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SUMMARY 

 
 

The dynamics of rigid body motion are dependent on the inertial properties of the 

body - that is, the mass and moment of inertia. For complex systems, it may be necessary 

to derive these results empirically. Such is the case for manual wheelchairs, which can be 

modeled as a rigid body frame connected to four wheels. While 3D modeling software is 

capable of estimating inertial parameters, modeling inaccuracies and ill-defined material 

properties may introduce significant errors in this estimation technique and necessitate 

experimental measurements. To that end, this thesis discusses the design of a device 

called the iMachine that empirically determines the mass, location of the center of mass, 

and moment of inertia about the vertical (yaw) axis passing through the center of mass of 

the wheelchair. 

The iMachine is a spring-loaded rotating platform that freely oscillates about an 

axis passing through its center due to an initial angular velocity. The mass and location of 

the center of mass can be determined using a static analysis of a triangular configuration 

of load cells. An optical encoder records the dynamic angular displacement of the 

platform, and the natural frequency of free vibration is calculated using several 

techniques. Finally, the moment of inertia is determined from the natural frequency of the 

system. 

In this thesis, test results are presented for the calibration of the load cells and 

spring rate. In addition, objects with known mass properties were tested and comparisons 

are made between the analytical and empirical inertia results. In general, the mass 

measurement of the test object had greater than 99% accuracy. The average relative error 



 xxiii

for the x and y-coordinates of the center of mass was 0.891% and 1.99%, respectively. 

For the moment of inertia, a relationship was established between relative error and the 

ratio of the test object inertia to the inertia of the system. The results suggest that 95% 

accuracy can be achieved if the test object accounts for at least 25% of the total inertia of 

the system. Finally, the moment of inertia of a manual wheelchair is determined using the 

device ( ( )WCzzI = 1.213 kg-m2), and conclusions are made regarding the reliability and 

validity of results. The results of this project will feed into energy calculations for the 

Anatomical Model Propulsion System (AMPS), a wheelchair-propelling robot used to 

measure the mechanical efficiency of manual wheelchairs. 



 1

CHAPTER 1 

INTRODUCTION 

 
 

1.1 Purpose 

The dynamics of rigid body motion are dependent on the inertial properties of the 

body - that is, the mass and moment of inertia. For simple systems with well-defined 

shapes and densities, these properties can be determined analytically using closed-form 

formulas. For more complex systems, it may be necessary to derive these results 

empirically. Such is the case for manual wheelchairs, which can be modeled as a rigid 

body frame connected to four wheels. While 3D modeling software is capable of 

estimating inertial parameters, modeling inaccuracies and ill-defined material properties 

may introduce significant errors in this estimation technique. To address this limitation, 

this thesis discusses the design and analysis of a device called the iMachine that 

empirically determines the mass, location of the center of mass, and moment of inertia 

about the vertical (yaw) axis passing through the center of mass of the test piece. While 

the device could be used to measure the inertial properties of a variety of irregularly-

shaped objects, the primary application of the iMachine is manual wheelchairs. 

1.2 Application 

1.2.1 AMPS 

The motivation for the design and development of the iMachine is another 

research project at Georgia Tech’s REAR Lab called the Anatomical Model Propulsion 

System (AMPS). The AMPS is an anthropomorphic robot capable of propelling a manual 
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wheelchair much like a human operator. It will be used to create standardized tests for 

characterizing wheelchair performance. The tests will consist of a canonical set of 

maneuvers typically used in wheelchair propulsion. By comparing the system input work 

to the energy output of the chair during these maneuvers, mechanical efficiency ratings 

are established and comparisons can be made across chairs that will foster better 

wheelchair design and promote improved clinical prescription to meet the user’s mobility 

needs. 

1.2.2 Wheelchair Energy Estimation 

The energy output of a wheelchair during propulsion is dominated by its kinetic 

energy, although potential energy effects need to be included in maneuvers involving 

elevation changes such as ramps or inclines. The kinetic energy, T, of a rigid body in 

general motion is given by 

 GGG 2
1

2
1 HvvmT ⋅+⋅= ω  (1) 

where m is the total mass, Gv  is the velocity of the center of mass, ω  is the angular 

velocity of the body, and GH  is the angular momentum. The angular momentum can 

further be described by the equation, 

 ( ) ( ) ( )kIIIjIIIiIIIH yzyxzxzzzzyzxyxyyyzxzyxyxxx ωωωωωωωωω −−+−−+−−=G  (2) 

where ( xxI , yyI , zzI ) are the moments of inertia about the three coordinate axes, 

( xyI , xzI , yxI , yzI , zxI , zyI ) are the products of inertia, and ( xω , yω , zω ) are the angular 

velocity components about each of the three coordinate axes. Note that the products of 

inertia simplify to three terms by using the following relationships 
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zyyz

zxxz

yxxy

II
II

II

=
=

=

 (3) 

For the entirety of this thesis, the body-fixed reference frame of the wheelchair 

shall be defined according to the illustration in Figure 1, where point G represents the 

center of gravity (CG) of the system. 

 
 

 
Figure 1. Coordinate axes for the wheelchair 

 
 
 

In addition, the following convention will be used to describe the inertia terms: 

( )
component

P
qqI  refers to the inertia of a component about the q-axis passing through the 

point P, whereas ( )
componentqqI  refers to the inertia of a component about the q-axis passing 

through the CG of that component. 

The chair can be modeled as a system containing multiple rigid bodies: the frame, 

two rear drive wheels, and two casters. The kinetic energy of each body can be calculated 
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using (1) and simplified using the kinematic constraints of the system. The total system 

kinetic energy is simply the sum of these terms, 

 RCLCRDLDframesys TTTTTT ++++=  (4) 

where the subscripts LD, RD, LC, and RC refer to the left drive wheel, right drive wheel, 

left caster, and right caster, respectively. 

For this analysis, a body-fixed reference frame is introduced for each rigid body, 

with the origin being located at the center of mass of the respective body. To simplify the 

rotational kinetic energy of the frame, notice that the x and z coordinate axes form a plane 

of symmetry for the frame, which means that all products of inertia involving the 

coordinate normal to the plane (in this case, xyI  and yzI ) are zero. For small angles and 

assuming that the frame does not roll, it can be shown that the angular velocity is 

 kj frameframeframe ψθω && +=  (5) 

where frameθ& is the pitch rate about the y-axis of the frame and frameψ& is the yaw rate about 

the z-axis of an inertial reference frame fixed to ground. Then, the frame kinetic energy 

can be simplified to 

 ( ) ( ) 2
frameframe

2
frameframeframeG,frameG,frameframe 2

1
2
1

2
1 ψθ &&

zzyy IIvvmT ++⋅=  (6) 

In most cases, the second term in (6) will equal zero because the only time the frame 

should rotate about the y-axis is during wheelie maneuvers or approaching an incline.  

To help solve for the kinetic energy of the wheels, Figure 2 shows the coordinate 

axes of the reference frame fixed on a wheel. These axes are principal axes, meaning that 

all the products of inertia equal zero. 
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Figure 2. Coordinate axes for a wheel 

 
 
 

It is assumed that, with respect to their body-fixed frames, both drive wheels are 

constrained to rotate only about the wy -axis relative to the wheelchair frame. The casters 

follow the same principle with the addition that they can also rotate about the vertical 

axis passing through the swivel point, as shown in Figure 3. However, the AMPS 

researchers are neglecting the caster swivel based on the assumption that its effect is 

small. Still, the casters will have yaw rotational kinetic energy due to the angular velocity 

of the frame to which they are attached.  

 
 

 
Figure 3. Rotation of casters about the swivel point 
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Using these constraints and considering that the pitch rate of the frame is negligible in 

most cases, the kinetic energy of each wheel can be determined by 

 ( ) ( ) 2
frameLD

2
LDLDLDG,LDG,LDLD 2

1
2
1

2
1 ψφ &&

zzyy IIvvmT ++⋅=  (7) 

 ( ) ( ) 2
frameRD

2
RDRDRDG,RDG,RDRD 2

1
2
1

2
1 ψφ &&

zzyy IIvvmT ++⋅=  (8) 

 ( ) ( ) 2
frameLC

2
LCLCLCG,LCG,LCLC 2

1
2
1

2
1 ψφ &&

zzyy IIvvmT ++⋅=  (9) 

 ( ) ( ) 2
frameRC

2
RCRCRCG,RCG,RCRC 2

1
2
1

2
1 ψφ &&

zzyy IIvvmT ++⋅=  (10) 

where φ&  is the spin rate of a particular wheel with respect to the frame. Summing (6)-

(10), the total kinetic energy of the wheelchair can be estimated by 
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Equation (11) is furthered simplified by several observations. First, in the case of 

straight propulsion, the translational kinetic energy terms can be written as 

 GGtranssys, 2
1 vvmT ⋅=  (12) 

where 

 RCLCRDLDframe mmmmmm ++++=  (13) 



 7

and Gv  is the velocity of the center of mass of the system. This simplification is not valid 

in general during turning because the caster movement means that the inertia properties 

change slightly with time. Figure 4 illustrates the velocity of each of the components 

during turning maneuvers. 

 
 

 
Figure 4. Velocity of wheelchair components during turning 

 
 
 

Neglecting the swivel of the casters, the velocity of the CG of each component i 

can be compared to the velocity of the CG of the system as follows, 

 G/frameGG, ii rkvv ×+= ψ&  (14) 

where G/ir  is the position vector pointing from the CG of the system to the CG of the 

component. Taking the dot product yields 

 ( ) ( ) ( )G/frameG/frameG/frameGGGG,G, 2 iiiii rkrkrkvvvvv ×⋅×+×⋅+⋅=⋅ ψψψ &&&  (15) 
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For each component, the third dot product in the preceding equation can be written as 

 ( ) ( ) 22
frameG/frameG/frame iii drkrk ψψψ &&& =×⋅×  (16) 

where id  is the distance from the CG of the component denoted by i to the CG of the 

system. Since the definition of the system center of mass implies that / G 0i i
i

m r =∑ , the 

middle dot products in (15) will sum to zero when substituted into (11). 

With this in mind, the velocity dot products can be substituted back into the 

kinetic energy given in (11) to form the new expression, 
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Simplifying the equation yields 
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At this point, it is beneficial to describe the Parallel Axis Theorem, which states 

that the moment of inertia of an object about an axis, say A , passing through an arbitrary 

point P is related to the moment of inertia of the object about a parallel axis B  and 
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passing through the object’s center of gravity by the mass multiplied by the square of the 

distance d between the two axes. Mathematically, this can be written as 

 2GP mdII BA +=  (19) 

With this in mind, the rotational kinetic energy terms in (18) due to the yaw rotation 

frameψ&  can be written in terms of the moment of inertia of the system about the z-axis 

passing through its CG, 

 ( ) 2
framesys

G
zz2

1 ψ&I  (20) 

where the total system inertia is equal to the sum of the inertia of the components, 

 ( ) ( ) ( ) ( ) ( ) ( )RC
G
zzLC

G
zzRD

G
zzLD

G
zzframe

G
zzsys

G
zz IIIIII ++++=  (21) 

In summary, for straight motion that does not involve wheelchair pitch, the total 

kinetic energy of the system is given by 
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1 φφφφ &&&&
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and for turning maneuvers with no wheelchair pitch, the kinetic energy is 
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 (23) 

Clearly, one of the necessary parameters to estimate in order to obtain an accurate 

measure of the stored kinetic energy during wheelchair propulsion is the moment of 

inertia of the system about the vertical (yaw) axis, ( )sys
G
zzI . Therein is the motivation for 

the design of the iMachine. 
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1.3 Measuring Inertial Properties 

Many experimental techniques have been developed to measure the inertial 

properties of irregularly shaped rigid bodies, leading to several patented devices [1-3]. As 

mentioned earlier, one simple way of finding the moments of inertia is through the 

numerical integration tools available in some 3D modeling software [4], but this method 

requires a precise model, which may not be available, particularly if the object is too 

complex or designed by someone other than the researcher. More recently, Almeida, et 

al. [5] outlined a handful of modern approaches to inertia parameter identification, 

including Modal Methods (MM), which derives the inertia tensor of an object by 

attempting to excite it at its rigid body modes. Despite these new computationally 

complex attempts to increase the precision with which rigid body mass properties can be 

measured, conventional methods using simple free vibration principles are well 

established and offer a sufficient amount of accuracy for most experimental applications. 

Among these traditional approaches are pendulum devices and rotating platforms, which 

will be described in the subsequent sections. 

1.3.1 Gravitational Pendulum Method 

Perhaps the most basic system for estimating inertia properties is the simple 

gravitational pendulum, depicted in Figure 5. 
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Figure 5. Gravitational pendulum model 

 
 
 

Ogata [6] derives the equation of motion by summing the moments about the fixed pivot 

point, 

 θθ sinmglI −=&&  (24) 

By using a small angle approximation ( θθ ≈sin ), the general equation takes the form of 

a single-degree-of-freedom (SDOF) system undergoing simple harmonic motion, 

 02 =+ θωθ n
&&  (25) 

where nω  is the natural frequency in radians per second. If nω  is measured, the moment 

of inertia, I,  can be determined by its direct relationship to geometric parameters and the 

natural frequency, nω , by 

 2
n

mglI
ω

=  (26) 

There are several challenges with this method from a practical standpoint 

including assessing the bounds for which the small angle approximation is valid. In 

addition, this model assumes that the string to which the object being measured is 
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attached has negligible mass, which is impractical for most cases. If the mass is known, 

the equation of motion in (24) becomes more complicated because the weight of the 

string must be taken into account. If the attachment means is an issue, one possible 

solution is the bifilar pendulum shown in Figure 6.  

 
 

 
Figure 6. Bifilar gravitational pendulum model 

 
 
 

The major challenge with this method, aside from adding complexity to the test 

procedure, is that the distance from the pivot point to the center of mass of the system is 

no longer known. Depending on the sensing capabilities of the device, this important 

parameter may be difficult or impossible to measure. 

1.3.2 Torsional Pendulum Method 

The torsional pendulum method [7-9] is arguably the most popular inertial 

parameter estimation technique. This approach uses the same basic Newton-Euler 

approach as the simple pendulum, but the vibration occurs due to rotation in the 
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horizontal plane rather than the vertical plane. The model for a trifilar pendulum is shown 

in Figure 7, although bifilar versions have been researched as well.  

