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SUMMARY 

 

Grinding is an abrasive machining process widely used for the final shaping of 

components that require very smooth surfaces and a high dimensional accuracy.  The 

performance attainable in this process as measured by levels of productivity, cost, and 

final part quality is determined by the selected combination of (i) the machine tool, (ii) 

workpiece material (iii) grinding wheel (iv) setup parameters, (v) grinding parameters 

and (vi) grinding fluid.  In many industrial operations, the grinding parameters are still 

commonly selected according to machining data handbooks or machine operator 

experience.  However, selecting the grinding parameters solely based on prior experience 

without establishing any guidelines to verify whether or not the selected values are 

optimum for an operation can be very costly for any high-volume manufacturer.  In many 

cases, the selected parameters are too conservative and not adapted to maximize the 

utility of the machine tool and the grinding wheel.  A similar practice is prevalent in the 

selection of grinding fluid application settings, where different oils are typically used to 

flood the grinding contact zone without considering more effective alternatives.  

Although grinding has been used extensively in the production of precision components, 

these common practices confirm that it still remains one of the least understood and most 

inefficiently conducted machining process in the manufacturing industry.  

In recent years, the costs of the grinding operation have increased further with a 

greater demand for high-strength, low-weight superalloy components.  Titanium and 

nickel-based alloys commonly used in the aerospace industry demonstrate high creep-

rupture strength and excellent corrosion resistance in high-temperature environments 



 xx 
 

including gas turbines, engine combustors, pressure vessels, and heat exchangers.  

Although they possess excellent performance characteristics, these alloys are very 

difficult to grind due to a combination of poor thermal properties, work-hardening 

behavior, and high strength and chemical reactivity at elevated temperatures, leading to 

unsatisfactory material removal rates and rapid grinding wheel wear.  As the hardness of 

materials processed by grinding continues to increase, it becomes even more important to 

find effective ways to improve the productivity of this material removal operation.   

In this thesis, two different methods are investigated for improving process 

performance in the plunge centerless grinding of Inconel 718 and Ti-6Al-4V superalloy 

fasteners: (i) economic optimization of grinding process parameters and (ii) reduced 

quantity lubrication using a grinding fluid enhanced with solid lubricant additives.  In the 

first part of the thesis, a systematic methodology is developed and carried out using 

Taguchi’s Design of Experiments (DOE) method and classical machining economics 

theory to find the optimum grinding conditions in two stages:  (i) modeling of process 

and part quality constraints (ii) determination of optimum grinding conditions in the 

feasible operating region.  In the second part, the performance of a graphite nanoplatelet-

enhanced grinding fluid in reduced quantity lubrication centerless grinding is evaluated to 

assess its potential as a cost-effective alternative to the traditional flood cooling method.  

The results indicate that an appreciable reduction in the cost of the superalloy grinding 

operation can be achieved by operating at the cost-optimum parameters.  In addition, it is 

shown that the application of a graphite-enhanced fluid at a reduced flow rate is more 

effective than high-volume flood cooling in reducing specific grinding energy levels and 

wheel wear rates, thus offering the potential to increase the process productivity. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Centerless grinding is a high-precision, shallow-cut finishing operation used in 

the mass production of cylindrical components.  Developed in the 1920s, this profiling 

operation is able to achieve extremely precise dimensional tolerances for cylindrical parts 

with outer diameters of 0.003-3 in. (0.0762-76.2 mm).  Some of the components typically 

produced in large quantities by this grinding operation include drill bits, piston pins, 

rotary shafts, valve stems, needles, fasteners, roller bearings, and bearing rings as shown 

in Figure 1.1.  Centerless grinding holds several advantages over center-type cylindrical 

grinding in production, including shorter machine setup times, shorter part loading times, 

and a higher dimensional accuracy.       

 

 

Figure 1.1: Cylindrical components produced by the centerless grinding operation 
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The basic elements of the centerless grinding system are the grinding wheel, the 

regulating or control wheel, and the workpiece support blade as shown in Figure 1.2.   In 

contrast to center-type cylindrical grinding where the part is chucked and rotated by an 

external motor, centerless grinding does not utilize a mechanical fixture to constrain the 

motion of the part.  Instead, the part is supported on its own outer diameter by an inclined 

rest blade and its rotational motion is controlled by a low-speed regulating wheel that 

serves as a frictional driving and braking element (Figure 1.2).  Based on the initial shape 

of the part, two primary part feeding methods are used to achieve the final desired part 

geometry in this operation, including through-feed and infeed or plunge centerless 

grinding.  Through-feed centerless grinding is used to shape straight or tapered 

cylindrical workpieces and infeed or plunge centerless grinding is used to shape 

cylindrical workpieces that have projections, multiple diameters, transition radii, or other 

irregular geometric features.  In the plunge centerless grinding of fasteners analyzed in 

this study, the regulating wheel is retracted and the part is loaded from above onto the 

support blade.  The part is then plunged to a set distance in the radial direction into the 

rotating grinding wheel to remove the desired amount of material. 

 

                                      

Figure 1.2: Basic elements of the centerless grinding system 

Infeed Direction 



 3 
 

As shown in Figure 1.3, the levels of productivity and final part quality attainable 

in the centerless grinding operation are determined by the selected combination of (i) the 

machine tool, (ii) workpiece material, (iii) grinding wheel, (iv), setup parameters, (v) 

grinding parameters and (vi) grinding fluid.  For a particular workpiece material and 

geometry, the selection of grinding parameters and grinding fluid is primarily guided by 

the specified part quality levels.  In many industrial applications, the productivity of the 

grinding process is a secondary objective since it is very difficult to determine the effect 

of each input parameter on the key process responses without incurring large capital 

expenses for the costly and difficult-to-grind superalloy materials.  Consequently, many 

grinding operations are still conducted at suboptimum productivity levels without 

evaluating or implementing solutions that can improve the process performance.   

 

 

 
Figure 1.3: Relationship among grinding system parameters and performance metrics 
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1.2 Problem Statement 

 

The productivity of the grinding operation is defined as the rate at which the 

components can be produced at the specified quality levels for surface integrity, 

dimensional accuracy, and surface finish.  In the review of academic literature presented 

in the next chapter, two general approaches were identified for improving the 

productivity of grinding operations.  The first approach consists of optimizing the 

machine setup conditions to improve the part accuracy.  An improvement in the accuracy 

capability of a machine tool usually results in higher productivity because it enables the 

use of more aggressive material removal rates while still remaining within the specified 

tolerance requirements.  The second approach consists of off-line grinding parameter 

optimization using experimental design techniques or on-line grinding parameter 

optimization using adaptive control to reduce production time with improved feed cycles.   

  As discussed in the next chapter, a great majority of the research studies 

conducted to increase the productivity of the centerless grinding process have been 

focused on the optimization of the machine setup geometry to improve the part 

dimensional accuracy.  For the alloys studied in this thesis, very limited work has been 

conducted on the optimization of grinding or fluid application parameters as a means to 

improve the process productivity.  In this thesis, two other methods are investigated for 

improving the performance of this process:  (1) economic optimization of grinding 

process parameters and (2) reduced quantity lubrication using a grinding fluid enhanced 

with graphite nanoplatelet additives.   
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1.3. Research Objectives 

 

To investigate the optimization of grinding parameters as a method to improve the 

process performance in plunge centerless grinding of Inconel 718 and Ti-6Al-4V alloys, 

the following research objectives are addressed in this study: 

  

• Characterization of the effects of the major grinding parameters on the key 

process performance responses and part quality characteristics  

• Formulation of the constraint-bound feasible operating region  

• Development of an algorithm to simulate a typical industrial production sequence 

and find the optimum grinding parameters within the feasible operating region 

based on the objective of minimum cost per part 

 

To investigate reduced quantity lubrication using a graphite nanoplatelet-

enhanced grinding fluid as a method to improve the process performance in plunge 

centerless grinding of Inconel 718 and Ti-6Al-4V alloys, the following research 

objectives are addressed in this study: 

      

• Characterization of the effects of key parameters in graphite nanoplatelet-

enhanced grinding fluid application on process performance responses  

• Evaluation of the effectiveness of fluid application under different grinding 

conditions 
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1.4 Thesis Organization 

 

The contents of this thesis are summarized in Figure 1.4.  Chapter 2 discusses the 

scientific literature on the modeling and optimization of the centerless grinding process.  

Chapter 3 discusses the experiments conducted to characterize the effects of key grinding 

parameters on process performance in plunge centerless grinding of Inconel 718 and Ti-

6Al-4V aerospace fasteners.  Chapter 4 presents the methodology for the economic 

optimization of process parameters in the fastener grinding operation.  Chapter 5 

discusses the experiments conducted to evaluate the potential of graphite nanoplatelet-

enhanced fluids in reduced quantity lubrication centerless grinding of Inconel 718 and Ti-

6Al-4V alloys.  Finally, Chapter 6 summarizes the key findings of the study and 

identifies some future research topics relevant to the optimization of this process. 

 
 

 

 
Figure 1.4: Thesis organization flow chart 

Chapter 2:  Literature Review

Chapter 3:  Characterization of Process  
Parameter Effects on Centerless Grinding Performance 

Chapter 4:  Methodology for Economic  
Optimization of Centerless Grinding Parameters 

Chapter 6:  Conclusions and Recommendations  

Chapter 5:  Performance of Graphite Nanoplatelet-Enhanced 
Fluids in Reduced Quantity Lubrication Centerless Grinding  

Chapter 1:  Introduction
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 This chapter presents a review of the scientific literature on the subjects of 

grinding system modeling and optimization related to the objectives defined for this 

thesis study in Chapter 1.  The literature review is divided into five major sections: (1) 

overview of grinding process fundamentals, (2) techniques for modeling and optimization 

of grinding processes, (3) advancements in modeling and optimization of centerless 

grinding, (4) modeling of heat transfer and optimization of fluid application and (5) 

summary.   

The first section provides an introductory overview of the grinding process 

fundamentals.  The second section presents some of the major techniques utilized in the 

modeling and optimization of grinding processes.  The third section discusses the 

advancements in the modeling and optimization of process performance for the centerless 

grinding operation analyzed in this thesis.  The fourth section reviews the models 

developed to study the heat transfer process in grinding and the investigations conducted 

to optimize the fluid application parameters in various operations.  In view of the process 

optimization strategies and the previous studies conducted for centerless grinding, the last 

section justifies the tasks undertaken in this study.    
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2.1 Overview of Grinding Process Fundamentals  

 

Traditional machining operations such as turning, milling, drilling, and grinding 

are used extensively in the manufacturing industry to remove material from a workpiece 

and form the final part shape with the desired dimensional characteristics.  Unlike the 

turning, milling, and drilling processes that utilize a cutting tool with a well-defined 

cutting edge geometry, the grinding process utilizes a cutting tool with a large number of 

small, multipoint cutting edges in the form of hard abrasive particles bonded to a matrix 

material.  The abrasive particles have a stochastic geometry, orientation, and spatial 

distribution on the surface of the cutting tool.   

The two primary differences between grinding and traditional machining 

processes (turning, milling, and drilling) are the scale of material chips and the amount of 

force or energy required to remove a unit volume of material.  Traditional machining 

processes use cutting tools with a deterministic cutting edge geometry that provide 

positive rake angles and produce more continuous chips with thickness of up to several 

millimeters, while grinding processes use cutting tools with a stochastic cutting edge 

geometry that provide high negative rake angles (-45o to -60o) and produce much smaller 

chip thicknesses (0.25-25 µm).  Due to a combination of highly negative rake angles and 

wear flat areas that develop on each cutting edge with prolonged cutting tool use, the 

rubbing and ploughing action between the tool and workpiece is much higher for the 

grinding process, resulting in up to 100 times higher specific energies for material 

removal in comparison to most traditional machining processes.  The mechanics of chip 

formation in the grinding process are illustrated in Figure 2.1.   
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Figure 2.1: Mechanics of chip formation in the grinding process 

 

The mechanics of chip formation in grinding are characterized by the mechanical 

(sliding, plowing, shearing), chemical (diffusion, adhesion), thermal, and tribological 

interactions that occur among a large number of multipoint cutting edges and the 

workpiece material at the tool-workpiece contact interface as described in Figure 2.2.  

The understanding of these complex interactions is the science behind the process that 

has evolved over many years from very basic to more complex micro scale models [2-9].  

To improve the accuracy of these models, many related studies have also been conducted 

to characterize the geometry, orientation, and spatial distribution of abrasive grains [10]. 

 

 
 

 

 

 

 

 

 
 

Figure 2.2: Micro scale interactions in abrasive machining [1] 
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2.2 Techniques for Modeling and Optimization of Grinding Processes  

 

In industrial grinding operations, many system parameters are still commonly 

selected according to machine operator experience without exploring the technological 

limits of the process.  Researchers have identified two major objectives that must be 

accomplished in order to define the technological limits of the grinding process and to 

improve its productivity without compromising part quality: (i) modeling of system 

parameter effects on key process responses, and (ii) determination of optimum or near-

optimum grinding conditions.  The major modeling and optimization techniques used to 

achieve performance gains in grinding as well as in many traditional machining 

operations are shown in Figure 2.3. 

 

 
Figure 2.3: Overview of (a) modeling and (b) optimization techniques in machining [24] 
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Most of the mechanistic micro scale models developed in the early literature for 

predicting grinding process responses have limited utility as they cannot account for the 

effects of all the parameters encountered in complex, real world operations.  In addition, 

they utilize variables that can only be measured in a laboratory setting and are therefore 

not suitable for use on the production floor.  To supplement the available mechanistic 

models, several empirical relations have been developed over the years for different 

grinding geometries that correlate the micro scale parameters (i.e. chip thickness and 

length) to the macro scale parameters that can be varied to control the process 

performance.  Hahn and Lindsay [11-14] developed several expressions to quantify the 

effect of the grain load intensity, chip thickness and length, and cutting edge geometry on 

the key process responses such as the part surface finish, wheel wear, and grinding 

energy.  Malkin [15] and Shaw [16] developed similar relationships for modeling the 

effects of grinding parameters on the process responses.  Brinksmeier et al. [17] provide a 

general form for some of the empirical models used to characterize grinding parameter 

effects on process performance and summarizes the methods for measuring key process 

responses as shown in Figures 2.4 and 2.5, respectively.    

 
 

 
 

Figure 2.4: Empirical models for grinding process responses [17] 
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Figure 2.5: Methods for measuring process responses and part quality characteristics [17] 

 

The empirical models developed in these earlier works are still used extensively 

by researchers and practitioners to predict the key responses in traditional grinding 

operations such as surface and cylindrical grinding.  However, one of the main 

disadvantages of using the classical empirical relations is that the associated exponents 

and coefficients must be determined for each combination of workpiece material, 

grinding wheel, and grinding parameters by controlled experimental tests for different 

grinding configurations found in practice, which can be a costly and time-consuming 

procedure.  As the diversity and complexity of industrial operations have increased over 

time, different modeling approaches have been developed and used to predict responses 

not addressed by the empirical models presented in the early literature.  

The major techniques utilized in the modeling of machining process responses 

consist of statistical regression [18], artificial neural networks [19, 20] and fuzzy set 

theory [21, 22] as shown in Figure 2.6.  All of these techniques rely on experimental 

design methodology for data collection and analysis.  Another more advanced modeling 

approach that combines the mechanistic models available for different grinding 
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operations with computational software is finite element analysis (FEA) [23].  Each of 

these techniques has its advantages and limitations according to factors such as accuracy, 

process applicability, and computational cost [24], which are summarized in Table 2.1.  

 

 

  

 

 
 

Figure 2.6: Techniques for modeling relationships among variables and process responses [17] 
 
 
 

Table 2.1: Advantages and limitations of modeling techniques in machining 

Modeling  
Technique 

Advantages Limitations and  
Constraints 

 
Statistical  

Regression  
(SR) 

-Computationally inexpensive 
-Useful for prediction inference, 
hypothesis testing, and 
verification of causal 
relationships 

-Predictor variables must be linearly independent 
with a normal distribution and constant variance 
of residuals 
-Based on prior assumptions about relationships 
-Not valid outside range of experimental 
parameters 

 
 

Artificial 
Neural 

Networks 
(ANN) 

-Can handle many variables 
-Useful for time series 
prediction, data pattern and 
sequence recognition, and data 
clustering 
-Effective in adaptive machine 
tool control applications 

-No universal rules exist for selection of ANN 
scheme 
-Model parameters may not be interpretable for 
highly non-linear relationships 
-Requires voluminous data set for sufficient 
training of network nodes 
-Finite converge is not guaranteed 

 
Fuzzy Set 

Theory Models 
(FST) 

-Can handle many variables 
-Useful when subjective 
knowledge of process experts is 
used to define variables and 
objective functions 

 
-Rules applied using subjective knowledge are 
not valid when process changes are made at 
system level  

Finite  
Element  
Analysis  
(FEA) 

 
-Provides the most insight into 
the physical nature of the process 

 
-Experimental verification is limited by accuracy 
and resolution of current measurement tools 
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 Several optimization techniques have been developed and used in combination 

with different modeling strategies to determine the best operating conditions in different 

grinding operations.  The conventional optimization techniques attempt to provide a 

single local optimum solution, while non-conventional techniques attempt to provide an 

approximate, near-optimum solution.  The first category of conventional techniques 

consists of design of experiments (DOE) approaches [25-30] and classical machining 

economics [31-33].  The second category of conventional techniques consists of iterative 

mathematical search methods such as linear programming (LP), non-linear programming 

(NLP), and dynamic programming (DP) typically used to optimize grinding cycles with 

intelligent machine tools [34-42].  The non-conventional techniques consist of meta-

heuristic search methods such as the genetic algorithm (GA), tabu search (TS), and 

simulated annealed (SA) [43-45].  Each technique has its advantages and limitations 

according as summarized in Table 2.2.  

  

Table 2.2: Advantages and limitations of optimization techniques in machining 

Optimization  
Technique 

Advantages Limitations and  
Constraints 

 
Design  

of  
Experiments  
(TM, RSM) 

-Computationally inexpensive 
-Provide considerable reduction in 
time and resources needed to 
identify key effects and to optimize 
settings 

-May not be able to adequately capture higher 
order and interaction terms  
-Reliability of results decreases as the number of 
responses to be optimized increases 
-Each objective function must be continuously 
differentiable to obtain closed-form solution 

 
Classical  

Machining  
Economics  

-Computationally inexpensive 
-Highlight the effects of process cost 
and time factors in production to 
facilitate decision making  

-Lack reliable relationships for different process 
responses measured in production 
-Derived optimum conditions are often difficult 
to implement as they violate process constraints 

 Mathematical 
Search   

(LP, NLP, 
DP) 

-Handle large number of variables 
-Effective for non-linear, multi-
objective optimization  

-Require continuity of feasible solution space 
-Intelligent machine tools can be very expensive 
and inefficient to implement 

Meta-
Heuristic 
Search  

(GA, TS, SA) 

-Do not require continuity of feasible 
solution space 
-Search direction is probabilistic and 
very large spaces can be explored  

-No universal rules exist for algorithm structure 
-Finite convergence is not guaranteed 
-Repeatability of solution using same initial 
conditions is not guaranteed 
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In summary, grinding process modeling and optimization has traditionally been 

accomplished using both conventional and non-conventional methods.  The next section 

discusses how some of the presented techniques have been used in combination with 

different models to analyze the centerless grinding process studied in this thesis.  

 
 
2.3 Advancements in Modeling and Optimization of Centerless Grinding  

 

Centerless grinding is a high-precision finishing operation used in the mass 

production of cylindrical components.  In the production environment, it holds several 

advantages over center-type cylindrical grinding, including shorter machine setup times, 

shorter part loading and unloading times, and higher part dimensional accuracy and 

roundness.  Despite its advantages over center-type grinding, several problems are still 

commonly encountered with this operation such as the production of out-of-round 

workpieces and chatter resulting in dimensional inaccuracies. 

Over the years, researchers have identified that the following key aspects of the 

centerless grinding process limit the productivity and part quality of the operation:  (1) 

workpiece rounding instability, (2) dynamic system instability, and (3) workpiece 

rotation instability.  Workpiece rounding instability or unstable geometric lobing occurs 

even during dynamically-stable grinding conditions due to random non-uniformities in 

the workpiece or regulating wheel profile such as flats and lobes that lead to higher 

roundness errors.  Dynamic system instability or work-regenerative chatter vibration 

related to the dynamic characteristics of the grinding machine causes the workpiece to 

oscillate in the grinding gap between the wheels and leads to various dimensional errors.  
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Workpiece rotation instability related to the frictional characteristics of the regulating 

wheel that controls the cutting pressure and the rotational motion of the workpiece occurs 

when the workpiece rotational velocity suddenly increases toward the rotational velocity 

of the grinding wheel.  Among these issues, sudden rotational instability is the most 

important to control as it may lead to part ejection.  Most of the studies conducted on the 

centerless grinding operation have been focused on analyzing the process kinematics and 

developing simulation models to visualize the surface generation mechanism.  The 

simulation results have been used to identify the optimum setup conditions for stable 

grinding that minimize instabilities leading to geometric errors. 

Some of the earliest attempts to analyze the influence of setup and process 

parameters on the workpiece roundness instability in centerless grinding were made 

during the 1940s by Dall [46] and during the 1960s by Rowe et al. [47, 48].  In the study 

by Rowe et al., a two-dimensional simulation of the workpiece rounding mechanism was 

carried out for plunge centerless grinding operation considering uniform modes of infeed 

and several theoretical equations governing the workpiece motion and stability were 

established.  Using these equations, it is possible to determine the setup conditions for 

stable workpiece rounding.  The results obtained by Rowe in the analysis of workpiece 

rounding are confirmed in contemporary studies conducted by Gurney [49] and Romanov 

[50].  The key geometric principles of the plunge centerless grinding operation presented 

by these researchers are illustrated in Figure 2.7.  The final out-of-roundness error 

produced on the workpiece is governed by a large number of setup and process 

parameters, including the tangent angle β, the work blade angle α’, the machining 

elasticity parameter K, the wheel diameters, the workpiece surface speed, and the infeed. 
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Figure 2.7: Geometric configuration of the plunge centerless grinding operation [48] 
 

 
Using the parameters defined in Figure 2-7, the rotational motion of the workpiece can be 

visualized by viewing line OX as the reference vector for its rotational position with 

respect to the origin line OA.  Angles θ, θ-α, and θ-α+β define the contact points of the 

workpiece with the grinding wheel, the work support blade, and the regulating wheel, 

respectively.  During the surface generation process, an irregularity of magnitude δ1 at the 

work blade contact point causes the center of the workpiece to move away from the 

grinding wheel surface (Figure 2-7).  Similarly, an irregularity of magnitude δ2 at the 

regulating wheel contact point causes the center of the workpiece to move toward the 

grinding wheel surface.  The basic kinematic equation that describes the instantaneous 

reduction of the workpiece radius, r(θ), is given by 

    )2()]2()(
)sin(

sin)(
)sin(

sin)([)( πθπθβπθ
βα

ααθ
βα

βθθ −+−−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+= rrrrXKr    (2.1) 

where K is the machining elasticity parameter defined as the ratio of the true depth of cut 

to the apparent depth of cut and X(θ) is the set reduction of workpiece radius at position 

θ.  The tangent angle β (radians) is defined according to the other setup parameters as  
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where h is the height of the workpiece center above the centerline of the grinding and 

regulating wheels and Dg, Dr, and Dw are the diameters of the grinding wheel, regulating 

wheel, and workpiece, respectively.  Similarly, the expression for the angle α (radians) is 

defined according to the other geometric parameters as  
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Sample results obtained for the computer simulation of the workpiece cross-

sectional profile in plunge centerless grinding using Equation 2.1 assuming a perfectly 

round part are shown in Figure 2.8 [48].  The simulation can also be repeated for 

workpieces and regulating wheels with profile variations such as flats and lobes, which 

shows that such profile deviations usually deteriorate the roundness of the workpiece.  

 

 

    

Figure 2.8: Workpiece roundness profiles simulated for different setup conditions [48] 
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According to the results of the simulation, the most important geometric parameters that 

determine the final workpiece roundness error are the included tangent angle β and the 

work blade angle α’.  In practical applications, these angles are determined during 

machine setup by the operator who selects the work blade geometry for a particular 

workpiece size and sets the height at which the workpiece rests above the centerline of 

the grinding and regulating wheels (center height h).  A typical geometric lobing stability 

map generated from the model simulations is illustrated in Figure 2.9 [51].  Geometric 

instability is more likely to occur by using very low work blade angles and by increasing 

the workpiece center height. 

 

 

 

 

Figure 2.9: Geometric lobing stability map [51] 

 

Many authors subsequently generated their own computer simulations based on 

the governing equations of motion outlined by Rowe and used methods such as harmonic 

frequency analysis to identify the setup conditions that minimize the dominant harmonic 

amplitudes leading to roundness errors [52-54].  In addition, some authors have used 

design of experiments (DOE) techniques such as response surface methodology (RSM) to 

find the optimum settings in the infeed and through-feed centerless grinding operation 
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that minimize the roundness and surface roughness responses [55-57].  In general, it was 

found that geometric errors and surface roughness increase using higher feeds and 

regulating wheel speeds. 

In summary, the typical setup conditions that can be used to minimize roundness 

errors and ensure geometric stability as identified by some of these studies are shown in 

Table 2.3.  At the beginning of the operation, it is important for the machine operator to 

adhere to the suggested setup guidelines to minimize workpiece geometry errors. 

