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SUMMARY 

 

For decades, epitaxy is used in nanotechnologies and semiconductor fabrications. 

So far, it‟s the only affordable method of high quality crystal growth for many 

semiconductor materials. Heterostructures developed from these make it possible to solve 

the considerably more general problem of controlling the fundamental parameters inside 

the semiconductor crystals and devices. Moreover, as one newly arising study and 

application branch of epitaxy, selective area growth (SAG) is widely used to fabricate 

materials of different thicknesses and composition on different regions of a single wafer. 

All of these new and promising fields have caught the interests and attentions of all the 

researchers around the world. 

In this work, we will study the stress and strain analysis of epitaxy in nano-scale 

materials, in which we seek a methodology to bridge the gap between continuum 

mechanical models and incorporate surface excess energy effects, which can be obtained 

by molecular dynamical simulations. We will make a brief description of the elastic 

behavior of the bulk material, covering the concepts of stress, strain, elastic energy and 

especially, the elastic constants. After that, we explained in details about the definitions 

of surface/interface excess energy and their characteristic property tensors. For both 

elastic constants and surface excess energy, we will use molecular dynamic simulations 

to calculate them out, which is mainly about curve-fitting the parabola function between 

the total strain energy density and the strain.  

After this, we analyzed the stress and strain state in nanoisland during the 

selective area growth of epitaxy. When the nanoisland is relaxed, the lattice structure 

becomes equilibrated, which means the total strain energy of system need to be 

minimized. Compared to other researcher‟s work, our model is based on continuum 

mechanics but also adopts the outcome from MD simulations. By combining these 



 xii 

microscopic informations and those macroscopic observable properties, such as bulk 

elastic constants, we can provide a novel way of analyzing the stress and strain profile in 

epitaxy. The most important idea behind this approach is that, whenever we can obtain 

the elastic constants and surface property tensors from MD simulations, we can follow 

the same methodology to analyse the stress and strain in any epitaxy process. This is the 

power of combining atomistic simulations and continuum method, which can take 

considerations of both the microscopic and macroscopic factors. 
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CHAPTER 1 

INTRODUCTION 

 

 This chapter provides an introduction to the world-widely used epitaxy 

technology in fabricating nano-scale devices. Based on a review of the works from other 

scientists and researchers, we will present different approaches in epitaxy modeling, and 

then discuss the motivations and goals of our project. At the end of this chapter, we will 

give a brief description of our approach and the work that has been done. 

The State-of-Arts of Epitaxy 

 It is impossible to imagine modern solid-state applications and devices nowadays 

without semiconductor heterostructures. Among those structures, quantum wells, wires, 

and dots are the subject of research of two-thirds of the semiconductor physics 

community. For decades, epitaxy is used in nanotechnologies and semiconductor 

fabrications. So far, it‟s the only affordable method of high quality crystal growth for 

many semiconductor materials, including technologically important materials as silicon-

germanium, gallium nitride, gallium arsenide, indium phosphide and graphene.  

 In epitaxy, a monocrystalline film is deposited onto a monocrystalline substrate. If 

the materials are the same with each other, it‟s called homoepitaxy; otherwise it is called 

heteroepitaxy. Heterostructures developed from these make it possible to solve the 

considerably more general problem of controlling the fundamental parameters inside the 

semiconductor crystals and devices: band gaps, effective masses of the charge carriers 

and the mobilities, refractive indices, electron energy spectrum, etc
[1]

. 

Selective area growth (SAG) is a metalorganic chemical vapor deposition 

(MOCVD) technique widely used to fabricate materials of different thicknesses and 

composition on different regions of a single wafer. As growth precursors shower down on 
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the wafer, they do not react on the oxide and hence must diffuse to the exposed region for 

growth. The exposed regions in between the oxide pads accumulate more material 

compared to the regions that are further away from these pads. This is the key idea 

behind SAG. 

Selective area growth has found wide ranging applications in optoelectronic 

integrated circuits, e.g., integrated electro-absorption modulated lasers
[2]

, beam expanded 

lasers
[3]

, and transceivers
[4]

.  

Motivations and Goals 

In the past a few years, the modeling of epitaxy has been investigated by many 

researchers. During the epitaxy process, it involves complex and strongly coupled 

phenomena occurring at multiple length and time scales. Fast elementary processes such 

as migration of adsorbed molecules at the film surface, chemical reactions or atomic 

relaxation have characteristic times of 10
–10

 ~ 10
–15

s and involve displacements of 

approximately 10
–10

 m. Numerous numerical models have been developed to simulate the 

process, but most of them have focused only on particular scales
[5-7]

. Recently, multiscale 

simulation has emerged as one of the most promising interdisciplinary field of 

investigation in Computational Materials Science. It is a promising route towards the 

prediction of the microstructure and properties of materials prepared by epitaxy.  

 In multiscale modeling, linking macroscale to micro- or atomic scale often turns 

out to be the primary focus. For years, continuum mechanics-based micromechanics 

theories have been used widely and successfully to model conventional polycrystalline 

and composite materials, because the material can be still considered as a continuum 

media to some extent. However, nanomaterials are characterized by their microstructures 

with their fine length scale, and therefore exhibit some new and important properties and 

behaviors. For instance, the surface area to volume ratio increases tremendously when the 

length scale of the material drops from metres to nanometres, thus it‟s nessessary to take 
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consideration of surface or interfacial properties in modeling the properties and behavior 

of nanomaterials. 

In our work, we studied the stress and strain analysis of heteroepitaxy in nano-

scale materials, in which we seek a methodology to bridge the gap between continuum 

mechanical models and incorporate atomistic effects, surface excess energy in our case. 

