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SUMMARY 

 

 

 

 This thesis analyzes the concrete activation within the pressure vessel cavity in the IRIS 

nuclear power plant design from Westinghouse.  This new integral reactor design with a 

proposed 335 MWe output has potential to minimize activation due to the large reactor pressure 

vessel with a wide downcomer, required by an integral reactor configuration.  The downcomer 

coupled with a reflector for neutron economy reduces activation of materials outside the reactor 

vessel. The reactor cavity concrete wall is still activated to a level above the limit of IAEA 

clearance for free release of the concrete after decommissioning.  The objective of this work was 

to investigate whether borating the concrete could reduce the activation below the free release 

limit.  

 Modeling of the reactor is done using the MAVRIC sequence in the SCALE code.  This 

sequence is an implementation of the CADIS method (by J.C. Wagner and A. Haghighat) and 

FW-CADIS method (by J.C. Wagner and D. Peplow) designed to automate variance reduction 

for deep shielding problems.   

 Results of the simulations are presented with and without borating the concrete, a 

common method for reducing activation in materials because of 
10

B large thermal capture cross 

section.  The results are based on the (n,γ) reaction of three isotopes identified as being the main 

drivers of activation in the concrete:  
59

Co, 
151

Eu and 
153

Eu.  

 The activation was found to be manageable.  With boration, all of the activation products 

considered, 
60

Co, 
152

Eu, and 
154

Eu, were found to be below the free release limit after applying a 

safety factor. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 The challenge when designing a new nuclear power plant (NPP) is to be better than other 

offered designs and competitive with non-nuclear power plants.  The ultimate goal for the 

designer is seeing the utility select the design, construct the plant and have it operate as intended.  

There is no advantage to the design if it offers nothing to the utility versus the currently 

operating plants.  IRIS attempts to reduce the total installed cost per kilowatt as well as the total 

cost of ownership.  This thesis addresses two large costs for the utility: collective dose for the 

operators and decommissioning. 

The first large cost to any nuclear facility is radiation dose monitoring.  All plant 

employees and maintenance crew must wear radiation badges and strict tallies of doses are kept.  

If a worker exceeds the annual dose limit, then they become another cost for the utility as they 

can no longer perform their normal duties for the remainder of that year.[1]  The ultimate goal of 

IRIS would be to have all open areas of the plant accessible with negligible radiation levels.   

Here reduction of the activated materials would also reduce the overall dose during maintenance 

significantly. 

Decommissioning any power facility is a great challenge and expense.[33] In addition to 

all the legal requirements that must be met, there is the cost of ultimate disposal of material that 

is activated above the free release limit.  This cost could be as much as 1000 times what it would 
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be to dispose of material under the free release limit.[30]  Even with the US NPP fleet receiving 

20 year license extensions, every plant site will eventually need to be returned to a green field.[1]   

The IRIS Reactor is a new integral pressurized water reactor (PWR) design that offers 

improved safety though its “safety-by-design” approach and deploys integral steam 

generators.[7]   Its design power is 335 MWe and design life is greater than sixty years.  IRIS 

was identified as a grid-appropriate reactor design and is targeted towards electrical utilities and 

countries where a 1000 MWe plant would be too large for the local power grid or too  costly to 

finance.[9]  It has a unique potential to reduce both the dose in operation from the core as well as 

the dose during maintenance from activated materials, most notably cobalt (in steel) and 

europium (in concrete).  The integral pressure vessel provides a 1.6 meter wide/thick downcomer 

with downward flowing coolant that has exited the integral steam generators and through the 

lower plenum will return to be reheated by the core.  This downcomer reduces the flux at the 

pressure vessel about six orders of magnitude versus a currently operating loop PWR where the 

downcomer is normally only about 20 cm.  Based on work at ENEA (Italy), this flux level has 

been identified as just around the level where with minor modifications to the containment vessel 

design, there could be very little to no activated material beyond the pressure vessel boundary.[5]  

The objective of this research is to quantify the activation and make recommendations about 

reducing it below the fee release limit.[27] 

Such analysis requires accurate shielding calculations, and the Monte Carlo method is the 

method of choice to analyze complex three dimensional geometries. One of the biggest hurdles 

to any Monte Carlo deep penetration shielding analysis is with so many orders of magnitude 

reduction in the flux, it is very difficult and time intensive to create a model that will give 

reasonable results and statistical uncertainty in acceptable time.  This stems from the fact that the 
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standard deviation is inversely proportional to the square root of the number of histories.   To 

reduce the relative error n times requires that one runs n
2
 as many histories as before. As an 

example, to reduce the uncertainty from 10% to 1% requires 100 times more histories.  For a 

large and complex geometry such as IRIS, it would require processor-years in the 

straightforward, analog mode of Monte Carlo simulation, and effective variance reduction is 

necessary.  

IRIS provides a perfect test bed for the hybrid methodology approach that is employed in 

the Standard Computational Analysis for Licensing Evaluation (SCALE) 6.0 package called 

Monaco with Automated Variance Reduction using Importance Calculations (MAVRIC).[34]  

MAVRIC automates the process of variance reduction.  It biases the pure analog problem in a 

way that generates results more quickly in the area of interest.  Instead of the skilled modeler 

spending time traversing through trial-and-error iterations where importances for individual areas 

must be tuned to get the best results, MAVRIC will use an automated approach that is 

transparent to the user.   

MAVRIC works by combining the two methods of solving any shielding problem: 

deterministic and stochastic approach.  By using the deterministic functions to generate the 

weight windows for the stochastic portion of the simulation, the problem can be speed up orders 

of magnitude, which have been demonstrated on large realistic problems.[36]  MAVRIC 

approach is based on the consistent adjoint driven importance sampling (CADIS) method which 

is a technique using the adjoint to develop weight windows and consistent source biasing.  It is 

extended with forward-weighted CADIS (FW-CADIS), where the CADIS portion is weighted 

with the expected forward flux so that multiple tallies can achieve the same relative uncertainty 

in approximately the same amount of computational time. Both the forward and adjoint 
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calculations are performed using the discrete ordinates code Denovo.  Then the importance map 

generated by the FW-CADIS method is passed to the Monte Carlo code Monaco for the final 

portion of the simulation.   

Applying MAVRIC to IRIS serves as a great way to test the code and the method, while 

generating real results that can become part of the next IRIS engineering iteration.  A “real” 

problem, such as IRIS, provides a better test than any conceived problem.  With MAVRIC, the 

fluxes in the concrete support annulus will be analyzed to determine the flux distribution and its 

energy spectrum.  This data will be used to make a determination about the activation of the two 

isotopes that have been identified as the most troublesome:  
59

Co and 
151

Eu.  Those two isotopes 

have a large thermal neutron capture cross section resulting in 
60

Co and 
152

Eu.  Both are gamma 

emitters.  Thus the goal will be to determine the flux leaving the core and how it is thermalized 

in the liner and concrete.  Based on the previous work at ENEA[5], these are the only isotopes 

that need to be addressed.  Moreover, this study will evaluate whether borated concrete can be 

used to reduce the overall activation of the concrete pushing it below the regulatory limit, and 

what is the impact on the overall flux in the reactor building and the control room that is 

relatively close to the core?   

The following sections will attempt to answer that question. An in depth literature review 

focusing on the regulatory limits and the work that has been done with borated concrete both in 

neutron shielding and considerations to its strength is presented in chapter two.  Chapter three 

describes the methodology and software used.  Chapter four contains a full model description 

with assumptions and justifications included.  Chapter five will compare the model developed in 

this thesis to two other models of IRIS for validation as well as verification work.   The results of 

the simulations will be analyzed in chapter six and appropriate recommendations made including 
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suggestions for further work. Additional specific information will be included in the appendix for 

reference.   
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CHAPTER 2 

 

 

 

BACKGROUND 

 

 

 

2.1 IRIS Reactor 

 IRIS is an integral type PWR producing 335 MWe.[8, 9]  It is being developed with 

Westinghouse as the leader of a multinational team of industry and academia.  The purpose of 

the reactor is to fill the need of a smaller developed, developing nation, or smaller utility that is 

looking for energy independence but does not have the grid or the financial resources to support 

a gigawatt plant.  The integral design means all of the primary systems are contained inside the 

reactor pressure vessel including the control rod drives, minimizing the number of pressure 

vessel penetrations.  It has the added bonus of eliminating all but one of the Class IV accidents, 

scenarios with the potential for radiological release.  IRIS is designed with passive safety 

systems as well.[44] 

 The design of the IRIS nuclear power plant includes enough change from the currently 

operating fleet that it needs some special considerations.  The entire reactor portion of the plant 

is contained within a single building.  This reactor building would house containment as well as 

the control room and associated office space necessary to operate the plant.  With people within 

15 meters of the core, accurate analysis of the all activated materials is necessary.  The goal in 

reducing the activated materials also allows an increase in the accessible areas of the plant and 

eliminates concern that maintenance personal would exceed their annual dose.   
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Figure 1:  IRIS Reactor Building 

 

 In Figure 1, the yellow arrow from the core points to the level and approximate location 

of the control room.  With an aggressive goal of the room dose rate being at the general public 

level, it is very important to have an accurate activation map of the entire containment vessel.   

 As briefly mentioned before, there are several components to the IRIS pressure vessel 

that make these aggressive goals possible.  The downcomer size discussed in the introduction is 

one of the largest contributors to the reduced flux at the pressure vessel boundary.  The water is 

an excellent moderator which slows and attenuates the fast flux leaving the core.   

 IRIS also has a neutron reflector composed of 90% stainless steel and 10% water.  This 

reflector increases the overall neutron economy and reduces flux at the pressure vessel boundary.  
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2.2 Concrete Boration  

 The addition of boron to concrete is done in an attempt to capture neutrons that would 

otherwise lead to activated material and delayed gammas.    The fast flux reaching the concrete 

walls in the reactor vessel cavity will enter the concrete at which point the water from the 

pouring process and other constituents will thermalize the neutrons and result in their ultimate 

absorption potentially generating activated materials.[28]  The 
10

B(n,α)
7
Li reaction is an 

excellent way to capture neutrons without creating such activation.  Alpha particles are easy to 

shield and boron is widely available. 

There has been extensive work done in the area of concrete boration particularly when it 

comes to the strength of the concrete.  There are two ways to borate concrete:  it can be added as 

borogypsum to the aggregate or boric acid in the water.  Addition of boron to the aggregate can 

come from major borogypsum producers like Turkey or fly ash from coal fired power plants. 

 Boration of shielding materials in nuclear applications is not new.  Henrie investigated 

the economics of boron as an additive to different concrete compositions for neutron shielding. 

He also investigated iron as an aggregate for the gammas that activated material in the concrete 

would emit in small research reactors (50 kW).  He found that it was most advantageous to add 

approximately 0.5 wt. % of boron.[25]  

More modern investigations have centered on the need to shield neutrons in fusion 

reactors.  The (d,d) reactions between deuterons generates neutrons with an average energy of 

2.46 MeV.  This is comparable to fast neutrons leaving the pressure vessel.  A factor of thirty 

reduction was found when the walls of the Wendelstein-7-X hall were doped with 700 ppm 

boron.[26]   
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The ITER Fusion Reactor also has been analyzed from this aspect.  For 0.1 
g
/cm

3
 of boron 

added to the surface layer of concrete, dose rate factors were reduced immediately by 2-3 

times.[29]  Work on the JT-60 shielding with borated concrete in the B4C form, found 40% dose 

rate reduction.[32]    

Yarar has completed some work calculating the effectiveness of the addition of 

colemanite, a boron bearing mineral.[46]  The colemanite concrete composition used contained 

about 1.3 wt. % boron.  The results noted that even for very short irradiation, the colemanite 

concrete would be considered “high level waste,” but that it decays rapidly.[45]  This would 

indicate that the long lived troublesome isotopes in the concrete that this thesis attempts to 

address would be low enough to make the concrete waste a lower level.   