 

Table 2.3: Typical setup conditions for geometric stability in centerless grinding 

Geometric Setup Parameter Optimum Range 
Work Blade Angle α’ 15-60o 

Tangent Angle β 5-10o 

Workpiece Center Height h 1-10 mm 
Regulating Wheel Rotating Frequency Nr 20-60 rpm 

Regulating Wheel Tilt Angle ψ 0o (plunge), 1-3o (through-feed) 
Radial Infeed Distance xΔ  50-200 μm 

 

 
A second factor that limits higher productivity in centerless grinding is the 

dynamic system instability due to work-regenerative chatter vibration.  This phenomenon 

has been studied by many researchers [58-63] to identify the excitation frequencies that 

should be avoided to minimize system deflections and how the setup parameters should 

be selected to suppress the effect of resonant and forced machine vibrations around the 

wave frequencies where lobing instability may occur (50-100 Hz).  A typical chatter 

stability diagram derived from a dynamic simulation is shown in Figure 2.10 [63].  For a 

particular center height angle γ that is equivalent to the tangent angle β in Figure 2.7, it is 

shown that a chatter-free process may be achieved at a relatively low or high work 

rotational speed Nw.   
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Figure 2.10: Workpiece chatter stability diagram [63] 

 

Another factor that limits higher productivity in centerless grinding is the 

workpiece rotational instability due to frictional losses at the contact interface between 

the workpiece and regulating wheel.  This phenomenon has been studied and modeled 

extensively by Hashimoto et al. [64].  The regulating wheel is the system element that 

controls the rotational movement of the workpiece by exerting a braking moment over 

the workpiece surface, and many experimental studies have been conducted to understand 

its frictional characteristics [65-67].  Under certain conditions when high feed velocities 

or very dull regulating wheels are used, the workpiece rotational movement becomes 

unstable, resulting in irregular velocity accelerations called “spinners” that can eject the 

part very suddenly and compromise the safety of the machine operator.  In the absence of 

other instabilities, this phenomenon is the limiting factor to higher productivity since the 

feed rate establishes the cutting force exerted by the grinding wheel and the required 

braking moment to control the workpiece rotation.  The risk of rotational instability can 

be reduced by using a regulating wheel with a higher coefficient of friction, using a work 

blade with a steeper angle, and minimizing the workpiece center height (Figure 2.11). 
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Figure 2.11: Rotational stability as function of the regulating wheel friction coefficient and blade angle [63] 

 

A typical rotational stability map derived using the static torque equilibrium equation 

derived by Hashimoto et al. is shown in Figure 2.12.  The setup conditions for workpiece 

rotational stability are generally similar to those for minimizing geometric errors.  

  

 
 

Figure 2.12: Workpiece rotational stability map [51] 

 

Considering the large number of studies conducted on the process kinematics, 

many researchers view the workpiece motion instabilities as the primary limit to higher 

levels of productivity and part quality in centerless grinding.  To limit workpiece motion 

instabilities in high material removal rate centerless grinding, a few non-conventional 

methods have been proposed including grinding below the center position using a 
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functional work blade [68] and changing the setup configuration during the cutting 

process to allow a faster correction of the initial roundness error of the workpiece [69].  

In comparison to the large number of studies conducted to analyze motion instabilities, 

the studies on the optimization of grinding parameters have been rather limited [70-72].  

In one study, Rowe et al. [71] formulated a basic strategy for process control using limit 

charts as shown in Figure 2.13 and confirmed that productivity can be increased by using 

higher wheel speeds and feed rates up to the machine power, grinding burn, or workpiece 

chatter constraint.  In some other analyses of process performance, the cost-optimum 

specific material removal rate was found to be in the range of 1-6 mm2/s [70, 72]. 

 
 
 

 

 

 
Figure 2.13: Limit chart for material removal rate in centerless grinding [71] 

 

 
 While a comprehensive optimization strategy has yet to be formulated for this 

complex operation, it is still feasible to explore the variation of grinding parameters as a 

method to improve productivity while adhering to the guidelines established for 

workpiece motion stability outlined in these early studies.  The next section reviews some 

heat transfer modeling approaches applicable to different operations and discusses the 

optimization of fluid application as another method to improve the process performance.  
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2.4 Heat Transfer Modeling and Optimization of Fluid Application 

 

 Grinding is a temperature-dependent machining process that can result in several 

problems when performed incorrectly, including (1) workpiece thermal damage, (2) 

unsatisfactory material removal rates, (3) high abrasive costs due to excessive wheel wear 

and frequent dressing, and (4) ineffective cooling by fluid application.  In the grinding 

contact zone, many randomly shaped and oriented cutting edges cut, plough, and slide 

against the workpiece surface, generating a large quantity of heat energy that enters the 

workpiece and adversely affects its surface integrity and final dimensional accuracy. 

In the early days of heat transfer analysis, it was found that 60-90% of the 

grinding energy enters the workpiece material as heat in dry grinding using conventional 

abrasives [73].  This range of values has been confirmed using various methods to 

measure the process temperatures such as embedded thermocouples and high-speed IR 

imaging, which also show that the peak or flash temperatures in the contact zone 

approach the melting temperature of the workpiece material. A typical workpiece 

temperature profile measured in a surface grinding operation is shown in Figure 2.14.  

 

 

 
Figure 2.14: Workpiece temperature profile measured by thermocouple [74] 
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In most grinding operations, the peak temperatures are of extremely short duration 

since it takes only up to 100 µs for a single grain to move across the length of the contact 

interface, and they are highly localized on the tips of the microscopic chips removed 

during the process [75].  The duration of the heat pulse for an individual grain is too short 

to cause anything more than a very localized plastic deformation along its cutting path.  

However, the effect of many such pulses averaged over a longer period of heat transfer 

(1-10 ms) is more significant.  In this case, the workpiece continuously absorbs heat 

pulses just below its surface, which in turn may lead to a significant increase in the 

workpiece temperature.  If a critical temperature is exceeded in the contact zone, different 

forms of thermal damage may occur that reduce the fatigue life and wear resistance of the 

component, including burning, metallurgical phase transformations, residual tensile 

stresses, and micro-cracking [76, 77].  Under very severe grinding conditions with depths 

of cut exceeding 100 µm, grinding burn is visible and undesirable metallurgical phase 

transformations in the form of hardened white layers (WL) can also be detected in the 

workpiece subsurface using SEM as shown in Figure 2.15.  The temperature rise in the 

bulk of the material is only a fraction of the temperature rise at the surface, but it should 

also be controlled to avoid thermal expansion leading to dimensional inaccuracies [78].       

 
 
 

 
Figure 2.15: Cross-sectional view of ground surface with hardened white layer [79] 
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The effect of process parameters on grinding temperatures has traditionally been 

modeled using empirical relations similar to those developed for other process responses.  

However, these relations provide a very limited understanding of how the magnitude and 

duration of temperatures affects the surface integrity of the workpiece material for the 

variety of complex grinding operations found in practice.  To supplement the empirical 

models, numerous theoretical studies have been conducted over the years using heat 

transfer theory to enhance the understanding of how grinding and fluid application 

parameters affect heat generation in different operations and how they can be selected to 

control the quality of ground surfaces.   

In most early models, the theoretical grinding temperatures were predicted using 

the moving heat source analysis developed by Jaeger [80, 81].  According to Jaeger, the 

temperature rise in the grinding contact zone may be obtained by modeling the heated 

contact area as a plane band heat source moving at a known velocity along the surface of 

an adiabatic, semi-infinite solid.  It is assumed that the grinding energy is generated over 

the entire contact zone and that the heat flux is distributed over the surface of a workpiece 

material with constant thermal properties as shown in Figure 2.16.   

 
 

 
 

 
 

Figure 2.16: Uniformly distributed plane band heat source moving along workpiece surface  
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Outwater and Shaw [82] used Jaeger’s moving heat source analysis to develop a basic 

heat partitioning model based on a sliding heat source at the shear plane.  Ignoring the 

effects of the forces in the shear plane, Hahn [83] developed a similar sliding model to 

estimate the heat partition ratio between the workpiece and the abrasive surface in which 

the primary source of heat is the rubbing between the grain wear flats and the workpiece 

surface.  Considering frictional heating effects, Malkin and Anderson [73, 75] developed 

a model to predict the grinding zone temperature as a sum of localized heat pulses 

generated by individual grains in contact with the workpiece surface.  Ramanath and 

Shaw [84] showed that the fraction of heat conducted in the workpiece also depends on 

the thermal properties of the workpiece and abrasive materials.  Makino et al. [85] 

identified that the actual or dynamic heat source length was two to three times the 

geometric contact length and that the assumption of a geometric contact length in models 

results in an overestimation of the intensity of the heat source in the grinding zone.  In 

general, all of these early works identify that the heat energy generated in the grinding 

process is partitioned into three heat sinks:  (i) the grinding wheel, (ii) the workpiece 

material, and (iii) the grinding chips.  In addition, they also confirm that the heat source 

intensity is a function of the physical interactions between the abrasive grains and 

workpiece material and their thermal properties.  However, the early models neglect the 

effect of convective cooling by fluid application, which is an additional heat sink that 

affects process temperatures. 

 Subsequent analytical and numerical studies have provided a more detailed 

understanding of the effect of convective cooling on the grinding temperatures and 

identified methods for controlling workpiece thermal damage.  Des Ruisseaux and Zerkle 
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[86] expanded on Jaeger’s moving heat source analysis and developed a model to 

estimate how the heat energy is partitioned among the grinding wheel, workpiece 

material, grinding fluid, and grinding chips.  In this study, it was found that convective 

cooling by fluid application in the grinding contact zone is not significant in shallow cut 

grinding operations using conventional abrasives.  In a later study, Howes et al. [87] also 

found that convective cooling is negligible in shallow cut operations because of the small 

arc length of the grinding contact zone and confirmed that the primary role of the fluid in 

this material removal regime is to provide effective lubrication.  However, for the creep-

feed grinding operation characterized by low workpiece speeds and larger depths of cut, 

Shafto [88] showed that convective cooling plays a much greater role in removing heat 

from the contact zone but only up to the boiling temperature of the grinding fluid.  

Following the onset of fluid film boiling, the workpiece surface temperature may rise up 

to 1000oC as expected under dry grinding conditions (Figure 2.17) and result in thermal 

damage.  Rowe et al. [89] found that the critical grinding zone temperature for the visible 

onset of temper colors for many ferrous materials is 450-500oC. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.17: Conditions for onset of fluid film boiling [88] 
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Many related studies have been conducted on the nature of convective cooling by fluid 

application.  Lavine [90] developed a heat transfer model for predicting grinding 

temperatures based on the convective heat transfer coefficient at the workpiece surface 

and the fraction of energy entering the workpiece.  Jen and Lavine [91-93] also 

investigated the onset of fluid film boiling to assess the likelihood of thermal damage and 

the findings were generally in agreement with earlier results.  In general, it was found 

that the effect of convective cooling by fluid application on the grinding zone 

temperatures is not significant and that grinding fluids do not affect the partition of heat 

energy in most conventional shallow-cut operations, with creep-feed grinding being the 

only exception.  However, the effect of grinding fluids as lubricants on the grinding zone 

temperatures is more prominent.  As lubricants, grinding fluids reduce the amount of 

friction at the wheel-workpiece contact interface, which results in a lower energy input. 

Using the fluid film boiling temperature as the limit to which the production rate 

can be increased without incurring thermal damage (~130oC for water-based emulsions 

and ~300oC for straight cutting oils), the specific material removal rate attainable in 

shallow-cut grinding using conventional abrasives is typically 5-10 mm2/s.  Yasui and 

Tsukada [94] first identified a specific material removal rate of ~1 mm2/s as the limiting 

value using aluminum oxide grinding wheels.  However, in a subsequent study, Kim et al. 

[95] recognized that Yasui and Tsukada’s model overestimates the grinding temperatures 

by using the geometric contact length instead of the actual contact length and showed that 

the specific material removal rates can be increased up to 15 mm2/s and 250 mm2/s using 

conventional and CBN grinding wheels, respectively.  Due to its higher thermal 

conductivity, CBN removes a larger fraction of heat in comparison to conventional 
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abrasives and reduces the grinding temperature by up to 50% over a wide range of depths 

of cut.  Many studies have confirmed the advantages of using CBN grinding wheels, 

reporting much lower heat energy partition values ranging from 20% to 40% [96, 97]. 

In addition to analyzing the convective cooling effects of grinding fluids, a few 

numerical studies were also conducted to assess the feasibility of the constant thermal 

property assumption for the general solution presented by Jaeger.  In general, the 

temperature gradients in the grinding zone are sufficiently high that the constant thermal 

property assumption may no longer be justifiable.  A finite element analysis of the 

moving heat source problem with temperature-dependent thermal properties was carried 

out by Malkin and Isenberg [98] for a plain carbon steel workpiece, which shows that a 

decrease in the thermal conductivity and an increase in the specific heat with higher 

temperatures partially offset each other and that the linear constant property solution 

underestimates the actual grinding zone temperature by only 5% up to a maximum 

temperature of ~1000oC.  However, a finite element analysis of the moving heat source 

problem with temperature-dependent thermal properties conducted by Malkin and 

Kovach [99] for a nickel-based superalloy workpiece shows that the general constant 

property solution overestimates the grinding temperatures by up to 40%.  These results 

confirm that grinding temperatures cannot always be predicted with absolute accuracy 

using analytical methods and suggest that the actual temperatures also depend on 

temperature-varying material properties and changes in the material microstructure.  The 

measured temperatures may also deviate from predicted values due to other factors that 

are often neglected to simplify the heat transfer analysis such as elastic deflections of the 

grinding system and multiple heat source passes over the nominal contact area.   
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In the early analyses of heat transfer in grinding, it was confirmed that convective 

cooling and lubrication of the grinding contact zone by fluid application plays an 

important role in reducing process temperatures.  At the wheel-workpiece contact 

interface, the grinding fluid performs several important functions, including (1) cooling 

of the workpiece bulk material, (2) lubrication of the tool-chip interface, (3) removal of 

grinding swarf from the wheel, and (4) protection of the newly created workpiece 

surface.  In many of these early studies, it was also confirmed that the temperatures in the 

grinding process can usually be reduced by implementing one of several strategies, such 

as using softer grinding wheels with high surface porosity at reduced speeds, increasing 

the dressing frequency to always keep wheels sharp, or increasing the workpiece speed to 

minimize the duration of contact in the grinding zone and to minimize heat propagation 

into the workpiece subsurface.  However, many of these approaches are counter-

productive, resulting in longer production times and higher abrasive consumption costs.  

As manufacturers attempt to increase productivity with higher material removal rates that 

result in higher process temperatures and greater wheel wear, more attention has been 

devoted to optimizing fluid application settings to preserve part quality and improve 

process performance.   

In conventional grinding operations with very small arc contact lengths of less 

than 1 mm, it has been shown that only about 5% of the total energy input is removed 

from the contact zone with the chips or by the grinding fluid.  The remaining amount of 

heat energy (up to 95%) is distributed between the grinding wheel and the workpiece, 

where the exact partition ratio depends on the thermal properties of the two bodies in 

contact.  If conventional abrasive wheels with low thermal conductivity are used, a great 
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majority of the generated heat will end up in the workpiece, which increases the 

likelihood of thermal damage.  Many studies have been conducted on the effects of 

different fluid application factors on grinding performance, including fluid composition, 

fluid delivery parameters (i.e. flow rate, pressure, and temperature), and delivery system 

components (i.e. nozzle design and placement) to increase the heat removal effectiveness 

of fluids and avoid wasteful and inefficient fluid application that is still common in many 

industrial settings.  The costs of grinding fluid use, maintenance, and disposal are very 

significant in machining operations, making up to 17% of the total process costs [100].  

In order to improve the removal of heat in the process, a grinding fluid with 

superior cooling and lubricating properties must be selected for the operation.  In most 

cases, the fluid selected for application is a straight cutting oil or a water-soluble oil.  

Straight cutting oils are based on derivates of petroleum, vegetable, and marine oil and 

they are generally known to provide good lubrication.  However, cutting oils are poor 

conductors of heat and they provide very little cooling at the contact interface.  In 

contrast to cutting oils, water-soluble oils are better as coolants but much less effective as 

lubricants.  Despite their poor cooling properties, cutting oils are commonly used in low 

speed, shallow-cut grinding operations because of their relatively high fluid film boiling 

temperature and because they ensure a longer wheel life in comparison to soluble oils.  

Yoon and Krueger [101] confirmed the superiority of cutting oils in an investigation of 

grinding performance using 45 different types of metalworking fluids by showing that 

they can achieve up to 10 times higher G-ratios in comparison to water-soluble oils.   

Although cutting oils offer several performance advantages, they are very costly 

to maintain and dispose, and stricter environmental regulations have motivated 
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researchers to explore different substances that can be used to reduce the quantity of oils 

in industrial applications.  Paul and Chattopadhyay [102] showed that cryogenic cooling 

by liquid nitrogen lowers the forces and temperatures in grinding of steels more than 

flood cooling. Shaji and Radhakrishnan [103] and Gopal and Rao [104] showed that solid 

graphite lubricant can be used to lower the specific energy of the grinding process over a 

wide range of conditions.  Babic et al. [105] showed that soap mist jet cooling can 

achieve a 20-25% reduction in grinding temperatures over flood cooling using a 5% 

emulsion.  De Silva et al. [106] showed that minimum quantity lubrication (MQL) using 

an air-oil mixture delivered at a flow rate of 40 mL/h and a velocity of 30 m/s lowers the 

workpiece surface roughness and induces compressive stresses more than flooding at 8.4 

L/min.  In a similar MQL study, Shen et al. [107] demonstrated that the application of 

oils enriched with a high concentration of MoS2 nanoparticles at 5 mL/min can reduce the 

grinding forces by up 27% and increase the G-ratio by up to 46% over flood cooling. 

After the appropriate fluid has been selected, it must be delivered effectively and 

in a sufficient quantity to the grinding contact zone.  In many grinding operations, 

machines are equipped with flood cooling systems that deliver large quantities of fluid 

(5-50 L/min) using bendable plastic nozzles.  However, delivering larger quantities of 

fluid to the grinding zone at higher flow rates using low-pressure nozzles permits more 

aggressive material removal only up to a certain point before the thermal damage 

constraint is encountered as shown in the grinding burn limit chart in Figure 2.18 (Zone 

D).  When this operating point is reached, workpiece burn will occur regardless of the 

quantity of fluid used and fluid application becomes very inefficient. 
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Figure 2.18: Limit chart for grinding burn [108] 

(A) Dry   (B) 2% emulsion at 11 L/min (C) 2% emulsion at 33 L/min 

 

In many grinding operations using low pressure flood cooling, the useful flow rate of 

fluid that reaches the grinding zone is only 5-20% of the applied flow rate due to a 

combination of high fluid jet dispersion and non-coherence outside the contact zone and 

fluid film boiling inside the contact zone [109, 110].  Fluid jet dispersion outside the 

contact zone can be mainly attributed to a dense air boundary layer generated by the 

rotating grinding wheel that deflects the desired path of fluid flow (Figure 2.19).  

 
 
 
 

 

 

 

 
 
 

 
Figure 2.19: Air boundary layer generated by rotating grinding wheel  
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The velocity distribution of the air boundary layer surrounding the rotating grinding 

wheel has been characterized by many researchers using Pitot tubes, manometers, and 

laser doppler anemometry [111-114].  In these studies, it was shown that the boundary 

layer strength increases with increasing wheel speed and that the effectiveness of fluid 

delivery decreases as the nozzle is placed further away from the grinding contact zone.  A 

typical tangential air velocity profile measured for the rotating grinding wheel is shown 

in Figure 2.20.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20: Tangential velocity distribution of rotating air boundary layer [114] 
 

 
 Based on the characterization of the air boundary layer surrounding the rotating 

grinding wheel, it was concluded that the kinetic energy of fluid flow at low jet speeds 

using conventional nozzles in flood cooling is not sufficient to penetrate the air boundary 

layer and allow the fluid to reach the grinding zone.  Consequently, some researchers 

have explored different methods to overcome this negative effect.  Aside from using 

higher jet pressures that require fluid pump or nozzle replacement, one practical solution 
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is to break up the air layer just ahead of the location where the fluid contacts the wheel 

surface using an air scraper as shown in Figure 2.21.  

 

  
 

 

 

 
 

Figure 2.21: Scraper used to break up air boundary layer ahead of the grinding zone 
 

 

Trmal and Kaliszer [115] and Campbell [116] showed that an air scraper placed very 

close to the wheel surface just ahead of the contact zone creates a pressure vacuum that is 

filled by the fluid before it is carried into the grinding zone, allowing the grinding wheel 

speed to be increased by 20% before the air layer becomes too strong (Figure 2.22). 

 
 
 

  

 

 
 

Figure 2.22: CFD simulation of air pressure field around scraper [117] 
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Based on these studies, Webster [118] suggested that the jet speed should match the 

wheel speed to ensure that the fluid reaches the contact zone.  Also, some studies 

suggested that fluid delivery can be improved by replacing the click-and-fit plastic 

nozzles with smooth, straight section nozzles angled at 10-25o with respect to the contact 

zone as shown in Figure 2.23 [119, 120]. 

 
 
 

  

  

 
 

Figure 2.23: Nozzle position for minimum fluid jet dispersion and non-coherence [121] 
 

 
 

Considering the aforementioned drawbacks of low pressure flood cooling and its 

overall inefficiency as method of fluid delivery especially at higher wheel speeds and 

material removal rates, many researchers have explored different combinations of fluid 

delivery parameters (i.e. flow rate and pressure) and delivery system components (i.e. 

nozzle design) to obtain more substantial improvements in process performance.  In 

general, the fluid application methods evaluated in grinding studies as feasible substitutes 

to the traditional flood cooling consist of manual wheel coating, low-pressure spray 

misting, and high pressure jet cooling.  The superior methods of fluid delivery resulting 

in lower grinding temperatures outlined by Brinksmeier et al. [122] consist of reduced 
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quantity lubrication (less than 2L/min) using shoe or spray nozzles and minimum 

quantity lubrication (50-500 mL/hr) using high pressure jet nozzles (Figure 2.24).  

 

 
 

                                   

 

 
 

Figure 2.24: Basic methods of grinding fluid delivery [122] 

 

 Among all the fluid application methods, manual wheel coating with a brush or 

similar tool is the easiest and least expensive, but it is limited to small batch production.  

The disadvantages of this method are intermittent fluid application and poor chip 

removal.  Reduced quantity lubrication using conventional spray or shoe nozzles is a 

much more effective technique for fluid delivery.  A typical shoe nozzle shown in Figure 

2.25 ensures a higher fluid velocity at lower pressure than the conventional low pressure 

jet nozzle due to its interior design features that allow the grinding wheel pores to pick up 

the fluid and accelerate it to its peripheral velocity before being delivered to the grinding 
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zone.  In addition, the shoe nozzle acts as an air scraper that directs the layer of turbulent 

air away from the grinding wheel surface.  Although shoe nozzles have showed 

promising results in some grinding operations using CBN wheels [123], they are 

generally not practical to use when wheel wear is significant [124].    

 
 
 

 

 

 

Figure 2.25: Shoe nozzle configuration [121] 

 

A non-conventional technique used in reduced quantity lubrication that has shown 

promising results is intermittent fluid delivery using an internal supply of nozzles built 

inside the grinding wheel as shown in Figure 2.26.  Some studies have shown that the use 

of slotted grinding wheels with internal fluid supply reduce the grinding forces by 20-

35% and the grinding temperatures by 30-40% over conventional flood cooling [125, 

126].  However, this method has not been implemented very frequently in practice due to 

the high cost of manufacturing slotted wheels and the fixture design that must be used to 

ensure stable operating conditions.  
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Figure 2.26: Slotted grinding wheels with built-in fluid injectors [121] 

 
 
 

High pressure spray misting of vegetable oils and synthetic esters used in 

minimum quantity lubrication (MQL) demonstrates the best performance over other 

application methods in processes that use very high wheel speeds [127, 128].  However, 

one of the main disadvantages of mist application at high pressures (50-3000 psi) is the 

increased health risk posed to the machine operator by the inhalation of airborne fluid 

droplets.  In typical spray mist applications, the spray droplet diameter varies between 

100 and 500 µm.  In MQL, the average spray droplet diameter is typically below 100 µm 

as found in aerosol sprays, but they are lighter and more prone to drifting when subjected 

to air currents.  Therefore, it is very important to optimize nozzle design to ensure 

coherent, laminar jet flow and minimize the drift of fluid droplets away from the wheel 

periphery for best process performance [129].  In general, a nozzle should have smooth 

transitions, a converging geometry, and a fine interior surface finish.  Sharp bends or 

breaks in the fluid supply line cause flow turbulence and poor jet coherence at the nozzle 

exit.  In an extensive CFD study and simulation of the useful fluid flow rate delivered 

through the pores on the grinding wheel surface for different nozzle geometries shown in 

Figure 2-27, Morgan et al. [130] found that the converging Rouse design produces the 



 41 
 

maximum coherent jet length.  This recent study takes into account the findings of an 

earlier work which shows that the useful flow rate to the grinding zone does not only 

depend on the nozzle design and wheel speed but also on the surface topography of the 

grinding wheel [131].   

 
 
 

 
Figure 2.27: Common nozzle design geometries [130]   

 

 In summary, this section reviews some of the major works that have been 

conducted to model heat transfer in grinding and to and study the effects of different fluid 

application factors on grinding process performance.  In this review, several types of 

fluids and delivery methods were identified as being superior to the traditional flood 

cooling method for heat removal in different grinding operations.  In this thesis, an 

experimental investigation is conducted to evaluate whether or not the application of a 

graphite-nanoplatelet enhanced grinding fluid at a reduced flow rate can be used as a 

viable alternative to high-volume flood cooling to improve the productivity and reduce 

the costs of the centerless grinding operation for the difficult-to-machine Inconel 718 and 

Ti-6Al-4V superalloys. 
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2.5 Summary 

 

Based on this literature review, it can be concluded that centerless grinding is a 

very complex operation characterized by the interaction of a very large number of 

variables.  For this operation, it is very difficult to determine the effects of each 

parameter on a particular response and optimize the system settings without incurring 

large time and capital expenses.  In this thesis, two methods for improving centerless 

grinding productivity are explored:  (1) economic optimization of grinding parameters 

and (2) reduced quantity lubrication using a fluid enhanced with graphite additives. 

For the centerless grinding operation, it is very difficult to achieve process control 

and optimization based on the mechanistic modeling approach.  However, to achieve 

productivity gains, it is not necessary to have models that deliver very high accuracy 

because such accuracy is seldom reproducible in practice.  Instead, the next best 

alternative is to develop a science-based but practical approach to optimization using a 

combination of presented optimization strategies.  In Chapters 3 and 4, one such 

systematic approach is presented and carried out to determine the optimum parameters in 

centerless grinding of two aerospace superalloys.  

