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Abstract 

For the past decade, a great deal of research has been focused towards developing 

a viable on-chip solution to replace the current state-of-the-art VHF and UHF filters 

based on SAW and FBAR technologies. Although filters based on SAW and FBAR 

devices are capable of fulfilling the basic requirements needed for IF and RF bandpass 

filtering and reference signal generation, an alternative solution that can  enable the next 

generation of multi-frequency and multi-mode transceivers while enabling size and price 

reduction by allowing the manufacturing of single-chip monolithic RF transceivers is 

highly desired. In response to these new needs, piezoelectrically-transduced 

micromechanical filters have emerged as a plausible alternative to outperform current 

dominant technologies in size, cost, and IC manufacturing compatibility without 

compromising device performance in terms of insertion loss, rejection, power handling 

and linearity.    

 This dissertation presents the design, fabrication, characterization and 

experimental analysis of low-loss VHF and UHF filters for wireless communication 

applications, based on piezoelectrically-transduced micromechanical resonators. The 

resonators employed in this work for the implementation of microwave filters, resonate in 

contour-mode shapes, which differ from commercially available thickness-mode FBAR 

resonators, for which the thickness sets the resonance frequency. The employment of 

contour-mode designs facilitate simultaneous synthesis of multiple frequencies on the 

same substrate through CAD layout-defined lateral dimensions, thus avoiding the 
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complexity demanded by FBAR devices for the precise control of the piezoelectric layer 

thickness. Moreover, filters composed of acoustically-coupled piezoelectrically-

transduced resonators operating at higher order modes with sizes up to 10 times smaller 

than their SAW counterparts operating at the same UHF range have been successfully 

implemented, without jeopardizing the key filter specifications. 

 Throughout this dissertation, piezoelectrically-transduced MEMS filters based on 

mechanically, electrically and acoustically coupled contour-mode resonator(s) or 

resonator arrays were designed and fabricated. Filters with insertion loss as low as 2.6 dB 

at IF frequencies and 4.0 dB at RF frequencies have been demonstrated. Moreover, 

synthesized filters with extremely narrow bandwidth of 0.1 % and 0.2 % at frequencies 

between 160 MHz and 215 MHz have been developed, which comply the specifications 

for IF filters for GSM handsets. This particular type of filters each consist of just one 

single high-Q resonator, which leverages single crystalline silicon as the major part of 

their structure to obtain the sufficient quality factor required for the implementation of 

such small bandwidth. 

 Among the most significant results, this dissertation presents two thin film 

piezoelectrically-transduced monolithic filters operating at 482 MHz and 536 MHz, 

which can be interfaced directly to a 377  antenna without the need of external 

matching components. This dissertation also has conducted a systematic comparison 

between commercial available SAW filters and the MEMS filters synthesized using 

piezoelectrically-transduced resonators. Parameters such as group delay and third 

intermodulation (IP3) have been measured and carefully compared. Evidentially, most of 
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the fabricated piezoelectrically-transduced filters developed by this work have exhibited a 

similar or superior performance as compared to their commercial SAW counterparts. 
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Chapter 1                                                                                                          

Introduction 

1.1  Overview 

Since the first long wireless transmission in 1895 by Guglielmo Marconi, wireless 

communications have become one of the areas that have revolutionized the form that 

human beings interact and changed forever the way that contemporary society 

communicate. Today, wireless communication enables a wide variety of applications 

such as satellite transmission, radio and television broadcasting, sensor networks, global 

positioning system (GPS), mobile communications, and a lot more of emerging 

applications that have led to a new generation of multifunctional, small size and low cost 

communications devices that cover a wide variety of wireless communications 

applications. 

As the demand for these emerging multifunctional wireless communications 

devices increases, so does the demand for smaller, low cost and single-chip oscillators, 

mixers and RF front-end and intermediate frequency (IF) filters that can bring together in 

a single device multiple wireless standards operating at different frequencies, without 

compromising size, portability and cost. Currently, the majority of the modern transceiver 

systems are based on heterodyne architecture, which utilizes a number of discrete 

resonant components such as quartz crystals, SAW (Surface Acoustic Wave) and FBAR 

(Thin Film Bulk Acoustic Resonator) devices to implement oscillators with high quality 

factors (Q’s) for frequency reference and band-pass filtering. 
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Despite the beneficial high-Q offered by quartz crystal and SAW devices, and the 

low motional resistance provided by FBAR’s, they are relatively bulky off-chip 

components that must be integrated with electronics at the board level, thus hindering the 

ultimate miniaturization and portability of wireless transceivers. Very promising 

alternatives to overcome the aforementioned issues have been demonstrated by on-chip 

micromechanical resonators with electrostatic and piezoelectric transduction mechanisms 

along with small size, high quality factor (Q’s >10,000) and low insertion loss. 

Nevertheless, there is still room for improvement, further reduction of the motional 

resistance to allow matching to 50  electronics, while retaining simple IC-compatible 

and mass-producible manufacturing process.  

1.2  Modern Wireless Transceiver Architecture 

 A transceiver is a wireless device that consists of both a transmitter and a receiver 

sharing electronic circuitry for transmission and reception of radio frequency signals. The 

main function of the transmitter is to modulate and up-convert the baseband data to a 

carrier frequency to achieve high transmission efficiency with a reasonably sized antenna. 

The transmitter also provides the power amplification needed for the transmission in the 

medium, which for a wireless system is the free space. The receiver amplifies, filters, and 

down-converts the incoming signal to a lower frequency and demodulates it in the 

presence of undesired interference and noise. One of the most popular receiver 

configurations is the super-heterodyne architecture, which has been used in the majority 

of wireless system since its invention by Edwin Armstrong in 1917. A simplified 

schematic of a modern communication transceiver is shown in Figure 1.1. In general, the 

function blocks of the receiver and the transmitter can divide into three main tasks: 
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frequency generation, amplification and spectral shaping. The first two, have been 

successfully implemented with integrated circuit (IC) technologies, whereas the spectral 

shaping still demands off-chip mechanically vibrating components such quartz crystals, 

surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices. Although 

oscillators and filters implemented with such technologies outperform their counterparts 

implemented using conventional transistor technologies in terms of insertion loss, percent 

bandwidth, achievable out-of band rejection, and dynamic range; they are bulky off-chip 

components that need to be interfaced with IC electronics at the board level, thus 

hindering the miniaturization of the transceiver size.  

 
 

Figure 1.1 – Block diagram for a typical super-heterodyne transceiver 

 

 Although super-heterodyne transceiver architectures fulfill all the requirement for 

current wireless communication systems, (e.g., cellular phones, tablets, monitoring 

systems, bluetooth devices, etc) efforts have been focused on developing alternative 
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transceiver architectures such as direct conversion [2], low-IF [3], and RF sampling 

down-conversion [4]. While these alternatives that decrease the number of off-chip 

components have shown some level of success [5], they trade the performance of discrete 

passive devices for on-chip active devices, which increase the power consumption and 

complexity of the transceiver.  

1.3  Transceiver Architecture Based on RF-MEMS  

 

 
 

Figure 1.2 – Simplified architecture of RF-MEMS resonator-based channel select transceiver  
 

 One of the most extensively pursued topics of RFIC designers is the 

miniaturization of communication electronic devices, while improving performance, 

reducing size, power consumption and weight, and moreover, minimizing the fabrication 

cost. Consequently, a technology that can fulfill all these coveted requirements is highly 

desirable. Recent advances of CMOS-compatible micro-electro-mechanical-systems 
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(MEMS) technology have made possible the fabrication of on-chip RF-MEMS 

components, such as intergraded inductors, tunable capacitors,  RF-MEMS switches [6], 

and more recently voltage controlled oscillators (VCO) based on capacitively-transduced 

micromechanical resonators [7][8]. The transceiver architecture presented in Figure 1.2 is 

a clear example of how MEMS technology can be integrated into monolithic integrated 

circuits, by replacing all the external passive components, such as SAW and BAW filters, 

and the quartz crystals oscillators. Besides the obvious size and power consumption 

reduction, new transceivers architectures based on RF-MEMS technologies can enable a 

new generation of reconfigurable multi-band telecommunication systems, in which one 

single transceiver IC can cover several services operating over a wide frequency range, 

therefore eliminating the need for multiple transceivers when additional functionalities 

and services are required. 

1.4  Current State of the Art of Micromechanical Resonators and Filters 

The concept of Microelectromechanical resonator was first introduced by Harvey 

C. Nathanson in 1965, through the implementation of the resonant gate transistor as a 

frequency selective device [1]. Although such a pioneering device was constructed 

through a batch fabrication method similar to present-day MEMS manufacturing, it was 

not until the 1980’s when the advancement in materials and microfabrication 

technologies rekindled the interest in micromechanical resonant structures. Since then, 

several types of microresonators have been successfully demonstrated operating as the 

building blocks for frequency reference oscillators and filters. 



 

6 
 

1.4.1 Previous Work on Capacitively-Transduced Resonators 

With the advances in the polysilicon surface micromachining technology, the 

initial effort of micromechanical resonant structures was initially led by R.T Howe at UC 

Berkley [10]. Howe conceived a capacitively actuated resonant polysilicon microbridge 

for vapor sensing applications. Following this research, William C. Tang [11] and Clark 

Nguyen [12] popularized the electrostatic comb-drive resonator for signal processing in 

the medium-frequency range (i.e., 300 kHz to 3 MHz), through the implementation of 

micromechanical band-pass filters, exhibiting insertion loss as small as 0.1 dB at 340 

KHz [13]. To increase the operational frequency of these micromechanical resonators to 

the high-frequency range (i.e., 3 to 30 MHz) and very high frequency range (i.e., 30 to 

300 MHz), flexural-mode free-free-beam polysilicon resonators were demonstrated 

operating at frequencies from 30 MHz to 100 MHz with quality factors as high as 8,400 

in vacuum [14]. Bandpass filters composed of mechanically-coupled free-free beam 

resonators were also implemented [15] with a center frequency of 37 MHz and an 

insertion loss less than 4 dB at of 1.7% as shown in Figure 1.3. 

 
(a) 

 
(b) 

 

Figure 1.3 – (a) SEM micrograph of a 37 MHz mechanically-coupled free-free beam 

micromechanical filter; (b) Its frequency characteristic measured under 50 µTorr of pressure 

along with the theoretical prediction. (From A. Wong et al. [15] © IEEE 2000) 

 

http://en.wikipedia.org/wiki/Megahertz
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 Although the performance of the free-free beam resonators is attractive for the 

implementation of bandpass filters in the low MHz range, they are not well-suited for 

applications in the ultra-high frequency (UHF) range (i.e., 300 MHz to 3 GHz) as 

excessive scale-down of the device geometry approach the actual tolerance of MEMS 

fabrication process. Even if such scale down were feasible with current fabrications 

techniques, it would introduce several problems such as mass loading and low device 

quality factor. As a promising approach to circumvent these issues, John R. Clark et al. 

[16] implemented a lateral vibrating micromechanical contour-mode disk resonator to 

obtain higher resonance frequencies, as shown in Figure 1.4. As opposed to the free-free 

beam resonators, the electrostatic force acts laterally on the resonating disk, producing 

expansion and contraction of the structure along its radius. Using this design, devices 

operating at 156 MHz with Q’s exceeding 9,400 were demonstrated, with dimensions 

significantly larger as compared to those of free-free beam resonators, which is better 

suited for operation at the UFH range [16].  

 
(a) 

 
(b) 

 

Figure 1.4 – (a) SEM micrograph of a 17 µm-radius micromechanical contour-mode disk 

resonator; (b) and the frequency response at its fundamental resonance mode (From Clark et al. 

[16] © IEEE 2000) 
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Wang et al. [17] implemented a self-aligned fabrication technique to develop a 

radial-contour mode micromechanical disk resonator with resonant frequencies up to 

1.156 GHz and measured Q’s at this frequency close to 3,000 in both vacuum and air 

[17]. The major breakthrough of this design can be ascribed to the self-alignment of the 

supporting anchors to the exact center of the resonator, thus allowing excitation of the 

higher order modes. This novel design allows high quality factors at gigahertz 

frequencies while retaining similar dimensions and power handling ability on par with the 

previous version of the contour-mode disk resonator. Other extensional mode devices, 

such as wine-glass mode disk resonators [18] and hollow-disk resonators [19] were also 

implemented. The wine-glass disk resonator operating at 74 MHz exhibited high Q’s of 

98,000 in vacuum and 8,600 in air, while the hollow-disk resonator with 1.2 GHz 

resonance frequency achieved a Q-factor exceeding 10,000.  

 

 
(a) 

 
 

(b) 

 

Figure 1.5 – (a) SEM micrograph of the stem self-aligned, radial-contour-mode disk resonator; 

(b) Frequency characteristics for a 1.156 GHz, 3
rd

 radial-contour mode, 20 μm diameter, disk 

resonator measured in air. (From Wang et al. [17] © IEEE 2004) 
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Despite the high Q and wide frequency range achieved by radial contour disk 

resonators, their large motional resistance (> 1 MΩ) is too high to match with the 

standard 50  impedance of today’s RF components. Several strategies have been 

proposed such as replacing the capacitive air gap by a solid gap filled with a high-k 

dielectric or reducing the air gap to sub-100 nm range. Capacitively-transduced 

resonators with sub-100 nm air gaps and with solid high-k dielectric gaps have achieved 

VHF and UHF frequencies with quality factors as high as 20,000 in air and motional 

impedances less than 10 k [21][22][23]. 

Aside from the efforts for increasing the operational frequency of capacitively 

transduced micromechanical resonators, research towards lowering the motional 

impedance of such devices was also in progress. Demirci et al. implemented a novel 

technique using a parallel array of corner coupled square plate resonators for reduction of 

the effective motional impedance [20].Using this technique with several corner-coupled 

resonators, an effective motional resistance of 480  has been demonstrated at 70 MHz, 

which is 5.9 times smaller than that exhibited by a stand-alone single square resonator. 

 In 2009, Weinstein et al. [24] investigated the electrostatic transduction of a 

longitudinal-mode silicon acoustic resonator with internal dielectric films. With this 

configuration, a dielectrically-transduced silicon bar-shaped resonator with a 15 nm 

nitride solid gap has been demonstrated with the highest resonance frequency of 6.2 GHz 

and quality factor of 4,277 as shown in Figure 1.6. A frequency-Q product of 3.1×10
13

 at 

4.7 GHz is the highest in polysilicon resonators reported to date [14]. However, the 

motional impedance is not improved with this design and also the quality factor is lower 

as compared to devices operating with air gaps. 
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(a) 

 

 
(b) 

 

Figure 1.6 – (a) SEM micrograph of a bulk-mode resonator dielectrically-transduced resonator; 

(b) Frequency response at different resonant frequencies (From Weinstein et al. [24] © IEEE 

2009) 

 

1.4.2 Previous Work on Piezoelectrically-Transduced Resonators 

Piezoelectric transduction offers orders of magnitude higher coupling coefficients 

than capacitive transducers for similar resonator geometry. Therefore, the low motional 

impedance enabled by the more efficient electromechanical transduction makes 

piezoelectric resonators the dominant technology in the current mobile communication 

market. On the contrary to capacitive devices, in which any conductive material can be 

used as device layer (e.g., Polysilicon, Silicon, Diamond, Nickel, etc.), piezoelectric 

devices rely on the piezoelectric effect that only exists in piezoelectric materials. 

Common materials for MEMS piezoelectric resonators are quartz, Zinc Oxide (ZnO), 

Aluminum Nitride (AlN), Barium Titanate and Lead-Zirconate-Titanate (PZT). 

Currently, the two most important classes of piezoelectric resonators are the 

Surface Acoustic Wave (SAW) and the Bulk Acoustic Wave (BAW). SAW resonators 

are widely employed to implement filters at frequencies lower than 2 GHz. However, for 

wireless communications standards that require frequencies higher than 2 GHz, it 

becomes very difficult to implement low-loss and sharp-cut off filters using SAW 
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technology. The quality factor for a SAW resonator decreases at higher frequencies and 

the size of the electrodes start to approach sub-micron scale, thus forcing the employment 

of nonstandard photolithography fabrication techniques (i.e., electron-beam lithography). 

 
 

Figure 1.7 – Schematic of a typical SAW resonator 

 

Filters based on BAW resonators have attracted attention since its introduction by 

Lakin et al. [25], due its simple electrode design, higher quality factor, sharp cut-off 

shape, high frequency range and moreover the possibility of implementing monolithic 

filters alongside of active RF components (i.e., amplifiers, mixers, etc). At the moment, 

two main variants of BAW filters have been successful commercialized on the wireless 

market: Thin film bulk acoustic resonator also known as FBAR [26] in which the 

resonant structure isolated from the carrier substrate via air cavity suspension  and solid 

mounted resonators or SMR  which use Bragg’s acoustic reflectors as isolation from the 

carrier substrate [27]. 

(a) (b) 

 

Figure 1.8 – Device implementation for the two types of bulk acoustic wave (BAW) resonators 

with two different types of acoustic isolation methods: (a) Film bulk acoustic resonator (FBAR) 

sits on top of air cavity; and (b) solid mounted resonator (SMR) employs Bragg’s reflector 

http://en.wikipedia.org/wiki/Thin_film_bulk_acoustic_resonator
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Despite the current dominance of FBAR devices in the RF filter market, they 

suffer from a major limitation as their resonance frequency is set by the thickness of the 

piezoelectric film. Therefore, in order to achieve precise frequencies, the thickness of the 

piezoelectric film must be accurately controlled. Moreover, only devices operating at one 

specific frequency can be fabricated in one process run. Nevertheless, the present-day 

wireless technology calls for multi-functional single-chip transceivers that operate at 

different frequencies as opposed to several discrete components integrated on board level. 

In order to solve this problem, Piazza et al. [28] proposed a feasible solution to expand 

the major advantage of FBAR (i.e., low motional resistance, high-Q, and high resonance 

frequency) to a single chip implementation of multiple frequencies using piezoelectrically 

transduced contour-mode aluminum nitride (AlN) micromechanical resonators. The 

resonance frequency for the contour-mode resonator is determined by the lithography-

defined lateral dimensions, rather than the thickness of the piezoelectric layer. AlN 

resonators with resonance frequencies from 23 MHz to 230 MHz with quality factors up 

to 4,300 in air and low motional impedance (50~700 Ω) have been demonstrated [28]. 

These devices have been electrically cascaded in ladder configuration to yield high 

performance, low insertion loss (as low as 4 dB at 93 MHz), and large rejection (27 dB 

out of band rejection for a 236 MHz micromechanical band pass filter [29][30] as shown 

in Figure 1.9. 

Abdolvand et al. [31] introduced a new generation of piezoelectric resonators 

called thin-film piezoelectric-on-substrate (TPoS) resonators. These devices benefit from 

the high electromechanical coupling of piezoelectric transduction, and the superior 

acoustic properties of a low acoustic loss substrate such as single crystal silicon. 
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Therefore, the motional impedance of these resonators is significantly smaller as 

compared to typical capacitively-transduced counterparts while they exhibit relatively 

high quality factor at atmospheric pressure. The TPoS resonator has been utilized to 

fabricate multi-frequency UHF filters within a single substrate. Using the same 

technology, thickness-mode filters have also been demonstrated at frequencies ranging 

from 600 MHz to 3.5 GHz with motional resistance less than 700  [32][33]. 

 
(a) 

 
(b) 

Figure 1.9 – Frequency response and SEM micrograph of a 236 MHz ladder filter realized using 

different size rings in the series and shunt branches. (From Piazza et al.[30]  © IEEE 2007) 

 

 
(a) 

 

 
(b) 

Figure 1.10 – (a) Electrical response and SEM micrograph of a 435 MHz of lateral monolithic 

filter; (b) Measured frequency response plots and the SEM micrograph of 3.5 GHz thickness 

mode monolithic TPoS filters. (Abdolvand et. al. [32] © Cambridge University 2009) 
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1.5  Summary of Issues for the Current State of the Art in Resonator Technologies 

Capacitively-transduced resonators and filters based on radial contour-mode disk 

resonators have been demonstrated with the ability to achieve high quality factors and 

resonance frequencies. Unfortunately, these devices usually suffer from high insertion 

loss if terminated with 50  due its high motional impedance. Even though capacitively 

transduced resonators with sub-100 nm air gaps have been demonstrated at VHF range 

with high quality factors and relatively low motional impedances (i.e., 1 k), reliable and 

high yield fabrication of these devices with sub-100 nm air gaps is still challenging. 

Otherwise, capacitively-transduced resonators with solid gaps have been demonstrated 

with the highest resonance frequency of 6.2 GHz in a silicon resonator, their motional 

impedance is still quite higher than 50 (i.e., >1 M) and their quality factors are lower 

as compared to the devices implemented with air gaps. 

FBAR and SAW technologies have already reached a phase of maturity, as they 

have been produced in large volumes through industrial manufacturing processes for 

more than one decade. Less performance demanding applications such as RF front-end 

duplexers are the preferred target of such technologies. Filters based on contour-mode 

AlN resonators have been demonstrated at UHF frequencies. These electrically-coupled 

(ladder) filters exhibited moderate insertion loss and quality factors. However, their 

performance still relies highly on the mechanical and electrical properties of the 

piezoelectric layer. 

1.6  Dissertation Organization 

This dissertation is organized into six chapters. The first chapter presents an 

overview of the current state of the art of micromechanical resonators and filters 
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technologies and describes the goals of this dissertation research. Chapter 2 reviews the 

fundamentals and basic formulations for piezoelectric materials. Additionally, the 

equivalent mechanical and electrical lumped circuit representation for piezoelectric 

resonators and filters are also described.  

The fabrication processes for the piezoelectric resonators and filters implemented 

in this work are detailed in Chapter 3. The experimental results obtained for the novel 

contour mode resonators and bandpass filters developed in this research are presented in 

chapter 4. Chapter 5 presents a study of the effect of the substrate in the performance of 

the fabricated piezoelectric filters and resonators as well as the experimental results of 

three different coupling schemes used to implement low loss micromechanical filters 

based on piezoelectrically-transduced resonators operating in the VHF and UHF bands.  

Chapter 6 summarized the accomplishments of this work and the viable directions 

for future research work.  

1.7  Contributions 

The main contribution from this dissertation work is the successful design and 

implementation of low loss piezoelectric micromechanical filters for VHF and UHF 

applications. The fabricated MEMS filters have greatly reduced sizes up to 10 times 

smaller than the commercial devices implemented with SAW resonators operating at the 

same frequency range. 