However, the addition of boron materials alters strength properties.  Erdogan et. al. 

looked at the strength differences due to borogypsum additives to cement and found some 

weakening.  B2O3 was present in concentrations up to 11.25% in the borogypsum.  There was 

4% borogypsum added to the test sample versus the control which had none.  They did note in 

the conclusion that the elimination of B2O3 improves the strength values.[20]   

The effect of boric acid sludge containing borogypsum on the properties of cement was 

also investigated.  Compressive strength was the metric.  The conclusion was that up to 4% of 

the boron sludge may be added but that did produce a 90 day compressive strength drop of 

65%.[12]    

 Work done in Japan by Kinno et. al. showed the results of careful selection of the 

aggregate to eliminate cobalt and europium as well as adding boron in a concentration up to 

0.6% by weight.  They manufactured various levels of low activation concrete from 1/10 to 

1/300 reduction of impurities and found that with the boron, the activation was reduced by 300 to 
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10000 times respectively.  Their recommendation was that low activation concrete be chosen for 

advanced reactors.[30]  Hayashi et. al. created a precise estimation of both the thermal neutron 

flux with the activation cross section creating a new group-wise cross-section library.[24]   

 The results of previous work indicate that up to 1% boron by weight in the concrete is an 

acceptable value.  Consideration of the concrete strength with the boron is beyond the scope of 

this thesis. 

2.3 Cross-sections 

 All the codes used in this analysis were multi-group codes.  The library used was based 

on the Evaluated Nuclear Data File (ENDF/B-VII.0).[10]  It was a coupled 27 group neutron and 

a 19 group gamma library.  For all the simulations in this thesis, the gamma portion of the library 

was not considered.   

 Activation cross-sections were based on the 200 neutron groups of the ENDF/B-VII.0 

library.  MAVRIC has the capability of using any set of cross-sections as a response to cross-

section codes in SCALE.  They are then folded appropriately to work with the cross-section 

library structure selected for the simulation.  The three isotopes considered for this thesis were 

59
Co, 

151
Eu, and 

153
Eu since they have been identified in the previous studies as responsible for 

the large portion of the activation.  The response was based on their (n,γ) reaction, that is the 

probability that each of those isotopes captures a neutron and releases a gamma and is 

transmuted into a radioactive isotope.  A table listing the values is included in Appendix B. 
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Figure 2:  
59

Co(n,γ)
60

Co cross-sections 

 

 

Figure 3:  
151

Eu(n, γ)
152

Eu cross-sections 

 

 

Figure 4:  
153

Eu(n, γ)
154

Eu cross-sections 
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CHAPTER 3 

 

 

 

METHOD 

 

 

3.1 Monte Carlo 

Transport of neutral particles, neutrons and photons, is described by the transport 

equation: 

��
�� � �Ω� · �� � �Σ	�
��
, �,Ω�, �� 

 � � �Ω� ′�� � ��′∞

� � ′Σ� ��′ � �,Ω� ′ � Ω�� � ���
, �′,Ω� ′, �� � �
��
, �,Ω�, �� (1) 

where  � ���
, �′,Ω� ′, �� is the neutron flux and other terms describe source, inscattering, leakage, 

streaming, and scattering collision loss within an arbitrary volume.  The neutron flux is 

dependent on seven independent variables: r = x, y, z; E; Ω� � �, �; and t.  Numerical solution of 

the transport equation is possible by discretizing the phase space, also known as the deterministic 

approach.  The Monte Carlo method instead attempts to solve the problem by simulating 

histories through an accurate representation of the geometry and the physics of the problem.  

These histories are tracked throughout the problem phase-space until some specified parameter is 

met at which time they are killed and their statistical contribution to the total is tallied weighted 

by other parameters that are user set.  Monte Carlo simulations can be likened to solving the 

integral of an equation using a shotgun; individual shot either falls above or below the line.  If 

the bounds are known, and the number of shot is tallied above and below the line, the integral 
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can be easily computed.  The primary advantage to this method is that complicated problems can 

be simulated accurately.  It is also easily parallelizable.  The primary disadvantage is the time 

required to simulate complex shielding problems like IRIS.  There are so many orders of 

attenuation in the system that without any statistical biasing, it would take thousands of 

processor-years to generate enough histories that have statistical merit in the areas of interest.   

3.2 Variance Reduction 

Fortunately, there are methods of biasing that are fair; they preserve the estimated mean, 

while accelerating variance reduction in the areas of interest at the expense of other areas that are 

not important for a particular objective.  A complete overview is presented in the paper by 

Haghighat and Wagner.[23]  The basic approach is splitting histories (particles) as they move 

through the system.  As this is done, the weight of the history is accordingly reduced.  This 

increases the number of histories as well as preserving the weight.  The difficultly with this 

biasing is how to and where to split.  These importance parameters take experience and iterations 

to generate manually.   

3.3 CADIS and FW-CADIS 

The Consistent Adjoint Drive Importance Sampling (CADIS) and the Forward Weighted 

CADIS (FW-CADIS) methods developed by Wagner and Haghighat, and Wagner and Peplow, 

respectively, are attempts to improve the Monte Carlo method efficiency using estimates of the 

adjoint and forward fluxes that are calculated deterministically.[39, 40]  These methods are 

based on the classical source-detector problem.  The following is a summary of their work. 

In CADIS, one considers a classical source-detector problem with a unit source with 

emission probability distribution function   !"
, �# and a detector response function $%!"
, �#.  To 
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determine the total detector response, R, the forward scalar flux,  &!"
, �#, must be known.  The 

response is found by integrating the product of the detector response function and the flux over 

the detector volume, VD. 

 ' � ( $%!"
, �#),*+ &!"
, �#�, ��  (2) 

Wagner showed that using the (approximate) adjoint, the optimum variance reduction parameters 

(importance and a consistent biased source distribution) for Monte Carlo simulation are given 

by: 

  -!"
, �# � .
/  !"
, �# &

0!"
, �# (3) 

where the weight window targets for particle transport would be: 

 12!"
, �# � /
34!5
,)#. (4) 

This minimizes the variance in the forward Monte Carlo simulation to calculate R.  When 

the particle is sampled from the biased source, the weight must be adjusted to preserve the fair 

game.  This is the origin of the consistency of the CADIS method.  Source particle histories must 

begin with a weight that matches the window in the phase-space point that they begin.  For 

example, the center of the core is much less important to the activation of the concrete outside 

the reactor vessel than the core periphery.  This means that the source particles here are born 

with appropriate weight minimizing the computation that must be expended on their life.  This 

greatly increases the computational efficiency of the method.[37]   

FW-CADIS expands on this method by weighting the adjoint source by the inverse of the 

expected forward flux.  This expansion allows the method to effectively minimize the variance 

of multiple source-detector problems in the same simulation.  The benefit to the user is the 
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availability of mesh tallies for a potentially large area of interest.[39]  If the user wanted a 

detector response, $%!"
, �#, over the whole mesh tally, then the adjoint source would be: 

  0!"
, �# � 67!5
,)#
�3!5
,)#67!5
,)#%)

 (5) 

where  &!"
, �# is an estimate of the forward flux over that mesh tally.   

FW-CADIS attempts to keep the variance, of the Monte Carlo calculation constant, i.e., 

the variance of the meshes more uniform.   

3.4 Monaco 

 Monaco is a multi-group Monte Carlo code that takes the importance map 

generated from the adjoint and forward estimates and calculates the biased portion of the 

simulation.[13]  It can tally based on points, regions, or meshes.  Monaco can weight tallies with 

built-in or user-specified responses.  Any dose-like response is just the sum over groups of the 

flux of a particular group times the response function of group.  For the interactions of interest, 

this makes calculating the reaction rate much easier.[38] 

3.5 MAVRIC 

MAVRIC is the sequence implementing the CADIS and FW-CADIS methods in the 

SCALE6 package from Oak Ridge National Laboratory (ORNL).[37]  The Denovo code is the 

basis for all deterministic calculations used to generate variance reduction parameters.  Denovo 

calculates both the adjoint estimate and weights it with the forward flux estimate if necessary.  

MAVRIC takes the user input, converts it to the appropriate format and passes it where it is 

needed during the run.  Since there are multiple codes involved, MAVRIC will convert as 

required from one code to the other.  It also has the ability to stop at intermediate points for the 

user to investigate the output before continuing.  This setup allows Denovo and Monaco to be 
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fully functioning independent codes that can be utilized anywhere as well as within the CADIS 

and FW-CADIS methods for deep penetration shielding problems.   
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CHAPTER 4 

 

 

 

MODEL DEVELOPMENT 

 

 

 

The majority of the development of the IRIS model was spent in accurately describing 

the geometry of the building and containment using the SCALE General Geometry Package 

(SGGP).  SGGP is designed to be simple to use with emphasis on fast development.  The user 

has several macrobodies available to help simplify the modeling of complex geometries.   

Another feature of SGGP is the unit and hole system.  Units are wholly defined objects each with 

their own bodies in any configuration that can be inserted into holes placed in other units.  The 

global unit of the system is the entire universe of the simulation; nothing in the problem can exist 

outside the global unit.  This feature is useful because it allows the user to model the pressure 

vessel as a unit and then insert it into the containment vessel.  If there are any changes to be 

made, or the user wants to just analyze the pressure vessel, it is very easy to make the changes or 

set it as the global unit for a simulation.   This section will describe the entirety of the model 

geometry as well as the other assumptions made.   There will also be a section describing model 

validation.   

4.1 Core Description 

The IRIS core is composed of 89 17x17 XL Westinghouse fuel assemblies.  (Figure 5) 
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Figure 5:  Assembly layout in core 

 

Each assembly has 289 positions:  264 for fuel pins, 24 for control, and one for instrumentation 

shown in Figure 6. 
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Figure 6:  Assembly layout 

 

One of the assumptions made about the fuel assemblies early in the project is that it is 

unnecessary to model them exactly as they would appear in the reactor core.  There are many 

Downcomer 

Barrel and reflector 

(channels for cooling 

shown not to scale) 

Assembly  
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small details that make a negligible difference to the shielding analysis.  However, the outer 

dimensions and the locations of the support structures are reasonably well known.  As such, it is 

possible to slice the core along different axial planes and create homogenizations of each zone.  

The semi-homogenization captures all the material details of the zones but simplifies the model 

and makes it more manageable.  Westinghouse provided a table with a breakdown of the 

assembly into the semi-homogenous zones.[21]  Each zone included an axial dimension with a 

volume fraction of materials in that zone.  With this basis, there were several assumptions made 

about the assemblies before the homogenization processes began. 

