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SUMMARY 

Rapid prototyping (RP) refers to manufacturing technologies that quickly 

produce parts from 3D data using an additive approach, as opposed to traditional 

machining process. It can be used to make complex shapes with very little or even no 

constraint on the form of the parts. New design methods are needed for parts that can 

take advantage of the unique capabilities of RP and thus expand the usage and 

stimulate the development of RP technology. Although current synthesis methods 

can successfully solve simple design problems, practical applications with thousands 

to millions elements are prohibitive to generate solution for.  

Two factors are considered. One is the number of design variables; the other is 

the optimization method. To reduce the number of design variables, parametric 

approach is introduced. Control diameters are used to control all strut size across the 

entire structure by utilizing a concept similar to control vertices and Bezier surface. 

This operation allows the number of design variables to change from the number of 

elements to a small set of coefficients.  

In lattice structure design, global optimization methods are popular and widely 

used. These methods use heuristic strategies to search the design space and thus 
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perform, as oppose to traditional mathematical programming (MP) methods, a better 

global search. This work propose that although traditional MP methods find local 

optimum near starting point, given a quick convergence rate, it will be more efficient 

to perform such method multiple times to integrate global search than using a global 

optimization method. Particle Swarm Optimization and Levenburg-Marquardt are 

chosen to perform the experiments. 

The effectiveness of proposed approaches is tested through several examples, 

including both structural design and compliance mechanism design examples. The 

proposed method does greatly reduce computational time related to optimization. 

Some limitation of parametric approach existing in its nature is identified and 

discussed. 
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Chap.1 Background and Motivation 

1.1 Background 

Additive manufacturing (AM), or additive fabrication, refers to a group of processes 

that build up parts by adding material, often in layers. The advances in the equipment and 

materials make possible not only improvements in the “form, fit, and function” of so-called 

rapid prototypes, but also allow these processes to be used to produce a wider range of 

production parts [1]. Rapid prototyping (RP) technologies are the most widely applied and 

known fabrication methods that are based on additive fabrication principles [2]. 

Compared to conventional manufacturing methods, AM technologies advantage the 

manufacturing processes in several aspects. Instead of removing materials to obtain the 

part desired, constructing it by adding material reduce material required. AM allows the 

construction of parts that were formerly impossible to make. An example is presented in 

Figure 1.1. This part was made by Expedio Solutions SDN BHD [3] using Fused Deposition 

Modeling (FDM), which is a solid-based prototyping method that extrudes material 

layer-by-layer. The ability of making complicated parts gives designers the freedom to 

designing with less apprehension over the inability that exists in manufacturing methods. 

The utilization of these technologies in the late 1980s has enabled direct manufacturing 

from computer model to physical part. With 3D scanning technologies now available, a lot 
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of parts that traditionally involve labor-intensive processes of molding and casting to create 

are now as easy as scanning and manufacturing [4]. Since it is driven by digital information, 

the skills and time needed for multi-part design, manufacturing and assembly are 

eliminated, human error opportunity can also be reduced [5]. 

 

Figure 1.1: A part made by FDM 

1.2 Motivation 

Design methodology that exploits the design freedom given by AM is needed. To 

utilize the advantage brought forth by the introduction of AM, one of the applications is the 

use of meso-scale cellular structure. Since the advent of rapid manufacturing technology 

has made possible the manufacturing of cellular material, it is becoming increasingly 

desirable because it usually offers higher strength-to-weight ratio, good energy absorption 

characteristics and acoustic insulation properties [6, 7]. Cellular material includes foams, 
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honeycombs, lattice and other similar constructions. It is defined as mesostructured 

materials when the characteristic lengths of the cells are in the range of 0.1 to 10mm [8]. 

They are of a scale which falls between the macro-scale of part geometry and the 

micro-scale of the base material. They often act as reinforcement within a large part [4]. 

Lattice structures consist of small struts as the example shown in Figure 1.2. Each strut 

can be placed and sized in a given space to design lattice structure. Current methodologies 

for designing these structures utilize optimization processes to automatically find an 

optimal design. For meso-scale lattice structure, a space as small as 15x15x15cm might 

already need up to thousands of struts. This makes the design space large, nonlinear and 

contains a lot of local optimum. The difficulty of finding optimal design increases 

exponentially with the number of struts. Genetic algorithms (GA) and particle swarm 

optimization (PSO) have been developed to execute both local and global search. The 

stochastic characteristic of these algorithms enables a more thorough search of the design 

space, but they also give different solution every time it is implemented. Also, the time that 

they require to find a solution for a rather modest design is prohibitive [9].     
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Figure 1.2: An example of lattice structure 

1.3 Problem statement 

In this work, design synthesis method for compliant cellular lattice structure is chosen 

to be the topic. The focus is on using strut size optimization to achieve assigned 

shape-change. Extending the work from [10], this thesis will attempt to improve it and 

include 3D structures as it is more applicable to real life design problem. 

Current design synthesis method for lattice structure can be impractical for solving 

even a modest design problem. Thus, a less computational costly design method is needed. 

During the optimization process, the number of time needed for objective function value to 

be calculated is greatly related to the number of design variables. The calculation of 

objective function requires the entire structure to be analyzed through Finite Element 

Analysis code, which not only takes a considerable time, but also has no analytical gradient 

and/or hessian matrix available.  
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Two approaches are considered. One is the reduction of the design domain. By having 

a smaller number of design variables, the process of searching for an optimum can be 

shortened thus reducing the number of objective function evaluations and the time needed. 

A parametric approach is developed. It is applied to compliant mechanisms. For validating 

and testing purposes, structural examples are also used. Most of these structural examples 

are duplicated from the literature so that results from this work can be validated against 

the solutions from the literature. The other is the use of a more efficient optimization 

method. By formulating the achievement of target values of goals as a least-squares 

regression problem [9], Levenburg-Marquardt (LM) can be utilized which detail will be 

presented in chapter 4. 

1.4 Research Questions and Hypotheses 

1.4.1 Question and Hypothesis 1 

Question 1: “How can a cellular structure be designed so that it responds to certain 

actuators and morphs to a desired shape?” 

Hypothesis 1: A cellular structure that responds to given actuators by morphing to the 

desired shape can be designed by filling the initial shape with unit cells composed of struts 

to obtain a starting lattice structure, then through optimization to determine the thickness 

of each strut. 
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 In chapter 3 and 4, each step of the methodology related to this hypothesis will be 

presented and described. Then the hypothesis will be further validated through a morphing 

wing example to show that the methodology proposed is doable and the shape change is 

attainable. 

1.4.2 Question and Hypothesis 2 

Question 2: “How can the number of design variables be reduced without changing the 

nature of strut sizing design problems?” 

Hypothesis 2: The number of design variables can be reduced by changing the design 

variables from diameters of struts to a small number of coefficients that control the distribution 

of strut sizes across the structure using parametric surface/solid formulations. 

This hypothesis will be validated mainly through chapter 3 by illustrating how the 

formulation is consummated and used. The benefit and limitation of such operation is then 

displayed and discussed in chapter 5 through multiple examples. 

1.5 Organization of thesis 

An overview of this thesis is presented in Figure 1.3. 
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Figure 1.3: Organization of thesis 

Chapter two contains a literature review of works that are related to this thesis. First a 

brief overview of cellular structures and the reasons behind choosing designed lattice 

structure to focus on is presented. Then several available analysis methods are shown, and 

the choice of using unit truss approach to model the behavior of truss structure accurately 

is explained. Last we show the design of compliant mechanisms, an overview of structural 

optimization and the shortcoming in the common optimization procedure shared in these 

synthesis methods. 

Chapter three provides the synthesis method used in this thesis. Base truss topologies 

are obtained by inserting primitives into unit cells that are divided from the design domains. 

A new design synthesis method, parametric surface/solid approach, is formed by utilizing a 
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set of coefficients that are called control diameters as design variables instead of diameters 

of all the struts. In this way, the number of design variables can be greatly reduced, thus 

reduced the time needed for optimization. 

Chapter four compares the efficiency of using PSO and LM in terms of number of 

function evaluations and the resulting objective function value. Three simple beams are 

used as design problem examples. The results show that although LM converges fast and 

often to local optimum, adding the stochastic characteristic by using randomly generated 

starting points can ensure LM finding better solution than PSO and still faster. 

Chapter five demonstrates the advantages and limitations of the parametric 

surface/solid approach using several examples. The first two examples are 3D cantilever 

beam examples. One is a duplication example from [4]. The other is an extension, a more 

complex version of it, so that the advantages of parametric solid approach can be observed. 

The third example is a 2D, three point bending beam, which is also a duplication example. 

The final example is a wing design example as an extension of [10]. This example will be 

used to show the proposed synthesis method both in solving 2D and 3D problem. 
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Chapter six will conclude the studies in this thesis, summarize the synthesis method, 

show both the pros and cons of using the parametric surface/solid approach and also 

discuss future work possible.  
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Chap.2 Literature Review and Gap Analysis 

2.1 Cellular Structure 

Cellular structures can be categorized by the nature of placement of internal voids into 

stochastic and ordered cellular materials [8].  

Stochastic cellular materials (e.g. foam materials), as the name implies, are produced 

using stochastic processes. These materials’ characteristics can be controlled, but not 

explicitly defined. The designing of these structures is faster and relatively low-cost [4, 6] . 

Stochastic materials suffer from the lack of freedom provided to the designers in terms of 

the topology of the mesostructure [11].  

Designed or ordered cellular structures, on the other hand, have a more 

time-consuming designing process, but give higher stiffness and strength compared to 

stochastic cellular structures [12]. When the strength of a lattice structure scales as �, with 

the same relative density �, the strength of foam scales as ��.� [13]. Thus, given a relative 

density � � 0.1, a lattice structure will be approximately three times stronger than a 

corresponding foam structure. For the advantage stated above, this thesis will focus on 

designed lattice structures. 

2.2  Structural Analysis 
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Ashby and co-workers wrote a book on metal foam design and analysis [14]. They and 

others have applied similar methods in lattice structure analysis. The octet truss in Figure 

2.1 has been extensively analyzed. Deshpande et al. [13] consider the struts in the octet 

truss unit cells as tension and compression bars that are pin-jointed. This often 

under-predicts the strength and stiffness of the structure due to the assumption of 

pin-jointed vertices; and it does not capture bending, shear, etc [15]. Wang and McDowell 

[16] extended the study and included some other lattice cells. 

 

Figure 2.1: Octet-truss unit cell 

A more general analytical model of lattice behavior was developed by Johnson et al. 

[15]. This general lattice model use each vertex and a set of half struts it connects as a unit 

cell like that shown in Figure 2.2. The analysis used a concept similar to the finite element 

method’s frame element. The unit-truss finite element program in MATLAB has been 

developed [17]. When combined with the tangent stiffness method, truss structures can be 
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analyzed under axial forces, bending, torsion, nonlinearity, and buckling [18]; thus, the unit 

truss approach will be used throughout this thesis as the analysis method to more closely 

model the behavior of truss structures. 

 

Unit Truss 1 Unit Truss 2 Unit Truss 3  

Figure 2.2: Series of three unit truss structures that are connected between each node 

2.3 Compliant Mechanism 

Compliant mechanisms are single-piece flexible structures that generate desired 

motion by undergoing elastic deformation as opposed to rigid linkages or joints of 

conventional mechanisms. An example is shown in Figure 2.3 [19]. The advantages related 

to using compliant mechanisms are many. They do not have the backlash error and have 

lower production and maintenance costs associated with the multiple piece assembly since 

it is hingeless [20]. Also, the smooth deformation field reduces stress concentrations. 

Especially for airfoils, without the connecting hinges to create discontinuities over the wing 

surface, earlier airflow separation can be avoided [21]. 
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Figure 2.3: An example of compliant mechanism 

Although there exist other design synthesis methods that exclude optimization process 

[4], when considering compliant mechanisms, which, instead of maximizing or minimizing 

compliance, often requires the structure to have specific deflection or shape, most 

methods share common procedures in designing these structures. They are: First, obtain a 

base topology, which is an initial guess of the design, boundary condition and other 

information; then, utilize optimization methods to find the optimal design. 

The design and synthesis with systematic methods of compliant mechanisms have 

been developed and studied. Ananthasuresh et al. developed a continuum-based approach 

that uses the techniques of structural optimization and the homogenization method [22, 

23]. Sigmund [24] and Larsen et al. [25] focused on using structural optimization to design 

mechanisms. Methods developed by Midha and his associates used kinematic techniques 

such as graph theory, Burmester theory, and pseudo rigid-body model, where the 

compliant mechanism behavior is modeled with a combination of rigid links and torsional 

springs [26]. Frecker et. al [26] used topology optimization to attain the force-deflection 
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relationship desired. Many works have since tried to include both topology optimization 

and shape/size optimization. 

2.4 Structural Optimization 

Structural optimization refers to optimizing the parameters of a structure to achieve 

the required performance. Available methods may be subdivided into two categories called 

analytical methods and numerical methods. Analytical methods emphasize the conceptual 

aspect while numerical methods are concerned mainly with the algorithmical aspect [27].  

Analytical methods employ mathematical theories in studies of optimal layouts or 

geometrical forms of simple structural components. They are usually not intended to 

handle larger structural systems [27], thus are not suitable for lattice structure design. 

Numerical methods utilize mathematical programming. These usually start with an 

initial guess. Through iterative search of better design, an optimal design is considered to 

be found when the stopping criteria are reached. These methods are used and called 

optimization methods in the following sections of this thesis. 

2.5 Optimization techniques 

Optimization techniques are named differently in various works [4]. In general, design 

variables usually are considered from two aspects, the topology aspect and dimensional 
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aspect. Take a one-piece elastic body as an example, the topology can be defined as the 

number of holes inside the exterior boundary, and the dimensions would be the size of 

these holes [21]. Topology optimization deals with the topology aspect of the design 

whereas pure size optimization deals only with the dimensional aspect. While topology and 

size optimization are more specifically defined and commonly agreed on, shape or 

geometry optimization is more of an ambiguity. By Rozvany [28], topology refers to spatial 

sequence or connectivity of members or elements, geometry indicates the location of 

intersections of member axes and size denotes the cross-sectional dimensions. While it is 

harder to define for continuum, most work relate the shape/geometry aspect as 

dimensional for truss structures, since the location of nodes change the length of elements  

and can be considered as dimensional aspect [20, 21, 29].  

Many works now implement all aspects sequentially or simultaneously [20, 28, 30]. 

