPt  | 3.7               | 0.0                       | 0.1          | 11.7          | 0.4              | 15.9  |
| Human toxicity water         | mPt  | 23.8              | 0.0                       | 0.1          | 0.0           | -24.0            | 0.0   |
| Human toxicity soil          | mPt  | 26.6              | 0.1                       | 1.0          | 18.0          | -0.9             | 44.9  |
| Ecotoxicity water chronic    | mPt  | 0.0               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.0   |
| Ecotoxicity water acute      | mPt  | 0.0               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.0   |
| Ecotoxicity soil chronic     | mPt  | 0.0               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.0   |
| Hazardous waste              | mPt  | 0.1               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.1   |
| Slags/ashes                  |      | 0.1               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.1   |
| Bulk waste                   | mPt  | 0.9               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.9   |
| Radioactive waste            | mPt  | 0.0               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.0   |
| Resources (all)              | mPt  | 0.0               | 0.0                       | 0.0          | 0.0           | 0.0              | 0.0   |
| Total                        | mPt  | 80.3              | 0.2                       | 1.3          | 355.9         | -33.0            | 404.7 |



### Figure 5.26. Tweel<sup>™</sup> Life Cycle Analysis (Method: EDIP 2003 V1.00 / Default / single score)

| Impact category              | Unit | Tweel - Production | Distribution of Car Tires | Tread Debris | Tweel I Fuel Use | Tweel End of Life | Total |
|------------------------------|------|--------------------|---------------------------|--------------|------------------|-------------------|-------|
| Global warming 100a          | mPt  | 6.8                | 0.0                       | 0.0          | 78.9             | -0.7              | 85.0  |
| Ozone depletion              | mPt  | 2.3                | 0.0                       | 0.0          | 0.0              | -0.1              | 2.2   |
| Ozone formation (Vegetation) | mPt  | 3.8                | 0.0                       | 0.0          | 58.6             | -0.5              | 61.9  |
| Ozone formation (Human)      | mPt  | 3.7                | 0.0                       | 0.0          | 56.0             | -0.5              | 59.2  |
| Acidification                |      | 1.6                | 0.0                       | 0.0          | 19.5             | -0.2              | 20.9  |
| Terrestrial eutrophication   | mPt  | 2.8                | 0.0                       | 0.0          | 49.2             | -0.5              | 51.5  |
| Aquatic eutrophication EP(N) | mPt  | 2.3                | 0.0                       | 0.0          | 32.6             | -0.4              | 34.4  |
| Aquatic eutrophication EP(P) | mPt  | 0.2                | 0.0                       | 0.0          | 0.0              | 0.0               | 0.2   |
| Human toxicity air           | mPt  | 2.7                | 0.0                       | 0.1          | 10.6             | 0.0               | 13.4  |
| Human toxicity water         | mPt  | 17.6               | 0.0                       | 0.1          | 0.0              | -6.9              | 10.8  |
| Human toxicity soil          | mPt  | 20.0               | 0.1                       | 1.0          | 16.4             | -0.7              | 36.8  |
| Ecotoxicity water chronic    | mPt  | 0.0                | 0.0                       | 0.0          | 0.0              | 0.0               | 0.0   |
| Ecotoxicity water acute      | mPt  | 0.0                | 0.0                       | 0.0          | 0.0              | 0.0               | 0.0   |
| Ecotoxicity soil chronic     | mPt  | 0.0                | 0.0                       | 0.0          | 0.0              | 0.0               | 0.0   |
| Hazardous waste              | mPt  | 17.5               | 0.0                       | 0.0          | 0.0              | -2.8              | 14.7  |
| Slags/ashes                  | mPt  | 0.8                | 0.0                       | 0.0          | 0.0              | -0.1              | 0.7   |
| Bulk waste                   | mPt  | 1.7                | 0.0                       | 0.0          | 0.0              | -0.1              | 1.6   |
| Radioactive waste            | mPt  | 0.0                | 0.0                       | 0.0          | 0.0              | 0.0               | 0.0   |
| Resources (all)              | mPt  | 0.0                | 0.0                       | 0.0          | 0.0              | 0.0               | 0.0   |
| Total                        | mPt  | 83.7               | 0.2                       | 1.3          | 321.8            | -13.7             | 393.3 |

#### Table 5.33. Supplemental data for Figure 5.26

Again, as both the EcoIndicator and EDIP assessment methods are presented on different vertical scales representing their unique method of weighing each impact category, direct comparisons between the two methods is impossible (33 Pt EcoIndicator fuel use phase is not 100 times more environmentally harmful than the 350 mPt EDIP fuel use phase). The relative

impacts between each life cycle phase though are what are important. The first comparison that summarizes most of the details of the life cycle of both products is that the fuel consumed by rolling resistance is by far the most environmentally harmful portion of a wheel's life cycle. The overall effects of producing the necessary amount of gasoline and then burning it to overcome rolling resistance for 42,000 miles is 5 or 6 times that of the next most harmful phase, the production phase, according to both impact assessment methods. The EcoIndicator values the tire use phase over the next most important phase, the tire production, 30.88 Pt to 4.95 Pt, while the Tweel<sup>™</sup> impacts in these two phases differs 570% between 27.95 Pt to 4.89 Pt. The EDIP method shows similar dominance by the use phase over any other phase quantifying the environmental impact of a tire as 450% more important than any other phase (356 mPt to 80 mPt) while the gap remains similar with a Tweel<sup>™</sup> at a 380% difference between the 322 mPt use phase and the 84 mPt production phase. The two methods disagree on the relative environmental impact of the rubber debris, but the rest of the life cycle phases show remarkable similarity. The production of each product contributes less than 20% of the environmental impact of the use phase while the environmental benefits of the end of life impact either negate or slightly overcome the negative impact from emissions and energy use, and the effects of distributing one wheel compared to these other stages is negligible.

The benefit of portraying the effects of each stage of the life cycle on one uniform scale is that the slightly more harmful Tweel<sup>TM</sup> production and disposal phases can now be compared directly to its environmental savings as a result of the decreased fuel use due to its lower rolling resistance. It has been discussed in section 4.2.2 that the Tweel<sup>TM</sup> production process is slightly more environmentally harmful due to the effects of polyurethane and the additives like mold release needed to manufacture it along with the overall increased mass, and the disposal phase (although most of this analysis is hypothetical) will most likely be less beneficial because of the current state of polyurethane recycling. However, the two impact assessment methods allow these cons to be weighed against the pros of fuel savings in a manner that simply quantifing the  $CO_2$  emissions cannot. It also allows the life cycle phases to be added together to provide an overall environmental score for every aspect of a Tweel<sup>TM</sup> so that one statement can be made that assesses whether it is better or worse overall than a conventional fuel efficient tire. The knowledge that producing a Tweel<sup>TM</sup> saves  $CO_2$  tailpipe emissions while requiring more  $SO_2$  emissions in the production phase as described in Table 5.34 is useful, but without the EcoIndicator and EDIP impact assessment methods it is very difficult to quantify this tradeoff as beneficial. Before the overall single score impacts are calculated to determine which product is more environmentally friendly overall though, some of the airborne emissions can provide details of the life cycle of these products and help to establish expected overall results.

|                  | Production | Distribution | Tread Debris | Fuel Use | End of Life | Total |
|------------------|------------|--------------|--------------|----------|-------------|-------|
| CO2 - Tire (kg)  | 26.9       | 0.029        | 0            | 522      | -15.8       | 533.1 |
| CO2 - Tweel™     |            |              |              |          |             |       |
| (kg)             | 53.2       | 0.035        | 0            | 472      | -4.9        | 520.4 |
| CO - Tire (oz)   | 4.95       | 0.008        | 0            | 519      | -1.1        | 522.9 |
| CO - Tweel™ (oz) | 5.12       | 0.009        | 0            | 470      | -0.4        | 474.7 |
| N2O - Tire (g)   | 2.15       | 0.0009       | 0            | 101      | -0.3        | 102.9 |
| N2O - Tweel™ (g) | 0.46       | 0.0011       | 0            | 91.8     | -0.1        | 92.2  |
| SO2 - Tire (g)   | 6.32       | 0            | 0.26         | 237      | 14.4        | 258.0 |
| SO2 - Tweel™ (g) | 51.7       | 0            | 0.26         | 215      | -3.3        | 263.7 |

Table 5.34. Selected emissions to air per life cycle phase

As described in Table 5.34, the fuel use is responsible for most of the major airborne emissions, which is a large contributing factor to the dominance of that phase in the overall life cycle impact. The CO<sub>2</sub> emissions for the fuel used by a tire are almost 20 times larger than the production of a tire and about 9 times higher for a Tweel<sup>TM</sup>. In fact, every major tailpipe emission exhibits this same dominating trait that establishes the use phase as the most

environmentally harmful phase. However, the overall importance of the fuel use was established as only contributing 5 or 6 times the amount of environmental load instead of the 100 times magnification of carbon monoxide. This dilution comes from the small range of different compounds expelled from a vehicle's tailpipe (see Table 4.9) as compared to the wide variety of inputs and outputs when all the raw material production processes are considered. All of these small emissions listed in Appendix A seem relatively harmless and many could be ignored in a simple comparison such as in Table 5.34, but they all contribute to the overall environmental impact, resulting in a slightly smaller relative importance of the fuel use phase on the environment from almost 20 times more harmful than the production process in terms of CO<sub>2</sub> emissions to the more conservative proportions shown in the single score impact figures. The CO<sub>2</sub> emissions in the use phase of a tire and Tweel<sup>™</sup> total 522 kg and 472 kg, respectively, as compared to the production phase which only produces 26.9 kg and 53.2 kg of CO<sub>2</sub> respectively (1900% and 9% differences). These wide gaps are diluted by all the other small inputs and outputs in the production phase that cannot be organized into a simple table like Table 5.34, returning the overall importance of the fuel use phase over the production phase to 450% for a tire and 380% for a Tweel<sup>TM</sup>.

The raw emissions life cycle totals can be helpful though to begin determining which product is more environmentally friendly overall. Summing up each of the emissions in Table 5.34 shows that a Tweel<sup>TM</sup> produces 13 kg less CO<sub>2</sub>, 48 oz less CO, 10 g less N<sub>2</sub>O, but 6 g more SO<sub>2</sub>. These totals establish the Tweel<sup>TM</sup> as generally less harmful in terms of these emissions, but as with comparing the use phase to the production phase, the entire collected inventory must be considered to determine which product has a smaller environmental load most accurately.

Table 5.35 and Table 5.36 list the environmental impact scores from Figure 5.23 through Figure 5.26 interpreted by both the EcoIndicator and EDIP assessment methods.

|        | Production | Distribution | Tread Debris | Fuel Use | End of Life | Total |
|--------|------------|--------------|--------------|----------|-------------|-------|
| Tire   | 5.06       | 0.00         | 4.59         | 30.88    | -1.04       | 39.49 |
| Tweel™ | 5.31       | 0.00         | 4.59         | 27.95    | -0.72       | 37.13 |

Table 5.35. Total environmental impact over entire life cycle – EcoIndicator (Pt)

Table 5.36. Total environmental impact over entire life cycle – EDIP (mPt)

|        | Production | Distribution | Tread Debris | Fuel Use | End of Life | Total  |
|--------|------------|--------------|--------------|----------|-------------|--------|
| Tire   | 79.43      | 0.18         | 1.28         | 355.93   | -32.99      | 403.82 |
| Tweel™ | 87.76      | 0.18         | 1.28         | 321.82   | -14.07      | 396.96 |

Again it can be seen that the use phase is the most environmentally harmful stage of the life cycle, but as all of the numbers in each table are on the same weighted scale, the impacts of all the stages can be summed up to give one single score representing the environmental impact of the entire life cycle of each product. According to the EcoIndicator method, a Tweel<sup>TM</sup> is 2.61 Pts less harmful to the environment than the most fuel efficient tire on the market today. So, even though its environmental load is slightly higher in the production phase, the 10% decrease in rolling resistance results in a 6% environmental savings overall. Similar results are found with the EDIP method even though it is presented on a different scale in which a Tweel<sup>TM</sup> is assessed as 6.86 mPts better than the tire, or an overall savings of roughly 2%. The EDIP method assesses the Tweel's<sup>TM</sup> production and end of life phases a little more harshly than the EcoIndicator method, but both agree that a Tweel<sup>TM</sup> is more environmentally friendly overall than the most fuel efficient conventional tire available when every phase of the life cycle is considered.

Although both of the chosen impact assessment methods have different weights and scales that result in overall impacts that slightly differ from each other, a simple comparison can

be made between the importance of climate change or global warming since both methods contain this impact category. As shown in Table 5.37 below, the EDIP emphasizes its "global warming" category much higher than the EcoIndicator's "climate change" category by a spread of about 23% to only 6%. The EcoIndicator method stresses the use of fossil fuels and emissions that cause respiratory damage while global warming and ozone damage are much more important to the EDIP method. Even though differences such as these exist, the life cycle analyses of both impact assessment methods agree remarkably well with each other, supporting the important point that life cycle impacts of both products do not depend greatly on the choice of the impact assessment method.

Table 5.37. Climate change impact relative to overall LCA

|              | Unit | Tire - Production | Distribution of Car Tires | Tread Debris | Tire Fuel Use | Tire End of Life | Global warming total | LCA Total | % of total impact |
|--------------|------|-------------------|---------------------------|--------------|---------------|------------------|----------------------|-----------|-------------------|
| Tire - Eco   | Pt   | 0.28              | 0.00                      | 0.00         | 2.36          | -0.08            | 2.55                 | 39.6      | 6.4%              |
| Tire - EDIP  | mPt  | 8.51              | 0.00                      | 0.00         | 87.15         | -3.10            | 92.56                | 404.7     | 22.9%             |
| Tweel - Eco  | Pt   | 0.24              | 0.00                      | 0.00         | 2.13          | -0.02            | 2.35                 | 36.7      | 6.4%              |
| Tweel - EDIP | mPt  | 6.78              | 0.00                      | 0.00         | 78.85         | -0.66            | 84.98                | 393.3     | 21.6%             |

Another important secondary aspect to these LCA figures is that a sensitivity analysis is necessary to ensure that the comparisons between the environmental effects of both of these products do not dramatically change with a different gasoline production database source because the most important phase of these life cycles is the use phase. As discussed in section 5.3, three different databases supply information on the production of gasoline (BUWAL, Franklin, and IDEMAT), but they differ by almost 10% and it is difficult to determine which is most closely representative of the real world production process. By performing the same life cycle analysis above with the sources that differ the most from the average data used in the primary LCAs from Figure 5.23 to Figure 5.26, a conclusion can be made as to the importance of choosing the correct database. Table 5.38 and Table 5.39 compare the overall LCA percentage improvement of a Tweel<sup>TM</sup> over a P205/45R17 fuel efficient tire with the average gasoline
production process used in the primary LCAs and the two databases that give the highest and lowest environmental impact in each impact assessment method. As shown in Table 5.38, the EcoIndicator method shows a 6.2% and 5.9% improvement for the maximum and minimum database, respectively, as compared to the established 6.0% calculated above. Similarly, the EDIP method returns a 1.9% and 1.5% improvement with the maximum and minimum database inventories as compared to the average 1.7% discussed above. All of these differences bracket the average value calculated above, so as long as the gasoline production database choice is consistent throughout the analysis of both a tire and a Tweel<sup>™</sup>, it does not matter which database is chosen.

Table 5.38. LCA sensistivity with single fuel database – EcoIndicator

|              |          | Production | Distribution | Tread<br>Debris | Fuel Use | End of<br>Life | Total | Percentage<br>Improvement |
|--------------|----------|------------|--------------|-----------------|----------|----------------|-------|---------------------------|
|              | Average  | 5.06       | 0            | 4.59            | 30.88    | -1.04          | 39.49 |                           |
| <b>l</b> ire | BUWAL    | 5.06       | 0            | 4.59            | 33.66    | -1.04          | 42.27 |                           |
|              | Franklin | 5.06       | 0            | 4.59            | 29.58    | -1.04          | 38.19 |                           |
| F            | Average  | 5.31       | 0            | 4.59            | 27.95    | -0.72          | 37.13 | 6.0%                      |
| We(<br>TM    | BUWAL    | 5.31       | 0            | 4.59            | 30.46    | -0.72          | 39.64 | 6.2%                      |
| T            | Franklin | 5.31       | 0            | 4.59            | 26.77    | -0.72          | 35.95 | 5.9%                      |

Table 5.39. LCA sensitivity with single fuel database - EDIP

|      |         | Production | Distribution | Tread<br>Debris | Fuel<br>Use | End of<br>Life | Total | Percentage<br>Improvement |
|------|---------|------------|--------------|-----------------|-------------|----------------|-------|---------------------------|
|      | Average | 79.43      | 0            | 1.28            | 355.9       | -32.99         | 403.7 |                           |
| Tire | BUWAL   | 79.43      | 0            | 1.28            | 369.0       | -32.99         | 416.7 |                           |
|      | IDEMAT  | 79.43      | 0            | 1.28            | 345.7       | -32.99         | 393.4 |                           |
| ы.   | Average | 87.76      | 0            | 1.28            | 321.8       | -14.07         | 396.8 | 1.7%                      |
| We   | BUWAL   | 87.76      | 0            | 1.28            | 333.6       | -14.07         | 408.6 | 1.9%                      |
| L    | IDEMAT  | 87.76      | 0            | 1.28            | 312.6       | -14.07         | 387.5 | 1.5%                      |

These 6% and 2% improvements would be enhanced even further in favor of the Tweel<sup>™</sup> if Thrusts II and III are considered as options resulting in a 30% or 50% lower rolling resistance than the baseline tire. As the materials and manufacturing methods are not yet known for these two products, they have been left out of the complete life cycle analysis, but initial estimates of the overall impacts of these products are possible assuming that every phase of their life cycles will be the same as the Thrust I Tweel<sup>TM</sup> analyzed above except for the fuel use. This is not a safe assumption, so these results are not as reliable as the scores for the tire and Thrust I Tweel<sup>™</sup>, but Table 5.40 is a good illustration of the possible benefits of reducing the rolling resistance by the estimated 30% and 50%. Assuming all else remains constant, a Thrust II Tweel<sup>™</sup> with a 30% lower rolling resistance than the baseline tire will result in an overall environmental savings of 26%, while a Thrust III Tweel<sup>™</sup> with a 50% lower rolling resistance will give an overall savings of 41%. Again these scores are purely hypothetical and are a result of assumptions about the same manufacturing and disposal processes that are most likely flawed, but this simple assessment gives a rough estimate of the potential environmental impacts of these two Tweel<sup>TM</sup> model in development.

|                        | Production | Distribution | Tread Debris | Fuel Use | End of Life | Total |
|------------------------|------------|--------------|--------------|----------|-------------|-------|
| Tire                   | 5.06       | 0            | 4.59         | 30.88    | -1.04       | 39.5  |
| Tweel <sup>™</sup> I   | 5.31       | 0            | 4.59         | 28.0     | -0.72       | 37.2  |
| Tweel <sup>™</sup> II  | 5.31       | 0            | 4.59         | 19.6     | -0.72       | 28.8  |
| Tweel <sup>™</sup> III | 5.31       | 0            | 4.59         | 14.1     | -0.72       | 23.3  |

Table 5.40. Thrust II and III Tweels<sup>™</sup> single score environmental impacts – EcoIndicator

#### **Chapter 6. Discussion and Summary**

#### 6.1 Life Cycle Analysis

In concluding the goal and scope of this analysis it was found that a Tweel<sup>TM</sup> is more environmentally friendly than the most fuel efficient tire on the market today when the overall life cycles of both are considered due to its fuel savings. Both the EcoIndicator99 and EDIP assessment methods agree that producing and disposing of a Tweel<sup>™</sup> contributes a slightly higher environmental load than the baseline tire, but benefits from the 10% fuel savings when it is used on a vehicle. Due to the much higher contribution from the use phase (5 times higher impact score, 10 times more carbon dioxide emissions, and 100 times more carbon monoxide), this fuel savings outweighs the environmental drawbacks of producing a large amount of polyurethane and the additives needed to mold it and adhere it to the hub and the rubber tread resulting in an overall environmental improvement if one replace tires with Tweels<sup>™</sup>. The numeric results from this analysis are presented in Table 5.35 and Table 5.36, and Figure 6.1 displays them in a graphical setting. Figure 6.1 graphs the single score environmental impacts of both a tire and a Tweel<sup>™</sup> in each life cycle phase using both the EcoIndicator and EDIP assessment methods. As each method weighs its results on different scales, the figure plots each assessment method on a different scale and compares the two by setting the fuel use categories equal to each other. This does not mean that the EDIP rates the production phases of both products as more environmentally harmful though; this is an artifact due to the arbitrary scaling. If the different vertical scales were compared by equating the tire production phases, then the EDIP use phase would be presented as less environmentally harmful than that resulting from the EcoIndicator scale. So, instead of making direct comparisons between the scores between, say, the EcoIndicator and EDIP ratings of the tire production phase, Figure 6.1 illustrates the

importance of the use phase and how the 10% benefit from the Tweel<sup>™</sup> fuel savings outweighs the small drawback of the increased environmental load of the production and end of life phases. Although they disagree on the impact of the rubber debris, both impact assessment methods agree on this result alluded to by the difference in select air emissions described in Table 5.34. For simplification the positive and negative scores present simultaneously in the end of life phases have been added together to give one overall score. This removes some of the detail needed to describe the full end of life phase, but makes it more comparable to the other phases' single scores.



Figure 6.1. LCA Comparisons of P205/45R17 tire and Tweel<sup>™</sup> on similar scale

As illustrated in the LCA comparison and discussed in section 5.5, the 10% lower Tweel<sup>™</sup> rolling resistance results in a 2 to 6% overall environmental improvement depending on the assessment method chosen, but these results are based on a few assumptions. Most

importantly, Tweels<sup>TM</sup> are currently not in mass production and changes are still being made to the design, so the production process may change slightly. Only minor changes are expected though; none of which would have a noticeable impact on the life cycle analysis. However, these changes might have a small impact on the expected 10% rolling resistance reduction that may impact the 42,000 mile lifespan. At this point there is no reason to expect a rolling resistance coefficient different than the expected 5.5 kg/ton, but the possibility exists that these estimates will differ from the actual performance of a Tweel<sup>TM</sup>. So, it is very important to note that these results are representative only of the current knowledge of this product.

Also, the end of life phase of a Tweel<sup>TM</sup> contributes only about half the environmental benefit experienced by disposing of a tire, but this may improve if polyurethane landfilling gains as much publication as the dangers of whole tire landfilling. The Tweel<sup>™</sup> end of life phase, although still beneficial to the environment when the avoided energy or polyurethane production is considered, has a large impact on decreasing the 10% fuel savings to only a 2 to 6% life cycle environmental savings. If the Tweel<sup>TM</sup> end of life stage was to have the same overall environmental effects as a tire's end of life, the overall environmental savings of a Tweel<sup>TM</sup> compared to a tire would rise to 7%. If millions of Tweel<sup>™</sup> start piling up in landfills in the same way that tires have, a push to find better ways to incinerate and reuse polyurethane may develop, which could possibly reduce the 74% of polyurethane currently amassing in landfills. This may result in a more environmentally beneficial end of life phase, but this conjecture and only relative to the discussion on potential product improvements below in section 6.2. With the current knowledge available, the best estimate for the life cycle comparison of these two products is a 2 to 6% relative environmental savings with a Tweel<sup>TM</sup> as compared to a conventional fuel efficient tire with a rolling resistance of 6 kg/ton.

#### 6.2 <u>Product Improvements</u>

Although not directly a part of the scope of this project, the environmental analysis of both products can influence the need for potential general product improvements in a purely environmental sense. It is impossible to determine the physical effects of reducing the rubber curing temperature which may result in product failures, but it is useful to notice with the help of this LCA that efforts to reduce tire rolling resistance should always be the top priority, even if that means a more environmentally harmful production process. Tire landfilling has always received the most environmental attention, but even this issue should not be addressed before the fuel consumed by a tire during its use. The use phase for these products has such a higher environmental importance than any other phase that even a small 10% improvement in rolling resistance can overcome an increase in the environmental load of both production and end of life phases. All other Tweel<sup>™</sup> improvements, such as reducing the mass of polyurethane necessary to produce one or finding an easy way to disassemble the hub, tread, and spokes for disposal without the use of a large amount of energy, will benefit the environment, but if these result in an increased rolling resistance then they should not be implemented. As the use phase of a tire contributes at least five times the environmental load as any other phase, both tire producers and consumers need to be aware that any small change in rolling resistance can have a large effect on the overall environmental impact.

On a smaller scale though, it will be very important to also develop new ways to reuse polyurethane if millions of Tweels<sup>™</sup> are produced in an effort to keep them out of landfills. Simply throwing away <sup>3</sup>/<sub>4</sub> of the Tweel<sup>™</sup> spokes due to a lack of demand for recycled polyurethane is unacceptable. Currently only a small percentage of polyurethane can be reused because it cannot be remolded into a different shape, so it must be shredded into fine particles and used as a composite filler material. Clearly the majority of used polyurethane cannot be reused in this way, but rubber had the same problem until research was performed to find ways of recycling large pieces of ground rubber in civil applications and other uses like sport surfaces. A similar development process must take place in the future to find a way to recycle the large amounts of polyurethane that will begin to pile up in landfills if Tweels<sup>™</sup> are to be mass produced.

#### 6.3 <u>Future Work</u>

Although this is a comprehensive analysis of every stage of the life cycle of both a tire and a Tweel<sup>TM</sup>, it is only representative of the current knowledge available and thus requires more work in the future to update the LCA. The Tweel<sup>TM</sup> design may change in the next few years before it is mass produced and released for sale to the public, so it will be necessary to update this analysis with any changes to the production process or the use phase characteristics. The manufacturing profile probably will not change much, but two major studies need to be performed to ensure the use phase impact is accurate. In the analysis presented in this thesis, two assumptions were made that could affect the environmental impact of the Tweel<sup>TM</sup> use phase if more data is collected: (1) the rolling resistance coefficient does not degrade over the life of a tire and (2) a Tweel<sup>™</sup> will last as long as a conventional tire (42,000 miles). Currently Michelin expects a Tweel<sup>TM</sup> to last the same length of time as a conventional tire due to the similar tread composition and thickness, but the larger contact area between the road and the tread due to the increased spoke deflection may cause a greater wear rate and thus a shorter life. Also, there is a small amount of data suggesting that a tire's rolling resistance will decrease throughout its life cycle due to tread wear instead of remaining constant throughout the use phase, but these data are currently insufficient to include in this analysis. One source estimates a 2/32 inch reduction

in tread depth would lead to a 10% reduction in RRC, but it is also suggested that tire rubber becomes less elastic throughout its life and thus increases its rolling resistance.[28] Because of this complicated relationship, a more detailed study of the rolling resistance characteristics throughout the life of both a tire and Tweel<sup>TM</sup> can help update this LCA to accurately model these changing characteristics. Changes in rolling resistance also can affect the life of a tire, but another study must be performed to quantify this effect. It is currently uncertain whether a decrease in rolling resistance will affect the life of a tire or whether the potential changes in the tread depth throughout its life are enough to change the estimated life; so again more data must be collected on these secondary effects to be included in this LCA.

This LCA compared a fuel efficient tire and Michelin's first, or "Thrust I", Tweel<sup>TM</sup>, but for a more comprehensive study of the Tweel<sup>TM</sup>, the entire life cycle profiles of both Thrust II and III Tweels<sup>TM</sup> will be necessary to compare the 30% and 50% expected rolling resistance reductions against the other life cycle phases. The use phase fuel consumption of both of these future Tweel<sup>TM</sup> models was presented in section 5.3, but as neither the materials nor the manufacturing processes have been determined yet, it is impossible at this stage of the development process to complete a full life cycle analysis of either product. The same is true with Michelin's hope to develop a Tweel<sup>TM</sup> for use on trucks and larger vehicles, but until manufacturing and production profiles are available for these products, the environmental effects must remain a qualitative discussion of only the fuel savings. Due to the documented dominance of the fuel use in the overall life cycle analysis, it seems that a 30% or 50% decrease in rolling resistance would definitely benefit the environmental impact of a wheel, but producing the metamaterials necessary for these future upgrades to the Tweel<sup>TM</sup> may have unforeseen effects on the environment. So a Thrust II Tweel<sup>TM</sup> will probably be at least 20% more environmentally friendly as compared to a fuel efficient tire, but an accurate value is impossible to obtain before more information is known about the production of these products.

The final aspect of this analysis that was ignored but could have a small environmental effect is the noise produced from the tread to road contact. It has been suggested that Tweels<sup>™</sup> will produce more road noise than a conventional tire, but due to the uncertainty of this claim and the difficulty of quantifying the human health effects of noise it was left out of this thesis. A future study may be helpful to quantify any increased road noise and its human health effects on hearing loss, sleep deprivation, stress, etc. It may be interesting to observe the potential effects, but relating them to issues such as ozone depletion or water acidification will encourage arguments similar to the land use issue that exist between the quantified natural rubber impacts resulting from the different assessment methods. All of the studies above were out of the scope of this thesis, but the addition of this knowledge to update the LCA comparison between a conventional tire and a Tweel<sup>TM</sup> may affect the predicted 2% to 6% Tweel<sup>TM</sup> environmental improvement.

# Appendix A – Life Cycle Inventory

# Appendix Table of Contents

| RAW MATERIALS                         |  |
|---------------------------------------|--|
| SYNTHETIC RUBBER                      |  |
| NATURAL RUBBER                        |  |
| CARBON BLACK                          |  |
| SILICA                                |  |
| SULFUR                                |  |
| ZINC OXIDE                            |  |
| AROMATIC OILS                         |  |
| STEARIC ACID                          |  |
| COATED WIRES                          |  |
| TEXTILES                              |  |
| POLYURETHANE                          |  |
| STEEL                                 |  |
| MANUFACTURING                         |  |
| TIRE MANUFACTURING                    |  |
| TWEEL™ MANUFACTURING                  |  |
| USE PHASE                             |  |
| TREAD DEBRIS                          |  |
| GASOLINE PRODUCTION AND USE           |  |
| END OF LIFE                           |  |
| RUBBER DERIVED FUEL                   |  |
| RUBBER – CIVIL ENGINEERING            |  |
| RUBBER – LANDFILL                     |  |
| RUBBER – GRINDING FOR RECYCLING       |  |
| POLYURETHANE – INCINERATION           |  |
| POLYURETHANE – GRINDING FOR RECYCLING |  |
| POLYURETHANE – LANDFILL               |  |
| STEEL RECYCLING                       |  |

## **RAW MATERIALS**

#### SYNTHETIC RUBBER (1 kg) Source – Franklin USA Database [57]

| Resources                           |         |     | Shale, in ground                     | 19      | mg   |
|-------------------------------------|---------|-----|--------------------------------------|---------|------|
| Air                                 | 22.5    | g   | Silver, in ground                    | -122    | ng   |
| Baryte, in ground                   | -251    | μg  | Sulfur, bonded                       | 42      | mg   |
| Bauxite, in ground                  | 1.15    | g   | Sulfur, in ground                    | 100     | mg   |
| Clay, bentonite, in ground          | 64.7    | mg  | Tin ore, in ground                   | -67.9   | ng   |
| Biomass                             | 5.5     | mg  | Uranium ore, 1.11 GJ per kg, in      |         | -    |
| Chromium ore, in ground             | 988     | μg  | ground                               | -15     | μg   |
| Clay, unspecified, in ground        | 460     | mg  | Uranium, in ground                   | 342     | μg   |
| Coal, 29.3 MJ per kg, in ground     | 161.36  | g   | Water, unspecified natural origin/kg | -32     | g    |
| Cobalt ore, in ground               | -6.05   | pg  | Wood (16.9 MJ/kg)                    | 60      | g    |
| Copper ore, in ground               | -24.3   | μg  | Wood and wood waste, 9.5 MJ per      |         |      |
| Crude petroleum, natural gas etc.,  |         |     | kg                                   | 219     | mg   |
| extracted for use                   | 425     | g   | Zeolite, in ground                   | -2.78   | μg   |
| Oil, crude, 41 MJ per kg, in ground | 658.46  | g   | Zinc ore, in ground                  | 1000    | μg   |
| Dolomite, in ground                 | 8       | mg  | Land use II-III                      | 48      | mm2a |
| Energy, from hydro power            | -971    | J   | Land use III-IV                      | 0.564   | mm2a |
| Ferromanganese                      | 500     | μg  | Land use II-IV                       | 1.1     | mm2a |
| Fluorspar, in ground                | 2       | mg  | Land use IV-IV                       | 0.00192 | mm2a |
| Gas, off-gas, oil production, in    |         | -   |                                      |         |      |
| ground                              | -2.01   | cm3 | Emissions to air                     |         |      |
| Gravel, in ground                   | 2.5     | mg  | Ethane, 1,1,1-trichloro-, HCFC-140   | 3.43    | μg   |
| Gypsum, in ground                   | 1.86    | g   | Ethane, 1,2-dichloro-                | -3.65   | ng   |
| Iron ore, in ground                 | 698     | mg  | Acetaldehyde                         | -331    | ng   |
| Potassium chloride                  | 65      | mg  | Acetic acid                          | -1.51   | μg   |
| Lead ore, in ground                 | 499     | μg  | Acetone                              | -329    | ng   |
| Coal, brown (lignite)               | 9.779   | g   | Acrolein                             | 2.96    | μg   |
| Limestone, in ground                | 6.54    | g   | Silver                               | 57.7    | ng   |
| Manganese ore, in ground            | -2.28   | μg  | Aluminum                             | -10.5   | μg   |
| Marl, in ground                     | -6.72   | mg  | Aldehydes, unspecified               | 13.2    | mg   |
| Methane                             | -1.2    | mg  | Hydrocarbons, aliphatic, alkanes,    |         |      |
| Molybdenum ore, in ground           | -2.32   | pg  | unspecified                          | -3.06   | μg   |
| Gas, natural, 35 MJ per m3, in      |         |     | Hydrocarbons, aliphatic, alkenes,    |         |      |
| ground                              | -33.7   | cm3 | unspecified                          | -1.03   | μg   |
| Gas, natural, 46.8 MJ per kg, in    |         |     | Ammonia                              | 1.56    | mg   |
| ground                              | 899     | g   | Arsenic                              | 26.5    | μg   |
| Nickel ore, in ground               | -8.77   | μg  | Boron                                | -7.97   | μg   |
| Nitrogen, in air                    | 295     | g   | Barium                               | -143    | ng   |
| Olivine, in ground                  | 6       | mg  | Beryllium                            | 2.27    | μg   |
| Oxygen, in air                      | 140     | mg  | Benzaldehyde                         | -25.4   | pg   |
| Palladium, in ground                | -0.115  | pg  | Benzene                              | 37.7    | μg   |
| Platinum, in ground                 | -0.254  | pg  | Benzo(a)pyrene                       | -296    | pg   |
| Rhenium, in ground                  | -0.061  | pg  | Bromine                              | -514    | ng   |
| Rhodium, in ground                  | -0.0908 | pg  | Butane                               | -4.43   | μg   |
| Sodium chloride, in ground          | 7.36    | mg  | Butene                               | -70.6   | ng   |
| Salt, unspecified                   | 2.95    | g   | Calcium                              | -6.71   | μg   |
| Sand, unspecified, in ground        | 280     | mg  | Cadmium                              | 29.9    | μg   |

