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SUMMARY 

 

Because of the accuracy and ease of implementation, Monte Carlo methodology is 

widely used in analysis of nuclear systems. The obtained estimate of the multiplication 

factor (keff) or flux distribution is statistical by its nature. In criticality simulation of a 

nuclear critical system, whose basis is the power iteration method, the guessed source 

distribution initially is generally away from the converged fundamental one. Therefore, it 

is necessary to ensure that the convergence is achieved before data are accumulated. 

Discarding a larger amount of initial histories could reduce the risk of contaminating the 

results by non-converged data but increases the computational expense. This issue is 

amplified for large loosely coupled nuclear systems with low convergence rate. Since keff 

is a generation-based global value, frequently no explicit criterion is applied to the 

diagnostic of keff directly. As an alternative, a flux-based entropy check available in 

MCNP5 works well in many cases. However, when applied to a difficult storage fuel 

pool benchmark problem, it could not always detect the non-convergence of flux 

distribution. Preliminary evaluation indicates that it is due to collapsing local information 

into a single number. This thesis addresses this problem by two new developments. First, 

it aims to find a more reliable way to assess convergence by analyzing the local flux 

change. Second, it introduces an approach to simultaneously compute both the first and 

second eigenmodes. At the same time, by computing these eigenmodes, this approach 

could increase the convergence rate. Improvement in these two areas could have a 

significant impact on practicality of Monte Carlo criticality simulations. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Neutron Transport Equation 

 The transport of neutrons is described by the neutron transport equation 
[1]
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

  is the neutron flux depending on seven variables:  position, direction, 

energy, and time. The notation  Er ,


  is the total cross-section of the material and 

 tErq ,,ˆ,
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 is the source term including external source, scattering source term, and 

fission source term 
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The fission cross-section in the fission source term is sometimes written as a 

multiplication of two terms:  one represents the cross-section independent on the final 

energy and the other represents the final energy spectrum )(E . 
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The factor k introduced to balance the equation is called the multiplication factor and 

usually referred to keff. Proper boundary conditions and initial conditions should also 

come along with the transport equation for a specific problem. 
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1.2 Solutions 

 The neutron transport equation is essentially an integral-differential equation. 

Even though the transport equation is difficult to solve, two categories of solving 

strategies are well developed. 

1.2.1 Deterministic Method 

 The purpose of solving the transport equation deterministically is to reach a global 

solution using appropriate approximations and discretizations. The approach in the 

deterministic method is to discretize variables—such as time t, energy E, or position r—

and solve the discretized equations numerically. Two well known deterministic methods 

are spherical harmonics method (known as PN method) and discrete ordinates method 

(known as SN method). The basic details of these methods are available in Ref. 1. 

1.2.2 Monte Carlo Method 

 Different from deterministic methods, which are complex in mathematical 

derivation, the Monte Carlo method is a straight forward technique that simulates many 

neutrons over their life time. 
[2]

 Two types of problems are widely investigated based on 

the purpose of the simulation. 

1.2.2.1  Fixed source or Shielding problem 

 In this type of problem, one is interested in a local flux distribution as a 

consequence of fixed sources. Neutrons are generated according to the source distribution 

and travel through the system to contribute to tallies at the places of interest. After 

simulating sufficient number of neutron histories, tally results are obtained with a 

confidence interval. 

1.2.2.2  Criticality or Eigenvalue problem 
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 The other kind of problem is to obtain the multiplication factor (keff) of a nuclear 

system to analyze its criticality status. The foundation of solving these problems is an 

iterative algorithm so called the power iteration method that eliminates the higher mode 

components in the solution. Generally speaking, an operator A with eigenvalue ik  and 

corresponding eigenfunction i  satisfies the relation 

iii kA   , in which  321 kkk .   (1.3) 

Any ―well-behaved‖ function   can be expanded with the eigenfunctions 


i

iia .     (1.4) 

With renormalization and iteration, the well-behaved function will converge to the 

fundamental eigenfunction by the power iteration method. Estimates of the fundamental 

eigenfunction 1  and the fundamental eigenvalue 1k  (also known as keff) are given by 

1

1

1
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n

nn
A

k
, and 




11 lim
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n

n

n A

A
k .   (1.5) 

The ratio 12 kk  is known as the dominance ratio (DR) that determines the convergence 

rate for a computation.
 [3]

 When DR is close to one, many iterations are needed before the 

source distribution converges to the fundamental eigenfunction. 

 As a result of the power iteration method, only the fundamental mode remains, 

which the source distribution converges to. The source stored for the next iteration, which 

is also called generation or cycle, is updated by the latest source points produced. After 

reaching the convergence, keff results will be gathered to yield an expected value with a 

confidence interval. Either way, Monte Carlo simulation is a generally-understandable 

approach to solve the neutron transport equation. However, the simulation does not 

automatically provide the flux or source distribution globally. In other words, one has to 

specify the places he is interested in beforehand resulting in additional computational cost. 
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CHAPTER 2 

OBSTACLES IN MONTE CARLO CRITICALITY SIMULATIONS 

 

 Monte Carlo criticality simulations have been used in investigation of nuclear 

systems, to generate reference results and evaluate safety issues. Despite the wide 

acceptance of the general accuracy of Monte Carlo criticality simulations, this method 

still faces several obstacles in different aspects. This chapter will review some common 

known drawbacks and challenges of the Monte Carlo criticality simulations. 

2.1 Systematic Challenges 

2.1.1 Undersampling 

 The foundation of the Monte Carlo methodology is statistical or stochastic 

principle. According to the Law of Large Number and Central Limit Theorem, 
[4]

 the 

more particles a simulation uses, the more accurate the results will be. Unfortunately, 

because of the costly computational consumption by just increasing the particle number 

for a simulation in real life, a compromise is needed between the computational expense 

and accuracy. Either way, the condition requirement is that the reported results remain 

unbiased. However, if the number of particles is insufficient, the simulation may not 

adequately represent the property of the entire system, resulting in biased results. This 

lack of sufficient particles is called undersampling. Some of the previous works 

discussing undersampling problems include n Refs. 5, 6, and 7. 

 The criterion of how many particles pre generation are sufficient to sample for a 

particular problem is not quite clear, but it does depend on the geometry scale and 

material cross-section properties of the problem. T. Ueki presented a posteriori 

undersampling checking criterion in Ref. 8 and an on-the-fly check criterion in Ref.9. 

Both of them are based on the information theory and using entropy correlated value for 
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the criteria. In addition, E. Larsen and J. Yang proposed a hybrid method, combing 

deterministic and Monte Carlo methods together, to solve the undersampling problem.
 [10]

 

They named their method functional Monte Carlo (FMC) method and claimed that FMC 

could minimize undersampling difficulty for many problems and yield a more accurate 

estimate of the keff results. 

 Undersampling problem has a significant impact for the huge or real life scale 

system simulation. When one is dealing with such problems, he needs to pay attention to 

the potential undersampling problem. 

2.1.2 Loosely Coupled Systems 

 Another problem may be identified along with a challenging question: how does a 

nuclear plant in New York City would affect another one in Paris? A famous statement 

about this thought was the ―k-effective of the world,‖
 [11]

 which states that the keff of the 

entire world would tend to be estimated as zero since none of the simulation particles had 

a sufficient probability to be found in a fuel assembly. 

 A mathematical expression of the problem recalls the principles of the power 

iteration method, whose convergence rate depends on the DR in the above section. One 

possible cause of the high DR is loosely coupled property of the problem. The loosely 

coupled property refers to that two fission regions with high neutron flux are separated by 

a material with high absorption or scattering cross-section, such as water or concrete. As 

a result, one neutron in one fission region has low probability of travelling through the 

separation gap and reaching the other fission region. Therefore, the coupling of these two 

regions is loose. This kind of problems is significant especially for criticality safety 

applications and large reactors. 

 The OECD (Organization for Economic Co-Operation and Development) Nuclear 

Energy Agency (NEA) established an Expert Group on Source Convergence in Criticality 

Safety Analysis in 2000. 
[12]

 They generated four test problems:   
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1. The Checkerboard Fuel Storage Array 

2. Pin-cell Array with Irradiated Fuel 

3. Loosely Coupled Uranyl Nitrate Solution Slabs 

4. Array of Interacting Spheres. 

Researchers have used these problems to systematically examine the loosely coupled 

issue as well as the undersampling problem much better. 

2.1.2 Underestimate of the Variance 

 In addition to the flux, current, or keff results, the variance of the estimated results 

should also be determined during a simulation. The contribution from each particle to the 

tally is just like a random sample in a statistical experiment, 
[4]

 which is generated from a 

specific probability distribution function (PDF). In a fixed source problem, every particle 

generated independently from the source distribution may contribute to the tally. If N 

particles, each one of which contributes xi to the tally, are used in a simulation, the 

estimated tally will be the average number of xi
 [4]
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For very big N 
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The sample variance of the average value x  could be obtained as 
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s
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The final variance of the average value 2

xs  is proportional to N1 . In other works, the 

standard deviation xs  is proportional to N1 , which is well known in Monte Carlo 

simulations and used in Monte Carlo analysis. 

 The condition for the validity of the variance estimate is that the random samples 

are from the same PDF, which has been met, and independent from each other. This 

condition is exactly correct for a fixed source problem because there is no correlation 

between any two particles. However, when it turns to criticality problem, it is not always 

true. The most interesting tally in criticality problem is the cycle-by-cycle-based keff, 

which is a global value instead of a local value like flux. For each cycle, the starting 

sources are from the source bank established from the simulation of the last cycle. There 

is, as a consequence of using the source bank, correlation between the successive cycles 

in estimating the keff or flux distribution. This correlation always makes the random 

difference between successive cycles smaller than it should be if they were truly 

independent. This correlation will cause the underestimate of the variance. 