Typical synthesis methods employ a two-step approach to implement topology 

optimization first, then the size/shape optimization. But as Lu and Kota stated in [20], for a 

shape changing design task, the problem depends greatly on the precise deformation 

(direction and magnitude) of all or several discrete output points along the shape-changing 

boundary. With multiple output points, it might be inappropriate to use the two-step 
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approach that focuses on the performance of only one particular output point. Thus in their 

work, the two aspects are addressed simultaneously [21]. 

Typical topological design optimization techniques include ground truss (discrete) 

approach, the homogenization (continuum) method and the material density method 

(continuum) [29]. Since topology optimization is intrinsically a discrete optimization 

problem, [29], and using discrete optimization algorithms can be unstable [31]. These three 

are based on transforming the discrete problem into a continuous one by using continuous 

design variables.  

The material density method used a material density function ρ as the design variable. 

Using 0 � � � 1 when 0 corresponds to a void and 1 to solid, the on-off material 

distribution problem is converted to a sizing problem. The homogenization method 

associates the material density with the elasticity tensor that is required for the finite 

element analysis [32]. It considers a mechanical element as a body occupying a subdomain 

Ω , which is a finite section of the entire domain Ω. The goal is to find the optimal 

elasticity tensors over the domain Ω of statically admissible stress field. The ground truss 

approach finds the optimum topology in subsets of the ground truss which is a complete 

graph of struts among all nodes. The design variables are the cross-sections of the ground 

truss members. When the cross-sectional area reaches the vanishing value, it is removed to 
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obtain the optimum [33]. The ground truss approach can only provide a rough estimate for 

the geometry of designed structures whereas the homogenization method provides better 

results but is more computationally expensive and might produce non-realizable elements 

[10]. 

Pure size optimization is somewhat easier to implement because it is a continuous 

optimization problem. The topological aspect of the design might still be integrated 

through eliminating vanishing element during size optimization, but difficulties may arise 

from the discontinuity brought forth. 

2.6 Optimization methods 

Optimization methods, as stated earlier, can also be referred to as mathematical 

programming (MP) methods. Typical MP methods find the optimum in problems where 

there exists a single global optimum [27]. In a lattice structure design however, a large 

design space is to be expected where there are usually many local optima. As a result, 

global optimization methods are more commonly applied. These methods use heuristic 

strategies to search the design space, and therefore are also called global search heuristics. 

The evolutionary optimization, like Genetic Algorithm (GA), is a very popular optimizer 

used by many [20, 21, 29]. Wang et. al [10] found that Particle Swarm Optimization (PSO) 



18 

 

shares similarities with GA, but it often converges more quickly than GA for the design 

synthesis of cellular structures [34]. Since the design of a compliant mechanism can be 

formulated as a least-squares problem, the Levenburg-Marquardt method (LM) which 

solves least-squares minimization problem will be investigated in chapter 4. 

Regardless of what optimization procedure is considered, the number of design 

variables is proportional to the number of elements either with binary variables that 

determine if each element remains or eliminated [20, 21] or/and the dimension of the 

elements (width, density, diameters, etc.) [10, 26, 29, 35, 36]. When designing a lattice 

structure, the number of elements often is of thousands to millions, resulting in a large 

design domain and requiring a time consuming optimization process. 

2.7 Gap Analysis 

In designing compliant mechanism, none of the current synthesis methods can avoid 

optimization procedure. While they are more or less proved to be effectual, it often 

becomes too computationally costly when lattice structure design is involved. Lattice 

structures usually consist of thousands or even millions of elements, issuing a design space 

that is highly nonlinear and that contains many local minima due to the many design 

variables. 
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Instead of creating a totally different new method, this thesis will focus on reducing 

computing time associated with optimization procedures from two aspects. One is to 

reduce the number of design variables; the other is to use a more efficient optimization 

method. Both of the proposed approaches do not change the nature of design method but 

the formulation of problem. 

2.8 Summary 

In this chapter, some of previous research relating to lattice structure design is 

reviewed. The advantage of using cellular structures, especially design cellular structures 

comparative to stochastic cellular structure is discussed. Several structure analysis methods 

are also presented, along with the reasons why the unit truss approach is chosen to be used 

in this thesis. Finally, a brief overview of structural optimization is presented. Topology, 

geometry and size optimization definition is given. Lattice optimization methods used and 

their common shortcoming are also discussed. 

A research gap was identified in designing compliant mechanisms of large scale lattice 

structures. The proposed work does not focusing on creating a brand new design method, 

but rather a different way to formulate optimization procedure so that the number of 

design variables and computing time for optimization can be reduced.  
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Chap.3 Problem Formulation 

 In this chapter, formulations for problems to utilize the design synthesis method are 

established. The idea is to obtain a truss structure suitable for a given initial shape to 

morph to a desired shape under the application of actuators. The process is accomplished 

in two steps: first, the initial structure is acquired by mapped mesh and primitive instancing; 

then, the initial structure goes through the optimization process which automatically finds 

the optimal combination of the strut diameters according to user defined objective 

function. Two different approaches are used, one finds each strut diameter directly, one 

finds coefficients (control diameters) which control strut diameters throughout the design 

space. More corresponding details of these steps to attain the goal will be discussed in the 

following sections. 

3.1 Primitive Instancing 

3.1.1 Introduction 

Before a suitable structure can be obtained, an initial structure topology is needed. A 

good initial structure is very important for optimization processes. It might not only reduce 

a good amount of computing time needed, but it also leads to obtaining better results. The 

purpose is to fill the volumetric region with struts systematically. 

3.1.2 Mesh 
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Possible ways to implement trusses into a design domain are many. Instead of 

randomly placing struts in the design domain, some automated (or semi-automated) 

methods were considered below. 

i FEM Mesh 

Probably the easiest way to obtain an initial truss topology is to use finite element 

modeling (FEM) software to automatically generate a mesh, then, with the mesh, obtain a 

corresponding truss structure, as shown in Figure 3.1. As is known, many FEM tools can 

divide a given volume into small elements for analysis purposes. Utilizing that, a 

corresponding truss structure can be defined. 

The advantage of this approach is that it is almost fully automatic and is easier and 

faster to obtain an initial strut configuration, but the drawback is that the truss structure 

generated is usually not suitable for designing a morphing structure. For optimization 

process, a good starting design is needed to ensure good result gained from the 

optimization process to be discussed in chapter 4.  

The mesh gained from FEM tools is for the purpose of analyzing; therefore, at certain 

locations that are considered to need more detailed analysis, smaller elements will be 

created, and often forming triangular structures with neighboring elements. The purpose of 
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designing cellular structures is to only use material where it is needed. With the FEM mesh 

generating fine mesh for analysis purpose; it will not be a very good starting structure for 

optimization. Also, more triangular structures make the overall structure more inflexible 

thus not good for morphing. 

(B) Elements of starting topology 
 

Figure 3.1: An airfoil example of FEM software generated mesh 

Figure 3.1 shows a starting topology of an airfoil example used in Wang and Rosen’s 

paper [10]. The structure was taken from the mesh generated in ANSYS. As can be 

observed, the topology contains a lot of “stiff” structure, thus, for the reasons stated 

above, it is not a very good truss topology to start with. 

ii Mapped Mesh 

Instead of using FEM software to generate mesh, we approach this by mapped mesh. 

Different from using a FEM free meshing method, mapped mesh is used to create a base 

for primitive instancing instead of using it as the starting truss topology. The idea is to first 

divide the design domain into quadrilaterals (2D) or hexahedrons (3D) as geometric bounds 

for later replacing the volumetric region with chosen truss primitives. An example is shown 
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in Figure 3.2. The primitive has parameters u, v, w (from 0 to 1) to indicate three directions. 

Each point in a primitive is defined by its u, v, w value. With the global coordinates of the 

eight points that bound a cell, the coordinate of the nodes can be calculated relatively 

according to the u, v and w value. The equation for calculating the coordinate of nodes is: 

 ! P#ψ#
%

#&�
 (3.1) 

where P# is the x, y, z (global) coordinate of the eight points bounding the cell, and ψ# is 

the interpolation function provided in equation (3.2). These interpolation functions are 

created through the inspiration of Lagrange interpolation functions used for rectangular 

elements [37] and expanded it into three dimensional. Lagrange interpolation is a well 

known, classical technique for interpolation technique. It was used to map finite element 

nodes into arbitrary mesh in [37], which is very similar to mapping nodes into unit cells. 

 

ψ� � '1 ( u* + '1 ( v* + '1 ( w* 

ψ� � '1 ( u* + '1 ( v* + w 

ψ- � '1 ( u* + v + '1 ( w* 

ψ. � u + '1 ( v* + '1 ( w* 

ψ� � u + '1 ( v* + w 

ψ/ � u + v + '1 ( w* 

ψ0 � '1 ( u* + '1 ( v* + w 

ψ% � u + v + w 

(3.2) 
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Figure 3.2: Primitive Instancing Example 

  

 

The mapped mesh approach is to utilize Bezier curves or surfaces to approximate the 

outer shape of the design domain, and obtain a parametric representation of it. Unit cells 

can then be defined parametrically. Although it doesn’t seem easy to always divide an area 

or a volume into all quadrilaterals or hexahedrons, studies of this issue have already shown 

that it can be done automatically [38]. Figure 3.3 is a simpler example, which had most of 

its design domain divided into unit cells and some parts left without struts. The approach 

was appropriate for the application. 
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Figure 3.3: A simple example utilizing mapped mesh 

3.1.3 Different Primitives 

 Once the unit cells are set up, different primitives can be inserted in. The 

development of different primitives is not in the scope of this thesis. We chose two 

(showed in Figure 3.4 and Figure 3.5) that are seemingly more suitable for the example 

problems that are discussed in chapter 5. The former is more suitable for morphing with, 

instead of upright struts, bent, concave struts at the sides that are more likely to deform 

under loading. On the contrary, the latter has elements connecting all the nodes which 

make it less likely to deform under loading in different directions. 

Different primitive topologies can be established in the future to get more variety of 

the structure design. 
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Figure 3.4: Primitive for morphing structure 

Figure 3.5: Primitive for stiff structure 

 

 

 

3.2 Problem Formulation 

Two different formulations of the problem corresponding to two different approaches 

will be given here. The first is to optimize each strut size (diameter) and find the optimal 

composition, a straightforward size optimization of the struts. The other is to find the 

control diameters that best control the strut size in each unit cell. More detail is given in 

the following sections.  

3.2.1 Strut Approach 

a) Top View b) Side View c) Isometric View 

2D: 3D: 

2D: 3D: 

a) Top View b) Side View c) Isometric View 
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Figure 3.6: Word formulation for strut approach 

To utilize the diameter of each strut as the design variable is easy to implement and 

fairly straightforward. A general word formulation for structural design problem is given in 

Figure 3.6. 

 

This problem is formulated using the Compromise Decision Support Problem (cDSP) 

formulation [39-41]; therefore, the multi-objective function to be minimized is a 

weighted-sum of goal deviations, and each goal is specified as deviation from a target value. 

The optional constraint can be added in the objective function as a penalty function [42]. In 

Given:  

Truss Structure: Position and orientation of nodes and elements 

Specified load and boundary condition 

Find:  diameter of each strut 

Satisfy:  

Goals: 

 Minimize nodal deflection deviation from target. 

 Minimize truss volume 

 Minimize plastic deformation in struts (optional constraint) 

Bounds: 

Minimum and maximum diameter constraints 

Minimize:  

Weighted sum of square deviation from goal values of the objectives 
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this thesis, the prevention of plastic deformation is done by calculating the Von Mises 

equivalent stress in each strut, and when it exceeds the yield stress of the strut, the 

difference is then used in the penalty function. This might not be as important if designing a 

stiff structure when expecting small deformation. But, when designing a compliant 

mechanism, that is, when large deformation and ability to switch between two shapes in 

reasonable number of times is to be expected, prevention of plastic deformation would be 

important in order to ensure the feasibility and usability of the designed structure. 

A math formulation is given in Figure 3.7 where δ is the deflection and subscript 

“actual” and “desired” denotes whether it is the actual deflection or the target. Vol is the 

volume of the structure. vS is the Von Mises stress calculated in the middle of each strut 

and yS is the yield stress that can be obtained from material property.  
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Figure 3.7: Math formulation for strut approach 

 

 

3.2.2 Parametric Surface/Solid Approach 

Z � w8 + !'δ�9:;<9= ( δ�>?@AB?>*� C wD + Vol� C wE + !'vS ( yS*� 

Given: 

x, y, z coordinate of each node 

Each element defined by two nodes, indicating it connects those two nodes. 

Load each defined by a node number and the magnitude in the global x, y, and z 

direction, they can be either force, moment or both. 

Boundary condition can be specified by the node number and in what direction it has 

constraint. 

δ8IJ#KI8 for each node in interest. 

Find: dM, j = 1, 2, 3...number of struts (diameter of each strut) 

Satisfy:  

Goals: 

 Minimize: 
        |δ�9:;<9= ( δ�>?@AB?> | for node k (nodes in interest) 

  Vol � ∑ S��/4 (sum of the volume of all the struts) 

  vSM ( ySM, the Von Mises stress minus the yield stress in each strut, only 

calculated when vSM V ySM. (optional) 

Bounds:  

 0.5 X dM X 5 (mm) 

Minimize:  

Where w8, wD, wE is the importance of preference for each part. 
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Although the strut approach is easy to implement and straightforward, the design 

domain it creates is usually very large and contains hundreds or thousands of design 

variables. Since optimized structures often have smoothly varying changes in density/strut 

size, the parametric surface/solid approach is introduced. In this parametric surface/solid 

approach, the number of design variables can be greatly reduced. It was created utilizing a 

concept similar to the Bezier surface, in which the coordinates of the points on the surface 

are calculated by: 

 

p'u, v* � ! ! p#M
Z

M&[

 

#&[
· B#, 'u* · BM,Z'v* 

0 X u X 1, 0 X v X 1 

(3.3.a) 

 B#, 'u* � m!
i! 'm ( i*! u#'1 ( u* a# (3.3.b) 

p#M are the control vertices. m and n will be the degree of the surface. With an array 

of 'm C 1* + 'n C 1* control vertices, points on a Bezier surface with degree m + n can 

be created [43]. An illustration is shown in Figure 3.8 below. 
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Figure 3.8: Bezier surface illustration 

 

As stated above, the position of the points on the surface can be calculated with the 

given control vertices and the Bezier functions. Applying similar concept, instead of control 

vertices, several “control diameters” can be provided; along with the Bezier functions, strut 

diameters throughout the design space can be defined as exhibited in equation 3.4 and 3.5 

below. 

 d'u, v* � ! ! d#M
Z

M&[

 

#&[
· B#, 'u* · BM,Z'v* (3.4) 

or 
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 d'u, v, w* � ! ! ! d#M�

c

�&[

Z

M&[

 

#&[
· B#, 'u* · BM,Z'v* · B�,c'w* (3.5) 

0 X u X 1, 0 X v X 1, 0 X w X 1 

As shown in equation 3.5, adding the B�,c'w* term makes it applicable for three 

dimensional problems. The parameters here shall not be confused with the ones used in 

section 3.1.2. The ones in 3.1.2 are used to define the primitives in order to insert in the 

unit cells, whereas here the parameters are used after an initial structure is acquired to 

define the entire design space. Like how control vertices control the position of all the 

points on a Bezier surface, d#M or d#M� are the control diameters used to define the 

diameters in each cell in a similar manner. Through assigning each cell with parameter 

values, the strut diameters in that cell can be calculated using equation 3.4 and 3.5. In this 

way, the number of design variables can be reduced to 'm C 1* + 'n C 1* + 'q C 1* 

depending on the degree of a parametric surface/solid that is used here. The function value 

d'u, v, w* denotes the diameter variation through u, v and w. 

