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SUMMARY

In the present study syngas-air diffusion flames are simulated using LES with

artificial neural network (ANN) based chemical kinetics modelling and the results are

compared with previous direct numerical simulation (DNS) study [14], with the ob-

jective of obtaining speed-up in chemistry computation while still having the accuracy

of a stiff ODE solver. The DNS test case exhibits significant extinction-reignition and

forms a challenging problem for ANN. The ANN methodology is used in two ways: 1)

to compute the instantaneous source term in the linear eddy mixing (LEM) subgrid

combustion model used within LES framework, i.e., laminar-ANN used within LEM-

LES framework (LANN-LEMLES, hereafter), 2) to compute the filtered source terms

directly within the LES framework, i.e., turbulent-ANN used within LES (TANN-

LES, hereafter), which further increases the computational speed. A thermo-chemical

database is generated from a standalone one-dimensional LEM simulation and used

to train the LANN for species source terms on grid-size of Kolmogorov scale [34]. To

train the TANN coefficients the thermo-chemical database from the standalone LEM

simulation is filtered over the LES grid-size and then used for training [32]. To eval-

uate the performance of the TANN methodology, the low Re test case is simulated

with direct integration used for chemical kinetics modelling in LEM subgrid combus-

tion model within the LES framework (DI-LEMLES, hereafter), LANN-LEMLES and

TANN-LES. The TANN is generated for a low range of Ret in order to simulate the

specific test case. The conditional statistics and pdfs of key scalars and the temporal

evolution of the temperature and scalar dissipation rates are compared with the data

extracted form DNS. Results show that the TANN-LES methodology can capture the

extinction-reignition physics with reasonable accuracy compared to the DNS. Another

xv



TANN is generated for a high range of Ret expected to simulate test cases with differ-

ent Re and a range of grid resolutions. The flame structure and the scalar dissipation

rate statistics are analysed to investigate success of the same TANN in simulating

a range of test cases. Results show that the TANN-LES using TANN generated for

a large range of Ret is capable of capturing the extinction-reignition physics with a

very little loss of accuracy compared to the TANN-LES using TANN generated for

the specific test case. The speed-up obtained by TANN-LES is significant compared

to DI-LEMLES and LANN-LEMLES.
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CHAPTER I

INTRODUCTION

In non-premixed flames the heat release rate is controlled by the molecular mixing

rate of fuel and oxidizer, which is a process occurring at small scales and hence,

the combustion process essentially takes place at small scales. However, the large

scale convection process due to turbulence enhances the rate of fuel-oxidizer mixing

by straining and affects the combustion process. The rate of fuel-oxidizer mixing

is characterized by scalar dissipation rate[29] which is a function of molecular dif-

fusivity D and gradient of mixture fraction Z [1]. Initially as χ increases the rate

of molecular mixing increases and the rate of burning also increases. However, if χ

exceeds a critical value (extinction scalar dissipation rate, χq) over prolonged periods

of time, then the diffusive heat loss becomes greater than the rate of heat release

due to chemical reactions leading to temperature drop and reactants leaking through

the reaction zone resulting in local extinction. The mixing process continues during

this period and local packets of partially premixed and non-premixed mixtures are

formed. This mixture can either reignite on its own once χ reduces or by coming close

to burning regions in the surroundings. Understanding the extinction-reignition phe-

nomenon is important because modern combustion systems require efficient mixing

for enhanced burning which is obtained by increasing χ. However, large values of χ

leads to extinction-reignition process which destabilizes the flame and also increases

emissions due to incomplete combustion [29].
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1.1 Flame-Turbulence Interaction

Previous direct numerical simulation (DNS) studies [36, 37, 14, 27] have investigated

the extinction-reignition process in turbulent non-premixed flames. Sripakagorn et al.

[36, 37] in their studies of non-premixed combustion in decaying isotropic turbulence

using one-step global reaction, observed that the average scalar dissipation rate at

stoichiometric mixture fraction (χst) remained lower than the extinction scalar dissi-

pation rate even though the fluctuations of the instantaneous χst showed large values

over χq causing local extinction events. They observed that reignition occurs due to

three reasons: 1) once the χst drops the flamelet reignites on its own (independent

flamelet scenario), 2) edge flame propagation, 3) a hot neighbourhood engulfs the

unburnt packet. Besides, the probability of reignition is highest due to independent

flamelet scenario. Pantano et al.[27] in their studies of methane-air diffusion flames

showed that higher order reaction mechanisms are needed for detailed investigation

of extinction-reignition phenomenon. Hawkes et al.[14] studied temporally evolving

syngas-air diffusion flames with significant extinction-reignition. They used an 11

species, 21 steps skeletal reaction mechanism to study the evolution of flame struc-

ture and the characteristic of mixture fraction Z and showed that the predictions

with the skeletal mechanism is in good agreement with the detailed mechanism.

Modelling the spatially filtered chemical source terms and the turbulence-chemistry

interaction forms a challenging problem in LES since combustion process is a small

scale process [29, 28]. DesJaridin et al. [10] showed that modelling the reaction term

by directly using the filtered resolved scales in the chemical kinetics model gives poor

agreement when compared with DNS results. This is observed when chemical reaction

rates are comparable with the rate of mixing, i.e., the turbulence-chemistry interac-

tion is strong and hence the subgrid fluctuations of the scalar field can no longer be

neglected.

Various closure models have been studied in the past. Joint PDF methods provide
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exact closure to the source terms, but increase in the number of species increases

the dimensionality of the joint PDF and makes it expensive. Besides, the molecular

diffusion terms are unclosed and the quality of the predictions depend on the applied

mixing model and the values of the constants used [39]. Multiple mapping condition-

ing (MMC) is a cheaper option which reduces the dimensions of the reference space

depending on the problem and captures extinction-reignition with reasonable accu-

racy. However, choosing the reference space is a challenging task. Cleary et al. [9] in

their studies of turbulent non-premixed flames showing extinction-reignition used a

single mixture-fraction-like variable and up to three dissipation like variables. Results

showed poor accuracy of the model in case of moderate extinction-reignition, even

though it predicted significant extinction-reignition and global extinction with rea-

sonable accuracy. First order flamelet model and conditional moment closure (CMC)

model singly conditioned on mixture-fraction with first moment closure reduces the

dimensionality to one but breaks down when extinction-reignition phenomenon are

present [29],[23]. Because in singly conditioned CMC model with first order closure

approximation only the average χst appears and the fluctuations of χst are neglected.

Hence close to extinction-reignition where the fluctuations of χst are large the model

breaks down. CMC closure based on a precomputed parameterized reference field

that maps reactive species mass fractions as functions of mixture fraction and sen-

sible enthalpy have successfully captured the extinction-reignition phenomenon [24].

However, this requires the reference field to be continuously adjusted during compu-

tation, to ensure consistency with the CMC solution and doubly conditioned chemical

source terms that are functions of time, space, mixture fraction, and sensible enthalpy

can thus be obtained.

The flamelet model assumes the PDF of mixture fraction and scalar dissipation rate

at stoichiometric mixture fraction (χst) as marginal beta and log-normal distributions,

respectively, which do not hold good near extinction-reignition scenarios where there

3



are high levels of chemical non-equilibrium [13]. Pitsch et al. [30] studied the influence

of stochastic fluctuations of the scalar dissipation rate on the solution of the flamelet

equations and suggested a new transport term in the flamelet equations modelled by

a stochastic mixing approach and an additional stochastic differential equation for

the scalar dissipation rate. Second order CMC models have shown improvement in

capturing extinction-reignition phenomenon in hydrocarbon jet diffusion flames us-

ing detailed kinetics[20]. However, additional equations for the conditional variances

and covariances of each pairing of reactive species are required, which makes CMC

expensive for detailed reaction mechanisms. Besides, the second order correlations

need to be determined from DNS data. First order CMC model doubly conditioned

on mixture fraction and scalar dissipation rate is another alternative; however, it pre-

dicts the onset of reignition too early [4].

Linear eddy mixing (LEM) model used as a subgrid combustion model within LES

framework (LEMLES) closes the reaction-diffusion equation in an exact sense and

captures extinction-reignition with accuracy [32]. However, using LEM model with

the stiff ODE solver to find source terms is computationally expensive.

To reduce the cost of chemical kinetics evaluation in LEMLES, Sen et al. [32] used an

artificial neural networks (ANN) based chemical kinetics modelling, which eliminates

the stiff ODE solver to calculate the subgrid laminar reaction rates (LANN).

1.2 Artificial Neural Networks (ANN)

Artificial neural networks are modelled after the biological neurons [25]. The ANN is

made of a number of simple highly interconnected processing elements (PEs) which

process information by its dynamic state response to external inputs. It is an inter-

polation scheme. Contrary to the conventional approach of solving equations, ANN

learns by example and provides predictions into new states. An ANN architecture is

as shown in Fig. 1. The large circles are the Processing Elements (PEs) and the lines

4



joining them are the weight connectors. The first layer of PEs from left is the input

layer, the middle two layers of PEs are the hidden layers, and the fourth layer is the

output layer. The set of input/output pairs of PEs are representative of the physical

process. The purpose of the hidden layers is to make the ANN capable of modelling

complex data. Choosing the correct number of processing elements in a hidden layer

is another challenging task. If an inadequate number of processing elements are used

in a hidden layer, the net will not be able to model complex data. On the other

hand, if too many neurons are used, training time will become excessively long and

the model may memorize the data. This result in ANN net fitting the data for which

is trained extremely well but generalizing poorly to new unseen data. In the given

example, the N number of inputs, which include mass fraction of all the species and

temperature, are used to compute the species reaction rate of H2, by interpolation.

Fig.2 show two AN pairs. Each connection between a particular AN (Artificial

Figure 1: Representation of an Artificial Neural Network Architecture

Neuron) pair (i and j) has a weight coefficient Wji, which defines the strength of the

connection between the AN pair. The combined effect of all ANs connected to ANi,

acting as an input vector for ANi is:

neti =
J∑
j=0

Wij [k] yj − bi (1)
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where yj is the signal fired from ANj to ANi and Wij is the respective weight co-

efficient and bi represents the internal threshold for the ANi. The net output of ANi is:

yi = g (neti) (2)

where g is an activation function. For a given ANN architecture and input/output

Figure 2: Description of Artificial Neuron pairs

pairs, the weight coefficients are determined through a training process. The objec-

tive is to train long enough such that the ANN predicts well for both train and test

data, while not so long that the ANN memorizes the train data, giving very good

predictions for train data and poor predictions for test data. Hence, it is important

to stop the training at the correct time because long training times may again lead to

memorization of data. In the present study if the training error does not reduce for

100 consecutive sweeps of the training table, the training is stopped and the weight

coefficients calculated before last 100 sweeps are used in the ANN.

