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ABSTRACT 

The studies presented here address the characterization of the electronic structure 

of various self-assembled monolayers (SAMs) of peptide nucleic acid (PNA) and 

tetraphenylporphyrin (TPP) SAMs and arrays, formed on gold substrates. 

PNA is a promising alternative to DNA for bio-sensing applications, as well as for 

strategies for self-assembly based on nucleic acid hybridization. In recent years charge 

transfer through PNA molecules was a focus of research due to possible applications in 

self-assembled molecular circuits and molecular tools. In light of this research it is 

interesting to investigate the electronic structure of PNA interfaces to gold, a potential 

electrode material. 

TPP is, due to its electronic structure, an organic p-type molecular semiconductor. 

Such a material can provide an alternative to standard micro- and optoelectronic devices 

and in recent years more attention was paid to semiconducting polymers and organic 

compounds offering these low-cost and flexible alternatives. Therefore, it is of high 

importance to investigate the prospect of using modified TPP molecules for the formation 

of interconnected molecular networks on metallic surfaces. 

All investigated monolayers were formed from solution in a nitrogen atmosphere 

inside a homemade glove box. This process allowed for PNA SAM and TPP SAM and 

array formation on clean Au substrates without the exposure to the ambient atmosphere. 

Ultraviolet and X-ray photoemission spectroscopy (UPS and XPS) measurements on the 



x 

 

resulting PNA SAMs and TPP SAMs and arrays, which were performed in a to the glove 

box attached vacuum chamber containing a photoemission spectrometer, revealed the 

hole injection barriers at the interfaces and the interface dipoles. 

In addition to the UPS and XPS measurements on PNA, electronic structure 

calculations based on molecular dynamics sampling of the PNA structure were obtained, 

yielding the HOMO-LUMO gap and the electronic density of states for PNA. Combined 

with the UPS data, the theoretical calculations enabled estimation of the charge injection 

barriers for the PNA SAMs at the interface, as well as the assignment of individual UP-

spectral features to specific molecular orbitals. 

The orbital line-up at the interface between the Au substrate and the PNA 

indicated a significant interface dipole resulting in the alignment of the Au Fermi level 

near the center of the PNA HOMO-LUMO gap. This alignment causes large charge 

injection barriers for both holes and electrons, and thus impedes charge transfer from Au 

into the PNA SAM. The study of PNA molecules with ferrocene termini showed that this 

hole injection barrier is shifted to lower energies at the PNA/ferrocene interface. This 

shift was explained with a molecular orbital reconfiguration through the presence of the 

ferrocene terminus. The further investigation of the dependence of the electronic structure 

of PNA SAMs, based on their orientation, showed that incomplete films containing flat 

lying molecules can have a significant impact on the charge injection barriers. The close 

proximity of the nucleobases to the Au surface offers new ways for charge transfer 

between the substrate and the PNA molecule through its nitrogen sites, leading to a 

lowering of the hole injection barrier at the interface. 
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The TPP arrays were formed by depositing AgNO3 on the Au substrate prior to 

TPP incubation using the electrospray technique. The interaction of AgNO3 with the TPP 

promoted the formation of an interconnected thin film forming a network on the Au 

substrate. The line-up at the Au/TPP interface without AgNO3 exposure showed an 

interface dipole formation with injection barriers that would potentially obstruct charge 

injection into the molecule. However, the addition of AgNO3 to the process resulted in 

the formation of fine structures, and lead to a lower hole injection barrier due to an 

induced dipole, which would ultimately improve charge transfer between the substrate 

and the thin film. A separate thiolated TPP derivative was used to form SAMs on a gold 

substrate. The SAM exhibited an even lower injection barrier than the mentioned TPP 

thin film with AgNO3 exposure, leading to the conclusion that a mix of both TPP 

derivatives could potentially lead to a SAM with long range interconnectivity and a low 

hole injection barrier towards the substrate.
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CHAPTER 1: INTRODUCTION AND MOTIVATION 

 

1.1: Motivation and Outline of this Dissertation 

As modern day electronic devices continue to shrink in their size, it is evident that 

their physical limits will soon be reached. Single electron transport devices based on 

organic molecules, such as conjugated oligomers or aromatic molecules, present a 

promising alternative to conventional devices. Usually, fabricating a solid structure with 

features below 10 nm presents a technological challenge. Simple molecules can, 

however, be easily self-assembled into predefined patterns and their size lies within the 

mentioned limits. Organic molecules allow for easy integration of functional groups and 

the availability of a large range of synthetic procedures enables the rational design and 

assembly of molecular electronic devices. In the recent past a wide range of organic 

semiconductors was the focus of several studies discussing their potential for the use in 

transistors, photovoltaic cells and electroluminescent devices [1, 2]. The properties of 

these organic semiconductors are often compared to those of regular inorganic 

semiconductors. Just as for inorganic semiconductors, the mechanism behind the energy 

level alignment at organic/metal interfaces has to be understood in order to improve the 

performance of such organic devices. 

The contact between the self-assembled molecule and the metal electrode is 

crucial to electron and hole transport through a single molecule. Not only is this apparent 
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in contact resistance, but also in the nature of the molecular device, depending on the 

degree of molecular orbital interaction between the molecule and the electrode. The 

electronic interaction between the molecule and the surface determines the charge 

transport across the interface. Therefore, it is important to understand and control the 

electronic interaction between a single molecule and the metal substrate in order to be 

able to design electronic devices based on organic molecules. A number of theoretical 

and experimental studies on the electronic structure at the interface of thiolated SAMs 

were published in the past, but experimental data on larger molecules containing thiol 

groups, however, is still rare. 

This dissertation focuses on the characterization of the electronic structure of two 

types of organic molecules: peptide nucleic acid (PNA) based single strands containing 

two kinds of nucleobases and two derivatives of tetraphenylporphyrin (TPP). 

The first part of the dissertation addresses the formation and characterization of 

PNA SAMs. The PNA molecules were based on a single strand with 7 backbone 

segments and a cysteine head-group, which allowed for self-assembly through its thiol 

group. Experimental data regarding the electronic structure was collected on the PNA 

SAMs through photoemission spectroscopy (PES) using a selection of PNA strands with 

different nucleobases attached to the backbone. The experiments showed that the type of 

nucleobase present in the SAM has a significant impact on the hole injection barrier, 

while strand orientation can additionally influence the barrier as well. 

The second part of this work focuses on the electronic structure of tetraphenyl-

porphyrin derivatives, motivated by the potential application of tetraphenylporphyrins for 

the formation of long range conductive molecular networks. For this study, two different 
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derivatives of TPP were used, one containing thiol groups (TPP-S) and the other 

containing nitrogen atoms (TPP-CN) at the peripheral positions of the TPP molecule. The 

goal in these experiments was to investigate the self-assembly of thiolated porphyrins 

(TPP-S) and the possibility of a formation of an interconnected network of TPP-CN 

molecules. Eventually, the information extracted from these experiments could be used 

for the design of molecular wires and arrays formed by self-assembly of thiolated TPP 

with nitrogen groups at its peripheral positions. 

1.2: Charge Transfer and Electronic Structure of Organic Materials 

Electronic devices that are based on organic materials are potential alternatives to 

present standard devices in the integrated circuit industry, as they introduce benefits in 

fabrication, mechanism and cost [1]. The idea of molecular electronics has received an 

increase in interest in recent years due to advancements of methods for characterizing and 

manipulating single molecules. The field effect in organic semiconductors was already 

described in the 1970s [3-5], but the first organic field effect transistors (OFETs) were 

developed only much later in 1987 [6]. Devices based on organic materials typically 

include the adsorption of molecules on metallic surfaces and researchers focus on several 

processes connected with this deposition method. In particular, the preparation and 

characterization of monolayer assemblies of oriented organic molecules gained a lot of 

attention in the recent past. 

Understanding the electronic structure of metal/organic interfaces is of high 

interest as a proper adjustment of the interfacial electronic structure is essential to 

increase the efficiency of charge injection from the metal substrate to the organic SAM. 

In general, electrons and holes are injected from metal contacts into the organic material 
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resulting in a charge flow through the device. Efficient injection, however, can only be 

achieved, if the charge injection barriers at the interface of metal and organic material are 

small [7]. In this context, charge transfer between the organic molecule and the metal 

substrate, the actual interaction of the molecular levels of the organic material with the 

continuum of states in the metal [8], the intramolecular alteration of the molecular levels 

prompted by the change of electrostatic potential in the organic material itself [9], and the 

energy barrier and energy level alignment at the interface [10], are of great importance. 

All these processes are interface related and are evident in the transport 

characteristics of the investigated organic device. They determine the energy and 

character of the molecular orbitals, which are responsible for charge transfer through the 

organic material, and define the electronic structure at the metal/molecule interface. 

Although a wide range of techniques like Langmuir-Blodgett [11, 12], spin-

coating [13, 14] and vapor deposition [15, 16] can be applied in order to deposit organic 

molecules on substrates, most of the molecular devices based on organic molecules 

involve the adsorption of these molecules onto metal surfaces through their head-groups. 

The most common combination for the adsorption of molecules on surfaces is the one of 

gold as the metal substrate and thiolated sulfur as the attachment group on the molecule. 

The deposition of thiols on a gold surface allows for a highly ordered assembly of 

molecules on the surface without any external input and a variety of functional groups 

can be incorporated into the thin film that way. The resulting film is commonly called a 

self-assembled monolayer (SAM) and by employing this technique, a wide range of thin 

films with an ordered arrangement can be formed [17-20]. 
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CHAPTER 2: FUNDAMENTALS OF ORGANIC SELF-ASSEMBLED 

MONOLAYERS 

 

Peptide nucleic acids (PNA) and tetraphenylporphyrins (TPP) represent a group 

of versatile biomolecular templates as they offer means for easy attachment of 

functionalized groups. PNA is a synthetic alternative to DNA and shows superior 

bonding characteristics and thermal stability. With such, it can likely be used in 

biosensors and organic circuits. TPP is a potential candidate for light-harvesting 

applications and the formation of molecular wires and networks for organic devices. 

Equipped with the proper functional groups, these biomolecules can easily be integrated 

in self-assembled monolayers, laying the foundation for the development of new organic 

devices and sensors. The fundamentals of self-assembly of organic monolayers and its 

mechanism will therefore be discussed in this chapter. In addition, further insight will be 

given into the structure and characteristics of the employed PNA and TPP molecules. 

2.1: Self-Assembly of Monolayers 

Self-assembled monolayers (SAM) have become a common method in the area of 

microelectronics, nanopatterning and biomaterials as well as many more research 

applications [18]. Self-assembly is an important fabrication technique in nanoscale 

science and it helps overcoming the limits set by directed assembly. The main mechanism 
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of self-assembly is the capability to form ordered molecular assemblies through 

adsorption of an active surfactant on a solid surface [18]. The organized layer formed by 

self-assembly usually consists of molecules in which one end of the molecule, called the 

‘head-group’, shows a specific, reversible affinity towards the substrate (Figure 1). 

Additionally, these molecules often contain a ‘tail-group’ which consists of a functional 

group at the terminal end, opposite the head-group. Both groups are usually connected 

through a chain or backbone which is the main structure of the molecule and provides 

means of charge transfer between the head and the tail of the molecule. The self-

assembly process can be achieved by the chemisorption of the hydrophilic head-groups 

onto a substrate by either evaporating the material or incubating the substrate in a 

solution containing the organic molecules. 

 

Figure 1: Diagram of an ideal SAM of alkanethiolates formed on a gold surface with 

highlighted anatomy and characteristics. (Reprinted (adapted) with permission from [17]. 

Copyright 2005 American Chemical Society) 

In directed assembly, external manipulation is usually used to arrange atoms and 

molecules in a precise pattern. Therefore, a high degree of control over where the 

individual atoms or molecules are placed is needed. Photolithography and electron beam 
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lithography are usually used for two-dimensional directed assembly, however it is not 

possible to achieve assembly on a molecular scale with these tools. Atomic force 

microscopy (AFM) and scanning tunneling microscopy (STM) are other means of 

positional assembly which allow for single molecule arrangement, but result in a very 

time consuming process, if larger patterns have to be assembled. Self-assembly is an 

important alternative to the above mentioned techniques as it offers the ability to arrange 

single molecules on the nanometer scale in less time than with the use of AFM or STM. 

Self-assembly is a process that can easily be found in biology, where 

supramolecular chemistry shows how molecules can merge to form new noncovalent 

structures [21-23]. The self-assembly process was already discovered in 1946 by Bigelow 

et al. [18, 24-26], where it was reported that some types of polar organic molecules 

adsorbed onto polished solid surfaces in non-polar solvents and formed well-oriented 

monolayers. It was then also concluded that the monolayer formation was a reversible 

adsorption from solution and was not just an accumulation of insoluble films floating on 

top of the solvent, like in the Langmuir-Blodgett deposition technique [26]. The process 

of self-assembly was already discovered in the 1940s, but it took several decades before 

studies on silane monolayers [27, 28] and thiol self-assembly on gold [29] made it a 

popular tool in modern surface science. 

Functionalized long-chain hydrocarbons are usually employed for the formation 

of self-assembled monolayers and larger supramolecular structures can be achieved with 

their employment [18]. SAMs can be assembled by a wide range of reactions, like van 

der Waals interactions (as in long-chain aliphatics for example), chemisorption of thiols 

on coinage metals, chemisorption of trichlorosilanes and trialkoxysilanes on glass and 
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silicon, carboxylic acids on metal oxides, or H bonding in smaller structures [30]. 

Selecting the appropriate type of head-group depends on the application of the SAM. 

Long-chain n-alkanoic acids can spontaneously adsorb on a metal surface through 

an acid-base reactions. This process leads to the creation of a salt at the interface which 

forms between the carboxylate anion and the metal. The adsorption of these types of 

acids was observed on surfaces like aluminum oxide, silver oxide, and copper oxide [18]. 

In order to form SAMs using trichlorosilanes and trialkoxysilanes, the surface has 

to be hydroxylated. Silane SAMs can be formed on a variety of surfaces like glass, 

quartz, silicon, mica, aluminium and gold [18]. The molecules adsorb on these surfaces 

through the formation of polysiloxane, which connect to the silanol groups (-SiOH) on 

the surface via Si-O-Si bonds [18]. However, it is difficult to acquire reproducible films 

using this method as the SAM formation strongly varies with the amount of water that is 

present in the solution and the degree of hydrolysis of the substrate. 

2.1.1: Thiol Based Self-Assembly on Metals 

Atoms like sulfur, phosphine, and selenium have a strong affinity for various 

metals including gold, silver, platinum, iron, copper and others [18], and compounds 

containing these atoms adsorb from solution onto the metal surface forming stable 

monolayers. Terminally functionalized thiol-based (-SH-) SAMs readily form on gold. 

They present an effective method for precise chemical modification of surfaces [31, 32] 

and are the most commonly studied systems. The adsorption of these sulfur based 

molecules on gold surfaces represents a chemisorption process with exceptional and 

significant properties. The bond between gold and sulfur is relatively strong, displaying a 

bond strength of approximately 44 kcal/mol [32]. 
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It is surprising that sulfides and disulfides form strong chemisorption bonds on 

gold [33], given the inertness of this metal toward the chemisorption of most polar 

organic molecules. Moreover, the two-dimensional films formed through this process 

assemble into organized structures and even seem to resemble single layer crystalline 

phases [34].  The inertness of gold and strong affinity towards sulfides [34] allow for 

SAM formation in the presence of many other functional groups [30] on a surface that 

resists oxidation and atmospheric contamination fairly well [35]. 

The actual mechanism behind the adsorption of sulfides on gold is still being 

discussed, but the most prominent concept is the oxidative addition of the S-H bond to 

the gold surface, leading to a bond between the thiol and the gold, resulting in a reductive 

elimination of hydrogen [18, 36]: 

 RS-H + Au
0
 → RS-Au + ½ H2 (1) 

For the bond between disulfides and gold, it was proposed that an intermediate 

step exists, where the disulfide is bound to only one gold atom and then the S-S bond 

breaks, leading to two S-Au bonds: 

 RS-SR + 2 Au
0
 → 2 (RS-Au) (2) 

Once the monolayer forms, no differences between the sulfide and disulfide 

SAMs can be observed by surface analysis techniques [30, 34, 37, 38]. 

Monolayers of alkane chains formed through thiol bonds with the gold surface 

usually exhibit hexagonal packing and their chains have a tilt of 30˚ from the surface 

normal [30, 32, 39], which maximizes the van der Waals interactions between the chains. 

The van der Waals interactions between the chains have a significant impact on the 
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monolayer when one considers the length of the chains present in the monolayer. It was 

concluded that longer chains usually result in a more structured monolayer due to the 

increased amount van der Waals interactions, while shorter ones lead to more disordered 

monolayers, as observed through ellipsometry and contact angle measurements [30, 39-

41]. 

It was determined through low-energy electron diffraction that the spacing of the 

alkane chains is approximately 5 Å [42]. This spacing leads to the conclusion that the 

sulfur atoms at the interface would have a similar spacing, which is larger than the van 

der Waals diameter of sulfur, and an interaction between neighboring sulfur atoms should 

not exist. 

However, X-ray diffraction studies showed that the actual distance between the 

sulfur atoms is as little as 2.2 Å [36]. The rather small distance between the sulfur atoms 

suggests that an interaction should occur, and that the sulfur atoms could exist as 

homodimers at the monolayer-gold interface, as shown in Figure 2. The model was 

further supported by studies employing thermal desorption spectroscopy (TDS), where it 

was found that alkanethiols desorb as dimers from a gold surface [43, 44]. 

Thiols can easily be used as functionalizing head-groups for larger and more 

complex organic molecules allowing for a formation of well-ordered monolayers through 

self-assembly. By employing thiols as the linker between the metal surface and the 

organic molecule, it is possible to achieve an arrangement of molecules at the surface 

with predictable spacing between the molecules. The molecules used for the self-

assembly can in general be tailored to match requirements regarding the size and 

electronic structure that is needed. 
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Figure 2: A homodimer formed by two sulfur atoms with a spacing of 2.2 Å exists at the 

interface while the alkane chains in the overlayer have a spacing of 5 Å. This model was 

proposed by Fenter et al. [36] in the past. 

 

Additionally, the head-groups can be modified by implementing more thiol 

groups and therefore allowing for stronger bonding to the surface. Linkers, like simple 

alkane chains, can also be embedded in the molecules if separation is required between 

the metal surface and the functionalized tail-group. The monolayer could even contain a 

multilayered system if several linkers and functionalized groups are used, providing 

biological sensors, electronic or optical circuits on a very small scale. 

2.2: Peptide Nucleic Acids 

Peptide nucleic acid (PNA) is an analogue to Deoxyribonucleic acid (DNA), 

which is a building block of life, carrying the genetic information of living organisms. 

DNA is an oligonucleotide and its central part, the backbone, is comprised of sugars and 

phosphate groups joined by ester bonds. It is not only the building block of life, but can 

also be used in biological sensors [45, 46] and potentially in electronic circuits [47-49]. 

While DNA is the carrier of genetic information, Ribonucleic acid (RNA), another 
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oligonucleotide, decodes the genetic information. Cellular organisms use messenger 

RNA in order to carry genetic information, which guides the synthesis of proteins. RNA 

can also be used in biological sensors and has, just like DNA, the potential to be used in 

organic microelectronic circuits. 

Since DNA and RNA can degrade by nucleases in vivo [50] or chemical or 

enzymatic hydrolysis [51, 52], a large number of oligonucleotide analogues were 

synthesized in past decades, which bind specifically to DNA and RNA and could form 

the basis for gene-targeted drugs and sensors. The biological stability of oligonucleotides 

can generally be modified chemically, but the binding affinity and specificity to DNA 

and RNA has to be kept intact beyond this modification. The majority of the investigated 

analogues shows slight modifications in the structure and still closely resembles natural 

oligonucleotides. There were only a few efforts made in which the backbone of the 

natural oligonucleotide was drastically altered, resulting in an oligonucleotide with 

improved characteristics. One of these analogues is PNA, which was first described by 

Nielsen at al. in 1991 [53]. It is a DNA analogue in which the deoxyribose phosphate 

backbone has been substituted with a pseudo peptide backbone consisting of repeating N-

(2-aminoethyl)glycine units, as seen in Figure 3. 

The structure of PNA brings several benefits with it. It is a neutral DNA mimic, 

and as a result, electrostatic repulsion between PNA and the negatively charged DNA or 

RNA does not occur. Oligomers containing modified amino acid building blocks can 

generally be assembled by well-established solid phase peptide synthesis protocols, 

making PNA in milligram to gram quantities readily available, and providing an 

alternative to DNA obtained through the common polymerase chain reaction. Reporter 
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groups, intercalators, metal binders and other molecules can be easily attached either 

through the N-terminal amino group or the C-terminal carboxylic acid of the PNA 

backbone. PNA also displays a high biostability since it is neither degraded by nucleases 

nor proteases. The base spacing of PNAs matches the spacing of DNAs, preserving the 

sequence-specific binding of nucleic acid oligomers as well [54-56]. 