Thin-film piezoelectrically-transduced and piezo-on-silicon resonators were 

developed to construct higher-order micromechanical filters via capacitive, mechanical 

and acoustic coupling schemes. The MEMS filters investigated in this work are mainly 

composed of contour-mode micromechanical resonators whose resonance frequencies are 
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determined by their lateral dimensions defined by CAD layout. In other terms,  filters 

operating at multiple different frequencies can jointly fabricated on the same substrate 

with strategically designed device lateral dimensions, without the need of thickness 

alternation and post-processing trimming which is one of the costly but necessary 

processing steps for film bulk acoustic resonators (FBAR) operating in thickness-mode. 

 In this work, the implementation of filters based on arrays of mechanically-

coupled piezoelectrically-transduced resonators to lower the filter termination impedance 

has also been investigated. A two-pole filter based on a 102 array of 

micromechanically-coupled resonators has been demonstrated with a center frequency of 

73 MHz. Given its lower characteristic motional impedance achieved via the arraying 

technique, this filter has shown a satisfactory insertion loss of 5 dB when it is terminated 

with a 300 Ω resistor.  This type of filters use arrays of mechanically-coupled resonators 

as two individual composite resonators to provide two key advantages such as the 

reduction of the filter termination impedance and improvement of power handling 

capabilities, without sacrificing the device performance in terms of insertion loss and out-

of-band rejection.  

 In order to raise the operational frequencies of micromechanical filters to meet the 

required RF front-end frequencies of the present-day wireless systems, piezoelectrically-

transduced plate resonators vibrating in higher order length-extensional modes have been 

adopted for the synthesis of UHF micromechanical filters. Among the most significant 

results, this dissertation presets two thin film piezoelectrically-transduced monolithic 

filters operating at 482 MHz and 536 MHz, which can be interfaced directly to an 
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antenna with a 377  of characteristic impedance, without the need of external 

impedance-matching components. 

 Another achievement of this dissertation is the successfully implementation of 

single-resonator filters that use two distinctive contour-mode resonances of a single 

structure instead of two separate resonators to define the filter passband frequency 

characteristics. This design, which is also known as monolithic filter, reduces the number 

of resonators required to implement a filter, thus leading to a simpler and compact design. 

Furthermore, the use of a material such as single crystalline silicon with low acoustic loss 

as the major part of the resonator body in such filters, allows the implementation of two-

pole filters with a bandwidth as narrow as 200 kHz with an insertion loss of 8 dB, which 

fulfill the requirements for GSM/EDGE applications at frequencies close to 200 MHz. In 

addition, it was also demonstrated that the inclusion of silicon as the major part of 

structural material, not only improves the linearity of the piezoelectrically-transduced 

filters in terms of third-order intermodulation products, but also significantly increases 

the quality factors of piezoelectrically-transduced resonators. 

 In addition, a robust and high-yield microfabrication process for thin-film ZnO 

and ZnO-on-SOI resonators and filters have been successfully developed. The process is 

entirely compatible with standard CMOS foundry processing with a low thermal budget 

with temperature well under 400ºC, which facilitates future monolithic integration 

between MEMS filters and CMOS electronics on the same substrate to fulfill single chip 

transceivers. 
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Chapter 2                                                                                                           

Background 

2.1  Piezoelectric Effect 

 The piezoelectric effect is understood as the linear electromechanical interaction 

between the mechanical and the electrical state in crystalline materials with no inversion 

symmetry [35]. A piezoelectric material is able to generate an electrical charge when a 

mechanical stress (force) is applied. The amount of charge generated is directly 

proportional to the strength of the applied mechanical stress. This behavior is known as 

direct piezoelectric effect. Piezoelectricity is also a reversible and bidirectional energy 

conversion mechanism, where mechanical deformation is generated in a piezoelectric 

material when an electrical field is applied. This is behavior is known as reverse 

piezoelectric effect. 

 
  

Figure 2.1 – Illustration of the  direct and reverse piezoelectric effects 

 

http://en.wikipedia.org/wiki/Piezoelectricity#Mechanism
http://en.wikipedia.org/wiki/Centrosymmetry
http://en.wikipedia.org/wiki/Centrosymmetry
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 Since the discovery of piezoelectricity in 1880 by the brothers Pierre Curie and 

Jacques Curie, the first step towards an engineering application was taken in 1916 by 

Paul Langevin, who constructed an ultrasonic sensor for submarine detection using a 

piezoelectric quartz element. This first practical application started the experimentation 

of the mechanically vibrating crystal and its piezoelectric behavior, leading to the 

invention of timing and frequency control devices using quartz crystals. Since then, 

several engineering applications based on the piezoelectric effect have been widely 

implemented, such as microphones, sensors, transducers and frequency control devices 

such as oscillators, the latest became the milestone for the continuously growing radio-

telecommunication industry. 

2.2  Piezoelectric Materials 

Piezoelectric materials can be divided in two major categories, piezoelectric 

crystals and piezoelectric ceramics. Only few of the single crystals are actually used as 

piezoelectric elements. Quartz, a natural piezoelectric crystal, is widely used because of 

its mechanical strength, small dielectric loss, chemically stability and low thermal 

coefficient expansion, which translates to an excellent dimensional stability under 

temperature variations. However, its piezoelectric effect is relatively weak as compared 

to other piezoelectric ceramic materials. Therefore, quartz is used mainly in piezoelectric 

filters, timing and frequency reference devices such as oscillators, which do not require a 

high piezoelectric effect.  

Although there are several ceramic materials that exhibit piezoelectric behavior, 

the most widely used in transducers and MEMS applications are Aluminum nitride 

(AlN), Zinc oxide (ZnO), Barium titanate (BaTiO3) and Lead-Zirconate-Titanate (PZT). 

http://en.wikipedia.org/wiki/Pierre_Curie
http://en.wikipedia.org/wiki/Jacques_Curie
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Barium titanate is an excellent material for electromechanical transducers because of its 

high electromechanical coupling coefficient and ease of fabrication. However, two major 

drawbacks have limited its further development: high thermal expansion coefficient and 

low Curie point. Contrarily, PZT has rapidly taken the places of barium titanate in most 

of piezoelectric applications due to its high electromechanical coupling factor, and low 

thermal expansion coefficient. PZT ceramics are ferroelectric and do not require a 

specific deposition processing in order to obtain high piezoelectric coefficients. 

 AlN and ZnO are the most used piezoelectric thin film material for MEMS 

applications. High quality AlN and ZnO films can be obtained by sputtering at a 

relatively low temperature (below 400 C) offering compatibility with CMOS processing. 

The low processing temperatures of these materials also enables post-CMOS integration 

process while retaining aluminum as the metallization layer. However, these materials are 

not ferroelectric. Consequently, in order to obtain high piezoelectric coefficients, 

particular deposition conditions are required.   

 
Table 2.1 – Properties of most common piezoelectric materials [35][36][37] 

 

Material Density 

(kg/m
3
) 

Dielectric 

Constant 
Acoustic 

Velocity 

[m/s] 

Piezoelectric 

Coefficient d31 
[pC/N] 

Temperature 

Expansion 

Coefficient 

Quartz 2650 3.8-4.5 3158 2 0.6  10
-6

/°C 

BaTiO3 6020 1500 4800 33.4 0.5  10
-6

/°C 

PZT 7600 400 – 1000 3300 180 -6.0 10
-6

/°C 

ALN 3270 8 11400 1.8 4.5  10
-6

/°C 

ZnO 5766 8.8 6330 4.7 4.0  10
-6

/°C 
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2.3  Mathematical Model of the Piezoelectric Effect 

As mentioned in the last section, the charge generated in a piezoelectric material 

is directly proportional to the strength of the applied mechanical stress. Since 

piezoelectric materials are anisotropic, their physical properties (e.g., permittivity, 

elasticity, and piezoelectricity coefficients) are vector quantities. The electrical behavior 

of a piezoelectric material can be expressed as: 

               (2.1) 

where D is the electric density displacement,   is the dielectric constant and E represents 

the electric field. Equivalently, the mechanical behavior of piezoelectric materials is 

modeled using the Hooke’s law which describes the stress-strain relationship of material 

which is given by: 

               (2.2) 

where S represents the strain, c is the compliance, and T is the stress. These Equations 

can be combined into a coupled equation, which relate the mechanical and electrical 

variables and completely described the behavior of piezoelectric materials. The 

fundamental electro-mechanical coupled equation is given by: 

                          (2.3) 

                          (2.4) 

where   represents the piezoelectric constants. These sets of equations are known as the 

stress-charge form of the piezoelectric equations or d-form piezoelectric equations. 
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2.4  Piezoelectrically-Transduced MEMS Resonator 

A piezoelectrically transduced MEMS resonator consists of a piezoelectric 

substrate suspended from the edge and embedded between two thin film metal electrodes, 

which are patterned on the two major surfaces of the substrate as shown in Figure 2.2. 

 
  

Figure 2.2 – Schematic-view diagram of a piezoelectric square-plate resonator 

 

 An alternative design known as piezoelectric-on-substrate resonator is shown in 

Figure 2.3. A piezoelectric-on-substrate resonator consists of a thin-film piezoelectric 

layer embedded between two metallic electrodes stacked on top of a relatively thick 

mechanical structural layer. The structural layer which usually comprises a large portion 

of the resonant structure is chosen from a low acoustic loss material such as single crystal 

silicon. For both designs, when an AC electric field is applied across the piezoelectric 

film between the top and bottom electrodes at the natural resonance frequency of the 

structure, the device is excited into its resonance mode. The applied electrical field across 

the piezo-film will drive the resonator body to expand and contract through the reverse 

piezoelectric effect. In return, the resonance mode deformation induces periodic 

piezoelectric charges on the surface of the output electrodes.  
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Figure 2.3 – Piezoelectric on substrate resonator 

 

 
 

Figure 2.4 – Vibration modes of a piezoelectric rectangular plate resonator [40] 

 

 Depending on how the plate is polarized to excite the resonance and the 

geometrical dimensions that set its resonance frequency, a device with a square-plate 

shape can be either actuated in thickness-mode (by means of      piezoelectric 

coefficient), lateral shear-mode (by means of      piezoelectric coefficient) or contour-

mode (by means of      piezoelectric coefficient). Thickness-mode is employed in FBAR 

resonators, which the resonance frequency is set by the thickness of the piezoelectric 
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transducer material, preventing multiple frequency operation on a single substrate. For 

devices operating in shear-modes, the electrical field must be applied perpendicular to 

edges of the plate in order to drive the structure in resonance, thus complicating the 

fabrication process. Moreover, as in the case of thickness-mode, the fundamental 

resonance frequency is set by the film thickness, therefore allowing one operation 

frequency on a single substrate. Lastly, the resonance frequency in a plate vibrating in a 

contour-mode shape is set by the lateral dimension of the structure. Such dimensions can 

be precisely defined by the device CAD layout, facilitating the design and fabrication of 

this kind of structures. Figure 2.4 illustrates the vibration modes for piezoelectric 

resonators mention above.  

2.5  Contour-Modes in Rectangular Plates 

For a plate with the length of   and width of  , resonating in its extensional 

contour-mode along the length of the bar as shown in Figure 2.5, the resonance frequency 

can be calculated from the analysis of a set of differential equations knows as the wave 

equations [42], which describe the modal vibration of the resonator. It is worthwhile 

mentioning that this example is taken for its simplicity, but the analysis can be extended 

to different geometries and mode shapes. A more detailed analysis of several shapes and 

modes is presented by R. A. Johnson et al. [42]. The analysis for structure in question 

starts with the wave equation given by: 

 
 

 

   

   
      (2.5) 

where   is the Young’s modulus,   is the density of the structural material and   is the 

displacement. 
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Figure 2.5 – Longitudinal-mode rectangular plate resonator 

 

Equation (2.5) can be solved using the theory of liner differential equations. The 

general solution is expressed as follows: 

  ( )                (2.6) 

where   is the distance from the end of the plate, and   is the propagation constant. By 

differentiating Equation (2.6) while applying the boundary condition    , the value of 

  can be found as: 

 
  

  
]
   

   

                   (2.7) 

At    ; since          

              or     (2.8) 

  ( )         (2.9) 

Applying the boundary condition at     to Equation (2.7), this results in: 

        , for       ,             (2.10) 
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Now by substituting Equation (2.9) in the wave Equation (2.5) and differentiating 

the left hand side. After cancelling the       term in the equation, we obtain: 

    √
 

 
 (2.11) 

Next we substitute the values of    from Equation (2.10) into Equation (2.11) that 

derive the governing expression for the resonance frequency of a rectangular plate 

vibrating along its length in the n
th

 mode: 

  
 
 
 

  
√
 

 
 (2.12) 

 As example, Figure 2.6 shows the first length-extensional mode for a thin-film 

ZnO plate resonator with dimesions of 140 µm x 40 µm. the resonance frequency for this 

resonator is 15.43 MHz, which can be calculated analytically using Equation (2.12). 

1
st
 mode 

fo=15.43 MHz 

140 µm x 50 µm 

 
 

Figure 2.6 – COMSOL simulation of a longitudinal-mode ZnO rectangular plate resonator 

operating in the 1
st
 length-extensional mode 

 

2.6   Mechanical Resonator Modeling 

The mechanical behavior of a resonator at the resonance frequency depends on the 

inertia, elastic compliance of the resonator body, and the energy dissipation. Similarly, 

the electrical behavior of the resonator can be described by an equivalent electrical 



 

27 
 

circuit, consisting of an inductor, capacitor and resistor connected in series, 

corresponding respectively to the inertia, compliance and damping of the mechanical 

system. Regardless of the resonator shape (e.g., beam, disk, ring, plate, etc.) and the 

transduction mechanism (i.e., electrostatic, piezoelectric) the aforementioned mechanical 

and electrical equivalent circuit models are always applicable. Table 2.2 summarizes the 

analogy between the mechanical and electrical domain, where mechanical parameters 

such as force and velocity are equivalent to corresponding electrical variables such as 

voltage and current. 

 
Table 2.2 – Direct analogy between electrical and mechanical domain 

 

Mechanical Domain  Electrical Domain 

Force F  Voltage V 

Velocity  ̇  Current I 

Mass      Inductance    

Compliance     ⁄   Capacitance    

Damping      Resistance    
 

 

 
(a) 

 

 
(b) 

 

Figure 2.7 – Equivalent lumped-element model of a micromechanical resonator. (a) Equivalent 

mass-spring-damper model; (b) Equivalent LCR circuit model 
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 The lumped-element mechanical model representation of a micromechanical 

resonator is shown in Figure 2.7(a). Where    ,    and    , represents its equivalent 

stiffness, mass and damping, respectively. Although this mechanical model describes the 

mechanical behavior of the resonator, an electrical model is most appropriate for 

electronic filter design and frequency reference devices. Figure 2.7(b) presents the 

electrical equivalent circuit model based on the electromechanical analogy shown in 

Table 2.2. This equivalent electrical circuit consists of a series LCR tank, two 

transformers, and a port capacitance at the input and output terminals. The transformers 

in the model represent the input and output transducers, which can be either piezoelectric 

or capacitive. 

2.7  Model Parameters for Equivalent Electrical Circuit 

The equivalent electromechanical parameters of a resonator can be extracted with 

the use of the fundamental equations of piezoelectricity and rigid body dynamics. A 

second approach is based on an energy method that relates the electrical and mechanical 

domains [28]. For the case of a rectangular piezoelectric plate vibrating along its length 

the electrical parameters can be calculated by: 

     
    

 
 
       

 
 (2.13) 

     
     

 
 (2.14) 

       
     (2.15) 

where  ,   and   are the width, length and thickness of the resonator body,   is the 

quality factor,  n is the frequency for the n
th

 resonance mode. Subsequently, the 

electromechanical coupling factor can be determined as follows: 

http://thesaurus.com/browse/appropriate
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 (2.16) 

where    is the total charge induced on the electrodes and      is the maximum 

displacement. Now we can convert these mechanical variables into electrical parameters 

using the electromechanical analogy presented in Table 2.2 as follows: 

    
   

  
 (2.17) 

    
  

   
 (2.18) 

    
   

  
 (2.19) 

2.8  Mechanical Filters Fundamentals 

A mechanical filter is a signal processing device constructed of mechanical 

components (i.e., resonators) instead of the typical electrical components (i.e., resistors, 

inductors and capacitors) used in electronic filters. Its purpose is the same as that of an 

electronic filter: to pass signals with frequencies within a certain range that is called the 

passband while blocking and attenuating signals outside the targeted passband. A 

mechanical filter leverages its highly frequency selective modal vibration to process the 

signals in the mechanical domain. The transducers at the input and output terminals of the 

filter convert the electrical input signal into mechanical modal vibration and then 

transform the mechanical vibration to an electrical output signal. 

A symbolic representation (block diagram) of a single input and single output 

filter is shown in Figure 2.8, where  ( ) is the input signal, and  ( ) is the output signal. 

The behavior of a filter can be expressed as: 
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  ( )  
 ( )

 ( )
 (2.20) 

The quantities  ( ) and  ( ) are the Laplace transformations of  ( ) and  ( ) 

respectively, and  ( ) is the transfer function, which is the ratio between the transmitted 

output and delivered input signals in the frequency domain. 

 
 

Figure 2.8 – Block diagram of a filter with one input and one output 

 

2.9  Bandpass Filter Specifications 

Several different types of filters can be found in wireless communication systems. 

Based on their frequency transmission characteristics, they are generally classified as 

lowpass, highpass, bandpass, and stopband filters. However, in the majority of modern 

communication systems, the primary need is for band pass filters.  

Figure 2.9(a) shows the frequency response of an ideal bandpass filter.  This filter 

has a linear phase response in its passband, no attenuation for the signals in the passband 

and complete rejection for out of the band signals. Unfortunately, this ideal filter 

characteristic cannot be realized with a finite number of elements, and therefore the 

behavior of a real bandpass filter is specified by a set of specifications on its frequency 

transmission characteristic in the pass-band and stop-band as shown in Figure 2.9(b). 
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(a) 

 
(b) 

 

Figure 2.9 – (a) Ideal band-pass filter response; (b) Specification of a real filter 

 

The insertion loss (  ) is a key figure of merit for a filter, which represents the 

loss of signal power within the filter passband measured in decibel level. The filter 

bandwidth (  ) is defined as the set of frequencies between the half power points or at 3 

dB attenuation from the minimum loss point in the passband. The frequency at the center 

of the passband is defined as the center frequency (  ). In general, the quality factor ( ) is 

defined as the ratio between energy stored in the system to the energy dissipated per 

cycle. For the case of the filter, the quality factor can be expressed as the ratio between 

the center frequency and the bandwidth.  

   
  
  

 (2.21) 



 

32 
 

 The shape factor at a certain level of attenuation is defined as the ratio of the 

frequency span at that attenuation to the 3 dB bandwidth as shown in Figure 2.9(b). For 

instance, a 20 dB shape factor is given by the ratio between the 20 dB bandwidth and 3 

dB bandwidth: 

    
              

              
 (2.22) 
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Chapter 3                                                                                                             

Fabrication Technology 

There is a rapidly increasing demand for MEMS technology as the RF field 

embarks on a new generation of microsystems capable of direct monolithic integration 

with CMOS circuitry on the same substrate. Applications include RF switch arrays, phase 

shifters, impedance tuners, micromechanical filters and oscillators, among others. 

Currently, the majority of the MEMS devices available on the market still use a hybrid 

approach for the integration of MEMS devices and CMOS circuitry. Such hybrid 

modular approach increases the manufacturing cost, and ultimately delays the maturity 

and widespread commercialization of MEMS technologies on the market. One promising 

alternative approach to accomplish a low-cost integration of MEMS and CMOS 

electronics is to start with a conventional CMOS foundry process followed by the 

fabrication of MEMS devices alongside or even directly on top of CMOS IC’s through a 

compatible process. This approach is known as Post-CMOS integration. Since CMOS 

circuitry can be designed and processed at any commercial foundry without 

compromising the cost, reliability and repeatability, the Post-CMOS integration is more 

advantageous as compared to Pre-CMOS, Intra-CMOS and hybrid integration strategies. 

 One of the major advantages of piezoelectrically-transduced micromechanical 

resonators is their potential to be monolithically integrated with CMOS circuits through 

post-CMOS processes. The major challenge of Post-CMOS integration of these devices is 

that the process temperature for the deposition of the piezoelectric materials has to be 
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kept below 400 °C under the constraint of the allowable thermal budget of CMOS 

circuitry. Some piezoelectric materials, such as Lead Zirconate Titanate (PZT), suffer 

from compatibility issues with the state of the art CMOS foundry processes. On the 

contrary, Zinc Oxide (ZnO) and Aluminum Nitride (AlN) that have been widely used in 

the past decade for FBAR and SAW devices, hold great promise for mass production 

through CMOS-compatible processing steps. Moreover, reproducible sputtering 

deposition of these materials is commercially available, allowing the fabrication of 

piezoelectric devices on silicon or silicon-on-insulator (SOI) substrates using surface 

micromachining techniques compatible with Post-CMOS integration.  

In this chapter the fabrication process employed to manufacture the 

piezoelectrically-transduced resonators and filters of this work is presented. Two main 

fabrication processes are presented in detail. The first correspond to the process 

employed in the fabrication of resonators and filters which employ ZnO film as both 

piezoelectric transducer and resonant structure. The second process describes the 

modified ZnO-on-SOI fabrication process, where silicon is used as the major part of the 

resonant structure, and ZnO film is used as the piezoelectric transducer. 

3.1  Piezoelectric Material Selection 

In this work the suitable selection for piezoelectric film was made after 

considering device performance, available tools and ease of processing in the 

Nanotechnology and Research Education Center (NREC) at the University of South 

Florida. Three materials were initially considered: ZnO, PZT, and AlN. Among those 

three, PZT provides the highest transverse piezoelectric coefficient (   ), but it also has 

the highest acoustic losses. Otherwise, AlN has the highest acoustic velocity among the 
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three and also exhibits relatively low acoustic losses. However, it requires    -based 

reactive ion etching, a process rarely found in R&D labs or even IC foundries, to pattern 

the AlN layer to define the shape of the resonator body. Another potential problem with 

AlN is the low deposition rate using conventional RF-magnetron sputtering. Deposition 

rates obtained in several performed experiments did not exceed 30 nm/hr at the maximum 

RF power provided by the sputtering system in our lab. This low deposition rate 

translates to an exceedingly long deposition process for the piezo film thickness needed 

in the present work (i.e., 500 – 800 nm). 

 Despite its moderate acoustic velocity and electrical resistivity, ZnO was selected 

mostly for its ease of processing. Deposition rates in range of 100 nm/hr and available 

CH4/Ar dry etching recipe through deep reactive ion etching (DRIE) process were the 

most convenient reasons for selection of this material. Table 3.1 summarizes the most 

important properties of the three piezoelectric materials that have been considered. 