The parametric values (u, v and w) are assigned to the unit cells. The n
th

 unit cell 

along u’s direction will have a u value of n/total number of unit cells along u direction. 

The struts are assigned to the unit cells during primitive instancing. When struts overlap, 

they are defined to be belonging to the unit cell first assigned. The sequence of this 
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procedure is first along the u direction, then v and w respectively. Figure 3.9 is an 

illustration of this sequence. The order of assignment is: black, red, blue and green. Unit 

cells along u are assigned first while maintaining the same v value. Then the cells along 

u with the next v value are assigned. Since there are a total of two unit cells along u 

direction, the first unit cell will have a u value of 1/2 = 0.5. The same principle applies to 

the v value. 

 

Figure 3.9: Assigning Parametric Value 

A demonstration of the relation between unit cells and the control diameters is shown 

in Figure 3.10. A 1x1 parametric surface is used. Four control diameters (2x2) are 

represented by black circles. The unit cells are shown by blue dots. The control diameters’ 

value decide the diameter value for each unit cell, just as the coordinates of the control 

vertices of Bezier surface decide the coordinates of the points on the surface. 
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Figure 3.10: Relation between control diameters and unit cells 

Assuming there are a total number of AxBxC unit cells with A unit cells in the u 

direction, B, C in v and w direction respectively. The diameter of struts in a unit cell that 

is the a
th

, b
th

, c
th

 along u, v and w direction respectively, will have a diameter value of 

Dfgh. This Dfgh can be calculated by equation (3.6). 

 Dfgh �  ! ! ! d#M�

c

�&[

Z

M&[

 

#&[
· B#, 'a/A* · BM,Z'b/B* · B�,c'c/C* (3.6) 

 

As Bezier functions create a smooth curve/surface, the parametric surface/solid 

approach is expected to give a smooth variation to diameters of struts in the design domain. 

Although the degree of function used (m, n, q in the previous paragraph) is user defined, 

it is reasonable to choose a degree that is one lower than the number of unit cells in the 

corresponding direction. For example, if a structure has a total of two unit cells in the x 
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Figure 3.11: Word formulation for parametric surface/solid approach 

direction, no matter what the diameters should be, a linear function would be sufficient to 

represent the diameter variation. 

The problem formulation for this approach is very similar to that used for the other 

approach, but instead of diameters, we now use just a set of control diameters, d#M or d#M�, 

as our design variables. The number of design variables is decided by the diameter variation 

degree through the parameters that user decide on, but normally the amount of design 

variables is still greatly reduced. A word formulation of this problem approach is given in 

Figure 3.11 below. 

 

Given:  

Truss Structure: Position and orientation of nodes and elements 

Specified load and boundary condition 

Find:  control diameters 

Satisfy:  

Goals: 

 Minimize nodal deflection deviation from target. 

 Minimize truss volume 

 Minimize plastic deformation in struts (optional constraint) 

Bounds: 

Minimum and maximum coefficient value 

Minimize:  

Weighted sum of square deviation from goal values of the objectives 
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As can be observed, the word problem formulation is very similar to the one shown in 

Figure 3.6. The only difference is that instead of finding strut size directly, a set of control 

diameters is to be found; and, through the method stated earlier, the diameters of struts 

are then defined indirectly. The math formulation of the same problem is given in Figure 

3.12. 
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Figure 3.12: Math formulation for parametric surface/solid approach 

 

3.3 Summary 

Z � w8 + !'δ�9:;<9= ( δ�>?@AB?>*� C wD + Vol� C wE + !'vS ( yS*� 

Given: 

x, y, z coordinate of each node 

Each element defined by two nodes, indicating it connects those two nodes. 

Load each defined by a node number and the magnitude in the global x, y, and z 

direction, they can be either force, moment or both. 

Boundary condition can be specified by the node number and in what direction it has 

constraint. 

δ8IJ#KI8 for each node in interest. 

Find: d#M or d#M� for 2D or 3D problem. i, j, k from 0 to the degree of variation in 

u, v, w (user defined). 

Satisfy:  

Goals: 

 Minimize: 
        |δ�9:;<9= ( δ�>?@AB?> | for node k (nodes in interest) 

  Vol � ∑ S��/4 (sum of the volume of all the struts) 

  vSM ( ySM, the Von Mises stress minus the yield stress in each strut, only 

calculated when vSM V ySM. (optional) 

Bounds:  

 0.5 X dM X 5 (mm) 

Minimize:  

Where w8, wD, wE is the importance of preference for each part. 
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In this chapter, problem formulations are established. Base truss topologies are 

obtained through primitive instancing. By dividing the design domain into quadrilaterals or 

hexahedrons, different truss primitives can be inserted into them to generate an initial 

truss structure. Two different approaches were discussed. Using the strut approach, the 

number of design variables is equal to the number of elements. But by the parametric 

surface/solid approach, the number of design variables can be reduced greatly; thus, in 

principle, optimization computing time can be greatly reduced also, since the design space 

to explore is much smaller. Experiments to support this will be presented with in chapter 5 

using several examples. Optimization method used to solve these problems is provided in 

the next chapter. 

 So far, the problem formulation that can realize hypothesis two: “The number of 

design variables can be reduced by changing the design variables from diameters of struts 

to a small number of coefficients that control the distribution of strut sizes across the 

structure using parametric surface/solid formulations” is presented; and it was shown in 

principle that it is achievable. This will also be further employed in the example problems in 

chapter 5 to show its value and restriction.  
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Chap.4 Optimization Methods 

The reasons why a suitable optimization process is so significant for lattice structure 

design are several. First, with the strut diameter approach, the problems usually have 

hundreds and sometimes even thousands of design variables (struts), thus an optimization 

method which can handle large-scale problems is required. Second, there are usually a lot 

of local minima and it is very likely that the so-called optimum found would be just a local 

optimum. Last but the most important is that every time when the objective function value 

has to be calculated, it requires the structure be analyzed through Finite Element Analysis 

code. Not only does this take a lot of time, but also there is no analytical gradient and/or 

hessian matrix available. 

To compare the efficiency, the PSO and the LM method with a Least-Squares 

Minimization formulation, which will be referred to as the nonlinear least-squares 

minimization methods (LSM), were chosen.  The characteristics of the two optimization 

methods are discussed in the following sections of this chapter. 

4.1 Particle Swarm Optimization 

PSO simulates the behavior of a group of birds searching for food. It generates a group 

of random particles, and each particle’s velocity then is governed by both its own and the 

society’s experience of “the best” position. The algorithm is considered converged when 
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particles start circling around a small area. With a group of particles “flying” through the 

design space, PSO is assumed to perform a better global search compared to general 

purpose mathematical programming methods, and, because of that, might take longer time. 

PSO was chosen since it was proved to be superior to the GA and is one of the more 

efficient algorithms for size and shape optimization [34]. The cooperative behavior 

modeled in PSO and competitive behavior in GA cause PSO to converge faster than GA [10]. 

The way each particle’s velocity and location are updated is shown in equation (4.1.a) 

and (4.1.b). The superscript k indicates the kmn iteration, and the subscript i signify the  

imn particle. In (4.1.a), the velocity (v) is updated, then according to the velocity, the 

location (x) is changed. The ω in equation (4.1.a) is called inertia weight, which, when 

larger, gives each particle a larger speed and facilitates a global search; likewise it facilitates 

a local search while small. c� and c� are two constants, which are called cognitive and 

social parameters respectively. They regulate the relative velocity toward local and global 

optimum. r�, r� are two random numbers in [0,1]. The p in the equations denotes the 

best position the particle has ever visited, but with the g subscript, it means the best 

position among the entire group.[44, 45] 

 v#�r� � ω · v#� C c� · r� · sp#� ( x#�t C c� · r� · spu� ( x#�t (4.1.a) 
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As can be observed, there are several parameters that can affect the efficiency of this 

algorithm. For PSO to run more efficiently, better parameter values must be chosen. Since 

the computing time changes every time even using the same computing device, the 

efficiency is compared through number of function calls. For easier understanding of the 

results, Rastrigin function (equation 4.2 below), which was used in many research papers as 

one of the examples [44, 46, 47], was chosen to be used for the experiments. The minimum 

is already known as f'x* � 0 when all x# � 0. 

 

f'x* � !'
Z

#&�
x#� ( 10 cos'2πx#* C 10* 

x z '(5.12,5.12*Z 

(4.2) 

The parameters focused on are the swarm size, inertia weight and cognitive and social 

acceleration. 

4.1.1 Swarm Size 

There are some studies done on parameter choices for PSO that touched swarm 

size[45, 47, 48]. The general understanding is that a larger swarm size will improve the 

success rate but will also increase the number of objective function evaluations. Thus, it is a 

choice between better solution and shorter computing time. The suggestion given in Zhang, 

 x#�r� � x#� C v#�r� (4.1.b) 
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Yu and Hu’s work is to choose a swarm size of 50 for more complicated problems and [20, 

50] for simpler problems, and as they stated, 30 might be a good choice. But, believing that 

swarm size should have some sort of relation with the dimension of the problem, since the 

dimension infers the size of the design space, some experiment are conducted as follows 

using the parameters shown in Table 4.1. The maximum number of iterations denotes the 

maximum allowed iterations; when the number of iterations reaches this value, the 

optimization stops without finding optima. The optima is considered found when the 

objective function value is smaller than the error goal that the user defined. Cognitive and 

social acceleration controls the relative velocity of particles towards local and global 

optimum. The inertia weight controls how much a particle changes its velocity; with a larger 

value, the particles will tend to maintain its velocity as the last iteration. 

Table 4.1: Parameters used for PSO swarm size experiment 

Maximum Number of Iterations 10000 

Error Goal 100 

Cognitive Acceleration 2.0 

Social Acceleration 2.0 

Initial Inertia Weight 0.9 

Final Inertia Weight 0.4 

The results gained are in appendix I. For dimension 10, since the swarm sizes are all 

equal to or larger than the dimension itself and the global optimum is relatively easy to find 

because of the small design space, the result doesn’t really tell us anything. When the 
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dimension is 20 and swarm size is 10, half of the time PSO converged to local optima; this 

might imply that a swarm size of half of the dimension size is too small according to the 

general understanding stated in previous paragraph. But from the data obtained for 

dimensions 30, 40 and 50, we can see that PSO is actually very unpredictable. In principle, 

we would expect a smaller group of particles to converge faster and would be easier to trap 

in local optima, and that a larger group would either find the global optima or converge too 

slowly and exceed the maximum number of iteration. But it seems that even with the same 

swarm size, both situations happened and there is really no tendency as to either a larger 

or smaller swarm size is better. A conjecture of what happened would be that, since the 

initial position for each particle of the swarm is randomly generated, it might happen that 

when the particles started to be too close to each other, then they easily converge to a 

local optima, and when the particles started to be around some local optimum (but not the 

global optima), then they hovered between those local optima and could not converge. 

Even with a relatively small problem like this, PSO tends to call objective function 

evaluation a large number of times; considering that a bigger swarm size doesn’t ensure a 

good solution, plus the significant computing time required for FEM analysis with each 

function call, a smaller swarm size (about 1/3 of dimension) might be preferred. 

4.1.2 Inertia Weight 
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In [44], Zheng, Ma and Qian stated that, on the contrary of what Y. Shi and R. Eberhart 

suggested, the inertia weight should start from 0.4 and linearly increase to 0.9 instead of 

decreasing from 0.9 to 0.4. 

Table 4.2: Parameters used for PSO inertia weight experiment 

Maximum Number of Iterations 10000 

Error Goal 100 

Cognitive Acceleration 2.0 

Social Acceleration 2.0 

Initial Inertia Weight 0.9 0.4 

Final Inertia Weight 0.4 0.9 

Using the parameters in Table 4.2, the results are shown in Table 4.3 and Table 4.4 for 

decreasing and increasing inertia weight respectively: 

Table 4.3: Results of decreasing inertia weight 

Number of iterations Final Function Value End Reason 

10001 133.54 ExceedMaxIter 

9295 160.4 Local Min 

8617 123.52 Local Min 

10001 136.45 ExceedMaxIter 

6586 99.778 Global Min 

10001 178.24 ExceedMaxIter 

8558 148.32 Local Min 

10001 167.29 ExceedMaxIter 

7126 197.28 Local Min 

7058 99.655 Global Min 
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Table 4.4: Results of increasing inertia weight 

Number of Iterations Final Function Value End Reason 

256 99.135 Global Min 

527 139.37 Local Min 

643 168.36 Local Min 

353 98.751 Global Min 

464 157.37 Local Min 

494 169.43 Local Min 

859 125.36 Local Min 

634 112.43 Local Min 

402 184.37 Local Min 

448 118.42 Local Min 

 Although increasing the inertia weight doesn’t necessarily give better solution, it does 

generally solve the problem faster. 

4.1.3 Cognitive and Social Acceleration 

Introduced by Zhang, Yu and Hu’s work on parameter choice[45], a new parameter φ 

is set as the sum of c� and c� in equation (4.1.a). It was suggested that φ � 4.05 is 

appropriate for high multimodal functions, and φ � 4.1 for unimodal functions, similar 

from the conclusion drawn from [49]. Combine that with a suggested value [49] for c�/c� 

ratio to be 2.8/1.3. The cognitive and social acceleration were chosen accordingly. 

4.2 Least Squares Minimization Formulation 

Since the number of design variables far exceeds the number of objectives, these 

problems can also be formed as data fitting problems, in which a large data set is fit to a 
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low order polynomial model. The least-squares method finds a local minimizer to a function 

that is a sum of squares. 