 
 

 
Figure 7. Trifilar torsional pendulum model 

 
 
 

The device consists of a stationary upper plate attached to a lower plate via a 

series of cables. When the lower plate is displaced from equilibrium in the angular 

direction, the pendulum cables (or files) generate a restoring torque to induce simple 

harmonic motion. Du Bois, et al. [7] suggests that the multifilar pendulum is considered 

to be the most accurate method, with errors less than 1%. Ogata [6] derived the equation 

of motion using the assumption that the cables were of equal length and equidistant from 

the center of the lower plate. Additionally, it was assumed in his analysis that the object 

to be measured was centered on the plate so that the forces and angle of rotation in each 

cable was equal. The resulting equation is  

 
h
TMgaI 2

22

4π
=  (27) 
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where M is the total mass of the system, g is the acceleration due to gravity, a is the radial 

distance from the cable to the center of the lower plate, T is the natural period of 

oscillation, and h is the height of each cable. 

The most difficult and time consuming part of this method is centering the CG of 

the object with the axis of rotation. If the axis passing through the CG is not coincident 

with the rotation axis, several errors could propagate in the results. First, the theory used 

to derive (27) becomes more complicated because the forces in the cable are not equal, 

and their rotation angles may differ as well. Second, the weight imbalance may cause the 

lower plate to tilt, which would result in an inertia measurement about an axis at an angle 

to the desired vertical axis. In fact, Ringegni, et al. [8] demonstrates through 

experimental measurements that improper centering of the body actually results in an 

additional longitudinal oscillation due to the CG eccentricity. If nothing else, making 

constant configuration adjustments will most likely cause the pendulum to swing, which 

in turn may become a frustrating process for the researcher. Nevertheless, Zhi-Chao, et 

al. [9] seems to have found an efficient solution by strategically adding known weights to 

balance the plate rather than attempting to move the potentially heavy and cumbersome 

object. His method resulted in errors less than 1% in general. 

1.3.3 Rotating Platform Method 

Griffiths, et al. [10] designed a rotating platform apparatus to measure the 

moment of inertia of the human body. The mechanical system design is displayed in 

Figure 8. 
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Figure 8. Rotating platform model with falling mass [10] 

 
 
 

The system operates by transmitting a torque due to a falling known mass to the turntable 

via a series of low-friction pulleys. Unlike the previously described methods, Griffith’s 

apparatus does not use simple harmonic motion principles. Instead, a high-resolution 

motion capture system tracks two retro-reflective markers on the turntable as it rotates. 

The relation between the inertia and the measured properties is given by the moment 

equation about the rotation axis of the platform, 

 ( )
final

2

finalfinal

2

ωωω

⎟
⎠
⎞

⎜
⎝
⎛ −

=
−

== t
sgrtm

mamgrtrTtI  (28) 

where finalω  is the final angular velocity at time t, r is the pulley radius, m is the known 

mass that generated the input torque, g is the acceleration due to gravity, and s is the 

distance that the mass fell. 

While there are several difficulties inherent in testing human subjects when they 

need to be perfectly rigid, the researchers recognized the difficulty in centering the mass 
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on the platform. Additionally, friction had a significant effect on the accuracy of results 

because it produces a moment not accounted for in (28) that opposes the input torque. 

Another way of implementing the rotating platform method is shown in Figure 9. 

This approach combines the small workspace of the aforementioned apparatus while 

maintaining the oscillatory nature of the torsional pendulum devices. 

 
 

 
Figure 9. Rotating platform model with torsion spring 

 
 
 

The general equation of motion can be expressed in the form of (25) with 

 
I

k
n

T=ω  (29) 

It is easy to see how the inertia is calculated in a simple, effective manner. This design 

could handle eccentric loads better if the platform were mounted properly on a sturdy 

shaft. The challenges for this device are determining efficient measurement techniques 

for recording the mass, center of mass, and angular position of the platform. 
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1.3.4 Previous Wheelchair Inertia Research 

There has been little research done on implementing inertia parameter 

identification techniques for manual wheelchairs specifically. Kauzlarich, et al. [11] used 

the torsional pendulum method to determine the inertia of the manual wheelchair with the 

drive wheels removed, but offered no discussion on the accuracy of results. Ding [12] 

estimated the moment of inertia by rotating an occupied power wheelchair on a force 

plate and tracking the angular velocity of the chair using a motion capture system. The 

desired inertia was derived from Euler moment equations. Wang, et al. [13] also studied 

the inertia of power wheelchairs, but used the more conventional torsional pendulum 

approach with four cables. The device was calibrated using two objects with known 

analytical inertia: a metal disk and a cylinder. However, the error for the inertia 

measurement of the two objects was 9.1042% and 10.3279%, respectively. Wang 

commented on the error introduced when the object’s CG is not coincident with the 

rotation axis and on the harmful effects that swinging of the pendulum has on accuracy. 

His methods could be greatly improved by better precision measurement devices, as a 

simple stopwatch was used to measured the period. 

1.4 Summary 

The goal of this project is to design a robust, high precision measurement device 

for determining four inertial properties of manual wheelchairs: the total system mass, 

coordinates of the center of mass, and inertia about the vertical axis passing through the 

CG. The design selection will be described in Chapter 2, including theory and component 

specification. In Chapter 3, a detailed computational approach is presented for calculating 

the desired inertial parameters using the iMachine. Chapter 4 discusses the test methods 
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for calibrating the load cells and springs. In Chapter 5, validation tests and results are 

given for each of the inertial parameters, as well as wheelchair inertia results based on 

iMachine tests. Chapter 6 offers some conclusions based on the test results and provides 

recommendations for improving the iMachine in the future. 
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CHAPTER 2 

DESIGN 

 
 

2.1 Design Selection 

The final design selection for the iMachine draws from multiple approaches 

presented in the previous chapter and is illustrated schematically in Figure 10 below. It is 

a spring-loaded disk that is free to oscillate in the horizontal plane about an axis 

perpendicular to the xy-plane and passing through point O. 

 
 

 
Figure 10. Model of iMachine design 

 
 
 

The disk is center-mounted on a stepped shaft (not pictured) that is equipped with an 

optical encoder for monitoring the angular position of the disk. A fixed collar holds two  
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bearings that support the radial and axial loads on the shaft, reduce the frictional effects 

on rotation, and restrict the tilt of the platform. Load cells located at points A, B, and C 

measure the forces due to the weight of the object being tested. The interface between the 

disk and the test object is a x-y positioning platform (not pictured). 

2.2 Theory 

The general equation of motion for a SDOF mechanical system undergoing free 

vibration is given by 

 0=++ kqqcqm &&&  (30) 

where qqq &&&  and ,,  are the generalized coordinate and its first two derivatives, m is the 

mass of the system, c is the damping coefficient, and k is the spring constant. The system 

is subjected to the following initial conditions 

 
0

0

)0(
)0(

vq
qq

=
=

&
 (31) 

In the system under consideration, the generalized coordinate is the angular position of 

the oscillating disk. Therein, summing the moments about the center of the disk yields the 

following equation of motion, 

 02 =++ θθθ kRcI &&&  (32) 

where I is the moment of inertia about the axis of rotation, which is the desired parameter 

to be measured. The device uses two linear springs in parallel, each with spring constant 

2/k , making the total equivalent spring constant k. In addition, the distance from the 

point of application of each spring to the center of the disk, R (not necessarily equal to the 

radius of the disk), must be considered because it is the moment-arm for each spring 

force. 
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If we consider (32) to be of the form 

 02 2
nn =++ θωθζωθ &&&  (33) 

then the moment of inertia can be calculated using the following equation 

 2

2
n

2

4π
TkRI =  (34) 

where nT  is the natural period of oscillation, derived from the damped period, dT , by 

noting that 

 2
dn 1 ζ−=TT  (35) 

where ζ  is the damping ratio. The next section outlines the specifications for each of the 

system components based on assumptions and the theoretical analysis presented here. 

2.3 Component Specification 

2.3.1 Structural Frame 

The purpose of the structural frame is to provide stability and support for the rest 

of the device. It needs to have a wide base so that the CG of the system on top is always 

located within the perimeter of the frame. Other design specifications include low cost, 

simple to machine, and ease of assembly. As a result, the frame was made using extruded 

aluminum beams (80/20 Inc., Columbia City, IN) with corner brackets to increase the 

structural rigidity. The outer dimensions of the frame are 0.762x0.762 m (30x30 in). 

2.3.2 Disk 

The only major requirements for the disk is that it be large enough in diameter for 

proper load cell positioning and strong enough to withstand the stresses due to the 

maximum allowable load. To meet the first requirement, the disk was cut to 
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approximately 24 inches in diameter (measured to be 0.29845 m). This size should be 

sufficient because it is larger than the wheel width (distance from contact points on the 

ground) of nearly all of the wheelchairs to be tested. The load cell configuration can be 

designed to fit within these bounds. Ideally, the disk material should be made of a single 

material, most likely a strong metal, to keep its material properties homogeneous. 

However, a large metal disk with moderate thickness can be quite costly. As a result, the 

disk was made with multiple layers: a core ½” thick wood layer with a thin steel layer 

laminated to either side using a strong adhesive. The multi-layered disk was machined 

using a water jet. There is a tradeoff between cost and error, though, as the disk appeared 

to show slight warping several days after it had been machined. However, given that the 

angular displacement of the disk is assumed to be small during testing, the warping 

should have a negligible effect on the dynamics of the system. Figure 11 illustrates the 

final machined disk design. 

 
 

 
Figure 11. iMachine disk 
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2.3.3 Shaft Assembly 

The shaft assembly is pictured in Figure 12, and it consists of a stepped aluminum 

shaft, steel shaft collar, aluminum bearing collar, and two steel ball bearings. 

 
 

 
Figure 12. iMachine shaft assembly 

 
 
 

A bending stress analysis was performed to select an acceptable shaft diameter. 

The normal yield stress of Al 6061-T6 is found to be 270 MPa (40 ksi) [14]. Given a 

safety factor, n, the maximum allowable normal stress, allowσ , can be calculated using the 

relation 

 
allowσ
σ yn =  (36) 

so that, for example, a safety factor of 3 dictates a maximum allowable normal stress 

equal to 90 MPa (13.3 ksi). The load on the platform is bounded above by the weight of 
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an occupied wheelchair, which was reasonably assumed not to exceed 136.071 kg (300 

lbs) for this test application. In the rare case that the maximum load is applied at the edge 

of the disk, the maximum moment generated about the shaft would be equal to 398.4 N-

m. Using the equation 

 
allow

max

σ
M

S =   (37) 

the required section modulus, S, is determined to be 4427 mm3.  For circular cross 

sections of diameter d, the section modulus is defined as 
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3dS π
=  (38) 

Therefore, by rearranging (38), the minimum shaft diameter for the given conditions is 

equal to 35.6 mm (1.40 in). 

This analysis assumes a constant diameter shaft, but practically the shaft must be 

stepped to accommodate the smaller diameter requirements of the bearings and encoder. 

To ensure an acceptable safety factor for bending stress, the largest diameter of the shaft 

was set to 38.1 mm (1.5 in). Working backwards through equations (36)-(38), the safety 

factor can be approximated to equal 3.68, which is more than sufficient for the design. 

For completeness, the deflection of the end of the shaft is calculated based on the 

design parameters listed above. The purpose of this exercise is to ensure that bending is 

negligible because any significant deflection affects the axis about which the moment of 

inertia is measured. Suppose the shaft is modeled as shown in Figure 13, where the entire 

assembly has been rotated o90  to resemble a beam in bending. Note that this “virtual” 

rotation has no effect on the validity of the analysis. The reactions forces at point A 

represent that of a thrust bearing, which can take both axial and radial load. The reaction 
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force at point B refers to a simple ball bearing. The force on top of the shaft, F (pictured 

to the side in Figure 13), produces a moment due to its eccentricity,ε . 

 
 

 
Figure 13. Modeling the shaft assembly as a beam in bending 

 
 
 

Taking the sum of the forces in both the radial and axial directions as well as the 

sum of the moments about point A, the reactions forces can be solved for as follows, 

 BA:0 RRF rr ==∑  (39) 

 FRF aa ==∑ A:0  (40) 

 0:0 1BA =−=∑ εFLRM  (41) 

This implies that the reactions forces, and thus the load bearing capacity of each bearing, 

are given by 
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Using (42), the shear forces along the shaft can be computed as 
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and the bending moments along the shaft are given by 
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where E is the modulus of elasticity, I is the moment of inertia of the shaft, and  v ′′  is the 

second derivative of the deflection. Integrating (44) gives an equation for the slope along 

the beam, 
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Since the slope at point B must be continuous, ( )1Lv′  must be equal for the two equations 

above. Plugging this in, 
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and solving for 2C in terms of 1C , 
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Integrate (45) once more to obtain the deflection equations, 
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The boundary conditions for the first equation are that the deflection equals zero at the 

bearing locations – that is, ( ) ( ) 00 1 == Lvv . Applying these conditions to the first equation 

in (48) gives the following result, 
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Inserting the value for 1C  found in (50) into (47), 2C  is shown to equal 
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Applying the second boundary condition to the second equation in (48) gives 
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Combining the coefficients from (50) and (52) and plugging into (48), the deflection at 

the end of the shaft can be written as 

 ( ) ( ) ( ) ( )[ ]2
1211

2
212121 43

6
LLLLLL

EI
FLLvLL ++−+=+−=+
εδ  (53) 

The elastic modulus of Al 6061-T6 is 70 GPa (10000 ksi), the load and 

eccentricity are defined as before to cause the maximum moment, and the inertia of the 

shaft with a constant 38.1 mm (1.5 in) diameter is 47 m100344.1 −x . The locations of the 

bearings were varied iteratively to find a suitable set of parameters that minimized 

deflection and kept the iMachine height relatively low. The final design is a total shaft 

length of 70 mm with 30 mm between the two bearings. This produces a deflection of 

only 0.0458 mm when the maximum moment is applied. In more realistic scenarios – 

say, with a 15 kg mass (unoccupied wheelchair) applied at no greater than 127 mm (5 in) 

eccentricity – the deflection of the end of the shaft is 0.0022 mm. Clearly, these shaft 

parameters will be sufficient in meeting the design specifications, particularly with the 

addition of the 3 in-diameter steel shaft collar. 
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Steel ball bearings (McMaster-Carr Inc., Santa Fe Springs, CA) were selected that 

meet the load capacities outlined in (42). The top bearing (B in Figure 13) has a radial 

load capacity of 7.2 kN (1,628 lbs), which, according to (42), can withstand a 136.071 kg 

(300 lbs) load at an eccentricity of up to almost 16.51 cm (6.5 in). The bottom bearing (A 

in Figure 13) is a dual load angular contact bearing and has a radial load capacity of 13.3 

kN (2,990 lbs), which is enough to support even the maximum moment specified above. 

2.3.4 Springs 

The most important design specifications are those that directly influence the 

calculation of the moment of inertia, given by Equation (34). While the damping ratio in 

(35) can be somewhat controlled by modifying the friction in the shaft bearings, it is 

assumed that the system is underdamped and the effects of a small change in damping are 

negligible. Instead, the primary controllable design parameter is the springs. Figure 10 

showed that a pair of linear springs were chosen rather than a single torsion spring. The 

primary reason is that linear springs mounted away from the shaft increase accessibility, 

making it easier to mount and replace them, which may be important for testing objects 

with widely varying inertia. This section addresses the frequency and geometric 

constraints of the system with the goal of selecting springs that achieve a practical and 

reliable design. 