 
Table 3.1 – Properties of piezoelectric materials 

 

Material Properties  ZnO [35] PZT [36] AlN [36] 

Density [kg/m
3
]   5676 7600 3260 

Elastic Modulus [GPA]  123 53 330 

Acoustic Velocity [m/s]   6630 3300 10400 

Poisson Ratio µ 0.18 − 0.36 0.25 − 0.31 0.24 

Piezoelectric Strain Coefficient [pC/N] d31 -4.7 -130 -1.8 

Relative Permittivity  r 9 − 11 400 − 1900 8 − 10 

Electrical Resistivity [cm]  e 10
8
 − 10

9 10
7
 − 10

9 10
10

 − 10
14 

 

 

3.2  ZnO Characterization 

The quality of the ZnO film is critical for obtaining a high transverse piezoelectric 

coefficient (   ). There is a strong correlation between the degree of c-axis orientation 

and the value of     piezoelectric coefficient. Given that the contour-mode resonators 
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vibrate with in-plane motions through orthogonally applied electrical field through the 

piezoelectric transducer layer, highly c-axis orientated ZnO films are desirable for the 

piezoelectrically-transduced contour-mode resonators and filters fabricated in the present 

work. For this reason, a systematic study examining the quality of the ZnO films as a 

function of deposition conditions was performed. Several ZnO films were deposited at 

different oxygen concentrations and substrate temperatures. The quality of the films was 

examined by x-ray diffraction (XRD).  For all these samples, the target-to-substrate 

distance was held constant and the RF power was kept at 100 W. 

3.2.1 Oxygen Concentration 

Several other research groups [44][45] have found that extra oxygen is needed as 

a reactant gas in the sputtering chamber during ZnO deposition. The presence of extra 

oxygen is required to compensate for the depletion of oxygen in the ZnO film. The ZnO 

molecule will dissociate after leaving the sputtering target thus creating free zinc and 

oxygen atoms. Occasionally, the free Zn atoms will not recombine with oxygen before 

reaching and incorporating into the film leaving excess of Zn in the film, thus lowering 

the quality of the film. 

 We studied the effects of four different argon-to-oxygen gas flow ratios including 

20%, 30%, 50%, and 70%. The rest of deposition parameters were retained for each of 

the films. The temperature was set to 300 C, the chamber pressure was set to 5 mTorr 

and the RF power was held to 100 W. Figure 3.1 shows the XRD spectra for the ZnO 

films grown with different oxygen concentrations. All of them exhibit (002) orientation, 

though the film deposited at 50% oxygen shows the highest intensity peak implying that 
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this process condition lead to the better c-axis orientation as compared with the other 

conditions. 

 
 

Figure 3.1 – XRD curves for ZnO samples deposited at different oxygen concentrations 

 

3.2.2 Substrate Temperature  

 The substrate temperature plays an important role in determining the quality of 

the sputtering deposited ZnO films. Figure 3.2 presents XRD spectra for ZnO films 

deposited at a variety of substrate temperatures ranging from room temperature to 300 

C. The films deposited at 300 °C exhibited (002) peak intensity higher than ones 

deposited at lower temperatures. At even higher temperatures, the intensity decreases 

gradually but remains within the same order of magnitude. 
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Figure 3.2 – XRD curves for ZnO samples deposited at different substrate temperatures 

 

3.3  Fabrication Process for Thin Film Piezoelectric ZnO Resonators and Filters 

 Figure 3.3 shows the cross-sectional process flow for ZnO piezoelectric 

resonators that concurrently employs the ZnO film as both piezoelectric transducer and 

resonator body. A four mask low temperature process (Tmax < 400 °C) process has been 

used to fabricate thin film piezoelectric ZnO resonators and filters. The fabrication 

process starts by depositing a thin (50 nm) ZnO buffer layer on high resistivity silicon 

wafer to provide an electrical isolation to decrease the feedthrough parasitic through the 

substrate. The fabrication process is followed by patterning the platinum (Pt) bottom 

electrode by lift-off. It is worth mentioning that Molybdenum (Mo) was initially chosen 

due its low acoustic loss and high acoustic velocity. Moreover, it is also a suitable seed 

layer for deposition of piezoelectric materials such as ZnO and AlN. However, 

Molybdenum has two major drawbacks. Mo can be easily oxidized at relatively low 

temperature in an oxygen environment, and its conductivity is lower than other metals 
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such as gold, aluminum and platinum. Provided ZnO thin films are deposited by reactive 

RF sputtering using oxygen and argon, therefore molybdenum was not a good choice. 

Additionally, the dry release process by fluorine chemistry (SF6) also attacks 

molybdenum. 

 For the aforementioned reasons, molybdenum was dismissed as the material for 

both bottom and top electrodes. Instead, platinum and aluminum have been selected as 

the bottom and top electrode. Platinum is a noble metal that can withstand high annealing 

temperatures up to 800 °C, would not easily oxidize in oxygen environment and could 

endure the dry release process with fluorine chemistry. Thus, Pt is a desirable candidate 

for the bottom electrode. Similarly, Aluminum is an attractive choice for the top electrode 

since it has a relatively low acoustic attenuation coefficient and it is also able to survive 

the dry release process. However, Platinum was later on utilized for both top and bottom 

electrodes as aluminum top electrode tend to introduce residual stress to cause the 

released resonator structure to buckle up.  

 

 
(a) 

 
 (b) 

 
 (c) 

 
 (d) 

 

Figure 3.3 – Four-mask post-CMOS compatible fabrication process: (a) patterning of the bottom 

electrode (Pt) by lift-off and sputtering deposition of the piezoelectric film (ZnO), (b) open vias in 

ZnO to access the bottom electrode,(c) patterning of the top electrode (Pt)  by lift-off,(d) dry 

etching of ZnO in CH4-Ar  chemistry and SF6 dry release of the structure 

 

 

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)
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 As shown in Figure 3.3(a), formation of the bottom electrodes is followed by the 

ZnO RF sputtering deposition with the optimized process parameters (i.e., 300C 

substrate temperature, 5 mTorr plasma pressure, 1:1 Ar:O2 ratio, and 100 W RF power). 

With these parameters, films between 500 nm - 800 nm with a preferential c-axis (002) 

orientation were deposited with a deposition rate of 100 nm/hr. Openings to contact the 

bottom electrode are wet etched through ZnO in a mixture of 1: 200 HCl: H2O. The top 

platinum electrode is patterned using lift-off followed by pattering of ZnO via CH4-Ar 

reactive ion etching (RIE) process. Finally, the device is released by isotropic dry etching 

of the silicon handle layer with fluorine based chemistry, thereby avoiding stiction 

between the released microstructures and substrate to significantly increase the yield of 

the process. As compared with Xenon Difluoride (XeF2), which is another popular dry 

release process used for other groups [38][39] for releasing AlN microstructures, the dry 

release process based on SF6 chemistry is less amenable to contamination  and much 

safer to operate.  The SF6-based isotropic dry release process can release suspended 

beams and plates made of piezoelectric materials (i.e., AlN, ZnO and PZT) and metals, 

while offering  much higher etch rate (up to 15 μm/min), superb Si:SiO2 selectivity 

(3000:1) and great Post-CMOS process compatible [41]. Table 3.2 summarizes the 

process parameters used for the SF6-based isotropic dry release process using the AMS 

100 Inductively coupled plasma (ICP) etcher. As seen in Figure 3.4, a 30 µm-diameter 

and 500 nm-thick piezoelectric ZnO disk resonator with split top electrodes have been 

successfully released through the SF6-based dry release process. 500 nm-thick ZnO 

microstructures embedded between top and bottom Pt electrodes with sizes as large as 

100 µm × 300 µm were successfully released without noticeable residual stress. 
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Figure 3.4 – SEM micrograph of a 30 µm-diameter and 500 nm-thick piezoelectric ZnO disk 

resonator with split top electrodes released using SF6-based dry release process 

 

Table 3.2 – Parameters for the implemented dry release processes 

 

SF6 Flow rate  300 sccm 

Chamber Pressure 40 mTorr 

Chamber Temperature 25 C 
ICP Power 1500 Watts 

Etch Rate  5 µm/min 
 

 

3.4  Fabrication Process for ZnO-on-SOI Resonators and Filters 

 The devices were fabricated using a low-temperature process composed of five 

photolithography steps. SOI wafers with device layer thickness of 20 µm and 5 µm are 

used as the selected substrate for this process. The fabrication process is presented in 

Figure 3.5. A novel solution has been implemented and successfully demonstrated for 

releasing devices with silicon as primary part of the resonator body and ZnO as the 

piezoelectric transducer layer.  Since both HF and buffered oxide etchant (BOE) attacks 

ZnO aggressively, the release process for removing the buried oxide in SOI substrate to 

suspend the Si resonator body have to be done before the ZnO deposition. Therefore, the 

modified ZnO-on-SOI resonator fabrication process begins with a HF release process to 
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entirely remove the buried oxide under the resonator body without compromising the 

structural integrity of the device layer and the simplicity of the fabrication processes. 

 
 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
(a) 

 
(b) 

 
 (c) 

 
(d) 

 

Figure 3.5 – Five-mask post-CMOS compatible fabrication process: (a) Pre-release of the device 

and patterning of the bottom electrode (Pt) by lift-off, followed by sputtering deposition of the 

piezoelectric film (ZnO), (b) open vias in ZnO to access the bottom electrode, (c) patterning of 

the top electrode (Al) by lift-off;(d) dry etching of ZnO in CH4-Ar chemistry and dry etching of 

the silicon structural layer with fluorine chemistry 

 

 The release process is done by etching a series of release holes in the device layer 

as the first fabrication step before defining the resonator body. The SOI wafer with the 

release holes is then submerged in HF 49% solution for 75 minutes. As illustrated in 

Figure 3.6, the pre-release holes are strategically placed alongside of each device in order 

to avoid over etch for the smaller devices. 

 
 

Figure 3.6 – Optical micrograph of a released MEMS filter with strategically positioned pre-

release holes along the side of the suspended resonator microstructures. 

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)Si Bottom Electrode (Pt) ZnO

Top Electrode (Al)

Si Bottom Electrode (Pt) ZnO
Top Electrode (Al)



 

43 
 

The fabrication is continued by patterning the bottom electrode by lift-off and 

followed by ZnO sputtering deposition with optimized parameters (i.e., 300 C substrate 

temperature, 5 mTorr plasma pressure, 1:1 Ar:O2 ratio, 100 W RF power) and deposition 

time of 5 hr. With these parameters, a 500 nm-thick ZnO film with a preferential c-axis 

(002) orientation was deposited. Openings to contact the bottom electrode are 

subsequently wet etched through ZnO in a mixture of 1: 200 HCl: H2O. The top Al 

electrode is patterned using lift-off followed by pattering of ZnO via CH4/Ar RIE 

process. Finally, the device  composed of single or multiple coupled resonator 

structure(s) is defined by a deep reactive ion etching (DRIE) that penetrate through the 

pre-released silicon structure layer of the SOI wafer.  

Figure 3.7 shows a SEM micrograph of a ZnO-on-SOI filter displaying the 

interdigitated top electrodes and the release holes fabricated with the process described 

above. Figure 3.8 shows a close-up view SEM micrograph of the etched profile of a 

typical microfabricated ZnO-on-SOI device. The scalloping profile along the sidewall 

can be ascribed to the characteristics of the DRIE Bosch process used to etch the silicon 

device layer. It is believed that this profile could potentially affect the mechanical quality 

factor of the fabricated microresonators as demonstrated by [28]. Given the goal of this 

work is to demonstrate a fabrication process amenable for high volume production that 

can be readily transferred to a commercial CMOS or MEMS foundry, it is much more 

sensible to use a widely-adopted standard DRIE silicon dry etching process rather than 

creating a highly-specialized but rarely used technique.  
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 It is important to mention that Platinum metallization should be probably changed 

because is not directly compatible with standard CMOS materials. Nevertheless, the 

process described in the previous sections can be considered as Post-CMOS compatible. 

The Platinum electrodes can be substituted by Molybdenum electrodes if AlN is used as 

piezoelectric material instead of ZnO. Molybdenum is a metal that lately has been used 

more frequently for the gate metallization in the state of the art CMOS transistors.  

 
 

Figure 3.7 – SEM micrograph of a ZnO-on-SOI resonator fabricated in a 5 µm SOI substrate 

using the process described above 

 

 
 

Figure 3.8 – SEM micrograph with a close view of a ZnO-on-SOI device resonator fabricated in a 

20 µm SOI substrate 
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Chapter 4                                                                                                           

Piezoelectrically-Transduced Contour Mode Resonators 

This chapter presents the equivalent circuit models and measurements results of 

the microfabricated two-port contour-mode thin-film piezoelectric resonators and ZnO-

on-silicon resonators studied by this work. Thin film piezoelectric resonators have been 

fabricated using ZnO layers with thickness varying between 500 nm and 800 nm; 

whereas piezo-on-silicon resonators have been fabricated using SOI wafers with 5 µm or 

20 µm-thick silicon device layers. Piezoelectrically-transduced contour-mode resonators 

with different geometries and designs are presented along with their corresponding 

equivalent circuit models. 

4.1  Contour Modes in Circular Disks 

 Figure 4.1 presents the finite element modal analysis of a 30 µm-diameter ZnO-

on-silicon disk resonator that consists of 20µm-thick silicon device layer and a 500 nm-

thick ZnO piezoelectric transducer layer embedded between the top and bottom metal 

electrodes. This configuration permits the excitation of the radial contour mode and the 

wine glass mode that operates at different resonance frequency. Only two support tethers 

with strategically-designed dimensions are introduced in order to minimize the acoustic 

energy losses leaked through the anchors. In order to excite the wine glass mode while 

minimizing the anchor related losses, the supporting tethers were located at the quasi-

nodal locations (the blue are of the wine glass mode shape shown in Figure 4.1(b)),where 
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the circular plate does not have any radial displacement. A simplified frequency equation 

for a disk resonator vibrating in a radial contour mode is given by [42]: 

  
 
 
 

 
√

  

 
 
(    )

 (4.1) 

where    ,    and   represent the Young’s modulus, density and Poisson’s ratio of the 

structural material,   is the radius of the disk, and   is a frequency constant related to the 

vibration mode and the Poisson’s ratio. For the case of      ,   takes the value of 

0.342 and 0.272 for the first radial contour mode, and the fundamental wine glass mode, 

respectively. For other values of the Poisson’s ratio ( ), a ten percent increase in   would 

result in a two percent increase in the value of   for the radial modes and one percent 

decrease in its value for the wine glass modes. 

 
 (a) 

 
(b) 

 

Figure 4.1 – Comparison of the finite-element simulated mode shapes for a 30 µm-diameter 

ZnO-on-silicon disk resonator with a 20 µm-thick device layer and a 500 nm-thick ZnO layer 

operating in its radial-contour mode at 88.43 MHz and wine-glass mode at 65.28 MHz 

 

 In order to model the mass loading effect of the electrodes, the resonance 

frequency Equation (4.1) is modified as follows: 

     
 
   
                        

                   
 (4.2) 
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where     represents the equivalent acoustic velocity, and     is equivalent density of the 

resonator. This approximation is only valid for a resonator vibrating in a contour-mode. 

However, a similar expression can be derived for devices vibrating in a thickness-mode. 

The same analysis can be modified for the case of piezo-on-silicon resonator, where a 

major part of the resonator body is made of non-piezoelectric material such as single 

crystalline silicon. The piezoelectric layer introduces a mass loading effect aside from 

acting as the piezoelectric transducer.  The equivalent density and acoustic wave velocity 

can be modeled as follows: 
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A similar analysis could be carried out to calculate the equivalent Poisson’s Ratio 

of a multilayer structure. However, for simplicity, a Poisson’s ratio of        has been 

selected for all the subsequent model derivations. The mechanical properties of the 

materials used for the piezoelectrically-transduced resonators and filters in the present 

work are listed in Table 4.1. 
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Table 4.1 – Mechanical properties of  the materials used for the fabrication of piezoelectrically-

transduced resonators and filters  

 

Material Young's Modulus (GPa) Density (Kg/m
3
) Poisson's ratio 

Si 170 2329 0.226 

ZnO 123 5676 0.330 

Al 70 2700 0.350 

Pt 168 21450 0.380 
 

 

 The equivalent mass for a micromechanical resonator at any location can be 

obtained by dividing the total kinetic energy by one half of the square of the velocity at 

that location [42]. The mass at a location on the disk perimeter can then be obtained using 

the relation: 
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where    is the Bessel function of the first kind and R is the radius of the resonator disk. 

The electromechanical coupling coefficient can be calculated as follows: 
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This expression for the electromechanical coupling coefficient is derived for the 

disk resonator with two split top electrodes that cover only half of the resonator body. 

The electrical equivalent parameters for a disk resonator in a two-port configuration are 

defined by the set of equations detailed in Section 2.7. 
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4.2  Experimental Results 

 The fabricated micromechanical resonators were tested by on-wafer probing using 

a Cascade RF probe station in air at atmospheric pressure and ambient temperature. The 

scattering parameters (S-Parameters) of the devices are extracted directly using an 

Agilent E5071B vector network analyzer. A Short-Open-Load-Thru (SOLT) calibration 

procedure using a CS-5 calibration substrate from GGB Industries Inc was conducted to 

de-embed the effects of connectors, the carrier substrate and errors related to the vector 

network analyzer. The schematic of the experimental setup used for testing the 

micromechanical resonators and filters of the present work is presented in Figure 4.2. 

 
Figure 4.2 – Experimental set up for on-wafer probing of the microresonators and filters 

 

4.2.1 Contour Modes in Thin Film Piezoelectrically-Transduced Disk Resonators  

Thin film ZnO piezoelectric resonators were tested in their radial contour and the 

wineglass modes. Devices with radius of 20 µm, 30 µm and 40 µm were fabricated in a 

two port configuration. Figure 4.3 shows the frequency response for 30 µm-radius ZnO 

piezoelectric disk resonator operating in the fundamental and the 2
nd

 radial-contour 
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modes, shown in Figure 4.3 (a) and Figure 4.3 (b), respectively. The device in its 

fundamental radial-contour mode exhibits a quality factor of 1,053 with a motional 

resistance of 11.57 k. The same device when operating in its 2nd radial-contour mode 

exhibits a lower Q of 590 with a motional resistance of 18.87 k. The top electrode was 

designed to excite and detect both the radial contour and wineglass modes, which limits 

the achievable excitation and detection efficiency through the piezoelectric transducer. If 

the top electrode is divided into two symmetrical halves instead of covering only a 

quarter of the top surface, the motional resistance of this device in its radial contour mode 

will be reduced by 4 times. 

 
(a) 

 
(b) 

 

Figure 4.3 – Frequency responses of 30 μm-radius piezoelectric disk resonator (a) operating in 

the fundamental radial contour mode; and (b) the 2
nd

 radial-contour mode 
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Figure 4.4 shows the measured frequency response of a 30 μm-radius ZnO 

piezoelectric disk resonator operating in its fundamental wineglass mode. The resonator 

has a pair of 3 μm-wide tethers which is located at its quasi-nodal points thus resulting in 

a high-Q as compared with the radial modes. However, despite its high Q, the resonator 

exhibited a motional resistance (86 kΩ) much higher than those of ZnO piezoelectric 

rectangular plates and other piezo-on-silicon contour-mode resonators (c.f. Section 4.2.2). 

 
 

Figure 4.4 – Frequency response for a 30 μm-radius ZnO piezoelectric disk resonator operating in 

its fundamental wineglass mode 

 

 
 

Figure 4.5 –  SEM micrograph of a 30 μm-radius ZnO piezoelectric disk resonator 
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Although both 20 µm and 40 µm-radius disk resonators also have been fabricated, 

the measured results are quite similar. The average quality factors for the fundamental 

and 2
nd

 radial contour modes are around 2,000 and 600, respectively. These devices also 

suffer from large motional impedance. Similar results have been reported for 

piezoelectrically-transduced disk resonators made of AlN [46], where resonators 

vibrating in contour modes with Q’s on order of 3,000 and high motional impedance 

(>100 k) have been demonstrated previously.  

At this point, it is worth mentioning that measured quality factor of the fabricated 

resonators correspond to the loaded Q or QL, however the real figure of merit  for this 

parameter correspond to the unloaded Q or Qu. The unloaded Q is the ratio of stored 

energy to the dissipated energy in a LC circuit or tank. The loaded Q is the measured 

quality factor which includes the loading from the external circuit. Only the loaded Q of a 

resonator can be measured experimentally, and the unloaded Q has to be extrapolated. 

From the S-parameter measurements, the correlation between QL and QU for a resonator 

is expressed as:   

    
  

    
   (  )
  

 (4.9) 

where S21 is the transmission coefficient between the input and the output of the 

resonator. For the 30 µm-radius disk resonator shown in Figure 4.3(a) the value of 

unloaded Q is 1062, which is quite similar to the value of the loaded Q (i.e., QL=1,053). 

However, this will not be always the case, especially when the motional resistance of the 

resonator tank approaches to the value of the termination resistance, which for most 

communication systems is 50 . 
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4.2.2 Contour Modes in ZnO-on-SOI Disk Resonators 

 Pursuant to obtain devices with higher quality factor and lower motional 

resistance, piezoelectric-on-silicon (ZnO-on-SOI) resonators that employ single crystal 

silicon as its primary structural layer were design and fabricated. The operation principle 

of these devices is the same as the one reported in Section 4.1. In piezo-on-silicon 

contour-mode resonators, the acoustic energy is mostly contained in the low acoustic loss 

single crystalline silicon that lead to improved quality factor as compared to a counterpart 

device made of thin-film ZnO piezoelectric material with higher acoustic losses. In this 

work, contour mode disk resonators with 20 µm, 30 µm and 40 µm radius were 

fabricated using SOI substrates with 5 µm and 20 µm-thick silicon device layer, to 

investigate the effect of the thickness of the stacked resonator structural materials (i.e., 

ZnO and single crystalline silicon) on the quality factor of the device.    

 
 

Figure 4.6  – Frequency response of 30 μm-radius piezo-on-silicon disk resonator excited in its 

fundamental radial contour mode, showing a Q of 8,000 at 88.35 MHz 
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 Figure 4.6 presents a 30 μm-radius piezo-on-silicon disk resonator operating in 

the fundamental radial contour mode at 88.35 MHz with a measured Q of 8,000. The 

resonator body is composed of a 20 µm- thick silicon device layer and a 500 nm-thick 

ZnO piezoelectric layer. This device uses two 3 µm-wide anchors with their length 

strategically designed to quarter wavelength (  ⁄ ) long in order to maximize its quality 

factor by decreasing the acoustic energy radiation from the resonator body through the 

support tethers to the substrate. Even though this resonator is much heavier than the 

identically-sized piezoelectric resonator made of a thin film ZnO layer (Section 4.2.1), its 

motional resistance is 1.5 times lower. This is largely due to its improved quality factor 

(Q ~ 8,000). Moreover, its motional resistance can be further decreased by a factor of 4 

by designing the top electrodes to cover the whole resonator surface or using a thinner 

silicon device layer. In order to explore the impact of the silicon device layer thickness, 

the identically-sized device was also fabricated with a 5μm-thick silicon device layer 

while retaining the thickness of the ZnO layer (500 nm) and the electrodes.  

