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SUMMARY

The dynamics of rigid body motion are dependent on the inertial properties of the
body - that is, the mass and moment of inertia. For complex systems, it may be necessary
to derive these results empirically. Such is the case for manual wheelchairs, which can be
modeled as a rigid body frame connected to four wheels. While 3D modeling software is
capable of estimating inertial parameters, modeling inaccuracies and ill-defined material
properties may introduce significant errors in this estimation technique and necessitate
experimental measurements. To that end, this thesis discusses the design of a device
called the iMachine that empirically determines the mass, location of the center of mass,
and moment of inertia about the vertical (yaw) axis passing through the center of mass of
the wheelchair.

The iMachine is a spring-loaded rotating platform that freely oscillates about an
axis passing through its center due to an initial angular velocity. The mass and location of
the center of mass can be determined using a static analysis of a triangular configuration
of load cells. An optical encoder records the dynamic angular displacement of the
platform, and the natural frequency of free vibration is calculated using several
techniques. Finally, the moment of inertia is determined from the natural frequency of the
system.

In this thesis, test results are presented for the calibration of the load cells and
spring rate. In addition, objects with known mass properties were tested and comparisons
are made between the analytical and empirical inertia results. In general, the mass

measurement of the test object had greater than 99% accuracy. The average relative error

XXii



for the x and y-coordinates of the center of mass was 0.891% and 1.99%, respectively.
For the moment of inertia, a relationship was established between relative error and the
ratio of the test object inertia to the inertia of the system. The results suggest that 95%
accuracy can be achieved if the test object accounts for at least 25% of the total inertia of
the system. Finally, the moment of inertia of a manual wheelchair is determined using the

device ((1,),c= 1.213 kg-m), and conclusions are made regarding the reliability and

validity of results. The results of this project will feed into energy calculations for the
Anatomical Model Propulsion System (AMPS), a wheelchair-propelling robot used to

measure the mechanical efficiency of manual wheelchairs.

xxiii



CHAPTER 1

INTRODUCTION

1.1 Purpose

The dynamics of rigid body motion are dependent on the inertial properties of the
body - that is, the mass and moment of inertia. For simple systems with well-defined
shapes and densities, these properties can be determined analytically using closed-form
formulas. For more complex systems, it may be necessary to derive these results
empirically. Such is the case for manual wheelchairs, which can be modeled as a rigid
body frame connected to four wheels. While 3D modeling software is capable of
estimating inertial parameters, modeling inaccuracies and ill-defined material properties
may introduce significant errors in this estimation technique. To address this limitation,
this thesis discusses the design and analysis of a device called the iMachine that
empirically determines the mass, location of the center of mass, and moment of inertia
about the vertical (yaw) axis passing through the center of mass of the test piece. While
the device could be used to measure the inertial properties of a variety of irregularly-

shaped objects, the primary application of the iMachine is manual wheelchairs.

1.2 Application

121 AMPS
The motivation for the design and development of the iMachine is another
research project at Georgia Tech’s REAR Lab called the Anatomical Model Propulsion

System (AMPS). The AMPS is an anthropomorphic robot capable of propelling a manual



wheelchair much like a human operator. It will be used to create standardized tests for
characterizing wheelchair performance. The tests will consist of a canonical set of
maneuvers typically used in wheelchair propulsion. By comparing the system input work
to the energy output of the chair during these maneuvers, mechanical efficiency ratings
are established and comparisons can be made across chairs that will foster better
wheelchair design and promote improved clinical prescription to meet the user’s mobility

needs.

1.2.2 Wheelchair Energy Estimation

The energy output of a wheelchair during propulsion is dominated by its Kinetic
energy, although potential energy effects need to be included in maneuvers involving
elevation changes such as ramps or inclines. The kinetic energy, T, of a rigid body in

general motion is given by

T:%mVG-VG+%a_)-HG (1)
where m is the total mass, V, is the velocity of the center of mass, @ is the angular
velocity of the body, and H, is the angular momentum. The angular momentum can
further be described by the equation,

G = (Ixxa)x - I><ya)y - Ixza)z) +(Iyya)y - Iy><60>< - Iyza)z )J +(I 2 ®; — sza)x - Izywy )k (2)

I

where (I ) are the moments of inertia about the three coordinate axes,

xx1|yy1|zz

(Lys Loy 1,0 1,0 1,,) are the products of inertia, and (o, ,®,,®,) are the angular

xy?! xz? tyx?tyz? Tzx? Tzy
velocity components about each of the three coordinate axes. Note that the products of

inertia simplify to three terms by using the following relationships



IXZ = IZX (3)

For the entirety of this thesis, the body-fixed reference frame of the wheelchair
shall be defined according to the illustration in Figure 1, where point G represents the

center of gravity (CG) of the system.

]
*

Figure 1. Coordinate axes for the wheelchair

In addition, the following convention will be used to describe the inertia terms:

(Ig’q )Componem refers to the inertia of a component about the g-axis passing through the

point P, whereas (I qq) refers to the inertia of a component about the g-axis passing

component
through the CG of that component.
The chair can be modeled as a system containing multiple rigid bodies: the frame,

two rear drive wheels, and two casters. The kinetic energy of each body can be calculated



using (1) and simplified using the kinematic constraints of the system. The total system
kinetic energy is simply the sum of these terms,

T, =T

os = Vame T Tip T Tro + Tic + Tre 4)
where the subscripts LD, RD, LC, and RC refer to the left drive wheel, right drive wheel,
left caster, and right caster, respectively.

For this analysis, a body-fixed reference frame is introduced for each rigid body,
with the origin being located at the center of mass of the respective body. To simplify the
rotational kinetic energy of the frame, notice that the x and z coordinate axes form a plane

of symmetry for the frame, which means that all products of inertia involving the

coordinate normal to the plane (in this case, I,, and I ,) are zero. For small angles and

assuming that the frame does not roll, it can be shown that the angular velocity is

a_)frame = Hframe I + !r/./framek (5)

where &

ame 1S the pitch rate about the y-axis of the frame and v, is the yaw rate about
the z-axis of an inertial reference frame fixed to ground. Then, the frame kinetic energy
can be simplified to

1

—_ — 1 2 1 .2
Tframe = E mframeVG,frame ) VG,frame + E (I yy )frame eframe + E(I 2z )frame Y frame (6)

In most cases, the second term in (6) will equal zero because the only time the frame
should rotate about the y-axis is during wheelie maneuvers or approaching an incline.

To help solve for the kinetic energy of the wheels, Figure 2 shows the coordinate
axes of the reference frame fixed on a wheel. These axes are principal axes, meaning that

all the products of inertia equal zero.



xW

Figure 2. Coordinate axes for a wheel

It is assumed that, with respect to their body-fixed frames, both drive wheels are
constrained to rotate only about the vy, -axis relative to the wheelchair frame. The casters
follow the same principle with the addition that they can also rotate about the vertical
axis passing through the swivel point, as shown in Figure 3. However, the AMPS
researchers are neglecting the caster swivel based on the assumption that its effect is
small. Still, the casters will have yaw rotational kinetic energy due to the angular velocity

of the frame to which they are attached.

B |

i

(_ID 'jé’RCJ’fra.tm

Wi )

Figure 3. Rotation of casters about the swivel point



Using these constraints and considering that the pitch rate of the frame is negligible in

most cases, the kinetic energy of each wheel can be determined by

Tio = 5 MioVoro Voo 5 {1y ) o8 + 5 (1 oW )
Teo =5 MeoVaro Voo + 5 (1 ) o 5 (1 oo Vo ®
Tie =5 MecVoic Vore +5 1y )b +5 (1) el ©
Tee = 5 MecVore Vore +5 1y hoie +5 (1 e (10

where ¢ is the spin rate of a particular wheel with respect to the frame. Summing (6)-

(10), the total kinetic energy of the wheelchair can be estimated by

+%mLD VoL +%(I % )LD¢|—D > (1, ) oW trame
%mRD Vero "Voro *%(' o B0 + ; (1 Do ¥ fame (11)
3 McTore Voue + 5 (1) o8l + 5 (1) e

1

1 _ - 1 )
+§mRCVG,RC “Vere +E(I yy)RC Prc +§(| z )RC Y frame

Equation (11) is furthered simplified by several observations. First, in the case of

straight propulsion, the translational kinetic energy terms can be written as

T, e = %mvG ¥, (12)

sys,trans

where

M= Mepe +Mp + Mgy + Mo+ Mge (13)



and Vg is the velocity of the center of mass of the system. This simplification is not valid

in general during turning because the caster movement means that the inertia properties
change slightly with time. Figure 4 illustrates the velocity of each of the components

during turning maneuvers.
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Figure 4. Velocity of wheelchair components during turning

Neglecting the swivel of the casters, the velocity of the CG of each component i

can be compared to the velocity of the CG of the system as follows,

vG,i = VG + ‘/}frameE x Fi/G (14)
where T, is the position vector pointing from the CG of the system to the CG of the

component. Taking the dot product yields

VG,i ' VG,i = vG ’ vG + 2\76 ' (l/}framelz x Fi/G )+ (l/}framelz x Fi/G ) (l/)frameiz X ri/G ) (15)



For each component, the third dot product in the preceding equation can be written as

(l/‘/frameiz x I’i/G ) (l/}framek x Fi/G )= l/)fzrame i2 (16)

where d, is the distance from the CG of the component denoted by i to the CG of the

system. Since the definition of the system center of mass implies that >’ m; ;g = 0, the
[

middle dot products in (15) will sum to zero when substituted into (11).
With this in mind, the velocity dot products can be substituted back into the

kinetic energy given in (11) to form the new expression,

T = M Vo e+ 2 (1 DV
2 T T )+ 3 1) o 6o + 5 (1 o
# 2o Vo +Vimlo Jo 5 (1, Lo bl + 5 (L Wi 0)
e oMol Vo i 5 (1, ) B 45 (1) eV
oMl Vo e )+ 5 (1, )+ (LD

Simplifying the equation yields

1

_ 1 .
Tsys = = Meame (VG Vg )+ _(I yy )LD ¢L2D +

1 .
2 2 >y (I vy >RC ¢'§C

1(I vy >LC ¢'—20 + 2

1(I vy )RD %D + 2

2

+ %[(I 7z )frame + mframe frame ]'//frame %[(I 7z )LD + mLDd ED ]szrame
(18)

1 : 1 :
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+ E[(I 24 )RC + mRCd éC ]szrame
At this point, it is beneficial to describe the Parallel Axis Theorem, which states
that the moment of inertia of an object about an axis, say A, passing through an arbitrary

point P is related to the moment of inertia of the object about a parallel axis B and



passing through the object’s center of gravity by the mass multiplied by the square of the

distance d between the two axes. Mathematically, this can be written as
I? =15 +md® (19)
With this in mind, the rotational kinetic energy terms in (18) due to the yaw rotation

Veame Can be written in terms of the moment of inertia of the system about the z-axis

passing through its CG,

1

5 (18 )V ame (20)

where the total system inertia is equal to the sum of the inertia of the components,
(I ZC; )sys = (I ZC; )frame + (I ZGZ )LD + (I ZGZ )RD + (I ZGZ )LC + (I ZGZ )RC (21)

In summary, for straight motion that does not involve wheelchair pitch, the total
kinetic energy of the system is given by

Tsys =%mv6 'VG +1(| vy >LD¢LD2 +%(I vy )RD ¢RD2 +%(I vy >|_<:¢£'-C2 +%(I vy )RC¢RC2 (22)

and for turning maneuvers with no wheelchair pitch, the kinetic energy is

1 1 1 1

Tsys =_-MVg - Vg +E(I vy )LD¢LD2 +E(I vy )RD ¢£RD2 "’E(I vy )._C&ch +E(I vy )RC¢RCZ

1 (23)
Py (I ZGZ )sys y}fzrame

Clearly, one of the necessary parameters to estimate in order to obtain an accurate

measure of the stored kinetic energy during wheelchair propulsion is the moment of

G
Izz

inertia of the system about the vertical (yaw) axis, ( )Sys. Therein is the motivation for

the design of the iMachine.



1.3 Measuring Inertial Properties

Many experimental techniques have been developed to measure the inertial
properties of irregularly shaped rigid bodies, leading to several patented devices [1-3]. As
mentioned earlier, one simple way of finding the moments of inertia is through the
numerical integration tools available in some 3D modeling software [4], but this method
requires a precise model, which may not be available, particularly if the object is too
complex or designed by someone other than the researcher. More recently, Almeida, et
al. [5] outlined a handful of modern approaches to inertia parameter identification,
including Modal Methods (MM), which derives the inertia tensor of an object by
attempting to excite it at its rigid body modes. Despite these new computationally
complex attempts to increase the precision with which rigid body mass properties can be
measured, conventional methods using simple free vibration principles are well
established and offer a sufficient amount of accuracy for most experimental applications.
Among these traditional approaches are pendulum devices and rotating platforms, which

will be described in the subsequent sections.

1.3.1 Gravitational Pendulum Method
Perhaps the most basic system for estimating inertia properties is the simple

gravitational pendulum, depicted in Figure 5.
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Figure 5. Gravitational pendulum model

Ogata [6] derives the equation of motion by summing the moments about the fixed pivot
point,
16 = —mglsin @ (24)
By using a small angle approximation (sin & ~ @), the general equation takes the form of
a single-degree-of-freedom (SDOF) system undergoing simple harmonic motion,
0+w?0=0 (25)
where @, is the natural frequency in radians per second. If @, is measured, the moment

of inertia, I, can be determined by its direct relationship to geometric parameters and the

natural frequency, @, , by
|l =—— (26)

There are several challenges with this method from a practical standpoint
including assessing the bounds for which the small angle approximation is valid. In

addition, this model assumes that the string to which the object being measured is
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attached has negligible mass, which is impractical for most cases. If the mass is known,
the equation of motion in (24) becomes more complicated because the weight of the
string must be taken into account. If the attachment means is an issue, one possible

solution is the bifilar pendulum shown in Figure 6.

Figure 6. Bifilar gravitational pendulum model

The major challenge with this method, aside from adding complexity to the test
procedure, is that the distance from the pivot point to the center of mass of the system is
no longer known. Depending on the sensing capabilities of the device, this important

parameter may be difficult or impossible to measure.

1.3.2 Torsional Pendulum Method
The torsional pendulum method [7-9] is arguably the most popular inertial
parameter estimation technique. This approach uses the same basic Newton-Euler

approach as the simple pendulum, but the vibration occurs due to rotation in the
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horizontal plane rather than the vertical plane. The model for a trifilar pendulum is shown

in Figure 7, although bifilar versions have been researched as well.

Load Cells
Object
Disk \' ! \
\’ i M Wire
I m I

Figure 7. Trifilar torsional pendulum model

The device consists of a stationary upper plate attached to a lower plate via a
series of cables. When the lower plate is displaced from equilibrium in the angular
direction, the pendulum cables (or files) generate a restoring torque to induce simple
harmonic motion. Du Bois, et al. [7] suggests that the multifilar pendulum is considered
to be the most accurate method, with errors less than 1%. Ogata [6] derived the equation
of motion using the assumption that the cables were of equal length and equidistant from
the center of the lower plate. Additionally, it was assumed in his analysis that the object
to be measured was centered on the plate so that the forces and angle of rotation in each

cable was equal. The resulting equation is

_ Mga’T?