Furthermore, to study the atomistic effects of nanomaterials, this resorts to molecular 

dynamical simulations, which enable us to understand and model the collective behavior 

of the atoms. By combining these microscopic informations and those macroscopic 

observable properties, such as bulk elastic constants, we can provide a novel way of 

analyzing the stress and strain profile in epitaxy. 
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CHAPTER 2 

MOLECULAR DYNAMIC SIMULATIONS 

 

Introduction to Different Simulations 

Nowadays, simulation models can cover quite a broad area of research interests 

and also involves different scales of length and timestep
[8]

. Basically, in any simulation, 

first, a hierarchy of length and time scales is established within the physical ensemble. 

Second, the elementary objects (atoms, clusters, grains, etc.) handled on the various 

scales of interest are defined. Third, those physical processes which are irreducible and 

independent at a given length scale are identified. The processes and objects handled at a 

given scale usually represent „averages‟ calculated at the immediately lower scale. 

 

 

Figure 1: Simulation models in Materials Science and related length and time scales
[8]

. 

 

 In Figure 1 above, it shows the characteristic length and time scales accessible to 

the main types of simulation models used in Materials Science. Ab initio methods such as 
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density functional theory (DFT) or Carr–Parrinello (CP) Molecular Dynamics
[9]

 are 

capable of describing electronic interactions between a few hundreds of atoms, in static 

(DFT) or over extremely short time scales (10
-13 

s for CP). They are generally used to 

calculate transition state structures, surface reaction pathways, etc. Electronic interactions 

are represented by empirical potentials in classical Molecular Dynamics models
[10]

, thus 

enabling the simulation of the real atomic motions in systems of typically 10
5
 atoms over 

10
-9

 s. Classical Monte Carlo models
[11]

 can also be used to determine the equilibrium 

state of molecular systems of this size, but they do not provide accurate information on 

dynamics. Conversely, Kinetic Monte Carlo (KMC) models, which are generally lattice-

based, are capable of simulating atomic motions in systems consisting of more than 10
6
 

atoms over typically 10
3 

s
[12]

. KMC models do not provide a description of atomic 

interactions as accurate as MD models, but they have a unique potential of bridging 

atomic scale and microscopic scale in dynamic simulations. Finally, continuum models 

based on finite elements or finite volume methods are generally used to simulate 

transport phenomena inside the preparation chamber
[13]

.  

MD Simulations Tool: LAMMPS 

LAMMPS
[14]

 is a classical molecular dynamics code that models an ensemble of 

particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, 

metallic, granular, and coarse−grained systems using a variety of force fields and 

boundary conditions. It can model systems with only a few particles up to millions or 

billions. LAMMPS runs efficiently on single−processor desktop or laptop machines, but 

is designed for parallel computers. It will run on any parallel machine that compiles C++ 

and supports the MPI message−passing library. This includes distributed− or 

shared−memory parallel machines and Beowulf−style clusters. As a freely−available 

open−source code, most information can be checked on the LAMMPS WWW Site 

(http://lammps.sandia.gov). 

http://lammps.sandia.gov/


 6 

In MD simulations or any other atomistic simulations, the interatomic potentials 

are at the heart of the simulations. In classical atomistic simulations, the atoms are 

represented by mass-points in space interacting through many-body interactions potential. 

The complex description of electrons dynamics is abandoned and an effective depiction is 

taken. In this picture, the interatomic interaction and internal degrees of freedom are 

completely defined by a set of parameters and functions which depend on the positions of 

the atoms in the system.  

In our work, we compute pairwise interactions for metals and metal alloys using 

embedded−atom method (EAM) potentials
[15]

. In the EAM framework, the total energy 

of an atom is expressed as the sum of the contribution from the energy of two-body 

interactions and the embedding energy incorporating the complex nature of metallic 

cohesion. Among all of the interatomic potentials, the EAM method is a very efficient 

technique for modeling realistic descriptions of metallic cohesion. It is a semi-empirical 

approach that uses multi-atom potential for modeling the interatomic forces. In this 

scheme all atoms are treated in a unified way. The method is so called “embedded” 

because it views each atom individually as if it was embedded in a host lattice comprising 

all other atoms. It has the important benefit of keeping the computational scaling on the 

order of magnitude of N (if N is the number of particle composing the system) whereas 

more complex and thorough many-body potential scale on the order of magnitude N
3
 (for 

instance, Density Functional Theory). 
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CHAPTER 3 

DESCRIPTIONS OF BULK AND SURFACE PROPERTIES 

 

This chapter will mainly recall the fundamental basics of continuum mechanics. 

In the description of the elastic behavior of the bulk material, we will cover the concepts 

of stress, strain, elastic energy and especially, the elastic constants. After that, we will 

spend more on explaining the properties of surfaces or interfaces. In that part, we will see 

the definitions of surface/interface excess energy and their characteristic property tensors. 

Elastic Constants of Bulk Materials 

In continuum mechanics, the elastic constants of crystal material is well defined. 

To keep consistent with the ideas of atomistic simulations later, here we introduce the 

elastic constants through the Taylor‟s expansion of the total strain energy density at the 

state of zero stress and strain
[16]

. 

𝐸 =
1

2
𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 𝜀𝑘𝑙 +

1

6
𝐶𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑖𝑗 𝜀𝑘𝑙𝜀𝑚𝑛 + ⋯ 

where 𝜀𝑖𝑗  is the Lagrangian strain measured from the perfect lattice of an undeformed 

crystal of infinite extent, 𝐶𝑖𝑗𝑘𝑙  is a fourth order stiffness tensor consists of second order 

elastic constants, and 𝐶𝑖𝑗𝑘𝑙𝑚𝑛  is a sixth order tensor consisting of the third order elastic 

constants of the solid. All are defined in the reference configuration, or the initial stress-

free configuration. In our case, we will neglect the sixth order and higher order items.  

 The symmetric Piola-Kirchhoff stress is the gradient of the strain energy with 

respect to the strain. 