 

 

Figure 3: The backbone structure of DNA (left) and PNA (right) 

 

As a result, PNA is a synthetic DNA analogue with properties exceeding those of 

natural oligonucleotides. A pentadecamer PNA-DNA duplex exhibits a melting 

temperature (Tm) of 69.5°C [50], while the double strand of DNA-DNA consisting of the 

same nucleobase sequence, only exhibits a Tm of 53.3°C, demonstrating the increased 

thermal stability of duplexes containing PNA. PNA-RNA duplexes show even somewhat 

higher thermal stabilities than found for PNA-DNA duplexes [57]. This increased thermal 

stability, which was estimated as 1°C per base pair, is mainly attributed to the 

aforementioned lack of electrostatic repulsion between the strands [57]. The highest 
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thermal stability can be achieved for PNA-PNA duplexes, as shown in the case of 

complementary PNA decamers containing all four nucleobases which form antiparallel 

duplexes [58]. As shown in these experiments, a PNA-PNA decamer duplex has a Tm of 

67°C, while a PNA-DNA duplex only displays a melting point of 51°C and DNA-DNA 

duplexes melt at 33.5°C. Another important characteristic of PNA is the generally higher 

sequence discrimination which can be easily observed for PNA-DNA mismatches. A 

single mismatch in a PNA-DNA decamer results in a Tm decrease of 8-20°C, significantly 

more than for DNA-DNA decamers [50]. With these properties in mind, PNA has 

evidently a great potential in the fields of molecular biology, diagnostics, nanoelectronics 

and other related fields. 

Several studies were published in the recent past investigating the charge transfer 

in self-assembled PNA single strand and duplex monolayers employing electrochemical 

measurements [59-61]. As of now however, no further insight was achieved regarding the 

detailed electronic structure of PNA. The use of PES in the experiments presented here as 

a means of characterization allows a full description of the electronic structure of self-

assembled PNA monolayers. 

For this purpose, 7mers of PNA molecules were used in this study. The PNA 

molecules varied as some of the molecules did not have any nucleobases attached while 

others contained 7 thymine or 7 adenine nucleobases. This differentiation helped to 

answer the question as to how much, if at all, the nucleobase type affects the electronic 

structure of a self-assembled PNA monolayer. The self-assembly was achieved through 

the employment of a cysteine head-group on all PNA molecules, which led to a 

chemisorption of the thiol terminus on the Au substrate. PNA molecules without cysteine 
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head-groups were explored as well in order to investigate the impact of PNA orientation 

on the electronic structure. PNA strands with ferrocene tail-groups were studied in 

separate experiments, giving a more complete picture of the electronic structure of PNA 

strands that are commonly used in electrochemistry experiments. The characterization of 

the electronic structure of the PNA strands can be a very helpful tool if the PNA 

molecules would be employed in microelectronic circuits in the future, offering an insight 

into the charge transfer characteristics and charge injection barriers. 

The variation of PNA molecules and the employment of PES for their 

characterization allowed for a detailed depiction of the electronic structure of PNA as a 

function of nucleobase type, tail-group presence and strand orientation. 

2.3: Tetraphenylporphyrin 

Tetraphenylporphyrin (TPP) is a synthetic heterocyclic compound which 

resembles naturally occurring porphyrins, like heme and chlorophyll. TPP is ideal for the 

use in self-assembly of monolayers, as it offers a wide range of variations that are 

commercially available, or can be fabricated through well-established synthesis processes 

[62-64]. 

The core of TPP, the porphyrin nucleus, consists of four rings of the pyrrole type, 

which are joined by four methine bridges resulting in a macrocycle. Küster [65] was the 

first to propose this cyclic tetrapyrrole structure in 1912, although it was believed at that 

time that such a ring would not be stable. Fischer, also called the father of contemporary 

porphyrin chemistry, was originally opposed to the idea of a cyclic tetrapyrrole structure, 

as suggested by Küster, but did in the end present the final proof for the existence of the 

described structure through the synthesis of protoporphyrin in 1929 [66]. The aromatic 
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ring formation of the porphyrin gives it rigidity and can be simply customized by 

introducing different groups on the periphery of the porphyrin and incorporating 

substituents in the meso position during the synthesis, in order to vary the molecule’s size 

and its properties. Although TPP is a p-type organic semiconductor, its conduction type 

can be easily changed to n-type by peripheral substitution [67]. By employing functional 

groups in these positions, an interaction between neighboring molecules can be 

promoted. The interaction can be realized by several means, including metal coordination 

of cyano groups or carboxylic acids, hydrogen bonding of amides or carboxylic acids, or 

ionic interactions through charged functional groups. Additionally, linkers can be 

attached at the meso positions of the TPP allowing for attachment of thiols, sulfides or 

disulfides, which would present a way to attach the TPP molecule to a gold surface. 

Metalloporphyrins contain a metal atom centered in the poprhyrin nucleus and are 

commonly found in nature as active centers of enzymes. An example would be 

hemethiolate proteins which contain an iron-poprhyrin and also an axial thiolate ligand at 

its center, which serves as the active site [68]. Metalloporhyrins have the potential to be 

used in various technological applications, such as transistor-based sensors for organic 

molecules [69], organic solar cells [67], or as a sensitizer in dye-based solar cells [70].  

In recent years, ordered monolayers of porphyrins and metalloporphyrins on 

metal and single-crystal surfaces have gained significance in fundamental surface science 

and their geometric and electronic structure was the topic of several studies [71-73]. 

TPP derivatives containing thiol groups are expected to readily form SAMs on 

metal surfaces and a long range of porphyrins and metalloporphyrins were assembled on 

gold to study their electrochemical properties in the past [74-80]. SAMs of wire-like 
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molecules with porphyrin tailgroups assembled on gold were the topic of several studies 

[76, 80-88], investigating the possibility of using porphyrins for the formation of self-

assembled networks. In many of these cases, thiols were used as the anchor group, 

allowing for a chemical bond with the gold surface.  

In the studies presented here, two separate TPP derivatives were investigated. The 

two contained different kinds of linkers attached to the peripheral positions of the TPP 

molecule. TPP molecules with thiophenol substituents were used (named TPP-S) in the 

first set of experiments in order to investigate the self-assembly on a gold surface, while 

TPP molecules with nitrogen atoms linked to the phenyl groups through a carbon bridge 

(named TPP-CN) were employed to study the formation of multiporphyrin arrays. Both 

TPP derivatives are shown in detail in Figure 4. 

The goal of these studies was the formation of self-assembled molecular 

structures consisting of porphyrin arrays. The earlier mentioned interaction between 

neighboring molecules through functionalized groups at the periphery of the TPP 

molecule can be used in order to increase the strength, stability and arrangement in a self-

assembled monolayer. The obtained results can be used as a starting point for further 

investigations of molecular wires and multiporphyrin dendrimers, which are among the 

main components in the evolving field of molecular electronics. 

The wires can be viewed as conjugated molecules that form one-dimensional 

electronic connectors between molecular devices, such as single electron transistors and 

molecular switches.  The formation of larger nanotubes with TPP is a proven concept and 

results in stable and reproducible structures [89]. For this purpose, different functional 

groups can be attached to the TPP, which results in oppositely charged porphyrins that 
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arrange into larger structures through ionic self-assembly [90]. The same approach can be 

used for molecular wire formation and was employed here, were silver atoms promoted 

the formation of multiporphyrin arrays through the ionic self-assembly between TPP-CN 

molecules. Multiporphyrin dedrimers are well-defined macromolecules with a treelike 

array of branch units [91, 92]. The dendrimers can serve as an entire two-dimensional 

network with the molecular devices (porphyrins with different functional groups) 

embedded within them. 

 

Figure 4: TPP derivatives used in the experiments. TPP-CN is shown on the left, while 

TPP-S is shown on the right. 

 

Dendrimeric architectures have attracted a growing interest in the field of 

artificial light-harvesting systems due to the structural similarity to natural antenna 
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complexes. The natural photosynthetic process is a very elaborate nanobiological system, 

converting solar energy into an electrochemical potential or chemical energy [93, 94]. 

The fabrication and investigation of multiporphyrin arrays could help understanding the 

light-harvesting processes [95-97] since porphyrins are related to chlorophyll, but are 

more stable and accessible. Synthetic methods used in chemistry usually limit the 

preparation of arrays of porphyrins with well-defined geometries to a low number (10 or 

less) and new novel synthetic ways to form large multiporphyrin arrays had to be 

established in the recent past [79, 84, 98-100]. 

The approach chosen here for an assembly of porphyrin molecules on gold 

surfaces involves the exposure of the TPP-CN molecules to silver nitrate (AgNO3). It is 

expected that the silver ions act as a linker through a bond with the nitrogen atoms 

positioned at the peripheral positions of the TPP-CN molecule while also providing an 

electric connection between neighboring molecules. The interaction should lead to a self-

assembled multiporphyrin array with a long-range coordination. Such an array can 

potentially be used as a molecular wire for charge transport or as a light-harvesting 

antenna. In combination with porphyrin molecules with thiol groups at their peripheral 

positions, one could fabricate an array that does not only allow for charge transfer 

between molecules but also to the substrate itself. The main advantage of an array formed 

with this technique is that no complicated synthesis has to be performed in order to 

achieve multiphorphyrin arrays. The formation takes place directly on the substrate 

surface and is driven by self-assembly processes that result in extremely well-ordered 

arrays with predictable structures within a short amount of time.
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CHAPTER 3: EXPERIMENTAL METHODOLOGY 

 

The SAMs investigated in this work were formed by incubating clean Au samples 

in solutions containing the various biomolecules. The protocol followed during the 

incubation plays a relevant role for SAM quality and the fundamentals of the incubation 

procedure will be explained in this chapter. In addition to regular sample incubation, in 

situ electrospray deposition was employed during the TPP-CN related research. This 

technique allowed for the deposition of a homogenous AgNO3 film on clean Au 

substrates, which is a prerequisite for TPP-CN array formation. In this context, the basics 

of electrospray deposition will be discussed in detail. The electronic structures of the 

formed SAMs were mainly characterized with photoemission spectroscopy (PES) and 

therefore theory of PES, which includes X-ray photoemission spectroscopy (XPS) and 

Ultraviolet photoemission spectroscopy (UPS), represents the main portion of this 

chapter. 

3.1: Incubation Procedure 

Kinetic studies showed in the past that during an adsorption of alkanethiols on Au 

surfaces two kinetic processes can be observed [18]. In the first few minutes, the 

alkanethiol based SAM forms quickly on the surface, reaching about 80-90% of its 

maximum thickness, and the molecules show contact angles that are close to their 
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expected limits, yet are not fully reached and a portion of the molecules lies down on the 

substrate. However, this monolayer is disordered and the final values for thickness and 

contact angle are reached after several more hours of incubation [30], where a well-

ordered monolayer can be observed, resembling a crystalline or semicrystalline structure 

[30, 38]. During the second step, residual hydrocarbon contaminants are expelled from 

the surface [101], solvent is removed from the monolayer, and defects are reduced, while 

packing is enhanced due to lateral diffusion of the molecules [30]. The hydrophilic head-

groups finally arrange in a tight pattern at the surface, while the hydrophobic tail-groups 

assemble far from the substrate. The molecules adsorb readily on the surface as they 

lower the surface free-energy of the substrate
 
and the formed monolayer stays stable due 

to the strong chemisorption of the head-groups. 

The thiol concentration has a big influence on the duration of the first described 

step. It was shown that while a concentration of 1 mM led to a completion of the first step 

after approximately 1 minute, it took over 100 minutes at a concentration of 1 μM [102]. 

The second step on the other hand is concentration independent and can be defined as a 

surface crystallization process. During this process the alkyl chains leave the disordered 

state and recombine in unit cells, forming a two-dimensional crystal. 

It can be concluded that the kinetics of the first step are directed by the interaction 

and reaction between the metal surface and the head-group of the investigated molecule. 

The activation energy in this case might be dependent on the electron density of the 

adsorbing sulfur. The second step however seems to correlate with chain disorder, the 

surface mobility of the chains, and the different encountered chain-chain interactions, for 

example van der Waals and dipole-dipole interactions. It appears that these interactions 
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also help lower the time duration of the second step, as longer chains show faster 

kinetics, which is attributed to the increased amount of van der Waals interactions 

between the chains [30]. 

 

3.2: Fundamentals of Electrospray  

Although electrospray was not the main means of thin film deposition in this 

study, it was used for the in situ deposition of AgNO3 during the TPP-CN related 

experiments. Since it is a rather unique deposition technique, a quick review will be given 

here in order to explain the physical principle behind it. 

The electrospray technique has its origin in electrospray ionization mass 

spectrometry (ESIMS), which was developed by Fenn and co-workers in the 1980s [103]. 

ESIMS allows for characterization of large molecules through the analysis of the mass to 

charge ratio of the investigated material. Therefore the molecules are usually put in their 

gas phase allowing for easier ionization and charge separation. 

By combining the basic concept of ESIMS, the electrospray method, with a PES 

setup, it allows for the deposition of a wide range of materials, like polymers [104-107], 

biomolecules [108], nanocrystalline materials [109, 110], and living cells and organisms 

[111] without exposure to the ambient atmosphere. The advantage of being able to 

deposit thin films from solution in vacuum is the absence of contamination, which is 

essential for reliable photoemission spectroscopy measurements [112]. 

Figure 5 shows a schematic of the general electrospray process. The solution 

containing the particles that will be deposited on the substrate surface is usually prepared 

in ambient atmosphere and subsequently loaded into a syringe. The syringe has a 

capillary at its tip which is made of metal and allows for a high voltage to be applied 
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between the capillary and ground. Since the vacuum chamber and the substrate are 

grounded as well, the formed electric field extends from the capillary tip to the substrate.  

 

Figure 5: The principle of the electrospray process. The high voltage applied between the 

capillary and the entrance to the vacuum chamber creates a strong electric field that 

ionizes the material in the solution. Once droplets leave the capillary, Coulomb 

explosions separate the solvent from the ionized particles and the solvent is removed in 

the pumping stages. The material then enters the vacuum chamber and is deposited on the 

substrate, resulting in a thin film. 

The particles are then nebulized from the syringe, as the electric field accelerates 

the ionized molecules through the capillary. The solution is then ejected from the 

capillary and forms a Taylor-cone at its tip [113], resulting in a plume of charged 

droplets. As a result an aerosol is formed, which contains solvent molecules as well as 

ionized particles and is drawn to the intake orifice leading to the vacuum chamber. The 

droplets evaporate during flight and the solvent molecules are extracted in the differential 
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pumping stages while the charged droplets shrink in size. Eventually, the Coulombic 

forces within the droplets become strong enough to overcome the surface tension of the 

droplet and lead to so called ‘Coulomb explosions’. The Coulomb explosions separate the 

ionized particles from the solvent, resulting in a beam of molecules that are deposited on 

the substrate and form a thin film. 

3.3: Photoemission Spectroscopy 

The main method of analysis in the research presented here was photoemission 

spectroscopy (PES). In PES, a sample is exposed to radiation in order to investigate the 

properties of the atomic species contained in the sample, resulting in a characterization of 

the occupied states of the investigated solid or molecule. This technique is based on the 

photoelectric effect, which was first discovered in 1887 by Hertz [114] and after the 

experimental setup used by Hertz was later refined [115, 116], Einstein was able to 

describe the systematics behind it in 1905 [117]. It was in the 1950s, when Siegbahn and 

co-workers made use of the photoelectric effect in their high resolution photoelectron 

spectrometer [118-120], which in principle is based on the same setup that was used by 

Hertz. In the following years, the resolution of such systems was improved to below 1 

eV, allowing for the detection of chemical shifts in the electron binding energies, 

therefore giving it the name ‘ESCA’ (electron spectroscopy for chemical analysis) [118, 

121, 122].  

3.3.1: The Theory of Photoemission Spectroscopy 

In order to analyze a material with PES, a sample is exposed to monochromatic 

radiation from a gas-discharge lamp, an X-ray tube or a synchrotron-radiation source. 
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The incident photons are absorbed by electrons bound within the sample up to a depth of 

approximately 50 Å (if XPS is employed), liberating the electrons into unoccupied states. 

The excited electron can then be emitted into vacuum, if the electrons’ final state lies 

above the vacuum level of the material. The kinetic energy Ekin of the ejected electron is 

defined by Einstein’s photoelectric equation: 

  Bkin EhvE  (3) 

Here, hv is the photon excitation energy, EB is the binding energy of the electron 

in the sample and Φ is the work function of the investigated material. Figure 6 shows the 

relation between the energy distribution of the electrons of the investigated sample and a 

PES spectrum. The sample has core levels and a valence band with characteristic 

emissions (shown on the bottom left). If the sample is a metal, the valence band onset 

will coincide with the Fermi energy EF, as seen at the top of the energy distribution of the 

sample. The onset is separated from the vacuum level EVac by the work function Φ of the 

material. A photoelectron that is emitted from a core level with the binding energy EB, 

with reference to EF=0eV, will have a kinetic energy of Ekin after exiting the sample. By 

plotting the number of captured photoelectrons in vacuum vs. their energy an image of 

the energy distribution in the sample can be generated, where the Fermi edge, valence 

band emissions, core level emissions and secondary edge can be observed. 

The binding energy of the emitted photoelectrons recorded in the spectrum is 

directly related to the chemical environment within the sample from which they were 

ejected. Once a photon is adsorbed and excites an electron from its ground state to its 

final state above the vacuum level, the neutral atom in the sample becomes ionized, 

leaving behind a photo-generated hole. 
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The remaining electrons in the sample then relax, in order to screen the positive 

charges from each other (image charge screening), as the positive charge near the nucleus 

is energetically unfavorable. The photoemission process is approximately one magnitude 

slower than the relaxation process and as a result, photoemission spectroscopy is 

sensitive to such final state effects. Photoemission spectra display the binding energies of 

the ejected photoelectrons in their final state and an example of a typical XPS scan of a 

Cys-T7 monolayer with its individual emission peaks is shown in Figure 7. The weak 

valence band emissions of gold can be seen close to the Fermi edge (EB=0eV), while 

deeper core level emission features of gold (5p, 4f, 4d, and 4p), carbon (1s), nitrogen 

Figure 6: The energy levels in a solid sample and the electron distribution generated by 

photons at an energy hv, depicting the location of the Fermi edge, valence band, core 

levels and secondary edge in the recorded spectrum. 
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(1s), and oxygen (1s) can be seen at higher energies. The Au4f7/2 emission line at 84 eV 

is often used in PES for calibration purposes in order to achieve reliable results. The 

visible sloping background in the spectrum is created by secondary electrons, which are 

inelastically scattered photoelectrons that have lost random amounts of energy through 

collisions.  

 

Figure 7: An XP-spectrum of a Cys-T7 SAM depicting the various emissions features 

 

While core level emissions are usually recorded using XPS, UPS is used to 

measure valence band emissions, or in the case of organic materials, highest occupied 

molecular orbital (HOMO) emissions and the work function of the sample. It is being 

frequently employed for the studies of electronic structures of inorganic interfaces and is 

a complementary measurement technique for XPS [123]. 

In UPS, electrons close to the Fermi level are excited by UV light and released 

into vacuum. The emitted UV photons have a lower energy and but a finer energy 
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resolution, due to the narrower line width of He-emissions. This resolution is essential to 

record the detailed structure of valence band emission features. Only core levels with low 

binding energy, also called ‘shallow’ core levels can be excited with UPS. Although XPS 

can also be used for investigations of the valence band, its resolution is worse by more 

than one magnitude [124]. 

An UP-spectrum of sputter cleaned gold taken with a photon energy of 

hv=21.2182 eV is shown in Figure 8. The Au5d valence band emissions of gold can be 

seen at 2-7 eV above the Fermi edge, followed by a sloping background, as already 

observed in the XP spectrum above. The final feature of UP-spectra is the sharp cutoff 

seen on the left in Figure 8, called the secondary edge, and relates to the work function of 

the sample.  

By employing equation (3), the value of the work function can be calculated by 

using the photon energy of hv = 21.2182 eV and the binding energy of the onset, which is 

equivalent to the intercept of the edge with the energy axis at zero intensity. Additionally, 

a value of 0.1 eV is added to the calculated work function in order to account for the 

analyzer broadening of the PES system. 

If an organic layer is deposited onto the sample, the UP-spectrum changes and in 

this case the new onset at high energy corresponds to the emission from the highest 

occupied molecular orbital (HOMO) of the organic molecule and the low energy cutoff 

will display the work function of the deposited overlayer. 

Using a combination of XPS and UPS during a multi-step deposition sequence of 

an organic layer, the transition of the substrate work function and electronic structure to 
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that of the overlayer can be followed. This enables the detailed characterization of the 

investigated interface. 

 

Figure 8: A typical UP-spectrum of sputter cleaned Au showing the work function onset, 

the valence band emissions and the Fermi edge 

 

It should be noted that the ultraviolet radiation impinging on a sample during an 

UPS experiment can result in sample charging or even photochemical modifications of 

the surface. While sample charging has a temporary effect on the work function of the 

sample, a photochemical reaction will change the work function permanently. In order to 

determine if the work function of a sample was affected by charging or a surface 

modification occurred, low intensity XPS (LIXPS) was employed during the 

measurements as well. LIXPS was specifically developed for this purpose and first used 

in order to determine the true work function of an environmentally contaminated ITO 
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surface [125]. During LIXPS, the X-ray gun is operated in the low energetic stand-by 

mode, which still allows the measurement of the secondary edge, but does not have 

enough intensity to resolve core level emission features. LIXPS is usually used prior to 

an UPS measurement and due to its much lower photon flux, no significant work function 

change occurs within the short amount of time needed for a measurement. Hence the 

correct value of the work function can be measured. Once the sample is exposed to the 

magnitudes higher photon intensity of radiation during an UPS measurement and 

charging or a photochemical modification occurs, these can immediately be observed 

through a work function shift compared to the initial LIXPS measurement. LIXPS work 

function values with Kelvin probe measurements [126] show good agreement. This 

demonstrates that LIXPS yields work function values unaffected by radiation induced 

effects. 