 The most famous methodology to deal with underestimate of the variance was 

MacMillan’s Formula,
 [13]

 illustrating a bounding of the true variance instead of 

estimating the true variance directly. However, the formula involved DR value and lag 

one auto-correlation coefficient which are not easily acquired. Later, Gelbard and Prael 

proposed a batching method 
[14]

 to overcome the underestimate of variance. In this 

method, groups of estimates of keff from several successive cycles were taken as batches 

to estimate a new variance. The normal way of computing the variance was just the 

special case of the batch method with only one cycle for each batch. The drawback of this 

method was the choosing of the optimal batch size:  no explicit estimate of the optimal 

size for a batch to make the difference between the new variance and the true one as 

small as possible is available. 
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 T. Ueki, T. Mori and M. Nakagawa presented two iterative approaches to express 

the bias
 [15]

 between the true variance and apparent variance (expected value of the 

reported variance after a simulation). These corrections required computing so called 

correlation coefficients as intermediate values. These two methods were good estimates 

of the variance but did need extra computing expense. In the past a few years, some other 

attempts also appeared. H. J. Shim and C. H. Kim specified so called inter-cycle fission 

source correlation to estimate the true variance.
 [16]

 T. Ueki and B. R. Nease proposed to 

introduce time series analysis theory into this field and achieved good results.
 [17]

 All 

these endeavors made the computation of the true variance possible and the next desired 

attempt is the on-the-fly estimate without extra computing expense. 

2.2 Convergence Diagnostics 

 The primary objective of the criticality calculation is to estimate the 

multiplication factor—keff. To make sure the reported keff is statistical accurate, one needs 

to clear out the contamination of the non-converged keff results. In other words, one 

should only gather the cycle-based keff data after the convergence of the simulation. 

Although this convergence diagnostic could be referred as a statistical check, it is 

different from the normal statistical check for the flux or current tally. MCNP5 includes 

ten statistical checks 
[18]

 to assess the statistical quality of the flux or current tally. 

However, for keff value, the sample number is not the only concern and the ten checks 

could not always help to identify the non-convergence of keff. Even if one could generate 

a convincing way to identify the convergence of keff, the results may still be wrong due to 

the slower convergence of source distribution. 
[19]

. Therefore, convergence diagnostic 

over source distribution is more reliable, despite its difficulty. Numbers of methods have 

been proposed so as to overcome this difficulty. 
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2.2.1 Entropy Check in MCNP5 

 Unlike the entropy concept in information theory, which represents the capability 

to carry information, entropy value in criticality simulation uses a single value to 

represent a source distribution status. The entropy value (which is also known as Shannon 

entropy) is defined as 
[20]

 





B

i

BBB iSiSSH
1

2 ))((log)()( ,    (2.5) 

where, H represents the entropy value; B is the number of meshes over the entire system; 

S
B
 represents the percentage of source initialized in each mesh; and i is the index of the 

mesh increasing from 1 to B. After each iteration, the percentage of emerging source in 

each mesh S
B
 will be computed and the entropy value will be generated for that iteration. 

This entropy value is used for source convergence diagnostic in MCNP5, 
[21]

 a well 

known Monte Carlo simulation program produced by Las Alamos National Laboratory. 

According to the MCNP5 user manual, the following procedure applies to the entropy 

value: 

Upon completion of the problem, MCNP will compute the average value of Hsrc 

for the last half of the active cycles, as well as its (population) standard 

deviation. MCNP will then report the first cycle found (active or inactive) 

where Hsrc falls within one standard deviation of its average for the last half of 

the cycles, along with a recommendation that at least that many cycles should 

be inactive. Plots of Hsrc vs. cycle should be examined to further verify that the 

number of inactive cycles is adequate for fission source convergence. (MCNP 

— A General Monte CarloN-Particle Transport Code, Version 5Volume I: 

Overview and Theory) 
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 This entropy check is the only available explicit convergence diagnostic in 

MCNP5. Many research results have shown the validity of the entropy check, but some 

drawbacks and limitations still exist:   

 It is a posteriori check. One can only run the entropy check after the simulation of 

the problem. If the simulation does not pass the entropy check, another re-simulation 

is needed with adjustment of the inactive and active cycle number, which is an extra 

expense of computing resources. Although some recommendation of the required 

number of inactive cycles is provided after the entropy check, this estimate may not 

be very robust. Thus, if one then changes the number of inactive cycles to satisfy the 

recommendation, the new results is not guaranteed to pass the entropy check. In that 

case, one has to modify the numbers of inactive and active cycles potentially several 

times to make sure the simulation could pass the entropy check. 

 At first, entropy check gathers the local source distribution information by the 

percentage of source emerging in each mesh. Then for the summation, it discards the 

local information and represents the whole system status by only one number. This 

results in the incapability to distinguish two different source distributions with the 

same entropy value. 

2.2.2 Entropy-related Diagnostics Methods 

 To overcome the posterior property and turn it to an on-the-fly convergence 

diagnostic, T. Ueki and F. Brown introduced the concepts of ―relative entropy‖ and 

―progressive relative entropy‖. 
[20]

 The ―relative‖ there indicated the entropy computed is 

depending not only on the current cycle but also on some previous reference cycle. By 

measuring the distance of the reference cycle and current cycle, some criteria were 

proposed for the corresponding diagnostic. After that, T. Ueki proposed another method 

called Wilcoxon Signed Rank method, 
[22]

 which was similar to one standard statistical 

check, to handle the average permuted relative entropy (APR), maximum permuted 
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relative entropy (MPR), and progressive relative entropy (PRR). However, none of these 

entropy-related diagnostics are available in the current practically released version of 

MCNP5. 

 P. Romano proposed another means to utilize the entropy value. 
[23]

 He introduced 

the stochastic oscillator, which was commonly used in the analysis of financial markets, 

as the method to handle entropy value. The current oscillator value would be greater or 

smaller than the previous one; if the entropy value converged, this oscillation would be 

totally random. Some criteria to test its random behavior were applied after finishing a 

simulation. Therefore, this method was also a posterior diagnostics method. E. Dumonteil 

etc. proposed to use another entropy value called Boltzmann entropy, 
[24]

 which was a 

one-order higher approximation of the entropy for the continuous case than the Shannon 

entropy, to perform convergence diagnostic. Although this Boltzmann entropy was more 

accurate, it resulted in a larger computational expense than Shannon entropy. In addition, 

as the particle number was increasing, the difference between these two entropies was 

decreasing. 

2.2.3 Other Diagnostics Methods 

 M. Wenner and A. Haghighat proposed to use the entropy test and the generalized 

KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test together to reduce the occurrence of 

false diagnoses. 
[25]

 This KPSS test was a statistical test to compare the residuals of a 

linear regression of a data series. It was powerful because it could detect both 

undersampling and stationarity problems. H. J. Shim and C. H. Kim proposed two types 

of convergence criteria, 
[26]

 which were based on the statistics analysis of the local fission 

source distribution. These criteria included computing a covariance matrix of the noise 

which was not ease to obtain. However, in general, this method could provide a trustable 

diagnostic result. 
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2.3 Convergence Acceleration 

 Indeed, the simplest way to deal with the convergence diagnostic is to simulate 

the problem for infinite number of generations, which is clearly impractical, so that the 

convergence is guaranteed. In practice, if the convergence rate could be improved, the 

convergence diagnostic is also easier to conduct. 

2.3.1 Wielandt’s Method 

 An acceleration method used in deterministic source iteration method, Wielandt’s 

method, was recently introduced to Monte Carlo criticality simulation several years ago. 

[27] [28]
 In Wielandt’s method, each emitted neutron after a fission reaction was tracked 

until it ―died‖ or induced another fission reaction. All of the tracking of the neutrons was 

in one iteration, so the source distribution would spread more in space than in traditional 

Monte Carlo method. As a result, Wielandt’s method would reduce the number of 

iteration needed before the convergence of the source distribution. At the same time, this 

method would increase computational expense for each iteration. Thus, the total 

computational expense for Wielandt’s method and traditional Monte Carlo method are 

approximately on the same order. Most of times, this Wielandt’s method even increased 

the total computational cost. However, the advantages of Wielandt’s method, such as 

reducing the possibility of false convergence, and increasing the figure-of-merit (FOM), 

made it attractive for further implementations. 

2.3.2 Hybrid Methods 

 Since it is easier to analyze deterministic method, some hybrid methods appeared 

to combine the strengths of Monte Carlo method and deterministic method. Fission 

source acceleration method was one of these hybrid methods. 
[29] [30]

 This method divided 

the analyzed system into meshes and used Monte Carlo method to compute the fission 

matrix to represent the probability of a neutron in one mesh inducing a fission reaction in 
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another mesh. By multiplying this fission matrix many times, a quasi-converged source 

distribution was obtained for further simulations. Another hybrid method was called 

anchoring method. 
[31]

 This method decomposed fission source into two parts: traditional 

Monte Carlo source and ―anchoring‖ source which was updated by a deterministic 

method. As a result, this method would stabilize the source distribution and reduce 

iterations needed for convergence. 