Past studies have successfully used ANN for function approximation, classification,

time series prediction, data association, optimization in a variety of applications such

as, electro magnetics [7], forecasting [40], land cover classification and mapping [8] and

chemical kinetics modelling with significant memory savings and speed-up. Christo

6



et al. [6] used artificial neural networks (ANN) model based chemical kinetics for a

systematically reduced H2-CO2 system, consisting of three steps and four controlling

scalars. The ANN was implemented with transported-PDF (Monte Carlo) approach.

Blasco et al. [2] in addition to simulating the species evolution, used ANN for provid-

ing the density and temperature. Ihme et al. [16] proposed a generalized method for

the generation of optimal artificial neural networks. They tested it with the methane-

hydrogen/air flame in a bluff-body swirl-stabilized burner configuration using LES to

investigate the effect of long-time error accumulation in the statistical data during the

simulation[17]. However all these studies generated the training table for ANN by ei-

ther three-dimensional simulations of cases similar to the actual test case or randomly

generating compositions within allowable compositional bounds. These compositional

bounds have to be selected carefully for an efficient ANN and are specific to a prob-

lem. Further, the random selection of training samples lead to bias of the training set

towards the steady state situation and a better selection criteria based on the degree

of chemical activity of a state had to be used.

Sen et al. [34] generated the training table for ANN by using off-line (standalone 1D)

LEM computations. This table did not require any compositional bounds and did

not show any bias towards steady state. The ANN was trained using this table. The

ANN generated was used in the LEMLES simulation to compute the laminar reaction

rates. Hence, ANN was generated without a-priori knowledge of the actual thermo-

chemical data space of test case. To further reduce the cost of computation, Sen [35]

used the off-line LEM computations, but instead of tabulating the laminar reaction

rates, the filtered reaction rates representative of the LES were tabulated along with

the filtered thermochemical data [35]. Hence, the trained ANN (TANN) directly esti-

mated the filtered reaction rates within the LES framework and eliminated the need

of LEM with significant cost reduction. In the current effort, the TANN approach

is further analysed, to investigate the development of a general TANN to simulate a
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range of cases with varying Reynolds number and grid resolutions. Further, the key

parameters affecting the development of the general TANN is analysed.

1.3 Objectives

Syngas or synthetic gas mixtures can be produced from a wide variety of sources

including coal, biomass, organic waste, and refinery residuals. It consists of mainly

CO and H2 in various proportions. When derived from biomass and other indus-

trial waste it forms a cheap and renewable source of energy. Because of the large coal

resources available worldwide, there is strong interest in coal-based integrated gasifica-

tion combined cycle power generation. Hence, understanding the behaviour of syngas

is very crucial for its industrial usage. This thesis studies the extinction-reignition

phenomenon in temporally evolving syngas-air flames using ANN for chemical kinet-

ics modelling. Test cases are chosen from a previous direct numerical (DNS) study

of temporally evolving syngas-air diffusion flames with 21 steps, 11 species reduced

chemical kinetics[14]. These cases exhibit complex extinction-reignition phenomenon

for a range of flow Reynolds number and varying levels of turbulence. The degree

of extinction also increases with increase in Re which leads to lower mean temper-

ature and longer re-ignition times. Hence, these cases form a challenging problem

for the development of a general TANN. The main objective is to obtain consider-

able speed-up while having the same accuracy as DI. The objectives in details are as

follows:

• Study extinction-reignition in non-premixed flames using ANN for laminar (in-

stantaneous) reaction rates (LANN) with LEMLES framework.

To evaluate the accuracy and speed-up of the ANN methodology, it is used to

simulate a temporally evolving jet flame for a low Reynolds number case. A
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DNS study is selected as the test case from literature [14]. The thermochemi-

cal database for training ANN is generated using a one-dimensional standalone

LEM computation, instead of using actual LES simulation data. The stand-

alone LEM covers a wide range of flame-turbulence interaction. It is expected

that it will cover a large thermo-chemical data space and the thermochemical

data space of the LES simulation will form just a subset of the LEM thermo-

chemical data space. Hence, the ANN for computing the instantaneous reaction

rates can be generated without a-priori knowledge of the LES thermochemical

data space. The instantaneous reaction rate is obtained as a function of tem-

perature and species concentration.

ω̇i
ρ

= f (Y1, ...., YNs , T ) where, i=1,....,Ns (3)

For a given pressure and LEM time step size (∆t)

The source terms in the subgrid combustion model within the LEMLES simu-

lation is computed using ANN. The conditional PDFs of the species extracted

from the LANN-LEMLES and compared with the DI-LEMLES and DNS study

to evaluate the accuracy of the LANN generated. The evolution of the scalar-

dissipation PDFs during extinction and reignition are also investigated.

• Study extinction-reignition in non-premixed flames using ANN for filtered re-

action rates (TANN).

To further increase, the speed-up of the LES simulation, ANN is trained to cal-

culate the filtered reaction rates directly within the LES framework. Using the

standalone LEM, the filtered reaction rates are tabulated by applying a spatial

filter on the 1D LEM domain data. The filtered reaction rate is trained in the

ANN as a function of filtered mass fractions, temperature, subgrid Reynolds

number, and filtered level species gradient. A fixed filter size representative of

the LES grid size is used for spatial filtering. The filtered source term is trained
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as a function of the subgrid Re and filtered species gradient to take into account

the effect of turbulence.

ω̇i
ρ

= f

(
Ỹ1, ...., ỸNs , T̃ , Re∆,

∂Ỹi
∂xj

)
where, i=1,....,Ns (4)

For a given pressure, filter size and LES time step size (∆t)

The TANN is used to calculate the filtered reaction rates in the LES simulation

of the temporally evolving syngas-air jet flames and the results are compared

with the DNS study to evaluate the accuracy of TANN.

• Study extinction-reignition in non-premixed flames using a single TANN for a

range of cases.

The TANN approach is explored further and a generalized TANN net is devel-

oped by training it over data collected from standalone LEM simulation run over

a large range of Ret. This TANN net is used to simulate a range of cases with

varying Reynolds number and grid resolutions. The success of a generalized

TANN net for a range of cases will lead to significant time savings. Otherwise,

every new a case will require generation of a new TANN which will consume

time and resources.

• Study extinction-reignition using TANN trained as a function of species scalar

dissipation rate.

The filtered reaction rate is obtained from the ANN as a function of filtered

mass fractions, temperature, subgrid Reynolds number and filtered level species

dissipation rate. The use of filtered level species dissipation rate instead of

species gradient is more relevant to modelling filtered species reaction rate,

because lighter species have higher molecular diffusivity D, and for for the same

species gradient dissipate much faster than the heavier species and affect the

10



filtered source term largely.

ω̇i
ρ

= f

(
Ỹ1, ...., ỸNs , T̃ , Re∆, 2Di

∂Ỹi
∂xj

.
∂Ỹi
∂xj

)
where, i = 1, ...., Ns (5)

The results obtained are compared with the DNS study and TANN-LES trained

as a function of species gradient instead of species scalar dissipation rate.
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CHAPTER II

COMPUTATIONAL MODELLING

In the present chapter, first the general Navier-Stokes equations are described. Second

the stand-alone LEM modelling is described. The stand-alone LEM simulation is used

to generate the thermochemical data for training the ANN without a-priori knowledge

of the actual 3D simulation. Third the tabulation method for TANN is described.

Fourth, ANN architecture and its training is described. Finally the LES modelling

and subgrid combustion modelling is explained.

2.1 Gas Phase Governing Equations

The gas phase governing equations of continuity, momentum, energy and species in

the conserved form, in the absence of external forces, MHD effects, etc, are given as:

∂ρ

∂t
+
∂ρui
∂xi

=0

∂ρui
∂t

+
∂

∂xj
[ρuiuj + pδij − τij] =0

∂ρE

∂t
+

∂

∂xi
[(ρE + p)ui − ujτji + qi] =0

∂ρYk
∂t

+
∂

∂xi
[ρYkui + Ji,k] =ω̇k (6)

where, k = 1, ..., Ns

In the above equations ρ is the density, ui is the i-th velocity component, E is the

total energy, Yk is the k-th species mass fraction and Ns represents the total number

of species in the flow. τij is the viscous stress tensor and is computed as:

τij = µ(
∂ui
∂xj

+
∂uj
∂xi

)− 2

3
δijµ

∂uk
∂xk

(7)

where δij is the Kronecker function (δij = 1 if i = j; δij = 0 if otherwiese),and µ is the

dynamic viscosity. The total energy E is the sum of internal energy (e) and kinetic
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energy, is given as:

E = e+
1

2
ukuk (8)

In this formulation the internal energy per unit mass is:

e =
Ns∑
k=1

Ykhk −
p

ρ
(9)

The k-th species total enthalpy is calculated as the sum of the chemical and sensible

enthalpies as:

hk(T ) = ∆h0
h,k +

∫ T

T0

cP,K(T ′)dT ′ (10)

In the above equation ∆h0
h,k is the enthalpy of formation at the reference temperature

and pressure T0, P0. The second represents sensible enthalpy, which is a function of

temperature and cP,k is the heat capacity at constant pressure for the k-th species.

The pressure in equation (6)is derived from the perfect gas equation of state:

p = ρRuT
Ns∑
k=1

Yk
Wk

(11)

where, Ru, Ns, Wk are the universal gas constant, number of species and molecular

weight of k-th species, respectively.

The mass reaction rate per unit mass (ω̇k) for the k-th species is calculated by solving

the ODE representing a given reaction mechanism. For the given initial concentration

of the species and a time step size, the ODE solver is used to find the new scalar field

at the end of the time step. The reaction rate is calculated as:

ω̇k =
(Y t+∆t

k − Y t
k )ρt

∆t
(12)

The heat flux (qi) and the k-th species diffusion flux (Ji,k) introduced in Eq. (6) are

defined as:

qi =
Ns∑
k=1

Ji,khk − κ5 T −
Ns∑
k=1

RuT

WkXk

DTdik (13)

Ji,k = ρYkVi,k (14)
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The last term in Eq.(13) is neglected in the present simulation where DT
K is the

thermal diffusion coefficient. Vi,k is the k-th species diffusion velocity. The species

diffusion velocity takes into account mass diffusion caused by concentration gradients

(ordinary diffusion), temperature gradients (Soret effect) and pressure gradients. In

the present study the effect of pressure gradients and temperature gradients is ne-

glected. Mixture-averaged formulation is used to find the diffusion velocity instead

of more accurate multi-component formulation, because the latter approximation re-

quires inverting an Ns×Ns matrix to find the multi-component diffusion coefficients.