All assemblies are assumed to be identical.  The most important assumption here is with 

respect to the 
235

U enrichment percentage.  For a real core, the fuel designer may decide that 

varying the enrichment could produce better fuel performance.  However, for this purely 

shielding problem, it was assumed that all fuel was 4.95% 
235

U by weight.  It was also assumed 

that the fuel was completely UO2; it was fresh from the supplier with no fission products.  The 

uranium in the homogenized core was assumed to be at the theoretical density of UO2 multiplied 

by a density correction factor times a volume factor.  The density factor of .96 takes into account 

the inability of the fuel fabricator to sinter the pellets to the theoretical density.  The volume 

factor of .99 accounts for the dishing and chamfering of the fuel pellet in order to relieve thermal 

stress.  This assumed density was 10.4 g cm
-3

.  All pins and guide tubes were assumed to be 

exactly the same.  Dimensions for them quoted no tolerances.  Assemblies were modeled at the 

cold dimension.   The assembly pitch is 8.466 in; however, the actual cold size of the assembly is 

8.426 in.  The extra space was modeled as water at the core water temperature to fill the volume 

completely.   
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Fuel pins in the IRIS core were assumed to correspond to the fuel pins in the 17x17 XL 

Westinghouse assembly.  Each fuel pin (Figure 7) is composed of a long cylindrical Zircaloy 

tube full of uranium pellets and backfilled with helium gas at an elevated pressure to prevent 

buckling in operation.  The active core zone, UO2 pellets stacked height, is 168 in while the total 

fuel pin height is 194 in.  The extra space is for the upper and lower plena, used for expansion of 

the fuel and for fission gas capture and the endplugs.   

 

 

 

 

 

 

Each fuel pin has the following dimensions[43]: 

Table 1:  Fuel pin dimensions 

Component Dimensions (in) 

Fuel pellet diameter 0.3225 

Fuel rod outside diameter 0.374 

Fuel rod clad thickness 0.0225 

Lattice pitch 0.496 

 

The guide tubes and the instrumentation tubes were assumed to be the same.  (Figure 8) 

 

 

 

 

 

Water 

Fuel 

Cladding  

Helium  

Water 

Tube 

Figure 7:  Fuel pin cross section 

Figure 8:  Guide and instrumentation tube cross section 
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Dimensions for the guide and instrumentation tubes[43]: 

Table 2:  Guide tube dimensions 

Component Dimensions (in) 

Outer diameter 0.482 

Inner diameter 0.442 

Lattice pitch 0.496 

 

All the water throughout the core was assumed to be 0.74 g cm
-3

.  This includes the water 

between the assemblies, between the pins and tubes in the assemblies and within the tubes.  

There was no boron added to the water in the core in the model.    

4.2 Homogenization of the core 

As previously mentioned, Westinghouse provided general locations and materials for 

different sections of the assemblies.  This along with the core assumptions that make up the 

active zone was homogenized as follows.  

Each zone was homogenized the same way.  The goal was to preserve the same mass as 

the real assembly setup as well as the dimensions of the core.   Each axial zone height was 

multiplied by the cold axial cross sectional area to establish the volume of the zone.  For the 

zones with more than one compound, there was a corresponding volume fraction given.  KENO 

geometry requires a weight percent for user created compositions.  To calculate this weight 

percent for each zone the following equation was used: 

89:9;�<	<=>,?<@=<AB%,C<B> �
!*DEFG#
*H,IEJKELF7,DEFG�
MIEJKELF7��N	=	OPEQEKG,IEJKELF7�

@DEFG
 (6) 

where ,C<B> is the total zone volume,  ,R,?<@=<AB%,C<B> is the volume fraction of the specified 

composition in the zone,  S?<@=<AB% is the cold density of the composition, and TC<B> is the total 

mass of all the compounds in the zone.  Then this weight percent for each compound needed to 

be decomposed into a weight percent by element or isotope depending on the availability of the 
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cross-section, 1�U�;�<	<=>,?<@=<AB%.  The end result is a table of isotopes with a corresponding 

weight percent by zone. 

The results of the fuel assembly homogenization are 16 zones that appear as a set of 

stacked cuboids with dimensions corresponding to the cold assembly. (Figure 9 and Figure 10) 

Table 3:  Core homogenization parameters 

 Water Zr-4 SS-304 Inconel Description Thickness (in) 

8T 1.000 - - - Hold Down Spring 1.000 

7T 0.852 - 0.148 - Top Nozzle Enclosure 3.625 

6T 0.549 - 0.451 - Top Nozzle Adapter Plate 0.680 

5T 0.990 0.010 - - Gap 1.695 

4T 0.660 0.340 - - End Plug 1.000 

3T 0.585 0.102 0.037 - Upper Plenum 0.993 

2T 0.520 0.102 0.037 0.066 Top Grid in Upper Plenum 0.152 

1T 0.585 0.102 0.037 - Upper Plenum 5.487 

Active Core       

1B 0.895 - 0.105 - Bottom Nozzle Enclosure 1.823 

2B 0.332 - 0.678 - Bottom Nozzle Adapter Plate 0.685 

3B 0.660 0.340 - - End Plug 1.000 

4B 0.532 0.171 - 0.053 Lower Plenum and Grid 0.690 

5B 0.585 0.171 - - Lower Plenum 2.714 

6B 0.516 0.171 - - Lower Plenum and Bottom Grid 1.520 

7B 0.585 0.171 - - Lower Plenum 1.568 
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Figure 9:  Upper half of the homogenized assembly description 

 

 

Figure 10:  Lower half of the homogenized assembly description 
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4.3 Reflector 

The reflector (Figure 11) is a larger steel component placed just outside the core that is 

designed to improve neutron economy by reflecting fast and epithermal neutrons back into the 

core.  It is 90% 316L stainless steel and 10% water channels.  It was modeled as a homogenous 

piece when in reality, it would have more channels nearer the core for cooling due the gamma 

heating while farther away, there would be fewer.  

 

Figure 11:  Reflector, ¾ view without the core 

 

The reflector can roughly be described as a six meter tall annulus with a 136 cm outer radius 

with an inner cutout corresponding to the core cross sectional profile.   The cutout extends 518 

cm from the bottom of the core.  The upper 82 cm has an inner radius of 131 cm.[18]  
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4.4 Core Barrel 

The barrel’s (Figure 12) primary function in the pressure vessel is to create the primary 

loop.  It is a 16 m tall annulus, 137.5 cm inner radius and 142.5 outer radius, resting on eight 

azimuthal supports connected to the pressure vessel.[16]   

 

Figure 12:  Barrel with reflector and core 

 

There are a few differences between the barrel in the model and what would be the case in the 

IRIS pressure vessel.  The barrel is actually composed of two separate annuli, one on top of the 

other.  There are some flanges where connections between the two would be; these are removed 

because they are insignificant to the shielding of the whole system.  There also would be several 
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sets of eight holes at different levels in the barrel.  The primary function of these holes would be 

to establish a natural convection loop in the event of pump failure or primary coolant loss that 

drops the level of the primary below the pump intakes.  Again, they are completely 

inconsequential to the shielding.   

There are two other components that are part of the barrel.  First, the bottom plate (Figure 

13) is a section of stainless steel that is used to support the core and is part of the barrel. For each 

assembly position there is a set of four holes that provide primary water flow to be heated by the 

core.  They are all modeled exactly as described.[17]  The entire barrel and associated 

components were modeled as 316L stainless steel.   

 

Figure 13:  Bottom plate (dimensions in mm) [17] 

 

The other part of the barrel is the lower support ring.  It is the attachment point for the barrel 

itself and the bottom plate.  Figure 14 shows the ring in the model without the eight azimuthal 

supports.  The azimuthal supports were not modeled.  
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Figure 14:  Ring shown with the core, reflector, barrel, bottom plate, and pressure vessel 

 

4.5 Steam generators 

The integral steam generators of IRIS are the one of the most technically challenging 

points in the model because of the support structure and the varying water density.  Since the 

neutron streaming path from the core to the control room approximately passes through the 

bottom portion of the steam generators, it was important to capture as much of the support as 

possible to ensure that the model was not adversely affected by the lack thereof.  There are three 

main components to the steam generator subassembly:  the steam generator tube bundle, headers, 

and support structure. 

4.5.1 Steam Generator Body 

The steam generators are a helical Inconel tube bundle connected to a feedwater header 

and steam header that are encapsulated with a thin stainless steel annulus with a more robust 

center annulus support of stainless steel.  They are completely supported by the barrel and the 
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pressure vessel.  The tubes are connected only for their own support to the center support 

annulus.   

The steam generator body in the model is homogenized much like the assemblies.  Due to 

the variation of water density throughout the steam generator primary and secondary, it cannot 

be modeled as a single component in the system.  The IRIS team provided data from a RELAP 

model that covered the entire system.  Figure 15 and Table 4 shows the density change 

throughout the steam generator primary and secondary and how it was homogenized in the 

model respectively: 

 

Figure 15:  Density change throughout the steam generators [21]
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Based on the data, it was more important to capture the changes in the secondary rather 

than the primary because the change was much more dramatic.  However, it was not simply a 

matter of equal sections.  The steam generator was sectioned off to capture as much of the initial 

change as possible because the secondary density drops off very quickly closest to the core and 

could provide a streaming path to the control room. 

Table 4:  Steam generator sections for the model 

 Height (cm) Primary (g cm
-3

) Secondary (g cm
-3

) 

Top (1) 298.8 0.67 0.0345 

2 89.64 0.699 0.0842 

3 89.64 0.712 0.168 

4 89.64 0.722 0.272 

5 29.88 0.728 0.373 

6 59.76 0.731 0.509 

Bottom (7) 89.64 0.738 0.775 

 

Based on this data, the steam generator was modeled as a cylinder with annuli for the outer 

shroud, the tube bundle, primary and secondary water homogenization, and an annulus for the 

center support column filled with recirculation water.[3, 4]  (Figure 16) 

 

Figure 16:  Steam generator 
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The steam generator is 160 cm in diameter and 679 cm tall.  This does not include the height of 

the headers.   

4.5.2 Steam Generator Headers 

The steam generator header function is to split or recombine the secondary into one 

stream that is either fed to or away from the steam generator tube bundle.  The steam generator 

header (Figure 17) is composed of Inconel, the same material as the tubes.  It is tied to the central 

support column and it is part of the structure that is bolted to the pressure vessel wall.   

Non-conservatively, the headers did not include a provision for the tubes and water that passes 

into it.  Thus, the density for both the feedwater and the steam headers are higher than they 

would be in the real system.  However, this is not necessarily a bad assumption.  The steam 

header at the top of the steam generator is inconsequential to the control room shielding.  The 

feedwater header at the bottom does have some impact in the control room, but the water passing 

through the header walls is 0.8 g cm
-3

, compared to the Inconel density of 8.15 g cm
-3

, is the 

most dense water in the entire system.  Also, the mass of the water within the header walls is 

very small compared the mass of the header. The water within the header was what would be 

under operation.  The shape of the header was modeled as described in the technical drawings. 

 

Figure 17:  One half of the steam generator header 
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4.5.3 Steam Generator Support 

The steam generator support structure (Figure 18) is a series of I-beams arranged in a 

way that transfers the load from the steam generator center support down to beams that are 

resting on flanges on both the barrel and the pressure vessel.[2]   

 

Figure 18:  Steam generator support structure 

 

It is composed entirely of stainless steel, type 316.  One of the differences between the 

model and the real system is the lack of the curved beams that are designed to maximize the area 

of contact on the support flanges and minimize the primary flow restrictions.  It was not possible 

to model these effectively as described so the model was set up to have straight beams.  This is a 

minor difference and more conservative because a straight beam is less massive than the curved 

one.   