| Chlorinated fluorocarbons, hard | 500   | μg       | Manganese                       | 51.4         | μg       |
|---------------------------------|-------|----------|---------------------------------|--------------|----------|
| Ethane, hexafluoro-, HFC-116    | -12.9 | ng       | Molybdenum                      | 1.09         | μg       |
| Methane, tetrafluoro-, CFC-14   | -103  | ng       | Dinitrogen monoxide             | 2.32         | mg       |
| Phenol, chloro-                 | 3.43  | ng       | Sodium                          | -1.78        | μg       |
| Chlorine                        | 8.01  | mg       | Naphthalene                     | 379          | ng       |
| Carbon monoxide                 | 5.24  | g        | Nickel                          | 420          | μġ       |
| Carbon dioxide                  | 2.74  | g        | N-Nitrodimethylamine            | 625          | ng       |
| Carbon dioxide, fossil          | 2.8   | kq       | Nitrogen dioxide                | 62.7         | mq       |
| Carbon dioxide, biogenic        | 273   | ma       | NMVOC, non-methane volatile     |              | 0        |
| Cobalt                          | 28.2  | μα       | organic compounds, unspecified  |              |          |
| Chromium                        | 44.3  | -9<br>U0 | origin                          | 9.11         | g        |
| Carbon disulfide                | 500   | м9<br>ЦО | Nitrogen oxides                 | 12.7         | g        |
| Copper                          | 1 98  | м9<br>ЦО | Oxygen                          | 698          | mg       |
| Hydrocarbons unspecified        | 14.6  | Р9<br>0  | Organic substances, unspecified | 101          | mg       |
| Hydrocarbons, anopetined        | 23    | 9<br>ma  | Phosphorus                      | -123         | ng       |
| Hydrocarbons, chlorinated       | 500   | ша       | PAH, polycyclic aromatic        |              | 0        |
| Cyanida compounds               | 402   | μy       | hydrocarbons                    | 500          | μg       |
|                                 | -402  | pg       | Particulates                    | 484          | mg       |
| Mothene dichlere HCC 20         | 10.6  | μg       | Lead                            | 542          | pg       |
| Diovin 122780                   | 12.0  | μg       | Polychlorinated biphenyls       | 7.79         | ng       |
| bexachlorodibenzo-              | 177   | na       | Phenol, pentachloro-            | 592          | pg       |
| Particulates                    | 1 /   | P9<br>a  | Pentane                         | -2.88        | μg       |
| Particulates $> 10 \text{ µm}$  | -1.08 | y<br>ma  | Phenol                          | 11.3         | μg       |
| Ethono                          | -1.00 | шq       | Propane                         | -5.15        | μq       |
| Ethanol                         | -0.90 | μy       | Propene                         | -231         | na       |
| Ethano                          | -000  | ng       | Propionic acid                  | -25.5        | na       |
| Eulelle<br>Bonzono, othul       | -392  | ng       | Platinum                        | -0.0146      | pa       |
| Benzene, etnyi-                 | 1.77  | μg       | Antimony                        | 53.27531     | ua       |
| Etnyne                          | -12.2 | ng       | Scandium                        | -1 55        | na       |
| Fluorine                        | 500   | μg       | Selenium                        | 30.1         | ua       |
| Iron<br>Farmaldala              | -5.59 | μg       | Silicates unspecified           | -26.7        | м9<br>ЦО |
| Formaldenyde                    | 3.52  | mg       | Tin                             | -3 58        | na       |
| Hydrogen                        | 500   | mg       | Sulfur dioxide                  | 5.00         | ma       |
| Hydrogen sulfide                | 499   | μg       | Sulfur oxides                   | 47.2         | a        |
| Sulfuric acid                   | 500   | μg       | Stroptium                       | -171         | y<br>na  |
| Methane, bromotrifluoro-, Halon | 0.00  |          | Strong                          | 1 02         | ng       |
| 1301                            | -9.88 | ng       | Stylene<br>Ethono totrachloro   | 1.03         | μg       |
| Hydrogen chioride               | 47    | mg       | Mathana tatraphlara CEC 10      | 2.03<br>5.12 | μg       |
| Heptane                         | -706  | ng       | Therium                         | 0.13         | μg       |
| Biphenyl, hexachloro-           | 280   | ng       | Thonum                          | -9.40        | ng       |
| Hexane                          | -1.49 | μg       |                                 | -402         | ng       |
| Hydrogen fluoride               | 3.55  | mg       | I nallium<br>Taluara            | -382         | pg       |
| Mercury                         | 510   | μg       | loluene                         | 19.1         | μg       |
| lodine                          | -248  | ng       | Etnene, tricnioro-              | 19.9         | μg       |
| Potassium                       | -1.28 | μg       | Uranium                         | -4.13        | ng       |
| Kerosene                        | 75.4  | μg       | Vanadium                        | -2.55        | μg       |
| Lanthanum                       | -4.11 | ng       | Ethene, chloro-                 | 500          | μg       |
| Mercaptans, unspecified         | 500   | μg       | VOC, volatile organic compounds | 4.5          | mg       |
| Metals, unspecified             | 7.11  | mg       | water                           | 3.69         | g        |
| Methane                         | 13.8  | g        | Xylene                          | -4.4         | μg       |
| Methanol                        | -661  | ng       | Zinc                            | 10.4         | μg       |
| Magnesium                       | -3.76 | μg       | Zirconium                       | -230         | pg       |

| Heat, waste                       | -9.35       | kJ       | Glutaraldehyde                  | -6.04      | ng       |
|-----------------------------------|-------------|----------|---------------------------------|------------|----------|
| Radioactive species, unspecified  | 2.85        | kBq      | Hydrogen sulfide                | -11.5      | ng       |
|                                   |             |          | Sulfuric acid                   | 2.91       | mg       |
| Emissions to water                |             |          | Mercury                         | 500        | μg       |
| Acidity, unspecified              | 20.5        | mg       | Hypochlorous acid               | -2.49      | μg       |
| Acids, unspecified                | 6           | mg       | lodide                          | -207       | ng       |
| Silver                            | 4.47        | ng       | Solids, inorganic               | 1000       | μġ       |
| Aluminum                          | 14.7        | mg       | Metallic ions, unspecified      | 15.5       | mg       |
| Hydrocarbons, aliphatic, alkanes, |             | U        | Potassium                       | 1.91       | mg       |
| unspecified                       | -275        | ng       | Metallic ions, unspecified      | 91.3       | ma       |
| Hydrocarbons, aliphatic, alkenes, |             |          | Methane, dichloro-, HCC-30      | -2.37      | na       |
| unspecified                       | -25         | ng       | Magnesium                       | 269        | ua       |
| AOX, Adsorbable Organic Halogen   |             |          | Manganese                       | 6.76       | ma       |
| as Cl                             | 500         | μg       | Molybdenum                      | 12.5       | un       |
| Arsenic                           | 499         | μg       | Sodium ion                      | 899        | ma       |
| Boron                             | 11.7        | mg       | Ammonia                         | 566        | шa       |
| Barium                            | -26.6       | μg       |                                 | J00<br>4 5 | μy<br>ma |
| Barite                            | -49         | μg       | Nickol                          | 4.5        | ing      |
| Beryllium                         | 2.12        | ng       | Nitroto                         | 300        | μy       |
| Benzene                           | -276        | ng       | Nitrite                         | 3.02       | mg       |
| BOD5, Biological Oxygen Demand    | 166         | mg       |                                 | 2.5        | mg       |
| Calcium, ion                      | 13.1        | mg       | Nitrogen, total                 | -5.98      | μg       |
| Calcium compounds, unspecified    | -304        | μg       | Olis, unspecified               | 914        | mg       |
| Carbonate                         | 65          | mg       | Organic carbon                  | 95         | mg       |
| Cadmium                           | 2.32        | mg       | Organic substances, unspecified | 60.6       | mg       |
| Chlorate                          | 500         | μg       | Phosphorus pentoxide            | 2.5        | mg       |
| Benzene, chloro-                  | -0.00151    | pg       | PAH, polycyclic aromatic        | 27         |          |
| Chromate                          | 24.3        | μg       | ligard                          | -27        | ng       |
| Chloride                          | 3.74        | a        |                                 | 499        | μg       |
| Chlorine                          | 500         | ua       | Phenoi                          | 8.S        | mg       |
| Cobalt                            | -464        | na       | Phosphate                       | 1.74       | mg       |
| COD. Chemical Oxygen Demand       | 1090        | ma       | Phosphorus, total               | -502       | pg       |
| Chromium                          | 2.32        | ma       | Sulfur                          | 500        | μg       |
| Chromium VI                       | -701        | na       | Salts, unspecified              | -780       | μg       |
| Crude oil                         | -170        | na       | Antimony                        | 50.6       | ng       |
| Cesium                            | -2.07       | ng       | Selenium                        | -1.37      | μg       |
| Copper                            | 2.07<br>400 | ua       | Silicon                         | -1.16      | ng       |
| Hydrocarbons unspecified          | 430         | ру<br>ma | Tin                             | -3.72      | ng       |
| Hydrocarbons, anopetined          | -1 3        | ua       | Sulfur trioxide                 | -121       | ng       |
| Hydrocarbons, chlorinated         | 500         | μg       | Strontium                       | -15.7      | μg       |
| Cyanida                           | 503         | μg       | Sulfate                         | 2.12       | g        |
| Detergent oil                     | 503         | μy<br>ma | Sulfate                         | 32.1       | mg       |
| Ethono dichloro                   | 75          | nig      | Sulfide                         | 3.05       | mg       |
| Ethane, dichioro-                 | 500         | μg       | Suspended solids, unspecified   | 1310       | mg       |
|                                   | 23          | mg       | Suspended substances,           |            |          |
| Solved solids                     | 51.0        | g        | unspecified                     | -194       | μg       |
| Solved substances                 | -115        | μg       | Titanium                        | -16.1      | μg       |
| Benzene, etnyl-                   | -49.7       | ng       | TOC, Total Organic Carbon       | 15         | mg       |
| Fluorine                          | 500         | μg       | Toluene                         | -250       | ng       |
| Iron                              | 11.8        | mg       | Tributyltin                     | -8.49      | ng       |
|                                   | 300         | μg       | Ethene, trichloro-              | -312       | pg       |
| Formaldehyde                      | -16.1       | pg       | Vanadium                        | -1.22      | μg       |

| Tungsten                         | -2.92 | ng | Final waste flows              |          |     |
|----------------------------------|-------|----|--------------------------------|----------|-----|
| Xylene                           | -199  | ng | Waste, final, inert            | 32.8     | g   |
| Zinc                             | 1370  | μg | Waste, nuclear, high active/m3 | -0.00255 | mm3 |
| Radioactive species, unspecified | -12.1 | Bq | Waste, nuclear, low and medium |          |     |
| Heat, waste                      | -187  | J  | active/m3                      | -0.151   | mm3 |
|                                  |       |    | Production waste               | -20.6    | mg  |
| Emissions to soil                |       |    | Slags                          | 562      | mg  |
| Heat, waste                      | -8.94 | J  | Waste, solid                   | 137      | g   |

#### NATURAL RUBBER (1 kg) Source – Rubber Manufacturers Association and PRé Consultants [17, 34]

| Resources         |                |          |     | Emissions to air               |          |    |
|-------------------|----------------|----------|-----|--------------------------------|----------|----|
| Occupation,       | heterogeneous, |          |     | Roundup                        | 0.00058  | kg |
| agricultural      |                | 7        | m2a | Ridomil                        | 5.26E-06 | ka |
| Roundup1          |                | 0.0058   | kg  | Carbon dioxide                 | -3.3     | ka |
| Ridomil           |                | 5.26E-05 | kg  |                                |          |    |
| Validamycin       |                | 0.011    | kg  | Emissions to water             |          |    |
| Acids             |                | 0.0041   | kg  | BOD5, Biological Oxygen Demand | 11.7     | g  |
|                   |                |          |     | COD, Chemical Oxygen Demand    | 17.9     | g  |
| Materials/fuels   |                |          |     | Nitrogen, total                | 3.8      | a  |
| Energy US I       |                | 1.6      | MJ  |                                |          | 3  |
| Ammonia B250      |                | 0.003    | kg  | Emissions to soil              |          |    |
| Sodium sulphate B | 250            | 0.0005   | kg  | Roundup                        | 0.0052   | ka |
| Energy US I       |                | 0.596    | MJ  | Ridomil                        | 0 000047 | ka |
| Diesel            |                | 1.36     | MJ  |                                | 0.0000   | g  |

## CARBON BLACK (1 kg) Source – IDEMAT Database [91]

| Resources                               |       |      | Coal, brown (lignite)            | 29.5  | g   |
|-----------------------------------------|-------|------|----------------------------------|-------|-----|
| Silver, in ground                       | 294.5 | μg   | Coal, brown (lignite)            | 142.6 | g   |
| Baryte, in ground                       | 434.3 | mg   | Manganese ore, in ground         | 1.5   | mg  |
| Bauxite, in ground                      | 233.0 | mg   | Marl, in ground                  | 3.0   | g   |
| Clay, bentonite, in ground              | 161.2 | mg   | Methane                          | 756.8 | mg  |
| Chromium ore, in ground                 | 8.6   | mg   | Molybdenum, in ground            | 122.1 | ng  |
| Coal, 18 MJ per kg, in ground           | 159.4 | g    | Gas, natural (0,8 kg/m3)         | 311.3 | m3  |
| Cobalt, in ground                       | 7.2   | ng   | Nickel ore, in ground            | 6.1   | mg  |
| Copper ore, in ground                   | 102.5 | mg   | Palladium, in ground             | 150.1 | ng  |
| Oil, crude, 41 MJ per kg, in ground     | 2.2   | kg   | Gas, petroleum, 35 MJ per m3, in |       |     |
| Energy, unspecified                     | 14.8  | MJ   | ground                           | 6.4   | dm3 |
| Energy, from hydro power                | 210.6 | kJ   | Platinum, in ground              | 168.7 | ng  |
| Land use II-III                         | 69.5  | cm2a | Energy, potential (in hydropower |       |     |
| Land use II-IV                          | 716.7 | mm2a | reservoir), converted            | 507.0 | kJ  |
| Iron, 46% in ore, 25% in crude ore,     |       |      | Energy, potential (In hydropower | 620.0 |     |
| in ground                               | 1.7   | g    | Dhanium in ground                | 030.0 | KJ  |
| Gravel, in ground                       | 6.8   | g    | Rhenium, in ground               | 160.3 | ng  |
| Lead ore. in ground                     | 7.7   | ma   | Volume occupied, reservoir       | 0.0   | m3y |
| , , , , , , , , , , , , , , , , , , , , |       | 3    | Rhodium, in ground               | 159.4 | ng  |

| Salt, unspecified                    | 103.5  | mg   | Curium-244                         | 3.6   | nBq       |
|--------------------------------------|--------|------|------------------------------------|-------|-----------|
| Sand, unspecified, in ground         | 749.3  | mg   | Curium alpha                       | 118.4 | μBq       |
| Tin ore, in ground                   | 163.1  | μg   | Carbon monoxide                    | 1.8   | g         |
| Water, turbine use, unspecified      |        |      | Carbon dioxide                     | 2.1   | kg        |
| natural origin                       | 3.3    | m3   | Cobalt-57                          | 6.9   | nBq       |
| Uranium ore, 1.11 GJ per kg, in      |        |      | Cobalt-58                          | 113.7 | μBq       |
| ground                               | 18.0   | mg   | Cobalt-60                          | 168.7 | μBq       |
| Water, unspecified natural origin/kg | 20.6   | kg   | Cobalt                             | 103.5 | μg        |
| Wood (16.9 MJ/kg)                    | 1.8    | g    | Chromium                           | 68.2  | μġ        |
| Zinc ore, in ground                  | 57.7   | μg   | Chromium-51                        | 14.1  | μBq       |
| Land use II-III                      | -361.6 | cm2a | Cesium-134                         | 2.8   | mBq       |
| Land use III-IV                      | -380.3 | mm2a | Cesium-137                         | 5.5   | mBa       |
| Land use II-IV                       | -561.1 | mm2a | Copper                             | 194.8 | ua        |
| Land use IV-IV                       | -2.7   | mm2a | Hydrocarbons, aromatic             | 82.6  | ma        |
|                                      |        |      | Hydrocarbons, aromatic             | 29.2  | na        |
| Emissions to air                     |        |      | Hydrocarbons aromatic              | 88.0  | ua        |
| Acetaldehyde                         | 213.4  | μg   | Hydrocarbons, chlorinated          | 249.8 | na        |
| Acetic acid                          | 1.0    | mg   | Cvanide compounds                  | 1.0   | ua        |
| Acetone                              | 212.5  | μg   | Methane dichlorofluoro- HCEC-21    | 3.0   | м9<br>Ца  |
| Acrolein                             | 4.0    | ng   | Ethane dichloro-                   | 8.4   | м9<br>Ца  |
| Silver-110                           | 4.0    | μBq  | Methane dichloro- HCC-30           | 369.1 | ng<br>ng  |
| Aluminum                             | 7.1    | mg   | Dioxin, 1,2,3,7,8,9-               | 000.1 | ng        |
| Aldehydes, unspecified               | 7.7    | μg   | hexachlorodibenzo-                 | 30.1  | pq        |
| Hydrocarbons, aliphatic, alkanes,    |        |      | Particulates                       | 1.1   | a         |
| unspecified                          | 1.8    | mg   | Particulates. < 10 um (mobile)     | 4.0   | ma        |
| Hydrocarbons, aliphatic, alkanes,    | 0.4    |      | Particulates, > 10 um (process)    | 213.4 | ma        |
|                                      | 2.1    | mg   | Particulates, < 10 um (stationary) | 192.9 | ma        |
| Americium-241                        | 74.6   | µвd  | Ethane                             | 5.2   | ma        |
| Ammonia                              | 2.5    | mg   | Ethanol                            | 425.9 | ua        |
| Argon-41                             | 8.7    | Вd   | Ethene                             | 760.5 | ua<br>⊔a  |
| Arsenic                              | 47.0   | μg   | Benzene, ethyl-                    | 772.6 | ua<br>ua  |
| Boron                                | 5.4    | mg   | Ethyne                             | 7.4   | r-9<br>U0 |
| Barium                               | 116.5  | μg   | Iron                               | 52    | ma        |
| Barium-140                           | 15.6   | μBq  | Iron-59                            | 155.6 | nBa       |
| Beryllium                            | 1.2    | μg   | Formaldebyde                       | 1.5   | ma        |
| Benzaldehyde                         | 1.4    | ng   | Hydrogen sulfide                   | 458 5 | un        |
| Benzene                              | 38.6   | mg   | Hydrogen-3 Tritium                 | 61.9  | P9<br>Ba  |
| Benzo(a)pyrene                       | 295.4  | ng   | Methane, bromotrifluoro-, Halon    | 01.0  | DY        |
| Radioactive species, other beta      | 400.0  | ۳Da  | 1301                               | 535.0 | μg        |
|                                      | 499.6  | nBd  | Methane, chlorodifluoro-, HCFC-22  | 724.2 | ng        |
| Bromine                              | 557.3  | μg   | Hydrogen chloride                  | 116.5 | mg        |
| Butane                               | 8.1    | mg   | Helium                             | 6.5   | mg        |
| Butene                               | 177.1  | μg   | Heptane                            | 1.7   | ma        |
|                                      | 6.0    | Вd   | Benzene, hexachloro-               | 470.7 | pa        |
| Ethane, hexafluoro-, HFC-116         | 2.5    | μg   | Hexane                             | 3.5   | ma        |
|                                      | 8.5    | mg   | Hydrogen fluoride                  | 14.4  | ma        |
| Cadmium                              | 131.4  | μg   | Mercury                            | 51.5  | ua        |
| Cerium-141                           | 372.8  | nBq  | lodine                             | 251.6 | -9<br>UQ  |
| Cerium-144                           | 792.2  | μBq  | lodine-129                         | 21.2  | mBa       |
| Methane, tetrafluoro-, CFC-14        | 22.8   | μg   | lodine-131                         | 24    | mBa       |
| Curium-242                           | 0.4    | nBq  | lodine-133                         | 13    | mBa       |
|                                      |        |      |                                    | 1.0   |           |

| lodine-135                     | 2.0   | mBq       | Phenol                             | 680.4 | ng        |
|--------------------------------|-------|-----------|------------------------------------|-------|-----------|
| Potassium                      | 1.2   | mg        | Promethium-147                     | 2.0   | mBq       |
| Potassium-40                   | 11.2  | mBq       | Polonium-210                       | 97.9  | mBq       |
| Krypton-85                     | 365.3 | kBq       | Propane                            | 8.3   | mg        |
| Krypton-85m                    | 430.6 | mBq       | Propene                            | 394.2 | μg        |
| Krypton-87                     | 192.9 | mBq       | Propionic acid                     | 13.8  | μg        |
| Krypton-88                     | 17.3  | Bg        | Platinum                           | 3.9   | ng        |
| Krypton-89                     | 135.1 | mBa       | Plutonium-238                      | 8.9   | nBa       |
| Lanthanum                      | 3.4   | na        | Plutonium-241                      | 6.5   | mBa       |
| Lanthanum-140                  | 9.9   | uBa       | Plutonium-alpha                    | 236.7 | uBa       |
| Radon-222                      | 524 7 | kBa       | Methane trichlorofluoro- CEC-11    | 31    | μα        |
| Metals unspecified             | 37.9  | ma        | Ethane, 1.2-dichloro-1.1.2.2-      | 0     | F9        |
| Methane                        | 10.4  | n         | tetrafluoro-, CFC-114              | 82.6  | μg        |
| Methanol                       | 432.4 | 9         | Methane, dichlorodifluoro-, CFC-12 | 658.9 | ng        |
| Magnesium                      | 25    | ру<br>ma  | Methane, chlorotrifluoro-, CFC-13  | 412.9 | ng        |
| Manganese                      | 2.0   | ua        | Radium-226                         | 84.3  | mBa       |
| Manganese-5/                   | 211.0 | иВа       | Radium-228                         | 5.5   | mBa       |
| Malybdenum                     | 42.0  | μου       | Noble gases, radioactive,          |       |           |
| t Butyl mothyl othor           | 42.9  | μy<br>ng  | unspecified                        | 517.3 | mBq       |
| Nitrogon                       | 70.3  | ng        | Radon-220                          | 517.3 | mBq       |
| Dinitrogon monovido            | 5.2   | mg        | Radon-222                          | 5.7   | kBq       |
| Dinitiogen monoxide            | 04.9  | mg        | Ruthenium-103                      | 40.5  | nBq       |
| Nichium 05                     | Z.4   | mg<br>nDa | Ruthenium-106                      | 23.7  | mBq       |
| Nichol                         | /16./ | nвq       | Antimony                           | 6.8   | ua '      |
| NICKEI                         | 6.7   | mg        | Antimony-124                       | 1.1   | uBa       |
| organic compounds, unspecified |       |           | Antimony-125                       | 139.8 | nBa       |
| origin                         | 26    | ma        | Scandium                           | 1 1   | ua        |
| NMVOC non-methane volatile     | 2.0   | ing       | Selenium                           | 90.4  | н9<br>Ц0  |
| organic compounds, unspecified |       |           | Silicates unspecified              | 26.3  | ma        |
| origin                         | 17.1  | g         | Tin                                | 25    | un        |
| NMVOC, non-methane volatile    |       | Ū         | Sulfur oxides                      | 2.0   | Р9<br>0   |
| organic compounds, unspecified |       |           | Sulfur oxides                      | 14 1  | 9         |
| origin                         | 706.5 | mg        | Strontium                          | 11/ 6 | 9         |
| NMVOC, non-methane volatile    |       |           | Strontium-89                       | 7 1   | иВа       |
| organic compounds, unspecified | 00.4  |           | Strontium-90                       | 3.0   | mBa       |
| origin                         | 23.4  | mg        | Tachactium 00                      | 165.0 | nBa       |
| Nitrogen oxides                | 9.0   | g         | Tellurium 122m                     | 105.0 | пвч       |
| Nitrogen oxides                | 7.1   | g_        | Mathana totraphara CEC 10          | 17.0  | μвч       |
| Neptunium-237                  | 3.9   | nBq       | Therium                            | 2.0   | μg        |
| Phosphorus                     | 104.4 | μg        | Thorium 229                        | 2.2   | μy<br>mDa |
| Protactinium-234               | 2.4   | mBq       | Thorium 220                        | 4.0   | шbү       |
| PAH, polycyclic aromatic       | co 7  |           | Thorium 222                        | 20.3  | шБү       |
| DAH polycyclic aromatic        | 60.7  | μg        | Thomum-232                         | 2.9   | шБү       |
| hydrocarbons                   | 11 1  | na        | Thonum-234                         | 2.4   | mвq       |
| PAH polycyclic aromatic        |       | ng        |                                    | 321.5 | μg        |
| hydrocarbons                   | 14.9  | na        | Talium                             | 820.2 | ng        |
| Lead                           | 654.3 | ua        | loiuene                            | 1.5   | mg        |
| Lead-210                       | 65.4  | mBa       | Chlorotorm                         | 221.8 | ng        |
| Benzene, pentachloro-          | 12    | na        | Uranium                            | 2.4   | μg        |
| Phenol. pentachloro-           | 202.2 | ba        | Uranium-234                        | 28.3  | mBq       |
| Pentane                        | 10.4  | mu<br>mu  | Uranium-235                        | 1.4   | mBq       |
|                                | 10.4  |           | Uranium-238                        | 36.3  | mBq       |

| Uranium alpha                       | 84.7  | mBq       | Chloroform                        | 2.6           | μg        |
|-------------------------------------|-------|-----------|-----------------------------------|---------------|-----------|
| Vanadium                            | 5.2   | mg        | Chlorinated solvents, unspecified | 184.5         | ng        |
| Ethene, chloro-                     | 1.4   | μg        | Benzene, chloro-                  | 3.6           | pg        |
| Heat, waste                         | 11.8  | MJ        | Chloride                          | 58.9          | g         |
| Xenon-131m                          | 893.8 | mBq       | Curium alpha                      | 13.0          | mBq       |
| Xenon-133                           | 262.8 | Bq        | Cobalt                            | 736.3         | ng        |
| Xenon-133m                          | 132.3 | mBq       | Cobalt-57                         | 50.0          | μBq       |
| Xenon-135                           | 44.9  | Bq        | Cobalt-58                         | 42.3          | mBq       |
| Xenon-135m                          | 4.4   | Bq        | Cobalt-60                         | 2.2           | Bq        |
| Xenon-137                           | 110.0 | mBq       | Cobalt                            | 359.8         | μg        |
| Xenon-138                           | 1.2   | Bq        | COD, Chemical Oxygen Demand       | 228.3         | mg        |
| Xylene                              | 3.3   | mg        | Chromium                          | 3.5           | mg        |
| Zinc                                | 3.3   | mg        | Chromium VI                       | 369.1         | ng        |
| Zinc-65                             | 17.4  | uBa       | Chromium-51                       | 1.1           | mBa       |
| Zirconium                           | 123.0 | na        | Cesium                            | 4.7           | na        |
| Zirconium-95                        | 260.0 | nBa       | Cesium-134                        | 501.4         | mBa       |
| Radioactive species, unspecified    | 730.7 | kBa       | Cesium-136                        | 261.9         | nBa       |
|                                     |       |           | Cesium-137                        | 4.6           | Ba        |
| Emissions to water                  |       |           | Copper                            | 1.5           | ma        |
| Ethane 1 1 1-trichloro- HCEC-140    | 720 4 | na        | Hydrocarbons unspecified          | 62.6          | un        |
| Acenanhthylene                      | 40.9  | Р9<br>Ца  | Hydrocarbons, aromatic            | 89.3          | ma        |
| Acids unspecified                   | 43.4  | м9<br>ПО  | Hydrocarbons, chlorinated         | 94 1          | un        |
| Silver                              | 3.0   | ма        | Hydrocarbons, aromatic            | 273.1         | м9<br>ПО  |
| Silver-110                          | 27.2  | ру<br>mBa | Hydrocarbons, aromatic            | 270.1         | μy<br>ma  |
| Aluminum                            | 21.2  | ma        | Cyanida                           | 2.0           | ua        |
| Hydrocarbons alinhatic alkanes      | 202.0 | mg        | Detelate dibutyl                  | J41.1<br>/ 1  | μy        |
| unspecified                         | 76.8  | ua        | Ethono dichloro                   | 4.1           | ng        |
| Hydrocarbons, aliphatic, alkanes,   |       | r9        | Phthalata dimothyl                | 4.3           | μy        |
| unspecified                         | 589.6 | μg        | Solved substances                 | 20.0          | ng        |
| Radioactive species, alpha emitters | 3.2   | μBq       | DOC Dissolved Organia Carbon      | 70.3          | mg        |
| Americium-241                       | 9.8   | nBq       | DOC, Dissolved Organic Carbon     | ا .C<br>112.0 | mg        |
| Ammonia, as N                       | 7.7   | mgʻ       | Benzene, euryi-                   | 112.0         | μg        |
| Solved substances, inorganic        | 39.8  | q         |                                   | 1.2           | mg        |
| AOX, Adsorbable Organic Halogen     |       | 0         | Cilis, unspecified                | 00.1          | mg        |
| as Cl                               | 318.7 | μg        | Fatty acids as C                  | 23.8          | mg        |
| Arsenic                             | 583.4 | μg        | Iron                              | 367.2         | mg        |
| Boron                               | 437.1 | μg        | Iron-59                           | 864.9         | nвd       |
| Barium                              | 293.6 | mg        | voc, volatile organic compounds,  | 16            | ma        |
| Barium-140                          | 48.8  | μBq       | Formaldebyde                      | 10.5          | na        |
| Barite                              | 86.6  | mg        | Glutaraldebyde                    | 10.7          | ug        |
| Beryllium                           | 359.8 | ng        | Hydrogen sulfide                  | 7.2           | μg        |
| Benzene                             | 610.5 | μġ        | Hydrogon 2 Tritium                | 1.2           | μy<br>kBa |
| Adipate, bis(2-ethylhexyl)-         | 387.7 | pg        | Ethono, hoxoobloro                | 14.7          | кDy       |
| BOD5, Biological Oxygen Demand      | 6.8   | mg        | Ethane, nexacinoro-               | 90.0          | pg        |
| BOD5, Biological Oxygen Demand      | 704.6 | μg        |                                   | 1.9           | μy        |
| Carbon-14                           | 495.8 | mBq       |                                   | 1.0           | nig       |
| Calcium, ion                        | 370.0 | mg .      |                                   | 400.0         | µg<br>D~  |
| Cadmium                             | 113.7 | μġ        |                                   | 1.4           | DY<br>mDr |
| Cadmium-109                         | 282.4 | nBa       |                                   | 0.9           | IURd      |
| Cerium-141                          | 7.3   | μBa       | Iouine-133                        | 223.1         | hвd       |
| Cerium-144                          | 224.6 | mBa       | Potassium                         | 11.5          | ing       |
|                                     |       |           | Potassium-40                      | 35.6          | mВq       |

| Kjeldahl-N                      | 27.5  | mg       | Tin                              | 1.9   | μg  |
|---------------------------------|-------|----------|----------------------------------|-------|-----|
| Lanthanum-140                   | 10.2  | μBq      | Sulfur trioxide                  | 162.2 | μg  |
| Metallic ions, unspecified      | 645.9 | mg       | Strontium                        | 30.5  | mg  |
| Methane, dichloro-, HCC-30      | 39.8  | μg       | Strontium-89                     | 110.0 | μBq |
| Magnesium                       | 158.4 | mg       | Strontium-90                     | 474.4 | mBq |
| Manganese                       | 4.6   | mg       | Sulfate                          | 2.3   | g.  |
| Manganese-54                    | 332.7 | mBq      | Sulfate                          | 2.0   | g   |
| Molybdenum                      | 675.7 | μg .     | Sulfide                          | 2.6   | mg  |
| Molybdenum-99                   | 3.4   | μBq      | Suspended substances,            |       | 0   |
| t-Butyl methyl ether            | 6.6   | ng       | unspecified                      | 6.2   | g   |
| Nitrogen, total                 | 7.7   | mg       | Technetium-99                    | 247.9 | mBq |
| Nitrogen, organic bound         | 1.1   | mg       | Technetium-99                    | 23.0  | μBq |
| Sodium. ion                     | 1.7   | a        | Tellurium-123m                   | 2.1   | μBq |
| Sodium-24                       | 1.5   | mBa      | Tellurium-132                    | 843.5 | nBq |
| Niobium-95                      | 27.7  | uBa      | Ethene, tetrachloro-             | 11.4  | ng  |
| Ammonium, ion                   | 166.8 | ma       | Methane, tetrachloro-, CFC-10    | 17.4  | ng  |
| Nickel                          | 1.6   | ma       | Thorium-228                      | 0.9   | Bq  |
| Nitrate                         | 60.8  | ma       | Thorium-230                      | 6.8   | Bq  |
| Nitrite                         | 379.3 | ua       | Thorium-232                      | 6.6   | mBq |
| Neptunium-237                   | 626.3 | uBa      | Thorium-234                      | 44.2  | mBq |
| Nitrogen total                  | 162.2 | ma       | Titanium                         | 10.8  | mg  |
| Radioactive species unspecified | 21.2  | uBa      | TOC, Total Organic Carbon        | 1.1   | g   |
| Hypochlorite                    | 16    | ma       | Toluene                          | 13.0  | mg  |
| Oils unspecified                | 2.8   | a        | Tributyltin                      | 7.4   | μg  |
| Protactinium-234                | 43.8  | 9<br>mBa | Ethene, trichloro-               | 720.4 | ng  |
| PAH. polycyclic aromatic        | 10.0  | швq      | Triethylene glycol               | 284.3 | μġ  |
| hydrocarbons                    | 1.4   | mg       | Uranium-234                      | 58.6  | mBq |
| PAH, polycyclic aromatic        |       | -        | Uranium-235                      | 87.2  | mBq |
| hydrocarbons                    | 54.0  | μg       | Uranium-238                      | 148.2 | mBq |
| Lead                            | 1.7   | mg       | Uranium alpha                    | 2.9   | Bq  |
| Lead-210                        | 28.3  | mBq      | Undissolved substances           | 292.6 | mg  |
| Phosphorus compounds,           |       |          | Vanadium                         | 1.0   | mg  |
| unspecified                     | 2.8   | μg       | Ethene, chloro-                  | 3.2   | ng  |
| Phenols, unspecified            | 14.2  | mg       | Tungsten                         | 8.5   | μġ  |
| Phosphate                       | 17.6  | mg       | Heat, waste                      | 915.2 | kĴ  |
| Polonium-210                    | 28.3  | mBq      | Xylene                           | 442.7 | μg  |
| Plutonium-241                   | 1.0   | Вq       | Yttrium-90                       | 5.6   | μBq |
| Plutonium-alpha                 | 39.1  | mBq      | Zinc                             | 3.5   | mg  |
| Radium-224                      | 233.9 | mBq      | Zinc-65                          | 3.2   | mBq |
| Radium-226                      | 180.8 | Вq       | Zirconium-95                     | 20.1  | mBq |
| Radium-228                      | 468.8 | mBq      | Radioactive species, unspecified | 6.6   | kBq |
| Ruthenium                       | 47.1  | μg       |                                  |       | •   |
| Ruthenium-103                   | 16.4  | μBq      | Emissions to soil                |       |     |
| Ruthenium-106                   | 2.4   | Bq       | Aluminum                         | 5.7   | mg  |
| Salts, unspecified              | 503.3 | mg       | Arsenic                          | 2.3   | μq  |
| Antimony                        | 3.0   | μg       | Carbon                           | 17.7  | mg  |
| Antimony-122                    | 48.8  | μBq      | Calcium                          | 22.8  | mg  |
| Antimony-124                    | 7.0   | mBq      | Cadmium                          | 94.1  | ng  |
| Antimony-125                    | 398.0 | μBq      | Cobalt                           | 127.7 | ng  |
| Selenium                        | 932.0 | μg       | Chromium                         | 28.6  | μġ  |
| Silicon                         | 103.5 | μg       | Copper                           | 637.5 | ng  |
|                                 |       |          |                                  |       | -   |

| Iron              | 11.5  | mg | Lead                | 2.9 µg  |
|-------------------|-------|----|---------------------|---------|
| Mercury           | 17.9  | ng | Sulfur              | 3.4 m   |
| Manganese         | 228.3 | μg | Heat, waste         | 25.8 kJ |
| Nitrogen          | 5.3   | μg | Zinc                | 92.0 µg |
| Nickel            | 1.0   | μg |                     |         |
| Oils, unspecified | 4.1   | mg | Final waste flows   |         |
| Oils, biogenic    | 21.9  | μg | Waste, final, inert | 57.2 m  |
| Phosphorus        | 293.6 | μg |                     |         |

## SILICA (1 kg) Source – ECETOC [62]

## Materials/fuels

| Sodium silicate B250 | 1.46 | kg | Electricity/heat |      |    |
|----------------------|------|----|------------------|------|----|
| Sulphuric acid B250  | 445  | g  | Energy US I      | 1.76 | MJ |