A second LIXPS measurement is usually also performed after UPS 

measurements. This helps distinguishing between sample charging and photochemical 

changes on the surface. If sample charging is present, the secondary edge should shift 

temporarily during the UPS measurements and should revert back after a waiting-period. 

In the case of a photochemical surface modification however, the secondary edge should 

shift permanently, i.e. the second LIXPS measurement should be in agreement with the 

secondary edge from the UPS measurement. Figure 9 shows the common measurement 

sequence on a Cys-T7 monolayer, demonstrating a charge related shift encountered with 

UPS. 
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Figure 9: The secondary edge as measured on a Cys-T7 monolayer with LIXPS and 

UPS. Due to the lower radiation intensity, the initial LIXPS measurement allows for a 

determination of the secondary edge without having an effect on the work function of the 

sample. UPS can result in charging of the sample, seen here as a shift of the secondary 

edge, and the reversion of the secandary edge position to its initial state can be observed 

with subsequent LIXPS measurements. 

3.3.2: Dipole Formation at Metal-Organic Interfaces 

The understanding of the carrier injection process between electrodes and organic 

layers in contact is essential for the enhancement of the performance of organic devices. 

In the past, this mechanism was characterized by estimating the electronic structure at 

metal/organic interfaces. It was assumed that the organic layer and the metal electrode 

have a common vacuum level and the electronic states would align according to the work 

functions of both materials, as shown in Figure 10. 
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However, it was shown in the past that the vacuum level cannot be used as the 

energy reference at such interfaces, as finite vacuum level shifts were observed [127-

130]. The observed shifts are a result of the formation of an electronic dipole at the 

metal/organic interface. In this case the location of the molecular levels with respect to 

the Fermi level of the metallic substrate differs from the vacuum level alignment. 

 

Figure 10: Energy diagrams at a metal/organic interface. The case of Fermi level 

alignment according to the Schottky-Mott rule is shown on the left, while the case of 

vacuum level alignment is shown in the middle. The actual observed alignment for 

metal/organic interfaces with the emerging dipole is shown on the right. 

The work function shift observed for thin films of organic molecules can have 

several origins [131-136], as shown in Figure 11. When no adsorbates are present at the 

surface of a metal, the tails of the electron wave functions extend into the vacuum region. 

The resulting charge separation causes an interface dipole (a), which has an effect on the 

work function of the clean metal substrate [135, 137]. If organic molecules are applied to 

the surfaces, they push the metal electrons back into the substrate bulk as a result of Pauli 

repulsion, lowering the electron density of the metal at the surface, and causing a 

permanent change of the work function. This effect is also called the ‘push-back’ effect, 

due to the electrons being driven back into the metal. 



33 

 

The organic molecules themselves can be polarized by an attractive surface 

potential (b), which also leads to a work function change [135, 138]. It was shown for Xe 

adsorbed on Cu and Ag, that the ‘push-back’ effect and polarization together can alter the 

work function by up to 1 eV [133, 137, 139]. This work function modification strongly 

depends on the adsorbate and is usually greater for organic molecules [140, 141]. 

A permanent or adsorption-induced dipole (c) that has a vertical component at the 

interface originating from the organic molecule can usually shift the vacuum level and 

consequently the work function of the sample. Additionally, charge transfer between the 

organic overlayer and the metal substrate (d), or the formation of a chemical bond (e), 

where the latter one is more common for reactive materials like Ti, In or Sn [142], has an 

influence on the work function as well. 

 

Figure 11: Origins of dipole formations at the substrate/monolayer interface. The push 

back of the electron tailing of the substrate by repulsion (a), polarization of the molecule 

through an attractive surface potential (b), permanent dipole as a result of the molecule 

orientation (c), charge transfer between monolayer and the substrate across the interface 

(d), chemical interaction leading to a chemically induced dipole (e). 

The use of XPS and UPS as complementary measurement techniques allows the 

investigation of the causes of dipole formation at metal/organic interfaces. 
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3.3.3: XPS-Based Estimation of Film Thickness 

Figure 12 displays the universal electron mean free path plotted as a function of 

kinetic energy (cf. ref [137]). The mean free path describes the distance that can be 

covered by an electron before its direction and/or energy is changed due to a collision 

with other particles. If the electron encounters too many collisions, its energy will drop to 

a level at which an escape from the solid is impossible. The kinetic energy range of 

interest, which lies between 10 and 2000 eV, has a mean free path of only a few Å, 

meaning that PES can only probe a very thin layer of the investigated sample. It should 

be noted that the mean free path is material-specific. While mean free paths for simple 

systems like thin films containing one species of atoms or simple compounds can be 

theoretically calculated, mean free paths of more complex systems, like organic 

monolayers, have to be identified empirically through experiments. 

The fact that photoelectrons can only travel a few Å without undergoing any 

collisions with other particles means that the sample has to be free from residual 

contaminants to allow for characterization of surface properties. On the other hand, this 

particular property can be used for the estimation of the overlayer film thickness. As the 

photoelectrons can only escape from a certain depth, substrate related emission peaks will 

decrease in intensity with increasing overlayer thickness, as the photoelectrons 

originating from the substrate encounter more collisions in the overlayer.  

Using the difference in intensity between substrate emission lines before and after 

a thin film deposition allows for an estimation of the overlayer thickness. The Lambert-

Beer law, 

 deII  0  (4) 



35 

 

where I is the intensity after the thin film deposition, I0 the intial intensity of the substrate 

emission line, α is the mean free path and d the overlayer thickness, describes the 

attenuation of the intensity. It should be noted that the calculated film thickness assumes 

a homogenously grown overlayer. Existing pinholes and other defects typically increase 

the substrate signal in comparison to the signal of the overlayer, which can result in an 

underestimated thickness of the deposited film. 

 

Figure 12: The universal electron mean free path as a function of the kinetic energy. A 

minimum of 2-5 Å for kinetic energies of 30-100 eV is noticeable. 

The intensity of the measured emission lines can also be used to determine the 

stoichiometry of the investigated sample. Changes in self-assembly conditions (duration, 

concentration, temperature, etc.) can often lead to deviations in surface coverage, and by 

evaluating the intensities of overlayer and substrate emission lines, the qualities of 

separate layers can be directly compared. 
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3.3.4: Chemical Shifts of Core-Level Binding Energies and Curve Fitting 

The chemical environment of an atom affects the energy of a photoemitted 

electron caused by a change in this local bonding environment. The difference in binding 

energy between the various chemical states of an atom is referred to as a ‘chemical shift’ 

and the direction of these shifts depends on the attractive potential of the nucleus and the 

repulsive interaction with the surrounding electrons in the material. 

Electrons emitted from the C1s orbital of a hydrocarbon exhibit a binding energy 

of approximately 285 eV, for example. C1s electrons originating from a C-N bond on the 

other hand have a binding energy of 286.4 eV while electrons emitted from a carbonyl 

group reveal a binding energy of approximately 288.4 eV [143], as shown in Figure 13. 

The presence of all three bond types in one compound leads to an intricate 

emission feature, and a more detailed scan of these features is often necessary to obtain 

accurate measurements. The resolution of the different peaks within the emission feature 

often requires peak-fitting. Peak-fitting usually starts by removing the inelastic 

background signal. Then, the separate peaks are fitted with Gaussian-Lorentzian profiles 

to determine peak positions and the corresponding full width at half-maximum (fwhm) 

[144]. 

The fitting procedure does not only allow for the determination of bond types 

present in the probed sample, but also for a quantitative analysis of the peak ratios. Since 

the number of emitted electrons is proportional to the amount of atoms within the sample, 

the ratio between bond types and atoms can be calculated using the area underneath the 

emission peaks. The area measured underneath the peak has to be multiplied by a factor 

that takes into account the photoionization cross section of the atoms present in the 
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sample [145]. Normalizing the peak areas that way allows for direct comparison and 

quantitative analysis. The comparison of the elemental composition to theoretical values 

as calculated from the known molecular composition is in general a good indicator for 

monolayer formation and purity. 

 

Figure 13: A high resolution scan of the C1s emission feature observed for a Cys-T7 

monolayer. The feature can be further resolved by fitting three curves into the signal 

depicting the different bonds encountered in the molecule. 

3.4: Experimental Setup 

Surface contamination can have a significant impact on the correct estimation of 

the electronic structure of the formed SAMs. While it can lead to a wrong assessment of 

the substrate work function and therefore incorrect interface dipoles, it can also result in 

oxidation of the functional groups, hindering SAM formation. This requires that the 

incubation of the prepared substrates is performed in a N2 atmosphere in a system-

attached glove box. The glove box was kept under a slight overpressure during sample 
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preparation in order to prevent contamination from the ambient environment. A 

diaphragm pump was used in series with filters that contained active carbon and Drierite 

drying agent in order to circulate the nitrogen from the glove box and reduce 

contamination from residual carbohydrates or water. The glove box was directly attached 

to the vacuum chamber to allow the transfer of the samples into the vacuum chamber 

without exposure to ambient atmosphere. 

3.4.1: Sample Preparation 

The substrates used in the presented studies were thin films of Au (100 nm thick), 

which was deposited on glass slides with an approximately 20 nm thick Ti adhesion layer 

and these substrates were used for all experiments, with the exception of two incubation 

experiments in which TPP-CN was deposited on Ag and on Si. The Au substrates were 

obtained from EMF Corp. (Ithaca, NY) while the Ag substrate was cut from a Ag foil 

purchased from Alfa Asesar and the Si substrate was cut from a hyperpure polycrystalline 

silicon wafer purchased from Wacker Polysilicon. The Au substrates and Si wafer were 

cut into approximately 1 cm x 1 cm pieces and rinsed with acetone, methanol, 

isopropanol and deionized water in order to remove residual contaminants.  The Ag foil 

was also cut into 1 cm x 1cm pieces and subsequently polished with a fine grain polishing 

cloth to remove the oxidation layer from the surface. All substrates were mounted in the 

same manner with mounting screws on stainless steel sample holders which were 

previously cleaned by sonication in methanol. Grounding of the substrates was ensured 

through direct contact with the mounting screws. After transfer into the UHV chamber, 

the substrate surface was sputtered with Ar
+
 ions in order to clean the Au substrate 

surface from ambient atmospheric contamination and remove the oxidation layer from 
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the Ag and Si substrate surface. For this purpose a SPECS IQE 11/35 ion source was 

employed which produces Ar
+
 ions with a kinetic energy of 5 keV, an emission current of 

10 mA, and an Ar pressure of ∼4 x 10
-5

 mbar. Detailed information on the incubation 

procedure for the various monolayers can be found in chapter 4 and chapter 5. 

3.4.2: PES System Setup 

The PES measurements were performed in a commercially available (SPECS 

Nano Analysis GmbH, Berlin, Germany) ultrahigh vacuum (UHV) multichamber system 

that consists of a fast entry lock, two preparation chambers, and an analysis chamber that 

is equipped  with XPS and UPS, as seen in Figure 14, and the base pressure of this 

system is approximately 2 x 10
-10

 mbar. The analysis chamber contains an X-ray source 

(SPECS XR50) which was used for XPS as well as LIXPS measurements and an UV 

source (SPECS UVS 10/35) for UPS measurements. A hemispherical energy analyzer 

(SPECS PHOIBOS 100) was employed for photoelectron detection during XPS and UPS 

measurements. 
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Figure 14: The multichamber  analysis system consisting of a transfer chamber, 

electrospray chamber and analysis chamber. 
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CHAPTER 4: ELECTRONIC STRUCTURE AT THE INTERFACE BETWEEN 

AU AND SELF-ASSEMBLED PEPTIDE NUCLEIC ACIDS
1
 

 

Peptide nucleic acid (PNA) is a versatile biomolecule due to the various bonding 

sites that can be employed for the attachment of functionalized groups and nucleobases. 

The self-assembly of cysteine appended PNA offers the ability to incorporate these 

molecules into various organic devices and biosensors. The characterization of the 

electronic structures of SAMs of cysteine attached 7-mers of PNA with adenine  

(Cys-A7), thymine (Cys-T7), and no bases (Cys-Bckb7), is the focus of the first part of 

this chapter. In the second part, two of the three investigated PNA strands were extended 

through the attachment of a ferrocene group at the tail of the PNA backbone (Cys-A7-Fc 

and Cys-T7-Fc), identical to PNA strands that are commonly used in electrochemical 

studies. Electrochemical measurements offer information on the charge transfer 

characteristics of PNA SAMs, and studying the electronic structure of these SAMs with 

XPS and UPS can provide clues in terms of what the limiting factors of charge transfer 

are. The chapter concludes by investigating the impact of the PNA strand orientation on 

the band line-up of the interface, as incomplete SAMs of low density can contain PNA 

strands that lie flat on the substrate surface and may offer additional sites for charge 

                                                 

1
 Table 1 and Figures 27 and 28 have been previously published [143] and are utilized 

with permission of the publisher. 
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transfer between the substrate and the molecule. To investigate this hypothesis, films of 

flat lying PNA molecules without a cysteine terminus (PNA-T7 and PNA-Bckb7) were 

studied and their electronic structure was characterized.  

4.1: Experimental 

The following experiments were designed to study of the interface between self-

assembled monolayers of various PNA strands and Au. First, the Au substrates were 

cleaned with organic solvents as described in 3.3.1 and inserted into the vacuum 

chamber. There the substrates were sputter cleaned and analyzed with XPS, LIXPS and 

UPS. Next, the gold samples were then incubated in PNA solutions with concentrations 

of 20 µM obtained from Dr. Catalina Achim from Carnegie Mellon University. The 

solutions were synthesized in her lab following protocols which are explained elsewhere 

[59, 60, 143]. The samples were incubated for 24h at an approximate temperature of 

37˚C. The incubation took place in a glove box attached to the vacuum chamber (see 

section 3.3). In order to achieve the temperature of 37˚C, the glove box was wrapped in 

aluminum foil while an incandescent light bulb was placed inside, stabilizing the 

temperature throughout the incubation period. However, the ferrocene containing PNA 

solutions were expected to be sensitive to light, and so the vials containing the solutions 

were wrapped in aluminum foil to provide a dark environment but still allow the solution 

to be heated by the light bulb. 

After incubation, the samples were rinsed with various rinsing agents to resemble 

the rinsing sequence which is successfully applied in electrochemistry measurements 

[60]. They were first rinsed with a 50% acetonitrile / 50% deionized water solution, then 

with deionized water alone, next with sodium perchlorate dissolved in deionized water, 
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and then again with deionized water. After the rinsing sequence was completed, the 

samples were dried by applying a lab tissue (Kim Wipe) to one of the corners of the 

sample while the remaining solvent was evaporated in the nitrogen flow of the glove box. 

The samples were then moved back into the vacuum chamber, where they were 

characterized with XPS, LIXPS and UPS. 

Figure 15 shows the PNA molecules used for the self-assembly of monolayers in 

the first part of this chapter. All of these molecules contain a cysteine head-group with an 

attached thiol moiety. The attachment to the Au surface is driven by the affinity of the 

thiol group towards the metal and leads to a bond between both (see 2.1.1). The PNA 

strands contain 7 N-(2-aminoethyl)glycine units, which define the backbone of the 

molecule, as seen for Cys-Bckb7. The investigated variations of this molecule were 

strands to which adenine bases (Cys-A7), or thymine bases (Cys-T7) were added. 

In addition to the described Cys-Bckb7, Cys-A7, and Cys-T7 molecules, which 

were terminated with NH2 ligands, a second group of PNA strands, terminated by 

ferrocene, was investigated and these molecules are shown in Figure 16. These molecules 

were previously used in cyclic voltammetry measurements, in which the charge transfer 

rate between the Au substrate and the ferrocene redox reporter through the PNA molecule 

was measured [59, 60, 146]. Since the charges are injected directly from the ferrocene 

group into the PNA molecule, a barrier at this interface is likely the main limitation for 

charge flow. Therefore, it is of interest to investigate this interface and to determine the 

charge injection barrier between the ferrocene and the PNA molecule. 
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Figure 15: Cysteine appended PNA strands with no bases (Cys-Bckb7), adenine  

(Cys-A7), and thymine (Cys-T7) 

A third series of experiments focused on the investigation of the influence of PNA 

molecule orientation on the electronic structure of their interfaces. The two investigated 

PNA strands (shown in Figure 17) were not terminated with either the cysteine head-

group or the ferrocene tail-group. This encourages the molecules to lie flat on the surface 

bound by van der Waals forces and the close proximity between substrate and PNA 

molecules could lead to charge transfer through the nucleobases. 
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Figure 16: Ferrocene terminated PNA strands of Cys-A7-Fc and Cys-T7-Fc. 

 

 

Figure 17: PNA molecules without cysteine head-group or ferrocene tail-group used for 

experiments focused on the dependence of the electronic structure on the molecule 

orientation. 

In addition to the PES measurements carried out for the Cys-Bckb7, Cys-A7, and 

Cys-T7 solutions, density of states (DOS) computations were performed by  

Dr. Alexander Balaeff at Duke University for these molecules as well. The calculations 

were compared to the experimental results, enabling detailed peak identification in the 

UP-spectra. The DOS calculations were performed following protocols which are 

discussed elsewhere [143]. 
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Furthermore, ellipsometry measurements of the Cys-T7 SAM were performed by 

Dr. Emil Wierzbinski at the University of Pittsburgh. The measurements were conducted 

in order to compare the XPS derived thicknesses of the SAMs to ellipsometry based 

results, allowing for an estimation of the error margin for the thicknesses calculated from 

the attenuation of the XPS spectra. 

While DOS calculations were used for comparison of the cysteine based PNA 

strands, a separate experiment was performed for the ferrocene terminated PNA strands 

in order to assist in the analysis of the spectra obtained for these monolayers. In this 

experiment, a clean Au substrate was incubated in a solution of ferrocenyl undecanethiol 

(Figure 18) in dichloromethane (DCM). The ferrocenyl undecanethiol was obtained from 

Dojindo Molecular Technologies, Inc. and was handled with caution and only in the 

nitrogen atmosphere of the glove box, as it can oxidize quickly if exposed to air. The 

incubation was performed in the glove box as well, although it took place overnight and 

at room temperature.  

 

Figure 18: Ferrocenyl undecanethiol used in the ferrocene comparison experiments. 
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This experiment was designed to determine the XPS related peak positions of 

ferrocene, as well as its HOMO emission features and hole injection barrier. Since 

ferrocenyl undecanethiol is a relatively simple molecule, the values obtained for the 

various peaks should be easily distinguishable and allow for the direct comparison with 

the PNA related peak locations. 

4.2: The Interfaces Between Au and Cys-A7, Cys-T7, and Cys-Bckb7 

The interfaces between Au and Cys-A7, Cys-T7, and Cys-Bckb7 SAMs were 

investigated with XPS and Figure 19 shows the C1s, N1s, and O1s core level emission 

features of the sputter cleaned Au substrate before (bottom spectra) and after each of the 

incubations (top three spectra in each plot). The spectra measured for the Au substrate 

show only very weak C1s emissions at around 285.5 eV, which are attributed to residual 

contamination of the sample holder assembly. 

 

Figure 19: High resolution XPS of the C1s, N1s and O1s emission features of Cys-A7, 

Cys-T7 and Cys-Bckb7 
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Changes were observed in the C1s, N1s, and O1s spectral emission features after 

each of the incubations, indicating a modification of the surface stoichiometry. It is 

evident that the C1s emission features for the Cys-A7, Cys-T7 and Cys-Bckb7 SAMs 

consist of at least three distinct emission lines, which are attributed to the peptide 

backbone and the adenine and thymine bases. When comparing the results to earlier XPS 

measurements of cysteine monolayers on gold [147] and uracil bases on highly oriented 

pyrolytic graphite (HOPG) [148, 149], the lines can be assigned as follows: While the 

high-binding energy emissions at about 288 eV are related to the C=O bonds found in the 

PNA backbone and thymine bases, the central component at around 286 eV corresponds 

mostly to the C-N bonds. The main component at about 285 eV is related to C=C bonds 

in the adenine and thymine bases, but also to C-C bonds in the PNA backbone. As a 

result, the 285 eV line exhibits a higher intensity in the Cys-A7 and Cys-T7 spectra than 

in the Cys-Bckb7 spectrum. 

The N1s emission features obtained for the Cys-T7 and Cys-Bckb7 SAMs can be 

split into two components, while the emission feature of the Cys-A7 SAM likely consists 

of three. The main component is a strong emission line at about 400 eV, which is related 

to pyrrolic (-NH-) nitrogen [150, 151], the amine groups located at the N-terminus of the 

PNA and, to a lesser degree, the cysteine group [152]. Since adenine contains additional 

iminic (-N=) sites with emission lines usually found at lower binding energies [153, 154], 

a third line can be located at around 399 eV for Cys-A7. The weak component at about 

401 eV found in all three SAMs likely accounts for the -CN- bonds in the backbone and 

bases [150, 154]. 
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The O1s spectra of all three SAMs seem to contain two emission lines at 

approximately 532 and 533 eV, judging by the large widths of the peaks. Since only the 

backbone and thymine bases contain C=O bonds it is likely that the 533 eV component 

arises from adsorbed water. This is in agreement with values published in the past [155]. 