2.3.4.1 Frequency Constraints 

In analyzing this problem, it is important to consider the effects of frequency on 

the reliability of the measurements. For example, a natural frequency that is too high may 

cause unnecessary vibration of the wheelchair if the connection to the rotating platform is 

not perfectly rigid. In this case, the center of mass of the system would be constantly 
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moving, which in turn affects the rotation of the disk and the ensuing inertia calculations. 

In addition, a high natural frequency and poor interface between the object and the disk 

may cause the object to rotate according to a second DOF that lags the angular position of 

the disk. This compromises the accuracy of the SDOF model and may introduce 

significant errors in the measurement. On the other hand, a natural frequency that is too 

low may require an excessive amount of time to record enough data for computing the 

inertia. Initially, it will be assumed that a natural frequency less than 1 Hz will be 

sufficient to neglect internal relative motion of the system components. This corresponds 

to a natural period that is greater than 1 second. 

For the purpose of spring selection, it is necessary to estimate the inertia range 

that will be tested with the device. To that end, a simple prototype of the system design 

was constructed using a spring-loaded wooden platform mounted to a lazy susan bearing. 

The platform was loaded with a person sitting in a wheelchair. Upon giving the system an 

initial angular velocity, the period of oscillation was measured using a stopwatch. The 

spring constant ( 2/k ) is 1814 N/m (10.36 lb/in) and the distance R is approximately 

11.43 cm (4.5 in). The average damped period for a 63.5 kg (140 lb) subject occupying a 

wheelchair was 2.32 s, which results in a moment of inertia of 6.46 kg-m2 (22,100 lb-in2), 

assuming approximately 10% damping. The average damped period for a 86.2 kg (190 

lb) subject occupying a wheelchair was 2.66 s, resulting in a moment of inertia of 8.48 

kg-m2 (29,000 lb-in2). Even though it is not a good idea in practice, the data was 

extrapolated to estimate the inertia of an unoccupied wheelchair. This is acceptable for 

this situation because only a rough estimate of the inertia is needed. Taking into account 

that the mass of the platform of the final system is approximately 22.7 kg (50 lbs) heavier 
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than the wooden prototype, the total moment of inertia of an unoccupied wheelchair on 

the new system is estimated to be around 2.93 kg-m2 (10,000 lb-in2), which forms the 

lower bound of the desired inertia range. The upper bound is found by assuming a 102.1 

kg (225 lb) AMPS occupying the wheelchair, which results in an estimated moment of 

inertia of 11.94 kg-m2 (40,800 lb-in2). Based on these results, springs should be selected 

to meet the frequency specifications for an inertia range of approximately 3-12 kg-m2. 

To accomplish this, Table 1 and Table 2 show the possible combinations of 

RT  and n  values and the corresponding half-spring constant ( 2/k ) for an inertia value of 

10,000 lb-in2 and 40,800 lb-in2, respectively. English units are used for this tabular data 

because the manufacturer’s springs are specified in this way. The bold column in both 

tables corresponds to the radius of the rotating disk, which is arguably the easiest distance 

to use for the spring moment-arm because of mounting ease and lack of interference with 

the rest of the system. 

The spring rate values given at the maximum distance seem reasonable in both 

tables, so the disk radius is selected as the spring connection point. Based on Table 1, the 

spring constant needs to be less than 3.70 lb/in, but a spring load rate that is too small 

may exceed its yield strength during application. If we select springs that are 1 lb/in, the 

period is 1.926 s, which meets the design specifications. Looking at Table 2, the upper 

limit of spring load rate based on the maximum distance from the center of the disk is 

about 15 lb/in. There are two options to accommodate both the unoccupied and occupied-

wheelchair scenarios: (a) select 1 spring for both cases, prioritizing the unoccupied case 

because the limits are more stringent or (b) have several springs of different load rates 

that could be interchanged on the device depending on the load being tested.  
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Table 1. Half-spring constant based on desired natural period and spring moment-arm 
(using lower bound, 10,000 lb-in2, of inertia range) 

6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.75
1.0 14.190 12.091 10.425 9.082 7.982 7.071 6.307 5.660 5.108 4.634 4.222 3.700
1.1 11.727 9.993 8.616 7.506 6.597 5.843 5.212 4.678 4.222 3.829 3.489 3.058
1.2 9.854 8.397 7.240 6.307 5.543 4.910 4.380 3.931 3.548 3.218 2.932 2.570
1.3 8.397 7.154 6.169 5.374 4.723 4.184 3.732 3.349 3.023 2.742 2.498 2.189
1.4 7.240 6.169 5.319 4.634 4.072 3.607 3.218 2.888 2.606 2.364 2.154 1.888
1.5 6.307 5.374 4.634 4.036 3.548 3.142 2.803 2.516 2.270 2.059 1.876 1.645
1.6 5.543 4.723 4.072 3.548 3.118 2.762 2.464 2.211 1.996 1.810 1.649 1.445
1.7 4.910 4.184 3.607 3.142 2.762 2.447 2.182 1.959 1.768 1.603 1.461 1.280
1.8 4.380 3.732 3.218 2.803 2.464 2.182 1.947 1.747 1.577 1.430 1.303 1.142
1.9 3.931 3.349 2.888 2.516 2.211 1.959 1.747 1.568 1.415 1.284 1.169 1.025
2.0 3.548 3.023 2.606 2.270 1.996 1.768 1.577 1.415 1.277 1.158 1.055 0.925
2.1 3.218 2.742 2.364 2.059 1.810 1.603 1.430 1.284 1.158 1.051 0.957 0.839
2.2 2.932 2.498 2.154 1.876 1.649 1.461 1.303 1.169 1.055 0.957 0.872 0.764
2.3 2.682 2.286 1.971 1.717 1.509 1.337 1.192 1.070 0.966 0.876 0.798 0.699
2.4 2.464 2.099 1.810 1.577 1.386 1.228 1.095 0.983 0.887 0.804 0.733 0.642
2.5 2.270 1.935 1.668 1.453 1.277 1.131 1.009 0.906 0.817 0.741 0.676 0.592
2.6 2.099 1.789 1.542 1.343 1.181 1.046 0.933 0.837 0.756 0.685 0.625 0.547
2.7 1.947 1.659 1.430 1.246 1.095 0.970 0.865 0.776 0.701 0.636 0.579 0.508
2.8 1.810 1.542 1.330 1.158 1.018 0.902 0.804 0.722 0.652 0.591 0.539 0.472
2.9 1.687 1.438 1.240 1.080 0.949 0.841 0.750 0.673 0.607 0.551 0.502 0.440
3.0 1.577 1.343 1.158 1.009 0.887 0.786 0.701 0.629 0.568 0.515 0.469 0.411
3.1 1.477 1.258 1.085 0.945 0.831 0.736 0.656 0.589 0.532 0.482 0.439 0.385
3.2 1.386 1.181 1.018 0.887 0.779 0.690 0.616 0.553 0.499 0.452 0.412 0.361
3.3 1.303 1.110 0.957 0.834 0.733 0.649 0.579 0.520 0.469 0.425 0.388 0.340
3.4 1.228 1.046 0.902 0.786 0.690 0.612 0.546 0.490 0.442 0.401 0.365 0.320
3.5 1.158 0.987 0.851 0.741 0.652 0.577 0.515 0.462 0.417 0.378 0.345 0.302
3.6 1.095 0.933 0.804 0.701 0.616 0.546 0.487 0.437 0.394 0.358 0.326 0.286
3.7 1.037 0.883 0.762 0.663 0.583 0.516 0.461 0.413 0.373 0.338 0.308 0.270
3.8 0.983 0.837 0.722 0.629 0.553 0.490 0.437 0.392 0.354 0.321 0.292 0.256
3.9 0.933 0.795 0.685 0.597 0.525 0.465 0.415 0.372 0.336 0.305 0.278 0.243
4.0 0.887 0.756 0.652 0.568 0.499 0.442 0.394 0.354 0.319 0.290 0.264 0.231

Tn (s)

R (in)
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Table 2. Half-spring constant based on desired natural period and spring moment-arm 
(using upper bound, 40,800 lb-in2, of inertia range) 

6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.75
1.0 57.896 49.332 42.536 37.054 32.567 28.848 25.732 23.094 20.843 18.905 17.225 15.097
1.1 47.848 40.770 35.154 30.623 26.915 23.841 21.266 19.086 17.225 15.624 14.236 12.476
1.2 40.206 34.258 29.539 25.732 22.616 20.033 17.869 16.038 14.474 13.128 11.962 10.484
1.3 34.258 29.190 25.169 21.925 19.270 17.070 15.226 13.665 12.333 11.186 10.192 8.933
1.4 29.539 25.169 21.702 18.905 16.616 14.718 13.128 11.783 10.634 9.645 8.788 7.702
1.5 25.732 21.925 18.905 16.468 14.474 12.821 11.436 10.264 9.263 8.402 7.656 6.710
1.6 22.616 19.270 16.616 14.474 12.721 11.269 10.051 9.021 8.142 7.385 6.729 5.897
1.7 20.033 17.070 14.718 12.821 11.269 9.982 8.904 7.991 7.212 6.541 5.960 5.224
1.8 17.869 15.226 13.128 11.436 10.051 8.904 7.942 7.128 6.433 5.835 5.316 4.659
1.9 16.038 13.665 11.783 10.264 9.021 7.991 7.128 6.397 5.774 5.237 4.772 4.182
2.0 14.474 12.333 10.634 9.263 8.142 7.212 6.433 5.774 5.211 4.726 4.306 3.774
2.1 13.128 11.186 9.645 8.402 7.385 6.541 5.835 5.237 4.726 4.287 3.906 3.423
2.2 11.962 10.192 8.788 7.656 6.729 5.960 5.316 4.772 4.306 3.906 3.559 3.119
2.3 10.944 9.325 8.041 7.004 6.156 5.453 4.864 4.366 3.940 3.574 3.256 2.854
2.4 10.051 8.565 7.385 6.433 5.654 5.008 4.467 4.009 3.619 3.282 2.991 2.621
2.5 9.263 7.893 6.806 5.929 5.211 4.616 4.117 3.695 3.335 3.025 2.756 2.415
2.6 8.565 7.298 6.292 5.481 4.818 4.267 3.806 3.416 3.083 2.797 2.548 2.233
2.7 7.942 6.767 5.835 5.083 4.467 3.957 3.530 3.168 2.859 2.593 2.363 2.071
2.8 7.385 6.292 5.426 4.726 4.154 3.680 3.282 2.946 2.659 2.411 2.197 1.926
2.9 6.884 5.866 5.058 4.406 3.872 3.430 3.060 2.746 2.478 2.248 2.048 1.795
3.0 6.433 5.481 4.726 4.117 3.619 3.205 2.859 2.566 2.316 2.101 1.914 1.677
3.1 6.025 5.133 4.426 3.856 3.389 3.002 2.678 2.403 2.169 1.967 1.792 1.571
3.2 5.654 4.818 4.154 3.619 3.180 2.817 2.513 2.255 2.035 1.846 1.682 1.474
3.3 5.316 4.530 3.906 3.403 2.991 2.649 2.363 2.121 1.914 1.736 1.582 1.386
3.4 5.008 4.267 3.680 3.205 2.817 2.495 2.226 1.998 1.803 1.635 1.490 1.306
3.5 4.726 4.027 3.472 3.025 2.659 2.355 2.101 1.885 1.701 1.543 1.406 1.232
3.6 4.467 3.806 3.282 2.859 2.513 2.226 1.985 1.782 1.608 1.459 1.329 1.165
3.7 4.229 3.603 3.107 2.707 2.379 2.107 1.880 1.687 1.522 1.381 1.258 1.103
3.8 4.009 3.416 2.946 2.566 2.255 1.998 1.782 1.599 1.443 1.309 1.193 1.045
3.9 3.806 3.243 2.797 2.436 2.141 1.897 1.692 1.518 1.370 1.243 1.132 0.993
4.0 3.619 3.083 2.659 2.316 2.035 1.803 1.608 1.443 1.303 1.182 1.077 0.944

Tn (s)

R (in)
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2.3.4.2 Geometric Constraints 

In analyzing this problem, there are also geometric constraints to consider when 

selecting the springs. If the springs are attached in the plane of the disk, then the fully-

stretched length of the spring should be no more than the distance between the fixed end 

of the spring and the point of contact on the disk. Figure 14 shows a close-up view of the 

spring geometry. 

 
 

 
Figure 14. Model of the spring geometry and contact point on the rotating disk 

 
 
 

The chord length c is computed using the following relation 

 
2

sin2 θRc =  (54) 
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but θ  can be compared to α  and β  in the following manner 

 o1802 =+ αθ  (55) 

 o90=+ βα  (56) 

Substituting (56) into (55) and then (55) into (54), the chord length can be expressed in 

terms of β  as 

 ⎟
⎠
⎞

⎜
⎝
⎛==

c
wRRc 2/2sin2 β  (57) 

Using the Pythagorean theorem, 

 ( ) 222 2 cwl =+  (58) 

Substituting (57) into (58) yields 

 ( ) Rwwl =+ 22 2  (59) 

and solving for l gives the following expression 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

4
wRwl  (60) 

The stretched length of the spring,  δ+0l  , must be no greater than the difference 

between l and the total distance from the fixed end to the center of the disk, L; that is, 

 lL −≤+δ0l  (61) 

or, in other words, the maximum elongation of the spring beyond its unstretched length is 

 0max 4
l−⎟

⎠
⎞

⎜
⎝
⎛ −−=

wRwLδ  (62) 

In this problem, L is equal to 13.5 in, and R is 11.75 in. Since the spring needs to be in 

tension at all times, it is a good idea to set maxδ  at twice as large as the desired distance 

through which the disk will rotate; in other words, 
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 00max 22 θδ Rs ==  (63) 

Table 3 lists the variation in maximum initial angular displacement, 0θ , based on 

the selection of spring width, w, and overall unstretched length, 0l .  

 
 

Table 3. Maximum angular displacement (in degrees) based on spring parameters. 