#### SULFUR (1 kg) Source – IDEMAT Database [91]

| Resources                            |       |      | Chromium ore, in ground             | 309.7  | μg   |
|--------------------------------------|-------|------|-------------------------------------|--------|------|
| Rhodium, in ground                   | 142.4 | ng   | Coal, 18 MJ per kg, in ground       | 1.1    | g    |
| Salt, unspecified                    | 14.7  | mg   | Cobalt, in ground                   | 3.2    | ng   |
| Sand, unspecified, in ground         | 106.8 | mg   | Copper ore, in ground               | 1.2    | mg   |
| Tin ore, in ground                   | 112.1 | μg   | Oil, crude, 42.6 MJ per kg, in      |        |      |
| Water, turbine use, unspecified      |       |      | ground                              | 64.1   | g    |
| natural origin                       | 23.2  | dm3  | Iron, 46% in ore, 25% in crude ore, |        |      |
| Uranium ore, 1.11 GJ per kg, in      |       |      | in ground                           | 311.5  | mg   |
| ground                               | 67.6  | μg   | Gravel, in ground                   | 446.8  | mg   |
| Water, unspecified natural origin/kg | 461.9 | g    | Land use II-III                     | -312.4 | mm2a |
| Wood (16.9 MJ/kg)                    | 13.6  | mg   | Land use III-IV                     | -80.7  | mm2a |
| Zinc ore, in ground                  | 17.4  | μg   | Land use II-IV                      | -100.6 | mm2a |
| Lead ore, in ground                  | 185.1 | μg   | Land use IV-IV                      | -1.1   | mm2a |
| Coal, brown (lignite)                | 1.0   | g    | Land use II-III                     | -44.6  | cm2a |
| Manganese ore, in ground             | 85.1  | μg   | Land use II-IV                      | -460.1 | mm2a |
| Marl, in ground                      | 258.1 | mg   |                                     |        |      |
| Methane                              | 7.9   | mg   | Emissions to air                    |        |      |
| Molybdenum, in ground                | 108.6 | ng   | Acetaldehyde                        | 3.9    | μg   |
| Gas, natural, 35 MJ per m3, in       |       | U U  | Acetic acid                         | 16.2   | μġ   |
| ground                               | 144.2 | cm3  | Acetone                             | 3.9    | hà   |
| Nickel ore, in ground                | 196.7 | μg   | Acrolein                            | 1.9    | na   |
| Palladium, in ground                 | 134.4 | ng   | Silver-110                          | 27.9   | nBa  |
| Gas, petroleum, 35 MJ per m3, in     |       |      | Aluminum                            | 56.4   | ua   |
| ground                               | 4.4   | dm3  | Aldehydes unspecified               | 53.9   | na   |
| Platinum, in ground                  | 151.3 | ng   | Hydrocarbons, aliphatic, alkanes,   | 0010   | ng   |
| Energy, potential (in hydropower     |       |      | unspecified                         | 1.2    | mg   |
| reservoir), converted                | 4.4   | kJ   | Hydrocarbons, aliphatic, alkanes,   |        | 0    |
| Rhenium, in ground                   | 143.3 | ng   | unspecified                         | 19.9   | μg   |
| Volume occupied, reservoir           | 96.1  | cm3y | Hydrocarbons, aliphatic, alkenes,   |        |      |
| Silver, in ground                    | 202.0 | μg   | unspecified                         | 124.6  | ng   |
| Barite, 15% in crude ore, in ground  | 280.4 | mg   | Hydrocarbons, aliphatic, alkenes,   |        |      |
| Bauxite, in ground                   | 3.0   | mg   | unspecified                         | 5.2    | μg   |
| Clay, bentonite, in ground           | 22.3  | mg   | Americium-241                       | 520.7  | nBq  |

| Ammonia                            | 14.7  | μg           | Ethyne                            | 227.0 | ng        |
|------------------------------------|-------|--------------|-----------------------------------|-------|-----------|
| Argon-41                           | 60.8  | mBq          | Iron                              | 291.0 | μg        |
| Arsenic                            | 19.1  | μg           | Iron-59                           | 1.1   | nBq       |
| Boron                              | 38.2  | μg           | Formaldehyde                      | 17.6  | μg        |
| Barium                             | 846.4 | ng           | Hydrogen sulfide                  | 18.9  | μg        |
| Barium-140                         | 109.5 | nBq          | Hydrogen-3, Tritium               | 431.7 | mBq       |
| Beryllium                          | 9.2   | ng           | Methane, bromotrifluoro-, Halon   |       |           |
| Benzaldehyde                       | 659.5 | pg           | 1301                              | 24.8  | μg        |
| Benzene                            | 496.6 | μg           | Methane, chlorodifluoro-, HCFC-22 | 5.1   | ng        |
| Benzo(a)pyrene                     | 34.6  | ng           | Hydrogen chloride                 | 2.7   | mg        |
| Radioactive species, other beta    |       | Ũ            | Helium                            | 4.4   | mg        |
| emitters                           | 3.5   | nBq          | Heptane                           | 1.1   | mg        |
| Bromine                            | 3.9   | μg           | Benzene, hexachloro-              | 4.0   | pg        |
| Butane                             | 4.9   | mg           | Hexane                            | 2.4   | mg        |
| Butene                             | 117.5 | μg           | Hydrogen fluoride                 | 287.5 | μg        |
| Carbon-14                          | 41.9  | mBq          | Mercury                           | 3.2   | μg        |
| Ethane, hexafluoro-, HFC-116       | 32.9  | ng           | lodine                            | 1.8   | μg        |
| Calcium                            | 235.0 | μġ           | lodine-129                        | 148.6 | μBq       |
| Cadmium                            | 46.4  | μg           | lodine-131                        | 16.6  | μBq       |
| Cerium-141                         | 2.6   | nBq          | lodine-133                        | 9.3   | μBq       |
| Cerium-144                         | 5.5   | μBq          | lodine-135                        | 13.9  | μBq       |
| Methane, tetrafluoro-, CFC-14      | 296.4 | ng           | Potassium                         | 60.1  | μq        |
| Curium-242                         | 0.0   | nBq          | Potassium-40                      | 79.7  | μBq       |
| Curium-244                         | 0.0   | nBa          | Krypton-85                        | 2.6   | kBa       |
| Curium alpha                       | 825.9 | nBa          | Krypton-85m                       | 3.0   | mBa       |
| Carbon monoxide                    | 38.1  | maˈ          | Krypton-87                        | 1.4   | mBa       |
| Carbon dioxide                     | 202.0 | a            | Krypton-88                        | 121.0 | mBa       |
| Cobalt-57                          | 0.0   | nBa          | Krypton-89                        | 1.0   | mBa       |
| Cobalt-58                          | 793.9 | nBa          | Lanthanum                         | 24.7  | na        |
| Cobalt-60                          | 1.2   | uBa          | Lanthanum-140                     | 69.2  | nBa       |
| Cobalt                             | 46.9  | ua<br>na     | Radon-222                         | 3.7   | kBa       |
| Chromium                           | 23.9  | r-9<br>U0    | Methane                           | 269.7 | ma        |
| Chromium-51                        | 97.9  | nBa          | Methanol                          | 11 1  | ua        |
| Cesium-134                         | 19.8  | uBa          | Magnesium                         | 19.5  | гэ<br>110 |
| Cesium-137                         | 38.2  | uBa          | Manganese                         | 14 7  | м9<br>Ц(1 |
| Copper                             | 71.8  | μ <u>σ</u> α | Manganese-54                      | 28.4  | nBa       |
| Hydrocarbons aromatic              | 12.5  | na           | Molybdenum                        | 23.5  | un        |
| Hydrocarbons, aromatic             | 3.0   | ua           | t-Butyl methyl ether              | 34.2  | na        |
| Cvanide compounds                  | 94.3  | na           | Nitrogen                          | 41.6  | un        |
| Methane dichlorofluoro- HCEC-21    | 591.0 | na           | Dinitrogen monoxide               | 670.2 | м9<br>Ца  |
| Ethane dichloro-                   | 97.9  | na           | Sodium                            | 1 1   | ma        |
| Methane dichloro- HCC-30           | 9.7   | ng           | Niobium-95                        | 5.0   | nRa       |
| Dioxin. 1.2.3.7.8.9-               | 0.1   | ng           | Nickel                            | 0.0   | ma        |
| hexachlorodibenzo-                 | 1.2   | pq           | NMVOC, non-methane volatile       | 0.0   | mg        |
| Particulates. < 10 um (mobile)     | 1.2   | ma           | organic compounds, unspecified    |       |           |
| Particulates, > 10 um (process)    | 4.8   | ma           | origin                            | 405.0 | μg        |
| Particulates, < 10 um (stationarv) | 83.7  | ma           | NMVOC, non-methane volatile       |       |           |
| Ethane                             | 1.2   | ma           | organic compounds, unspecified    |       |           |
| Ethanol                            | 7.7   | ha           | origin                            | 475.3 | mg        |
| Ethene                             | 302.6 | μα           | NMVOC, non-methane volatile       | 470   |           |
| Benzene, ethyl-                    | 119.3 | μg           | organic compounds, unspecified    | 17.6  | mg        |
| -                                  |       | · •          |                                   |       |           |

| origin                           |       |            | Thorium                             | 15.7           | ng   |
|----------------------------------|-------|------------|-------------------------------------|----------------|------|
| Nitrogen oxides                  | 418.3 | mg         | Thorium-228                         | 33.1           | μBq  |
| Neptunium-237                    | 0.0   | nBq        | Thorium-230                         | 184.2          | μBq  |
| Phosphorus                       | 2.8   | μg         | Thorium-232                         | 21.0           | μBq  |
| Protactinium-234                 | 16.6  | μBq        | Thorium-234                         | 16.6           | μBq  |
| PAH, polycyclic aromatic         |       |            | Titanium                            | 2.3            | μq   |
| hydrocarbons                     | 3.1   | ng         | Thallium                            | 6.0            | na   |
| PAH, polycyclic aromatic         |       |            | Toluene                             | 712.0          | ua   |
| hydrocarbons                     | 305.3 | ng         | Chloroform                          | 26             | na   |
| Lead                             | 84.4  | μg         | Uranium                             | 17.4           | na   |
| Lead-210                         | 463.7 | μBq        | Uranium-234                         | 108.5          | uВа  |
| Benzene, pentachloro-            | 10.9  | pg         | Uranium-235                         | 0.6            | μΒq  |
| Phenol, pentachloro-             | 1.7   | pg         | Uranium-238                         | 255 A          | μΒq  |
| Pentane                          | 6.1   | mg         | Uranium alaba                       | 200.4<br>500.7 | μDq  |
| Phenol                           | 14.2  | ng         | Vanadium                            | 092.7          | μБч  |
| Promethium-147                   | 14.1  | μΒα        |                                     | 3.0<br>10.0    | ng   |
| Polonium-210                     | 696.0 | uBa        | Ethene, chioro-                     | 16.0           | ng   |
| Propane                          | 4.8   | ma         | Heat, waste                         | 2.6            | IVIJ |
| Propene                          | 231.4 | ua         | Xenon-131m                          | 6.3            | mвq  |
| Propionic acid                   | 98.8  | na         | Xenon-133                           | 1.8            | Вd   |
| Platinum                         | 2.0   | na         | Xenon-133m                          | 0.9            | mBq  |
| Plutonium-238                    | 0.1   | nBa        | Xenon-135                           | 314.2          | mBq  |
| Plutonium-241                    | 45.5  | иВа        | Xenon-135m                          | 31.0           | mBq  |
| Plutonium-alpha                  | 1 7   | μΒq<br>μBq | Xenon-137                           | 769.0          | μBq  |
| Mothana trichlarafluora CEC 11   | 21.7  | рду        | Xenon-138                           | 8.4            | mBq  |
| Ethane 1 2-dichloro-1 1 2 2-     | 21.4  | ng         | Xylene                              | 480.6          | μg   |
| tetrafluoro- CFC-114             | 566.0 | na         | Zinc                                | 71.4           | μg   |
| Methane dichlorodifluoro- CFC-12 | 4.6   | na         | Zinc-65                             | 121.9          | nBq  |
| Methane chlorotrifluoro- CEC-13  | 2.9   | na         | Zirconium                           | 4.6            | ng   |
| Radium-226                       | 591.0 | uBa        | Zirconium-95                        | 1.8            | nBq  |
| Radium-228                       | 39.1  | μBq<br>μBq |                                     |                |      |
| Noble gases radioactive          | 00.1  | μυς        | Emissions to water                  |                |      |
| unspecified                      | 3.6   | mBa        | Ethane, 1,1,1-trichloro-, HCFC-140  | 152.2          | pg   |
| Radon-220                        | 3.7   | mBa        | Acenaphthylene                      | 315.1          | ng   |
| Radon-222                        | 40.4  | Ba         | Acids, unspecified                  | 1.2            | μġ   |
| Ruthenium-103                    | 03    | nBa        | Silver                              | 1.9            | μg   |
| Ruthenium-106                    | 165 5 | uВa        | Silver-110                          | 190.5          | μBq  |
| Antimony                         | 48.1  | na         | Aluminum                            | 2.0            | mg   |
| Antimony-124                     | 77    | nBa        | Hydrocarbons, aliphatic, alkanes,   |                | 0    |
| Antimony-125                     | 1.1   | nBq        | unspecified                         | 46.2           | μg   |
| Antimony-125                     | 1.0   | пру        | Hydrocarbons, aliphatic, alkanes,   |                |      |
| Sclandum                         | 10.0  | ng         | unspecified                         | 371.1          | μg   |
| Selenium                         | 19.9  | μg         | Hydrocarbons, aliphatic, alkenes,   |                |      |
|                                  | 190.5 | μg         | unspecified                         | 4.3            | μg   |
| LIN<br>Cultur avide a            | 17.8  | ng         | Hydrocarbons, aliphatic, alkenes,   | 04.0           |      |
|                                  | 54.6  | g          |                                     | 34.3           | μg   |
| Strontium                        | 844.6 | ng         | Radioactive species, alpha emitters | 22.6           | nBq  |
| Strontium-89                     | 49.7  | nBq        | Americium-241                       | 68.5           | μBq  |
| Strontium-90                     | 27.2  | μBq        | Ammonia, as N                       | 4.3            | mg   |
| Technetium-99                    | 1.2   | nBq        | AUX, Adsorbable Organic Halogen     | 40.0           |      |
| Tellurium-123m                   | 124.6 | nBq        |                                     | 12.6           | μg   |
| Methane, tetrachloro-, CFC-10    | 24.7  | ng         | Arsenic                             | 6.4            | μg   |

| Boron                             | 110.4 | μg   | Hydrogen sulfide                 | 424.5 | ng   |
|-----------------------------------|-------|------|----------------------------------|-------|------|
| Barium                            | 8.3   | mg   | Hydrogen-3, Tritium              | 102.4 | Bq   |
| Barium-140                        | 343.5 | nBq  | Ethane, hexachloro-              | 1.1   | pg   |
| Barite                            | 55.5  | mg   | Mercury                          | 53.6  | ng   |
| Beryllium                         | 2.4   | ng   | Hypochlorous acid                | 11.0  | μg   |
| Benzene                           | 417.4 | μg   | lodide                           | 321.3 | μg   |
| Adipate, bis(2-ethylhexyl)-       | 5.6   | pg   | lodine-129                       | 9.9   | mBq  |
| BOD5, Biological Oxygen Demand    | 390.7 | μg   | lodine-131                       | 6.6   | μBq  |
| Carbon-14                         | 3.5   | mBq  | lodine-133                       | 1.6   | μBq  |
| Calcium, ion                      | 126.4 | mg   | Potassium                        | 16.5  | mg   |
| Cadmium                           | 3.9   | μg   | Potassium-40                     | 250.1 | μBq  |
| Cadmium-109                       | 2.0   | nBq  | Lanthanum-140                    | 71.2  | nBq  |
| Cerium-141                        | 51.4  | nBq  | Methane, dichloro-, HCC-30       | 25.5  | μg   |
| Cerium-144                        | 1.6   | mBq  | Magnesium                        | 6.9   | mg   |
| Chloroform                        | 30.8  | ng   | Manganese                        | 228.7 | μg   |
| Chlorinated solvents, unspecified | 34.5  | ng   | Manganese-54                     | 2.3   | mBq  |
| Benzene, chloro-                  | 0.6   | pg   | Molybdenum                       | 8.6   | μg   |
| Chloride                          | 1.8   | g    | Molybdenum-99                    | 24.0  | nBq  |
| Curium alpha                      | 90.8  | μBq  | t-Butyl methyl ether             | 2.8   | ng . |
| Cobalt-57                         | 352.4 | nBq  | Nitrogen, total                  | 5.7   | mg   |
| Cobalt-58                         | 298.2 | μBq  | Nitrogen, organic bound          | 849.1 | μg   |
| Cobalt-60                         | 15.1  | mBq  | Sodium, ion                      | 1.1   | g    |
| Cobalt                            | 3.5   | µg . | Sodium-24                        | 10.6  | μBq  |
| COD, Chemical Oxygen Demand       | 9.4   | mg   | Niobium-95                       | 194.9 | nBq  |
| Chromium                          | 46.7  | μg   | Nickel                           | 18.3  | μg . |
| Chromium VI                       | 2.6   | ng   | Nitrate                          | 2.2   | mg   |
| Chromium-51                       | 7.5   | μBq  | Nitrite                          | 2.9   | μg   |
| Cesium                            | 3.2   | μg   | Neptunium-237                    | 4.4   | μBq  |
| Cesium-134                        | 3.5   | mBq  | Radioactive species, unspecified | 148.6 | nBq  |
| Cesium-136                        | 1.8   | nBq  | Hypochlorite                     | 11.0  | μg . |
| Cesium-137                        | 32.3  | mBq  | Protactinium-234                 | 306.2 | μBq  |
| Copper                            | 15.1  | µg . | PAH, polycyclic aromatic         |       | • •  |
| Hydrocarbons, unspecified         | 867.8 | ng   | hydrocarbons                     | 4.6   | μg   |
| Hydrocarbons, aromatic            | 186.0 | μġ   | PAH, polycyclic aromatic         |       |      |
| Hydrocarbons, aromatic            | 1.7   | mg   | hydrocarbons                     | 37.1  | μg   |
| Cyanide                           | 14.5  | μq   | Lead                             | 19.6  | μg   |
| Phthalate, dibutyl-               | 31.9  | pq   | Lead-210                         | 199.4 | μBq  |
| Ethane, dichloro-                 | 50.5  | ng   | Phosphorus compounds,            | 4.0   |      |
| Phthalate, dimethyl-              | 200.3 | pq   |                                  | 1.6   | μg   |
| Solved substances                 | 732.5 | ha   | Phenois, unspecified             | 411.2 | μg   |
| DOC, Dissolved Organic Carbon     | 2.1   | ha   | Phosphate                        | 145.1 | μg   |
| Benzene, ethyl-                   | 77.1  | ua   | Polonium-210                     | 199.4 | hвd  |
| Fluoride                          | 407.6 | ua   | Plutonium-241                    | 6.8   | mВd  |
| Oils. unspecified                 | 58.8  | ma   | Plutonium-alpha                  | 272.3 | hвd  |
| Fatty acids as C                  | 16.3  | ma   | Radium-224                       | 160.2 | mвq  |
| Iron                              | 3.4   | ma   | Radium-226                       | 1.6   | Вd   |
| Iron-59                           | 6.1   | nBa  | Radium-228                       | 321.3 | mВq  |
| VOC, volatile organic compounds.  |       | - 1  |                                  | 32.1  | μg   |
| unspecified origin                | 1.1   | mg   | Ruthenium-103                    | 114.8 | nВq  |
| Formaldehyde                      | 493.1 | pg   | Ruthenium-106                    | 16.6  | шRd  |
| Glutaraldehyde                    | 6.9   | μg   | Saits, unspecified               | 3.6   | mg   |

| Antimony                      | 36.6  | ng  | Undissolved substances | 172.7 | mg  |
|-------------------------------|-------|-----|------------------------|-------|-----|
| Antimony-122                  | 343.5 | nBq | Vanadium               | 11.9  | μg  |
| Antimony-124                  | 49.1  | μBq | Ethene, chloro-        | 37.7  | pg  |
| Antimony-125                  | 2.8   | μBq | Tungsten               | 61.1  | ng  |
| Selenium                      | 11.6  | μg  | Heat, waste            | 769.9 | kĴ  |
| Silicon                       | 28.6  | μg  | Xylene                 | 302.6 | μg  |
| Tin                           | 13.2  | ng  | Yttrium-90             | 39.7  | nBq |
| Sulfur trioxide               | 1.6   | μġ  | Zinc                   | 98.8  | μg  |
| Strontium                     | 19.5  | mg  | Zinc-65                | 22.3  | μBq |
| Strontium-89                  | 777.0 | nBq | Zirconium-95           | 140.6 | μBq |
| Strontium-90                  | 3.3   | mBq |                        |       |     |
| Sulfate                       | 78.3  | mg  | Emissions to soil      |       |     |
| Sulfide                       | 105.0 | μg  | Aluminum               | 3.7   | mg  |
| Technetium-99                 | 1.7   | mBq | Arsenic                | 1.5   | μg  |
| Technetium-99m                | 162.0 | nBq | Carbon                 | 11.4  | mg  |
| Tellurium-123m                | 14.5  | nBq | Calcium                | 14.7  | mg  |
| Tellurium-132                 | 5.9   | nBq | Cadmium                | 63.4  | ng  |
| Ethene, tetrachloro-          | 133.5 | pg  | Cobalt                 | 87.5  | ng  |
| Methane, tetrachloro-, CFC-10 | 202.9 | pg  | Chromium               | 18.4  | μg  |
| Thorium-228                   | 642.6 | mBq | Copper                 | 437.9 | ng  |
| Thorium-230                   | 47.9  | mBq | Iron                   | 7.4   | mg  |
| Thorium-232                   | 46.6  | μBq | Mercury                | 12.0  | ng  |
| Thorium-234                   | 308.8 | μBq | Manganese              | 146.9 | μg  |
| Titanium                      | 105.0 | μg  | Nitrogen               | 3.4   | μg  |
| TOC, Total Organic Carbon     | 47.2  | mg  | Nickel                 | 656.8 | ng  |
| Toluene                       | 347.1 | μg  | Oils, unspecified      | 2.8   | mg  |
| Tributyltin                   | 2.8   | μg  | Oils, biogenic         | 213.6 | ng  |
| Ethene, trichloro-            | 8.4   | ng  | Phosphorus             | 187.8 | μg  |
| Triethylene glycol            | 2.1   | μg  | Lead                   | 2.0   | μg  |
| Uranium-234                   | 409.4 | μBq | Sulfur                 | 2.2   | mg  |
| Uranium-235                   | 609.7 | μBq | Zinc                   | 59.6  | μg  |
| Uranium-238                   | 1.0   | mBq | Heat, waste            | 216.3 | J   |
| Uranium alpha                 | 20.0  | mBq |                        |       |     |

## ZINC OXIDE (1 ton) Source – Chemical Substance Bureau of the Netherlands [72]

| Materials/fuels               |       |     | Lead                 | 0.6    | g  |
|-------------------------------|-------|-----|----------------------|--------|----|
| Zinc, Primary                 | 0.284 | ton | Sulfur oxides        | 94.7   | g  |
| Zinc, Secondary               | 0.15  | ton | Carbon monoxide      | 366.9  | g  |
| Destillate Fuel Oil (DFO) FAL | 14    | 1   | Nitrogen oxides      | 659.4  | g  |
| Coal B300                     | 49    | kg  | Methane              | 174.1  | g  |
| Natural gas B300              | 196   | m3  | Carbon dioxide       | 684.2  | kg |
|                               |       |     | Dioxin, 1,2,3,7,8,9- |        |    |
| Electricity/heat              |       |     | hexachlorodibenzo-   | 0.6    | μg |
| Energy US I                   | 167   | kWh |                      |        |    |
|                               |       |     | Final waste flows    |        |    |
| Emissions to air              |       |     | Residues             | 16.81  | kg |
| Particulates                  | 265.3 | g   | Slags and ashes      | 160.08 | kg |
| Zinc                          | 145.1 | g   | Slags and ashes      | 23.45  | kg |

#### AROMATIC OILS (1 kg) Source – American Petroleum Institute [75]

| Materials/fuels |
|-----------------|
|-----------------|

Oil light B300

1 kg

| Electricity/heat          |      |    |
|---------------------------|------|----|
| Electricity from gas B250 | 0.25 | MJ |
| Electricity from oil B250 | 1.9  | MJ |
| Energy US I               | 0.03 | MJ |

#### STEARIC ACID (1 kg) Source – Ecolnvent Database and Wootthikanokkhan [78, 79]

| Resources                        |       |     | Zinc                             | 95.2           | μg        |
|----------------------------------|-------|-----|----------------------------------|----------------|-----------|
| Energy, potential (in hydropower |       |     | Radioactive species, unspecified | 105910.0       | Bq        |
| reservoir), converted            | 534.9 | kJ  |                                  |                | •         |
| Uranium ore, 1.11 GJ per kg, in  |       |     | Emissions to water               |                |           |
| ground                           | 1.2   | mg  |                                  | 47 7           | ma        |
| Wood (16.9 MJ/kg)                | 297.3 | mg  | Solved substances inorganic      | 13             | n         |
|                                  |       |     | AOX, Adsorbable Organic Halogen  | 1.5            | 9         |
| Materials/fuels                  |       |     | as Cl                            | 10.0           | μq        |
| Coal B300                        | 29.7  | g   | Arsenic                          | 97.9           | na        |
| Crude oil I                      | 57.8  | g   | Barium                           | 11.0           | ma        |
| Crude lignite                    | 4.6   | g   | BOD5 Biological Oxygen Demand    | 133.5          | un        |
| Energy US I                      | 20.4  | dm3 | Cadmium                          | 5.6            | м9<br>ЦО  |
|                                  |       |     | Chloride                         | 19             | n<br>a    |
| Emissions to air                 |       |     | COD Chemical Oxygen Demand       | 2.4            | ma        |
| Ammonia                          | 419.2 | μg  | Chromium                         | 501.1          | ца        |
| Benzene                          | 821.5 | μα  | Copper                           | 243.0          | ру<br>Ца  |
| Cadmium                          | 12.7  | ha  | Hydrocarbons aromatic            | 240.0          | μy<br>ma  |
| Carbon monoxide                  | 71.0  | ma  | Hydrocarbons, chlorinated        | 2.0            | ша        |
| Carbon dioxide                   | 281.2 | a   | Cvanida                          | 16.0           | μg        |
| Hydrocarbons, aromatic           | 2.0   | ma  | DOC Dissolved Organic Carbon     | 255.4          | μg        |
| Hydrocarbons, chlorinated        | 31.8  | na  | Iron                             | 20.4           | μy<br>ma  |
| Particulates                     | 160.2 | ma  | Morouny                          | 20.0           | ng        |
| Methane, bromotrifluoro-, Halon  |       | 9   | Kieldeh N                        | 147.7          | ng        |
| 1301                             | 13.8  | μg  | Metallia iona unanacified        | 201.2          | μy<br>ma  |
| Hydrogen chloride                | 15.0  | mg  |                                  | 22.0           | mg        |
| Hydrogen fluoride                | 1.6   | mg  | Ammonium, ion                    | 3.Z            | ng        |
| Mercury                          | 3.3   | μα  | Nickel                           | 210.3          | μg        |
| Metals, unspecified              | 9.2   | ma  |                                  | 2.9            | mg        |
| Methane                          | 531.3 | ma  | Nitrogen, total                  | 2.8            | mg        |
| Manganese                        | 37.8  | na  | Olis, unspecified                | 77.1           | mg        |
| Dinitrogen monoxide              | 4.7   | ma  | hydrocarbons                     | 37.6           | uа        |
| Nickel                           | 1.0   | ma  | Lead                             | 262.6          | μg        |
| NMVOC, non-methane volatile      |       |     | Phonols unspecified              | 202.0<br>/18.3 | μg        |
| organic compounds, unspecified   |       |     | Phoenbato                        | 410.5          | μy<br>ma  |
| origin                           | 468.1 | mg  | Filospilate                      | 2.9            | ma        |
| Nitrogen oxides                  | 623.0 | mg  | Sulfido                          | 303.1          | nig       |
| PAH, polycyclic aromatic         |       | -   | Surponded substances             | 92.0           | μg        |
| hydrocarbons                     | 11.7  | μg  | Juspended Substances,            | 18/ 2          | ma        |
| Antimony                         | 115.7 | μg  | TOC Total Organic Carbon         | 20 6           | ma        |
| Sulfur oxides                    | 2.1   | g   |                                  | 0.8C<br>211 1  | ing<br>ua |
|                                  |       |     | IUIUEIIE                         | 344.4          | μg        |

| 7 | i | n  | ~ |
|---|---|----|---|
| ~ | I | 11 | c |

503.7 µg

Radioactive species, unspecified 970.1 Bq

## COATED WIRES (1 kg) Source – Ecolnvent and IDEMAT databases [78, 91]

| Resources                           |         |          | Rhodium, in ground                   | 21.3       | ng   |
|-------------------------------------|---------|----------|--------------------------------------|------------|------|
| Additives                           | 396.2   | mg       | Sodium chloride, in ground           | 302.9      | mg   |
| Silver, in ground                   | 427.5   | μg       | Sand, unspecified, in ground         | 1.7        | g    |
| Air                                 | -1502.3 | mg       | Sulfur dioxide, secondary            | 3.0        | g    |
| Baryte, in ground                   | 15.9    | mg       | Tin ore, in ground                   | 235.6      | μg   |
| Baryte, in ground                   | 656.6   | mg       | Water, turbine use, unspecified      |            | 10   |
| Bauxite, in ground                  | 34.7    | a        | natural origin                       | 1291.5     | gal* |
| Clay, bentonite, in ground          | 15.2    | a        | Energy, unspecified                  | -93.2      | kJ   |
| Chromium ore, in around             | 11.7    | a        | Uranium ore, 1.11 GJ per kg, in      |            |      |
| Coal etc extracted for use          | -87.5   | a        | ground                               | 40.1       | mg   |
| Cobalt, in ground                   | 61.1    | na       | Uranium, in ground                   | 3.1        | μg   |
| Cobalt ore in ground                | 396.6   | na       | Waste, from anode production         | 1.6        | g    |
| Copper ore in ground                | 142.1   | ma       | Water, unspecified natural origin/kg | 31.5       | kg   |
| Energy unspecified                  | 10.1    | k.l      | Water, unspecified natural           |            |      |
| Energy, trom bydro power            | 61.5    | k.l      | origin/m3                            | 677.3      | mm3  |
| Filler                              | 175.8   | ma       | Wood (16.9 MJ/kg)                    | 16.5       | g    |
| l and use II-III                    | 104.8   | cm2a     | Wood and wood waste, 9.5 MJ per      |            |      |
| Land use II-III                     | 104.0   | mm2a     | kg                                   | 31.6       | mg   |
| Gas off-gas oil production in       | 1001.3  | mmza     | Zeolite, in ground                   | 176.2      | μg   |
| around                              | 127 4   | cm3      | Zinc ore, in ground                  | 4.2        | g    |
| Iron, 46% in ore, 25% in crude ore, |         | onno     | Land use II-III                      | 486.6      | cm2a |
| in ground                           | 3.5     | lb       | Land use III-IV                      | 36.0       | mm2a |
| Iron ore, in ground                 | -72.6   | g        | Land use II-IV                       | 71.0       | mm2a |
| Gravel, in ground                   | 57.7    | g        | Land use IV-IV                       | 40.7       | mm2a |
| Lead ore, in ground                 | 263.7   | mq       | Land use III-IV                      | 49.2       | cm2a |
| Coal, brown (lignite)               | 38.3    | a        | Land use II-IV                       | 52.6       | cm2a |
| Coal, brown (lignite)               | 137.7   | a        |                                      | 0.0        |      |
| Limestone, in around                | -6.5    | a        | Materials/fuels                      | 0.0        |      |
| Manganese ore, in ground            | 14.6    | a        | Coal mix D S                         | 3.8        | lb   |
| Marl. in ground                     | 223.2   | a        | Crude oil I                          | 384.9      | g    |
| Methane                             | 13.5    | a        | Natural gas B300                     | 3.1        | g    |
| Molybdenum in around                | 34.1    | pa       | Natural gas FAL                      | 160.4      | dm3  |
| Molybdenum ore in ground            | 166 1   | pa       |                                      | 0.0        |      |
| Nickel ore in ground                | 10.4    | r9<br>ma | Emissions to air                     | 0.0        |      |
| Palladium in ground                 | 20.0    | na       | Ethane, 1,2-dichloro-                | 823.0      | ng   |
| Gas, petroleum, 35 MJ per m3, in    | 20.0    | ng       | Acetaldehyde                         | 303.3      | μg   |
| around                              | 9.1     | dm3      | Acetic acid                          | 1384.2     | μg   |
| Pitch, in ground                    | 1.5     | q        | Acetone                              | 300.9      | μg   |
| Platinum, in ground                 | 22.8    | na       | Acrolein                             | 67.3       | ng   |
| Energy, potential (in hydropower    |         | 0        | Silver-110                           | 4.0        | μBq  |
| reservoir), converted               | 2.6     | MJ       | Aluminum                             | 23.4       | mg   |
| Energy, potential (in hydropower    |         |          | Aldehydes, unspecified               | 2.1        | mg   |
| reservoir), converted               | 937.0   | kJ       | Hydrocarbons, aliphatic, alkanes,    |            | -    |
| Rhenium, in ground                  | 20.6    | ng       | unspecified                          | 193.6      | μg   |
| Volume occupied, reservoir          | 0.0     | m3y      | Hydrocarbons, aliphatic, alkanes,    | <b>-</b> - |      |
| Rhenium, in ground                  | 5.1     | pg       | unspecified                          | 2.6        | mg   |
| Rhodium, in ground                  | 7.7     | pg       | Hydrocarbons, aliphatic, alkanes,    | 2.1        | mg   |