"= (@7)
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where M is the total mass of the system, g is the acceleration due to gravity, a is the radial
distance from the cable to the center of the lower plate, T is the natural period of
oscillation, and h is the height of each cable.

The most difficult and time consuming part of this method is centering the CG of
the object with the axis of rotation. If the axis passing through the CG is not coincident
with the rotation axis, several errors could propagate in the results. First, the theory used
to derive (27) becomes more complicated because the forces in the cable are not equal,
and their rotation angles may differ as well. Second, the weight imbalance may cause the
lower plate to tilt, which would result in an inertia measurement about an axis at an angle
to the desired vertical axis. In fact, Ringegni, et al. [8] demonstrates through
experimental measurements that improper centering of the body actually results in an
additional longitudinal oscillation due to the CG eccentricity. If nothing else, making
constant configuration adjustments will most likely cause the pendulum to swing, which
in turn may become a frustrating process for the researcher. Nevertheless, Zhi-Chao, et
al. [9] seems to have found an efficient solution by strategically adding known weights to
balance the plate rather than attempting to move the potentially heavy and cumbersome

object. His method resulted in errors less than 1% in general.

1.3.3 Rotating Platform Method
Griffiths, et al. [10] designed a rotating platform apparatus to measure the
moment of inertia of the human body. The mechanical system design is displayed in

Figure 8.
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Figure 8. Rotating platform model with falling mass [10]

—

The system operates by transmitting a torque due to a falling known mass to the turntable
via a series of low-friction pulleys. Unlike the previously described methods, Griffith’s
apparatus does not use simple harmonic motion principles. Instead, a high-resolution
motion capture system tracks two retro-reflective markers on the turntable as it rotates.
The relation between the inertia and the measured properties is given by the moment

equation about the rotation axis of the platform,

== = ! (28)

where @y, Is the final angular velocity at time t, r is the pulley radius, m is the known

mass that generated the input torque, g is the acceleration due to gravity, and s is the
distance that the mass fell.
While there are several difficulties inherent in testing human subjects when they

need to be perfectly rigid, the researchers recognized the difficulty in centering the mass

15



on the platform. Additionally, friction had a significant effect on the accuracy of results

because it produces a moment not accounted for in (28) that opposes the input torque.
Another way of implementing the rotating platform method is shown in Figure 9.

This approach combines the small workspace of the aforementioned apparatus while

maintaining the oscillatory nature of the torsional pendulum devices.

Wheelchair
Disc k
\' M
| m
Tarsion spring kr

W

Figure 9. Rotating platform model with torsion spring

The general equation of motion can be expressed in the form of (25) with

W =,— (29)

It is easy to see how the inertia is calculated in a simple, effective manner. This design
could handle eccentric loads better if the platform were mounted properly on a sturdy
shaft. The challenges for this device are determining efficient measurement techniques

for recording the mass, center of mass, and angular position of the platform.

16



1.3.4 Previous Wheelchair Inertia Research

There has been little research done on implementing inertia parameter
identification techniques for manual wheelchairs specifically. Kauzlarich, et al. [11] used
the torsional pendulum method to determine the inertia of the manual wheelchair with the
drive wheels removed, but offered no discussion on the accuracy of results. Ding [12]
estimated the moment of inertia by rotating an occupied power wheelchair on a force
plate and tracking the angular velocity of the chair using a motion capture system. The
desired inertia was derived from Euler moment equations. Wang, et al. [13] also studied
the inertia of power wheelchairs, but used the more conventional torsional pendulum
approach with four cables. The device was calibrated using two objects with known
analytical inertia: a metal disk and a cylinder. However, the error for the inertia
measurement of the two objects was 9.1042% and 10.3279%, respectively. Wang
commented on the error introduced when the object’s CG is not coincident with the
rotation axis and on the harmful effects that swinging of the pendulum has on accuracy.
His methods could be greatly improved by better precision measurement devices, as a

simple stopwatch was used to measured the period.

1.4 Summary
The goal of this project is to design a robust, high precision measurement device
for determining four inertial properties of manual wheelchairs: the total system mass,
coordinates of the center of mass, and inertia about the vertical axis passing through the
CG. The design selection will be described in Chapter 2, including theory and component
specification. In Chapter 3, a detailed computational approach is presented for calculating

the desired inertial parameters using the iMachine. Chapter 4 discusses the test methods
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for calibrating the load cells and springs. In Chapter 5, validation tests and results are
given for each of the inertial parameters, as well as wheelchair inertia results based on
iMachine tests. Chapter 6 offers some conclusions based on the test results and provides

recommendations for improving the iMachine in the future.
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CHAPTER 2

DESIGN

2.1  Design Selection
The final design selection for the iMachine draws from multiple approaches
presented in the previous chapter and is illustrated schematically in Figure 10 below. It is
a spring-loaded disk that is free to oscillate in the horizontal plane about an axis

perpendicular to the xy-plane and passing through point O.

W

Figure 10. Model of iMachine design

The disk is center-mounted on a stepped shaft (not pictured) that is equipped with an

optical encoder for monitoring the angular position of the disk. A fixed collar holds two
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bearings that support the radial and axial loads on the shaft, reduce the frictional effects
on rotation, and restrict the tilt of the platform. Load cells located at points A, B, and C
measure the forces due to the weight of the object being tested. The interface between the

disk and the test object is a x-y positioning platform (not pictured).

2.2 Theory
The general equation of motion for a SDOF mechanical system undergoing free
vibration is given by
mg+cq+kq=0 (30)
where @,q,and § are the generalized coordinate and its first two derivatives, m is the

mass of the system, c is the damping coefficient, and k is the spring constant. The system

is subjected to the following initial conditions

Q(O) =0,
Q(O) =V

(31)
In the system under consideration, the generalized coordinate is the angular position of
the oscillating disk. Therein, summing the moments about the center of the disk yields the
following equation of motion,

10 +cO+kR?0=0 (32)
where | is the moment of inertia about the axis of rotation, which is the desired parameter
to be measured. The device uses two linear springs in parallel, each with spring constant
k /2, making the total equivalent spring constant k. In addition, the distance from the
point of application of each spring to the center of the disk, R (not necessarily equal to the

radius of the disk), must be considered because it is the moment-arm for each spring

force.
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If we consider (32) to be of the form
0+2(w,0+0’0=0 (33)
then the moment of inertia can be calculated using the following equation

_ kR T?
Ar?

| (34)

where T, is the natural period of oscillation, derived from the damped period, T,, by

noting that

T, =Tyy1-¢* (35)
where £ is the damping ratio. The next section outlines the specifications for each of the

system components based on assumptions and the theoretical analysis presented here.
2.3  Component Specification

2.3.1 Structural Frame

The purpose of the structural frame is to provide stability and support for the rest
of the device. It needs to have a wide base so that the CG of the system on top is always
located within the perimeter of the frame. Other design specifications include low cost,
simple to machine, and ease of assembly. As a result, the frame was made using extruded
aluminum beams (80/20 Inc., Columbia City, IN) with corner brackets to increase the

structural rigidity. The outer dimensions of the frame are 0.762x0.762 m (30x30 in).

2.3.2 Disk
The only major requirements for the disk is that it be large enough in diameter for
proper load cell positioning and strong enough to withstand the stresses due to the

maximum allowable load. To meet the first requirement, the disk was cut to
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approximately 24 inches in diameter (measured to be 0.29845 m). This size should be
sufficient because it is larger than the wheel width (distance from contact points on the
ground) of nearly all of the wheelchairs to be tested. The load cell configuration can be
designed to fit within these bounds. Ideally, the disk material should be made of a single
material, most likely a strong metal, to keep its material properties homogeneous.
However, a large metal disk with moderate thickness can be quite costly. As a result, the
disk was made with multiple layers: a core %" thick wood layer with a thin steel layer
laminated to either side using a strong adhesive. The multi-layered disk was machined
using a water jet. There is a tradeoff between cost and error, though, as the disk appeared
to show slight warping several days after it had been machined. However, given that the
angular displacement of the disk is assumed to be small during testing, the warping
should have a negligible effect on the dynamics of the system. Figure 11 illustrates the

final machined disk design.

Figure 11. iMachine disk
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2.3.3 Shaft Assembly
The shaft assembly is pictured in Figure 12, and it consists of a stepped aluminum

shaft, steel shaft collar, aluminum bearing collar, and two steel ball bearings.

Figure 12. iMachine shaft assembly

A bending stress analysis was performed to select an acceptable shaft diameter.
The normal yield stress of Al 6061-T6 is found to be 270 MPa (40 ksi) [14]. Given a

safety factor, n, the maximum allowable normal stress, o can be calculated using the

allow !

relation

n=—2 (36)

allow
so that, for example, a safety factor of 3 dictates a maximum allowable normal stress

equal to 90 MPa (13.3 ksi). The load on the platform is bounded above by the weight of
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an occupied wheelchair, which was reasonably assumed not to exceed 136.071 kg (300
Ibs) for this test application. In the rare case that the maximum load is applied at the edge
of the disk, the maximum moment generated about the shaft would be equal to 398.4 N-
m. Using the equation

5 = Munmc (37)

O-allow

the required section modulus, S, is determined to be 4427 mm?®. For circular cross

sections of diameter d, the section modulus is defined as

_7zd3

32

S (38)

Therefore, by rearranging (38), the minimum shaft diameter for the given conditions is
equal to 35.6 mm (1.40 in).

This analysis assumes a constant diameter shaft, but practically the shaft must be
stepped to accommodate the smaller diameter requirements of the bearings and encoder.
To ensure an acceptable safety factor for bending stress, the largest diameter of the shaft
was set to 38.1 mm (1.5 in). Working backwards through equations (36)-(38), the safety
factor can be approximated to equal 3.68, which is more than sufficient for the design.

For completeness, the deflection of the end of the shaft is calculated based on the
design parameters listed above. The purpose of this exercise is to ensure that bending is
negligible because any significant deflection affects the axis about which the moment of

inertia is measured. Suppose the shaft is modeled as shown in Figure 13, where the entire

assembly has been rotated 90° to resemble a beam in bending. Note that this “virtual”
rotation has no effect on the validity of the analysis. The reactions forces at point A

represent that of a thrust bearing, which can take both axial and radial load. The reaction

24



force at point B refers to a simple ball bearing. The force on top of the shaft, F (pictured

to the side in Figure 13), produces a moment due to its eccentricity, ¢ .

Figure 13. Modeling the shaft assembly as a beam in bending

Taking the sum of the forces in both the radial and axial directions as well as the

sum of the moments about point A, the reactions forces can be solved for as follows,

YF, =0:R, =R,
YF,=0:R,, =F

>M, =0:R,L, —Fe=0

(39)
(40)

(41)

This implies that the reactions forces, and thus the load bearing capacity of each bearing,

are given by
&
RB = FE
&
RAr = FE
Ryu=F

Using (42), the shear forces along the shaft can be computed as

V- —FLil, (0<a<l,)

0, (L<a<l, +L,)
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and the bending moments along the shaft are given by

&
R —FEu (0<a<lL,) (44)
~Fe, (L <a<l +L,)

where E is the modulus of elasticity, | is the moment of inertia of the shaft, and V" is the

second derivative of the deflection. Integrating (44) gives an equation for the slope along

the beam,
gaZ
ElV — —FEE+CP (0<a<l,) (45)
~-Fa+C,, (L <a<l +L,)

Since the slope at point B must be continuous, v'(Li) must be equal for the two equations

above. Plugging this in,
o2
—FI+C1=—F,9L1+C2 (46)
and solving for C,in terms of C,
C,=C,+F % (47)

Integrate (45) once more to obtain the deflection equations,

63.3
~-FZ—+Ca+C,, (0<a<l)
Elv = 6L, (48)

2

A L ca+c,, (L<a<L+L,)

The boundary conditions for the first equation are that the deflection equals zero at the
bearing locations — that is, v(0)=v(L,)=0. Applying these conditions to the first equation

in (48) gives the following result,
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v(o)=ics=o = C,=0 (49)

El
v(g):%(—F%wlLij:o = Cle% (50)

Inserting the value for C, found in (50) into (47), C, is shown to equal

.
C,=F 3 (51)

Applying the second boundary condition to the second equation in (48) gives

1( Fell _2el2 el?
(Ll)EI[2+ 3 TG |=0 = C=-F=2 (52)
Combining the coefficients from (50) and (52) and plugging into (48), the deflection at

the end of the shaft can be written as
Fe 2 2
S(L+L)=-v(L, +L,)= GE[3(L1 +L, ) -4aL (L + L, )+ Ll] (53)

The elastic modulus of Al 6061-T6 is 70 GPa (10000 ksi), the load and
eccentricity are defined as before to cause the maximum moment, and the inertia of the
shaft with a constant 38.1 mm (1.5 in) diameter is 1.0344x10~" m*. The locations of the
bearings were varied iteratively to find a suitable set of parameters that minimized
deflection and kept the iMachine height relatively low. The final design is a total shaft
length of 70 mm with 30 mm between the two bearings. This produces a deflection of
only 0.0458 mm when the maximum moment is applied. In more realistic scenarios —
say, with a 15 kg mass (unoccupied wheelchair) applied at no greater than 127 mm (5 in)
eccentricity — the deflection of the end of the shaft is 0.0022 mm. Clearly, these shaft
parameters will be sufficient in meeting the design specifications, particularly with the

addition of the 3 in-diameter steel shaft collar.
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Steel ball bearings (McMaster-Carr Inc., Santa Fe Springs, CA) were selected that
meet the load capacities outlined in (42). The top bearing (B in Figure 13) has a radial
load capacity of 7.2 kN (1,628 Ibs), which, according to (42), can withstand a 136.071 kg
(300 Ibs) load at an eccentricity of up to almost 16.51 cm (6.5 in). The bottom bearing (A
in Figure 13) is a dual load angular contact bearing and has a radial load capacity of 13.3

kN (2,990 Ibs), which is enough to support even the maximum moment specified above.

2.3.4 Springs

The most important design specifications are those that directly influence the
calculation of the moment of inertia, given by Equation (34). While the damping ratio in
(35) can be somewhat controlled by modifying the friction in the shaft bearings, it is
assumed that the system is underdamped and the effects of a small change in damping are
negligible. Instead, the primary controllable design parameter is the springs. Figure 10
showed that a pair of linear springs were chosen rather than a single torsion spring. The
primary reason is that linear springs mounted away from the shaft increase accessibility,
making it easier to mount and replace them, which may be important for testing objects
with widely varying inertia. This section addresses the frequency and geometric
constraints of the system with the goal of selecting springs that achieve a practical and

reliable design.