 S'X* � !'P#,mfKuIm
#

(P#,fhm|f}'X**� (4.3) 

The least-squares formulation is given in equation 4.3 above, where P#,mfKuIm and 

P#,fhm|f} are the desired and actual value of the imn objective. Since this term is to be 

minimized, its derivative is set equal to zero: 

 ~S'X* � 2 ! �∂P#,fhm|f}'X*
∂X �

Z

#&�
�P#,mfKuIm ( P#,fhm|f}'X*� � 0 (4.4) 

where the partial derivative term is the Jacobian, J(X). Due to the nonlinearity of J, an 

iterative solution technique must be used to solve for the unknown coordinates, X of the 

system. Gauss-Newton methods are typically used to solve such problems [41]. The 

Levenburg-Marquardt (LM) method, which can be thought of as a modified Gauss-Newton 

algorithm, is used in this research since it tends to be more robust when sensitivities in the 

Jacobian are small.  

The search direction that the LM method uses is a solution to equation 4.5 below: 

 s'��*��� C µ�Itd� � ('��*��P#,mfKuIm ( P#,fhm|f}� (4.5) 
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where µ� is a scalar damping parameter, d� is the direction and superscript k denotes 

the kmn iteration. When µ� � 0, the method is reduced to Gauss-Newton method, but 

when µ� tends toward infinity, d� turns toward the steepest descent direction. This 

implies that for some sufficiently large µ�, descent of the objective function can be 

ensured even when second-order terms, which restrict the efficiency of the Gauss-Newton 

method, are encountered.[50] The iteration function can be computed as: 

 ��r� � �� C �'��*��� C µ�I�a�'��*��P#,mfKuIm ( P#,fhm|f}� (4.6) 

MATLAB’s nonlinear least-squares (nonlinear data-fitting) solver lsqnonlin is used as 

LSM solver in this thesis. It selects from Gauss-Newton and LM algorithms to solve 

problems.  

4.2.1 Limitations 

With one starting point, Least-squares minimization finds a nearby minimum. It finds a 

solution fairly quickly if compared with PSO (with similar stopping criteria), but its lack of 

global search ability often causes it to end up with a local minimum. 

4.2.2 Initial Design 

From the above statement, we know a good starting point in the design space, in our 

case a good initial combination of strut diameters, is very important. But if a good design is 
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foreknown, an optimization will not be so meaningful, since it is used to find a solution that 

is not predictable. Although PSO seems to have, theoretically, a better global search ability, 

from experience [41] we found that a good starting point is very important to PSO also. 

Thus, some experiments done for efficiency comparison of these two methods are 

presented in section 4.3.  

4.3 Comparison of PSO and LM 

Three examples were investigated to include different numbers of design variables. 

The problems are created each with 9, 56 and 99 variables, using the base truss topologies 

shown in Figure 4.1~Figure 4.3. These structures are fixed at the left end and loaded with a 

10 N point load at the top right end. The nodes of interest are chosen to be the nodes at 

the right end of the structure. And the target deflections are all set in regards to the 

deflection in y direction. 
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Figure 4.1: Problem 1 base truss topology 

 

 

Figure 4.2: Problem 2 base truss topology 
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Figure 4.3: Problem 3 base truss topology 
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Figure 4.4: Problem formulation for PSO and LM comparison 

 

The general optimization problem formulation for these example problems is given in 

Figure 4.4 where n is the number of sample nodes. RepDe�lM is the difference of the 

actual deflection and the desired deflection of each sample node. Vol is normalized total 

volume of the structure. m is the number of struts. yieldStress�  is the difference 

between the Von Mises stress at the middle node of the strut and the yield stress (only 

when Von Mises equivalent stress exceeds yield stress.) In the objective function, a large 

number (10
4
) is multiplied to it so that this term can serve as a penalty function. 

ObjFunValue'd#* � ! RepDe�lM�
Z

M&�
C Vol� C 10000 + ! yieldStress��

 

�&�
 

Given: 

Truss Structure: Position and orientation of nodes and elements 

Specified load and boundary condition: Nodes at X=0 are all fixed in space, 10N 

applied on the node at the top-right node 

Desired deflection for the nodes in interest 

Find: diameter of each strut d# (i = 1...number of elements) (mm) 

Satisfy:  

Goals: 

Minimize the difference between actual deflection and target deflection. 

 RepDe�lM � 'δM9:;<9= ( δM;9B�?;* mm, (j = 1...number of sample points) 

 Minimize generalized total truss volume 

 Vol � ωD + 'TotalVolumefhm|f} ( TotalVolumemfKuIm* mm
3
 

 Minimize Stress exceeding Yield Stress 

 ���	������� � '������ ( ���	�������* MPa, (k = 1...number of elements) 

Bounds:  

Minimum and maximum diameter constraints: 0.5 mm X d# X 5 mm 

Minimize:  
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The starting point for all experiments conducted by LM is set such that all strut 

diameters are 2 mm. PSO, however, usually starts with a group of random particles. But, a 

seed (a particular particle in the starting swarm) of the same point was added to include a 

“starting point” in PSO. 

For the objective function, there are three terms to consider: 

1. The desired deflection for the sample nodes are set as 80% of the deflection in -y 

direction (pointing downward in fig. 2~4) when all the struts have the diameter of 2 mm. 

2. The target volume was set as 80% of the volume of the starting structure. It is 

normalized by different ωD for each example problem to ensure the scale of Vol will not 

exceed 1e-1 and that the square of Vol will be small enough that the deformed shape will 

have priority. 

3. The third term is added to serve as a penalty function. If the Von Mises equivalent 

stress in the middle of the kmn  strut is smaller or equal to the yield stress, then 

yieldStress�  is zero; otherwise yieldStress�  will be the difference between the 

equivalent stress and the yield stress. 

The results are listed and can be compared in Table 4.5. With each problem, Table 4.5 

shows the number of design variables, the average analysis time needed (i.e. objective 

function evaluation time), and the objective function value before optimization process. 
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The resulting objective function value and function calls used are listed to compare PSO and 

LM. 

Table 4.5: Results of experiments to compare PSO and LM 

Multiple runs were performed for PSO since it is a stochastic algorithm. Since function 

evaluation time depends highly upon capacity of computer used and even with the same 

machine still fluctuates a lot, the performance of the algorithms are compared in terms of 

number of function calls and the resulting objective function value. Several result structure 

examples are shown in Figure 4.5~Figure 4.10. 

 Initial State PSO LM 

# of 

Design 

Variables 

Average 

Analysis 

Time (s) 

Initial 

Objective 

Function 

Value 

Objective 

Function 

Value 

Function 

Calls 

Objective 

Function 

Value 

Function 

Calls 

Problem 

1 
9 0.0258 0.3888 

0.009140 588 

0.006273 190 

0.014292 477 

0.011305 537 

0.007729 1314 

0.030219 534 

Problem 

2 
56 0.1491 1.4867 

0.000387 169689 

0.000574 3534 

0.000791 164540 

0.000347 173679 

0.000252 147212 

0.000380 152361 

Problem 

3 
99 0.3503 2.3915 

0.000385 303039 

0.000918 4700 

0.001682 281358 

0.000252 265716 

0.000423 274857 

0.000655 281061 
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Figure 4.5: Result structure of problem 1 by LM 

 

Figure 4.6: Result structure of problem 2 by LM 

 

Figure 4.7: Result structure of problem 3 by LM 
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Figure 4.8: Result structure of problem 1 by PSO 

 

Figure 4.9: Result structure of problem 2 by PSO 

 

Figure 4.10: Result structure of problem 3 by PSO 
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The LM finds the solution faster than the PSO without the time consuming exploration 

and a thorough search of the design space. And that is also why the solution gained when 

dealing with larger scale problem is usually not the global optimum, but with smaller scale 

problem, it finds good solution fast. 

In all the conducted experiments, the PSO for problem 2 and 3 was always terminated 

not due to convergence but due to no improvement for over 1/5 of maximum iterations. 

The setting can be changed to allow it to keep running, but from experience, with the 

convergence rate, it usually will end up not converged, but will rather exceed the maximum 

number of iterations with no or very little improvement. It is not very clear why this 

happens. It might be that some particles are “flying” in somewhere else of the space that 

don’t provide better function value and are converging slowly. Regardless of what the 

reason is, it seems that for large scale problems, PSO is getting better solution but uses a lot 

more time than LM. 

4.3.1 Pros and Cons 

With PSO and LM, It is hard to say which is better since PSO gives different result 

every time. But it seems that LM works better with smaller scale problems and PSO finds 

better solutions with large-scale problems because PSO provides a more thorough search of 
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the design space. The struggle to choose an algorithm from these two is between the time 

required and better solution. 

4.3.2 More Efficient Algorithm 

Since LM works much faster but lacks thorough design space search, a new idea is 

then proposed. The idea is to utilize a strategy similar to the Monte Carlo Method, which 

includes some “randomness”. From the previous result, we can see that effectiveness 

decreases with the increase of problem scale. But since LM requires a lot less function calls 

than PSO, running it several times might still be faster than running PSO just once. Thus, the 

approach of running it more times with different randomly generated starting points is 

conducted for problem 2 and 3 (larger scale problems). 

The starting points were created using rand() in MATLAB which produces 

pseudo-random numbers between 0 and 1. By multiplying it with the difference between 

upper and lower bound and adding lower bound, the starting points are ensured to be 

within bounds. The results are in Table 4.6 below. 

Table 4.6: Results of experiments to compare PSO with multiple runs of LM 

 PSO LM 

 

Objective 

Function 

Value 

Function 

Calls 

Objective 

Function 

Value 

Function 

Calls 

Sum of 

Function 

Calls 

Problem 

2 

0.000387 169689 0.000831 2280 
17955 

0.000791 164540 0.000464 3021 
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0.000347 173679 0.000197 3648 

0.000252 147212 0.000282 5985 

0.000380 152361 0.000314 3021 

Problem 

3 

0.000385 303039 0.001156 5600 

32200 

0.001682 281358 0.000386 5900 

0.000252 265716 0.000285 7700 

0.000423 274857 0.000854 6300 

0.000655 281061 0.000038 6700 

From the results, we can see that out of five runs, LM found solution with a lot lower 

objective function value, and the sum of function calls for all 5 runs is still less than what 

PSO needs for one run by an order of magnitude. 

It was discovered that with more runs starting from different starting point, LM would 

be a better choice for size optimization of struts. In this way, it includes a better global 

search and also more time efficient. 

4.4 Summary 

In this chapter, PSO and LM are discussed and compared. From the results shown in 

Table 4.6, LM works more efficiently. The function evaluation time PSO requires is more 

than 10 times that of LM. Even given the same starting point, PSO will generate a different 

solution each time whereas by LM, a designer may explore the design space with multiple 

initial conditions and still use less computing time. Thus, we can conclude that using LM is 

more efficient than using PSO.   
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Chap.5 Examples 

To examine the usability of the design method that is developed in the previous 

chapters, four examples are presented below. The first example is a relatively simple 

example that was already investigated in [4], so that results generated through the design 

method proposed in this thesis can be compared and validated. The second example is an 

extension of the first one. The third example is also duplicated from and validated against 

the literature [4, 51]. The last example is a wing design example which provides a compliant 

mechanism design problem as a display of the usage of the design method. All examples 

used the unit truss approach described in chapter two as the structural analysis method. 

5.1 A Simple 3D Cantilever Beam Example 

The first example was used in G. Graf’s master thesis [4], in which he compares the 

optimization results to his method that completely removes the optimization process. But 

since this research focused on morphing structures, the same method cannot be utilized. 

Even so, the method proposed can be compared to the optimization results G. Graf studied 

in his work. 

 The example presented here is comprised of a cantilever beam. The dimension of the 

beam is: 50mm in length, 20mm in height, and 10mm in width as shown in Figure 5.1. The 

initial truss topology is shown in Figure 5.2. The material used in the example has an elastic 
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Figure 5.1: First 3D cantilever beam example 

modulus of 1960N/mm. It is fixed at one end and two 10N loads are applied at the other 

end on each corner of the beam tip. The objective is to minimize deflection while remaining 

a volume of 1600mm-. 

 

 

10N 

Fixed in x, y, z 

10N 
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Figure 5.3: Problem formulation of 3D cantilever beam example strut approach 

 

Figure 5.2: Base truss topology for first cantilever beam example 

5.1.1 Strut Approach 

The problem formulation of the optimization process is presented in Figure 5.3. 

 

One of the results Graf presented was solved with the Levenburg-Marquardt method 

using strut diameters as design variables which is the same as the strut approach described 

0
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m

Z � W| + U� C 'V ( 1600*� 

 Given: The ground truss and loading conditions stated in the original problem 

 Find: d#: diameter of each strut. i = 1, 2, 3…number of struts 

 Minimize: 

   

Where U is the strain energy, W| � 100 is a weighting value,  

and V is the volume 
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in this thesis; thus, the parametric surface/solid approach is used to compare the results. 

The parameter that Graf used is shown in Table 5.1 below. 

Table 5.1: Parameters used for first cantilever beam example 

Termination tolerance on the function value 0.001 

Termination tolerance on x 0.0001 

Maximum Iterations 20 

Initial Configuration All struts 5mm 

Graf’s resulting truss structure using the strut approach is shown in Figure 5.4, which 

has a volume of 1601mm
3
, strain energy of 3.3537Nmm, and a maximum tip displacement 

of 0.3354mm; it thus gives an objective function value of 1127. 

  

Figure 5.4: Graf’s result for strut approach using LM/LSM 
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Figure 5.5: Problem formulation of first 3D beam example parametric solid approach 

5.1.2 Parametric Solid Approach 

 

Control diameters are set to be 5x1x2 which gives the parametric volume a degree of 

4x0x1. In order that the results be comparable, the parameters used are the same as in 

Table 5.1. Optimal control diameters for all examples are provided in appendix II. Using  

the parametric solid approach with the same initial configuration as the starting point the 

optimization converged to the structure shown in Figure 5.6, which has a volume of 1608.4 

mm
3
, strain energy of 10.9053Nmm and an objective function value of 11962. The time 

used in total was 121.67 seconds, and the number of function calls was 259. The thinnest 

struts have a diameter of 0.6016mm and the thickest 1.2354mm. From Figure 5.6 we can 

see that the trend of truss diameter is similar to Graf’s result shown in Figure 5.4. Thicker 

struts are required at the fixed end and the further away from the fixed end, the thinner 

the struts. 