| unspecified                       |                |           | Hydrocarbons, unspecified                        | 1.6        | μg        |
|-----------------------------------|----------------|-----------|--------------------------------------------------|------------|-----------|
| Hydrocarbons, aliphatic, alkenes, |                |           | Hydrocarbons, aromatic                           | 8.1        | mg        |
| unspecified                       | 65.4           | μg        | Hydrocarbons, aromatic                           | 244.1      | ng        |
| Hydrocarbons, aliphatic, alkenes, |                |           | Hydrocarbons, aromatic                           | 159.9      | μġ        |
| unspecified                       | 2.4            | μg        | Hydrocarbons, chlorinated                        | 764.6      | ng        |
| Hydrocarbons, aliphatic, alkenes, | 1.0            |           | Cvanide compounds                                | 455.0      | na        |
| unspecified                       | 1.6            | mg        | Methane, dichlorofluoro-, HCFC-21                | 37.4       | μα        |
| Americium-241                     | 75.4           | μBd       | Ethane dichloro-                                 | 11.0       | гэ<br>110 |
| Ammonia                           | 12.9           | mg        | Methane dichloro- HCC-30                         | 65         | м9<br>110 |
| Argon-41                          | 8.8            | Bq        | Dioxin 123789-                                   | 0.0        | ۳9        |
| Arsenic                           | 288.0          | μg        | hexachlorodibenzo-                               | 4.5        | na        |
| Boron                             | 6.4            | mg        | Particulates                                     | 720.6      | ma        |
| Barium                            | 283.3          | μg        | Particulates > 10 um                             | -399 7     | ma        |
| Barium-140                        | 15.8           | μBq       | Particulates SPM                                 | -29.0      | ma        |
| Beryllium                         | 3.5            | μg        | Particulates, $< 10 \text{ µm} \text{ (mobile)}$ | 88.8       | ma        |
| Benzaldehyde                      | 13.8           | ng        | Particulates > 10  um (mobile)                   | 12.4       | a         |
| Benzene                           | 9.1            | mg        | Particulates, > 10 um (process)                  | 12.4       | y<br>ma   |
| Benzo(a)pyrene                    | 143.3          | μg        | Ethono                                           | 401.1      | mg        |
| Radioactive species, unspecified  | 508.8          | nBq       | Ethane                                           | 19.4       | mg        |
| Bromine                           | 748.4          | ua '      | Ethanol                                          | 604.0      | μg        |
| Butane                            | 12.1           | ma        | Etnene                                           | 24.6       | mg        |
| Butene                            | 345.7          | na        | Benzene, ethyl-                                  | 961.7      | μg        |
| Carbon-14                         | 61             | Ba        | Ethyne                                           | 903.7      | μg        |
| Ethane beyafluoro- HEC-116        | 376.8          | ца        | Fluorine                                         | -82.2      | μg        |
|                                   | 68.8           | ру<br>ma  | Iron                                             | 104.6      | mg        |
| Cadmium ovide                     | 1.2            | ug        | Iron-59                                          | 157.5      | nBq       |
| Carbon black                      | 1.2            | μy<br>ma  | Fluoranthene                                     | -26.0      | μg        |
| Cadmium                           | -14.0          | ing       | Formaldehyde                                     | 2.0        | mg        |
|                                   | 002.9<br>075.9 | μy<br>pDa | Hydrogen sulfide                                 | 65.6       | mg        |
|                                   | 373.0          | пБү       | Sulfuric acid                                    | 229.4      | μg        |
| Cerium-144                        | 801.7          | µвd       | Hydrogen-3, Tritium                              | 62.5       | Bq        |
| Methane, tetrafluoro-, CFC-14     | 3.4            | mg        | Methane, bromotrifluoro-, Halon                  |            |           |
| Ethane, hexafluoro-, HFC-116      | 1174.0         | ng        | 1301                                             | 100.9      | μg        |
| Methane, tetrafluoro-, CFC-14     | 9.4            | μg        | Methane, chlorodifluoro-, HCFC-22                | 735.2      | ng        |
| Chlorine                          | 8.9            | μg        | Hydrogen chloride                                | 244.7      | mg        |
| Curium-242                        | 0.4            | nBq       | Helium                                           | 9.2        | mg        |
| Curium-244                        | 3.6            | nBq       | Heptane                                          | 2.4        | mg        |
| Curium alpha                      | 120.2          | μBq       | Benzene, hexachloro-                             | 512.5      | pg        |
| Carbon monoxide                   | 40.2           | g         | Hexane                                           | 5.1        | mg        |
| Carbon dioxide                    | 7.6            | lb        | Hydrogen fluoride                                | 38.5       | mg        |
| Carbon dioxide, fossil            | 141.3          | g         | Ethane, 1,1,1,2-tetrafluoro-, HFC-               |            | 0         |
| Carbon dioxide, biogenic          | 35.2           | mg        | 134a                                             | 0.0        | pg        |
| Cobalt-57                         | 6.9            | nBq       | Mercury                                          | 144.1      | μg        |
| Cobalt-58                         | 115.1          | μBq       | lodine                                           | 301.9      | μg        |
| Cobalt-60                         | 171.5          | μBq       | lodine-129                                       | 21.6       | mBo       |
| Cobalt                            | 322.6          | μg        | lodine-131                                       | 2.4        | mBo       |
| Chromium                          | 701.0          | hđ        | lodine-133                                       | 1342.0     | μBq       |
| Chromium-51                       | 14.2           | μBa       | lodine-135                                       | 2.0        | mBo       |
| Cesium-134                        | 2.9            | mBa       | Potassium                                        | 271.2      | ma        |
| Cesium-137                        | 5.5            | mBa       | Potassium-40                                     | 19.8       | mBo       |
| Copper                            | 2.1            | ma        | Kerosene                                         | 602.5      | na        |
| Hydrocarbons, unspecified         | -1402.0        | ma        | Krypton-85                                       | 371 1      | kBa       |
|                                   |                | 9         |                                                  | ÷, , , , , |           |

| Krypton-85m                        | 439.9  | mBq     | Phenol                             | 8.4          | μg        |
|------------------------------------|--------|---------|------------------------------------|--------------|-----------|
| Krypton-87                         | 196.1  | mBq     | Promethium-147                     | 2.0          | mBq       |
| Krypton-88                         | 17.5   | Bq      | Polonium-210                       | 155.0        | mBq       |
| Krypton-89                         | 137.7  | mBq     | Propane                            | 16.9         | mg        |
| Lanthanum                          | 9.7    | μg .    | Propene                            | 2.1          | mg        |
| Lanthanum-140                      | 10.0   | μBq     | Propionic acid                     | 24.5         | μď        |
| Radon-222                          | 533.3  | kBa     | Platinum                           | 31.1         | na        |
| Metals, unspecified                | 38.1   | ma      | Plutonium-238                      | 9.0          | nBa       |
| Methane                            | 14.4   | a       | Plutonium-241                      | 6.6          | mBa       |
| Methanol                           | 707.6  | nu<br>a | Plutonium-alpha                    | 239.2        | uBa       |
| Magnesium                          | 11.6   | ma      | Methane trichlorofluoro- CEC-11    | 3.1          | μο        |
| Manganese                          | 70.8   | ma      | Ethane 1 2-dichloro-1 1 2 2-       | 0.1          | ۳9        |
| Manganese-54                       | / 0.0  | uBa     | tetrafluoro CFC-114                | 81.9         | ua        |
| Malybdopum                         | 4.1    | μвч     | Methane, dichlorodifluoro-, CFC-12 | 667.5        | na        |
| t Butul methyl ether               | 49.7   | μy      | Methane chlorotrifluoro- CEC-13    | 418.9        | na        |
| l-Bulyi melliyi elher              | 032.0  | ng      | Radium-226                         | 93.2         | mBa       |
|                                    | 14.0   | mg      | Radium-228                         | 9.2          | mBa       |
| Dinitrogen monoxide                | 28.8   | mg      | Noble gases radioactive            | 5.0          | шрү       |
| Sodium                             | 3.6    | mg      | unspecified                        | 526.3        | mBa       |
| Naphthalene                        | 40.8   | ng      | Radon-220                          | 688537.3     | mBa       |
| Niobium-95                         | 727.0  | nBq     | Radon-222                          | 5.8          | kBa       |
| Nickel                             | 15.2   | mg      | Ruthenium-103                      | ۵.0<br>۲۱۱   | nBa       |
| NMVOC, non-methane volatile        |        |         | Ruthenium-106                      | 23.0         | mBa       |
| organic compounds, unspecified     | 00.7   |         |                                    | 20.0<br>10.1 | пра       |
| Oligin<br>N. Nitro dimethy de mine | 02.7   | ng      | Antimony 124                       | 49.4         | μy<br>pBa |
| NMV/OC pop mothono volotilo        | 5.8    | ng      | Antimony 125                       | 141.0        | nBq       |
| organic compounds unspecified      |        |         | Antimony-125                       | 141.2        | пвч       |
| origin                             | 21     | a       | Scandum                            | 3.5          | μy        |
| NMVOC, non-methane volatile        | 2.1    | 9       |                                    | 4.0          | mg        |
| organic compounds, unspecified     |        |         | Silicates, unspecified             | 47.6         | mg        |
| origin                             | 1378.3 | mg      | lin<br>Olif adia ida               | 4.1          | μg        |
| NMVOC, non-methane volatile        |        | Ū       | Sulfur dioxide                     | 170.5        | mg        |
| organic compounds, unspecified     |        |         | Sulfur oxides                      | 149.7        | mg        |
| origin                             | 214.7  | mg      | Sulfur oxides                      | 15.2         | g         |
| Nitrogen oxides                    | 288.9  | mg      | Strontium                          | 328.2        | μg        |
| Nitrogen oxides                    | 6.4    | g       | Strontium-89                       | 7.2          | μBq       |
| Neptunium-237                      | 4.0    | nBq     | Strontium-90                       | 4.0          | mBq       |
| Organic substances, unspecified    | 1.8    | mg      | Tar                                | 2.5          | mg        |
| Phosphorus                         | 322.0  | μg      | Technetium-99                      | 168.0        | nBq       |
| Protactinium-234                   | 2.4    | mBq     | Tellurium-123m                     | 18.1         | μBq       |
| PAH, polycyclic aromatic           |        | •       | Ethene, tetrachloro-               | 26.9         | ng        |
| hydrocarbons                       | 55.9   | μg      | Methane, tetrachloro-, CFC-10      | 3.8          | μg        |
| PAH, polycyclic aromatic           |        |         | Thorium                            | 5.7          | μg        |
| hydrocarbons                       | 155.4  | ng      | Thorium-228                        | 8.3          | mBq       |
| PAH, polycyclic aromatic           |        |         | Thorium-230                        | 26.6         | mBq       |
| hydrocarbons                       | 856.3  | μg      | Thorium-232                        | 5.3          | mBq       |
| Particulates                       | 14.8   | mg      | Thorium-234                        | 2.4          | mBa       |
| Lead                               | 12.4   | mg      | Titanium                           | 838.9        | ua '      |
| Lead-210                           | 97.0   | mBq     | Thallium                           | 1.9          | μα        |
| Benzene, pentachloro-              | 1365.9 | pg      | Toluene                            | 27           | ma        |
| Phenol, pentachloro-               | 220.6  | pg      | Ethene, trichloro-                 | 26.0         | na        |
| Pentane                            | 15.2   | mg      | Chloroform                         | 289.8        | na        |
|                                    |        |         | Onororon                           | 200.0        | 1.9       |

| Uranium                                       | 4.9            | μg         | Boron                            | 2.4          | mg         |
|-----------------------------------------------|----------------|------------|----------------------------------|--------------|------------|
| Uranium-234                                   | 28.7           | mBq        | Barium                           | 265.5        | mg         |
| Uranium-235                                   | 1388.7         | μBq        | Barium-140                       | 49.8         | μBq        |
| Uranium-238                                   | 43.4           | mBq        | Barite                           | 134.0        | mg         |
| Uranium alpha                                 | 85.9           | mBq        | Beryllium                        | 1003.5       | ng         |
| Unspecified emission                          | -11.3          | mg         | Benzene                          | 897.6        | μġ         |
| Vanadium                                      | 5.9            | mg         | Adipate, bis(2-ethylhexyl)-      | 555.1        | pg         |
| Ethene, chloro-                               | 2.3            | μg         | BOD5, Biological Oxygen Demand   | 1.3          | mg         |
| Heat, waste                                   | 26.6           | MJ         | BOD5, Biological Oxygen Demand   | 169.3        | mg         |
| Xenon-131m                                    | 904.4          | mBa        | Carbon-14                        | 503.0        | mBa        |
| Xenon-133                                     | 267.2          | Ba         | Calcium. ion                     | 2.0          | a          |
| Xenon-133m                                    | 134.2          | mBa        | Calcium compounds, unspecified   | 19.2         | ma         |
| Xenon-135                                     | 45.5           | Ba         | Cadmium                          | 280.9        | na         |
| Xenon-135m                                    | 4.5            | Ba         | Cadmium-109                      | 288.2        | nBa        |
| Xenon-137                                     | 111.2          | mBa        | Cerium-141                       | 7 4          | uBa        |
| Xenon-138                                     | 1213 7         | mBa        | Cerium-144                       | 227.6        | mBa        |
| Xvlene                                        | 4 7            | ma         | Chloroform                       | 3.4          | un         |
| Zinc oxide                                    | 296.1          | un         | Chlorinated solvents unspecified | 173.8        | м9<br>110  |
| Zinc                                          | 37.2           | ру<br>ma   | Benzene, chloro-                 | 30.8         | pg<br>na   |
| Zinc-65                                       | 17.6           | uBa        | Chromate                         | 565.4        | pg<br>na   |
| Zirconium                                     | 10.8           | μοч        | Chloride                         | 27.3         | a          |
| Zirconium-95                                  | 262.6          | μy<br>nBa  | Chlorine                         | 21.5         | y<br>ma    |
| Heat waste                                    | 202.0<br>503.4 | LIDA<br>FI |                                  | 2.J<br>13.2  | mBa        |
| Padioactive species upspecified               | 2634 3         | kBa        | Cobalt                           | 13.2<br>56.3 | пра        |
| Radioactive species, unspecified              | 2034.3         | кра        |                                  | 50.5         | μg         |
| Emissions to water                            | 0.0            |            | Cobalt 59                        | 42.2         | ири<br>mBa |
| Ethana 1.1.1 trichlora UCEC 140               | 0.0            | na         | Cobalt-50                        | 43.2         | Ba         |
| Aconomite Vieno                               | 7.3<br>52.5    | ng         | Cobalt                           | Z.Z<br>5 1   | БЧ         |
|                                               | 32.5           | μg         | COD Chamical Oxygan Damand       | 161 /        | ma         |
| Acida, unspecified                            | 5.7            | μg         | COD, Chemical Oxygen Demand      | 101.4        | mg         |
| Silver                                        | 109.7          | ng         | Chromium ion                     | 32.0         | ng         |
| Silver 110                                    | 106.7          | μg<br>mBa  |                                  | 62.3         | ng         |
| Silver                                        | 27.7           | пьч        | Chromium 54                      | 1000.0       | ng<br>D~   |
| Silver                                        | 2.8            | g          |                                  | 1099.3       | µвq        |
| unspecified                                   | 17 4           | ua         |                                  | -100.0       | μg         |
| Hydrocarbons aliphatic alkanes                | 17.4           | ۳9         |                                  | 0.8          | μg         |
| unspecified                                   | 103.9          | ua         | Cesium-134                       | 508.7        | mВq        |
| Hydrocarbons, aliphatic, alkanes,             |                | r S        | Cesium-136                       | 267.2        | nBd        |
| unspecified                                   | 767.8          | μg         | Cesium-137                       | 4.7          | Вd         |
| Hydrocarbons, aliphatic, alkenes,             |                |            | Copper                           | 2.0          | g          |
| unspecified                                   | 1581.5         | ng         | Hydrocarbons, unspecified        | 3.1          | mg         |
| Hydrocarbons, aliphatic, alkenes,             |                |            | Hydrocarbons, aromatic           | 9.0          | mg         |
| unspecified                                   | 9.6            | μg         | Hydrocarbons, chlorinated        | 10.8         | μg         |
| Hydrocarbons, aliphatic, alkenes,             | 70.0           |            | Hydrocarbons, aromatic           | 819.6        | μg         |
| Redipactive spacing alpha amittara            | 70.9           | μg         | Hydrocarbons, aromatic           | 3.7          | mg         |
| Americium 241                                 | 3.3            | μвq<br>mBa | Cyanide                          | 6.6          | mg         |
| Ammonia as N                                  | 9.9<br>20 0    | три        | Phthalate, dibutyl-              | 5.3          | ng         |
| Annollia, do N<br>Colved substances increasio | 39.0           | ng         | Ethane, dichloro-                | 6.1          | μg         |
| AOX Adsorbable Organic Halogon                | 4.9            | y          | Phthalate, dimethyl-             | 33.5         | ng         |
| as Cl                                         | 60.8           | ua         | Solved organics                  | 31.4         | μg         |
| Arsenic                                       | 57             | ma<br>ma   | Solved solids                    | 202.1        | mg         |
|                                               | 0.7            |            |                                  |              |            |

| Solved substances                | 1043.6 | mg        | Hypochlorite                    | 1.6          | mg       |
|----------------------------------|--------|-----------|---------------------------------|--------------|----------|
| DOC, Dissolved Organic Carbon    | 2.2    | mg        | Oils, unspecified               | 279.4        | mg       |
| Benzene, ethyl-                  | 3.2    | μg        | Organic substances, unspecified | 491.3        | μg       |
| Benzene, ethyl-                  | 159.2  | μg        | Protactinium-234                | 44.3         | mBq      |
| Fluoride                         | 266.0  | mg        | PAH, polycyclic aromatic        |              | •        |
| Fluorine                         | -7.5   | mg        | hydrocarbons                    | 371.9        | μg       |
| Oils, unspecified                | 141.7  | ma        | PAH, polycyclic aromatic        |              |          |
| Fatty acids as C                 | 33.7   | ma        | hydrocarbons                    | 76.8         | μg       |
| Iron                             | 9.1    | a         | Lead                            | 240.7        | mg       |
| Iron-59                          | 882.2  | nBa       | Lead-210                        | 33.1         | mBq      |
| VOC. volatile organic compounds. | 002.2  |           | Phosphorus compounds,           |              |          |
| unspecified origin               | 2.3    | mg        | unspecified                     | 16.1         | μg       |
| Fluoride                         | 55.3   | μď        | Phenol                          | 24.1         | μg       |
| Fluorine                         | 77.9   | na        | Phenols, unspecified            | 10.6         | mg       |
| Formaldehvde                     | 191.3  | na        | Phosphate                       | 203.6        | mg       |
| Glutaraldehyde                   | 16.5   | ua        | Polonium-210                    | 33.1         | mBq      |
| Hydrogen sulfide                 | 2.0    | ma        | Phosphorus, total               | 31.8         | ng       |
| Sulfuric acid                    | 39.9   | ua        | Plutonium-241                   | 981.4        | mBq      |
| Hydrogen-3 Tritium               | 14 9   | мэ<br>kBa | Plutonium-alpha                 | 39.6         | mBq      |
| Ethane hevachloro-               | 125.0  | ng        | Radium-224                      | 332.5        | mBq      |
| Mercury                          | 76.3   | P9<br>UQ  | Radium-226                      | 183.8        | Bq       |
| Hypochlorous acid                | 1.8    | μy<br>ma  | Radium-228                      | 664.9        | mBq      |
| Indide                           | 678.1  | ша        | Ruthenium                       | 66.9         | μg       |
|                                  | 1425.4 | μy<br>mBa | Ruthenium-103                   | 16.7         | μBq      |
| Iodine 129                       | 052.4  | пвч       | Ruthenium-106                   | 2.4          | Bq       |
|                                  | 955.4  | μΒα       | Sulfur                          | 4.1          | μġ       |
| Dotooolum                        | 227.0  | µБЧ<br>та | Salts, unspecified              | 49.3         | mg       |
| Polassium 40                     | 799.0  | mBa       | Salts, unspecified              | 763.1        | mg       |
| Polassium-40                     | 41.5   | пьч       | Antimony                        | 109.3        | μď       |
| Kjeluarii-N                      | 1095.4 | µg<br>D~  | Antimony-122                    | 49.8         | μBq      |
| Lanthanum-140                    | 10.3   | μвq       | Antimony-124                    | 7.1          | mBa      |
| Methode a lighter 100 00         | 90.4   | mg        | Antimony-125                    | 406.1        | uBa      |
| Methane, dichloro-, HCC-30       | 60.0   | μg        | Selenium                        | 12.8         | ma       |
| Magnesium                        | 2.1    | g         | Silicon                         | 169.4        | ua       |
| Manganese                        | 53.4   | mg        | Tin                             | 2.5          | н9<br>ЦО |
| Manganese-54                     | 336.9  | mВq       | Sulfur trioxide                 | 202.6        | н9<br>ЦО |
| Molybdenum                       | 6.7    | mg        | Strontium                       | 71.3         | ma       |
| Molybdenum-99                    | 3.5    | μBd       | Strontium-89                    | 112 7        | uBa      |
| t-Butyl methyl ether             | 55.8   | ng        | Strontium-90                    | 478 5        | mBa      |
| Nitrogen, total                  | 8.6    | mg        | Sulfate                         | 4.2          | a        |
| Nitrogen, organic bound          | 945.1  | μg        | Sulfate                         | 12.8         | 9        |
| Sodium, ion                      | 4.7    | g         | Sulfide                         | 719.4        | 9        |
| Sodium-24                        | 1.5    | mBq       | Suspended solids unspecified    | 34.5         | μg<br>ma |
| Niobium-95                       | 28.2   | μBq       | Suspended substances            | 54.5         | mg       |
| Ammonia                          | 88.9   | μg        | unspecified                     | 727.0        | ma       |
| Ammonium, ion                    | 15.3   | mg        | Technetium-99                   | 250.9        | mBa      |
| Nickel                           | 16.1   | mg        | Technetium-99m                  | 23.6         | uBa      |
| Nitrate                          | 27.2   | mg        | Tellurium-123m                  | 20.0         | иRa      |
| Nitrite                          | 914.0  | μg        | Tellurium-132                   | 861.2        | nRa      |
| Neptunium-237                    | 634.8  | μBq       | Ethene tetrachloro-             | 14 8         | na       |
| Nitrogen, total                  | 10.8   | mg        | Methane tetrachloro- CEC-10     | ס רי<br>20 פ | na       |
| Radioactive species, unspecified | 21.5   | μBq       |                                 | 22.0         | ng       |

| Thorium-228                      | 1327.6 | mBq | Aluminum                       | 8.6    | mg  |
|----------------------------------|--------|-----|--------------------------------|--------|-----|
| Thorium-230                      | 6.9    | Bq  | Arsenic                        | 3.4    | μg  |
| Thorium-232                      | 7.8    | mBq | Carbon                         | 26.6   | mg  |
| Thorium-234                      | 44.8   | mBq | Calcium                        | 34.5   | mg  |
| Titanium                         | 152.7  | mg  | Cadmium                        | 265.1  | ng  |
| Titanium dioxide                 | 155.7  | ng  | Cobalt                         | 181.1  | ng  |
| TOC, Total Organic Carbon        | 402.3  | mg  | Chromium                       | 43.0   | μg  |
| Toluene                          | 2.0    | mg  | Copper                         | 904.5  | ng  |
| Tributyltin                      | 128.9  | μg  | Iron                           | 17.2   | mg  |
| Ethene, trichloro-               | 1011.2 | ng  | Mercury                        | 79.5   | ng  |
| Triethylene glycol               | 752.5  | μg  | Manganese                      | 344.7  | μg  |
| Uranium-234                      | 59.3   | mBq | Nitrogen                       | 64.8   | μg  |
| Uranium-235                      | 88.3   | mBq | Nickel                         | 1355.5 | ng  |
| Uranium-238                      | 152.9  | mBq | Oils, unspecified              | 6.1    | mg  |
| Uranium alpha                    | 2.9    | Bq  | Oils, biogenic                 | 229.8  | μg  |
| Undissolved substances           | 1007.4 | mg  | Phosphorus                     | 750.8  | μg  |
| Emission, unspecified            | 9.7    | mg  | Lead                           | 4.2    | μg  |
| Vanadium                         | 12.9   | mg  | Sulfur                         | 5.2    | mg  |
| Ethene, chloro-                  | 4.2    | ng  | Heat, waste                    | 28.4   | kJ  |
| Tungsten                         | 15.0   | μg  | Zinc                           | 137.9  | μg  |
| Heat, waste                      | -38.0  | kJ  | Heat, waste                    | 21.4   | kJ  |
| Waste water/m3                   | 4.4    | cm3 |                                | 0.0    |     |
| Xylene                           | 643.7  | μg  | Final waste flows              | 0.0    |     |
| Yttrium-90                       | 5.8    | μBq | Chemical waste, unspecified    | 21.1   | mg  |
| Zinc                             | 2.5    | g   | Waste, final, inert            | 15.2   | g   |
| Zinc-65                          | 3.3    | mBq | Waste, nuclear, high active/m3 | 0.2    | mm3 |
| Zirconium-95                     | 20.3   | mBq | Waste, nuclear, low and medium |        |     |
| Heat, waste                      | 11.8   | kJ  | active/m3                      | 10.2   | mm3 |
| Radioactive species, unspecified | 24.2   | kBq | Production waste               | -32.1  | g   |
|                                  | 0.0    |     | Waste, solid                   | 773.6  | mg  |
| Emissions to soil                | 0.0    |     | Steel waste                    | 2.6    | g   |

## TEXTILES (1 kg) Source – Ecolnvent and IDEMAT [78, 91]

| Resources                           |        |    | Dolomite, in ground       | 2.4    | mg   |
|-------------------------------------|--------|----|---------------------------|--------|------|
| Silver, in ground                   | 473.9  | μg | Energy, unspecified       | 19.6   | kJ   |
| Air                                 | 305.3  | g  | Energy, from coal         | 4.6    | MJ   |
| Artificial fertilizer               | 128.2  | mg | Energy, from hydro power  | 108.1  | kJ   |
| Baryte, in ground                   | -19.8  | mg | Energy, from hydrogen     | 395.9  | kJ   |
| Baryte, in ground                   | 664.6  | mg | Energy, from coal, brown  | 472.1  | kJ   |
| Bauxite, in ground                  | 860.5  | mg | Energy, from gas, natural | 16.6   | MJ   |
| Clay, bentonite, in ground          | 83.6   | mg | Energy, from oil          | 8.0    | MJ   |
| Biomass                             | 38.8   | g  | Energy, from sulfur       | 28.3   | kJ   |
| Chromium ore, in ground             | 1.5    | mg | Energy, from uranium      | 2.1    | MJ   |
| Other minerals, extracted for use   | 3.3    | mg | Energy, from wood         | 217.6  | J    |
| Coal, 29.3 MJ per kg, in ground     | 494.8  | g  | Energy, recovered         | -1.0   | MJ   |
| Cobalt, in ground                   | 8.6    | ng | Field latex               | 23.8   | g    |
| Cobalt ore, in ground               | -522.3 | pg | Land use II-III           | 105.8  | cm2a |
| Copper ore, in ground               | 24.4   | mg | Land use II-IV            | 1088.2 | mm2a |
| Oil, crude, 41 MJ per kg, in ground | 558.3  | g  | Fluorspar, in ground      | 435.1  | μg   |
|                                     |        |    |                           |        |      |

| Gas, off-gas, oil production, in    |        | -       | Sulfur, in ground                    | 3.0    | g         |
|-------------------------------------|--------|---------|--------------------------------------|--------|-----------|
| ground                              | -173.9 | cm3     | Tin ore, in ground                   | 257.1  | μg        |
| Gypsum, in ground                   | 2.6    | mg      | Water, turbine use, unspecified      |        |           |
| Ilmenite, in ground                 | 8.7    | g       | natural origin                       | 727.7  | dm3       |
| Iron, 46% in ore, 25% in crude ore, |        |         | Energy, unspecified                  | -8.6   | kJ        |
| in ground                           | 1196.7 | mg      | Uranium ore, 1.11 GJ per kg, in      |        |           |
| Iron ore, in ground                 | -4.7   | g       | ground                               | 50.3   | mg        |
| Potassium chloride                  | 15.5   | mg      | Water, unspecified natural origin/kg | 5.3    | lb        |
| Gravel, in ground                   | 3.5    | g       | Water, cooling, unspecified natural  | 45.0   |           |
| Lead ore, in ground                 | 3.5    | mg      | origin/kg                            | 15.9   | kg        |
| Coal, brown (lignite)               | 424.8  | g       | Water, process, drinking             | 37.0   | kg        |
| Coal, brown (lignite)               | 31.2   | g       | Water, process, unspecified natural  | 70.4   | ~         |
| Limestone, in ground                | 26.1   | g       | origin/kg                            | /0.1   | g         |
| Manganese ore, in ground            | 348.4  | μg      | Water, cooling, salt, ocean          | 16.3   | кg        |
| Marl, in ground                     | 630.2  | mg      | Water, process, salt, ocean          | 104.4  | g         |
| Methane                             | 69.3   | ma      | Water, unspecified natural           | 000.0  | 0         |
| Molybdenum, in around               | 294.8  | na      | origin/m3                            | 262.9  | cm3       |
| Molybdenum ore in ground            | -199.8 | na      | Water, cooling, well, in ground      | 4.8    | g         |
| Sodium chloride in around           | 5.2    | Р9<br>Л | Water, process, well, in ground      | 93.6   | mg        |
| Gas natural 36.6 MJ per m3 in       | 0.2    | 9       | Wood (16.9 MJ/kg)                    | 214.2  | g         |
| around                              | 1111.7 | dm3     | Wood, feedstock                      | 373.1  | g         |
| Gas. natural. 30.3 MJ per kg. in    |        |         | Wood and wood waste, 9.5 MJ per      |        |           |
| ground                              | 205.8  | mg      | kg                                   | 1.9    | mg        |
| Nickel ore, in ground               | 1017.4 | μď      | Zeolite, in ground                   | -240.8 | μg        |
| Nitrogen, in air                    | 39.2   | a       | Zinc ore, in ground                  | 5.5    | mg        |
| Olivine, in ground                  | 1.7    | ma      | Land use II-III                      | -39.0  | cm2a      |
| Oxygen in air                       | 145.8  | ma      | Land use III-IV                      | -263.6 | mm2a      |
| Palladium in ground                 | 1 2    | un      | Land use II-IV                       | -256.7 | mm2a      |
| Gas petroleum 35 M.I per m3 in      | 1.2    | ۳9      | Land use IV-IV                       | -35.0  | mm2a      |
| around                              | 10.3   | dm3     |                                      |        |           |
| Platinum in around                  | 1 4    | ua      | Emissions to air                     |        |           |
| Energy, potential (in hydropower    |        | M9      | Ethane, 1,1,1-trichloro-, HCFC-140   | 259.5  | μg        |
| reservoir), converted               | 4.5    | MJ      | Ethane, 1.2-dichloro-                | -276.5 | ng        |
| Energy, potential (in hydropower    |        |         | 1.4-Dioxane                          | 217.6  | na        |
| reservoir), converted               | 138.1  | kJ      | Acetaldehvde                         | 4.4    | ma        |
| Water, process and cooling,         |        |         | Acetic acid                          | 374.3  | ua        |
| unspecified natural origin          | 668.8  | cm3     | Acetone                              | 92.2   | м9<br>ЦО  |
| Rhenium, in ground                  | 1.0    | μg      | Acrolein                             | 8.0    | pg<br>ng  |
| Volume occupied, reservoir          | 0.0    | m3y     | Silver                               | 3.0    | ug        |
| Rhenium, in ground                  | -5.2   | pg      | Silver 110                           | 072 /  | μy<br>pPa |
| Rhodium, in ground                  | -7.7   | pg      |                                      | 715.4  | пра       |
| Rhodium, in ground                  | 1.3    | hđ      |                                      | 710.0  | μg        |
| Sodium chloride, in ground          | 87.6   | a       | Aldenydes, unspecified               | 551.3  | mg        |
| Rutile in around                    | 184.9  | ma      | Hydrocarbons, aliphalic, alkanes,    | 264.7  | 110       |
| Sand unspecified in around          | 486.5  | ma      | Hydrocarbons alinbatic alkanes       | -204.7 | μy        |
| Sand and clay, unspecified, in      | 10010  | mg      | unspecified                          | 29     | ma        |
| around                              | 24.8   | ma      | Hydrocarbons aliphatic alkanes       | 2.0    | ing       |
| Shale, in ground                    | 7.2    | ma      | unspecified                          | 618.5  | ua        |
| Silver, in ground                   | 80.0   | μα      | Hydrocarbons, aliphatic. alkenes.    | 2.0.0  | -3        |
| Sulfur dioxide secondary            | 117 8  | гэ<br>П | unspecified                          | -89.4  | μg        |
| Sodium dichromate in ground         | 113.3  | 9       | Hydrocarbons, aliphatic, alkenes,    |        |           |
| Sulfur bonded                       | 1 6    | м9<br>Л | unspecified                          | 500.3  | ng        |
| Gunar, bonaca                       | 1.0    | Э       |                                      |        |           |

| Hydrocarbons, aliphatic, alkenes, |         |            | Hydrocarbons, aromatic                              | 50.0   | ng        |
|-----------------------------------|---------|------------|-----------------------------------------------------|--------|-----------|
| unspecified                       | 159.0   | μg         | Hydrocarbons, aromatic                              | 93.4   | μg        |
| Americium-241                     | 16.3    | μBq        | Hydrocarbons, chlorinated                           | 22.9   | μg        |
| Ammonia                           | 155.4   | mg         | Hydrocarbons, halogenated                           | 202.4  | ng        |
| Argon-41                          | 1.9     | Bq         | Hydrocarbons, unspecified                           | 26.8   | μg        |
| Arsenic                           | 41.8    | μg         | Hydrocarbons, unspecified                           | 17.2   | μg        |
| Boron                             | 518.3   | μg         | Cyanide compounds                                   | 429.6  | ng        |
| Barium                            | 13.3    | μg         | Methane, dichlorofluoro-, HCFC-21                   | 4.5    | μġ        |
| Barium-140                        | 3.4     | μBq        | Ethane, dichloro-                                   | 2.9    | hđ        |
| Beryllium                         | 1.2     | μg         | Methane, dichloro-, HCC-30                          | 142.0  | na        |
| Benzaldehyde                      | -0.4    | ng         | Dioxin, 1,2,3,7,8,9-                                |        | 5         |
| Benzene                           | 67.3    | mg         | hexachlorodibenzo-                                  | 125.9  | pg        |
| Benzo(a)pyrene                    | -6.1    | ng         | Biphenyl                                            | 775.1  | μg        |
| Radioactive species, other beta   |         | -          | Particulates                                        | 3.5    | g         |
| emitters                          | 109.6   | nBq        | Particulates, > 10 um                               | -124.1 | mg        |
| Bromine                           | 77.8    | μg         | Particulates, SPM                                   | 2.2    | g         |
| Butane                            | 12.8    | mg         | Particulates, < 10 um (mobile)                      | 8.1    | ma        |
| Butene                            | 279.9   | μg         | Particulates, > 10 um (process)                     | 55.0   | ma        |
| Carbon-14                         | 1.3     | Bq         | Particulates, $< 10 \text{ um} (\text{stationary})$ | 133.1  | ma        |
| Ethane, hexafluoro-, HFC-116      | 634.7   | ng         | Esters, unspecified                                 | 3.8    | ma        |
| Calcium                           | 1.5     | mg         | Ethane                                              | 2.9    | ma        |
| Carbon black                      | -0.8    | mg         | Ethanol                                             | 187.5  | ua        |
| Cadmium                           | 135.0   | μg         | Ethene                                              | 16.4   | ma        |
| Cerium-141                        | 81.6    | nBq        | Benzene ethyl-                                      | 581.6  | ung       |
| Cerium-144                        | 173.7   | uBa        | Ethylene glycol                                     | 44.2   | м9<br>Ца  |
| Methane, tetrafluoro-, CFC-14     | 5.7     | na         | Ethylene oxide                                      | 138.1  | μg        |
| Chlorinated fluorocarbons, soft   | 21.8    | ua         | Ethype                                              | 1062.4 | pg        |
| Ethane hexafluoro- HEC-116        | -1090.6 | na         | Eluorino                                            | 1002.4 | ug        |
| Methane tetrafluoro- CEC-14       | -6.0    | ua         | Iron                                                | 1011.2 | μg        |
| Phenol chloro-                    | 259.5   | na         | Iron 50                                             | 24.0   | μy<br>pBa |
| Chlorine                          | 194 1   | ua         | Fluerenthana                                        | 34.0   | пвч       |
| Curium-242                        | 0.1     | nBa        | Fiuoranniene                                        | -1.4   | μg        |
| Curium-244                        | 0.1     | nBa        | Formaldenyde                                        | 1.4    | mg        |
| Curium alpha                      | 25.0    | пВq<br>uBq | Hydrogen                                            | 110.9  | mg        |
| Carbon monovide                   | 5.0     | μDq        | Hydrogen suifide                                    | 1.4    | g         |
| Carbon dioxide                    | 5.9     | y<br>ka    |                                                     | 21.8   | μg        |
| Carbon dioxide fossil             | 0.3     | ry<br>a    | Hydrogen-3, Tritium                                 | 13.6   | Вd        |
| Carbon dioxide, lossi             | 0.7     | y<br>ma    |                                                     | 120.2  | ца        |
| Cabalt 57                         | 2.1     | nBa        | Mathana ablaradifluara HCEC 22                      | 120.2  | μg        |
| Cobalt-57                         | 1.5     | пра        | Wethane, chlorodinuoro-, HCFC-22                    | 109.2  | ng        |
| Cobalt-56                         | 24.9    | µБq<br>"Ва |                                                     | 403.0  | mg        |
|                                   | 37.1    | μвq        |                                                     | 10.4   | mg        |
|                                   | 97.6    | μg         | Heavy metals, unspecified                           | 3.5    | mg        |
| Chromium                          | 481.1   | μg         | Heptane                                             | 2.6    | mg        |
| Chromium-51                       | 3.1     | hвd        | Benzene, nexachioro-                                | 116.3  | pg        |
| Cesium-134                        | 619.8   | µВd        | Biphenyl, hexachloro-                               | 21.2   | μg        |
| Cesium-137                        | 1.2     | mВq        | Hexane                                              | 6.7    | mg        |
| Carbon disulfide                  | 36.9    | g          | Hydrogen fluoride                                   | 34.4   | mg        |
| Copper                            | 243.0   | μg         | Mercury                                             | 143.7  | μg        |
| Hydrocarbons, unspecified         | 1.7     | g          | Iodine                                              | 33.9   | μg        |
| Hydrocarbons, unspecified         | 69.4    | mg         | Iodine-129                                          | 4.7    | mBq       |
| Hydrocarbons, aromatic            | 91.2    | mg         | lodine-131                                          | 516.9  | μBq       |