𝜎𝑖𝑗 =
𝜕𝐸

𝜕𝜀𝑖𝑗
= 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙  
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In crystals, because of the symmetry of the structure systems, some components 

in the stiffness tensor 𝐶𝑖𝑗𝑘𝑙  will be null, and the most general anisotropic elastic solids 

require only 21 elastic constants. We can write the stiffness tensor in the following way. 

𝐶 =

 
 
 
 
 
 
𝐶1111 𝐶1122 𝐶1133

𝐶1122 𝐶2222 𝐶2233

𝐶1133 𝐶2233 𝐶3333

𝐶1123 𝐶1113 𝐶1112

𝐶2223 𝐶2213 𝐶1222

𝐶2333 𝐶1333 𝐶1233

𝐶1123 𝐶2223 𝐶2333

𝐶1113 𝐶2213 𝐶1333

𝐶1112 𝐶1222 𝐶1233

𝐶2323 𝐶2313 𝐶1223

𝐶2313 𝐶1313 𝐶1213

𝐶1223 𝐶1213 𝐶1212  
 
 
 
 
 

 

The indices of the notation above are quite cumbersome, so it‟s often in a 

simplified or contracted form. 

𝐶 =

 
 
 
 
 
 
𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

𝐶14 𝐶15 𝐶16

𝐶24 𝐶25 𝐶26

𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34

𝐶15 𝐶25 𝐶35

𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 𝐶46

𝐶45 𝐶55 𝐶56

𝐶46 𝐶56 𝐶66 
 
 
 
 
 

 

In this contracted form, 𝐶𝑖𝑗  is no longer the component of a second order tensor. 

Considering some special materials, such as monoclinic, orthotropic or isotropic 

materials, they have planar or axial symmetry in their structure themselves, so the form 

can be even simplified more. In the next chapter, we will see the calculation of elastic 

constants for pure metals, for example, copper has FCC cubic lattice structure, and its 

stiffness tensor can be written as the following. 

𝐶 =

 
 
 
 
 
 
𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

0

0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶44 
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Surface/Interface Excess Energy 

Evolution of “Surface Energy” Concept 

The initial idea of “surface energy” can date back to the year of 1928 when Gibbs 

first formulated the thermodynamics of a fluid interface through the use of interfacial free 

energy, which is a single dividing surface used to separate two homogeneous phases, and 

the interface contribution to the thermodynamic properties is defined as the excess over 

the values that would be obtained if the bulk phases retained their properties constant up 

to an imaginary surface (of zero thickness) separating the two phases. Gibbs showed that 

various combinations of the interfacial excess quantities can yield physically meaningful 

and experimentally measurable variables which are independent of the dividing surface 

position. By following Gibbs‟ work, Shuttleworth and many other researchers
[14-16]

 

extended this Gibbsian description of fluid-fluid interfaces to solid-solid interfaces and to 

associate a “surface stress” with the change of in interfacial energy upon deformation. 

From then on, instead of considering the surface excess energy as a constant quantity in 

all situations, researchers began to take the surface excess energy as a function of the 

surface strain, which is only due to the in-plane deformation. For example, Shama
[17]

 has 

used the Shuttleworth equation for solid-solid interfaces such as grain boundaries. On the 

other hand, although there are many similarities between a free surface and an interface 

in elastic solid, in the early 80s, Andreev and Kosevich
[18]

 already noticed that there is 

one key difference between them, namely, in addition to in-plane deformation, an 

interface may be subjected to transverse (normal to the interface) stress. Such transverse 

stress and the corresponding transverse deformation also contribute to the interfacial 

excess, but they did not give an expression of the contribution from the transverse stress. 

Recently, Dingreville
[19]

 provided a comprehensive way of determining the interfacial 

excess energy by taking consideration of both in-plane deformation and the effects of 
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transverse stress. Later, Dingreville and Qu
[20]

 successfully applied this approach to 

estimate interface elastic properties with a semi-analytical method of calculation. 

Definition of Surface Excess Energy 

 Before we come to the definition of surface excess energy, it‟s remarkable to 

mention that there are typically two ways in which the properties of the surface can be 

defined and introduced. The first one is an “interphase” model, and the system is 

considered to be one in which there are three phases present – the two bulk phases and an 

inter-phase; the boundaries of the inter-phase are somewhat arbitrary and are usually 

chosen to be at locations at which the properties are no longer varying significantly with 

position. The inter-phase then has a finite volume and may be assigned thermodynamic 

properties in the normal way
[21]

. In the second approach where a single dividing surface 

is used to separate the two homogeneous phases, the interface contribution to the 

thermodynamic properties is defined as the excess over the values that would obtain if the 

bulk phases retained their properties constant up to an imaginary surface (of zero 

thickness) separating the two phases. In this work, we will take the second definition. 

 The surface free (excess) energy of a near surface atom, En is defined by the 

difference between its total energy and that of an atom deep in the interior of a large 

bicrystal. Clearly, En depends on the location of the atom.  
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(a)                                                            (b) 

Figure 2: Demonstration for bicrystal interface
[19]

 

(a) Flat interface of a bimaterial, (b) Interface excess energy as a function of the distance 

away from the interface 

 

For the bicrystal interface shown in Figure 2(a), the x3-dependence of En is 

schematically shown in Figure 2(b), i.e., it reaches its maximum value on the interface 

and tends to zero deep into the crystal. If there are N atoms surrounding an area A in the 

deformed configuration, the Gibbs surface excess energy density is defined as the 

following. 