The diffusion velocity for a mixture averaged formulation is given as:

Vi,k = − 1

Xk

(Dk)m
∂Xk

∂xi
(15)

where the mixture diffusion coefficient for the k-th species is:

(Dk)m =

∑Ns

j 6=kXjWj

Wm

∑Ns

j 6=kXj/Djk

(16)

where Djk’s are the binary diffusion coefficients. It assumes a two component binary

mixture, where species j is diffusing into species k. Based on kinetic theory of gases,

the binary diffusion coefficients are calculated as:

Djk =
3

16

√
2πk3

BT
3/mjk

pπσ2
jkΩ

(1,1)
(17)

where kB is the Boltzman constant, σjk is the mean diameter (= (σjk + σjk)/2), and

Ω(1,1) is the correction factor used to modify the ideal gas law to account for the

molecular interactions. The reduced mass mjk is the given by:

mjk =
mjmk

mj +mk

(18)

The mixture averaged formulation needs to satisfy the net species diffusion flux to

zero (
∑Ns

k=1 Vi,kYk = 0) for conservation of mass. This is done by adding a correction

velocity to the convective terms in the species conservation equation to account for

14



the excess diffusion. The correction velocity is calculated as:

V C
i = −

Ns∑
k=1

Yk

(
1

Xk

(Dk)m
∂Xk

∂xi

)
(19)

With the correction the k-th species diffusion flux is calculated as:

Ji,k = ρYk
(
Vi,k + V C

i

)
(20)

The mixture averaged viscosity given by Vilke’s formula:

µ =
Ns∑
k=1

Xkηk∑Ns

k=1 XjΦkj

(21)

where

Φkj =
1√
8

(
1 +

Wk

Wj

)− 1
2

(
1 +

(
ηk
ηj

) 1
2
(
Wj

Wk

) 1
4

)2

(22)

where ηi is the i-th species viscosity. The thermal conductivity is calculated in a

similar manner using the following formula:

κ =
1

2

(
Ns∑
k=1

Xkλk +
1∑Ns

k=1Xk/λk

)
(23)

where λk is the pure species conductivity.

2.2 Stand-alone LEM

Off-line stand-alone LEM computations are performed to evaluate the scalar field evo-

lution due to the turbulence-chemistry interaction. The following reaction-diffusion

equations are solved along a 1D grid initialized with a laminar diffusion flame:

ρ
∂Yk
∂t

= Fk,stir −
∂

∂s

(
ρYkVk,s + ρYkV

C
s

)
+ ω̇k

ρCp
∂T

∂t
= FT,stir − ρ

∂T

∂s

(
Ns∑
k=1

Cp,kYk(Vk,s + V C
s )

)
+

∂

∂s

(
κ
∂T

∂s

)
+ ω̇T (24)

In Eq.24 the ω̇k represents the reaction rate and ω̇T = −
∑Ns

k=1 hkω̇kWk represents the

heat release due to combustion, where Wk denotes the molecular weight of the k-th

species. The reaction rates are obtained by direct integration of the chemical kinetics
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model. Vk,s = −Dk,m(Wk/WYK)(∂Xk/∂s) is the diffusion velocity of the k-th species,

diffusivity of the k-th species in the mixture isDk,m =
(∑Ns

j 6=kXjWk

)
/W

∑Ns

j 6=kXj/Dj,k,

where W represents the mixture molecular weight and Dj,k represents the binary dif-

fusion coefficient and V C
s is the velocity correction to ensure mass conservation[31].

Turbulent advection is symbolically represented by Fk,stir and FT,stir and modelled

as numerical re-arrangement events (triplet-maps)[18]. The assumption behind the

stirring model is that, the turbulent advection stochastically re-distributes the con-

centration gradients, without changing the scalar values and increases the scalar gra-

dients and the molecular diffusion competes with it by smoothing them out. The

reaction-diffusion equation proceeds at a time step size determined as ∆tdiff =

0.25(∆s)2/max(Dk, α). Turbulent stirrings proceed at its own time-scale given by

∆tstir = 1/(λL), where ∆s, α,  L, λ denote the LEM grid resolution, thermal diffusiv-

ity, LEM domain length and stirring frequency, respectively.

2.3 Tabulation method for TANN and training

The LEM simulation is initialized with a laminar profile obtained for a given themo-

chemical composition and the turbulence-chemistry interaction is simulated for a

given range of Ret. For LANN, the training database was constructed by tabulating

the instantaneous composition and temperature from the LEM domain at regular

intervals of time along with the laminar reaction rates obtained by directly integrat-

ing the chemical kinetics [34],[33]. The tabulation strategy for TANN differs slightly.

The results here are filtered by a spatial filter size representative of the LES grid

resolution. Fig. 3 shows the variation of the mixture fraction along the 1D LEM

domain at a given instant of time. Larger gradients are observed at the LEM level,

whereas a smoother profile is observed at the LES level because the spatial filtering

process smoothens the effect of large gradients at small scales on an average sense.
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In the earlier study [34], the laminar reaction rate was parametrized with respect to

the instantaneous species mass fractions and temperature:

ω̇i
ρ

= f(Yk, T ) (25)

However, the filtered reaction rates are functions of the LES filter size and turbulence,

in addition to the filtered mass fractions and temperature. Hence, filtered reaction

rates are parametrized as:

ω̇i
ρ

= f

(
Ỹk, T̃ , Re∆,

∂Ỹi
∂x

)
(26)

where, Ỹk, T and ∂ eYi

∂x
represent the filtered species mass fractions, filtered temperature

and filtered species gradient. RE∆ denotes the sub grid Reynolds number in the LES

framework and is calculated as Re∆ = u′∆/ν, where u′ =
√

(2/3)ksgs and ∆ is

the LES grid filter. In the stand-alone LEM simulation, based on the Ret and l0

(integral lentgth scale) the other parameters like grid spacing, stirring length and

stirring frequency are selected [18]. However, Ret is a global variable for the stand-

alone LEM and it differs from local variable Re∆ in the LES. Stand-alone LEM

provides the scalar field evolution and does not provide any information about the

local turbulence levels. To calculate Re∆ the values of kinetic energy k and u′ are

initially set equal to zero in the LEM domain. Then as the simulation proceeds and

turbulent stirrings take place, u′ is updated by value νRet

η
during a stirring event at

the grid locations where it occurs. The turbulence is assumed to be homogeneous

and u′ in all the three directions is assumed equal, which is consistent with LEM

assumption based on universal nature of small scales. The effect of dissipation is
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Figure 3: Variation of mixture fraction (Z) along the 1D standalone LEM domain
at the DNS level and the LES level

taken into account and the value of u′ is updated as follows:

k =
3

2
u′2

ε =
k1.5

∆s

k = Max ((k − (ε ∗∆tdiff )) , 0))

u′ =
√

(2/3)k (27)

The Re∆ is calculated as a function of the u′ (obtained from Eq. 27), ν averaged over

the filtered grid size and the filtered grid size.

The TANN table generated is used to train a given ANN architecture. Finally, the

TANN chemical kinetics model is used with in the LES frame work to calculate the

filtered reaction rates (TANN-LES).

2.4 Artificial Neural Networks

An acyclic ANN architecture is used in the present study with a predefined number

of hidden layers and processing elements [35, 34]. The ANN code based on back-

propagation learning with gradient descent rule is used in the present study. The
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training algorithm consists of two parts: a) forward propagation of the input, b)

backward propagation of the error. The output of a processing element i at iteration

k is given as:

yi[k] = g (neti[k]) (28)

where

g (z) =
ez − e−z

ez + e−z
(29)

where g () is the hyperbolic tangent activation function. neti in Eq. 28 represents the

effect of all PEs connected to the PE i. neti is calculated as:

neti[k] =
M∑
m=0

Wim[k]ym[k]− bi[k] (30)

where, Wim[k] is the weight coefficient between PEs i and m, ym[k] is the output of

the PE m, bi[k] is the internal threshold for the PE i and M is the number of PEs

connected to the PE i. After calculating the output for all PEs, the global error E[K]

defined as the difference between the desired (di) and the calculated (yi[k]) value at

the output layer,for the current weight distribution, is calculated:

E[k] =
1

2

I∑
i=1

[di − yi [k]]2 (31)

where I denotes the PE in the output layer. This error is back propagated to all

the PEs and the new weight coefficients are calculated using GDR. Weights of the

connections are adjusted according to the gradient of the local error across each

connection:

Wij[k + 1] = Wij[k]− η dE[k]

dWij[k]
(32)

where η is the global learning coefficient which is constant and same for all PEs and

iterations. The idea behind the gradient descent rule is to find a particular weight

distribution which provides the minimum global error. Eq. 32 calculates the gradient

of the error with respect to the individual weights. The gradient of the error with
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respect to the weight coefficient for a connection between the output and a hidden

layer is:

dE[k]

dWij[k]
= − [di − yi[k]] g′ (neti[k]) yi[k] (33)

for rest of the connections it is calculated as:

dE[k]

dWij[k]
= −

[
M∑
m=1

δm[k]Wmi[k]

]
g′ (neti[k]) yj[k] (34)

here δm[k] is the local error term of the PE m. Its value depending on if the PE m is

at the output or a hidden layers is given as:

δm[k] =

 [dm − ym[k]] g′ (netm[k]) if output layer

g′ (netm[k]) .
∑Z

z=0 Wzm[k]δz[k] if hidden layers
(35)

The error surface may have local minima and a momentum coefficient (α) is used to

find the global minimum. The eq. 32 is modified as:

∆Wij[k] = −η4 E[k] + α∆Wij[k − 1] (36)

The momentum coefficient (α) like the learning rate coefficient (η) is also the same

for all the PEs and constant for all iterations.

The determination of the proper values of the model coefficients (η, α) is a major

challenge of the standard GDR. A large α causes the algorithm to diverge and a same

η cannot be used in the valleys or shallow regions of the error surface topology. An

AGDR approach for self determining the model coefficients with respect to the error

surface topology is used in the present work [35]. This method is based on the fact

that all PEs have their own model parameters (ηij and αij) and they are updated at

every ANN iterations. The model coefficients are updated as:

ηij[k + 1] = ηij[k] + ∆ηij[k]

αij[k + 1] = αij[k] + ∆αij[k] (37)
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where ∆ηij[k] and ∆αij[k] are calculated as:

∆ηij[k] =


κ1ληij if φij[k]φ̄ij[k − 1] > 0

−κ1ληij if φij[k]φ̄ij[k − 1] < 0

0 if φij[k]φ̄ij[k − 1] = 0

∆αij[k] =


κ1λαij ifφij[k]φ̄ij[k − 1] > 0

−κ1λαij ifφij[k]φ̄ij[k − 1] < 0

0 ifφij[k]φ̄ij[k − 1] = 0

(38)

where λ = (1− exp (−κ2φij[k])), φij[k] = ∂E
∂Wij

and φ̄ij[k] = (1− θ)φij[k−1]+θφij[k].