Z � W| + U� C 'V ( 1600*� 

 Given: The ground truss and loading conditions stated in the original problem 

 Find: d#M�: control diameters. i = 1...5, j = 1, k = 1...2 

 Minimize: 

   

Where U is the strain energy, W| � 100 is a weighting value,  

and V is the volume 
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Figure 5.6: Parametric solid approach resulting structure 

5.1.3 Summary 

The unit cells used were 5, 1 and 2 in the x, y, z direction respectively. With such a 

small number of unit cells, the parametric solid approach doesn’t perform as well as the 

strut approach. As can be seen from Figure 5.4, most of the struts in the middle of Graf’s 

resulting structure are eliminated because they do not contribute to reduce the strain 

energy. With a volume value as an objective, eliminating unnecessary struts and enlarging 

other struts generated a better solution. Since the parametric solid approach gives the 

same diameter for all struts in the same unit cell, detailed design is not accessible and the 

volume cannot easily be reduced without increasing strain energy. But the parametric 
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approach does greatly reduce the time needed comparing to other methods that employed 

optimization process. A brief summary is shown in Table 5.2 along with the results gained 

by Graf. 

Table 5.2: Summary of first 3D cantilever beam example 

Design Method 
Volume 

(mm
3
) 

Maximum Tip 

Displacement (mm) 

Strain 

Energy 

(Nmm) 

Creation 

Time (s) 

Identically Sized 1610 1.21 12.128 0.382 

PSO 1603 0.5327 5.006 9359 

LM/LSM Strut 

Approach 
1601 0.3354 3.354 9283 

LM/LSM 

Parametric Solid 

Approach 

1608.4 1.0905 10.9053 121.67 

Unit-Cell Library 1615 0.5547 5.547 1.639 

 

The parametric approach has limitations when maintaining a certain volume is one of 

the goals. The fact that struts in the same unit cell have same size hinders its ability to 

eliminate unnecessary struts. The parametric approach also has a limited capacity when the 

design problem’s scale is relatively small. Like in this example problem, there is only one 

unit cell along y direction. As a result, there is no way to remove elements in the middle, 

since they are in the same unit cells as the struts on y=0 and y=10 plane where thicker 

struts are required to lower strain energy. If a problem contains more unit cells, this effect 

might be reduced. For example, if this design problem had three unit cells along y direction, 
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the struts in the middle unit cells could have been eliminated. Conclusions can be made 

that the parametric approach is limited when the volume is one of the objectives and when 

the design problem’s scale is small, but this approach might perform better when the 

design problem is large. 

5.2 A more complicated 3D Cantilever Beam Example 

Extended from the previous example, a more complicated beam example is shown in 

Figure 5.7 which is 60mm in length, 30mm in height and 20mm in width. It is fixed at one 

end, and point forces are applied at the other end; three on the top and two at the side, 

each of 10N. Struts that connect fixed points are removed to reduce unnecessary variables 

that might affect the result. A starting truss topology is shown in Figure 5.8. The material 

used has an elastic modulus of 1960N/m. The objective is to minimize deflection while 

remaining a volume of 4400mm-. 
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Figure 5.7: Second 3D cantilever beam example 

 

Figure 5.8: Base truss topology for second cantilever beam example 
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The relative stress distribution of this cantilever beam is shown in Figure 5.9. It was 

simulated using a solid beam model in ANSYS. Viewing from the fixed end, higher stress 

appears at the upper right and the lower left corner at the fixed end. 

 

Figure 5.9: Relative stress distribution for second cantilever beam example 

5.2.1 Strut Approach 

The problem formulation of the optimization process is presented in Figure 5.10. The 

parameters used are shown in Table 5.3. 
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Figure 5.10: Problem formulation for second cantilever beam example with strut approach 

 

Table 5.3: Parameters used for second cantilever beam example 

Termination tolerance on the function value 0.001 

Termination tolerance on x 0.0001 

Maximum Iterations 50 

Initial Configuration All struts 5mm 

The resulting structure is shown in Figure 5.11 with a volume of 4622.9 mm
3
, strain 

energy of 8.1963Nmm, max node displacement of 0.4mm, and an objective function value 

of 56384. It took a total number of 9940 function calls and 21 iterations to converge. 

Thicker struts were obtained at the two corners at the fixed end, which correspond to the 

stress distribution shown in Figure 5.9 where higher stress value appears. 

Z � W| + U� C 'V ( 4400*� 

 Given: The ground truss and loading conditions stated in the original problem 

 Find: d#: diameter of each strut. i = 1, 2, 3…number of struts 

 Minimize: 

   

Where U is the strain energy, W| � 100 is a weighting value,  

and V is the volume 
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Figure 5.12: Problem formulation for second cantilever beam example with parametric solid approach 

 

Figure 5.11: Resulting structure of second cantilever beam example using strut approach 

5.2.2 Parametric solid approach 

The problem formulation is shown in Figure 5.12. The control diameters are chosen to 

be 4x2x3 since it is only 2 unit cells long in the y and 3 in the z direction. The parametric 

volume thus has a degree of 3x1x2. 
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Z � W| + U� C 'V ( 4400*� 

 Given: The ground truss and loading conditions stated in the original problem 

 Find: d#M�: control diameters. i = 1...4, j = 1...2, k =1...3. 

 Minimize: 

   

Where U is the strain energy, W| � 100 is a weighting value,  

and V is the volume 
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The parameters used are the same as in Table 5.3. The resulting structure is displayed 

in Figure 5.13 which has a volume of 4412.6mm
3
, strain energy of 23.3618Nmm, max node 

displacement of 1.1676mm and an objective function value of 54737. The total number of 

function evaluations is 1309. Although it finished at the last iteration, the 50
th

 one, it did 

converge. This result is similar to the strut approach result in terms of the distribution of 

thicker struts and it also corresponds to the higher stress distribution in Figure 5.9. The unit 

cells at the upper right and the lower left have larger diameter value. 

 

Figure 5.13: Resulting structure of second cantilever beam example using parametric solid approach 
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5.2.3 An alternative assignment of parametric value 

Instead of assigning parametric values to unit cells, this alternative approach assigns u, 

v and w to the struts by the coordinates of the center of each strut. Because this example 

is composed of cuboids, the u, v and w direction perfectly correspond to the x, y and z 

direction respectively. Since the parametric values are in the range of 0 to 1, the u value of 

a strut is the strut’s center node x coordinate divided by entire structure’s total length in x 

direction. The same principle applies to calculating v and w by y and z coordinates. A 

3x1x2 parametric volume was used.  

The results are shown under two different objective function settings. The resulting 

structure of the second run is shown in Figure 5.14. Opposite to the original parametric 

approach, this new approach seems to work better when there is a stricter requirement on 

volume. The resulting strain energy and volume are both lower than that gained from the 

original parametric approach. The thicker struts at the two corners of fixed end correspond 

to the higher stress distribution shown in Figure 5.9, and the ones at the tip might be the 

result of the slightly increased stress value caused by the loads being applied directly to 

those struts. Comparing the results to original parametric approach, a conjecture may be 

that this new approach and the original one are complementary. When the volume 

constraint is stricter, this new approach might be a better choice. 
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Table 5.4: Results of alternative parametric approach 

Run 1 2 

Volume 

weight 
1 100 

Result 

volume 
5034.8 4409.3 

Strain 

Energy 
17.7412 20.0825 

FunCalls 2625 2623 

ObjFunValue 4.34E+05 4.04E+04 

 

Figure 5.14: Alternative approach result structure for second beam example 

5.2.4 Summary 
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When the problem is extended, the strength of the parametric solid approach is 

shown. Not only did it require fewer function calls, but also it found a solution that has 

lower objective function value. The reason the strut approach performed worse is not 

apparent; a rational assumption would be that it converged to a local minimum. Although 

the solution found by using the parametric solid approach doesn’t have a smaller value of 

strain energy, which is a result of the objective function used, the volume is closer to the 

target and thus the objective function value is lower than that gained from using the strut 

approach. It is worth highlighting that the alternative diameter calculation method results 

in the lowest objective function value. Although it was dominated by the volume objective, 

the solution obtained is better than the original diameter calculation method both in strain 

energy and volume. 

The parametric approach is particularly useful when the design problem contains more 

struts. A large number of struts renders a large design domain and raises difficulties in 

optimization for the strut approach. This fact corresponds to the original intension of using 

parametric approach, and the reduced design space can allow parametric approach to find 

better solutions. 
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Table 5.5: Summary of second cantilever beam example 

Design Method 
Volume 

(mm
3
) 

Strain Energy 

(Nmm) 

Function 

Calls 

Objective 

Function 

Value 

Original 110805 1.1643 NA 1.13x10
10

 

LM/LSM Strut Approach 4622.9 8.1963 9940 5.64x10
4 

LM/LSM Parametric 

Solid Approach 
4412.6 23.3618 1309 5.47x10

4 

Alternative parametric 

Approach 
4409.3 20.0825 2623 4.04x10

4 

 

5.3 A 2D Beam Example 

This example was used both in Qi Xia and Yu Wang ‘s paper: “An optimization-based 

approach for the design of lightweight truss-like structures” and Graf’s master’s thesis: 

“Development of Specialized Base Primitives for Meso-Scale Conforming Truss Structures.” 

The following statement was used in Qi Xia and Yu Wang’s paper and quoted in Graf’s. 

“The structure is loaded with a concentrated vertical force of P=200kN at 

the center of the top edge and is supported on two hinges at the 

bottom-right corner and the bottom-left corner. The design domain is a 

rectangle of size L=3m, H=1m. The beams of the structure has[sic] a circular 

cross-section with the diameter 0h =0.02m… …the upper bound of the 
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material volume [is] V =0.02m
3
. The penalty parameter in topology 

optimization is p =2, and the lower bound of topology variables p=0.04. “ 

 The three different base truss topologies used are shown in Figure 5.15~Figure 5.17. 

The initial truss topologies used by Qi Xia and Graf are slightly different. Since the 

parametric surface approach requires quadrilateral cells, the base truss topology used for 

parametric surface approach will be the one shown in Figure 5.17. The goal is to minimize 

compliance while maintaining the material volume. Because they are essentially different 

design problems given different starting truss topologies, to better compare the results, the 

different starting configurations are compared in Table 5.6. 

 

Figure 5.15: Base truss topology used by Qi Xia and Yu Wang 
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Figure 5.16: Base truss topology for 2D beam used by Graf 

 

Figure 5.17: Base truss topology for 2D beam example parametric surface approach 

Table 5.6: Comparison of starting configuration 

 Compliance (Nm) Volume (m
3
) 

Xia and Wang’s Triangular Model 3325.96 0.0264 

Graf’s Triangular Model 3017.8 0.0271 

Quadrilateral Model 2306.9 0.0386 

5.3.1 Strut Approach 

The problem formulation given in Graf’s thesis is as below: 

Given: The problem statement and ground structure for the second 

example 
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Find: eρ , a dummy size variable for each of the 328 struts 

Satisfy: No specified constraints 

Minimize: 

( ) 222 02.0)(min dpv PwVwJxf
e

+−+=
ρ

  

Where: 202.0 eiD ρ×=  are the truss strut diameters, penalized 

towards the minimum or maximum diameter, 

ufJ T=  is the compliance,  

∑= πkk lrV
2

 is the truss structure volume, and  

)02.0( −Σ= kd DP  is a diameter penalty on all struts whose 

diameters are over 0.02m 

vw =10
12

 and pw =10
8
  

The parameters that Graf used are shown in Table 5.7 and the resulting structure is 

shown in Figure 5.18. Implied in Graf’s thesis, the optimization stopped due to reaching the 

number of maximum iterations which means it did not converge. Related data of this result 

is shown in Table 5.8. 
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Table 5.7: Parameters used for 2D beam example 

Termination tolerance on the function value 
0.01 

Termination tolerance on x 0.001 

Maximum Iterations 20 

Initial Configuration eρ = 0.8 

 

Figure 5.18: Graf’s resulting structure for 2D beam example using strut approach 

Table 5.8: Graf’s optimization result for 2D beam example using strut approach 

Optimization Time (seconds) 
6990 

Function Calls 6976 

Final Objective Function Value 1.19x10
7 

Iterations 20 

Final Volume (m
3
) 0.0201 

Final Compliance (Nm) 3432.2 

For the purpose of a more clear comparison, I chose to implement the strut approach 

using a quadrilateral model also. The resulting structure is shown in Figure 5.19. The strut 

size distribution is similar to Graf’s result where thicker struts appear at the lower corners 
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and the upper and lower middle part. As can be observed in Table 5.9, the resulting 

structure gives a very promising result in terms of the goal of this example. 

 

Figure 5.19: Resulting structure of 2D beam example using strut approach with quadrilateral model 

Table 5.9: Result of 2D beam example using strut approach with quadrilateral model 

Optimization Time (seconds) 
1988 

Function Calls 3316 

Final Objective Function Value 1.06x10
7 

Iterations 7 

Final Volume (m
3
) 0.02 

Final Compliance (Nm) 3234 

 

5.3.2 Parametric Surface Approach 

The problem formulation is essentially the same, only the design variable is changed to 

control coefficient as has been used throughout this thesis. A set of 4x4 coefficients were 

used. The parameters used are the same as the ones shown in Table 5.7. The resulting truss 

structure is shown in Figure 5.20 which gives related data as shown in Table 5.10. 
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Figure 5.20: Resulting structure of 2D beam example using parametric surface approach 

Table 5.10: Result of 2D beam example using parametric surface approach 

Optimization Time (seconds) 
94.31 

Function Calls 132 

Final Objective Function Value 1.35x10
7 

Iterations 17 

Final Volume (m
3
) 0.0206 

Final Compliance (Nm) 3619.1 

As Graf stated in his thesis, since the volume cannot be explicitly constrained, it was 

added in the objective function as a penalty term. This caused the resulting objective 

function value to be fairly large. This objective function set up has limited the performance 

of the parametric surface approach. Comparing the results, it can be observed that the 

volume dominated the optima searching which is reasonable since it was added in the 

objective function with a very large weighting value. The limitation of the parametric 

surface approach was therefore shown. The reason that the parametric surface approach 

was outperformed is that when one strut is required by the loading condition to be thick to 
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reduce compliance, other struts in the same unit cells have to be set as thick. From Table 

5.6 we know that quadrilateral model started out with a larger volume. When optimization 

seeks to reduce the volume, compliance is sacrificed. This is especially obvious when 

comparing Figure 5.19 and Figure 5.20. The thicker struts in the lower corner of Figure 5.19 

are not seen in Figure 5.20. 

5.3.3 Change of objective function 

With the limitation identified, a modified objective function is used. The weighting 

value on volume is changed from 10
12

 to 10
6
. Also, the parametric surface used is of degree 

7x3 with an 8x4 set of control diameters. Problem formulation will not be listed again since 

the only change is in the value of vw . 