2.3.4.1 Frequency Constraints

In analyzing this problem, it is important to consider the effects of frequency on
the reliability of the measurements. For example, a natural frequency that is too high may
cause unnecessary vibration of the wheelchair if the connection to the rotating platform is

not perfectly rigid. In this case, the center of mass of the system would be constantly
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moving, which in turn affects the rotation of the disk and the ensuing inertia calculations.
In addition, a high natural frequency and poor interface between the object and the disk
may cause the object to rotate according to a second DOF that lags the angular position of
the disk. This compromises the accuracy of the SDOF model and may introduce
significant errors in the measurement. On the other hand, a natural frequency that is too
low may require an excessive amount of time to record enough data for computing the
inertia. Initially, it will be assumed that a natural frequency less than 1 Hz will be
sufficient to neglect internal relative motion of the system components. This corresponds
to a natural period that is greater than 1 second.

For the purpose of spring selection, it is necessary to estimate the inertia range
that will be tested with the device. To that end, a simple prototype of the system design
was constructed using a spring-loaded wooden platform mounted to a lazy susan bearing.
The platform was loaded with a person sitting in a wheelchair. Upon giving the system an
initial angular velocity, the period of oscillation was measured using a stopwatch. The
spring constant (k/2) is 1814 N/m (10.36 Ib/in) and the distance R is approximately
11.43 cm (4.5 in). The average damped period for a 63.5 kg (140 Ib) subject occupying a
wheelchair was 2.32 s, which results in a moment of inertia of 6.46 kg-m? (22,100 Ib-in?),
assuming approximately 10% damping. The average damped period for a 86.2 kg (190
Ib) subject occupying a wheelchair was 2.66 s, resulting in a moment of inertia of 8.48
kg-m?® (29,000 Ib-in?. Even though it is not a good idea in practice, the data was
extrapolated to estimate the inertia of an unoccupied wheelchair. This is acceptable for
this situation because only a rough estimate of the inertia is needed. Taking into account

that the mass of the platform of the final system is approximately 22.7 kg (50 Ibs) heavier
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than the wooden prototype, the total moment of inertia of an unoccupied wheelchair on
the new system is estimated to be around 2.93 kg-m? (10,000 Ib-in®), which forms the
lower bound of the desired inertia range. The upper bound is found by assuming a 102.1
kg (225 Ib) AMPS occupying the wheelchair, which results in an estimated moment of
inertia of 11.94 kg-m? (40,800 Ib-in®). Based on these results, springs should be selected
to meet the frequency specifications for an inertia range of approximately 3-12 kg-m?.

To accomplish this, Table 1 and Table 2 show the possible combinations of

T, and R values and the corresponding half-spring constant (k/2) for an inertia value of

10,000 Ib-in? and 40,800 Ib-in?, respectively. English units are used for this tabular data
because the manufacturer’s springs are specified in this way. The bold column in both
tables corresponds to the radius of the rotating disk, which is arguably the easiest distance
to use for the spring moment-arm because of mounting ease and lack of interference with
the rest of the system.

The spring rate values given at the maximum distance seem reasonable in both
tables, so the disk radius is selected as the spring connection point. Based on Table 1, the
spring constant needs to be less than 3.70 Ib/in, but a spring load rate that is too small
may exceed its yield strength during application. If we select springs that are 1 Ib/in, the
period is 1.926 s, which meets the design specifications. Looking at Table 2, the upper
limit of spring load rate based on the maximum distance from the center of the disk is
about 15 Ib/in. There are two options to accommodate both the unoccupied and occupied-
wheelchair scenarios: (a) select 1 spring for both cases, prioritizing the unoccupied case
because the limits are more stringent or (b) have several springs of different load rates

that could be interchanged on the device depending on the load being tested.
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Table 1. Half-spring constant based on desired natural period and spring moment-arm

(using lower bound, 10,000 Ib-in? of inertia range)

R (in)

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.75

Ta (9)

1.0

14.190

12.091

10.425

9.082

7.982

7.071

6.307

5.660

5.108

4.634

4.222

3.700

1.1

11.727

9.993

8.616

7.506

6.597

5.843

5.212

4.678

4.222

3.829

3.489

3.058

1.2

9.854

8.397

7.240

6.307

5.543

4.910

4.380

3.931

3.548

3.218

2.932

2.570

1.3

8.397

7.154

6.169

5.374

4.723

4.184

3.732

3.349

3.023

2.742

2.498

2.189

1.4

7.240

6.169

5.319

4.634

4.072

3.607

3.218

2.888

2.606

2.364

2.154

1.888

15

6.307

5.374

4.634

4.036

3.548

3.142

2.803

2.516

2.270

2.059

1.876

1.645

1.6

5.543

4.723

4.072

3.548

3.118

2.762

2.464

2.211

1.996

1.810

1.649

1.445

1.7

4.910

4.184

3.607

3.142

2.762

2.447

2.182

1.959

1.768

1.603

1.461

1.280

1.8

4.380

3.732

3.218

2.803

2.464

2.182

1.947

1.747

1.577

1.430

1.303

1.142

1.9

3.931

3.349

2.888

2.516

2.211

1.959

1.747

1.568

1.415

1.284

1.169

1.025

2.0

3.548

3.023

2.606

2.270

1.996

1.768

1.577

1.415

1.277

1.158

1.055

0.925

2.1

3.218

2.742

2.364

2.059

1.810

1.603

1.430

1.284

1.158

1.051

0.957

0.839

2.2

2.932

2.498

2.154

1.876

1.649

1.461

1.303

1.169

1.055

0.957

0.872

0.764

2.3

2.682

2.286

1.971

1.717

1.509

1.337

1.192

1.070

0.966

0.876

0.798

0.699

2.4

2.464

2.099

1.810

1.577

1.386

1.228

1.095

0.983

0.887

0.804

0.733

0.642

2.5

2.270

1.935

1.668

1.453

1.277

1.131

1.009

0.906

0.817

0.741

0.676

0.592

2.6

2.099

1.789

1.542

1.343

1.181

1.046

0.933

0.837

0.756

0.685

0.625

0.547

2.7

1.947

1.659

1.430

1.246

1.095

0.970

0.865

0.776

0.701

0.636

0.579

0.508

2.8

1.810

1.542

1.330

1.158

1.018

0.902

0.804

0.722

0.652

0.591

0.539

0.472

2.9

1.687

1.438

1.240

1.080

0.949

0.841

0.750

0.673

0.607

0.551

0.502

0.440

3.0

1.577

1.343

1.158

1.009

0.887

0.786

0.701

0.629

0.568

0.515

0.469

0.411

3.1

1.477

1.258

1.085

0.945

0.831

0.736

0.656

0.589

0.532

0.482

0.439

0.385

3.2

1.386

1.181

1.018

0.887

0.779

0.690

0.616

0.553

0.499

0.452

0.412

0.361

3.3

1.303

1.110

0.957

0.834

0.733

0.649

0.579

0.520

0.469

0.425

0.388

0.340

3.4

1.228

1.046

0.902

0.786

0.690

0.612

0.546

0.490

0.442

0.401

0.365

0.320

3.5

1.158

0.987

0.851

0.741

0.652

0.577

0.515

0.462

0.417

0.378

0.345

0.302

3.6

1.095

0.933

0.804

0.701

0.616

0.546

0.487

0.437

0.394

0.358

0.326

0.286

3.7

1.037

0.883

0.762

0.663

0.583

0.516

0.461

0.413

0.373

0.338

0.308

0.270

3.8

0.983

0.837

0.722

0.629

0.553

0.490

0.437

0.392

0.354

0.321

0.292

0.256

3.9

0.933

0.795

0.685

0.597

0.525

0.465

0.415

0.372

0.336

0.305

0.278

0.243

4.0

0.887

0.756

0.652

0.568

0.499

0.442

0.394

0.354

0.319

0.290

0.264

0.231
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Table 2. Half-spring constant based on desired natural period and spring moment-arm

(using upper bound, 40,800 Ib-in?, of inertia range)

R (in)

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.75

Tn (9)

1.0

57.896

49.332

42.536

37.054

32.567

28.848

25.732

23.094

20.843

18.905

17.225

15.097

1.1

47.848

40.770

35.154

30.623

26.915

23.841

21.266

19.086

17.225

15.624

14.236

12.476

1.2

40.206

34.258

29.539

25.732

22.616

20.033

17.869

16.038

14.474

13.128

11.962

10.484

1.3

34.258

29.190

25.169

21.925

19.270

17.070

15.226

13.665

12.333

11.186

10.192

8.933

14

29.539

25.169

21.702

18.905

16.616

14.718

13.128

11.783

10.634

9.645

8.788

7.702

15

25.732

21.925

18.905

16.468

14.474

12.821

11.436

10.264

9.263

8.402

7.656

6.710

1.6

22.616

19.270

16.616

14.474

12.721

11.269

10.051

9.021

8.142

7.385

6.729

5.897

1.7

20.033

17.070

14.718

12.821

11.269

9.982

8.904

7.991

7.212

6.541

5.960

5.224

1.8

17.869

15.226

13.128

11.436

10.051

8.904

7.942

7.128

6.433

5.835

5.316

4.659

1.9

16.038

13.665

11.783

10.264

9.021

7.991

7.128

6.397

5.774

5.237

4.772

4.182

2.0

14.474

12.333

10.634

9.263

8.142

7.212

6.433

5.774

5.211

4.726

4.306

3.774

2.1

13.128

11.186

9.645

8.402

7.385

6.541

5.835

5.237

4.726

4.287

3.906

3.423

2.2

11.962

10.192

8.788

7.656

6.729

5.960

5.316

4.772

4.306

3.906

3.559

3.119

2.3

10.944

9.325

8.041

7.004

6.156

5.453

4.864

4.366

3.940

3.574

3.256

2.854

2.4

10.051

8.565

7.385

6.433

5.654

5.008

4.467

4.009

3.619

3.282

2.991

2.621

2.5

9.263

7.893

6.806

5.929

5.211

4.616

4.117

3.695

3.335

3.025

2.756

2.415

2.6

8.565

7.298

6.292

5.481

4.818

4.267

3.806

3.416

3.083

2.797

2.548

2.233

2.7

7.942

6.767

5.835

5.083

4.467

3.957

3.530

3.168

2.859

2.593

2.363

2.071

2.8

7.385

6.292

5.426

4.726

4.154

3.680

3.282

2.946

2.659

2411

2.197

1.926

2.9

6.884

5.866

5.058

4.406

3.872

3.430

3.060

2.746

2.478

2.248

2.048

1.795

3.0

6.433

5.481

4.726

4.117

3.619

3.205

2.859

2.566

2.316

2.101

1.914

1.677

3.1

6.025

5.133

4.426

3.856

3.389

3.002

2.678

2.403

2.169

1.967

1.792

1571

3.2

5.654

4.818

4.154

3.619

3.180

2.817

2.513

2.255

2.035

1.846

1.682

1.474

3.3

5.316

4.530

3.906

3.403

2.991

2.649

2.363

2.121

1.914

1.736

1.582

1.386

3.4

5.008

4.267

3.680

3.205

2.817

2.495

2.226

1.998

1.803

1.635

1.490

1.306

3.5

4.726

4.027

3.472

3.025

2.659

2.355

2.101

1.885

1.701

1.543

1.406

1.232

3.6

4.467

3.806

3.282

2.859

2.513

2.226

1.985

1.782

1.608

1.459

1.329

1.165

Sai

4.229

3.603

3.107

2.707

2.379

2.107

1.880

1.687

1.522

1.381

1.258

1.103

3.8

4.009

3.416

2.946

2.566

2.255

1.998

1.782

1.599

1.443

1.309

1.193

1.045

3.9

3.806

3.243

2.797

2.436

2.141

1.897

1.692

1.518

1.370

1.243

1.132

0.993

4.0

3.619

3.083

2.659

2.316

2.035

1.803

1.608

1.443

1.303

1.182

1.077

0.944
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2.3.4.2 Geometric Constraints

In analyzing this problem, there are also geometric constraints to consider when
selecting the springs. If the springs are attached in the plane of the disk, then the fully-
stretched length of the spring should be no more than the distance between the fixed end
of the spring and the point of contact on the disk. Figure 14 shows a close-up view of the

spring geometry.

N

Figure 14. Model of the spring geometry and contact point on the rotating disk

The chord length ¢ is computed using the following relation

c:2Rsin§ (54)
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but & can be compared to « and £ in the following manner
6+2a =180° (55)
a+f=90° (56)
Substituting (56) into (55) and then (55) into (54), the chord length can be expressed in

terms of S as

c=2Rsinﬂ=2R(W—/2j (57)
C
Using the Pythagorean theorem,

12 4+ (w/2)" =c? (58)
Substituting (57) into (58) yields

12+ (w/2)* = Rw (59)

and solving for | gives the following expression

The stretched length of the spring, ¢,+dJ , must be no greater than the difference

between | and the total distance from the fixed end to the center of the disk, L; that is,
lo+0<L—I (61)

or, in other words, the maximum elongation of the spring beyond its unstretched length is
S =L- w(R—%j—fo (62)

In this problem, L is equal to 13.5 in, and R is 11.75 in. Since the spring needs to be in

tension at all times, it is a good idea to set o, at twice as large as the desired distance

through which the disk will rotate; in other words,
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Omax =25, = 2R 6, (63)
Table 3 lists the variation in maximum initial angular displacement, 6,, based on

the selection of spring width, w, and overall unstretched length, 1.