However, it should be noted that this line is less intense in the Cys-Bckb7 related 

spectrum, indicating that less water was adsorbed here. 

Figure 20 shows the S2p and Au4f emission spectra measured on the formed 

SAMs, as well as the clean Au sample. Interestingly, none of the films show S2p related 

emissions, although a thiol group is present in the cysteine head-group. This is most 

likely an indication that the thiol moieties are oriented down towards the Au surface. The 

absence of S2p emissions at about 162 eV [147] is consistent with previous studies of 

Cys-T7 SAMs formed on Au electrodes [60], which showed that the SAMs contain about 

90% ‘standing up’ molecules and 10% ‘lying down’ molecules. Additionally, the S2p 

signal should be weak, even in the ‘lying down’ molecules, due to the low 

photoionization cross section of S atoms [145]. Furthermore, the S atoms represent less 

than 1% of the atoms present in the PNA molecules, i.e. their signal is close to the 

detection limit of XPS. 

The Au4f signal was attenuated for each of the SAMs due to the partial absorption 

of the photoelectrons emitted from the Au substrate by the molecular overlayers. The 

thicknesses of the deposited SAMs can be calculated from the attenuation of the Au4f 

spectra (see section 3.3.3). The intensities of the Au4f core level emission at 84 eV were 

used for the calculations with an estimated mean free path of 36 Å [156]. The intensity 

ratios between the clean surface and SAMs determined from the peak intensity of the 
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Au4f7/2 core level emission were 0.41 for Cys-A7, 0.45 for Cys-T7, and 0.34 for  

Cys-Bckb7. On the basis of these values the average film layer thickness was determined 

to be 32 Å for Cys-A7, 29 Å for Cys-T7 and 38 Å for Cys-Bckb7. 

 

Figure 20: High resolution XPS of Au4f and S2p for the three investigated monolayers. 

While the Au4f related emission features decreased in intensity due to the PNA 

overlayer, the S2p area does not exhibit any emission features, indicating that the sulfur 

succesfully bonded with the gold substrate and the PNA overlayer completely attenuated 

the S2p related emission. 

The larger thickness result for the Cys-Bckb7 film suggests that this SAM is also 

denser than the Cys-A7 and Cys-T7 SAMs. Since nucleobases are absent in Cys-Bckb7, 

this could allow the PNA molecules to arrange in a straighter conformation than the 

helical conformations expected for Cys-A7 and Cys-T7, resulting in denser packing. The 

larger density of the Cys-Bckb7 layer is also in agreement with the smaller amount of 

water detected in the SAM, based on the O1s spectrum in Figure 19. 
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As explained earlier on in section 3.3.3, these film thickness values only represent 

approximations of the true SAM thickness, since it is assumed in the calculations, that the 

film is perfectly flat and homogeneous. This is not always true and pinholes and other 

defects increase the substrate signal. This may result in an underestimated thickness of 

the SAM. However, the above evaluation was confirmed by ellipsometry measurements 

carried out on a Cys-T7 SAM , which yielded a thickness of 33 ± 6 Å. Ellipsometry 

measurements are commonly used for thickness evaluations of SAMs and the agreement 

between XPS and ellipsometry derived thickness values demonstrates the validity of XPS 

for thickness assessments on SAMs. 

Figure 21 shows the Gaussian-Lorentzian fits for the C1s spectra of Cys-A7 (left), 

Cys-T7 (middle), and Cys-Bckb7 (right). The C1s spectrum of Cys-A7 exhibits three 

emission lines which can be located at 285.2 eV, 286.6 eV, and 288.3 eV, while the C1s 

spectrum for Cys-T7 consists of three emission lines at 285.1 eV, 286.4 eV, and 288.4 

eV. The Cys-Bckb7 emission also contains three lines located at 284.9 eV, 286.4 eV, and 

288.3 eV. The low binding energy lines at 285.2 eV, 285.1 eV, and 284.9 eV respectively 

are attributed to the carbon atoms in C-C and C=C bonds. Since the latter bonds are only 

present in the adenine and thymine bases, the resulting peak is higher in the Cys-A7 and 

Cys-T7 spectrum than in the Cys-Bckb7 spectrum. The two lines at higher binding 

energies (286.6 eV and 286.4 eV) are characteristic of carbon in C-H, C-N, and C-N=C 

bonds [148] and in C=O bonds (the 288.3 eV/288.4 eV lines) [107, 148]. Table 1 

summarizes the energies and assignments of the C1s, N1s and O1s lines. 
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Table 1: Emission lines of the Cys-A7, Cys-T7, and Cys-Bckb7 monolayers in eV. 

(Reprinted (adapted) with premission from [143]. Copyright 2011 American Chemical 

Society) 

 Cys-A7 Cys-T7 Cys-Bckb7 assignment 

 285.2 285.1 284.9 C in C-C and C=C 

C1s 286.6 286.4 286.4 C in C-H, C-N and C-N=C 

 288.3 288.4 288.3 C in C=O 

 399 

 

  N in iminic N (-N=) 

N1s 399.8 400 400 N in NH2 and peptide bond 

 400.7 400.9 400.6 N in C-N 

O1s 531.8 531.8 531.6 O in peptide bond 

 533.2 533 532.4 O in water 

 

 

Figure 21: Gaussian-Lorentzian fits of the C1s emission features of Cys-A7, Cys-T7, and 

Cys-Bckb7. 

The fitted N1s spectra for Cys-A7, Cys-T7, and Cys-Bckb7 are shown in Figure 

22. All three spectra contain an emission line at 400.7 eV (Cys-A7), 400.9 eV (Cys-T7), 

and 400.6 eV (Cys-Bckb7), which are attributed to nitrogen in C-N bonds. The spectra 
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also contain a line at 399.8 eV (Cys-A7) and at 400 eV (Cys-T7 and Cys-Bckb7), which 

originates from the nitrogen in the amino and amide groups of PNA [107, 148]. While the 

400.9 eV line of the Cys-T7 spectrum has a higher intensity than the 400.6 eV line in the 

Cys-Bckb7 spectrum, reflecting the presence of the nucleobases, a third line is present in 

the Cys-A7 spectrum at 399 eV, as a result of the iminic (C-N=C) bonds only present in 

adenine. The assignments of the N1s emission lines discussed above are all in good 

agreement with previous results published by Mateo-Marti et al. [157].  

 

Figure 22: N1s emission features of Cys-A7, Cys-T7, and Cys-Bckb7 fitted with 

Gaussian-Lorentzian functions. 

 The O1s emission features were also fitted with Gaussian-Lorentzian peaks and 

the results are shown in Figure 23. All three emission features can be split into two lines, 

located at 531.8 eV and 533.2 eV (Cys-A7), 531.8 eV and 533 eV (Cys-T7), and at 531.6 

eV and 532.4 eV (Cys-Bckb7). The intense lines at lower binding energies are attributed 

to the oxygen atoms in the peptide bonds of the PNA, whereas the weaker lines at higher 
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binding energies are attributed to the residual water present in the PNA layer [155]. The 

water related peak is higher in the Cys-A7 and Cys-T7 spectra in comparison to the  

Cys-Bckb7 spectrum, which indicates that a larger amount of water present in the SAMs 

containing adenine and thymine. One possible explanation could be the lower PNA 

surface density in the Cys-T7 and Cys-A7 films, as was discussed above based on the 

Au4f thickness calculations. Furthermore, adenine and thymine bases offer more 

hydrogen bonding sites due to their polar moieties in addition to those found in the 

neutral backbone [158], which could lead to more water adsorption. The variations in the 

binding energies of the H2O-related peak (533.2 eV for Cys-A7 and 533 eV for Cys-T7 

vs 532.4 eV for Cys-Bckb7) indicate differences in charge and/or polarization of the 

PNA-bound water molecules in the Cys-A7, Cys-T7 and Cys-Bckb7 systems. However, 

this interpretation should be considered in light of the overall measurement accuracy of 

±0.1 eV, and uncertainties resulting from the fitting process. 

 

Figure 23: Gaussian-Lorentzian peak fits for the O1s emission features recorded for  

Cys-A7, Cys-T7, and Cys-Bckb7. 
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Figure 24 displays the UP-spectra measured in conjunction with the XPS 

characterization. The center graph shows the full spectra before and after each of the 

three incubations of the sputter cleaned gold substrate. The low binding energy edges of 

the spectra located directly below the Fermi energy (0 eV) correspond to the valence 

bands/highest occupied MOs and are shown in the right panel. The binding energies of 

the secondary edges of the spectra, which are shown on the left, allow the determination 

of the work function of the sample. 

The incubations resulted in intense spectral lines at low binding energies which 

correspond to the frontier orbital states of the deposited molecules, while strongly 

attenuating the Au valence bands emissions at 2-7 eV below the Fermi level. At the same 

time the secondary cutoffs shifted to higher binding energy for each of the monolayers, 

indicating a decrease in the work function due to the interaction between the Au surface 

and the molecular films. The work functions obtained from the secondary edge onsets as 

measured by LIXPS (not shown here) are listed in Table 2. 

Table 2: Work functions and highest occupied molecular orbital (HOMO) onsets of the 

Cys-A7, Cys-T7 and Cys-Bckb7 SAMs in eV. 

 Au Cys-A7 Cys-T7 Cys-Bckb7 

Work function 5.4 3.95 4.32 3.84 

HOMO onset  2.24 2.81 3.23 

The thickness values obtained from the attenuation of the Au4f core emission 

lines are consistent with the UPS data. Since UPS has a higher surface sensitivity  

(∼10-20 Å) because of the lower energy of the emitted photoelectrons, the mean free 

path of these electrons is shorter than typical XPS electrons. The Au emissions seen in 
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Figure 24 are significantly suppressed in the UP-spectra of the three deposited SAMs, 

which indicates that the SAM thickness must be more than 20 Å. 

 

Figure 24: UP-spectra measured before and after incubation in Cys-A7, Cys-T7, and 

Cys-Bckb7 solution, as indicated. The full spectra are shown in the center. The 

normalized secondary edge and the conduction bands/HOMO emission range after 

removal of the inelastic background are shown on the left and right, respectively. 

  From the analysis of the UP-spectra before and after the formation of the SAMs 

information about the electronic structure of the Au/Cys-A7, Au/Cys-T7 and  

Au/Cys-Bckb7 interfaces can be obtained. The hole injection barrier between the organic 

monolayer and the gold substrate can be determined directly by measuring the difference 

between the highest occupied molecular orbital (HOMO) onset and the Fermi edge of the 

clean substrate. The HOMO cutoff energies can be extracted from the background-

removed spectra of the three interfaces (shown in Figure 25), resulting in hole injection 

barriers Φh of 2.24 eV for the Au/Cys-A7 interface, 2.81 eV for the Au/Cys-T7 interface, 

and 3.23 eV for the Au/Cys-Bckb7 interface. It should be noted that hole injection into 

the PNA HOMO may also proceed through a ‘stepping stone’ state at 1.5 eV. This 

‘stepping stone’ is attributed to the bonding orbital of the thiol-Au bond, which was 
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investigated in the past [147, 159]. Due to the surface sensitivity of the UPS 

measurements, this interfacial state cannot be detected directly, as the signal of the thiol 

moiety is mostly attenuated by the top part of the PNA molecule. 

The computed theoretical DOS spectra are shown in Figure 25 in comparison to 

experimental spectra, and were shifted along the x-axis in order to achieve the best 

overlap. The adjustment of the energy axis of calculated DOS in order to match 

experimentally determined DOS is a standard practice, since ab-initio DOS calculations 

have limited accuracy with regard to absolute energy values. Additionally, the interface 

dipole between the gold substrate and the PNA molecules has an influence on the 

molecular energy reference point in the experiment and depends on the particular 

substrate, which is not included in the calculations. 

The calculated and measured spectra are in good agreement between binding 

energies of 2 eV and 6 eV, which relates to the highest-energy occupied electronic states 

of PNA. The number and height of the theoretical DOS peaks differ from the 

experimental data at energies above 6 eV. The experimental spectrum of Cys-A7 shows 

one high, broad peak at 8 eV, while the Cys-T7 related spectrum shows a similar peak at 

8 eV, with an additional small shoulder at around 9.5 eV. The computed spectrum of 

Cys-A7 shows a low intensity peak at slightly higher energies than measured in the 

experiment. On the other hand, the computed spectrum of Cys-T7 shows two low 

intensity peaks at approximately the same energies as obtained from the experiment. The 

Cys-Bckb7 spectrum shows one high, broad peak located at around 9 eV with a shoulder 

at 7.5 eV, similar to the Cys-T7 spectrum, while the computed spectrum shows two lower 

intensity peaks, one at 7.5 eV and the other at 9 eV with a shoulder at 9.5 eV. The most 
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likely reason for the discrepancies between computed and measured spectra is that water 

molecules were excluded from the quantum mechanical computations.  

 

Figure 25: HOMO regions of the Cys-A7, Cys-T7, and Cys-Bckb7 SAMs after inelastic 

background removal. The superimposed gray filled spectra represent the DOS curves 

from molecular dynamics simulations. The HOMO spectral features from the measured 

UP-spectra are in close agreement with these calculations. 

The experimental DOS includes the electronic states of adsorbed residual water 

(as seen in Figure 19) and the presence of water in the PNA films should lead to a 

broadening of the PNA DOS peaks. The PNA conformations in the film could also 

exhibit more variety than the straight-axis P-helical conformation, which was sampled in 

the simulations. Therefore, more coupling interactions between molecular orbitals, 
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including those on different PNA molecules, would result in an increase of orbital 

delocalization and a broadening of the related orbital energies. 

The measured hole injection barriers between the Au Fermi level and the 

molecular HOMOs are 2.24 eV for Cys-A7, 2.81 eV for Cys-T7, and 3.23 eV for 

 Cys-Bckb7 (see above). The electron injection barriers defined by the lowest unoccupied 

molecular orbitals (LUMO) at these interfaces can be estimated from the hole injection 

barriers and the theoretical values for the HOMO-LUMO gap of the molecular overlayer, 

which were 5.84 eV for Cys-A7, 6.69 eV for Cys-T7, and 8.15 eV for Cys-Bckb7, as 

determined by the onsets of the theoretical HOMO and LUMO positions. 

It should be mentioned that these HOMO-LUMO gap values represent gaps of a 

neutral molecule; charge transfer across the interface, however, depends on the ‘transfer 

gap’ between the corresponding HOMO and LUMO polaron states. The polaron states 

represent the HOMO of a positively (+1) and the LUMO of a negatively (-1) charged 

molecule. In order to estimate the according transfer gap values, the electron and the hole 

polaron energy has to be subtracted from the theoretical HOMO-LUMO gap. The hole 

injection barriers, as determined through the UPS measurements, already include the 

polaron energy since the final state of photoemission spectroscopy measurements is the 

positive ion in its (electronically) polarized surrounding. Therefore the corresponding 

LUMO can be calculated directly from this value, if the transfer gap is known. 

The polarization energy of DNA can be used as an estimate for the corresponding 

energy for PNA, as it was shown by Conwell et al. that the charge of the ribose 

diphosphate backbone of DNA does not affect the hole polaron binding energy because 

the effect of static polarization is already accounted for in the binding energy of the 
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ground state HOMO [160]. Based on these published calculations, the hole polaron 

binding energy for a ‘dry’ double-stranded DNA is approximately 0.2 eV [161, 162] and 

about 0.13 eV for a dry single-stranded DNA of alternating G and T bases [163]. The 

polarization from residual water results in an increase of the hole polaron binding energy 

by about 0.5 eV [161] to 0.6 eV [162]. The bases on a single strand are more exposed to 

water than those on a double strand, which leads to the assumption that the polaron 

binding energy of a solvated single-stranded DNA is at least similar to the 0.6 eV of 

double-stranded DNA. The PES measurements show that the formed SAMs are partially 

solvated, hence, the average hole polaron binding energy should be in between the values 

for the dry and solvated molecules. The average of 0.37 ± 0.24 eV for the above 

mentioned values could therefore be a reasonable estimate. Taking into account an error 

of ± 0.1 eV for the energy values extracted from the photoemission spectra, due to 

analyzer broadening, and assuming that the electron and hole polarons have a similar 

binding energy as the peptide backbone and that nucleobases have a similar screening 

ability, the HOMO-LUMO transfer gap can be estimated as 5.1 ± ( (0.24)
2
 + (0.1)

2
 )

1/2
 

eV= 5.1 ± 0.26 eV (assuming independent uncertainties) for Cys-A7, 5.95 ± 0.26 eV for 

Cys-T7, and 7.41 ± 0.26 eV for isolated Cys-Bckb7 molecules surrounded by a thin shell 

of solvent. 

The emerging polarons experience an additional energy loss in the PNA 

molecules, as the molecules are in close contact with the Au surface. PNA surrounded by 

a solvent is exposed to much a smaller dielectric screening in comparison to the metal 

surface. This causes an effect named ‘polarization barrier lowering’ [164, 165] or also 

‘final state screening’, a term used more commonly in photoemission spectroscopy [166-
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168].  This additional energy loss results in lowering of both, the hole and the electron 

injection barriers, by an amount that is dependent on the difference between the screening 

capabilities of the molecule and of the substrate surface. Measurements performed on 

ribonucleic acid (RNA)/Au interfaces demonstrated that the decrease of the polarization 

barrier can be as high as 1.0 ± 0.1 eV per either electron or hole injection barrier [164]. If 

one assumes that the investigated PNA molecules exhibit screening abilities similar to 

that of RNA, then the estimated HOMO-LUMO transfer gaps Eg would be reduced to 3.1 

(((0.24)
2
 + (0.1)

2
 + (0.1)

2
)
1/2

 eV = 3.1 ± 0.28 eV for Cys-A7, 3.95 ± 0.28 eV for Cys-T7, 

and 5.41 ± 0.28 eV for Cys-Bckb7 in the vicinity of the Au surface. 

Based on the determined work functions, hole injection barriers and transfer gaps, 

the orbital line-ups at the Au/Cys-A7 (Figure 26), the Au/Cys-T7 (Figure 27) and the 

Au/Cys-Bckb7 (Figure 28) interfaces were determined. The electron injection barriers 

estimated from the transfer gaps and hole injection barriers result in values of  

0.3 (((0.24)
2
 + (0.1)

2
 + (0.1)

2
)
1/2

 eV = 0.3 ± 0.28 eV for Cys-A7, 1.14 ± 0.28 eV for  

Cys-T7 and 2.18 ± 0.28 eV for Cys-Bckb7. This means that the injection barriers 

between the PNA molecules and the Fermi level of the Au surface are significant for 

electrons and holes, even if hole injection would take place through the ‘stepping-stone’ 

state mentioned earlier. However, the Au/Cys-A7 interface displays a relatively low 

electron injection barrier in comparison to Cys-T7 and Cys-Bckb7, which should promote 

electron injection. 

At this point it should be noted that the Fermi level shown in the band line-ups 

below does not represent the bulk value. This level is defined by the orbital line-up and 

the Fermi level of the Au substrate, as free charge carriers are not present in the PNA 
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layers. This would mean that the SAMs exhibit depletion layer widths, which exceed the 

thickness of the SAM by far. 

 

Figure 26: Band line-up of the Cys-A7 interface as determined from the UPS 

measurement and the theoretical calculation. The dotted lines indicate the uncertainty of 

the estimated LUMO energy. 

The ionization energies displayed in the band line-ups were determined for each 

interface by adding the HOMO binding energy to the work function as determined from 

the UP-spectrum. This resulted in values of 6.19 eV for Cys-A7, 7.13 eV for Cys-T7 and 

7.07 eV for Cys-Bckb7. The Eion values are only valid in the direct vicinity of the Au 

surface, as they are affected by the further polarizability of the Au surface. The ionization 

energy of isolated molecules are likely about 1 eV larger than the above values, if the 

estimation for the lowering of the binding energy by the polarization of the Au surface, as 

discussed above, is correct.  
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Figure 27: The orbital line-up of the Cys-T7 interface as determined by the UPS 

measurement in conjunction with the theoretical calculation. The dotted lines display the 

uncertainty of the estimated LUMO energy, as mentioned in the text. (Reprinted 

(adapted) with permission from [143]. Copyright 2011 American Chemical Society) 

By comparing the work functions of the formed PNA SAMs and the work 

function of 5.4 eV measured for the sputtered cleaned Au surface prior to deposition, the 

interface dipoles can be determined from the difference between the values before and 

after incubation. These comparisons led to interface dipole values 1.45 eV for Cys-A7, 

1.08 eV for Cys-T7 and 1.56 eV for Cys-Bckb7. 

The observed dipoles are consistent with the value of 1.03 eV measured for SAMs 

of L-cysteine on Au [147]. These mainly originate from the interaction of the Au electron 

wave functions with the organic overlayer, the creation of a chemical bond between the 

thiol moiety and the Au surface, and the presence of molecule intrinsic dipole potentials 

[169]. The first two cases (also called ‘bond dipole’ [169] ) usually result in a localized 
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net charge transfer between the substrate and the overlayer, which in return creates an 

electrical dipole potential at the interface. The formed dipole then leads to a shift of the 

electronic states of the molecular overlayer down relative to the substrate states. In a 

simple approximation, one can add the bond dipole (BD) and the intrinsic molecular 

dipoles (ΔU),  

 UBDeD   (5) 

where eD is the total interface dipole potential [169]. 