 As can be observed in Figure 4.7, the motional resistance decreased almost four 

times as compared with the identically sized device fabricated with a 20 μm-thick silicon 

device layer. The slight decrease in the quality factor is due to the reduction of the silicon 

device layer thickness, meaning that a major part of the resonator structure is made of 

ZnO, a material with higher acoustic loss. Although the decrease in the quality factor for 

this device in this particular design is only 16%, the quality factor is expected to degrade 

more for resonators with even thinner device layer.  In the meantime, as the silicon 

device layer gets thinner, the top ZnO piezoelectric transducer layer becomes a greater 

portion of the resonator body, thus enhancing the electromechanical coupling coefficient 
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and lowering the motional resistance. Therefore, a trade-off must be made between 

quality factor and motional resistance, which both heavily depend on the silicon device 

layer thickness, but in opposite ways. Based on our measurement results so far, the 

optimum silicon device layer thickness should range from 4 µm to 10 µm for the 

piezoelectric ZnO layer with thickness between 0.5 µm and 1.0 um. As shown in Figure 

4.7, the resonance frequency is also shifted down from 88.35 MHz to 80.42 MHz as a 

direct result of the reduced silicon device layer thickness from 20 µm to 5 µm, which is 

largely owing to the more severe mass loading effect from the ZnO layer and the 

electrodes that have lower acoustic velocities. As expected from Equation (4.6), if the 

thickness of the silicon device layer is reduced, the more severe loading effect would 

result in a reduction of the resonance frequency. However, this frequency shift can be 

accurately predicted with less than 1% error and can be corrected via revised CAD layout 

by decreasing the lateral dimensions of the resonator to hit the target frequency as needed 

for oscillators and filters. 

 
 

Figure 4.7 – Frequency response of a 30 μm-radius Piezo-on-silicon disk resonator with a 5 μm-

thick silicon device layer,  excited in the fundamental radial contour mode, showing a loaded Q of 

6,700 at 80.375 MHz 



 

56 
 

 

4.2.3 Quality Factor in ZnO-on-SOI Resonators 

 When determining the quality factor of a micromechanical resonator, several 

energy dissipation mechanisms must be taken into account including air damping, 

material related losses, thermoelastic damping, and anchor losses. The overall resonator 

Q can be found as the sum of the inverses of the individual Q’s associated with all the 

contributing loss mechanisms: 

 
 

      
 

 

    
 

 

         
 

 

              
 

 

       
 (4.10) 

Air damping depicts the loss of energy contained in a resonating structure to the 

surrounding atmospheric environment. For the case of micromechanical structures that 

have high a surface-to-volume ratio, air damping represents a major source of energy 

dissipation. Particularly, resonators with electrostatic transduction mechanism are much 

more vulnerable to a specific type of air damping known as squeeze-film damping that 

considerably lowers the quality factor of such devices especially at low frequency. The 

 
 

Figure 4.8 – SEM micrograph of a 30 um-radius piezo-on-silicon disk resonator fabricated with a 

SOI wafer with 5 µm-thick silicon device layer, showing the device in its two-port configuration 

with two split top electrodes. The measured frequency response for this device is shown in Figure 

4.7 
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squeeze-film damping occurs in a capacitively-transduced resonator as the vibrating 

resonator body moves in close proximity to the surrounding electrodes, in effect 

alternately stretching and squeezing any “fluid” (i.e., ambient gas) that may resides 

within the capacitive transducer air gap. Piezoelectrically-transduced resonators are less 

susceptible to air damping compared with electrostatically-transduced resonators, since 

piezoelectric transducers do not require narrow air gaps. As demonstrated by other 

researchers, contour-mode piezoelectrically-transduced resonators operating in vacuum at 

frequencies below 300 MHz have shown a noticeable improvement (i.e., 20%-50%) as 

compared to the same device during vacuum-less operation [30][32]. The effect of air 

damping decreases at higher resonance frequencies due to that the resonator displacement 

diminishes with frequency as reported by Wang et al. [17], who demonstrated the 

operation of a capacitively-transduced micromechanical disk resonator vibrating at 1.156 

GHz with a Q of 2,700 both in vacuum and air.  

 In the present work, resonators have not been evaluated in vacuum due to the lack 

of a vacuum measurement set-up at the University of South Florida. However, this 

limitation is not a major bottleneck against the main objective of this work, which is to 

design and implement the several filter topologies based on contour-mode piezoelectric 

or piezo-on-silicon resonators operating in ambient environment without the need for 

vacuum packaging for RF applications, with percentage bandwidth between 1% and 5%. 

 Anchor loss is the portion of the vibration acoustic energy that is not completely 

confined within the resonator body, and rather capable of transmitting through the 

support anchor(s) to the substrate. The amount of acoustic energy radiating through the 

anchor(s) is considered as anchor related losses as it is not conserved within the 
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resonator. Based on the convention wisdom for reducing the anchor losses, the number of 

tethers attached to the resonator is kept as low as possible and their lengths are either 

design to be quarter-wavelength (  ⁄  ) or electrically short (i.e. less than   ⁄ ). A quarter-

wavelength tether operates as acoustic transmission line that transforms a fixed end to a 

free end that is capable to moving without any constraints. Meanwhile, the width of the 

tethers is designed to be as narrow as possible for certain designs such as radial contour 

mode disk resonators.  However, this rule of thumb might not be applicable at gigahertz 

frequencies. In particular, the quarter-wavelength theaters of resonators operating at 

gigahertz frequencies approach 4 µm in length, making it difficult for fabrication of such 

small supports. Although support related losses in micro-machined flexural-mode beam 

resonators and contour-mode disk resonators anchored at the center have been modeled 

[47][48], there does not exist a general model for anchor losses that could be applicable 

to the resonators on this work. However, a short experiment have been carried out in 

which is demonstrated that the width of the anchor substantially affects the Q of the 

resonator. Results of the aforementioned experiment are summarized on Table 4.2. 

 
Table 4.2 – Statistical data for the anchor loss study of 30 µm-radius piezo-on-silicon 

micromechanical disk resonators fabricated with a SOI substrate with a 20 µm-thick silicon 

device layer 

 

Support 

width 
(µm) 

Resonant 

Frequency 

(MHz) 

Theater 

Number 
Quality 

Factor 

3 88.350 2 8,000 

5 88.293 2 6,395 

7 88.190 2 5,980 

10 88.092 2 4,650 

3 88.240 4 6,670 

5 88.024 4 5,500 

10 87.898 4 4,110 
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Thermoelastic energy dissipation is caused by irreversible heat flow across the 

resonator structure, which is driven by the temperature gradient between stretched and 

compressed regions, which result in loss of the vibration energy. When a mechanical 

structure undergoes a load, the strain field leads to distribution of the internal energy so 

that the compressed region gets warmer and the extended region becomes cooler. The 

mechanism responsible for thermoelastic damping is basically the outcome due to lack of 

thermal equilibrium between various parts of the vibrating structure. Energy is dissipated 

through irreversible heat flow driven by the temperature gradient thereby degrading the Q 

of the microresonators. A comprehensive study of this loss mechanism can be found in 

Zener’s classical work [49]. Although the thermoelastic damping is the dominant loss 

mechanism for micro-beam resonators undergoing flexural vibrations at low frequency 

(i.e., tens of megahertz) [50], its impact is much less severe for resonant microstructures 

excited in contour-mode vibrations  with resonance frequencies beyond the characteristic 

cutoff frequency of the thermoelastic damping [51].  

The material loss mechanism limits the absolute maximum quality factor of a 

mechanical resonator made of a certain material. The contribution of this loss mechanism 

in the overall quality factor of a resonant structure can be quantified by means of the 

acoustic attenuation coefficient ( ). The larger this coefficient for a material, the lower 

the absolute maximum achievable quality factor of the resonator made of such a material 

will be. Piezo-on-silicon resonators leverage the fact that the acoustic attenuation in 

materials such as silicon, silicon carbide and diamond is much lower than the attenuation 

in common piezoelectric materials, such as PZT, AlN and ZnO. Specifically for the case 

of the ZnO-on-silicon resonators investigated in the present work, resonators with thicker 
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silicon device layer exhibited higher quality compared with devices with thinner device 

layer, as mentioned in Section 4.2.2. Although the highest quality factor for the 

resonators studied in this work is around 8,000, higher quality factors can be achieved if 

low acoustic loss device layers such as chemical vapor deposited diamond in conjunction 

with a low acoustic loss piezoelectric material such as AlN are employed. However, both 

AlN and diamond deposition require production-grade tools currently not available at 

USF. 

4.2.4 Temperature Dependence 

The resonance frequency of a contour-mode resonator is governed by the Young’s 

modulus, the material density and its geometry. Because the aforementioned parameters 

all change with temperature, the temperature coefficient of the resonance frequency 

manly relates to their temperature dependence. Both timing and frequency reference 

applications rely on the use of highly stable resonators with frequency variation less than 

20 ppm over the whole operating temperature range (generally -25 °C to 100 °C). A 

resonator technology that can fulfill the above frequency stability with the advantages of 

small footprint and power consumption is highly desirable. 

The temperature coefficient of frequency (TCF) of a resonator is generally 

expressed as follows with a unit of ppm per degree Celsius: 

     
 

  

  

  
  

 

 

  

  
 
 

 

 

  

   

  
 
 

 

 

 

  

  
 (4.11) 

where    is the resonance at the normal temperature operation point (i.e., room 

temperature  25˚C), a is the fundamental geometrical parameter that sets the device 

resonance frequency, and T represents the temperature of operation. This Equation is very 

general and does not take into account the particular modal of vibration of the structure, 
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but in general can be used as a realistic approximation. The third term in Equation (4.11)  

can be neglected due to its low impact on the overall coefficient. The     is expressed in 

a simplified form as follows: 

         
 

 
     (4.12) 

where    is the thermal expansion coefficient of the piezo layer in the thin film 

piezoelectric resonators, or the thermal expansion coefficient of the stacked piezo and 

silicon device layers in the ZnO-on-SOI resonators, and      is the temperature 

coefficient of the Young’s modulus of the piezo layer or the stacked piezo and device 

layers for ZnO-on-SOI resonators. The metal top and bottom electrodes also contribute to 

the overall TCF value, however they were not taken in account in the simplified model. 

 
Table 4.3 – Thermal expansion coefficient for silicon and ZnO [52]  

 

Material      

Silicon  -2.6 ppm/ºC -40 ppm/ºC 

Zinc Oxide (-4.4) – (-5.6) ppm/ºC -50 ppm/°C 
 

 

 The frequency response for a 30 µm-radius disk resonator operating in its 

fundamental radial contour-mode for both thin film piezoelectric and ZnO-on-SOI 

resonators are reported in Figure 4.3 and Figure 4.6, respectively. The measurements 

were carried out using a cascade probe station with a temperature controlled chamber. 

The scattering parameters (s-parameters) of the device were extracted directly using an 

Agilent E5071B vector network analyzer. A Short-Open-Load-Thru (SOLT) calibration 

procedure was implemented to de-embed the effects of connectors and the carrier 

substrate. The device wafer was heated between room temperature and 120°C while the 

resonance frequency is continuously monitored. The TCF shows a perfectly linear 
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behavior over the whole temperature range as seen in Figure 4.9. The measured TCF for 

the 30 µm-radius disk ZnO-on-SOI resonator has the value of -31.05 ppm/ºC, which is 

higher as compared with other resonator technologies that uses silicon and polysilicon as 

a structural material [16][17][53]. The apparent discrepancy between the measured TCF 

and prior reports for silicon-based resonators can be attributed to impacts of the ZnO 

layer and the metal electrodes. Figure 4.9 also shows the measured TCF for a thin film 

piezoelectrically-transduced disk resonator of 30 µm-radius. As was expected, the TCF 

for this case is higher as compared with the resonator with silicon as the major part of the 

structural device layer. However, it is still almost two times lower as compared with the 

TCF for uncompensated FBAR resonators, which has been reported to be close to -60 

ppm/ºC [54].  

 
 

Figure 4.9 – Measured fractional frequency change versus temperature for a 30 µm-radius disk 

piezoelectrically-transduced resonator operating in  the 1
st
 radial contour mode 

 

 



 

63 
 

Although the measured uncompensated TCF for this kind of resonator could be 

sufficient for front-end RF pre-select and image-reject filter applications, this is not 

adequate for timing and frequency reference applications such as oscillators. The TCF of 

the fabricated devices is significantly larger in magnitude than that of the worst AT-cut 

quartz crystals [55]. Nevertheless, this uncompensated temperature coefficient could be 

further reduced by several different methods, including micro oven stabilization [56], and 

temperature compensation of silicon via degenerate boron doping and boron-assisted 

aluminum doping [57]. However, the first approach is a power hungry and the second 

method is relatively costly due to the need of low resistive silicon wafer (<0.001 -cm).   

4.3  Length-Extensional Mode in Piezoelectrically-Transduced Plate Resonators 

Figure 4.10 shows the first four length-extensional modes in piezoelectrically-

transduced plate resonator. Several in-plane length-extensional mode shapes can be 

excited in a rectangular plate resonator either by changing its physical dimensions or by 

engaging higher order modes. The piezoelectric detection of these modes relies on the 

strength of the electromechanical coupling, which is directly related with the electrode 

design. Therefore, only those resonance modes for which the net charge on the surface on 

the electrodes is non-zero can be detected electrically. From the transducer design and 

modal analysis point of view, the top electrode should be patterned to match the shape of 

the strain field for a desired resonance mode at the target frequency. 
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1
st
 mode 

fo=15.43 MHz 

 

 

2
nd

 mode 

fo=31.73 MHz 

 

 
3

rd
 mode 

fo=47.77 MHz 

 

 

4
th

 mode 

fo=62.04 MHz 

 

 
 
Figure 4.10 – Simulated mode shapes for dilation-type contour-modes (via FEMLAB COMSOL) 

for a 140 µm  50 µm rectangular plate made of  500 nm-thick ZnO 
 

 If a two-port configuration with the electrodes parallel to width of the rectangular 

plate is chosen, only the first and second mode can be electrically detected as shown in 

Figure 4.10. Due to the electrode configuration, the third and the fourth modes are 

expected to generate very small net charge for all typical top electrode designs. In order 

to be able to detect the high-order length-extensional modes of a rectangular plate 

through piezoelectric transduction, a pair of interdigitated top electrodes with optimum 

patterns is needed. 
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 The simulated response of the 9
th 

length-extensional mode of a rectangular ZnO 

plate resonator with dimensions of 140 µm  50 µm is shown in Figure 4.11 with a pair 

of strategically-designed interdigitated top electrodes. As shown by the modal simulation, 

the regions in green color represent areas under compressive strain whereas the red color 

highlights the regions under tensile strain. As rule of thumb, in order to excite higher 

order resonance modes, the top electrodes should be designed to match the periodic strain 

field pattern of the targeted mode shape to maximize the electromechanical coupling. 

Although closed-form solutions for higher-order resonance modes of an ultra-thin 

rectangular plate could be readily derived under the plane stress assumption, the accuracy 

would not be sufficient when the thickness of the plate resonator becomes comparable 

with its lateral dimensions. This is a particular concern for the ZnO-on-SOI devices with 

20 µm-thick silicon device layer. Therefore, the modal analysis by finite element method 

(FEM) simulation of the resonance mode shape of a chosen structure provides 

considerable insight for design optimization of the top electrodes over the piezoelectric 

transducer for the purpose of maximizing the electromechanical coupling. 

9
th

 mode 

fo=138.89 MHz 

 

 

 

 
 

Figure 4.11 – (a) The 9
th 

order length-extensional resonance mode-shape of a ZnO plate resonator 

; (b) Interdigitated resonator design 
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In order to analyze the expression for the resonance of such device and derive the 

equivalent electromechanical model for a rectangular plate resonator, the approach 

presented in Section 2.5 is used. The resonance frequency equation is given by: 

  
 
 
 

  
    (4.13) 

where   is length of the plate,     is equivalent acoustic velocity of the structural material, 

and   is the mode number. The same approach used for the contour-mode radial disk 

resonator presented in Section 4.1 can be used to modify Equation (4.13) in order to 

accurately predict the resonance frequency for thin-film ZnO resonators and ZnO-on-SOI 

resonators with rectangular geometries. The equivalent mass of a rectangular plate 

resonator can be computed by: 

       ∬(  
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 (4.14) 

where  , l, Teq, and  
  

 are the width, length, thickness and equivalent density of the 

resonator. Equation (4.14) applies to the calculation of the equivalent mass for the 

fundamental length and width extensional modes, as well as their higher order modes. 

Contrary to the case of a disk resonator, the equivalent mass for a rectangular plate is not 

dependent on the resonance mode (i.e., width-extensional or length-extensional) and the 

mode of operation (i.e., fundamental or higher order modes). As defined by Equation 

(2.16), the electromechanical coupling factor is the ratio between the total induced charge 

on the surface of the resonator and the maximum displacement. For a rectangular plate 

resonator vibrating in its length-extensional contour mode, the electromechanical 

coupling factor is given by:  
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where    represents the equivalent Young’s modulus of the structure,     is the 

piezoelectric coefficient, and   represents the width of the top electrode. For a device in 

a two-port configuration the actual value of   is half of the width of the plate, since the 

top electrodes are divided into two symmetrical halves (one for actuation and the other 

for sensing). For a device in a one-port configuration, the entire top electrode is used for 

actuation. For a resonator equipped with the interdigitated electrode,   represents the 

width of the electrode. As illustrated in Figure 4.11, the interdigitated electrode regions 

with equal phase are electrically connected. Hence, the electromechanical coupling 

factors for the input and the output port are: 

  
 
   (       ) (4.16) 

  
 
   (       ) (4.17) 

where N1 and N2 are the number of electrode regions (fingers) for the input and the output 

electrodes, respectively. It can be seen in Figure 4.11 that the input and output 

interdigitated electrodes cover almost the entire surface area of the resonator plate with 

the separation between electrode fingers set by the minimum fabrication tolerance. For a 

device operating in its n
th

 (an odd number) mode that corresponds to the number of 

electrode fingers, the number of electrode regions for the input and the output electrodes 

are given by: 

    (   )  ⁄  (4.18) 

    (   )  ⁄  (4.19) 
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where n is mode order. The product of  
 
and  

 
 (i.e., input and output electromechanical 

coupling factors) is given by: 

  
 
 
 
 (    )(      )

 
 (4.20) 

Therefore, the parameters values of the equivalent electrical circuit for a two-port 

rectangular plate resonator vibrating in its n
th

 length-extensional mode are: 
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 Equations (4.21) and (4.22) are particularly interesting because the motional 

resistance of a plate resonator vibrating along its length is independent of the resonance 

frequency of the device. Moreover, the motional resistance of a plate resonator decreases 

by a factor directly proportional to   ⁄  , meaning that devices operating at higher order 

modes exhibit a lower motional resistance. This distinctive characteristic will be used 

later on in the design of piezoelectrically-transduced filters with low motional resistance 

operating in the UHF range. 
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4.4  Experimental Results  

 The fabricated contour-mode micromechanical resonators were tested by a 

Cascade RF probe station in air at atmospheric pressure and ambient temperature. The 

scattering parameters (S-Parameters) of the devices are extracted directly using an 

Agilent E5071B vector network analyzer. A Short-Open-Load-Thru (SOLT) calibration 

procedure was implemented to de-embed the effects of the probes, the cables and other 

errors introduced by the vector network analyzer.  

 Figure 4.12 shows the frequency response for a ZnO-on-SOI resonator operating 

in the 5
th

 order length-extensional mode at 247.3 MHz. Even though this resonator was 

composed of 20 µm-thick silicon device layer, it still exhibited a motional resistance of 

only 277  along with an unloaded quality factor of 3,267 in air. Ideally, if the device 

would have been made entirely of single crystalline silicon, the resonance frequency 

would be 266.92 MHz by assuming an acoustic velocity of 8,451 m/s. However, because 

part of the resonator body is made of ZnO piezoelectric transducer layer and the platinum 

electrodes, the loading effect introduced by these layers shifted down the resonance 

frequency. By taking this effect into account in combination with Equations (4.5) and 

(4.6), the equivalent acoustic velocity of the ZnO-on-SOI resonator is 7,965 m/s, which 

results in a theoretically-predicted resonance frequency of 248.9 MHz at the 

corresponding 5
th

 resonance mode. 
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Figure 4.12 – Frequency response of a 5
th
 order ZnO-on-silicon resonator with a 16 µm finger 

pitch and resonator dimensions of 80 µm x 320 µm  

 

 Figure 4.13 shows shows the frequency response for a similar device, which is 

fabricated  in  SOI wafer with a 5 µm-thick silicon device layer. As expected, the quality 

factor of this device is slightly lower compared with the one with a 20 µm-thick silicon 

device layer (Figure 4.12). Apparently, for the case of rectangular plate resonators, a 

thicker device layer results in a higher quality factor. However, this is only true for 

devices at lower frequencies (e.g.,  below 500 MHz). For high frequency devices 

operating in their in-plane contour modes, the thickness of the resonator body should be 

kept below the acoustic wavelength. 
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Figure 4.13 – Frequency response of a 5
th
 order ZnO-on-silicon resonator with a 16 µm finger 

pitch and resonator dimensions of 80 µm x 170 µm 

 

 A higher resonance frequency can be achieved by retaining the length of the 

rectangular plate while reducing the finger pitch size of the top electrode. Figure 4.14 

shows the frequency response for 9
th

 order ZnO-on-silicon resonator. The measured 

center frequency is at 440.5 MHz with an unloaded Q of 5,335 in the air. The motional 

impedance of the resonator is 140 Ω which makes it a very attractive candidate as the 

tank circuit for implementation of a reference oscillator.  The dimension for this device is 

80 µm × 200 µm. As can be observed, this device has the same length as the one 

presented in Figure 4.14, but the top interdigitated electrode is composed of nine fingers 

instead of five. The width of the device also has been adjusted in order to attenuate a 

spurious mode adjacent to the desired resonance frequency. Additionally, as the resonator 

has been actuated in its higher order mode, the motional resistance is anticipated to be 

reduced, compensating for the lower electromechanical coupling.  As shown in Figure 

4.14, the unloaded quality factor of this device operating in the air is 5,335, which is on 
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par with the quality factor reported for capacitively-transduced counterparts made solely 

of low acoustic loss silicon in a similar frequency range [58].   