| lodine-133                     | 289.7  | μBq     | Protactinium-234                   | 518.2        | μBq        |
|--------------------------------|--------|---------|------------------------------------|--------------|------------|
| lodine-135                     | 434.1  | μBq     | PAH, polycyclic aromatic           |              |            |
| Potassium                      | 293.6  | μg      | hydrocarbons                       | 387.5        | μg         |
| Potassium-40                   | 2.5    | mBq     | PAH, polycyclic aromatic           |              |            |
| Kerosene                       | 229.5  | ng .    | hydrocarbons                       | 24.2         | ng         |
| Krypton-85                     | 80.1   | kBq     | PAH, polycyclic aromatic           | 4.0          |            |
| Krypton-85m                    | 94.6   | mBa     | nydrocarbons<br>Deutie later       | 4.0          | μg         |
| Krypton-87                     | 42.4   | mBa     | Particulates                       | 12.3         | mg         |
| Krypton-88                     | 3.8    | Ba      | Lead                               | 872.7        | μg         |
| Krypton-89                     | 29.7   | mBa     | Lead-210                           | 14.4         | mBq        |
| Lanthanum                      | 387.1  | na      | Polychlorinated biphenyls          | 589.8        | ng         |
| Lanthanum-140                  | 22     | uBa     | Benzene, pentachloro-              | 310.0        | pg         |
| Radon-222                      | 115.2  | kBa     | Phenol, pentachloro-               | 44.9         | ng         |
| Marcantans unspecified         | 11.2   | ma      | Pentane                            | 17.0         | mg         |
| Metals, unspecified            | 04.2   | ma      | Phenol                             | 152.8        | ng         |
| Methono                        | 94.Z   | nig     | Promethium-147                     | 440.3        | μBq        |
| Methanal                       | 17.5   | y<br>ma | Polonium-210                       | 21.5         | mBq        |
| Methanol                       | 101.3  | mg      | Propane                            | 13.3         | mg         |
| Acetic acid, metnyi ester      | 100.3  | mg      | Propene                            | 6.0          | mg         |
| Methyl formate                 | 876.3  | mg      | Propionic acid                     | 0.8          | μg         |
| Methyl mercaptan               | 1.6    | μg      | Platinum                           | 7.8          | ng         |
| Magnesium                      | 245.6  | μg      | Plutonium-238                      | 1.9          | nBq        |
| Manganese                      | 584.9  | μg      | Plutonium-241                      | 1.4          | mBq        |
| Manganese-54                   | 889.0  | nBq     | Plutonium-alpha                    | 51.8         | µBq.       |
| Molybdenum                     | 81.8   | μg      | Methane, trichlorofluoro-, CFC-11  | 671.1        | na         |
| t-Butyl methyl ether           | 136.1  | ng      | Ethane, 1,2-dichloro-1,1,2,2-      | -            | 3          |
| Nitrogen                       | 1.2    | mg      | tetrafluoro-, CFC-114              | 17.7         | μg         |
| Dinitrogen monoxide            | 3.3    | g       | Methane, dichlorodifluoro-, CFC-12 | 144.4        | ng         |
| Sodium                         | 1568.5 | μg      | Methane, chlorotrifluoro-, CFC-13  | 90.5         | ng         |
| Naphthalene                    | 2.6    | ng      | Radium-226                         | 18.5         | mBq        |
| Niobium-95                     | 157.2  | nBq     | Radium-228                         | 1.2          | mBq        |
| Nickel                         | 5.8    | mg      | Noble gases, radioactive,          |              | •          |
| NMVOC, non-methane volatile    |        |         | unspecified                        | 113.5        | mBq        |
| organic compounds, unspecified |        |         | Radon-220                          | 113.6        | mBq        |
| origin                         | 5.0    | mg      | Radon-222                          | 1255.0       | Bq         |
| N-Nitrodimethylamine           | 1.9    | ng      | Ruthenium-103                      | 8.9          | nBq        |
| Nitrogen dioxide               | 4.5    | g       | Ruthenium-106                      | 5.2          | mBq        |
| NMVOC, non-methane volatile    |        |         | Sulfur, total reduced              | 666.3        | mg         |
| organic compounds, unspecified | 0.0    | -       | Antimony                           | 12.1         | na         |
| origin                         | 3.2    | g       | Antimony-124                       | 240.5        | nBa        |
| organic compounds unspecified  |        |         | Antimony-125                       | 30.6         | nBa        |
| origin                         | 1120.8 | ma      | Scandium                           | 113.6        | na         |
| NMVOC non-methane volatile     | 1120.0 | mg      | Selenium                           | 33.2         | ua         |
| organic compounds, unspecified |        |         | Silicates unspecified              | 3.5          | ma         |
| origin                         | 19.6   | mg      | Tin                                | 235.1        | na         |
| Nitrogen oxides                | 7.5    | a       | Sulfur beyafluoride                | 200.1        | a          |
| Nitrogen oxides                | 9.4    | a       | Sulfur oxides                      | 2.0          | g          |
| Neptunium-237                  | 0.9    | nBa     | Sulfur ovides                      | 0.4<br>20 0  | y<br>a     |
| Oxvgen                         | 54 6   | a       | Strontium                          | 20.0<br>10 G | 9          |
| Mineral oil                    | 178.8  | ma      | Strontium 20                       | 10.0         | µy<br>⊔¤∼  |
| Organic substances unspecified | 48.5   | ma      | Strontium 00                       | 1.0          | hDd<br>hD~ |
| Phosphorus                     | 23.6   | nu      | Suomum-ao                          | 1.000        | μ¤ч        |
|                                | 20.0   | ۳9      |                                    |              |            |

| Styrene                            | 77.8   | μg         | unspecified                                          |               |           |
|------------------------------------|--------|------------|------------------------------------------------------|---------------|-----------|
| Technetium-99                      | 36.3   | nBq        | Hydrocarbons, aliphatic, alkanes,                    |               |           |
| Tellurium-123m                     | 3.9    | μBq        | unspecified                                          | 872.4         | μg        |
| Ethene, tetrachloro-               | 8.8    | ng         | Hydrocarbons, aliphatic, alkenes,                    |               |           |
| Methane, tetrachloro-, CFC-10      | 708.8  | ng         | unspecified                                          | -2.2          | μg        |
| Thorium                            | -344.4 | na         | Hydrocarbons, aliphatic, alkenes,                    | 10.1          |           |
| Thorium-228                        | 1017.8 | uBa        |                                                      | 10.1          | μg        |
| Thorium-230                        | 5.8    | mBa        | Hydrocarbons, alipnatic, aikenes,                    | 00 F          |           |
| Thorium-232                        | 645 5  | uBa        | Unspecified<br>Redisective encoires, elabor emittere | 00.5<br>700.4 | μg<br>¤Da |
| Thorium-234                        | 518.2  | uBa        | Accorisium 044                                       | 708.4         | nвq       |
| Titanium                           | 30.0   | μοq        | Americium-241                                        | 2.1           | mвq       |
| Thallium                           | 147.7  | pg<br>ng   | Ammonia, as N                                        | 11.3          | mg        |
| Taluana                            | 25     | ma         | Solved substances, inorganic                         | 8.9           | g         |
| Ethono trichloro                   | 3.0    | ma         | AOX, Adsorbable Organic Halogen                      | 110 /         |           |
| Chloroform                         | 1.3    | ng         |                                                      | 113.4         | mg        |
|                                    | 75.5   | ng         | Arsenic                                              | 1612.2        | μg        |
|                                    | 175.5  | ng         | Boron                                                | 361.1         | μg        |
| Uranium-234                        | 6.2    | mBq        | Barium                                               | 113.9         | mg        |
| Uranium-235                        | 300.8  | μBq        | Barium-140                                           | 10.7          | μBq       |
| Uranium-238                        | 8.0    | mBq        | Barite                                               | 127.7         | mg        |
| Uranium alpha                      | 18.6   | mBq        | Beryllium                                            | 159.8         | ng        |
| Unspecified emission               | -629.1 | μg         | Benzene                                              | 1.4           | mg        |
| Vanadium                           | 5.2    | mg         | Adipate, bis(2-ethylhexyl)-                          | 138.8         | pg        |
| Ethene, chloro-                    | 307.3  | ng         | BOD5, Biological Oxygen Demand                       | 116.9         | g         |
| Heat, waste                        | 4.9    | MJ         | BOD5, Biological Oxygen Demand                       | 3.7           | mg        |
| water                              | 218.9  | g          | Carbon-14                                            | 108.7         | mBq       |
| Xenon-131m                         | 196.0  | mBq        | Calcium, ion                                         | 390.5         | mg        |
| Xenon-133                          | 57.7   | Bq         | Calcium compounds, unspecified                       | -26.3         | mg        |
| Xenon-133m                         | 29.0   | mBq        | Carbonate                                            | 26.1          | mg        |
| Xenon-135                          | 9.8    | Ba         | Cadmium                                              | 73.2          | ua        |
| Xenon-135m                         | 968.5  | mBa        | Cadmium-109                                          | 61.9          | nBa       |
| Xenon-137                          | 24.1   | mBa        | Cerium-141                                           | 1.6           | uBa       |
| Xenon-138                          | 262.8  | mBa        | Cerium-144                                           | 49.2          | mBa       |
| Xvlene                             | 1279.5 | <u>–</u> 9 | Chloroform                                           | 897.8         | na        |
| Zinc                               | 16     | ma         | Chlorinated solvents unspecified                     | 486 7         | ng        |
| Zinc-65                            | 3.8    | uBa        | Benzene, chloro-                                     | 10.7          | ng        |
| Zirconium                          | 17.3   | na         | Chromate                                             | 36.2          | ng        |
| Zirconium-95                       | 57.0   | nBa        | Chloride                                             | 21.8          | a         |
| Heat waste                         | -808.7 | hDq<br>k I | Chlorino                                             | 21.0          | y<br>ma   |
| Padiaactive species upspecified    | -000.7 | k<br>Ba    |                                                      | 20            | mBa       |
| Radioactive species, unspecified   | 4172.0 | кру        | Culturn alpha                                        | 2.9           | пьч       |
|                                    |        |            |                                                      | -43.1         | μg        |
| Emissions to water                 |        |            | Cobalt-57                                            | 11.0          | µвq       |
| Etnane, 1,1,1-tricnioro-, HCFC-140 | 1157.6 | pg         | Cobalt-58                                            | 9.3           | mвd       |
| Acenaphthylene                     | 9.7    | μg         | Cobalt-60                                            | 475.5         | mВq       |
| Acidity, unspecified               | 12.8   | mg         | Cobalt                                               | 81.5          | μg        |
| Acids, unspecified                 | 12.1   | μg         | COD, Chemical Oxygen Demand                          | 3.7           | lb        |
| Silver                             | 4.8    | μg         | Chromium                                             | 8.4           | mg        |
| Silver-110                         | 6.0    | mBq        | Chromium, ion                                        | 22.0          | μg        |
| Aluminum                           | 803.6  | mg         | Chromium VI                                          | 64.3          | μg        |
| Hydrocarbons, aliphatic, alkanes,  |        |            | Chromium-51                                          | 235.8         | μBq       |
| unspecified                        | -23.8  | μg         | Crude oil                                            | -26.3         | μg        |
| Hydrocarbons, aliphatic, alkanes,  | 109.3  | μg         |                                                      |               |           |

| Cesium                         | 7.4                        | μg         | Magnesium                       | 35.7   | mg       |
|--------------------------------|----------------------------|------------|---------------------------------|--------|----------|
| Cesium-134                     | 109.9                      | mBq        | Manganese                       | 1017.5 | μg       |
| Cesium-136                     | 57.5                       | nBq        | Manganese-54                    | 73.0   | mBq      |
| Cesium-137                     | 1011.0                     | mBq        | Molybdenum                      | 672.5  | μg .     |
| Copper                         | 6.2                        | mg .       | Molybdenum-99                   | 748.9  | nBq      |
| Hydrocarbons, unspecified      | 14.3                       | mg         | t-Butyl methyl ether            | 11.2   | ng       |
| Hydrocarbons, aromatic         | 13.8                       | ma         | Nitrogen, total                 | 14.4   | ma       |
| Hydrocarbons, chlorinated      | 47.8                       | na         | Nitrogen, organic bound         | 2.2    | ma       |
| Hydrocarbons, aromatic         | 437.6                      | ua         | Sodium. ion                     | 4.0    | a        |
| Hydrocarbons, aromatic         | 4.1                        | ma         | Sodium-24                       | 330.3  | uBa      |
| Cvanide                        | 114.9                      | ua         | Niobium-95                      | 6.1    | uBa      |
| Detergent, oil                 | 17.2                       | ma         | Ammonia                         | 2.6    | ma       |
| Phthalate, dibutyl-            | 976.8                      | pa         | Ammonium, ion                   | 434.4  | ma       |
| Ethane dichloro-               | 13                         | Р9<br>Ц0   | Nickel                          | 61     | ma       |
| Phthalate dimethyl-            | 6.1                        | na         | Nitrate                         | 6.6    | n        |
| Solved organics                | 500.3                      | ma         | Nitrite                         | 83.6   | ыu       |
| Solved solids                  | 1 3                        | a          | Nentunium-237                   | 137.3  | иВа      |
| Solved substances              | 268.1                      | 9<br>ma    | Nitrogen total                  | 50.2   | ma       |
| DOC Dissolved Organic Carbon   | 158 5                      | ma         | Radioactive species unspecified | 1.6    | uBa      |
| Benzene ethyl-                 | -4.3                       | ua         | Hypochlorite                    | 344.5  | μοч      |
| Benzene, ethyl-                | - <del>4</del> .5<br>181 1 | μg         |                                 | 326.0  | μy<br>ma |
| Eluoride                       | 1113.8                     | μg         | Organic substances unspecified  | 1.8    | ma       |
| Fluorino                       | 1113.0                     | μg         | Phoenhorus pontovido            | 4.0    | ma       |
| Cile upspecified               | -491.7                     | μy<br>ma   | Protoctinium 224                | 103.2  | mBa      |
|                                | 152.9                      | mg         | PAH polycyclic aromatic         | 9.0    | швч      |
| Eatty aside as C               | 40.7                       | mg         | hydrocarbons                    | 178 1  | ua       |
|                                | 30.2<br>1066 9             | mg         | PAH, polycyclic aromatic        |        | M9       |
| Iron 50                        | 1000.0                     | nBa        | hydrocarbons                    | 87.2   | μg       |
| VOC volatile organic compounds | 109.0                      | пБЧ        | Lead                            | 4.9    | mg       |
| unspecified origin             | 26                         | ma         | Lead-210                        | 6.2    | mBq      |
| Fluoride                       | -71.0                      | un         | Phosphorus compounds,           |        |          |
| Fluorine                       | 32.2                       | м9<br>Ца   | unspecified                     | 3.8    | μg       |
| Formaldebyde                   | 4.8                        | pg<br>na   | Phenol                          | 1.9    | mg       |
| Glutaraldebyde                 | 15.8                       | ua         | Phenols, unspecified            | 2.8    | mg       |
| Hydrogen sulfide               | 16                         | pg<br>ng   | Phosphate                       | 47.3   | mg       |
| Sulfuric acid                  | 7.4                        | ua         | Polonium-210                    | 6.2    | mBq      |
| Hydrogen-3 Tritium             | 3224 1                     | P9<br>Ba   | Phosphorus, total               | -43.4  | ng       |
| Ethane hexachloro-             | 32 7                       | bq         | Plutonium-241                   | 212.6  | mBq      |
| Mercury                        | 26.9                       | P9<br>110  | Plutonium-alpha                 | 8.6    | mBq      |
| Hypochlorous acid              | 120.0                      | μg         | Radium-224                      | 377.8  | mBq      |
| Indide                         | 737.0                      | μg         | Radium-226                      | 40.3   | Βq       |
| Iodine-129                     | 311.0                      | μy<br>mBa  | Radium-228                      | 754.8  | mBq      |
| Iodine-123                     | 205.5                      | пвq<br>uBa | Ruthenium                       | 75.5   | μg       |
| Iodine-133                     | 205.5                      | μΒq        | Ruthenium-103                   | 3.6    | μBq      |
| Potassium                      | 43.1                       | μος        | Ruthenium-106                   | 518.2  | mBq      |
| Potassium-40                   | 42.3                       | mBa        | Sulfur                          | 16.2   | μg       |
| Kieldehl N                     | 1.0                        | ma         | Salts, unspecified              | -67.5  | mg       |
| Lanthanum-1/0                  | ט.ד<br>סיס                 | uRa        | Salts, unspecified              | 110.4  | mg       |
| Matallic ions upspecified      | ۲.۷<br>107 ۵               | рвч<br>ma  | Antimony                        | 5.7    | μg       |
| Methanol                       | 775 1                      | ша         | Antimony-122                    | 10.7   | μBq      |
| Methana dichlara UCC 20        | 60 F                       | μg         | Antimony-124                    | 1.5    | mBq      |
| Methane, ului 1010-, 1100-30   | 00.0                       | μy         | •                               |        |          |

| Antimony-125                     | 87.3   | μBq | Arsenic                        | 3.5    | μg       |
|----------------------------------|--------|-----|--------------------------------|--------|----------|
| Selenium                         | 98.1   | μg  | Carbon                         | 27.1   | mg       |
| Silicon                          | 79.7   | μg  | Calcium                        | 34.9   | mg       |
| Tin                              | 88.8   | ng  | Cadmium                        | 153.5  | ng       |
| Sulfur trioxide                  | 30.2   | μġ  | Cobalt                         | 206.0  | ng       |
| Strontium                        | 44.9   | mg  | Chromium                       | 43.7   | μġ       |
| Strontium-89                     | 24.2   | μBq | Copper                         | 1029.9 | ng       |
| Strontium-90                     | 103.9  | mBq | Iron                           | 17.5   | mg       |
| Sulfate                          | 9.9    | g . | Mercury                        | 28.3   | ng       |
| Sulfate                          | 2.2    | g   | Manganese                      | 349.3  | μġ       |
| Sulfide                          | 623.2  | μg  | Nitrogen                       | 8.0    | μg       |
| Suspended solids, unspecified    | 683.9  | mg  | Nickel                         | 1.5    | μg       |
| Suspended substances,            |        | Ũ   | Oils, unspecified              | 6.5    | mq       |
| unspecified                      | 3.6    | g   | Oils, biogenic                 | 5.2    | μq       |
| Technetium-99                    | 54.4   | mBq | Phosphorus                     | 445.9  | na       |
| Technetium-99m                   | 5.1    | μBq | Lead                           | 4.7    | ua       |
| Tellurium-123m                   | 452.0  | nBq | Sulfur                         | 5.2    | ma       |
| Tellurium-132                    | 185.1  | nBq | Heat, waste                    | 6.6    | kJ       |
| Ethene, tetrachloro-             | 3.9    | ng  | Zinc                           | 141.5  | ua       |
| Methane, tetrachloro-, CFC-10    | 5.9    | ng  | Heat waste                     | 590 5  | , j      |
| Thorium-228                      | 1.5    | Bq  |                                | 0.0    | •        |
| Thorium-230                      | 1.5    | Bq  | Final waste flows              | 0.0    |          |
| Thorium-232                      | 1.5    | mBq | Calcium fluoride waste         | 446 7  | na       |
| Thorium-234                      | 9.7    | mBq | Chemical waste unspecified     | 435.2  | ma       |
| Titanium                         | 1.1    | mg  | Chemical waste inert           | 892.0  | ma       |
| Titanium dioxide                 | 490.0  | μg  | Chemical waste, regulated      | 500.4  | ma       |
| TOC, Total Organic Carbon        | 1262.2 | mg  | Construction waste             | 6.3    | ma       |
| Toluene                          | 2.7    | mg  | Sludge                         | 177 1  | ua       |
| Tributyltin                      | 14.6   | μg  | Waste final inert              | -6 1   | м9<br>0  |
| Ethene, trichloro-               | 221.9  | ng  | Waste nuclear high active/m3   | -0.2   | 9<br>mm3 |
| Triethylene glycol               | 62.8   | μġ  | Waste unspecified              | 2.4    | ua       |
| Uranium-234                      | 12.9   | mBq | Waste industrial               | 17.4   | м9<br>0  |
| Uranium-235                      | 19.1   | mBq | Waste, nuclear, low and medium |        | 9        |
| Uranium-238                      | 32.5   | mBq | active/m3                      | -13.0  | mm3      |
| Uranium alpha                    | 627.1  | mBq | Waste, unspecified             | 87.7   | μg       |
| Undissolved substances           | 414.1  | mg  | Metal waste                    | 13.7   | mg       |
| Vanadium                         | 508.1  | μg  | Mineral waste                  | 39.2   | g        |
| Ethene, chloro-                  | 1.1    | ng  | Mineral waste, from mining     | 8.0    | g        |
| Tungsten                         | 1.6    | μġ  | Waste, unspecified             | 27.4   | μg       |
| Heat, waste                      | 614.3  | kJ  | Oil waste                      | 511.0  | mg       |
| Waste water/m3                   | 3.7    | dm3 | Oil separator sludge           | 24.0   | mg       |
| Xylene                           | 845.4  | μg  | Packaging waste, plastic       | 41.3   | mg       |
| Yttrium-90                       | 1.2    | μBq | Production waste, not inert    | -2.0   | g        |
| Zinc                             | 485.6  | mg  | Slags                          | 27.2   | g        |
| Zinc-65                          | 697.5  | μBq | Slags and ashes                | 8.3    | g        |
| Zirconium-95                     | 4.4    | mBq | Waste, solid                   | 226.0  | mg       |
| Heat, waste                      | -16.2  | kJ  | Steel waste                    | 172.5  | mg       |
| Radioactive species, unspecified | 38.3   | kBq | Mineral waste, from mining     | 84.0   | mg       |
| •                                |        | -   | Waste, unspecified             | 4.8    | mg       |
| Emissions to soil                |        |     | Waste in bioactive landfill    | 3.9    | g        |
| Aluminum                         | 8.7    | mg  | Waste in incineration          | 108.4  | mg       |
|                                  |        | -   |                                |        | -        |
2.9 mg

Waste to recycling

80.5 mg

## POLYURETHANE (1 kg) Source – Michelin and IDEMAT [91, 118]

| Resources                            |       |      | Gas, off-gas, oil production, in    |       |       |
|--------------------------------------|-------|------|-------------------------------------|-------|-------|
| Air                                  | 185.8 | g    | ground                              | 895.5 | mm3   |
| Animal matter                        | 3.8   | ng   | Gas, petroleum, 35 MJ per m3, in    |       |       |
| Baryte, in ground                    | 784.3 | mg   | ground                              | 476.0 | cu.in |
| Bauxite, in ground                   | 1.0   | q    | Granite, in ground                  | 111.3 | pg    |
| Biomass                              | 111.2 | a    | Gravel, in ground                   | 812.1 | mg    |
| Calcite, in ground                   | 0.0   | pa   | Iron ore, in ground                 | 183.1 | mg    |
| Calcium sulfate, in ground           | 5.3   | ma   | Iron, in ground                     | 1.4   | g     |
| Chromium, in ground                  | 6.1   | ma   | Land use II-III                     | 634.0 | mm2a  |
| Clay bentonite in ground             | 93.2  | ma   | Land use II-III, sea floor          | 79.4  | cm2a  |
| Clay unspecified in ground           | 90.7  | ma   | Land use II-IV                      | 179.0 | mm2a  |
| Coal 18 MI per ka in ground          | 24    | n    | Land use II-IV, sea floor           | 819.0 | mm2a  |
| Coal 29.3 M I per kg, in ground      | 107.0 | 9    | Land use III-IV                     | 144.0 | mm2a  |
| Coal brown 10 MJ per kg in           | 107.0 | 9    | Land use IV-IV                      | 2.0   | mm2a  |
| around                               | 100.5 | a    | Lead, in ground                     | 2.2   | mg    |
| Coal, brown, 8 MJ per kg, in         |       | 5    | Limestone, in ground                | 345.4 | g     |
| ground                               | 2.1   | g    | Magnesium, in ground                | 6.6   | μg    |
| Cobalt, in ground                    | 5.6   | ng   | Manganese, in ground                | 156.6 | μg    |
| Copper, in ground                    | 2.5   | mg   | Marl, in ground                     | 472.0 | mg    |
| Dolomite, in ground                  | 256.9 | mg   | Mercury, in ground                  | 1.4   | mg    |
| Energy, from biomass                 | 984.1 | kJ   | Methane                             | 1.7   | mg    |
| Energy, from coal                    | 4.9   | MJ   | Molybdenum, in ground               | 295.0 | ng    |
| Energy, from coal, brown             | 262.6 | kJ   | Nickel, in ground                   | 383.7 | μġ    |
| Energy, from gas, natural            | 22.4  | MJ   | Nitrogen, in air                    | 63.5  | g     |
| Energy, from hydro power             | 334.9 | kJ   | Occupation, arable                  | 11.5  | mm2a  |
| Energy, from hydrogen                | 431.0 | kJ   | Occupation, forest                  | 0.0   | mm2a  |
| Energy, from oil                     | 21.7  | MJ   | Occupation, industrial area         | 90.9  | cm2a  |
| Energy, from peat                    | 812.1 | J    | Occupation, urban, continuously     |       |       |
| Energy, from sulfur                  | 11.8  | kJ   | built                               | 0.9   | mm2a  |
| Energy, from uranium                 | 976.3 | kcal | Oil, crude, 41 MJ per kg, in ground | 8.9   | mg    |
| Energy, from wood                    | 3.6   | kJ   | Oil, crude, 42.6 MJ per kg, in      |       |       |
| Energy, geothermal                   | 25.1  | kJ   | ground                              | 114.0 | g     |
| Energy, kinetic (in wind), converted | 36.0  | kJ   | OII, crude, 42.7 MJ per kg, In      | 101 1 | ~     |
| Energy, potential (in hydropower     |       |      | ground<br>Olivia e in ground        | 184.1 | g     |
| reservoir), converted                | 9.3   | kJ   | Olivine, in ground                  | 7.8   | mg    |
| Energy, recovered                    | 696.8 | kJ   | Oxygen, in air                      | 75.0  | g     |
| Energy, solar                        | 524.9 | J    | Palladium, in ground                | 328.0 | ng    |
| Energy, unspecified                  | 5.9   | MJ   | Phosphorus pentoxide                | 1.5   | g     |
| Feldspar, in ground                  | 461.0 | mg   | Platinum, in ground                 | 369.0 | ng    |
| Ferromanganese                       | 753.7 | μg   | Potassium chloride                  | 1.1   | g     |
| Fluorspar, in ground                 | 17.2  | mg   | Rhenium, in ground                  | 84.8  | ng    |
| Gas, mine, off-gas, process, coal    |       | -    | Rhodium, in ground                  | 348.0 | ng    |
| mining/kg                            | 15.7  | mg   | Rutile, in ground                   | 1.5   | μg    |
| Gas, natural, 30.3 MJ per kg, in     |       |      | Sand, quartz, in ground             | 0.0   | pg    |
| ground                               | 350.2 | g    | Sand, unspecified, in ground        | 1.7   | g     |
| Gas, natural, 35 MJ per m3, in       | 407.0 | 0m2  | Shale, in ground                    | 14.9  | mg    |
| ground                               | 427.2 | CIUS | Silver, in ground                   | 359.1 | μg    |

| Sodium chloride, in ground          | 44.9         | oz        | Barium-140                         | 229.0 | nBq |
|-------------------------------------|--------------|-----------|------------------------------------|-------|-----|
| Sodium nitrate                      | 349.2        | pg        | Benzaldehyde                       | 1.2   | ng  |
| Sulfur dioxide                      | 23.2         | g         | Benzene                            | 943.0 | μg  |
| Sulfur, bonded                      | 7.7          | μg        | Benzene, ethyl-                    | 219.6 | μg  |
| Sulfur, in ground                   | 2.4          | g         | Benzene, hexachloro-               | 8.2   | pg  |
| Talc, in ground                     | 0.0          | pg        | Benzene, pentachloro-              | 22.0  | pg  |
| Tin, in ground                      | 199.0        | μg        | Benzo(a)pyrene                     | 63.1  | ng  |
| Transformation, to industrial area  | 50.8         | mm2       | Beryllium                          | 20.6  | ng  |
| Unspecified input                   | 24.9         | μg        | Boron                              | 80.9  | μg  |
| Uranium ore, 1.11 GJ per kg, in     |              |           | Bromine                            | 8.7   | μg  |
| ground                              | 1.7          | g         | Butane                             | 8.7   | mg  |
| Uranium, 451 GJ per kg, in ground   | 1.6          | μg        | Butene                             | 209.0 | μg  |
| Uranium, 560 GJ per kg, in ground   | 142.0        | μg        | Cadmium                            | 8.8   | μg  |
| Volume occupied, reservoir          | 202.0        | cm3y      | Calcium                            | 179.3 | μg  |
| Water, barrage                      | 19.5         | kg        | Carbon-14                          | 87.7  | mBq |
| Water, cooling, drinking            | 6.8          | μg        | Carbon dioxide                     | 118.4 | οz  |
| Water, cooling, salt, ocean         | 9.3          | kg        | Carbon disulfide                   | 1.1   | mg  |
| Water, cooling, surface             | 140.0        | kg        | Carbon monoxide                    | 3.3   | g   |
| Water, cooling, unspecified natural |              |           | Cerium-141                         | 5.4   | nBq |
| origin/kg                           | 28.8         | kg        | Cerium-144                         | 11.6  | μBq |
| Water, cooling, well, in ground     | 334.8        | mg        | Cesium-134                         | 41.4  | μBq |
| Water, process, drinking            | 2.7          | kg        | Cesium-137                         | 79.9  | μBq |
| Water, process, salt, ocean         | 413.8        | g         | Chlorinated fluorocarbons, soft    | 7.9   | mg  |
| Water, process, surface             | 25.6         | kg        | Chlorine                           | 233.5 | mg  |
| Water, process, unspecified natural | 4 7          | 1.0       | Chloroform                         | 5.1   | ng  |
| Weter process well in ground        | 4.7          | кg        | Chromium                           | 14.9  | μġ  |
| Water, process, well, in ground     | 10.2         | g         | Chromium-51                        | 206.0 | nBq |
| natural origin                      | 48 7         | dm3       | Coal dust                          | 12.9  | mg  |
| Water unspecified natural origin/kg | 209.3        | lh        | Cobalt                             | 9.7   | μg  |
| Wood dry matter                     | 200.0        | ma        | Cobalt-57                          | 0.1   | nBq |
| Wood unspecified standing/kg        | 27.0         | ma        | Cobalt-58                          | 1.7   | μBq |
| Zeolite in ground                   | 1.0          | ua        | Cobalt-60                          | 2.5   | μBq |
| Zinc in ground                      | 666.8        | м9<br>Ца  | Copper                             | 17.8  | μg  |
|                                     | 000.0        | μg        | Curium-242                         | 0.0   | nBq |
| Emissions to air                    |              |           | Curium-244                         | 0.1   | nBq |
| Acetaldehyde                        | 75           | ua        | Curium alpha                       | 1.7   | μBq |
| Acetic acid                         | 32.1         | м9<br>Ца  | Cvanide                            | 171.4 | ng  |
| Acetone                             | 74           | м9<br>Ца  | Dinitrogen monoxide                | 17.6  | mg  |
| Acrolein                            | 35           | р9<br>na  | Dioxins, measured as 2,3,7,8-      |       | Ū   |
| Aldehydes unspecified               | 35.6         | ua        | tetrachlorodibenzo-p-dioxin        | 2.2   | pg  |
|                                     | 128.3        | μg        | Ethane                             | 2.2   | mg  |
| Americium-241                       | 1 1          | иВа       | Ethane, 1,1,1,2-tetrafluoro-, HFC- |       |     |
| Ammonia                             | 171 0        | ma        | 134a                               | 0.0   | pg  |
| Antimony                            | 104.7        | ng        | Ethane, 1,2-dichloro-              | 1.5   | μg  |
| Antimony-124                        | 16 1         | nBa       | Ethane, 1,2-dichloro-1,1,2,2-      | 1.0   |     |
| Antimony-124<br>Antimony-125        | 2.0          | nBq       | tetrafluoro-, CFC-114              | 1.2   | μg  |
| Argon-41                            | 2.0<br>127 0 | mRa       | Ethane, chioro-                    | 2.4   | μg  |
|                                     | 1.121.0      | по        | Ethane, dichloro-                  | 193.0 | ng  |
| Ashestas                            | 4.0<br>072 0 | μy<br>pa  | Ethane, nexatiuoro-, HFC-116       | 67.3  | ng  |
| Barium                              | 10           | 29<br>110 | Ethanol                            | 14.9  | μg  |
| Danum                               | 1.9          | μĄ        | Ethene                             | 1.1   | mg  |

| Ethene, chloro-                    | 32.9  | ng   | Methane, dichlorofluoro-, HCFC-21  | 1.1   | μg  |
|------------------------------------|-------|------|------------------------------------|-------|-----|
| Ethyne                             | 453.5 | ng   | Methane, tetrachloro-, CFC-10      | 48.5  | ng  |
| Fluorine                           | 31.8  | μg   | Methane, tetrafluoro-, CFC-14      | 602.3 | ng  |
| Formaldehyde                       | 40.2  | μg   | Methane, trichlorofluoro-, CFC-11  | 44.9  | ng  |
| Heat, waste                        | 990.3 | kJ   | Methanol                           | 20.9  | μg  |
| Heavy metals, unspecified          | 750.0 | μg   | Molybdenum                         | 5.0   | μg  |
| Helium                             | 7.9   | mg   | Neptunium-237                      | 0.1   | nBq |
| Heptane                            | 2.1   | mg   | Nickel                             | 224.4 | μg  |
| Hexane                             | 4.3   | mg   | Niobium-95                         | 10.5  | nBq |
| Hydrocarbons, aliphatic, alkanes,  |       | -    | Nitrogen                           | 85.6  | μg  |
| unspecified                        | 2.3   | mg   | Nitrogen dioxide                   | 327.0 | μġ  |
| Hydrocarbons, aliphatic, alkenes,  |       |      | Nitrogen oxides                    | 13.0  | g   |
| unspecified                        | 11.8  | μg   | NMVOC, non-methane volatile        |       | U   |
| Hydrocarbons, aromatic             | 8.5   | mg   | organic compounds, unspecified     |       |     |
| Hydrocarbons, chlorinated          | 70.4  | mg   | origin                             | 858.6 | mg  |
| Hydrocarbons, unspecified          | 7.9   | g    | Noble gases, radioactive,          |       | _   |
| Hydrogen                           | 1.4   | g    | unspecified                        | 7.6   | mBq |
| Hydrogen-3, Tritium                | 905.0 | mBq  | Organic substances, unspecified    | 535.4 | mg  |
| Hydrogen chloride                  | 167.8 | mg   | Oxygen                             | 1.7   | ng  |
| Hydrogen cyanide                   | 1.8   | ng   | PAH, polycyclic aromatic           |       |     |
| Hydrogen fluoride                  | 6.5   | mg   | nydrocarbons                       | 1.4   | mg  |
| Hydrogen sulfide                   | 1.4   | mg   | Particulates, < 10 um              | 4.4   | g   |
| lodine                             | 3.9   | μg   | Particulates, < 10 um (mobile)     | 2.1   | mg  |
| lodine-129                         | 311.0 | μBq  | Particulates, < 10 um (stationary) | 27.3  | mg  |
| lodine-131                         | 34.6  | μBq  | Particulates, > 10 um              | 855.0 | μg  |
| lodine-133                         | 19.4  | μBq  | Particulates, > 10 um (process)    | 9.0   | mg  |
| lodine-135                         | 29.0  | μBq  | Particulates, SPM                  | 2.3   | g   |
| Iron                               | 165.3 | μg   | Pentane                            | 10.9  | mg  |
| Iron-59                            | 2.3   | nBq  | Phenol                             | 29.1  | ng  |
| Krypton-85                         | 5.4   | kBq  | Phenol, pentachloro-               | 3.6   | pg  |
| Krypton-85m                        | 6.4   | mBq  | Phosphorus                         | 136.8 | ng  |
| Krypton-87                         | 2.8   | mBq  | Phosphorus, total                  | 5.1   | μg  |
| Krypton-88                         | 253.0 | mBq  | Platinum                           | 3.5   | ng  |
| Krypton-89                         | 2.0   | mBq  | Plutonium-238                      | 0.1   | nBq |
| Lanthanum                          | 55.9  | ng   | Plutonium-241                      | 95.1  | μBq |
| Lanthanum-140                      | 145.0 | nBq  | Plutonium-alpha                    | 3.5   | μBq |
| Lead                               | 21.8  | µg . | Polonium-210                       | 1.5   | mBq |
| Lead-210                           | 970.0 | μBq  | Potassium                          | 110.9 | μg  |
| Magnesium                          | 44.3  | µg   | Potassium-40                       | 167.0 | μBq |
| Manganese                          | 26.5  | μġ   | Promethium-147                     | 29.4  | μBq |
| Manganese-54                       | 59.5  | nBq  | Propane                            | 8.6   | mg  |
| Mercaptans, unspecified            | 9.0   | uq . | Propene                            | 802.4 | μg  |
| Mercury                            | 120.1 | ha   | Propionic acid                     | 303.5 | ng  |
| Metals, unspecified                | 7.7   | ma   | Protactinium-234                   | 34.6  | μBq |
| Methane                            | 16.6  | a    | Radioactive species, other beta    |       | _   |
| Methane, bromotrifluoro-, Halon    |       | 5    | emitters                           | 7.3   | nBq |
| 1301                               | 44.2  | μg   | Radioactive species, unspecified   | 135.7 | Bq  |
| Methane, chlorodifluoro-, HCFC-22  | 10.6  | ng   | Radium-226                         | 1.2   | mBq |
| Methane, chlorotrifluoro-, CFC-13  | 6.1   | ng   | Radium-228                         | 81.7  | μBq |
| Methane, dichloro-, HCC-30         | 63.2  | μg   | Radon-220                          | 7.7   | mBq |
| Methane, dichlorodifluoro-, CFC-12 | 9.7   | ng   | Radon-222                          | 7.8   | кВq |