4.6 Pressure Vessel 

The IRIS pressure vessel (Figure 19) is composed of low carbon steel with a stainless 

steel liner.  It is over 22 m tall with a 339 cm outer radius.  There are two spherical sections 

capping a cylindrical tube.  The pressure vessel was modeled with two materials: a low carbon 

steel body and 316L stainless steel liner.[15, 14, 19]  Dimensions are as follows: 



32 

 

 

Table 5:  Pressure vessel major dimensions 

 
Radius to Stainless 

Steel (cm) 

Radius to Carbon 

Steel (cm) 

Outer Radius 

(cm) 

Upper Hemisphere 310.65 311.15 325.16 

Cylinder 310.65 311.15 339.16 

Lower Hemisphere 310.65 311.15 327.15 

 

 

Figure 19:  IRIS pressure vessel in containment with all modeled internals 
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Nozzles (Figure 20) for the pressure vessel are the locations for the penetration through 

the primary pressure boundary to the steam generators.   

 

 

Figure 20:  Feedwater nozzle model cutaway view 

 

They are composed of the same material as the pressure vessel.  Their modeling was not 

consistent with the drawing; the design was simplified to a set of concentric cylinders rather than 

cones for simplicity.[19]  This results in a conservative model with less mass than the drawing.   

4.7 Containment Vessel 

The containment vessel is a 25 m diameter spherical shell made of carbon steel 4.5 cm 

thick.  Its primary function is to mitigate the consequences of and ultimately be the second line 

of defense in an accident scenario where there is a primary pressure boundary failure.     

228.6 cm  
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Figure 21:  Containment 

 

The containment vessel also has a concrete structure within it designed to support the pressure 

vessel.  It contains highly irregular shapes and cutouts used for feedwater and steam piping and 

associated tanks for operation.  The containment header, a large removable section of the top of 

the containment vessel tied to the pressure vessel for refueling, was not modeled because it was 

not relevant to the shielding analysis covered in this thesis.  This is more conservative as well.   
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Figure 22:  Concrete in containment 

 

As shown in Figure 22, the concrete in the containment is a primary shielding mechanism for the 

areas beyond the reactor.[41]  However, only the vessel cavity wall (highlighted in yellow) 

where the reactor is supported will be investigated.  Previous work has shown that that is the 

only area of non-negligible concrete activation.[5]  This region is separated from the pressure 

vessel by the containment atmosphere, nitrogen gas at an assumed pressure of 100 kPa. 

4.8 Reactor Building 

The reactor building is a cylindrically shaped building with the lower 20 m below grade.  

It is composed of eight floors of varying shape and function to house all the reactor safety and 

control systems and constructed entirely of concrete.[42]  Each floor was modeled individually 

and then the building was stacked together to form a complete model.  Each room is modeled as 

closely as possible to the IRIS plant technical drawings with each room completely empty.  The 
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reactor building model was developed but not included in any of the analyses in this thesis and 

was also not validated.  The analysis of the building will be completed in future work.   

 

Figure 23:  Whole reactor building 
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4.9 Model Geometry Structure  

The SCALE standard geometry requires that a unit is a single universe that can be 

inserted into other units.  This feature, along with the array function, makes the modeling easier 

because repetitive items only need to be constructed once and then may be inserted as many 

times as necessary where they need to be.  For example, the steam generator body is a unit.  That 

unit is inserted into the pressure vessel in eight different locations as described[14].  There are 

some limitations: units can not overlap each other and they must be completely encapsulated by 

the unit in which they are placed.  The entire model can be described with the following 

hierarchical tree: 

cuboid unit containing the whole structure (global unit 999) 

 

 building structure (units 101-117)   containment vessel (unit 99) 

 

pressure vessel (17)         nozzles (15, 16) 

 

barrel (4) steam gen. body (10)    steam gen. header (11, 12)            steam gen. support (9)  

 

reflector (4)  bottom plate (8) 

 

homogenized assemblies  (1, 3) bottom plate block (14)      bottom plate holes (13) 

Figure 24:  Hierarchal tree diagram of the model 
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4.10 Temperature profile of the pressure vessel 

Figure 4.22 shows a flow chart with the varying temperatures in the pressure vessel. 

 

Figure 25:  Temperature profile superimposed on the pressure vessel 
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In the model, the densities were properly accounted, but the temperatures were not used for cross 

section correction.  The entire model was developed with all materials at room temperature.  

Future work will examine the implications of this assumption. 

4.11 Other Model Options 

Within the MAVRIC sequence, there are many options to fine tune the simulation.  The 

following will describe the options used for simulations performed. 

4.11.1 Response Functions 

MAVRIC has the ability for the user to input responses that can be used for the adjoint 

portion of the simulation or to tally with weight based on the response.  For this simulation, there 

were three responses used: 
59

Co(n,γ)
60

Co, 
151

Eu(n,γ)
152

Eu, and 
153

Eu(n,γ)
154

Eu.  These responses 

make it very easy to calculate the activation which will be discussed in depth in Chapter 6.   

4.11.2 Grid Geometries 

MAVRIC simulation is based on the geometry of the system with all the user assigned 

materials for that geometry.  Then grids must be overlaid for the forward and adjoint meshes as 

well as all the tallies.  These grid geometries are defined by the user and can be regularly or 

irregularly spaced.  The system is limited to only xyz geometries for the meshes but that allows 

the discrete ordinate calculations to run in parallel.   

SCALE6 includes the capability to view two dimensional slices of the output files using 

the Meshview viewer.  As an example, Figure 26 shows an output with the mesh overlaid on the 

model geometry and materials assigned.   
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Figure 26:  Materials as computed with a 100
3
 mesh 

 

This example covers the whole containment volume (1254.44
3 

cm
3
) with 100

3
 meshes.  

The view shows all the different materials in the system and how they were set up on the mesh.    

This mesh was used for both the forward and adjoint calculations as well as the tallying mesh.  

However, different meshes can be used for different portions of the simulation.   

4.11.3 Source 

The source defined in the simulation was an isotropic Watt fission spectrum for 
235

U that 

sampled uniformly from the material in the active core region.  The source used was based on the 

power of 1000 MWth.  From this power, the total neutron fission source density was calculated to 

be 7.89E+19
 
neutrons s

-1
.  This assumed that the energy per fission was 192.2 MeV and there 

were 2.43 neutrons per fission released.  Fission gammas were not included.  Due to a limitation 



41 

 

in the MAVRIC version used for this study, it was modeled as a flat distribution that is sampled 

uniformly, not a real distribution that accounts for the decreased power at the core periphery.  

The source density at the core periphery, driving the activation outside the vessel is 

approximately one half of the calculated average, thus could be represented by the total source of 

3.45E+19 neutrons s
-1

.  Using the average everywhere is conservative because the flux was 

artificially increased at the core edge.  Later versions of SCALE will include the capability to 

insert a real flux distribution, like the one that is available for IRIS, for a more accurate 

analysis.[22] 

4.11.4 MAVRIC Options 

The importance block of the input contains the keywords for all the options relating to the 

generation of the importance map.  For most of these, the defaults were used.  Non defaults that 

were selected pertained to the iteration scheme used for the forward and adjoint.  GMRES is the 

default iteration method; it is a rather robust sparse matrix iteration method but there were 

memory faults when trying to use it with a large number of meshes (> 1M).  Smaller number of 

meshes worked well with GMRES and it was reasonably fast.  The iteration method used for the 

large number of meshes was the Richardson iteration.  This method did not cause the memory 

faults and converged but was slower.  Upscattering only used the Richardson iteration method.   

The options that most affected the runs and were adjusted to improve performance were the SN 

and PL order, and the convergence criteria for the forward and adjoint portions of the simulation.  

Values for SN ranged from 3-8, PL from 1-4, and convergence was either 0.01 initially for speed 

or 0.001 for better results.  The effects of these will be discussed in Chapter 5.  
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4.12 Materials used 

 Table 6 shows all the materials used in the model along with their densities and relevant 

comments where they appear in the model. 

Table 6:  Materials in the model 

Material Density (g cm
-3

) Location 

Water 0.028-0.84 Throughout the pressure vessel 

SS 316L 7.94 Used for pressure vessel internals and liner 

Carbon Steel 7.82 Pressure and containment vessels 

Inconel 600
1
 8.3 

Steam generator components and assembly 

homogenization 

Regulatory Concrete 2.3 All concrete in the reactor building 

Dry Air 0.0012 Atmosphere in the building 

Nitrogen 0.0012 Atmosphere in containment 

Zirconium 6.49 Component in assembly homogenization 

Helium 0.00223 Component in assembly homogenization 

UO2 10.416 Fuel at 4.95% 
235

U in the assembly homogenization 

                                                 

 

1 Note that Inconel 600 was the material used in the model.  IRIS will use Inconel 690 for all materials requiring 

Inconel. 
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CHAPTER 5 

 

 

 

IRIS MODEL VERIFICATION AND VALIDATION 

 

 

 It is necessary and prudent to verify and validate the model before performing analyses.  

The verification confirms that the code works correctly as intended.  The validation demonstrates 

that for the application of interest accurate results are obtained.  This coupled with good 

engineering judgment and sound assumptions enable the user to obtain results that can be trusted.  

The verification of this model will be discussed in detail in this section.   

5.1 Geometry verification by model “flooding” 

 The first verification test was performed on the model to ensure that the geometry was 

correct and that during the Monte Carlo portion of the code, no particles would be lost due to ill 

configured geometries.  Personally, the author had no previous experience with the SCALE 

General Geometry Package (SGGP), so this test was extremely helpful.   

 The model, as previously mentioned, is based on SGGP which itself is a system similar to 

a Matryoshka doll.  Users define units which can be inserted into other units to grow the system, 

minimizing the time required to model repetitive units.  As the model grew in size, units were 

checked using a particle flooding procedure.  Histories were sampled over the entire unit in great 

quantities.   If any of those histories were lost, an error was recorded, the geometry issue was 

fixed, and the procedure repeated until there were no more problems.  As this thesis only covers 
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the concrete in the containment, two units received the flooding treatment:  the pressure vessel 

and the containment vessel.   

 

Figure 27:  Pressure and containment vessel flood 

 

Figure 27 shows the results of flooding the containment with particles from a unit source 

over the entire containment volume. The containment volume is defined as mentioned previously 

in section 4. 7 as a 25 m diameter steel sphere so some white areas under the sphere, indicating 

no data for that voxel, are acceptable.  It is also important to note that with a uniform unit source 

everywhere, the density will have an influence on the voxel tally.  Areas in red are the areas of 

containment that are at containment atmosphere inside the sphere or reactor building atmosphere 
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if outside.  Lower results recorded in the higher density regions, such as the core and the 

concrete are expected.  The containment atmosphere was assumed to be just slightly less than the 

reactor building atmosphere with a density approximately 0.0012 g cm
-3

 while the concrete was 

2.3 g cm
-3

.  Not surprisingly, the results in the concrete are about two to three orders lower than 

in the containment atmosphere.  Satisfactory coverage of all the containment volume was 

achieved making it unlikely that geometry errors were left unidentified. 

5.2 Verification of the overall variance reduction procedure functionality 

Another test was a run simulating the fast flux throughout the containment from the 

correct source location using the FW-CADIS method.  In this case, the source response was 

based on a unit group-wise response covering the top six groups of the 27n19g ENDF VII 

library.  This simulated all neutrons above .9 MeV.  The mesh for the forward portion was 100
3
 

voxels covering a cube that was 2510
3
 cm

3 
with a resultant mesh size of 25.1

3
 cm

3
.  This is not 

necessarily bad for the fast flux in this verification run.  The source was sampled from the core 

location using the biased source developed during the simulation.  For speed, PL=1, SN=4, and a 

convergence value of 0.001 were used. 
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Figure 28:  Forward deterministic estimate 

 

 In Figure 28, the forward deterministic estimate of the fast neutron flux is shown.  It is 

the first result from the FW-CADIS sequence.  Impressively enough, there are over 19 orders of 

magnitude represented in this figure.  The prediction of this reduction by the forward 

deterministic calculation will be used to weight the adjoint shown in Figure 29. 
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Figure 29:  Fast flux adjoint estimate 

 

The area predicted to be most difficult for this simulation was directly above the core near what 

would be the pump location.  This makes sense with the amount of shielding that ten meters of 

water would provide.  The actual flux is estimated to be the lowest and thus it needs the most 

importance to guarantee that the relative uncertainty will be the same as elsewhere.  