Γ =
1

𝐴
 𝐸𝑖

𝑁

𝑖=1

 

 From the work of Dingreville
[19]

, this surface excess energy is linked to the 

surface stress and surface strain by introducing some surface property tensors. It then 

follows that the interfacial excess energy can be re-rewritten as 

Γ = Γ0 + Γ(1): 𝜀𝑠 +
1

2
ε𝑠: Γ(2): 𝜀𝑠 +

1

2
𝜎+

𝑡 : Λ 2 ,+: 𝜎+
𝑡 +

1

2
𝜎−

𝑡 : Λ 2 ,−: 𝜎−
𝑡  
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with  ε𝑠  and 𝜎𝑡  are, respectively, the in-plane strain and transverse stress tensors, and 

other tensorial terms are intrinsic properties of the interface. It is obvious that if no stress 

or strain is applied, the surface excess energy form is reduced to only the first item, Γ0, 

which becomes a constant quantity, and this is consistent to the definition originally 

introduced to fluid surfaces. However, when stress or strain is applied, the surface excess 

energy is no longer an intrinsic material property, but also depends on the applied load. 

terms. The second term, Γ(1), is a two-dimensional second order tensor representing the 

internal excess stress of the interface. It is the part of interfacial stress that exists when 

the surface strain and transverse stress are absent. The third term, Γ(2), is related to the 

two-dimensional fourth order tensor that represents the interface's in-plane elasticity. 

Finally, Λ 2  represents the transverse compliance of the interface which can be taken as 

kind of the interfacial transverse compliant tensor. 

 On contrast of bicrystal interfaces, if we only consider a free surface with only 

one material, then there is no transverse effect involved and the free surface excess 

energy can be truncated as,  

Γ = Γ0 + Γ(1): 𝜀𝑠 +
1

2
ε𝑠: Γ(2): 𝜀𝑠  

The surface property tensors, Γ0, Γ(1), Γ(2) are intrinsic properties of the free surface. In 

the following chapters, they can be calculated for a given material with known 

interatomic potentials by molecular dynamic simulations. Once these tensors are known, 

the elastic behavior of the surface is fully characterized. 
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CHAPTER 4 

RESULTS FROM MD SIMULATIONS 

 

This chapter will focus on the calculation of elastic constants and surface excess 

energy by MD simulations in LAMMPS. For each part, we will present the calculation 

framework and methodology first, and then provide the results for discussion. 

Calculations of Elastic Constants 

 Recall the formulation from the chapter above, for cubic pure metals such as Cu, 

Al, etc, the stiffness tensor can be written as the following. 

𝐶 =

 
 
 
 
 
 
𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

0

0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶44 

 
 
 
 
 

 

The total strain energy density at the state of zero stress and strain is as following. 

𝐸 =
1

2
𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 𝜀𝑘𝑙  

The calculation procedures of the three elastic constants are quite similar. The 

principle is based on curve-fitting the parabola function between the total strain energy 

density and the strain.  

To simulate an infinite crystal, we constructed a rectangular cell and used periodic 

boundary conditions in all directions to mimic a crystal of infinite extend. A typical 

calculation cell contains 500 atoms. A bigger calculation sample is not necessary since 

the dimension of the calculation box are chosen to be at least twice as big as the cut-off 

distance of the interatomic potential. 

For calculations, we have performed a strain meshing of the calculation cell with 

strains in the three directions ranging from -1% to 1% and incremented by ±0.01% strain 
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steps. The calculation cell is stretched by independently varying the lattice constants 

along the three directions. This state corresponds to the energy state of the cell in the 

strain space. The procedure yields to a strain mesh of the total strain energy of the sample 

with respect to the reference configuration. The general steps of the calculation can be 

outlined as follows: 

(a) Create the initial assembly using the given material properties (atomic weight, 

lattice spacing, EAM potential, crystallographic orientation, etc…). 

(b) Apply a small strain field to the assembly. 

(c) Compute the energy density corresponding to this given strain field. 

(d) Increase the magnitude of strain and repeat steps (b) and (c). 

After repeating steps (b) – (d) a sufficient number of times, we obtain a mesh 

strain energy density of as a function of the strain. A numerical interpolation of the 

energy density was performed to evaluate the elastic constants. 

Elastic Constant C11 

By applying strain as 𝜀11 = 𝜀 and other strain components as zero(see Figure 3), 

The total strain energy density is simply as 𝐸 =
1

2
𝐶11𝜀

2. 

 

 

(a)                                                          (b) 

Figure 3: Deformation applied to the crystal Cu for calculation of C11 

(a. Before deformation; b. After deformation) 
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The interpolation result of the energy density v.s strain is shown in Figure 4 

below, and the value obtained is C11 = 173.2 GPa. 

 

 

Figure 4: Interpolation result of C11 of copper 

 

Elastic Constant C12 

By applying strain as 𝜀11 = −𝜀22 = 𝜀  and other strain components as zero(see 

Figure 5), The total strain energy density is simply as 𝐸 = (𝐶11 − 𝐶12 )𝜀2. 
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(a)                (b) 

Figure 5: Deformation applied to the crystal Cu for calculation of C12 

(a) Before deformation; (b) After deformation 

 

The interpolation result of the energy density v.s strain is shown in Figure 6 

below, and the value obtained is C12 = 129.2 GPa. 

 

Figure 6: Interpolation result of C12 of copper 
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This methodology for calculation of elastic constants is quite efficient and 

satisfactory. As long as a proper interatomic potential of the material is provided, its 

elastic constants can just be obtained by following this standard procedure. In our work, 

we also test this with other materials and compare our results to those literatures. The 

final results are listed in the table below. 

 

Table 1: Results of elastic constants by MD simulations(unit: GPa) 

 
Cu Au Pd Pt 

C11 
167.1

[19]
/166.1

[22]
 

173.2 

183.1
[19]

/192.9
[22]

 

189.1 
198.3

[19]
/224.9 331.7

[19]
/313.0 

C12 
124.0

[19]
/119.9

[22]
 

129.2 

158.7
[19]

/163.8
[22]

 

164.8 
170.4

[19]
/191.9 294.2

[19]
/283.1 

 

Calculations of Surface Excess Energy 

The calculation procedures of the surface excess energy are quite similar. The 

principle is based on curve-fitting the parabola function between the total surface strain 

energy density and the strain. In our calculations, we have performed a strain meshing of 

the calculation cell with strains in the two planar directions ranging from -1% to 1% and 

incremented by ±0.01% strain steps. Periodic boundary conditions are used in the two 

planar directions with free surfaces in the vertical direction to mimic an infinite plane. 