  
(a) 

 

 
 

(b) 

 

Figure 4.14 –  (a) Frequency response of a 9
th
 order ZnO-on-SOI rectangular plate resonator with 

a 8.88 µm finger pitch and resonator dimensions of 80 µm x 200 µm; and (b) SEM micrograph of 

the fabricated ZnO-on-SOI rectangular plate resonator 
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(a) 

 
(b) 

 

Figure 4.15 – Frequency responses for two identically-sized piezo-on-silicon resonators with 200 

µm × 100 µm dimensions (a) operating in the 14
th
 order length-extensional mode; and (b) 

operating in the 15
th
 order length-extensional mode 
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 It is worth mentioning that higher resonance mode does not necessary translate to 

higher frequency. The dimension that set the resonance frequency for a piezoelectrically-

transduced resonator with interdigitated top electrode is the finger pitch size, which is 

given by the ratio between length of the resonator plate and the order of the length-

extensional mode. Figure 4.15 shows the frequency responses for two identically-sized 

ZnO-on-silicon resonators composed of a 20 µm-thick silicon device layer operating in 

its 14
th

 and 15
th

 order length-extensional modes. Despite the fact the resonator operates in 

a higher order mode, the resonance frequency and quality factor are comparably lower 

than the one presented in Figure 4.14. The lower resonance frequencies for this device 

can be attributed to the relatively larger electrode finger pitch size of 14.28 µm and 13.33 

µm, for the 14
th

 and 15
th

 resonance mode, respectively. With regard to the quality factor, 

it relates strongly to the length to width ratio of the rectangular plate aside from its 

dependence on the anchor design. Although the finite element modal analyses can easily 

predict the resonance frequency and the mode shape for each resonator design, there are 

no existing simulation packages capable of correctly predicting the Q of these 

microresonators. It is widely believed that the quality factor is predominantly limited by 

the anchor losses rather than the other energy dissipations such as internal damping, 

viscous gas damping, and thermoelastic damping. Nevertheless, for a given resonator 

design, the major intensity of the strain field determined by the modal analysis simulation 

is a strong indication that the device is anticipated to exhibit a large quality factor. 

 Figure 4.16 presents the frequency response for a piezo-on-silicon resonator 

operating in its 13
th

 resonance mode at 868.4 MHz. The dimension of this rectangular 

plate resonator is 60 µm × 120 µm. the theoretically calculated resonance frequency is 
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862.87 MHz with an effective acoustic velocity of 7,965 m/s for the ZnO-on-silicon 

stacked-layers. The predicted resonance frequency is in very close agreement with the 

measurement result. Moreover, the theoretically-predicted motional resistance is 1,336 

k, which is also on par with the measured value.  

 
 

 
 

Figure 4.16 – Frequency response for ZnO-on-SOI resonator operating at 868.43 MHz and the 

SEM micrograph of the fabricated device 
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 It should be emphasized that devices based on capacitively-transduced silicon 

bulk acoustic-wave resonators have been demonstrated with resonance frequencies up to 

1.55 GHz along with quality factors on the order of 3,000 [59] . However, they required a 

large actuation voltage in the range of 50 V to obtain a motional resistance in the order of 

30 k, which makes it challenging to integrate them directly with 50  electronics. With 

regard to the capacitively-transduced contour-mode disk resonators, they also suffer from 

their large motional resistance on the order of  100 k at gigahertz frequencies, which 

in some cases prevent direct measurement of the resonator response without the use of a 

highly-specialized mixing measurement technique [60]. 

 In general, despite the slightly lower quality factor of piezoelectrically-transduced 

resonators, they do not require a polarization or bias voltage to operate while exhibiting 

characteristic motional resistance typically lower than 1 k. These two unique 

advantages make the piezoelectrically-transduced contour-mode resonators very 

attractive for implementation of RF-front end subsystems such as filters and oscillators at 

gigahertz frequencies.  
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Chapter 5                                                                                                             

Micromechanical Filters Based on Piezoelectric Resonators 

During the past two decades, the demand for bandpass filters operating in the 

VHF and UHF ranges have increased significantly. Filters with high selectivity, low 

insertion loss, excellent out-of-band rejection, small size, and standard IC process 

compatibility are an enabling technology for the next generation of multiband and 

multimode wireless communication transceivers. The current state-of-the-art RF filters 

predominantly employ surfaces acoustic wave (SAW) resonators or bulk acoustic wave 

(BAW) resonators, which are both relatively small in size. However, SAW devices have 

low quality factors (Q’s 200-1,000), which affect ultimately the minimum attainable 

insertion loss, especially for filters with fractional bandwidth less than 1%. Moreover, 

SAW filter technology is deemed IC compatible. Filters based on thin film bulk acoustic 

wave resonators (FBAR’s) exhibit Q’s up to 1,000 with low insertion loss at gigahertz 

frequencies. Nevertheless, the monolithic integration of FBAR’s with RFIC circuits have 

been delayed due that their operation frequency is set by the thickness of piezoelectric 

film, thus impeding the implementation of multi-frequency filters within a single RFIC 

chip. At the moment, filters and oscillators based on the SAW and FBAR technologies 

are utilized as off-chip components that must be interfaced with electronics at the board 

level to occupy a sizable portion of current wireless transceivers, thereby imposing a 

bottleneck against the ultimate miniaturization and portability of the future wireless 

communication devices. 
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As an emerging technology, filters and oscillators based on micromechanical 

contour-mode resonators have become a promising on-chip alternative to the 

aforementioned technologies. Efforts have been focused upon strategies for the design 

and implementation of micromechanical filters capable of replacing the current dominant 

SAW and FBAR technologies without sacrificing the overall performance, but at the 

same time reducing size, fabrication cost and allowing the direct monolithic integration 

with 50  IC electronics. 

 This chapter details the design, implementation and characterization of 

piezoelectrically-transduced MEMS filters based upon contour-mode micromechanical 

resonators. Three different filter synthesis techniques based on mechanically coupled, 

electrically coupled and acoustically coupled resonator filters have been concurrently 

explored. The filters were designed and implanted to operate at frequencies ranging from 

50 MHz to 900 MHz while exhibiting insertion losses as low as 2 dB with filter 

termination resistances as low as 300 . Moreover, the fabricated filters can be 

seamlessly integrated with 50  electronics by the proper design of LC impedance 

matching networks similar to SAW filters. In addition, a new methodology for increasing 

the order of a filter based on mechanically-coupled resonators while reducing the total 

number of constituent resonators has also been explored. 

5.1  Mechanically-Coupled Resonators 

The use of high-Q contour-mode micromechanical resonators, whose frequencies 

are set by their lithographically defined lateral dimensions, permits the synthesis of filters 

at multiple target frequencies on a single chip. Filters synthesized using mechanically-

coupled contour-mode resonators or resonator arrays are capable of obtaining wider 
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bandwidth than electrically coupled ladder filters, without the use of external tuning 

components or post-fabrication frequency trimming. This section presents the design and 

measurement results of RF filters based on mechanically-coupled piezoelectrically-

transduced resonators. 

5.1.1 Device Operation 

 The working principle of a mechanically-coupled bandpass filter is illustrated in 

Figure 5.1(a) - (d), which shows the mode shapes, frequency response and equivalent 

circuit model for a filter composed of two contour-mode resonators mechanically coupled 

by a longitudinal beam. In this coupled mechanical system, there are two types of modal 

vibrations. In the first low-frequency mode, both resonators move in phase while 

stretching and compressing the coupling beam. In the second high-frequency mode, the 

two resonators move out-of-phase, thus leaving the coupling beam almost unstressed. 

The filter passband is determined by the frequency difference between the 

aforementioned modes as shown in Figure 5.1(c). The simplified equivalent circuit is 

shown in Figure 5.1(d), where the mass-spring-damper parameters represented as series 

LCR tanks model the mechanical response of the individual resonator and the spring 

constants represented by the t-network capacitors model the mechanical coupling beam 

between the constituent resonators. Moreover,  i and  o represent the electromechanical 

coupling coefficient between the mechanical filter and the electrical input and output 

terminals whose port capacitances equal to Co.  
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Figure 5.1 – Illustration of the working principle for a mechanically-coupled resonator filter 

vibrating in (a) in-phase mode; (b) out-of-phase mode; with (c) predicted bandpass frequency 

characteristic; and (d) electrical equivalent circuit model 

 

The center frequency of the filter is determined by the common resonance 

frequency of the constituent resonators, and the filter bandwidth is designed by adjusting 

the equivalent stiffness ratio between the resonator and the coupling beam. The resonance 

frequency and equivalent stiffness at the coupling location of each the resonator depends 

on its physical dimensions, its geometry (e.g., disk, ring, rectangular plates, etc.), and its 

mode shape. For instance, a mechanical resonator exhibits the highest equivalent stiffness 

at its nodal location when vibrating in a certain mode shape. As a result, a filter with 

narrower bandwidth can be synthesized by positioning the coupling beam closer to the 

nodal location.  
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5.1.2 Coupling Beam Design 

 The bandwidth of a mechanically-coupled two-pole filter is proportional to the 

ratio of the coupling beam stiffness ks to the resonator stiffness kr at the coupling location, 

which is given by: 

     
  
  
    (5.1) 

where k12 is the normalized coupling coefficient between resonators tanks for a given 

filter type [61]. In this work type I Chebyshev filter was chosen along with the 

corresponding coupling coefficient k12. As mentioned in the previous section, the 

stiffness of the resonator at the coupling location can be calculated as a function of its 

equivalent mass and resonance frequency. For the coupling beam, its stiffness can be 

modeled as an acoustic transmission line. Figure 5.2(a) and (b) shows the schematic of an 

extensional-mode coupling beam with dimensions of     (width),    (thickness), and    

(length) and its equivalent transmission line -model. 

 
(a)  

 

 
(b) 

 

Figure 5.2 – (a) Extensional-mode coupling beam with its physical dimensions; and (b) its 

equivalent transmission line -model representation 
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  The value of the acoustic impedances Yb and Ya  in Figure 5.2(b) are functions of 

the material properties and coupling beam dimensions given by [42]: 

    
 

    √  
 (5.2) 

       √
 

 
 (5.3) 

    
  

       
 (5.4) 

    
     (   ⁄ )

  
 (5.5) 

where E and ρ are the Young’s modulus and the material density of the coupling beam, 

respectively, while fo is the resonance frequency. From Figure 5.1(b), the transformers 

turn ratios associated with the coupling beam, ηc1 and ηc2, model the mechanical 

impedance transformation realized by coupling one resonator to the other. Ideally, if the 

coupling beam is connected at the same location of both constituent resonators, the 

values for ηc1 and ηc2 are equal to one, which means that all the mechanical energy is 

transferred by the coupling beam between the resonators.  

 Two especial cases are particularly interesting. Under the first scenario, the length 

of the coupling beam is equal to half of the wavelength (/2), then the composite 

resonator array behaves as a single resonator with a resonance frequency equal to that of 

its constituent resonator. Under the second scenario, when the length of the coupling 

beam is equal to quarter of the wavelength (/4), the composite array behaves as a 

coupled resonator filter, with the bandwidth of the passband given by Equation (5.1). 

Even though the effect of a coupling beam with any specific length on the frequency 

response of the filter can be modeled by Equations (5.2)-(5.5), it is preferable to use /4-
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long coupling beam(s) while changing the  width of the beam in order to adjust the 

bandwidth of the filter. It is worth mentioning that the resonators and the coupling 

beam(s) usually have the same thickness, therefore the thickness parameter does not 

affect the ratio of the coupling beam stiffness ks to the resonator stiffness kr, which 

determines the filter bandwidth. The electrical equivalent circuit for a mechanically-

coupled piezoelectric resonator filter consists of two identical resonator coupled by a 

longitudinal extensional beam modeled as -network capacitors shown in Figure 5.3. 

 
 

Figure 5.3 – Electrical model for a micromechanical filter  composed of two identical coupled 

resonators 

 

 In order to illustrate the behavior of a mechanically-coupled two-pole resonator 

filter, a finite-element simulation of the frequency response of mechanical filter with two 

mechanically-coupled and identically-sized 30 µm-radius piezoelectrically-transduced 

disk resonators has been performed. The parameters for the simulation have been 

calculated based on the equations presented in Section 4.1. The resonator is made of a 

500 nm-thick ZnO layer, embedded between 150 nm-thick Pt bottom and top electrodes. 

The values for the parameters of the equivalent electrical model are summarized in Table 

5.1. 
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Table 5.1 – Equivalent electrical circuit parameters for  a mechanically-coupled  filter with 

different coupling beam lengths  

 

Parameter /4 /3 /2 

Req 1.47 k 1.47 k 1.47 k 

Ceq 2.5923 fF 2.5923 fF 2.5923 fF 

Leq 5.6569 mH 5.6569 mH 5.6569 mH 

Q 1,000 1,000 1,000 

f0 41.513 MHz 41.513 MHz 41.513 MHz 

Ca 0.1182 pF 0.2070 pF -11.654 pF 

Cb - 0.1182 pF -0.1370 pF 5.827 pF 
 

 

 
 

Figure 5.4 – Frequency response for a mechanically-coupled filter with different coupling beam 

lengths 

 

 As expected for the case in which the coupling beam length is equal to /2, the 

coupled system behaves like a single resonator. When the length of coupling beam is 

equal to /4 the system behaves as a filter with its bandwidth defined by the Equation 

(5.1). However, when the length of the coupling beam is equal to /3, the coupled 

resonator array still behaves as a filter, but the design of the coupling beam affects the 

center frequency and the bandwidth of the synthesized filter. Nevertheless, this behavior 

can be accurately modeled, and potentially may be beneficial when the fabrication 
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process tolerance limits the minimum achievable width of the coupling beams. It is worth 

mentioning that the purpose of the simulation results presented in Figure 5.4 is to show 

the frequency responses (especially the bandwidth) of a pair of mechanically-coupled 

resonators with a variety of coupling beam length, but these coupled resonator filters 

have not been properly terminated as the termination resistance has been set to 50 . 

Also for simplicity, the feedthrough capacitance and the device input/output capacitances 

have not been included in the simulation. Later on, the effect on the frequency response 

and the termination resistance of the filter introduced by these capacitances will be 

further explained. 

 
 

Figure 5.5 – Frequency response for a micromechanical filter with different coupling beam 

widths 

 

 As mentioned earlier, the bandwidth of a mechanically-coupled filter can be 

designed by changing the stiffness of the coupling beam. If the length is set equal to /4, 

the only parameter that can be changed via CAD layout is the width of the coupling 

beam. To illustrate this concept, Figure 5.5 shows the finite element simulation results for 
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a mechanically-coupled filter consisted of two identical 30 µm-radius piezoelectrically-

transduced disk resonators coupled via a /4 beam with different widths. 

 
Table 5.2 – Equivalent electrical circuit parameters for  a mechanically-coupled two-pole 

resonator  filter with different coupling beam width 

 

Parameter /4 (1µm-wide) /4 (3µm-wide) /4 (5µm-wide) 

Req 1.47 k 1.47 k 1.47 k 

Ceq 2.5923 fF 2.5923 fF 2.5923 fF 

Leq 5.6569 mH 5.6569 mH 5.6569 mH 

Q 1,000 1,000 1,000 

f0 41.513 MHz 41.513 MHz 41.513 MHz 

Ca    396.1 fF   118.2 fF  198.1 fF 

Cb - 396.1 fF - 118.2 fF 198.1 fF 
 

 

Compared with conventionally cascaded ladder filters based on FBAR resonators, 

it is advantageous to be able to synthesize the filter bandwidth by changing a physical 

dimension (i.e. width of the coupling beam) that can be accurately designed by the CAD 

layout. Ideally, the width of the beam can be selected upon the desired filter bandwidth. 

However, the minimum beam width of the beam is set by the lowest achievable 

resolution by the fabrication technology, and its upper limit is set at the point where the 

coupling beam is so wide that it starts to considerably distort the frequency response of 

the synthesized filter and lower its quality factor. 

5.1.3 Termination Resistance 

 Having determined the effect of the coupling beam on the bandwidth of a 

mechanically-coupled resonator filter, the effect of the termination resistance must be 

also explained. The frequency response of the filter shown in Figure 5.5 has a jagged 

passband and unacceptable insertion loss. This is due to the mismatch between the 

characteristic motional resistance of the coupled constituent resonators and the filter 



 

87 
 

termination impedance. To smooth the passband and reduce the insertion loss, a 

termination resistance is needed to load the quality factor of the constituent resonator to a 

value equal to qiQfilter, where Qfilter is the quality factor of the filter, and qi is a normalized 

“q” value obtained from a filter design handbook [62]. The value of the termination 

resistance is given by [63]: 

        (
    

 
 
       

  ) (5.6) 

where      is the quality factor of the constituent resonator. With the filter properly 

terminated at both input and output ports, the insertion loss can be defined as: 

           (
   

           
) (5.7) 

It is clear from Equation (5.7) that a large motional resistance of the constituent 

resonator demands a large termination resistance. It is demonstrated by Pozar [64] that 

values of the termination resistance larger than 5 k cannot be matched using on-chip 

passive components such as inductors and capacitors. 

 
 

Figure 5.6 – Frequency response for a mechanically-coupled two-pole filter terminated with 

termination resistors of different values 
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 Figure 5.6 shows the frequency response for a mechanically-coupled resonator 

filter consisting of two identical 30 µm-radius disks operating in the fundamental radial 

contour-mode, terminated with 50 , 1 k and 2 k resistors. As can be seen, the 

termination resistance RT  affects the frequency passband and the out-of-band rejection of 

the filter, which must be jointly considered in the order to satisfy the filter specifications 

(i.e. insertion loss, ripple within passband and out-of-band rejection) for a certain 

communication standard. The most effective way to reduce the termination resistance is 

to improve the electromechanical coupling of the constituent resonators. This can be done 

by increasing the quality factor of the resonator or increasing its piezoelectric transducer 

surface area. If the transducer size is increased, the radius of the disk resonator must also 

be increased, but this will reduce the resonance frequency. If the quality factor is 

increased, carefully consideration must be taken to retain the bandwidth of the filter. 

Consequently, filters with relatively large bandwidth and composed of high-Q resonators, 

require a large termination resistance. The advantage of a high Q does not translate 

necessarily to a lower termination resistance for a filter with a large bandwidth (e.g., > 

2%). In the subsequent section, a method for reducing the value of the termination 

resistance without compromising filter performance will be discussed.  

5.1.4 Filter Termination using L-Matching Network 

 The example presented in Figure 5.6 represents the ideal case scenario where the 

input impedance of the unterminated filter is mostly resistive. In practice, the input 

impedance of a MEMS filter has a reactive component, which is mainly due to the 

intrinsic and parasitic capacitances of the constituent resonators. The simplest case for 

impedance matching would have equal source and load resistances but unequal reactance 
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(e.g., ZS = RS ± j0 and ZL = RL + jXL where RS = RL).For this case, one added component 

between source and load having a reactance of –jXL  is all that is required to cancel the 

load reactance to realize conjugate match. In most cases when RS ≈ RL, the use of a single 

component can provide acceptable performance without the need to transform the small 

difference in the reactance. 

Nevertheless, the most generic filter termination requires a matching network with 

a minimum of two reactive components. This matching network has four possible 

arrangements that consist of one capacitor and one inductor as shown in Figure 5.7. In all 

four cases, the resistive part of the impedance adjacent to the shunt element must be 

higher than the resistance of the other impedance. In different terms, RL > RS for 

configurations shown in (a) and (c), whereas RS > RL for the topologies shown in (b) and 

(d). With respect to the MEMS filters  developed in the present work, the value of source 

impedance Rs is 50  and the value of the load impedance is given by the form ZL = RL - 

jXL, where RL >RS. Therefore, only L-matching networks based on configuration (a) and 

(c) can be used to match those filters to a 50  source and termination impedance. 

 

Figure 5.7 – Four possible L-matching network topologies for MEMS filters [64] 
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The values of the passive components for the case when ZL = RL +jXL, and RL >RS 

can be calculated by following the procedure presented by [64].  The effective impedance 

by looking into the matching circuit followed by the load impedance must be equal to ZS 

to realize an impedance matching condition: 

       
 

    (      )⁄
 (5.8) 

where B and X represented the shunt and the series passive components in Figure 5.7 (a) 

and (c). By rearranging the real and imaginary parts separately, two equations with the 

two unknown variables B and X can be derived as follows: 

  (        )        (5.9) 

  (     )           (5.10) 

Solving (5.9) for X and substituting it into Equation (5.10) gives a quadratic 

equation for B. The solution is given by: 

   
   √    ⁄ √  

    
      

  
    

  (5.11) 

Since RL>ZS the argument of the second square root is always positive, then the 

series reactance can be found as: 

   
 

 
 
    
  

 
  
   

 (5.12) 

 It is clear from Equation (5.11)  that two solutions are possible for B and X. Both 

solutions are physically realizable, since both positive and negative values of B and X are 

viable. Basically, positive X represents an inductor and negative X can be achieved by a 

capacitor, while positive B implies a capacitor, and negative B represents an inductor. As 

mentioned previously, for the case when RL >RS, both topologies (a) and (c) in Figure 5.7 

can be implemented. The selection of one particular solution may result in significantly 
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smaller values for the capacitors and inductors. Additional consideration for the preferred 

solution may relate to the wider bandwidth of the matching circuit, and the lower 

standing wave ratio on the line between the matching network and the load [64]. For 

filters with percentage bandwidth less than 5%, the criteria for designing a LC 

impedance-matching network would rely mainly on the commercially available capacitor 

and inductor components. 

 To analyze the effect of the different matching circuit topologies on the filter 

characteristic, the mechanically-coupled resonator filter with equivalent circuit model 

presented in Table 5.2 along with /4-long and 1 µm-thick coupling beam will be 

employed for a case study. Both solution for topologies shown in Figure 5.7 (a) and (c) 

provide the same matching bandwidth and insertion loss (i.e., IL=2.29 dB, BW=1%). The 

values for the passive components are calculated using Equations (5.11) and (5.12). For 

the configuration shown in Figure 5.7(a) the values of the shunt capacitor and the series 

inductor are 13.88 pF and 1.02 µH, respectively. For the configuration as seen in Figure 

5.7 (c), the value of the shunt inductor and series capacitor are 1.06 µH and 14.37 pF, 

respectively. As compared to the same filter terminated by a resistor, the performance of 

the LC-terminated filter is substantially better especially in terms of the out-of-band 

rejection. Moreover, the matching circuit behaves as a filter by itself, therefore it provides 

additional advantage such as better attenuation of spurious modes (i.e., unwanted 

resonance peaks) and improved isolation for noise at frequencies lower than the passband 

of the filter as shown in Figure 5.8. 
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Figure 5.8 – Simulated frequency responses for a micromechanical two-pole filter with three 

different matching network designs, two of which are based on topologies shown in Figure 5.7(a) 

and (c) 

 

5.1.5 The Effect of the Substrate Parasitics on the Frequency Response 

 When a resonator or filter operates away from its resonance frequency, it behaves 

as an open circuit with the overall electrical equivalent circuit given by Figure 5.9. Thus, 

the out-of-band rejection can derived as: 

    [  ]          (
  

  
)     (5.13) 

where Cf represents feedthrough capacitance that is determined by the feedthrough 

current between the input and the output port mostly through the substrate itself, while Co 

is defined as the intrinsic capacitance at the resonator input and output terminals together 

with the capacitance of the probing pads.  
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Figure 5.9 – Equivalent circuit for off-resonance response of a micromechanical filter that 

includes substrate effects for the calculation of the out-of-band rejection 

 

 Figure 5.10 presents the simulated frequency responses of a filter with different 

values of Co. The parameters of the equivalent electrical circuit of the filter are listed in 

Table 5.2.  In the simulation, the termination resistance was retained to be 2.5 k and the 

intrinsic port capacitance of the constituent resonator has been varied between 0 to 1 pF. 