Table 3. Maximum angular displacement (in degrees) based on spring parameters.

w (in)
3/32] 18 3/16] 14 3/8 112 5/8 3/4
0.50| 23.653] 23.259( 22.598| 22.042[ 21.112] 20.332| 19.647{ 19.030
0.75| 23.044] 22.649( 21.989| 21.433| 20.503| 19.722] 19.037( 18.420
1.00] 22.434{ 22.040| 21.379] 20.823( 19.893] 19.113[ 18.428| 17.811
1.25| 21.825{ 21.430| 20.770] 20.214( 19.284] 18.503[ 17.818| 17.201
1.50| 21.215{ 20.821| 20.160{ 19.604| 18.674| 17.894{ 17.209| 16.592
1.75| 20.606] 20.211] 19.550| 18.995| 18.065| 17.284| 16.599| 15.982
2.00] 19.996| 19.602| 18.941| 18.385| 17.455| 16.675| 15.990| 15.373
2.25| 19.387] 18.992| 18.331] 17.775| 16.846| 16.065] 15.380] 14.763
2.50| 18.777] 18.383| 17.722| 17.166| 16.236] 15.455| 14.770[ 14.154
2.75| 18.168] 17.773[ 17.112| 16.556] 15.627| 14.846| 14.161[ 13.544
3.00| 17.558] 17.164 16.503] 15.947] 15.017| 14.236] 13.551[ 12.935
3.25| 16.949] 16.554[ 15.893| 15.337 14.408] 13.627] 12.942[ 12.325
3.50| 16.339] 15.945( 15.284| 14.728[ 13.798] 13.017] 12.332[ 11.716
3.75| 15.730] 15.335( 14.674| 14.118[ 13.188] 12.408] 11.723[ 11.106
4.00| 15.120] 14.725] 14.065| 13.509] 12.579] 11.798| 11.113] 10.497
Iy (in)| 4.25] 14.510] 14.116] 13.455] 12.899] 11.969] 11.189] 10.504| 9.887
4.50| 13.901] 13.506] 12.846| 12.290] 11.360] 10.579] 9.894| 9.278
4.75| 13.291] 12.897] 12.236| 11.680] 10.750f 9.970| 9.285| 8.668
5.00] 12.682] 12.287| 11.627| 11.071] 10.141] 9.360| 8.675[ 8.058
5.25| 12.072] 11.678[ 11.017] 10.461 9.531] 8.751| 8.066[ 7.449
5.50| 11.463] 11.068[ 10.408| 9.852 8.922| 8.141| 7.456] 6.839
5.75] 10.853] 10.459 9.798| 9.242 8.312| 7.532| 6.847[ 6.230
6.00] 10.244| 9.849[ 9.188| 8.633] 7.703] 6.922| 6.237[ 5.620
6.25] 9.634| 9.240[ 8.579] 8.023[ 7.093| 6.313| 5.628] 5.011
6.50] 9.025| 8.630| 7.969| 7.413| 6.484| 5.703| 5.018| 4.401
6.75] 8.415] 8.021| 7.360] 6.804| 5.874] 5.093] 4.408] 3.792
7.00] 7.806] 7.411| 6.750] 6.194] 5.265] 4.484] 3.799| 3.182
7.25| 7.196] 6.802 6.141| 5.585| 4.655| 3.874| 3.189 2.573
7.50] 6.587| 6.192 5.531| 4.975] 4.046] 3.265] 2.580[ 1.963
7.75| 5.977| 5.583] 4.922| 4.366] 3.436] 2.655] 1.970[ 1.354
8.00] 5.368] 4.973[ 4.312| 3.756] 2.826] 2.046] 1.361 0.744

With the availability of high-resolution encoders, it is assumed that the rotation of

the disk will be on the order of a few degrees. Looking at the data, nearly any
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combination of spring geometric parameters will allow sufficient angular displacement
for the encoder to properly measure the data. Therefore, the geometric constraints will
most likely be met for the given system design and spring placement. However, this
exercise is important in deriving the operating limits of the system once springs have

been selected.

2.3.4.3 Spring Selection

With the aforementioned constraints in mind, a set of precision stainless steel
extension springs (McMaster-Carr Inc., Santa Fe Springs, CA) was selected. The spring
rate of each spring is specified by the manufacturer to equal 588 N/m (3.36 Ib/in), so the
equivalent spring rate of the iMachine system is 1177 N/m (6.72 Ib/in). The spring width

and unstretched length are 15.875 mm (5/8 in) and 7.94 cm (3.126 in), respectively.

Based on Table 3, this means that the disk can be rotated more than 13° before the spring
will contact the disk. Since the springs do not operate in compression, the spring static
displacement must be greater than the desired amplitude of oscillation. One end of the
spring connects to the fixed structural frame via a steel eyebolt and the other end hooks to
flexible steel rope. The rope wraps around the middle of the disk and a screw pins the
rope to the disk at the back. A picture of the spring in static equilibrium is shown in
Figure 15. The natural period of oscillation for the unoccupied and occupied wheelchair
scenarios is estimated using Table 1 and Table 2 to be approximately 1.1 s and 2.1 s,

respectively.

36



Figure 15. iMachine extension spring in static equilibrium

2.3.5 X-Y Positioning Platform

One of the significant challenges in operating an apparatus to empirically measure
the moment of inertia of a large object is the centering the test piece CG on the axis of
rotation. To address this issue, the iMachine design includes an X-Y positioning platform
to allow for easy repositioning of the test piece in two directions. The platform has
similar outer dimensions to the structural frame and is made from the same extruded
aluminum parts (80/20 Inc., Columbia City, IN). The platform interfaces with the disk at
three contact points, one on each of the load cells. There are three small rods attached to
the bottom of the platform that fit in copper bushings mounted to the disk. The rods
improve stability by constraining the lateral motion of the platform. Additionally, this
platform design ensures that the load is transferred solely through the load cells, while

reducing the shear force on the load cells. Figure 16 illustrates the final platform design.
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adjustable

Figure 16. iMachine X-Y positioning platform

The coordinate system in Figure 16 is the same in Figure 10, so that the positive
y-axis points towards the top of the page. Each bearing is adjustable in one direction
based on the orientation of the beam to which it is mounted. Considering only the
geometric dimensions of the platform frame, the total stroke lengths in the x and y
directions are 74.93 cm (29.5 in) and 68.58 cm (27 in), respectively. The adjustable range
of each bearing is constrained, however, by its dimensions and the fact that each beam
contains two bearings. For example, the bearing in the bottom left cannot move all the
way to the right end because there is another bearing in the way. Taking into account
these constraints, the stroke length for each bearing from the center of the beam is 22.2

cm (8.75 in) in the x-direction and 27.1 cm (10.675 in) in the y-direction.
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During a test, the wheelchair is mounted to the top four linear bearings on the
platform. The rear drive wheels attach to the two bearings in the bottom of the figure,
while the casters are fixed to the top two bearings. This biases the heavier regions of the
wheelchair toward the part of the disk with load cells B and C (refer to Figure 10). Once
the wheels are fixed to their respective bearings, the bearings include handles that lock

them into place.

2.3.6 Hardware

2.3.6.1 Load Cells

The design specifications for the load cells are that they be low profile, easy to
mount, high resolution sensors with load capacity greater than the maximum anticipated
weight of the platform and occupied wheelchair. The transducers that were selected are
LCGB-250 series miniature industrial compression load cells (Omega Engineering Inc.,
Stamford, CT). The cells have a button-type interface for even force distribution, and
three mounting holes for easy attachment to a flat surface such as the iMachine disk. The
load capacity of each is 250 Ib, so that the total weight capacity of the load cell supports
(750 Ib) is more than the anticipated maximum load (300 Ib). These have the optimal
combination of capacity and resolution that was found and should be sufficient for the
measurement technique of this device. The load cell is 32 mm (1.25 in) in diameter and
10 mm (0.39 in) in overall height. The output of each load cell is a differential analog
signal on the order of 20mV with 10V nominal excitation. A picture of the load cell

mounted to the iMachine disk is illustrated in Figure 17.
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Figure 17. Load cell mounted to iMachine disk

2.3.6.2 Encoder

An optical encoder generally consists of a code wheel, detector module, and

mounting housing, as shown in Figure 18.

Figure 18. Optical encoder components (U.S. Digital Inc.)

The code wheel mounts to the rotating shaft, while the detector module remains
stationary. The module usually contains a light-emitting diode (LED) source on one end
and a detector on the other. As the code wheel rotates, the LED signal is either detected

or not, depending on the transparency of the wheel at that location. Monitoring the signal
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continuously over time creates a squarewave output that can be processed to get the
angular position.

The only major design parameter for the encoder is its resolution because it
dictates the uncertainty in the angular position measurement. With this in mind, an E3
series optical encoder (U.S. Digital Inc., Vancouver, WA) was selected that has 2 channel
quadrature outputs with 2500 Cycles Per Revolution (CPR). Quadrature simply refers to
the fact that there are two patterns on the code wheel that produce signals which are out
of phase. The phase lag, Z, between the two channels determines the resolution of the

transducer. Nominally, Z equals 1/4 of one cycle, so that the resolution, A@, is given by

| Lrev 3607 _,

~0.036° (64)
12500 cycles| 1rev|

1
A@ = =cycles
4 y

Figure 19 shows an example of the quadrature output for the encoder. The numbered

lines in the figure represent the four possible “states” of the output signal.

CH A

CH.B

Figure 19. Encoder quadrature output
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Assigning incremental sequencing (1,2,3,4) to clockwise (CW) rotation and
decremental sequencing (4,3,2,1) to counter-clockwise (CCW) rotation, the angular
position of the system can be monitored using the key presented in Table 4. The numbers
listed in the column on the left refer to the state recorded at the ith time point, and the top

column lists the state of the (i+1)th time.

Table 4. Encoder state changes and their meaning

state(i+1)
1 2 3 4
1 0 + NA -
-:"_I 2 - 0 + NA
] 3 NA - 0 +
(7]
4 + NA - 0

A positive (+) sign indicates the angular position has increased by an amount equal to the
encoder resolution, while a negative (-) sign indicates the position has decreased by the
same amount. If the state remains the same across two successive data points, it is
assumed that the angular position is unchanged. There are also several cases that are not
applicable (NA), which means that it is impossible to progress from the ith state to the
(i+1)th states without skipping states. In order to ensure that all states are counted, the
time interval between sampled data points must be less than the time it takes to rotate A&
degrees. For example, if the maximum rotation rate is /4 rad/s, then the minimum

sampling rate that guarantees each encoder state will be detected is

O /4 rad/s|180° |_

o = % = =1250 Hz (65)
A6 0036 |zrad|
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Initially, it is assumed that the prescribed maximum angular speed in (65) is an
acceptable upper bound for the iMachine. In addition, it is desired to detect two or more
points within each state. Therefore, the minimum sampling rate was set to 2500 Hz, and
later tests confirmed that this meets the specifications described here.

The encoder bore size is 10 mm, which defines the diameter of the necessary step
size on the bottom of the shaft. The housing mounts to a plate that is rigidly attached to
the bottom structural frame of the iMachine. A picture of the mounted setup is shown in

Figure 20.

Figure 20. Encoder mounted to bottom of iMachine frame

2.3.6.3 LabJack U6 DAQ Device

The data acquisition device (DAQ) that was selected for this project is the U6
(LabJack Corporation, Lakewood, CO). It has 14 analog input (Al) channels and 20
digital 1/0 (DI) channels. There are several software programmable gains and varying Al

ranges. This is sufficient for the iMachine, which only requires 3 single-ended Al
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channels for the load cells and 2 DI channels for the quadrature encoder output.
Instrumentation amplifiers are used to convert the differential signals from the load cells
to single-ended signals. The analog input range of +0.1V is used to increase resolution
since the load cell outputs is on the order of mV. The U6 device can stream input data at
rates up to 50 kHz, which is more than enough for the predicted requirements of the
iMachine hardware described previously. It supports most programming languages and
connects to a personal computer (PC) via USB cable. The LabJack U6 device is pictured

below in Figure 21.

LabJack U6

PEVEH SSOY POET VEE TOEE LEAS

21. LabJack U6 DAQ device

P !

Figure

2.3.7 Software

2.3.7.1 LabVIEW: Data Acquisition

A graphical user interface (GUI) was developed using LabVIEW software
(National Instruments Corp., Austin, TX). The purpose of the GUI is to properly stream
data from the LabJack U6 and write the important data arrays to a comma-separated

values (CSV) file for use with other software. LabVIEW uses code functions provided in
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LabJack’s dynamic linked library (DLL) to properly configure the DAQ device and
stream the data according to controllable parameters. The GUI is programmed to display
the weight of the system on the load cells, the location of the system CG with respect to
the axis of rotation, and the angular position of the platform in real time. Figure 22 shows
the LabVIEW iMachine GUI, and Figure 23 displays a portion of the block diagram for

the code.
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2.3.7.2 MATLAB: Data Analysis

Once the test data has been acquired using the LabVIEW GUI, it is processed and
analyzed using a series of functions developed in MATLAB software (The MathWorks
Inc., Natick, MA). The functions draw on the theory developed previously in this thesis
and the measurement approach outlined in the next chapter to calculate the desired

moment of inertia term.

24  Summary
This chapter has delineated the design selection, theoretical inertia calculations,
and component specification for the iMachine. A picture of the final constructed device is

illustrated in Figure 24.

Figure 24. iMachine in rotation
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CHAPTER 3

MEASUREMENT APPROACH

Now that the theory has been described and the design components detailed, this
chapter discusses the specific measurement approach for using the iMachine effectively.
In the sections that follow, the test procedures and calculations will be presented that are
utilized to solve for the mass, location of the center of mass, and moment of inertia of a

manual wheelchair.

3.1 Mass
The first portion of the test procedure is carried out under static conditions. To
begin, the mass of the platform is read and recorded using the LabVIEW GUI. Then, the
wheelchair is fixed to the appropriate linear bearings on the positioning platform using

cable ties. The total system mass is now recorded. The mass of the wheelchair, m,,., is

calculated by taking the difference of the two measurements,

My =My —M

sys platform

(66)

where mg, is the mass of the wheelchair and platform, and m Is the mass of the

platform

platform only.

3.2 Center of Mass Coordinates
The center of mass is located by summing the moments about x and y-axes as

shown in Figure 10,

> M, =0:F,d, —Fgd,sin30° —F.d.sin30° - F, Y, =0

o o (67)
DM, =0:Fyd, cos30° —F.d, c0s30° +F, X =0

total
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where (X,,Y, ) are the center of mass coordinates for the entire system, F,,Fg,and F,

are the load cell forces, and the total weight is given by

F

total — I:A + I:B + FC (68)
Even though the design calls for each of the load cells to be equidistant from the center of

the disk, measurements demonstrated that this is not true, so d,,d;,and d. are used to

represent the radial distance from each load cell to the axis of rotation. Solving for the

location of the center of mass,

(F.d. —Fgzdg)cos30° F,d, —(Fgdg +F.d.)sin30°
Xg = » Yo = ; (69)
Fo+Fg +F¢ Fo+Fg +F¢

Therein, if the distances are measured by hand, the total system CG can be located by
simply using the three load cell measurements. It is important to note that results in (69)
refer to the entire system that is on top of the load cells, not just the wheelchair. In the
next section, the location of the wheelchair CG alone will be derived concurrently with

measuring the moment of inertia.

3.3 Moment of Inertia
At this point, the wheelchair can be repositioned on the disk by moving the linear
bearings along the aluminum extrusions of the platform. In this way, the location of the
system center of mass can be driven to approximately zero. The purpose of centering the
system CG is to reduce the stress on the shaft and the effect of rotating imbalances on the
measurement. This concludes the static analysis portion of the test. In the dynamic
portion of the test, the disk/platform/wheelchair assembly may be given an initial angular

displacement, &,, and released from rest. However, the researchers found this approach

to be difficult because of the inability to hold the platform still at an initial angular
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displacement. In practice, therefore, the system was given an initial angular velocity, v,,

from an angular position equal to zero. The output signal is much cleaner using this
approach, so this method was followed for the remainder of the tests presented in this
thesis. The system will oscillate freely about the center of the disk, and the encoder
measures the angular position as a function of time. A plot of the angular position is
qualitatively similar to the simulation shown in Figure 25 below, which is for the case of
release from an initial angle. From the recorded data, the natural period can be
determined using either time-domain or frequency-domain techniques, which are

described below.
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Figure 25. MATLAB simulation of typical second-order underdamped transient response



3.3.1 Time-Domain Methods

The first method for determining the natural period of oscillation is counting the
critical points of the response. If zero crossings are counted, then the damped period
equals the difference between every three points. If maxima or minima are counted, then
the damped period is equal to the difference between successive points. The damping
ratio can be found experimentally by comparing the ratio of successive maxima and

solving for the log decrement, ¢, using the equation

X; 2ng
o=I = 70
n[xmj g (70)

;s are the jth and (j+1)th amplitude of successive maxima. Rearranging

where X i and x

the above equation to solve for the damping ratio yields

[=—2 (71)

- Jar? 15

Then, the natural period of oscillation can be calculated using (35).