 From the adjoint and the forward, the importance map is created shown in Figure 30. 
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Figure 30:  Fast flux importance map for neutron group 1 

 

The importance map is in terms of the neutron target weight which is the inverse of the 

importance. Based on Equation 3, the weight window in space and energy (group-wise in this 

case) is calculated from the response over the expected flux.  It is very similar to the adjoint 

estimate shown above.  However, the importance map works with the consistent biased source to 

decrease the computational time.  By itself (without the consistent source biasing) particles 

would be generated in the source voxels only with the incorrect weight.  This would waste 

needless time tracking particles with negligible contributions to the tallies in the area of interest.   
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Figure 31:  Consistent-biased source for the fast flux verification 

 

The consistent-biased mesh source is created from estimate of the forward and adjoint flux.  As 

shown in Figure 31, MAVRIC is already beginning to compensate to attempt to generate 

uniform variance throughout by determining what source area are more important to the results 

rather than wasting time on all source particles equally.   

 The final portion is the Monte Carlo results.  For this simulation 200 batches with 10,000 

particles per batch were used.  Figure 32 shows the total flux from all groups by voxel and 

Figure 33 shows the associated variance by voxel.   
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Figure 32:  Fast flux Monte Carlo results 

 

 

Figure 33:  Relative uncertainty for Figure 32 
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The results were generated using a single core of an Intel Xeon X5355 at 2.66 GHz with 16 GB 

of RAM.  CPU time used for individual steps in the MAVRIC sequence is shown in Table 7. 

 

Table 7:  CPU times for the fast flux calculations 

Calculation Time (minutes) 

Forward 81  

Adjoint 6  

Monte Carlo 138  

Total 225  

 

For such a large geometry and so few histories, it is impressive to see that in only about two and 

an half hours of Monte Carlo time, there can be results generated that are over 20 orders of 

magnitude lower than the core.   

Extending this verification run involved reusing the same mesh source and importance 

map re-running the Monte Carlo portion for enough histories to get about an order of magnitude 

longer running time.  This run used 48 million histories as opposed to the 2 million for a run time 

of 22.8 hours.  This should show more results and a decreased variance in the voxels that had 

results from the run shown in Figure 33.  Figure 34 contains the results from running for 22.8 

hours.  Figure 35 shows the relative uncertainty for Figure 34. 
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Figure 34:  Fast flux for 20 times more histories 

 

 

Figure 35:  Relative uncertainty for Figure 34 
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As shown, the results for the increased time are much better both in quantity and quality.  

There are still areas with larger uncertainties, notably the concrete wall around the core but that 

is due to the large mesh size used for deterministic calculations resulting in a not very accurate 

variance reduction parameters, and consequently variation in the statistical uncertainty.  The 

results of these two verification runs indicate that the geometry is correct and that the code is 

running as expected. 

5.3 Validation 

 There are two concurrent models that are being developed in the IRIS Shielding Working 

Group.  One is an MCNPX model based on Burn’s DSA method; the other is a deterministic 

calculation using TORT from the Doors3.2a package.[6, 35]  Based on these two models, a 

comparison can be made to the MAVRIC model as a check to see if the results are consistent.  

Each model is making somewhat different assumptions and the capabilities of each code package 

are different.  For example, both the MCNPX and TORT codes have the ability to input a space-

dependent source distribution.  It is then expected to have some differences in the results.   

5.3.1 MCNPX Comparison 

 A detailed MCNP5/MCNPX model of the IRIS reactor building was developed by K. 

Burn at ENEA/Bologna, Italy.[5]  In the MCNPX model, there were different tallies created in 

the concrete region to check the flux levels, as shown by the superimposed white numbers in 

Figure 36.   
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Figure 36:  MCNPX model showing locations of tallies for comparison [5] 

 

The MAVRIC model was altered to include a tally at the same locations.  Burn reported his 

values as reaction rates.  Table 8 shows the comparison between the MCNPX model and the 

MAVRIC model.  The values shown are for the 
59

Co(n,γ)
60

Co reaction per gram per second 

taking place in the concrete assuming a concentration of 10 ppm by weight. 

Table 8:  Comparing the values of the MAVRIC and MCNPX Models 

 
MCNPX MAVRIC 

 

Reaction 

Rate 

Reaction 

Rate 

Relative Uncertainty 

(1σ) 

1 0.015 0.018 0.0015 

2 0.02 0.019 0.0016 

3 0.023 0.022 0.0017 

 

The MVARIC results shown in Table 8 are for four symmetric locations in the concrete at x and 

y axes averaged together.  The MCNPX results are integrated around the entire cavity wall tally 

1 

2 

3 

4 

5 
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volume.  The obtained values are very close to the MCNPX model by Burn, i.e. consistent with 

the statistical uncertainty of the results and before any safety factors are applied.   

5.3.2 TORT Comparison 

 

 

 

 

 

 

 

A 3-D TORT model of the IRIS containment was developed by M. Sarotto, M. Ciotti and 

R. Orsi at ENEA/Frascati, Italy.[11]  For the TORT model, the comparison was straightforward.  

Results for the TORT model are displayed as flux maps.  As a basis for the comparison, the 

maximum neutron flux in the cavity concrete wall found in the TORT model was compared to 

that same location in the MAVRIC model. [11] 

Figure 37:  Location of maximum flux in the TORT model [11] 
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Figure 38:  Comparing the MAVRIC model to TORT 

 

Table 9:  Comparing the flux values of the MAVRIC and TORT Models 

 Flux (n cm
-2 

s
-1

) Relative Uncertainty 

MAVRIC 4.45x10^4 6.30% 

TORT 2.75x10^4 - 

 

This agreement is within a factor of two which is acceptable considering the differences in the 

models. The relative uncertainty for the MAVRIC model is well within reason to allow making a 

meaningful comparison.   

5.3.3 Discussion 

 For both comparisons, the agreement is acceptable once the assumptions are considered.  

For the MAVRIC model, there is no spatial source distribution dependence, which was 

compensated by artificially decreasing the total source.  Based on the concurrent work and 

results, the MAVRIC model appears to be valid.   
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CHAPTER 6 

 

 

 

ANALYSIS OF CONCRETE ACTIVATION IN THE IRIS REACTOR 

VESSEL CAVITY 

 

 

 

This Chapter presents results of analyses performed to assess activation of the concrete 

wall in the IRIS reactor vessel cavity.  

6.1 Model Features and Options Used in Analysis 

 For the all results in this section, the model used was the same.  Since only the reactor 

vessel cavity was considered the model was reduced in size from the full containment to the 

outer extent of the cavity wall. This resulted in a size where x=y=1000 cm and z=1270 cm.  

There were 143 meshes in the x and y direction and 72 in the z direction for a total of 1472328 

meshes with a size of 862 cm
3
 each.  The mesh size in x and y was 7 cm and in z it was 17.6 cm.  

This mesh was used throughout the analysis, both for deterministic calculations and Monte Carlo 

tallying.  Figure 39 shows the materials and geometry used.  The concrete (region of interest) is 

shown in dark green. 
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Figure 39:  Mesh and geometry used for results 

 

This was the best compromise based on the computational resources limitations, with the 

sequential deterministic and Monte Carlo codes limiting the use to a single processor.  It is 

important to remember that the deterministic mesh is used for creating the importance map, not 

the results.  If due to a coarse mesh the map is not perfect for the geometry, materials, and mesh 

tallies, it will take longer in Monte Carlo to converge to low uncertainty, but the results will 

nevertheless be unbiased, and very likely computationally still more efficient than if using a 

manual variance reduction.   

 Options for the deterministic portion of the simulation were PL=3, SN=8, and a 

convergence criterion of 0.001.  The deterministic calculations took 560 and 327 minutes for 

forward and adjoint respectively. For the results, all the neutron groups were simulated but for 
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creating the importance map, upscattering was neglected.  Using upscattering during the 

deterministic portion of the run was tested, but it increased the time by an order of magnitude 

and was deemed not practical.  Instead of spending that time in accounting for upscattering in 

forward and adjoint deterministic calculations for the importance map, that time was made 

available to the Monte Carlo portion which produced a better overall efficiency. 

 The adjoint was set up to drive particles to the cavity concrete wall material at the 

expense of other regions.  There were three adjoint responses corresponding to capture cross 

sections of the three reactions of interest.  

Table 10:  Isotopes of interest 

Isotope Reaction Product Half Life (y) 2200 m/s cross section (b) 
59

Co (n,γ) 60
Co 5.2714 38 

151
Eu (n,γ) 152

Eu 13.516 8000 
153

Eu (n,γ) 154
Eu 8.593 200 

 

These reactions are primarily responsible for concrete activation. Since the energy dependence is 

similar, but the magnitude is significantly different, they were merged into a single simulation, 

scaling their importance based on the inverse of the maximum cross section as follows: 

Table 11:  Response weights 

Response Weight 
59

Co(n,γ)
60

Co 500 
151

Eu(n,γ)
152

Eu 1 
153

Eu(n,γ)
154

Eu 50 

 

The impurities in the cavity concrete wall were assumed to not self-shield because of their low 

assumed concentrations, less than 10 ppm, and as such, were assumed to be linearly activated.   

For the Monte Carlo portion, there were 800 batches with 10,000 particles per batch.  The 

source used was the one listed in Section 4.11.3.  All boration done was with natural boron added 

directly to the concrete at approximately 0.7 wt. %. (1E+21 
 
atoms nat. B cm

-3
) 
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6.2 Activation Response 

To determine the number of atoms per cubic centimeter, the following equation was used 

to convert each constituent into an atomic number density per cubic centimeter 

 Number density � V; � MOWX
YO

  Zg !cm concrete#-3 eZatoms mol-1e
Zg mol-1e

  (7) 

where Ni is the number density of the element, S; is the density of the isotope, NA is Avogadro’s 

number, and Mi is the molar mass of each element.  The impurity level is listed as a ppm level by 

weight of concrete.  Assuming that they contribute negligibly to the weight of the concrete, 

Table 12 lists the atomic density per isotope of impurity 

Table 12:  Impurities of interest assumed in concrete 

Isotope 
Level 

(ppm wt) 

Density 

(g cm
-3

) 

Percent 

abundance 

Molar Mass 

(g mol
-1

) 

Number 

Density 

Co-59 10 8.9 100% 59.93 2.31E+17 

Eu-151 1 5.264 47.8% 151.96 4.36E+15 

Eu-153 1 5.264 52.2% 151.96 4.76E+15 

 

The basic reaction rate equation is: 

 Rate �  $jV  Z10-24 cm2e Zcm-2s-1eZcm-2e  (8) 

where σ is the microscopic cross-section (barns, b), I is the incident beam intensity (neutrons  

cm
-2

 s
-1

), and N is the number of target atoms (atoms cm
-2

).   

 The total activity rate for radioisotopes in any material is based on both the creation and 

disintegration. 