As expected, as Co increases, the insertion loss of the filter also increases. Since part of 

the RF signal is diverted towards Co, there is less electrical energy to be converted into 

mechanical energy, which ultimately results in the extra insertion loss of the filter. As can 

be observed in Figure 5.10, the filter insertion loss was not significantly affected when 

Co=0.2 pF which happens to be its theoretical value for a piezoelectric resonator device 

with the specifications presented Table 5.1. As compared to the ideal scenario when Co=0 

pF, the insertion loss increases substantially from 2 dB to 5 dB for Co=1 pF. Moreover, 

the ripple in the passband increases from 0.5 dB to 5 dB. This is because the termination 

impedance could not effectively flatten the passband of the filter when shunt port 

capacitors Co are large enough to steer away signals. In different terms, if the equivalent 

impedance of the shunt port capacitor Co is comparable to the value of the termination 

impedance, then a large portion of the signal will not pass through the filter termination 
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circuits and therefore negatively impacting the effectiveness of the termination circuit. As 

rule of thumb, the equivalent impedance of the shunt capacitor Co at the central frequency 

of the filter should be kept much larger than the value of the termination impedance. 

However, in some designs of mechanically-coupled filters, the intrinsic port capacitance 

Co have relative large value that could not be further reduced. On the contrary, for 

mechanically-coupled rectangular plate resonators, this parameter can be strategically 

designed to circumvent its impacts. Nevertheless, there is a trade-off between the device 

sizes which define both the value of this capacitance and the electromechanical coupling 

coefficient for piezoelectrically-transduced contour-mode resonators.   

 
 

Figure 5.10 – Effect of the port capacitance Co on the simulated frequency response of  a 

mechanically-coupled filter terminated with a 2.5 k resistance 

 

 The out-of-band rejection of a filter is mainly determined by its feedthrough 

parasitic capacitance Cf, which is largely dependent upon the electrical properties of the 

carrier substrate. For the piezoelectrically-transduced resonators and filters developed by 

this work, high-resistivity silicon wafer with resistivity >1 k-cm, and silicon on 

insulator (SOI) wafers were employed. Figure 5.11 shows the combined effect of Co and 
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Cf on the simulated frequency response of a filter with equivalent electrical element 

values listed in Table 5.2.  The termination resistance was set to 2.5 k, the intrinsic 

capacitance of the constituent resonator was assumed to be Co= 0.2 pF and the 

feedthrough capacitance Cf has been varied between form 10 fF to 100 fF. It can be 

observed from the simulation results that the filter out-of-band refection decreases and 

the insertion loss increases as a consequence of the increase in Cf, as Cf increases, the 

value of its equivalent impedance decreases. At some point when the equivalent 

impedance of Cf is somewhat comparable to the motional resistance of the coupled 

resonators, thus a major part of the electrical energy would be diverted towards to Cf  

instead of passing through the actual filter, which ultimately results in an increase of the 

filter insertion loss. Typical values for the feedthrough capacitance range between 1 fF to 

10 fF depending upon the electrical properties of the carrier substrate (e.g., high-

resistivity silicon, low-resistivity silicon, SOI wafer, etc.) and the crosstalk isolation 

features if an approach for three-dimensional substrate impedance engineering is used 

[65].  

 
 

Figure 5.11 – Effect of the feedthrough Cf on the frequency response of a micromechanical filter 

terminated with a 2.5 k resistance 
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 Figure 5.12 shows the combined effect of Co and Cf when the filter is terminated 

with a 2.5 k resistance, and when the filter is coupled to a 50  termination impedance 

using a L-matching circuit. As was previously mentioned, using a L- matching circuit 

results in an improvement of 8 dB in the out-band rejection as compared when the filter is 

terminated with a termination resistance. 

 

 
 

Figure 5.12 – Effect of Cf and C0 on the frequency response of  a mechanically-coupled filter 

terminated with a 2.5 k resistance or a L-matching network 

 

5.1.6 Fabrication of Piezoelectrically-Transduced Mechanically-Coupled Filters 

Arrays of mechanically-coupled contour-mode resonator disk and rectangular 

plate geometries have been fabricated using the process described in Section 3.3. For 

instance, the fabricated filters consist of chains of 2, 4, 6, 9 and 20 of 20 µm-radius or 30 

µm-radius disk resonators, operating in its 1
st
 and 2

nd
 radial contour-modes. 

5.1.7 Experimental Results 

 The measured frequency response of a mechanically-coupled filter composed of a 

chain of four mechanically-coupled resonators is presented in Figure 5.13. The filter 

consists of two 30 µm-radius piezoelectrically-transduced disk resonators connected by a 
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/4 coupling beam. A 700 nm-thick ZnO film was deposited and embedded between 130 

nm-thick platinum bottom and top electrodes. Another chain of two mechanically-

coupled resonators are electrically connected in parallel in order to reduce the effective 

motional resistance, thus decreasing termination resistance of the filter. Ideally, the 

coupling beams were design to be /4 in length, however, uncertainties in exact value of 

the materials properties such as Young’s Modulus and residual stress of the film has 

shifted the central frequency of filter from the expected values predicted from the 

material properties shown in Table 4.1. The quality factor of each constituent resonator is 

roughly 800, which is sufficient for synthesizing filters with bandwidth higher than 0.5 % 

while obtaining low insertion loss < 2.6 dB. The 2 k  termination resistor was employed 

in order to load the quality factor of each constituent resonator and flatten the passband. 

As compared to standard 50  electronics and testing instruments, the 2 k termination 

resistor is 40 times larger.  One could expect that resonators with higher Q can be 

leveraged to get better filter characteristics. However, given the higher Q of the 

constituent resonators of such filter would require a larger termination resistance in order 

to flatten the filter passband as evidenced by Equation (5.6). An alternative solution to 

this problem would be increase the total number of electrically-coupled resonators in 

parallel as a single composite resonator. The reduction of the termination resistance will 

be inversely proportional to number of sub-filters that operates in parallel. Ideally, there 

is no limit in the number of sub-filters that can be implemented in parallel. However, in a 

practical filter implementation, the parasitic capacitances (i.e., Co and Cf) introduced by 

each additional sub-filter and the chip area constraint would impose an upper limit. 
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Figure 5.13 – Frequency response for 2×2 micromechanical contour-mode filter with 30-µm 

radius disk piezoelectric resonators as constituent elements and SEM micrograph of the fabricated 

filter 

 

 The frequency response for a second-order mechanically-coupled filter with four 

sub-filter chains connected in parallel is shown in Figure 5.14. As can be observed, the 

termination resistance for this filter is lower as compared to the device with only two sub-

filters shown in Figure 5.13. The center frequency of the filter has been shifted up 

slightly and the bandwidth was increased from 1.3% to 1.6%, which should be attributed 

to the fabrication variation rather than the addition of a third sub-filter chain. In addition, 
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the value of the termination resistance was decreased from 2 k to 1 k, which was 

expected due to the addition of an extra sub-filter. Nevertheless, the motional resistance 

can be decreased even further if more sub-filter chains are introduced. 

 
 

 
 

Figure 5.14 – Frequency response for 4×2 micromechanical contour-mode filter with 30-µm 

radius disk piezoelectric resonators as constituent elements and SEM micrograph of the fabricated 

filter 
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Figure 5.15 – Frequency response for 3×3 micromechanical contour-mode filter composed of two 

mechanically-coupled 20 µm-radius Zn thin film piezoelectric disk resonators 

 

 If a filter operating at a higher frequency band needs to be designed, the size of 

the constituent resonator can be adjusted, while the length and the width of the coupling 

beam need to be calculated depending on the desired operation frequency and bandwidth 

of the filter. A filter consisted of two 20 µm-radius piezoelectrically-transduced disk 

resonators coupled by a 15 µm-long and 5 µm-wide coupling beam have been 

implemented. The measured frequency response for this device is shown in Figure 5.15. 

Although contour-mode resonators based on circular plates and rings using 

electrostatic transduction mechanism have been demonstrated at GHz frequencies 

[17][66],  they have large motional impedances which hinders their direct integration 

with 50  electronics. Moreover, some of the tested capacitively-transduced filters have 

to utilize a special de-emending technique in order to cancel the parasitics from the 

carrier substrate and the constituent resonators in order to match the filter to a feasible 

termination resistance [67]. On the contrary, filters synthesized with arrays of 
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mechanically-coupled disk resonators equipped with piezoelectric transducers can be 

successfully matched to 50 Ω termination resistances for frequencies below 400 MHz 

without the need of de-embedding techniques.   

 So far, all the measurement results presented are based on two-pole mechanically-

coupled disk resonators. Despite their low quality factor (i.e., 8001,000), the 

synthesized filters have shown better performance in terms of the insertion loss compared 

with conventional SAW devices operating at similar frequencies.  However, they lack the 

necessary shape factor for more demanding applications where high selectivity between 

the stopband and the passband is critical. In order to implement higher order filters, 

chains composed of more than two mechanically-coupled resonators are needed. The 

explanation behind this is based on the fact that the order of a mechanically-coupled filter 

is equal to the number of the coupled resonator LCR circuits in series. Therefore, the 

higher the order of the filter, the better the selectivity of the filter is. Ideally, the number 

of mechanically-coupled resonators in a filter can be as high as necessary to fulfill a 

specific shape factor imposed by the target application. However, in a practical filter 

implementation, the number of the resonators in the filter will depend on the size 

constrains and the tolerances imposed by the fabrication process.  The concept of an n-

resonator coupled filter is shown in Figure 5.16. 

 
 

Figure 5.16 – Mechanically-coupled filter composed of n-constituent resonators 
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 Filters implemented based upon this topology could also benefit from the 

employment of parallel sub-filters in order to decrease the effective motional resistance 

of the filter. When the quality factors of the constituent resonators are not extremely high 

(Q<1,000), filters based on the topology shown in Figure 5.16 can be implemented 

without degrading the overall performance. This topology was adopted with an open 

chain of 2×2 resonators and 3×3 resonators for the measurement results presented in 

Figure 5.13 and Figure 5.14, respectively. However, for a filter configuration where the 

Q’s of the constituent resonators are higher than 1,000, minor differences in the parallel 

chains will degrade the performance of the filter as demonstrated by Stephanou et al. 

[68], who implemented a 8
th

 order filter with ten parallel sub-filter chains. Despite its 

terrific frequency selectivity shown by the excellent 20 dB shape factor of 1.8, the 

insertion loss of this filter after termination with a 2 k resistor was 15 dB with a 

maximum ripple of 3 dB within the passband. 

 Conventionally, a method to improve the performance of open-chain filter is to 

connect an array of identical sub-filter in parallel with /2 coupling beams, forcing each 

sub-filter chain to resonate at the same frequency, thus decreasing the effect of both the 

frequency variation of  each individual sub-filter and the quality factor of each 

constituent resonator on the array. A conceptual illustration diagram for a mechanical 

filter composed of a 2D array of coupled resonators is shown in Figure 5.17. However, 

one of the main disadvantages of this approach is that the overall filter performance is 

highly sensitive to the possible length deviation of the coupling beam from /2.  
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Figure 5.17 – Loop coupled filter composed of a 2D array of mechanically-coupled n×m 

constituent resonators 

 

 To address the aforementioned issues related to the variations in the quality 

factor, resonance frequency, and material properties of mechanically-coupled filters, a 

close-chain filter topology  that utilizes /2 coupling beam instead of /4 beam for 

connecting parallel sub-filter chains has been implemented. This approach presents 

several advantages as compared with conventional close-chain filter configurations. The 

order of the filter is not only defined by the number of the coupled resonators in series to 

allowing more design flexibility. Hence, a filter with a passband characteristic of a 

second order filter can be designed with the anticipated shape factor of a 4
th

 order filter. 

Moreover, this array is less sensitive to the coupling beam length variation, and the 

motional resistance can be reduced by m times the number of parallel arrays.  
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(a) 

 

 
 

(b) 

 

Figure 5.18 – Frequency response for 3×2 micromechanical contour-mode filter that consists of 

an array of a 20 µm-radius disk resonator fabricated using a SOI wafer with a 5 µm-thick silicon 

device layer ; and (b) SEM micrograph of the fabricated device 

 

Figure 5.18 shows the frequency response for a mechanically-coupled filter 

composed of 20 µm-radius ZnO-on-silicon piezoelectrically-transduced disk resonators 

as constituent elements. The device was fabricated using a SOI wafer with a 5 µm-thick 

silicon device layer. The filter consists of three parallel arrays of two mechanically-
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coupled resonators. The parallel chains are not linked, thus the order of the filter is given 

by the number of resonators connected in series, which for this case is two. 

 
 

 
 

Figure 5.19 – Frequency response for 3×2 micromechanical contour-mode filter composed of an 

array of 20µm-radius disk resonators linked by /4 coupling beams fabricated using a  SOI wafer 

with a 5 µm-thick silicon device layer 

 

 If the same filter is re-constructed by a 3×2 parallel array of identically-sized 

constituent disk resonators that are connected by /4 (instead of /2) coupling beams, 

then the coupled array should behave as 6
th

 order filter.  If the termination resistance is 

kept the same for both cases (Figure 5.18 and Figure 5.19) in order to make a fair 
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comparison, the passband of the 6
th

 order filter should be more flat, and ideally the 

insertion loss should be at least the same or lower. As seen in Figure 5.19, both the 

insertion loss and the passband of the filter have been improved. Particularly, the 

response of the fitter became much sharper. As mention previously, the termination 

resistance was retained for both filters because ideally they have the same motional 

resistance (both filters have the same number of parallel arrays). 

 
 

 
 

Figure 5.20 – SEM micrograph and frequency response for 3×3 micromechanical contour-mode 

filter that consists of an array of a 20 µm-radius disk resonators  coupled with /4 coupling beams 

fabricated using a in SOI wafer with a 5 µm-thick silicon device layer 
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If the number of resonators connected in series is increased while keeping the 

number of parallel sub-filter arrays, a 9
th

 order filter could be implemented with a 3×3 

mechanically-coupled resonator array connected in close chain configuration as shown in 

Figure 5.20. The frequency response for such filter is also shown in Figure 5.20. As can 

be noted, this filter exhibited a sharp shape factor that is more similar to that of a SAW 

filter operating in this frequency range. Although the filter was terminated with a 

termination resistance of 1 k, this can be decreased to 50  if 64-sub-filter chains are 

connected in parallel, or can be terminated with 50  if a proper L-matching network is 

inserted. 

 Figure 5.21 and Figure 5.22 show the SEM micrograph and the frequency 

response for a two-pole mechanically-coupled filter equipped with 10 sub-filter arrays 

connected in parallel, respectively. Each sub-filter is composed of two mechanically-

coupled 30 µm-radius disk resonators fabricated using a SOI wafer with a 5µm-thick 

silicon device layer. The resonators operate in the fundamental radial contour mode at 

73.2 MHz. The motional resistance of this device is 200 , which allows terminating the 

filter with a termination impedance as low as 300 . This filter shows 10 times reduction 

in the termination impedance as compared with a single two-pole filter that is composed a 

single pair of mechanically-coupled resonators. The key for achieving such performance 

is the employment of ZnO-on-SOI piezoelectrically-transduced disk resonator array as 

composite resonator instead of stand-alone resonators. Moreover, it is also expected that 

the power handling capability for the coupled resonator array will be drastically 

increased. Aside from lowering the effective motional resistance, the impact of the 
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arraying concept on the linearity and power handling ability will be further discussed in 

the subsequent sessions. 

 

 

Figure 5.21 – SEM micrograph of 10×2 micromechanically-coupled filter with an array of  30 

µm-radius disk resonators coupled together 

 

 
 

Figure 5.22 – Frequency response for 10×2 micromechanically-coupled filter with 30 µm radius-

disk constituent resonators fabricated in a 5 µm SOI wafer, configured in a /4 close chain 
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 Figure 5.23 shows the SEM micrograph of a mechanically-coupled filter 

composed of a 10×4 array of 30 µm-radius disk resonators. As can be observed, the novel 

fabrication process technologies presented in Section 3.4 allows the fabrication of large 

2D array of mechanically coupled resonators with a high yield. 

 
 

Figure 5.23 – SEM micrograph of a mechanically-coupled filter conmposed of 10×4 array of 30 

µm-radius disk resonators mechanically coupled together by /4 coupling beams 

 

5.1.8 Limitations of the Mechanically-Coupled Array Technique 

 As the size of the micromechanical disk resonator is reduced to reach operating 

frequencies in the UHF range, the electromechanical coupling coefficient also degrades, 

which leads to increased motional resistance. Moreover, to avoid mass loading effect 

from the coupling elements and to achieve a reasonably narrow filter bandwidth, 

mechanically-coupled filters would eventually require submicron coupling elements that 

are too hard to manufacture reproducibly using low-cost processes. Mechanically-

coupled filters based on ZnO-on-SOI resonators and resonator arrays can operate with 

excellent performance in term of insertion loss and out-of-band rejections at frequencies 
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up to 300 MHz or so. Moreover, if a high acoustic velocity material such as diamond is 

introduced in the structural material, filters with center frequencies  up to 600 MHz can 

be readily implementable as the acoustic velocity in diamond is approximately twice of 

that of silicon.  

Although the coupled-array method has shown some great promise for lowering 

the filter termination impedance, further impedance reduction is necessary to eliminate 

the need of large termination resistor or L-matching networks to interface the filter 

directly to 50  electronics. However, the further reduction of the filter termination 

impedance is limited by several remaining issues such as Q degradation and spurious-

mode generation as a consequence of the array configuration. Moreover, after reaching a 

certain number N of coupled parallel resonators, the termination impedance of the filter 

will no longer decreases by increasing N. Nonetheless, the fundamental benefit of the 

mechanically-coupling approach is the enhancements of the power handing capability 

which is crucial for front-end filters operating in the VHF range. 

5.2  Capacitively-Coupled Piezoelectrically-Transduced Filters 

 The main advantage of capacitively-coupled filters is their great potential for 

extending the operation frequencies into the UHF range. Piezoelectrically-transduced 

filters using capacitively coupling does not require mechanical beams with precisely-

defined dimensions. Moreover, the filter bandwidth can be also synthesized by the device 

CAD layout, facilitating the design and fabrication of filters with multiple frequencies 

and bandwidth characteristics side by side. In addition, the electrical coupling offers the 

possibility to implement filters with excellent shape factors and out-of-band rejection 

without the need of more than four resonators. 
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5.2.1 Device Operation 

For a two-resonator coupled system composed of a coupling capacitor and two 

identical resonators with nominal frequency (  ), quality factors ( ) and motional 

resistances (  ), the insertion of a shunt coupling capacitor (  ) in between the two 

adjacent resonators creates a second mode of resonance, which can be expressed by: 

  
 
  

 √
    

 
     

  
 
     

 (5.14) 

 When piezoelectrically-transduced resonators are connected in the cascade mode, 

the shunt capacitance    rather than be an external element, simply represents the 

intrinsic capacitance of the constituent resonators, which is dependent upon the dielectric 

properties of the piezoelectric layer and its physical dimensions. Figure 5.24 shows the 

simplified electrical equivalent circuit and the frequency response for a second-order 

capacitively-coupled filter.  

 
 

Figure 5.24 – Electrical schematic diagram of a second-order capacitively-coupled filter and its 

frequency response [69] 
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The behavior of the capacitively-coupled filter can be explained as follows: at the 

nominal resonance frequency fo, the two resonators vibrate in phase and the coupling 

capacitor does not contribute to the frequency response of the system. At the second 

resonance frequency   , the two resonator vibration out of phase (180), and the coupling 

capacitor does have an effect in frequency response of the system. To better understand 

the operation principle, the capacitively-coupled filter can be divided into two identical 

parts each acts as a resonator terminated with a series coupling capacitor    ⁄  connected 

to ground. When the two resonators vibrate in phase, the generated current through the 

coupling capacitor would cancel each other. But when the two resonators operate in the 

out-of-phase mode at the second resonance frequency   , each resonator tank results in 

in-phase current contribution to the coupling capacitor. As a consequence, the coupling 

capacitor reduces the total capacitance of the resonator when it operates at the second 

resonance frequency, thus forcing the second resonance mode to have a slightly higher 

frequency, which can be calculated by Equation (5.14). A complete analysis for higher 

order capacitively-coupled filters is described by Pourkamali et al.  [70]. The electrical 

coupling approach offers the viability to implement filters with excellent shape factors 

and out-of-band rejection, while allowing the design of the bandwidth of the filter 

without the use of external components or coupling beams that can be problematic when 

their required dimensions approaches the sub-micron region. Similar to the case for 

mechanically-coupled filters, the order of the filter synthesized in this topology is also 

given by the number of cascade-connected resonators. In general, a capacitively-coupled 

filter composed of a certain number of cascade-connected resonators would behave 

similarly to the mechanically-coupled filter with the same number of resonators coupled 
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together by /4-long coupling beams. However, carefully consideration must be taken 

when designing the size of the piezoelectrically-transduced filter. For instance, if length-

extensional rectangular plates are used as the constituent resonator, one of the two lateral 

dimensions (i.e., the length) would define the resonance frequency    of the constituent 

length-extensional mode resonators, and the second dimension (e.g., the width) in 

conjunction with the first dimension, the permittivity and the thickness of the 

piezoelectric film, will determine  the intrinsic capacitance of the constituent resonators, 

and therefore the bandwidth of the electrically-coupled filter.  