3.3.2 Frequency-Domain Methods

The second method for finding the natural period of oscillation is to perform a
Fast Fourier Transform (FFT) on the data. An FFT is simply an efficient algorithm that
performs a Discrete Fourier Transform (DFT), which transforms discrete-valued time

data into complex amplitudes in the frequency domain using the equation

N-1

G, =) g, exp(—Zni%} k=01,.,N-1 (72)

n=0
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where G, is the kth Fourier coefficient, g, is the kth data point in the time domain, and

N is the number of data points. The frequency associated with each Fourier coefficient
can be computed as follows

o, =Ko, = @ (73)

where @, is the fundamental frequency, and T is the length or duration of the data record.
The algorithm assumes that the discrete time data repeats every T seconds and that N data
points refers to one period. The highest frequency that can be computed is called the

Nyquist critical frequency, which is equal to the (N/2)th harmonic, or
=50 (74)

A plot of the frequency spectrum of a free response should reveal a dominant frequency
that is very close to the maximum-response frequency in a harmonically-driven SDOF

system. In a system with viscous damping, the complex frequency response is given by

D(r¢)=—r——r, 1= (75)

T142icr—r? w
where r is the ratio between the excitation and natural frequencies. Ginsberg [15] solves
for the frequency at which the maximum complex amplitude occurs, and the result is

r= (1-2(2)]/2 for max(]D|) (76)

To ascertain the value of the damping ratio for the system, let us first examine the
frequency response of the system, an example of which is illustrated in Figure 26. The
half-power points are the frequencies that correspond to the 70.7% of the maximum

amplitude. The bandwidth of the system, Aw, is defined as the difference between the
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two half-power points. The quality factor (QF) is a measure of the narrowness of the

maximum peak, and for a lightly damped system it can be estimated as [15]:

QF = Z’w ~ % (77)

Therefore, if the natural frequency is known and the bandwidth is measured, the damping

ratio can be calculated from

{~— (78)
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Figure 26. Sample frequency response of SDOF system showing half-power points

For systems with light damping, the peak frequency is approximately equal to the natural

frequency. For systems with structural damping, the peak frequency is always equal to
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the natural frequency, regardless of the structural damping loss factor. The natural period

of oscillation is related to the natural frequency in the following manner,

0 =— (79)

3.3.3 Solving for the Inertia of the Manual Wheelchair

Once the natural period of oscillation is known, the moment of inertia can be
calculated using (34). It is important to note that the inertia calculated here refers to the
moment of inertia of the entire system about the axis of rotation. In order to find the
moment of inertia for the wheelchair alone, we must consider the inertia of each system

component; that is,
o] o] o (0]
(I 7z )sys = (I 2z )disk + (I 7z )platform + (I 7z )WC (80)
where, in general, ('2)c refers to the moment of inertia of the component C about the z-

axis passing through point O. In order to determine (|g) the wheelchair is removed,

wcC !
and the dynamic test is executed again. It is important that the platform configuration
remain unchanged during this process so that its mass distribution is uniform across tests.
When the moment of inertia is calculated a second time, it will include the same

components as described by (80) with the exception of the wheelchair inertia; that is,

(I 2 )sys,z = (I zoz )disk + (I 2 )platform (81)
Therefore, the moment of inertia of the wheelchair can be calculated as
(I 2 )WC = (I 2 )sys - (I z? )sys,z (82)

However, the analysis is not yet complete because the point O is not on the vertical axis

passing through the wheelchair’s center of mass. To demonstrate this concept, Figure 27-
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Figure 30 track the location of the center of mass of each component throughout the test.
For simplicity, assume that both the platform and the wheelchair are point masses with
magnitude equal to their respective total mass and located at their respective center of
mass. Also, for this example, assume that the wheelchair is occupied such that the mass
of the wheelchair is greater than the mass of the platform. Finally, assume that the disk is
inherently centered about the origin so that its inertia calculation does not require the

parallel axis theorem.

¥
. mpl&tfi:unn

('xpls yp])
X

9]

Figure 27. CG schematic (initial platform position)

At the beginning of the test, only the platform is detected by the load cells; Figure

27 shows a possible situation where the CG coordinates (x,,,Y,,) are located in Quadrant

pl?

I. Figure 28 illustrates the CG locations when the wheelchair is added to the system.
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Figure 28. CG schematic (after wheelchair is added)

Once again, the position of the wheelchair (Xyc;, Ywei)- 1S Somewhat arbitrary in

this figure, but it is assumed that the CG is biased toward the negative y-direction because
the heavier drive wheels are located toward that end. Note that neither of the coordinates
need to be equal for the wheelchair and platform, although it is possible that the x-
coordinates be the same, which would simplify the problem. At this point, the wheelchair
is repositioned on the bearings to (ideally) zero the system CG. Figure 29 shows this

concept, and several observations can be made accordingly.
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(Xwea > Ywea)

Figure 29. CG schematic (after moving wheelchair and platform to zero system CG)

Note that the center of mass of the platform moves as well, but in smaller
increments. This effect happens because an arbitrary movement of the system center of
mass corresponds to movement of the entire wheelchair but only partial movement of the

platform (the linear bearings). It can also be seen that

p
AX wC AyWC

AX A
< (83)

because more platform mass (the aluminum extrusion connecting the linear bearings) is
moved during a repositioning in the y-direction than the x-direction. Also, even though
the platform is assumed to be symmetric about the yz-plane, the figure assumes a small
asymmetry in the wheelchair mass distribution about this plane. If the wheelchair were

indeed aligned symmetrically about the yz-plane, as is the ideal case, then both x,,., and

X,, would be zero. The most distinguishing characteristic of Figure 29, though, is that the
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wheelchair center of mass is not located at the origin. Still, the calculated moment of
inertia in (74) refers to the configuration shown in this figure. To resolve this challenge,
simply record the system center of mass location when the wheelchair is removed (Figure

30), which corresponds to (X, Y,;,) -

mpl&tfnrm
(x p2 2 yp2 )

0

Figure 30. CG schematic (after removing wheelchair)

The coordinates (X, Ywe,) €an be determined by taking a sum of the moments

in Figure 29,

Z M x = O . _mplatform gypZ + mWC gyWCZ = MgYCG

(84)
Z M y = 0: Myjattorm 9oz — My WXier = _ngce

and solving for the wheelchair coordinates
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m X, + MX

_ platform “*p2
XWCZ - m
_ mplatform yp2 + MYCG
Ywe2 =
mWC

or, if X =Y. =0, which was the goal, we have the relation

m

platform
Xwez = Xp2
mWC
(86)
_ mplatform
Ywee = p2
mWC

Using the Parallel Axis Theorem from (19), we can solve for the desired moment of

inertia of the wheelchair, (1, ).,

(I 7z )WC = (I 2 )WC - rnWCdWCZ2 (87)

where

‘= chz2 + )’Wcz2 (88)

dWCZ
Now, all of the desired inertial parameters of the manual wheelchair have been

determined, and the iMachine test procedure is complete.
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CHAPTER 4

CALIBRATION

The purpose of this chapter is to detail the methods and results for calibrating the
load cells and springs. By analyzing the factors that influence the inertia measurement,
potential sources of error can be detected and addressed to increase the overall accuracy

of the machine.

4.1  Load Cell Calibration

Each of the load cells was calibrated to accurately determine the scaling factor
between the voltage output and the force input. The procedure involved adding known
weights on top of the transducer and recording the voltage output. The range of weights
that was tested is approximately 0-50 Ibs (0-22.7 kg), and these values were acquired
using a 0.05 Ib-resolution scale. This means that the resolution-based uncertainty in the
force measurement is 0.025 Ib (0.01134 kg), which is 0.05% of the total range. Weights
were incremented first, then decremented to check for hysteresis effects. Figure 31-
Figure 33 plot the calibration results. The data has been fitted with a linear regression line
that has a y-intercept set to zero. The slopes of the linear regression lines are summarized
in Table 5, which lists the calibration factors for converting mV signals to kg. Converting
to kg rather than N means that the measurement will be in mass rather than weight. This

takes the acceleration due to gravity into account ahead of time.

Table 5. Load cell calibration factors

Load Cell ID A B C
Cal. Factor 0.092 | 0.096 | 0.095
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Force (kg)

Force (kg)

25.00

20.00 -

15.00 A
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0.00 ‘
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Unit Data (mVdc)

Figure 31. Load cell A calibration data
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20.00 -

15.00 -

10.00 -
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Figure 32. Load cell B calibration data
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Figure 33. Load cell C calibration data

Clearly, the data is highly linear in all three cases, and the R’values are all
greater than 0.999, so it is assumed that there is minimal error in the individual load cell
measurements.

After running several tests, it is apparent that the DC offset in the transducer
signals can vary slightly between runs. As a result, a tare control has been added to the
LabVIEW GUI that instantaneously zeros the readings on all load cells. This should

decrease the effect of an inconsistent voltage offset on the error in the measurement.

4.2  Spring Calibration
The spring calibration was performed in situ so that any uncertainty in the normal

operation of the iMachine would be taken into account in the determination of the spring
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rate. To accomplish this test, two diametrically-opposed steel bricks were placed on the
device as shown in Figure 34. Not shown in the figure are the X-Y platform and a
wooden board, both of which are mounted to the disk. The platform is used to simulate
actual testing conditions, and the board has marked dimensions to improve measurement
accuracy. For simplicity, the inertia of the system excluding the bricks will be referred to

(0]
Izz

as ( )disk in the calibration analysis. Each brick has the mass and geometric properties

listed in Table 6.

N N

Figure 34. Model of spring calibration test

Table 6. Steel brick mass and geometric properties

Parameter | Symbol | Units | Value
mass M prick kg 5.52
length | mm 242.96
width w mm 76.22
depth d mm 38.16
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For the calculations performed in this calibration, the theoretical inertia of each

brick about its CG is used according to the equation

(I 7z )brick = %(I ’ + W2 ) (89)

When the iMachine is run with the system in Figure 34, the measured moment of inertia

corresponds to
(I 2 )sys = (Iz(z)disk + 2(' zcz) )brick (90)

where the inertia terms are about the z-axis passing through the origin. To relate the third
term in (90) to the theoretical inertia of the brick in (89), use the parallel axis theorem as

follows

2
(I 2 )brick = (I 24 )brick + mbrick (S + gj (91)

where s is the measured distance from the edge of the brick to the axis of rotation. The

measured inertia can be related to the system dynamics by

(12),, = Kar® (92)

where k. is the effective linear spring rate of the system and is equal to twice the spring

rate of each individual spring. Substituting (89), (91), and (92) into (90) yields the

following result,

Wy,

2
keﬁz\)z = (IZOZ)disk +2|:%(|2 +W2)+ mbrick(s—l—%J :| (93)
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If the test is executed at two different distances, s, ands,, then two natural frequencies
arise, @, and w,. Using the relationship established in (93), these parameters can be

compared by taking the ratio

2
m,.. w
0] brick {§2 2
a)lz (I z )disk + 6 (I +W )+ 2Myiek [Sz "‘2)

o . _ (94)
i (I zcz) )disk + Pk (I ? + W2 )+ 2mbrick (Sl + Wj
6 2
which, when rearranged, can be used to solve for the inertia of the disk as follows,
Myvick (12 2\ 2 2 w)’ 2 w)* 2
T(I +w )(a)z -] )+ 2My il S, +E @y —2Myi| S1+— | @)
(I n )disk = (95)

2 2
(a)l _a’z)

Once the disk inertia has been calculated, it can be substituted into (93) to solve for the
effective spring rate.

For this calibration, the two distances that were tested are 50.8 mm (2 in) and 76.2
mm (3 in). Each distance was tested twenty times for reliability, and the natural
frequency results for each of the four methods described in the previous chapter are listed

in Table 7 and Table 8, where the columns “zero”,

maxima”, “minima”, and “fft” refer
to determination of the natural frequency using zero crossings, time between consecutive
maxima, time between consecutive minima, and peak FFT methods, respectively. The
mean and standard deviation of these measurements is provided in Table 9. All of the
natural frequency estimation methods appear to be very precise and repeatable, with the

worst standard deviation equal to 0.00869 rad/s.
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Table 7. Natural frequency (rad/s) based on time-domain and frequency-domain methods

(s1 =50.8 mm)
run # zero maxima | minima fft
1 5.569 5.546 5.558 5.536
2 5.546 5.532 5.532 5.519
3 5.529 5.514 5.521 5.508
4 5.545 5.537 5.533 5.517
5 5.546 5.531 5.535 5.519
6 5.545 5.536 5.533 5.515
7 5.543 5.532 5.525 5.517
8 5.552 5.535 5.535 5.518
9 5.551 5.537 5.532 5.517
10 5.548 5.539 5.542 5.519
11 5.542 5.532 5.526 5.517
12 5.555 5.547 5.539 5.527
13 5.548 5.535 5.532 5.519
14 5.553 5.542 5.536 5.522
15 5.546 5.528 5.532 5.518
16 5.554 5.542 5.543 5.521
17 5.566 5.556 5.548 5.531
18 5.553 5.537 5.543 5.521
19 5.552 5.536 5.534 5.522
20 5.538 5.534 5.531 5.517
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Table 8. Natural frequency (rad/s) based on time-domain and frequency-domain methods

(52 =76.2 mm)
run # zero maxima | minima fft
1 5.520 5.494 5.510 5.486
2 5.509 5.497 5.495 5.479
3 5.519 5.505 5.495 5.488
4 5.522 5.513 5.506 5.491
5 5.500 5.483 5.486 5.471
6 5.497 5.488 5.490 5.470
7 5.503 5.483 5.491 5.474
8 5.499 5.489 5.482 5.472
9 5.505 5.485 5.491 5.476
10 5.489 5.478 5.480 5.468
11 5.505 5.490 5.499 5.473
12 5.503 5.495 5.490 5.475
13 5.510 5.489 5.496 5.478
14 5.499 5.494 5.491 5.478
15 5.502 5.494 5.488 5.480
16 5.501 5.490 5.489 5.471
17 5.511 5.500 5.490 5.477
18 5.505 5.492 5.496 5.473
19 5.508 5.494 5.487 5.475
20 5.509 5.489 5.495 5.478
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Table 9. Mean and standard deviation for natural frequency measurements

zero

maxima

minima

fft

mean(s,)

5.54904

5.5363

5.53551

5.519912

SD(s,)

0.00869

0.00843

0.00835

0.005888

mean(s,)

5.50581

5.49213

5.49241

5.476734

0.00807

0.00788

0.00705

0.005994

SD(s,)

The average natural frequencies for each estimation method were used along with
the brick properties found in Table 6 to solve for the inertia of the system in (95). The

results are listed in Table 10.