2.3.3 Smoothed Residual Acceleration Method 

 Lately, a novel technique called smoothed residual acceleration (SRA) 
[32] 

was 

introduced into Monte Carlo criticality simulation. This method was similar to the fixed-

parameter extrapolation method widely used in mathematics. Theoretically, SRA 

operated as a low-pass filter to reduce higher order eigenmodes and increased 

convergence rate. Practically, it was easy to implement in Monte Carlo simulation by 

adjusting sources used for new iteration involving sources from previous iteration. This 

SRA mechanism must be shut down after reaching the convergence to prevent further 

contamination of the source distribution by artificial adjustment. 

2.4 Summary of the Obstacles 

 Since overcoming the convergence obstacles summarized above is crucial to 

Monte Carlo criticality simulation, this thesis will focus on some possible solutions. 

Chapter three will focus on the comprehension and analysis of the entropy check for a 

huge subcritical system—fuel storage pool. This system is loosely coupled as well as 

exhibiting the undersampling problem, causing the difficulty in convergence and flux 

distribution while simulating it. Investigation of the behavior of the entropy check will try 

to bring up an alternative way for the convergence diagnostics based on the local flux 

distribution. In addition, chapter four will introduce a modified power iteration method, 

which generates first two eigenvalues and eigenfunction at the same time, in order to 
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increase the convergence rate. Refinements to stabilize the iterations will be explained 

and analysis of the behavior of the variance will also follow in chapter four. 
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CHAPTER 3 

CONVERGENCE OF THE OECD/NEA BENCHMARK  

PROBLEM NUMBER ONE 

 

 To facilitate systematic analysis of the difficulties in the Monte Carlo criticality 

simulation, this chapter uses the OECD/NEA benchmark problem number one 
[33] [34]

 as 

an illustration. This problem is widely employed in the convergence analysis and the 

inspection of new methodologies of the convergence diagnostic because of its properties. 

The main feature of the problem is the large scale (hundreds of the neutron mean free 

path) which will preclude effective communication between the neutrons on opposite 

sides. In addition, the water holes between the fuel assemblies reduce the communication 

between the checkboard placed assemblies. These two reasons cause that the system is 

loosely coupled. In the meantime, the large scale of the system also yields the 

undersampling problem since simulating sufficient number of particles to cover all the 

space is extremely expensive for practical analysis. Therefore, the convergence analysis 

of this benchmark problem is indeed challenging. 

3.1 Benchmark Description 

 This benchmark problem is also known as a checkerboard fuel storage array or a 

fuel storage pool with a 24-by-3 array. Figure 3.1 shows the geometric structure of the 

benchmark problem. The system contains 36 fuel elements with uranium enriched to 

around 5.0% by weight. The lower left corner fuel assembly is assigned as position (1,1), 

with two indexes representing right and up directions. Therefore, all the other assemblies 

are represented by the same position format. For example, the right up corner assembly is 

represented as position (24,3). Besides these assemblies, three walls outside the array are 

concrete and the fourth wall is water. The same water also fills top, bottom, and all the 
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gaps between fuel assemblies. The fuel assembly is composed of 1.44cm-pitch, 15-by-15 

lattice. In the center of the fuel rod is a 0.44 cm-radius UO2 fuel pin with 0.05cm-thick 

Zirconium-clad. Both the fuel and water assemblies have 0.5cm steel walls outside. 

 

 
(a) Vertical view of the array. 

 

 

(b) Fuel and water element and fuel pin. 

Figure 3.1. Geometry specification of the benchmark problem 
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(c) Front view from the center of the middle row with water in the top and bottom. 

Figure 3.1 continued. Geometry specification of the benchmark problem 

 

 The definition of the benchmark problem specifies three parameters to be used in 

simulations: 

 Number of skipped generations:  20, 40, and 100. 

 Number of source point used per generation:  1,000, 2,000, and 5,000 

 Distribution of the initial source:  all sources in position (1,1), all sources in 

position (12,2), all sources in position (23,3), and uniform sources over all 36 

fuel assemblies. 

All possible combinations of these parameters could produce 36 different cases. The 

results of these 36 cases reported by different research groups with different Monte Carlo 

program are available in Refs. 33 and 34. This chapter will not review or achieve all these 

results, but the following simulations used some of the combinations of the parameters. 

 

3.2 Basic Results 

 Before simulating different cases with different parameters, a reference keff results 

and flux distribution would be helpful. The problem was simulated using 1,000,000 (10
6
) 
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particles per generation, 1,000 inactive generations, and 1,000 active generations. The 

initial source distribution was different from the four possible choices above. Since 

concrete had stronger ability of reflecting neutrons than water, the assembly in position 

(1,3), which was surrounded by concrete on two sides, having a flux peak is predictable. 

Thus, a biased initial source distribution was used here: the source points were divided 

into 55 sets evenly; 20 of 55 sets were generated in the position (1,3) assembly; one set 

was generated in each other assembly uniformly. By doing this, the initial source 

distribution had a peak in position (1,3), and this distribution was more closed to the 

converged distribution than the other four possible choices. To obtain the flux 

distribution, the mesh tally was used with each assembly as a mesh. Figure 3.2 illustrates 

the reference flux distribution for all the assemblies and water channels in both the linear 

and the log scale. This distribution confirmed the prediction that a flux peak existed in 

position (1,3). The biggest difference of the flux was about 4 orders of magnitude in 

logarithm scale, which results in the unnoticeable values in arbitrary unit scale. The final 

keff reported was 0.88580 ＋/－ 0.00002 for this reference simulation. This reference keff 

is just in the middle of the reported value in Refs. 33 and 34 from 0.8538~0.8960 with 

~0.0007 as the confidence interval. 
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(a) Flux in arbitary unit 

 

 

(b) Relative flux compared to the smallest one in position (24,2) 

Figure 3.2. Reference flux distributions of the benchmark problem 

 

 After this reference simulation, simulations using the parameters specified in the 

definition were performed. To make the results more reasonable, 100 skipped generations, 

500 active generations, and 5,000 source neutrons per generation were used for the four 

different initial source distributions. Table 3.1 summaries all the keff results and 

computing times. 
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Table 3.1. Input and output summaries for cases 1-4 

Case Source Computing time keff±σ 

1 Uniform in all fuel regions 43.81 min 0.88386±0.00048 

2 Uniform in (1,1) 43.51 min 0.88537±0.00051 

3 Uniform in (12,2) 44.01 min 0.88310±0.00047 

4 Uniform in (23,3) 43.53 min 0.88419±0.00050 

 

By examining the keff results in Table 3.1, a user cannot tell which result was better 

converged, i.e., more accurate. In addition to the final reported results, the evolution of 

the combined average keff versus the generation number (after skipping the initial one 

hundred inactive cycles) is depicted in Figure 3.3. 

 

 

Figure 3.3. Keff versus generation for cases 1-4 

 

The difference between each two runs, expressed by subtraction and combined standard 

deviation, 
[3]

 is given in Table 3.2. 
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Table 3.2. Standard deviation of the difference between each case for cases 1-4 

 Case 1 Case 2 Case 3 Case 4 

Case 2 
0.00151±0.00070 

(2.2σ) 
X X X 

Case 3 
0.00076±0.00067 

(1.1σ) 

0.00227±0.00069 

(3.3σ) 
X X 

Case 4 
0.00033±0.00069 

(0.5σ) 

0.00118±0.00071 

(1.7σ) 

0.00109±0.00069 

(1.6σ) 
X 

 

 In most cases, the difference of keff exceeded 1σ confidence interval. This 

difference indicated that the keff results from different cases had not converged yet after 

the inactive generations. This statistical inconsistency of keff could be explained by non-

convergence of the fission source distribution. The difference between the biggest and 

smallest keff in Table 3.2 was ~0.00200. This difference was much larger than the 

estimated individual σ of ~0.00050 in Table 3.2 or the combined one of ~0.00070 in 

Table 3.2. Thus, the results from different cases were statistically inconsistent. However, 

due to the fact that all assemblies were identical, the only problem characteristic causing 

the diversity of keff is the boundary condition outside each assembly. As a result, the keff 

results were not too far away from each other even if the source distribution has not 

converged. This small difference in keff indeed could mislead users to believe that all the 

results were statistical accurate. 

 

3.3 Entropy Check and its Limitations 
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 Entropy check in MCNP5 may be a powerful tool for convergence diagnostics, 
[21] 

[35]
 when used cautiously and understanding its limitations. In the above simulations, 

every assembly was defined as one entropy mesh, and half of the meshes (water channels) 

contributed zero to the entropy value because they didn’t contain any fission sources. 

Table 3.3 summarizes the output results of the entropy check after completing MCNP5 

runs. None of the four cases passed the entropy check. 

 

Table 3.3. Results of the entropy check for cases 1-4 

Case 
First cycle within 1σ 

with rerun suggestion 

1 370, rerun 

2 102, rerun 

3 141, rerun 

4 308, rerun 

 

 To understand how this entropy check and rerun suggestion affects users, consider 

what a typical user, assigned to analyze the keff and flux distribution of this problem, 

would do. He would likely place the initial sources uniformly over all the fuel assemblies, 

and keep all the other parameters the same as in case 1. After running MCNP5, the 

entropy check suggested him to simulate the problem again with at least 370 generations 

discarded. He followed the instruction and discarded 400 generations to ensure the 

convergence before accumulating data from the next 500 active generations. This time, 

the message (this case was not included in Tables 3.1 or 3.3) showed that the 393
rd

 cycle 

was the first one having the entropy value within 1σ of the reference value. He would 

therefore think that the result from this simulation was accurate for further investigation. 