3/32 1/8 3/16 1/4 3/8 1/2 5/8 3/4
0.50 23.653 23.259 22.598 22.042 21.112 20.332 19.647 19.030
0.75 23.044 22.649 21.989 21.433 20.503 19.722 19.037 18.420
1.00 22.434 22.040 21.379 20.823 19.893 19.113 18.428 17.811
1.25 21.825 21.430 20.770 20.214 19.284 18.503 17.818 17.201
1.50 21.215 20.821 20.160 19.604 18.674 17.894 17.209 16.592
1.75 20.606 20.211 19.550 18.995 18.065 17.284 16.599 15.982
2.00 19.996 19.602 18.941 18.385 17.455 16.675 15.990 15.373
2.25 19.387 18.992 18.331 17.775 16.846 16.065 15.380 14.763
2.50 18.777 18.383 17.722 17.166 16.236 15.455 14.770 14.154
2.75 18.168 17.773 17.112 16.556 15.627 14.846 14.161 13.544
3.00 17.558 17.164 16.503 15.947 15.017 14.236 13.551 12.935
3.25 16.949 16.554 15.893 15.337 14.408 13.627 12.942 12.325
3.50 16.339 15.945 15.284 14.728 13.798 13.017 12.332 11.716
3.75 15.730 15.335 14.674 14.118 13.188 12.408 11.723 11.106
4.00 15.120 14.725 14.065 13.509 12.579 11.798 11.113 10.497
4.25 14.510 14.116 13.455 12.899 11.969 11.189 10.504 9.887
4.50 13.901 13.506 12.846 12.290 11.360 10.579 9.894 9.278
4.75 13.291 12.897 12.236 11.680 10.750 9.970 9.285 8.668
5.00 12.682 12.287 11.627 11.071 10.141 9.360 8.675 8.058
5.25 12.072 11.678 11.017 10.461 9.531 8.751 8.066 7.449
5.50 11.463 11.068 10.408 9.852 8.922 8.141 7.456 6.839
5.75 10.853 10.459 9.798 9.242 8.312 7.532 6.847 6.230
6.00 10.244 9.849 9.188 8.633 7.703 6.922 6.237 5.620
6.25 9.634 9.240 8.579 8.023 7.093 6.313 5.628 5.011
6.50 9.025 8.630 7.969 7.413 6.484 5.703 5.018 4.401
6.75 8.415 8.021 7.360 6.804 5.874 5.093 4.408 3.792
7.00 7.806 7.411 6.750 6.194 5.265 4.484 3.799 3.182
7.25 7.196 6.802 6.141 5.585 4.655 3.874 3.189 2.573
7.50 6.587 6.192 5.531 4.975 4.046 3.265 2.580 1.963
7.75 5.977 5.583 4.922 4.366 3.436 2.655 1.970 1.354
8.00 5.368 4.973 4.312 3.756 2.826 2.046 1.361 0.744

w (in)

l 0  (in)

 
 
 
 

With the availability of high-resolution encoders, it is assumed that the rotation of 

the disk will be on the order of a few degrees. Looking at the data, nearly any 
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combination of spring geometric parameters will allow sufficient angular displacement 

for the encoder to properly measure the data.  Therefore, the geometric constraints will 

most likely be met for the given system design and spring placement. However, this 

exercise is important in deriving the operating limits of the system once springs have 

been selected. 

2.3.4.3 Spring Selection 

 With the aforementioned constraints in mind, a set of precision stainless steel 

extension springs (McMaster-Carr Inc., Santa Fe Springs, CA) was selected. The spring 

rate of each spring is specified by the manufacturer to equal 588 N/m (3.36 lb/in), so the 

equivalent spring rate of the iMachine system is 1177 N/m (6.72 lb/in). The spring width 

and unstretched length are 15.875 mm (5/8 in) and 7.94 cm (3.126 in), respectively. 

Based on Table 3, this means that the disk can be rotated more than o13  before the spring 

will contact the disk. Since the springs do not operate in compression, the spring static 

displacement must be greater than the desired amplitude of oscillation. One end of the 

spring connects to the fixed structural frame via a steel eyebolt and the other end hooks to 

flexible steel rope. The rope wraps around the middle of the disk and a screw pins the 

rope to the disk at the back. A picture of the spring in static equilibrium is shown in 

Figure 15. The natural period of oscillation for the unoccupied and occupied wheelchair 

scenarios is estimated using Table 1 and Table 2 to be approximately 1.1 s and 2.1 s, 

respectively. 
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Figure 15. iMachine extension spring in static equilibrium 

 
 
 

2.3.5 X-Y Positioning Platform 

 One of the significant challenges in operating an apparatus to empirically measure 

the moment of inertia of a large object is the centering the test piece CG on the axis of 

rotation. To address this issue, the iMachine design includes an X-Y positioning platform 

to allow for easy repositioning of the test piece in two directions. The platform has 

similar outer dimensions to the structural frame and is made from the same extruded 

aluminum parts (80/20 Inc., Columbia City, IN). The platform interfaces with the disk at 

three contact points, one on each of the load cells. There are three small rods attached to 

the bottom of the platform that fit in copper bushings mounted to the disk. The rods 

improve stability by constraining the lateral motion of the platform. Additionally, this 

platform design ensures that the load is transferred solely through the load cells, while 

reducing the shear force on the load cells. Figure 16 illustrates the final platform design. 
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Figure 16. iMachine X-Y positioning platform 

 
 
 

The coordinate system in Figure 16 is the same in Figure 10, so that the positive 

y-axis points towards the top of the page. Each bearing is adjustable in one direction 

based on the orientation of the beam to which it is mounted. Considering only the 

geometric dimensions of the platform frame, the total stroke lengths in the x and y 

directions are 74.93 cm (29.5 in) and 68.58 cm (27 in), respectively. The adjustable range 

of each bearing is constrained, however, by its dimensions and the fact that each beam 

contains two bearings. For example, the bearing in the bottom left cannot move all the 

way to the right end because there is another bearing in the way. Taking into account 

these constraints, the stroke length for each bearing from the center of the beam is 22.2 

cm (8.75 in) in the x-direction and 27.1 cm (10.675 in) in the y-direction. 
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During a test, the wheelchair is mounted to the top four linear bearings on the 

platform. The rear drive wheels attach to the two bearings in the bottom of the figure, 

while the casters are fixed to the top two bearings. This biases the heavier regions of the 

wheelchair toward the part of the disk with load cells B and C (refer to Figure 10). Once 

the wheels are fixed to their respective bearings, the bearings include handles that lock 

them into place. 

2.3.6 Hardware 

2.3.6.1 Load Cells 

 The design specifications for the load cells are that they be low profile, easy to 

mount, high resolution sensors with load capacity greater than the maximum anticipated 

weight of the platform and occupied wheelchair. The transducers that were selected are 

LCGB-250 series miniature industrial compression load cells (Omega Engineering Inc., 

Stamford, CT). The cells have a button-type interface for even force distribution, and 

three mounting holes for easy attachment to a flat surface such as the iMachine disk. The 

load capacity of each is 250 lb, so that the total weight capacity of the load cell supports 

(750 lb) is more than the anticipated maximum load (300 lb). These have the optimal 

combination of capacity and resolution that was found and should be sufficient for the 

measurement technique of this device. The load cell is 32 mm (1.25 in) in diameter and 

10 mm (0.39 in) in overall height. The output of each load cell is a differential analog 

signal on the order of 20mV with 10V nominal excitation. A picture of the load cell 

mounted to the iMachine disk is illustrated in Figure 17. 
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Figure 17. Load cell mounted to iMachine disk 

 
 

2.3.6.2 Encoder 

 An optical encoder generally consists of a code wheel, detector module, and 

mounting housing, as shown in Figure 18.  

 
 

 
Figure 18. Optical encoder components (U.S. Digital Inc.) 

 
 
 

The code wheel mounts to the rotating shaft, while the detector module remains 

stationary. The module usually contains a light-emitting diode (LED) source on one end 

and a detector on the other. As the code wheel rotates, the LED signal is either detected 

or not, depending on the transparency of the wheel at that location. Monitoring the signal 
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continuously over time creates a squarewave output that can be processed to get the 

angular position. 

The only major design parameter for the encoder is its resolution because it 

dictates the uncertainty in the angular position measurement. With this in mind, an E3 

series optical encoder (U.S. Digital Inc., Vancouver, WA) was selected that has 2 channel 

quadrature outputs with 2500 Cycles Per Revolution (CPR). Quadrature simply refers to 

the fact that there are two patterns on the code wheel that produce signals which are out 

of phase. The phase lag, Z, between the two channels determines the resolution of the 

transducer. Nominally, Z equals 1/4 of one cycle, so that the resolution, θ∆ , is given by 

 o
o

036.0
rev 1

360
cycles 2500

rev 1 cycles 
4
1

==∆θ  (64) 

Figure 19 shows an example of the quadrature output for the encoder. The numbered 

lines in the figure represent the four possible “states” of the output signal. 

 
 

 
Figure 19. Encoder quadrature output 
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Assigning incremental sequencing (1,2,3,4) to clockwise (CW) rotation and 

decremental sequencing (4,3,2,1) to counter-clockwise (CCW) rotation, the angular 

position of the system can be monitored using the key presented in Table 4. The numbers 

listed in the column on the left refer to the state recorded at the ith time point, and the top 

column lists the state of the (i+1)th time. 

 
 

Table 4. Encoder state changes and their meaning 

 
 
 
 

A positive (+) sign indicates the angular position has increased by an amount equal to the 

encoder resolution, while a negative (-) sign indicates the position has decreased by the 

same amount. If the state remains the same across two successive data points, it is 

assumed that the angular position is unchanged. There are also several cases that are not 

applicable (NA), which means that it is impossible to progress from the ith state to the 

(i+1)th states without skipping states. In order to ensure that all states are counted, the 

time interval between sampled data points must be less than the time it takes to rotate θ∆  

degrees. For example, if the maximum rotation rate is 4π  rad/s, then the minimum 

sampling rate that guarantees each encoder state will be detected is 

 Hz 1250
rad 

180
036.0
rad/s 4max

min ==
∆

=
π

π
θ

ω o

o
f  (65) 
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Initially, it is assumed that the prescribed maximum angular speed in (65) is an 

acceptable upper bound for the iMachine. In addition, it is desired to detect two or more 

points within each state. Therefore, the minimum sampling rate was set to 2500 Hz, and 

later tests confirmed that this meets the specifications described here. 

 The encoder bore size is 10 mm, which defines the diameter of the necessary step 

size on the bottom of the shaft. The housing mounts to a plate that is rigidly attached to 

the bottom structural frame of the iMachine. A picture of the mounted setup is shown in 

Figure 20. 

 
 

 
Figure 20. Encoder mounted to bottom of iMachine frame 

 
 
 

2.3.6.3 LabJack U6 DAQ Device 

 The data acquisition device (DAQ) that was selected for this project is the U6 

(LabJack Corporation, Lakewood, CO). It has 14 analog input (AI) channels and 20 

digital I/O (DI) channels. There are several software programmable gains and varying AI 

ranges. This is sufficient for the iMachine, which only requires 3 single-ended AI 
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channels for the load cells and 2 DI channels for the quadrature encoder output. 

Instrumentation amplifiers are used to convert the differential signals from the load cells 

to single-ended signals. The analog input range of V1.0± is used to increase resolution 

since the load cell outputs is on the order of mV. The U6 device can stream input data at 

rates up to 50 kHz, which is more than enough for the predicted requirements of the 

iMachine hardware described previously. It supports most programming languages and 

connects to a personal computer (PC) via USB cable. The LabJack U6 device is pictured 

below in Figure 21. 

 
 

 
Figure 21. LabJack U6 DAQ device 

 
 

2.3.7 Software 

2.3.7.1 LabVIEW: Data Acquisition 

 A graphical user interface (GUI) was developed using LabVIEW software 

(National Instruments Corp., Austin, TX). The purpose of the GUI is to properly stream 

data from the LabJack U6 and write the important data arrays to a comma-separated 

values (CSV) file for use with other software. LabVIEW uses code functions provided in 
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LabJack’s dynamic linked library (DLL) to properly configure the DAQ device and 

stream the data according to controllable parameters. The GUI is programmed to display 

the weight of the system on the load cells, the location of the system CG with respect to 

the axis of rotation, and the angular position of the platform in real time. Figure 22 shows 

the LabVIEW iMachine GUI, and Figure 23 displays a portion of the block diagram for 

the code. 
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2.3.7.2 MATLAB: Data Analysis 

 Once the test data has been acquired using the LabVIEW GUI, it is processed and 

analyzed using a series of functions developed in MATLAB software (The MathWorks 

Inc., Natick, MA). The functions draw on the theory developed previously in this thesis 

and the measurement approach outlined in the next chapter to calculate the desired 

moment of inertia term. 

2.4 Summary 

 This chapter has delineated the design selection, theoretical inertia calculations, 

and component specification for the iMachine. A picture of the final constructed device is 

illustrated in Figure 24. 

 
 

 
Figure 24. iMachine in rotation 
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CHAPTER 3 

MEASUREMENT APPROACH 

 
 

 Now that the theory has been described and the design components detailed, this 

chapter discusses the specific measurement approach for using the iMachine effectively. 

In the sections that follow, the test procedures and calculations will be presented that are 

utilized to solve for the mass, location of the center of mass, and moment of inertia of a 

manual wheelchair. 

3.1 Mass 

The first portion of the test procedure is carried out under static conditions. To 

begin, the mass of the platform is read and recorded using the LabVIEW GUI. Then, the 

wheelchair is fixed to the appropriate linear bearings on the positioning platform using 

cable ties. The total system mass is now recorded. The mass of the wheelchair, WCm , is 

calculated by taking the difference of the two measurements, 

 platformsysWC mmm −=  (66) 

where sysm  is the mass of the wheelchair and platform, and platformm  is the mass of the 

platform only. 

3.2 Center of Mass Coordinates 

The center of mass is located by summing the moments about x and y-axes as 

shown in Figure 10, 
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 (67) 
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where ( )GG ,YX  are the center of mass coordinates for the entire system, CBA  and ,, FFF  

are the load cell forces, and the total weight is given by 

 CBAtotal FFFF ++=  (68) 

Even though the design calls for each of the load cells to be equidistant from the center of 

the disk, measurements demonstrated that this is not true, so CBA  and ,, ddd  are used to 

represent the radial distance from each load cell to the axis of rotation. Solving for the 

location of the center of mass, 

 ;
30sin)(

   ;
30cos)(

CBA

CCBBAA
G

CBA

BBCC
G FFF

dFdFdF
Y

FFF
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X
++

+−
=

++
−

=
oo

 (69) 

Therein, if the distances are measured by hand, the total system CG can be located by 

simply using the three load cell measurements. It is important to note that results in (69) 

refer to the entire system that is on top of the load cells, not just the wheelchair. In the 

next section, the location of the wheelchair CG alone will be derived concurrently with 

measuring the moment of inertia. 