 For many shallow-cut grinding operations including centerless grinding, the 

traditional flood cooling method is adequate for bulk cooling of the workpiece material 

and for chip removal, but it is not an efficient or effective method for reducing the 

grinding zone temperatures.  In Chapter 5, an investigation is conducted to assess the 

feasibility of reduced quantity lubrication centerless grinding using grinding fluids 

enhanced with graphite nanoplatelets as an alternative to the flood cooling method. 
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CHAPTER 3 

 

CHARACTERIZATION OF PROCESS PARAMETER  

EFFECTS ON CENTERLESS GRINDING PERFORMANCE 

 

3.1 Introduction 

 

Inconel 718 and Ti-6Al-4V are desirable for their excellent creep-rupture strength 

and high corrosion and oxidation resistance in high temperature environments.  However, 

in many traditional grinding operations used to shape these alloys, very limited progress 

has been made in achieving satisfactory material removal rates.  In general, the 

difficulties encountered when machining these alloys can be attributed to their 

thermophysical properties as seen in Table 3.1.   

 
 

Table 3.1: Thermophysical properties of Inconel 718 and Ti-6Al-4V alloys [132] 

 
Material 

Density 
(g/cm3) 

Specific  
Heat 

(J/kg-oC) 

Thermal  
Conductivity 

(W/m-K) 

Melting  
Temperature  

(oC) 

Hardness  
(HRC) 

Inconel 718 8.19 435 11.4 1260-1335 36 
Ti-6Al-4V 4.42 560 7.2 1635-1665 41 

 
 

As seen in Table 3.1, both alloys are very poor conductors of heat.  The heat generated by 

the grinding action does not dissipate quickly, and as a result, most of the heat remains 

concentrated on the workpiece surface and produces a negative effect on its surface 

integrity and dimensional accuracy.  Ti-6Al-4V in particular has a tendency to adhere to 

the grinding wheel and cause rapid wheel loading leading to part thermal damage, and 
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this effect is more prominent at higher operating temperatures [133].  In addition, the 

unique work-hardening behavior of these materials also limits higher material removal 

rates.  Inconel 718 work hardens rapidly and makes it tougher for the abrasive grains to 

remove material efficiently, resulting in rapid wheel dulling.  The parameters commonly 

used for these alloys in the fastener centerless grinding operation with conventional 

Al2O3 and SiC grinding wheels are shown in Table 3.2.  For fastener diameters of 4.76-

25.4 mm (3/16-1 in.) typically processed in this operation, the corresponding specific 

material removal rate '
wQ  based on the parameters in Table 3.2 is 0.1-1 mm2/s. 

       

Table 3.2: Process parameters commonly used in centerless grinding of superalloy fasteners 

Grinding Wheel 
Speed (m/s) 

Workpiece  
Speed (m/s) 

Feed  
Rate (µm/s) 

Diameter Reduction 
per Pass (µm) 

20-30 0.1-1 10-25  25-1000 
 
 

For a fixed setup geometry, the final part quality and productivity of the fastener 

grinding operation (Figure 3.1) is determined by a group of controllable parameters that 

consist of the grinding wheel composition, dressing conditions, grinding wheel speed, 

regulating wheel speed, diameter reduction per pass, feed rate, and spark-out time. 

 
 

            
Figure 3.1: Schematic of fastener centerless grinding operation 
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This chapter presents the experimental studies conducted to characterize the effects of 

these key process parameters on the productivity and part quality levels in the centerless 

grinding of Inconel 718 and Ti-6Al-4V superalloy fasteners.  The models generated from 

these experiments are subsequently used to define the process constraint boundaries and 

to develop an algorithm for finding the optimum grinding conditions (Chapter 4). 

 

3.2 Experimental Procedure 

 

 Two sets of experiments (characterization and production run) were conducted to 

quantify the effects of the key process parameters on the performance of the centerless 

grinding operation.  The full experimental procedure is presented in the ensuing sections. 

 

3.2.1 Characterization Experiment 

 
 

In order to quantify the effects of the controllable parameters on process 

performance and part quality characteristics and establish the process constraints, an 8-

run orthogonal array characterization experiment was conducted using OA (8, 23, 41) 

found in Appendix A with the experimental factors and levels as shown in Table 3.3.  

Factor interactions were not considered in this experiment.  The process parameters of 

feed rate and spark-out time were not included as controllable experimental factors 

because they could not be set precisely on the manual feed centerless grinder used in this 

study.   The order of experimental trials was randomized and each trial was performed 

twice to obtain 16 data points for each workpiece material.  The grinding wheels were 
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redressed with a Vertex V2-O single point diamond for a rough pass operation before 

each trial using a dressing traverse rate of 4.23 mm/s and a depth of dress per pass of 25.4 

μm maintain the same wheel surface condition.  For all finish pass operations, the 

dressing traverse rate and depth of dress per pass were reduced by a factor of 2.  The 

grinding fluid used in all the experiments was Castrol ALMACUT 7210 cutting oil and it 

was applied to the grinding zone using low pressure flooding at a flow rate of ~5 L/min.  

The setup parameters were selected according to the guidelines for workpiece stability 

presented earlier in Table 2.3 and held constant for all the experimental trials.    

 

Table 3.3: OA (8, 23, 41) for characterization experiment 

 
Trial 

Grinding  
Wheel Speed 

(m/s) 

Regulating  
Wheel Speed 

(m/min) 

Diameter Reduction 
per Pass  

(μm) 

Grinding  
Wheel Material 

(A or B) 
1 19.1 13.4 152.4 A 
2 19.1 24.5 76.2 B 
3 23.9 13.4 152.4 B 
4 23.9 24.5 76.2 A 
5 28.7 13.4 76.2 A 
6 28.7 24.5 152.4 B 
7 33.5 13.4 76.2 B 
8 33.5 24.5 152.4 A 

 
 

In Table 3.3, wheel material A denotes the grinding wheels commonly used for Inconel 

718 and Ti-6Al-4V, while material B denotes new grinding wheels selected for each 

workpiece material according to a literature survey and wheel manufacturer 

recommendations promising increased wheel life between dressings and higher material 

removal rates.  The key properties of the wheels used in the experiment are shown in 

Table 3.4.  The summary of grinding wheel recommendations is provided in Appendix B. 
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Table 3.4: Grinding wheel properties 

Workpiece 
Material 

Wheel 
Symbol 

Abrasive 
Material 

Wheel Dimensions  
(Diameter x Width) 

Manufacturer 
Code 

Inconel 718 A Al2O3 609.6 mm x 63.5 mm 2A80-O4-V 
Inconel 718 B Al2O3 (SG) 609.6 mm x 63.5 mm 3SGP80-O6-VH 
Ti-6Al-4V A SiC 609.6 mm x 63.5 mm GC120-N+7-V 
Ti-6Al-4V B SiC 609.6 mm x 63.5 mm 74C120-O6-VK 

 

 
The grinding wheel speed values were selected not to exceed the maximum allowable 

wheel speed established by the wheel manufacturer (33.5 m/s) and the regulating wheel 

speed values were selected at two lower settings (13.4 m/min, 24.5 m/min) to minimize 

the risk of workpiece chatter (Table 2.3).  The values of diameter reduction per pass were 

selected based on common practices in a rough pass and finish pass operation.   

The responses measured in the experiment were the grinding power and the 

arithmetic average surface roughness for headed cylindrical blanks with a 7.94 mm (5/16 

in.) diameter and 63.5 mm (2.5 in.) overall length.  The key dimensional tolerances for 

the headed cylindrical blank (in.) used in the experiment are illustrated in Figure 3.2.   

 

  

                                                              
Figure 3.2: Dimensional tolerances for headed cylindrical blank 

Transition Radius 
Tolerance 

(0.027 - 0.030 in.) 

Diameter 
Tolerance 

(0.3116 - 0.3121 in.) 
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3.2.2 Production Run Experiment 

 
 

To evaluate process trends, to compare grinding wheel performance, and to 

develop empirical wheel wear relations, a set of production runs was conducted for each 

workpiece material using various combinations of grinding parameters.  The process 

responses of grinding power, surface roughness, and part dimensions were recorded in 

time as outlined in Figure 3.3.   

 
 

 
Figure 3.3: Flow chart of production run experiment 

 

 
For the headed blank, a total of six production runs were conducted for each 

workpiece material.  Each run was conducted using a different parameter combination 

consisting of the grinding wheel speed, stock removed per pass, feed rate, and wheel 

material shown in Tables 3.5 and 3.6 for Inconel 718 and Ti-6Al-4V, respectively.   In 

Tables 3.5 and 3.6, the dressing overlap ratio is defined as the effective cutting width of 

the dressing diamond dw (~1 mm) divided by the dressing lead ds .  Lower ratios (1-3) 

yield a rougher wheel surface while higher ratios (4-6) yield a smoother wheel surface 

during the dressing operation. 
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Table 3.5: Dressing and grinding parameters for Inconel 718 production runs 

 
Production 

Run 

 
Number 
of Parts 

Dressing 
Overlap 

Ratio 

Grinding  
Wheel  
Speed 
(m/s) 

Stock  
Removed  
per Pass 

(μm) 

Feed 
Rate 

(μm/s) 

Wheel 
Material 
(A or B) 

1-Rough 250 2.36 33.5 127 39.1 Cincinnati (A) 
2-Rough 250 2.36 19.1 127 39.1 Cincinnati (A) 
3-Finish 500 4.72 33.5 63.5 19.5 Cincinnati (A) 
4-Rough 250 2.36 33.5 127 39.1 Norton SG (B) 
5-Rough 250 2.36 19.1 127 39.1 Norton SG (B) 
6-Finish 500 4.72 33.5 63.5 19.5 Norton SG (B) 

 

 

Table 3.6: Dressing and grinding parameters for Ti-6Al-4V production runs 

 
Production 

Run 

 
Number 
of Parts 

Dressing 
Overlap 

Ratio 

Grinding  
Wheel  
Speed 
(m/s) 

Stock  
Removed  
per Pass 

(μm) 

Feed 
Rate 

(μm/s) 

Wheel 
Material 
(A or B) 

1-Rough 250 2.36 33.5 127 39.1 Kinik (A) 
2-Rough 250 2.36 19.1 127 39.1 Kinik (A) 
3-Finish 500 4.72 14.4 63.5 19.5 Kinik (A) 
4-Rough 250 2.36 33.5 127 39.1 Norton (B) 
5-Rough 250 2.36 19.1 127 39.1 Norton (B) 
6-Finish 500 4.72 14.4 63.5 19.5 Norton (B) 

 
 

The wheel wear characteristics measured during each production run were defined 

by the part diameter error (DE) and transition radius error (TRE).  The error for each 

dimension (Figure 3.2) was quantified as the cumulative deviation from the target 

dimension after grinding a specified number of parts.   

 

3.3 Experimental Setup and Measurements 

 

The centerless grinder used in this study was the Cincinnati OM-2 model with a 

15 hp (11.25 kW) grinding wheel spindle motor.  The grinding cycle power was 
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measured by a Load Controls UPC model power meter connected to the wheel spindle 

motor to capture its voltage signal, which was relayed to a PC via a data acquisition 

board for analysis in LabView software as shown in Figure 3.4. A sample 10-Hz spindle 

motor voltage signal acquired over a 5-s period at a sampling rate of 2 kHz for a Ti-6Al-

4V rough pass conducted using a grinding wheel speed of 19.1 m/s and regulating wheel 

speed of 13.4 m/min is shown in Figure 3.5.   

 

 

     

Figure 3.4: Schematic of experimental setup for measuring grinding power 
 

 

 

               
 
         Voltage                     
               (V) 

 

 

 

 
             

Time (s) 

Figure 3.5: Sample grinding cycle voltage signal for Ti-6Al-4V grinding pass 



 51 
 

The arithmetic average surface roughness for each part was measured using the Zygo 

New View 200 optical profilometer by rotating the part and taking 5 equidistant spot 

measurements along its ground length.  The 5 measurements were averaged to obtain a 

representative surface roughness for the part.  A sample image is shown in Figure 3.6.   

 

 
Figure 3.6: Sample image for surface roughness measurement 

 

The dimensions measured for each part were the diameter and the transition 

radius.  The diameter was measured using a micrometer and its deviation from the target 

dimension was monitored to quantify wheel radial wear.  The transition radius was 

measured using the Mitutoyo toolmaker’s microscope and its deviation from the target 

dimension was monitored to quantify wheel edge wear.  A sample image for a transition 

radius measurement using the Mitutoyo toolmaker’s microscope is shown in Figure 3.7. 

 

 
Figure 3.7: Sample image for transition radius measurement  

Transition Radius 

Fastener Head

Fastener Shank
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After reviewing the scientific literature on the techniques used to measure grinding wheel 

topography, including acoustic emission, stylus profilometry, imprints, thermal pulsing, 

and scanning electron microscopy, the imprint technique was adopted due to its 

reasonable accuracy and ease of replication [134].  The selected imprint material was lead 

because it is relatively soft compared to other metals and sufficiently reflective for optical 

analysis.  To prepare the imprint samples, 1.59 mm (1/16 in.) thin lead strips were 

polished successively using 300, 600, and 1200-grit silicon carbide paper for a high-

quality finish.  The wheel surface imprints were taken by manually pressing the polished 

lead strip across a section of the wheel periphery. 

A sample image obtained using the Zygo New View 200 optical profilometer for 

the wheel surface imprinted on the lead sheet is illustrated in Figure 3.8a.  This figure 

shows a top view of the imprinted abrasive grains for a 0.70 mm x 0.53 mm section of the 

Kinik Ti-6Al-4V grinding wheel surface.  A similar SEM image of abrasive grains on the 

wheel surface provided in a manufacturer’s catalogue is shown in Figure 3.8b.  By 

comparison, it can be seen that the imprint technique provides a reasonably good 

representation of the wheel surface condition. 

 
 
 

      

 
                   (a) Zygo 10x (Kinik 120-grit)                   (b) Manufacturer catalogue (Noritake 60-grit)  

Figure 3.8: Sample grinding wheel surface images 
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3.4 Results and Discussion 

 
 
3.4.1 Characterization Experiment – S/N Ratio Analysis 
 
 
 

A detailed summary of the characterization experiment data is found in Appendix 

C.  The data obtained for the two grinding passes conducted under each trial condition is 

shown in Tables 3.7 and 3.8 for Inconel 718 and Ti-6Al-4V, respectively. 

 

Table 3.7: Characterization experiment data summary (Inconel 718) 

Grinding  
Wheel  
Speed 
(m/s) 

Regulating 
Wheel 
Speed  

(m/min) 

Stock  
Removed  
per Pass  

(μm) 

Grinding 
Wheel 

Material 
 

Grinding 
Power 
(W) 

Surface  
Roughness 

 (μm) 

19.1 13.4 152.4 A 1106, 1116 2.10, 2.03 
23.9 24.5 76.2 A 1038, 846 1.97, 1.90 
28.7 13.4 76.2 A 658, 721 1.37, 1.35 
33.5 24.5 152.4 A 1586, 1545 2.45, 2.33 
19.1 24.5 76.2 B 647, 667 1.84, 1.95 
23.9 13.4 152.4 B 789, 802 1.70, 1.90 
28.7 24.5 152.4 B 1477, 1131 2.67, 2.47 
33.5 13.4 76.2 B 681, 631 1.42, 1.32 

 
 

Table 3.8: Characterization experiment data summary (Ti-6Al-4V) 

Grinding  
Wheel  
Speed  
(m/s) 

Regulating 
Wheel 
Speed  

(m/min) 

Stock  
Removed  
per Pass  

(μm) 

Grinding 
Wheel 

Material 

Grinding 
Power 
(W) 

Surface  
Roughness 

 (μm) 

19.1 13.4 152.4 0 603, 1071 1.86, 2.08 
23.9 24.5 76.2 0 588, 617 1.83, 1.75 
28.7 13.4 76.2 0 857, 621 1.26, 1.35 
33.5 24.5 152.4 0 1263, 1403 2.41, 2.45 
19.1 24.5 76.2 1 659, 748 1.65, 1.79 
23.9 13.4 152.4 1 952, 1032 1.55, 1.60 
28.7 24.5 152.4 1 1430, 1335 2.27, 2.12 
33.5 13.4 76.2 1 869, 829 1.22, 1.09 
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For this experiment, a statistical analysis of data was conducted using Taguchi’s Signal-

to-Noise (S/N) ratios to quantify the contribution of each factor to the measured 

responses of grinding power and surface roughness and to identify the optimum level for 

each factor that minimizes their value.  In any grinding operation, it is desirable to 

minimize both the grinding power and surface roughness in order to reduce the risk of 

thermal damage and ensure a high-quality finish.  The S/N ratio parameter η defined 

according to the-lower-the-better criterion is given by  

                                                  ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

n

i
iy

n 1

21log10η                                                  (3.1) 

where yi is the observed data for the nth trial and n is the number of trials.  The 

experimental factors and levels are shown in Table 3.9.  Factor interactions were not 

considered in the analysis of this experiment.   

 

Table 3.9: Characterization experiment factors and their levels 

Experimental Factor Level 1 Level 2 Level 3 Level 4 
Grinding Wheel Speed (m/s) 19.1 23.9 28.7 33.5 

Regulating Wheel Speed (m/min) 13.4 24.5 --- --- 
Stock Removed per Pass (μm) 76.2 152.4 --- --- 

Grinding Wheel Material  A B --- --- 
 

 

The results of the S/N ratio analysis are tabulated in Appendix D and the corresponding 

main effect plots for the grinding power are shown in Figures 3.9 and 3.10 for Inconel 

718 and Ti-6Al-4V, respectively. 
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Figure 3.9: Effects of process parameters on grinding power response (Inconel 718) 
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Figure 3.10: Effects of process parameters on grinding power response (Ti-6Al-4V) 
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From the S/N tables given in Appendix D, the contribution of each process parameter to 

the grinding power response is shown in Table 3.10 for each workpiece material.   

 

Table 3.10: Contribution of process parameters to the grinding power response 

Workpiece  
Material 

Grinding  
Wheel Speed  

Regulating  
Wheel Speed  

Stock Removed  
per Pass  

Grinding  
Wheel Material 

Inconel 718 14.8% 24.9% 40.3% 20.0% 
Ti-6Al-4V 34.7% 9.0% 44.7% 11.5% 

 

 
For Inconel 718, the amount of stock removed per pass had the greatest effect on the 

grinding power, followed by the regulating wheel speed, the grinding wheel material, and 

the grinding wheel speed.  For Ti-6Al-4V, the amount of stock removed per pass had the 

greatest effect on the grinding power, followed by the grinding wheel speed, the grinding 

wheel material, and the regulating wheel speed.  In order to minimize the grinding power, 

the grinding parameters should be set according to the recommendations in Table 3.11. 

 

Table 3.11: Optimum parameter settings for minimum grinding power 

Workpiece  
Material 

Grinding  
Wheel Speed 

(m/s) 

Regulating  
Wheel Speed  

(m/min) 

Stock Removed  
per Pass  

(μm) 

Grinding  
Wheel  

Material 
Inconel 718 19.1 13.4 76.2 B 
Ti-6Al-4V 19.1 13.4 76.2 A 

 
 
 

 For Inconel 718, the results shown in Table 3.11 suggest that the highly friable 

ceramic sol-gel (SG) Norton grinding wheel (B) can remove material more efficiently 

than the Cincinnati fused aluminum oxide wheel (A).  This conclusion is supported by 

the specific grinding energy (SGE) plot for Inconel 718 shown in Figure 3.11 for each 



 57 
 

wheel used in the characterization experiment, which shows that the Norton SG wheel 

(B) consumes approximately 20-30% less energy at higher material removal rates. 

 

 
Figure 3.11: Specific grinding energy vs. material removal rate (Inconel 718) 

 

The same specific grinding energy plot is shown for Ti-6Al-4V in Figure 3.12.  For Ti-

6Al-4V, the Norton and the Kinik wheels use comparable amounts of energy with the 

Kinik wheel acting a little softer under more aggressive cutting conditions. 

 

 

 
Figure 3.12: Specific grinding energy vs. material removal rate (Ti-6Al-4V) 
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The plots in Figures 3.12 and 3.13 also suggest that each rough grinding operation should 

be started at a material removal rate greater than ~20 mm3/s for both materials using the 

wheels evaluated in the experiment to facilitate chip formation through shear and reduce 

the fraction of heat generated due to grain ploughing and sliding.  The exact value to 

which the material removal rate can be increased beyond 20 mm3/s to economically 

optimize the process depends on the wear rates of the grinding wheels along with other 

process constraints including thermal damage and workpiece chatter.   

For the surface roughness response, the corresponding main effect plots using the 

S/N ratios are shown in Figures 3.13 and 3.14 for Inconel 718 and Ti-6Al-4V, 

respectively. 
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Figure 3.13. Effects of process parameters on surface roughness response (Inconel 718) 
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Figure 3.14: Effects of process parameters on surface roughness response (Ti-6Al-4V) 

 
 

From the S/N tables given in Appendix D, the contribution of each experimental factor 

on the surface roughness response is shown in Table 3.12 for each workpiece material. 

 

Table 3.12: Contribution of process parameters to the part surface roughness response 

Workpiece  
Material 

Grinding  
Wheel Speed  

Regulating  
Wheel Speed  

Stock Removed  
per Pass  

Grinding  
Wheel Material 

Inconel 718 10.3% 45.1% 43.5% 1.1% 
Ti-6Al-4V 11.1% 37.0% 37.5% 14.4% 

  
 
 
For Inconel 718, the regulating wheel speed had the greatest effect on the surface 

roughness, followed by the amount of stock removed per pass, the grinding wheel speed, 

and the grinding wheel material.  For Ti-6Al-4V, the amount of stock removed per pass 

had the greatest effect on the surface roughness, followed by the regulating wheel speed, 
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the grinding wheel material, and the grinding wheel speed.  In order to minimize the 

surface roughness, the grinding parameters should be set according to the 

recommendations in Table 3.13. 

 
 

Table 3.13: Optimum parameter settings for minimum surface roughness 

Workpiece  
Material 

Grinding  
Wheel Speed 

(m/s) 

Regulating  
Wheel Speed  

(m/min) 

Stock Removed 
per Pass  

(μm) 

Grinding  
Wheel  

Material 
Inconel 718 33.5 13.4 76.2 A 
Ti-6Al-4V 33.5 13.4 76.2 B 

 
 
 
The Cincinnati wheel (A), with a grain packing density or structure number of 4, yields a 

better surface finish than the more open Norton SG wheel (B) with a structure number of 

6 when grinding Inconel 718.  The Norton wheel (B), with a hardness level of O and 

structure number of 6, yields a better surface finish than the softer and more open Kinik 

wheel (A) with a hardness level of N+ and structure number of 7 for Ti-6Al-4V.   

The results of the S/N ratio analysis are valid assuming that no other experimental 

factors affect the measured responses besides the controllable factors that were included 

in the orthogonal array.  However, during the trials, the process responses were also 

affected by parameters that could not be precisely controlled on a manual centerless 

grinder and included as experimental factors, including the feed rate and spark-out time.  

In particular, the large effects on the measured responses noted for the stock removal per 

pass parameter were likely overestimated because this parameter is highly correlated to 

the feed rate used to complete the pass before the part was ejected by the slotted 

regulating wheel.  Therefore, the combined effect of all the parameters was determined 

using multiple regression as discussed in the next section.  
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3.4.2 Characterization Experiment – Regression Analysis 

 
 

In order to account for the effects of parameters that were held constant or that 

could not be controlled precisely on a manual grinder when predicting the process 

responses, the data was analyzed using multiple regression.  The key outputs of this 

analysis are the regression models for grinding power and surface roughness as a function 

of all the significant process parameters.  The general form of the reduced multiple linear 

regression model constructed to predict a process response is given by 

                                                 ε∑
=

++=
n

i
iio xccy

1
                                               (3.2) 

where y is the predicted response value, xi are the parameter variables, ci are the 

regression model coefficients, and ε is the random error.  For Inconel 718, the models 

are given by 

         P = 63.1Ud + 12.4Vg + 1102.3Vr + 3704.2d + 7118.8Vf - 183.5WM - 426.9        (3.3) 

        Ra = -0.197Ud - 0.013Vg + 1.212Vr + 3.374d + 16.212Vf - 0.236ts + 1.592           (3.4) 

where P is the grinding power in W, Ra is the arithmetic average surface roughness in 

μm, Ud is the dressing overlap ratio, Vg is the grinding wheel speed in m/s, Vr is the 

regulating wheel speed in m/s, d is the diameter reduction per pass in mm, Vf is the feed 

rate in mm/s, ts is the spark-out time in s, and WM is the grinding wheel material (A=0, 

B=1).  Similarly, the models for Ti-6Al-4V are given by 

     P = 125.4Ud + 20.0Vg + 459.0Vr + 3262.1d + 8015.8Vf + 150.3WM – 728.2           (3.5) 

Ra = -0.384Ud - 0.012Vg + 1.571Vr + 3.520d + 14.331Vf  - 0.170WM - 0.143ts + 1.84 (3.6) 
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A detailed summary of the regression model statistics and a verification of the regression 

modeling assumptions for each response are provided in Appendix D.  The final models, 

reduced to their final form by the backwards elimination technique, were significant at 

the 90% confidence level and provided a very good fit for the associated data set with R2 

values in the range of 0.915-0.987 without requiring any data transformations.  In most 

applications, higher order models with interaction terms are usually preferred and more 

accurate for predicting any given process response over a wider range of process 

conditions, but the linear models obtained in this analysis were adequate over the range 

of parameter values used in the experiment.   

Variable multicollinearity was also assessed by constructing a correlation 

coefficient matrix for the inclusive set of predictor variables as shown in Appendix D for 

the Inconel 718 grinding power response.  When multicollinearity is present between any 

pair of predictor variables, the two variables are highly correlated and it is difficult to 

distinguish their individual effects on the response.  Notably high correlation coefficients 

exceeding a value of 0.3 were identified between several process parameters, which could 

possibly be reduced by collecting additional experimental data, eliminating non-

significant variables, or combining multiple correlated variables into a single variable.  