As an example, the electronic structure calculations yielded the ensemble-average 

molecular dipole mD of 19.4 ± 5.9 D for Cys-T7 and 19.1 ± 4.9 D for Cys-Bckb7, as 

projected on the PNA helical axis. The intrinsic molecular dipole ΔU can be calculated 

from the ensemble-average molecular dipole mD using 

 
0 




r

amD
U  (6) 

Here a and εr are the surface coverage and the dielectric permittivity of the PNA 

film and ε0 is the vacuum permittivity (cf. eq 3 in ref [169]). By employing a surface 

coverage of ∼80 pmol/cm
2
, which was measured for Cys-T7 by cyclic voltammetry in 

the past [59], and an estimate for εr of 2-4, an intrinsic molecular dipole ΔU of 0.9-1.8 eV 

can be calculated for either Cys-T7 or Cys-Bckb7. The measured values of 1.08 eV  

(Cys-T7) and 1.56 eV (Cys-Bckb7) are in good agreement with the calculated theoretical 

value. Based on these results it can be concluded that the interface dipole potential of the 

PNA film is mostly due to the backbone dipole. 
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Figure 28: Band alignment at the Au/Cys-Bckb7 interface with dotted lines symbolizing 

the uncertainty of the estimated LUMO energy. (Reprinted (adapted) with permission 

from [143]. Copyright 2011 American Chemical Society) 

However, the calculated value of ΔU can still vary by more than 50% as a result 

of the uncertainty of the employed parameters. While the surface coverage is affected by 

an error of ±10 pmol/cm
2
, the dielectric permittivity could increase significantly in 

comparison to the assumed value of 2-4, depending on the amount of the residual solvent 

present in the PNA layer. 

The dipole potential of 1.03 eV as measured on molecular layers of L-cysteine on 

gold [147] may also represent the bond dipole BD present at the Au/PNA interface, but it 

should most likely be smaller, as BD is roughly proportional to the surface coverage of 

the monolayer [169]. Due to the small size of cysteine molecules, a monolayer of  

L-cysteine should exhibit a much larger surface coverage than the investigated PNA 
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SAMs. If one assumes a realistic ratio between the surface coverages of about 10, the BD 

term should amount to only a few tenths of eV. This estimated value is noticeably smaller 

than either the intrinsic molecular dipole or the net interface dipole of the PNA film. The 

difference between the interface dipole potentials of the three SAMs could also be 

explained by a difference in surface coverage. If both terms contributing to eD are more 

or less proportional to the surface coverage, it can be assumed that the surface coverage 

of the Cys-Bckb7 SAM is 1.56/1.45 ≈ 1.08 times larger than that of the Cys-A7 SAM and 

1.56/1.08 ≈ 1.44 times larger than that of the Cys-T7 SAM. The missing nucleobases 

most likely reduce the effective diameter of the PNA molecule by about a factor of 2  

(cf. Figure 15), while the adenine and thymine bases contain different amounts of 

hydrogen bonding sites at their polar moieties [158], resulting in varying amounts of 

adsorbed solvent which could additionally impact the density of the formed SAMs. 

In summary, the investigation of self-assembled monolayers of Cys-appended 

PNA 7-mers of adenine (Cys-A7), thymine (Cys-T7), and abasic PNA backbone  

(Cys-Bckb7) with UPS and XPS revealed the orbital line-up at the Au/PNA interfaces. 

The recorded density of the highest occupied electronic states closely matched the 

calculated density of states of the PNA SAMs, the calculations also showed that the PNA 

backbone must be accounted for in order to compute the PNA density of states correctly. 

The orbital line-up showed significant barriers for both hole and electron injection from 

Au to Cys-T7 and Cys-Bckb7, while Cys-A7 displayed a significantly lower electron 

injection barrier. All three SAMs exhibit large interface dipoles of 1.45 eV (Cys-A7), 

1.08 eV (Cys-T7), and 1.56 eV (Cys-Bckb7). These results imply that charge transfer 
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between the PNA molecules and the Au substrate may be difficult due to the energy 

which would be necessary to overcome the injection barriers. 

4.3: The Interfaces of Cys-A7-Fc and Cys-T7-Fc on Au 

The charge transfer characteristics of PNA based SAMs are generally studied 

with cyclic voltammetry [59, 60, 146, 170, 171]. In these electrochemical 

characterization measurements, the ferrocene redox groups positioned at the end of the 

PNA strands are used for charge injection into the SAM. The charge transfer through a 

biomolecule is mostly dependent on the charge injection barriers at the interfaces 

between the various sections of the molecule. The characterization of cysteine appended 

PNA (see 4.2) represents a first approach in the depiction of the electronic structure of a 

PNA SAM and the identification of the charge injection barriers responsible for the 

charge transfer characteristics. The goal of the measurements presented here was to 

characterize the charge injection barriers between the ferrocene tail-group and the PNA 

molecule. 

For this purpose, SAMs of cysteine appended and ferrocene terminated PNA 

containing adenine (Cys-A7-Fc) and thymine bases (Cys-T7-Fc) were used, as shown in 

Figure 16. The incubation protocol was similar to that followed for the Cys-PNA 

experiments, with an incubation time of 24 hours, a concentration of 20 µM, and an 

incubation temperature of approximately 37˚C. 

The recorded high resolution XP-spectra for the C1s, N1s, and O1s energy ranges 

of both SAMs in comparison to the Cys-PNA SAMs without ferrocene tail-groups are 

shown in Figure 29. Neither the C1s nor the N1s emission features show significant 

differences between regular Cys-PNA and ferrocene terminated Cys-PNA. The C1s 
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emission features of Cys-A7-Fc and Cys-T7-Fc again contain emission lines that are 

attributed to single and double bonds of carbon (C-C, C=C), hydrogen and nitrogen in 

carbon bonds (C-H, C-N, C-N=C), and double bonds between carbon and oxygen (C=O), 

as discussed in detail in 4.2. The N1s emissions display the expected lines for NH2, C-N, 

and the Cys-A7 and Cys-A7-Fc related emission features additionally display a shoulder 

at lower binding energy, which is attributed to iminic nitrogen present in the adenine 

bases. 

 

Figure 29: High resolution XP-spectra of the C1s, N1s, and O1s emission features of 

Cys-A7, Cys-A7-Fc, Cys-T7, and Cys-T7-Fc. 

Conversely, there is a difference between ferrocene terminated and regular  

Cys-PNA in the O1s spectra, and while Cys-A7 and Cys-T7 contain an emission line at 

around 533 eV, which is attributed to coadsorbed water, this line is missing in the  

Cys-A7-Fc and Cys-T7-Fc spectra. This may be a consequence of the hydrophobic 

characteristics of ferrocene [172, 173], leading to lower water content in these SAMs. 

From the S2p spectra shown in Figure 30 it can be concluded that the incubation 

in Cys-A7-Fc and Cys-T7-Fc resulted in SAMs with mostly vertical molecular 
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arrangement, as no S2p emission features can be detected. The absence of these features 

also indicates that no significant deposition of excess molecules occurred on top of the 

SAM surface. 

 

Figure 30: S2p and Au4f high resolution XP-spectra as measured on Cys-A7,  

Cys-A7-Fc, Cys-T7 and Cys-T7-Fc. 

The thickness of the deposited SAMs was calculated from the Au4f intensity 

attenuation (shown in Figure 30). The intensity ratios before and after incubation are 0.49 

for Cys-A7-Fc and 0.45 for Cys-T7-Fc. With a mean free path of 36 Å [156], thickness 

values of 25.9 Å and 28.8 Å resulted for Cys-A7-Fc and Cys-T7-Fc, respectively. 

These values are in close agreement with the values obtained for Cys-A7 and 

Cys-T7 SAMs and are lower than what would be expected for a SAM containing PNA 

molecules with appended ferrocene, since the ferrocene tail-group increases the length of 

the molecule and should therefore increase the thickness of the formed monolayer. 
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However, the O1s spectra showed that the presence of residual water is strongly reduced 

in the Cys-A7-Fc and Cys-T7-Fc SAMs, which could allow the PNA molecules to 

arrange into a more helical conformation and therefore lower the thickness of the SAMs. 

As a baseline experiment, a self-assembled monolayer was deposited from 

ferrocenyl undecanethiol (Figure 18) in order to compare ferrocene related core level and 

HOMO emission features. The normalized Fe2p emission features originating from the 

ferrocene tail-group of Cys-A7-Fc and Cys-T7-Fc are shown in Figure 31 in comparison 

to the emission features measured for the Fc-SAM. 

 

Figure 31: Normalized Fe2p emission features of Cys-A7-Fc and Cys-T7-Fc in 

comparison to a Fc-SAM. 
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 It is evident that the spectrum obtained for the Fc-SAM exhibits a much better 

signal to noise ration than the spectra of Cys-A7-Fc and Cys-T7-Fc. This difference can 

be explained by the higher density of the Fc-SAM, which only contains a thiol group and 

an alkane chain. This allows for a denser molecular assembly than in the case of Cys-A7-

Fc and Cys-T7-Fc, which contain nucleobases demanding a larger molecular footprint. A 

comparison of the peak areas of the original Fe2p emission peaks before normalization 

(not shown here) allows for a rough estimate of the density ratios between the SAMs. For 

this purpose, the background was removed from the Fe2p emission peaks and the area 

was calculated by integration over the peak shapes. 

The resulting peak areas of the three Fe2p peaks led to ratios of 1:3 between the 

Fc-SAM and Cys-A7-Fc, and 1:2 between the Fc-SAM and Cys-T7-Fc. The ratios 

indicate that the Cys-T7-Fc SAM exhibits a slightly higher density than the Cys-A7-Fc 

SAM, which is also evident in the higher signal-to-noise ratio of the Cys-T7-Fc SAM and 

is in agreement with the larger molecular footprint of Cys-A7-Fc (compare Figure 16). 

Apart from the density-related difference in signal-to-noise ratios, all three spectra appear 

similar and the Fe2p3/2 peak is located at approximately 708 eV for all three SAMs. This 

peak position corresponds to values published in literature [174, 175] and demonstrates 

the presence of ferrocene. 

Figure 32 shows UP-spectra recorded for the ferrocene terminated Cys-PNA 

SAMs in comparison to the SAMs formed from regular Cys-PNA. The secondary edge 

was used in order to estimate the work functions of the formed SAMs and resulted in 

values of 4.31 eV (Cys-A7-Fc) and 4.3 eV (Cys-T7-Fc). While the work function of  

Cys-A7-Fc differs significantly from the work function of Cys-A7 (3.95 eV), the values 
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of Cys-T7-Fc and Cys-T7 (4.32 eV) are in close agreement. The absence of residual 

solvent is a reasonable cause for the work function increase. Coadsorbed water molecules 

could introduce a dipole moment [176] that might counteract the molecular dipole 

moment of the PNA molecules and the absence of these dipoles should increase the work 

functions noticeably. 

The work functions of the clean Au substrates before the incubation resulted in 

two different values as two different samples were used, and the dipoles eD calculated 

from the difference between the corresponding work functions were determined to be 

1.11 eV (Cys-A7-Fc) and 0.94 eV (Cys-T7-Fc). These values are similar to the interface 

dipole of 1.03 eV observed for the Au/Fc-SAM interface (spectrum not shown here). 

 

Figure 32: UPS derived spectra of Cys-A7, Cys-A7-Fc, Cys-T7, and Cys-T7-Fc are 

shown in the center. The recorded secondary edge is shown on the left while the 

background removed HOMO region is displayed on the right. 

Figure 33 shows the background removed and normalized HOMO regions of  

Cys-A7, Cys-A7-Fc, Cys-T7, and Cys-T7-Fc in comparison with the Fc-SAM. The  

Fc-terminated SAM shows an additional emission between 1 and 2 eV, which is related 

to the HOMO emission of ferrocene [177-179]. The shift of the PNA backbone related 
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emission peak from 5.5 eV (Cys-A7 and Cys-T7) to lower binding energies (Cys-A7-Fc 

and Cys-T7-Fc) indicates a possible molecular orbital reconfiguration due to the 

interactions between ferrocene and the PNA molecule. 

 

Figure 33: Background removed HOMO emission features as measured on Cys-A7,  

Cys-A7-Fc, Cys-T7, and Cys-T7-Fc in comparison to HOMO features of a Fc-SAM. 

The emission features of Cys-A7-Fc and Cys-T7-Fc at higher binding energies 

are, in comparison to the features obtained for Cys-A7 and Cys-T7, more pronounced and 

not as broad while still exhibiting approximately the same binding energies. This 



74 

 

occurrence is likely a result of the absence of residual water, which would lead to sharper 

peaks and features, as was mentioned in 4.2. 

By inserting lines at the low binding energy onset of the HOMO features, the hole 

injection barriers Φh were determined, resulting in values of 1.1 eV (Cys-A7-Fc), 1.14 eV 

(Cys-T7-Fc), and 1.1 eV (Fc-SAM). The hole injection barriers for Cys-A7 and Cys-T7 

were already estimated in section 4.2 which led to values of 2.24 eV and 2.81 eV, 

respectively. The close resemblance of the onsets of Cys-A7-Fc, Cys-T7-Fc, and the  

Fc-SAM demonstrate that the ferrocene tail-group defines the hole injection barriers of 

the PNA SAMs. 

With the calculated work functions and hole injection barriers, the band line-up of 

the Cys-A7-Fc and Cys-T7-Fc SAMs can be drawn and the results are shown in Figure 

34 and Figure 35. Since the measured dipoles and hole injection barriers are in close 

resemblance to values obtained for the Fc-SAM, a LUMO energy of 2.2 eV, as 

mentioned in literature for ferrocene [177], was used here. This value was chosen as it is 

assumed that the ferrocene terminus is mostly responsible for the hole and electron 

injection barriers and not the self-assembled PNA molecules. The LUMO energy of 2.2 

eV leads to transfer gap values of 3.3 eV and 3.34 eV for Cys-A7-Fc and Cys-T7-Fc, 

respectively. The ionization energies of the investigated SAMs were determined to be 

5.41 eV (Cys-A7-Fc) and 5.44 eV (Cys-T7-Fc), which is in good agreement with the 

literature value of 5.4 eV obtained for the ionization energy of ferrocene [177] and with 

what was measured for the Fc-SAM (5.38 eV). 
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Figure 34: Band line-up of the Au/Cys-A7-Fc interface displaying a much lower hole 

injection barrier than measured on Cys-A7.  

The band alignments displayed in Figure 34 and Figure 35 symbolize the 

electronic structure of the Cys-A7-Fc and Cys-T7-Fc SAM surfaces rather than the actual 

Au/SAM interface. To depict the actual band alignment of the complete PNA molecule, 

the injection barrier located at the PNA/Fc interface must be compared with the injection 

barriers measured for the Cys-PNA SAMs in 4.2. The charge injection barrier between 

the ferrocene and the PNA strand is of particular interest as it is a limiting factor for 

charge transfer through the molecule. 

Since the UP-spectra are a superposition of ferrocene and PNA related HOMO 

emission features, it is reasonable to assume that by subtracting the Fc-SAM related 

emission features from the PNA spectra, the actual HOMO onset at the PNA/Fc interface 

can be obtained.  
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Figure 35: The band alignment at the Au/Cys-T7-Fc interface. The interface dipole and 

ionization energy are in close agreement with values obtained for Cys-A7-Fc. 

The Fe2p emission lines shown in Figure 31 did not show significant shifts 

between the PNA and Fc SAMs, demonstrating that the ferrocene related emissions in the 

Cys-PNA-Fc UP-spectra are most likely free of shifts and the Fc-SAM emissions can be 

directly subtracted from these spectra. The Fc-SAM spectrum was scaled down for the 

subtraction process as the higher density of the Fc-SAM resulted in more intense 

emission features. The scaling factors used for this procedure were 3.2:1 (Cys-A7-Fc) 

and 2.2:1 (Cys-T7-Fc) and are in close agreement with the density ratios estimated from 

the Fe2p peak areas, strengthening the validity of these ratios. The resulting difference 

spectra are shown in Figure 36. 
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Figure 36: HOMO emission features of Cys-A7-Fc and Cys-T7-Fc with subtracted 

ferrocene related emission features. The insert shows the low energy onsets of both 

SAMs. 

The HOMO onset of the Cys-A7/Fc interface is with 1.46 eV much lower than the 

hole injection barrier of 2.24 eV, as measured for the Cys-A7 SAM. A similar 

observation can be made for the Cys-T7/Fc interface, where the onset is with 1.62 eV 

much lower than for a Cys-T7 SAM (2.81 eV). The shifts of the onsets to lower binding 

energies indicate that a molecular orbital reconfiguration might have occurred. 

Comparing these values with the hole injection barriers of the ferrocene termini shows 

that barriers of 0.36 eV and 0.48 eV are most likely present at the Cys-A7/Fc and  

Cys-T7/Fc interfaces. 
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An evaluation of the different values allows for an assessment of charge injection 

barriers throughout the PNA SAMs and the results are displayed in Figure 37 and Figure 

38.  

 

Figure 37: Hole and electron injection barriers throughout the Cys-A7-Fc SAM as 

measured by PES and estimated from theoretical values. 

Both diagrams show the bonding orbital of cysteine, which is located at the actual 

interface and was characterized by PES in the past [147]. The cysteine can be treated as a 

stepping stone for hole injection into the PNA molecule while its high LUMO of 2.5 eV 

[180] represents a barrier for electron injection at the Au/PNA interface. The hole 

injection barriers measured for the two types of PNA strands without a ferrocene 

terminus (Cys-A7 and Cys-T7) are higher than the barriers depicted from the difference 

spectra shown in Figure 36. It is likely that a molecular orbital reconfiguration took place, 

shifting the HOMO level towards lower energies. This shift is also reflected in the 
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LUMO level, as a molecular orbital reconfiguration should have an influence on the 

electron injection barriers as well. 

 

Figure 38: The charge injection barriers of the Cys-T7-Fc SAM as measured by PES and 

estimated from theoretical values. 

 The barriers at the PNA/Fc interface are important for the characterization of 

charge transfer rates in electrochemical measurements. In these measurements, electrons 

are injected into the PNA SAM from the ferrocene redox group and an existing barrier at 

this interface can hinder the charge flow. Cyclic voltammogram measurements on single 

stranded PNA of adenine and thymine showed that adenine appended PNA exhibits better 

charge transfer characteristics than thymine appended strands [146]. This is in agreement 

with the UPS measurements, as the Cys-A7-Fc SAM revealed a step down from the 

ferrocene HOMO by 0.36 eV, while a step of 0.48 eV is present at the Cys-T7/Fc 

interface. 
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Both of the SAMs investigated in this study exhibited larger hole injection 

barriers than cysteine or ferrocene. It can therefore be concluded that the PNA and 

especially the type of appended nucleobase should define the hole transfer characteristics 

of a self-assembled PNA monolayer. This conclusion corresponds with results from 

cyclic voltammetry measurements which showed that charge transfer through a PNA 

molecule strongly depends on the type of nucleobase appended to the strand [59, 146]. 

However, since the estimated positions of the electron injection barriers are based on 

theoretical calculations and values obtained from literature, it is difficult to assess the 

exact impact of the cysteine head-group, PNA backbone, nucleobases and ferrocene tail-

group on the electron transfer through the SAM without having experimental data 

regarding the exact LUMO positions of the investigated PNA SAMs. 

4.4: Charge Injection Barrier Changes as an Effect of PNA Strand Orientation 

Preliminary PES measurements performed on SAMs formed from Cys-T7 

solutions with lower concentrations and shorter incubation times showed a shift of the 

hole injection barrier to lower energies, when compared with SAMs formed with Cys-T7 

at a concentration of 20 µM and an incubation time of 24 hours. Since low concentrations 

and short incubation times result in SAMs with mostly flat-lying molecules and pinholes 

in the film as described in 3.1, a shift of the hole injection barrier would imply that the 

orientation of the PNA molecules on the surface and their increased interaction with the 

Au substrate can have a significant impact on the electronic structure of the formed SAM. 

The following experiment was therefore designed as a simple approach to test the 

hypothesis that flat lying molecules would result in lower hole injection barriers due to 

increased PNA-Au interactions. In contrast to the Cys-T7 and Cys-Bckb7 experiments, 
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the PNA molecules (PNA-T7 and PNA-Bckb7) used here were missing the cysteine  

head-group, as shown in Figure 17. The motivation for this approach was the prevention 

of self-assembly and the promotion of adsorption of the PNA molecules. Except for the 

missing cysteine head-group, the molecules were identical and the incubation procedure 

was unchanged with an identical incubation time, concentration and rinsing procedure as 

with the Cys-PNA experiments. 

The resulting XP-spectra for the PNA molecules are shown in comparison to the 

Cys-PNA molecules in Figure 39. While the Cys-T7 and PNA-T7 spectra are in close 

agreement with each other, the PNA-Bckb7 spectra differ significantly from Cys-Bckb7. 

As discussed earlier in subsection 4.2, the C1s spectrum of Cys-Bckb7 consists of three 

emission lines that can be attributed to the various carbon species present in the PNA 

molecule. The spectrum of PNA-Bckb7, however, only exhibits one asymmetric peak at 

around 285.1 eV which can be attributed to hydrocarbons. Furthermore, the N1s 

spectrum of PNA-Bckb7 only displays a faint peak at approximately the same position at 

which the emission feature of Cys-Bckb7 is located. The O1s spectrum of PNA-Bckb7 

also exhibits a rather large emission peak at higher binding energies in comparison to the 

Cys-Bckb7 spectrum, which is likely attributed to residual water on the surface. The 

emission lines of hydrocarbons and water suggest that residual contaminants from the 

rinsing step are present on the surface and that most of the PNA-Bckb7 molecules 

washed off during the rinsing step. 