3.3 Moment of Inertia 

At this point, the wheelchair can be repositioned on the disk by moving the linear 

bearings along the aluminum extrusions of the platform. In this way, the location of the 

system center of mass can be driven to approximately zero. The purpose of centering the 

system CG is to reduce the stress on the shaft and the effect of rotating imbalances on the 

measurement. This concludes the static analysis portion of the test. In the dynamic 

portion of the test, the disk/platform/wheelchair assembly may be given an initial angular 

displacement, 0θ , and released from rest. However, the researchers found this approach 

to be difficult because of the inability to hold the platform still at an initial angular 
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displacement. In practice, therefore, the system was given an initial angular velocity, 0v , 

from an angular position equal to zero. The output signal is much cleaner using this 

approach, so this method was followed for the remainder of the tests presented in this 

thesis. The system will oscillate freely about the center of the disk, and the encoder 

measures the angular position as a function of time. A plot of the angular position is 

qualitatively similar to the simulation shown in Figure 25 below, which is for the case of 

release from an initial angle. From the recorded data, the natural period can be 

determined using either time-domain or frequency-domain techniques, which are 

described below. 

 
 

 
Figure 25. MATLAB simulation of typical second-order underdamped transient response 
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3.3.1 Time-Domain Methods 

The first method for determining the natural period of oscillation is counting the 

critical points of the response. If zero crossings are counted, then the damped period 

equals the difference between every three points. If maxima or minima are counted, then 

the damped period is equal to the difference between successive points. The damping 

ratio can be found experimentally by comparing the ratio of successive maxima and 

solving for the log decrement, δ , using the equation 
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where 1 and +jj xx are the jth and (j+1)th amplitude of successive maxima. Rearranging 

the above equation to solve for the damping ratio yields 

 
224 δπ

δζ
+

=  (71) 

Then, the natural period of oscillation can be calculated using (35). 

3.3.2 Frequency-Domain Methods 

The second method for finding the natural period of oscillation is to perform a 

Fast Fourier Transform (FFT) on the data. An FFT is simply an efficient algorithm that 

performs a Discrete Fourier Transform (DFT), which transforms discrete-valued time 

data into complex amplitudes in the frequency domain using the equation 
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where kG  is the kth Fourier coefficient, kg  is the kth data point in the time domain, and 

N is the number of data points. The frequency associated with each Fourier coefficient 

can be computed as follows 

 
T

kkk
πωω 2

1 ==  (73) 

where 1ω  is the fundamental frequency, and T is the length or duration of the data record. 

The algorithm assumes that the discrete time data repeats every T seconds and that N data 

points refers to one period. The highest frequency that can be computed is called the 

Nyquist critical frequency, which is equal to the (N/2)th harmonic, or 

 1cr 2
ωω N

=  (74) 

A plot of the frequency spectrum of a free response should reveal a dominant frequency 

that is very close to the maximum-response frequency in a harmonically-driven SDOF 

system. In a system with viscous damping, the complex frequency response is given by 

 ( )
n

2      ,
21

1,
ω
ω

ζ
ζ =

−+
= r

rri
rD  (75) 

where r is the ratio between the excitation and natural frequencies. Ginsberg [15] solves 

for the frequency at which the maximum complex amplitude occurs, and the result is 

 ( ) ( )Dr maxfor     2-1 212ζ=  (76) 

To ascertain the value of the damping ratio for the system, let us first examine the 

frequency response of the system, an example of which is illustrated in Figure 26. The 

half-power points are the frequencies that correspond to the 70.7% of the maximum 

amplitude. The bandwidth of the system, ω∆ , is defined as the difference between the 
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two half-power points. The quality factor (QF) is a measure of the narrowness of the 

maximum peak, and for a lightly damped system it can be estimated as [15]: 

 
ζω

ω
2
1QF n ≈

∆
=  (77) 

Therefore, if the natural frequency is known and the bandwidth is measured, the damping 

ratio can be calculated from 

 
n2ω
ωζ ∆

≈  (78) 

 
 

 
Figure 26. Sample frequency response of SDOF system showing half-power points 

 
 
 

For systems with light damping, the peak frequency is approximately equal to the natural 

frequency. For systems with structural damping, the peak frequency is always equal to 



 55

the natural frequency, regardless of the structural damping loss factor. The natural period 

of oscillation is related to the natural frequency in the following manner, 

 
n

n
2
T
πω =  (79) 

3.3.3 Solving for the Inertia of the Manual Wheelchair 

Once the natural period of oscillation is known, the moment of inertia can be 

calculated using (34). It is important to note that the inertia calculated here refers to the 

moment of inertia of the entire system about the axis of rotation. In order to find the 

moment of inertia for the wheelchair alone, we must consider the inertia of each system 

component; that is, 

 ( ) ( ) ( ) ( )WC
O

platform
O

disk
O

sys
O

zzzzzzzz IIII ++=   (80) 

where, in general, ( )CO
zzI  refers to the moment of inertia of the component C about the z-

axis passing through point O. In order to determine ( )WC
O
zzI , the wheelchair is removed, 

and the dynamic test is executed again. It is important that the platform configuration 

remain unchanged during this process so that its mass distribution is uniform across tests. 

When the moment of inertia is calculated a second time, it will include the same 

components as described by (80) with the exception of the wheelchair inertia; that is, 

 ( ) ( ) ( )platform
O

disk
O

sys,2
O

zzzzzz III +=  (81) 

Therefore, the moment of inertia of the wheelchair can be calculated as 

 ( ) ( ) ( )sys,2
O

sys
O

WC
O

zzzzzz III −=  (82) 

However, the analysis is not yet complete because the point O is not on the vertical axis 

passing through the wheelchair’s center of mass. To demonstrate this concept, Figure 27-
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Figure 30 track the location of the center of mass of each component throughout the test. 

For simplicity, assume that both the platform and the wheelchair are point masses with 

magnitude equal to their respective total mass and located at their respective center of 

mass. Also, for this example, assume that the wheelchair is occupied such that the mass 

of the wheelchair is greater than the mass of the platform. Finally, assume that the disk is 

inherently centered about the origin so that its inertia calculation does not require the 

parallel axis theorem. 

 
 

 
Figure 27. CG schematic (initial platform position) 

 
 
 

At the beginning of the test, only the platform is detected by the load cells; Figure 

27 shows a possible situation where the CG coordinates ),( p1p1 yx  are located in Quadrant 

I. Figure 28 illustrates the CG locations when the wheelchair is added to the system. 
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Figure 28. CG schematic (after wheelchair is added) 

 
 
 

Once again, the position of the wheelchair ).,( WC1WC1 yx  is somewhat arbitrary in 

this figure, but it is assumed that the CG is biased toward the negative y-direction because 

the heavier drive wheels are located toward that end. Note that neither of the coordinates 

need to be equal for the wheelchair and platform, although it is possible that the x-

coordinates be the same, which would simplify the problem. At this point, the wheelchair 

is repositioned on the bearings to (ideally) zero the system CG. Figure 29 shows this 

concept, and several observations can be made accordingly. 

 
 



 58

 
Figure 29. CG schematic (after moving wheelchair and platform to zero system CG) 

 
 
 

Note that the center of mass of the platform moves as well, but in smaller 

increments. This effect happens because an arbitrary movement of the system center of 

mass corresponds to movement of the entire wheelchair but only partial movement of the 

platform (the linear bearings). It can also be seen that  
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because more platform mass (the aluminum extrusion connecting the linear bearings) is 

moved during a repositioning in the y-direction than the x-direction. Also, even though 

the platform is assumed to be symmetric about the yz-plane, the figure assumes a small 

asymmetry in the wheelchair mass distribution about this plane.  If the wheelchair were 

indeed aligned symmetrically about the yz-plane, as is the ideal case, then both WC2x  and 

p2x  would be zero. The most distinguishing characteristic of Figure 29, though, is that the 
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wheelchair center of mass is not located at the origin. Still, the calculated moment of 

inertia in (74) refers to the configuration shown in this figure. To resolve this challenge, 

simply record the system center of mass location when the wheelchair is removed (Figure 

30), which corresponds to ),( p2p2 yx . 

 
 

 
Figure 30. CG schematic (after removing wheelchair) 

 
 
 

The coordinates ),( WC2WC2 yx  can be determined by taking a sum of the moments 

in Figure 29, 
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and solving for the wheelchair coordinates 
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or, if 0CGCG ≈≈YX , which was the goal, we have the relation 
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Using the Parallel Axis Theorem from (19), we can solve for the desired moment of 

inertia of the wheelchair, ( )WCzzI , 

 ( ) ( ) 2
WC2WCWC

O
WC dmII zzzz −=  (87) 

where 

 2
WC2

2
WC2

2
WC2 yxd +=  (88) 

Now, all of the desired inertial parameters of the manual wheelchair have been 

determined, and the iMachine test procedure is complete. 
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CHAPTER 4 

CALIBRATION 

 
 

 The purpose of this chapter is to detail the methods and results for calibrating the 

load cells and springs. By analyzing the factors that influence the inertia measurement, 

potential sources of error can be detected and addressed to increase the overall accuracy 

of the machine. 

4.1 Load Cell Calibration 

 Each of the load cells was calibrated to accurately determine the scaling factor 

between the voltage output and the force input. The procedure involved adding known 

weights on top of the transducer and recording the voltage output. The range of weights 

that was tested is approximately 0-50 lbs (0-22.7 kg), and these values were acquired 

using a 0.05 lb-resolution scale. This means that the resolution-based uncertainty in the 

force measurement is 0.025 lb (0.01134 kg), which is 0.05% of the total range. Weights 

were incremented first, then decremented to check for hysteresis effects. Figure 31-

Figure 33 plot the calibration results. The data has been fitted with a linear regression line 

that has a y-intercept set to zero. The slopes of the linear regression lines are summarized 

in Table 5, which lists the calibration factors for converting mV signals to kg. Converting 

to kg rather than N means that the measurement will be in mass rather than weight. This 

takes the acceleration due to gravity into account ahead of time.  

 

Table 5. Load cell calibration factors 
Load Cell ID A B C
Cal. Factor 0.092 0.096 0.095  
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Figure 31. Load cell A calibration data 
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Figure 32. Load cell B calibration data 
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Figure 33. Load cell C calibration data 

 
 
 

 Clearly, the data is highly linear in all three cases, and the 2R values are all 

greater than 0.999, so it is assumed that there is minimal error in the individual load cell 

measurements. 

 After running several tests, it is apparent that the DC offset in the transducer 

signals can vary slightly between runs. As a result, a tare control has been added to the 

LabVIEW GUI that instantaneously zeros the readings on all load cells. This should 

decrease the effect of an inconsistent voltage offset on the error in the measurement. 

4.2 Spring Calibration 

 The spring calibration was performed in situ so that any uncertainty in the normal 

operation of the iMachine would be taken into account in the determination of the spring 
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rate. To accomplish this test, two diametrically-opposed steel bricks were placed on the 

device as shown in Figure 34. Not shown in the figure are the X-Y platform and a 

wooden board, both of which are mounted to the disk. The platform is used to simulate 

actual testing conditions, and the board has marked dimensions to improve measurement 

accuracy. For simplicity, the inertia of the system excluding the bricks will be referred to 

as ( )disk
O
zzI  in the calibration analysis. Each brick has the mass and geometric properties 

listed in Table 6. 

 
 

 
Figure 34. Model of spring calibration test 

 
 
 

Table 6. Steel brick mass and geometric properties 

Parameter Symbol Units Value
mass m brick kg 5.52
length l mm 242.96
width w mm 76.22
depth d mm 38.16  
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 For the calculations performed in this calibration, the theoretical inertia of each 

brick about its CG is used according to the equation 

 ( ) ( )22brick
brick 12

wl
m

I zz +=  (89) 

When the iMachine is run with the system in Figure 34, the measured moment of inertia 

corresponds to 

 ( ) ( ) ( )brick
O

disk
O

sys
O 2 zzzzzz III +=  (90) 

where the inertia terms are about the z-axis passing through the origin. To relate the third 

term in (90) to the theoretical inertia of the brick in (89), use the parallel axis theorem as 

follows 

 ( ) ( )
2

brickbrickbrick
O

2
⎟
⎠
⎞

⎜
⎝
⎛ ++=

wsmII zzzz  (91) 

where s is the measured distance from the edge of the brick to the axis of rotation.  The 

measured inertia can be related to the system dynamics by 

 ( ) 2
n

2
eff

sys
O

ω
Rk

I zz =  (92) 

where  effk is the effective linear spring rate of the system and is equal to twice the spring 

rate of each individual spring. Substituting (89), (91), and (92) into (90) yields the 

following result, 
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 (93) 
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If the test is executed at two different distances, 21  and ss , then two natural frequencies 

arise, 21  and ωω . Using the relationship established in (93), these parameters can be 

compared by taking the ratio 
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which, when rearranged, can be used to solve for the inertia of the disk as follows, 
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Once the disk inertia has been calculated, it can be substituted into (93) to solve for the 

effective spring rate. 

 For this calibration, the two distances that were tested are 50.8 mm (2 in) and 76.2 

mm (3 in). Each distance was tested twenty times for reliability, and the natural 

frequency results for each of the four methods described in the previous chapter are listed 

in Table 7 and Table 8, where the columns “zero”, “maxima”, “minima”, and “fft” refer 

to determination of the natural frequency using zero crossings, time between consecutive 

maxima, time between consecutive minima, and peak FFT methods, respectively. The 

mean and standard deviation of these measurements is provided in Table 9. All of the 

natural frequency estimation methods appear to be very precise and repeatable, with the 

worst standard deviation equal to 0.00869 rad/s. 
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Table 7. Natural frequency (rad/s) based on time-domain and frequency-domain methods 
(s1 = 50.8 mm) 

run # zero maxima minima fft
1 5.569 5.546 5.558 5.536
2 5.546 5.532 5.532 5.519
3 5.529 5.514 5.521 5.508
4 5.545 5.537 5.533 5.517
5 5.546 5.531 5.535 5.519
6 5.545 5.536 5.533 5.515
7 5.543 5.532 5.525 5.517
8 5.552 5.535 5.535 5.518
9 5.551 5.537 5.532 5.517
10 5.548 5.539 5.542 5.519
11 5.542 5.532 5.526 5.517
12 5.555 5.547 5.539 5.527
13 5.548 5.535 5.532 5.519
14 5.553 5.542 5.536 5.522
15 5.546 5.528 5.532 5.518
16 5.554 5.542 5.543 5.521
17 5.566 5.556 5.548 5.531
18 5.553 5.537 5.543 5.521
19 5.552 5.536 5.534 5.522
20 5.538 5.534 5.531 5.517  
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Table 8. Natural frequency (rad/s) based on time-domain and frequency-domain methods 
(s2 = 76.2 mm) 

run # zero maxima minima fft
1 5.520 5.494 5.510 5.486
2 5.509 5.497 5.495 5.479
3 5.519 5.505 5.495 5.488
4 5.522 5.513 5.506 5.491
5 5.500 5.483 5.486 5.471
6 5.497 5.488 5.490 5.470
7 5.503 5.483 5.491 5.474
8 5.499 5.489 5.482 5.472
9 5.505 5.485 5.491 5.476
10 5.489 5.478 5.480 5.468
11 5.505 5.490 5.499 5.473
12 5.503 5.495 5.490 5.475
13 5.510 5.489 5.496 5.478
14 5.499 5.494 5.491 5.478
15 5.502 5.494 5.488 5.480
16 5.501 5.490 5.489 5.471
17 5.511 5.500 5.490 5.477
18 5.505 5.492 5.496 5.473
19 5.508 5.494 5.487 5.475
20 5.509 5.489 5.495 5.478  
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Table 9. Mean and standard deviation for natural frequency measurements 

zero maxima minima fft
mean(s1) 5.54904 5.5363 5.53551 5.519912

SD(s1) 0.00869 0.00843 0.00835 0.005888

mean(s2) 5.50581 5.49213 5.49241 5.476734

SD(s2) 0.00807 0.00788 0.00705 0.005994  
 
 
 

The average natural frequencies for each estimation method were used along with 

the brick properties found in Table 6 to solve for the inertia of the system in (95). The 

results are listed in Table 10. 