The presented analysis can be extended and revised for more than two resonators 

electrically cascade-connected together in order to implement a higher order filter. For a 

third-order capacitively-coupled filter, all resonators vibrate in phase in the first 

resonance mode, thus the effect of the intrinsic coupling capacitors is automatically 

cancelled. The frequency for this mode is given by fo, which is the common nominal 

resonance frequency of the constituent resonators. At the second resonance mode, the 

first and the third resonator vibrate out of phase (180), and the second resonator remains 

static. As a result, no current passes through the second resonator and the resonance 

frequency for this mode is given by: 

  
 
  

 √
     

 
     

   
 
     

 (5.15) 

 In the third resonance mode, all the adjacent resonators vibrate out of phase with 

respect to each other. The coupling capacitor for this mode is split between the 

resonators. For the first and the third resonator, the effective coupling capacitor is one-
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third of    whereas for the second resonator the effective coupling capacitor is two-third 

of   . Therefore, the resonance frequency for this mode can be calculated as follows: 

  
 
  

 √
     

 
     

   
 
     

 (5.16) 

5.2.2 Fabrication Process 

 Arrays of two and three capacitively-coupled piezoelectrically transduced 

resonators have been fabricated and tested using the fabrication process described in 

Section 3.3. The fabricated filters consist of piezoelectrically-transduced extensional-

mode rectangular plate resonators connected in cascade electrically, with the top 

interdigitated electrodes patterned in order to excite the higher order length-extensional 

or width-extensional modes. A high resistivity silicon substrate was used for the 

fabrication of filters to reduce the effect the feedthrough parasitics introduced by the 

substrate. 

5.2.3 Experimental Results 

 The fabricated capacitively-coupled filters were tested in a cascade RF probe 

station. All testing is performed in air at atmospheric pressure and ambient temperature. 

The scattering parameters (S-Parameters) of the devices are extracted directly using an 

Agilent E5071B vector network analyzer. A Short-Open-Load-Thru (SOLT) calibration 

procedure using a CS-5 calibration substrate from GGB Industries Inc was conducted to 

de-embed the effects of the connectors, the network analyzer ports, and the carrier 

substrate.  
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Figure 5.25 – Optical micrograph and frequency response for the fabricated 122.18 MHz 3
rd

 order 

capacitively-coupled piezoelectrically-transduced filter 

 

 Figure 5.25 shows the optical micrograph and the frequency response for a 3
rd

 

order capacitively-coupled filter operating at 125 MHz. As can be clearly observed, the 

filter passband consists of three resonance peaks which correspond to three different 

resonance modes described in Section 5.2.1. The extracted values for the resonator 

equivalent circuit parameters are based on the model presented in section 4.3. The 

intrinsic coupling capacitor is calculated based on the electrical properties of the ZnO 

piezoelectric film and the lateral dimensions of the constituent resonators. The extracted 
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equivalent electrical circuit model parameters for the capacitively-coupled filter are 

presented in Table 5.3. 

 
Table 5.3 – Extracted  equivalent electrical parameter values for the fabricated 3

rd
 order 

capacitively coupled resonator 

 

Parameter Value 

Rm 500 

Cm 2.91 fF 

Lm 594.6 µH 

Cc 461 fF 

Co 0.3 pF 

Cf 1 fF 
 

 

 If the resonators in the same length-extensional mode is used while retaining the 

length dimension that define the resonance frequency, the width of the constituent 

rectangular plate resonators can be increased to enlarge the intrinsic coupling 

capacitance, thus reducing the bandwidth of the newly synthesized filter as shown in 

Figure 5.26. As another direct result of the increase of the area of the rectangular plate 

resonator, the electromechanical coupling coefficient also increases, therefore decreasing 

the value of the termination impedance needed to flatten the filter passband. This result is 

certainly encouraging for design intermediate frequency (IF) filters with narrow 

bandwidths that can be potentially terminated by 50  impedances without the use of 

extra matching networks. However, to synthesize  an IF filter with a truly wide 

bandwidth (i.e., BW>5%), it would require an intrinsic coupling capacitor of extremely 

small values, which in turn would require excessive scaling down of the resonator lateral 

dimensions beyond the practical limit. Moreover, even if such a low value intrinsic 

coupling capacitance can be realized for a wide-band filter, the size of the rectangular 

plate resonators and the piezoelectric transducers would shrink considerably, thus 
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decreasing the electromechanical coupling factor and increasing the termination 

resistance needed to flatten the filter passband. Nevertheless, as compared to the filter 

synthesis by mechanically-coupling approach, the capacitively-coupling provides more 

design flexibility and also alleviates the requirements for mechanical coupling elements 

to substantially lower the corresponding design uncertainty.  

 
 

Figure 5.26 – Frequency response for the fabricated 122.5 MHz 3
rd

 order capacitively-coupled 

piezoelectrically-transduced filter  

 

 

 
 

Figure 5.27 – Simulated and measured frequency responses with and without applied termination 

resistance for a 175.5 MHz 2
nd

 order capacitively-coupled piezoelectrically-transduced filter 
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Table 5.4 – Extracted equivalent electrical parameter values for the fabricated 2
nd

 order 

capacitively-coupled filter operating at 175.5 MHz 

 

Parameter Value 

Rm 360  

Cm 3.92 fF 

Lm 209.77 µH 

Cc 0.255 pF 

Co 0.5 pF 

Cf 2.0 fF 
 

  

 Figure 5.27 shows the frequency response for a 2
nd

 order capacitively- coupled 

filter. The filter has two constituent width-extensional rectangular plate resonators with 

dimensions of 80 µm × 140 µm, for which the width defines the resonance frequency. 

The rectangular plate resonators are operating in the 6
th

 order width-extensional mode. 

Both bottom and top electrodes are made of 130 nm-thick platinum, and the device layer 

is made of 800 nm-thick of ZnO. From Equation (2.12), the predicted resonance 

frequency of the constituent resonators is 169.1 MHz, which is fairly close to the 

measured frequency of 175.5 MHz. The discrepancy between the theoretical value and 

the measurement result is largely due to the fabrication tolerance and the difference 

between the actual properties of the deposited ZnO thin film from its bulk values used for 

the theoretical calculation. The filter was designed to operate with a percentage 

bandwidth of 2%, which is in close agreement with the measured result. 

 A 3
rd

 order filter can be synthesized with three piezoelectrically-transduced 

resonators are electrically connected in cascade. As compared to a 2
nd

 order filter, the 3
rd

 

order filter offers an improved shape factor, however the value of the termination 

resistance will also increase due the addition of an extra cascade-connected resonator. 

Obviously, the bandwidth of the filter would also change, which can be designed by 
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adjusting the width of the constituent resonators. Figure 5.28 compares the simulated and 

measured frequency responses for the 175.5 MHz 3
rd

 order capacitively-coupled filter. As 

can be noted from Figure 5.27 and Figure 5.28, the central frequency of the filter remains 

the same, but the 20 dB shape factor of the filter improves from 2.5 to 2.2 for the 3
rd

 

order capacitively-coupled filter. However, as mentioned above, the necessary 

termination resistance also increases from 750  to 1 k, due to the additional resonator 

in the filter. 

 
 

(a) 

 

 
 

(b) 

 

Figure 5.28 – (a) Frequency response for the fabricated 175.5 MHz 3
rd

 order capacitively- 

coupled piezoelectrically-transduced filter; and (b) the SEM micrograph of the fabricated filter 
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5.3  Acoustically-Coupled Micromechanical Filters 

 Pursuant to reducing the complexity of filter implementation based on 

piezoelectrically-transduced micromechanical contour-mode resonators, this section 

presents an alternative mechanical filter synthesis strategy that uses two closely-spaced 

orthogonal resonances from a single piezoelectrically-transduced plate resonator 

vibrating in a length-extensional mode to generate a 2
nd

 order 2-pole filter without the 

need for multiple resonators. Moreover, this filter synthesis technique removes the need 

for additional mechanical coupling elements and also greatly enables the design and 

fabrication of multiple micromechanical filters with minimum footprint operating at 

different frequencies needed for futures multiband and multimode wireless transceiver 

front-ends. 

5.3.1 Device Operation 

 An acoustically-coupled filter also known as monolithic filter shares a similar 

structural design as a two-port resonator. The main difference between a resonator and a 

monolithic filter is the top electrode pattern used to drive the device into the resonance. In 

a monolithic filter, the top electrode is pattern to enable the excitation of closely-spaced 

dual resonance modes of a resonator with similar electromechanical coupling factors. In 

the symmetric mode, the displacements of both electrodes are in-phase, whereas in the 

asymmetric mode the displacements of the two electrodes are 180º out of phase. As 

shown in Figure 5.29, by coupling multiple modes of a single resonant microstructure, 

the need for designing a coupling element is eliminated, thus simplifying both the design 

and fabrication while reducing the overall size of the filter.  In the following design 

shown in Figure 5.29, the critical dimension which defines the center frequency in an 
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extensional-mode monolithic filter is the length of the plate. As is shown in Figure 5.30, 

by changing the width of the plate the frequency spacing between the dual modes can be 

fine-tuned. Therefore, the bandwidth of a monolithic filter at a certain center frequency 

can be precisely controlled by CAD layout design. 

             

 
(a) 

             

 
(b) 

 

Figure 5.29 – Simulated dual fundamental length-extensional mode-shapes of a 60 µm x 30 µm 

ZnO plate resonator for a) symmetric resonance-mode; and b) asymmetric resonance-mode 

 
             

 

 
(a) 

             
 

 
(b) 

 

Figure 5.30 – Simulated dual fundamental length-extensional mode-shapes of a 70 µm × 30 µm 

ZnO plate resonator for a) symmetric resonance-mode; and b) asymmetric resonance-mode 

 

5.3.2 Equivalent Electrical Model 

 A similar model to the one used for mechanically-coupled resonators can be used 

to model the behavior of an acoustically coupled filter. As opposed to a mechanically-

coupled resonator array in which the mechanical vibrations are coupled by mean of a 

 30 µm 

 60 µm 

30 µm 

70 µm 
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coupling element (i.e., longitudinal-beam), the mechanical vibration between different 

modes at adjacent frequencies in an acoustically coupled filter is coupled by the device 

itself. The equivalent electrical circuit model for 2
nd

 order acoustically-coupled filter is 

shown in Figure 5.31. The coupling element in this model is represented by an inductor 

(  ) instead of a capacitor or capacitor network as needed for mechanically-coupled and 

electrically-coupled filters. The inclusion of the inductor in the electrical model in Figure 

5.31 accounts for the fact that the frequency of the in-phase mode is not always lower 

than the frequency of the out-of-phase mode. 

 
(a) 

 
(b) 

 

Figure 5.31 – (a) Equivalent electrical circuit  model for a 2
nd

 order  acoustically-coupled filter; 

(b) Normalized frequency response for a 2
nd

 order  acoustically coupled filter 
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5.3.3 Fabrication Process 

Acoustically coupled piezoelectric filters have been fabricated and tested using 

the process described in Sections 3.3 and 3.4. The fabricated filters consist of a single 

resonator in which two resonance modes at adjacent frequencies are coupled. The 

fabricated devices use the interdigitated design in order to excite higher order modes on 

the plates. The two electrode patterns are designed in order to allow the presence of the 

two modes simultaneously. A high resistivity silicon substrate was used for the 

fabrication of the monolithic filters based on thin film ZnO piezoelectric resonators. 

Additionally, piezo-on-silicon resonators fabricated using SOI wafers with 5 µm and 20 

µm silicon device structural layers were also used.    

5.3.4 Experimental Results 

The fabricated monolithic filters were tested in a cascade RF probe station. All 

testing is performed in air at atmospheric pressure and ambient temperature. The 

scattering parameters (S-Parameters) of the devices are extracted directly using an 

Agilent E5071B vector network analyzer. A Short-Open-Load-Thru (SOLT) calibration 

procedure using a CS-5 calibration substrate from GGB Industries Inc was implemented 

to cancel the effects of connectors and the carrier substrate.  

Figure 5.32 shows the frequency response a for thin film piezoelectrically-

transduced monolithic filter operating at 155 MHz. The device dimensions are 100 µm × 

200 µm, which is operating in the 5
th

 order length-extensional mode. As mentioned 

above, if the lateral dimension (length in this case) that defines the resonance frequency 

is set constant, and the width of the plate can be changed to adjust the bandwidth. In this 

example, the width of the plate was decreased, and the bandwidth of the filter was 
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increased consequently. For comparison, the measured frequency response for a thin film 

monolithic piezoelectric filter with dimensions of 100 µm × 190 µm is shown in Figure 

5.33. The bandwidth of the synthesized filter increased from 0.81% to 1.26% as a result 

of a 10 µm change in the width of plate resonator. The electrode pitch size for both cases 

is 20 µm, which is the critical dimension for setting the central frequency of the filter. 

  
 

Figure 5.32 – Frequency response for the fabricated 155 MHz monolithic filter with 100 µm x 

200 µm lateral dimensions 

 

 
 

Figure 5.33 – Frequency response for the fabricated 155 MHz monolithic filter with 100 µm x 

190 µm lateral dimensions 
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 It is worth mentioning that there is a not closed-form solution to quantify the 

effect of the secondary dimension on the filter bandwidth.  Modal analysis using finite 

element method allows thorough investigation of the resonance mode shapes of a 

designed resonant microstructure to provide considerable insight for optimization of the 

length and the width for obtaining the desired operation frequency and bandwidth. 

However, there is an upper limit for the maximum attainable bandwidth for an 

acoustically-coupled filter, and this limit depends on the electrical and mechanical 

properties of the piezoelectric thin film.  The expression for the maximum attainable 

bandwidth is given by [71] :  

       
 

  
  
  (5.17) 

where   
  represents the effective electromechanical coupling coefficient, which is 

different from electromechanical coupling factor introduced in Section 2.6. The effective 

electromechanical coupling coefficient is a parameter that describes the internal energy 

conversion efficiency between electrical and mechanical domains within the piezoelectric 

film. It is worthwhile mentioning that the electromechanical coupling coefficient (  
 ) is 

an intrinsic property of the piezoelectric transducer and is not dependent on the geometry 

of the actual transducer or the shape of the resonator, which should not be confused with 

the electromechanical coupling factor ( ).    
  can be expressed by: 

    
  

   
 

     
 (5.18) 

where    
  is the piezoelectric coefficient (e.g., transverse piezoelectric coefficient d31 for 

contour-mode resonators),    is the dielectric permittivity of the piezoelectric film, and     

is the compliance. For ZnO thin films, the   
  value is 6.3% for in plane contour-mode 
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vibrations as demonstrated by Lakin [72], for AlN thin film, the   
  value is on the order 

of 4.5 %. Using Equation (5.17), the calculated maximum attainable bandwidth for thin 

film ZnO monolithic filters is anticipated to be roughly 5.1 %. As far as the minimum 

attainable bandwidth, this is largely determined by the highest achievable quality factor 

of the constituent resonator. 

In order to reach higher operation frequencies, a filter synthesized by the 

acoustically-coupled configuration can be strategically designed. In particular, the center 

frequency of the acoustically-coupled filter can be further extended as the width of the 

interdigitated electrode is reduced. Figure 5.34 shows the measured frequency response 

for an acoustically-coupled piezoelectrically-transduced contour-mode rectangular plate 

filter operating at 481.2 MHz. This filter consists of one resonator operating in the 29
th

 

order mode. The dimensions of the filter are 140 µm × 40 µm, and the pitch size of the 

interdigitated electrode is 4.82 µm. The measured bandwidth of the filter is 0.8 % (3.887 

MHz) with an insertion loss of 6 dB when the filter is terminated using L-matching 

network. The first resonance mode of this filter can be calculated by: 

  
 
 
 

  
    (5.19) 

where     is the equivalent acoustic velocity of the resonator body, which is equal to 

4325 m/s. It is worth mentioning that loading effect introduced by the top and bottom 

electrodes has been taken into account using Equations (4.5) and (4.6). From Equation 

(5.19), the filter center frequency is predicted to be 478.19 MHz, which is in very close 

agreement with the measured center frequency of the fabricated device. As mentioned 

previously, the bandwidth of the filter can be only determined via modal analysis using 

FEM simulation programs such as ANSYS or COMSOL. The simulated resonant mode 
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shapes corresponding to the fabricated 481.56 MHz acoustically-coupled filter are shown 

in Figure 5.35. The total number of the lines of the simulated strain field represents the 

mode number of the filter in length-extensional mode. As can be observed from the 

modal simulation, the frequency difference between the two resonance modes is 

approximately 2 MHz. The apparent discrepancy between the simulated and the 

measured bandwidth is due to the fact that the bandwidth derived from the FEM 

simulation corresponds to the frequency difference between the two resonant modes 

without taking into account the finite quality factor of the resonance peak and the 

influence of the  filter termination impedance.  

Figure 5.36 shows the frequency response and the matching circuit diagram of a 

480 MHz SAW filter (Part Number 855271) from TriQuint [73]. The bandwidth of this 

commercial filter is 9 MHz with a typical insertion loss of 18 dB. Although the fabricated 

MEMS filter has a different bandwidth, this outperforms the SAW device at the same 

frequency at least with respect to the insertion loss. However, the out-of-band rejection is 

30 dB lower than that of its SAW counterpart. Nevertheless, this issue can be fixed by 

engineering the carrier substrate with proper feedthrough shielding features or employing 

a substrate with higher resistivity (i.e.> 6 k-cm). It can be noted that SAW filters and 

the MEMS filters developed by this work use an L matching network to match the filter 

to 50  source and termination impedance. Nonetheless, it is fair to mention that a 

commercially-available SAW filter operating at 480 MHz with slightly better 

performance could be found as such technology is also evolving with time. However, the 

main idea behind this comparison is to demonstrate that MEMS filters based upon 
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acoustically-coupled resonators perform as good as and potentially better than their SAW 

counterparts. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.34 – Frequency response for the fabricated 481.56 MHz monolithic filter with different 

terminations; (b) Equivalent circuit model for MEMS filter terminated by L-matching network; 

(c) SEM micrograph of the fabricated acoustically-coupled filter 
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Figure 5.35 – Modal simulation of the resonance modes that define the passband of acoustically-

coupled filter that corresponds to the fabricated 481.56 MHz monolithic filter (from COMSOL 

FEM simulations) 

 

 
 

Figure 5.36 – Frequency response and matching circuit diagram of a commercial  480 MHz SAW 

filter (Part Number 85527 from TriQuint [73]) 
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(a) 

 
(b) 

 

Figure 5.37 – (a) Frequency response for the fabricated 536.85 MHz monolithic filter with 140 

µm × 40 µm dimensions with different terminations; (b) Electrical circuit diagram of the L-

matching network used to terminate the MEMS filter 

 

 If the width and length dimensions of the filter shown in Figure 5.34 are kept the 

same, but the number of interdigitated fingers of the electrode is increased to excite a 

higher-order mode, the filter central frequency could be readily increased to 537 MHz as 

shown in Figure 5.37. As compared to the design shown in Figure 5.34, the pitch size of 

the interdigitated electrode was reduced from 4.82 µm to 4.24 µm to operate in the 33
rd

 

length-extensional mode instead of the 29
th

 mode. The measured filter bandwidth is 0.8 

% (4.25 MHz) with an insertion loss of 6 dB by terminating the filter using a L-matching 
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network. Figure 5.38 shows the frequency response and the electrical circuit diagram of 

the matching circuit for a commercial SAW filter operating at the same frequency range 

with similar characteristics. Figure 5.39 presents the frequency response for the 

fabricated 536.85 MHz monolithic filter with different terminations. It is worthwhile 

mentioning that the fabricated monolithic MEMS filter can be connected directly to a RF 

front-end antenna with 377  characteristic impedance to exhibit an insertion loss of 6 

dB in the passband, which is quite acceptable. Nevertheless, when the filter is terminated 

with an L-matching circuit as illustrated in Figure 5.37, it would exhibit a better 

performance in terms of out-of-band rejection. 

 

 
 

Figure 5.38 – Frequency response and matching circuit schematic for a commercial 549.5 MHz 

SAW filter (Part Number 855985 from TriQuint [74]) 
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(a) 

 

 
 

(b) 

 

Figure 5.39 – Wide-band frequency response for the fabricated 536.85 MHz monolithic filter 

terminated with (a) a 377  resistor, or (b) a L-matching network with element values shown in 

Figure 5.37 
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Filters operating at higher frequencies can be designed and implemented by 

reducing the pitch size of the interdigitated electrode to excite higher order extensional 

contour mode. In the meantime, the motional resistance also decreases as the rectangular 

plate resonator operates in its higher order, which directly translates to lower achievable 

insertion loss. From Equation (5.19), if the pitch size for the 140 µm × 50 µm monolithic 

filter could be decreased to 3 µm, the operating frequency of the filter would approach 

1.08 GHz by exciting the 70
th

 length-extensional mode. However, a modal analysis 

should be performed in order to determine the bandwidth and the optimal width of the 

plate filter. Moreover, the equivalent impedance of the intrinsic capacitance of the filter 

must be calculated at the filter center frequency in order to ensure if its value is large 

enough as compared to the motional resistance of the synthesized filter, to determine the 

best achievable performance such as insertion loss. Evidentially, acoustically-coupled 

filter based upon thin film ZnO monolithic resonator operating at even higher frequencies 

(i.e., >2.4 GHz) would need interdigitated electrodes with sub-micron pitch size, which 

certainly complicates the manufacturing process and lowers the yield of such devices. 

Although the fabricated monolithic filters based on thin film ZnO 

piezoelectrically-transduced contour-mode resonator have been demonstrated with 

performance on par with commercially-available SAW devices operating at frequencies 

up to 600 MHz, the quality factors of its constituent resonator (typical 1000) is not 

sufficient for certain applications where small percentage bandwidth are needed (e.g., 170 

MHz GSM filters for handset with BW of 200 KHz). Furthermore, if such filters are 

required to operate at gigahertz frequencies, their fabrication process would be quite 

challenging due to the need for sub-micron interdigitated electrode fingers to reach such 
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operational frequencies. To solve this problem, a low acoustic loss material such as single 

crystalline silicon is introduced in the resonator structural material to enhance its overall 

quality factor, thus allowing the synthesis of acoustically-coupled filters with very narrow 

bandwidths. Based on the same design methodology as presented earlier, the first 

resonance mode of the structure can be calculated based on the fundamental frequency 

equation for a rectangular plate contour-mode resonator, and the target filter bandwidth is 

the determined by means of modal analysis using FEM simulations. 

 Figure 5.40 shows the frequency response for a ZnO-on-SOI acoustically-coupled 

filter designed to operate at 170 MHz for GMS handset applications. The discrepancy 

between the expected and the measured center frequency of the filer is due to the 

misalignment between the structural layers and deviation in the thickness of the piezo-

film and the electrode layers from their target values, which has a secondary effect on the 

center frequency of the filter. The measured 3 dB bandwidth of the filter is 380 kHz, 

which is on par with the aimed 200 kHz bandwidth needed for GSM handset applications 

in this particularly frequency range. Figure 5.41 shows the measured passband of the 

fabricated filter within lower frequency span. As can be noted, the insertion loss of the 

filter is 6.8 dB with less than 0.5 dB ripple in the passband. This result is quite good for a 

filter with such small bandwidth. The extracted equivalent electrical parameters for this 

filter are listed in Table 5.5.  