Table 10. Moment of inertia of the disk system (kg-m?)

minima fft
3.469 3.452

maxima
3.381

zero
3.467

The values listed in the table above were substituted back into (93) along with the

parameters already given to solve for the effective spring rate of the system, k. . The

moment arm of the spring force, R, is equal to the radius of the disk, which is 0.29845 m
(11.75 in). To maintain consistency, the effective spring rate was calculated four times
for each test at both distances, one corresponding to each of the time-domain and
frequency-domain techniques. Each natural frequency was paired with the disk inertia of
the same method — that is, only the natural frequencies that were calculated via FFT use
the disk inertia that was calculated via FFT. The effective spring rates are shown in Table

11 and Table 12, and the statistical mean and standard deviation appear in Table 13.
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Table 11. Effective spring rate (N/m) based on time-domain and frequency-domain
methods (s; = 50.8 mm)

run# | zero | maxima| minima fft

1 1258.28] 1218.33| 1253.78| 1238.05
2 1248.04| 1212.24( 1242.18| 1230.48
3 1240.47| 1204.27| 1237.25| 1225.84
4 1247.68| 1214.11 1242.55| 1229.65
5 1247.98| 1211.65| 1243.57| 1230.89
6 1247.54| 1213.77| 1242.72| 1228.82
7 1246.66| 1212.18| 1239.20| 1229.64
8 1250.68| 1213.47| 1243.62| 1230.09
9 1250.40| 1214.27| 1242.12| 1229.68
10 | 1249.10| 1215.20| 1246.66| 1230.90
11 1246.42| 1212.03| 1239.32| 1229.64
12 | 1251.92| 1218.60| 1245.55| 1234.24
13 1248.82| 1213.24| 1242.05| 1230.47
14 | 1251.16| 1216.36( 1243.80| 1232.15
15 | 1248.00| 1210.18| 1242.31| 1230.02
16 1251.56| 1216.60( 1247.20| 1231.74
17 | 1256.99| 1222.87| 1249.58| 1235.95
18 1251.30| 1214.19] 1247.04| 1231.74
19 | 1250.63| 1213.91( 1243.30| 1232.15
20 1244.51| 1212.89] 1241.79| 1229.61
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Table 12. Effective spring rate (N/m) based on time-domain and frequency-domain
methods (s; = 76.2 mm)

run# | zero | maxima| minima fft

1 1255.72| 1214.89| 1251.66| 1235.09
2 1250.76| 1216.06| 1244.85| 1232.06
3 1255.52| 1219.81| 1244.98| 1236.30
4 1256.74| 1223.28( 1250.02| 1237.57
5 1246.72| 1209.94| 1241.04| 1228.29
6 1245.33| 1212.29| 1242.67| 1228.27
7 1248.19( 1210.08( 1243.17| 1229.97
8 1246.16| 1212.49] 1239.01| 1229.11
9 1248.90| 1210.75( 1243.10] 1230.81
10 | 1241.84| 1207.82| 1238.39| 1226.99
11 1249.25| 1213.11| 1246.67| 1229.59
12 | 1248.05| 1215.34| 1242.85| 1230.37
13 1251.47| 1212.62| 1245.32| 1231.66
14 | 1246.51| 1214.92( 1242.96| 1231.63
15 | 1247.83| 1214.78| 1241.99| 1232.49
16 1247.40| 1213.10] 1242.16| 1228.71
17 | 1251.63| 1217.29| 1242.85| 1231.24
18 1249.03| 1214.11| 1245.45| 1229.55
19 | 1250.24| 1215.01( 1241.41| 1230.43
20 1250.85| 1212.66| 1245.06| 1231.66
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Table 13. Mean and standard deviation (N/m) for ket measurements

zero

maxima

minima

fft

mean(s,)

1249.407

1214.018

1243.78

1231.087

SD(s,)

3.9144

3.69623

3.756386

2.627633

mean(s,)

1249.406

1214.017

1243.78

1231.088

SD(s,)

3.664118

3.487711

3.194249

2.696008

To understand these results, it is necessary to compare the spring rate to that
provided by the manufacturer. A summary of the comparison, including relative percent
error estimates, is given in Table 14. It is difficult to draw conclusions regarding the
accuracy of the calibrated results, but they are relatively close to the data given by the
manufacturer, which is expected. Validation tests are needed to examine the effect of the
calibrated spring rate on the accuracy of the moment of inertia measurement, and the

results of these tests will be presented in the next chapter.

Table 14. Comparison of calibrated spring rate to manufacturer-provided data

k (Ib/in) k (N/m) kett (N/m) | % error
zero 3.57 624.70 1249.41 6.17
maxima 3.47 607.01 1214.02 3.16
minima 3.55 621.89 1243.78 5.69
fft 3.51 615.54 1231.09 4.61
mfr. 3.36 588.43 1176.85 -
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CHAPTER 5

TESTING AND RESULTS

This chapter begins with an analysis of validation tests for each of the inertial
parameter measurements. For each parameter, objects with known mass properties were
tested and the empirical results are compared to the theoretical predictions using closed-
form formulas. Then, a manual wheelchair was tested and the inertia measurement
juxtaposed against the previous test results. Conclusions regarding the accuracy and
reliability of results as well as a discussion of potential sources of error are presented in

the following chapter.

5.1  Mass Validation

Now that the load cells have been calibrated individually, the next step is to check
the accuracy of the mass measurement when all three load cells are working as a system.
To achieve this goal, comparisons were made between the measurements of the load cells
and a commercially-available scale. The scale has a resolution of 0.02 Ib, making the
resolution-based uncertainty 0.01 Ib. The platform was weighed beforehand and its mass
IS 19.00 kg. Then, the load cells and platform were mounted to the disk. Next, the mass
was monitored according to the load cell readings, and known weights were added
incrementally. The data is presented below in Table 15. The error equations are given by

eabs = qmeasured - qactual (96)

— |qmeasured ~ Qacrual

e (100%) (97)

rel
q actual
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where e, is the absolute error, e, is the relative percent error, q,...s 1S the measured
data parameter, and Q.. IS the actual data parameter. In this case, the parameter is the

mass, and the actual value refers to the scale reading.

Table 15. Accuracy of load cell mass measurement

Scale (kg) Load Cells (kg) Absolute Error (kg) | Percent Error (%)
19.00 19.07 0.07 0.368
19.90 19.90 0.00 0.000
20.80 20.90 0.10 0.481
21.70 21.98 0.28 1.290
22.60 22.86 0.26 1.150
24.50 24.69 0.19 0.776
25.40 25.57 0.17 0.669
26.30 26.63 0.33 1.255
27.20 27.53 0.33 1.213
28.10 28.33 0.23 0.819
29.98 30.09 0.11 0.367
30.88 31.01 0.13 0.421
31.78 31.97 0.19 0.598
32.68 32.90 0.22 0.673
33.58 33.83 0.25 0.744
35.50 35.90 0.40 1.127
36.40 36.80 0.40 1.099
37.30 37.61 0.31 0.831
38.20 38.52 0.32 0.838
39.10 39.38 0.28 0.716
41.00 41.28 0.28 0.683
41.90 42.23 0.33 0.788
42.80 43.08 0.28 0.654
43.70 44.04 0.34 0.778
44.60 44,92 0.32 0.717

AVERAGE 0.24 0.762

The data looks fairly good, with an average relative accuracy of 99.24%. The absolute
error ranges from 0.00-0.40 kg, and the load cell measurement is always higher than the
predicted scale value. During the test, it was noted that the load cell mass reading varied

depending on where the mass was located. The weights were placed arbitrarily during the
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test, but perhaps a more calculated strategy could shed light on the relationship between
mass position and the associated error.

To investigate this hypothesis, the platform was set in a symmetric configuration
so that the CG measured to be approximately zero. A small mass was placed at different
locations on the platform and the mass recorded. Figure 35 shows the different

configurations used, with each number identifying a position of the small mass.

<l — G [ \ v l..i
Figure 35. Platform configurations for mass validation test

The actual mass value is 20.12 kg for this test, and the results are presented in
Table 16. The range of absolute error for this test is 0.11 kg, which equates to 0.547% of
the expected value. This is an encouraging result; the maximum relative percent error is

0.348%, and all configurations provide accuracy of greater than 99.6%.
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Table 16. Error in mass readings due to position on platform (20.12 kg mass)

Configuration | Measured Value (kg) | Absolute Error (kg) | Relative Error (%)
1 20.09 -0.03 0.149
2 20.08 -0.04 0.199
3 20.09 -0.03 0.149
4 20.12 0.00 0.000
5 20.13 0.01 0.050
6 20.08 -0.04 0.199
7 20.09 -0.03 0.149
8 20.11 -0.01 0.050
9 20.12 0.00 0.000
10 20.11 -0.01 0.050
11 20.09 -0.03 0.149
12 20.10 -0.02 0.099
13 20.14 0.02 0.099
14 20.12 0.00 0.000
15 20.13 0.01 0.050
16 20.14 0.02 0.099
17 20.14 0.02 0.099
18 20.15 0.03 0.149
19 20.14 0.02 0.099
20 20.13 0.01 0.050
21 20.18 0.06 0.298
22 20.19 0.07 0.348
23 20.18 0.06 0.298
24 20.15 0.03 0.149
25 20.13 0.01 0.050

AVERAGE 0.01 0.121

To understand how the error changes based on the position of the mass on the platform,
Figure 36 illustrates an interpolated surface plot of the absolute error distribution across
the platform dimensions. The most accurate measurements occur in Quadrant Il, while
the worst occur in Quadrant I. To see if the amount of mass in these positions affects the
error, the test was repeated using heavier weights. The actual mass value is 24.73 kg, and

the results are listed in Table 17.
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Figure 36. Interpolated surface plot of absolute error distribution (in kg) on platform
(20.12 kg mass)

77



Table 17. Error in mass readings due to position on platform (24.73 kg mass)

Configuration | Measured Value (kg) | Absolute Error (kg) [ Relative Error (%)
1 24.40 -0.33 1.334
2 24.42 -0.31 1.254
3 24.47 -0.26 1.051
4 24.59 -0.14 0.566
5 24.57 -0.16 0.647
6 24.51 -0.22 0.890
7 24.54 -0.19 0.768
8 24.60 -0.13 0.526
9 24.71 -0.02 0.081
10 24.74 0.01 0.040
11 24.67 -0.06 0.243
12 24.66 -0.07 0.283
13 24.74 0.01 0.040
14 24.83 0.10 0.404
15 24.82 0.09 0.364
16 24.81 0.08 0.323
17 24.85 0.12 0.485
18 24.90 0.17 0.687
19 24.86 0.13 0.526
20 24.85 0.12 0.485
21 24.92 0.19 0.768
22 24.97 0.24 0.970
23 24.97 0.24 0.970
24 24.95 0.22 0.890
25 24.95 0.22 0.890

AVERAGE 0.0020 0.619

In this case, the range of absolute error is 0.57 kg, which equates to 2.305% of the
expected value. Most configurations are greater than 99% with the maximum relative
percent error for the data set being 1.334%. These results are slightly higher in error than
the previous test, which begs the question of whether the relative percent error increases
with increasing mass. Figure 37 displays the surface plot of the interpolated absolute
error for the test with a larger mass. The distribution is fairly similar to Figure 36, and

still indicates that placing the mass in Quadrant 1l produces the greatest accuracy.
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Figure 37. Interpolated surface plot of absolute error distribution (in kg) on platform
(24.73 kg mass)

There are many possible reasons for the error trend in Figure 37. One explanation
is poor calibration of the load cells, specifically B and C, since the error tends to get
worse as the mass is moved closer to them. However, the previous calibration results
exhibit high correlation and do not reflect the inaccuracy expected if this were the cause
of error. Another potential explanation of the error trend is that something in the
structural design is altering the load seen by the transducers. The only interface between
the platform and the disk other than the load cells is the stability rods to prevent lateral
motion. If binding occurs between the rods and the copper bearings, the rods will support
some of the load. However, this should cause the load cells to underestimate the mass,

which is not the case for most of the error. Whatever the cause, the error is sufficiently
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small for this measurement and most of the mass tested on the iMachine will not be

concentrated in the red regions of the previous figure.

5.2  Center of Mass Validation

A static test was performed to determine the error in the calculation of the center
of mass. The test object was a stack of steel blocks, weighing 16.53 kg. A wooden board
with marked distances from the center along the x and y coordinate axes was situated on
the platform in a configuration that placed the system CG at the origin of the disk. Then,
the centroid of the test object, determined theoretically using closed-form equations, was
lined up with the board markings. The actual coordinates of the object’s CG were
recorded according to the board. To calculate the measured CG coordinates of the object,
it is necessary to recall that the load cell-based CG measurement includes the weight of
the system including both the test object and the platform. To illustrate this concept,

consider the diagram shown in Figure 38.

F
A FB
A_G B |
— xl—»
* x2 :
Fi‘:ntal

Figure 38. Static analysis of forces on iMachine platform
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Summing the moments about point A and assuming static equilibrium,
M a=01 FegX, =FguX (98)
where the total force is equal to the sum of F, and F;. Solving for the moment-arm of

the force at point B,

2 — M 1= I:ratio Xl (99)
I:B
Similarly, for the y-coordinate,
F.+F
Y, = % Y1 = Fraio Vi (100)
B

Now, in the given problem, the force acting at B is the weight of the test object, while
the force acting at A is due to the platform. The total force acting at G, which
corresponds to the system CG, is the reaction force output by the load cells. The location

of the test object CG corresponds to (x,,Y,).