Here κ1 and κ2 are the second order model coefficients selected to be 0.1 and 0.01,

respectively.

2.5 LES Modelling

LES approach is employed to solve the fully compressible, reacting, multi-species,

Favre averaged form of the conservation equations. The LES equations are obtained

by spatially filtering the Navier-Stokes equations, in order to separate the large ge-

ometry dependent scale structures from the small-scale structures which are consid-

ered universal. In LES the large scales are fully resolved where as the small scales

(subgrid-scales) are modeled by using subgrid momemtum and combustion models.

In the current study, a spatial top hat Favre filter is applied to the Navier Stokes

equations,with a kernel size equal to the grid spacing (∆x), and the Favre-filted LES

equations are obtained with all subgrid unclosed terms explicitly identified. This fil-

tering operation decomposes the flow variable (f) into resolved Favre filtered (f̃) and

unresolved subgrid (f ′′) components. The Favre-filtered variavle f̃ is defined by:

f̃ =
ρf

ρ
(39)

f = f̃ + f ′′ (40)

where ρ is the local fluid density.

The following Favre-filtered form of the Navier Stokes equations are solved in the
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current study:

∂ρ

∂t
+
∂ρũi
∂xi

=0

∂ρũi
∂t

+
∂

∂xj
[ρũiũj + pδij − τ ij + τ sgsij ] =0

∂ρẼ

∂t
+

∂

∂xi
[
(
ρẼ + p

)
ũi + qi − ũjτ ji +Hsgs

i + σsgsi ] =0

∂ρỸk
∂t

+
∂

∂xi
[ρỸkũi + ρỸkṼi,k + φsgsi.k + θsgsi,k ] =ω̇k (41)

In Eq.(41) the total energy E is defined as the sum of kinetic energy and internal

energy, the Favre averaged total energy Ẽ is given by:

Ẽ = ẽ+
1

2
ũkuk (42)

= ẽ+
1

2
ũkũk +

1

2

(
ũkuk − ũkũk

)
(43)

= ẽ+
1

2
ũkũk + ksgs (44)

where ẽ is the filtered internal energy and ksgs is the unresolved or subgrid part of

the kinetic energy. The filtered pressure is calculated as the filtered equation of state

as[11]:

p = ρRT = ρR̃T (45)

= ρR̃T̃ + ρRuT
sgs (46)

where R is the mixtute gas constant. In the current study T sgs is neglected. Ṽi,k is

filtered diffusion velocity of the k-th species and is given as:

Ṽi,k = −Dkm

X̃k

∂X̃k

∂xi
+ Ṽ C

i (47)

where Dkm is the mixture averaged species diffusivity and Ṽ C
i is the correction veloc-

ity. The filtered heat flux vector is given by:

qi = −κ ∂T̃
∂xi

+ ρ

Ns∑
k=1

h̃kỸkṼi,k +
Ns∑
k=1

qsgsi (48)
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where h̃k and κ denote the Favre filtered k-th species enthalpy and thermal conduc-

tivity. All the subgrid-scale terms are denoted with sgs are unclosed and they need

to be modeled. These terms are the subgrid shear stress
(
τ sgsij

)
, subgrid viscous work

(Hsgs
i ), subgrid viscous stress (σsgsi ), subgrid mass flux

(
φsgsi,k

)
, subgrid diffusive mass

flux
(
θsgsi,k

)
, and subgrid heat transfer via turbulent convection of species

(
qsgsi,k

)
.The

subgrid terms in details are represented as:

τ sgsij = ρ (ũiuj − ũiũj)

Hsgs
i = ρ

(
Ẽui − Ẽũi

)
+ (pui − pũi)

σsgsi = (ujτij − ũjτ ij)

φsgsi,k = ρ
(
Ỹkui − Ỹkũi

)
θsgsi,k = ρ

(
Ṽi,kYk − Ṽi,kỸk

)
qsgsi,k = ρ

(
˜hkYkVi,k − h̃kỸkṼi,k

)
(49)

The closure strategy to model the subgrid terms is presented in the next sections.

2.5.1 Subgrid Momentum Modeling

An eddy viscosity type closure is adopted for momentum and energy transport bea-

cause the major effect of small scales is to provide dissipation to the enrgy budget

of the flow. the eddy viscosity, νt, is evaluated using a characteristic length-scale,

provided by the local grid size∆ where ∆ = (∆x∆y∆z)
1
3 , and a subgrid velocity,

obtained from the subgrid kinetic energy ksgs, so that νt = Cν∆
√
ksgs.The subgrid

momentum tensor is modeled as:

τ sgsij = −2ρνt

(
S̃ij −

1

3
S̃k,kδij

)
+

2

3
ρksgsδij (50)

where Prt is the turbulent Prandtl number (Prt = 0.6)[3]. The two unclosed terms

in the energy equation, Hsgs
i and σsgsi are modeled together as:

Hsgs
i + σsgsi = −2ρ

νt
Prt

Cp
∂T̃

∂x̃i
+ τ sgsi,j ũi −

(
ρ
νt
Prt

+ µ

)
∂k̃

sgs

∂xi
(51)
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For closure an additional transport equation for the subgrid scale kinetic energy ksgs

is solved, which is in the form of:

∂ρksgs

∂t
+

∂

∂xi
(ρũik

sgs) = P sgs −Dsgs +
∂

∂xi

(
ρνt
Prt

∂ksgs

∂xi

)
(52)

where P sgs = −τ sgsij
∂eui

∂exj
, and Dsgs = Cερ

(
k̃sgs

) 3
2
/∆, are the production and the

dissipation of the ksgs, respectively. In this equation, Prt = 1, the two coefficients,

Cν and Cε have constant value of 0.067 and 0.916, based on earlier calculations. The

present study uses a dynamic approach (LDKM hereafter) to compute the model

coefficients Cν and Cε, based on the assumption that the resolved and the unresolved

small scales behave in a similar manner and hence the model coefficients can be

computed from similarity relations[21, 22]. Based on experimental observations it

was found that for high Reynolds number flows the subgrid stress
(
τ sgsij

)
at the grid

filter level ∆ and the Leonard’s stress (Lij) at the test filter level
(

∆̂ = 2∆
)

are

self-similar. Lij is given by the following expression:

Lij = 〈ρũiũj〉 − [〈ρũi〉 〈ρũj〉] /ρ̂ (53)

LDKM assumes that the sub-grid stress at the test filter level
(
τ̂ sgsij

)
are also similar(

τ̂ sgsij = ĈLLij

)
. Then τ̂ sgsij is modeled using the same form used for τ sgsij with all

variables defined at the test filter level. With this assumption the expression for Lij

becomes:

Lij =
τ̂ sgsij

ĈL
= 2ρ̂

Cν

ĈL

√
ktest∆̂

(〈
S̃ij

〉
− 1

3

〈
S̃kk

〉
δij

)
+

2

3

1

ĈL
ρ̂ktestδij (54)

Assuming ĈL = 1, Cν is determined using the least square method of Lilly:

Cν = −
L′ijMij

2MijMij

(55)

In the above expression, L′ij = Lij−2
3
ρ̂ktestδij, andMij = ρ̂

√
ktest∆̂

(〈
S̃ij

〉
− 1

3

〈
S̃kk

〉
δij

)
.

A similar approach is used to obtain the dissipation coefficient Cε:

Cε =
∆̂ (µ+ µt)

ρ̂ktest3/2

[〈
T̃ij

∂ũj
∂xi

〉
− ̂̃Tij ∂̂ũj

∂xi

]
(56)
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where, µt = ρνt, T̃ij =
[
∂eui

∂xj
+

∂euj

∂xi
− 2

3
∂euk

∂xk
δij

]
, and

̂̃
T ij is the stress tensor at the test

filter level. Seven realizability conditions need to be satisfied for a subgrid scale stress

tensor to guarantee a realizable solution. These conditions are:

(1-3) τij ≥ 0, where i = 1, 2, 3;

(4-6) |τij| ≤
√
τiiτjj, where i 6= j;

(7) det(τij) ≥ 0.

The LDKM approach is ensured to satisfy all the realizability conditions at majority

of grid points.

2.5.2 Subgrid Combustion Modelling using LEM

In the present study a subgrid combustion model based on LEM is used to account for

the combustion occurring within the LES cells (LEMLES, hereafter), since combus-

tion, heat release, volumetric expansion and small-scale turbulent stirring all occur

at small scales, which are not resolved in a conventional LES approach. No explicit

closure is provided for subgrid mass flux, φsgsi,k , the subgrid diffusive flux, θsgsi,k , and

the filtered reaction rate ω̇k, since a more accurate and exact closure is implemented

withinthe subgrid scales.

LEM is a stochastic, Monte-Carlo simulation of the unsteady scalar field evolution

in a turbulent flow, based on solving the unsteady reaction-diffusion equation on a

one-dimensional domain, treating turbulent convection separately at its own time

scale. The computational domain is aligned in the direction of the steepest scalar

gradient with grid resolution η. The turbulent field is assumed to be isotropic with

no boundaries and/or body forces. In LEM, the molecular diffusion and chemical

reaction evolve deterministically from an initial scalar field by the solution of the

thermochemical equations.

Consider the following exact transport equation for the k-th scalar Yk, where there is
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no spatial filtering:

ρ
∂Yk
∂t

= −ρ
[
ũi + (u′i)

R
+ (u′i)

S
] ∂Yk
∂xi
− ∂

∂xi

(
ρYk

(
Vi,k + V C

i

))
+ ω̇k (57)

The convective velocity is separated into three parts: the LES resolved velocity field

ũi, the LES resolved subgrid fluctuation (obtained from ksgs) (ũi)
R, and the unresolved

subgrid fluctiation (ũi)
S. Using this definition eq. (57) can be split into the following

two-step numerical form:

ρ
∂Yk
∂t

= −
[
(ũi + u′i)

R
] ∂Yk
∂xi

(58)

ρ
∂Yk
∂t

= ρ (u′i)
S ∂Yk
∂xi

+
∂

∂xi

(
ρYk

(
Vi,k − V C

i

))
− ω̇k (59)

Eqs. (58) and (59) represent large-scale and small-scale processes, respectively. The

large-scale step advects the subgrid scalar gradient using a 3D Lagrangian process

that ensures strict mass conservation and preserves the small-scale scalar structure.