 However, was this result really accurate or were the 400 inactive generations 

sufficient for the convergence? To answer this, we used the mesh tally with each 
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assembly as a mesh to obtain the radial flux distribution for each successive 100 

generations. Figure 3.4 depicts the mesh tally results; note that the zero flux regions are 

shown blank. One could easily conclude that most of the meshes had not converged 

based on the changing of the colors. Two reasons would explain this non-convergence of 

flux distribution. The first reason was the undersampling effect in this problem. 
[8]

 Using 

5,000 particles per generation was certainly insufficient for this giant system. The other 

reason was the loose coupling property of this problem. The water channels isolated the 

fuel assembly from each other. Either way, 400 inactive generations were clearly 

insufficient. This conclusion was further supported by focusing on the flux density 

change over each 100 successive generations of the high flux element in position (1,1), 

shown in Table 3.4. The flux value changed dramatically compared with the relatively 

small estimated σ. This change thus demonstrated that the result is still not converged. 

 

 
(a) Generation 401-500     (b) Generation 501-600 

 
(c) Generation 601-700    (d) Generation 701-800 

 
(e)  Generation 801-900 

Figure 3.4.  Radial flux distribution evolution for each 100 successive generations 
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Table 3.4. Flux of position (1,1) for each successive 100 generations 

Generations 401-500 501-600 601-700 701-800 

Flux (arbitrary units) 9.8960 5.1271 3.9084 6.1409 

Estimated σ 0.0489 0.0359 0.0315 0.0390 

 

 The observation above exemplified the failure of the entropy check if one was 

interested in the flux distribution. Passing the entropy check cannot guarantee the 

convergence of the flux distribution. Moreover, satisfying the entropy check was indeed a 

necessary but not sufficient condition. In other words, if a simulation did not pass the 

entropy check, the results were certainly questionable regarding the flux distribution. As 

a result, the keff results from a non-converged flux distribution were likely not accurate. 

 To further examine the utility of the entropy, Figure 3.5 depicts the entropy versus 

the generation number for the four cases in Table 3.1. While each case by itself seemed to 

flatten out in the right half, examining them all together against each other clearly 

showed that the convergence was still far away. 

 

 

Figure 3.5.  Entropy versus generation for cases 1-4 

 



 25 

3.4 Bounding Approach 

 One simple means to estimate the keff convergence is to use the bounding 

approach suggested in Refs. 19 and 36. In this approach, one simulation with the initial 

sources in the highest reactivity region is performed first. Then, another set of the initial 

sources in the lowest reactivity region initializes the simulation again. Plot of these two 

the combined average keff values could generate a bounding curve for the actual keff. If 

these upper and lower bounds of keff merged together after certain number of several 

generations, it was likely that a simulation with uniform sources would converge as well 

after that many generations.  

 Likewise, this bounding approach could also be applied to the entropy value to 

improve the false convergence detection based on the property of the entropy:  the 

entropy value will reach the minimum if all the initial sources are in one entropy mesh; 

and reach the maximum for a uniform source distribution over all entropy meshes. 
[35], [7]

 

To illustrate this property, a uniform source distribution over all the fuel assemblies was 

used to form the upper bound (case 5); and a point source in the center of position (1,1) 

was used to form the lower bound (case 7). The third case (case 6) used a biased initial 

source distribution:  90% sources were generated in position (1,3), and the other 10% 

sources were generated in the remaining fuel assemblies evenly. This biased source 

distribution was closer to the converged flux distribution, which was explained in the 

reference case. Therefore, the entropy value from the biased source distribution should be 

between the bounding curves. All of the three simulations used 5,000 particles per cycle, 

0 inactive cycle, and 500 total cycles. The results in Figure 3.6 confirmed the expected 

behavior of the bounding approach. 
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Figure 3.6.  Bounding approach for the entropies for cases 5-7 

 

 If the flux distribution rather than the global keff was of interest, the earlier 

parameters used were insufficient (in terms of generation number and history number) to 

achieve an accurate result. From Figure 3.6, one could tell that there was a significant 

difference between each case at the end of the simulation, which indicated the non-

convergence of the source distribution. Therefore, more generations were necessary to 

the convergence of an accurate flux distribution. Reexamining Figure 3.5 with the view 

of the bounding approach showed that the curves from cases 1 and 3 were merging 

together at the end of the simulations. If these two cases were chosen to form the 

bounding of the entropy values, one may reach the conclusion that the source 

distributions are converged already for cases 1 and 3. However, the analysis in the 

previous section indicated the non-convergence of case 1. Therefore, bounding approach 

is not always reliable. It will be valid only if a proper bounding—in other words, 

bounding initial source distributions—may be established. For simple test problems, this 

may be feasible, but for complex real-life problem, it may be difficult to guarantee the 

initial bounding source distributions. 

 In addition to this limitation, it was still not practical because of its inacceptable 

computational expense. In MCNP5, the only way to generate a reference entropy value is 
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to compute the average value with standard derivation of the last half of the entropy 

values. Table 3.5 lists the reference values for the above three cases and the difference 

between each pair of cases. 

 

Table 3.5. Average values of the entropy (2nd half)  

and the difference between each case for cases 5-7 

 

Case 

Average values of 

entropy (2nd half) 

with estimated σ 

Difference 

Case 6 Case 7 

5 4.50961±0.00516 
0.91114±0.01417 

64.3σ 

2.01757±0.00668 

302.0σ 

6 5.42075±0.01320 X 
1.10643±0.01386 

79.8σ 

7 6.52718±0.00424 X X 

 

 One may observe that the slow convergence of the source distribution caused the 

bigger gap (~100σ) between entropy curves for different initial sources than that (~3σ) 

for the keff curves after 500 generations. To further investigate the evolution of the flux 

distribution, two new cases with 10,000 particles per generation were simulated with the 

other parameters remaining the same. The mesh tally was accumulated every 200 

generations to compare the flux for the initial source in position (1,1) and in position 

(23,3). Figure 3.7 shows the flux distribution in the axially middle section (slice) for 

cycles 801-1,000, 1,801-2,000, and 2,801-3,000. Indeed, the flux distribution was a good 

proxy for the fission source distribution, so these two distributions would converge in 

essentially the same way. Analyzing Figure 3.7 clearly indicates that even after 3,000 

generations, the flux distributions from the two selected different initial source 
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distributions were far away from each other. The simulation initialized with the sources 

in position (1,1) had the flux only in the left half of the system because of the high 

reactivity in the left corner. For the other case, the flux distribution from the initial 

sources in position (23,3) was gradually propagating left for the same reason. However, 

the rate of spreading was so slow that the flux distribution just reached the left boundary 

after 3,000 generations. To tell how many more generations were needed for the 

distribution to converge was difficult. 

 

 
(a) Generation 800-1,000 

 
(b) Generation 1,800-2,000 

 
(c) Generation 2,800-3,000 

Figure 3.7.  Comparison of mesh tallies from position (1,1) source(left) and position 

(23,3) source(right), with blank indicating zero flux 

 

 Figure 3.8 depicts the entropy changing curves for the above two cases within the 

specific generations listed above. The 800-1,000 and 1,800-2,000 line for both cases had 

some increasing trend, but the 2,800-3,000 curves were almost oscillating flatly. If a user 

just paid attention to one case of the two, and when the simulation reached 3,000 
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generations, he would probably conclude that the flux distribution had converged based 

on the entropy curve. In contrast, if he examined the difference between line (a) and line 

(b) in Figure 3.8, which was essentially the bounding of the entropy, he would realize that 

(at least for one of the two) the flux and source distributions were still away from 

convergence. 

 

 

Figure 3.8. Entropy plot of generation 800-1000, 1800-2000 and 2800-3000 for two 

different initial source distributions: 

(a) Red--initial sources at position (1,1) and (b) Blue--initial sources at position (23,3) 

 

3.5 Statistical Check on the Flux Distribution 

 For this problem, examining the entropy curve or applying the entropy check is 

not reliable enough, while visual inspecting the plot of the flux distribution using the 

mesh tally indicates the non-convergence. However, visual inspection of the flux 

distribution is somewhat arbitrary and requires an experienced user and preliminary 

Cycles  
800-1000 

Cycles  
1800-2000 

Cycles  
2800-3000 
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prediction of the results, which is impractical. Therefore, applying some quantitative 

automatic statistical check mechanisms to the analysis of the mesh tally is highly 

desirable. A statistics-based method was proposed in Ref. 26 by analyzing the number of 

source points in each mesh, which was not available in MCNP5, after each generation. 

Instead, the following investigation was based on the average flux value with standard 

deviation in each mesh. The first advantage of using the flux instead of the source 

number was that the flux value was available in the regions composed of water, clad, and 

concrete. These extra data could increase the accuracy of the statistical check. Another 

advantage was the availability of the standard deviation, which could result in a better 

estimate of the statistical behavior. 

 To accomplish the objective of proposing a robust, automatic statistical check, 

understanding the behavior of the flux spreading toward convergence using the mesh 

tally was the first step. To make the simulation easier for analysis, a simplified problem 

based on the storage fuel pool benchmark was used. Figure 3.9 shows the geometry 

structure of this simplified problem. This problem was an inner part of a five-by-two sub-

array of fuel and water assemblies with four reflective boundaries in radial direction. All 

the assemblies had the same composition and cross-section properties as the original 

benchmark. The length of the assemblies was reduced to 50 cm with 10 cm water gap in 

the top and bottom. Vacuum boundary conditions were applied for the top and bottom 

boundaries. 