 
 

Table 10. Moment of inertia of the disk system (kg-m2) 

zero maxima minima fft
3.467 3.381 3.469 3.452  

 
 
 

The values listed in the table above were substituted back into (93) along with the 

parameters already given to solve for the effective spring rate of the system, effk . The 

moment arm of the spring force, R, is equal to the radius of the disk, which is 0.29845 m 

(11.75 in). To maintain consistency, the effective spring rate was calculated four times 

for each test at both distances, one corresponding to each of the time-domain and 

frequency-domain techniques. Each natural frequency was paired with the disk inertia of 

the same method – that is, only the natural frequencies that were calculated via FFT use 

the disk inertia that was calculated via FFT. The effective spring rates are shown in Table 

11 and Table 12, and the statistical mean and standard deviation appear in Table 13. 
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Table 11. Effective spring rate (N/m) based on time-domain and frequency-domain 
methods (s1 = 50.8 mm) 

run # zero maxima minima fft
1 1258.28 1218.33 1253.78 1238.05
2 1248.04 1212.24 1242.18 1230.48
3 1240.47 1204.27 1237.25 1225.84
4 1247.68 1214.11 1242.55 1229.65
5 1247.98 1211.65 1243.57 1230.89
6 1247.54 1213.77 1242.72 1228.82
7 1246.66 1212.18 1239.20 1229.64
8 1250.68 1213.47 1243.62 1230.09
9 1250.40 1214.27 1242.12 1229.68
10 1249.10 1215.20 1246.66 1230.90
11 1246.42 1212.03 1239.32 1229.64
12 1251.92 1218.60 1245.55 1234.24
13 1248.82 1213.24 1242.05 1230.47
14 1251.16 1216.36 1243.80 1232.15
15 1248.00 1210.18 1242.31 1230.02
16 1251.56 1216.60 1247.20 1231.74
17 1256.99 1222.87 1249.58 1235.95
18 1251.30 1214.19 1247.04 1231.74
19 1250.63 1213.91 1243.30 1232.15
20 1244.51 1212.89 1241.79 1229.61  
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Table 12. Effective spring rate (N/m) based on time-domain and frequency-domain 
methods (s2 = 76.2 mm) 

run # zero maxima minima fft
1 1255.72 1214.89 1251.66 1235.09
2 1250.76 1216.06 1244.85 1232.06
3 1255.52 1219.81 1244.98 1236.30
4 1256.74 1223.28 1250.02 1237.57
5 1246.72 1209.94 1241.04 1228.29
6 1245.33 1212.29 1242.67 1228.27
7 1248.19 1210.08 1243.17 1229.97
8 1246.16 1212.49 1239.01 1229.11
9 1248.90 1210.75 1243.10 1230.81
10 1241.84 1207.82 1238.39 1226.99
11 1249.25 1213.11 1246.67 1229.59
12 1248.05 1215.34 1242.85 1230.37
13 1251.47 1212.62 1245.32 1231.66
14 1246.51 1214.92 1242.96 1231.63
15 1247.83 1214.78 1241.99 1232.49
16 1247.40 1213.10 1242.16 1228.71
17 1251.63 1217.29 1242.85 1231.24
18 1249.03 1214.11 1245.45 1229.55
19 1250.24 1215.01 1241.41 1230.43
20 1250.85 1212.66 1245.06 1231.66  
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Table 13. Mean and standard deviation (N/m) for keff measurements 

zero maxima minima fft
mean(s1) 1249.407 1214.018 1243.78 1231.087

SD(s1) 3.9144 3.69623 3.756386 2.627633

mean(s2) 1249.406 1214.017 1243.78 1231.088

SD(s2) 3.664118 3.487711 3.194249 2.696008  
 
 
 

 To understand these results, it is necessary to compare the spring rate to that 

provided by the manufacturer. A summary of the comparison, including relative percent 

error estimates, is given in Table 14. It is difficult to draw conclusions regarding the 

accuracy of the calibrated results, but they are relatively close to the data given by the 

manufacturer, which is expected. Validation tests are needed to examine the effect of the 

calibrated spring rate on the accuracy of the moment of inertia measurement, and the 

results of these tests will be presented in the next chapter. 

 
 

Table 14. Comparison of calibrated spring rate to manufacturer-provided data 

k (lb/in) k (N/m) keff (N/m) % error

zero 3.57 624.70 1249.41 6.17
maxima 3.47 607.01 1214.02 3.16
minima 3.55 621.89 1243.78 5.69

fft 3.51 615.54 1231.09 4.61
mfr. 3.36 588.43 1176.85 ‐  
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CHAPTER 5 

TESTING AND RESULTS 

 
 

 This chapter begins with an analysis of validation tests for each of the inertial 

parameter measurements. For each parameter, objects with known mass properties were 

tested and the empirical results are compared to the theoretical predictions using closed-

form formulas. Then, a manual wheelchair was tested and the inertia measurement 

juxtaposed against the previous test results. Conclusions regarding the accuracy and 

reliability of results as well as a discussion of potential sources of error are presented in 

the following chapter. 

5.1 Mass Validation 

 Now that the load cells have been calibrated individually, the next step is to check 

the accuracy of the mass measurement when all three load cells are working as a system. 

To achieve this goal, comparisons were made between the measurements of the load cells 

and a commercially-available scale. The scale has a resolution of 0.02 lb, making the 

resolution-based uncertainty 0.01 lb. The platform was weighed beforehand and its mass 

is 19.00 kg. Then, the load cells and platform were mounted to the disk. Next, the mass 

was monitored according to the load cell readings, and known weights were added 

incrementally. The data is presented below in Table 15. The error equations are given by  

 actualmeasuredabs qqe −=  (96) 

 ( )%100
actual

actualmeasured
rel q

qq
e

−
=  (97) 
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where abse  is the absolute error, rele  is the relative percent error, measuredq  is the measured 

data parameter, and actualq  is the actual data parameter. In this case, the parameter is the 

mass, and the actual value refers to the scale reading. 

 
 

Table 15. Accuracy of load cell mass measurement 
Scale (kg) Load Cells (kg) Absolute Error (kg) Percent Error (%)

19.00 19.07 0.07 0.368
19.90 19.90 0.00 0.000
20.80 20.90 0.10 0.481
21.70 21.98 0.28 1.290
22.60 22.86 0.26 1.150
24.50 24.69 0.19 0.776
25.40 25.57 0.17 0.669
26.30 26.63 0.33 1.255
27.20 27.53 0.33 1.213
28.10 28.33 0.23 0.819
29.98 30.09 0.11 0.367
30.88 31.01 0.13 0.421
31.78 31.97 0.19 0.598
32.68 32.90 0.22 0.673
33.58 33.83 0.25 0.744
35.50 35.90 0.40 1.127
36.40 36.80 0.40 1.099
37.30 37.61 0.31 0.831
38.20 38.52 0.32 0.838
39.10 39.38 0.28 0.716
41.00 41.28 0.28 0.683
41.90 42.23 0.33 0.788
42.80 43.08 0.28 0.654
43.70 44.04 0.34 0.778
44.60 44.92 0.32 0.717

AVERAGE 0.24 0.762  
 
 
 

The data looks fairly good, with an average relative accuracy of 99.24%. The absolute 

error ranges from 0.00-0.40 kg, and the load cell measurement is always higher than the 

predicted scale value. During the test, it was noted that the load cell mass reading varied 

depending on where the mass was located. The weights were placed arbitrarily during the 
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test, but perhaps a more calculated strategy could shed light on the relationship between 

mass position and the associated error. 

To investigate this hypothesis, the platform was set in a symmetric configuration 

so that the CG measured to be approximately zero. A small mass was placed at different 

locations on the platform and the mass recorded. Figure 35 shows the different 

configurations used, with each number identifying a position of the small mass. 

 
 

 
Figure 35. Platform configurations for mass validation test 

 
 
 

The actual mass value is 20.12 kg for this test, and the results are presented in 

Table 16. The range of absolute error for this test is 0.11 kg, which equates to 0.547% of 

the expected value. This is an encouraging result; the maximum relative percent error is 

0.348%, and all configurations provide accuracy of greater than 99.6%. 
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Table 16. Error in mass readings due to position on platform (20.12 kg mass) 
Configuration Measured Value (kg) Absolute Error (kg) Relative Error (%)

1 20.09 -0.03 0.149
2 20.08 -0.04 0.199
3 20.09 -0.03 0.149
4 20.12 0.00 0.000
5 20.13 0.01 0.050
6 20.08 -0.04 0.199
7 20.09 -0.03 0.149
8 20.11 -0.01 0.050
9 20.12 0.00 0.000
10 20.11 -0.01 0.050
11 20.09 -0.03 0.149
12 20.10 -0.02 0.099
13 20.14 0.02 0.099
14 20.12 0.00 0.000
15 20.13 0.01 0.050
16 20.14 0.02 0.099
17 20.14 0.02 0.099
18 20.15 0.03 0.149
19 20.14 0.02 0.099
20 20.13 0.01 0.050
21 20.18 0.06 0.298
22 20.19 0.07 0.348
23 20.18 0.06 0.298
24 20.15 0.03 0.149
25 20.13 0.01 0.050

AVERAGE 0.01 0.121  
 
 
 

To understand how the error changes based on the position of the mass on the platform, 

Figure 36 illustrates an interpolated surface plot of the absolute error distribution across 

the platform dimensions. The most accurate measurements occur in Quadrant II, while 

the worst occur in Quadrant I. To see if the amount of mass in these positions affects the 

error, the test was repeated using heavier weights. The actual mass value is 24.73 kg, and 

the results are listed in Table 17. 
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Figure 36. Interpolated surface plot of absolute error distribution (in kg) on platform 

(20.12 kg mass) 
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Table 17. Error in mass readings due to position on platform (24.73 kg mass) 
Configuration Measured Value (kg) Absolute Error (kg) Relative Error (%)

1 24.40 -0.33 1.334
2 24.42 -0.31 1.254
3 24.47 -0.26 1.051
4 24.59 -0.14 0.566
5 24.57 -0.16 0.647
6 24.51 -0.22 0.890
7 24.54 -0.19 0.768
8 24.60 -0.13 0.526
9 24.71 -0.02 0.081
10 24.74 0.01 0.040
11 24.67 -0.06 0.243
12 24.66 -0.07 0.283
13 24.74 0.01 0.040
14 24.83 0.10 0.404
15 24.82 0.09 0.364
16 24.81 0.08 0.323
17 24.85 0.12 0.485
18 24.90 0.17 0.687
19 24.86 0.13 0.526
20 24.85 0.12 0.485
21 24.92 0.19 0.768
22 24.97 0.24 0.970
23 24.97 0.24 0.970
24 24.95 0.22 0.890
25 24.95 0.22 0.890

AVERAGE 0.0020 0.619  
 
 
 

In this case, the range of absolute error is 0.57 kg, which equates to 2.305% of the 

expected value. Most configurations are greater than 99% with the maximum relative 

percent error for the data set being 1.334%. These results are slightly higher in error than 

the previous test, which begs the question of whether the relative percent error increases 

with increasing mass. Figure 37 displays the surface plot of the interpolated absolute 

error for the test with a larger mass. The distribution is fairly similar to Figure 36, and 

still indicates that placing the mass in Quadrant II produces the greatest accuracy.  
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Figure 37. Interpolated surface plot of absolute error distribution (in kg) on platform 

(24.73 kg mass) 

 
 
 

There are many possible reasons for the error trend in Figure 37. One explanation 

is poor calibration of the load cells, specifically B and C, since the error tends to get 

worse as the mass is moved closer to them. However, the previous calibration results 

exhibit high correlation and do not reflect the inaccuracy expected if this were the cause 

of error. Another potential explanation of the error trend is that something in the 

structural design is altering the load seen by the transducers. The only interface between 

the platform and the disk other than the load cells is the stability rods to prevent lateral 

motion. If binding occurs between the rods and the copper bearings, the rods will support 

some of the load. However, this should cause the load cells to underestimate the mass, 

which is not the case for most of the error. Whatever the cause, the error is sufficiently 
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small for this measurement and most of the mass tested on the iMachine will not be 

concentrated in the red regions of the previous figure. 

5.2 Center of Mass Validation 

 A static test was performed to determine the error in the calculation of the center 

of mass. The test object was a stack of steel blocks, weighing 16.53 kg. A wooden board 

with marked distances from the center along the x and y coordinate axes was situated on 

the platform in a configuration that placed the system CG at the origin of the disk. Then, 

the centroid of the test object, determined theoretically using closed-form equations, was 

lined up with the board markings. The actual coordinates of the object’s CG were 

recorded according to the board. To calculate the measured CG coordinates of the object, 

it is necessary to recall that the load cell-based CG measurement includes the weight of 

the system including both the test object and the platform. To illustrate this concept, 

consider the diagram shown in Figure 38. 

 
 

 
Figure 38. Static analysis of forces on iMachine platform 
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Summing the moments about point A and assuming static equilibrium, 

 1total2BA :0 xFxFM ==∑  (98) 

where the total force is equal to the sum of BA  and FF . Solving for the moment-arm of 

the force at point B, 

 ( )
1ratio1

B

BA
2 xFx

F
FF

x =
+

=  (99) 

Similarly, for the y-coordinate, 

 
( )

1ratio1
B

BA
2 yFy

F
FF

y =
+

=  (100) 

 Now, in the given problem, the force acting at B is the weight of the test object, while 

the force acting at A is due to the platform. The total force acting at G, which 

corresponds to the system CG, is the reaction force output by the load cells. The location 

of the test object CG corresponds to ( )22 , yx . 