In eq. (59) the three terms represent the small-scale turbulent stirring, molecular dif-

fusion and chemical kinetics, respectively. Eq. (59) is solved on a 1D line embedded

inside each LES cells with a subgrid resolution fine enough to resolve the Kolmogorov

scale, η, so that both molecular diffusion and reaction rate are closed in an exact

sense.

Based on this approach, in the LEMLES model the following reaction-diffusion equa-

tion is solved on the 1D LEM level:

ρ
∂Yk
∂t

= Fk,stir −
∂

∂s

(
ρYk

(
Vk,s − V C

k

))
+ ω̇k

ρCp
∂T

∂t
= FT,stir − ρ

∂T

∂s

(
Ns∑
k=1

Cp,kYk
(
Vk,s − V C

s

))
+

∂

∂s

(
κ
∂T

∂s

)
+ ω̇T (60)

In this equation, heat release due to combustion is calculated as ω̇T = −
∑Ns

k=1 hkω̇kWk.

The subgrid field within each LES supergrid is resolved by NLEM number of cells along

the local coordinate s, aligned in the direction of the steepest gradient.
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2.5.2.1 Small Scales: Turbulent Stirring

Within LEM, turbulent stirring is solved stochastically by a numerical re-arrangement

event known as triplet-maps, represented symbolically by Fk,stir and FT,stir in Eq.

(60). It is based on the assumption that the effect of the turbulent eddies on the

scalar field is to stochastically redistribute the concentration gradients, by only in-

creasing the scalar gradients. Hence, for a given initial scalar profile, the turbulent

advection increases the gradients by re-distribution process whereas molecular diffu-

sion competes with it by smoothing out these gradients. Schematically, this mapping

first creates three copies of the selected segment by a factor of three and reversing

the middle segment.

The location of stirring event is chosen randomly from a uniform distribution and the

frequency of stirring is implemented as a Poison process in time [19] as:

λ =
54

5

νRe∆̄

Cλ∆̄3

[(
∆̄
η

)5/3

− 1

]
[
1−

(
η
∆̄

)4/3
] (61)

where, Cλ = 0.067 [5]. The eddy size (l) is picked randomly from an eddy distribution

f (l) ranging from ∆̄ to η:

f (l) =
5

3

l−8/3

(η−5/3 −∆−5/3)
(62)

where η = Nη∆̄Re
−3/4

∆̄
and Re∆̄ = u′∆̄/ν is the subgrid Reynolds number.

2.5.2.2 Volumetric expansion

The volumetric expansion in LEM is implemented locally within the subgrid by ex-

panding the LEM domain and after splicing re-griding is done to keep the total

number of LEM constant within each cell.

2.5.2.3 Large Scales: Advection

After the evolution of the subgrid scalar field, large scale advection is implemented

by a 3D Lagrangian process known as splicing that determines the amount of mass

27



to be advected and advects this amount with the subgrid scalar fields across the LES

cell faces.

2.5.3 Subgrid Combustion Modelling directly within LES

In the LES simulation θsgsi,k is neglected and the φsgsi,k is modelled φsgsi,k = − ρνt

Sct

∂ eYk

∂xi
. For

the filtered reaction rate ω̇k some form of closure is required. This closure is discussed

in details later.
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CHAPTER III

PROBLEM SETUP

Two cases corresponding to a low and a high Re, are chosen as test cases from

the previous DNS study [14] of 3D turbulent temporally evolving syngas(CO/H2)-air

diffusion flames. These cases exhibit local extinction and reigintion as a result of

strong flame-turbulence interaction and poses a challenging problem for the TANN

methodology. Both the LES and DNS study employ the same setup.

3.1 Problem Description

The central fuel stream, of width H, is composed of 50% CO, 10% H2 and 40% N2

by volume. Surrounding the central fuel stream are counter-flowing oxidizer streams

composed of 25% O2 and 75% N2. The domain size is LX = 12H in stream-wise

direction, LY = 14H in the transverse direction and LZ = 8H in the span-wise

direction. The boundary conditions are periodic, non-reflecting outflow and periodic

in the stream-wise, transverse and span-wise directions, respectively. The details of

the two DNS cases are give in table 1.

The LES study employs grids clustered near the shear layer in the flame normal

direction with smooth stretching towards the transverse boundaries, while uniform

spacing is used in the other two directions because the gradients are highest across

Table 1: DNS parameters for test cases
Parameter Case L Case H
H(mm) 0.72 1.37
Rejet 2510 9079
Grid Size (M) 148 500
Grid Resolution 0.83η 1.67η
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Table 2: LES parameters for test cases
Grid Resolution Size min. ∆y max. ∆y
Case L 90× 126× 50 (0.56M) 0.055 mm 0.152 mm
Case H (C-GRID) 120× 180× 90 (1.9M) 0.045 mm 0.218 mm
Case H (M-GRID) 160× 240× 120 (4.6M) 0.035 mm 0.161 mm
Case H (F-GRID) 200× 300× 150 (9M) 0.028 mm 0.129 mm

the flame in the flame normal direction. The details of the LES setup is given in

table 2. Like the DNS study, the LES is initialized with a laminar flamelet solution

at a scalar dissipation rate χ = 0.75χq (χq = 2194s−1, extinction scalar dissipation

rate). For calculating the heat and species diffusion fluxes mixture-averaged transport

properties are used.
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CHAPTER IV

RESULTS

4.1 ANN Net Generation

One LANN net and three TANN nets: TANN-1, TANN-2 and TANN-3 are generated.

Training data for LANN and TANN-1 is generated from a 1D stand-alone LEM sim-

ulation (Stand-alone LEM 1). Training data for TANN-2 and TANN-3 is generated

from another stand-alone simulation run over a larger range of Ret (Stand-alone LEM

2). Both the standalone LEM simulations are initialized with the same OPPDIFF

flame obtained from Chemkin.

Stand-alone LEM 1 is simulated for Ret up to 1000. Instantaneous thermochemical

data is tabulated at regular intervals for generating the training table for LANN. For

generating the training table for TANN-1, the data on the 1D stand-alone LEM do-

main is filtered over a fixed filter size of 0.1 mm and time step size of 2.5×10−8s. The

filter size and time step size is representative of the Case L LES grid size and time step

size. In order to generate TANN capable of handling a larger range of χ, stand-alone

LEM 2 is simulated for Ret up to 1500. A fixed filter size of 0.042 mm and time step

size of 1.0 × 10−8s are chosen to generate the training table for TANN-2. The filter

size is representative of the average grid size for all the four LES cases and the time

step size is smaller than the time step size for finest LES grid. This time step size is

enforced for all LES simulations while using TANN-2 and TANN-3. For generating

the training table for TANN-3, the training table for TANN-2 is re-tabulated with

the species dissipation rate instead of species gradient.

For training the ANN nets, the training data is split into two tables Train and Test.

The Train table gets 80% of the data and Test table gets 20%. The data in the Train
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table is used for training the net. Once the training is complete, data in the Test

table is used for comparing the source term obtained from ANN with the source term

tabulated from the stand-alone LEM simulation. This gives an estimate about how

the ANN net will perform at thermochemical data points for which it has not been

trained.

Choosing the ANN architecture with the correct number of hidden layers and number

of processing elements in each hidden layer is a challenging task. Two or more num-

ber of hidden layers is required for modelling complex data with discontinuities. If an

inadequate number of processing elements are used in a hidden layer, the net will not

be able to model complex data. On the other hand, if too many neurons are used,

training time will become excessively long and the model may memorize the data.

This result in ANN net fitting the data for which it is trained extremely well but gen-

eralizing poorly to new unseen data. In the present study all the 4 nets are trained

with 3 hidden layers. The LANN is trained with 5, 4 and 3 processing elements in 1st,

2nd and 3rd hidden layers. The LANN has 12 processing elements in the input layer, 1

for the each of the 11 species (H2, O2, OH,O,H2O,H,HO2, CO,CO2, HCO,N2) and

the 12th for temperature. Since, pressure is a constant in the present study; it is not

used as an input. The TANN nets are trained with 10, 8 and 4 processing elements in

the 1st, 2nd and 3rd hidden layers. The TANN input layer has 14 processing elements

in the input layer, 11 for the species, 12th for the temperature, 13th for turbulent Re

and the last one for species gradient in case of TANN-1 and TANN-2, and species

dissipation rate for TANN-3. These architectures are chosen based on a previous

study[32]. To prevent memorization of data by the ANN, it is necessary to stop the

training at the correct time, once the training error does not change significantly with

further iterations. In the present study, the training is stopped if the training error

does not decrease after a given number of iterations.
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4.2 Verification of the accuracy of the nets

After the training of the ANN net is complete and the weight distribution is optimum,

to verify the accuracy of the network, the target values for the source term from the

Test table are compared with the values predicted by the ANN network. Fig. 4 shows

the comparison of the Target values and ANN predicted values for TANN-2 net. All

the data points would have fallen on red line had the training been perfect. It is

observed that there is some deviation from the red line. Most points show very little

deviation from the red line and very few points show large deviation from the red line.

Overall, TANN-2 predicts ANN values very close to target values for most of the test

data points and the training is good. Similar trends are observed for the Target vs.

ANN predicted values for other nets. Hence, all the four ANN nets are trained well.

Figure 4: Comparison of Target vs. ANN prediction using TANN-2

4.3 Difference between LANN and TANN

The LANN is capable of calculating the instantaneous source terms within the LEM

subgrid combustion model in LES framework as:

ω̇i
ρ

= f (Y1, ...., YNs , T ) where, i=1,....,Ns (63)
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for a fixed ∆t and pressure.

TANN-1 and TANN-2 can compute the filtered source terms directly within the LES

framework as:

ω̇i
ρ

= f

(
Ỹ1, ...., ỸNs , T̃ , Re∆,

∂Ỹi
∂xj

)
where, i=1,....,Ns (64)

for a fixed ∆t, pressure and filter size representative of LES grid size.

TANN-3 can compute the filtered source terms directly within the LES framework as:

ω̇i
ρ

= f

(
Ỹ1, ...., ỸNs , T̃ , Re∆, 2Di

∂Ỹi
∂xj

.
∂Ỹi
∂xj

)
where, i=1,....,Ns (65)

for a fixed ∆t, pressure and filter size representative of LES grid size.