 While facilitating simulation of the problem, the simplified problem still 

preserved some characteristics of the original benchmark problem. The loosely coupled 

property due to the checkboard water gap between fuel assemblies remained, but the 

difficulty of the communicating over the entire system was reduced. Thus, the total 

impact of the loosely coupled property was lessened. Likewise, the simplified problem 

reduced the effects of the undersampling. 
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a) Vertical view 

 

b) Front view 

Figure 3.9. Geometry specification of the simplified problem 

 

 The simulation used 20,000 particles per generation and 100 generations for each 

run without inactive cycles. Evenly distributed initial sources over all the fuel and water 

assemblies were used for the simulation. Although putting the source points in the water 

channel was inconsistent with the physics of the problem, it initialized the flux 

distribution in water channel. This source distribution was close to the predicted 

converged flux distribution—the same flux for the relative same position in the same 

material. Therefore, the simulation did not need many generations to converge the flux 

distribution. In addition, to obtain the flux distribution by the mesh tally, 1,800 meshes 

(mesh size is 6.75cm*3cm*5cm) over the fuel and water assemblies were used as shown 
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in Figure 3.10. After simulating 100 generations, the random number seed was changed 

and the previous source file was used as initial sources for the next 100 generation 

simulation. This procedure enabled the continuous simulations and made the analysis of 

the successive flux much easier. The simulation of 100 generations was repeated ten 

times, increasing the total number of generations to 1,000. The first 500 generations were 

discarded in order to perform diagnostics of the convergence after 500 generations. 

 

 

a) Vertical  view 

 

b) Front view 

Figure 3.10. Mesh specification of the simplified problem 

 

 After acquiring the five sets of mesh tally data, the first step was to compare the 

reported flux value for each mesh. These reported flux values were essentially random 

samples of a random variable representing the converged steady-state flux. If X is a 
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random variable for a specific mesh, x1 and x2 were the sampled values of X along with 

estimated variances σ1 and σ2. Once the simulation converged, the difference between the 

two samples, x1-x2, would follow a specific zero-mean normal probability distribution 

function
 [3]

 with some variance σ 
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Practically, the variance σ was unknown for a simulation, so the sample variance 

(represented by ̂ ) was always an good approximation of the variance σ. Therefore, 

normalization would yield a variable following standard (0,1) normal distribution 
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Since σ1 and σ2, which were also approximations using sample variances, were the 

reported variances of x1 and x2, a possible variance estimate of the subtraction value x1-x2 

following the variance combination rules is: 
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 Based on the above analysis, the normalized subtraction of the successive flux 

value for a specific mesh was a sample from the standard normal distribution. Therefore, 

a set of the normalized subtraction for all the meshes from two successive 100 

generations would shape a histogram approximating a standard Gauss curve. As an 

illustration, the mesh tallies obtained from 501-600 generations and 601-700 generations 

were used to shape histograms. The histograms were characterized with different bin 

numbers as 10, 20, 50, and 100 for the 1,800 values from meshes. No matter what the 

histogram looked like, 
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was used to fit the histogram since the choice of the fitting equation was based on the 

assumption that the sample points followed the normal distribution. the curve fitting 
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toolbox in MATLAB was used to obtain the fitting coefficients for the mean value μ and 

the variance σ. Figure 3.11 shows the histograms and fitting curves for the four cases 

with different bin numbers. The y-axis represents the relative averaged probability for 

each bin. 
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a) 10 bins      b) 20 bins 
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c) 50 bins      d) 100 bins 

Figure 3.11. Probability histograms and normal distribution fitting curves for the 

normalized subtraction between generation 501-600 and 601-700 
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Table 3.6. Fitting coefficients of one normal distribution with 95% confidence 

interval for the difference between generation 501-600 and 601-700 

Coefficient 10 bins 50 bins 100 bins 

μ 
0.9916 

(-1.382, 3.366) 

0.9815 

(-0.06596, 2.029) 

0.9725 

(0.1936, 1.751) 

σ 
7.174 

(5.201, 9.147) 

7.187 

(6.317, 8.058) 

7.174 

(6.527, 7.822) 

 

 For some reason, the fitting of 20 bins did not produce meaningful results. Thus, 

Table 3.6 just shows the fitting coefficients with 95% confidence interval for the other 

three cases. Both of the two coefficients, μ and σ, converged to some value, and the 95% 

confidence intervals were shrinking because less information about the sample 

distribution was lost when using more bins for the histogram. Although it seemed that 

more bins reduced the confidence intervals for the estimates of the coefficients, the small 

counts in each bin would also reduce the confidence on the acquired data since they were 

statistical as well. Thus, an optimal bin number may be available after further exploration. 

For now, the number of bins was chosen as 50 as a standard parameter for the further 

investigation. 

 The estimated mean value μ was 0.9815, which at first glance is not too far away 

from the expected value zero. In contrast, the estimated variance σ was 7.187, which was 

tremendously far from the expected value one. This inconsistence could be understood 

for two reasons. One reason was underestimate of variance due to the auto-correlation 

effect. This effect caused the estimated variance ̂  smaller than the expected one in Eq. 

(3.2), so the normal distribution used as a fitting target had a larger variance than one. 

Despite this underestimate, the fitting variance σ should not be ~7 times bigger than 

expected. The other possible reason was the loosely coupled property of this problem. 
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This property would cause the isolation of the fuel assemblies for several generations. In 

this case, due to flux re-distribution, some meshes had a trend of increasing flux and 

some other meshes had a trend of decreasing flux. These two groups of meshes together 

induced the large fitting σ. Indeed, if one observed the histogram plot in Figure 3.11 

carefully, two or more potential peaks, representing the two groups of meshes, were clear. 

Therefore, a summation of two normal distributions as 
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may be a better option for the curve fitting. Figure 3.12 shows the summation fitting 

curve, and Table 3.7 shows the corresponding estimated coefficients. 
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Figure 3.12. Two normal distribution fitting curve for the normalized subtraction 

between generation 501-600 and 601-700 
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Table 3.7. Fitting coefficients for two normal distributions with 95% confidence 

interval for the difference between generation 501-600 and 601-700 

Coefficient 
Fitting value with 95% 

confidence interval 
Coefficient 

Fitting value with 95% 

confidence interval 

μ1 4.918  (4.581, 5.255) μ2 -4.961  (-5.603, -4.318) 

σ1 2.839  (2.576, 3.101) σ2 4.377  (3.872, 4.881) 

 

 The two estimated mean values were almost a pair of opposite values. However, 

the two estimated standard deviations were away from each other for ~1.5. Further 

observation and analysis of the fitting behavior are a possible research topic. 

 The same procedure was used to analyze the other data:  601-700 generations 

versus 701-800 generations, 701-800 generations versus 801-900 generations, 801-900 

generations versus 901-1,000 generations, 501-600 generations versus 701-800 

generations, 501-600 generations versus 801-900 generations, 501-600 generations 

versus 901-1,000 generations, 601-700 generations versus 801-900 generations, 601-700 

generations versus 901-1,000 generations, and 701-800 generations versus 901-1,000 

generations. For now, Figure 3.13 shows just the histograms with 50 bins and single 

distribution fitting curves for the three cases. Table 3.8 summaries the corresponding 

coefficients. The two normal distribution fitting method was not used for these cases, but 

it could be a potential way to analyze the behavior of fittings. 
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Figure 3.13.  Histograms and fitting normal distribution fitting  

curves for the other cases 
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(e) 501-600 versus 801-900     (f) 501-600 versus 901-1,000 

-15 -10 -5 0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

601-700 versus 801-900

Fitting

-10 -5 0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 

601-700 versus 901-1000

Fitting

 

(g) 601-700 versus 801-900     (h) 601-700 versus 901-1,000 

Figure 3.13 continued.  Histograms and fitting normal distribution fitting  

curves for the other cases 
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Figure 3.13 continued.  Histograms and fitting normal distribution fitting  

curves for the other cases 

 

Table 3.8. Fitting coefficients of one normal distribution with 95% confidence 

interval for the other comparisons 

 601-700 versus 701-800 701-800 versus 801-900 801-900 versus 901-1,000 

μ 0.6033  (0.278, 0.9286) 1.463  (0.7746, 2.152) 0.3975  (0.2332, 0.5618) 

σ 3.344  (3.079, 3.61) 4.359  (3.794, 4.923) 2.563  (2.429, 2.698) 

 501-600 versus 701-800 501-600 versus 801-900 501-600 versus 901-1,000 

μ -2.094  (-2.86, -1.328) -0.6004  (-0.8045, -0.3963) -0.1579  (-0.2748, -0.04105) 

σ 4.533  (3.907, 5.159) 3.074  (2.907, 3,24) 2.169  (2.073, 2.264) 

 601-700 versus 801-900 601-700 versus 901-1000 701-800 versus 901-1,000 

μ 0.1577  (-0.9171, 1.233) -0.4908  (-0.916, -0.06563) 0.9266  (0.4105, 1.443) 

σ 6.752  (5.871, 7.634) 5.063  (4.714, 5.411) 4.636  (4.215, 5.508) 
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 Figure 3.13 and Table 3.8 together indicates that when two potential peaks exist, 

the estimated variances are greater. Again, these two peaks were likely caused by the 

underestimate of variance and the auto-correlation together. Indeed, the underestimate of 

variance phenomena was also a result of the auto-correlation. Therefore, the only reason 

caused the fitting curve to behave different from expectation was the auto-correlation 

effect. Therefore, the fitting mechanism was a potential means to detect the auto-

correlation as well. 