 
%W!	#
%	 � $jV k lV!�#  (9) 

For all the reactions of interest, it is assumed that they are in saturation, meaning that the time 

rate of change of the activated material is zero, or: 

 $jV � lV!�# (10) 
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This means that the activity of the activated material is equal to the reaction rate of 

creation.  For all the isotopes of interest, the IAEA limit is 0.1 Bq g
-1

.  (Note these are grams of 

concrete)  Since the density for the concrete is 2.3 g cm
-3

, we can conclude that the free release 

limit is 0.23 Bq cm
-3

.  This satisfies the lV!�# term.   

 On the LHS of Equation 10, in reality we have an integral over the energy range (i.e., a 

summation in the multigroup case), rather than a single flux value and cross section, represented 

by the flux weighted response, which in this case was the (n,γ) microscopic cross section for the 

reactions of interest.  This response weighted flux then becomes the $j term in Equation 6.4.  N 

in this case is just the number density of the isotope of interest.   

For example, to find the flux in the concrete that corresponds to 100% of the free release 

limit of 10 ppm 
60

Co in concrete requires rewriting Equation 4 as follows: 

 $j � �.no
!n.o.E+17)(10

24
) (11) 

The result of Equation 11 is that the threshold level for the flux weighted response is 9.7E+5.  

The units from for Equation 11 are a combination of Equation 8 and the activity ([s
-1

 cm
-3

]) 

which results in s
-1

.  The maximum value over all voxels in the mesh tally for the flux weighted 

response in IRIS in the concrete is 1.04E+6 ± 23.4% at (188.08, 0, -1157.1) meaning that the 

activity here is 7% higher than the IAEA limit, well within the expected borating capacity.   

6.3 Baseline Results with “standard” (unborated) concrete 

 To establish a baseline of the activation within the concrete, a simulation was run without 

any boron in the concrete.  The Monaco simulation time was 43.6 hours.   
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Figure 40:  Total flux with no boron 

 

Figure 41:  Relative uncertainty for Figure 40 
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As shown in Figure 40 and Figure 41, the total flux results are very good.  The code successfully 

optimized Monte Carlo simulations for the concrete at the expense of other regions.  

Uncertainties in the first layer of concrete throughout the pressure vessel cavity are all under 

10%, in spite of at least ten orders of magnitude attenuation.   

 However, the total flux does not tell the whole story.  The flux weighted response, 

discussed in Section 6.2, is the more important value to determine if the concrete will be 

activated over the IAEA limit.  For the 
59

Co(n,γ)
60

Co reaction, at 10 ppm, the level would be 

exceeded if the flux weighted response in concrete was greater than 9.7E+5 interactions s
-1

.  

Figure 42 shows the total response, Figure 43 shows the relative uncertainty of the response, and 

Figure 44 shows the response with a lower cutoff equal to exceeding the free release limit. Only 

the distribution within the cavity wall is meaningful. 

 

Figure 42:  
60

Co response 
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Figure 43:  Relative uncertainty for Figure 42 

 

Figure 44:  
60

Co response above the IAEA clearance 
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60

shows that with no boron

be some concrete that is activated above the free release limit.  It is primarily contained to the 

lower cavity where the pressure vessel wall thickness is reduced by one

in line with the validation with Burn’s model showing that the 

While the results may be within the other m
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limit discussed in Section 6.2 was reduced by a factor of three.  This could be ach

world scenario by a one-third reduction in the clearance limit or an increase in the flux or 

impurity content by a factor of three

dimensions and densities, or cross sections
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Co response above IAEA clearance limit with applied safety factor

shows that with no boron at 10 ppm 

be some concrete that is activated above the free release limit.  It is primarily contained to the 

lower cavity where the pressure vessel wall thickness is reduced by one

in line with the validation with Burn’s model showing that the 

While the results may be within the other m

and present the results.  The factor selected was three.  

limit discussed in Section 6.2 was reduced by a factor of three.  This could be ach

third reduction in the clearance limit or an increase in the flux or 

impurity content by a factor of three, or may be needed to account for uncertainties in material 

dimensions and densities, or cross sections. 

Co response above IAEA clearance limit with applied safety factor
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at 10 ppm 
59

Co in the concrete under full power, there will 

be some concrete that is activated above the free release limit.  It is primarily contained to the 

lower cavity where the pressure vessel wall thickness is reduced by one

in line with the validation with Burn’s model showing that the 

While the results may be within the other models, it is prudent to include a safety factor 

and present the results.  The factor selected was three.  Fig

limit discussed in Section 6.2 was reduced by a factor of three.  This could be ach

third reduction in the clearance limit or an increase in the flux or 

, or may be needed to account for uncertainties in material 

Co response above IAEA clearance limit with applied safety factor

Co in the concrete under full power, there will 

be some concrete that is activated above the free release limit.  It is primarily contained to the 

lower cavity where the pressure vessel wall thickness is reduced by one

in line with the validation with Burn’s model showing that the 
60

Co activity would be below the 

odels, it is prudent to include a safety factor 

Figure 45 shows the results if threshold 

limit discussed in Section 6.2 was reduced by a factor of three.  This could be ach

third reduction in the clearance limit or an increase in the flux or 

, or may be needed to account for uncertainties in material 

Co response above IAEA clearance limit with applied safety factor

Co in the concrete under full power, there will 

be some concrete that is activated above the free release limit.  It is primarily contained to the 

lower cavity where the pressure vessel wall thickness is reduced by one-half.  These results are

Co activity would be below the 

odels, it is prudent to include a safety factor 

shows the results if threshold 

limit discussed in Section 6.2 was reduced by a factor of three.  This could be ach

third reduction in the clearance limit or an increase in the flux or 

, or may be needed to account for uncertainties in material 

Co response above IAEA clearance limit with applied safety factor

Co in the concrete under full power, there will 

be some concrete that is activated above the free release limit.  It is primarily contained to the 

half.  These results are

Co activity would be below the 

odels, it is prudent to include a safety factor 

shows the results if threshold 

limit discussed in Section 6.2 was reduced by a factor of three.  This could be achieved in a real 

third reduction in the clearance limit or an increase in the flux or 

, or may be needed to account for uncertainties in material 

 

Co response above IAEA clearance limit with applied safety factor 

Co in the concrete under full power, there will 

be some concrete that is activated above the free release limit.  It is primarily contained to the 

half.  These results are 

Co activity would be below the 

odels, it is prudent to include a safety factor 

shows the results if threshold 

ieved in a real 

, or may be needed to account for uncertainties in material 
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Even with the safety factor applied, the total mass of concrete activated is relatively low.  It falls 

in line with expectations; only the fast flux leaving the core is important, and as it strikes the face 

of the cavity, it is thermalized and captured. 

For both europium isotopes, the level assumed in the concrete was 1 ppm of natural 

europium.  This corresponds to a flux weighted response level of 5.2E+7 interactions s
-1

 for 

152
Eu and 4.8E+7 interactions s

-1
 for 

154
Eu and the natural europium content is 47.8 at. % 

151
Eu 

with the balance 
153

Eu.   

For 
152

Eu, Figure 46, Figure 47, and Figure 48 show the total response, the response 

above the clearance, and the response above the clearance with a safety factor of three. 

 

Figure 46:  Total 
152

Eu response with no boron 
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Figure 47:  
152

Eu response above the IAEA clearance (no boron) 

 

 

Figure 48:  
152

Eu response above the clearance with the safety factor (no boron) 

 



68 

 

152
Eu shows more activation than 

60
Co as expected given that the cross sections for 

152
Eu are 

higher and the maximum occurs in a lower energy group.  With the safety factor applied, there is 

a larger volume of activated material. 

 Figure 49, Figure 50, and Figure 51 show the total response, the response above the 

clearance, and the response above the clearance with a safety factor of three for 
154

Eu. 

 

Figure 49:  Total 
154

Eu response with no boron 
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Figure 50:  
154

Eu response above the IAEA clearance 

 

Figure 51:  
154

Eu response above the clearance with the safety factor (no boron) 
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 As shown, 
154

Eu is negligible including the safety factor.  The single voxel displayed at 

the bottom is the only indicated activation but with over 70% relative uncertainty it is most likely 

non-activated as its neighbors which have relative uncertainties under 20%.   

6.4 Results with boration 

 The next simulation performed included boron in the concrete to a level of 0.7 wt. %.  

This amount of boron was identified as a reasonable level.[30]  This level of boron is equivalent 

to 1E+21 atoms nat. B cm
-3

.    The only change in the model input file was the addition of boron.  

Figure 6.14 and 6.15 show the total neutron flux within the same volume as before.   

 

Figure 52:  Total flux with boron 
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Figure 53:  Relative uncertainty for Figure 52 

 

As compared to the simulation with no boron, the simulation with boron already has lower flux 

in the concrete areas.  Figure 54, Figure 55, and Figure 56 show for 
60

Co the total response, the 

response above the IAEA clearance and the response above the clearance with a safety factor of 

three. 
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Figure 54:  Total 
60

Co response with boron 

 

 

Figure 55:  
60

Co response above the IAEA clearance with boron 
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Figure 56:  
60

Co response above the IAEA clearance with boron and safety factor 

 

 The same figures shown for 
60

Co will be shown for 
152

Eu.  
154

Eu will not be shown 

because as discussed in Section 6.3, its contribution and activation are significantly smaller.   

 

Figure 57:  Total 
152

Eu response 
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Figure 58:  
152

Eu response above the IAEA clearance with boron 

 

 

Figure 59:  
152

Eu response above the IAEA clearance with safety factor and boron 
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The previous figures show that with an addition of an acceptable amount of natural 

boron, there is a significant decrease in the activated materials.  None of the isotopes of interest 

are activated above the IAEA clearance limit.  But, a figure with no levels does not convey the 

whole story.  Table 13 lists several points around the cavity wall with their location and 

responses for the different isotopes.   

Table 13:  List of several points and responses 

Isotope Location 
Response 

without boron 

Response 

with boron 

Response limit with 

safety factor 
60

Co Core midplane 2.71E+05 1.94E+04 3.26E+05 

 
Cavity maximum 8.40E+05 2.54E+04 3.26E+05 

 
Directly under PV 3.20E+05 1.90E+04 3.26E+05 

152
Eu Core midplane 1.80E+08 2.53E+06 1.76E+07 

 
Cavity maximum 1.93E+08 1.10E+06 1.76E+07 

 
Directly under PV 6.68E+07 2.83E+06 1.76E+07 

 

From Table 13, the values are not zero; they are just below the response when natural boron is 

added even with the extra safety factor included. 
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Figure 60:  Activation by depth 

 

 Figure 60 shows the reaction rates of activation by depth for the core mid-plane of the 

cavity wall.  The reaction rate parameters are based on the individual (n, γ) reaction for each 

isotope with the result shown in the legend.  The reaction rates are per gram of concrete per 

second.  Comparison of results with and without boron shows the expected decrease in impurity 

activation with boron in the cavity wall.  Error bars shown are for 1σ.  Results are shown every 

3.5 cm from the cavity wall face mesh up to 45.5 cm deep.  Results beyond 28 cm have much 

higher errors and are shown for the trends, not necessarily their absolute values.  The results 

shown in Figure 60 are consistent with those reported in Reference 5 with a maximum moving 

from inside the wall without the boron to the face of the cavity with the boron.   
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CHAPTER 7 

 

 

 

CONCLUSIONS 

 

 

 

 A detailed shielding analysis of the IRIS reactor was performed. The purpose of this 

work was to determine if the activation of the reactor vessel cavity concrete wall could be 

reduced below the free release threshold for the benefit of lowered decommission costs and 

reduction of dose.  Minimizing the quantity of activated materials reduces the cost of disposal.  