The atomic interaction is prescribed through the EAM potential. By varying the number 

of layers of atoms in the vertical direction we can represent thin films of different 

thicknesses. The slab thickness must be chosen to be thick enough to avoid interaction 

between the two surfaces. The film is stretched by independently varying the lattice 

constants along the two planar directions, while atoms in the third direction can fully 

relax. Prior to any deformation, the first step of the calculation is to determine the self 

equilibrium state of the films. This state corresponds to the lowest energy state of the film 

in the strain space. The self equilibrium state serves as a reference configuration for the 
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crystal. The procedure just described yields to a mesh of the total strain energy of the 

sample with respect to the reference configuration. The surface free energy of a near 

surface atom is obtained by taking the difference between its total energy and that of an 

atom deep in the interior of a large crystal. The procedure described above can be 

outlined in the following steps: 

(a) Create the initial assembly using the given material properties (atomic weight, 

lattice spacing, EAM potential, crystallographic orientation, etc.). 

(b) Equilibrate the assembly to find the self equilibrium state. 

(c) Apply a small strain field to the assembly and re-equilibrate. 

(d) Compute the surface energy density corresponding to this given strain field. 

(e) Increase the magnitude of strain and repeat steps (c) and (d). 

After repeating steps (c) – (d) a sufficient number of times, we obtain a mesh of 

surface energy density as a function of surface strains. Through curve fitting, the 

coefficients of the surface property tensors, Γ0, Γ(1), Γ(2) can be determined. 

 We first carried out this calculation for copper concerning (100) surface. Like the 

strategy of calculating elastic constants, the curve-fitting method is divided into two parts. 

By applying strain as 𝜀11 = 𝜀  and other strain components as zero, The total surface 

strain energy density is simply as, 

Γ = Γ0 + Γ11
(1)

𝜀 +
1

2
Γ1111

(2)
𝜀2 

  By applying strain as 𝜀11 = 𝜀22 = 𝜀  and other strain components as zero, The 

total surface strain energy density is simply as 

Γ = Γ0 + (Γ11
 1 

+ Γ22
 1 

)𝜀 + (Γ1111
 2 

+Γ1122
 2 

)𝜀2 

 Notice that in both interpolations, Γ0  will be calculated. In this case, we also 

checked that the twice obtained values of Γ0 here are the same. However, in our results 

listed in Table 2 below, the values of the second order tensor, Γ(1), deviates too much 

from other literature data.  
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Table 2: Results of surface tensors by MD simulations for Cu(100) surface(unit: J/m
2
) 

Γ0 Γ11
 1 

 Γ1111
 2 

 Γ1122
 2 

 

1.288
[19]

/1.28
[23] 

1.3584 

1.396
[19]

/1.38
[24] 

0.1118 

-0.712
[19] 

-0.8328 

5.914
[19] 

5.3020 

 

We also carried out the same calculation for (110) surface of copper, and similar 

discrepancy happened again for the values of the second order tensor(see Table 3). 

 

Table 3: Results of surface tensors by MD simulations for Cu(110) surface(unit: J/m
2
) 

Γ0 Γ11
 1 

 Γ22
 1 

 Γ1111
 2 

 Γ2222
 2 

 Γ1122
 2 

 

1.413
[19]

 

/1.40
[23] 

1.4896 

-1.126
[19]

/0.957
[25] 

0.2889 

-0.993
[19]

/0.957
[25] 

0.4436 

-7.798
[19]

 

-11.8204 

-2.263
[19]

 

-3.0120 

 

-3.600
[19]

 

-0.2657 

 

 

 Since part of the results turn out to be not so satisfactory, in the next chapter we 

will directly use the data from other literatures for further calculations. 
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CHAPTER 5 

COMBINE MD SIMULATIONS AND CONTINUUM METHOD 

 

This chapter is oriented to an example of selective area growth(SAG) strain 

analysis of nanoislands. We will first show the framework of formulating the problem by 

continuum mechanical models and incorporate atomistic effects, surface excess energy in 

our case. At the end we can compare the differences of choosing different surface excess 

energy formulations, and then we make a conclusion of our methodology of combining 

MD simulations and continuum method in stress and strain analysis in the applications of 

nanoepitaxy.  

Nanoisland Strain Analysis in SAG 

Traditional semiconductor epitaxial growth using planar, monolithic substrates 

has progressed from homoepitaxy to lattice-matched heteroepitaxy and recently to 

pseudomorphic, lattice-mismatched systems where small amounts of strain are 

accommodated in very thin films. In cases where a large lattice mismatch is unavoidable 

(e.g., GaN), then selective nucleation followed by lateral epitaxial overgrowth has also 

been shown to be successful in limiting the effects of mismatch defects by localizing 

them to inactive regions of the wafer
[26]

. 

Nanoheteroepitaxy exploits state-of-the-art lithography to pattern a substrate 

surface with nanoscale features (10–100 nm) prior to growth. Selective epitaxial growth 

is then performed and the epilayer nucleates as an array of nanoscale islands. The 

additional stress relief mechanisms available to nanoscale islands as compared to a 

conventional planar epilayer are illustrated in Figure 7. In a conventional planar structure 

the epilayer can only deform vertically (a) to relieve mismatch stress. In contrast, a 

nanoheteroepitaxy „„island‟‟ consisting of a patterned substrate (lower part) and a 
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selectively grown epilayer (upper part), can deform vertically (a) and laterally (b). Thus 

the mismatch strain is distributed in three dimensions. In addition, the partitioning of 

strain between the epilayer and the substrate that occurs in nanoheteroepitaxy, will 

further reduce the amount of strain in the epilayer. 