 

3.6 Summary of Findings 

 This chapter used the OECD/NEA first benchmark problem, describing a storage 

fuel pool, to investigate the keff and flux convergence in criticality Monte Carlo 

simulations and specifically in MCNP5. Because of the large size of the problem, flux 

convergence was difficult to reach. Although different initial source distributions yielded 

similar keff results, further examination showed that the results were not so convincing 

since the flux distributions were far away from each other. The only available 

convergence diagnostics in MCNP5 was the entropy check, which was based on the 

source distribution. This entropy check mechanism was capable to detect some non-

convergence of the flux distribution, but it also gave false positive conclusion in many 

cases. This weakness of the entropy check was partially due to the lack of the reference 

criterion and its property that it represented the entire flux distribution with one single 

number. By using one single entropy value, the diagnostics was easier to understand and 

apply. However, local flux information was lost as a trade-off. The bounding approach 

was helpful for the entropy diagnostics by simulating two bounding cases and generating 

the bounding curves, but it demanded extra computational expense. Another possible 

solution was visually checking the flux plot, but an experienced user was necessary for 

this solution, and there is no clear criterion. 
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 To propose an automatic convergence diagnostics using the local flux distribution 

information, a statistical analysis was conducted. A simplified problem based on the 

benchmark problem was used as a faster convergence example. The mesh tally was 

imposed on this problem to obtain flux distributions. The successive flux results were 

used to yield the statistical data for further analysis. Relying on the curve fitting function 

of MATLAB, normal distribution function was used to fit the histogram of the data. 

Reported fitting mean value and variance were far away from expected values and 

changed dramatically, thus providing a quantitative indication (detection) of non-

convergence and/or auto-correlation. The analysis of this behavior was important for 

further development of new diagnostics. 
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CHAPTER 4 

HIGHER EIGENMODE ACCELERATION METHODOLOGY 

USING MODIFIED POWER METHOD 

 

4.1 Background 

 As mentioned in chapter two, the easiest (although ineffective) way for achieving 

convergence was just to let the simulation run for (more than) a sufficient number of 

generations. A direct use of this solution was impractical because of the unacceptable 

computational expense, which pointed to the need for a convergence acceleration 

methodology that would reduce the computational expense with faster convergence and 

thus reduce the required number of iterations. This chapter discusses a recently available 

acceleration methodology based on the power iteration method. 

 The power iteration method 
[3]

 is the basis of the Monte Carlo criticality 

simulation (and most of deterministic criticality simulations as well). This iterative 

method for solving eigenvalue problems eliminates the higher harmonics of a well-

behaved vector or function. As a result, only the fundamental eigenfunction remains as a 

steady-state result, which represents a nuclear system in normal operation. At the same 

time, the fundamental eigenvalue, keff (effective multiplication factor), is also computed. 

The convergence rate of the power iteration method is |k2|/k1, where |k2|/k1 is the 

dominance ratio (DR). If the DR is close to one, the power iteration method needs 

numerous iterations to remove higher components, which results in a slow convergence. 

This slow convergence is a major obstacle in current criticality simulations for high DR 

system. 

 Recently, T. Booth proposed two new methods 
[37] [38]

 to compute the second 

eigenvalue k2 and eigenfunction Ψ2 using Monte Carlo simulation. T. Yamamoto 
[39]
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derived an alternative demonstration for the first method in Ref. 37. He claimed that the 

strict convergence condition in Ref. 37 was not necessary that the method could be 

applied to more problems. One disadvantage of the first method was that it could only 

compute the second eigenvalue and eigenfunction at one time. Another drawback was the 

complexity of the mathematical derivation. The second method T. Booth proposed in Ref. 

38 was easier to understand and implement. In addition, this method could compute k1 

(fundamental eigenvalue, all known as keff), k2, Ψ1 (fundamental eigenfunction), and Ψ2 

at the same time. The major characteristic of this method was the increasing of the 

convergence rate from |k2|/k1 to |k3|/k1, whose demonstration could be found in Ref. 40.  

4.2 Review of the Modified Power Iteration Method 

 Recall Eq. (1.3) to (1.5) as the basic concepts for the power iteration method. An 

operator A with eigenvalue ik  and corresponding eigenfunction i  satisfies the relation 

iii kA   , in which  321 kkk .   (4.1) 

Any ―well-behaved‖ function   can be expanded in eigenfunctions 


i

iia .     (4.2) 

With renormalization, the power iteration method could estimate the fundamental 

eigenfunction and eigenvalue as the iteration number n approaches to infinity 

1

1

1
lim  



n

nn
A

k
 and 




11 lim



n

n

n A

A
k .   (4.3) 

A parameter x is introduced to the expansion of a well-behaved function Ψ as a part of 

the coefficient 

  
i

iii xba  .     (4.4) 

After iterations, two limits similar to those in Eq. (4.3) are acquired. The difference is 

that now the first two eigenfunction components remain rather than only the fundamental 

one. The first limit estimating the eigenfunction is 
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The second limit estimating the eigenvalue is 
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The values of the limits depend on the parameter x. For example, if 22 abx  , the 

coefficient  xba 22   will equal to zero, causing the fading away of the second 

eigenfunction component. As a result, Eq. (4.5) turns to 

    1111111
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.   (4.7) 

By applying renormalization after each iteration, this limit is an accurate estimate of the 

fundamental eigenfunction. In addition, Eq. (4.6) turns to 
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,   (4.8) 

which is also an accurate estimate of the fundamental eigenvalue. Likewise, if 11 abx  , 

the coefficient  xba 11   will equal to zero. Therefore, the two limits will converge to the 

second eigenfunction and eigenvalue with proper renormalization technique. 

 In order to find the proper parameter x, which satisfies the conditions, one divides 

the entire system into two sub-regions, R1 and R2. No strict requirement applies to the 

choosing of these sub-regions—R1 and R2 could overlap; the union of R1 and R2 does not 

need to cover the entire space. In both sub-region, one then estimates the eigenvalue with 

parameter x using 

1
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  and 
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k



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To clarify this expression, two new function are introduced 


i

iia  and 
i

iib .    (4.10) 
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If the procedure converges, the estimates of k in R1 and R2 are the same. Therefore, 

setting 1R
k  and 2R

k equal yields a quadratic equation for parameter x 
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.    (4.11) 

The two roots of this equation satisfy the two conditions above, which induce Eq. (4.5) 

and Eq. (4.6) to converge to the fundamental and second eigenfunction and eigenvalue 

respectively. After one iteration, the two new achieved vectors  A  and  A , which are 

employed to initialize the next iteration, function as    and    in the following 

calculation. In addition, one root of x, say x1, leads the estimate of   AxA 1  to 1̂ , 

and the other root of x, say x2, leads the estimate of   AxA 2  to 2̂ . The hat in the 

expressions means that the eigenfuctions are estimates rather than accurate results. 

4.3 Application to a Matrix Eigenmode Problem 

 To show the validity of this method, consider an arbitrary matrix P 























4.2167     0.3917    2.1250    0.9833-   

0.1167-    4.0583    0.8750-   2.6833    

0.7167     0.6417    1.3750     0.5167    

1.9500-   3.0250-   0.6250-   1.1500-   

P .   (4.12) 

The eigenvalues of this matrix are 4, 3, 1, and 0.5. Two arbitrary initial vectors (also 

called trigger vectors) a=(1 1 1 1) and b=(1 0 1 1), which functioned as    and    in Eq. 

(4.10), were used. The parameter x was inserted in front of vector b. The first component 

of the vectors was taken as the first sub-region and the last three components were taken 

as the second sub-region in calculation for 100 iterations. Figure 4.1 illustrates the 

evolution of the two eigenvalues for these vectors.  
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Figure 4.1. Evolution of the eigenvalues with 

initial vectors a=(1 1 1 1) and b=(1 0 1 1) 

 

 The estimates converged to the first two eigenvalues (4 and 3) after ~8 iterations 

and kept the convergence until ~50
th

 iteration. After that, the green line didn’t converge 

to k2 anymore and switched to k1 instead; in the meantime, a huge jump of the blue line 

appeared. Finally, the blue line kept estimating k1 and the green line kept oscillating 

between k1 and k2 randomly. A speculation to explain this random oscillation was that it 

is due to the round-off error. 

 As an alternative case, the initial vectors were changed to a=(1 1 0 0) and b=(0 0 

1 1) in order to perform the calculation again with 50 iterations shown in Figure 4.2. The 

estimate of k2, which converged to the third eigenvalue for some iterations, never 

converged to the expected second eigenvalue before it collapsed to the fundamental one. 

Another observation from the calculation was that the calculation was still running after 

~33 iterations although the estimated eigenvalues were both infinite, which cannot be 

shown in Figure 4.2. In principle, both vectors a and b converged to the fundamental 

eigenvector. Therefore, in some cases, the entire procedure would not generate a 

quadratic equation of x and the computation would stop; in other words, a collapse of 

calculation took place. In other cases, due to the round-off error, the difference between 
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the two vectors kept randomly changing, which either cause dthe random oscillation as in 

Fig 4.1 or the a meaningless estimate as in Fig 4.2. 
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Figure 4.2. Evolution of the eigenvalues with 

initial vectors a=(1 1 0 0) and b=(0 0 1 1) 

 

 As a comparison of the two cases, different choices of the initial vectors also 

affected the calculation. This is surprising because it is comprehensible that the selection 

of the initial vectors should not affect the results as long as both of them contain all the 

eigenfunction components. However, it turns out that the validity of the convergence also 

depends on the ratio of the first two components in the initial vectors. If the ratio for the 

two vectors is very close, distinguishing the first two eigenvalues tends to be difficult, 

causing the failure of the method. As an example, the first to second eigenvector 

component ratio for vector (1 1 0 0) is 2.1424/3.0838=0.6947, which is close to the ratio 

for vector (0 0 1 1) that is 4.9990/7.1956=0.6947. Indeed, the difference of the two ratios 

is on the order of 10
-4

. This is why no convergence to k2 took place in Fig 4.2. Another 

example uses the first set of the initial vectors. The ratio for vector (1 1 1 1) is 

7.1414/10.2794=0.6947 and the ratio for vector (1 0 1 1) is 5.7131/9.2515=0.6175. These 
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two ratios are sufficiently far away from each other, so the two initial vectors induced the 

successive convergence shown in Fig 4.1. 