Guided by the IAEA free release limits (“clearance limits”), the upper limit of activation based 

on assumed impurity content is known of certain isotopes.  A carefully constructed model of the 

IRIS reactor was developed to analyze the activation of the structural concrete using the 

MAVRIC sequence within the SCALE package.  This software greatly simplified obtaining 

results by generating automatic variance reduction parameters using the CADIS/FW-CADIS 

method which in turn sped up the simulation.  The (n,γ) reaction cross sections were used to 

make an accurate assessment of the activated materials.  The baseline was established for the 

cavity concrete wall constructed of ordinary concrete. In this case, some fraction of the concrete 

would be activated above the clearance limit. Next, the analysis examined the impact of borating 

the cavity concrete wall immediately surrounding the reactor vessel. A known quantity of natural 

boron was added to the concrete in a homogenous fashion and the simulation rerun to determine 

the net effects of the boron capturing the thermal neutrons in an (n,α) reaction, rather than the 
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isotopes of 
59

Co, 
151

Eu, and 
153

Eu capturing them and forming radioactive gamma-emitting 

isotopes.   

Based on the results in chapter six, it is clear that boration makes a considerable 

difference (reduction) in the activation level of the concrete in the vessel cavity.  One particularly 

important point is that this was with natural boron directly added to the concrete.  Normally, 

boron would be added as boric acid in water, or borogypsum or colemanite as discussed in 

chapter two.  Boron added in that manner would be the preferred way.   

 The primary issue with adding boron would be the amount required to completely and 

uniformly borate the entire cavity wall.  At 0.7 wt. % it would be over six metric tons of boron.  

If the boration would be achieved by using borated aggregate, there could be very high shipping 

costs associated with bringing in the aggregate rather than using local materials, and direct 

addition of boron would be preferred in that case.   

 Another issue is where to borate within the cavity.  Based on the results in chapter 6, only 

a small fraction of the concrete mass, the face of the cavity, needs to be borated as that is the 

location of the maximum thermal flux.  However, this can be problematic especially if a 

continuous pour is required for construction.   

 The most economical choice would be to analyze the local building materials adding 

boron as required to offset the impurities within the local aggregate.  This will allow IRIS to 

remain below the clearance levels while minimizing the costs associated with the construction.  

The cost to decommission the concrete if not borated would be approximately 1000 times greater 

if it is above the clearance limit than if it is below the limit.  As shown, none of the isotopes 

investigated exceed the clearance limit if the concrete is borated. 
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 It is meaningful to determine what the maximum impurity content would need to be to 

exceed the limit with the boration quantity assumed.  Using the location for the maximum 

response, it is not difficult to work out the maximum concentration for any of the isotopes that 

are main contributors to activity. The critical impurity level for each one individually (i.e., 

producing 100% of the IAEA limit by itself) is listed in Table 14.   

 

Table 14:  Maximum impurity content resulting in activation still below clearance limit 

Isotope Maximum (ppm wt) 

Co-59 31 

Eu-151 5 

Eu-153 88 

 

 There is quite a margin for 
153

Eu, and a factor of five increase would be allowable for 

151
Eu.  Since both of these europium isotopes are naturally occurring and about half each, the 

maximum for natural europium would be a maximum of 10 ppm by weight or a factor of 10 

higher than was considered for this analysis.   However, for 
59

Co, there is only a factor of three 

margin.  Most of the cobalt in concrete would be due to the rebar, not in the aggregate or cement.  

For europium, the case could almost be closed; the CRC Handbook lists its natural crustal 

abundance as only 2 ppm.  For cobalt, the natural crustal abundance is 25 ppm.[31]  Given that 

these values can vary widely depending on the location, they cannot be taken as absolutes but 

more of a guide that cobalt will most likely be the driver of the activation.  These impurity levels 

are based on best-estimate results. It is prudent to additionally include a factor (margin) that 

accounts for cross section uncertainties and uncertainties in the model itself (tolerances, exact vs. 

as-build dimensions, densities, etc.)  This was the primary impetus for the additional figures with 

the safety factor in chapter 6. 
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 One important point to consider in this analysis is that the assumption throughout was 

that the activation level used was the level that would occur immediately after shutdown running 

for 60 years a full power.  Decommissioning is not a fast processes and most likely there would 

be a period of years before work started on the plant dismantling.  This is to the advantage of the 

reactor owner.  The half-life for 
60

Co is 5.27 years. An additional factor of two can be gained just 

by waiting for one half-life meaning that the 
59

Co content with boration could be as high as 60 

ppm in the aggregate and cement.    

 For the IRIS reactor, given its unique design features, borating the cavity concrete is 

recommended for the ability to reduce the overall activation of materials (in particular the cavity 

concrete wall) below the free release limit.  This fulfills the goal of improving the plant 

characteristics compared to the currently operating fleet with respect to activation, dose, and 

decommissioning cost.   
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CHAPTER 8 

 

 

 

FUTURE WORK 

 

 

 

 Future work beyond the scope of this thesis would include considering the entire building 

and all the possible activation beyond the pressure vessel cavity as a way to minimize the dose to 

the control room and other accessible areas both in operation and during maintenance.  Also, it 

would extend the analysis to coupled neutron-gamma analysis. The analysis may be also 

extended to decommissioning activities and the related dose reduction. Finally, the full building 

model will enable performing the severe accident analysis based on the appropriately assumed 

source term.  

 Such analyses will be facilitated by the next version of the MAVRIC code, which is 

expected to contain the ability to read a space-dependent source distribution rather than the 

uniform one used here.  That would contribute to reducing some of the approximations and 

resulting inaccuracies in the calculations, bringing them more in line with other work performed 

on IRIS.[5, 11]  Parallel versions of the deterministic (Denovo) and Monte Carlo (Monaco) 

codes would also allow one to generate better acceleration parameters and then faster (in real 

time) perform Monte Carlo simulations.  The new versions will make analyzing the entire 

building with a fine deterministic mesh possible to evaluate the dose everywhere.   

 An investigation into the concrete including the rebar material would be needed to be 

done.  The rebar is normally plain steel that would contain levels of 
59

Co in the hundreds of ppm 
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range by weight.  This could be a significant source of activation if the rebar is close to the 

surface of the cavity wall which would reduce the amount of concrete to thermalize the flux and 

boron to capture the neutrons.   
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APPENDIX A:  IAEA Data 

 

 

 

 The following data is taken from the IAEA Safety Standards Series:  Applications of the 

Concepts of Exclusion, Exemption and Clearance used to determine if material can be discarded 

as free release material that is if the weighted activity per isotope is below the level.  The limit is 

determined by the following equation: 

 ∑ qO
!activity concentration#O

u 1B
;v.  (A.1) 

where Ci is the concentration in Bq g
-1

 of the ith radionuclide, !activity concentration#; is the 

value of the activity concentration for the ith radionuclide and n is the number of radionuclides 

present.  This means that if one radionuclide is at 50% of the clearance limit, there could be 

another radionuclide at 50% before the material is considered non free release.[27]  Table A.1 

from the IAEA guidelines shows the maximum bulk activity limits.  Isotopes considered in this 

thesis are highlighted in red. 
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Table A.1:  Values of Activity Concentration for Radionuclides of Artificial Origin in Bulk 
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Table A.1 Continued 
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Table A.1 Continued 
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APPENDIX B:  Activation Cross-Sections 

 

 

 

Table B.1:  List of microscopic cross sections used for activation 

Neutron energy upper 

bound (eV) 
59

Co (n,γ)60
Co (b) 

151
Eu (n,γ)152

Eu (b) 
153

Eu(n,γ)154
Eu (b) 

2.00E+07 2.55E-04 1.09E-03 2.14E-04 

1.96E+07 3.01E-04 1.05E-03 3.23E-04 

1.73E+07 4.33E-04 1.01E-03 4.63E-04 

1.69E+07 5.11E-04 1.00E-03 5.27E-04 

1.65E+07 6.33E-04 9.79E-04 6.31E-04 

1.57E+07 7.90E-04 9.06E-04 7.94E-04 

1.49E+07 8.63E-04 8.44E-04 9.11E-04 

1.46E+07 8.81E-04 8.04E-04 9.83E-04 

1.42E+07 8.96E-04 7.61E-04 1.05E-03 

1.38E+07 8.83E-04 7.08E-04 1.13E-03 

1.35E+07 8.57E-04 6.28E-04 1.23E-03 

1.28E+07 8.18E-04 5.48E-04 1.33E-03 

1.25E+07 7.87E-04 5.00E-04 1.38E-03 

1.22E+07 7.45E-04 4.37E-04 1.46E-03 

1.16E+07 7.00E-04 3.68E-04 1.60E-03 

1.11E+07 6.59E-04 3.28E-04 1.86E-03 

1.05E+07 6.19E-04 3.10E-04 2.18E-03 

1.00E+07 6.13E-04 3.15E-04 2.55E-03 

9.51E+06 6.37E-04 3.40E-04 2.98E-03 

9.05E+06 6.59E-04 4.19E-04 3.49E-03 

8.61E+06 6.81E-04 5.78E-04 4.13E-03 

8.19E+06 7.09E-04 7.57E-04 4.99E-03 

7.79E+06 7.72E-04 1.02E-03 6.46E-03 

7.41E+06 8.37E-04 1.37E-03 7.93E-03 

7.05E+06 8.98E-04 1.82E-03 9.73E-03 

6.70E+06 9.37E-04 2.20E-03 1.13E-02 

6.59E+06 9.66E-04 2.51E-03 1.24E-02 

6.38E+06 1.01E-03 3.17E-03 1.43E-02 

6.07E+06 1.07E-03 4.12E-03 1.70E-02 

5.77E+06 1.14E-03 5.38E-03 2.10E-02 

5.49E+06 1.21E-03 7.12E-03 2.48E-02 

5.22E+06 1.28E-03 9.27E-03 2.84E-02 



88 

 

Neutron energy upper 

bound (eV) 
59

Co (n,γ)60
Co (b) 

151
Eu (n,γ)152

Eu (b) 
153

Eu(n,γ)154
Eu (b) 