The TANNs are trained as a function of the subgrid Re and filtered species gradient or

filtered species dissipation rate, in addition to the filtered species mass fractions and

filtered temperature. This is done to take into account the effect of turbulence and

subgrid mixing. To evaluate if there is any difference between the laminar (instan-

taneous) reaction rates and the filtered (turbulent) reaction rates, filtered reaction

rates obtained from the stand-alone LEM are compared with the instantaneous re-

action rates for the same composition and time step size, as shown in Fig. 5. To

obtain the filtered reaction rates, the filtered mass fractions are calculated at a given

instant of time and at an instant after the LES time step size, on the standalone

LEM domain. Their difference divided by the LES time step size gives the filtered

reaction rate. To compute the instantaneous reaction rate, the instantaneous mass

fractions and temperature are taken as input. Then direct integration is used to

compute the instantaneous reaction rates. It is observed that the production of CO2

and the consumption of O2 and CO is faster for laminar chemistry compared to the

turbulent chemistry. For OH radical, the magnitude of the laminar reaction rates is

much higher, compared to the filtered reaction rate. The other radicals also show
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similar trend like OH. OH laminar reaction rates vary from -800 to +800, approxi-

mately and OH filtered reaction rates varies from -200 to +200, approximately. This

indicates that OH radicals are produced and consumed at almost the same rate in

a given chemistry. This keeps their concentration low. However, their rate of pro-

duction and consumption with laminar chemistry is higher than turbulent chemistry.

Overall, the laminar chemistry assumption predicts faster combustion compared to

the turbulent chemistry because the laminar chemistry does not take into account the

effect of turbulence and the high scalar dissipation rates, which leads to fast removal

of heat and the radicals from the reaction zone and thus drop in the heat release rate.

Fig. 6(a) and 6(b) show the comparison between filtered reaction rate and the

(a) (b)

(c) (d)

Figure 5: Comparison of the filtered reaction rates and the laminar reaction rates
for (a) O2, (b) CO, (c) CO2, (d) OH.
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laminar reaction rate of O2 for low and high scalar dissipation rates. More difference

between the laminar reaction rate and the filtered reaction rate is observed for higher

scalar dissipation rates due to stronger turbulence-chemistry interactions which leads

to to chemical time scales comparable with the diffusion time scales and thus laminar

chemistry assumption is no longer valid. Hence, the source term predicted by LANN

used directly within the LES framework is different from the source term predicted

by TANN used within the LES framework.

(a) (b)

Figure 6: Comparison of the filtered reaction rates and the laminar reaction rates
for O2 at (a) χ < 1.0s−1, (b) χ > 1000s−1.

4.4 Comparison of TANN-1 and TANN-2 training data

Fig. 7(a) shows the comparison of χ with respect to Z for the standalone LEM data

tables used for training the two nets TANN-1 and TANN-2. The standalone LEM

data used for training TANN-1 was generated using a lower Ret and larger filtered

grid spacing compared to TANN-2 as explained in the previous section. As a result of

higher Ret and smaller grid spacing used for training TANN-2 compared to TANN-1,

the χ values for TANN-2 are much higher. The TANN-1 and TANN-2 training data

explore a maximum χ close to 20,000 and 50,000, respectively. Fig. 7(b) shows the
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(a) (b)

Figure 7: Comparison of the standalone LEM data used for training the nets. Red
symbols: TANN-1, Black symbols: TANN-2. (a) χ vs Z, (b) Ret vs Z

comparison of Ret with respect to Z for the two training data tables. It is observed

that the Ret values explored by TANN-1 are slightly higher than the Ret values ex-

plored by TANN-2 because Ret is directly proportional to the grid spacing and the

grid spacing for TANN-2 is lower than the grid spacing for TANN-1.

Fig. 8(a) and 8(b) show the comparison of mass fraction of H2 and OH with respect

to temperature for the two training tables. The thermochemical data space covered

by mass fraction of H2, for the two training tables are very similar and overlap with

each other. However, the thermochemical data space of OH does not overlap very

well beyond a mass fraction of 2.5×10−3. It is shown in the discussions later that the

maximum OH mass fraction covered by the two LES test cases is around 2.5× 10−3.

Hence, the region of mismatch for the OH thermochemical data space lies outside

the area of interest for the two test cases. Therefore, based on the comparison of the

training data for the two nets it is observed that even though the compositional data

space explored by the two training tables are the same, the χ and Ret data space

differ. Hence, TANN-2 covers a wider range of χ compared to TANN-1 and is a more

”generalized” net.
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(a) (b)

Figure 8: Comparison of the standalone LEM data used for training the nets. Red
symbols: TANN-1, Black symbols: TANN-2. (a) H2 mass fraction vs Z, (b) OH mass
fraction vs Z

4.5 Comparison of TANN-2 and TANN-3

TANN-2 and TANN-3 nets are trained on the same stand-alone LEM data. The only

difference between the nets is TANN-2 computes the filtered source term as a function

of species gradient whereas TANN-3 computes the source term as a function of species

dissipation rate. The species dissipation rate is a function of the molecular diffusivity

D in addition to species gradient and it plays an important role when the species in

the reaction zone have a large range of molecular diffusivity. The lighter species like

H, H2 have higher molecular diffusivity than heavier species like CO, CO2. Hence,

for the same species gradient lighter species have a higher species dissipation rate

compared to heavier species. Thus, TANN-3 takes into account the effect of variable

species diffusivity in addition to the species gradient.
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4.6 Case L: TANN-LES validation

To assess the performance of TANN methodology, the Case L is run with DI-LEMLES,

LANN-LEMLES and TANN-LES using the TANN-1. Fig. 9(a) shows the varia-

tion of the mean temperature on the stoichiometric plane with respect to the non-

dimensioned-time (tj) for DNS, DI-LEMLES, LANN-LEMLES and TANN-LES. The

time is non-dimensioned by the reference time obtained as t∗ = H/U , where U is the

already defined characteristic jet velocity [14]. The DNS data shows that the tem-

perature begins at 1455 K and drops off to a minimum of approximately 1210 K near

tj = 20, indicating extinction. Beyond this point the temperature starts increasing

again and reaches 1425 K at tj = 40, showing complete reignition. The DI-LEMLES

initially over predicts the temperature till tj = 10 beyond which it drops off faster

than the DNS temperature profile. LANN-LEMLES and TANN-LES almost at all

instants till tj = 20 under predict the mean temperature. The DI-LEMLES, LANN-

LEMLES under predict the temperature by approximately 12% and the TANN-LES

under predicts the temperature by approximately 8% at tj = 20, indicating more

extinction compared to DNS. Beyond this point, the temperature on the stoichiomet-

ric plane for DI-LEMLES and LANN-LEMLES increases at a higher rate compared

to DNS temperature profile, while the TANN-LES stoichiometric plane temperature

always remains lower than the DNS. At tj = 40 the DI-LEMLES, LANN-LEMLES

over predict the temperature by approximately 6% and TANN-LES under predicts

the temperature by approximately 4%. The LES results highly under predict the

temperature on the stoichiometric plane compared to DNS. In DNS, isotropic turbu-

lence is added in the shear layer along a thickness lesser than the minimum LES grid

size. Hence, when isotropic turbulence is added in the shear layer in LES it is done

along a larger thickness.

Fig. 9(b) shows the variation of the mean χst/χq on the stoichiometric plane with re-

spect to tj. The DNS simulations initializes at χst/χq = 0.75 (approx.) and increases
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to 2.16 at tj = 16 due to the shear generated turbulence. Beyond this point it starts

decaying and drops off to 0.35 at tj = 40.

Comparing Fig. 9(a) and 9(b) it is observed that the local extinction is due to the

(a) (b)

Figure 9: (a) Variation of the mean of temperature at stoichiometric mixture fraction
with respect to non-dimensional time for Case L, (b) Variation of the mean χ/χq at
stoichiometric mixture fraction with respect to non-dimensional time for Case L

fluctuations of the scalar dissipation rate. Once the molecular mixing overcomes the

effect of turbulent straining, it leads to the decrease of the scalar gradients which is

accompanied by gradual reignition [37]. A time lag is observed between the maxi-

mum χst/χq and the minimum temperature on the stoichiometric plane because the

reaction rate does not immediately follow variations of χst due to the finite rate chem-

istry [38],[26]. The temperature, at extinction is under predicted by 150K compared

to DNS even though χst for LES is lower than the DNS by 100%. The reason the

scalar dissipation is so much lower is LES is because it is using a much coarser grid

and as Fig. 3 shows the gradient of Z appear lower on the filtered grid because it

is not showing the subgrid fluctuations. So a coarser grid will always show a scalar

dissipation rate lower than a fine-grid even though it takes into account the subgrid

fluctuations in LEM or by computing the source term as a function of the gradient of

the species at filtered level. The DI-LEMLES and LANN-LEMLES predict a faster
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initial rate of growth of mean χst/χq compared to the DNS, while the TANN-LES pre-

dicts a slower initial rate of growth of χst/χq. The maximum mean χst/χq observed is

approximately 1.1 and close to tj = 12 for DI-LEMLES and LANN-LEMLES, while

the maximum mean χst/χq for TANN-LES is observed close to tj = 15 and has a

value of 1 approximately. Beyond this point χst/χq decays off and reaches a value

less than 0.2 at tj = 40 for DI-LEMLES and LANN-LEMLES, while it has a value of

0.25 approximately for TANN-LES. The TANN-LES under predicts χst/χq compared

to LEMLES till tj = 15 and after that it slightly over predicts. Overall the data

obtained from TANN-LES is in good agreement with DI-LEMLES data. A similar

assessment of case M having Re = 4478 [14] was done in an earlier study [32] and not

shown here.

The mean value of temperature and H2O mass fraction conditioned on the mixture

fraction at extinction (tj = 20) and reignition (tj = 40) are shown in Fig. 10, with

DNS, DI-LEMLES, LANN-LEMLES and TANN-LES using TANN-1. At extinction

tj = 20, the LES results under predict the mean temperature at almost all values of

Z compared to the DNS. Above Z = 0.95 TANN-LES slightly over predicts the mean

temperature. Overall, the TANN-LES mean temperature profile shows good match

with the DNS temperature profile. Both LES and DNS show that the maximum

value of Z observed for DI-LEMLES and LANN-LEMLES is 0.93. For TANN-LES

the maximum value of Z observed is 0.975 and for DNS it is 0.97. Thus, DI-LEMLES

and LANN-LEMLES overpredict mixing while TANN-LES slightly under predict it

because of neglecting the subgrid diffusion term, compared to DNS, at extinction. A

similar trend in mixture fraction is observed at reignition tj = 40 and the maximum

value of Z for DNS drops to 0.83. DI-LEMLES and LANN-LEMLES over predicts

the mean temperature profile whereas TANN-LES under predicts the temperature

profile at almost all values of Z, at reignition.The maximum temperature at both

tj = 20 and tj = 40 is observed on the fuel-rich side instead of stoichiometric plane.