 In summary, depending on the specific selection of initial vectors, two types of 

collapse take place during the calculation of the modified power iteration method. One 

collapse is that the estimate of k2 will eventually converge to k1 as the shrinking of the 

second eigenvector components. The other collapse is the effect of the numerical round-

off error, which generally occurs after the first collapse. Therefore, aiming to overcome 

some of these drawbacks, several refinements were proposed, which will be reviewed in 

the next section. 

4.4 Refinements 

 In Ref. 41, J. Gubernatis and T. Booth proposed two refinements. 

4.4.1 The First Refinement 

 As previously mentioned, each iteration is initialized with vectors P*a and P*b, 

which are denoted as anew and bnew. from the previous iteration with parameter x in front 

of P*b. The first refinement replaces P*a with P*a+x2*P*b, which is the latest estimate 

of Ψ2, as anew to trigger the next iteration. This replacement prevents vectors a and b from 

merging together to the fundamental eigenvector after several iterations, which would 

cause the failure of the method with finite computational accuracy. In deterministic 

computation, one root x1 can be used as a convergence criterion because vector b is 

converging to the second eigenvector and consequently, x2 is converging to zero. Figure 

4.3 depicts the performance of 50 iterations using this refinement with the initial set of 

vectors a=(1 1 0 0) and b=(0 0 1 1) that did not produce two eigenvalues before. 
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Figure 4.3. Evolution of the eigenvalues for the first refinement 

with initial vectors a=(1 1 0 0) and b=(0 0 1 1) 

 

 This refinement overcame the collapse, which caused the incapability of keeping 

computing eigenvalues for many iterations. Indeed, this collapse was not significant for a 

deterministic or matrix problem since generally, the calculation would meet the stop 

criterion before the collapse occurred. However, the collapse was crucial for Monte Carlo 

simulations because the more generations were used for the simulation, the better 

confidence interval the simulation would reach. 

4.4.2 The Second Refinement 

 Although the first refinement resolved the collapse problem, it did not increase 

the convergence rate to the fundamental eigenfunction, which was as important as the 

eigenvalues, because no changes applied to vector b. The second refinement could 

increase this convergence rate by updating vector b as well. On the basis of the 

replacement of vector a, this refinement replaced vector P*b with a similar expression 

P*a+x1*P*b to represent bnew. Figure 4.4 shows the evolution of the eigenvalues for this 

refinement with the same initial vectors as the first refinement, but only for 50 iterations. 
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Figure 4.5 illustrates how vector b converges to the fundamental mode eigenfunction 

measured by the error for the power iteration method, the modified power iteration 

method with the first refinement, and the modified power iteration method with the 

second refinement for 50 iterations. Here, the error is l-2 norm of the difference between 

the normalized estimate of the eigenfunction and the accurate eigenfunction. 
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Figure 4.4. Evolution of the eigenvalues for the second refinement 

with initial vectors a=(1 1 0 0) and b=(0 0 1 1) 
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Figure 4.5. Comparison of the convergence to the fundamental mode eigenfunction 

 

 Blue and green lines in Figure 4.5 actually overlapped as expected since the first 

refinement kept the convergence rate. The red line representing the second refinement 

behaved oddly at first sight, but the underlying cause was easy to grasp. For the 

eigenvalue problem A*Ψ=k*Ψ, where A is an operator or a matrix, k is an eigenvalue (a 

scalar quantity), and Ψ represents the corresponding eigenfunction or eigenvector. If Ψ is 

an eigenfunction for k, (-Ψ) is also an eigenfunction for k. Theoretically, power iteration 

could not guarantee the convergence of the eigenfunction to Ψ or (-Ψ). In Figure 4.5, if 

the reference eigenfunction was noted as Ψ1, the odd behavior of the red line was due to 

its convergence to (-Ψ1). Therefore, the error value, which was two times of the 

normalized eigenfunction, was 2. Generally speaking, in deterministic method, this would 

not be a big issue because one could always obtain Ψ1 from (-Ψ1) easily. Again, 

comparison between the red line and the green line, especially paying attention to when 

they achieved convergence as marked in the figure, exemplified the improvement of the 

convergence rate. 
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 Unfortunately, this refinement also contained a drawback in numerical 

implementations. As the iterations proceeded, vector b converged to Ψ1 and vector a 

converged to Ψ2, resulting in the parameter x1 in P*a+x1*P*b converging to infinity and 

eventually out of computational range. If the calculation shown in Figure 4.4 continued, it 

would collapse after the 69
th

 iteration, when root x1 grew to 10
+14

. This was a different 

collapse from the previous one, which was due to the round-off error. However, similar 

to the previous one, this collapse was not crucial for deterministic applications since the 

results should have passed the stopping criteria before the calculation collapsed. Still, 

when this refinement was applied to the Monte Carlo method, the user had to be aware of 

the possibility of collapses if he wanted to reduce confidence interval by running more 

iterations. 

4.4.3 A New Refinement 

 In order to not only preserve the long calculation and fast convergence properties, 

but also prevent the parameter x from diverging to infinity, this work devised a new 

improvement described in this section. The new expressions of anew and bnew trigger the 

next iteration with 
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.   (4.13) 

This approach employed a linear combination—1 and 1 for anew and 1, -1 for bnew—of the 

latest estimated eigenfunctions, which were divided by the latest estimated corresponding 

eigenvalues before a regular renormalization. The reason of the division by 1k


 or 2k


 was 

to keep the second eigenfunction component detectable and prevent the collapse due to 

the round-off error. In this refinement, neither vector a nor vector b would converge to 

eigenfunction itself since they were being updated every iteration. However, the 
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expressions P*a+x1*P*b and P*a+x2*P*b converged to the fundamental and second 

eigenfunctions respectively. The coefficients of the linear combination were artificial, 

controlled to what numbers the two roots of the parameter x would converge. For the 

choice in Eq. (4.13), the roots of the parameter x converged to a pair of values with 

opposite signs, which were determined by the matrix P as well. Figure 4.6 illustrates the 

evolution of eigenvalues using the same vectors for 200 iterations, and Figure 4.7 depicts 

the convergence to the fundamental mode eigenvector for the first 30 iterations. The two 

figures confirmed that this new refinement was valid and met the expectations. 

 

0 20 40 60 80 100 120 140 160 180 200
-6

-4

-2

0

2

4

6

8

Iterations

E
ig

e
n
v
a
lu

e
s

 

 

k1

k2

 

Figure 4.6. Evolution of the eigenvalues for the new refinement 

with initial vectors a=(1 1 0 0) and b=(0 0 1 1) 
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Figure 4.7. Convergence to the fundamental mode eigenfunction 

using the new refinement 

 

4.5 Implementation into Monte Carlo Simulation 

 Based on the positive results of applying the modified power iteration method to 

the matrix problem, implementation into Monte Carlo simulation was attempted. The 

simulation employed a one-dimensional mono-energetic fissile system described in Ref. 

41. The system extended from -10cm to +10cm with reflective boundaries along both x 

and y directions. In z direction, the system, the width of which was 9 cm (-4.5 cm to 

+4.5cm) with a vacuum boundary condition, was divided into 100 small 0.09 cm-wide 

meshes. The fissile material was uniform and isotropic with the following data 

0.3,1.0,8.0,0.1 111   cmcmcm fissioncapturescatteringtotal . (4.14) 

Two sub-regions for two estimates of eigenvalues were -4.5cm to 0cm, noted as the left 

region, and 0cm to 4.5cm, noted as the right region, along the z direction. The initial two 

sets of weights or source distributions were 








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06.1
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zfor
B .   (4.15) 
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 The collision estimator was used to gather the weights deposited in the left and 

right sub-regions as well as the weights deposited in the 100 small meshes similar to the 

mesh tally mechanism. After each iteration, a quadratic equation about x was formed 

based on the deposited weights. Solving this equation gave the two roots of the parameter 

x leading to the two eigenvalues in Eq. (4.6) and corresponding eigenfunctions in Eq. 

(4.5). Then, according to Eq. (4.13), two new weights distributions, which should be 

normalized, were generated based on the latest estimated eigenvalues and eigenfunctions. 

The normalization used was to maintain the summation of the absolute weights in each 

mesh as N/100, where N was the total number of particles per generation and 100 

represented the number of meshes. The source generating mechanism was called 

―resampling method‖ that was based on Yamamoto’s method in Ref. 39. Section 4.6 will 

discuss this source generating method and some other weight cancellation and source 

sampling approaches. Following the above procedure, a simulation of the problem used 

10,000 particles per generation, 130 total cycles, and 30 inactive cycles. The linear 

combination pair of the new trigger distributions was the same as described in Eq. (4.13). 

 

Table 4.1. Eigenvalue results for the Monte Carlo simulation 

k1 k2 

1.30567±0.00042 0.95428±0.00063 

 

 Table 4.1 shows the eigenvalue results and their estimated standard deviations. 