As mentioned above, the Cys-T7 and PNA-T7 spectra are in a much better 

agreement and the C1s spectra for both experiments display emission features in which 

the three main emission lines are still distinguishable. The O1s emission feature for  
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PNA-T7 exhibits a similar full width at half maximum (FWHM) and energy range as the 

Cys-T7 related feature, while the N1s feature is the only one that shows a slight 

discrepancy between both experiments. This can be observed by a small shoulder at 

lower binding energies for the PNA-T7 film. In order to investigate the origin of the 

mentioned shoulder, the N1s emission feature of PNA-T7 was fitted with Gaussian-

Lorentzian peaks and the result is shown in Figure 40. 

 

Figure 39: High resolution XP-spectra of the C1s, N1s, and O1s energy range of  

Cys-Bckb7 and Cys-T7 in comparison to PNA-Bckb7 and PNA-T7. 

The N1s emission feature evidently contains three emission lines, two of which 

were already discussed in 4.2 and are attributed to nitrogen in C-N bonds, located at  

400.8 eV, and nitrogen in the amino and amide groups of PNA [107, 148], which can be 

found at 400.1 eV. The third emission line was not observed for the Cys-T7 emission 

feature and is located at 398.7 eV. This energy is similar to values published for adsorbed 

thymine on single crystalline Cu [181] and is related to unsaturated nitrogen induced by 

the dissociation of a hydrogen atom, which plays an important role in the adsorption of 

thymine bases on metal surfaces.  
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Figure 40: Gaussian-Lorentzian peak fits for the N1s emission feature of PNA-T7 

Based on the presence of this peak in the spectrum it can be assumed that the 

PNA-T7 molecules adsorbed on the clean Au substrate through the interaction of nitrogen 

atoms in the thymine bases with the metal surface. This is supported by the poor 

adsorption of PNA-Bckb7, which does not contain these nitrogen sites. The fact that 

PNA-T7 adsorbs on Au through its nitrogen sites located on the thymine bases leads to 

the hypothesis that the deposited film contains PNA molecules that are either oriented at 

a flat angle towards the substrate or lie flat on the surface. 

From the attenuation of the Au4f emission features recorded for all four 

incubation experiments (shown in Figure 41), an estimate for the thickness of the various 

layers can be made. The thickness estimation can help determine the orientation of the 
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adsorbed PNA molecules if it is compared to the previous Cys-PNA experiments. By 

following the procedure explained in 3.3.3 and assuming a mean free path of 36 Å [156], 

thickness values of 20 Å and 32 Å were obtained for PNA-T7 and PNA-Bckb7, 

respectively. These values are lower than the thickness values calculated for Cys-T7  

(29 Å) and Cys-Bckb7 (38 Å). 

 

Figure 41: Au4f emission features of Cys-Bckb7, PNA-Bckb7, Cys-T7, PNA-T7, and 

the sputter cleaned Au surface. 

The lower thickness of the PNA-T7 film in comparison to the Cys-T7 SAM 

supports the hypothesis that the absorbed molecules are oriented at a low angle towards 

the Au sample. This orientation may encourage charge transfer through the adsorbed 
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nitrogen atoms instead of the thiol moieties, as is the case for self-assembled Cys-T7 

monolayers. As a result, this should lead to a reconfiguration of the orbital alignment at 

the interface. 

Figure 42 shows the UPS data for the Cys-T7 and PNA-T7 interfaces. The work 

function of the deposited PNA-T7 film was calculated from the position of the secondary 

edge onsets and resulted in a value of 4.38 eV. This work function is in very close 

agreement with the work function of Cys-T7 (4.32 eV). 

 

Figure 42: UP-spectra of Cys-T7, PNA-T7, and the sputtered Au surface are shown in 

the middle. The secondary edge onset is shown on the left, while the normalized and 

background removed HOMO region is shown on the right. 

Figure 43 shows the HOMO region of Cys-T7 and PNA-T7 and the hole injection 

barriers present at these interfaces. The Cys-T7 SAM has a hole injection barrier of  

2.81 eV, while PNA-T7 has a much lower hole injection barrier of 2.27 eV. This results 

in a HOMO onset difference of 0.54 eV between both layers. The tendency towards a 

lower hole injection barrier supports the assumption that cysteine appended PNA 

molecules in low density or incomplete layers interact with the Au substrate not only 
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through their thiol moieties, but can also exhibit charge transfer through nitrogen sites 

present in the bases, which adsorb on the sample surface. 

 

Figure 43: Background removed HOMO emission features of Cys-T7 and PNA-T7. A 

shift of the hole injection barrier by 0.54 eV is evident and a similar shift can be observed 

for the emission peak at around 5 eV. 

The reconfiguration of the molecular orbitals at the interface is also demonstrated 

through a shift of the second HOMO peak from around 5.4 eV (Cys-T7) to approximately 

5 eV (PNA-T7). As a shift was only detected for the HOMO peak and the hole injection 

barrier, but for none of the core level emission lines, it can be assumed that this shift is 

indeed a result of molecular orbital reconfiguration and not final state screening effects, 
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which are common in thin layers and usually result in a shift of all emission features to 

lower binding energies. 

Finally, with the obtained work functions and hole injection barrier, the band line-

up of the Au/PNA-T7 interface can be determined and is shown in Figure 44.  

 

Figure 44: Band line-up of the Au/PNA-T7 interface. The dotted lines represent the 

uncertainty of the LUMO level position. 

The observed interfacial dipole at this interface was calculated from the difference 

between the work functions before and after incubation. It resulted in a value of  

0.84 eV, which is lower than what was measured for the Au/Cys-T7 interface (1.08 eV). 

The difference in dipoles may be a result of a lower density of the PNA-T7 layer in 

comparison to the Cys-T7 SAM, which evidently offer less intrinsic molecular dipoles 

present in the layer and therefore lower the overall dipole of the film. The orientation of 
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the PNA molecules in the layer could also have an impact on the interfacial dipole, since 

the DOS calculations for Cys-T7 showed that the backbone is the main origin of the 

intrinsic dipole. The backbone dipole is oriented along the molecule and this dipole is 

only significant for the orbital line-up if it is oriented perpendicular to the surface. Hence, 

if the molecules lie flat, the dipole at the interface is reduced. Taking the calculated 

thickness value for the PNA-T7 film and the presence of adsorbed nitrogen into 

consideration, it can be assumed that the latter is the case, as a less dense film would also 

result in a UP-spectrum that would exhibit Au4f valance band emissions which were not 

observed here. 

The position of the electron injection barrier Φe was calculated in a similar way as 

for the Cys-T7 SAM (see 4.2) by subtracting the value for the hole injection barrier Φh 

from the transfer gap Eg. The transfer gap was estimated from the DOS calculation of 

Cys-T7, and taking the corresponding uncertainties into account, led to error margins of 

±0.28 eV. This resulted in a value of 1.68 eV for Φe, which is higher than for the  

Au/Cys-T7 interface. The higher value is a result of the shift of Φh towards lower 

energies due to the charge transfer through the nitrogen in the thymine bases.  

The PNA-T7 experiment successfully demonstrated that the orientation of the 

PNA molecules in the film can be crucial for the injection barriers at the interface. The 

adsorption of the PNA molecules through the nitrogen sites of the attached thymine bases 

led to a decrease of the hole injection barrier by 0.54 eV in comparison to self-assembled 

Cys-T7. It was shown that this decrease is not a result of a final state screening effect, but 

proof of a reconfiguration of the molecular orbitals due to increased PNA-Au 

interactions. 
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The dependence of the electronic structure on the orientation of the strands is of 

great importance for the field of molecular devices where charge injection barriers play a 

vital role. Incomplete films of self-assembled PNA, which would be used in such devices, 

would lead to the wrong assessment of the band alignment at the interface. The resulting 

base-surface interactions would offer more sites for charge transfer between the surface 

and the molecule, and also be in competition with base-base interactions [182]. This 

would mean that hydrogen bonding between PNA strands would be partly obstructed in 

less denser films, which could play an important role in the field of biochip technology 

and organic devices. And while the exact degree to which various molecule orientations 

and film densities affect the electronic structure of the deposited organic layer is unclear, 

it seems reasonable that only dense films will result in reproducible values for the charge 

injection barriers. 
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CHAPTER 5: ELECTRONIC STRUCTURE OF SELF-ASSEMBLED 

TETRAPHENYLPROPHYRIN MONOLAYERS AND ARRAYS 

 

Self-assembled organic molecules generally form well-ordered structures of 

partial high complexity and functionality. Such arrays of molecules could be used as 

molecular wires for applications in molecular electronics if interaction between 

neighboring molecules is achieved. Tetraphenylporphyrin (TPP) represents a potential 

building block for self-assembled monolayers of long-range conductive arrays since it 

allows for easy incorporation of functional groups for coordination purposes. The 

characterization of the electronic structure of thiolated TPP (TPP-S) is covered in the first 

part of this chapter, since TPP-S offers means of self-assembled porphyrin structures on 

gold surfaces. In the second part of the chapter, a TPP derivative containing nitrogen 

groups attached at its peripheral sites (TPP-CN) was studied, by forming structures of 

TPP-CN on gold substrates through the exposure of the sample to silver nitrate (AgNO3). 

The addition of AgNO3 allowed for an arrangement of the TPP-CN molecules into 

defined structures through ionic coordination driven by bond formation between Ag ions 

and the nitrogen groups of the TPP-CN molecules. The structures were further compared 

to adsorbed TPP-CN, a metalloporphyrin containing cobalt (CoTPP), and free base TPP 

in order to highlight the differences in core level binding energies. 
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5.1: Experimental 

The Au substrates used for the described experiments were cleaned with organic 

solvents (see 3.4.1) before inserting them into the vacuum chamber and were 

subsequently sputter cleaned to remove any residual contaminants. Next, they were 

transferred into the analysis chamber and characterized with XPS, LIXPS and UPS. The 

substrates were then moved into the glove box, which is attached to the vacuum chamber 

and was described earlier in section 3.4, and incubated in various TPP solutions. 

In the first set of experiments the substrates were submerged in a 1mg/1ml 

solution of TPP-S in dichloromethane (DCM) for 10 minutes at room temperature, as 

molecules containing thiol moieties are expected to readily form a monolayer on clean 

substrate surfaces [18]. The TPP-S was provided by Dr. Shengqian Ma’s lab at the 

University of South Florida and exhibited a characteristic dark purple color typical for 

porphyrin solutions. Contamination of the surface was kept to a minimum during the 

incubation process due to the nitrogen atmosphere in the glove box.  

Next, the sample was removed from the solution, rinsed with DCM to remove 

excessive, unbound molecules from the surface, and dried in the nitrogen flow of the 

glove box. The sample was then transferred back into the analyzer chamber analyzed by 

XPS, LIXPS and UPS. 

The TPP-CN related experiments in the second set of measurements followed a 

similar procedure, in which 1mg/ml solutions of TPP-CN, CoTPP and TPP were used for 

the incubation process. The TPP-CN was also provided by Dr. Shengqian Ma, while the 

CoTPP and TPP was obtained from Dr. Peter Zhang (Chemistry Department, University 

of South Florida). 
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The Au and Ag substrates used for these experiments were cleaned and prepared 

in the same manner as previously described in section 3.4.1. The substrates were 

incubated in the TPP-CN, CoTPP and TPP solutions for 10 minutes, but since it was 

observed that rinsing of these samples lead to a removal of a majority of the adsorbed 

molecules, due to the much weaker affinity of Au for nitrogen groups, no rinsing step 

after incubation was performed. The samples were characterized with the same sequence 

of XPS, LIXPS and UPS before and after incubation. 

The above mentioned experimental procedure represents the protocol for the 

deposition of weakly adsorbed TPP molecules on Au and Ag surfaces. In order to achieve 

a structured assembly of TPP-CN molecules on an Au surface, an additional step was 

inserted prior to incubation, were AgNO3 was deposited on the clean substrate surface by 

in situ electrospray. For this purpose, the clean Au sample was transferred into the 

electrospray chamber after the initial PES characterization. A 1mg/ml solution of AgNO3 

in DCM was prepared and filled into a Hamilton 1ml syringe which was placed 

approximately 1 cm away from the orifice of the electrospray chamber column. A voltage 

of 3kV was applied to the syringe needle and the AgNO3 solution was sprayed at a rate of 

2ml/h. The solution was sprayed for 15 minutes resulting in a deposition of 0.5 ml of 

AgNO3 solution. The pressure inside the electrospray chamber was approximately  

10
-5

 mbar during the electrospray deposition. After the deposition was completed, the 

sample was transferred back into the analyzer chamber for XPS, LIXPS and UPS 

characterization. It was subsequently transferred into the glove box for the following 

sample incubation in a 1mg/ml TPP-CN solution. 
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A third, separate experiment was conducted to characterize the arrangement of 

TPP-CN into crystals upon AgNO3 exposure. Due to the insulating characteristic of the 

SiO2 surface used in this experiment and the resulting charging of the sample, 

electrospray deposition proved unsuccessful. Hence, drop deposition of the AgNO3 

solution inside the glove box was employed. After deposition of AgNO3 on the substrate 

surface, the sample was characterized by XPS, LIXPS and UPS and moved back into the 

glove box. Si does not display an affinity for nitrogen and an adsorption of TPP-CN 

molecules on the surface was not observed after sample incubation, as they were 

immediately washed off the surface by solvent residues after removal from the incubation 

vial. Therefore, the molecules were deposited on the surface through drop deposition and 

letting the drops dry in the nitrogen atmosphere of the glove box. The sample was moved 

back into the analysis chamber after the deposition of TPP-CN molecules for a final PES 

characterization. All samples were further investigated by scanning electron microscopy 

(SEM) using the Hitachi S-800 Scanning Electron Microscope at the Nanotechnology 

Research & Education Center at the University of South Florida. 

5.2: The Interface of Self-Assembled TPP-S on Au 

The focus of the PES measurements of self-assembled TPP-S monolayers on Au 

was the characterization of the formed interface. The potential application of TPP-S in 

the self-assembly of nanowires or larger networks, containing derivatives of TPP, make a 

detailed study of the charge transfer across the interface interesting. PES measurements 

allow for the determination of interface dipoles and charge injection barriers, which are 

generally present at metal/organic interfaces and can potentially obstruct charge transfer. 
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Figure 45 shows the XPS high resolution spectra of the C1s, N1s and S2p region 

recorded for the clean Au substrate and the formed TPP-S monolayer. The C1s emission 

feature of the TPP-S monolayer exhibits one strong asymmetric peak located at around 

284.5 eV, which is related to the aromatic hydrocarbons of the porphyrin molecule. The 

binding energy of this peak is in good agreement with literature values obtained for 

various porphyrin molecules, which all have aromatic carbon emissions in common [71, 

183-186]. The C1s emission feature was not expected to show any shoulders due to the 

fact that only one type of carbon bonds is present in the tetraphenylporphyrin molecule. 

Tetraphenylporphyrin and its derivatives usually contain four nitrogen atoms in 

the center, which are of pyrrolic (-NH-) and iminic (-N=) nature. The binding energies for 

the emission lines associated with these two types of nitrogen were already extensively 

investigated in the past, and were assigned to iminic (398 eV) and pyrrolic (400 eV) 

nitrogen with almost equal intensities [73, 184-190]. The N1s emission feature observed 

for the TPP-S monolayer shows a broad peak ranging from around 396 eV to 401 eV.  

Due to the low signal to noise ratio it is difficult to identify the emission lines that 

contribute to this feature. However, its broadness suggests that it may consist of the two 

pyrrolic and iminic nitrogen related lines. The low signal to noise ratio of the nitrogen 

emission feature additionally implies that only a small amount of TPP-S was deposited 

which is consistent with the formation of a monolayer on the Au surface. 

The porphyrin derivative used in the presented experiment contains thiol groups 

at its peripheral positions, through which the molecule can bond to the substrate surface. 

By analyzing the S2p emission feature using XPS, one can determine the quality of the 

assembled monolayer and the presumed orientation of the molecules. The right panel in 
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Figure 45 displays the high resolution spectrum of the S2p region. A broad peak can be 

seen here for the TPP-S monolayer at about 164 eV. The S2p emission feature is in 

general a doublet that contains two emission lines separated by 1.2 eV and exhibiting a 

2:1 area ratio [191]. Due to the broad nature of the peak seen in Figure 45, it is reasonable 

to assume that it consists of more than one doublet. Two doublets were therefore fitted 

with a Gaussian-Lorentzian peak fit into the background removed S2p emission peak and 

the result is shown in Figure 46. 

 

Figure 45: XPS high resolution spectra of the C1s, N1s and S2p emission features of 

TPP-S. 

The two doublets are located at 161.54 ±0.2 eV (considering the low signal to 

noise ratio) and 163.94 ±0.2eV and exhibit full widths at half maximum (FWHM) of 1.6. 

The fitted doublet at lower binding energy can be attributed to sulfur bound to the gold 

substrate and is in good agreement with published values [33, 80, 87, 156, 191-194]. 

While the first doublet corresponds to thiol-functionalized monolayers covalently bound 

to gold, the second doublet at higher binding energy can be assigned to the presence of 

unbound thiol groups [82, 87, 88, 194]. 
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The intensity ratio between bound and unbound thiols is 1:2.1 which means that, 

on average, about one to two out of four thiolates per porphyrin likely bond to the gold 

substrate. Since sulfur has a high affinity to gold, it is expected that all sulfur atoms 

should bond to the surface, which would result in a coplanar orientation of the molecules 

with the Au surface. Hence, it is surprising why about half of the thiol groups did not 

bond with the Au surface. Oxidation of the thiol groups as a reason for unbound sulfur 

can be excluded since this would result in an emission line at higher binding energies of 

approximately 167 eV [80]. 

 

Figure 46: XPS high resolution spectrum of the sulfur emission feature of the TPP-S 

monolayer with two fitted doublets. The dotted lines symbolize each of the S2p1/2 (lower 

intensity) and S2p3/2 (higher intensity) related emission features that contribute to the 

doublets. The doublet at lower binding energy is related to sulfur bound to gold while the 

second doublet at higher binding energy originates from unbound sulfur. 
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This leads to the hypothesis that the self-assembled TPP-S molecules do not 

exhibit a coplanar orientation, but may be positioned on their edge at an angle to the 

surface, as shown in Figure 47. In fact, the self-assembly of thiol-derivatives of TPP, 

which orient themselves at a low angle away from the surface, was reported previously 

[88, 184, 195] with layer thicknesses in the range of 10-20 Å, depending on the employed 

thiol group. 

If the TPP-S molecules are in fact positioned at their edge, this would also mean 

that the intensity of the emission line attributed to the sulfur atoms located at the  

Au/TPP-S interface would be significantly attenuated as a result of the porphyrin 

molecule located above the bound sulfur. Therefore, the originally calculated ratio 

between unbound and bound sulfur could be lower than the actual ratio, indicating that on 

average two or more sulfur atoms bonded with the Au substrate, which would be more in 

agreement with an angled assembly.  

 

Figure 47: Orientation in which the TPP-S molecules most likely assembled on the Au 

surface. On some of the molecules only one thiol group presumably bonded with the 

substrate, while on others two or more could have bonded. 
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The amount of unbound sulfur could however be also explained with the presence 

of excessive TPP-S molecules atop of the self-assembled TPP-S monolayer. The 

attractive interactions between porphyrins can lead to crystal formation and such 

aggregations are a common occurrence in porhyrin solutions [196, 197]. Although this 

would explain the unbound sulfur, it would stand in contrast to the low intensities of the 

nitrogen, carbon and sulfur emission lines that imply that only a small amount of TPP-S 

is present at the surface. Furthermore, the sample was rinsed with DCM after the 

incubation was completed, which can effectively remove weakly adsorbed molecules (as 

observed for TPP, CoTPP and TPP-CN) from the surface. It was also shown in the past 

that organic solvents can disrupt the interaction between porphyrins and easily open up 

folded or stacked conformations [198]. Hence, if excessive TPP-S molecules adsorbed on 

the self-assembled monolayer, they most likely would be removed from the surface 

during the rinsing step. 

The analysis of the Au4f7/2 emission line at 84 eV before and after deposition 

(Figure 48) was used to determine the thickness of the layer. The intensity ratio between 

the emission lines before and after incubation is 1.5 and using 33 Å as the mean free path 

of electrons in tetraphenylporphyrins [80, 81], a monolayer thickness of 13.7 Å can be 

calculated. This is in good agreement with the dimensions of TPP-S molecules (15 Å 

length; 11 Å width) and suggests that the TPP-S molecules likely assembled on their 

edge. Conversely, an assembly of TPP-S molecules with a coplanar orientation should 

result in a thickness close to 5 Å [199]. 

The particular orientation assumed by the TPP-S molecules during the self-

assembly could be explained due to a high concentration of the molecules in the solution 
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and an oversaturation of the surface with TPP-S molecules during incubation, creating a 

dense monolayer in which not all of the thiol groups were able to bond with the Au 

surface. 

 

Figure 48: XPS high resolution spectrum of the substrate related Au4f peak. Upon 

TPP-S monolayer self-assembly, the intensity of the emission feature drops significantly, 

and the ratio between intensities before and after incubation allows for an estimation of 

the monolayer thickness. 