The results are shown in Table 5.11, and the resulting structures in Figure 5.21. Both 

approaches converged within the given maximum number of iteration. 
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Table 5.11: Result of 2D cantilever beam with a modified objective function 

 
Original Strut Approach 

Parametric Surface 

Approach 

Optimization Time (seconds) 
NA 1939.7 496.05 

Function Calls NA 2076 511 

Objective Function Value 3.51x10
8
 1.29x10

7 
7.09x10

6
 

Iterations NA 4 14 

Final Volume (m
3
) 0.0386 0.0177 0.0311 

Final Compliance (Nm) 2306.9 3535.7 2625.0 

 

 

Figure 5.21: Resulting structures for 2D beam example with modified objective function.  

5.3.4 Summary 

A summary is presented in Table 5.12 including all the results from [4]. By reducing the 

weighting value of volume, the parametric surface approach was able to attain a lower 
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objective function value than strut approach. This result supported the conjecture made in 

the previous section that the volume constraint restricted the parametric surface 

approach’s performance. As illustrated in Figure 5.21, the struts at the lower corners were 

chosen to be thicker and thus give a lower objective function value. Strut approach 

obtained a higher objective function value. The same assumption is made that with the 

larger design domain, the result converged to a local optimum and gave a higher objective 

function value than parametric surface approach. 

The result further proved the conclusions drawn in previous examples, that the 

volume objective might be a hindrance to the parametric approach and that parametric 

approach performs better with larger design problems. 

Table 5.12: Summary of 2D beam example 

 
Method Volume Compliance 

Time 

(s) 

Xia and Wang's 
Original 0.0264 3325.96 NA 

Optimized 0.02 3595.19 34.13 

Graf's Triangular Model 

Original 0.0271 3017.8 NA 

PSO 0.0196 4149.6 4754 

LM/LSM (strut approach) 0.0201 3432.2 6990 

Unit Cell library 0.0199 3400 1.70 

Quadrilateral 

Model 

Original 0.0386 2306.9 NA 

Strut approach 0.02 3234 1988 

Parametric Surface Approach 0.0206 3619.1 94.31 

Quadrilateral Model with 

different objective 

function 

Original 0.0386 2306.9 NA 

Strut Approach 0.0177 3535.7 1939.7 

Parametric Surface Approach 0.0311 2625 496.5 
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5.4 Wing Example 

 

 

 

 

NACA 23015 FX60-126 

 

Figure 5.22: Airfoil cross section 

So far, the previous examples have been structural problems. Here a compliant mechanism 

design example is presented. This wing design example is an extension of the example used in 

[8]. The purpose is to enable the wing cross section to morph from NACA23015 to FX60-126 

(shown in Figure 5.22) when actuators are applied. The change of airfoil shape under different 

operational environments to meet different requirements can improve fuel efficiency. This 

example will be illustrated both in 2D and 3D. The unit truss approach, which is used for all the 

previous examples, is also used for structural analysis in this example. The problem formulation 

related to the ones presented in Figure 3.6, Figure 3.7, Figure 3.11 and Figure 3.12 is used. 

However, to investigate the shape-changing ability, only the deflection deviation from target is 

considered. By minimizing the difference between the actual deflection and the desired 

deflection of certain nodes, the desired shape can be attained. 

5.4.1 2D Airfoil 

A 2D example with 8x2 unit cells is explored. The initial truss topology is as shown in 

Figure 5.23 with 9 pairs of 30N forces applied. The goal is to find the proper strut diameter 
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combination so that when forces are applied, the outer shape of the airfoil will change from 

NACA23015 to FX60-126. The outer struts have a constant diameter of 5mm. 

 

Figure 5.23: Initial truss topology of 2D airfoil example 

Several different approaches are investigated, in addition to the strut and parametric 

surface approach, a “Unit Cell Approach” is also tested. This unit cell approach is very 

similar to the parametric surface approach in the way that it also takes each unit cell as a 

unit and struts that are considered to be in one unit have the same diameter. But, instead 

of controlling diameters across all unit cells, each unit cell itself has its own assigned 

diameter value. This way, the number of design variables is the same as number of unit 

cells. 

The problem formulation is related to the ones given in Figure 3.6, Figure 3.7, Figure 

3.11 and Figure 3.12. Because the previous examples demonstrated that with a volume 
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Figure 5.24: Problem formulation for 2D airfoil example 

objective, the parametric approach usually does not perform well, in order to understand 

the performance without that limitation, the volume objective is excluded. Also, it was 

found that the initial truss topology could not conform to the desired profile without 

yielding. Therefore, in order that the resulting deformed shapes can be clearly compared, 

the penalty function is also eliminated. This gives us the problem formulation in Figure 5.24 

where De�l  denotes the deflection. Subscriptions  actual  and target  distinguish the 

resulting and desired deflection while norm denotes a term used to normalize difference 

between actual and desired deflection. The De�lZ�K  was chosen to be a constant that is 

approximately the average of the desired deflection from initial profile to desired profile. 

The 18 points in interest correspond to the points on outer struts, same as the ones with 

forces applied on. 

 

Z � 118!�De�l#fhm|f} ( De�l#mfKuImDe�lZ�K �
��%

#&�
 

 Given: The ground truss and loading conditions stated in the original problem 

 Find:  

1. d#: diameter of each strut. i = 1...72 (number of struts) 

2. d#: diameter of struts in each unit cell. i = 1...16 (number of unit cells) 

3. d#M: control diameters. i = 1…3, j = 1...2 (3x2 control diameters) 

4. d#M: control diameters. i = 1…4, j = 1...2 (4x2 control diameters) 

 Minimize: 
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Figure 5.25 shows the 3x1 parametric surface (4x2 control diameters) used for this 

example. The relationship between the control diameters and the diameter value for each unit 

cells is demonstrated. Control diameters are shown in red dots whereas diameter values for 

each unit cell are shown in blue dots. 

 

Figure 5.25: The 3x1 parametric surface used for 2D airfoil example 4x2 parametric approach 

The different approaches used different design variables indicated numbers one through 

four under “Find.” From one to four, they are: strut approach, unit cell approach, parametric 

surface approach with 3x2 coefficients and parametric surface approach with 4x2 coefficients 

respectively. The parameters used are presented in Table 5.13. 
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Table 5.13: Parameters used for 2D airfoil example 

Termination tolerance on the function value 
1e-6 

Termination tolerance on x 1e-8 

Maximum Iterations 300 

Maximum Function Calls 30000 

Initial Configuration All struts 1mm
 

i Results 

The results are shown in Table 5.14 and the resulting structures are displayed in 

Figure 5.26~Figure 5.30 where the target profile is portrayed by the red line. As shown in 

Figure 5.27, using the strut approach generated a fairly good result. The profile fits the 

target profile quite well, and the objective function value is as low as 0.0282. Some struts in 

the middle were chosen to be thicker to maintain the profile’s position so that it won’t 

deform like that in Figure 5.26. Just as expected, using more design variables gives a lower 

objective function value at the end, but it also requires more objective function evaluation. 

Comparing the unit cell approach with both the strut approach and the parametric surface 

approach, the limitation can be observed. Limitation was first encountered with the target 

profile being so narrow at the right end. With strut approach, diameters can be chosen so 

that some struts are thicker and some thinner, to maintain the profile shape. But when unit 
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cells are used as design variables, the upper part is chosen to be thicker to maintain the 

shape, and the lower part is almost eliminated to obtain a narrow profile. With the unit cell 

approach, each adjacent unit cell can have its own diameter value without any restriction. 

But the parametric approach involves fitting, in this case, a 2
nd

 or 3
rd

 degree polynomial to 

the strut size (along x coordinate); therefore, the variation between neighboring unit cells is 

somewhat restricted. The strut size variation from Figure 5.28 does not change smoothly. 

This results in the parametric approaches getting a higher objective function value even 

than the unit cell approach. 

Table 5.14: Results of 2D airfoil example 

 

Starting 

Topology 

Strut 

Approach 

Unit Cell 

Approach 

3x2 

Parametric 

Approach 

4x2 

Parametric 

Approach 

Objective 

Function 

Value 

5.4071 0.0282 0.4474 0.7323 0.6632 

time (s) NA 2521.6 431.4 12.3 25.8 

Iteration NA 300 218 12 21 

Function 

Call 
NA 22151 3834 100 209 

Converge NA yes yes yes yes 
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Figure 5.26: 2D airfoil starting truss topology 

 

Figure 5.27: Resulting structure of 2D airfoil example using strut approach 

 

Figure 5.28: Resulting structure of 2D airfoil example using unit cell approach 



92 

 

 

Figure 5.29: Resulting structure of 2D airfoil example using 3x2 parametric approach 

 

Figure 5.30: Resulting structure of 2D airfoil example using 4x2 parametric approach 

The strut approach result shows that smooth variation of strut size is not always the case; 

as a result, the parametric approach does not perform as well with complaint mechanisms as 

with structural design problems. 

5.4.2 3D Wing 

The airfoil example is extended to a 3D problem using the following parameter settings [52] 

(Table 5.15): 
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Table 5.15: Parameters used to generate 3D wing 

 

 

The strut approach and the parametric solid approach are used to find the optimal solution. 

The number of unit cells is chosen to be 8 + 3 + 2, giving the cross section shown in Figure 

5.31 (in which size differs through the span.) And the base truss topology generated is 

presented in Figure 5.32. It has 594 elements. The outer struts are set as having constant 

diameter of 3mm; additionally the struts connect between cross-sections which don’t affect the 

wing cross-section shape. Other struts’ sizes, a total number of 432 diameters, are found by the 

optimization process. The problem formulation for this example is given in Figure 5.33. 

 

Figure 5.31: Structure of wing example at each cross section 
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Figure 5.33: Problem formulation for 3D Wing example 

 

Figure 5.32: Base truss topology of wing example 
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 Given: The ground truss and loading conditions stated in the original problem 

 Find:  

1. d#: diameter of each strut. i = 1…432 (number of struts) 

2. d#M�: control diameters. i = 1…4, j = 1…3, k = 1…2 (4x3x2 control 

diameters) 

 Minimize: 
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The starting configuration has all other struts with diameters of 2mm which results in 

the objective function value of 0.6132. The difference between the starting profile and the 

target profile is shown in Figure 5.34 with red lines demonstrating the target. The 

parameters used are shown in Table 5.16. 

 

Figure 5.34: Starting truss topology profile comparing to target profile 

Table 5.16: Parameters used for 3D wing example 

Termination tolerance on the function value 
1e-6 

Termination tolerance on x 1e-8 

Maximum Iterations 300 

Initial Configuration All struts 2mm
 

 

i Strut Approach 
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Optimization with strut diameters as design variables was unable to converge. The 

resulting structure has an objective function value as low as 0.0027. From Figure 5.35, the 

target shape is very much attained. The total number of function evaluation is 86724 which 

took 416751 seconds (almost 5 days).  

 

Figure 5.35: Resulting structure of 3D wing example using strut approach 

 

ii Parametric Solid Approach 

A set of 4x3x2 control diameters, parametric volume of 3x2x1 degree is used. With the 

parametric solid approach, the number of function evaluations is 3028, total time used is 

16003, resulting in an objective function value of 0.121. The resulting truss structure is 

shown in Figure 5.36. 
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Figure 5.36: Resulting structure of 3D wing example using parametric solid approach  

iii Summary 

Although the strut approach still performed better in terms of the resulting objective 

function value, the time and function calls it required were more than 25 times that of 

parametric approach. For a relatively small problem like this, the time strut approach took 

to find a solution was fairly large. It could be imagined that with more realistic design that 

contains more than thousands of struts, the strut approach will not be able to handle in a 

practical manner. 

Different objective functions were used for the 2D airfoil and the 3D wing so no direct 

comparison can be made. Intuitively the parametric approach did seem to obtain a better 
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solution with the three unit cells along the y direction used in the 3D problem than the two 

used in the 2D problem. This again shows that the parametric approach might work better 

if the problem contains more unit cells. The strut size variation shown in Figure 5.35 might 

suggest that the parametric approach works better with structural design problems than 

with compliant mechanisms. 

Table 5.17: Summary of 3D wing example 

Methods 

Objective 

Function  

Value 

Function Calls Time (s) 

Original 0.6132 NA NA 

Strut Approach 0.0027 86724 416751 

Parametric Solid Approach 0.121 3028 16003 

  

5.5 Optimization time 

To understand the relationship between the number of design variables and the 

number of function calls, multiple runs with same parameter settings for optimization and 

randomly generated starting points were conducted using the beam examples in the 

previous sections. The numbers of function calls used are listed in Table 5.18 for a clear 

comparison. Although the number of function calls varies with different starting points 

since some converge faster and some slower, generally, the ratio between the number of 

function calls is close to the same magnitude of the ratio between design variables. 
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A design with more struts will also require more time to analyze. Thus, the increase in 

the number of elements lengthens the structural optimization time for the strut approach 

by two-fold: one in the function calls required, the other in the time needed for each 

function evaluation. But for parametric approach, the number of design variables does not 

need to change with the expansion of design problem scale. 

Table 5.18: Relationship between number of design variables and number of function calls 

Examples 
Method 

Number of 

design  

variables 

Number of 

function 

calls 

Ratio 

(#funcCall/#DV) 

First 3D  

Beam Example 

Parametric 

Solid 

Approach 

64 

1249 19.5156 

1251 19.5469 

1477 23.0781 

1054 16.4688 

1054 16.4688 

Strut 

Approach 
166 

3689 22.2229 

3689 22.2229 

3690 22.2289 

3186 19.1928 

3689 22.2229 

2D Beam Example 

Parametric 

Solid Approach 
16 

272 17 

185 11.5625 

237 14.8125 

289 18.0625 

324 20.25 

Strut Approach 412 

8279 20.0947 

6626 16.0825 

9106 22.1019 

6212 15.0777 

3317 8.0510 
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5.6 Summary 

The advantage of using the parametric approach as opposed to the strut approach is in 

the optimization time. The reduction of design variables can surely reduce the time needed 

for optimization. Some degradation might arise due to the nature of the parametric 

approach. There are two possibilities. One is that since detailed design (tuning of single 

strut size) is not available which often reflects on the volume constraint. When volume is 

strictly required to have a certain value, the resulting structure might have a downgraded 

performance in other aspects. The other is that when the optimal design doesn’t have a 

smooth variation in strut diameter, the parametric approach will not be able to obtain it. 

Through the examples presented, the two hypotheses are tested and/or validated. The 

two hypotheses are: 

Hypothesis 1: A cellular structure that responds to given actuators by morphing to the 

desired shape can be designed by filling the initial shape with unit cells composed of struts 

to obtain a starting lattice structure, then through optimization to determine the thickness 

of each strut. 
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Hypothesis 2: The number of design variables can be reduced by changing the design 

variables from diameters of struts to a small number of coefficients that control the 

distribution of strut sizes across the structure using parametric surface/solid formulations. 