For this test, the distance from the axis of rotation to the edge of the test object 

was varied between 10 mm and 150 mm in 20 mm-increments. Note that, by dividing the 

numerator and denominator in (99) and (100) by the acceleration due to gravity, the force 

ratio can be written in terms of masses, which is what the iMachine measures. The ratio 

was found empirically by recording the mass measurement before and after loading the 

test object on the platform, and plugging the appropriate values into (99) and (100). The 

test data is summarized in Table 18. Using the same methods as the mass measurement 

validation test, the mass relative error is 0.961% for this test.  The percent error for both 

coordinates was calculated using equation (97). 
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Table 18. Center of mass validation test results 

x_actual (m) y_actual (m) x_CG (m) y_CG (m) F_ratio x_meas (m) y_meas (m) %error_x %error_y
0.0000 0.0483 -0.000757 0.020000 2.37133 -0.001795 0.047427 - 1.8082
0.0000 0.0683 -0.001277 0.028000 2.37717 -0.003037 0.066561 - 2.5466
0.0000 0.0883 -0.001128 0.036190 2.38262 -0.002688 0.086226 - 2.3488
0.0000 0.1083 -0.001212 0.044531 2.38217 -0.002887 0.106080 - 2.0503
0.0000 0.1283 -0.001302 0.052573 2.38676 -0.003108 0.125479 - 2.1991
0.0000 0.1483 -0.001024 0.061049 2.38594 -0.002444 0.145659 - 1.7810
0.0000 0.1683 -0.001310 0.069438 2.38837 -0.003129 0.165843 - 1.4596
0.0000 0.1883 -0.001371 0.077877 2.39380 -0.003282 0.186421 - 0.9979
0.0483 0.0000 0.019865 -0.001781 2.36208 0.046923 -0.004207 2.8506 -
0.0683 0.0000 0.028609 -0.001692 2.36057 0.067533 -0.003995 1.1228 -
0.0883 0.0000 0.037394 -0.001870 2.34533 0.087701 -0.004385 0.6780 -
0.1083 0.0000 0.045868 -0.001805 2.34093 0.107375 -0.004226 0.8543 -
0.1283 0.0000 0.054552 -0.001792 2.34118 0.127716 -0.004196 0.4552 -
0.1483 0.0000 0.063306 -0.001986 2.34127 0.148217 -0.004649 0.0563 -
0.1683 0.0000 0.071508 -0.002133 2.34517 0.167698 -0.005001 0.3578 -
0.1883 0.0000 0.079853 -0.002484 2.34026 0.186877 -0.005814 0.7559 -

 

 
 

Initially, the average error for the x and y-coordinates was 0.891% and 3.643%, 

respectively. The greatest error occurred when the object CG was near the origin, which 

is somewhat expected since the instrument resolution has the most effect when the terms 

in the numerator of (69) are approximately equal. Nonetheless, significant error near the 

origin is unacceptable since the iMachine test method involves an attempt to drive the CG 

coordinates to zero. However, upon retesting at distances in the y-direction of 10 mm and 

30 mm (first two rows in the table), the percent error reduced to 1.808% and 2.547%, 

respectively, and these are the values that are shown in Table 18. This test was repeated 

multiple times with consistent results, so it is assumed that the original results for these 

cases were outliers and can be neglected. Therein, the new average error in the 

calculation of y-coordinate of the center of mass is 1.99%. 
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5.3 Moment of Inertia Validation 

 To validate the moment of inertia measurement, tests are run on objects with 

known mass properties, and comparisons are made between the theoretical inertia 

predictions and empirical results. The first test object is the same steel brick used during 

the spring calibration test, so refer to Table 6 for the mass and geometric properties. The 

theoretical inertia can be determined by the equation 

 ( )22
ltheoretica 12

wlmI +=  (101) 

which, when plugging in the values from Table 6, results in 2
ltheoretica mmkg 29826 ⋅=I . 

 The iMachine was run thirty times with and without the brick centered on the 

platform. Figure 38 and Figure 39 display the time-domain and frequency-domain 

response of the system, respectively, for one of the test runs.  

 
 

 
Figure 39. Time-domain response of iMachine validation test (1 block) 
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Figure 40. Frequency-domain response of iMachine validation test (1 block) 

 
 
 

It is clear from both figures that the system is lightly damped. To quantify the 

damping in the time domain, the log decrement was used. For each run with N peaks, (N-

1) damping ratios were computed by comparing the 1st peak to the ith peak, where i 

varies from 2 to N.  The mean value was computed for each run, and the average of the 

mean across all tests was 0.0092. To quantify the damping in the frequency domain, the 

half-power strategy given in (77) and (78) was used. The average peak frequency based 

on the FFT is 5.600 rad/s, and the narrow bandwidth yields damping ratios of 

approximately 1-2%. Therefore, for both time-domain and frequency-domain methods, it 

is sufficient to assume that the damped natural frequency is approximately equal to the 

natural frequency of the system. This frequency was calculated using all four of the 

techniques outlined in the Measurement Approach chapter, and the results for each 
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validation test run are presented in Table 19. Table 20 summarizes these parameters for 

the case when the brick was removed from the system. 

 
 

Table 19. Mass properties and natural frequency for iMachine validation test (one brick) 
with brick on platform 

Mass (kg)
run# msys XCG YCG zero maxima minima fft

1 28.3455 0.0002 ‐0.0002 5.6298 5.6159 5.6233 5.6005
2 28.3494 0.0003 0.0001 5.6289 5.6116 5.6192 5.6080
3 28.3467 0.0002 0.0000 5.6258 5.6185 5.6209 5.6015
4 28.3583 0.0002 0.0001 5.6422 5.6257 5.6333 5.6136
5 28.3553 0.0002 ‐0.0001 5.6065 5.5968 5.5991 5.5918
6 28.3539 0.0002 0.0000 5.6108 5.6094 5.5996 5.6011
7 28.3504 0.0002 0.0000 5.6268 5.6150 5.6104 5.5968
8 28.3580 0.0002 0.0000 5.6042 5.5961 5.5992 5.5891
9 28.3531 0.0003 ‐0.0001 5.5924 5.5882 5.5864 5.5852
10 28.3775 0.0001 ‐0.0003 5.6000 5.5911 5.5988 5.5926
11 28.3687 0.0003 ‐0.0001 5.6553 5.6449 5.6371 5.6249
12 28.3790 0.0002 ‐0.0001 5.6257 5.6189 5.6095 5.5968
13 28.3715 0.0002 ‐0.0002 5.6288 5.6205 5.6143 5.5987
14 28.3651 0.0002 ‐0.0002 5.6243 5.6113 5.6197 5.5968
15 28.3845 0.0001 0.0000 5.6245 5.6113 5.6177 5.6005
16 28.3625 0.0002 ‐0.0002 5.6314 5.6192 5.6120 5.6015
17 28.3665 0.0002 ‐0.0001 5.6327 5.6121 5.6264 5.6043
18 28.3647 0.0002 ‐0.0002 5.6241 5.6169 5.6113 5.5996
19 28.3574 0.0003 0.0000 5.6067 5.5993 5.6068 5.5946
20 28.3626 0.0002 ‐0.0002 5.6315 5.6185 5.6158 5.6024
21 28.3542 0.0002 ‐0.0002 5.6311 5.6196 5.6168 5.6005
22 28.3646 0.0002 0.0000 5.6089 5.5989 5.6008 5.5955
23 28.3617 0.0002 ‐0.0001 5.6306 5.6143 5.6199 5.6024
24 28.3507 0.0003 ‐0.0002 5.6353 5.6153 5.6199 5.6052
25 28.3638 0.0002 ‐0.0002 5.6357 5.6242 5.6244 5.6089
26 28.3816 0.0002 ‐0.0001 5.6061 5.5947 5.6012 5.5964
27 28.3718 0.0002 0.0000 5.6036 5.5982 5.5935 5.5954
28 28.3612 0.0003 ‐0.0002 5.6007 5.5974 5.5956 5.5926
29 28.3649 0.0003 ‐0.0001 5.6299 5.6165 5.6139 5.6042
30 28.3691 0.0002 ‐0.0001 5.6134 5.6014 5.6014 5.5993

MEAN 28.36247 0.000219 ‐0.00011 5.62159 5.61072 5.61161 5.60003
STD.DEV 0.010136 0.00005 0.00008 0.0146 0.01233 0.01215 0.00757

Natural frequency (rad/s)Center of mass (m)
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Table 20. Mass properties and natural frequency for iMachine validation test (one brick) 
without brick on platform 

Mass (kg)
run# mplatform xplatform yplatform zero maxima minima fft

1 22.8246 0.0009 0.0000 5.6294 5.6192 5.6275 5.6155
2 22.8197 0.0011 0.0000 5.6493 5.6417 5.6363 5.6231
3 22.8323 0.0010 0.0000 5.6488 5.6359 5.6419 5.6212
4 22.8257 0.0009 ‐0.0001 5.6583 5.6423 5.6440 5.6297
5 22.8265 0.0009 ‐0.0001 5.6574 5.6425 5.6471 5.6278
6 22.8316 0.0009 0.0000 5.6569 5.6464 5.6462 5.6297
7 22.8228 0.0009 ‐0.0001 5.6592 5.6501 5.6500 5.6334
8 22.8216 0.0010 ‐0.0001 5.6633 5.6500 5.6533 5.6326
9 22.8240 0.0010 0.0000 5.6597 5.6397 5.6420 5.6325
10 22.8126 0.0009 ‐0.0001 5.6646 5.6519 5.6571 5.6326
11 22.8229 0.0009 0.0000 5.6434 5.6327 5.6371 5.6276
12 22.8190 0.0009 ‐0.0001 5.6503 5.6362 5.6420 5.6231
13 22.8165 0.0009 ‐0.0001 5.6544 5.6400 5.6379 5.6297
14 22.8118 0.0008 ‐0.0001 5.6520 5.6477 5.6383 5.6278
15 22.8211 0.0009 0.0000 5.6445 5.6347 5.6355 5.6286
16 22.8260 0.0010 ‐0.0002 5.6526 5.6444 5.6416 5.6241
17 22.8133 0.0009 ‐0.0002 5.6486 5.6428 5.6366 5.6269
18 22.8241 0.0009 0.0000 5.6594 5.6441 5.6399 5.6325
19 22.8290 0.0010 0.0001 5.6612 5.6460 5.6392 5.6335
20 22.8158 0.0010 ‐0.0001 5.6564 5.6422 5.6436 5.6307
21 22.8087 0.0008 ‐0.0002 5.6581 5.6395 5.6457 5.6343
22 22.8238 0.0007 ‐0.0002 5.6528 5.6339 5.6373 5.6250
23 22.8206 0.0007 ‐0.0002 5.6579 5.6391 5.6507 5.6316
24 22.8264 0.0007 0.0000 5.6609 5.6538 5.6499 5.6372
25 22.8275 0.0007 0.0001 5.6581 5.6471 5.6510 5.6306
26 22.8120 0.0007 ‐0.0002 5.6655 5.6551 5.6549 5.6363
27 22.8170 0.0007 ‐0.0002 5.6773 5.6513 5.6507 5.6448
28 22.8156 0.0007 ‐0.0002 5.6619 5.6500 5.6484 5.6316
29 22.8353 0.0007 ‐0.0002 5.6570 5.6458 5.6449 5.6306
30 22.8259 0.0006 ‐0.0001 5.6620 5.6494 5.6466 5.6316

MEAN 22.8218 0.000866 ‐0.0001 5.65604 5.64318 5.64391 5.62987
STD.DEV 0.006581 0.000121 0.0001 0.00846 0.00753 0.00671 0.00543

Center of mass (m) Natural frequency (rad/s)

 
 
 
 

 The measurements exhibit good repeatability, and the natural frequencies are very 

similar across estimation methods. As expected, the mass of the system decreases and the 
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natural frequency increases when the brick is removed from the platform. To calculate 

the mass of the brick, subtract the average mass in Table 20 from the average mass in 

Table 19 according to (66). As a result, brickm  equals 5.541 kg for this test, which has 

0.375% relative error compared to the measured value using a scale. The next step is to 

determine the CG coordinates of the test object with respect to the origin of the disk using 

equation (85).  Substituting the average values from the tables above, the x and y-

coordinates are 4.688 mm and -0.880 mm, respectively. This means the radial distance 

from the brick CG to the axis of rotation is 4.77 mm. The inertia of the system about the 

axis passing through the origin of the disk is calculated using the average natural 

frequencies in Table 19 along with the manufacturer-provided and calibrated spring rates. 

The same is done for the platform data in Table 20, and the results are shown in Table 21 

and Table 22. To find the inertia of the brick about the origin of the disk, simply take the 

difference between the inertia of the system and that of the platform. The results are 

shown in Table 23. Taking into account the parallel axis term due to the brick CG 

coordinates being nonzero, the inertia of the brick about its CG is computed and listed in 

Table 24. 

 
 

Table 21. Validation test (one brick): inertia of the system about the disk origin (kg-m2) 

mfr zero maxima minima fft

zero 3.3170 3.5215 3.4218 3.5057 3.4699

maxima 3.3299 3.5352 3.4350 3.5192 3.4833

minima 3.3288 3.5340 3.4339 3.5181 3.4822

fft 3.3426 3.5487 3.4482 3.5327 3.4967
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Table 22. Validation test (one brick): inertia of the platform about the disk origin (kg-m2) 

mfr zero maxima minima fft

zero 3.2767 3.4787 3.3802 3.4631 3.4277

maxima 3.2917 3.4946 3.3956 3.4789 3.4434

minima 3.2908 3.4937 3.3948 3.4780 3.4425

fft 3.3073 3.5112 3.4117 3.4953 3.4597

Effective Spring Rate Method
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Table 23. Validation test (one brick): inertia of the brick about the disk origin (kg-m2) 

mfr zero maxima minima fft

zero 0.0403 0.0428 0.0416 0.0426 0.0421

maxima 0.0382 0.0405 0.0394 0.0404 0.0400

minima 0.0380 0.0403 0.0392 0.0401 0.0397

fft 0.0353 0.0375 0.0365 0.0373 0.0370
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Table 24. Validation test (one brick): inertia of the brick about its CG (kg-m2) 

mfr zero maxima minima fft

zero 0.0402 0.0426 0.0414 0.0425 0.0420

maxima 0.0381 0.0404 0.0393 0.0402 0.0398

minima 0.0379 0.0402 0.0391 0.0400 0.0396

fft 0.0352 0.0374 0.0363 0.0372 0.0368N
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It is clear from a comparison of Table 23 and Table 24 that the CG offset has little effect 

on its inertia. The relative percent error of each inertia value in Table 24 with respect to 

the theoretical inertia derived in (101) is tabulated in Table 25. 