| Ruthenium-106         346.0         µBq         Aceraphthylene         650.0         ng           Selenium         19.2         ng         Acidity, unspecified         124.5         mg           Selenium compounds         15.8         pg         Aluminum         4.9         mg           Selenium compounds         15.8         pg         Aluminum, ion         4.2         mg           Silicates, unspecified         18.9         µg         Armericium-241         144.0         µBq           Silicates, unspecified         18.9         µg         Armonia, as N         9.4         mg           Siliver         110         58.6         nBq         Antimony-122         716.0         ng           Solt         1.0         mg         Antimony-124         103.0         µBq           Storntum-80         104.0         nBq         AdX, Adsotable Organic Halogen         157.1         µBq         as Cl         19.1         mg           Storntum-80         54.9         Barum         14.8         mg         Storntum-80         mg         Storntum-140         710.0         nBq           Sulfur doxide         54.4         g         Barum         14.8         mg         Storntum-140                                                                      | Ruthenium-103                  | 0.6        | nBq       | Emissions to water                |       |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|-----------|-----------------------------------|-------|------------------|
| Scandium         19.2         ng         Acidst, unspecified         124.5         mg           Selenium compounds         15.8         pg         Aluminum         4.9         mg           Selenium compounds         15.8         pg         Anmericium-241         144.0         µBq           Silicen         367         µg         Anmericium-241         144.0         µBq           Silver         455.1         pg         Anmonium, ion         4.2         mg           Silver         455.1         pg         Antimony         7.0         ng           Sold         1.0         mg         Antimony-124         103.0         µBq           Stontium         1.9         µg         Antimony-124         103.0         µBq           Stontium-80         57.1         µBq         ASCI         19.1         mg           Stontium-90         57.1         µBq         Barium         14.8         mg           Sulfur cixides         8.4         g         Barium         14.8         mg           Sulfur cixides         8.4         g         Barium-140         719.0         nBq           Euxly methyl ether         60.8         ng         Barium-140                                                                                                                  | Ruthenium-106                  | 346.0      | μBq       | Acenaphthylene                    | 650.0 | ng               |
| Selenium compounds         6.1         µg         Aluminum         3.7         mg           Silicates, unspecified         18.9         µg         Ammericum-241         144.0         µg           Silicon         396.7         µg         Ammericum-241         144.0         µg           Silicon         396.7         µg         Ammonia, as N         9.4         mg           Silicon         396.7         µg         Antimony         7.0         ng           Silver         455.1         pg         Antimony         7.0         ng           Solut         1.0         mg         Antimony         12.5         sp           Solut         1.0         mg         Antimony         12.6         sp           Stontium-80         104.0         ASQ         AOX, Adsorbable Organic Halogen         11.9         µg           Stortium-80         14.4         Ng         Bariue         99.0         mg           Sulfur cioxide         5.4         g         Barium         14.8         mg           Sulfur cioxide         8.4         g         Barium         17.0         nBq           Sulfur cioxide         14.4         µg         Berzene, chloro                                                                                                                    | Scandium                       | 19.2       | ng        | Acidity, unspecified              | 124.5 | mg               |
| Selenium compounds         15.8         pg         Aluminum         4.9         mg           Silicates, unspecified         18.9         µg         Ammonium, ian         144.0         µBq           Silicates, unspecified         18.9         µg         Ammonium, ian         14.0         µBq           Silver         455.1         pg         Ammonium, ian         4.2         mg           Silver         10         mg         Antimony         122         71.0         nBq           Soot         1.0         mg         Antimony-124         103.0         µBq           Stontium-89         104.0         nBq         AXX, Adsorbable Organic Halogen         59         µBt           Strontium-90         57.1         µBq         aSc I         11.1         mg           Sturtur cloxides         8.4         g         Barium         14.8         mg           Sulfur codes         8.4         g         Barium-140         710.0         nBq           Sulfur codes         8.4         g         Barium-140         710.0         nBq           Technetium-123         14.17         µg         Barium-140         71.0         nBq           Sulfur codes         8.4 <td>Selenium</td> <td>6.1</td> <td>μg</td> <td>Acids, unspecified</td> <td>3.7</td> <td>mg</td> | Selenium                       | 6.1        | μg        | Acids, unspecified                | 3.7   | mg               |
| Slicates, unspecified         18.9         µg         Americium-241         14.4.0         µãq           Slicon         396.7         µg         Ammonia, as N         9.4         mg           Sliver         455.1         µg         Anmonia, as N         9.4         mg           Silver110         58.6         nBq         Antimony         77.0         ng           Sodum         1.0         mg         Antimony-122         71.90         nBg           Strontium-89         104.0         nBq         Adsorbable Organic Halogen         59         µBq           Strontium-90         57.1         µBq         as Cl         19.1         mg           Strontium-89         104.0         nBq         Adsorbable Organic Halogen         59         µBq           Sulfur dioxide         5.4         g         Barite         99.0         mg           Sulfur dioxides         8.4         g         Barium-140         71.0         nBq           Sulfur dioxide         5.4         g         Barium-140         71.0         nBq           Sulfur dioxide         8.4         g         Barium-140         71.0         nBq           Sulfur dioxide         8.4         g                                                                                                    | Selenium compounds             | 15.8       | pg        | Aluminum                          | 4.9   | mg               |
| Silicon         396.7         µg         Ammonia, as N         9.4         mg           Silver         455.1         µg         Ammonium, ion         4.2         mg           Silver         10         58.6         nBq         Antimony.         71.0         ng           Sodum         243.8         µg         Antimony.122         719.0         nBg           Storntium         1.9         µg         Antimony.122         719.0         nBg           Strontium-80         57.1         µBq         as Cl         19.1         mg           Strontium-90         57.1         µBq         as Cl         19.1         mg           Sulfur cixide         5.4         g         Barite         90.0         mg           Sulfur cixides         8.4         g         Barite         90.0                                                                                                                                      | Silicates, unspecified         | 18.9       | μg        | Americium-241                     | 144.0 | μBq              |
| Silver         455.1         pg         Ammonium, ion         4.2         mg           Silver-110         58.6         nBq         Antimony         77.0         ng           Solt         1.0         mg         Antimony-124         103.0         µBg           Stontium-30         50.1         1.0         mg         Antimony-124         103.0         µBg           Strontium-30         57.1         µBq         Arsenic, ion         13.6         µg           Strontium-90         57.1         µBq         Arsenic, ion         13.6         µg           Sulfur cioxides         5.4         g         Barite         99.0         mg           Sulfur cioxides         8.4         g         Barite         99.0         mg           Technetium-199         2.4         Reg         Benzene, chloro-         1.1         9           Technetium-133         ng         Boron         198.0<                                                                                                                | Silicon                        | 396.7      | μg        | Ammonia, as N                     | 9.4   | mg               |
| Silver-110         58.6         Antimony         77.0         ng           Sodium         243.8         µg         Antimony-122         719.0         ng           Sodium         1.0         mg         Antimony-124         103.0         µBq           Strontium-99         104.0         nBq         AOX, Adsorbable Organic Halogen         19.1         mg           Strontium-90         57.1         µBq         Arsenic, ion         13.6         µg           Strontium-90         57.1         µBq         Barite         90.0         mg           Sulfur cixide         5.4         g         Barite         90.0         mg           Sulfur cixide         5.4         g         Barite         90.0         mg           Sulfur cixide         6.4.4         g         Barite         90.0         mg           Sulfur cixide         414.7         µg         Barite         90.0         mg           Sulfur cixide         8.4.4         g         Barzene, chtoro-         1.1         pg           Techneitum-99         2.4         nBq         Boron         136.5         mg           Thorium-230         365.0         µBq         Cadmium-109         4.1 <td>Silver</td> <td>455.1</td> <td>pg</td> <td>Ammonium, ion</td> <td>4.2</td> <td>mg</td>                | Silver                         | 455.1      | pg        | Ammonium, ion                     | 4.2   | mg               |
| Sodium         243.8         µg         Antimony-122         719.0         nBq           Soot         1.0         mg         Antimony-124         103.0         µBq           Stontium         1.9         µg         Antimony-125         5.9         µBq           Strontium-90         57.1         µBq         AdSabrable Organic Halogen         13.6         µg           Strontium-90         57.1         µBq         Arsenic, ion         13.6         µg           Stuftur dioxide         5.4         g         Barium         14.8         mg           Sulfur dioxides         8.4         g         Barium-14.0         719.0         nBq           Sulfuric acid         414.7         µg         Barium-14.0         719.0         nBq           Lebuty methy ether         60.8         ng         Benzene, ethyl-         137.2         µg           Technetium-123m         261.0         nBq         Benzene, ethyl-         137.2         µg           Thorium-230         385.0         µBq         Cadmium-109         4.1         nBq           Thorium-234         34.6         µBq         Cadmium, ion         7.0         µg           Thorium-235         20.1         <                                                                                          | Silver-110                     | 58.6       | nBq       | Antimony                          | 77.0  | ng               |
| Soot         1.0         mg         Antimony-124         103.0         µBq           Strontium         1.9         µg         Antimony-125         5.9         µBq           Strontium-90         57.1         µBq         ASCI         13.6         µg           Styrene         2.0         µg         Arsenic, ion         13.6         µg           Styrene         2.0         µg         Arsenic, ion         13.6         µg           Styrene         2.0         µg         Arsenic, ion         14.8         mg           Sulfur cixide         5.4         g         Barium         14.8         mg           Sulfur cixide         414.7         µg         Barium-140         719.0         nBq           Eduty methyl ether         60.8         ng         Benzene, chloro-         1.1         pg           Technetium-99         2.4         nBq         Boron         19.0         µg           Thalium         13.0         ng         Boron         198.0         µg           Thorium-230         385.0         µBq         Cadmium.109         4.1         nBq           Thorium-234         43.6         µBq         Cadium, ion         7.0                                                                                                                            | Sodium                         | 243.8      | μg .      | Antimony-122                      | 719.0 | nBq              |
| Strontium         1.9         µg         Antimony-125         5.9         µBq           Strontium-89         104.0         nBq         AOX, Adsorbable Organic Halogen         19.1         mg           Strontium-90         57.1         µBq         as Cl         19.1         mg           Styrene         2.0         µg         Arsenic, ion         13.6         µg           Styrene         2.0         µg         Arsenic, ion         13.6         µg           Sulfur dioxide         5.4         g         Barium         14.8         mg           Sulfur cidoxide         8.4         g         Barium-140         719.0         nBq           Sulfur cidoxide         14.1         µg         Barium-140         719.0         nBq           Technetium-123m         261.0         nBq         Benzene, ethyl-         137.2         µg           Technetium-123m         261.0         nBq         Boron         198.0         µg           Thorium-228         69.1         µBq         Boron         198.0         µg           Thorium-230         385.0         µBq         Cadmium-109         4.1         nBq           Thorium-234         34.6         µBq                                                                                                            | Soot                           | 1.0        | mg        | Antimony-124                      | 103.0 | μBq              |
| Strontium-89         104.0         nBq         AOX, Adsorbable Organic Halogen           Strontium-90         57.1         µBq         as Cl         19.1         mg           Styrene         2.0         µg         Arsenic, ion         13.6         µg           Sulfur dioxide         5.4         g         Barite         99.0         mg           Sulfur dioxide         6.4         g         Barium         14.8         mg           Sulfur caid         414.7         µg         Barium-140         719.0         nBq           t-Bulyt methyl ether         60.8         ng         Benzene, chloro-         11.1         pg           Technetium-99         2.4         nBq         Benzene, ethyl-         137.2         µg           Thailium         13.0         ng         Berzene, ethyl-         137.2         µg           Thailum         13.0         ng         Boron         198.0         µg           Thorium-230         385.0         µBq         Cadmium-109         4.1         nBq           Thorium-234         34.6         µBq         Cadmium-109         4.1         nBq           Thorium-234         41.6         µBq         Cadium, ion         7.0 <td>Strontium</td> <td>1.9</td> <td>μg</td> <td>Antimony-125</td> <td>5.9</td> <td>μBq</td>     | Strontium                      | 1.9        | μg        | Antimony-125                      | 5.9   | μBq              |
| Strontium-90       57.1       µBq       as Cl       19.1       mg         Styrene       2.0       µg       Arsenic, ion       13.6       µg         Styrene       2.0       µg       Barite       99.0       mg         Sulfur loxide       5.4       g       Barite       99.0       mg         Sulfur loxides       8.4       g       Barite       99.0       mBq         Sulfur loxides       8.4       g       Baritem       14.8       mg         Sulfur loxides       8.4       g       Baritem       719.0       nBq         Sulfur loxide       414.7       µg       Baritem-140       719.0       nBq         Eduty methyl ether       60.8       ng       Benzene, ethyl-       137.2       µg         Technetium-123       261.0       nBq       Berzene, ethyl-       137.2       µg         Thorium-230       385.0       µBq       Bromate       83.5       µg         Thorium-232       43.9       µBq       Cadmium, ion       7.0       µg         Tin       41.3       ng       Calcium compounds, unspecified       35.2       µg         Torium-234       34.6       µBq       Carbon                                                                                                                                                                                      | Strontium-89                   | 104.0      | nBq       | AOX, Adsorbable Organic Halogen   |       | • •              |
| Styrene         2.0         µg         Arsenic, ion         13.6         µg           Sulfur dioxide         5.4         g         Barite         99.0         mg           Sulfur dioxides         8.4         g         Barium         14.8         mg           Sulfur dioxide         414.7         µg         Barium-140         719.0         nBq           Februj methyl ether         60.8         ng         Benzene, chloro-         1.1         pg           Technetium-99         2.4         nBq         Benzene, chloro-         137.2         µg           Thailium         13.0         ng         Berzline, chloro-         137.2         µg           Thailium         13.0         ng         Berzlene, chloro-         137.2         µg           Thorium-223         69.1         µBq         Boron         198.0         µg           Thorium-234         34.6         µg         Cadmium, ion         7.0         µg           Tin         41.3         ng         Calcium, ion         91.8         g           Tooluene         1.3         ng         Carbon-14         7.3         mBq           Uranium-236         20.1         µBq         Cerium-141                                                                                                            | Strontium-90                   | 57.1       | uBq       | as Cl                             | 19.1  | mg               |
| Sulfur dioxide         5.4         g         Barite         99.0         mg           Sulfur oxides         8.4         g         Barium         14.8         mg           Sulfur caid         414.7         µg         Barium-140         719.0         nBq           tebutyl methyl ether         60.8         ng         Benzene, chloro-         1.1         pg           Technetium-123m         261.0         nBq         Benzene, ethyl-         137.2         µg           Thorium         43.4         ng         BOD5, Biological Oxygen Demand         509.5         mg           Thorium-228         69.1         µBq         Bromate         83.5         µg           Thorium-230         385.0         µBq         Cadmium.ion         7.0         µg           Thorium-234         34.6         µBq         Cadmium.ion         7.0         µg           Tin         41.3         ng         Calcium.ion         91.8         g           Toluene         1.3         mg         Carbonate         1.4         q           Uranium-235         20.1         µBq         Cerium-144         3.3         mBq           Uranium-238         535.0         µBq         Cesiu                                                                                                       | Styrene                        | 2.0        | na        | Arsenic, ion                      | 13.6  | μg               |
| Sulfur oxides         8.4         g         Barium         14.8         mg           Sulfur oxides         414.7         µg         Barium-140         719.0         ng           LButyl methyl ether         60.8         ng         Benzene, chloro-         1.1         pg           Technetium-99         2.4         nBq         Benzene, ethyl-         137.2         µg           Tellurium-123m         261.0         nBq         Benzene, ethyl-         137.2         µg           Thalium         13.0         ng         Beryllium         5.0         ng           Thorium-23m         261.0         nBq         Benzene, ethyl-         137.2         µg           Thorium-23m         261.0         nBq         Berzene, ethyl-         137.2         µg           Thorium-228         69.1         µBq         Boron         198.0         µg           Thorium-231         385.0         µBq         Cadmium.109         4.1         nBq           Thorium-232         43.9         µBq         Cadmium.109         4.1         nBq           Thorium-234         34.6         µBq         Cadmium.109         4.1         nBq           Toluene         1.3         mg                                                                                                       | Sulfur dioxide                 | 5.4        | a         | Barite                            | 99.0  | mg               |
| Sulfuric acid         414.7         µg         Barium-140         719.0         nBq           t-Buty methyl ether         60.8         ng         Benzene, chloro-         1.1         pg           Technetium-99         2.4         nBq         Benzene, chloro-         1.1         pg           Technetium-123m         261.0         nBq         Benzene, ethyl-         137.2         µg           Thallium         13.0         ng         Beryllium         5.0         ng           Thorium-228         69.1         µBq         Bronn         198.0         µg           Thorium-230         385.0         µBq         Bromate         83.5         µg           Thorium-234         34.6         µBq         Cadmium.ion         7.0         µg           Tin         41.3         ng         Calcium compounds, unspecified         355.2         µg           Toluene         1.3         ng         Calcium.ion         91.8         g           Uranium-234         415.0         µBq         Cerium-141         107.0         nBq           Uranium-234         415.0         µBq         Cerium-144         3.3         mBq           Uranium-238         535.0         µBq                                                                                                   | Sulfur oxides                  | 8.4        | a         | Barium                            | 14.8  | mg               |
| Ebuty methyl ether         60.8         ng         Benzene         744.2         µg           Technetium-99         2.4         nBq         Benzene, chloro-         1.1         pg           Tellurium-123m         261.0         nBq         Benzene, ethyl-         137.2         µg           Thallium         13.0         ng         Benzene, ethyl-         137.2         µg           Thorium-228         69.1         µBq         Boron         198.0         µg           Thorium-230         385.0         µBq         Boronate         835.5         µg           Thorium-234         34.6         µBq         Cadmium-109         4.1         nBq           Tin         41.3         ng         Calcium, ion         7.0         µg           Toluene         1.3         mg         Carbon-14         7.3         mBq           Uranium-234         415.0         µBq         Cerium-141         107.0         nBq           Uranium-235         20.1         µBq         Cerium-144         3.3         mBq           Uranium-235         20.1         µBq         Cesium-134         7.4         mBq           VoC, volatile organic compounds         1.6         mg                                                                                                          | Sulfuric acid                  | 414.7      | na        | Barium-140                        | 719.0 | nBq              |
| Technetium-99         2.4         nBq         Benzene, chloro-         1.1         pg           Tellurium-123m         261.0         nBq         Benzene, ethyl-         137.2         µg           Thallium         13.0         ng         Beryllium         5.0         ng           Thorium         43.4         ng         BOD5, Biological Oxygen Demand         509.5         mg           Thorium-228         69.1         µBq         Boron         198.0         µg           Thorium-230         385.0         µBq         Bromate         83.5         µg           Thorium-234         43.6         µBq         Cadmium-109         4.1         nBq           Thorium-234         34.6         µBq         Cadium compounds, unspecified         355.2         µg           Thaium         5.5         µg         Calcium, ion         7.0         µg           Toluene         1.3         mg         Carbon-14         7.3         mBq           Uranium-234         415.0         µBq         Cerium-141         107.0         nBq           Uranium-238         535.0         µBq         Cesium-134         7.4         mBq           Voc, volatile organic compounds         1.6                                                                                            | t-Butyl methyl ether           | 60.8       | na        | Benzene                           | 744.2 | μg               |
| Tellurium 123m       261.0       nBq       Benzene, ethyl-       137.2       µg         Thallium       13.0       ng       Beryllium       5.0       ng         Thorium 228       69.1       µBq       Boron       198.0       µg         Thorium-230       385.0       µBq       Boron       198.0       µg         Thorium-230       385.0       µBq       Bromate       83.5       µg         Thorium-234       34.6       µBq       Cadmium.ion       7.0       µg         Tin       41.3       ng       Calcium compounds, unspecified       355.2       µg         Tlanium       5.5       µg       Calcium, ion       91.8       g         Toluene       1.3       mg       Carbon-14       7.3       mBq         Uranium-234       415.0       µBq       Cerium-141       107.0       nBq         Uranium-235       20.1       µBq       Cesium-134       7.4       mBq         Uranium-238       535.0       µBq       Cesium-134       7.4       mBq         Vonadium       772.3       µg       Cesium-134       7.4       mBq         Xenon-131       1.9       mBq       Chloriate                                                                                                                                                                                                | Technetium-99                  | 2.4        | nBa       | Benzene, chloro-                  | 1.1   | pg               |
| Thallium         13.0         ng         Beryllium         5.0         ng           Thorium         43.4         ng         BOD5, Biological Oxygen Demand         509.5         mg           Thorium-228         69.1         µBq         Boron         198.0         µg           Thorium-230         385.0         µBq         Bromate         83.5         µg           Thorium-234         34.6         µBq         Cadmium, ion         7.0         µg           Thorium-234         34.6         µBq         Cadmium, ion         7.0         µg           Tin         41.3         ng         Calcium compounds, unspecified         355.2         µg           Titanium         5.5         µg         Calcium, ion         91.8         g           Turanium-234         415.0         µBq         Cerium-144         7.3         mBq           Uranium-235         20.1         µBq         Cerium-144         3.3         mBq           Uranium-238         535.0         µBq         Cesium-134         7.4         mBq           VOC, volatile organic compounds         1.6         mg         Cesium-137         67.7         mgd           Xenon-133         3.9         Bq                                                                                                   | Tellurium-123m                 | 261.0      | nBa       | Benzene, ethyl-                   | 137.2 | μg               |
| Thorium         43.4         ng         BOD5, Biological Oxygen Demand         509.5         mg           Thorium-228         69.1         µBq         Boron         188.0         µg           Thorium-230         385.0         µBq         Bromate         83.5         µg           Thorium-232         43.9         µBq         Cadmium-109         4.1         nBq           Thorium-234         34.6         µBq         Cadmium, ion         7.0         µg           Titanium         5.5         µg         Calcium, compounds, unspecified         355.2         µg           Toluene         1.3         ng         Calcium, ion         91.8         g           Uranium         41.1         ng         Carbon-14         7.3         mBq           Uranium-234         415.0         µBq         Cerium-141         107.0         nBq           Uranium-235         20.1         µBq         Cerium-144         3.3         mBq           Uranium-238         535.0         µBq         Cesium-134         7.4         mBq           VOC, volatile organic compounds         1.6         mg         Cesium-137         67.7         mBq           Xenon-131m         13.1                                                                                                       | Thallium                       | 13.0       | na        | Beryllium                         | 5.0   | ng               |
| Thorium-228         69.1         µBq         Boron         198.0         µg           Thorium-230         385.0         µBq         Bromate         83.5         µg           Thorium-232         43.9         µBq         Cadmium, ion         7.0         µg           Thorium-234         34.6         µBq         Cadmium, ion         7.0         µg           Tin         41.3         ng         Calcium compounds, unspecified         355.2         µg           Titanium         5.5         µg         Calcium, ion         91.8         g           Toluene         1.3         mg         Carbon-14         7.3         mBq           Uranium-234         415.0         µBq         Cerium-141         107.0         nBq           Uranium-235         20.1         µBq         Cerium-144         3.3         mBq           Uranium-236         535.0         µBq         Cesium-134         7.4         mBq           VOC, volatile organic compounds         1.6         mg         Cesium-137         67.7         mBq           Xenon-133         3.9         Bq         Chloriate         719.3         g           Xenon-135         657.0         mBq         Chlor                                                                                                       | Thorium                        | 43.4       | na        | BOD5, Biological Oxygen Demand    | 509.5 | mg               |
| Thorium-230         385.0         µBq         Bromate         83.5         µg           Thorium-232         43.9         µBq         Cadmium-109         4.1         nBq           Thorium-234         34.6         µBq         Cadmium.ion         7.0         µg           Tin         41.3         ng         Calcium compounds, unspecified         355.2         µg           Tin         41.3         ng         Calcium, ion         91.8         g           Toluene         1.3         mg         Carbon-14         7.3         mBq           Uranium         41.1         ng         Carbonate         1.4         g           Uranium-234         415.0         µBq         Cerium-141         107.0         nBq           Uranium-235         20.1         µBq         Cerium-144         3.3         mBq           Uranium-238         535.0         µBq         Cesium-134         7.4         mBq           Vanadium         772.3         µg         Cesium-137         67.7         mBq           Xenon-133         3.9         Bq         Chlorate         719.3         g           Xenon-133         1.9         mBq         Chlorine         642.7                                                                                                                       | Thorium-228                    | 69.1       | υBα       | Boron                             | 198.0 | μg               |
| Thorium-232       43.9       µBq       Cadmium-109       4.1       nBq         Thorium-234       34.6       µBq       Cadmium, ion       7.0       µg         Tin       41.3       ng       Calcium compounds, unspecified       355.2       µg         Titanium       5.5       µg       Calcium, ion       91.8       g         Toluene       1.3       mg       Carbon-14       7.3       mBq         Uranium       41.1       ng       Carbon-14       7.3       mBq         Uranium-234       415.0       µBq       Cerium-141       107.0       nBq         Uranium-235       20.1       µBq       Cerium-144       3.3       mBq         Uranium-238       535.0       µBq       Cesium       5.7       µg         Vanadium       7.2.3       µg       Cesium-136       3.8       nBq         VOC, volatile organic compounds       1.6       mg       Cesium-137       67.7       mBq         Xenon-131m       13.1       mBq       Chlorate       78.3       mg         Xenon-133       3.9       Bq       Chlorined solvents, unspecified       435.3       µg         Xenon-135       657.0       mBq </td <td>Thorium-230</td> <td>385.0</td> <td>uBa</td> <td>Bromate</td> <td>83.5</td> <td>μg</td>                                                                              | Thorium-230                    | 385.0      | uBa       | Bromate                           | 83.5  | μg               |
| Thorium-234         34.6         μBq         Cadmium, ion         7.0         μg           Tin         41.3         ng         Calcium compounds, unspecified         355.2         μg           Titanium         5.5         μg         Calcium, ion         91.8         g           Toluene         1.3         mg         Carbon-14         7.3         mBq           Uranium-234         415.0         μBq         Cerium-141         107.0         nBq           Uranium-235         20.1         μBq         Cerium-144         3.3         mBq           Uranium-238         535.0         μBq         Cesium         5.7         μg           Vanadium         7.2         mBq         Cesium-134         7.4         mBq           VoC, volatile organic compounds         1.6         mg         Cesium-137         67.7         mBq           Xenon-131m         13.1         mBq         Chloriate         78.3         mg           Xenon-133         3.9         Bq         Chlorine         642.7         μg           Xenon-135         657.0         mBq         Chlorine         642.7         μg           Xenon-137         1.6         mBq         Chlorine                                                                                                              | Thorium-232                    | 43.9       | μBα       | Cadmium-109                       | 4.1   | nBq              |
| Tin         41.3         ng         Calcium compounds, unspecified         355.2         µg           Titanium         5.5         µg         Calcium, ion         91.8         g           Toluene         1.3         mg         Carbon-14         7.3         mBq           Uranium         41.1         ng         Carbon-14         7.3         mBq           Uranium-234         415.0         µBq         Cerium-141         107.0         nBq           Uranium-235         20.1         µBq         Cerium-144         3.3         mBq           Uranium-238         535.0         µBq         Cesium         5.7         µg           Vanadium         772.3         µg         Cesium-134         7.4         mBq           Voc, volatile organic compounds         1.6         mg         Cesium-137         67.7         mBq           Xenon-131         13.1         mBq         Chloriate         719.3         g           Xenon-133         3.9         Bq         Chlorinated solvents, unspecified         435.3         µg           Xenon-135         657.0         mBq         Chlorine         642.7         µg           Xenon-135         657.0         mBq                                                                                                           | Thorium-234                    | 34.6       | uBa       | Cadmium, ion                      | 7.0   | μg               |
| Titanium       5.5       µg       Calcium, ion       91.8       g         Toluene       1.3       mg       Carbon-14       7.3       mBq         Uranium       41.1       ng       Carbonate       1.4       g         Uranium-234       415.0       µBq       Cerium-141       107.0       nBq         Uranium-235       20.1       µBq       Cerium-144       3.3       mBq         Uranium-238       535.0       µBq       Cesium       5.7       µg         Vanadium       772.3       µg       Cesium-134       7.4       mBq         Vanadium       772.3       µg       Cesium-136       3.8       nBq         VOC, volatile organic compounds       1.6       mg       Cesium-137       67.7       mBq         Xenon-131m       13.1       mBq       Chlorate       78.3       mg         Xenon-133m       1.9       mBq       Chlorine       642.7       µg         Xenon-135m       657.0       mBq       Chloroform       60.6       ng         Xenon-135m       64.9       mBq       Chloroform       60.6       ng         Xenon-138       17.6       mBq       Chromium-51       1                                                                                                                                                                                               | Tin                            | 41.3       | na        | Calcium compounds, unspecified    | 355.2 | μg               |
| Toluene       1.3       mg       Carbon-14       7.3       mBq         Uranium       41.1       ng       Carbonate       1.4       g         Uranium-234       415.0       µBq       Cerium-141       107.0       nBq         Uranium-235       20.1       µBq       Cerium-144       3.3       mBq         Uranium-238       535.0       µBq       Cesium       5.7       µg         Uranium alpha       1.2       mBq       Cesium-134       7.4       mBq         Vanadium       772.3       µg       Cesium-136       3.8       nBq         VoC, volatile organic compounds       1.6       mg       Cesium-137       67.7       mBq         Xenon-131       13.1       mBq       Chlorate       78.3       mg         Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-135       657.0       mBq       Chlorine       642.7       µg         Xenon-137       1.6       mBq       Chloroform       60.6       ng         Xenon-138       17.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium vli       6.4                                                                                                                                                                                               | Titanium                       | 5.5        | ua        | Calcium, ion                      | 91.8  | g                |
| Uranium       41.1       ng       Carbonate       1.4       g         Uranium       41.1       ng       Carbonate       1.4       g         Uranium-234       415.0       µBq       Cerium-141       107.0       nBq         Uranium-235       20.1       µBq       Cerium-144       3.3       mBq         Uranium-238       535.0       µBq       Cesium       5.7       µg         Uranium alpha       1.2       mBq       Cesium-134       7.4       mBq         Vanadium       772.3       µg       Cesium-136       3.8       nBq         VoC, volatile organic compounds       1.6       mg       Cesium-137       67.7       mBq         Xenon-131m       13.1       mBq       Chlorate       78.3       mg         Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-133m       1.9       mBq       Chloride       719.3       g         Xenon-135       657.0       mBq       Chlorine       642.7       µg         Xenon-137       1.6       mBq       Chromium       6.2       mg         Xenon-138       17.6       mBq       Chromium-51       15.8 <td>Toluene</td> <td>1.3</td> <td>ma</td> <td>Carbon-14</td> <td>7.3</td> <td>mBq</td>                                                                                                            | Toluene                        | 1.3        | ma        | Carbon-14                         | 7.3   | mBq              |
| Uranium-234       415.0       μBq       Cerium-141       107.0       nBq         Uranium-235       20.1       μBq       Cerium-144       3.3       mBq         Uranium-238       535.0       μBq       Cesium       5.7       μg         Uranium alpha       1.2       mBq       Cesium-134       7.4       mBq         Vanadium       772.3       μg       Cesium-136       3.8       nBq         VOC, volatile organic compounds       1.6       mg       Cesium-137       67.7       mBq         Xenon-131m       13.1       mBq       Chlorate       78.3       mg         Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-133m       1.9       mBq       Chloride       719.3       g         Xenon-135m       657.0       mBq       Chlorinated solvents, unspecified       435.3       μg         Xenon-137       1.6       mBq       Chloroform       60.6       ng         Xenon-138       17.6       mBq       Chloroform       62.7       mg         Xenon-137       1.6       mBq       Chromium-51       15.8       μBq         Xylene       868.9       µg                                                                                                                                                                                         | Uranium                        | 41 1       | na        | Carbonate                         | 1.4   | g                |
| Uranium-235       20.1       µBq       Cerium-144       3.3       mBq         Uranium-238       535.0       µBq       Cesium       5.7       µg         Uranium alpha       1.2       mBq       Cesium       5.7       µg         Vanadium       72.3       µg       Cesium-134       7.4       mBq         Voc, volatile organic compounds       1.6       mg       Cesium-136       3.8       nBq         VOC, volatile organic compounds       1.6       mg       Cesium-137       67.7       mBq         Xenon-131m       13.1       mBq       Chlorate       78.3       mg         Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-135       657.0       mBq       Chlorine       642.7       µg         Xenon-135       657.0       mBq       Chlorine       642.7       µg         Xenon-135       657.0       mBq       Chloroform       60.6       ng         Xenon-137       1.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI </td <td>Uranium-234</td> <td>415.0</td> <td>uBa</td> <td>Cerium-141</td> <td>107.0</td> <td>nBq</td>                                                                                  | Uranium-234                    | 415.0      | uBa       | Cerium-141                        | 107.0 | nBq              |
| Uranium-238       535.0       µBq       Cesium       5.7       µg         Uranium alpha       1.2       mBq       Cesium-134       7.4       mBq         Vanadium       772.3       µg       Cesium-136       3.8       nBq         VOC, volatile organic compounds       1.6       mg       Cesium-137       67.7       mBq         Xenon-131m       13.1       mBq       Chlorate       78.3       mg         Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-133       1.9       mBq       Chlorate       78.3       mg         Xenon-133       1.9       mBq       Chloride       719.3       g         Xenon-133       1.9       mBq       Chloride       719.3       g         Xenon-135       657.0       mBq       Chlorine       642.7       µg         Xenon-135       657.0       mBq       Chloroform       60.6       ng         Xenon-137       1.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI       6.4       ng         Zinc       35.7       µg       Chromium, ion       87.1                                                                                                                                                                                                      | Uranium-235                    | 20.1       | uBa       | Cerium-144                        | 3.3   | mBq              |
| Uranium alpha         1.2         mBq         Cesium-134         7.4         mBq           Vanadium         772.3         µg         Cesium-136         3.8         nBq           VOC, volatile organic compounds         1.6         mg         Cesium-137         67.7         mBq           VOC, volatile organic compounds         1.6         mg         Cesium-137         67.7         mBq           Xenon-131m         13.1         mBq         Chlorate         78.3         mg           Xenon-133         3.9         Bq         Chloride         719.3         g           Xenon-133m         1.9         mBq         Chlorinated solvents, unspecified         435.3         µg           Xenon-135         657.0         mBq         Chlorine         642.7         µg           Xenon-137         1.6         mBq         Chloroform         60.6         ng           Xenon-138         17.6         mBq         Chromium-51         15.8         µBq           Xylene         868.9         µg         Chromium VI         6.4         ng           Zinc         35.7         µg         Chromium, ion         87.1         µg           Zincofium         9.3         ng                                                                                                     | Uranium-238                    | 535.0      | uBa       | Cesium                            | 5.7   | μg .             |
| Vanadium         772.3         µg         Cesium-136         3.8         nBq           VOC, volatile organic compounds         1.6         mg         Cesium-137         67.7         mBq           Xenon-131m         13.1         mBq         Chlorate         78.3         mg           Xenon-133         3.9         Bq         Chlorate         719.3         g           Xenon-133         1.9         mBq         Chloride         719.3         g           Xenon-133m         1.9         mBq         Chlorine         642.7         µg           Xenon-135         657.0         mBq         Chloroform         60.6         ng           Xenon-137         1.6         mBq         Chloroform         62.2         mg           Xenon-138         17.6         mBq         Chromium-51         15.8         µBq           Xylene         868.9         µg         Chromium VI         6.4         ng           Zinc         35.7         µg         Chromium, ion         87.1         µg           Zinc-65         255.0         nBq         Cobalt         7.8         µg           Zirconium         9.3         ng         Cobalt-57         737.0                                                                                                                              | Uranium alpha                  | 1 2        | mBa       | Cesium-134                        | 7.4   | mBq              |
| VOC, volatile organic compounds1.6mgCesium-13767.7mBqXenon-131m13.1mBqChlorate78.3mgXenon-1333.9BqChloride719.3gXenon-133m1.9mBqChlorinated solvents, unspecified435.3µgXenon-135657.0mBqChlorine642.7µgXenon-135m64.9mBqChloroform60.6ngXenon-1371.6mBqChromium6.2mgXenon-13817.6mBqChromium-5115.8µBqXylene868.9µgChromium VI6.4ngZinc35.7µgChromium, ion87.1µgZinc-65255.0nBqCobalt7.8µgZirconium9.3ngCobalt-57737.0nBqZirconium-953.8nBqCobalt-58623.0µBqCobalt-6031.7mBqCobalt-6031.7mBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vanadium                       | 772.3      | ua        | Cesium-136                        | 3.8   | nBq <sup>.</sup> |
| Xeron-131m       13.1       mBq       Chlorate       78.3       mg         Xenon-131       3.9       Bq       Chlorate       719.3       g         Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-133m       1.9       mBq       Chloride       719.3       g         Xenon-133m       1.9       mBq       Chlorine       642.7       µg         Xenon-135       657.0       mBq       Chloroform       60.6       ng         Xenon-135m       64.9       mBq       Chloroform       60.6       ng         Xenon-137       1.6       mBq       Chromium       6.2       mg         Xenon-138       17.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI       6.4       ng         Zinc       35.7       µg       Chromium, ion       87.1       µg         Zinc-65       255.0       nBq       Cobalt       7.8       µg         Zirconium       9.3       ng       Cobalt-57       737.0       nBq         Zirconium-95       3.8       nBq       Cobalt-58       623.0       µBq <td>VOC volatile organic compounds</td> <td>1.6</td> <td>ma</td> <td>Cesium-137</td> <td>67.7</td> <td>mBq</td>                                                                                                      | VOC volatile organic compounds | 1.6        | ma        | Cesium-137                        | 67.7  | mBq              |
| Xenon-133       3.9       Bq       Chloride       719.3       g         Xenon-133       1.9       mBq       Chlorinated solvents, unspecified       435.3       µg         Xenon-135       657.0       mBq       Chlorine       642.7       µg         Xenon-135       657.0       mBq       Chloroform       60.6       ng         Xenon-135       64.9       mBq       Chloroform       60.6       ng         Xenon-137       1.6       mBq       Chromium       6.2       mg         Xenon-138       17.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI       6.4       ng         Zinc       35.7       µg       Chromium, ion       87.1       µg         Zinc-65       255.0       nBq       Cobalt       7.8       µg         Zirconium       9.3       ng       Cobalt-57       737.0       nBq         Zirconium-95       3.8       nBq       Cobalt-58       623.0       µBq                                                                                                                                                                                                                                                                                                                                                | Xenon-131m                     | 13.1       | mBa       | Chlorate                          | 78.3  | mg .             |
| Xenon 133m1.9mBqChlorinated solvents, unspecified435.3µgXenon-135657.0mBqChlorine642.7µgXenon-135m64.9mBqChloroform60.6ngXenon-1371.6mBqChromium6.2mgXenon-13817.6mBqChromium-5115.8µBqXylene868.9µgChromium VI6.4ngZinc35.7µgChromium, ion87.1µgZinc-65255.0nBqCobalt7.8µgZirconium9.3ngCobalt-57737.0nBqZirconium-953.8nBqCobalt-58623.0µBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Xenon-133                      | 3.9        | Ba        | Chloride                          | 719.3 | g                |
| Xenon-135       657.0       mBq       Chlorine       642.7       µg         Xenon-135m       64.9       mBq       Chloroform       60.6       ng         Xenon-137       1.6       mBq       Chromium       6.2       mg         Xenon-138       17.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI       6.4       ng         Zinc       35.7       µg       Chromium, ion       87.1       µg         Zinc-65       255.0       nBq       Cobalt       7.8       µg         Zirconium       9.3       ng       Cobalt-57       737.0       nBq         Zirconium-95       3.8       nBq       Cobalt-58       623.0       µBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Xenon-133m                     | 1.9        | mBa       | Chlorinated solvents, unspecified | 435.3 | μg               |
| Xenon-135m       64.9       mBq       Chloroform       60.6       ng         Xenon-137       1.6       mBq       Chromium       6.2       mg         Xenon-138       17.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI       6.4       ng         Zinc       35.7       µg       Chromium, ion       87.1       µg         Zinc-65       255.0       nBq       Cobalt       7.8       µg         Zirconium       9.3       ng       Cobalt-57       737.0       nBq         Zirconium-95       3.8       nBq       Cobalt-58       623.0       µBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Xenon-135                      | 657.0      | mBa       | Chlorine                          | 642.7 | μg               |
| Xenon-137       1.6       mBq       Chromium       6.2       mg         Xenon-138       17.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI       6.4       ng         Zinc       35.7       µg       Chromium, ion       87.1       µg         Zinc-65       255.0       nBq       Cobalt       7.8       µg         Zirconium       9.3       ng       Cobalt-57       737.0       nBq         Zirconium-95       3.8       nBq       Cobalt-58       623.0       µBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xenon-135m                     | 64.9       | mBa       | Chloroform                        | 60.6  | ng               |
| Xenon-138       17.6       mBq       Chromium-51       15.8       µBq         Xylene       868.9       µg       Chromium VI       6.4       ng         Zinc       35.7       µg       Chromium, ion       87.1       µg         Zinc-65       255.0       nBq       Cobalt       7.8       µg         Zirconium       9.3       ng       Cobalt-57       737.0       nBq         Zirconium-95       3.8       nBq       Cobalt-58       623.0       µBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Xenon-137                      | 1.6        | mBa       | Chromium                          | 6.2   | mg               |
| Xylene         868.9         µg         Chromium VI         6.4         ng           Zinc         35.7         µg         Chromium, ion         87.1         µg           Zinc-65         255.0         nBq         Cobalt         7.8         µg           Zirconium         9.3         ng         Cobalt-57         737.0         nBq           Zirconium-95         3.8         nBq         Cobalt-58         623.0         µBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Xenon-138                      | 17.6       | mBa       | Chromium-51                       | 15.8  | μBq              |
| Zinc         35.7 µg         Chromium, ion         87.1 µg           Zinc-65         255.0 nBq         Cobalt         7.8 µg           Zirconium         9.3 ng         Cobalt-57         737.0 nBq           Zirconium-95         3.8 nBq         Cobalt-58         623.0 µBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Xylene                         | 868.9      | пра       | Chromium VI                       | 6.4   | ng               |
| Zinc-65         255.0         nBq         Cobalt         7.8         µg           Zirconium         9.3         ng         Cobalt-57         737.0         nBq           Zirconium-95         3.8         nBq         Cobalt-58         623.0         µBq           Cobalt-60         31.7         mBq         31.7         mBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zinc                           | 35.7       | ру<br>Ца  | Chromium, ion                     | 87.1  | μġ               |
| Zirconium         9.3 ng         Cobalt-57         737.0 nBq           Zirconium-95         3.8 nBq         Cobalt-58         623.0 µBq           Cobalt-60         31.7 mBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zinc-65                        | 255.0      | ру<br>nBa | Cobalt                            | 7.8   | ha               |
| Zirconium-95 3.8 nBq Cobalt-58 623.0 µBq<br>Cobalt-60 31.7 mBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zirconium                      | 200.0      | na        | Cobalt-57                         | 737.0 | nBa              |
| Cobalt-60 31.7 mBq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zirconium-95                   | 3.5<br>3.8 | nBa       | Cobalt-58                         | 623.0 | μBq              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 0.0        |           | Cobalt-60                         | 31.7  | mBa              |
| COD, Chemical Oxygen Demand 2.7 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |            |           | COD, Chemical Oxygen Demand       | 2.7   | g .              |