The first hypothesis is proved to be valid through the wing example. In which a 

compliant mechanism is designed. Comparing the original structure and the optimized 

structure, all the results conformed more or less closer to the desired shape. The decrease 

of number of design variables and optimization time is apparent. The reduction of time is 

often significant. A more detailed and thorough discussion on hypothesis test and 

validation is presented in chapter six. 
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Chap.6 Closure 

6.1 Summary 

Advances in rapid manufacturing technologies have not only made cellular structures 

feasible, but also desirable. As the manufacturing cost decreases, the better mechanical 

properties and lighter weight that cellular structures possess further stand out to attention. 

To utilize the advantage they bring, design techniques have to keep up with the 

manufacturing ability. While manufacturing tools are able to build thousands to millions of 

lattice struts in a part, the design methods currently available are not able to solve such 

complex design problems. Since they are generally too computational costly when 

optimization is applied, this work focus on reducing the optimization time especially in 

designing compliant mechanisms. The research questions and hypotheses are identified: 

• Research question 1: How can a cellular structure be designed so that it 

responds to certain actuators and morphs to a desired shape? 

• Research question 2: How can the number of design variables be reduced 

without changing the nature of strut sizing design problems? 

• Hypothesis 1: A cellular structure that responds to given actuators by 

morphing to the desired shape can be designed by filling the initial shape with 
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unit cells composed of struts to obtain a starting lattice structure, then 

through optimization to determine the thickness of each strut. 

• Hypothesis 2: The number of design variables can be reduced by changing the 

design variables from diameters of struts to a small number of coefficients 

that control the distribution of strut sizes across the structure using parametric 

surface/solid formulations. 

Chapter two contains a literature review. An overview of both stochastic and designed 

cellular structures is presented. It is identified that designed cellular structure has higher 

stiffness and strength. Several analysis methods are mentioned. The unit truss approach is 

chosen to render structural analysis in this work for its ability to closely model the behavior 

of trusses. A history of approaches taken to design compliant mechanism was also 

presented. Optimizations including topology optimization and size optimization are 

discussed. A research gap exists such that a large number of design variables is a main 

obstacle to the optimization process. 

Chapter three detailed each step required by the design synthesis method proposed in 

this work. The generating of a starting truss topology with mapping unit cells is utilized. 

Given the assumption that optimized structure usually have smoothly varying changes in 

density/strut diameter, problem formulation that changes the design variable from 
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diameter of all struts to a small number of coefficients is also introduced. This method is 

carried out by applying the concept of Bezier surface and control vertices. Instead of 

controlling the point location with control vertices, strut size across the structure is 

controlled by control diameters. These two steps formulate the design problem for 

optimization process. 

Chapter four presents a comparison between PSO and LM/LSM. PSO is chosen for its 

global search ability and better convergence rate compared to GA. LM/LSM is also 

investigated since the compliant mechanism formulation uses the quadratic objective 

function that forms a least-squares formulation. It was discovered that LM/LSM converges 

a lot faster than PSO such that multiple runs of LM/LSM will still require less time than one 

run of PSO. Therefore, a conclusion was made that using LM/LSM is more efficient and 

stable than PSO, and global search can be included in LM/LSM by using multiple starting 

points. 

Chapter five illustrates the use of proposed design synthesis method by several 

examples. First 3D example is duplicated from [4]. Results are compared with Graf’s result. 

An extension example of the first one is also presented. It is shown that the parametric 

approach performs better when the number of unit cells is large. A 2D example is 

duplicated from [4, 51]. The limitations of the parametric approach are exposed and 
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discussed. Finally a compliant mechanism example is presented. It is investigated both in 

2D and in 3D. Results are compared and discussed. 

6.2 Conclusion 

In this thesis, a design synthesis method is proposed to design compliant cellular 

structures. As opposed to former methods that are impractical to handle design problem 

with more than thousands of elements, a new formulation to reduce the number of design 

variables is introduced. To validate the hypothesis, some things need to be tested. 

For hypothesis #1: 

• An initial truss topology can be successfully obtained by filling design space 

with unit cells composed of struts. 

• Desired shape-change can be attained through optimization process 

For hypothesis #2: 

• Parametric surface/solid approach can reduce the number of design variables 

• Optimization result is not degraded significantly through the operation 

 Several conclusions are drawn concerning the answering of research questions. 

6.2.1 Base truss topology 
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The methodology for creating an initial truss topology is detailed in chapter three and 

proven to be accomplishable through all examples presented in chapter five. The means to 

mesh an input surface or space into quadrilaterals or hexahedrons has been studied and 

proven to be possible [38]. Once the mesh is established, primitives can be mapped into it 

as illustrated in Figure 3.2. Successful examples are shown in Figure 5.2, Figure 5.8,Figure 

5.17, Figure 5.23, Figure 5.32. Thus, it can be conclude that a base truss topology can be 

obtained through the method proposed. 

6.2.2 Shape-Change Compliant Mechanism 

After the base truss topology is acquired, strut size can be tuned by the optimization 

process to find the best combination that would give the desired shape when actuator is 

applied. The problem formulation for this kind of size optimization is given in chapter three. 

The result of executing such optimization is demonstrated in the wing example in chapter 

five.  From Figure 5.27~Figure 5.30 and Figure 5.35~Figure 5.36, it can be clearly observed 

that the outer shape of the resulting structures under applied forces do conform more or 

less to the desired shape. Therefore, it can be concluded that such operation is valid: the 

target shape can be obtained through optimization. 

6.2.3 Number of design variables 
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Although the number of design variables is user defined in the parametric approach, in 

principle, it should still be far less than the number of struts. Since there is usually more 

than one strut in a unit cell, the number of unit cells is less than the number of elements. 

The number of control diameters can be equal to or less than the number of unit cells. If 

there are two unit cells in the x direction, no matter what the optimal diameter value is for 

each, a linear variation is expected. From this extrapolation, the number of control 

diameters should always be less than the number of elements. From all examples in 

chapter five, the reduction of design variable is proven to greatly reduce computational 

cost. 

6.2.4 Parametric Surface/Solid Approach 

The parametric approach has two limitations. One is the fact that all struts in the same 

unit cells have same diameter. This affects the volume and compliant mechanism profile 

fitting. Usually an optimization formulation will include a volume restriction to reduce the 

material required. But as discussed in 5.1.3, without the ability to eliminate single elements 

rather than entire unit cells, it is often hard or sometimes impossible for parametric 

approach to reach other goals with restricted volume. But this might be solvable with the 

alternative diameter calculation method illustrated in 5.2.3, where the increase of volume 

weight actually improved its performance. The alternative diameter calculation method 
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even outperformed both the strut approach and the original parametric approach. The 

results in Table 5.4 and Table 5.5 clearly showed the advantage of exploring alternative 

diameter calculation methods. Compared to the original diameter calculation method, 

better results are shown in both strain energy and volume obtained. The 2D airfoil result 

obtained through unit cell approach shown in Figure 5.28 demonstrates the effect of this 

limitation to shape conformation. In Figure 5.27 some struts in the middle were thickened 

to maintain the shape; but in Figure 5.28, to thicken the struts in the middle, several other 

struts in the same unit cells were also thickened, so the airfoil shape does not fit the target 

profile as well. This limitation has a reduced effect when a design problem is rather large. In 

principle, when the number of struts gets larger, the effect of single struts should become 

smaller. Therefore, it should apply that when the number of unit cells becomes large, effect 

cost by limitation relating to the fact that struts in one unit cell have same dimension value 

also diminishes. A good illustration of this will be the second cantilever beam example used 

in chapter five in which the parametric approach was proved to be effective and efficient. 

The other limitation to consider is that the parametric approach generates structures 

with smoothly varying strut size. In a structural design problem, since the variation of struts 

is usually smooth, this limitation is less noticed. But in compliant mechanisms, as illustrated 

through the wing example in chapter five, the diameter of the struts actually does not vary 
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smoothly as expected. This is especially clear in Figure 5.27. We can imagine that the 

distribution of strut diameter cannot easily be represented by polynomials. 

From the example problems in chapter five, the parametric approach appears to be 

efficient with larger structural design problem. The functionality of resulting structure 

might not be as good for smaller problem or for problems with strict volume requirement. 

The parametric approach is more applicable to structural design problem than compliant 

mechanisms. 

6.2.5 Conclusions 

According to the results testing the four things previously addressed, conclusion can 

be made that the proposed hypothesis answered partially the research questions. 

Following conclusions can be drawn: 

• An initial cellular structure can be obtained by mapped mesh approach. Then 

through setting the deflection difference between actual and desired shape for the 

nodes along surface in interest, shape-change can be attained through optimization 

process by finding optimal strut size combination. 
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• The parametric approach can successfully reduce the number of design variables 

thus the design space and computational time but some degradation of the 

functionality of resulting structure is to be expected. 

6.3 Contribution 

This work is intended to provide means to improve cellular lattice structure design 

synthesis methods for both structure and compliant mechanisms so that more realistic 

structure can be designed. The major contribution is to reduce the number of design 

variables which is formulated in chapter three. Along with this research, a comparison 

between PSO and LM is also conducted. Some major accomplishments are listed below. 

6.3.1 Level of optimization 

The introduction of the parametric approach has change the level of design variables 

from each strut to unit cell, even to across the entire structure. It might be applicable even 

to designing stochastic cellular structures. Essentially this approach controls the density 

throughout the whole structure. But instead of void by void, the number of values to find 

can be as small as a several coefficients. In utilizing to design of lattice structure, however, 

the stiffness and strength lattice structure provides can be maintained and optimization 

process is still applicable. 

6.3.2 Optimization methods 
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The popularity of global search heuristics like GA and PSO is due to their ability to 

execute a global search, especially in lattice structure designs, when it usually involves a 

huge design space and many local optima. Under such condition, designers sought to have 

the optimization method to do a thorough search of the space and automatically generate 

the optimal result there is. Traditional mathematical programming (MP) methods were 

abandoned due to their nature of quickly converging to nearby relative optima. The 

comparison in chapter four proved that using traditional MP can be more efficient than 

global optimization. The difficulty of the high dependency on starting point can be 

overcome by repeating such computation with different starting points.  

6.4 Future Work 

Some areas identified to have potential improvement through further investigation are 

listed below. 

6.4.1 Optimization methods 

The use of LM did not allow specifying constraints. If constraints were to be added, it 

can only be implicitly integrated by the use of penalty function. Since the comparison 

results in chapter four have guided the direction back to traditional MP methods, further 

investigation of different optimization methods might have the potential of further 

improving the efficiency of optimization for lattice structure design.  
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6.4.2 Topology and shape optimization 

The optimization conducted in this thesis is essentially pure size optimization. The base 

topology or geometry doesn’t change during optimization process. If a initial truss topology, 

with the actuator applied, and other constraints specified using penalty function, the 

optimization method wouldn’t be able to find a reasonable solution, and will end up either 

with a structure whose functionality is far from the required, or an unrealizable one. To 

include truss or shape optimization with parametric approach might be a valuable next 

step. 

6.5 Closure 

Accompanying the advances in rapid manufacturing technologies is the attention 

called to complex light weight structures from the automotive and aerospace industries 

[15]. The aerodynamic performance is highly relevant to the airfoil geometry as it 

influences the pressure distribution over the airfoil [10]. An airfoil with reconfigurable 

shape might be useful for different performance requirements under different operation 

environments. Current lattice structure design methods have proved to be too 

computationally impractical for design of a modest part [8]. This work focuses on making 

automated design synthesis methods a little more realizable. Hopefully 
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computer-aided-design tools and rapid manufacturing technologies will both advance in 

the future to enable the realization of structures beyond the imagination today.  
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Appendix I: Results for Swarm Size Experiments 

Dimension 10: 

SwarmSize Run Iterations ObjFunValue EndReason #Evaluation 

10 1 419 93.782 GlobalMin 4190 

10 2 286 97.377 GlobalMin 2860 

10 3 166 86.017 GlobalMin 1660 

10 4 241 86.514 GlobalMin 2410 

10 5 239 97.29 GlobalMin 2390 

10 6 139 95.858 GlobalMin 1390 

10 7 21 99.56 GlobalMin 210 

10 8 1480 97.451 GlobalMin 14800 

10 9 1 70.121 GlobalMin 10 

10 10 1 96.257 GlobalMin 10 

20 1 102 85.914 GlobalMin 2040 

20 2 309 93.609 GlobalMin 6180 

20 3 1 98.486 GlobalMin 20 

20 4 1 79.117 GlobalMin 20 

20 5 5 93.392 GlobalMin 100 

20 6 66 85.682 GlobalMin 1320 

20 7 4 88.904 GlobalMin 80 

20 8 2 83.414 GlobalMin 40 

20 9 4 91.983 GlobalMin 80 

20 10 1 96.82 GlobalMin 20 

30 1 3 95.204 GlobalMin 90 

30 2 232 86.619 GlobalMin 6960 

30 3 5 91.104 GlobalMin 150 

30 4 4 90.564 GlobalMin 120 

30 5 2 93.602 GlobalMin 60 

30 6 2 92.885 GlobalMin 60 

30 7 220 95.824 GlobalMin 6600 

30 8 266 96.539 GlobalMin 7980 

30 9 2 89.009 GlobalMin 60 

30 10 79 98.262 GlobalMin 2370 

40 1 5 99.43 GlobalMin 200 
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40 2 30 89.941 GlobalMin 1200 

40 3 29 96.585 GlobalMin 1160 

40 4 3 87.418 GlobalMin 120 

40 5 149 93.63 GlobalMin 5960 

40 6 2 97.752 GlobalMin 80 

40 7 132 99.973 GlobalMin 5280 

40 8 1 68.235 GlobalMin 40 

40 9 1 82.468 GlobalMin 40 

40 10 186 73.79 GlobalMin 7440 

50 1 73 97.673 GlobalMin 3650 

50 2 26 94.959 GlobalMin 1300 

50 3 1 67.376 GlobalMin 50 

50 4 3 88.551 GlobalMin 150 

50 5 2 98.66 GlobalMin 100 

50 6 1 72.852 GlobalMin 50 

50 7 1 82.242 GlobalMin 50 

50 8 75 92.637 GlobalMin 3750 

50 9 165 89.81 GlobalMin 8250 

50 10 75 97.721 GlobalMin 3750 

Dimension 20: 