 

 

(a)                                                             (b) 

Figure 7: Mismatch stress relief mechanisms comparasion  

(a)nanoheteroepitaxy islands;  (b)conventional planar heteroepitaxy sample. 

 

When  there  is  a  misfit,  the  epitaxial  contact  of  two  crystals  A  and  B  can  

either  be  coherent  or  not  coherent. The  coherent  epitaxial  systems where  the  lattice  

planes  in  contact  are  in  perfect registry  over  a  large  domain  of  intensive  

parameters  (temperature,  pressure,  chemical  potentials, etc.).  During  deposition,  a  

transition  from  this perfect registry to a  partial one occurs at some critical  thickness
[27]

, 

where the  introduction  of  interfacial  dislocations  takes place.  In  this  way  the  

deposit  abruptly  releases strain  energy  by  plasticity. On  the  contrary,  non-coherent  

epitaxies  are recognized  when  their contact  lattice  planes  are out  of  registry.  The  

periodicities  of  both  lattice planes  remain  incommensurate. The  atoms  on  both  sides  
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of  the  interface glide
[28]

  or  rotate
[29]

  slightly but continuously, so that  the  residual  

strain  in  the  deposit  decreases
[30][31]

 without introduction of dislocations. 

In Figure 8, if one cuts  in A  a piece (a)  and  accommodates  it on  the  (001)  

substrate,  the  in-plane  parameter  𝑎0  has  to  be  brought  to 𝑏0 (b),  which means  this  

piece has  to  be  biaxially  homogeneously strained.  However,  this  constrained  

epitaxial system  (b)  is  not  in  its  elastic  equilibrium state  and  then  has  to  relax  (c). 

Owing  to  surface stress,  the  piece  of matter  has  a  crystallographic parameter  

different  from 𝑎0. 

 

 

Figure 8: Demonstration of nanoisland under relaxation 

(a)  A  3D  crystal A is cut  in  an  infinite crystal;  (b) Nanoisland  in  pseudomorphism 

with  the  substrate  B  by  an homogeneous  strain; (c) Nanoisland  relaxes by dragging  

the  substrate  B. 

 

In  an  epitaxial  system, the conventional strain due to lattice misfit is defined 

as(crystallographic  parameters 𝑎0  and 𝑏0 in materials A and B) : 

𝜀0 =
𝑏0 − 𝑎0

𝑎0
 

By comparision, the actual strain after relaxation becomes 

𝜀 = 𝜀0 − 𝜀∗ 
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where 𝜀∗ is called lateral strain
[32]

. 𝜀∗ is related to relaxation effect and it is especially 

significant when the length scale of the nanoisland goes down to nano scale.  

To analyse the strain in such a nanoisland, we use macroscopic elastic constants  

up  to  monolayer  sizes, which  is now  considered  acceptable
[33]

. To introduce  nano 

size  effects  properly  we  also  consider  surface  stress,  which  means  we  consider 

surface stress. The knowledge  we  gain makes  sense  for  islands,  except for  near-

corner  effects. 

After the nanoisland is relaxed, the lattice structure becomes equilibrated, which 

means the total strain energy of system need to be minimized. Our framework of 

analysing the nanoisland begins with writing the system‟s strain energy in two parts: 

(1)Bulk elastic energy contribution: according to continuum mechanics, the strain 

energy of a volume V is given as, 

w1 =   
1

2
𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 𝜀𝑘𝑙 𝑑𝑉 

(2)Surface energy contribution: Γ is the surface energy density 

w2 =  Γ𝑑𝑉 

The total strain energy of a volume V is the sum of the two contributions above: 

𝑤 =  (
1

2
𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 𝜀𝑘𝑙 )𝑑𝑉 +  Γ𝑑𝑉 

Therefore, we obtain a relationship between the total strain energy and the strain 

state. Following the principle of minimizing the strain energy of equilibrium, we take the 

partial derivative of expression above and then obtain the equations to determine the 

strain state. 

𝜕𝑤

𝜕𝜀𝑖𝑗
= 0 

 In practical epitaxy applications, the strain distribution could be quite complex, 

which may vary for each point. On the other hand, considering the  possibilities of all 
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kinds of nanoisland shapes in epitaxy, the surface energy term could be extremely 

complicated. In the work of R. Kern
[32]

, they have provided analytical solution with the 

assumption of a very simplified case, in which the nanoisland is a rectangular  shape with 

basis length of 𝑙𝑥, 𝑙𝑦 (𝑙𝑥 = 𝑙𝑦 = 𝑙), and height of 𝑙𝑧 (𝑙𝑧 = ℎ). They also considers the 

nanoisland as an isotropic material with Yong‟s modulus of E and Poission‟s ratio of v. 

Moreover, they assumed the nanoisland is subjected to a homogeneous triaxial strain and 

simplified constant surface stress of 𝑠𝐴 (bottom and top faces) and 𝑠𝐴
′  (four lateral faces), 

which means all the surfaces are free surface since all the surface stress is only related to 

material A. 

ε11
∗ = ε22

∗ = −
1 − 𝑣

𝐸
(
2𝑠𝐴
ℎ

+
2𝑠𝐴

′

𝑙

1 − 3𝑣

1 − 𝑣
) 

ε33
∗ = −

1 − 𝑣

𝐸
(
4𝑠𝐴

′

𝑙
−

2𝑠𝐴
ℎ

2𝑣

1 − 𝑣
) 

The derivation of the formula is given in details in the work of R. Kern
[32]

. In their 

analysis, the lateral strain could be as great as 10
-2

 for  films  of  only  some  atomic  

layers thick  or  islands  of nanometric  sizes. 