However, in this application, the presence of multicollinearity is not an issue since the 

regression models were only used to predict the process responses over the experimental 

range of parameter values.  

The optimum parameters identified in the S/N ratio analysis and the regression 

models generated for the process responses are strictly valid for a static system without 

taking into account the effects of wheel wear on process performance.  To analyze the 
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dynamic behavior of the system, a production run experiment previously outlined in 

Figure 3.3 was conducted for each workpiece material.  During the experiment, the 

aforementioned process responses were monitored under different grinding conditions to 

develop empirical relations for wheel wear and to analyze wheel performance and 

material removal efficiency using standard metrics.  

 

3.4.3 Production Run Experiment – Process Response Trends 

 

A complete data summary of the process responses measured in time series for all 

the production runs is given in Appendix C.  The grinding wheel, dressing parameters, 

and grinding parameters used for each Inconel 718 production run is summarized in 

Table 3.14. 

   

Table 3-14. Process parameters for Inconel 718 production run experiment 

 
Run 

 
Number  
of Parts 

Dressing 
Overlap 

Ratio 

Grinding 
Wheel 
Speed 
(m/s) 

Regulating 
Wheel  
Speed 

(m/min) 

Stock 
Removed 
per Pass 

(μm) 

Feed  
Rate 

(μm/s) 

Grinding 
Wheel 

Material 
(A or B) 

1-R 250 2.36 33.5 13.4 127 39.1 A 
2-R 250 2.36 19.1 13.4 127 39.1 A 
3-F 500 4.72 33.5 13.4 63.5 19.5 A 
4-R 250 2.36 33.5 13.4 127 39.1 B 
5-R 250 2.36 19.1 13.4 127 39.1 B 
6-F 500 4.72 33.5 13.4 63.5 19.5 B 

. 

 

For each wheel material (A and B), two rough pass production runs (R) were conducted 

at different grinding wheel speeds (33.5 m/s or 1050 rpm and 19.1 m/s or 600 rpm) while 

holding the values of regulating wheel speed (13.4 m/min or 12 rpm), amount of stock 
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removed per pass (127 μm or 0.005 in.) and feed rate (39.1 μm/s or 0.092 in./min) 

constant.  The grinding wheel speed was chosen as the variable parameter since it could 

be controlled precisely using the Power Flex 70 AC spindle drive interface available on 

the grinder. 

The trends for the grinding power and diameter (OD) error measured during four 

rough pass Inconel 718 production runs of 250 parts each are shown in Figure 3.15.  
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Figure 3.15: Process response trends for rough pass production runs (Inconel 718)  

 

 
As seen in Figure 3.15, the grinding power increases with wheel wear in an 

approximately linear fashion for all grinding parameters and grinding wheel material 

combinations.  The OD error, used to quantify radial wheel wear, increases in the positive 

direction indicating that the ground part is oversized.  Figure 3.15 also shows that higher 

grinding wheel speeds result in higher values of grinding power over longer production 

runs but have a smaller effect on the accumulated diameter error.  When comparing 

wheel wear performance as measured by the diameter error under the same grinding 

conditions, it can be seen that the Norton SG grinding wheel (B) wears at a slower rate 
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and thus allows the part to stay within the prescribed diameter tolerance range (+ 12.7 μm 

or 0.0005 in.) longer than the Cincinnati wheel (A) over the same production period.    

The trends for the grinding power and surface roughness measured during two 

finish pass production runs of 500 parts each for Inconel 718 are shown in Figure 3.16.  

One production run was conducted for each wheel material to compare wear performance 

in a 63.5 μm or 0.0025 in. stock removal pass under the wear-minimum grinding wheel 

speed identified from rough pass production runs. Similar to the rough pass production 

runs (Figure 3.15), the grinding power increases with wheel wear in a more or less linear 

fashion.  The part surface roughness, an active part quality constraint in a finish pass 

production run, generally approaches a steady-state value with grinding wheel wear and 

abrasive grain dulling.  Under constant dressing and grinding conditions, the properties of 

the grinding wheel determine the best achievable surface finish.  Since the Cincinnati 

grinding wheel (A) has a lower structure number of 4 than the Norton SG wheel (B) with 

a structure number of 6, it yields a better surface finish as expected.  
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Figure 3.16: Process response trends for finish pass production runs (Inconel 718) 
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The combination of grinding wheel, dressing parameters, and grinding parameters 

used for each Ti-6Al-4V production run is summarized in Table 3.15.  

  

Table 3.15: Process parameters for production run experiment (Ti-6Al-4V) 

 
Run 

 
Number 
of Parts 

Dressing 
Overlap 

Ratio 

Grinding 
Wheel 
Speed 
(m/s) 

Regulating 
Wheel  
Speed 

(m/min) 

Stock 
Removed 
per Pass 

(μm) 

Feed  
Rate 

(μm/s) 

Grinding 
Wheel 

Material 
 

1-R 250 2.36 33.5 13.4 127 39.1 A 
2-R 250 2.36 19.1 13.4 127 39.1 A 
3-F 500 4.72 14.4 13.4 63.5 19.5 A 
4-R 250 2.36 33.5 13.4 127 39.1 B 
5-R 250 2.36 19.1 13.4 127 39.1 B 
6-F 500 4.72 14.4 13.4 63.5 19.5 B 

 

 
The trends for the grinding power and diameter (OD) error measured during 4 

rough pass Ti-6Al-4V production runs of 250 parts each are shown in Figure 3.17.  The 

same combination of rough pass parameters was used for Ti-6Al-4V as for the Inconel 

718 trials.   
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Figure 3.17: Process response trends for rough pass production runs (Ti-6Al-4V) 
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As seen in Figure 3.17, the grinding power increases with wheel wear at the high 

grinding wheel speed setting (33.5 m/s or 1050 rpm) and remains favorably constant 

under the low setting (19.1 m/s or 600 rpm).  The diameter error increases in the positive 

direction for the low grinding wheel speed production runs, but for the runs conducted at 

high wheel speeds, it stays in the negative range indicating that the ground part is 

consistently undersized.  The increase in power and the fluctuations in diameter error are 

particularly prominent for the Norton grinding wheel (B), which may suggest that its high 

hardness level and high grain packing density contribute to higher grinding temperatures 

and worsen the wheel loading effect, especially at higher wheel speeds.  At elevated 

grinding temperatures, Ti-6Al-4V exhibits high chemical affinity to the wheel material 

and adheres to the grain tips.  In turn, the enlarged grains have the ability to penetrate 

further into the part and remove more material than intended, especially if the part is also 

undergoing thermal expansion.  In contrast, the process responses measured at the low 

wheel speed setting show more favorable trends.  Since Ti-6Al-4V does not respond 

favorably to hard cutting action as Inconel 718, the grinding wheel speed should be set to 

the lower setting (19.1 m/s or 600 rpm). Alternatively, a softer wheel (hardness J-N) may 

be used for speeds exceeding 19.1 m/s. 

The trends for the grinding power and surface roughness responses measured 

during 2 finish pass Ti-6Al-4V production runs of 500 parts each are shown in Figure 

3.18.  One production run was conducted for each wheel material to compare their 

performance in a 63.5 μm (0.0025 in.) stock removal pass at a low grinding wheel speed 

(14.4 m/s or 450 rpm). 
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Figure 3.18: Process response trends for finish pass production runs (Ti-6Al-4V) 

 

As seen in Figure 3.18, the grinding power and part surface roughness stay relatively 

constant over the period as a result of the softer wheel-cutting action at the lower wheel 

speed.  In this case, since the Norton grinding wheel (B) has a lower structure number 

and a higher hardness level than the Kinik wheel (A), it produces a better surface finish 

as expected. 

 

3.4.4 Production Run Experiment –Regression Analysis 

 

The data for the critical part dimensions measured after grinding the 250th part in 

each production run was used to construct multiple regression models for the wheel wear 

indicator responses.  The indicator of wheel radial wear was the diameter error (DE), 

which quantifies the cumulative deviation of the shank diameter from the target 

dimension.  The indicator of wheel edge wear was the transition radius error (TRE), 

which quantifies the cumulative deviation of the transition radius from the target 

dimension.  To maximize the predictive power of the regression models with a limited 

number of data points, the following predictor variables were used for the responses: 



 69 
 

equivalent chip thickness heq, stock removed per pass d, and grinding wheel material 

WM.  The equivalent chip thickness is a quantitative measure of the depth of penetration 

of abrasive grains into the workpiece material and it varies with many wheel surface 

parameters.  Empirical studies of grinding behavior using the equivalent chip thickness 

parameter confirm that there is a direct relationship between chip thickness and the G-

ratio, where lower values of chip thickness typically result in less wheel wear [135].  For 

plunge centerless grinding, the equivalent chip thickness heq is given by  

                                        ⎟
⎟
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where a is the depth of cut per workpiece revolution, Dw is the workpiece diameter, Vw is 

the workpiece speed, Vf is the feed rate, and Vg is the grinding wheel speed. For Inconel 

718, the models for the accumulated amount of wheel wear after grinding 250 parts based 

on the critical part dimensions are given by 

                                              DE = 1.505 heq – 0.0113WM                                            (3.8) 

                                             TRE = 7.264 heq – 0.0491WM                                           (3.9) 

where DE is the diameter error in mm, TRE is the transition radius error in mm, heq is the 

equivalent chip thickness in μm, and WM is the grinding wheel material (A=0, B=1).  

Similarly, the Ti-6Al-4V models are given by 

                                                   DE = 0.457 heq – 0.0054                                            (3.10) 

                                                        TRE = 11.446 heq                                                  (3.11) 

In Equations 3.10 and 3.11, it should be noted that the grinding wheel material WM did 

not have a significant effect on the dimensional errors over the experimental range of 

parameters for Ti-6Al-4V.  The final models, reduced to their final form by the backward 

elimination technique, were statistically significant at the 90% confidence level with R2 
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values in the range of 0.613-0.941.  The diameter error was used as the primary wear 

indicator in the ensuing optimization analysis because it is less sensitive to changes in 

setup parameters relative to the transition radius error. 

No representative models were generated for the surface roughness since the 

value of spark-out time, an important predictor variable, was held approximately constant 

in the production run experiments and its contribution could not be measured.  However, 

since the part surface roughness decreased with wheel wear within the range of 

experimental dressing conditions considered in this study, the regression model for 

surface roughness generated in the characterization experiment can still be applied to 

safely satisfy the surface finish requirement.  For the grinding power, an upper limit of ~1 

kW can be added to the power prediction for the sharp wheel to represent the prediction 

for the worn wheel after grinding 250 parts under any set of grinding parameters as 

supported by the trend plots in Figures 3.15 and 3.17.  

 

3.4.5 Production Run Experiment – Wheel Performance and Grinding Efficiency 

 

The metric used to compare the wear performance of grinding wheels in the 

production run experiment was the G-ratio, which is defined as the ratio of volume of 

material removed to the volume of wheel wear.  The volume of material removed is 

defined as the product of the volume of material removed per pass and the total number 

of grinding passes.  For plunge centerless grinding, the accumulated volume of radial 

wheel wear gVΔ is given by 

                                                                   brDV ggg Δ=Δ
−

π                                                 (3.12) 
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where gD
−

 is the mean of the wheel diameters before and after the production run, grΔ is 

the decrease in wheel radius according to the measured diameter error, and b is the 

grinding width.   

The G-ratios obtained for Inconel 718 for all the production runs conducted with 

each grinding wheel are shown in Table 3.16 in increasing order of equivalent chip 

thickness.  

  

Table 3.16: G-ratio summary for Inconel 718 grinding wheels  

Production 
Runs 

 
Operation 

Equivalent  
Chip Thickness  

(μm) 

Cincinnati 
Wheel (A) 

G-Ratio 

Norton SG 
Wheel (B) 
G-Ratio 

3, 6 Finish Pass 0.0073 49.0 97.9 
1, 4 Rough Pass 0.0145 20.4 70.2 
2, 5 Rough Pass 0.0254 10.7 18.9 

 
 
 
As seen in Table 3.16, the G-ratios for the Norton SG grinding wheel (B) were 2-4 times 

higher than for the Cincinnati wheel (A) over the range of experimental parameters.  

Also, it is very important to note that the G-ratio obtained with the Norton SG wheel (B) 

at the equivalent chip thickness value of 0.0254 μm was approximately the same as the 

G-ratio obtained with the Cincinnati wheel (A) at the value of 0.0145 μm.  This suggests 

that the Norton SG wheel (B) can be used in place of the Cincinnati wheel (A) to reduce 

the grinding cycle time with higher feed rates without incurring any losses in wear 

performance. 

The G-ratios obtained for Ti-6Al-4V for all the production runs conducted with 

each grinding wheel are shown in Table 3.17 in increasing order of equivalent chip 

thickness.  
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Table 3.17: G-ratio summary for Ti-6Al-4V grinding wheels 

Production 
Runs 

 
Operation 

Equivalent  
Chip Thickness  

(μm) 

Kinik 
Wheel (A) 

G-Ratio 

Norton 
Wheel (B) 
G-Ratio 

1, 4 Rough Pass 0.0145 N/A N/A 
3, 6 Finish Pass 0.0170 98.7 98.7 
2, 5 Rough Pass 0.0254 61.8 70.8 

 
 
 
As seen in Table 3.17, the G-ratios for the Norton grinding wheel (B) were very similar 

to the Kinik grinding wheel (A) over the range of experimental parameters.  The G-ratios 

for the rough pass production runs conducted at the high wheel speed setting (33.5 m/s or 

1050 rpm) could not be obtained based on the negative value of the diameter error 

measured at the end of the production runs.  Comparing the G-ratios for both workpiece 

materials, it can be seen that Inconel 718 is typically more difficult to grind than Ti-6Al-

4V since it will consume a greater number of grinding wheels over a production period.   

The metric used to compare material removal performance under different 

grinding conditions for each wheel in the production run experiment was the grinding 

efficiency.  The grinding efficiency is found by dividing the G-ratio by the specific 

grinding energy [15], where higher efficiencies are desirable in order to maximize 

productivity.  For plunge centerless grinding, the specific grinding energy e is the 

grinding power divided by the material removal rate as given by 

                                                    
bVD

P
Q
Pe

fww π
2

==                                                    (3.13) 

where P is the grinding power, Qw is the volumetric material removal rate, Dw is the 

workpiece diameter, Vf is the feed rate, and b is the grinding width.  The grinding 

efficiencies obtained for the Inconel 718 production runs are summarized in Table 3.18. 
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Table 3.18: Grinding efficiency summary for Inconel 718 grinding wheels  

 
Production 

Runs 

 
Operation 

 
Equivalent 

Chip Thickness  
(μm) 

Cincinnati 
Wheel (A) 
Efficiency 
(mm3/W/s) 

Norton SG 
Wheel (B) 
Efficiency 
(mm3/W/s) 

3, 6 Finish Pass 0.0073 0.60 1.75 
1, 4 Rough Pass 0.0145 0.44 1.86 
2, 5 Rough Pass 0.0254 0.34 0.53 

 
 

As seen in Table 3.18, the Inconel 718 grinding efficiency of the Norton SG wheel (B) 

was up to 5 times higher than the efficiency of the Cincinnati wheel (A) over the range of 

experimental parameters. The efficiency for grinding Inconel 718 did not change 

significantly as the equivalent chip thickness was increased from a value of 0.0073 μm in 

the finish pass operation (Qw = 15.4 mm3/s) to a value 0.0145 μm in the rough pass 

operation (Qw = 30.9 mm3/s) by maintaining the high wheel speed setting (33.5 m/s or 

1050 rpm) and doubling the feed rate, which provides further evidence that the operation 

should be conducted at material removal rates exceeding 20 mm3/s to increase process 

efficiency.  The results also suggest that increasing the feed rate in proportion to an 

increase in the depth of cut may reduce the grinding cycle time without significant losses 

in wheel wear performance or large increases in specific grinding energy, although more 

trials are needed with larger stock removal passes to identify the exact point at which the 

optimum chip thickness value is exceeded using this approach.  Also, when the grinding 

wheel speed was reduced to 600 rpm (heq = 0.0254 μm) under otherwise constant 

conditions, the grinding efficiency decreased for both wheels and more significantly for 

the Norton SG wheel (B). Thus, the Inconel 718 grinding wheels should be operated at 

the higher speed setting (33.5 m/s or 1050 rpm) to maximize their material removal 

efficiency.  
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 The grinding efficiencies obtained for all the Ti-6Al-4V production runs are 

summarized in Table 3.19. 

 

Table 3.19: Grinding efficiency summary for Ti-6Al-4V grinding wheels 

 
Production 

Runs 

 
Operation 

 
Equivalent  

Chip Thickness  
(μm) 

Kinik 
Wheel (A) 
Efficiency 
(mm3/W/s) 

Norton 
Wheel (B) 
Efficiency 
(mm3/W/s) 

1, 4 Rough Pass 0.0145 N/A N/A 
3, 6 Finish Pass 0.0170 2.19 1.84 
2, 5 Rough Pass 0.0254 2.31 2.74 

 
 

As seen in Table 3.19, the Ti-6Al-4V grinding efficiency of the Kinik (A) and 

Norton (B) wheels were not considerably different.  The grinding efficiency increased for 

both wheels when the speed was reduced to 600 rpm (heq = 0.0254 μm) under otherwise 

constant conditions, which maintained the specific grinding energy at relatively constant 

levels throughout the production run.  This suggests that the Ti-6Al-4V wheels should be 

operated at the lower speed setting (19.1 m/s or 600 rpm) to reduce wheel loading, which 

is more pronounced at higher wheel speeds.   

 

3.4.6 Production Run Experiment – Grinding Wheel Surface Topography Evolution 

 

From the beginning to the end of a production run, the efficiency of the grinding 

operation changes due to the stochastic evolution of the grinding wheel surface 

topography.  As the wheel progresses through its stages of wear, the changing condition 

of the surface constantly alters the cutting action for each individual grinding pass.  

Although it is beyond the scope of this study to model grinding wheel topography, 
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several important parameters defined for characterizing the grinding wheel surface 

condition, namely the percentage of active cutting grains, the percentage of wear flat 

area, and the percentage of grain pullouts, were monitored using the imprint technique 

outlined earlier to provide insight into the wear characteristics of each grinding wheel. 

The evaluation of wheel topography using the defined parameters was only conducted for 

the Inconel 718 wheels in order to analyze why the Norton SG wheel (B) outperformed 

the Cincinnati wheel (A) in terms of grinding efficiency in the rough pass production 

runs.  A summary of the wheel topography imprint data is provided in Appendix D.   

In order to characterize the wheel surface condition, the accuracy of the imprint 

method was first verified by measuring the average diameter of an imprinted abrasive 

grain to see how it compares to published values.  The imprint method leads to some 

variation in the maximum depth of penetration of the lead surface as the human hand 

cannot replicate the same imprinting force during each trial.  The histogram in Figure 

3.19 shows the typical grain diameter distribution for the grains exposed after rough 

dressing of the 80-grit size Norton SG wheel for Inconel 718, which was obtained by an 

optical profilometer analysis of 5 imprints taken randomly across the wheel surface.  
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Figure 3.19: Grain diameter distribution for Norton SG grinding wheel (3SGP80-O6-VH) 
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The distribution of the grain diameter is approximately normal as confirmed by earlier 

experimental studies by Hou and Komanduri [136].  For the 80-grit size wheel, the 

average grain diameter was determined to be approximately 170 μm, which is within the 

range of 147-190 μm as estimated from published relations [137].  Therefore, the imprint 

method yields sufficiently accurate results. 

In addition, using the Zygo optical profilometer to analyze the imprints, it is 

possible to obtain information about the cross-sectional geometry, orientation, and spatial 

distribution of the abrasive grains in any direction along the surface.  The typical grain 

protrusion height, defined as the distance between the top grain cutting edge and the 

baseline surface of the bond matrix material, was found to be in the range of 5-15 μm 

after dressing the grinding wheel for a finish pass as suggested by the grain profile trace 

in Figure 3.20.  Under rough dressing conditions, this value was found to be in the range 

of 15-30 μm for all the wheels used in the experiment.  Different authors have reported 

grain protrusion height values of 23-48 μm [138, 139].  

 

 
Figure 3.20: Sample grain cross-sectional profile trace after wheel dressing 

 

The condition of each Inconel 718 wheel was characterized during 2 rough pass 

production runs with the corresponding process parameters as shown in Table 3.20. 
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Table 3.20: Dressing and grinding parameters for Inconel 718 rough pass production runs 

 
Production  

Run 

Dressing 
Overlap 

Ratio 

Grinding 
Wheel 
Speed 
(m/s) 

Regulating 
Wheel  
Speed 

(m/min) 

Stock 
Removed 
per Pass 

(μm) 

Feed 
Rate 

(μm/s) 

Grinding 
Wheel 

Material 
 

A1 2.36 33.5 13.4 127 39.1 A 
A2 2.36 19.1 13.4 127 39.1 A 
B1 2.36 33.5 13.4 127 39.1 B 
B2 2.36 19.1 13.4 127 39.1 B 

 
  

One of the topological parameters used to assess the condition of the grinding 

wheel surface in the rough pass production runs was the percentage of active cutting 

grains or the percentage of total grains available on the surface that engage with the 

workpiece material during the grinding pass.  Figure 3.21 shows a plot of the percentage 

of active cutting grains for each production run.  This parameter was determined by 

dividing the number of grains with wear flat regions by the total number of grains in a 

fixed viewing area for 5 random imprints.   
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Figure 3.21: Percentage of active cutting grains (Inconel 718 grinding wheels) 

A: Cincinnati     B: Norton SG 
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The wear flat regions on the grains can be identified by the clear, shiny spots reflected on 

the imprints as shown in Figure 3.22.   

 
Figure 3.22: Sample image of grain wear flat regions (3SGP80-O6-VH) 

  

Several observations can be made from Figure 3.21.  As the wheel progresses 

through its wear stages (grain fracture  attritious wear  bond fracture), the percentage 

of active cutting grains increases as expected.  The increase in the percentage of active 

cutting grains is more rapid in the early stages of the production run, but after grinding 

roughly 100 parts, the wheel enters the attritious wear stage and the rate of increase 

becomes much lower.  For both wheels, the grain self-sharpening ability is enhanced at 

the lower wheel speed setting.  The percentage of active grains is consistently lower for 

the Norton SG wheel (B) than for the Cincinnati wheel (A), which may be attributed to 

its finer grain fracture behavior.  Finer grain fracture is preferred over coarser grain 

fracture in order to maximize the utility of each grain exposed after dressing.       

A second topological parameter used to assess the condition of the grinding wheel 

surface was the grain wear flat area, which serves as a quantitative measure of abrasive 

grain dullness as the wheel progresses through its wear stages.  Figure 3.23 shows a plot 

Abrasive Grain
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of the percentage of grain wear flat area for each production run, which was determined 

with the aid of a fine grid superimposed on the top view of the optical profilometer 

images.  The percentage of wear flat area is defined as the fraction of the total viewing 

area consisting of wear flat regions. 
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Figure 3.23: Percentage of wear flat area (Inconel 718 grinding wheels) 

A: Cincinnati     B: Norton SG 

 
 

Several observations can be made from Figure 3.23.  As the wheel progresses 

through its wear stages, the percentage of wear flat area increases as expected.  Both 

wheels demonstrate better self-sharpening ability at the lower wheel speed setting (19.1 

m/s or 600 rpm) than at the high setting (33.5 m/s or 1050 rpm).  However, the 

percentage of wear flat area for the Norton SG wheel (B) stays lower throughout the 

production run than for the Cincinnati wheel (A), which can be attributed to its superior 

micro-fracturing characteristics.  A lower percentage of wear flat area results in less 

rubbing, lower grinding forces, and a lower chance of grain pullout. 

A third topological parameter used to assess the condition of the wheel surface 

was the percentage of grain pullouts.  Figure 3.24 shows a plot of the percentage of grain 
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pullouts for each production run, which was determined by dividing the static density of 

grains after dressing the wheel by the static density of grains at different points during the 

production run. 
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Figure 3.24: Percentage of grain pullouts (Inconel 718 grinding wheels) 

A: Cincinnati     B: Norton SG 

 

 Several observations can be made from Figure 3.24.  As the wheel progresses 

through its wear stages, the percentage of grain pullouts increases as expected.  For both 

wheels, the grain pullout effect is more prominent at the higher wheel speed setting (33 

m/s or 1050 rpm) where the cutting action is harder and the grain self-sharpening ability 

is more restricted.  The increase in the percentage of grain pullouts is expected to 

continue even after grinding 250 parts as the percentage of active cutting edges and wear 

flat area continue to increase with wheel wear.  A lower percentage of grain pullouts is 

observed for the Norton SG wheel (B) due to its finer fracturing behavior, which keeps 

the grains sharper for a longer time and reduces the forces exerted on each grain to delay 

the onset of bond fracture.   
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In summary, the plots shown in the previous figures highlight some of the wear 

characteristics of the Inconel 718 grinding wheels in the rough pass production runs and 

confirm the advantages of the Norton SG wheel over the current Cincinnati wheel that 

were highlighted previously by a comparison of their G-ratios and grinding efficiencies.   

 

3.5 Conclusions 

  

In this chapter, two data analysis methods (Taguchi’s S/N ratios and regression 

analysis) were utilized to characterize the relationships among the key grinding 

parameters and process responses.  The S/N ratio analysis was conducted to identify the 

optimum combination of controllable parameters in the experimental range that can be 

selected to minimize the risk of part quality constraint violations.  During the 

experimental trials, the process responses were also affected by parameters that could not 

be controlled precisely on a manual feed centerless grinder and included as experimental 

factors, including the feed rate and spark-out time.  The combined effect of all the 

parameters on the measured responses was determined using multiple regression.  In a 

subsequent production run experiment, the response trends were monitored to analyze the 

effects of wheel wear and to determine the most efficient conditions for material removal. 

The following key conclusions can be made based on the results of this study: 

 

• For both workpiece materials, the grinding power is minimized by using the 

lowest grinding and regulating wheel speed settings and removing smaller 

amounts of stock per pass in combination with using lower feed rates.  These 
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results are generally in agreement with earlier studies conducted to establish 

the material removal rate limits in centerless grinding [71].   