SwarmSize Run Iterations ObjFunValue EndReason #Evaluation 

10 1 4884 99.163 GlobalMin 48840 

10 2 4738 99.596 GlobalMin 47380 

10 3 8276 106.6 LocalMin 82760 

10 4 6154 124.65 LocalMin 61540 

10 5 4490 99.223 GlobalMin 44900 

10 6 4472 97.397 GlobalMin 44720 

10 7 6709 100.71 LocalMin 67090 

10 8 9713 121.53 LocalMin 97130 

10 9 5849 99.52 GlobalMin 58490 

10 10 6299 122.59 LocalMin 62990 

20 1 8768 99.802 GlobalMin 175360 

20 2 6258 99.484 GlobalMin 125160 

20 3 5421 99.989 GlobalMin 108420 

20 4 4733 99.311 GlobalMin 94660 
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20 5 3682 99.906 GlobalMin 73640 

20 6 5101 94.23 GlobalMin 102020 

20 7 5154 99.469 GlobalMin 103080 

20 8 4094 98.61 GlobalMin 81880 

20 9 4002 99.802 GlobalMin 80040 

20 10 3922 97.206 GlobalMin 78440 

30 1 3656 99.987 GlobalMin 109680 

30 2 3480 99.945 GlobalMin 104400 

30 3 4372 99.883 GlobalMin 131160 

30 4 3729 92.584 GlobalMin 111870 

30 5 4244 94.163 GlobalMin 127320 

30 6 3458 96.543 GlobalMin 103740 

30 7 4551 99.615 GlobalMin 136530 

30 8 4749 99.877 GlobalMin 142470 

30 9 4130 99.895 GlobalMin 123900 

30 10 5261 99.99 GlobalMin 157830 

40 1 3999 94.1 GlobalMin 159960 

40 2 4107 99.901 GlobalMin 164280 

40 3 3743 96.957 GlobalMin 149720 

40 4 4976 99.933 GlobalMin 199040 

40 5 4280 98.051 GlobalMin 171200 

40 6 3959 99.814 GlobalMin 158360 

40 7 3858 96.851 GlobalMin 154320 

40 8 2903 91.755 GlobalMin 116120 

40 9 3968 98.929 GlobalMin 158720 

40 10 3657 99.296 GlobalMin 146280 

50 1 5442 99.533 GlobalMin 272100 

50 2 4078 96.077 GlobalMin 203900 

50 3 4341 99.592 GlobalMin 217050 

50 4 3442 99.172 GlobalMin 172100 

50 5 3452 99.947 GlobalMin 172600 

50 6 3198 97.788 GlobalMin 159900 

50 7 3079 98.552 GlobalMin 153950 

50 8 4216 95.806 GlobalMin 210800 

50 9 3462 97.68 GlobalMin 173100 



117 

 

50 10 3981 99.279 GlobalMin 199050 

Dimension 30: 

SwarmSize Run Iterations ObjFunValue EndReason #Evaluation 

10 1 6448 258.26 LocalMin 64480 

10 2 7059 149.43 LocalMin 70590 

10 3 8789 201.35 LocalMin 87890 

10 4 7396 175.4 LocalMin 73960 

10 5 6363 114.49 LocalMin 63630 

10 6 6013 99.572 GlobalMin 60130 

10 7 6575 122.61 LocalMin 65750 

10 8 6969 213.35 LocalMin 69690 

10 9 10001 223.15 ExceedMaxIter 100010 

10 10 7602 193.11 LocalMin 76020 

20 1 7141 99.037 GlobalMin 142820 

20 2 4887 96.621 GlobalMin 97740 

20 3 9009 162.39 LocalMin 180180 

20 4 6628 99.825 GlobalMin 132560 

20 5 6880 98.804 GlobalMin 137600 

20 6 8672 218.39 LocalMin 173440 

20 7 7127 211.36 LocalMin 142540 

20 8 7140 145.48 LocalMin 142800 

20 9 7904 123.52 LocalMin 158080 

20 10 7009 155.35 LocalMin 140180 

30 1 9368 107.6 LocalMin 281040 

30 2 8342 174.4 LocalMin 250260 

30 3 10001 186.41 ExceedMaxIter 300030 

30 4 10001 127.5 ExceedMaxIter 300030 

30 5 8308 162.46 LocalMin 249240 

30 6 6579 93.818 GlobalMin 197370 

30 7 9255 139.58 LocalMin 277650 

30 8 5362 99.999 GlobalMin 160860 

30 9 8329 194.44 LocalMin 249870 

30 10 5521 97.999 GlobalMin 165630 

40 1 6622 185.35 LocalMin 264880 

40 2 10001 134.46 ExceedMaxIter 400040 
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40 3 7177 158.48 LocalMin 287080 

40 4 4783 98.773 GlobalMin 191320 

40 5 6433 99.946 GlobalMin 257320 

40 6 10001 103.62 ExceedMaxIter 400040 

40 7 9348 149.46 LocalMin 373920 

40 8 10001 165.52 ExceedMaxIter 400040 

40 9 8285 146.4 LocalMin 331400 

40 10 7432 157.49 LocalMin 297280 

50 1 9005 132.54 LocalMin 450250 

50 2 5799 99.516 GlobalMin 289950 

50 3 10001 175.32 ExceedMaxIter 500050 

50 4 10001 107.6 ExceedMaxIter 500050 

50 5 10001 126.57 ExceedMaxIter 500050 

50 6 10001 156.56 ExceedMaxIter 500050 

50 7 7008 99.06 GlobalMin 350400 

50 8 5330 99.965 GlobalMin 266500 

50 9 10001 119.47 ExceedMaxIter 500050 

50 10 10001 132.61 ExceedMaxIter 500050 

Dimension 40: 

SwarmSize Run Iterations ObjFunValue EndReason #Evaluation 

10 1 7327 281.69 LocalMin 73270 

10 2 7443 155.38 LocalMin 74430 

10 3 8964 197.14 LocalMin 89640 

10 4 6922 228.24 LocalMin 69220 

10 5 6915 287.1 LocalMin 69150 

10 6 7920 198.03 LocalMin 79200 

10 7 6971 300.04 LocalMin 69710 

10 8 7548 211.08 LocalMin 75480 

10 9 6974 311.86 LocalMin 69740 

10 10 7322 279.9 LocalMin 73220 

20 1 10001 164.31 ExceedMaxIter 200020 

20 2 10001 186.2 ExceedMaxIter 200020 

20 3 7667 258.97 LocalMin 153340 

20 4 10001 208.3 ExceedMaxIter 200020 

20 5 8655 270.06 LocalMin 173100 
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20 6 10001 288.04 ExceedMaxIter 200020 

20 7 8872 290.03 LocalMin 177440 

20 8 10001 326.91 ExceedMaxIter 200020 

20 9 10001 288.82 ExceedMaxIter 200020 

20 10 8330 210.22 LocalMin 166600 

30 1 10001 291.02 ExceedMaxIter 300030 

30 2 10001 186.27 ExceedMaxIter 300030 

30 3 7871 104.47 LocalMin 236130 

30 4 10001 239.22 ExceedMaxIter 300030 

30 5 10001 214.34 ExceedMaxIter 300030 

30 6 10001 232.04 ExceedMaxIter 300030 

30 7 10001 162.46 ExceedMaxIter 300030 

30 8 7740 192.25 LocalMin 232200 

30 9 8394 254.21 LocalMin 251820 

30 10 8527 170.28 LocalMin 255810 

40 1 10001 162.18 ExceedMaxIter 400040 

40 2 10001 266.15 ExceedMaxIter 400040 

40 3 8929 299.91 LocalMin 357160 

40 4 10001 222.3 ExceedMaxIter 400040 

40 5 10001 243.12 ExceedMaxIter 400040 

40 6 7767 232.18 LocalMin 310680 

40 7 7921 200.27 LocalMin 316840 

40 8 10001 231.26 ExceedMaxIter 400040 

40 9 10001 159.41 ExceedMaxIter 400040 

40 10 10001 195.3 ExceedMaxIter 400040 

50 1 7864 244.12 LocalMin 393200 

50 2 9205 191.39 LocalMin 460250 

50 3 9517 160.33 LocalMin 475850 

50 4 10001 204.39 ExceedMaxIter 500050 

50 5 10001 257.12 ExceedMaxIter 500050 

50 6 10001 211.07 ExceedMaxIter 500050 

50 7 10001 291.17 ExceedMaxIter 500050 

50 8 10001 249.16 ExceedMaxIter 500050 

50 9 10001 156.35 ExceedMaxIter 500050 

50 10 10001 163.39 ExceedMaxIter 500050 
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Dimension 50: 

SwarmSize Run Iterations ObjFunValue EndReason #Evaluation 

10 1 7310 484.46 LocalMin 73100 

10 2 7473 407.55 LocalMin 74730 

10 3 7184 482.29 LocalMin 71840 

10 4 8027 419.6 LocalMin 80270 

10 5 8028 477.36 LocalMin 80280 

10 6 8167 475.09 LocalMin 81670 

10 7 7616 387.77 LocalMin 76160 

10 8 7233 374.85 LocalMin 72330 

10 9 7474 457.01 LocalMin 74740 

10 10 7579 270 LocalMin 75790 

20 1 9270 284.84 LocalMin 185400 

20 2 8166 331.61 LocalMin 163320 

20 3 8517 398.57 LocalMin 170340 

20 4 9426 280.95 LocalMin 188520 

20 5 7632 273.13 LocalMin 152640 

20 6 9101 300.83 LocalMin 182020 

20 7 8197 483.55 LocalMin 163940 

20 8 8310 311.78 LocalMin 166200 

20 9 8120 379.51 LocalMin 162400 

20 10 8681 257.84 LocalMin 173620 

30 1 10001 251.79 ExceedMaxIter 300030 

30 2 7910 256.92 LocalMin 237300 

30 3 8197 342.69 LocalMin 245910 

30 4 8779 275.96 LocalMin 263370 

30 5 10001 234.03 ExceedMaxIter 300030 

30 6 9756 407.58 LocalMin 292680 

30 7 10001 362.52 ExceedMaxIter 300030 

30 8 8756 291.81 LocalMin 262680 

30 9 10001 403.74 ExceedMaxIter 300030 

30 10 10001 345.75 ExceedMaxIter 300030 

40 1 10001 366.92 ExceedMaxIter 400040 

40 2 7921 312.78 LocalMin 316840 

40 3 8360 346.88 LocalMin 334400 
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40 4 10001 379.79 ExceedMaxIter 400040 

40 5 10001 216.19 ExceedMaxIter 400040 

40 6 10001 208.16 ExceedMaxIter 400040 

40 7 10001 251.87 ExceedMaxIter 400040 

40 8 10001 195.08 ExceedMaxIter 400040 

40 9 10001 195.22 ExceedMaxIter 400040 

40 10 10001 327.77 ExceedMaxIter 400040 

50 1 10001 320.94 ExceedMaxIter 500050 

50 2 10001 246.82 ExceedMaxIter 500050 

50 3 10001 312.98 ExceedMaxIter 500050 

50 4 10001 374.88 ExceedMaxIter 500050 

50 5 8879 253.22 LocalMin 443950 

50 6 9385 356.83 LocalMin 469250 

50 7 8993 267.07 LocalMin 449650 

50 8 10001 254.92 ExceedMaxIter 500050 

50 9 9665 276.1 LocalMin 483250 

50 10 10001 319.88 ExceedMaxIter 500050 
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Appendix II: Optimal Control Diameters 

Example 1: A Simple 3D Cantilever Beam Example (5x1x2, degree 4x0x1) 

w=0 w=1 

1.6640 1.3411 

0.4684 1.0490 

0.8740 1.5658 

1.1074 0.5614 

0.2540 0.9491 

Example 2: A more complicated 3D Cantilever Beam Example (4x2x3, degree 3x1x2) 

1. Original diameter calculation: 

w=0 w=0.5 w=1 

0.0845 3.4541 -1.0447 0.9096 3.7294 -0.0728 

-0.7369 2.8787 -1.2204 0.9678 3.3957 -0.1407 

-0.2578 2.0806 -0.1795 1.4435 1.9967 0.0744 

-0.3481 2.3608 2.1663 -0.6106 2.8339 -0.9612 

2. Alternative diameter calculation: 

a. Run 1: volume weight = 1 

w=0 w=0.5 w=1 

0.1831 4.6340 -4.0117 -3.0061 4.4944 -0.1225 

-3.1168 0.9512 -0.5577 -1.3784 -0.5614 -2.8594 

-4.9677 4.2698 -1.2034 -2.5006 6.7366 -1.7476 

3.2625 0.4588 -2.3940 -1.0318 -2.7968 -0.5719 

b. Run 2: volume weight = 100 

w=0 w=0.5 w=1 

-0.1875 4.0797 -4.2605 -3.3274 4.2988 0.3104 

-1.3268 1.5314 -0.6325 -1.0407 -0.5441 -3.0206 

-6.1191 3.2469 -0.6978 -2.2034 6.1091 -1.4460 

3.1454 0.8861 -2.1392 -1.3002 -2.5693 -0.4623 
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Example 3: A 2D Beam Example (8x4, degree 7x3) 

1. Volume weight = 1E12 

0.8739 0.8659 0.8067 0.7583 

0.8249 0.8205 0.8012 0.8301 

0.8075 0.8049 0.8044 0.9458 

0.8128 0.8106 0.8106 1.0427 

0.8140 0.8118 0.8116 1.0593 

0.8056 0.8032 0.8058 0.9826 

0.8025 0.7995 0.7985 0.8643 

0.8905 0.8803 0.8076 0.7518 

2. Volume weight = 1E6 

0.9882 1.0111 0.9052 0.8768 

0.9137 0.9483 0.9110 0.9703 

0.8827 0.9213 0.9184 1.0179 

0.8908 0.9306 0.9302 1.0040 

0.8928 0.9326 0.9322 0.9948 

0.8789 0.9180 0.9213 1.0125 

0.8739 0.9106 0.9056 0.9892 

1.0078 1.0385 0.9272 0.9041 
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Example 4: Wing Example 

1. 2D Airfoil 

a. 3x2 (degree 2x1) 

0.4961 11.1736 

-11.2834 9.3639 

-10.5202 12.6484 

b. 4x2 (degree 3x1) 

7.5737 14.6379 

-12.5459 5.9587 

-10.6598 13.8882 

-8.2662 9.9924 

2. 3D Wing (4x3x2, degree 3x2x1) 

w=0 w=1 

-3.1977 19.5948 -11.0302 -8.1426 -0.2802 -36.2320 

-32.7911 16.9532 10.9386 -9.3527 46.2800 4.8441 

-13.6197 24.7190 4.7716 -38.0863 20.6545 4.2578 

-14.7758 13.9220 12.2821 -23.0327 18.4039 30.1703 
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