Formulations of the Lateral Strain 

In our work, we will also limit ourselves to  triaxial strain case of elasticity and 

consider the same geometry shape of copper nanoisland with basis length of 𝑙𝑥, 𝑙𝑦 (𝑙𝑥 =

𝑙𝑦 = 𝑙), and height of 𝑙𝑧 (𝑙𝑧 = ℎ). By comparision, we will take the elastic constants 

from the calculation of MD simulations in chapter 4, and we consider all the six surfaces 

as free surfaces with surface energy density of Γ, where Γ is no longer a simple constant 

term but denoted by the surface excess energy as a function of strain state and those 

surface property tensors. In this way, the most important idea behind this approach is that, 

whenever we can obtain the elastic constants and surface property tensors from MD 

simulations, we can follow the same methodology to analyse the stress and strain in any 

epitaxy process, and quite a refined result can be obtained. This is the power of 
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combining atomistic simulations and continuum method, which can take considerations 

of both the microscopic and macroscopic factors. 

The parameters of the problem are listed as following, 

(a) Geometry of Cu nanoisland: l, h 

(b) Elastic constants of Cu: C11, C12 

(c) Surface property tensors: Γ0, Γ(1), Γ(2) 

Following similar procedure, we write the system‟s strain energy in two parts: 

(1)Bulk elastic energy contribution: The strain energy of a volume V is given as, 

𝑤1 =
1

2
𝑙2ℎ[𝐶11 𝜀11

2 + 𝜀22
2 + 𝜀33

2  + 𝐶12 𝜀11𝜀22 + 𝜀22𝜀33 + 𝜀33𝜀11 ] 

(2)Surface energy contribution:  

Bottom and top surface 

𝑠1 = 2𝑙2[Γ0 + Γ11
 1  𝜀11 + 𝜀22 +

1

2
Γ1111

 2  𝜀11
2 + 𝜀22

2  +
1

2
Γ1122

 2 
𝜀11𝜀22 

Front and back surface 

𝑠2 = 2𝑙ℎ[Γ0 + Γ11
 1  𝜀11 + 𝜀33 +

1

2
Γ1111

 2  𝜀11
2 + 𝜀33

2  +
1

2
Γ1122

 2 
𝜀11𝜀33  

Left and right surface 

𝑠3 = 2𝑙ℎ[Γ0 + Γ11
 1  𝜀22 + 𝜀33 +

1

2
Γ1111

 2  𝜀22
2 + 𝜀33

2  +
1

2
Γ1122

 2 
𝜀22𝜀33 

Surface energy contribution is, 

𝑤2 = 𝑠1 + 𝑠2 + 𝑠3 

The total strain energy of a volume V is the sum of the two contributions above: 

𝑤 = w1 + w2 

Apply energy minimization 

𝜕𝑤

𝜕𝜀𝑖𝑖
= 0, i = 1,2,3 

We get the result for the strain state 
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𝜀11
∗ = 𝜀22

∗ = −  4Γ11
 1 

 𝑙2𝐶11 + 𝑙ℎ𝐶11 − 𝑙ℎ𝐶12 + 4𝑙Γ1111
 2 

+ 4ℎΓ1111
 2 

− 2ℎΓ1122
 2 

  

/[2𝑙2ℎ𝐶11
2 + 𝑙2ℎ𝐶11𝐶12 − 𝑙2ℎ𝐶12

2 + 4𝑙2𝐶11Γ1111
 2 

+ 2𝑙2𝐶11Γ1122
 2 

+ 12𝑙ℎ𝐶11Γ1111
 2 

+ 4𝑙ℎ𝐶12Γ1111
 2 

− 4𝑙ℎ𝐶12Γ1122
 2 

+ 8𝑙Γ1111
 2 

Γ1122
 2 

+ 16𝑙(Γ1111
 2 

)2 − 16ℎ(Γ1111
 2 

)2 − 4ℎ(Γ1122
 2 

)2] 

 

𝜀33
∗ =  4Γ11

 1 
 𝑙2𝐶12 − 2𝑙ℎ𝐶11 − 4𝑙Γ1111

 2 
+ 2ℎΓ1122

 2 
  /[2𝑙2ℎ𝐶11

2 + 𝑙2ℎ𝐶11𝐶12 − 𝑙2ℎ𝐶12
2 +

4𝑙2𝐶11Γ1111
 2 

+ 2𝑙2𝐶11Γ1122
 2 

+ 12𝑙ℎ𝐶11Γ1111
 2 

+ 4𝑙ℎ𝐶12Γ1111
 2 

− 4𝑙ℎ𝐶12Γ1122
 2 

+

8𝑙Γ1111
 2 

Γ1122
 2 

+ 16𝑙(Γ1111
 2 

)2 − 16ℎ(Γ1111
 2 

)2 − 4ℎ(Γ1122
 2 

)2] 

 

From these complex expressions, it‟s hard to tell the meaning behind them. In the 

following, we will discuss this result with respect to the lateral strain in two ways:  

(1) Nano length scale effect; 

(2) Surface excess energy effect. 

Results and Discussions 

 From the results of MD simulations for copper in chapter 4, we already have 

C11=173.2GPa, C12=129.2GPa, Γ11
 1 

= 1.38𝐽/𝑚2 , Γ1111
 2 

= −0.712𝐽/𝑚2 , Γ1122
 2 

=

5.914𝐽/𝑚2. These quantities will be used in the following  calculations. 

In SAG, the nanoisland size and shape can usually be decided manually because 

the epitaxy growth is carried out on the pre-patterned substrates. Therefore, it is 

nessessary to figure out how the length scale of the nanoisland will effect the lateral 

strain, and then will determine the final real strain. In our work, there are two dimension 

parameters involved for rectangular nanoisland: basis length of 𝑙, and height of ℎ.  
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Effect of Dimension 

Hold h=10nm as constant, l expands from 1~100 nm. The change of the lateral 

strain with dimension l is shown in Figure 9. 