While the XPS measurements of the TPP-S self-assembled monolayer give 

insight into the chemical composition of the film, the UPS measurements (shown in 

Figure 49) provide detailed information about the highest occupied molecular orbital 

(HOMO) of the monolayer and the band alignment between the substrate and the 
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monolayer at the interface. The secondary edges of the spectra shown in the left panel are 

located between 16 eV and 18 eV and are defined by the work function of the sample. 

The secondary edge noticeably shifted to a higher binding energy after incubation, 

which indicates that the work function of the sample decreased due to the interaction 

between the Au surface and the molecular film. The work function of the TPP-S 

monolayer was estimated to be 4.69 eV, while the Au substrate exhibited a work function 

of 5.53 eV. 

 

Figure 49: The UP-spectrum of a self-assembled TPP-S monolayer (top) and the 

sputtered Au surface (bottom) is shown in the middle, while the secondary edges are 

shown on the left. The HOMO region at lower binging energies, from which the 

background was subtracted, is shown on the right. 

The change in work function indicates the formation of an interface dipole eD of 

0.84 eV. This dipole is in good agreement with dipoles measured by other groups on 

monolayers of metalloporphyrins, such as CoTPP and ZnTPP, and free base porphyrins 

deposited on Au by evaporation [71, 127, 129, 199-201]. In these experiments, the 

dipoles varied between 0.57 eV (ZnTPP) and 1.01 eV (TPP). The reduction of the work 

function can mainly be attributed to Pauli repulsion between the electrons of the TPP-S 
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molecule and the gold surface. Through this ‘cushion-effect’, the charge density between 

the TPP-S molecules and the gold surface is depleted, leading to a modification of the 

dipole layer [202]. 

The right panel of Figure 49 shows the top edges of the spectra located directly 

below the Au Fermi energy (0 eV) and correspond to the valence bands/highest occupied 

molecular orbitals. The formation of the TPP-S monolayer gave rise to spectral lines 

corresponding to the HOMOs of the deposited molecules. At the same time, the Au 

valence bands emissions at 0-6 eV below the Fermi level were attenuated. Due to the 

monolayer character of the TPP-S layer, the valence band emissions of the Au substrate 

overlap with the HOMO related emissions of the TPP-S monolayer. This is evident in the 

emissions at the Fermi edge, which are not expected for TPP derivatives, and residual Au 

valence bands emission at 4 eV and 6 eV. 

In order to correctly analyze the HOMO emissions of the TPP-S monolayer, both 

spectra were normalized to the Fermi edge emissions. This enabled the subtraction of the 

Au related emissions from the TPP-S spectrum. The TPP-S spectrum after Au emission 

removal is shown in Figure 50. Three emission peaks dominate the spectrum. The first 

peak (A) is located at approximately 1.2 eV which corresponds to peak positions reported 

for TPP [127, 129]. The second peak (B) can be found at around 3 eV but due to the 

removal of the Au related emissions the spectrum, this peak is slightly distorted in the 

area between 4 eV and 6 eV and its position may be at a higher energy. A third broad 

peak (C) is present at approximately 7 eV. 

Peak A is attributed to the almost degenerate π orbitals, which are delocalized 

over the central macrocycle and have major electron densities only on the porphyrin ring 
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[72, 129, 183, 200, 203], while peak B is assigned to orbitals localized on the phenyl 

rings [72, 183]. Peak C is a common feature seen in metalloporphyrins and free base 

porphyrins, and originates from σ orbitals delocalized over the porphyrin ring [71, 72, 

201]. 

 

Figure 50: UP-spectrum of the HOMO region of the TPP-S thin film. The emissions 

from the gold substrate were removed in order to highlight the TPP-S related emission 

features. The insert shows the low binding energy onset used for the determination of the 

hole injection barrier. 

The insert in Figure 50 shows the low binding energy onset of peak A. This onset 

is located at 0.39 eV and represents the hole injection barrier Φh at the Au/TPP-S 

interface. The hole injection barrier is considerably lower than values published for thin 

films of free base porphyrins and metalloporphyrins [71, 127, 129, 183, 199, 201]. This 
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difference is not surprising since the charge transfer is mediated through the thiol moiety 

at the periphery of the TPP molecule instead of a metal ion centered in the porphyrin ring 

or the ring itself, as it is the case for adsorbed free base porphyrins and metallo-

porphyrins. 

By incorporating the determined work function values and the hole injection 

barrier, the orbital line-up at the Au/TPP-S interface can be established, as shown in 

Figure 51. The band line-up displays the work function ΨAu of the clean Au substrate and 

the existing interface dipole eD. The hole injection barrier Φh of 0.39 eV, as determined 

from the UPS measurements, poses a limitation for charge injection into the monolayer, 

although it is lower than what was reported for other TPP derivatives. By subtracting the 

value for Φh from the transfer gap of the TPP-S molecule, the electron injection barrier 

Φe, which is the onset of the lowest unoccupied molecular orbital (LUMO), was 

calculated. Since transfer gap values for TPP and its derivatives vary from 2.34 eV to up 

to 2.9 eV in literature [204, 205], the average of these values (2.62 ±0.28eV) was 

assumed for the transfer gap of TPP-S. TPP-S is a novel TPP derivative and the exact 

value of the transfer gap is as of yet unknown. Therefore, the assumed value needs to be 

considered a rough estimate. With this transfer gap value, the electron injection barrier Φe 

was estimated to be 2.23 ±0.28 eV.  

Adding the work function of TPP-S to the hole injection barrier Φh resulted in the 

value for the ionization energy Eion of the TPP-S monolayer. The ionization energy Eion is 

with 5.08 eV somewhat lower than the 5.3 eV that were reported for multilayers of 

ZnTPP and TPP in the past [127, 129, 201], but this difference can be simply explained 

with the lower hole injection barrier of the TPP-S monolayer. It was reported in the past 
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that a correlation between ionization energy and conduction type exists for porphyrins 

[201]. A value of 5.03 eV suggests that TPP-S exhibits p-type character, like ZnTPP and 

TPP molecules, and higher ionization energies were reported for porphyrin derivatives of 

n-type character [201]. A comparable link between the ionization energy and conduction 

type of phthalocyanine derivatives was made in the past as well [206]. 

 

 

Figure 51: Band line-up of the Au/TPP-S interface as determined from the UPS 

measurements. The dotted lines indicate the uncertainty of the estimated LUMO level. 

The measurements demonstrate in conclusion that the deposited TPP-S molecules 

form a monolayer on gold from solution. The data suggests that the molecules have a 

predominantly angled orientation in contrast to the coplanar orientation of adsorbed free 

base porphyrins and metalloporphyrins. The bond formed between the sulfur atoms and 

the Au surface offers means for charge transfer between substrate and molecule, due to 

the low resulting hole injection barrier of 0.39 eV. 
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TPP-S offers the possibility to create a stable monolayer with a low hole injection 

barrier and the fact that only one to two thiol groups have to bond with the surface for 

successful monolayer formation, leaves at least two phenyl rings open for chemical 

modifications. The modifications could include functionalized groups which can lead to 

interactions between neighboring molecules (and charge transfer parallel to the surface) 

and offer bonding sites for other organic molecules on top of the formed monolayer (for 

charge transfer perpendicular to the surface). 

 

5.3: The Electronic Structure of TPP-CN Arrays Formed on Au 

The coupling of structurally different molecules by coulombic interactions 

represents a powerful technique for the self-organization of building blocks and the 

creation of new materials. This so-called ionic self-assembly is usually accompanied by a 

cooperative binding mechanism resulting in reliable self-assembled structures [90]. It 

offers an inexpensive and flexible way of self-assembly and allows for a broader range of 

applications than offered by regular hydrogen-bonding. In this context, a study of TPP 

array formations driven by electrostatic interactions can provide information on the 

feasibility of ionic self-assembly for the creation of molecular long-range conductive 

wires. The following experiments were designed to investigate the coulombic binding of 

Ag ions with nitrogen groups located at the periphery of TPP-CN molecules. For this 

purpose, the Au substrates were exposed to silver nitrate (Figure 52) prior to sample 

incubation, which resulted in the formation of TPP-CN arrays through ionic self-

assembly. These networks could be potentially used to incorporate functionalized TPP 

derivatives or other organic molecules with optoelectronic or biosensing capabilities, 

resulting in a self-assembled molecular circuit. 
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Figure 52: The inorganic compound silver nitrate, which has the chemical formula 

AgNO3 

In the presented study, the TPP derivative TPP-CN was studied with XPS, LIXPS 

and UPS in order to characterize the electronic structure of the formed TPP-CN thin films 

and investigate the impact of AgNO3 on the quality of the deposited organic thin films. 

As mentioned in the experimental section of this chapter, TPP-CN was deposited on a 

gold substrate by incubating the sample in TPP-CN solution for 10 minutes, while in a 

separate experiment, AgNO3 was electrospray deposited on a gold substrate prior to  

TPP-CN incubation. The electrospray approach was chosen in order to achieve a 

homogenous deposition of silver nitrate on the Au surface without exposing it to the 

ambient atmosphere. This allowed a direct comparison between samples with and without 

Ag present during assembly. 

Figure 53 shows the XPS high resolution spectra of the C1s, N1s, Ag3d and O1s 

regions of the TPP-CN film (TPP-CN), the substrate after AgNO3 deposition (Ag
+
), and 

the TPP-CN film after AgNO3 exposure (TPP-CN/Ag
+
). The C1s emission line for  

TPP-CN has a binding energy of about 284.9 eV and is in agreement with the peak 

location in the TPP-S experiments (compare 5.2) as well as with literature reports [71, 

183-186]. This peak shifted by about 0.4 eV in the TPP-CN/Ag
+
 experiment, where it has 

a binding energy of 284.5 eV. 
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The N1s emission feature of the TPP-CN film consists of at least two emission 

lines. This is expected since the TPP molecule contains pyrrolic (-NH-) and iminic (-N=) 

nitrogen. The two emission lines are located at about 398 eV and 399.5 eV, which is in 

good agreement with values obtained for both species of nitrogen in other experiments 

[73, 184-190, 199]. Conversely, the AgNO3 film only shows one N1s feature located at 

about 406 eV. This peak corresponds to published values for AgNO3 [207-209]. Adding 

TPP-CN to the AgNO3 covered Au substrate results in the return of the pyrrolic and 

iminic lines, while the AgNO3 related N1s peak decreases in intensity. The TPP-CN/Ag
+
 

related N1s peaks are with approximately 399 eV and 397.5 eV at slightly lower binding 

energies than for the pure TPP-CN film and the shift of the binding energies may be an 

indicator for Ag-N bond formation.  

The Ag3d5/2 line for both, the deposited AgNO3 and the TPP-CN/Ag
+
 film, is 

located at around 368 eV and the energy of these peaks is similar to literature values 

[207, 209]. The Ag3d5/2 emission line of the TPP-CN/Ag
+
 film displays a small shift to 

higher binding energies, which is likely related to Ag-N interaction. The intensity drop 

after TPP-CN incubation is a result of the solvation of a fraction of the deposited AgNO3 

from the surface into the TPP-CN solution. This hypothesis is also in agreement with the 

intensity decrease of the AgNO3 related N1s emission line. 

The O1s spectrum of the TPP-CN film shows a small and broad peak at around 

532 eV. Since neither TPP-CN nor the solvent (DCM) contain oxygen, it can be assumed 

that this peak is related to residual surface contamination of the Au substrate. The spectra 

for Ag
+
 and TPP-CN/Ag

+
 show both a strong emission line at around 532 eV which is 

related to AgNO3 and is in close agreement with published values [207, 209]. 
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Figure 53: The high resolution XP-spectra of the C1s, N1s, Ag3d and O1s emission 

features for TPP-CN, AgNO3 (Ag
+
) and TPP-CN with AgNO3 (TPP-CN/Ag

+
) 
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5.3.1: Bond Formation Between Ag and N 

The N1s emission feature is an important indicator for the interaction between the 

Ag atoms and the TPP-CN molecules. The incorporation of metal atoms in the center of 

porphyrins results in bond formations between the nitrogen atoms and the metal atom and 

leads to the appearance of a new emission line commonly observed between the emission 

lines of pyrollic and iminic nitrogen [71, 73, 186, 199]. To study the possible presence of 

this third peak, the TPP-CN and TPP-CN/Ag
+
 related N1s emission features were fitted 

with Gaussian-Lorentzian fits after background removal and the results are shown in 

Figure 54. The TPP-CN related emission feature was fitted with two peaks located at 

399.68 eV and 398.08 eV. These peak positions are similar to values reported for pyrrolic 

and iminic nitrogen of various metalloporphyrins and free base porphyrins [73, 184-188, 

199, 210, 211]. The intensity ratio between the pyrrolic and iminic nitrogen peaks was 

estimated to be 2.4:1. This ratio reflects the presence of the six pyrrolic and two iminic 

nitrogen atoms incorporated into the TPP-CN molecule. 

The spectrum of the N1s emission feature of the TPP-CN/Ag
+
 film exhibits a 

higher amount of noise, making the fitting procedure and peak location slightly more 

difficult. However, literature suggests that films of porphyrins with electrostatically 

bound metal atoms exhibit a third emission line in the N1s binding energy range in 

addition to the pyrrolic and iminic lines. The N1s emission feature was therefore fitted 

with three peaks. The emission peaks of pyrrolic and iminic nitrogen can be found at 

399.22 eV and at 397.56 eV, respectively, representing a shift of 0.46 eV and 0.52 eV 

towards lower binding energies in comparison to the TPP-CN film. The mentioned third 

peak is positioned in between the emission lines of pyrrolic and iminic nitrogen at  
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398.62 eV. The binding energy of this peak is similar to values published for a wide 

range of metalloporphyrins [71, 73, 186, 199] and suggests that an interaction between 

the deposited Ag atoms and the TPP-CN molecules took place. Based on the fitted 

emission peaks, it can be assumed that the Ag atoms likely bonded to some extent with 

the pyrrolic and iminic nitrogen located at the center of the molecule. 

 

Figure 54: Gaussian-Lorentzian fits of the N1s emission features of TPP-CN and  

TPP-CN with AgNO3. While TPP-CN alone can be fitted with two peaks related to 

pyrrolic and iminic nitrogen, the emission of the TPP-CN/Ag
+
 film can be fitted with an 

additional third peak, which is attributed to the Ag-N bond. 
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 Such a ‘pick up’ of metal atoms by free base porphyrins was reported for Zn, Co 

and Fe in the past [73, 187, 188]. The interaction driven by coulombic bonding between 

the nitrogen and silver atoms is also evident in the change of the intensity ratio between 

pyrrolic and iminic nitrogen. The ratio of 1.98:1 indicates that less pyrrolic nitrogens are 

present in the TPP-CN/Ag
+
 film in comparison to the TPP-CN film. This corresponds 

with the hypothesis that the pyrrolic nitrogen atoms on the periphery of the TPP-CN 

molecule presumably bonded with the silver atoms present in AgNO3.Further proof for 

electrostatic interaction between the TPP-CN molecules and Ag atoms was obtained by 

comparing the N1s emission features shown above to PES measurements conducted on 

TPP-CN deposited on Ag, CoTPP on Au, and TPP on Au. The N1s emission features of 

all TPP films were fitted with Gaussian-Lorentzian fits and the resulting peaks are shown 

in Figure 55 for comparison. The peak positions of pyrrolic nitrogen, iminic nitrogen, and 

nitrogen in a metal bond are indicated with the dotted lines and the exact values are given 

in Table 3. 

Table 3: Nitrogen related peak position for several TPP derivatives in eV. The 

investigated nitrogen species are pyrrolic (-NH-), iminic (-N=) and nitrogen bound to a 

metal atom (M-N) 

 -NH- M-N -N= 

TPP-CN on Au 399.68  398.08 

TPP-CN/Ag+ on Au 399.22 398.62 397.56 

TPP-CN on Ag 399.58  398.08 

CoTPP  398.24  

TPP 399.68  397.9 

The binding energies of pyrrolic and iminic nitrogen are similar in value for films 

containing TPP or TPP-CN, but are on average about 0.4 eV higher than what was 
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measured for the TPP-CN/Ag
+
 film. Conversely, the emission line attributed to the metal-

nitrogen bond in the CoTPP molecules exhibits a binding energy which is 0.38 eV lower 

than of the corresponding emission line of the TPP-CN/Ag
+
 film. The observed shifts of 

roughly 0.4 eV in opposite directions are likely charge transfer related and indicate a 

donation of electrons from the Ag atom towards the TPP-CN molecule across the Ag-N 

bond. 

The difference in peak positions between the TPP-CN film deposited on Ag and 

the TPP-CN/Ag
+
 deposition on Au suggests that the clean Ag surface is not sufficient for 

the formation of coulombic bonds between the molecules. The presence of Ag ions on the 

surface in a salt (like AgNO3) is most likely a prerequisite for electrostatic interaction. 

The fraction of ions which formed Ag-N bonds with the TPP-CN molecules can 

be estimated by comparing the stoichiometric ratios between the N1s and Ag3d5/2 

emission peaks of the AgNO3 compound before and after incubation. For this purpose the 

background was removed from the N1s emission peaks located at 406 eV, which are 

attributed to AgNO3, and the Ag3d5/2 peaks at 368 eV (see Figure 56). The areas of these 

peaks were integrated and the resulting values were adjusted for the specific ionization 

cross sections by employing the characteristic Scofield factors [145]. The N1s and 

Ag3d5/2 emission peaks should exhibit a theoretical stoichiometric ratio of 1:1 for AgNO3 

and a formation of coulombic bonds between Ag and TPP-CN molecules is supposed to 

lead to a change in the stoichiometric ratio as the leftover nitric acid component of 

AgNO3 should be washed off the surface. 
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Figure 55: High resolution XP-spectra of the N1s region with Gaussian-Lorentzian fits. 

The dotted lines symbolize the  peak positions of pyrrolic nitrogen (-NH-), iminic 

nitrogen (-N=), and nitrogen in a metal bond (M-N). 

The calculated stoichiometric ratio between nitrogen and silver in the AgNO3 film 

prior to incubation resulted in a value of 1:2.63. This ratio differs from the theoretical 
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ratio of 1:1, which would be expected for a solution of silver nitrate, containing silver 

ions and nitric acid. The deposited film could, however, contain Ag agglomerates or 

oxidized silver particles and less nitric acid, since nitric acid exhibits a relatively high 

vapor pressure [212] and a significant amount could have evaporated during the 

electrospray process. This would lead to an increased amount of silver at the surface in 

comparison to nitric acid. 

 

Figure 56: N1s and Ag3d5/2 peaks used for  stoichiometric ratio calculations with the 

corresponding ratios displayed in the center. 

 Since the binding energies for oxidized Ag and Ag found in AgNO3 are very 

similar [213, 214], it is difficult to distinguish between these two forms of silver. The 

determined ratio can still be used for comparative purposes as the focus lies here on its 

change after TPP-CN deposition. The ratio between nitrogen and silver increased to 
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1:4.53 after TPP-CN deposition, indicating that roughly 42% more Ag atoms than nitric 

acid molecules remained on the surface. The higher amount of Ag atoms is an indicator 

for the capture of these atoms in Ag-N bonds. 

5.3.2: Charge Transfer Related Binding Energy Shifts 

The formation of TPP-CN arrays through coulombic bonds between the Ag atoms 

and TPP-CN molecules likely resulted in charge redistribution across the bonds. The 

observed energy shifts in the N1s and C1s spectra of TPP-CN and TPP-CN/Ag
+
, and the 

Ag3d5/2 emission peaks of AgNO3 and TPP-CN/Ag
+
 are a strong indicator for such a 

charge transfer. The N1s, Ag3d5/2 and C1s related emission features are displayed with 

their respective Gaussian-Lorentzian fits in Figure 57 for comparison. As mentioned 

earlier, the emission lines of pyrrolic and iminic nitrogen showed with the introduction of 

AgNO3 binding energy shifts of 0.46 eV and 0.52 eV, respectively, which are symbolized 

with dotted lines. The C1s emission peak displayed a similar shift of 0.44 eV from  

284.87 eV to 284.43 eV.  

The Ag3d5/2 emission peak on the other hand exhibits a shift of 0.12 eV to higher 

binding energies from 367.87 eV to 367.99 eV. The shift of the N1s and C1s peaks to 

lower binding energies and the shift of the Ag3d5/2 peak to higher energies indicate that 

electrons were donated from the silver atom to the TPP-CN molecule, as electron loss 

usually results in higher binding energies. The earlier mentioned shift of the nitrogen 

emission line related to the Ag-N bond to higher binding energies by 0.38 eV, in 

comparison to Co-N in CoTPP, further supports the assumption of electron donation from 

the TPP-CN molecule to the Ag atom across the Ag-N bond. 
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Figure 57: N1s, Ag3d5/2 and C1s emission features with Gaussian-Lorentzian fits in 

comparison. The dotted lines indicate the observed shifts between the different peaks. 

While the N1s and C1s related emission lines shifted to lower binding energies, the 

Ag3d5/2 related line shifted to higher binding energies. 

It should be noted here that the energy shifts may also be a result of final state 

screening of the organic thin film, as similar changes in binding energies were observed 

for monolayers of CoTPP and TPP in comparison to their corresponding multilayers 

[199]. Final state screening occurs when photoelectrons originating from a thin organic 

layer are screened by the metal substrate, which in return lowers their kinetic energy. 