• For both workpiece materials, the surface roughness is minimized by using the 

highest grinding wheel speed setting and lowest regulating wheel speed 

setting in addition to removing smaller amounts of stock per pass in 

combination with using lower feed rates.  These results are in agreement with 

the grain depth of engagement theory presented in grinding textbooks [15]. 

• For the Inconel 718 and Ti-6Al-4V grinding wheels used in the experiments, 

results show that material removal rates less than ~20 mm3/s are in the 

inefficient grinding regime, which is dominated by rubbing and ploughing of 

the work material instead of shearing.  The operation should be performed at 

material removal rates greater than 20 mm3/s in order to improve the process 

efficiency and productivity. 

 

In the next chapter, the regression models generated in the characterization and 

production run experiments are used in combination with mechanistic models developed 

for centerless grinding to establish the feasible operating region bounded by process 

constraints and to find the optimum grinding conditions under the economic objective of 

minimum cost per part. 
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CHAPTER 4 

 

METHODOLOGY FOR ECONOMIC  

OPTIMIZATION OF CENTERLESS GRINDING PARAMETERS 

 

4.1 Introduction 

 

In industrial grinding operations, process parameters have historically been 

selected according to machining data handbooks or operator experience.  Such practices 

are still common in the manufacturing plant today, where overly conservative parameters 

are used in order to avoid machine tool failure and meet part quality specifications.  In 

order to avoid such practices leading to suboptimal cycle times, it is necessary to develop 

a systematic methodology for optimizing the grinding parameters that can be replicated in 

a production setting to improve the process performance.   

As discussed in Chapter 2, the primary approaches currently used to optimize the 

productivity of grinding operations are off-line optimization by design of experiments 

(Figure 4.1) and on-line optimization by adaptive control. 

 

 

 
Figure 4.1: Off-line optimization approach based on design of experiments [140] 
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Off-line parameter optimization consists of conducting experiments to generate models 

for the process constraints and creating objective functions for total cost per part or 

production time per part that can be solved using a suitable optimization algorithm.  On-

line optimization, a more robust alternative to any off-line approach that accounts for 

stochastic process variations, consists of continuously adjusting parameters according to 

data that describes the actual state of the process to maintain a measured response such as 

normal force or grinding power at a prescribed value while maximizing the material 

removal rate.  Despite its advantages, the on-line optimization approach has yet to be 

implemented for centerless grinding as machine tool designers are still looking for ways 

to develop and integrate adaptive controllers into CNC machines to remove the operator 

out of the process control loop.  One major drawback is the lack of cost-effective, 

accurate, and reliable sensors for simultaneous monitoring of process responses.  

Considering the current technological limitations of on-line optimization, an off-line 

strategy was developed for the centerless grinding operation analyzed in this study. 

 

4.2 Solution Approach 

 

In Chapter 2, several off-line techniques were presented for optimizing the 

process parameters in different grinding operations.  These techniques include analytical 

methods such as classical machining economics and design of experiments (DOE) and 

iterative mathematical search methods such as linear programming (LP), non-linear 

programming (NLP), and dynamic programming (DP).  Among these methods, classical 

machining economics is one of the most frequently used techniques in the optimization of 
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traditional machining operations.  However, for the optimization of inherently stochastic 

grinding processes, the application of this deterministic technique has been rather limited.  

One of the major limitations is the lack of reliable tool life relationships that account for 

the effect of all the relevant process parameters.  In addition, the derived optimum 

conditions are often impossible to implement as they violate machine tool or part quality 

constraints.  In order to utilize this method, it is therefore necessary to include process 

constraint identification as an intermediate step in the solution approach. 

In this chapter, a scientific and practical methodology is outlined and carried out 

to determine the optimum operating conditions in the centerless grinding of Inconel 718 

and Ti-6Al-4V superalloy fasteners under the objective of minimum cost per part (Figure 

4.2).  This method combines experimental design techniques with classical machining 

economics theory to find the best solution.  To overcome some of the aforementioned 

limitations of using classical machining economics as an optimization tool, the empirical 

regression models developed in Chapter 3 are used to construct the feasible operating 

region bounded by process constraint boundaries as discussed in the ensuing sections.  

   

 

 

 

 

 

 

 
Figure 4.2: Flow chart of solution approach 

 

Phase I:  Process Constraint Modeling 

Conduct series of experiments to characterize 
effects of major process parameters on 
machine tool and part quality constraints

Formulate constraint-bound feasible 
operating region

Phase II:  Economic Simulation 
Estimate production cost per part over range 
of material removal rates bounded by the 
feasible operating region to determine 
optimum grinding conditions

Taguchi DOE

Statistical Regression

Machining Economics
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4.3 Modeling of Process Constraints 

 

In order to identify the feasible operating region where the grinding operation can 

be performed without violating the imposed part quality characteristics, the regression 

models for grinding power, surface roughness, and wheel wear generated in the 

characterization and production run experiments discussed in Chapter 3 were used in 

combination with mechanistic models for thermal damage and diameter dimension error 

presented in the ensuing sections to formulate the constraint boundaries for the process 

and determine whether or not they are active.  In the rough grinding operation, the 

material removal rate can be increased up to the process constraints of machine spindle 

power, part thermal damage, and workpiece chatter.  In the finish grinding operation, the 

active constraints are the part surface finish and dimensional accuracy as prescribed by 

the tolerance ranges for the fastener outer diameter, taper, transition angles and radii, and 

roundness.  The ensuing sections present the models used to formulate the feasible 

operating region where the grinding parameters can be selected to safely meet the 

machine tool and part quality constraints.   

 
 
4.3.1 Machine Tool Spindle Power 
 
 

The centerless grinder used in this study was the OM-2 model manufactured by 

Cincinnati with a maximum spindle power of 15 hp (11.25 kW).  The grinding power 

available on this machine tool in any operation for a given part diameter and length is a 

function of the grinding wheel speed and size according to the data shown in Table 4.1.    
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Table 4.1: Power capacity per unit width of wheel used as a function of wheel diameter and speed [141] 

Wheel Speed/Diameter 350 mm 450 mm 600 mm 
33 m/s 30 W/mm 60 W/mm 90 W/mm 
43 m/s 50 W/mm 100 W/mm 150 W/mm 
60 m/s 100 W/mm 150 W/mm 200 W/mm 

 
 

According to Table 4.1, the machine tool spindle power constraint would be active when 

the grinding power exceeds 3-4 kW using a wheel speed of ~20 m/s and when the 

grinding power exceeds 5-6 kW using a wheel speed of ~33 m/s for a grinding wheel 

diameter of 609.6 mm (24 in.) and grinding width of 63.5 mm (2.5 in.) used in this study. 

As supported by experimental evidence and the data shown in Table 4.1, the 

machine tool power constraint is not active for the 7.94 mm (5/16 in.) diameter part over 

the range of grinding parameter values used in the characterization experiment.  Under 

the most severe grinding conditions corresponding to the highest grinding wheel speed 

setting (33.5 m/s) and the largest reduction in workpiece diameter (127 μm), the grinding 

power typically does not exceed 1.5 kW as predicted by the empirical regression 

generated in Chapter 3 over the range of feed rates and workpiece speeds used in the 

experimental trials (Table 4.2). 

 

Table 4.2: Grinding power as a function of feed rate and workpiece speed (Inconel 718)  

Feed Rate / 
Workpiece Speed  

10 
μm/s 

20 
μm/s 

30 
μm/s 

40 
μm/s 

50 
μm/s 

200 mm/s 908 980 1051 1122 1193 
250 mm/s 963 1035 1106 1177 1248 
300 mm/s 1019 1090 1161 1232 1303 
350 mm/s 1074 1145 1216 1287 1358 
400 mm/s 1129 1200 1271 1342 1414 
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The data shown in Table 4.1 was validated experimentally by performing a 

grinding pass under the conditions used in the characterization experiment using a very 

low grinding wheel speed (8 m/s or 250 rpm).  For a grinding pass conducted using a 

wheel speed of 8 m/s and a grinding width equal to the part length of 63.5 mm (2.5 in.), 

the spindle power limit would be exceeded when the grinding power exceeds ~1-1.5 kW 

according to the predictions in Table 4.1.  In an actual trial, this prediction was proven to 

be accurate as the spindle torque was insufficient to perform material removal over the 

experimental range of feed rates and workpiece speeds (Table 4.2).  Although the spindle 

power constraint was not active over the experimental range of process parameters for the 

size of the parts used in this study, the above analysis can be extended to predict the 

grinding power limit for any combination of wheel and workpiece. 

 
 
4.3.2 Workpiece Thermal Damage 
 
 
 

There is no widely accepted model for part thermal damage in centerless grinding, 

but two practical models can be used to monitor the onset of grinding burn.  In a model 

proposed by Malkin [15], the critical specific grinding energy ec for workpiece burn is 

given by   
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where κw is the thermal conductivity of the workpiece material, De is the equivalent 

diameter, Vw is the workpiece surface speed, a is the depth of cut per workpiece 

revolution, Tc is the contact zone temperature resulting in grinding burn of the workpiece 
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material, αw is the thermal diffusivity of the workpiece material, and Rw is the 

experimental heat partition ratio or the fraction of grinding energy entering the workpiece 

through the contact zone as heat.  In Equation 4.1, the equivalent diameter De for an 

external cylindrical grinding operation is given by  
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where Dg and Dw are the diameters of the grinding wheel and workpiece, respectively. 

The depth of cut per workpiece revolution a is defined for centerless grinding as given by 
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where Vf is the feed rate and Nw is the workpiece rotational speed.  A similar expression 

of the model in Equation 4.1 is proposed and verified by Rowe et al. [142] for a cast iron 

centerless grinding operation, where the critical specific grinding energy for workpiece 

burn ec is given by 
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where ( )wcκρ  is the workpiece material thermal coefficient defined as the product of the 

workpiece material thermal conductivity κw, density ρw, and specific heat cw and Kt is the 

heat flux distribution coefficient with all other variables are as previously defined.  In 

Equation 4.4, a triangular shape for the heat flux distribution can be assumed for most 

conventional grinding operations corresponding to a coefficient Kt of 0.93 [76].  If a 

square law or uniform heat flux distribution is assumed for the process, the corresponding 

heat flux distribution coefficients are 0.83 and 0.89, respectively.  In Equation 4.4, the 
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parameter lg is defined as the wheel-workpiece geometric contact length, and for an 

external cylindrical grinding operation it is given by 
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where a is the depth of cut per workpiece revolution and De is the equivalent diameter as 

defined in Equation 4.2.   

The experimental heat partition ratio to the workpiece Rw can be estimated based 

on theoretical heat partition ratio Rt defined by one of several relations presented in the 

scientific literature.  In dry grinding, Hahn [83] estimates the theoretical heat partition 

ratio as given by 
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where κg  is the thermal conductivity of the abrasive grain material, ro is the grain contact 

radius, and Rw and Rg are the fraction of heat conducted to the workpiece and grinding 

wheel, respectively, with all other variables as previously defined.  The grain contact 

radius is a function of the abrasive grain size and wear flat area and it increases with 

wheel wear.  Average values of the grain contact radius for grinding wheels with a grain 

size of 46-200 are typically in the range of 10-50 μm.  However, it may not always be 

feasible to accurately measure the grain contact radius in practice.  Rowe et al. [89] 

estimate the theoretical heat partition ratio to the workpiece as given by  
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where ( )gcκρ is the grinding wheel material thermal coefficient defined as the product of 

the abrasive grain thermal conductivity gκ , density gρ , and specific heat cg with all other 

variables as previously defined.  It should be noted that the models for the theoretical heat 

partition ratio are conservative as they do not account for the fraction of heat energy 

removed by the chips and the grinding fluid. 

In the grinding process, the total heat generated in the wheel-workpiece contact 

zone is partitioned among the workpiece, the grinding wheel, the chips, and the grinding 

fluid.  The heat partition among these four heat sinks is given by 

                                                       Rw + Rg + Rc + Rf  = 1                                              (4.8) 

where Rw, Rg, Rc, and Rf  are the fraction of heat conducted to the workpiece, grinding 

wheel, chips, and fluid, respectively.  For shallow-cut grinding with very small wheel-

workpiece geometric contact lengths, the effects of convective cooling on the 

temperatures in the grinding contact zone by the application of grinding fluid at low 

pressures are negligible (Rf  = 0) [142].  In addition, it can be shown that the fraction of 

heat removed by the chips depends on the specific grinding energy levels in the process.  

The fraction of heat energy removed by the chips Rc is given by 

                                                                           
e

e
R ch

c =                                                                       (4.9) 

where ech is the specific energy for chip formation and e is the process specific energy.  

The specific energy for chip formation can be approximated as the energy required to 

melt the workpiece material [143] as given by  

                                                                     mwwch Tce ρ=                                                          (4.10) 
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where wρ and wc  are the density and specific heat of the workpiece material at room 

temperature, respectively, and Tm is its melting temperature.  For the heat resistant 

superalloys Inconel 718 and Ti-6Al-4V, the specific energy for chip formation is 4-5 

J/mm3 and it is lower than the melting energy for many types of steels (6-8 J/mm3).  The 

maximum fraction of heat energy removed by the chips can be estimated by 

                                                                    
e

Tc
R mww

c
ρ

=                                                       (4.11) 

where all the variables are as previously defined.  In centerless grinding of Inconel 718 

and Ti-6Al-4V alloys where the specific grinding energy levels are relatively high (20-

100 J/mm3), the fraction of heat energy conducted away by the chips is 0.05-0.25.  

Consequently, the great majority of the heat energy is partitioned between the workpiece 

and grinding wheel material. Combining Equations 4.7 and 4.11, the final expression for 

the experimental heat partition ratio Rw or fraction of heat energy conducted to the 

workpiece becomes 

                                                           ⎟
⎠
⎞

⎜
⎝
⎛ −=

e
Tc

RR mww
tw

ρ
1                                                 (4.12) 

where all variables are as previously defined.  As suggested by Equation 4.12, the 

fraction of heat energy removed by the chips is only significant at very low specific 

grinding energy levels. 

For the thermal models presented in Equations 4.1 and 4.4, it has been 

documented that the grinding zone temperature Tc at the onset of burn is 950oC for 

nickel-based alloys [144, 145] and 640oC for Ti-6Al-4V [146].  For a more conservative 

prediction of the critical specific grinding energy, the fluid film boiling temperature 
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(~130oC for water-soluble emulsions and ~300oC for cutting oils) can be used as the 

limiting temperature for the occurrence of workpiece grinding burn.   

In this analysis, the model developed by Rowe et al. [142] (Equation 4.4) is used 

to predict the occurrence of grinding burn for the Inconel 718 and Ti-6Al-4V workpieces 

and identify the burn-free operating region.  To use this model, it is necessary to calibrate 

the fraction of heat energy entering the workpiece over the experimental range of process 

parameters. First, the theoretical heat partition ratio in dry grinding is found using 

Equation 4.7 over the range of parameters used in the experiments based on the thermal 

properties of the workpiece and abrasive grain materials.  Typical results are shown in 

Tables 4.3 and 4.4 for the Inconel 718 and Ti-6Al-4V workpieces used in this study. 

 

Table 4.3: Theoretical heat partition ratio to the workpiece in dry grinding (Inconel 718) 

Grinding Wheel Speed / 
Workpiece Speed  

20  
m/s 

25  
m/s 

30  
m/s 

200 mm/s .916 .925 .931 
300 mm/s .899 .909 .916 
400 mm/s .886 .896 .905 

 
 
 

Table 4.4: Theoretical heat partition ratio to the workpiece in dry grinding (Ti-6Al-4V) 

Grinding Wheel Speed / 
Workpiece Speed  

20  
m/s 

25  
m/s 

30  
m/s 

200 mm/s .952 .957 .961 
300 mm/s .942 .948 .952 
400 mm/s .934 .940 .945 

 

 
Taking into account the fraction of heat energy removed by the chips and the 

grinding fluid based on the grinding power measured in the process, the experimental 

heat partition ratio to the workpiece is estimated using Equation 4.12.  Calculating the 
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representative chip formation energy to be ~5 J/mm3 for the superalloys analyzed this 

study based on their thermophysical properties at room temperature (Table 3.1), the 

experimental heat partition ratios obtained for a subset of characterization experiment 

trials are shown in Tables 4.5 and 4.6 for Inconel 718 and Ti-6Al-4V, respectively. 

 

Table 4.5: Experimental heat partition ratio for subset of characterization experiment trials (Inconel 718) 

Grinding  
Wheel  
Speed  
(m/s) 

Regulating 
Wheel 
Speed  

(m/min) 

Stock  
Removed  
per Pass  

(μm) 

Feed  
Rate  

(μm/s) 

Grinding 
Wheel 

Material 
 

Specific  
Grinding  
Energy 
(J/mm3) 

Exp. 
Heat 

Partition 
Ratio 

19.1 13.4 152.4 31.6 A 42.8 0.804 
19.1 13.4 152.4 38.1 A 35.8 0.783 
23.9 24.5 76.2 33.1 A 38.3 0.776 
23.9 24.5 76.2 24.4 A 42.4 0.788 
28.7 13.4 76.2 12.6 A 64.0 0.854 
28.7 13.4 76.2 12.8 A 68.8 0.859 
33.5 24.5 152.4 50.1 A 38.7 0.791 
33.5 24.5 152.4 49.2 A 38.5 0.790 

 

 

Table 4.6: Experimental heat partition ratio for subset of characterization experiment trials (Ti-6Al-4V) 

Grinding  
Wheel  
Speed  
(m/s) 

Regulating 
Wheel 
Speed  

(m/min) 

Stock  
Removed  
per Pass  

(μm) 

Feed  
Rate  

(μm/s) 

Grinding 
Wheel 

Material 
 

Specific  
Grinding  
Energy 
(J/mm3) 

Exp. 
Heat 

Partition 
Ratio 

19.1 13.4 152.4 18.8 A 41.2 0.834 
19.1 13.4 152.4 40.3 A 34.1 0.810 
23.9 24.5 76.2 21.3 A 35.5 0.806 
23.9 24.5 76.2 21.8 A 36.4 0.809 
28.7 13.4 76.2 24.3 A 45.3 0.852 
28.7 13.4 76.2 15.2 A 60.7 0.879 
33.5 24.5 152.4 49.2 A 33.0 0.804 
33.5 24.5 152.4 57.3 A 31.4 0.796 
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As seen in Tables 4.5 and 4.6, the experimental heat partition ratio is approximately 10-

15% lower than the theoretical heat partition ratio over the experimental range of 

grinding conditions. 

To determine whether the grinding burn constraint boundary is active under the 

conditions shown in Tables 4.5 and 4.6, the specific grinding energy for burn (Equation 

4.4) can be compared to the process energy to see if they are equal.  As shown in Figure 

4.3, the burn constraint is not active over the range of parameters used in the 

characterization experiment for the 7.94 mm (5/16 in.) diameter parts for a sharp grinding 

wheel and burn will not occur.     
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                 (a) Inconel 718 (WM: 2A80-O4-V)                      (b) Ti-6Al-4V (WM: GC120-N+-7V) 

Figure 4.3: Specific grinding energy in the process and at the burn limit 

 

The grinding power for a worn wheel after conducting 250 passes was observed to be ~1 

kW greater than the power at the beginning of the production run.  The corresponding 

value of specific grinding energy after 250 grinding passes also does not exceed the 

specific grinding energy for burn established by the model in Equation 4.4 under the 

same grinding conditions.  After grinding 250 parts, the process specific energy increases 
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by a factor of ~1.5 from the specific energy at the beginning of the production run for 

both workpiece materials.  However, as seen in Figure 4.3, the specific grinding energy 

can increase by up to 3-4 times for Inconel 718 and 1.5-2 times for Ti-6Al-4V before 

encountering the grinding burn constraint.     

To verify the predictions of the theoretical model for workpiece burn, the 

workpiece surface quality can be inspected for thermal damage both visually and in the 

metrology lab after the grinding operation by measuring the workpiece surface hardness 

or conducting metallurgical examinations of the workpiece cross-section.  However, even 

though the model may predict the occurrence of grinding burn during the material 

removal stage for a particular combination of parameters, thermal damage may still not 

occur in practice since the depth of the burn layer is often removed during spark-out 

where the elastic deflections of the machine tool system are recovered and where the 

depth of cut per workpiece revolution diminishes to a very small value approaching zero 

(stationary system).  Alternatively, the occurrence of thermal damage may also be 

verified by measuring the transient workpiece temperature field during the process to see 

if the temperatures for the onset of burn are reached using high-speed IR imaging.  For all 

the experimental trials conducted in this study, no grinding burns marks were visually 

detected on the workpiece surface and no notable changes in the surface hardness were 

measured from the original condition after the operation.  These results are not surprising 

considering that the contact time of the abrasive grains with the workpiece during the 

material removal stage and the cooling time during spark-out are very short in this 

shallow-cut grinding operation. 
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4.3.3 Dimensional Tolerances and Surface Finish 

 

In the finish grinding operation, the active process constraints are the part surface 

finish requirement of 0.81 μm (32 μin.) along with the final dimensional accuracy as 

prescribed by the typical tolerance ranges shown in Table 4.7 for the fastener diameter, 

taper, transition radii, and roundness.   

 
 

Table 4.7: Typical dimensional tolerance constraints for fastener grinding operation 

Dimensional  
Characteristic 

 Tolerance  
Range  

Diameter  + 6.35 μm (+ 0.00025 in.) 
Out-of-Roundness 5.08 μm (0.00020 in.) 

Head-to-Shank Transition Radius  76.2 μm (0.003 in.) 
Grip-to-Thread Transition Radius  25.4 μm (0.001 in.) 

Head Angle  + 0.5o  
Taper + 6.35 μm (+ 0.00025 in.) 

 
 

Most of the dimensional characteristics in Table 4.7, including out-of-roundness and 

taper, cannot be constrained by a practical deterministic model as they depend on a 

complex combination of machine setup parameters, dressing parameters, and random 

variations in workpiece and regulating wheel geometry prior to the grinding operation.   

The only dimensional characteristic that was constrained by a deterministic model 

is the part diameter, and its size deviation from the target dimension was quantified by 

the diameter error (DE).  Under stable grinding conditions with a sharp grinding wheel 

that has not undergone any radial wear, the final diameter error is determined by how 

quickly the machine tool system recovers elastically during the spark-out stage from the 

cutting forces applied during the grinding stage to reduce the magnitude of the 
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accumulated workpiece radial deflection and complete the intended grinding pass.   

According to Rowe [141], the depth of cut at the end of the spark-out stage is related to 

the depth of cut at the beginning of the spark-out stage as given by  

                                                                      n
if Kaa )1( −=                                                           (4.13) 

where af is the final depth of cut at the end of spark-out, ai is the initial depth of cut at the 

beginning of spark-out, K is the machining elasticity parameter, and n is the number of 

workpiece half-revolutions completed during spark-out.  The number of full workpiece 

revolutions N completed during spark-out is a function of the workpiece speed Vw, spark-

out time ts, and workpiece diameter Dw as given by 

                                                                   
w

sw

D
tVnN

π
==

2
1

                                                           (4.14) 

Substituting Equation 4.14 into 4.13 and rearranging the resulting expression, the time 

required to achieve a specified final depth of cut during spark-out becomes 
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where ts is the spark-out time, Dw is the workpiece diameter, Nr is the regulating wheel 

rotational speed in rev/min or rev/s, Dr is the regulating wheel diameter and all other 

parameters are as previously defined.  The machining elasticity parameter K, defined as 

the ratio of the actual depth of cut at the end of the grinding stage to the applied or set 

depth of cut at the beginning of the grinding stage, is unique for each combination of 

machine tool and workpiece material and can be estimated by an analysis of the infeed or 

spark-out signal using a power meter according to the method described by Rowe [141], 
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where typical values range from 0.1 to 0.4.  When grinding Inconel 718 and Ti-6Al-4V 

on the machine tool used in this study, the range of values obtained for the elasticity 

parameter according to Rowe’s method was 0.05-0.20.  This range of values is not 

surprising, especially for Ti-6Al-4V which has a relatively low modulus of elasticity.  

Equation 4.15 can be used to impose a constraint on the diameter dimension under stable 

grinding conditions and optimize the value of spark-out time, which is a very significant 

fraction of the overall cycle time in shallow-cut centerless grinding. 

 

4.4 Feasible Operating Region Mapping 

 

From the analysis presented in the previous section, it is evident that the machine 

tool spindle power and workpiece grinding burn constraints are not active over the range 

of grinding parameters used in the characterization experiment in Chapter 3.  

Consequently, the only active process constraint boundaries that should be mapped to 

identify the feasible operating region are those defining the surface roughness and 

dimensional tolerance requirements.  However, in many grinding operations, most or all 

of the aforementioned process constraints can be simultaneously active.  In this section, a 

numerical example is carried out to demonstrate how the map of the feasible operating 

region can be generated under the assumption that all of the relevant process constraints 

are active. 

In this numerical example, it is assumed that the active constraints for an Inconel 

718 grinding operation are a grinding burn power limit of 5 kW, part surface roughness 

limit of 0.81 μm (32 μin), and a diameter error (DE) of 2.54 μm (0.0001 in) for a machine 
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tool system with an elasticity parameter K of 0.2.  Placing a strict limit on the final 

diameter error as is the case in this example can be done to also meet the workpiece 

roundness requirement (Table 4.7).  Under stable grinding conditions with a perfectly 

round workpiece profile, the final theoretical out-of-roundness should be equal to the 

depth of cut per workpiece revolution at the end of the spark-out stage.  To define the 

feasible operating region, the constraint boundaries are plotted in the x-y plane defined by 

the depth of cut per workpiece revolution a and workpiece speed Vw over the 

experimental range of grinding parameter values using the models presented in the 

previous section.  A summary of the parameters that are held constant when mapping the 

feasible operating region for the 7.94 mm (5/16 in.) diameter Inconel 718 part is shown in 

Table 4.8. 