41



(a) (b)

(c) (d)

Figure 10: Conditional mean of temperature and YH2O at extinction (a and c) and
reignition (b and d)

This is observed due to the significant differential diffusion effect which leads to higher

diffusion velocities of lighter species like H, H2 OH and O compared to other species.

The radicals diffuse more towards the fuel side and shift the location of the maximum

heat release also making the heat release zone wider [15]. At extinction, the H2O mass

fraction is under predicted for all values of Z by the LES simulations. DI-LEMLES

and LANN-LEMLES under predicts the production of H2O more whereas TANN-LES

under predicts it less compared to the DNS, which is consistent with the temperature

profile predictions suggesting more extinction compared to the DNS and thus lower

heat release rate and less production of products. The location of the maximum mass

fraction of H2O lies in the fuel-rich side, around 0.6 for DNS and TANN-LES and
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around 0.7 for DI-LEMLES and LANN-LEMLES due to differential diffusion effects.

The DNS data shows that maximum mass fraction of H2O increases from 0.025 to

0.027 at tj = 20 to tj = 40. The LES results over predict the maximum mass fraction

of H2O at reignition compared to DNS.

Fig. 11 shows the time evolution of the scatter cloud of temperature with respect

(a) (b)

(c) (d)

Figure 11: Case L, TANN-LES using TANN-1: Evolution of temperature w.r.t. Z
at tj a)10, b)20, c)30 and d)40.

to mixture fraction. At tj = 10 a small scatter about the mean is observed. By

tj = 20 the scatter increases along with a drop in the mean temperature. At tj = 30

and tj = 40 the scatter reduces along with an upward shift of the cloud. The ini-

tial increase in the scatter and drop in the mean stoichiometric plane temperature

at tj = 20 followed by decrease in scatter and upward shift of the cloud at tj = 40
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indicates the extinction-reignition phenomenon.

Fig. 12(a) and 12(b) show the pdf of the H2O and OH mass fraction at extinction

(a) (b)

Figure 12: Case L, TANN-LES using TANN-1: pdf on stoichiometric plane at
extinction and reignition of a) H2O, b) OH. Black continuous line: extinction(tj = 20),
black broken line: β-pdf at extinction, red continuous line: reignition(tj = 40), red
broken line: β-pdf at reignition,

(tj = 20) and reignition (tj = 40) for TANN-LES using TANN-1. The pdf of H2O

shows more deviation from the beta-pdf at extinction than at reignition. This is in

agreement with the observations made by Goldin et al. [13],[12] Near extinction due

to the large values of χ on the stoichiometric plane the rate of diffusion of species is

comparable with the chemical reaction rates resulting in high levels of chemical non-

equilibrium which leads to scalar field deviation from the beta-pdf. At tj = 40, once

the mean χst has dropped off the system once again approaches chemical equilibrium

and the pdf shows good agreement with the beta-pdf. The OH pdf matches well with

the beta-pdf at both extinction and reignition because the chemical time scales of

OH radical is small and hence OH mass fraction stays close to equilibrium at both

extinction and reignition.

From the above studies it is concluded that the TANN-LES is a robust methodol-

ogy and the results predicted by it compare well with the DNS, DI-LEMLES and

LANN-LEMLES predictions. For all the results reported hereafter only TANN-LES
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computations were done.

To show that TANN-2 (which is more ”generalized” compared to TANN-1) is capa-

ble of handling a range of Re, case L is simulated with TANN-LES using TANN-2.

Fig. 13(a) and 13(b) show the comparison of the temporal variation of mean tem-

perature and mean χst/χq on the stoichiometric plane for case L using TANN-1 and

TANN-2. Both TANN-1 and TANN-2 under predict the temperature on the stoichio-

(a) (b)

Figure 13: Comparison of the variation of (a) mean temperature and (b) mean χ/χq
on the stoichiometric plane for Case L using TANN-1 and TANN-2

metric plane throughout the course of the simulation. TANN-1, trained on a smaller

range of Ret and grid-size matching with case L predicts a solution closer to DNS

compared to TANN-2, trained on a wider range of Ret and smaller grid spacing. The

mean χst/χq is slightly under predicted by TANN-2 compared to TANN-1 till tj = 15,

beyond which the TANN-1 results almost overlap with TANN-2 results. Overall the

TANN-1 and TANN-2 results match well for case L and loss of accuracy by using the

generalized net TANN-2 compared to the case specific net TANN-1 is negligible.
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4.7 Case H: Grid independence study using a single TANN
net

The TANN-1 failed to predict extinction-reignition for Case H. TANN-2 generated

for a larger range of Ret as mentioned earlier successfully simulated Case H.

Fig. 14(a) and 14(b) show the variation of the mean temperature and mean χst/χq

on the stoichiometric plane with respect to tj for DNS and TANN-LES using TANN-2

for Case H C-GRID, M-GRID and F-GRID. Variation in the grid refinement results

in F-GRID estimating the highest mean χst/χq and the C-GRID the lowest because a

finer grid captures the subgrid fluctuations better. All the grids for case H predict the

highest mean χst/χq around tj = 12 which is slightly later in time compared to the

prediction of DNS. After tj = 15 the temperature field is slightly under predicted by

all the three grids compared to the DNS data. Like DNS the extinction and reignition

are observed at tj = 25 and tj = 50, respectively, even though the temperature at

extinction is slightly under predicted. The lower mean temperature at extinction and

longer reignition time, in case H compared to case L, is observed due to the higher

levels of initial turbulence [14]. Overall, the mean temperature predictions for the

three grids are reasonably consistent and compare well with the DNS data. Unlike

Case L, the temperature on stoichiometric plane compare well for Case H C-GRID.

Because the LES cell thickness size in shear layer for Case H C-GRID is smaller than

Case L and in Case H, isotropic turbulence is added over a larger thickness. Hence,

there is lesser mismatch in isotropic turbulence addition between DNS and LES in

Case H compared to Case L.

Fig. 15 show the comparison of the pdfs of temperature, H2O and OH mass fractions

at extinction(tj = 25) and reignition(tj = 50) on the stoichiometric plane for C-GRID,

M-GRID, F-GRID. The pdf profile of temperature at tj = 25 for all the three grids

compare well with each other having the mean around 900K with slight narrowing

of the pdf from C-GRID to F-GRID. At tj = 50 the mean of all the three pdfs shift
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(a) (b)

Figure 14: Case H (a) Variation of the mean of temperature at stoichiometric
mixture fraction with respect to non-dimensional time, (b) Variation of the mean
χ/χq at stoichiometric mixture fraction with respect to non-dimensional time

to 1300K with the low temperature tail subsiding. The F-GRID exhibits a more

prominent low temperature tail suggesting the presence of more reignition compared

to the other two cases. At tj = 25, the pdf of the mass fraction of both H2O and

OH compare well with each other and the mean lie around 0.012 and 0.0004 for H2O

and OH respectively. At tj = 50 the H2O pdf narrows down and the mean H2O and

OH increases to 0.02 and 0.0012, respectively. Hence, these pdfs clearly exhibit the

extinction-reignition process.

Fig. 16(a) and 16(b) show the comparison of the pdf of the normalized χst at

different instants of time for C-GRID and F-GRID, respectively. Maximum negative

skewness is observed at tj = 10 where the mean χst is maximum for both the cases.

The negative skewness is observed because at high values of mean χst only at very

limited number of points on the stoichiometric plane the χ reaches very high values

and shift the mean. At majority of the points on the stoichiometric plane the χ

values lie below the mean and hence result in negative skewness. This phenomenon is

explained in Fig. 17(a) and 17(b), which show the distribution of χ with respect to

temperature on the stoichiometric plane for C-GRID and F-GRID, respectively. At

tj = 10 maximum points lie below mean χst value of 2000 and 2300 for C-GRID and
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Variation of PDF of temperature, H2O and OH mass fraction on stoi-
chiometric plane at extinction: (a),(c),(e) and reignition: (b),(d),(f) for Case H with
TANN-2

F-GRID, respectively. A very small fraction of points lie above this mean and has χst

values as high as 4 times and 8 times greater than mean χst for C-GRID and F-GRID,
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(a) (b)

Figure 16: PDF of the normalized scalar dissipation rate at the stoichiometric
mixture for Case H with TANN-2. (a) C-Grid, (b) F-Grid

(a) (b)

Figure 17: Distribution of χst with respect to temperature on the stoichiometric
plane for Case H. Black dots: tj = 10, Red dots: tj = 40 for (a) C-GRID, (b)
F-GRID

respectively. It is also observed that at extinction points with χst values above the

mean χst lie at lower temperatures indicating the formation of extinguished regions

[36]. At tj = 40 the stoichiometric data is spread over a wider range of temperature

compared to the stoichiometric data at tj = 10 and it is spread more uniformly

about a lower mean of χst of 130 and 160 for C-GRID and F-GRID, respectively,

which indicates partial reignition. This results in less negative skewness. Further it is

observed that at tj = 10 the stoichiometric data is more clustered below χst = 2000 for
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F-GRID compared to C-GRID. This has lead to the smoother normalized χst profile

for F-GRID compared to C-GRID at normalized χst values less than -3. Similar to

tj = 40 at tj = 20 and tj = 30, the mean χst is low and hence the negative skewness

is not observed. Overall, the pdf of normalized χst for C-GRID and F-GRID are in

good agreement.

Fig. 18(a) and 18(b) show the evolution of temperature and χ pdf on stoichiometric

plane with time for case H M-GRID. The temperature pdf shifts rapidly to lower

mean value and the variance increases going form tj = 10 to tj = 20. By tj = 30

the variance decreases and with further increase in time the temperature pdf shifts

to higher values. The χ pdf shifts to lower values with time. These results show that

the TANN-2 is capable of capturing the complex extinction-reignition phenomenon

and also handling grids of different resolutions. Fig. 19(a) and 19(b) show the χ vs Z

(a) (b)

Figure 18: Evolution of the pdf on stoichiometric plane of (a)temperature and
(b)scalar dissipation rate of Z for Case H M-GRID using TANN-2

data for case L and case H F-GRID, respectively, at the location of maximum mean

χst and at tj = 40. The χ distribution reaches much higher values for both the cases

at the location of maximum mean χst compared to the distribution at tj = 40. The

maximum χ value observed for case L is around 20,000 where as for case H F-GRID

it goes upto 50,000. Thus, χ distribution for case L lies inside the training data space
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(a) (b)

(c) (d)

Figure 19: Comparison of χ and Ret with respect to Z. (a) and (c) represent Case
L with Black symbols: tj = 15 and Red symbols: tj = 40. (b) and (d) represent Case
H F-GRID with Black symbols: tj = 12 and Red symbols: tj = 40

of both TANN-1 and TANN-2. Whereas, for case H F-GRID χ distribution lies inside

the training data space of TANN-2 only. Which is the cause of the failure of TANN-

LES using TANN-1 in capturing the extinction-reignition for case H. Fig. 19(c) and

19(d) show the Ret vs Z data for case L and case H F-GRID, respectively. Both the

cases reach the higher Ret values at the location of maximum χst compared to tj = 40.