 
 

Table 25. Validation test (one brick): relative error of test object inertia (%) 

mfr zero maxima minima fft

zero 34.6545 42.9829 38.9209 42.3367 40.8801

maxima 27.6219 35.5167 31.6661 34.9041 33.5234

minima 26.9380 34.7905 30.9606 34.1812 32.8079

fft 18.0635 25.3688 21.8058 24.8020 23.5244
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Clearly, these results are unacceptable due to the large amount of error. The FFT natural 

frequency estimation method appears to have the most favorable results, with a minimum 

error of 18.0635% using the manufacturer-provided spring rate. While there may be 

systematic errors in the system due to resolution-based uncertainty in the measurement 

instruments, the large amount of error in this test is probably just an indication of the 

overall inertia resolution of the device. To understand this concept, consider that the total 

inertia of the brick from Table 23 is approximately 1% of the total system inertia. 

Therefore, this validation test does not show that the iMachine is incapable of measuring 

inertia accurately, but rather that it cannot effectively measure an inertia change of 1% or 

less. 

 In order to explore the accuracy of the inertia measurement further, the inertia of 

the test object was increased by adding four bricks in the square configuration shown in 
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Figure 41. The platform and wooden board are not pictured as before, but are used in 

practice for this particular test. 

 
 

 
Figure 41. Validation test model (four-brick configuration) 

 
 
 

Taking the series of bricks to be one test object, the inertia of the object can be 

determined by 
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where s in this case equals 0.1524 m (6 in). The resulting theoretical inertia is 0.9182 kg-

m2, which, utilizing the platform inertia from the previous test, should account for more 

than 20% of the total system inertia. The iMachine was run five times with and without 

the test object mounted on the platform. The change in natural frequency when the test 
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object is removed from the platform is clearly visible in Figure 42 and Figure 43, which 

illustrate a portion of the time response and frequency response, respectively. The 

maximum amplitude of the time response has been normalized for clarity. The average 

peak frequency (N=5) according to the FFT is 5.036 rad/s for the case with the test object 

and 5.622 rad/s when the object is removed. 

 
 

 
Figure 42. Comparison of the time-domain response of the system with and without the 

test object (four-brick configuration on platform) 
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Figure 43. Comparison of the frequency-domain response of the system with and without 

the test object (four-brick configuration on platform) 

 
 
 

Using the same computational approach as before, the mass of the test object 

equals 22.291 kg (98.77% accuracy), and the distance of the test object CG to the disk 

origin equals 3.828 mm. This CG offset has a negligible effect on the inertia of the test 

object (0.0003 kg-m2). The important inertia terms involved in the derivation of the test 

object inertia are listed in Table 26-Table 29, and the relative error of the final result is 

computed in Table 30. 
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Table 26. Validation test (four-brick configuration on platform): inertia of the system 
about the disk origin (kg-m2) 

mfr zero maxima minima fft

zero 4.0974 4.3501 4.2268 4.3305 4.2863

maxima 4.1185 4.3724 4.2486 4.3527 4.3083

minima 4.1278 4.3824 4.2582 4.3626 4.3181

fft 4.1339 4.3888 4.2644 4.3690 4.3244
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Table 27. Validation test (four-brick configuration on platform): inertia of the platform 
about the disk origin (kg-m2) 

mfr zero maxima minima fft

zero 3.2957 3.4989 3.3998 3.4831 3.4476

maxima 3.3078 3.5117 3.4122 3.4959 3.4602

minima 3.3074 3.5113 3.4119 3.4955 3.4599

fft 3.3169 3.5214 3.4217 3.5055 3.4698
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Table 28. Validation test (four-brick configuration on platform): inertia of the test object 
about the disk origin (kg-m2) 

mfr zero maxima minima fft

zero 0.8017 0.8512 0.8270 0.8473 0.8387

maxima 0.8107 0.8607 0.8363 0.8568 0.8481

minima 0.8204 0.8710 0.8463 0.8671 0.8582

fft 0.8170 0.8673 0.8428 0.8634 0.8546N
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Table 29. Validation test (four-brick configuration on platform): inertia of the test object 
about its CG (kg-m2) 

mfr zero maxima minima fft

zero 0.8014 0.8508 0.8267 0.8470 0.8383

maxima 0.8104 0.8604 0.8360 0.8565 0.8478

minima 0.8201 0.8707 0.8460 0.8668 0.8579

fft 0.8166 0.8670 0.8424 0.8631 0.8543
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Table 30. Validation test (four-brick configuration on platform): relative error of test 
object inertia (%) 

mfr zero maxima minima fft

zero 12.7183 7.3347 9.9604 7.7524 8.6939

maxima 11.7378 6.2937 8.9490 6.7162 7.6683

minima 10.6810 5.1717 7.8588 5.5992 6.5627

fft 11.0580 5.5720 8.2477 5.9976 6.9571
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 These results are much better than the previous test, indicating that a larger inertia 

change can be measured more accurately. In this case, the calibrated effective spring rates 

yield better results than the manufacturer-provided data. This is expected because the 

spring calibration was performed in situ and should reflect the nominal operating 

conditions of the machine better. The average relative error when using the calibrated 

spring rate is 7.20%, with a minimum value of 5.17%. 

 To optimize the accuracy of the inertia measurement, the same brick 

configuration was tested on the disk alone. With the platform removed, the test object 
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now accounts for almost 70% of the total system inertia. The iMachine was run five times 

with and without the test object mounted on the disk. The change in natural frequency 

when the test object is removed from the disk is clearly visible in Figure 44 and Figure 

45, which illustrate a portion of the time response and frequency response, respectively. 

The maximum amplitude of the time response has been normalized for clarity. The 

average peak frequency (N=5) according to the FFT is 9.043 rad/s for the case with the 

test object and 16.037 rad/s when the object is removed.  

 
 

 
Figure 44. Comparison of the time-domain response of the system with and without the 

test object (four-brick configuration on disk) 
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Figure 45. Comparison of the frequency-domain response of the system with and without 

the test object (four-brick configuration on disk) 

 
 
 

Unfortunately, the mass and center of mass cannot be derived empirically using 

the iMachine in this configuration because the weight of the test object is not transferred 

through the load cells. Therein, for the inertia computation, the mass value measured by 

the scale is used and it is assumed that any offset in the test object CG has negligible 

effect on its inertia. This assumption is justified by noting that the mass measurement has 

been greater than 98% accurate in all tests and the parallel axis term due to CG offset has 

accounted for less than 0.4% of the total inertia. With this in mind, the important inertia 

terms involved in the derivation of the test object inertia are listed in Table 31-Table 33, 

and the relative error of the final result is computed in Table 34. 
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Table 31. Validation test (four-brick configuration on disk): inertia of the system about 
the disk origin (kg-m2) 

mfr zero maxima minima fft

zero 1.2772 1.3559 1.3175 1.3498 1.3361

maxima 1.2806 1.3596 1.3211 1.3535 1.3397

minima 1.2842 1.3634 1.3248 1.3572 1.3434

fft 1.2831 1.3622 1.3236 1.3561 1.3422
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Table 32. Validation test (four-brick configuration on disk): inertia of the disk about the 
origin (kg-m2) 

mfr zero maxima minima fft

zero 0.4058 0.4308 0.4186 0.4289 0.4245

maxima 0.4078 0.4329 0.4206 0.4310 0.4266

minima 0.4063 0.4314 0.4191 0.4294 0.4250

fft 0.4076 0.4327 0.4204 0.4307 0.4263
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Table 33. Validation test (four-brick configuration on disk): inertia of the test object 
about its CG (kg-m2) 

mfr zero maxima minima fft

zero 0.8714 0.9251 0.8989 0.9209 0.9115

maxima 0.8729 0.9267 0.9004 0.9225 0.9131

minima 0.8779 0.9320 0.9056 0.9278 0.9184

fft 0.8755 0.9295 0.9032 0.9253 0.9159

Effective Spring Rate Method

N
at
ur
al
 F
re
qu

en
cy
 

Es
tim

at
io
n 
M
et
ho

d

 
 



 98

 
 
 

Table 34. Validation test (four-brick configuration on disk): relative error of test object 
inertia (%) 

mfr zero maxima minima fft

zero 5.0964 0.7550 2.0989 0.3010 0.7224

maxima 4.9333 0.9281 1.9307 0.4733 0.5518

minima 4.3860 1.5092 1.3660 1.0518 0.0208

fft 4.6436 1.2357 1.6318 0.7796 0.2487N
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 This test produced the most accurate results, with relative error as low as 0.02%. 

Once again, the calibrated spring rates appear to better than the manufacturer-provided 

data. The FFT method is a good choice for both estimating the spring rate during 

calibration and the natural frequency during testing. Therefore, it will be used as the 

method of choice in all future tests. 

 To show the resolution of the inertia calculation of the iMachine, define the ratio 

of the testpiece inertia to total system inertia as 

 
( )
( )sys

O
testpiece

ratio
zz

zz

I

I
I =  (103) 

Using the results from the three inertia validation tests described here, the relationship 

between ratioI  and the relative error of the inertia is graphically depicted in Figure 46. An 

exponential curve has been fitted to the data, resulting in the approximate relationship 

 ( )ratiorel 78.6exp59.26 Ie −=  (104) 
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Figure 46. Plot of relative error versus inertia ratio 

 
 

5.4 Wheelchair Testing 

 Now that accuracy estimates have been established through validation testing, a 

manual wheelchair is tested to gain an understanding of the effectiveness of the iMachine 

in measuring the inertial parameters of the primary object for which it was designed. The 

wheelchair that was tested is a Quickie GT model (Sunrise Medical, Longmont, CO) as 

shown mounted to the iMachine in Figure 47. The inertial properties of the wheelchair 

that were calculated from the test data are summarized in Table 35. 
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Figure 47. Quickie GT chair mounted on iMachine 

 
 
 

Table 35. Wheelchair inertial properties, as determined by the iMachine 

Parameter Value Units
m wc 13.17 kg

x wc 0.00348 m

y wc 0.03525 m

(I zz)WC 1.213 kg‐m2

 
 
 
 

 The center of mass coordinates refer to the distance of the wheelchair CG from 

the origin of the disk. If a different relative point is desired, say the point of contact of the 

rear wheels, simply add the distance from that point to the origin to the coordinate results 
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in Table 35. For the purpose of wheelchair energy estimation, however, the CG 

coordinates do not arise in the energy equation and are less important than the mass and 

moment of inertia. The inertia was computed using the FFT method for estimating both 

the calibrated spring rate and the natural frequency. The 95% confidence interval for the 

data (N=10) is [1.2042, 1.2225], which exhibits strong repeatability. Based on the 

assumption that the exponential fit described by (104) is valid, the wheelchair inertia 

measurement should have greater than 95.66% accuracy. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 
 

 In this thesis, the design of an inertial properties measurement device has been 

presented. The analysis of validation tests demonstrates that the iMachine provides 

reliable and repeatable results. In particular, the mass of the test object had an average 

relative error less than 1%. The average relative error in the calculation of the x and y-

coordinates of the center of mass was 0.891% and 1.99%, respectively. Despite the larger 

error in the y-direction, the CG offset proved to have negligible effect on the inertia 

calculation. The accuracy of the moment of inertia measurement relies upon the 

proportion of the system inertia represented by the test piece. As the inertia of the test 

piece increases relative to the platform, the measurement accuracy also increases. The 

wheelchair that was tested accounted for approximately 25% of the system inertia, and 

tests on objects with known mass properties show this case should have errors less than 

5%. For tests when the AMPS is occupying the wheelchair, the error will be even less. 

 There are several recommendations that may improve the design and analysis of 

the iMachine for future research studies. With regard to the structural design, custom 

parts could be machined with greater precision to reduce errors. In particular, the current 

shaft tolerances allow the disk to tilt slightly, which adds to the measurement error 

because the system then rotates about an axis that is not vertical. Also, the rotating disk 

could be redesigned to decrease its inertia relative to the object being tested. A wheel 

with spokes is an example of a design that would achieve this goal, while maintaining the 

strength requirements due to the load transferred through the load cells. 



 103

 With regard to the hardware, the optical encoder is a good choice for measuring 

the angular position of the rotating platform, especially with the commercial availability 

and relative inexpensiveness of high-precision encoders. Load cells with lower capacity 

could be used to improve resolution, so long as they meet the required maximum load of 

the device. 

 With regard to the measurement and data analysis approach, the FFT method of 

estimating the natural frequency yielded the best results. However, there is a tradeoff 

between accuracy and computational speed because decreasing the resolution of the 

transform requires an increase in the length of data, usually by a method such as zero 

padding. A curve-fitting algorithm for parameterizing a damped harmonic curve to the 

data would most likely improve the natural frequency estimation even more. In addition, 

the spring calibration test could be improved by increasing the difference between 

distances 21  and ss . Also, similarly to the mass variance test that was described in this 

thesis, an analysis of variance in the spring rate calculation could be improved by testing 

the diametrically-opposed bricks at a greater number of distinct distances. Finally, the 

relationship between the inertia ratio, ratioI , and the relative percent error is most likely 

not best described by an exponential curve. Testing more objects with varying inertia 

could improve the development of the relationship described by the data in Figure 46 and 

would be a good avenue for further study. 

 Since the primary application of the iMachine is manual wheelchairs, the device 

has been designed to accommodate inertial properties ranging from an unoccupied 

manual wheelchair to a wheelchair occupied by the AMPS. However, the device could be 

used to estimate the moment of inertia of any irregularly-shaped rigid body. By altering 



 104

the orientation of the test object on the platform, it is possible to compute the inertia 

about several different axes. If six distinct configurations are possible, the entire inertia 

tensor could theoretically be extracted from the test data. Ease of mounting the object 

rigidly to the platform may become an issue depending on shape complexity, so a more 

universal mounting design would be beneficial for future studies. If necessary, multiple 

platforms could be developed for specific ranges of inertia. Another way to increase the 

range of allowable inertia is to make the rotating risk modifiable. For instance, adding 

mounting locations for the load cells and springs increases the number of system 

configurations that could be altered depending on the object being tested. 

 This thesis lays the foundation for further study of wheelchair inertia by providing 

an apparatus and method capable of generating reliable and repeatable results for the 

inertial properties of irregular bodies. To characterize the system capability better, a 

Gauge Repeatability and Reproducibility (GRR) test based on the Analysis of Variance 

(ANOVA) random effects model should be conducted. In this way, the measurement 

variance due to instrumentation, operators, and test objects could be quantified. Other 

future research may include cataloguing the inertial properties of different wheelchairs, 

perhaps even on a component level such as the wheels, casters, frame, footrests, etc. An 

investigation into the cause of inertial differences could lead to improved wheelchair 

design for maximum propulsion efficiency. Other interesting topics of exploration for the 

iMachine include exploring the effect of caster orientation or varying occupant load 

distribution on wheelchair inertia.  
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