Compared with a reference deterministic results given in Ref. 40 as k1 = 1.30534 and k2 = 

0.95488, the differences between the deterministic and Monte Carlo results for k1 and k2 

were within the 1σ confidence interval for both, which indicated that the eigenvalue 

results were consistent. In addition to the eigenvalue results, the eigenfunction 

information was also available from the 100-mesh weights deposit. Figure 4.8 shows the 
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normalized eigenfunction results averaged over 100 active generations, which were 

similar to analytic predictions. 
[42]

 The consistence of both the eigenvalue results and the 

eigenfunction results indicated the validity of the implementation of the modified power 

iteration method with the new refinement. 

 

 

Figure 4.8. Normalized eigenfunction results of the Monte Carlo simulation with 

modified power iteration method and new refinement 

 

4.6 Weight Cancellation and Source Sampling 

 For the original form of the modified power iteration method as shown in 

previous section without any refinement methods, the implementation into Monte Carlo 

simulation did not need any action for adjusting weights of particles. The two sets of 

source distributions with positive weights as in a traditional Monte Carlo method should 

work well. However, because of the limitation of the original form discussed earlier, the 

refinements, which included summation or subtraction of the source distributions, were 

necessary. Therefore, a cancellation or accumulation mechanism of the source 
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distribution was needed in order to represent two proper source distributions for the next 

iteration. 

 In Ref. 37, T. Booth proposed to use a cancellation mechanism similar to the 

point detector concept. For a simulation with N particles per generation, each particle 

possesses two weights, representing two sets of weight distribution. Before the new 

iteration begins, N new particles, which will be treated as a point detector, are sampled 

randomly over the entire system. For each particle generated for an old point carrying 

two weights, the point fluxes in each new detector position are computed corresponding 

to the two weights. Therefore, a new set of source points is obtained with two weight sets 

after each iteration. The weights carried by each point are unbiased, so this mechanism is 

an exact cancellation method. However, the computational cost for a point detector 

mechanism is expensive. Moreover, there actually exist N point detectors in a single 

iteration which is too costly. 

 In Refs. 39 and 40, two similar methods were proposed for the weights 

cancellation. By approximating the flux distribution with small meshes, two sets of mesh 

tallies are calculated corresponding to the two sets of trigger source or weight 

distributions. Then, the weights cancellation or accumulation is easily implemented with 

simple summation or subtraction of the two sets of flux or weight distribution. The 

difference of the two methods is how to generate new sources according to the new flux 

or weight distribution. In Ref. 39, T. Yamamoto resampled N/M particles, where N 

represented the total number of particles per generation and M represented the number of 

meshes, from each mesh evenly with the updated weight to represent the weight 

distribution. In Ref. 40, T. E. Booth and J. E. Gubernatis used a similar procedure to 

obtain the mesh-based weights distribution. Instead of resampling source particles, they 

used the old source points generated after the previous iteration and gave them proper 

weights. In summary, the basis of both of the methods is the approximation of the weight 

distribution and no evidence indicates which one is a better approximation. In the 
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previous Monte Carlo simulation, the resampling method was used for the cancellation of 

source generation. 

4.7 Variance of the Eigenvalues 

 To examine the impact of this new approach on the variance, 10 repetitions of the 

Monte Carlo simulation were performed with different random number seeds. Each 

repetition employed 10,000 particles per generation, 100 inactive generations, and 400 

active generations, which were divided into 5 groups of 80 generations each. Only the 

first 50 generations of each group (80 generations) provided effective data while the 

remaining 30 generations acted as a gap between data sets to eliminate or significantly 

reduce auto-correlation of keff for this problem.
[43]

 Thus, total 50 sets of almost 

independent data were obtained for analysis. 

 Before the analysis of variance, some concepts will be reviewed. Suppose one 

wanted to estimate keff; by repeating simulations, he would obtain results from N=50 

active generations for M repetitions. Here, M=50 was selected. Therefore, n=1,2,…,50 

represented active generations and m=1,2,…,50 represented repetitions. The result from 

the n
th

 generation of the m
th

 repetition could be written as m

nk . For the traditional Monte 

Carlo method, only one simulation was performed and it equaled to picking one of the 50 

repetitions to compute the keff with its standard deviation 
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By using the data from 50 repetitions, an estimate of the mean value of the average keff 

and its standard deviation was 
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However, due to the correlation between sequence generations, this estimated standard 

deviation would be underestimated. 
[15]

 One way to estimate the true variance was to use 

the data from the 50 repetitions as 
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To eliminate the effects of the resampling method used here, a simulation with traditional 

Monte Carlo method used for comparison also employed the same resampling method. 

Table 4.2 lists the results. 

 

Table 4.2. Comparison of the results from 50 repetitions 

 

Traditional 

Monte Carlo 

using resampling 

Modified Monte Carlo  

with new refinement 

k1 k2 

k  1.30548 1.30542 0.95499 

  0.00055 0.00048 0.00090 

true  0.00069 0.00053 0.00071 

 

 The first column of the table (last two rows) showed the underestimate due to the 

correlation effect: reported variance was always smaller then the true variance. The 

second column illustrated the same behavior of k1 from the modified power method with 

the new refinement. Comparison of the expected value of the reported variance from the 

traditional Monte Carlo simulation and the modified Monte Carlo method showed the 
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better estimate from the modified method. The decreasing of the reported variance was 

probably because of the faster removal of the second eigenfunction component, which 

was also an estimate. This same reason could explain the similar behavior of the true 

variance. In addition to the decrease of variance, the modified method also reduced the 

underestimation effect, which increased the reported to true σ ratio from 0.8 to 0.9. The 

real reason for this advantage was not certain, but we speculate that it may be due to the 

updating of the source weights for each iteration by a linear combination. The least 

expected result in Table 4.2 was the third column which indicated the larger reported and 

true σ than in the other two cases. Moreover, the reported variance in this case is greater 

than the true variance. While we had not performed sufficient research yet to explain this 

behavior, we suspect that it was related to the second eigenmode features, and this 

uncommon result could be a possible research topic in the future. 

4.8 Summary of Findings 

 This chapter first reviewed the principle of the modified power iteration method, 

which could compute the first and second eigenvalues and eigenfunctions simultaneously. 

This method could also increase the convergence rate to the fundamental eigenmode. A 

matrix problem was used to illustrate the validity of the modified method. Although this 

method worked well in its original form, some drawbacks came along with the method. 

Therefore, two refinements previously published by other authors were reviewed and 

exemplified first, and a new refinement was proposed next. This new refinement was 

implemented into a Monte Carlo simulation. The eigenvalue and eigenfunction results 

from the simulation were consistent with the analytical expectation and deterministic 

calculations. Analysis based on the reported variance, weight cancellation, and source 

generating was performed in order to understand the characteristics of the modified 

method and improve its robustness. 
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 In summary, this modified power iteration method was proved valid for both 

deterministic method and Monte Carlo method. The advantages of this method—such as 

the ease of understanding and implementation, obtaining more information at one time, 

and faster convergence—were quite impressive. However, since this is a relatively new 

area of research, many questions regarding behaviors or features of this method were still 

open. Therefore, this field is attractive and has potential to improve the efficiency of 

Monte Carlo criticality simulations. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

 This thesis described the potential obstacles in the Monte Carlo criticality 

simulations. Among these obstacles, this thesis focused on the criticality convergence 

diagnostic and convergence acceleration issues. By applying the entropy check used in 

MCNP5 to the OECD/NEA first benchmark problem (storage fuel pool), which has the 

loosely coupled slow convergence properties, chapter three illustrated the validity of the 

method in some cases. However, due to the definition of the entropy value, local 

information is missing, which caused the method to fail to detect the non-convergence for 

some cases. The bounding property would help for the convergence diagnostics, but it 

needs unpractical extra computational expense. Chapter three proposed potentially more 

reliable diagnostics based on the analysis of the local distribution. The normal 

distribution fitting technique carried more information about the source distribution 

evolution than the entropy value. Therefore, this fitting technique may be expected to 

provide a more robust diagnostics. However, how to utilize the resulting data to discern 

non-converged flux distribution from the converged one was not quite clear because the 

fitting was contaminated by the loose coupling property of the problem. A robust 

convergence criterion based on first principles is future research topic. 

 In the modified power iteration method, obtaining the fundamental and second 

eigenvalues and eigenfunctions is possible using the Monte Carlo method. A significant 

feature of this method is the improvement of the convergence rate. Chapter four reviewed 

the concepts of the method and some refinements aimed to stabilize the simulation. A 

new refinement was proposed for numerical stability and to maintain the improvement of 

the convergence rate at the same time. Some preliminary results obtained by applying the 

modified method to a simple problem indicated its capability. The analysis of the 
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variance reported along with the eigenvalue results exhibited some unexpected 

enhancement. Therefore, more research is needed on the prediction of the variance, 

especially for the second eigenvalue. In addition, by introducing negative-weighted 

particles in the simulation, a proper way to cancel the positive and negative weights is 

established, crucial for the accuracy. Although Chapter 4 included an approximated 

mechanism for the cancellation, it would not function well for a huge complex system. 

Even if the approximation mechanism were very accurate, the computational expense 

will be intolerable to maintain the accuracy. As a result, a weight cancellation and source 

generating mechanism without approximation is needed for the further implementation of 

the method. 

 In summary, several fundamental issues appeared related to convergence 

diagnostics and acceleration of Monte Carlo simulations of nuclear systems. To ensure 

efficiency and accuracy of such simulations, more research is necessary to develop for 

some more robust algorithm. 
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