The maximum Ret observed for case L and case H F-GRID are around 40 and 20,

respectively. For case H F-GRID the maximum Ret is lower because of the finer grid

size used. Comparing the Ret distribution of the two cases with Ret distribution of

TANN-1 and TANN-2 training data, it is observed that both TANN-1 and TANN-2
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training data cover the Ret data space of the two test cases.

Fig. 20(a) through 20(d) show the distribution of mass fraction of H2 and OH vs

temperature for case L and case H F-GRID. The thermo-chemical data space for the

two cases cover similar regions at extinction or reignition. Based on the comparisons

between the training data and the two test cases data, it is observed TANN-1 fails to

cover only the χ data space of case H, whereas TANN-2 covers the entire data space

of both case L and case H.

(a) (b)

(c) (d)

Figure 20: Comparison of H2 and OH mass fraction with respect to temperature.
(a) and (c) represent Case L with Black symbols: tj = 15 and Red symbols: tj = 40.
(b) and (d) represent Case H F-GRID with Black symbols: tj = 12 and Red symbols:
tj = 40
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4.8 Study extinction-reignition using TANN-3 trained as a
function of species dissipation rate instead of species
gradient

The TANN-LES using TANN-3 net is performed for Case H with M-GRID and the

results are compared with DNS and TANN-LES using TANN-2(using species gradi-

ent instead of species scalar dissipation rates). As shown in Fig.4.8 no significant

difference is observed between the two TANN-LES results.

Figure 21: Comparison of mean temperature variation on stoichiometric plane w.r.t.
non-dimensional time for Case H M-GRID using TANN-3 and TANN-2

4.9 Time Savings

The computational time required to run a single iteration per grid point on a 220 pro-

cessors INTEL PC (3.2 GHz Xenon) by DI-LEMLES, LANN-LEMLES and TANN-

LES for case H F-GRID are given in table 3. The TANN-LES approach provides a

speed-up of 33 times compared to DI-LEMLES with reasonable accuracy, where as

LANN-LEMLES provides 6.6 times, for case H.
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Table 3: Comparison of speed-up obtained by various models
Case Model CPU time per step per cell speed-up
H F-GRID DI-LEMLES 4.95 ms 1

LANN-LEMLES 0.75 ms 6.6
TANN-LES 0.15 ms 33
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CHAPTER V

CONCLUSIONS

In the present work, ANN methodology is used for multi-step finite rate kinetics

within the LES framework. Unlike the previous work [34] where ANN was used as a

subgrid combustion model within the LES framework (LANN-LEMLES), here ANN

is used for calculating the filtered reaction rates directly within the LES framework

(TANN-LES). The thermo-chemical data for training the TANN is obtained by fil-

tering the data obtained from a 1D standalone simulation over the LES grid-size [35].

The comparison of the laminar source terms and filtered source terms for the same

composition show significant difference. The filtered source terms are trained as a

function of the filtered mass fraction of all the species, filtered temperature and the

gradient of the species. The species are trained separately.

The TANN-LES is used to simulate the temporally evolving syngas-air diffusion

flames, exhibiting significant extinction-reignition, extensively studies by DNS [14]

previously. TANN-LES methodology is first validated against DI-LEMLES, LANN-

LEMLES and DNS results for the low Re case. The temporal variation of the mean

temperature on the stoichiometric plane from TANN-LES results compare well with

the DI-LEMLES, LANN-LEMLES with significant speed-up. Comparison with DNS

show lower temperature on stoichiometric plane at extinction due to addition of

isotropic turbulence in shear layer along a higher thickness, in LES. To further inves-

tigate the TANN-LES approach the conditional statistics are extracted and compared

with the DNS data at extinction (tj = 20) and reignition (tj = 40). It is observed

that the location of the maximum mean temperature does not lie at the stoichiometric

mixture fraction due to differential diffusion effects, instead it lies towards the fuel

55



rich side. The same trend is observed for the H2O mass fraction. A comparison of the

pdf of temperature and H2O mass fraction indicate slight under prediction of reigni-

tion by TANN-LES. Overall, the TANN-LES predictions match well with LEMLES

predictions.

The low Re case specific TANN fails to capture the extinction-reignition phenomenon

for the high Re case. An attempt is made in generalizing the TANN approach by gen-

erating a TANN that can simulate cases with different Re and grid resolutions. The

training table for the ”generalized” net is generated by running the standalone LEM

simulation for a large range of Ret and an intermediate filter-size. The TANN-LES

results using the generalized net obtained for the high Re case with three different

grid resolutions compare well with the DNS data, showing grid independence and

capability of the generalized net in handling different grid resolutions. Both coarse

grid and the fine grid capture the negative-skewness at high scalar dissipation rate

in the pdf of the normalized scalar dissipation rate. Comparison of the TANN-LES

results for the low Re case using the generalized net with the TANN-LES results

using the case specific net show that loss in accuracy by the use of the generalized

net is negligible.

A comparison of the training data for the two TANNs with the data from the two

Re cases show that both the nets cover the same compositional data space and the

thermochemical data from the LES forms a subset of the thermochemical data space

of the nets. The χ and the Ret data space explored by the two nets differ. The

Ret data space of the LES still forms a subset of the training data of the two nets.

However, the χ data space of the high Re case falls outside the training data space

of the first net which leads to its failure in simulating the high Re case. The χ data

space for both Re cases form a subset of the χ data space of the generalized net

training data space and hence it is capable of simulating different Re cases. Hence,

the current study shows that it is possible to generate a TANN capable of handling

56



a range of Re. Thus, every new case does not require generation of a new TANN,

saving significant time.

To improve the TANN methodology in future, the way of calculating Re∆ in the 1D

standalone LEM code should be explored further. Possibly a ksgs-based u′ and LES

∆ can be correlated to the LEM u′ and the integral length.
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APPENDIX A: 21 STEP 11 SPECIES REDUCED SYNGAS

MECHANISM

Species:H2, O2, OH, H2O, O, H, HO2, CO, CO2, HCO, N2

O2 +H = OH +O

H2 +O = OH +H

OH +H2 = H +H2O

H2O +O = 2OH

H2 +M = 2H +M

2O +M = O2 +M

H +O +M = OH +M

OH +H +M = H2O +M

O2 +H +M = HO2 +M

H +HO2 = 2OH

O +HO2 = OH +O2

OH +HO2 = O2 +H2O

O + CO +M = CO2 +M

O2 + CO = O + CO2

HO2 + CO = OH + CO2

OH + CO = H + CO2

HCO +M = CO +H +M

O2 +HCO = HO2 + CO

H +HCO = H2 + CO

O +HCO = H + CO2
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APPENDIX B: TANN COEFFICIENTS

The TANNs generated in the present study have 14 PEs in the input layer. 10, 8

and 4 PEs in the three hidden layers. 1 PE in the output layer, since each species

is trained independently. Therefore, the output of ANN training generates ten ANN

coefficient tables for the ten reacting species (eleventh species is N2). Each PE in

a given layer transmits signal to all the PEs belonging to layers downstream. The

PEs in a given layer do not communicate amongst themselves. This kind of ANN

architecture is called an acyclic. Therefore the total number of weight coefficients

and biases written in every ANN coefficient table is:

(PEs in input layer) ×
(∑n=3

n=1 (PEs in nth hidden layer) + (PEs in output layer))

+ (PEs in 1st hidden layer) ×
(∑n=3

n=2 (PEs in nth hidden layer) + (PEs in output

layer))

+ (PEs in 2nd hidden layer) × ((PEs in nth hidden layer) + (PEs in output layer))

+ (PEs in 3rd hidden layer) × (PEs in output layer)

+ (Sum of PEs in all the layers (bias))

Weight connectors = 14(10 + 8 + 3 + 1) + 10(8 + 3 + 1) + 8(3 + 1) + 3(1) = 496

Biases = (14 + 10 + 8 + 3 + 1) = 37

Sum of weight connectors and biases = 496 + 37 = 533

Hence, total number of values tabulated in each TANN coefficient table is 533. Note

that bias of PEs in input layer is zero because the PEs in the input layer recieve the

full strength of the incoming signal.

Another output of the ANN methodology is the normalizing coefficients of the inputs

and de-normalizing coefficients of the outputs. The values of every input in the

training table are normalized between -1 to +1, corresponding to minimum and the
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maximum input value, respectively. The function used is:

Normalized(ỸH2) = AH2 × ỸH2 +BH2

Normalized(ỸH2) is the signal transmitted by the PE corresponding to ỸH2 mass

fraction in the input layer. Normalizing coefficients A and B are calculated for all

the inputs using the same function. The output, source terms in the present study

are normalized between -0.8 to +0.8. The source terms are normalized between -

0.8 to +0.8, instead of -1 to +1 because the outgoing signal of a PE is obtained by

applying hyperbolic tangent function to signal recieved. Therefore, values of -1 and

+1 will require the output PE to recieve a signal of strength - and +, respectively.

The output of the ANN interpolation for computing source term of H2 (ANN(H2))

is de-normalized using the function:

ωH2

ρ
=
eANN(H2) −DH2

CH2

Thus, a table is created in which A and B values corresponding to all inputs, and C

and D values corresponding to all outputs are tabulated.

The ANN training gives 10 ANN coefficient files corresponding to each of the 10

reacting species. Each file contains 533 values. An additional table ANN.dat is

created which contains the As and Bs corresponding to all inputs, and Cs and Ds

corresponding to all outputs.
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ANN.dat format Sample ANN Cofficient table for a species

AH2 BH2 CH2 DH2 -3.835612931767081E-002

= = = = -0.108052176485972

= = = = -0.436501419823321

AN2 BN2 0.0 0.0 0.143977788550831

AT BT 0.0 0.0 5.040344446165773E-003

ARe∆ BRe∆ 0.0 0.0 9.986534201938069E-003

A5YH2
B5YH2

0.0 0.0 -0.108150477215085

= = = = =

= = = = =

A5YN2
B5YN2

0.0 0.0 =
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