| Copper, ion                        | 109.5 | μg               | Molybdenum-99                       | 50.2  | nBq |
|------------------------------------|-------|------------------|-------------------------------------|-------|-----|
| Crude oil                          | 3.8   | mg               | Neptunium-237                       | 9.2   | μBq |
| Curium alpha                       | 190.0 | μBq              | Nickel, ion                         | 99.1  | μg  |
| Cyanide                            | 25.9  | μg               | Niobium-95                          | 408.0 | nBq |
| Detergent, oil                     | 20.2  | mg               | Nitrate                             | 3.6   | g . |
| Dioxins, measured as 2,3,7,8-      |       | Ū                | Nitrite                             | 6.0   | μg  |
| tetrachlorodibenzo-p-dioxin        | 145.1 | pg               | Nitrogen, organic bound             | 2.0   | mg  |
| DOC, Dissolved Organic Carbon      | 145.1 | mg               | Nitrogen, total                     | 1.3   | aŬ  |
| Ethane, 1,1-dichloro-              | 2.8   | ng               | Oils. unspecified                   | 105.4 | ma  |
| Ethane, 1,1,1-trichloro-, HCFC-140 | 272.0 | pg               | Organic substances, unspecified     | 530.7 | ma  |
| Ethane, chloro-                    | 33.8  | ng               | PAH, polycyclic aromatic            |       | 9   |
| Ethane, dichloro-                  | 100.5 | ng               | hydrocarbons                        | 74.4  | μg  |
| Ethane, hexachloro-                | 2.2   | pg               | Phenol                              | 2.2   | mg  |
| Ethene, chloro-                    | 74.3  | pg               | Phenols, unspecified                | 708.0 | μg  |
| Ethene, tetrachloro-               | 262.0 | pq               | Phosphate                           | 305.0 | hđ  |
| Ethene, trichloro-                 | 16.7  | na               | Phosphorus compounds,               |       | 10  |
| Fatty acids as C                   | 28.9  | ma               | unspecified                         | 2.8   | μg  |
| Fluoride                           | 1.2   | ma               | Phosphorus, total                   | 578.1 | mg  |
| Formaldehyde                       | 958.7 | pa               | Phthalate, dimethyl tere-           | 414.0 | pg  |
| Glutaraldehyde                     | 12.2  | P9<br>U0         | Phthalate, dioctyl-                 | 10.8  | pg  |
| Heat waste                         | 127.0 | r-9<br>k.l       | Phthalate, p-dibutyl-               | 65.8  | pg  |
| Hydrocarbons, aliphatic, alkanes,  | 12110 |                  | Plutonium-241                       | 14.2  | mBq |
| unspecified                        | 743.2 | μq               | Plutonium-alpha                     | 571.0 | µBq |
| Hydrocarbons, aliphatic, alkenes,  |       | 10               | Polonium-210                        | 417.0 | uBa |
| unspecified                        | 68.6  | μg               | Potassium                           | 29.5  | ma  |
| Hydrocarbons, aromatic             | 3.4   | mg               | Potassium-40                        | 524.0 | uBa |
| Hydrocarbons, chlorinated          | 1.1   | ng               | Potassium, ion                      | 104.8 | ma  |
| Hydrocarbons, unspecified          | 65.9  | mg               | Protactinium-234                    | 641.0 | uBa |
| Hydrogen                           | 3.2   | mg               | Radioactive species, unspecified    | 1.2   | Ba  |
| Hydrogen-3, Tritium                | 215.7 | Bq               | Radioactive species, alpha emitters | 47.4  | nBa |
| Hydrogen sulfide                   | 809.3 | ng               | Radioactive species, from fission   |       |     |
| Hypochlorite                       | 23.0  | μġ               | and activation                      | 430.0 | μBq |
| Hypochlorous acid                  | 24.5  | μg               | Radioactive species, Nuclides,      |       |     |
| lodide                             | 571.2 | μġ               | unspecified                         | 311.0 | nBq |
| lodine-129                         | 20.8  | mBq              | Radium-224                          | 285.6 | mBq |
| lodine-131                         | 13.8  | μBq <sup>.</sup> | Radium-226                          | 3.2   | Bq  |
| lodine-133                         | 3.3   | μBq              | Radium-228                          | 571.1 | mBq |
| Iron                               | 6.9   | ma               | Ruthenium                           | 57.1  | μg  |
| Iron-59                            | 12.7  | nBa              | Ruthenium-103                       | 241.0 | nBq |
| Iron. ion                          | 6.4   | ma'              | Ruthenium-106                       | 34.6  | mBq |
| Lanthanum-140                      | 149.0 | nBa              | Salts, unspecified                  | 7.5   | mg  |
| Lead                               | 42.3  | na               | Selenium                            | 24.5  | μg  |
| Lead-210                           | 417.0 | uBa              | Silicon                             | 51.1  | μg  |
| Magnesium                          | 137.5 | ma               | Silver                              | 3.5   | μg  |
| Manganese                          | 425.0 | ua               | Silver-110                          | 399.0 | μBq |
| Manganese-54                       | 4.9   | mBa              | Sodium-24                           | 22.1  | μBq |
| Mercury                            | 20.8  | ua               | Sodium, ion                         | 366.9 | g   |
| Metallic ions unspecified          | 119.6 | ma<br>ma         | Solved organics                     | 1.9   | μġ  |
| Methane dichloro- HCC-30           | 45.5  |                  | Solved solids                       | 5.2   | g   |
| Methane tetrachloro- CFC-10        | 300 N | м9<br>ра         | Solved substances                   | 1.6   | ma  |
| Molybdenum                         | 17 7  | Р9<br>110        | Strontium                           | 34.7  | ma  |
| morybuonum                         |       | M9               |                                     |       | 0   |

| Strontium-89                    | 1.6   | μBq | Chromium                         | 32.8  | μg  |
|---------------------------------|-------|-----|----------------------------------|-------|-----|
| Strontium-90                    | 6.9   | mBq | Cobalt                           | 156.0 | ng  |
| Sulfate                         | 9.5   | g   | Copper                           | 779.0 | ng  |
| Sulfide                         | 187.2 | μg  | Heat, waste                      | 444.8 | J   |
| Sulfur                          | 1.7   | μg  | Iron                             | 13.1  | mg  |
| Sulfur trioxide                 | 3.3   | μg  | Lead                             | 3.5   | μg  |
| Suspended solids, unspecified   | 32.9  | g   | Manganese                        | 262.0 | μg  |
| Suspended substances,           |       |     | Mercury                          | 21.4  | ng  |
| unspecified                     | 2.0   | g   | Nickel                           | 1.2   | μġ  |
| t-Butyl methyl ether            | 5.0   | ng  | Nitrogen                         | 6.0   | μg  |
| Technetium-99                   | 3.6   | mBq | Oils, biogenic                   | 429.0 | ng  |
| Technetium-99m                  | 339.0 | nBq | Oils, unspecified                | 4.9   | mg  |
| Tellurium-123m                  | 30.3  | nBq | Phosphorus                       | 335.0 | μg  |
| Tellurium-132                   | 12.4  | nBq | Sulfur                           | 3.9   | mg  |
| Thorium-228                     | 1.1   | Bq  | Zinc                             | 106.0 | μg  |
| Thorium-230                     | 100.0 | mBq |                                  |       |     |
| Thorium-232                     | 97.6  | μBq | Final waste flows                |       |     |
| Thorium-234                     | 647.0 | μBq | Chemical waste, inert            | 8.2   | g   |
| Tin, ion                        | 32.4  | ng  | Chemical waste, regulated        | 30.6  | g   |
| Titanium, ion                   | 233.9 | μg  | Coal tailings                    | 206.2 | mg  |
| TOC, Total Organic Carbon       | 675.1 | mg  | Compost                          | 95.7  | μg  |
| Toluene                         | 617.7 | μg  | Construction waste               | 54.2  | mg  |
| Tributyltin                     | 5.0   | μg  | Metal waste                      | 66.6  | mg  |
| Triethylene glycol              | 4.4   | μg  | Mineral waste                    | 143.6 | g   |
| Tungsten                        | 131.8 | ng  | Oil waste                        | 129.6 | mg  |
| Undissolved substances          | 306.5 | mg  | Packaging waste, paper and board | 836.8 | μg  |
| Uranium-234                     | 857.0 | μBq | Packaging waste, plastic         | 6.8   | ng  |
| Uranium-235                     | 1.3   | mBq | Packaging waste, wood            | 33.5  | ng  |
| Uranium-238                     | 2.2   | mBq | Plastic waste                    | 129.3 | mg  |
| Uranium alpha                   | 41.9  | mBq | Production waste, not inert      | 5.3   | mg  |
| Vanadium, ion                   | 25.2  | μg  | Slags                            | 2.2   | mg  |
| VOC, volatile organic compounds |       |     | Slags and ashes                  | 30.0  | g   |
| as C                            | 2.0   | mg  | Waste in incineration            | 8.0   | g   |
| Xylene                          | 537.8 | μg  | Waste returned to mine           | 33.2  | g   |
| Yttrium-90                      | 83.0  | nBq | Waste to recycling               | 105.0 | mg  |
| Zinc-65                         | 46.7  | μBq | Waste, final, inert              | 92.7  | mg  |
| Zinc, ion                       | 1.6   | mg  | Waste, industrial                | 49.4  | g   |
| Zirconium-95                    | 294.1 | μBq | Waste, nuclear, high active/m3   | 0.0   | mm3 |
|                                 |       |     | Waste, nuclear, low and medium   |       |     |
| Emissions to soil               |       |     | active/m3                        | 0.1   | mm3 |
| Aluminum                        | 6.6   | mg  | Waste, solid                     | -8.2  | g   |
| Arsenic                         | 2.6   | μg  | Waste, unspecified               | 731.5 | mg  |
| Cadmium                         | 113.0 | ng  | Wood waste                       | 5.8   | mg  |
| Calcium                         | 26.2  | mg  |                                  |       |     |
| Carbon                          | 20.3  | mg  |                                  |       |     |

#### STEEL (1 kg + 0.3 kg slag) Source – World Bank Group and IDEMAT [84, 91]

| Resources                       |         |     | Fluoranthene                  | 5.4E-07 | kg |
|---------------------------------|---------|-----|-------------------------------|---------|----|
| Iron, in ground                 | 8.2E-01 | kg  | Particulates, SPM             | 8.9E-04 | kg |
| Coal, 29.3 MJ per kg, in ground | 5.4E-01 | kg  | Chlorine                      | 7.2E-04 | kg |
| Limestone, in ground            | 1.6E-01 | kg  | Dioxins, measured as 2,3,7,8- |         |    |
| Transformation, to urban,       |         |     | tetrachlorodibenzo-p-dioxin   | 1.0E-10 | kg |
| continuously built              | 1.6E-04 | m2  | Hydrogen sulfide              | 9.6E-05 | kg |
| Occupation, urban, continuously |         | _   | Aluminum                      | 1.3E-06 | kg |
| built                           | 1.2E-02 | m2a | Arsenic                       | 8.0E-08 | kg |
|                                 |         |     | Cadmium                       | 2.5E-07 | kg |
| Materials/fuels                 |         |     | Chromium                      | 1.0E-07 | kg |
| Scrap (iron) I                  | 1.1E-01 | kg  | Copper                        | 1.5E-06 | kg |
|                                 |         |     | Mercury                       | 7.0E-08 | kg |
| Electricity/heat                |         |     | Nickel                        | 7.0E-09 | kg |
| Energy Australia I              | 4.7E-01 | MJ  | Lead                          | 9.0E-06 | kg |
| Bulk carrier I                  | 5.7E-01 | tkm | Zinc                          | 4.0E-06 | kg |
| Bulk carrier I                  | 4.2E+00 | tkm |                               |         |    |
| Bulk carrier I                  | 1.2E+00 | tkm | Emissions to water            |         |    |
| Train I                         | 4.5E-02 | tkm | Kjeldahl-N                    | 2.7E-04 | kg |
| Bulk carrier I                  | 1.9E+00 | tkm | Crude oil                     | 2.0E-07 | kg |
| Bulk carrier I                  | 2.4E+00 | tkm | Cadmium, ion                  | 7.0E-09 | kg |
| Train I                         | 1.9E-02 | tkm | Chromium                      | 1.0E-07 | kg |
| Train I                         | 4.9E-01 | tkm | Copper, ion                   | 1.6E-07 | kg |
|                                 |         |     | Mercury                       | 6.0E-09 | kq |
| Emissions to air                |         |     | Lead                          | 2.0E-07 | kq |
| Carbon dioxide                  | 6.5E-01 | kg  | Zinc, ion                     | 1.1E-06 | kġ |
| Carbon monoxide                 | 3.3E-02 | kg  |                               |         | 0  |
| Nitrogen dioxide                | 1.1E-03 | kg  | Final waste flows             |         |    |
| Sulfur dioxide                  | 1.6E-03 | kg  | Waste, inorganic              | 3.1E-03 | ka |
| Hydrocarbons, unspecified       | 5.9E-04 | kg  | Dust, unspecified             | 3.0E-04 | ka |
| Fluorine                        | 8.5E-06 | kg  |                               |         |    |
| Benzo(a)pyrene                  | 1.8E-07 | kg  |                               |         |    |

# MANUFACTURING

### TIRE MANUFACTURING (1 kg) Source – Ecolnvent, PRé Consultants, J.L. White [17, 78, 88]

| Avoided products           | -   | Oil light B300   | 1.7  | g |
|----------------------------|-----|------------------|------|---|
| Synthetic Rubber 0.3       | g   | NaOH (100%)      | 2.4  | g |
|                            |     | HCI (100%) B250  | 2.1  | g |
| Materials/fuels            |     | Silicon I        | 0.4  | g |
| Energy US I 1.2            | kWh | Lime B250        | 6.2  | g |
| Natural gas to UCPTE S 0.2 | m3  | Cotton fibres I  | 0.2  | g |
| Energy US I 0.1            | J   | HDPE B250        | 0.7  | g |
| Naphtha B250 0.9           | g   | Paint ETH S      | 12.3 | g |
| Synthetic Rubber 1.2       | g   | Synthetic Rubber | 0.2  | g |

| Chemicals organic ETH S         | 0.2   | g   |                                    |      |        |
|---------------------------------|-------|-----|------------------------------------|------|--------|
| Petrol B300                     | 1.7   | g   | Final waste flows                  |      |        |
| Paper ETH S                     | 1.1   | g   | Waste, solid                       | 4.3  | g      |
| Wood FAL                        | 0.2   | g   | Wood waste                         | 7.7  | g      |
| Truck 28t B250                  | 5.2   | tkm | Dust, unspecified                  | 35.0 | g      |
| Sea ship B250                   | 0.0   | tkm |                                    |      |        |
| Train electric B250             | 0.7   | tkm | Waste to treatment                 |      |        |
| Freighter oceanic ETH S         | 2.8   | tkm | Recycling ECCS steel B250          | 13.4 | g      |
|                                 |       |     | Recycling paper B250               | 4.4  | g      |
| Emissions to air                |       |     | Recycling Plastics (excl. PVC)     |      |        |
| VOC, volatile organic compounds | 5.9   | mg  | B250                               | 1.3  | g      |
| Particulates                    | 0.1   | g   | Recycling glass B250               | 0.4  | g      |
|                                 |       | -   | Plastics to HA chemical landfill S | 2.4  | g      |
| Emissions to water              |       |     | Decarbonizing waste to LA          |      |        |
| COD, Chemical Oxygen Demand     | 636.8 | mg  | chemical landfill S                | 8.6  | g      |
| BOD5, Biological Oxygen Demand  | 361.4 | mg  | Waste to LA chemical landfill S    | 4.2  | g      |
| Oils, unspecified               | 175.1 | mg  | Steel (inert) to landfill S        | 2.4  | g      |
| Ammonium, ion                   | 13.4  | mg  | Municipal waste to MWI S           | 1.8  | g      |
| Suspended solids, unspecified   | 461.0 | mg  | Plastics to MWI S                  | 1.3  | g      |
| Copper                          | 0.3   | mg  | Steel to MWI S                     | 10.3 | g      |
| Zinc                            | 2.8   | mg  | vvaste oli to special waste        | 2.1  | ~      |
| Lead                            | 0.4   | mg  | Rubber Incineration                | 2.1  | y<br>a |
| Detergent, oil                  | 3.1   | mg  |                                    | 0.2  | y<br>a |
| Nickel                          | 1.2   | mg  |                                    | 0.0  | g      |
| AOX, Adsorbable Organic Halogen |       | U   | The Recycling                      | 12.2 | g      |
| as Cl                           | 0.3   | mg  |                                    |      |        |

### TWEEL<sup>™</sup> MANUFACTURING (1 kg) Source – Michelin, Ecolnvent, BUWAL [78, 85, 97]

| Resources               |          |     | Energy US I                     | 1.84  | kWh |
|-------------------------|----------|-----|---------------------------------|-------|-----|
| Glue                    | 0.3      | g   |                                 |       |     |
|                         |          |     | Emissions to air                |       |     |
| Materials/fuels         |          |     | VOC, volatile organic compounds | 8.28  | mg  |
| Energy US I             | 1.334    | kWh | Particulates                    | 0.092 | g   |
| Energy US I             | 0.106605 | J   |                                 |       |     |
| Naphtha B250            | 1.0695   | g   | Emissions to water              |       |     |
| Synthetic Rubber        | 1.403    | g   | Oils, unspecified               | 122.4 | mg  |
| Silicon I               | 0.483    | g   | Suspended solids, unspecified   | 249.6 | mg  |
| Chemicals organic ETH S | 16.1     | g   | Zinc                            | 2.224 | mg  |
| Petrol B300             | 1.955    | g   | Lead                            | 0.304 | mg  |
| Truck 28t B250          | 7.13     | tkm | Detergent, oil                  | 2.464 | mg  |
| Sea ship B250           | 0.005175 | tkm | Nickel                          | 0.984 | mg  |
| Train electric B250     | 0.76475  | tkm |                                 |       |     |
| Freighter oceanic ETH S | 3.22     | tkm | Final waste flows               |       |     |
| Ethylene E              | 3.0705   | g   | Waste, solid                    | 4.945 | g   |
| Ethyl acetate           | 30.705   | g   | Dust, unspecified               | 40.25 | g   |
| Ethyl acetate           | 34.5     | g   |                                 |       |     |
|                         |          |     |                                 |       |     |

# **USE PHASE**

#### TREAD DEBRIS (1 kg) Source – PRé Consultants [17]

| Emissions to air               |       |    | hydrocarbons      |      |    |
|--------------------------------|-------|----|-------------------|------|----|
| Benzo(a)pyrene                 | 390   | μg | Sulfur dioxide    | 220  | mg |
| Particulates, > 10 um          | 800   | g  | Zinc              | 700  | mg |
| Particulates, < 10 um          | 170   | g  |                   |      |    |
| Particulates, < 2.5 um         | 30    | g  | Emissions to soil |      |    |
| Fluoranthene                   | 1.11  | mg | Benzo(a)pyrene    | 3.51 | mg |
| NMVOC, non-methane volatile    |       |    | Fluoranthene      | 9.99 | mg |
| organic compounds, unspecified |       |    | Zinc              | 6.3  | g  |
| origin                         | 1.057 | g  |                   |      | 0  |
| PAH, polycyclic aromatic       | 21.1  | mg |                   |      |    |

### GASOLINE PRODUCTION AND USE (100 L) Source – BUWAL, IDEMAT, Franklin USA, EPA [30, 57, 91, 97]

| Resources                            |       |      | Hydrogen chloride               | 14.9  | mg |
|--------------------------------------|-------|------|---------------------------------|-------|----|
| Bauxite, in ground                   | 6.0   | g    | Hydrogen sulfide                | 49.1  | mg |
| Coal, 29.3 MJ per kg, in ground      | 5.1   | g    | Nitrogen oxides                 | 375.7 | g  |
| Energy, unspecified                  | 50.4  | MJ   | Particulates, SPM               | 4.5   | g  |
| Gas, natural, 36.6 MJ per m3, in     |       |      | Soot                            | 3.5   | g  |
| ground                               | 967.2 | dm3  | Sulfur dioxide                  | 23.7  | g  |
| Iron ore, in ground                  | 3.0   | g    | VOC, volatile organic compounds | 210.0 | mg |
| Occupation, industrial area          | 828.8 | cm2a |                                 |       |    |
| Oil, crude, 42.7 MJ per kg, in       |       |      | Emissions to water              |       |    |
| ground                               | 15.3  | kg   | Ammonia                         | 148.8 | mg |
| Transformation, to industrial area   | 35.6  | mm2  | BOD5, Biological Oxygen Demand  | 148.8 | mg |
| Water, unspecified natural origin/kg | 818.4 | g    | Chloride                        | 297.6 | mg |
| , .                                  |       |      | COD, Chemical Oxygen Demand     | 595.2 | mg |
| Emissions to air                     | 50.0  |      | Hydrocarbons, unspecified       | 297.6 | mg |
| Carbon dioxide                       | 52.2  | kg   | Hydrogen                        | 14.9  | mg |
| Carbon monoxide                      | 51.9  | ΟZ   | Metallic ions, unspecified      | 14.9  | mg |
| Dinitrogen monoxide                  | 10.1  | g    | Mineral waste                   | 2.1   | g  |
| Hydrocarbons, unspecified            | 44.9  | g    | Slags                           | 744.0 | mg |
| Hydrogen                             | 56.5  | mg   | č                               |       | 0  |

### END OF LIFE

### RUBBER DERIVED FUEL (1 kg) Source – EPA [37]

| Materials/fuels  |       |    | Butadiene           | 1.6    | mg |
|------------------|-------|----|---------------------|--------|----|
| Energy US I      | -36.0 | MJ | Carbon black        | -12.4  | mg |
|                  |       |    | Carbon dioxide      | 30.3   | g  |
| Emissions to air |       |    | Carbon monoxide     | -197.2 | mg |
| Ammonia          | -2.4  | mg | Dinitrogen monoxide | -28.8  | mg |

| Ethene                             | 4.9    | mg     | Copper                         | 11.2   | mg  |
|------------------------------------|--------|--------|--------------------------------|--------|-----|
| Heat, waste                        | 669.8  | kJ     | Fatty acids as C               | 1.6    | mg  |
| Hydrocarbons, aromatic             | -2.2   | mg     | Fluorine                       | -5.7   | mg  |
| Hydrocarbons, unspecified          | -1.3   | g      | Heat, waste                    | 14.0   | kJ  |
| Hydrogen chloride                  | -31.7  | mg     | Hydrocarbons, unspecified      | 1.8    | mg  |
| Hydrogen fluoride                  | -4.1   | mg     | Iron                           | -105.1 | mg  |
| Hydrogen sulfide                   | -14.0  | mg     | Magnesium                      | 11.0   | mg  |
| Metals, unspecified                | -10.8  | mg     | Manganese                      | 1.0    | mg  |
| Methane                            | -9.4   | g      | Metallic ions, unspecified     | -11.3  | mg  |
| Nitrogen dioxide                   | 277.5  | mg     | Nitrate                        | -0.8   | mg  |
| Nitrogen oxides                    | 90.7   | mg     | Nitrogen, total                | 1.5    | mg  |
| NMVOC, non-methane volatile        |        |        | Oils, unspecified              | 3.0    | mg  |
| organic compounds, unspecified     |        |        | Phosphate                      | -4.6   | mg  |
| origin                             | 1.6    | g      | Potassium                      | 5.7    | mg  |
| Particulates                       | -811.7 | mg     | Salts, unspecified             | 32.6   | mg  |
| Particulates, < 10 um              | 8.4    | mg     | Sodium, ion                    | 247.2  | mg  |
| Particulates, < 10 um (mobile)     | 9.8    | mg     | Solved substances              | 4.6    | mg  |
| Particulates, < 10 um (stationary) | 3.4    | mg     | Solved substances, inorganic   | -598.5 | mg  |
| Particulates, > 10 um              | -311.0 | mg     | Strontium                      | 2.6    | mg  |
| Particulates, > 10 um (process)    | 6.4    | mg     | Sulfate                        | -1.8   | g   |
| Particulates, SPM                  | -28.9  | mg     | Suspended substances,          |        |     |
| Silicates, unspecified             | 1.0    | mg     | unspecified                    | -98.7  | mg  |
| Sulfur dioxide                     | -103.0 | mg     | TOC, Total Organic Carbon      | 45.7   | mg  |
| Sulfur oxides                      | -1.0   | g      | Undissolved substances         | 17.9   | mg  |
| Unspecified emission               | -9.9   | mg     | Limestone waste                | -3.9   | g   |
| VOC, volatile organic compounds    | 8.5    | mg     | Production waste               | -28.7  | g   |
| Zirconium                          | 9.0    | mg     | Steel waste                    | 2.0    | g   |
|                                    |        |        | Waste, final, inert            | 155.3  | g   |
| Emissions to water                 |        |        | Waste, nuclear, high active/m3 | 0.1    | mm3 |
| Aluminum                           | -83.1  | mg     | Waste, nuclear, low and medium |        | -   |
| Ammonium, ion                      | -2.2   | mg     | active/m3                      | 6.4    | mm3 |
| Barite                             | 7.6    | mg     |                                |        |     |
| Barium                             | -5.4   | mg     | Emissions to soil              |        |     |
| Calcium compounds, unspecified     | 11.8   | mg     | Calcium                        | 1.5    | mg  |
| Calcium, ion                       | 14.5   | mg     | Carbon                         | 1.2    | mg  |
| Chloride                           | -238.0 | mg     | Heat, waste                    | 16.4   | kJ  |
| COD, Chemical Oxygen Demand        | 2.4    | mg     |                                |        |     |
|                                    | RUBBER | – CIV  | IL ENGINEERING (1 kg)          |        |     |
|                                    | Sour   | ce – P | Ré Consultants [17]            |        |     |
| Avoided Products                   |        |        | Materials/fuels                |        |     |
| Synthetic Rubber                   | 1.0    | kg     | Steel                          | 157.8  | mg  |

| Synthetic Rubber                             | 1.0        | kg       | Steel             | 157.8 | mg  |
|----------------------------------------------|------------|----------|-------------------|-------|-----|
| Resources                                    | 0.4        | 1        | Electricity/heat  | 200   | 1.1 |
| Viater, unspecified natural origin/kg<br>Oil | 0.1<br>7.3 | кд<br>mg | Energy US I       | 368   | KJ  |
|                                              |            |          | Final waste flows |       |     |
|                                              |            |          | Steel waste       | 56    | g   |