 

Table 4.8: Process parameters for mapping the active constraint boundaries 

Dressing  
Overlap  

Ratio  

Grinding 
Wheel 

Speed (m/s) 

Stock Removed  
per Pass 

(μm)  

Grinding 
Wheel 

Material 

Spark-Out 
Time  

(s) 

Machining 
Elasticity 
Parameter 

2.36 31.9 127   A 0.5, 1.0, 1.5 0.2 
 
 
 
The feasible operating region bounded by process constraints where the grinding 

parameters can be selected to meet the imposed requirements is shaded in Figure 4.4 

under the assumption that the surface roughness constraint is not active for a rough 

grinding operation.  
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Figure 4.4: Feasible operating region defined in depth of cut vs. workpiece speed plane 

 
 

As seen in Figure 4.4, several possible combinations of workpiece speed Vw and depth of 

cut per workpiece revolution a can be selected within the feasible operating region to 

produce a part that meets the imposed quality requirements.  The optimum combination 

of parameters to be identified in the region is the one that yields the lowest grinding 

operation costs. 

 
 
4.5 Economic Simulation Algorithm 

 

In any machining optimization problem, the primary objective is to find the 

combination of parameters that maximizes the production output or minimizes the 

production cost per part in the operation.  In this section, an algorithm is developed to 

find the cost-optimum parameters when taking into account the effects of wheel wear and 

other time factors encountered in the production environment.  The minimum cost per 
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part is found by identifying the cost-optimum material removal rate when all the cost 

components in the process are taken into account as shown in Figure 4.5.     

 

 

 

 

 

 

 

 
 

Figure 4.5: Grinding process optimization strategy 

 

As seen in Figure 4.5, the total cost per part in grinding is the sum of the wheel cost and 

labor cost per part.  If a production run is conducted at a very low value of material 

removal rate, the labor cost per part will be too high due to excessively high grinding 

cycle times.  Conversely, if a production run is conducted at a very high material removal 

rate, wheel cost per part will be too high due to excessive wheel consumption by wear 

and subsequent dressing.  Consequently, there exists an optimum operating point where 

the wheel cost and labor cost per part are both minimized, defined as the ‘cost-optimum’ 

material removal rate.  Figure 4.5 illustrates how the cost-optimum point is shifted to a 

higher value of material removal rate to increase productivity by the selection of a 

superior grinding wheel.  A grinding wheel with improved wear characteristics is 

expected to process a higher number parts between dressings and require a lower dressing 

frequency, which will reduce the wheel cost per part.  
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In order to minimize the total cost per part in production grinding, it is necessary 

to minimize the individual cost components attributed to both the wheel cost and labor 

cost per part.  The wheel cost and labor cost per part can be derived based on the different 

grinding production cycle time parameters as summarized in Table 4.9. 

  

Table 4.9: Typical components of wheel cost and labor cost per part in production 

Labor Cost per Part Wheel Cost per Part 
Part transfer time 

Machine setup time 
Wheel dressing time 

Part loading time 
Grinding time 

Part unloading time 
Part inspection time 

Break time 
Log recording time 

Unit wheel cost 
Number of wheels required 
Number of parts per dress 

 

 
 

  The simulation algorithm developed using machining economics theory to find 

the cost-optimum operating point in the feasible operation region is shown in the flow 

chart in Figure 4.6.   

 

Inconel 718 Wheel Ti-6Al-4V Wheel

Number of Parts per Dressing

Production Period (Week, Month, or Year)

Load & Unload Time Grind Time Quality Check Time Dress Time

Number of Processed Parts
Fluid Cost per Part

Labor Cost per Part

Time to Process One Part

Setup Time Break Time

Wheel Cost per Part

Inconel 718 Wheel Ti-6Al-4V Wheel

Number of Parts per Dressing

Production Period (Week, Month, or Year)

Load & Unload Time Grind Time Quality Check Time Dress Time

Number of Processed Parts
Fluid Cost per Part

Labor Cost per Part

Time to Process One Part

Setup Time Break Time

Wheel Cost per Part

 

Figure 4.6: Flow chart of economic simulation algorithm 
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To identify the cost-optimum operating point in the feasible operating region for any 

production run, the simulation algorithm shown in Figure 4.6 requires two sets of inputs.  

These inputs are the time data recorded for a typical grinding production cycle sequence 

and the regression models for wheel wear obtained in the production run experiment for 

the data extracted at the 250th grinding pass (Chapter 3).  The simulation begins by 

entering information about the workpiece (i.e. material, part dimensions), grinding wheel 

(i.e. unit cost), dressing parameters (i.e. dressing overlap ratio) and machining parameters 

(i.e. grinding wheel speed, regulating wheel speed).  The next step is to enter the time 

data for the typical production stages conducted in sequence, including part transfer time, 

machine setup time, initial wheel dressing time, loading time, unloading time, and part 

inspection time.  The data is used to compute the time to process one part, which can then 

be used to estimate the number of parts processed over the specified production period 

and find the wheel and labor cost incurred for each part.  For this analysis, it is necessary 

to specify the production period along with the batch size (250 parts) to perform the 

repeated batch production simulation.  The diameter error (DE) was used as the primary 

wear indicator because it is less sensitive to changes in setup parameters relative to the 

transition radius error.  The standard equations used for the economic simulation are 

summarized in Appendix E.      

A sample simulation was carried out using the cycle time inputs summarized in 

Table 4.10 to compute the total cost per part over the entire range of material removal 

rates bounded by the feasible operating region shown earlier in Figure 4.4.  The results of 

the simulation are illustrated for material removal rates ranging from 10 mm3/s to 80 

mm3/s in Figure 4.7. 
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Table 4.10: Grinding process data for economic simulation 

Workpiece Material Inconel 718 
Part Diameter and Length   7.94 mm (5/16 in.), 63.5 mm (2.5 in.) 

Batch Size 250 parts 
Production Period 1 week 

Grinding Wheel Cost $400/unit 
Grinding Fluid Cost $20/gallon 

Grinding Wheel Speed 31.9 m/s  
Regulating Wheel Speed 13.4 m/min  
Part Diameter Reduction   127 μm (0.005 in.) 

Part Transfer Time 10 min 
Machine Setup Time 60 min 

Initial Wheel Dressing Time 15 min 
Loading Time per Part 5 s 

Spark-Out Time per Part 3 s 
Unloading Time per Part 5 s 

Part Inspection Frequency  Once every 10 parts (5 min per part) 
Break Time 15 min 

Data Recording Time 15 min 
 
 
 
 

 
Figure 4.7: Sample plot for identifying cost-optimum material removal rate  

 

 

From Figure 4.7, it is evident that the production run should be conducted at a 

material removal rate of ~42 mm3/s in order to minimize the total cost per part.  For the 

constant values of grinding wheel speed (31.9 m/s) and regulating wheel speed (13.4 

Cost-Optimum     
      MRR 



 106 
 

m/min) selected to maximize the cutting speed ratio and thus minimize the rate of wheel 

wear, the optimum operating point corresponds to a feed rate of ~52 μm/s (~0.124 

in./min).  The simulation in Figure 4.4 may be repeated for different production cycle 

time data values in order to investigate other potential ways to reduce total cost per part 

in addition to operating at the optimum material removal rate. 

The proposed methodology, which focuses only on the major controllable process 

parameters, can be used to benefit grinding process productivity in many ways.  First, it 

can be used as a practical and cost-effective alternative to more data-intensive 

optimization approaches. Centerless grinding is inherently a stochastic process where a 

large number of variables affect process performance, and more complex optimization 

approaches do not guarantee reproducible solutions in practice.  In addition, it is 

relatively simple to evaluate the significance of each cost factor in the operation using the 

methodology outlined in this study in order to facilitate and guide decision making for 

future optimization efforts at the system level.   

 

4.6 Verification of Optimum Parameters on CNC Centerless Grinder 

 

 
The productivity under the optimum parameters identified by the simulation was 

evaluated for several trial runs on a CNC grinder.  The CNC grinder offers greater 

capability for grinding cycle optimization than the manual grinder since it allows the 

operator to set the feed rate and regulating wheel speed for each of the 3 separate material 

removal stages (rough, semi-finish, finish) in the grinding cycle illustrated in Figure 4.8.  

Having control of these parameters over each stage, the operator can simultaneously meet 
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multiple part quality requirements and eliminate the need for separate rough and finish 

passes.  On a CNC grinder, the grinding cycle is defined by three material removal stages 

(roughing, semi-finishing, finishing) and two dwell or spark-out stages where the infeed 

motion is stopped and where material removal continues at a decreasing rate until the 

machine tool system returns to its original position.    

 

 

 

 

 

 

 

 
Figure 4.8: CNC grinding cycle stage sequence 

 

 

In order to minimize the grinding cycle time and maximize part output for any grinding 

pass, the operator can follow the general feed control strategy outlined in Table 4.11, 

taking into consideration the grinding behavior of each material.  For Inconel 718, which 

responds more favorably to high feed rates relative to Ti-6Al-4V, the first step is to 

complete 70-85% of the stock removal in the first roughing stage at a high feed rate that 

does not violate the spindle power or part thermal damage constraints.  In case the 

thermal damage limit is exceeded in the first roughing stage, the second step is to select 

softer machining parameters for the intermediate semi-finish stage that will remove the 

grinding burn layer (i.e. lower feed rate, lower grinding wheel speed, etc.).  The last step 
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is to complete the remaining 5-10% of stock removal at a low feed rate (~25% of high 

feed rate value) to meet the dimensional tolerance, roundness, and surface roughness 

requirements.  Completing the last stock removal stage at a sufficiently low feed rate will 

ensure that little or no spark-out time is needed at the end of the cycle, which will have a 

positive impact on the overall cycle time.  For Ti-6Al-4V, the stock removal should be 

distributed more evenly with more uniform and less aggressive feed rates across the 

stages, since material adhesion to the grinding wheel is more pronounced at high cutting 

temperatures. In turn, more effective control of cutting temperatures will minimize 

dimensional inaccuracies associated with grinding wheel loading as encountered in the 

production run experiment (Chapter 3). 

 
Table 4.11: General feed control strategy for grinding cycle optimization [42] 

Stage Active Constraint(s) Inconel 718 Ti-6Al-4V 
 

Rough 
machine spindle  

power, part  
thermal damage 

70-85% stock  
removed,  

high feed rate 

40-55% stock  
removed, medium  

feed rate 
 

Semi- 
Finish  

corrective step  
for rough stage  

violations 

10-20% stock  
removed, 

medium feed rate  

30-40% stock  
removed, medium 

 feed rate  
 

Finish  
surface finish,  

tolerances,  
roundness 

5-10% stock  
removed,  

medium feed rate  

15-20% stock  
removed, medium  

feed rate 
 
 

The optimum material removal rates identified for the single-stage manual grinder 

by the simulation for different part sizes were converted to corresponding feed rates and 

used for the roughing stage on the multi-stage CNC grinder.  The feed rates for the 

remaining stages were selected according to the recommendations in Table 4.11 if the 

corresponding material removal rate value for that stage did not fall in the low-efficiency 

material removal rate range (less than 20 mm3/s) identified in Chapter 3.  Otherwise, they 
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were kept the same as in the roughing stage.  The grinding wheel and regulating wheel 

speeds were set at the maximum (31.9 m/s) and minimum value (13.4 m/min) 

respectively, for the roughing and semi-finishing stages to minimize the value of 

equivalent chip thickness, which reduces the rate of wheel wear and prolongs the dressing 

interval as seen by the production run trends analyzed in Chapter 3.  The regulating wheel 

speed was increased for the finishing stage to minimize the final spark-out time according 

to the diameter error model presented earlier in Equation 4.15.  A summary of the 

grinding productivity under the optimum parameters identified in the simulation for 

several production runs on the CNC grinders is shown Table 4.12.   

 
 

Table 4.12: CNC grinding productivity under the cost-optimum process parameters 

 
Material 

Part 
Length 

(in.) 

Part  
Diameter 

(in.) 

Stock 
Removed per 

Pass (in.) 

Cycle 
Time 
 (s) 

Parts  
per  

Dress 

Feed  
Rates  

(in./min) 
Inco 718 2.8060 0.4440 0.0060 12.1 130 .200/.100/.050
Inco 718 2.7560 0.5060 0.0063 11.8 200 .225/.125/.040
Inco 718 2.7430 0.4410 0.0049 11.5 110 .210/.110/.035
Inco 718 2.8060 0.7665 0.0125 12.7 100 .250/.150/.100

Ti-6Al-4V 1.9540 0.6320 0.0080 13.0 850 .130/.130/.080
Ti-6Al-4V 1.3080 0.5430 0.0380 18.2 50 .250/.150/.075
Ti-6Al-4V 1.7230 0.3250 0.0120 12.2 175 .160/.160/.060
Ti-6Al-4V 1.4750 0.3855 0.0084 11.9 750 .130/.090/.090

 

 
Prior to implementing the optimum parameters, the typical average cycle time per 

part for four different Inconel 718 and Ti-6Al-4V obtained in typical rough pass 

production runs was 15.1 s and 15.8 s, respectively.  Using the optimum process 

parameters in Table 4.12, the average cycle time per part for the same Inconel 718 and 

Ti-6Al-4V rough pass production runs was 12.0 s and 13.8 s, which corresponds to a time 

reduction of 21% and 13%, respectively.  In most cases, no losses in wheel performance 
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were observed using the more aggressive feed rates as indicated by the number of parts 

processed between dressings.  The gains were typically greater for Inconel 718 because it 

responded more favorably to higher feed rates than Ti-6Al-4V, but in general, the wheel 

performance was not satisfactory for large diameter parts for either workpiece material.  

This suggests that a wheel with different specifications would be better suited for higher 

volumes of stock removal.  The regression models for wheel wear developed in Chapter 3 

worked reasonably well over the range of experimental values considering the fact that 

they cannot accurately quantify wheel wear for each stage on a CNC grinder and predict 

which dimensional tolerance will first diverge outside the prescribed range.  In 

production, the variance of any particular tolerance is best monitored and analyzed using 

statistical methods since each individual part dimension varies with a very large number 

of setup parameters and random part non-uniformities inherited from previous stages of 

the manufacturing process.   

 

4.7 Conclusions 

 
 
 In this chapter, a methodology was developed and illustrated using numerical 

examples to find the optimum grinding parameters in a plunge centerless grinding 

operation.  The key step in this methodology is the application of a model-based strategy 

to identify the feasible operating region where the grinding parameters can be selected 

without violating machine tool or part quality constraints.  After identifying the 

parameters bounded by the feasible operating region, a simulation algorithm was 

developed using machining economics theory to find the corresponding optimum 
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operating conditions.  The simulation can be repeated for different production cycle time 

data inputs, and it highlights all the important cost factors for any grinding operation to 

facilitate decision making for future optimization planning. 

 The following key conclusions can be made based on the results of this study: 

 

• For Inconel 718 and Ti-6Al-4V workpieces with diameters ranging from 7.94 

mm (5/16 in.) to 25.4 mm (1 in.), the cost-optimum material removal rate in 

rough grinding using the wheels evaluated in this study was determined to be 

in the range of ~40-100 mm3/s corresponding to a specific material removal 

rate of 0.6-1.6 mm2/s.   

• Grinding Inconel 718 and Ti-6Al-4V at the optimum parameters is expected 

to reduce the total cost per part by up to $0.05 for the grinding wheels used in 

this study under the conditions assumed in the simulation analysis.   

 

One of the key cost factors not explicitly accounted for in the simulation study is 

the cost of grinding fluid use, which typically makes up a significant fraction of the 

overall cost of the grinding operation.  In the next chapter, the application of a grinding 

fluid enhanced with graphite nanoplatelets is evaluated as another potential method for 

improving the productivity and reducing the costs of the superalloy centerless grinding 

operation.   
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CHAPTER 5 

 

PERFORMANCE OF GRAPHITE NANOPLATELET-ENHANCED FLUIDS IN 

REDUCED QUANTITY LUBRICATION CENTERLESS GRINDING 

 
 

5.1 Introduction 
 
 

Centerless grinding of Inconel 718 and Ti-6Al-4V superalloys is a very 

inefficiently conducted operation that generates a very significant amount of energy (20-

100 J/mm3) during the material removal process.  The great majority of this material 

removal energy is transmitted to the workpiece as heat, which can have an adverse effect 

on its surface integrity and final dimensional accuracy.  In order to minimize the risk of 

part thermal damage, it is necessary to reduce the grinding temperatures, which can 

generally be accomplished by (1) reducing the amount of heat generation using a softer 

grinding wheel at reduced speeds, (2) dressing the wheel more frequently to maintain the 

sharpness of the grains and to prevent wheel loading, and (3) enhancing heat removal 

with more effective grinding fluid application.  Among these solutions, the optimization 

of fluid application parameters is the only feasible method to increase productivity 

without incurring higher abrasive consumption costs and longer cycle times. 

In many industrial grinding operations, the most common method of fluid 

application is low-pressure flood cooling (5-50 L/min) using cutting or water-soluble oils. 

Although this fluid application method provides satisfactory workpiece bulk material 

cooling and chip removal, it is generally ineffective at reducing temperatures in the 
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wheel-workpiece contact zone in most conventional grinding processes. First, low 

pressure flood cooling is ineffective because only a small fraction of the applied flow (5-

20%) reaches the wheel-workpiece contact interface due to the non-coherence of fluid 

flow leaving the nozzle and the dispersion of the fluid jet by the dense air boundary layer 

surrounding the rotating grinding wheel [147]. Second, even the small quantity of fluid 

that reaches the contact zone does not have a significant effect on the grinding 

temperatures, especially under more aggressive operating conditions where the fluid may 

be squeezed out by the greater contact loads and where fluid film boiling is more likely to 

occur.  In addition to being ineffective, high-volume flood cooling using cutting or water-

soluble oils also raises major environmental concerns and is an uneconomical method of 

fluid application due to high fluid maintenance and disposal costs [109].   

Several fluid types and application methods were shown to be superior to flood 

cooling using oils in improving the performance of grinding processes, including 

cryogenic cooling using liquid nitrogen [102], soap mist jet cooling [105], and minimum 

quantity lubrication (MQL) using air-oil mixtures delivered to the grinding zone using 

high-pressure nozzles at flow rates of 50-500 mL/hr [148-150].  MQL in particular has 

also shown promising results in many traditional machining operations, including 

milling, drilling, and turning [151-153]. 

In addition to MQL, some researchers have also tried to use solid lubricants in 

grinding processes.  The solid lubricants that have been used most frequently in high-

temperature grinding operations include graphite [103, 104, 154] and molybdenum 

disulfide [107, 155].  In most cases, they are used in the form of nano-sized particles and 

dispersed as additives in a carrier fluid by ultrasonication or milling.  They can also be 
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used in powder or paste form to manually coat the surface of the grinding wheel, but this 

application method is inconsistent and it does not ensure adequate cleaning of the wheel 

surface.  Other solid compounds that have been tried in different machining operations 

include boron nitride, polytetrafluoroethylene (PTFE), calcium fluoride, and tungsten 

disulfide [155]. However, to date, no studies have been reported on the use of solid 

lubricants such as graphite nanoplatelets in centerless grinding.  It is generally more 

difficult to achieve effective fluid application in shallow-cut plunge centerless grinding in 

comparison to more conventional operations such as surface grinding due to the smaller 

length of the wheel-workpiece contact arc and the unconstrained rounding motion of the 

workpiece that can disrupt the fluid film continuity in the grinding gap. 

The effectiveness of graphite lubricant can be attributed to its layered structure 

shown in Figure 5.1, which consists of a hexagonal arrangement of carbon atoms that 

form stable planar lattices held by strong covalent bonds that provide resistance to plastic 

deformation against normal forces. The parallel planes in the structure are held together 

by weak Van der Waals bonds that are easily broken by the tangential force parallel to the 

film layer, causing interlayer slipping with a very low coefficient of friction [156].   

 

 

 

Figure 5.1: Crystalline structure of graphite nanoplatelets [156] 

Covalent Bond 

Van der Waals Bond 
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In the grinding process, the lubrication performance of fluids containing a solid 

lubricant is affected by many other factors in addition to the particle morphology.  This 

chapter discusses an experimental investigation conducted to quantify the effects of 

graphite nanoplatelet diameter and concentration dispersed in an industrial cutting oil on 

the specific grinding energy in reduced quantity lubrication (RQL) centerless grinding of 

Inconel 718 and Ti-6Al-4V superalloys. The parameter combination corresponding to the 

best lubrication condition is selected to compare wheel wear performance to the flood 

cooling method. 

 

5.2 Experimental Procedure 

 

 In this work, the performance metrics used to compare the effectiveness of fluid 

application are the specific grinding energy and the wheel wear rate (quantified by the 

grinding ratio or G-ratio). In the first part of the study, an experiment was conducted to 

evaluate the performance of a graphite nanoplatelet-enhanced fluid in reduced quantity 

lubrication (100 mL/min) using the specific grinding energy as an indicator of material 

removal efficiency. In this experiment, the effects of graphite platelet diameter and 

graphite concentration by weight on the specific grinding energy levels were investigated 

at three different material removal rates in plunge centerless grinding of 7.94 mm (5/16 

in.) diameter Inconel 718 and Ti-6Al-4V workpieces. The experimental results were 

compared to the results obtained using the same grinding fluid without any solid lubricant 

additive under flood cooling (5 L/min) and dry grinding conditions.   
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For all experimental trials, the grinding parameters were held constant as 

summarized in Table 5.1.  A 609.6 mm (24 in.) diameter ceramic sol-gel (SG) grinding 

wheel (3SGP80-O6-VH) and a silicon carbide wheel (74C120-O6-VK) utilized in 

previous experiments (Chapter 3) were selected to grind the Inconel 718 and Ti-6Al-4V 

workpieces, respectively. 

 
 

Table 5.1: Summary of grinding conditions 

Process Parameter Setting 
Grinding Wheel Speed  33.5 m/s 

Regulating Wheel Speed  13.4 m/min 
Diameter Reduction per Pass  127 μm 

Feed Rate(s) 19.5 μm/s, 39.1 μm/s, 78.2 μm/s 
 

 
 
The low, medium, and high feed rate settings in Table 5.1 used to reduce the diameter of 

the original 7.94 mm (5/16 in.) part by 127 μm in a single rough grinding pass correspond 

to volumetric material removal rates of 15.4, 30.9, and 61.9 mm3/s, respectively. For a 

grinding width equal to the part length of 63.5 mm (2.5 in.), the corresponding specific 

material removal rates are 0.243, 0.487, and 0.975 mm2/s.        

The carrier fluid selected for dispersion and transport of the graphite nanoplatelets 

was Castrol ALMACUT 7210 cutting oil, a water-insoluble cutting oil with a density of 

0.985 g/cm3, kinematic viscosity of 60 mm2/s (60 cSt) at 40oC, and boiling temperature 

of ~300oC.  Graphite nanoplatelets with the trade name xGnPTM (XG Sciences, East 

Lansing, Michigan) were used as the solid lubricant additive in this study.  They are 

made from synthetic, acid intercalated graphite based on the microwave exfoliation 

method.  The xGnP-1 and xGnP-15 graphite nanoplatelets used in the experiments have 

an average diameter of 1 μm and 15 μm, respectively, as shown in Figure 5.2a.  The 
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average thickness of a platelet consisting of 10-15 sheets is approximately 5-10 nm as 

shown in the SEM images in Figure 5.2b.  The platelets have a large surface area of ~60 

m2/g and they retain their properties at temperatures of up to 450-500oC. 

 

 
 

 

Figure 5.2: SEM micrographs of (a) xGnP-15 graphite nanoplatelets (scale bar: 100 μm)  

 and (b) xGnP-1 graphite nanoplatelets (scale bar: 5 nm) [157] 

 

The first experiment conducted to evaluate the performance of a graphite nanoplatelet-

enhanced fluid in reduced quantity lubrication (100 mL/min) based on specific grinding 

energy metric consisted of 4 randomized runs for each workpiece material.  Two graphite 

platelet diameters (1 μm and 15 μm) and concentrations (1% and 2% by weight) were 

used as the experimental parameters.  The graphite concentration was selected outside the 

lower end of the range of values recommended by the graphite supplier (5-40%) when 

using grease as the transport medium.  The sequence of experimental trials is summarized 

in Table 5.2.  Each trial was repeated twice at three different feed rates while holding all 

other parameters constant as shown in Table 5.1.  The grinding wheel was redressed 

between trials with a Vertex V2-O single point diamond using a dresser traverse rate of 
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4.23 mm/s (10 in./min) and a dressing depth per pass of 25.4 μm (0.001 in.) to maintain 

the same wheel surface condition for each pass.  The results were averaged to obtain a 

representative value of the measured response. 

 

Table 5.2: Summary of experimental parameters 

Experimental 
Trial 

Platelet  
Diameter 

Concentration  
by Weight 

1 1 μm 1% 
2 1 μm 2% 
3 15 μm 1% 
4 15 μm 2% 

 
 

 
In the second part of this study, the best combination of parameters identified 

from the first experiment was selected to perform a short production run and compare 

wheel wear performance as quantified by the G-ratio for reduced quantity lubrication 

using the cutting oil enhanced with graphite nanoplatelets to the wear performance 

obtained using the same fluid without graphite in flood cooling. The production run was 

performed for each workpiece material at the medium feed rate setting of 39.1 μm/s, and 

the wheel speed was set to 19.1 m/s for softer cutting action in order to increase the rate 

of radial wheel wear, thus making it easier to measure. All other process parameters were 

held constant as shown in Table 5.1. 

 
 
5.3 Experimental Setup and Measurements 
 

 
The dispersion of graphite nanoplatelets in the oil was carried out using a Misonix 

Sonicator S-4000 with a probe diameter of 12.7 mm (0.5 in.).  After determining the 
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appropriate concentration, the graphite was added to the fluid and the solution was mixed 

for 45 minutes at an amplitude of 35% (55-65 W) to increase the energy of the system to 

~100-150 kJ.  The mixture was used for the trials immediately after the dispersion 

procedure in order to avoid agglomeration and precipitation of the graphite platelets.  The 

grinding tests were carried out on a Cincinnati OM-2 centerless grinder with a 15-hp 

grinding wheel spindle motor.  The grinding fluids were applied by manually spraying 

the wheel-workpiece contact zone using a common industrial mist spray bottle calibrated 

to a flow rate of 100 mL/min.  During the experimental trials, the nozzle of the spray 

bottle was positioned approximately 50.8 mm (2 in.) from the grinding zone as illustrated 

in Figure 5.3. 