 

Figure 9: The change of the lateral strain with dimension l for dimension effect 

 

Hold l=10nm as constant, h expands from 1~100 nm. The change of the lateral 
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Figure 10: The change of the lateral strain with dimension h for dimension effect 

 

From Figure 9 and 10, we can clearly observe the length scale of the nanoisland 

will effect the lateral strain significantly when it goes below 30nm. Another remarkable 

thing to mention here is that, from the magnitude of the absolute values of the lateral 

strain, the dimension h demonstrates a more important influence. This could be 

corresponded to the epitaxy experimental result. Because the material deposited later 

rests on top, the misfit is already compensated by the material below compared to the 

situation just near the interface. In this case, when the nanoisland is higher, averagely the 

strain energy density drops, so the lateral strain also drops. 

Effect of Surface Excess Energy 

Here we can investigate it in three cases: 
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(1) Consider no surface excess energy effects, which means  Γ0, Γ(1), Γ(2) are all zero, 

from the formulas above, it‟s obvious all lateral strain will be zero. This is a trivial 

check in our case. 

(2) Consider only constant “surface stress” effects, which means Γ0, Γ(1) are non-zero but 

Γ(2) is zero, our formulas reduce to the same result obtained by R. Kern
[32]

. 

(3) Consider non-constant “surface stress” effects, which means not only Γ0 , Γ(1)  are 

non-zero but also Γ(2) is non-zero. In this case, we can compare the influence of Γ(2) 

term on the lateral strain with the result of (2). 

In the third case, hold l=10nm as constant, h expands from 1~100 nm. The change 

of the lateral strain with dimension h is shown in Figure 11. Clearly the two curves 

almost overlap with each other. 

 

Figure 11: The change of the lateral strain with dimension h for surface effect(l=10nm) 
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Decrease dimension l little by little and we discover that, when l drops to 3nm and 

then keep it as constant, h expands from 1~100 nm. The change of the lateral strain with 

dimension h is shown in Figure 12. Now the two curves begin to deviate from each other 

clearly. 

 

Figure 12: The change of the lateral strain with dimension h for surface effect(l=3nm) 

 

To make it clear enough to see the difference of the effect of Γ(2) term on the 

lateral strain, we have to decrease dimension l from Figure 11 to Figure 12. We need to 

notice that the dimension is already below 10nm, which is very difficult to achieve in 

practical epitaxy. This shows that that Γ(2) term can have some influence on the lateral 

strain, but only when the length scale goes down to only several nanometers, and for 

some cases it can be neglected. 
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Summery and Future Work 

In our work, we studied the stress and strain analysis of epitaxy in nano-scale 

materials, in which we seek a methodology to bridge the gap between continuum 

mechanical models and incorporate surface excess energy effects,  which can be obtained 

by molecular dynamical simulations. In those chapters above, we made the description of 

the elastic behavior of the bulk material, covering the concepts of stress, strain, elastic 

energy and especially, the elastic constants. After that, we explained in details about the 

definitions of surface/interface excess energy and their characteristic property tensors. 

For both elastic constants and surface excess energy, our calculation principle is based on 

curve-fitting the parabola function between the total strain energy density and the strain.  

After this, we analyzed the stress and strain state in nanoisland during the selective area 

growth of epitaxy. When the nanoisland is relaxed, the lattice structure becomes 

equilibrated, which means the total strain energy of system need to be minimized. Our 

framework of analysing the nanoisland begins with writing the system‟s strain energy in 

two parts: Bulk elastic energy contribution and surface excess energy contribution, and 

then we can apply the energy minimization principle to obtain the derivations of the 

strain state. Compared to other researcher‟s work, our model is based on continuum 

mechanics but also adopts the outcome from MD simulations. By combining these 

microscopic informations and those macroscopic observable properties, such as bulk 

elastic constants, we can provide a novel way of analyzing the stress and strain profile in 

epitaxy. The most important idea behind this approach is that, whenever we can obtain 

the elastic constants and surface property tensors from MD simulations, we can follow 

the same methodology to analyse the stress and strain in any epitaxy process, and quite a 

refined result can be obtained. This is the power of combining atomistic simulations and 

continuum method, which can take considerations of both the microscopic and 

macroscopic factors. 
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However, there is one regret of our work. In fact, we have also tried this approach 

to the epitaxy process of GaN(gallium nitride), which is also the highlight of 

semiconductor and optoelectronics industry. The result is not satisfactory since the 

calculated value of elastic constants deviate too much from experimental data. Our results 

of elastic constants C11, C12 are 489.1Gpa and 111.3Gpa, while they can be found to be 

around 390Gpa and 145Gpa on the authoritative “National compound semiconductor 

roadmap”website(http://www.onr.navy.mil/sci_tech/31/312/ncsr/materials/sic.asp). 

The biggest problem is that there is no available proper interatomic potential for 

this kind of material to simulate its property yet. This is also the reason that we stressed 

the importance of interatomic potentials for atomistic simulations at the very beginning. 

In fact, our analysis of nanoisland is still quite a simplified case. In practical 

epitaxy applications, the strain distribution could be quite complex, which may vary for 

each point. On the other hand, considering the  possibilities of all kinds of nanoisland 

shapes in epitaxy, the surface energy term could be extremely complicated. In the further 

study, it would be better to consider a general strain field(nonhomogeneous, and shear 

effect also exists) with finite element method, and surface excess energy is also included 

in this framework. In that case, we can also take consideration of a general anisotropic 

material. That means we need to obtain all elastic constants and all surface property 

tensors from MD simulations, then put them into the finite element method calculation, 

and hopefully we can get a better strain profile. 

http://www.onr.navy.mil/sci_tech/31/312/ncsr/materials/sic.asp
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