This process would result in a shift of the emission features to lower binding energies, as 

was observed for the N1s and C1s emission features. Although the Ag3d5/2 peak shifted 

to higher binding energies, it should be pointed out that final state screening does not 

affect metal atoms as it does for organic layers, and this shift could be therefore explained 

with the uncertainty that comes with PES measurements, since the observed shift is only 

slightly larger than the energy resolution of the analyzer. 
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To investigate the possibility of final state screening, the film thicknesses of the 

deposited TPP-CN films were calculated based on the attenuation of the Au4f emission 

features shown in Figure 58.  

 

Figure 58: XPS high resolution spectrum of the Au4f emission feature. 

By employing a mean free path of electrons in TPP-CN of 33 Å [80, 81], a 

thickness of 29.4 Å was calculated for the TPP-CN film. The AgNO3 film is expected to 

exhibit a different mean free path and since stoichiometric ratio calculations showed that 

nearly three times as many silver atoms are present in the film in comparison to nitric 

acid, the mean free path for Ag of 12 Å [215] was used in this calculation. The resulting 

thickness of the AgNO3 thin film was estimated to be 7.7 Å, while it should be pointed 



118 

 

out that this thickness estimation is a rough approximation, as nitric acid is still present in 

the film, which should alter the mean free path noticeably. 

The thickness of the TPP-CN/Ag
+
 film was determined to be 39.3 Å by 

employing a mean free path of 33 Å. The TPP-CN/Ag
+
 film must therefore either be 

thicker in comparison to the TPP-CN film, or contain less pinholes and defects. The 

presence of Ag atoms in the film can, however, likely reduce the mean free path of 

electrons, resulting in a lower value for the thickness of the TPP-CN/Ag
+
 film. 

Nonetheless, the calculated value is far off from values of around 5 Å, which would be 

expected for a TPP monolayer [199]. 

Based on these thickness calculations, it can be assumed that a multilayer of 

TPP-CN formed on the Au surface after AgNO3 exposure. Multilayers of organic 

molecules are usually not expected to exhibit final state screening related energy shifts, 

which can therefore be safely excluded as the origin of the observed energy shifts. 

5.3.3: Surface Characterization of TPP-CN Films Deposited on Au 

The XPS measurements present evidence of coulombic Ag-N bonds in the  

TPP-CN/Ag
+
 film. However, they do not allow for conclusions regarding the scale at 

which these electrostatic interactions took place. The deposited TPP-CN/Ag
+
 and  

TPP-CN films were therefore characterized by employing a scanning electron 

microscope. Figure 59 shows a SEM image of the TPP-CN/Ag
+
 film surface. 
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Figure 59: Contrast enhanced SEM image of TPP-CN on Au after AgNO3 exposure. 

Fine structures formed by the TPP-CN can be seen as well as larger crystals (top right 

corner and close to center) 

The right side of the image clearly displays big, branch-like structures which 

expand over several µm. Several larger structures, presumably TPP-CN crystals, can be 

seen in the top and bottom right of the image. These crystals formed likely due to 

agglomerated material on the surface. It is also evident that the area around these crystals 

displays a denser film, as no dark background can be seen. Figure 60 shows an enhanced 

image of the TPP-CN/Ag
+
 surface, in which the detailed structure of the observed 

branches can be seen. 
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Figure 60: Clearly visible branch-like network formed by TPP-CN in presence of 

AgNO3 (contrast enhanced image). 

The darker background originating from the Au surface can be seen on the left in 

comparison, as this part was scratched prior to SEM imaging. The branches seemed to 

have extended into various directions, suggesting an interconnected network of 

molecules. 

A third SEM image was taken of a denser part of the TPP-CN/Ag
+
 film and is 

shown in Figure 61. Here it can be seen that these parts of the film contain finer branches 

of TPP-CN molecules and even display patches with full substrate coverage. The images 

support the hypothesis that the bond formation between Ag atoms and TPP-CN 
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molecules may have resulted in interconnected long-range arrays spanning several µm in 

length and width. 

 

Figure 61: The contrast enhanced image shows an area with a denser TPP-CN/Ag
+
 film, 

exhibiting finer branch-like structures and displaying denser surface coverage (light gray 

areas) 

In order to demonstrate that such an arrangement only takes place with the 

introduction of AgNO3 prior to incubation, SEM images were obtained for a TPP-CN 

film on Au. Figure 62 shows a larger area of this film and in comparison to the  

TPP-CN/Ag
+ 

film, no branch-like arrays were formed here. Instead, isolated islands of 

TPP-CN molecules are observed on the surface. A few crystals can also be seen on the 

right side and the top of the image. These crystals are most likely a result of the 
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agglomeration of TPP-CN molecules, which is commonly observed in solutions of 

porphyrins [196, 197]. 

 

Figure 62: Thin film of TPP-CN on Au with no exposure to AgNO3 (contrast enhanced 

image). 

Figure 63 shows a closer look at the structures that formed in the TPP-CN film on 

Au. It is evident that the TPP-CN film only consists of islands, which have little to no 

connections between them. The islands are also rather wide and do not exhibit the fine 

structure like the TPP-CN/Ag
+
 film. 

While the SEM images offer an insight into the structure of the formed arrays of 

TPP-CN molecules, it is difficult to determine the thickness of such a film from these 

images. To estimate the thickness of the formed TPP-CN structures, AgNO3 and TPP-CN 
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was deposited on a clean Si surface through drop deposition in the glove box. As 

mentioned earlier, the hydrophobic and insulating characteristics of Si did not allow for 

electrospray deposition of AgNO3 and incubation in TPP-CN. 

 

Figure 63: A closer look at the structures formed by TPP-CN on Au (contrast enhanced 

image). 

The smooth surface of the Si sample allowed for surface characterization using an 

atomic force microscope (AFM). The AFM images obtained for the TPP-CN/Ag
+
 film on 

Si are shown in Figure 64 and Figure 66. The respective height profiles are displayed in 

Figure 65 and Figure 67. 

Figure 64 shows large elongated crystals of TPP-CN molecules that formed on the 

Si surface after TPP-CN deposition. The Si substrate was predominantly covered with 
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these crystals and could be likely explained by the hydrophobic characteristics of the Si 

surface. The use of a hydrophobic substrate may lead to small droplet formation on the 

surface promoting agglomeration and crystal formation of TPP-CN molecules. Since 

most likely no interaction takes place between the hydrophobic substrate and the TPP-CN 

molecules, larger three dimensional structures can therefore be formed. 

An assembly of TPP-CN molecules in extended structures, as seen in the SEM 

images of the TPP-CN/Ag
+
 film on Au, likely requires a substrates with hydrophilic 

characteristics. In that case, the TPP-CN molecules can interact with the surface on a 

larger scale, as the solvent can spread over a bigger area and allow for the formation of 

long-range structures. 

 

Figure 64: AFM scan of TPP-CN crystals formed on Si 

The height profile shown in Figure 65 suggests that the formed crystals are at 

least 300 nm in height. The deviation from the thickness estimation of approximately  

4 nm based on the XPS measurements is mainly due to the fact that the studied crystals 
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do not represent the surface of a TPP-CN/Ag
+
 film on Au. Such crystals were rare in the 

TPP-CN/Ag
+
 film and it predominantly contained arrays of smaller dimensions. 

 
Figure 65: Height profile taken along the line as marked in Figure 64 

The Si surface contained a few patches which seemed to consist of structures 

resembling the structures observed for the TPP-CN/Ag
+
 film on Au. The AFM image of 

such a patch (Figure 66) displays similar branch-like structures, which appear to also 

have grown coplanar to the sample surface. 

 
Figure 66: AFM scan of a TPP-CN/Ag

+
 array as formed on Si 
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A height profile scan (see Figure 67) across these branch-like structures revealed 

heights of 30 nm to 50 nm. Although this value is not in agreement with the thickness 

from the XPS measurements (4 nm), the XPS based estimation does not take pinholes 

and other defects into account, which usually leads to an underestimation of the 

calculated film thickness. The SEM images of the TPP-CN/Ag
+
 film demonstrated that 

the film does indeed contain pinholes and the thickness estimated from the XPS 

measurements should likely be more than the calculated 4 nm. It is questionable though, 

that the thickness of the TPP-CN/Ag
+
 film may be underestimated by as much as a factor 

of around 10. However, the XPS measurements were performed on a TPP-CN film 

deposited on Au, while the AFM images were obtained for a TPP-CN film on Si. It is 

uncertain how the hydrophobic and hydrophilic characteristics of the two different 

substrates influence the TPP-CN structure formation. As seen in the AFM pictures,  

TPP-CN predominantly assembled into large crystals on Si, which could mean that it 

might also form thicker branches on a Si surface in comparison to an Au surface. 

 

 
Figure 67: Height profile scan along lines 1 and 2 as seen in Figure 66 
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5.3.4: Orbital Band Alignment at the Au/TPP-CN and Au/TPP-CN/Ag
+
 Interfaces 

The detailed analysis by employing XPS, SEM, AFM and XRD suggests that 

TPP-CN arrays may form on a gold surface induced by the introduction of AgNO3. The 

study of the electronic structure of the Au/TPP-CN and Au/TPP-CN/Ag
+
 interfaces can 

provide information about the impact of the array formation on the work function and 

charge injection barriers of the films. The TPP-CN, AgNO3 and TPP-CN/Ag
+
 samples 

were therefore characterized by means of LIXPS and UPS. The full UP-spectra of the 

TPP-CN, AgNO3, and TPP-CN/Ag
+
 films are shown in the center of Figure 68, while the 

secondary edges are shown on the left and the background removed HOMO emissions 

are shown on the right. 

 

Figure 68: UP-spectrum of adsorbed TPP-CN, AgNO3 deposited on gold (Ag
+
), and 

TPP-CN deposited after exposure of the gold substrate to AgNO3 (TPP-CN/Ag
+
). 

The measured work function values were 5.42 eV for the clean Au substrate,  

4.87 eV for the TPP-CN film, 5.95 eV for the AgNO3 film, and 5.33 eV for the  

TPP-CN/Ag
+
 film. The interface dipole eD of the Au/TPP-CN interface estimated from 



128 

 

the difference between the work functions is with 0.55 eV in close agreement with dipole 

values obtained for metalloporphyrins deposited on Au [71, 127, 129, 199-201]. 

The deposition of AgNO3 on the clean Au substrate has the reverse effect on the 

substrate work function and results in a positive dipole of 0.53 eV. This work function 

increase can be attributed  to the dipole of AgNO3, since the presence of Ag ions and 

nitric acids may polarize the surface, as was shown for other salts [216]. This dipole can 

have a big impact on the work function of the substrate and may be one of the reasons for 

the work function increase. Secondly, the AgNO3 film may contain small clusters of Ag 

atoms which might have separated from the nitric acid during the electrospray process. 

Work function measurements of Ag nanoparticles conducted by Schnippering et al. in the 

past revealed that the work function of nanoparticles increased with decreasing particle 

size and 4 nm big particles exhibited work functions of 5.51 eV [217]. If small Ag 

clusters of similar dimensions are present at the sample surface, the measured increase in 

work function could be attributed to these particles. Since the AgNO3 film is likely a 

mixture of AgNO3 and Ag clusters, the work function increase may also be a result of 

both, the dipole of AgNO3 and the specific work function of the Ag particles. 

The TPP-CN/Ag
+
 film displays a work function of 5.33 eV, which is higher than 

what was measured for the TPP-CN film. The difference between work functions 

translates into a dipole of 0.09 eV at the Au/TPP-CN/Ag
+
 interface. Such a low value 

nearly implies vacuum level alignment between the TPP-CN/Ag
+
 film and the Au 

substrate, as it is similar to the energy resolution of the PES system. The low dipole may 

be explained through the charge transfer between Ag atoms and TPP-CN molecules, 

which was discussed in section 5.3.2. Charge transfer generally induces a dipole that can 
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either reduce or increase the work function of the studied sample and such charge 

induced dipoles were reported in the past for various organic layers [8]. The difference of 

0.46 eV between the dipoles of the TPP-CN and TPP-CN/Ag
+
 films corresponds with the 

charge transfer related shifts observed for the N1s and C1s emission peaks. 

The background removed HOMO emissions of the TPP-CN and TPP-CN/Ag
+
 

films, from which the substrate related emission were removed, are shown in Figure 69. 

Three peaks are commonly expected for TPP derivatives at approximately 1 eV,  

3 eV and 6 eV and these peaks are related to the degenerate π orbitals on the porphyrin 

ring [72, 129, 183, 200, 203], orbitals localized on the phenyl rings [72, 183], and  

σ orbitals delocalized on the porphyrin ring [71, 72, 201]. While the TPP-CN film 

displays two apparent peaks at approximately 9 eV and 7 eV, the peaks located at lower 

energies (approximately 4 eV and 2 eV) are difficult to identify due to artifacts 

introduced during the removal of the substrate related emissions.  

It is obvious that the spectrum of the TPP-CN/Ag+ film is shifted towards lower 

binding energies in comparison with that of the TPP-CN film. The shift is indicated with 

dotted lines. This shift is consistent with charge transfer between the Ag atoms and the 

TPP-CN molecules, as all peaks shift by approximately 0.4 eV, which is in agreement 

with the observed N1s and C1s peak shifts, as well as the earlier mentioned change of the 

interface dipole. 

While the emission peaks at higher binding energies (9 eV, 7 eV and 4 eV) only 

exhibit shifts of approximately 0.4 eV, the emission peak located at 2 eV shows a much 

stronger shift of around 0.8 eV. This shift may be related to the formation of Ag-N bonds 

due to the interaction of AgNO3 and TPP-CN molecules, which may have caused a larger 
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shift of the π orbital related emission peak towards lower binding energies. A similar 

peak location was observed for various metalloporhyrins [183, 199], indicating that the 

presence of metal-nitrogen bonds is a prerequisite for an emission peak at such low 

energies. 

 

Figure 69: HOMO emission features of the TPP-CN and TPP-CN/Ag
+
 film deposited on 

Au. The substrate emissions were removed from the emission features and the insert 

shows the HOMO onsets of both films. 

In order to determine the hole injection barriers of the Au/TPP-CN and the 

Au/TPP-CN/Ag
+
 interfaces, the position of the HOMO onsets were estimated and are 

shown in the insert in Figure 69. The hole injection barriers Φh were located at 1.08 eV 

for the TPP-CN film, and 0.69 eV for the TPP-CN/Ag
+
 film. The difference of 0.39 eV 
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corresponds again with the observed charge transfer related shifts of the core level lines 

of N1s and C1s, and the change in work function. 

With the calculated work functions and hole injection barriers of both films, the 

orbital line-ups can be drawn. The band line-up of the Au/TPP-CN interface is shown in 

Figure 70, while the band line-up obtained for the Au/TPP-CN/Ag
+
 film is displayed in 

Figure 71. 

 

Figure 70: Band line-up at the interface of Au and TPP-CN as determined from the UPS 

measurements. The dotted lines symbolize the uncertainty of the estimated LUMO level. 

 In order to estimate the electron injection barriers Φe, the hole injection barriers 

of TPP-CN and TPP-CN/Ag
+
 were subtracted from the transfer gap of 

TPP-CN. As the true transfer gap value of TPP-CN is as of yet unknown, it was 

approximated by using an average of transfer gap values reported for free base 

porphyrins and metalloporphyrins, which vary from 2.34 eV to up to 2.9 eV in literature 
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[204, 205]. The estimated transfer gap of 2.62 ±0.28 eV yielded electron injection 

barriers of 1.54 ±0.28 eV and 1.93 ±0.28 eV for TPP-CN and TPP-CN/Ag
+
, respectively. 

The ionization energies of both films are in close agreement and show that the 

metallization of the TPP-CN molecule through the addition of AgNO3 did not result in a 

significant change of this energy. The values of 5.95 eV and 6.02 eV are higher than 

ionization energies of around 5.3 eV published for multilayers of ZnTPP and TPP in the 

past [127, 129, 201]. Since a correlation exists between the ionization energy and the 

conduction type for porphyrins [201], TPP-CN may be an n-type conductor due to its 

high ionization energy. 

 

Figure 71: Band line-up as measured at the interface of Au and TPP-CN/Ag
+
 with UPS. 

Just like in the band line-ups for TPP-S and TPP-CN, the dotted lines display the 

uncertainty of the estimated LUMO level. 
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Summarizing, the performed experiments suggest that TPP-CN may form 

structures that contain molecular arrays, if Ag atoms are available for the formation of 

Coulomb bonds. The presented experiments showed that TPP-CN molecules bond with 

Ag atoms provided by AgNO3, forming large TPP structures, potentially with long-range 

connectivity. The resulting film of TPP-CN structures exhibited a lower injection barrier 

in comparison to a thin film of plainly adsorbed TPP-CN molecules on Au. This barrier 

may be the result of a charge induced dipole at the Au/TPP-CN/Ag
+
 interface. 

The structures have potential uses as conductive nano-structures in molecular 

circuits. The height of the hole injection barrier may still obstruct charge transfer between 

the TPP-CN structures and the substrate. The PES experiments on TPP-S showed, 

however, that the incorporation of a thiophenol group into the TPP molecule offers means 

to bond to the Au surface and create a contact between the substrate and the TPP 

molecule, reducing the hole injection barrier drastically. The presented approaches of 

self-assembly (TPP-S) and ionic coordination (TPP-CN) could potentially be used in a 

wide variety of applications in organic electronics providing a quick and simple way for 

self-assembled long-range organic networks. 
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CHAPTER 6: CONCLUSIONS AND OUTLOOK 

 

The work presented in this dissertation demonstrated the successful 

characterization of the electronic structure of several biomolecular SAMs based on PES 

measurements. The investigation of self-assembled monolayers of cysteine appended 

PNA strands of differing nucleobases (adenine and thymine), showed that the 

nucleobases have a significant impact on the hole injection barriers of the formed SAMs. 

The height of the determined injection barriers can substantially obstruct the charge 

transfer through the SAM, but also shows that the right employment of varying 

nucleobases allows for fine tuning of the hole injection barrier, which can be of great 

importance for the possible use of PNA strands in organic devices. 

The PNA strands were further investigated with regards to the interface of the 

strands and their ferrocene termini, which are usually used in electrochemistry 

measurements for charge transfer studies. The experiments showed that the ferrocene 

terminus significantly lowers the PNA related hole injection barrier at the interface, likely 

due to a reconfiguration of the molecular orbitals. 

The hole injection barriers can not only be affected by the type of nucleobase, but 

also by the orientation of the PNA molecule at the surface. Incomplete monolayers, 

which contain flat lying molecules, offer additional means for charge transfer between 

the substrate and the PNA molecule as the nitrogen sites located in the nucleobases can 
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lead to an adsorption of the bases onto the Au substrate. The adsorption of PNA 

molecules through their nucleobases creates new pathways for holes and lower the hole 

injection barrier noticeably. Such an occurrence could be crucial in the field of organic 

devices or bimolecular sensors, which employ PNA strands and rely on accurate 

assessment of the charge injection barriers. 

As it was demonstrated in the performed experiments, the charge transfer through 

a PNA based SAM mostly relies on the nucleobases of the PNA molecule and the 

cysteine and ferrocene termini are rather stepping stones for the injection and extraction 

of holes. Therefore, it would be of interest to investigate the two remaining nucleobases 

(guanine and cytosine) with PES in the future, in order to study their impact on the 

charge transfer in the PNA SAMs. Furthermore, the variation of the sequence of 

nucleobases appended to the PNA backbone could potentially identify the grade at which 

the hole injection barriers could be possibly fine-tuned. 

Only PNA strands with 7 segments of N-(2-aminoethyl)glycine units were 

investigated in this work and the dependency of the electronic structure on the length of 

the employed PNA strands is as of yet unknown. Hence, the PES based characterization 

of SAMs containing PNA molecules of various lengths could provide more information 

on this topic. Furthermore, an investigation of double stranded PNA presents an 

additional field of study as the interaction of bases can lead to a reconfiguration of the 

molecular orbitals leading to electronic structures that are different from single stranded 

PNA. 

The study of self-assembled monolayers of tetraphenylporphyrin derivatives 

containing thiol groups (TPP-S) displayed the easy assembly of monolayers with a rather 
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small hole injection barrier of 0.39 eV. The formed monolayers could potentially be used 

as a linker to the metal substrate and provide means for charge transfer due to the low 

injection barrier. Larger arrays of TPP derivatives or other organic molecules could then 

be assembled atop the TPP-S monolayer, leading to the design of self-assembled organic 

circuits and sensor. The potential formation of such TPP based arrays was studied by 

exposing TPP derivatives with attached nitrogen groups at their peripheries (TPP-CN) to 

AgNO3. It was shown that the formation of Ag-N bonds resulted in extended TPP 

structures based on ionic coordination. The structures additionally exhibited a lower hole 

injection barrier in comparison to adsorbed TPP-CN molecules, due to a charge induced 

dipole caused by charge transfer across the Ag-N bonds. 

The TPP-CN arrays however still exhibited a higher hole injection barrier than the 

TPP-S monolayer and it would therefore be interesting to investigate the electronic 

structure of a TPP derivative containing thiol moieties as well as nitrogen groups. Such a 

TPP derivative would likely allow for the self-assemby of an array with low hole 

injection barriers towards the Au substrate and charge transfer between neighboring 

molecules. This approach could be used for the self-assembly of molecular wires, 

functional arrays or dendrimers used in light-harvesting systems. 

The additional study of such arrays by means of inverse photoemission 

spectroscopy (IPES) and scanning tunneling microscopy (STM) would allow for a 

detailed analysis of the electronic structure and array quality.
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