 

 

 
 
 
 

Figure 5.3: Schematic of experimental setup for fluid application 
 

 

The process responses measured during the experiments were the grinding power 

and the part diameter.  The grinding cycle power was measured using a Load Controls 

UPC model power meter connected to the wheel spindle motor as described in Chapter 3 

Grinding Wheel

Regulating Wheel 

Workpiece

Calibrated 
Spray Bottle 
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(Figure 3.4). The measured grinding power was divided by the material removal rate to 

determine the specific grinding energy in the process. The critical part dimension 

(diameter) was measured using a 2.54 μm (0.0001 in.) resolution micrometer. The 

deviation of the part diameter from the original target dimension was recorded to monitor 

the wheel wear trend and the final value recorded after the 250th grinding pass was used 

to quantify the accumulated volume of wheel radial wear for the entire production run. 

 

5.4 Results and Discussion 

 

5.4.1 Comparison of Specific Grinding Energy Levels 

 

The average specific grinding energy (SGE) obtained for each trial with graphite 

nanoplatelet additives over the experimental range of material removal rates are given in 

Appendix C and summarized in Tables 5.3 and 5.4 for Inconel 718 and Ti-6Al-4V, 

respectively.  These tables also contain the results obtained in dry grinding and flood 

cooling conditions (5 L/min) using the same fluid without the graphite additive. 

 
 

Table 5.3: Specific grinding energy levels under different lubrication conditions (Inconel 718) 

 
Parameter  

Combination 

SGE at 
15.4 mm3/s 

(J/mm3) 

SGE at 
30.9 mm3/s 

(J/mm3) 

SGE at 
61.9 mm3/s 

(J/mm3) 

1 μm, 1 wt% 59.1+ 3.0 39 + 3.4 21.7 + 4.0 
1 μm, 2 wt% 59 + 3.1 38 + 3.2 20.4 + 3.2 
15 μm, 1 wt% 54.5 + 2.9 35.8 + 3.0 20.4 + 3.2 
15 μm, 2 wt% 50.2 + 2.4 32.5 + 2.5 20.2 + 3.5 

Flood 61.7 + 1.5 39.5 + 3.0 21.9 + 3.3 
Dry 80.7 + 2.2 47.3 + 3.8 25.6 + 4.2 
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Table 5.4: Specific grinding energy levels under different lubrication conditions (Ti-6Al-4V) 

 
Parameter  

Combination 

SGE at  
15.4 mm3/s 

(J/mm3) 

SGE at  
30.9 mm3/s 

(J/mm3) 

SGE at  
61.9 mm3/s 

(J/mm3) 

1 μm, 1 wt% 69.9 + 2.5 44.9 + 2.6 25.2 + 2.2 
1 μm, 2 wt% 68.8 + 2.4 44.5 + 2.3 25.0 + 2.2 
15 μm, 1 wt% 63.7 + 2.4 42.7 + 2.2 24.3 + 2.0 
15 μm, 2 wt% 61.2 + 2.5 41.3 + 2.3 24.1 + 2.1 

Flood 71.9 + 2.8 46.7 + 3.5 25.5 + 3.8 
Dry  90.0 + 3.5 52.6 + 4.2 28.0 + 5.0 

 
 

The results presented in Tables 5.3 and 5.4 are illustrated in Figures 5.4 and 5.5 for 

Inconel 718 and Ti-6Al-4V, respectively, which compare the specific grinding energy 

values obtained under each condition.  In these figures, the error bars represent the range 

of deviation from the average specific grinding energy obtained for the two grinding 

passes carried out using each combination of parameters. 
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Figure 5.4: SGE levels in dry grinding, flood cooling, and graphite nanoplatelet-enhanced RQL conditions  

 
(Inconel 718) 
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Figure 5.5: SGE levels in dry grinding, flood cooling, and graphite nanoplatelet-enhanced RQL conditions  

 
(Ti-6Al-4V) 

 

 
Comparing the results in Figures 5.4 and 5.5, it can be seen that the application of 

a graphite nanoplatelet-enhanced cutting oil at a reduced flow rate (100 mL/min) was 

more effective at reducing the specific grinding energy than flood cooling (5 L/min) 

using the same fluid without graphite additives. Specifically, reduced quantity lubrication 

using the cutting oil enhanced with 15 μm graphite nanoplatelets at a 2% concentration 

by weight reduced the specific grinding energy by 19% at the lowest material removal 

rate and by 8% at the highest material removal rate over flood cooling for Inconel 718. 

The corresponding reductions in specific grinding energy for Ti-6Al-4V were 15% and 

5% at the lowest and highest material removal rates, respectively. For both workpiece 

materials, the lowest specific grinding energy corresponding to the best lubrication 

condition was achieved using the larger platelet diameter (15 μm) in combination with 

the higher graphite concentration (2 wt%).   

As seen in Tables 5.3 and 5.4, the lubrication performance improves with a larger 

graphite nanoplatelet diameter as noted by the more significant reductions in specific 
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grinding energy when using the 15-μm diameter platelet. It can also be seen that the 

nanoplatelet diameter had a greater effect on the specific grinding energy than the 

additive concentration. Larger platelets have a greater surface area to cover the asperities 

of the surfaces in contact and they yield better lubrication performance for coarser 

surfaces, while smaller platelets are better suited for lubricating smoother surfaces 

moving at higher speeds.  Another potential benefit of using platelets with a larger 

surface area over smaller platelets is their greater flexibility, which permits bending 

under higher contact pressures exerted by higher feed rates. Even though the specific 

grinding energy is reduced more effectively when using a larger particle diameter and 

concentration, it is generally more difficult to disperse larger particles in higher 

concentrations into carrier fluids without increasing the rate of particle agglomeration. 

Consequently, an optimum platelet size exists as a compromise between lubrication 

performance and suspension stability.  As seen in Tables 5.3 and 5.4, the lubrication 

performance also increases with a higher graphite concentration.  However, the reduction 

in specific grinding energy achieved by increasing the concentration from 1% to 2% 

using either nanoplatelet diameter was only 1-8%.  Consequently, a higher concentration 

may increase the cost of fluid application without offering major improvements in 

lubrication performance.   

Another important trend can also be observed from the results shown in Figures 

5.4 and 5.5 that is unique for this grinding operation.  At the lowest feed rate, low 

pressure flooding of the grinding contact zone at 5 L/min without solid lubricant 

additives reduced the specific grinding energy by ~20-25% over dry grinding for both 

workpiece materials.  However, the lubrication performance tends to decrease 
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asymptotically at higher material removal rates for both the flood cooling method without 

additive and for the spray mist method using any parameter combination. This trend 

suggests that the effectiveness of fluid application could still be improved by selecting a 

different fluid delivery method or using an alternative combination of graphite lubrication 

parameters, especially at higher material removal rates where the fluid film is more likely 

to be squeezed out of the arc of cut by higher contact pressures and where film boiling is 

more likely to occur due to higher grinding zone temperatures.  To improve fluid 

application under more aggressive grinding conditions, a larger platelet diameter could be 

used in combination with a higher additive concentration to form a thicker film that is 

less susceptible to deformation by the applied loads.   

 

5.4.2 Characterization of Wheel Wear Performance 

 

In the second part of this study, the combination of parameters resulting in the 

best graphite lubrication performance (15 μm platelet diameter, 2% concentration) was 

selected to perform a production run (250 parts) at a material removal rate of 30.9 mm3/s 

and compare wheel wear performance in reduced quantity lubrication to the wear 

performance obtained using the same fluid without graphite additive in flood cooling. 

The deviation of the part diameter from the original target dimension (diameter error) 

was measured after every 25th grinding pass to monitor the wheel wear trend, and the 

results are shown in Figure 5.6.    
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Figure 5.6: Wheel wear trends for flood cooling and best RQL condition with graphite nanoplatelets 

 
 
 

The diameter error measured after grinding the 250th part was used to quantify the 

final volume of radial wheel wear and calculate the G-ratios shown in Figure 5.7. These 

results are comparable to the G-ratio values of 60-120 obtained when evaluating several 

types of cutting oils in a 4150 steel (HRC 48-57) cylindrical grinding operation using 

feed rates of 17.7-35.3 μm/s [101]. 
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Figure 5.7: G-ratio summary for flood cooling and best RQL condition with graphite nanoplatelets 
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As seen in Figure 5.7, reduced quantity lubrication (100 mL/min) using an oil 

enhanced with 15 μm graphite nanoplatelets at a 2% concentration by weight increased 

the G-ratio by 73% for Inconel 718 and by 39% for Ti-6Al-4V over flood cooling (5 

L/min) for a material removal rate of 30.9 mm3/s.  These positive results can be attributed 

to the good lubricating capacity of the graphite nanoplatelets, which reduce the frictional 

forces at the wheel-workpiece contact interface. In turn, the grains are able to maintain 

their sharpness for longer periods of time and undergo finer fracture behavior, which 

reduces their volumetric wear rate between dressing operations.  

The promising results of this experiment can be used to further investigate the 

potential of improving process performance with the application of graphite nanoparticle-

enhanced grinding fluids.  Many other carrier fluid types, particle sizes, and additive 

concentrations can be explored to achieve more significant improvements.  Based on the 

results, it is also evident that several options can still be explored to improve the 

effectiveness of fluid application for the centerless grinding operation.  Since the 

geometric length of the wheel-workpiece contact arc is very small (less than 1 mm), it is 

difficult to achieve effective fluid delivery without the use of a very precise nozzle.  

However, the use of a high-pressure nozzle may affect the self-centering stability of the 

workpiece and have a negative impact on its dimensional accuracy, so new methods of 

fluid application should be evaluated.  Other issues that need to be addressed in order to 

make the use of graphite nanoplatelet-enhanced grinding fluids more feasible in practice 

include the stabilization of graphite suspensions, chip removal from the grinding wheel 

surface, and sump cleaning and disposal.  
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5.5 Conclusions 
 
 
 

This chapter presents the results of an experimental investigation conducted to 

assess the potential of reduced quantity lubrication centerless grinding of Inconel 718 and 

Ti-6Al-4V alloys using a graphite nanoplatelet-enhanced grinding fluid.  The results 

confirm several advantages of graphite nanoplatelet-enhanced fluid application that can 

lead to a reduction in abrasive consumption and grinding fluid costs and an increase in 

the process productivity levels. 

The following key conclusions can be made based on the results of this study: 

 

• Reduced quantity lubrication (100 mL/min) using a cutting oil enhanced with 

a low concentration of graphite nanoplatelets (2%) reduced the specific 

grinding energy levels by up to 19% and 15% for Inconel 718 and Ti-6Al-4V, 

respectively, relative to flood cooling (5 L/min) over the experimental range 

of material removal rates. Consequently, the application of a graphite-

nanoplatelet enhanced fluid may enable more aggressive material removal 

without incurring part thermal damage. 

• Reduced quantity lubrication (100 mL/min) using a cutting oil enhanced with 

a low concentration of graphite nanoplatelets (2%) increased the G-ratio by up 

to 73% and 39% for Inconel 718 and Ti-6Al-4V, respectively, over flood 

cooling (5 L/min). Higher G-ratios lead to a reduction in the dressing 

frequency and a higher part output. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE STUDIES 

 
 
 

6.1 Summary 
 
 
 

In this thesis, two different methods are investigated for improving process 

performance in the plunge centerless grinding of Inconel 718 and Ti-6Al-4V superalloy 

fasteners: (i) economic optimization of grinding parameters and (ii) reduced quantity 

lubrication using a grinding fluid enhanced with graphite nanoplatelet additives.  In the 

first part of the thesis (Chapters 3 and 4), a methodology is developed and carried out 

using Taguchi’s Design of Experiments (DOE) method and machining economics theory 

to find the optimum grinding conditions in two stages:  (i) modeling of process and part 

quality constraints (ii) determination of optimum grinding conditions in the feasible 

operating region.  In the second part of the thesis (Chapter 5), an experimental study is 

conducted to evaluate centerless grinding performance using graphite nanoplatelet-

enhanced fluids in reduced quantity lubrication and assess its potential as a cost-effective 

and ecologically-friendly alternative to the traditional flood cooling method.   

 
 
6.2 Conclusions 
 

Based on the findings of this thesis study, several key conclusions can be made 

about the optimization of centerless grinding performance for the Inconel 718 and Ti-

6Al-4V alloys analyzed in this study. 
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6.2.1 Characterization of Process Parameter Effects on Centerless Grinding 
Performance 
 
 
 

Chapter 3 presents the experimental studies conducted to characterize the effects 

of the major process parameters on different grinding performance responses in 

centerless grinding of Inconel 718 and Ti-6Al-4V alloys.  The following key conclusions 

can be made from the results of this study: 

 

6.2.1.1 Effects of Process Parameters on Measured Responses 

 

• In rough grinding of Inconel 718, the amount of stock removed per pass that 

was directly correlated to the feed rate used in the experiments had the largest 

effect on the grinding power response (40.3%), followed by the regulating 

wheel speed (24.9%), grinding wheel material (20.0%), and grinding wheel 

speed (14.8%).  In rough grinding of Ti-6Al-4V, the amount of stock removed 

per pass which was directly correlated to the feed rate used in the experiments 

had the largest effect on the grinding power response (44.7%), followed by the 

grinding wheel speed (34.7%), grinding wheel material (11.5%), and 

regulating wheel speed (9.0%).  To minimize power consumption, the 

grinding parameters should be set to the minimum levels as predicted by 

theory for most conventional grinding operations. 

• In rough grinding of Inconel 718, the regulating wheel speed had the largest 

effect on the surface roughness response (45.1%), followed by the amount of 

stock removed per pass (43.5%), grinding wheel speed (10.3%), and grinding 
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wheel material (1.1%).  In rough grinding of Ti-6Al-4V, the amount of stock 

removed per pass had the largest effect on the grinding power response 

(37.5%), followed by the regulating wheel speed (37.0%), grinding wheel 

material (14.4%), and grinding wheel speed (11.1%).  To minimize the 

surface roughness response, the grinding wheel speed should be set to the 

maximum allowable level and all other parameters should be set to the 

minimum level, which agrees with the theory for conventional grinding 

operations.   

• Results show that material removal rates commonly used in rough grinding of 

Inconel 718 and Ti-6Al-4V fasteners (less than or equal to ~20 mm3/s) are in 

the inefficient grinding regime, which is dominated by rubbing and ploughing 

of the work material instead of shearing.  For the Inconel 718 and Ti-6Al-4V 

grinding wheels used in the experiments, the grinding operation should be 

performed at material removal rates greater than ~20 mm3/s in order to 

increase the process efficiency and productivity. 

 

6.2.1.2 Process Trends with Grinding Wheel Wear 

 

• In the rough pass production runs of Inconel 718 and Ti-6Al-4V, the increase 

in grinding energy consumption with grinding wheel wear was minimized 

using lower wheel speeds.  In particular, when grinding Ti-6Al-4V, the 

grinding wheel speed should be set to approximately 1/2 to 2/3 of the wheel 
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speed used for Inconel 718 (33.5 m/s) to minimize wheel loading leading to 

dimensional inaccuracies.   

• In the Inconel 718 and Ti-6Al-4V production runs, a better surface finish was 

sustained using higher grinding wheel speeds in combination with lower feed 

rates and depths of cut as predicted by conventional grinding theory. 

 

6.2.1.3 Grinding Wheel Performance and Material Removal Efficiency 

 

• For Inconel 718, the 100% ceramic sol-gel (SG) grinding wheel (3SGP80-O6-

VH) achieved a 2-4 times higher G-ratio and a 2-5 times higher grinding 

efficiency than the regular aluminum oxide wheel (2A80-O4-V) commonly 

used in the operation.  These gains can be attributed to the finer grain fracture 

behavior of the sol-gel grinding wheel, which allows the grains to maintain 

their sharpness for longer periods of time during production.  Finer grain 

fracture is also preferred over coarser grains fracture in order to maximize the 

utility of each grain exposed after dressing.     

• For Ti-6Al-4V, the wheels compared in this study achieved similar G-ratios 

and grinding efficiencies over the experimental range of grinding conditions.   

 
 
6.2.2 Economic Optimization of Centerless Grinding Parameters 
 
 

Chapter 4 presents the methodology to find the optimum grinding conditions in 

centerless grinding, which is carried out using a simulation algorithm for the Inconel 718 
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and Ti-6Al-4V workpieces used in this study under the economic objective of minimum 

production cost per part.  The following conclusions can be made from the analysis of the 

simulation results: 

 

• For Inconel 718 and Ti-6Al-4V workpieces with diameters ranging from 7.94 

mm (5/16 in.) to 25.4 mm (1 in.) with a 63.5 mm (2.5 in.) length, the cost-

optimum material removal rate in rough grinding using the wheels evaluated 

in this study was verified to be ~40-100 mm3/s corresponding to a specific 

material removal rate of 0.6-1.6 mm2/s.  The optimum results identified for 

the difficult-to-grind aerospace alloys are on the lower end of the specific 

material removal rate range recommended by different authors for centerless 

grinding (1-6 mm2/s) with grinding wheel speeds of up to 45 m/s [70, 72]. 

• Grinding Inconel 718 and Ti-6Al-4V at the optimum parameters is expected 

to reduce the total cost per part by up to $0.05 for the grinding wheels used in 

this study under the conditions assumed in the simulation analysis.   

• Further significant reductions in cost per part are expected with reductions in 

machine setup time, part loading and unloading time, part inspection time, and 

grinding fluid.   

 

6.2.3 Performance of Graphite-Nanoplatelet Enhanced Fluids in Reduced Quantity 
Lubrication Centerless Grinding 
 
 
 

Chapter 5 presents the experiments conducted to assess the potential of graphite 

nanoplatelet-enhanced fluids in reduced quantity lubrication centerless grinding of 
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Inconel 718 and Ti-6Al-4V alloys.  The following key conclusions can be made from the 

results of this study:  

 

• The effectiveness of grinding fluid application by low-pressure flooding 

decreases asymptotically with higher material removal rates as greater contact 

pressures squeeze the fluid film out of the grinding gap.  The deflection of the 

fluid flow path by the dense air boundary layer surrounding the rotating 

grinding wheel generally makes flood cooling highly inefficient. 

• The lubrication performance of the grinding fluids evaluated in this study 

improved with the dispersion of graphite nanoplatelets.  The greatest 

reduction in specific grinding energy levels was achieved using a larger 

platelet diameter (15 μm) and a higher additive concentration (2%). 

• Reduced quantity lubrication (100 mL/min) using a cutting oil enhanced with 

a 2% concentration of 15 μm graphite nanoplatelets reduced the specific 

grinding energy levels by 19% at a low material removal rate and by 8% at a 

high material removal rate over flood cooling (5 L/min) when grinding 

Inconel 718.  The corresponding reduction in specific grinding energy levels 

for Ti-6Al-4V was 15% at a low material removal rate and 5% at a high 

material removal rate. 

• Reduced quantity lubrication (100 mL/min) using a cutting oil enhanced with 

a 2% concentration of 15 μm graphite nanoparticles increased the G-ratio by 

73% for Inconel 718 and by 39% for Ti-6Al-4V over conventional flood 

cooling (5 L/min).   
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6.3 Recommendations for Future Studies 
 
 
 

 In view of the system level approach to grinding process optimization presented 

in Chapter 1, additional research is recommended in several different areas to develop 

more effective optimization strategies for increasing the productivity and reducing the 

costs of this operation for different materials and workpiece geometries found in practice. 

 
 

6.3.1 Optimization of Geometric Setup Parameters 
 
 
 
 Over the years, researchers have identified that the following key aspects of the 

centerless grinding process limit the productivity and part quality of the operation:  (1) 

workpiece rounding instability, (2) dynamic system instability, and (3) workpiece 

rotation instability.  As discussed in Chapter 2, many studies have been conducted to 

model the effects of the major geometric setup parameters on workpiece accuracy and 

identify the range of parameters for stable workpiece rounding motion.  However, no 

attempts have been made so far to optimize these settings with the objective of 

minimizing wheel wear for the different part geometries, which could be accomplished 

with the help of advanced statistical methods such as stream of variation (SoV) theory.   

 
 
6.3.2 Modeling of Centerless Grinding Machine Structural Effects 
 
 
 
 A majority of the scientific literature on the centerless grinding process has been 

concerned with the accuracy of the operation rather than its potential for higher material 
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removal rates.  It has been shown that higher output may be obtained using higher feed 

rates in combination with higher wheel speeds up to the constraints of workpiece motion 

instability.  In order to increase productivity without incurring a loss in part quality 

levels, it is necessary to increase the dynamic stiffness of the machine tool.  The machine 

tool is a very important element of the entire system and its structural quality usually 

constrains the levels of productivity that can be achieved in practice.  Although machine 

tool structures have been studied for many machining processes using FEA, the research 

conducted for modeling the stresses in structural components of centerless grinders still 

needs further development and validation.  Fundamental redesign of the machine tool 

structure for higher dynamic stiffness based on the modeling results could lead to an 

appreciable improvement in the accuracy and productivity of the operation. 

 

6.3.3 Modeling of Heat Transfer in Centerless Grinding 
 
 
 

 Grinding is a highly temperature-dependent machining process that can result in 

several problems when performed incorrectly, including workpiece thermal damage and 

ineffective cooling by fluid application.  No comprehensive thermal model has yet been 

developed for the plunge centerless grinding operation that takes into account the 

complex workpiece rounding mechanics, elastic system deflections, and multiple heat 

source passes over the nominal contact area.  The understanding of heat generation in the 

contact zone and how it affects the temperature field in the workpiece subsurface will be 

very useful in controlling thermal damage and comparing the effectiveness of different 

fluid application methods in this process. 



 136 
 

6.3.4 Optimization of Fluid Application Parameters  
 

 
In the centerless grinding of Inconel 718 and Ti-6Al-4V alloys, it was observed 

that reduced quantity lubrication (100 mL/min) using a cutting oil enhanced with a small 

concentration of graphite nanoplatelets reduces specific grinding energy levels and wheel 

wear rates more significantly than flood cooling (5 L/min) using the same fluid without 

graphite additives.  However, many different fluid application settings can still be 

explored to improve the cooling and lubrication effectiveness of fluids in centerless 

grinding where the wheel-workpiece contact arc is very small compared to more 

conventional grinding operations.  In conventional operations such as surface and 

cylindrical grinding, precise high-pressure nozzles can be used to achieve more effective 

fluid delivery at reduced flow rates, but in centerless grinding this may not be a practical 

solution since high-speed air jets may affect the self-centering motion of the workpiece 

and have a negative impact on its final dimensional accuracy.  Other topics that also need 

to be addressed in future studies to enable the use of graphite nanoplatelet-enhanced 

grinding fluids in a production setting include the stabilization of graphite suspensions, 

chip removal from the grinding wheel surface, and sump cleaning and disposal.  
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APPENDIX A:  Design of Experiments 
 
 
 

Table A.1: OA (8, 23, 41) for characterization experiment 

 
Trial 

Grinding  
Wheel Speed 

Regulating  
Wheel Speed 

Stock Removed 
 per Pass  

Grinding  
Wheel Material 

1 1 1 2 2 
2 1 2 1 1 
3 2 1 2 1 
4 2 2 1 2 
5 3 1 1 2 
6 3 2 2 1 
7 4 1 1 1 
8 4 2 2 2 

 
 
 

Table A.2: OA (4, 22) for graphite lubrication experiment  

Trial Platelet Diameter Concentration  
1 1  1 
2 1 2 
3 2 1 
4 2 2 

 
 
 
APPENDIX B:  Grinding Wheel Recommendations 
 

 
 

Table B.1: Inconel 718 grinding wheel recommendations  

Reference Abrasive  
Material 

Grain  
Size 

Hardness 
Range 

Structure  
Number Range 

Bond 
Type 

Manufacturers Al2O3 80-120 K-T 6-11 V 
Lit. Survey Al2O3 60-150 J-T 4-9 V 

 

 
Table B.2: Ti-6Al-4V grinding wheel recommendations 

Reference Abrasive  
Material 

Grain  
Size 

Hardness 
Range 

Structure  
Number Range 

Bond 
Type 

Manufacturers SiC 120-150 L-R 6-12 V 
Lit. Survey SiC 60-150 J-T 6-12 V 
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APPENDIX C:  Experimental Data 
 

 
Characterization Experiment 

 
 

Table C.1: Characterization experiment data (Inconel 718) 

Dressing  
Overlap  

Ratio 

Grinding 
Wheel 
Speed 
(m/s) 

Regulating 
Wheel 
Speed  

(m/min) 

Stock 
Removed 
per Pass 

(mm) 

Feed  
Rate 

(mm/s) 

Spark 
Out 

Time (s) 

Wheel 
(0=A) 
(1=B) 

Grind 
Power 
(W) 

Surface 
Roughness 

 (um) 

2.36 19.1 13.4 0.1524 0.0316 1.09 0 1106 2.10 
2.36 19.1 13.4 0.1524 0.0381 1.50 0 1116 2.03 
2.36 23.9 24.5 0.0762 0.0331 0.75 0 1038 1.97 
2.36 23.9 24.5 0.0762 0.0244 0.34 0 846 1.90 
2.36 28.7 13.4 0.0762 0.0126 0.47 0 658 1.37 
2.36 28.7 13.4 0.0762 0.0128 0.53 0 721 1.35 
2.36 33.5 24.5 0.1524 0.0501 0.38 0 1586 2.45 
2.36 33.5 24.5 0.1524 0.0492 0.35 0 1545 2.33 
2.36 33.5 13.4 0.127 0.0391 1.52 0 *952 *1.65 
2.36 19.1 13.4 0.127 0.0391 1.47 0 *911 *1.85 
4.72 33.5 13.4 0.0635 0.0195 1.50 0 *872 *0.54 
2.36 19.1 24.5 0.0762 0.0241 0.32 1 647 1.84 
2.36 19.1 24.5 0.0762 0.0246 0.35 1 667 1.95 
2.36 23.9 13.4 0.1524 0.0280 0.78 1 789 1.70 
2.36 23.9 13.4 0.1524 0.0284 0.82 1 802 1.90 
2.36 28.7 24.5 0.1524 0.0674 0.67 1 1477 2.67 
2.36 28.7 24.5 0.1524 0.0482 0.32 1 1131 2.47 
2.36 33.5 13.4 0.0762 0.0122 0.38 1 681 1.42 
2.36 33.5 13.4 0.0762 0.0115 0.18 1 631 1.32 
2.36 33.5 13.4 0.127 0.0391 1.51 1 *911 *1.67 
2.36 19.1 13.4 0.127 0.0391 1.48 1 *785 *1.83 
4.72 33.5 13.4 0.0635 0.0195 1.50 1 *758 *0.81 