For this test, the distance from the axis of rotation to the edge of the test object
was varied between 10 mm and 150 mm in 20 mm-increments. Note that, by dividing the
numerator and denominator in (99) and (100) by the acceleration due to gravity, the force
ratio can be written in terms of masses, which is what the iMachine measures. The ratio
was found empirically by recording the mass measurement before and after loading the
test object on the platform, and plugging the appropriate values into (99) and (100). The
test data is summarized in Table 18. Using the same methods as the mass measurement
validation test, the mass relative error is 0.961% for this test. The percent error for both

coordinates was calculated using equation (97).
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Table 18. Center of mass validation test results

x_actual (m) | y_actual (m) | x_CG (m) | y_CG (m) | F_ratio | x_meas (m) | y_meas (m) | %error_x | %error_y
0.0000 0.0483 -0.000757 | 0.020000 | 2.37133| -0.001795 | 0.047427 - 1.8082
0.0000 0.0683 -0.001277 | 0.028000 | 2.37717| -0.003037 | 0.066561 - 2.5466
0.0000 0.0883 -0.001128 | 0.036190 | 2.38262| -0.002688 | 0.086226 - 2.3488
0.0000 0.1083 -0.001212 | 0.044531 | 2.38217| -0.002887 | 0.106080 - 2.0503
0.0000 0.1283 -0.001302 | 0.052573 | 2.38676| -0.003108 | 0.125479 - 2.1991
0.0000 0.1483 -0.001024 | 0.061049 | 2.38594 | -0.002444 | 0.145659 - 1.7810
0.0000 0.1683 -0.001310 | 0.069438 | 2.38837| -0.003129 | 0.165843 - 1.4596
0.0000 0.1883 -0.001371 | 0.077877 | 2.39380| -0.003282 | 0.186421 - 0.9979
0.0483 0.0000 0.019865 | -0.001781 | 2.36208| 0.046923 | -0.004207 | 2.8506 -
0.0683 0.0000 0.028609 | -0.001692 | 2.36057| 0.067533 | -0.003995 | 1.1228 -
0.0883 0.0000 0.037394 | -0.001870 | 2.34533| 0.087701 | -0.004385 | 0.6780 -
0.1083 0.0000 0.045868 | -0.001805 | 2.34093| 0.107375 | -0.004226 | 0.8543 -
0.1283 0.0000 0.054552 | -0.001792 | 2.34118| 0.127716 | -0.004196 | 0.4552 -
0.1483 0.0000 0.063306 | -0.001986 | 2.34127| 0.148217 | -0.004649 | 0.0563 -
0.1683 0.0000 0.071508 | -0.002133 | 2.34517| 0.167698 | -0.005001 | 0.3578 -
0.1883 0.0000 0.079853 | -0.002484 | 2.34026| 0.186877 | -0.005814 | 0.7559 -

Initially, the average error for the x and y-coordinates was 0.891% and 3.643%,

respectively. The greatest error occurred when the object CG was near the origin, which

is somewhat expected since the instrument resolution has the most effect when the terms

in the numerator of (69) are approximately equal. Nonetheless, significant error near the

origin is unacceptable since the iMachine test method involves an attempt to drive the CG

coordinates to zero. However, upon retesting at distances in the y-direction of 10 mm and

30 mm (first two rows in the table), the percent error reduced to 1.808% and 2.547%,

respectively, and these are the values that are shown in Table 18. This test was repeated

multiple times with consistent results, so it is assumed that the original results for these

cases were outliers and can be neglected. Therein, the new average error in the

calculation of y-coordinate of the center of mass is 1.99%.

82




53  Moment of Inertia Validation
To validate the moment of inertia measurement, tests are run on objects with
known mass properties, and comparisons are made between the theoretical inertia
predictions and empirical results. The first test object is the same steel brick used during
the spring calibration test, so refer to Table 6 for the mass and geometric properties. The

theoretical inertia can be determined by the equation

(e (101)

I -
theoretical
12

which, when plugging in the values from Table 6, results in I o = 29826 kg - mm?.
The iMachine was run thirty times with and without the brick centered on the
platform. Figure 38 and Figure 39 display the time-domain and frequency-domain

response of the system, respectively, for one of the test runs.

Angular Position (deg)

5 10 15 20 25 20 35 40 45 50
Time (sec)

Figure 39. Time-domain response of iMachine validation test (1 block)
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Figure 40. Frequency-domain response of iMachine validation test (1 block)

It is clear from both figures that the system is lightly damped. To quantify the
damping in the time domain, the log decrement was used. For each run with N peaks, (N-
1) damping ratios were computed by comparing the 1% peak to the ith peak, where i
varies from 2 to N. The mean value was computed for each run, and the average of the
mean across all tests was 0.0092. To quantify the damping in the frequency domain, the
half-power strategy given in (77) and (78) was used. The average peak frequency based
on the FFT is 5.600 rad/s, and the narrow bandwidth yields damping ratios of
approximately 1-2%. Therefore, for both time-domain and frequency-domain methods, it
is sufficient to assume that the damped natural frequency is approximately equal to the
natural frequency of the system. This frequency was calculated using all four of the

techniques outlined in the Measurement Approach chapter, and the results for each
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validation test run are presented in Table 19. Table 20 summarizes these parameters for

the case when the brick was removed from the system.

Table 19. Mass properties and natural frequency for iMachine validation test (one brick)
with brick on platform

Mass (kg) | Center of mass (m) Natural frequency (rad/s)
run# Mgys Xcs Yeo zero | maxima | minima fft

1 28.3455 0.0002| -0.0002|] 5.6298| 5.6159| 5.6233] 5.6005
2 28.3494 0.0003 0.0001| 5.6289( 5.6116| 5.6192] 5.6080
3 28.3467 0.0002 0.0000| 5.6258| 5.6185| 5.6209] 5.6015
4 28.3583 0.0002 0.0001| 5.6422( 5.6257| 5.6333] 5.6136
5 28.3553 0.0002| -0.0001| 5.6065| 5.5968| 5.5991| 5.5918
6 28.3539 0.0002 0.0000| 5.6108( 5.6094| 5.5996] 5.6011
7 28.3504 0.0002 0.0000[ 5.6268( 5.6150| 5.6104| 5.5968
8 28.3580 0.0002 0.0000| 5.6e042| 5.5961| 5.5992] 5.5891
9 28.3531 0.0003| -0.0001| 5.5924] 5.5882| 5.5864| 5.5852
10 28.3775 0.0001| -0.0003| 5.6000f 5.5911| 5.5988| 5.5926
11 28.3687 0.0003| -0.0001| 5.6553] 5.6449| 5.6371| 5.6249
12 28.3790 0.0002| -0.0001| 5.6257| 5.6189| 5.6095| 5.5968
13 28.3715 0.0002| -0.0002| 5.6288] 5.6205| 5.6143| 5.5987
14 28.3651 0.0002| -0.0002| 5.6243] 5.6113| 5.6197| 5.5968
15 28.3845 0.0001 0.0000| 5.6245( 5.6113| 5.6177| 5.6005
16 28.3625 0.0002| -0.0002| 5.6314] 5.6192| 5.6120f 5.6015
17 28.3665 0.0002| -0.0001| 5.6327| 5.6121| 5.6264| 5.6043
18 28.3647 0.0002| -0.0002| 5.6241] 5.6169| 5.6113| 5.5996
19 28.3574 0.0003 0.0000[ 5.6067 5.5993| 5.6068]| 5.5946
20 28.3626 0.0002| -0.0002| 5.6315| 5.6185| 5.6158| 5.6024
21 28.3542 0.0002| -0.0002| 5.6311] 5.6196| 5.6168| 5.6005
22 28.3646 0.0002 0.0000| 5.6089( 5.5989| 5.6008] 5.5955
23 28.3617 0.0002| -0.0001| 5.6306| 5.6143| 5.6199| 5.6024
24 28.3507 0.0003| -0.0002| 5.6353] 5.6153| 5.6199| 5.6052
25 28.3638 0.0002| -0.0002| 5.6357| 5.6242| 5.6244| 5.6089
26 28.3816 0.0002| -0.0001| 5.6061] 5.5947| 5.6012| 5.5964
27 28.3718 0.0002 0.0000{ 5.6036( 5.5982| 5.5935| 5.5954
28 28.3612 0.0003| -0.0002| 5.6007| 5.5974| 5.5956| 5.5926
29 28.3649 0.0003| -0.0001| 5.6299| 5.6165| 5.6139| 5.6042
30 28.3691 0.0002| -0.0001| 5.6134| 5.6014| 5.6014| 5.5993
MEAN | 28.36247| 0.000219| -0.00011( 5.62159| 5.61072| 5.61161| 5.60003
STD.DEV| 0.010136| 0.00005| 0.00008| 0.0146| 0.01233]| 0.01215] 0.00757

85




without brick on platform

Table 20. Mass properties and natural frequency for iMachine validation test (one brick)

Mass (kg) | Center of mass (m) Natural frequency (rad/s)
run# Myjatform Xplatform Yplatform zero | maxima | minima fft
1 22.8246 0.0009 0.0000| 5.6294| 5.6192| 5.6275| 5.6155
2 22.8197 0.0011 0.0000| 5.6493| 5.6417| 5.6363] 5.6231
3 22.8323 0.0010 0.0000| 5.6488| 5.6359| 5.6419| 5.6212
4 22.8257 0.0009| -0.0001| 5.6583| 5.6423| 5.6440| 5.6297
5 22.8265 0.0009| -0.0001| 5.6574( 5.6425( 5.6471] 5.6278
6 22.8316 0.0009 0.0000| 5.6569| 5.6464| 5.6462| 5.6297
7 22.8228 0.0009| -0.0001] 5.6592| 5.6501| 5.6500|] 5.6334
8 22.8216 0.0010f -0.0001| 5.6633| 5.6500| 5.6533| 5.6326
9 22.8240 0.0010 0.0000| 5.6597| 5.6397| 5.6420| 5.6325
10 22.8126 0.0009| -0.0001| 5.6646| 5.6519( 5.6571| 5.6326
11 22.8229 0.0009 0.0000| 5.6434| 5.6327| 5.6371| 5.6276
12 22.8190 0.0009| -0.0001] 5.6503| 5.6362| 5.6420|] 5.6231
13 22.8165 0.0009| -0.0001| 5.6544| 5.6400| 5.6379| b5.6297
14 22.8118 0.0008| -0.0001| 5.6520| 5.6477| 5.6383| 5.6278
15 22.8211 0.0009 0.0000| 5.6445( 5.6347| 5.6355| 5.6286
16 22.8260 0.0010| -0.0002| 5.6526| 5.6444| 5.6416| 5.6241
17 22.8133 0.0009| -0.0002| 5.6486( 5.6428| 5.6366| 5.6269
18 22.8241 0.0009 0.0000| 5.6594| 5.6441| 5.6399| 5.6325
19 22.8290 0.0010 0.0001| 5.6612( 5.6460| 5.6392| 5.6335
20 22.8158 0.0010| -0.0001| 5.6564| 5.6422| 5.6436| 5.6307
21 22.8087 0.0008| -0.0002| 5.6581| 5.6395| 5.6457| 5.6343
22 22.8238 0.0007| -0.0002| 5.6528| 5.6339( 5.6373| 5.6250
23 22.8206 0.0007| -0.0002| 5.6579| 5.6391| 5.6507| 5.6316
24 22.8264 0.0007 0.0000[ 5.6609( 5.6538| 5.6499]| 5.6372
25 22.8275 0.0007 0.0001| 5.6581| 5.6471| 5.6510| 5.6306
26 22.8120 0.0007| -0.0002| 5.6655| 5.6551| 5.6549| 5.6363
27 22.8170 0.0007| -0.0002| 5.6773| 5.6513| 5.6507| 5.6448
28 22.8156 0.0007| -0.0002| 5.6619| 5.6500| 5.6484| 5.6316
29 22.8353 0.0007| -0.0002| 5.6570| 5.6458( 5.6449| 5.6306
30 22.8259 0.0006| -0.0001| 5.6620| 5.6494| 5.6466| 5.6316
MEAN 22.8218| 0.000866| -0.0001| 5.65604| 5.64318| 5.64391| 5.62987
STD.DEV| 0.006581| 0.000121 0.0001| 0.00846| 0.00753| 0.00671| 0.00543

The measurements exhibit good repeatability, and the natural frequencies are very

similar across estimation methods. As expected, the mass of the system decreases and the
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natural frequency increases when the brick is removed from the platform. To calculate
the mass of the brick, subtract the average mass in Table 20 from the average mass in

Table 19 according to (66). As a result, m,,, equals 5.541 kg for this test, which has

0.375% relative error compared to the measured value using a scale. The next step is to
determine the CG coordinates of the test object with respect to the origin of the disk using
equation (85). Substituting the average values from the tables above, the x and y-
coordinates are 4.688 mm and -0.880 mm, respectively. This means the radial distance
from the brick CG to the axis of rotation is 4.77 mm. The inertia of the system about the
axis passing through the origin of the disk is calculated using the average natural
frequencies in Table 19 along with the manufacturer-provided and calibrated spring rates.
The same is done for the platform data in Table 20, and the results are shown in Table 21
and Table 22. To find the inertia of the brick about the origin of the disk, simply take the
difference between the inertia of the system and that of the platform. The results are
shown in Table 23. Taking into account the parallel axis term due to the brick CG
coordinates being nonzero, the inertia of the brick about its CG is computed and listed in

Table 24.

Table 21. Validation test (one brick): inertia of the system about the disk origin (kg-m?)

Effective Spring Rate Method
mfr zero maxima | minima fft

zero 3.3170 | 3.5215 | 3.4218 | 3.5057 | 3.4699

maxima | 3.3299 | 3.5352 | 3.4350 | 3.5192 | 3.4833

minima | 3.3288 | 3.5340 | 3.4339 | 3.5181 | 3.4822

Natural Frequency
Estimation Method

fft 3.3426 | 3.5487 | 3.4482 | 3.5327 | 3.4967
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Table 22. Validation test (one brick): inertia of the platform about the disk origin (kg-m?)

Effective Spring Rate Method
mfr zero maxima | minima fft

zero 3.2767 | 3.4787 | 3.3802 | 3.4631 | 3.4277

maxima | 3.2917 | 3.4946 | 3.3956 | 3.4789 | 3.4434

minima | 3.2908 | 3.4937 | 3.3948 | 3.4780 | 3.4425

Natural Frequency
Estimation Method

fft 3.3073 | 3.5112 | 3.4117 | 3.4953 | 3.4597

Table 23. Validation test (one brick): inertia of the brick about the disk origin (kg-m?)

Effective Spring Rate Method
mfr zero | maxima | minima fft

zero 0.0403 | 0.0428 | 0.0416 | 0.0426 | 0.0421

maxima | 0.0382 | 0.0405 | 0.0394 | 0.0404 | 0.0400

minima | 0.0380 | 0.0403 | 0.0392 | 0.0401 | 0.0397

Natural Frequency
Estimation Method

fft 0.0353 | 0.0375 | 0.0365 | 0.0373 | 0.0370

Table 24. Validation test (one brick): inertia of the brick about its CG (kg-m?)

Effective Spring Rate Method
mfr zero maxima | minima fft

zero 0.0402 | 0.0426 | 0.0414 | 0.0425 | 0.0420

maxima | 0.0381 | 0.0404 | 0.0393 | 0.0402 | 0.0398

minima | 0.0379 | 0.0402 | 0.0391 | 0.0400 | 0.0396

Natural Frequency
Estimation Method

fft 0.0352 | 0.0374 | 0.0363 | 0.0372 | 0.0368
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It is clear from a comparison of Table 23 and Table 24 that the CG offset has little effect
on its inertia. The relative percent error of each inertia value in Table 24 with respect to

the theoretical inertia derived in (101) is tabulated in Table 25.

Table 25. Validation test (one brick): relative error of test object inertia (%)

Effective Spring Rate Method
mfr zero maxima | minima fft

zero |34.6545]42.9829]38.9209|42.3367 | 40.8801

maxima | 27.6219| 35.5167| 31.6661| 34.9041] 33.5234

minima | 26.9380| 34.7905| 30.9606 | 34.1812 | 32.8079

Natural Frequency
Estimation Method

fft 18.0635] 25.3688] 21.8058 | 24.8020| 23.5244

Clearly, these results are unacceptable due to the large amount of error. The FFT natural
frequency estimation method appears to have the most favorable results, with a minimum
error of 18.0635% using the manufacturer-provided spring rate. While there may be
systematic errors in the system due to resolution-based uncertainty in the measurement
instruments, the large amount of error in this test is probably just an indication of the
overall inertia resolution of the device. To understand this concept, consider that the total
inertia of the brick from Table 23 is approximately 1% of the total system inertia.
Therefore, this validation test does not show that the iMachine is incapable of measuring
inertia accurately, but rather that it cannot effectively measure an inertia change of 1% or
less.