# RUBBER – LANDFILL (1 kg) Source – PRé *Life Cycle Inventories* [115]

| Resources                                 |        |          | Metals, unspecified            | 3.432 | mg  |
|-------------------------------------------|--------|----------|--------------------------------|-------|-----|
| Barite, 15% in crude ore, in ground       | 1.032  | mg       | Methane                        | 12.58 | g   |
| Coal, 18 MJ per kg, in ground             | 17.53  | g        | Nitrogen                       | 36.53 | g   |
| Oil, crude, 42.6 MJ per kg, in            |        |          | Dinitrogen monoxide            | 1.288 | mg  |
| ground                                    | 6.412  | g        | Nitrogen dioxide               | 2.613 | g   |
| Land use II-III                           | 16.36  | mm2a     | NMVOC, non-methane volatile    |       |     |
| Land use II-IV                            | 1.694  | mm2a     | organic compounds, unspecified |       |     |
| Iron, 46% in ore, 25% in crude ore,       |        |          | origin                         | 59.09 | mg  |
| in ground                                 | 2.519  | mg       | NMVOC, non-methane volatile    |       |     |
| Gravel, in ground                         | 22     | mg       | organic compounds, unspecified | 1 751 |     |
| Land use II-III                           | 13.42  | mm2a     | Oligini<br>Nitro non avideo    | 1.751 | mg  |
| Land use III-IV                           | 1.404  | mm2a     | Nitrogen oxides                | 178   | mg  |
| Land use II-IV                            | 0.9655 | mm2a     |                                | 10.7  | g   |
| Land use IV-IV                            | 0.5616 | mm2a     | Sulfur oxides                  | 373.2 | mg  |
| Coal, brown (lignite)                     | 18.38  | g        | Heat, waste                    | 13.33 | кJ  |
| Coal, brown (lignite)                     | 51.53  | mg       | Zinc                           | 20.62 | mg  |
| Limestone, in ground                      | 17.32  | g        |                                |       |     |
| Lubricant                                 | 15.6   | mg       | Emissions to water             |       |     |
| Marl, in ground                           | 2.548  | mg       | Aluminum                       | 28.49 | mg  |
| Gas, natural, 36.6 MJ per m3, in          |        |          | Barium                         | 3.04  | mg  |
| ground                                    | 290    | mm3      | Cadmium                        | 2.014 | mg  |
| Gas, natural, 35 MJ per m3, in            |        |          | Chlorine                       | 555   | mg  |
| ground                                    | 5.901  | dm3      | Chloride                       | 353.9 | mg  |
| Gas, petroleum, 35 MJ per m3, In          | 16.07  |          | COD, Chemical Oxygen Demand    | 4.01  | g   |
| ground<br>Energy notential (in hydronower | 16.07  | CI13     | Chromium                       | 2.885 | mg  |
| reservoir) converted                      | 122.3  | kl       | Copper                         | 41.3  | mg  |
| Energy potential (in hydropower           | 122.0  | NO       | Iron                           | 38.08 | mg  |
| reservoir), converted                     | 228.7  | J        | Metallic ions, unspecified     | 4.878 | mg  |
| Water, process and cooling,               |        | •        | Sodium, ion                    | 3.995 | mg  |
| unspecified natural origin                | 29.38  | mm3      | Nitrogen, total                | 3.84  | g   |
| Volume occupied, reservoir                | 4.994  | cm3y     | Oils, unspecified              | 8.388 | mg  |
| Sulfur dioxide, secondary                 | 3.641  | mg       | Phosphate                      | 1.677 | mg  |
| Water, turbine use, unspecified           |        | 0        | Sulfur trioxide                | 21.68 | g   |
| natural origin                            | 1.207  | dm3      | Sulfate                        | 321.7 | ma  |
| Uranium ore, 1.11 GJ per kg, in           |        |          | Suspended substances,          |       | 0   |
| ground                                    | 1.866  | mg       | unspecified                    | 28    | mg  |
| Water, unspecified natural origin/kg      | 8.511  | g        | TOC, Total Organic Carbon      | 8.157 | mg  |
|                                           |        |          | Heat, waste                    | 214.5 | J   |
| Materials/fuels                           |        |          | Waste water/m3                 | 5.363 | mm3 |
| Truck 28t B250                            | 0.1    | tkm      | Zinc                           | 2.446 | g   |
| Emissions to sir                          |        |          | Emissions to soil              |       |     |
| Carbon monovido                           |        | ma       | Cadmium                        | 1.312 | mg  |
|                                           | 20.00  | nig      | Chlorine                       | 184.9 | mg  |
|                                           | ∠U0.8  | y<br>m r | Chromium                       | 184.9 | mg  |
|                                           | 213.6  | mg       | Copper                         | 50.63 | mg  |
| Iron                                      | 3.943  | mg       | Fluoranthene                   | 2.498 | mg  |
| Hyarogen chloride                         | 22     | mg       | Heat, waste                    | 24.03 | J   |
| Hydrogen fluoride                         | 1.178  | mg       |                                |       |     |

Zinc

### 2.55 g

### RUBBER – GRINDING FOR RECYCLING (1 kg) Source – Corti, Lombardi [109]

|       |                                             | Materials/fuels                                             |                                                                                                                                                    |                                                                                                                                                       |
|-------|---------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.9   | kg                                          | Steel                                                       | 0.2                                                                                                                                                | g                                                                                                                                                     |
| 9.2   | g                                           |                                                             |                                                                                                                                                    |                                                                                                                                                       |
|       |                                             | Electricity/heat                                            |                                                                                                                                                    |                                                                                                                                                       |
|       |                                             | Energy US I                                                 | 345.9                                                                                                                                              | kJ                                                                                                                                                    |
| 75.0  | g                                           |                                                             |                                                                                                                                                    |                                                                                                                                                       |
| 5.5   | mg                                          | Emissions to air                                            |                                                                                                                                                    |                                                                                                                                                       |
| 104.1 | g                                           | Particulates                                                | 4.1                                                                                                                                                | mg                                                                                                                                                    |
|       |                                             |                                                             |                                                                                                                                                    |                                                                                                                                                       |
| 229.6 | cm3                                         | Final waste flows                                           |                                                                                                                                                    |                                                                                                                                                       |
|       |                                             | Steel waste                                                 | 48.1                                                                                                                                               | g                                                                                                                                                     |
|       | 0.9<br>9.2<br>75.0<br>5.5<br>104.1<br>229.6 | 0.9 kg<br>9.2 g<br>75.0 g<br>5.5 mg<br>104.1 g<br>229.6 cm3 | 0.9kgSteel9.2gElectricity/heat<br>Energy US I75.0gEmissions to air75.5mgEmissions to air104.1gParticulates229.6cm3Final waste flows<br>Steel waste | No.9kgSteel0.29.2gElectricity/heat<br>Energy US I345.975.0g345.975.5mgEmissions to air<br>Particulates4.1229.6cm3Final waste flows<br>Steel waste48.1 |

### POLYURETHANE – INCINERATION (1000 kg) Source – Zevenhoven [112]

| Avoided products<br>Energy US I   | 5.09     | GJ         | Methane<br>NMVOC, non-methane volatile<br>organic compounds, unspecified | 41.4     | g  |
|-----------------------------------|----------|------------|--------------------------------------------------------------------------|----------|----|
| Resources                         |          |            | origin                                                                   | 106      | g  |
| Coal, brown, 8 MJ per kg, in      |          |            | Carbon dioxide                                                           | 3190000  | g  |
| ground                            | 0.243    | kg         | Carbon monoxide                                                          | 228      | g  |
| Gas, natural, 36.6 MJ per m3, in  |          |            | Ammonia                                                                  | 8.2      | g  |
| ground                            | 2.64     | m3         | Hydrogen fluoride                                                        | 2.41     | g  |
| Coal, 18 MJ per kg, in ground     | 0.566    | kg         | Dinitrogen monoxide                                                      | 8.41     | g  |
| Oil, crude, 42.6 MJ per kg, in    |          |            | Hydrogen chloride                                                        | 12       | g  |
| ground                            | 3.18     | kg         | Sulfur oxides                                                            | 236      | g  |
| Uranium, 451 GJ per kg, in ground | 0.0196   | g          | Nitrogen oxides                                                          | 658      | g  |
| Wood, unspecified, standing/kg    | 0.00376  | kg         | Lead                                                                     | 0.385    | g  |
| Energy, potential (in hydropower  | 1.0      |            | Cadmium                                                                  | 0.362    | g  |
| reservoir), converted             | 1.2      | MJ         | Manganese                                                                | 0.000142 | g  |
| origin/m2                         | 1        | m2         | Nickel                                                                   | 0.00646  | q  |
|                                   | 1        | liio<br>ka | Mercurv                                                                  | 0.0672   | a  |
| limestere in ground               | 0.000336 | кg         | Zinc                                                                     | 37.7     | a  |
| Limestone, in ground              | 0.25     | кд         | Metals, unspecified                                                      | 2.77     | a  |
| Sulfur dioxide, secondary         | 0.000743 | кд         | Dioxins, measured as 2.3.7.8-                                            |          | 9  |
| Sand, unspecified, in ground      | 0.000147 | kg         | tetrachlorodibenzo-p-dioxin                                              | 11.6     | μq |
| Sodium chloride, in ground        | 0.435    | kg         | •                                                                        |          | 10 |
| <b>_</b> · · <i>,</i> ·           |          |            | Emissions to water                                                       |          |    |
| Emissions to air                  |          |            | Waste water/m3                                                           | 1.11E-06 | m3 |
| Particulates                      | 34.5     | g          | BOD5, Biological Oxygen Demand                                           | 0.0163   | q  |
| Benzene                           | 0.466    | g          | COD. Chemical Oxygen Demand                                              | 0.466    | a  |
| PAH, polycyclic aromatic          | 0.000045 | -          | AOX, Adsorbable Organic Halogen                                          |          | 3  |
| nyorocarbons                      | 0.000615 | g          | as Cl                                                                    | 0.000613 | g  |
| Hydrocarbons, aromatic            | 0.895    | g          | Suspended substances,                                                    |          | -  |
|                                   | 0 000747 | 0          | unspecified                                                              | 12.2     | g  |
| Hydroportopa balagonatod          | 0.000747 | 9          | Phenols, unspecified                                                     | 0.0211   | g  |
| nyurucaruuns, nalugenaleu         | 0.00100  | 9          |                                                                          |          |    |

| Toluene                          | 0.0189     | g       | Sulfate                                   | 19.2    | g  |
|----------------------------------|------------|---------|-------------------------------------------|---------|----|
| PAH, polycyclic aromatic         |            | •       | Sulfide                                   | 0.00493 | g  |
| hydrocarbons                     | 0.00204    | g       | Solved substances, inorganic              | 1360    | g  |
| Hydrocarbons, aromatic           | 0.138      | g       | Aluminum                                  | 0.626   | g  |
| Hydrocarbons, chlorinated        | 0.000173   | g       | Barium                                    | 0.442   | g  |
| Oils, unspecified                | 4.26       | g       | Lead                                      | 0.0423  | g  |
| DOC, Dissolved Organic Carbon    | 0.0354     | g       | Cadmium, ion                              | 0.0367  | q  |
| TOC, Total Organic Carbon        | 103        | g       | Chromium                                  | 0.0078  | a  |
| Ammonium, ion                    | 1.4        | g       | Iron                                      | 0.416   | a  |
| Nitrate                          | 0.765      | g       | Copper, ion                               | 2.62    | a  |
| Kjeldahl-N                       | 0.0574     | g       | Nickel, ion                               | 0.00358 | a  |
| Nitrogen, total                  | 0.332      | g       | Mercury                                   | 0.00672 | a  |
| Arsenic, ion                     | 0.00137    | g       | Zinc. ion                                 | 1.89    | a  |
| Chloride                         | 956        | g       | Metallic ions, unspecified                | 1.07    | a  |
| Cyanide                          | 0.000623   | g       |                                           | -       | 3  |
| Phosphate                        | 0.039      | g       |                                           |         |    |
| POLYU                            | JRETHANE - | - GRI   | NDING FOR RECYCLING (100 kg)              |         |    |
|                                  | Source -   | Zeve    | nhoven, Corti [109, 112]                  |         |    |
| Avoided products                 |            |         | Emissions to air                          |         |    |
| Polyurethane                     | 100        | kg      | Particulates                              | 5       | g  |
| Electricity/heat                 |            |         | Final waste flows                         |         |    |
| Energy US I                      | 675        | MJ      | Steel waste                               | 6       | kg |
|                                  |            |         |                                           |         |    |
|                                  | POLYURE    |         | IE – LANDFILL (1000 kg)<br>e – BUWAL [97] |         |    |
|                                  | ·          | Jourd   | e - DOWAL [37]                            |         |    |
| Resources                        |            |         |                                           |         |    |
| Gas, natural, 36.6 MJ per m3, in |            |         | Emissions to water                        |         |    |
| ground                           | 0.321      | m3      | Suspended substances,                     | 10.0    |    |
| OII, crude, 42.6 MJ per kg, In   | 1 24       | ka      | unspecified                               | 12.3    | g  |
| Uronium 451 C Loor kg in ground  | 4.24       | ку<br>а | Oils, unspecified                         | 5.65    | g  |
| Energy potential (in hydronower  | 0.019      | y       | IOC, Iotal Organic Carbon                 | 260     | g  |
| reservoir) converted             | 2 22       | M.J     | Ammonium, ion                             | 48.1    | g  |
|                                  |            | 1110    | Nitrate                                   | 154     | g  |
| Emissions to air                 |            |         | Chloride                                  | 158     | g  |
| Particulates                     | 14 1       | a       | Sulfate                                   | 73      | g  |
| Methane                          | 14800      | а<br>9  | Solved substances, inorganic              | 84      | g  |
| NMVOC, non-methane volatile      | 14000      | 9       | Zinc, ion                                 | 20.9    | g  |
| organic compounds, unspecified   | 00.0       | ~       | Emissions to soil                         |         |    |
| ongin<br>Cerken dievide          | 89.8       | g       | Carbon                                    | 175     | α  |
|                                  | 131000     | g       | Nitrogen, total                           | 3.86    | a  |
|                                  | 83         | g       |                                           | 0.00    | Э  |
|                                  | 46.7       | g       |                                           |         |    |
| Nitrogen oxides                  | 199        | g       |                                           |         |    |

## STEEL RECYCLING (1000 kg) Source – BUWAL [97]

| Avoided products                  |         |        | Nickel                                 | 0.261   | g      |
|-----------------------------------|---------|--------|----------------------------------------|---------|--------|
| Steel I                           | 900     | kg     | Mercury                                | 0.0275  | g      |
|                                   |         |        | Zinc                                   | 0.192   | g      |
| Resources                         |         |        | Metals, unspecified                    | 35.4    | g      |
| Coal, brown, 8 MJ per kg, in      |         |        | Chromium                               | 0.19    | g      |
| ground                            | 280     | kg     | Copper                                 | 0.53    | q      |
| Gas, natural, 36.6 MJ per m3, in  |         |        | Radioactive species, unspecified       | 1040000 | kBa    |
| ground                            | 126     | m3     | ······································ |         |        |
| Coal, 18 MJ per kg, in ground     | 181     | kg     | Emissions to water                     |         |        |
| Oil, crude, 42.6 MJ per kg, in    | 00.4    | 1      | Waste water/m3                         | 5       | m3     |
| ground                            | 23.4    | кg     | BOD5. Biological Oxygen Demand         | 170     | a      |
| Uranium, 451 GJ per kg, in ground | 11.9    | g      | COD Chemical Oxygen Demand             | 462     | a      |
| Wood, unspecified, standing/kg    | 1.77    | kg     | AOX. Adsorbable Organic Halogen        | 102     | 9      |
| Energy, potential (in hydropower  | 200     |        | as Cl                                  | 0.0044  | a      |
| Noter process upprocified peturel | 388     | IVIJ   | Suspended substances,                  |         | 0      |
| origin/m3                         | 13      | m3     | unspecified                            | 223     | g      |
| Scrap external                    | 1100    | ka     | Phenols, unspecified                   | 0.18    | g      |
| Chromium compoundo                | 0.96    | kg     | Toluene                                | 0.158   | g      |
|                                   | 0.00    | кg     | PAH, polycyclic aromatic               |         | C      |
| Degreasing agent                  | 1.3     | кg     | hydrocarbons                           | 0.0153  | g      |
| Auxiliary materials               | 11.5    | кд     | Hydrocarbons, aromatic                 | 1.22    | g      |
| Alloys                            | 5.2     | кg     | Hydrocarbons, chlorinated              | 0.503   | g      |
| Acids                             | 12.5    | kg     | Oils, unspecified                      | 35.8    | g      |
| Oil                               | 2.2     | kg     | DOC, Dissolved Organic Carbon          | 1.83    | g      |
|                                   |         |        | TOC, Total Organic Carbon              | 136     | g      |
| Emissions to air                  |         |        | Ammonium, ion                          | 4.45    | a      |
| Particulates                      | 1170    | g      | Nitrate                                | 7.75    | q      |
| Benzene                           | 0.965   | g      | Kieldahl-N                             | 0.341   | a      |
| PAH, polycyclic aromatic          |         |        | Nitrogen, total                        | 2.11    | a      |
| hydrocarbons                      | 0.0242  | g      | Arsenic ion                            | 0.588   | a      |
| Hydrocarbons, aromatic            | 7.34    | g      | Chloride                               | 4980    | a      |
| Methane, bromotrifiuoro-, Halon   | 0.0050  | -      | Cvanide                                | 0 0093  | a      |
|                                   | 0.0056  | g      | Phosphate                              | 18.4    | g      |
| Hydrocarbons, halogenated         | 0.0003  | g      | Sulfate                                | 3080    | y<br>a |
| Methane                           | 2020    | g      | Sulfido                                | 0.0405  | y<br>a |
| organic compounds, unspecified    |         |        | Solved substances inerganic            | 2460    | y<br>a |
| origin                            | 111     | a      |                                        | 2400    | y<br>a |
| Carbon dioxide                    | 1160000 | y<br>a | Auminum                                | 293     | y<br>a |
| Carbon monovido                   | 4600    | y<br>a | Dallulli                               | 20.1    | g      |
|                                   | 4000    | y<br>a |                                        | 1.7     | g      |
| Animonia<br>Uvdrogon fluorido     | 1.07    | y<br>a |                                        | 0.0171  | g      |
| Hydrogen lluonde                  | 15.2    | g      | Chromium                               | 6.93    | g      |
| Dinitrogen monoxide               | 5.9     | g      | Iron                                   | 579     | g      |
| Hydrogen chloride                 | 132     | g      | Copper, ion                            | 1.75    | g      |
| Sulfur oxides                     | 2860    | g      | Nickel, ion                            | 1.77    | g      |
| Nitrogen oxides                   | 2670    | g      | Mercury                                | 0.0158  | g      |
| Lead                              | 9.47    | g      | Zinc, ion                              | 2.94    | g      |
| Cadmium                           | 0.007   | g      | Metallic ions, unspecified             | 37.6    | g      |
| Manganese                         | 3.54    | g      | Radioactive species, unspecified       | 9570    | kBq    |

| Final waste flows<br>Chromium waste | 4.5        | kg       | Dust, break-out<br>Tinder from rolling drum<br>Rejects | 17<br>16<br>33.3 | kg<br>kg<br>kg |
|-------------------------------------|------------|----------|--------------------------------------------------------|------------------|----------------|
| Iron waste<br>Slags                 | 18.5<br>46 | kg<br>kg | Waste in inert landfill                                | 10.2             | kg             |

### References

- 1. Energy Information Administration. *Petroleum Basic Statistics*. Official Energy Statistics from the U.S. Government 2009; Available from: www.eia.doe.gov/basics/quickoil.html.
- 2. *How We Calculate Carbon Emissions*. 2008; Available from: www.carbonfund.org/site/pages/carbon\_calculators/category/Assumptions.
- 3. Crawley, J., *Senate panel sets 35 mpg auto standard by 2020*, in *Reuters*. 2007: Washington.
- 4. www.fueleconomy.gov. *Advanced Technologies & Energy Efficiency*. 2007; Available from: www.fueleconomy.gov/feg/atv.shtml.
- 5. Michelin USA. *Michelin Lands Applications for Tweel*<sup>TM</sup>. 2007; Available from: www.michelin-us.com.
- 6. Sovran, G. and D. Blaser, *A contribution to understanding automotive fuel economy and its limits.* SAE transactions, 2003. **112**(3): p. 1715-1740.
- Bertoldi, P., Use of long term agreements to improve energy efficiency in the industrial sector: Overview of the European experiences and proposal for a common framework. Proceedings ACEEE Summer Study on Energy Efficiency in Industry, 1999: p. 287-297.
- 8. International Organisation for Standardisation (ISO), *ISO 14040*, in *Evironmental management - Life cycle assessment - Principles and framework*. 2006: Geneve.
- 9. International Organisation for Standardisation (ISO), *ISO 14044*, in *Environmental management Life cycle assessment Requirements and guidelines*. 2006: Geneve.
- 10. Marsmann, M., *The ISO 14040 family*. The International Journal of Life Cycle Assessment, 2000. **5**(6): p. 317-318.
- 11. Habersatter, K., *BUWAL Report: Ecobalance of Packaging Materials State of 1990.* FOEFL, Zurich, 1991.
- 12. Guinee, J., *Handbook on life cycle assessment operational guide to the ISO standards*. The International Journal of Life Cycle Assessment, 2002. **7**(5): p. 311-313.
- 13. International Organisation for Standardisation (ISO), *ISO 14042*, in *Environmental* management -- Life cycle assessment -- Life cycle impact assessment. 2006: Geneve.
- 14. Pears, A., *Sustainability and Roads: Capturing the ESD Opportunity*. Urban Policy and Research, 2005. **23**(2): p. 235-245.
- 15. Backer, M. and M. Gloeggler. *SULFIDO SILANES IN TIRES: FURTHER DOWN THE ROAD TO LOW VOC*. 2007: American Chemical Society, 1155 16 th St, NW, Washington, DC, 20036, USA.
- 16. Kromer, S., et al., *Life Cycle Assessment of a Car Tire*. 1999, Continental: Hannover, Germany.
- PRé Consultants, B., *Life cycle assessment of an average European car tyre*. Commissioned by The European Car Tyre Manufacturers, BLIC. Third party report, 2001. 23.
- 18. Kim, S. and A. Savkoor, *The contact problem of in-plane rolling of tires on a flat road*. Vehicle System Dynamics, 1996. **27**: p. 189-206.
- 19. Reschner, K., Scrap Tire Recycling. 2002.
- 20. Saur, K., et al., *Lca Study on Tires With Reduced Roll Resistance*. SAE transactions, 1997. **106**(6): p. 2149-2153.
- 21. Schlie, E. and G. Yip, *Regional follows global: Strategy mixes in the world automotive industry*. European Management Journal, 2000. **18**(4): p. 343-354.

- 22. Lee, S. and L. Lee, *Encyclopedia of Chemical Processing*. 2005: CRC Press. 3640.
- 23. International Rubber Research and Development Board, Annual Report for 2001. 2001.
- 24. Takahashi, T., et al., *Strengthening of Steel Wire for Tire Cord*, in *Nippon Steel Technical Report*. 1995. p. 45-45.
- 25. Shirokova, G.S. and A.V. Ermakov, *Modern Advancements in Sulfur-Production Technology*. Chemical and Petroleum Engineering, 2005. **41**(3): p. 189-192.
- 26. Ross, M., Automobile fuel consumption and emissions: Effects of vehicle and driving characteristics. Annual Review of Energy and the Environment, 1994. **19**(1): p. 75-112.
- Lutsey, N. and D. Sperling, *Energy Efficiency, Fuel Economy, and Policy Implications*. Transportation Research Record: Journal of the Transportation Research Board, 2005. 1941(-1): p. 8-17.
- 28. *Tires and passenger vehicle fuel economy : informing consumers, improving performance.* Special report / Transportation Research Board of the National Academies ;. 2006, Washington, DC :: Transportation Research Board.
- 29. National Highway and Traffic Safety Administration, *CAFE Standards Fuel Economy Performance*. 2009.
- 30. Environmental Protection Agency, *Emission Facts: Greenhouse Gas Emissions from a Typical Passenger Vehicle*. 2005: Washington, DC.
- 31. DeLuchi, M.A., *Emissions from the production, storage, and transport of crude oil and gasoline.* Air & Waste, 1993. **43**(11): p. 1486.
- 32. Bacot, H., T. Bowen, and M. Fitzgerald, *Managing the Solid Waste Crisis: Exploring the Link between Citizen Attitudes, Policy Incentives, and Siting Landfills.* Policy Studies Journal, 1994. **22**(2).
- 33. Myhre, M. and D. MACKILLOP, *Rubber recycling*. Rubber Chemistry and Technology, 2002. **75**(3): p. 429-474.
- 34. Rubber Manufacturers Association, *Scrap Tire Markets in the United States*, 2005 *Edition*. 2006.
- 35. Morris, J., *Comparative LCAs for Curbside Recycling Versus Either Landfilling or Incineration with Energy Recovery (12 pp).* The International Journal of Life Cycle Assessment, 2005. **10**(4): p. 273-284.
- 36. Adhikari, B., D. De, and S. Maiti, *Reclamation and recycling of waste rubber*. Progress in Polymer Science, 2000. **25**(7): p. 909-948.
- 37. Reisman, J., Air emissions from scrap tire combustion. 1997.
- 38. Amari, T., N. Themelis, and I. Wernick, *Resource recovery from used rubber tires*. Resources policy, 1999. **25**(3): p. 179-188.
- 39. Gieré, R., K. Smith, and M. Blackford, *Chemical composition of fuels and emissions from a coal+ tire combustion experiment in a power station*. Fuel, 2006. **85**(16): p. 2278-2285.
- 40. Bourguet, C., H. Checkoway, and B. Hulka, *A case-control study of skin cancer in the tire and rubber manufacturing industry*. American journal of industrial medicine, 1987. **11**(4).
- 41. Grosch, K. *Rubber Abrasion and Tire Wear*. 2007: American Chemical Society, 1155 16 th St, NW, Washington, DC, 20036, USA.
- 42. Dreyer, L., A. Niemann, and M. Hauschild, *Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99.* The International Journal of Life Cycle Assessment, 2003. 8(4): p. 191-200.

- 43. Wenzel, H., M. Hauschild, and L. Alting, *Environmental Assessment of Products*. 1997: CRC Press.
- 44. Svanstrom, M., et al., *Environmental assessment of supercritical water oxidation of sewage sludge*. Resources, Conservation and Recycling, 2004. **41**(4): p. 321-338.
- 45. Murray, C., A. Lopez, and D. Jamison, *The global burden of disease in 1990: summary results, sensitivity analysis and future directions.* Bulletin of the World Health Organization, 1994. **72**(3): p. 495-510.
- 46. Goedkoop, M., S. Effting, and M. Collignon, *The Eco-indicator 99–Manual for Designers*. PRé Consultants BV, Amersfoort, 2000.
- 47. Goedkoop, M. and R. Spriensma, *The Eco-indicator 99: A damage oriented method for life cycle impact assessment*. 1999: VROM.
- Chapman, P. and F. Roberts, *Metal resources and energy*. Butterworth and Co.(Publishers) Ltd, Borough Green, Sevenoaks, Kent TN 16 8 PH, England, 1983. 238, 1983.
- 49. Lin, M., S. Zhang, and Y. Chen, *Distance-to-Target Weighting in Life Cycle Impact Assessment Based on Chinese Environmental Policy for the Period 1995-2005 (6 pp).* The International Journal of Life Cycle Assessment, 2005. **10**(6): p. 393-398.
- 50. Michelin Americas Research Company, *Life Cycle Analysis Information for Georgia Tech.* 2008, Michelin North America: Greenville, SC.
- 51. *Natural Rubber/Latex Production of Natural Rubber*. 2005 [cited 2009 March]; Available from: www.azom.com/details.asp?ArticleID=3580.
- 52. Frank, Z. and A. Musacchio. *The International Rubber Market*, *1870-1930*. 2008 [cited 2009 March]; Available from:

http://eh.net/encyclopedia/article/frank.international.rubber.market.

- 53. Krishnapillay, D.B., *Case Study of the Tropical Forest Plantations in Malaysia*, in *Forest Plantations Working Papers*, M. Varmola, Editor. June 2002, Forestry Department, Food and Agriculture Organization of the United States. p. 48.
- 54. Elastomer, in Encyclopedia Britannica Online. 2009.
- 55. Ciullo, P.A. and N. Hewitt, *The Rubber Formulary*. 1999: Plastics Design Library.
- 56. Chemistry of Industrial Polymers, in Encyclopedia Britannica Online. 2009.
- 57. Franklink Associates, *The Franklin Associates life cycle inventory database*. SimaPro5 Life-cycle assessment software package, version, 2001. **36**: p. 2001.
- 58. Ullman, J.A., *Printing Ink.* 1988: Baltimore, N. T. A. Munder & Co.
- 59. Carbon Black, in Encyclopedia Britannica Online. 2009.
- 60. International Carbon Black Association. *What is Carbon Black?* 2006 [cited 2009 March]; Available from: www.carbon-black.org/what\_is.html.
- 61. 2007 *Minerals Yearbook Silica*. 2007, U.S. Department of the Interior U.S. Geological Survey.
- 62. *Synthetic Amorphous Silica (CAS No. 7631-86-9)*, in *ECETOC JACC Reports*. 2006, European Centre for Ecotoxicology and Toxicology of Chemicals.
- 63. OECD SIDS, Synthetic Amorphous Silica and Silicates. 2004.
- 64. Sulfur Production. 2000; Available from: www.georgiagulfsulfur.com/production.htm.
- 65. Newpoint Gas. *Amine Treating: Amine Gas Sweetening and Amine Unit.* 2007; Available from: www.newpointgas.com/amine\_treating.php.
- 66. Luinstra, E. *Converting Hydrogen Sulfide by the Claus Process*. 2005; Available from: www.nelliott.demon.co.uk/company/claus.html.

- 67. Xing, X., Z. Liu, and J. Wang, *Elemental sulfur production through regeneration of a SO*<sub>2</sub>-*adsorbed V*<sub>2</sub>*O*<sub>5</sub>-*CoO/AC in H*<sub>2</sub>. Fuel Processing Technology, 2007. **88**(7): p. 717-722.
- Mahmud, S., et al., Nanostructure of ZnO Fabricated via French Process and its Correlation to Electrical Properties of Semiconducting Varistors. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2006. 36(2): p. 155 -159.
- 69. Mahmud, S. *Zinc oxide production by French process*. 2006; Available from: www.finishing.com/123/73.shtml.
- 70. ANI Metal. *ANI Metal American Process*. ANI Metal 2000; Available from: http://animetal.com.tr/products.php?ID=02-02.
- 71. McInnes, G., *EMEP/CORINAIR Atmospheric Emission Inventory Guidebook*. 1996, Copenhagen: European Environment Agency.
- 72. Chemical Substances Bureau, *Risk Assessment of Zinc Oxide, Part 2 Human Health.* 1993, Netherlands Organization for Applied Scientific Research National Institute for Public Health and the Environment.
- 73. Whelan, A. and K. Lee, *Developments in rubber technology*. 1979: Elsevier Science & Technology.
- 74. *Test Plan: Aromatic Extracts Category*, in *High Production Volume (HPV) Chemical Challenge Program.* 2003, The Petroleum HPV Testing Group.
- 75. Klimisch, H.J., M. Andreae, and U. Tillman, *Robust Summary of Information on Aromatic Extracts*. 2002, American Petroleum Institute. p. 73.
- 76. Schueller, R., Stearic Acid, in Science Encyclopidia. 2009.
- 77. Potts, R. and F. White, *Fractional distillation of fatty acids*. Journal of the American Oil Chemists' Society, 1953. **30**(2): p. 49-53.
- 78. Althaus, H., et al., *The Life Cycle Inventory Data*. Ecoinvent Database, 2007.
- 79. Wootthikanokkhan, J. and P. Tunjongnawin, *Investigation of the effect of mixing schemes* on cross-link distribution and tensile properties of natural-acrylic rubber blends. Polymer Testing, 2003. **22**(3): p. 305-312.
- 80. Ganpati Exim Pvt. Ltd. *Radial Tyre Cord and Tyre Bead Wire*. 2009; Available from: www.ganpatiexim.com/products.html#.
- 81. Crowther, B., Handbook of Rubber Bonding. 2001: Rapra Technology.
- 82. Laursen, S., et al., *EDIPTEX: Environmental assessment of textiles*. 2007, Danish Ministry of the Environment/Dansih Environmental Protection Agency Copenhagen, Denmark.
- 83. Textiles Online. *Textile Fibres & Terminology: Textile Fibres*. Education For Sustainability 2009; Available from: http://www.e4s.org.uk/textilesonline/content/6library/report1/textile\_fibres/polyester.htm
- 84. World Bank Group, *Iron and Steel Manufacturing*, in *Pollution Prevention and Abatement Handbook*, 1998.
- 85. Endicott, J., M. Dotson, and Michelin USA, *Personal Communication with Michelin*. 2009: Greenville, SC.
- 86. Zdrahala, R., et al., *Polyether-based thermoplastic polyurethanes. I. Effect of the hardsegment content.* Journal of Applied Polymer Science, 1979. **24**(9).

- 87. PRe Consultants, *The Eco-indicator 99, A damage oriented method for life cycle impact assessment.* Methodology Report and Manual for Designers.
- 88. White, J., *Rubber Processing: Technology, Materials, Principles.* 1995: Hanser Gardner Pubns.
- 89. Han, I.S., et al., *Dynamic Simulation of the Tire Curing Process*. Tire Science and Technology, 1996. **24**(1): p. 50-76.
- 90. Energy Information Administration and US Department of Energy, *Primary Energy Production by Source*. 2008.
- 91. Remmerswaal, H., *IDEMAT database*. 1996, IDEMAT database Faculty of Industrial Design Engineering, Delft University of Technology, The Netherlands.
- 92. B. T. Poh, C.S.T., *Cure index and activation energy of vulcanization of natural rubber and epoxidized natural rubber vulcanized in the presence of antioxidants.* Journal of Applied Polymer Science, 2000. **77**(14): p. 3234-3238.
- 93. Ross, M., *Fuel efficiency and the physics of automobiles*. Contemporary Physics, 1997.
  38(6): p. 381-394.
- 94. R.L. Polk & Co., 2008 Vehicle Population Report. 2008.
- 95. Green Seal, I., Choose Green Report: Low Rolling Resistance Tires. 2003, March.
- 96. Pollack, A., et al., *Evaluation of the US EPA Mobile6 Highway Vehicle Emission Factor Model.* Atlanta: Coordinating Research Council, Environ International.(March). 2004.
- 97. PRe Consultants, *Database Manual BUWAL 250 library*. The Netherlands, 2001.
- Docter, A. and A. Lamm, *Gasoline fuel cell systems*. Journal of Power Sources, 1999.
   84(2): p. 194-200.
- 99. Dannis, M. *Rubber dust from the normal wear of tires*. 1975: Office of Toxic Substances, Environmental Protection Agency.
- 100. Krishnan, V., R. Ramakrishnan, and J. Donovan, *Correlation Between Laboratory and Road Rubber Wear Tests*. Rubber Chemistry and Technology, 1995. **68**: p. 804-814.
- 101. Sakai, H., Friction and wear of tire tread rubber. 1996.
- 102. Gamble, J. and R. Lewis, *Health and respirable particulate (PM10) air pollution: a causal or statistical association?* Environmental Health Perspectives, 1996. 104(8): p. 838.
- 103. Councell, T., et al., *Tire-wear particles as a source of zinc to the environment*. Environmental science & technology, 2004. **38**(15): p. 4206-4214.
- 104. Wik, A., When the Rubber Meets the Road-Ecotoxicological Hazard and Risk Assessment of Tire Wear Particles: Department of Plant and Environmental Sciences; Institutionen för växt-och miljövetenskaper.
- 105. Dahl, A., et al., *Traffic-generated emissions of ultrafine particles from pavement-tire interface*. Atmospheric Environment, 2006. **40**(7): p. 1314-1323.
- 106. Lafleche, V. and F. Sacchetto, *Noise assessment in LCA a methodology attempt: A case study with various means of transportation on a set trip.* The International Journal of Life Cycle Assessment, 1997. **2**(2): p. 111-115.
- 107. Müller-Wenk, R., *A method to include in lca road traffic noise and its health effects.* The International Journal of Life Cycle Assessment, 2004. **9**(2): p. 76-85.
- 108. Passchier-Vermeer, W. and W. Passchier, *Noise exposure and public health*. Environmental Health Perspectives, 2000. **108**(Suppl 1): p. 123.
- 109. Corti, A. and L. Lombardi, *End life tyres: Alternative final disposal processes compared by LCA*. Energy, 2004. **29**(12-15): p. 2089-2108.

- Zia, K.M., H.N. Bhatti, and I. Ahmad Bhatti, *Methods for polyurethane and polyurethane composites, recycling and recovery: A review.* Reactive and Functional Polymers, 2007. 67(8): p. 675-692.
- 111. Scheirs, J., Polymer recycling. 1998: Wiley Chichester, England.
- 112. Zevenhoven, R., *Treatment and disposal of polyurethane wastes: options for recovery and recycling*. 2004: Helsinki University of Technology.
- 113. Liu, H., J. Mead, and R. Stacer, *Environmental effects of recycled rubber in light-fill applications*. Rubber Chemistry and Technology, 2000. **73**(3): p. 551-564.
- 114. Kiernan, B., et al. Autonomous monitoring of landfill gas migration at borehole wells on landfill sites using wireless technology. 2007.
- 115. Habersatter, K., et al., Life cycle inventories. Environmental Series Waste, 1998. 250.
- 116. Jang, J.-W., et al., *Discarded tire recycling practices in the United States, Japan and Korea.* Resources, Conservation and Recycling, 1998. **22**(1-2): p. 1-14.
- 117. Cather, H., et al., Design engineering. 2001: Newnes.
- 118. Dotson, M. and T. Rhyne, Personal Communication with Michelin. 2009: Greenville, SC.