 

* Data obtained in production run experiment for 1st part (sharp grinding wheel) 
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Table C.2: Characterization experiment data (Ti-6Al-4V) 

Dressing 
Overlap 

Ratio 

Grinding  
Wheel  
Speed  
(m/s) 

Regulating 
Wheel 
Speed  

(m/min) 

Stock 
Removed 
per Pass 

(mm) 

Feed  
Rate  

(mm/s) 

Spark 
Out 

Time (s) 

Wheel 
 (0=A) 
(1=B) 

Grind 
Power 
(W) 

Surface 
Roughness 

 (μm) 

2.36 19.1 13.4 0.1524 0.0188 0.19 0 603 1.86 
2.36 19.1 13.4 0.1524 0.0403 1.61 0 1071 2.08 
2.36 23.9 24.5 0.0762 0.0213 0.12 0 588 1.83 
2.36 23.9 24.5 0.0762 0.0218 0.16 0 617 1.75 
2.36 28.7 13.4 0.0762 0.0243 1.93 0 857 1.26 
2.36 28.7 13.4 0.0762 0.0152 1.00 0 621 1.35 
2.36 33.5 24.5 0.1524 0.0492 0.36 0 1263 2.41 
2.36 33.5 24.5 0.1524 0.0573 0.58 0 1403 2.45 
2.36 33.5 13.4 0.127 0.0391 1.53 0 *1008 *1.61 
2.36 19.1 13.4 0.127 0.0391 1.47 0 *716 *1.82 
4.72 14.4 13.4 0.0635 0.0195 1.49 0 *613 *0.45 
2.36 19.1 24.5 0.0762 0.0175 0.14 1 659 1.65 
2.36 19.1 24.5 0.0762 0.0206 0.06 1 748 1.79 
2.36 23.9 13.4 0.1524 0.0182 0.07 1 952 1.55 
2.36 23.9 13.4 0.1524 0.0243 0.37 1 1032 1.60 
2.36 28.7 24.5 0.1524 0.0492 0.36 1 1430 2.27 
2.36 28.7 24.5 0.1524 0.0372 0.27 1 1335 2.12 
2.36 33.5 13.4 0.0762 0.0123 0.40 1 869 1.22 
2.36 33.5 13.4 0.0762 0.0121 0.35 1 829 1.09 
2.36 33.5 13.4 0.127 0.0391 1.52 1 *1118 *1.44 
2.36 19.1 13.4 0.127 0.0391 1.48 1 *814 *1.65 
4.72 14.4 13.4 0.0635 0.0195 1.51 1 *772 *0.37 

 

* Data obtained in production run experiment for 1st part (sharp grinding wheel) 
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Production Run Experiment 
 
 

Table C.3: Dressing and grinding parameters for production runs (Inconel 718) 

Production 
Run 

Number 
of Parts 

Dressing 
Overlap 

Ratio 

Grinding 
Wheel Speed 

(m/s) 

Stock Removed  
per Pass 

(mm) 

Feed 
Rate 

(mm/s) 

Wheel 
Material 
(A or B) 

1-R 250 2.36 33.5 0.127 0.0391 Cincinnati (A) 
2-R 250 2.36 19.1 0.127 0.0391 Cincinnati (A) 
3-F 500 4.72 33.5 0.0635 0.0195 Cincinnati (A) 
4-R 250 2.36 33.5 0.127 0.0391 Norton SG (B) 
5-R 250 2.36 19.1 0.127 0.0391 Norton SG (B) 
6-F 500 4.72 33.5 0.0635 0.0195 Norton SG (B) 

 
 
 

Table C.4: Time series data for production run experiment (Inconel 718) 

Production Run 1 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 902 1.65 0.00000 0.00000 

25 852 0.91 -0.00084 0.01270 
50 1128 0.87 -0.00170 0.02794 
75 1179 0.88 -0.00170 0.03302 

100 1163 0.87 0.00508 0.05334 
125 1345 0.87 0.00762 0.06858 
150 1273 0.85 0.01016 0.08128 
175 1501 0.86 0.01440 0.09652 
200 1356 0.85 0.01948 0.10414 
225 1398 0.85 0.01948 0.10922 
250 1461 0.87 0.02032 0.13208 

 

Production Run 2 

Part  
Number 

Grinding 
Power 
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 761 1.85 0.00000 0.00000 

25 814 1.03 -0.00254 0.02794 
50 857 1.02 0.00338 0.04064 
75 899 0.93 0.01100 0.07620 

100 799 0.83 0.01270 0.10414 
125 1013 0.85 0.01948 0.13716 
150 1013 0.84 0.02370 0.15748 
175 1025 0.81 0.02370 0.17018 
200 902 0.70 0.02370 0.19050 
225 935 0.72 0.03132 0.19812 
250 1002 0.69 0.03894 0.21336 
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Production Run 3 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 872 0.54 0.00000 0.00000 

50 944 0.45 -0.00254 0.00000 
100 1036 0.42 -0.00084 0.01016 
150 1116 0.42 0.00084 0.01524 
200 1110 0.41 0.00424 0.02286 
250 1130 0.43 0.00424 0.03302 
300 1081 0.42 0.00846 0.04318 
350 1124 0.41 0.00846 0.05588 
400 1176 0.43 0.01100 0.06096 
450 1231 0.41 0.01100 0.06858 
500 1248 0.41 0.01440 0.08128 

 

Production Run 4 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 861 1.67 0.00000 0.00000 

25 987 1.33 -0.00254 0.01270 
50 931 1.23 -0.00508 0.02032 
75 1047 1.18 -0.00678 0.03048 

100 902 1.14 -0.00170 0.03556 
125 1157 1.09 0.00170 0.04318 
150 1183 1.13 0.00170 0.05080 
175 1114 1.07 0.00170 0.05588 
200 1217 1.17 0.00000 0.07112 
225 1255 1.09 0.00678 0.07874 
250 1172 1.13 0.00592 0.09144 

 

Production Run 5 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 685 1.83 0.00000 0.00000 

25 718 1.33 -0.00170 0.00762 
50 852 1.30 0.00170 0.01778 
75 779 1.22 0.00338 0.02540 

100 776 1.18 0.00678 0.03048 
125 745 1.14 0.00932 0.04064 
150 1031 1.12 0.01186 0.05588 
175 957 1.12 0.01270 0.07366 
200 1013 1.13 0.01524 0.08636 
225 1034 1.14 0.01948 0.10160 
250 1096 1.13 0.02202 0.11684 
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Production Run 6 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 508 0.81 0.00000 0.00000 

50 647 0.76 0.00000 0.00000 
100 928 0.75 -0.00508 0.00508 
150 1056 0.73 -0.00678 0.01270 
200 776 0.65 -0.00424 0.01778 
250 839 0.58 -0.00678 0.02286 
300 929 0.53 -0.00338 0.03302 
350 946 0.54 -0.00084 0.03556 
400 898 0.53 -0.00084 0.03810 
450 923 0.55 0.00170 0.04318 
500 862 0.54 0.00424 0.04572 

 
 

Table C.5: Dressing and machining parameters for production runs (Ti-6Al-4V) 

Production 
Run 

Number 
of Parts 

Dressing 
Overlap 

Ratio 

Grinding 
Wheel Speed 

(m/s) 

Stock Removed  
per Pass 

(mm) 

Feed 
Rate 

(mm/s) 

Wheel 
Material 
(A or B) 

1-R 250 2.36 33.5 0.127 0.0391 Kinik (A) 
2-R 250 2.36 19.1 0.127 0.0391 Kinik (A) 
3-F 500 4.72 14.4 0.0635 0.0195 Kinik (A) 
4-R 250 2.36 33.5 0.127 0.0391 Norton (B) 
5-R 250 2.36 19.1 0.127 0.0391 Norton (B) 
6-F 500 4.72 14.4 0.0635 0.0195 Norton (B) 

 
 

 
Table C.6: Time series data for production run experiment (Ti-6Al-4V) 

Production Run 1 

Part  
Number 

Grinding 
Power 
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 1208 1.61 0.00000 0.00000 

25 1251 1.28 -0.00254 0.02794 
50 1267 1.25 -0.00254 0.06096 
75 1371 1.24 -0.00254 0.07620 

100 1360 1.15 -0.00254 0.09652 
125 1258 1.15 -0.00254 0.12446 
150 1311 1.14 -0.00338 0.13208 
175 1307 1.14 -0.00338 0.14478 
200 1336 1.10 -0.00424 0.16510 
225 1336 1.09 -0.00170 0.19304 
250 1414 1.07 -0.00084 0.20066 
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Production Run 2 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 946 1.82 0.00000 0.00000 

25 835 1.09 0.00170 0.02794 
50 797 1.07 0.00170 0.06350 
75 790 1.07 0.00170 0.08890 

100 763 1.03 0.00338 0.11684 
125 752 1.06 0.00338 0.14478 
150 767 1.08 0.00338 0.18034 
175 790 1.09 0.00424 0.22860 
200 785 1.06 0.00424 0.27686 
225 850 1.09 0.00678 0.32512 
250 830 1.13 0.00678 0.36068 

 
 

Production Run 3 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 913 0.45 0.00000 0.00000 

50 810 0.40 0.00000 0.03556 
100 783 0.41 -0.00084 0.08382 
150 796 0.39 0.00170 0.12700 
200 796 0.40 0.00170 0.15494 
250 700 0.40 0.00424 0.18796 
300 745 0.40 0.00424 0.21590 
350 705 0.39 0.00424 0.24384 
400 705 0.38 0.00424 0.27940 
450 714 0.38 0.00424 0.29972 
500 732 0.41 0.00424 0.30734 

 
 

Production Run 4 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 1268 1.44 0.00000 0.00000 

25 1528 0.97 -0.00424 0.02540 
50 1675 0.94 -0.00678 0.04064 
75 1622 0.86 -0.00678 0.06858 

100 1747 0.85 -0.00762 0.07366 
125 1792 0.88 -0.01016 0.10160 
150 1767 0.91 -0.01016 0.12446 
175 1669 0.88 0.00170 0.14478 
200 1703 0.82 -0.00254 0.15748 
225 1777 0.80 -0.00254 0.17780 
250 1817 0.80 -0.00170 0.20574 
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Production Run 5 

Part  
Number 

Grinding 
Power  
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 814 1.65 0.00000 0.00000 

25 783 0.87 0.00254 0.02794 
50 801 0.81 0.00170 0.04064 
75 828 0.82 0.00170 0.06858 

100 765 0.82 0.00254 0.07366 
125 819 0.81 0.00254 0.10414 
150 774 0.81 0.00424 0.13208 
175 736 0.81 0.00338 0.16510 
200 772 0.80 0.00338 0.20066 
225 810 0.80 0.00592 0.22860 
250 799 0.80 0.00592 0.25654 

 

Production Run 6 

Part  
Number 

Grinding 
Power 
(W) 

Surface 
Roughness 

(μm) 

Diameter 
Error  
(mm) 

Transition  
Radius Error  

(mm) 
1 872 0.37 0.00000 0.00000 

50 766 0.36 0.00000 0.03810 
100 747 0.35 0.00170 0.07112 
150 722 0.35 0.00170 0.09906 
200 831 0.34 0.00170 0.11430 
250 750 0.35 0.00084 0.14224 
300 744 0.35 0.00424 0.17018 
350 749 0.34 0.00424 0.18288 
400 728 0.34 0.00424 0.21082 
450 733 0.35 0.00424 0.23876 
500 736 0.34 0.00424 0.25146 
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Grinding Wheel Surface Topography Imprints 

 

Table C.7: Summary of machining parameters for Inconel 718 rough pass production runs 

Production  
Run 

Wheel 
Material 
(A or B) 

Grinding 
Wheel Speed 

(m/s) 

Dressing 
Overlap 

Ratio 

Regulating 
Wheel Speed 

(m/min) 

Stock Removed  
per Pass 

(mm) 

Feed  
Rate 

(mm/s) 
A1 A 33.5 2.36 13.4 0.127 0.0391 
A2 A 19.1 2.36 13.4 0.127 0.0391 
B1 B 33.5 2.36 13.4 0.127 0.0391 
B2 B 19.1 2.36 13.4 0.127 0.0391 

 

 
Table C.8: Wheel topography data summary for Cincinnati Inconel 718 grind wheel (A1) 

Part Number 1  25 50 75 100 125 150 175 200 225 250 
% Active Grains 5.8 8.2 13.5 16.3 18.1 17.6 19.3 17.8 19.5 18.4 19.7 

% Wear Flat Area 0.7 1 1.3 1.5 1.5 1.6 1.7 1.7 1.8 2 2.1 
% Grain Pullouts 4.2 6.8 7.7 9 10.5 13 16.3 18.8 21.5 23 25.5 

 

 
Table C.9: Wheel topography data summary for Cincinnati Inconel 718 grind wheel (A2) 

Part Number 1  25 50 75 100 125 150 175 200 225 250 
% Active Grains 9.4 12.5 17.1 22.2 24.9 24.7 25.1 25.8 26 26.4 26.9 

% Wear Flat Area 0.6 0.9 1.1 1.1 1.2 1.3 1.3 1.4 1.4 1.5 0.6 
% Grain Pullouts 2.8 4.7 5.9 7 7.9 11.4 14.4 17 19.9 21.9 23 

 

 
Table C.10: Wheel topography data summary for Norton SG Inconel 718 grind wheel (B1) 

Part Number 1  25 50 75 100 125 150 175 200 225 250 
% Active Grains 4.6 7.5 8.5 11.3 11.5 12.1 10.1 11 13.2 13 14.5 

% Wear Flat Area 0.5 0.7 0.9 1 1.2 1.4 1.5 1.5 1.6 1.7 1.7 
% Grain Pullouts 2.6 5 6.8 7.6 9 10 10.8 12.8 14.3 15.2 16 

 
 

Table C.11: Wheel topography data summary for Norton SG Inconel 718 grind wheel (B2) 

Part Number 1  25 50 75 100 125 150 175 200 225 250 
% Active Grains 8.8 10.4 14 18.5 20.5 21 22.5 21.3 22.1 22.3 22.5 

% Wear Flat Area 0.4 0.6 0.8 0.9 0.9 1 1 1 1.2 1.3 1.3 
% Grain Pullouts 2 2.9 4.8 5.8 6.8 8.3 9.5 10.4 12 13.4 13.9 
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Graphite Lubrication Experiment 
 
 
 

Table C.12: Graphite lubrication experiment data (Inconel 718) 

Graphite 
Platelet 

Diameter 

Graphite 
Concentration  

by Weight 

SGE at  
15.4 mm3/s  

(J/mm3) 

SGE at  
30.9 mm3/s  

(J/mm3) 

SGE at  
61.9 mm3/s  

(J/mm3) 
1 μm 1 % 62.1 42.4 25.7 
1 μm 1 % 56.1 35.6 17.7 
1 μm 2 % 55.9 41.2 23.6 
1 μm 2 % 62.1 34.8 17.2 

15 μm 1 % 57.4 38.8 17.2 
15 μm 1 % 51.6 32.8 23.6 
15 μm 2 % 47.8 30.0 18.7 
15 μm 2 % 52.6 35.0 23.7 

 

 

Table C.13: Graphite lubrication experiment data (Ti-6Al-4V) 

Graphite 
Platelet 

Diameter 

Graphite 
Concentration by 

Weight 

SGE at  
15.4 mm3/s  

(J/mm3) 

SGE at  
30.9 mm3/s  

(J/mm3) 

SGE at  
61.9 mm3/s  

(J/mm3) 
1 μm 1 % 67.4 42.3 27.4 
1 μm 1 % 72.3 47.5 23.0 
1 μm 2 % 71.2 46.8 27.2 
1 μm 2 % 67.4 42.2 22.8 

15 μm 1 % 66.1 44.9 26.3 
15 μm 1 % 61.3 40.5 22.3 
15 μm 2 % 63.7 43.6 26.2 
15 μm 2 % 58.7 39.0 22.0 

 
 
 

APPENDIX D:  Data Analysis 

 
 
Characterization Experiment – S/N Ratio Analysis  

 
 

Table D.1: S/N ratio analysis summary for grinding power response (Inconel 718) 

Experimental 
Level 

Grinding  
Wheel Speed 

Regulating  
Wheel Speed 

Stock Removed 
per Pass 

Grinding  
Wheel Material 

1 -61.64 -61.02 -60.25 -63.28 
2 -61.76 -63.52 -64.29 -61.26 
3 -62.55  ---  ---  --- 
4 -63.13  ---  ---  --- 

ABS (Max – Min) 1.48 2.50 4.05 2.01 
Rank 4 2 1 3 

% Contribution 14.8 24.9 40.3 20.0 
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Table D.2: S/N ratio analysis summary for grinding power response (Ti-6Al-4V) 

Experimental 
Level 

Grinding  
Wheel Speed 

Regulating  
Wheel Speed 

Stock Removed 
per Pass 

Grinding  
Wheel Material 

1 -60.71 -61.74 -60.28 -61.63 
2 -60.77 -62.47 -63.93 -62.58 
3 -63.39  ---   ---  --- 
4 -63.55  ---  ---  --- 

ABS (Max – Min) 2.84 0.74 3.66 0.94 
Rank  2 4   1  3 

% Contribution 34.7 9.0 44.7 11.5 
 

 
Table D.3: S/N ratio analysis summary for surface roughness response (Inconel 718) 

Experimental 
Level 

Grinding  
Wheel Speed 

Regulating  
Wheel Speed 

Stock Removed  
per Pass 

Grinding  
Wheel Material 

1 -8.78 -7.16 -7.21 -8.47 
2 -8.55 -9.84 -9.80 -8.54 
3 -8.53  ---  ---  --- 
4 -8.16  ---  ---  --- 

ABS (Max – Min) 0.62 2.68 2.58 0.07 
Rank 3 1 2 4 

% Contribution 10.3 45.1 43.5 1.1 
 

 
Table D.4: S/N ratio analysis summary for surface roughness response (Ti-6Al-4V) 

Experimental 
Level 

Grinding  
Wheel Speed 

Regulating  
Wheel Speed 

Stock Removed  
per Pass 

Grinding  
Wheel Material 

1 -8.31 -6.36 -6.34 -8.25 
2 -7.51 -9.09 -9.10 -7.19 
3 -7.58  ---  ---  --- 
4 -7.49  ---  ---  --- 

ABS (Max – Min) 0.82 2.73 2.76 1.06 
Rank 4 2 1 3 

% Contribution 11.1 37.0 37.5 14.4 
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Characterization Experiment – Multiple Regression Model Statistics 

 

 
Table D.5: Grinding power response model statistics (Inconel 718) 

Regression Statistics
Multiple R 0.965
R Square 0.931

Adjusted R Square 0.903
Standard Error 89.8
Observations 22

ANOVA
df F Significance F

Regression 6 33.5 7.34E-08
Residual 15

Total 21

Coefficients Standard Error t Stat P-value
Intercept -426.9 206.0 -2.1 0.055843

Dressing Overlap Ratio 63.1 35.6 1.8 0.096809
Grinding Wheel Speed 12.4 3.5 3.5 0.003021

Regulating Wheel Speed 1102.3 315.8 3.5 0.003289
Stock Removed per Pass 3704.2 1139.6 3.3 0.005377

Feed Rate 7118.8 3022.3 2.4 0.032535
Grinding Wheel Material -183.5 38.3 -4.8 0.000241  
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Figure D.1: Normal probability and residual plots 

Grinding power response model (Inconel 718) 
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Table D.6: Surface roughness response model statistics (Inconel 718) 

Regression Statistics
Multiple R 0.993
R Square 0.986

Adjusted R Square 0.981
Standard Error 0.071
Observations 22

ANOVA
df F Significance F

Regression 6 179.5 4.25E-13
Residual 15

Total 21

Coefficients Standard Error t Stat P-value
Intercept 1.592 0.240 6.634 0.000008

Dressing Overlap Ratio -0.197 0.036 -5.453 0.000067
Grinding Wheel Speed -0.013 0.004 -3.560 0.002853

Regulating Wheel Speed 1.212 0.529 2.292 0.036819
Stock Removed per Pass 3.374 1.080 3.124 0.006968

Feed Rate 16.212 3.969 4.085 0.000976
Sparkout Time -0.236 0.082 -2.874 0.011596  
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Figure D.2: Normal probability and residual plots 

Surface roughness response model (Inconel 718) 
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Table D.7: Grinding power response model statistics (Ti-6Al-4V) 

Regression Statistics
Multiple R 0.957
R Square 0.915

Adjusted R Square 0.881
Standard Error 93.1
Observations 22

ANOVA
df F Significance F

Regression 6 27.0 3.16E-07
Residual 15

Total 21

Coefficients Standard Error t Stat P-value
Intercept -728.2 234.9 -3.1 0.007313

Dressing Overlap Ratio 125.4 40.9 3.1 0.007780
Grinding Wheel Speed 20.0 3.8 5.2 0.000108

Regulating Wheel Speed 459.0 258.2 1.8 0.095687
Stock Removed per Pass 3262.1 924.5 3.5 0.003042

Feed Rate 8015.8 2616.9 3.1 0.007889
Grinding Wheel Material 150.3 41.9 3.6 0.002723  
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Figure D.3: Normal probability and residual plots 

Grinding power response model (Ti-6Al-4V) 
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Table D.8: Surface roughness response model statistics (Ti-6Al-4V) 

Regression Statistics
Multiple R 0.993
R Square 0.987

Adjusted R Square 0.980
Standard Error 0.075
Observations 22

ANOVA
df F Significance F

Regression 7 150.5 4.38E-12
Residual 14

Total 21

Coefficients Standard Error t Stat P-value
Intercept 1.841 0.320 5.755 0.000050

Dressing Overlap Ratio -0.384 0.033 -11.652 1.363E-08
Grinding Wheel Speed -0.012 0.003 -3.478 0.003693

Regulating Wheel Speed 1.571 0.550 2.857 0.012674
Stock Removed per Pass 3.520 1.315 2.678 0.018027

Feed Rate 14.331 4.714 3.040 0.008820
Grinding Wheel Material -0.170 0.034 -4.929 0.000222

Sparkout Time -0.143 0.080 -1.790 0.095119  
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Figure D.4: Normal probability and residual plots 

Surface roughness response model (Ti-6Al-4V) 
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Table D.9: Sample correlation matrix for characterization experiment factors 

Grinding power response (Inconel 718)  

 Dressing  
Overlap  

Ratio 

Grinding 
Wheel 
Speed 

Regulating  
Wheel  
Speed 

Stock 
Removed 
per Pass 

Radial 
Feed 
Rate 

Grinding 
Wheel 

Material 
Dressing 
Overlap 

Ratio 

 
1.000 

 
--- 

 
--- 

 
--- 

 
--- 

 
--- 

Grinding 
Wheel 
Speed 

 
0.531 

 
1.000 

 
--- 

 
--- 

 
--- 

 
--- 

Regulating 
Wheel 
Speed 

 
-0.239 

 
0.127 

 
1.000 

 
--- 

 
--- 

 
--- 

Stock 
Removed 
per Pass 

 
-0.423 

 
0.224 

 
0.048 

 
1.000 

 
--- 

 
--- 

Radial 
Feed  
Rate 

 
-0.226 

 
0.302 

 
0.313 

 
0.670 

 
1.000 

 
--- 

Grinding 
Wheel 

Material 

 
0.000 

 
0.000 

 
0.000 

 
0.000 

 
-0.198 

 

 
1.000 
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APPENDIX E:  Index of Equations for Economic Simulation Algorithm 

 
 
 

Parts per Dress = [Number of Ground Parts] x [Grain Protrusion Height / OD Error]                  (E.1) 
 
Dressing Frequency During Production = [Number of Parts to Process] / [Parts per Dress]                    (E.2) 
 
Total Dressing Time = [Dress Time at Beginning of Production] + [Dress Frequency  
During  Production] x [(2 x Number of Dress Passes) x (Grinding Length / Dresser Traverse Rate)]      (E.3)          
                                                  
Total Loading Time = [Number of Ground Parts] x [Loading Time per Part]            (E.4) 

 
Total Unloading Time = [Number of Ground Parts] x [Unloading Time per Part]     (E.5)                             

 
Grinding Time per Part = [Volume of Material Removed] / [Material Removal Rate]  (E.6) 

     
Total Grinding Time = [Number of Ground Parts] x [Grinding Time per Part]                   (E.7) 

 
Total Spark-Out Time = [Number of Ground Parts] x [Spark-Out Time per Part]                (E.8) 

 
Total Part Inspection Time = [Inspection Time per Part] x  
[Number of Ground Parts / Inspection Frequency]      (E.9)    
 
Production Time per Part = [1 / Number of Parts to Process] x [(Total Transfer Time) +  
(Total Setup Time)+ (Total Dressing Time) + (Total Loading Time) + (Total Grinding Time) +  
(Total Unloading Time) + (Total Part Inspection Time) + (Total Break Time)]                     (E.10)                             
 
Number of Produced Parts = [Production Period] / [Production Time per Part]                 (E.11)              
 
Machine Cost per Part = [Unit Machine Cost] / [Number of Produced Parts]                                         (E.12) 
 
Wheel Cost per Part = [Unit Wheel Cost] x [Number of Wheels] / [Number of Produced Parts]  (E.13) 
 
Labor Cost per Part = [Time to Process Part] x [Labor Rate]                                       (E.14) 
 
Total Cost per Part = [Machine Cost per Part] + [Wheel Cost per Part] + [Labor Cost per Part]  (E.15) 
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