4.97E+06 1.36E-03 1.19E-02 3.29E-02 

4.72E+06 1.44E-03 1.53E-02 3.76E-02 

4.49E+06 1.56E-03 2.31E-02 4.45E-02 

4.07E+06 1.73E-03 3.61E-02 5.40E-02 

3.68E+06 1.95E-03 4.91E-02 6.48E-02 

3.33E+06 2.10E-03 6.29E-02 7.22E-02 

3.17E+06 2.20E-03 7.23E-02 7.69E-02 

3.01E+06 2.29E-03 8.26E-02 8.19E-02 

2.87E+06 2.39E-03 9.41E-02 8.75E-02 

2.73E+06 2.49E-03 1.06E-01 9.28E-02 

2.59E+06 2.58E-03 1.21E-01 9.79E-02 

2.47E+06 2.68E-03 1.33E-01 1.03E-01 

2.39E+06 2.74E-03 1.39E-01 1.06E-01 

2.37E+06 2.76E-03 1.42E-01 1.07E-01 

2.35E+06 2.79E-03 1.45E-01 1.09E-01 

2.31E+06 2.85E-03 1.52E-01 1.12E-01 

2.23E+06 2.96E-03 1.63E-01 1.19E-01 

2.12E+06 3.07E-03 1.77E-01 1.27E-01 

2.02E+06 3.21E-03 1.91E-01 1.35E-01 

1.92E+06 3.39E-03 2.04E-01 1.45E-01 

1.83E+06 3.56E-03 2.18E-01 1.55E-01 

1.74E+06 3.72E-03 2.32E-01 1.66E-01 

1.65E+06 3.89E-03 2.45E-01 1.78E-01 

1.57E+06 4.16E-03 2.59E-01 1.90E-01 

1.50E+06 4.45E-03 2.72E-01 1.97E-01 

1.42E+06 4.77E-03 2.85E-01 2.02E-01 

1.35E+06 5.22E-03 2.98E-01 2.07E-01 

1.29E+06 5.67E-03 3.11E-01 2.11E-01 

1.22E+06 6.06E-03 3.23E-01 2.16E-01 

1.16E+06 6.33E-03 3.36E-01 2.20E-01 

1.11E+06 6.47E-03 3.54E-01 2.25E-01 

1.00E+06 6.44E-03 3.71E-01 2.35E-01 

9.62E+05 6.44E-03 3.84E-01 2.52E-01 

9.07E+05 6.45E-03 3.98E-01 2.70E-01 

8.63E+05 6.48E-03 4.10E-01 2.87E-01 

8.21E+05 6.51E-03 4.22E-01 3.03E-01 

7.81E+05 6.56E-03 4.40E-01 3.18E-01 

7.43E+05 6.62E-03 4.59E-01 3.32E-01 

7.07E+05 6.68E-03 4.76E-01 3.43E-01 
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Neutron energy upper 

bound (eV) 
59

Co (n,γ)60
Co (b) 

151
Eu (n,γ)152

Eu (b) 
153

Eu(n,γ)154
Eu (b) 

6.72E+05 6.77E-03 4.92E-01 3.49E-01 

6.39E+05 6.85E-03 5.08E-01 3.55E-01 

6.08E+05 6.94E-03 5.23E-01 3.62E-01 

5.78E+05 7.07E-03 5.37E-01 3.69E-01 

5.50E+05 7.19E-03 5.51E-01 3.77E-01 

5.23E+05 7.30E-03 5.64E-01 3.86E-01 

4.98E+05 7.54E-03 5.98E-01 4.02E-01 

4.50E+05 7.87E-03 6.51E-01 4.31E-01 

4.08E+05 8.11E-03 6.96E-01 4.58E-01 

3.88E+05 8.32E-03 7.27E-01 4.75E-01 

3.69E+05 8.65E-03 7.81E-01 5.01E-01 

3.34E+05 9.15E-03 8.81E-01 5.46E-01 

3.02E+05 9.40E-03 9.26E-01 5.71E-01 

2.98E+05 9.45E-03 9.34E-01 5.75E-01 

2.97E+05 9.49E-03 9.41E-01 5.77E-01 

2.95E+05 9.60E-03 9.58E-01 5.84E-01 

2.87E+05 9.84E-03 9.96E-01 5.97E-01 

2.73E+05 1.03E-02 1.07E+00 6.24E-01 

2.47E+05 1.08E-02 1.14E+00 6.55E-01 

2.35E+05 1.12E-02 1.19E+00 6.80E-01 

2.24E+05 1.15E-02 1.23E+00 7.06E-01 

2.13E+05 1.19E-02 1.27E+00 7.34E-01 

2.02E+05 1.23E-02 1.31E+00 7.62E-01 

1.93E+05 1.28E-02 1.35E+00 7.91E-01 

1.83E+05 1.33E-02 1.39E+00 8.22E-01 

1.74E+05 1.38E-02 1.42E+00 8.53E-01 

1.66E+05 1.42E-02 1.46E+00 8.86E-01 

1.58E+05 1.47E-02 1.49E+00 9.21E-01 

1.50E+05 1.52E-02 1.52E+00 9.56E-01 

1.43E+05 1.59E-02 1.55E+00 9.93E-01 

1.36E+05 1.67E-02 1.57E+00 1.03E+00 

1.29E+05 1.73E-02 1.60E+00 1.07E+00 

1.23E+05 1.79E-02 1.63E+00 1.11E+00 

1.17E+05 1.85E-02 1.68E+00 1.16E+00 

1.11E+05 1.87E-02 1.73E+00 1.25E+00 

9.80E+04 1.39E-02 1.85E+00 2.08E+00 

8.65E+04 1.30E-02 1.94E+00 2.32E+00 

8.25E+04 7.78E-03 2.00E+00 1.54E+00 

7.95E+04 1.48E-02 2.08E+00 1.58E+00 
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Neutron energy upper 

bound (eV) 
59

Co (n,γ)60
Co (b) 

151
Eu (n,γ)152

Eu (b) 
153

Eu(n,γ)154
Eu (b) 

7.20E+04 1.17E-02 2.20E+00 1.62E+00 

6.74E+04 1.55E-02 2.30E+00 1.69E+00 

5.66E+04 1.48E-02 2.45E+00 1.78E+00 

5.25E+04 1.59E-02 2.63E+00 1.87E+00 

4.63E+04 7.75E-03 2.89E+00 2.00E+00 

4.09E+04 1.59E-02 3.14E+00 2.15E+00 

3.43E+04 2.57E-02 3.39E+00 2.30E+00 

3.18E+04 2.47E-02 3.59E+00 2.41E+00 

2.85E+04 2.49E-02 3.78E+00 2.54E+00 

2.70E+04 6.42E-03 3.95E+00 2.63E+00 

2.61E+04 6.00E-02 3.99E+00 2.68E+00 

2.48E+04 5.13E-02 4.14E+00 2.74E+00 

2.42E+04 1.40E-02 4.46E+00 2.84E+00 

2.36E+04 1.91E-02 4.49E+00 2.86E+00 

2.19E+04 1.76E-02 5.09E+00 3.07E+00 

1.93E+04 2.68E-02 5.63E+00 3.58E+00 

1.50E+04 2.85E-02 6.53E+00 4.23E+00 

1.17E+04 2.65E-02 7.16E+00 4.58E+00 

1.06E+04 6.10E-02 7.65E+00 4.87E+00 

9.12E+03 3.94E-02 8.57E+00 5.54E+00 

7.10E+03 6.66E-02 1.00E+01 6.54E+00 

5.53E+03 3.35E-01 1.15E+01 7.79E+00 

4.31E+03 1.58E-01 1.33E+01 8.77E+00 

3.71E+03 3.98E-02 1.27E+01 9.51E+00 

3.35E+03 2.93E-02 1.28E+01 1.01E+01 

3.04E+03 1.64E-01 1.32E+01 1.06E+01 

2.75E+03 2.28E-02 1.65E+01 1.10E+01 

2.61E+03 2.18E-02 1.66E+01 1.12E+01 

2.49E+03 7.45E-02 1.70E+01 1.16E+01 

2.25E+03 2.10E-02 1.75E+01 1.20E+01 

2.03E+03 2.16E-02 1.88E+01 1.33E+01 

1.58E+03 5.00E-02 2.10E+01 1.53E+01 

1.23E+03 2.91E-02 2.34E+01 1.70E+01 

9.61E+02 3.61E-02 2.58E+01 1.92E+01 

7.49E+02 4.72E-02 2.81E+01 2.16E+01 

5.83E+02 6.67E-02 3.08E+01 2.40E+01 

4.54E+02 1.07E-01 3.37E+01 2.77E+01 

3.54E+02 2.04E-01 3.80E+01 3.21E+01 

2.75E+02 5.10E-01 4.42E+01 3.81E+01 
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Neutron energy upper 

bound (eV) 
59

Co (n,γ)60
Co (b) 

151
Eu (n,γ)152

Eu (b) 
153

Eu(n,γ)154
Eu (b) 

2.14E+02 1.99E+00 5.83E+01 4.91E+01 

1.67E+02 2.24E+01 8.56E+01 6.94E+01 

1.30E+02 2.25E+01 9.17E+01 7.03E+01 

1.01E+02 5.00E+00 9.50E+01 6.09E+01 

7.89E+01 2.68E+00 5.41E+01 4.51E+01 

6.14E+01 2.00E+00 9.24E+01 8.53E+01 

4.79E+01 1.74E+00 1.24E+02 6.80E+01 

3.73E+01 1.66E+00 7.83E+01 3.93E+01 

2.90E+01 1.66E+00 8.36E+01 3.30E+01 

2.26E+01 1.73E+00 1.04E+02 1.39E+02 

1.76E+01 1.83E+00 5.06E+01 3.50E+01 

1.37E+01 1.98E+00 1.16E+02 8.44E+01 

1.07E+01 2.17E+00 9.98E+01 8.37E+01 

8.32E+00 2.39E+00 1.21E+02 1.91E+01 

6.48E+00 2.65E+00 9.88E+01 6.36E+01 

5.04E+00 2.96E+00 8.38E+01 1.03E+02 

3.93E+00 3.31E+00 1.03E+03 6.31E+02 

3.06E+00 3.72E+00 2.55E+02 4.31E+02 

2.38E+00 4.18E+00 6.44E+01 1.92E+02 

1.86E+00 4.72E+00 1.06E+02 1.39E+02 

1.45E+00 5.14E+00 1.15E+02 4.20E+01 

1.30E+00 5.46E+00 3.19E+02 3.56E+01 

1.13E+00 5.71E+00 1.59E+03 3.39E+01 

1.08E+00 5.82E+00 2.76E+03 3.37E+01 

1.04E+00 5.93E+00 2.11E+03 3.36E+01 

1.00E+00 6.18E+00 6.57E+02 3.40E+01 

8.76E-01 6.53E+00 4.47E+02 3.52E+01 

8.00E-01 6.94E+00 6.22E+02 3.74E+01 

6.83E-01 7.38E+00 1.18E+03 4.02E+01 

6.25E-01 7.84E+00 2.90E+03 4.37E+01 

5.32E-01 8.29E+00 9.58E+03 4.72E+01 

5.00E-01 8.82E+00 1.93E+04 5.16E+01 

4.14E-01 9.52E+00 9.27E+03 5.78E+01 

3.67E-01 1.01E+01 7.02E+03 6.31E+01 

3.25E-01 1.09E+01 5.56E+03 7.01E+01 

2.75E-01 1.19E+01 2.92E+03 7.99E+01 

2.25E-01 1.31E+01 2.08E+03 9.17E+01 

1.84E-01 1.46E+01 1.91E+03 1.05E+02 

1.50E-01 1.60E+01 1.99E+03 1.19E+02 
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Neutron energy upper 

bound (eV) 
59

Co (n,γ)60
Co (b) 

151
Eu (n,γ)152

Eu (b) 
153

Eu(n,γ)154
Eu (b) 

1.25E-01 1.78E+01 2.28E+03 1.36E+02 

1.00E-01 2.06E+01 2.95E+03 1.62E+02 

7.00E-02 2.44E+01 4.12E+03 1.97E+02 

5.00E-02 2.80E+01 5.45E+03 2.30E+02 

4.00E-02 3.17E+01 6.92E+03 2.64E+02 

3.00E-02 3.72E+01 9.12E+03 3.13E+02 

2.10E-02 4.45E+01 1.22E+04 3.77E+02 

1.45E-02 5.35E+01 1.59E+04 4.57E+02 

1.00E-02 6.83E+01 2.16E+04 5.87E+02 

5.00E-03 9.96E+01 3.34E+04 8.59E+02 

2.00E-03 1.65E+02 5.67E+04 1.43E+03 

5.00E-04 3.52E+02 1.19E+05 3.04E+03 

 

The lower energy bound for all three reactions was 1.00E-05 eV.  
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