In order to explore the accuracy of the inertia measurement further, the inertia of

the test object was increased by adding four bricks in the square configuration shown in
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Figure 41. The platform and wooden board are not pictured as before, but are used in

practice for this particular test.

brick
T )
5
I o .
_//
A\ P A\

Figure 41. Validation test model (four-brick configuration)

Taking the series of bricks to be one test object, the inertia of the object can be

determined by

2
m, .
I theoretical — 4{% (I 2 + WZ )+ mbrick (S + %j } (102)

where s in this case equals 0.1524 m (6 in). The resulting theoretical inertia is 0.9182 kg-
m?, which, utilizing the platform inertia from the previous test, should account for more
than 20% of the total system inertia. The iMachine was run five times with and without

the test object mounted on the platform. The change in natural frequency when the test



object is removed from the platform is clearly visible in Figure 42 and Figure 43, which
illustrate a portion of the time response and frequency response, respectively. The
maximum amplitude of the time response has been normalized for clarity. The average
peak frequency (N=5) according to the FFT is 5.036 rad/s for the case with the test object

and 5.622 rad/s when the object is removed.
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Figure 42. Comparison of the time-domain response of the system with and without the
test object (four-brick configuration on platform)
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Figure 43. Comparison of the frequency-domain response of the system with and without
the test object (four-brick configuration on platform)

Using the same computational approach as before, the mass of the test object
equals 22.291 kg (98.77% accuracy), and the distance of the test object CG to the disk
origin equals 3.828 mm. This CG offset has a negligible effect on the inertia of the test
object (0.0003 kg-m?). The important inertia terms involved in the derivation of the test
object inertia are listed in Table 26-Table 29, and the relative error of the final result is

computed in Table 30.
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Table 26. Validation test (four-brick configuration on platform): inertia of the system
about the disk origin (kg-m?)

Effective Spring Rate Method
mfr zero | maxima | minima fft

zero 4.0974 | 4.3501 | 4.2268 | 4.3305 | 4.2863

maxima | 4.1185 | 4.3724 | 4.2486 | 4.3527 | 4.3083

minima | 4.1278 | 4.3824 | 4.2582 | 4.3626 | 4.3181

Natural Frequency
Estimation Method

fft 4.1339 | 4.3888 | 4.2644 | 4.3690 | 4.3244

Table 27. Validation test (four-brick configuration on platform): inertia of the platform
about the disk origin (kg-m?)

Effective Spring Rate Method
mfr zero | maxima| minima fft

zero 3.2957 | 3.4989 | 3.3998 | 3.4831 | 3.4476

maxima | 3.3078 | 3.5117 | 3.4122 | 3.4959 | 3.4602

minima | 3.3074 | 3.5113 | 3.4119 | 3.4955 | 3.4599

Natural Frequency
Estimation Method

fft 3.3169 | 3.5214 | 3.4217 | 3.5055 | 3.4698

Table 28. Validation test (four-brick configuration on platform): inertia of the test object
about the disk origin (kg-m?)
Effective Spring Rate Method
mfr zero | maxima | minima fft

zero 0.8017 | 0.8512 | 0.8270 | 0.8473 | 0.8387

maxima | 0.8107 | 0.8607 | 0.8363 | 0.8568 | 0.8481

minima | 0.8204 | 0.8710 | 0.8463 | 0.8671 | 0.8582

Natural Frequency
Estimation Method

fft 0.8170 | 0.8673 | 0.8428 | 0.8634 | 0.8546
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Table 29. Validation test (four-brick configuration on platform): inertia of the test object
about its CG (kg-m?)

Effective Spring Rate Method
mfr zero | maxima| minima fft

zero 0.8014 | 0.8508 | 0.8267 | 0.8470 | 0.8383

maxima | 0.8104 | 0.8604 | 0.8360 | 0.8565 | 0.8478

minima | 0.8201 | 0.8707 | 0.8460 | 0.8668 | 0.8579

Natural Frequency
Estimation Method

fft 0.8166 | 0.8670 | 0.8424 | 0.8631 | 0.8543

Table 30. Validation test (four-brick configuration on platform): relative error of test
object inertia (%)

Effective Spring Rate Method
mfr zero | maxima| minima fft

zero |12.7183| 7.3347 | 9.9604 | 7.7524 | 8.6939

maxima | 11.7378| 6.2937 | 8.9490 | 6.7162 | 7.6683

minima | 10.6810| 5.1717 | 7.8588 | 5.5992 | 6.5627

Natural Frequency
Estimation Method

fft 11.0580| 5.5720 | 8.2477 | 5.9976 | 6.9571

These results are much better than the previous test, indicating that a larger inertia
change can be measured more accurately. In this case, the calibrated effective spring rates
yield better results than the manufacturer-provided data. This is expected because the
spring calibration was performed in situ and should reflect the nominal operating
conditions of the machine better. The average relative error when using the calibrated
spring rate is 7.20%, with a minimum value of 5.17%.

To optimize the accuracy of the inertia measurement, the same brick

configuration was tested on the disk alone. With the platform removed, the test object
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now accounts for almost 70% of the total system inertia. The iMachine was run five times
with and without the test object mounted on the disk. The change in natural frequency
when the test object is removed from the disk is clearly visible in Figure 44 and Figure
45, which illustrate a portion of the time response and frequency response, respectively.
The maximum amplitude of the time response has been normalized for clarity. The
average peak frequency (N=5) according to the FFT is 9.043 rad/s for the case with the

test object and 16.037 rad/s when the object is removed.

—w/ test object
| —wi/o test object

iy

o
fei]

o
m

o
=

o
]

Angular Position (deqg)

Time (sec)

Figure 44. Comparison of the time-domain response of the system with and without the
test object (four-brick configuration on disk)
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Figure 45. Comparison of the frequency-domain response of the system with and without
the test object (four-brick configuration on disk)

Unfortunately, the mass and center of mass cannot be derived empirically using
the iMachine in this configuration because the weight of the test object is not transferred
through the load cells. Therein, for the inertia computation, the mass value measured by
the scale is used and it is assumed that any offset in the test object CG has negligible
effect on its inertia. This assumption is justified by noting that the mass measurement has
been greater than 98% accurate in all tests and the parallel axis term due to CG offset has
accounted for less than 0.4% of the total inertia. With this in mind, the important inertia
terms involved in the derivation of the test object inertia are listed in Table 31-Table 33,

and the relative error of the final result is computed in Table 34.
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Table 31. Validation test (four-brick configuration on disk): inertia of the system about
the disk origin (kg-m?)

Effective Spring Rate Method
mfr zero | maxima | minima fft

zero 1.2772 | 1.3559 | 1.3175 | 1.3498 | 1.3361

maxima | 1.2806 | 1.3596 | 1.3211 | 1.3535 | 1.3397

minima | 1.2842 | 1.3634 | 1.3248 | 1.3572 | 1.3434

Natural Frequency
Estimation Method

fft 1.2831 | 1.3622 | 1.3236 | 1.3561 | 1.3422

Table 32. Validation test (four-brick configuration on disk): inertia of the disk about the
origin (kg-m?)

Effective Spring Rate Method
mfr zero | maxima | minima fft

zero 0.4058 | 0.4308 | 0.4186 | 0.4289 | 0.4245

maxima | 0.4078 | 0.4329 | 0.4206 | 0.4310 | 0.4266

minima | 0.4063 | 0.4314 | 0.4191 | 0.4294 | 0.4250

Natural Frequency
Estimation Method

fft 0.4076 | 0.4327 | 0.4204 | 0.4307 | 0.4263

Table 33. Validation test (four-brick configuration on disk): inertia of the test object
about its CG (kg-m?)

Effective Spring Rate Method
mfr zero | maxima | minima fft

zero 0.8714 | 0.9251 | 0.8989 | 0.9209 | 0.9115

maxima | 0.8729 | 0.9267 | 0.9004 | 0.9225 | 0.9131

minima | 0.8779 | 0.9320 | 0.9056 | 0.9278 | 0.9184

Natural Frequency
Estimation Method

fft 0.8755 | 0.9295 | 0.9032 | 0.9253 | 0.9159
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Table 34. Validation test (four-brick configuration on disk): relative error of test object
inertia (%)

Effective Spring Rate Method
mfr zero maxima | minima fft

zero 5.0964 | 0.7550 | 2.0989 | 0.3010 | 0.7224

maxima | 4.9333 | 0.9281 | 1.9307 | 0.4733 | 0.5518

minima | 4.3860 | 1.5092 | 1.3660 | 1.0518 | 0.0208

Natural Frequency
Estimation Method

fft 4.6436 | 1.2357 | 1.6318 | 0.7796 | 0.2487

This test produced the most accurate results, with relative error as low as 0.02%.
Once again, the calibrated spring rates appear to better than the manufacturer-provided
data. The FFT method is a good choice for both estimating the spring rate during
calibration and the natural frequency during testing. Therefore, it will be used as the
method of choice in all future tests.

To show the resolution of the inertia calculation of the iMachine, define the ratio

of the testpiece inertia to total system inertia as

( I 7z )testpiece

| = 103
ratio m ( )

Using the results from the three inertia validation tests described here, the relationship

between | ... and the relative error of the inertia is graphically depicted in Figure 46. An

ratio
exponential curve has been fitted to the data, resulting in the approximate relationship

€. = 26.59exp(-6.781 ) (104)
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Figure 46. Plot of relative error versus inertia ratio

5.4  Wheelchair Testing
Now that accuracy estimates have been established through validation testing, a
manual wheelchair is tested to gain an understanding of the effectiveness of the iMachine
in measuring the inertial parameters of the primary object for which it was designed. The
wheelchair that was tested is a Quickie GT model (Sunrise Medical, Longmont, CO) as
shown mounted to the iMachine in Figure 47. The inertial properties of the wheelchair

that were calculated from the test data are summarized in Table 35.
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Figure 47. Quickie GT chair mounted on iMachine

Table 35. Wheelchair inertial properties, as determined by the iMachine

Parameter [ Value | Units
M e 13.17 kg
X we 0.00348| m
Y we 0.03525| m

(I z2)we 1.213 kg-m

2

The center of mass coordinates refer to the distance of the wheelchair CG from
the origin of the disk. If a different relative point is desired, say the point of contact of the

rear wheels, simply add the distance from that point to the origin to the coordinate results
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in Table 35. For the purpose of wheelchair energy estimation, however, the CG
coordinates do not arise in the energy equation and are less important than the mass and
moment of inertia. The inertia was computed using the FFT method for estimating both
the calibrated spring rate and the natural frequency. The 95% confidence interval for the
data (N=10) is [1.2042, 1.2225], which exhibits strong repeatability. Based on the
assumption that the exponential fit described by (104) is valid, the wheelchair inertia

measurement should have greater than 95.66% accuracy.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the design of an inertial properties measurement device has been
presented. The analysis of validation tests demonstrates that the iMachine provides
reliable and repeatable results. In particular, the mass of the test object had an average
relative error less than 1%. The average relative error in the calculation of the x and y-
coordinates of the center of mass was 0.891% and 1.99%, respectively. Despite the larger
error in the y-direction, the CG offset proved to have negligible effect on the inertia
calculation. The accuracy of the moment of inertia measurement relies upon the
proportion of the system inertia represented by the test piece. As the inertia of the test
piece increases relative to the platform, the measurement accuracy also increases. The
wheelchair that was tested accounted for approximately 25% of the system inertia, and
tests on objects with known mass properties show this case should have errors less than
5%. For tests when the AMPS is occupying the wheelchair, the error will be even less.

There are several recommendations that may improve the design and analysis of
the iMachine for future research studies. With regard to the structural design, custom
parts could be machined with greater precision to reduce errors. In particular, the current
shaft tolerances allow the disk to tilt slightly, which adds to the measurement error
because the system then rotates about an axis that is not vertical. Also, the rotating disk
could be redesigned to decrease its inertia relative to the object being tested. A wheel
with spokes is an example of a design that would achieve this goal, while maintaining the

strength requirements due to the load transferred through the load cells.
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With regard to the hardware, the optical encoder is a good choice for measuring
the angular position of the rotating platform, especially with the commercial availability
and relative inexpensiveness of high-precision encoders. Load cells with lower capacity
could be used to improve resolution, so long as they meet the required maximum load of
the device.

With regard to the measurement and data analysis approach, the FFT method of
estimating the natural frequency yielded the best results. However, there is a tradeoff
between accuracy and computational speed because decreasing the resolution of the
transform requires an increase in the length of data, usually by a method such as zero
padding. A curve-fitting algorithm for parameterizing a damped harmonic curve to the
data would most likely improve the natural frequency estimation even more. In addition,
the spring calibration test could be improved by increasing the difference between

distances s, ands,. Also, similarly to the mass variance test that was described in this

thesis, an analysis of variance in the spring rate calculation could be improved by testing
the diametrically-opposed bricks at a greater number of distinct distances. Finally, the

relationship between the inertia ratio, | and the relative percent error is most likely

ratio
not best described by an exponential curve. Testing more objects with varying inertia
could improve the development of the relationship described by the data in Figure 46 and
would be a good avenue for further study.

Since the primary application of the iMachine is manual wheelchairs, the device
has been designed to accommodate inertial properties ranging from an unoccupied
manual wheelchair to a wheelchair occupied by the AMPS. However, the device could be

used to estimate the moment of inertia of any irregularly-shaped rigid body. By altering
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the orientation of the test object on the platform, it is possible to compute the inertia
about several different axes. If six distinct configurations are possible, the entire inertia
tensor could theoretically be extracted from the test data. Ease of mounting the object
rigidly to the platform may become an issue depending on shape complexity, so a more
universal mounting design would be beneficial for future studies. If necessary, multiple
platforms could be developed for specific ranges of inertia. Another way to increase the
range of allowable inertia is to make the rotating risk modifiable. For instance, adding
mounting locations for the load cells and springs increases the number of system
configurations that could be altered depending on the object being tested.

This thesis lays the foundation for further study of wheelchair inertia by providing
an apparatus and method capable of generating reliable and repeatable results for the
inertial properties of irregular bodies. To characterize the system capability better, a
Gauge Repeatability and Reproducibility (GRR) test based on the Analysis of Variance
(ANOVA) random effects model should be conducted. In this way, the measurement
variance due to instrumentation, operators, and test objects could be quantified. Other
future research may include cataloguing the inertial properties of different wheelchairs,
perhaps even on a component level such as the wheels, casters, frame, footrests, etc. An
investigation into the cause of inertial differences could lead to improved wheelchair
design for maximum propulsion efficiency. Other interesting topics of exploration for the
iMachine include exploring the effect of caster orientation or varying occupant load

distribution on wheelchair inertia.
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