 It can be clearly noted in the measured frequency response shown in Figure 5.40, 

that the notches before and after the filter passband are prominent. The appearance of 

these notches is dependent on the feedthrough capacitance of the substrate. This 

particular filter has a relatively large extracted feedthrough capacitance Cf  of 10 fF as 



 

135 
 

shown in Table 5.5. The reason for this unusually large feedthrough capacitance is due to 

the employment of the sputter-deposited ZnO thin film as both structural and 

piezoelectric transducer layer for the filter implementation. The higher the resistivity of 

the piezoelectric film, the better is the isolation between the input and the output ports of 

the filter as a result of reduced feedthrough capacitance. As detailed in the previous 

section, the feedthrough capacitance for the capacitively-coupled filters operating at 

frequencies below 200 MHz does not exceed 2 fF. The value of the feedthrough 

capacitance limits the best achievable insertion loss.  

  
 

Figure 5.40 – Frequency response for a ZnO-on-SOI acoustically-coupled filter operating at 

161.914 MHz fabricated using a SOI wafer with a 5 µm-thick silicon device layer 
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Figure 5.41 – Measured frequency response of the fabricated ZnO-on-SOI acoustically-coupled 

filter operating at 161.914 MHz within a small frequency span 

 

 
(a) 

 
(b) 

 

Figure 5.42 – (a) Simulated vs. measured frequency response of the ZnO-on-SOI acoustically-

coupled filter operating at 161.914 MH;(b) L-matching circuit used to match the 161.914 MHz 

filter to 50  
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Table 5.5 – Equivalent electrical parameter of the acoustically piezo-on-silicon coupled filter 

operating at 161.914 MHz 

 

Parameter Value 
Rm 900  

Cm 1.0908 fF 

Lm 884.6 µH 
Lc 1.2 µF 

Cf 10 fF 
 

 

 For comparison purposes, the frequency response for a commercial IF 170.6 MHz 

SAW filter from TriQuint is presented in Figure 5.43. Both MEMS and SAW filters 

exhibit a comparable performance in terms of insertion loss, bandpass ripple, bandwidth 

and shape factor. Although the out-of-band rejection of the SAW filter is superior, the 

out-of -band rejection of the MEMS filters can be improved by implementing a substrate 

isolation scheme such as Faraday cage [77], or engineering the substrate through other 

means [78].  

 
 

Figure 5.43 – Frequency response and matching circuit diagram for a 170.5 MHz SAW filter 

designed for GSM/EDGE applications (from TriQuint [75]) 
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 Figure 5.44 shows the frequency response for two fabricated 161.914 MHz 

monolithic filters with the same length and similar electrode configuration. However, the 

width of the second filter was decreased from 300 µm to 290 µm. As expected, its 

bandwidth was increased more than two times by reducing the resonator width, which 

basically demonstrated that the bandwidth of an acoustically-coupled filter can be 

precisely designed by tweaking the device width. Also shown, the insertion loss and the 

out-of-band rejection of the second filter remained the same. This is mainly due that the 

dimensions of both filters are practically identical (90 µm × 300 µm for the first filter and 

90 µm × 290 µm for the second filter). However, it is important to mention that 

increasing even further the bandwidth of this filter would require a major change in its 

width, thus reducing the total are cover by the electrode top, which ultimate results in an 

increment of the motional resistance of the filter. The increase in the motional resistance 

of the filter will affect directly the value of the termination impedance or the components 

values of the L-matching network. If the 90 µm × 300 µm device is fabricated using a 20 

µm SOI wafer, the frequency of this filter is higher due that the loading effect produced 

by ZnO layer and electrodes is lower for devices  thicker silicon structural. Moreover, the 

quality factor of the constituent resonator is higher due that a major part of the structure 

is made of low loss acoustic material, enabling a narrow passband.  

 Figure 5.45 shows the frequency response for the 90 µm × 300 µm monolithic 

filter fabricated in a SOI wafer with a 20 µm-thick silicon device layer. As expected, the 

new central frequency for the filter is 213.319 MHz, which is higher as compared when 

the same device was fabricated in a 5 µm SOI wafer. Also, is noticed that the usable 

bandwidth of the filter is 200 kHz, which fulfill the requirements for GSM/EDGE 
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applications in the band of 200 MHz. Comparing this device with a  similar filter 

implemented with a medium scale integration (MSI) micromechanical differential disk-

array filter, the one presented on this work is far superior in size, simplicity and 

performance. The micromechanical differential disk-array filter solution requires 128 

resonators connected in a differential configuration; also it needs a polarization voltage of 

8 V in order to activate the device. Moreover, the device required to be operated in 

vacuum, which is impediment if such solution is used to replace SAW filters for GSM 

applications, which do not require vacuum in order to operate properly. On the contrary, 

the fabricated device on this work has comparatively the same performance as a 

commercial SAW filter operating at the same frequency range, but with the advantages of 

a smaller size and lower insertion loss in such small bandwidth (200 kHz). 

 
 

Figure 5.44 – Comparison of the frequency responses for the fabricated 161.914 MHz ZnO-on-

SOI acoustically-coupled filters with the same length but different width dimensions 
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Figure 5.45 – Frequency response for a ZnO-on-SOI acoustically-coupled filter operating at 

213.319 MHz with 0.09% percentage bandwidth fabricated in a SOI wafer with a 20 µm-thick 

silicon device layer 

 

 Figure 5.46 shows the frequency response for a ZnO-on-SOI monolithic filter 

fabricated using a SOI wafer with a 5 µm-thick silicon device layer. The dimensions of 

this device are 80 µm × 120 µm, with a finger pitch size of 16 µm, operating in the 5
th

 

order length-extensional mode. The filter has been coupled to 50  source and 

termination impedances using the L-matching circuit shown in Figure 5.46(b). The length 

of this filter is 10 µm shorter than that of the other two filters presented in Figure 5.44 

and Figure 5.45, which confirms that frequency can be changed by adjusting one of the 

lateral dimensions. Figure 5.47 presents the measured frequency response for this filter 

across a wide frequency scan between 100 MHz and 1 GHz for the same filter displaying 

no interfering spurious responses. The performance of this filter is on par with a similar 

commercial SAW device operating at the same frequency range but with a 10 times 

smaller size. Given its small size, this filter technology will allow the use of chip-level 
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packaging that would be promising for reducing the total chip area occupied by the filters 

in current and future communications transceiver. 

 
 

(a) 

 

 
 

(b) 

 
(c) 

 

Figure 5.46 – (a) Frequency response for the fabricated 229.35 MHz monolithic filter; (b) SEM 

micrograph of the fabricated filter ; and (c) L-matching circuit used to terminate the filter to 50  

 



 

142 
 

 
Figure 5.47 – The measured wide-span frequency response between 100 MHz and 1000 MHz of 

the 229.35 MHz monolithic filter showing no interfering spurious responses 

 

Figure 5.48 and Figure 5.49 show the frequency response for a monolithic filter 

with 200 µm × 100 µm dimensions, working in the 39
th

 and 43
rd

 order length-extensional 

mode. The filters have been coupled to 50  using a L-matching circuit. Although the 

out-of-band rejection characteristics of these filters were comparably lower than similar 

commercial solutions implemented with SAW and FBAR resonators, they exhibited low 

insertion loss for the required bandwidth needed for channel-select filters in the UHF 

range. For wideband filter applications in the UHF range, such as broadband wireless 

applications with target bandwidth between 10 MHz-100 MHz, contour-mode resonators 

can be still used to implement filters in a ladder configuration similar to that of FBAR 

filters. While these configurations have been already demonstrated in the VHF range 

[30], they have not been implemented yet using this technology in the UHF range. 

However, the ability of contour-mode resonators for realizing the small frequency offset 

needed by the ladder filter configuration through the lithographically-defined mass 
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loading of the top electrode, open the possibility to implement such a design at UHF 

frequency range. 

 
 

Figure 5.48 – Measured frequency response for the fabricated 758.6 MHz monolithic filter   

 

 
 

Figure 5.49 – Measured frequency response for the fabricated 844.7 MHz monolithic filter   
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 In general, the procedure for the design of monolithic is described by the 

following steps: 

 Calculate the resonator dimensions based on the center frequency and bandwidth 

needed for the target applications using the fundamental frequency equation for 

the piezoelectric resonator and modal analysis using FEM simulation.  

 Fabricate and characterized the synthesized filter for the purposes of determining 

the effects of the actual material properties and the effect of the spurious modes in 

the proximity of the desired resonance frequency. It is worth mentioning that a 

multi-physics electromechanical simulation for the frequency response can be 

performed in order to predict the presence of the spurious mode, which would 

significantly reduce the cost of the research and development by avoiding the 

prototyping.  

 Based on the preliminary measurement results, analyze the target filter 

specifications against the characteristics of the fabricated devices to tweak and 

finalize the design if necessary. 

5.4  Intermodulation Distortion 

Intermodulation Distortion (IMD) is a phenomenon caused by the non-linear 

response of a system or a device when multiple signals with closely spaced frequencies 

are fed into its input, which produce undesired outputs at frequencies that may turn out to 

be harmful [79]. In a wireless transceiver, this may cause that signals in one channel to 

interfere with those in an adjacent channel.  

The fast-evolving wireless communication market has demanded a more 

aggressive usage of the overly crowded frequency spectrum, as the number of wireless 
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communication services has notably increased in the past years. In particular, the wireless 

communication channels need to be more tightly spaced in frequency. Therefore, filters 

with a narrow bandwidth, low insertion loss and minimum intermodulation distortion 

become absolutely critical for the current and future generations of communication 

systems.    

The most common way to measure two-tone third-order intermodulation 

distortion is to feed the device under test with a signal composed of a combination of two 

tones of equal power and closely-spaced frequencies with a small frequency offset of    . 

A typical output frequency spectrum is presented in Figure 5.50. 

 
Figure 5.50 – Output spectrum of Two-Tone Intermodulation Test 

 

From the signals shown in Figure 5.50, the 3
rd

 order intermodulation product 

(IM3) is the most relevant term, since it is the closest interference to the test signals an its 

output power increases three time faster with the input power as compared to the test 

signals [79].  

The third-order intercept point (IP3) for the fabricated piezoelectrically-

transduced filters developed in this work has been measured using the two-tone technique 
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by feeding the device under test with two sine wave tones spaced with    and     

offsets from the central frequency of the filter    as follows: 

  
 
  

 
    (5.20) 

  
 
  

 
     (5.21) 

where    has been set to 200 kHz to assure that the signal generated by the third 

intermodulation (IM3) falls within central frequency of the filter. The IP3 is defined as 

the crossing point of the linear extrapolations of the output powers of the fundamental 

signal and the IM3 signal with respect to input power of the fundamental signal. The IP3 

is a useful measure of the device linearity, the higher the crossing point, the better the 

linearity of the device is. The measurement setup for the two-tone third-order 

intermodulation distortion is shown in Figure 5.51. 

 
Figure 5.51 – Block diagram of two-tone intermodulation distortion measurement setup 

 

Figure 5.52 shows the measured input intercept point (IIP3) for a thin-film ZnO 

piezoelectrically-transduced filter operating at 481.2 MHz. This measured IIP3 is 

comparable to existing SAW devices [73][80] operating at the same frequency range, 

which is also on par with AlN-based resonators and filters [81]. The measured IIP3 for 

piezoelectrically-transduced filters developed in this work is superior to that of any 

capacitively-transduced micromechanical resonators and filters reported to date 

[82][83][84]. For instance, an IIP3 of 19.49 dBm for a 157.89 MHz micromechanical 
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disk resonator has been reported previously. It is worth mentioning that the IIP3 value for 

capacitively-transduced resonators depends on the polarization voltage as it has been 

demonstrated [82], which is a real disadvantage for implementation of filters and 

oscillators. However, the use of an electric potential may be beneficial for some 

applications that require non-linearity such as mixing, given that the linearity of the 

device can be adjusted by changing the DC bias voltage. 

 
 

Figure 5.52 – Measured IIP3 data for a piezoelectrically-transduced contour-mode rectangular 

plate filter with dimensions of 140 µm × 50 µm, operating at 481.2 MHz 

 

Figure 5.53 shows the measured IIP3 data for a ZnO-on-SOI resonator operating 

at 229.35 MHz. The measured IIP3 of 35.51 dBm is 5 dBm higher than the one measured 

for thin-film ZnO piezoelectric counterparts. The improvement can be ascribed to the fact 

that major part of the resonant body is composed of a non-piezoelectric material, thus 

reducing the non-linear effects introduced by the piezoelectric transducer thin film. 
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Figure 5.53 – Measured IIP3 data for a ZnO-on-SOI acoustically-coupled rectangular filter with 

dimensions of 80 µm × 120 µm operating at 229.35 MHz 

 

Figure 5.54 shows the measured IIP3 data for a mechanically-coupled ZnO-on-

SOI filter operating at 71 MHz. This filter consists of an array of 10×2 resonators, 

mechanically-coupled together by   ⁄ -long coupling beams. The measured IIP3 value 

for the mechanically-coupled filter is fairly similar to the one presented in Figure 5.53 for 

an acoustically-coupled filter that consists of a single contour-mode resonator. This result 

strongly indicates that IIP3 values do not have strong correlation with the specific type of 

filter configuration (i.e., mechanically-coupled, capacitively-coupled, and acoustically- 

coupled topologies) and the number of constituent resonators. Furthermore, several 

mechanically-coupled resonator filters have been measured with different number of 

constituent resonators, including 4×2, 4×4, 8×4, 10×2 and 10×4 resonator arrays. 

However, no significant differences were observed between filters constructed with a 

single resonator or arrays of mechanically-coupled resonators as shown in Figure 5.55. 
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Figure 5.54 – Measured IIP3 data for piezo-on-silicon mechanically-coupled filter operating at 71 

MHz composed of 10×2 array contour-mode resonators 

 

 
 

Figure 5.55 – Measured IIP3 data for a piezo-on-silicon filter with different number of resonators 

mechanically-coupled into an array 

 

5.5  Group Delay 

 The group delay is an important parameter of any RF and microwave system (e.g., 

filters, amplifiers, mixers, interconnect, etc.) that describes the phase response of a signal 

while it passes through a network [86]. The group delay is a good measure of how the 
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phase response of the system creates some time distortion in the transit signal. The group 

delay is also defined as the transient time of a signal through a device versus frequency. 

Mathematically, the group delay is defined as [64]: 

            ( )  
   

  
 (5.22) 

where    represents the phase and   represents the angular frequency. Figure 5.56 shows 

a representation of the group delay in an arbitrary filter and some important 

characteristics of its phase response. 

 
Figure 5.56 – Conceptual illustration of the phase delay and group delay 

 

 As shown by the conceptual illustration in Figure 5.56, the group delay response 

of a filter simply quantifies how much a filter characteristic deviates from a linear phase 

response. A linear phase response implies a flat or frequency-independent group delay. 

This is calculated by the derivative of the filter phase with respect to the angular 

frequency ( ) as presented in Equation (5.23). The group delay value at a single 

frequency within the filter’s passband is just a measure of how much time it would take 

for a sine-wave signal to pass through the filter. The difference in group delay for signals 

contained in the filter’s passband is considered a direct measure of the phase distortion 

introduced by the filter. Therefore, constant average group delay and small group delay 
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ripples are expected to maintain low distortion characteristics.  For any transceiver 

systems, large group delay variations may cause inter-symbol interference in digital 

modulated signals, thus directly affecting the quality of the transmitted signal. From the 

system design perspective, the ripple of the group delay needs to be kept below an 

acceptable level [88]. 

  
(a) 

 
 (b) 

 

Figure 5.57 – (a) Group delay variation for the 581.56 MHz piezoelectrically-transduced MEMS 

filter; (b) Group delay variation for a commercial 479.5 MHz SAW filter (Part Number 855271 

from TriQuint [73]) 
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 For the purpose of comparing the performance in terms of group delay for the 

filters developed in this work and the current state-of-the-art filter technologies available 

in the market, Figure 5.57 shows the extracted group delay for the synthesized 481.56 

MHz piezoelectrically-transduced monolithic filter as well as a commercial SAW filter 

from TriQuint operating in the frequency range. From Figure 5.57, it can be seen that the 

group delay for the fabricated monolithic MEMS filter is 4.6 times lower than that of the 

SAW filter on the order of 0.431-µs. The obvious reason for the improvement is that the 

fabricated piezoelectrically-transduced MEMS filter has a smaller size than the SAW 

filter, which is expected as signals experienced less phase delay in a smaller component. 

With regard to the group delay variation (ripple), the piezoelectrically-transduced MEMS 

filter exhibited a slight improvement in the group delay variation (0.037 µs for the 

piezoelectric filter and 0.040 µs for the SAW filter). 

 Figure 5.58 compares the extracted group delay for a 161.9 MHz ZnO-on-SOI 

piezoelectrically-transduced filter and a commercial SAW filter from TriQuint operating 

at similar frequencies. As expected, the group delay for the MEMS filter is two times 

lower than that of the SAW filter counterparts. The group delay variation for the MEMS 

filter is 0.232 µs as compared to 0.4 µs for the commercial SAW filter. 

 Unfortunately, a comparative analysis against capacitively-transduced filters 

could not be performed because the group delay data has not been reported in literature 

for this kind of devices. Extraction of the group delay requires parameters obtained from 

S-parameter measurements, and more precisely the phase of the measured insertion loss 

(i.e., S21 or S12, depending of the nomenclature selected for the input and output of the 

filter). 



 

153 
 

 It is important to highlight that the comparison between the filter developed by 

this work and commercial SAW device are both bandpass filters operating at similar 

frequencies. One can certainly assert that MEMS filters based on piezoelectrically-

transduced contour-mode resonators exhibit as good performance in terms of group delay 

variation as their SAW counterparts.   

 
(a) 

 
(b) 

 

Figure 5.58 – (a) Group delay variation for the 161.91 MHz MEMS filter; (b) Group delay 

variation for a commercial 170.6 MHz SAW filter (Part Number 856447 from TriQuint [75]) 
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5.6  Performance Comparison of Piezoelectric Contour-Mode MEMS Filters  

An analysis of the performance of the mechanical, capacitive and acoustical coupling 

schemes used for the implementation of VHF and UHF filters based on piezoelectrically-

transduced resonators is presented in Table 5.6. 

 

Table 5.6 – Performance comparison for mechanically, capacitively and acoustically coupled 

filters based on contour-mode piezoelectrically-transduced resonators  

 

Filter Configuration 
Operational 

Frequency 
BW 

Motional 

Resistance 

Insertion 

loss 
IIP3 

Resonator 

# 

Mechanically-Coupled 10 MHz - 500 MHz 0.1 - 5 % < 1 k 2-5 dB > 30 dBm ≥ 2 

Capacitively- Coupled 10 MHz - 500 MHz 0.1 - 5 % < 1 k 2-5 dB > 30 dBm ≥ 2 

Acoustically-Coupled 50 MHz - 10 GHz 0.05 - 5 % < 1 k 2-8 dB > 30 dBm 1 
 

 In terms of insertion loss, motional resistance and linearity, the three filter 

configuration implemented in the preset work show similar performance. For applications 

where high power handling is needed (i.e., >20 dBm) and device size is not a constraint, 

mechanically-coupled filter arrays are the optimal solution due that the power handling of 

the filter can be incremented by rising the number of sub-filter arrays without affecting 

the device linearity and the insertion loss. For applications where the out-of-band 

rejection and the shape factor of the filter are the most important parameters, 

capacitively-coupled filter can be synthesized using piezoelectrically-transduced contour-

mode resonators with 20 dB shape factors as good as 1.5 and out-of-band rejection as 

high as 60 dB with the use of three or four resonator electrically cascaded. Subsequently, 

for narrow band filters (i.e., BW 0.01 %) , two closely-spaced orthogonal resonances 

from a single piezoelectrically-transduced plate resonator vibrating in a length-

extensional mode can be used to generate a 2
nd

 order 2-pole filter without the need for 

multiple resonators. Filters synthesized using this scheme have been demonstrated in the 
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present work with bandwidth as small as 0.09% for frequencies in the order of 200 MHz, 

which fulfill the requirements for GSM handsets. Moreover, with the proper design, the 

operational frequencies of such filters based on the acoustically-coupled technique can be 

extended at gigahertz frequencies with insertion losses as low as 3 dB.   

5.7  Technology Limit of Contour-Mode MEMS Filters and Remarks 

 At the moment the most widely-deployed RF-MEMS devices are the RF front-

end filters and duplexers based on FBAR resonators. There is a general misconception 

that the FBAR technology does not fall under the category of MEMS. In fact, FBAR 

resonators are indeed MEMS devices that combine both mechanical and electrical 

functionalities [89]. The great success of FBAR technology lies in several categories such 

as its ability to directly interface to 50  systems without external matching networks, 

the high power handling ability, the high quality factors (currently Avago VI generation 

of FBAR resonators have Q’s factor in the order of 5,000 at 2 GHz), and demonstrated 

low insertion loss from 700 MHz to 4.8 GHz for filters implemented using ladder 

configuration. Their ability to directly interface with 50  systems comes from the fact 

that piezoelectric resonators operating in a thickness mode have a terrific 

electromechanical coupling factor much higher than their contour-mode counterparts, 

which is the reason behind the low motional resistance of FBAR resonators. Equations 

(5.23)-(5.26) model the equivalent mass, the stiffness and the electromechanical coupling 

factor for a FBAR resonator working in its fundamental mode. The complete derivation 

analysis can be found in [25]. 
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 Assuming a quality factor of 1,000 at 900 MHz, the motional resistance of the 

device in the example yields to the value of 0.8 . The values of the area, density, 

Young’s modulus, thickness and d33 piezoelectric coefficient used for the above example 

are listed in Table 5.7. Comparing the motional resistance of this particular FBAR with 

respect to a capacitively-transduced resonator operating in a similar frequency range 

[17][23][24][90], the ratio is astonishing, even in the best case scenario for a 

capacitively-transduced device, the motional resistance of a FBAR is 10
6
 times lower. 

 
Table 5.7 – Parameters used for the extraction of the motional resistance for a FBAR resonator 

operating at 900 MHz 

 

Young’s Modulus E (GPa) 330 

Density   (kg/m
3
) 3200 

Area A (µm
2
) 500 

Thickness H (µm) 6 

Piezo-Coefficient d33 (pC/N) 1.5 
 

 

 Regarding to the quality factor, capacitively-transduced resonators have 

demonstrated Q’s in order of 10
5
 for frequencies below 100 MHz. However, for 

frequencies higher than 800 MHz, their quality factor is in the same order of magnitude 

of the latest FBAR generation fabricated by Avago [91]. On the other hand, the situation 

for piezoelectrically-transduced resonators and filters vibrating in contour-modes is more 
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promising. By taking the device presented in Figure 5.37 as example, the motional 

resistance for this particular filter operating at 536.85 MHz is predicted to be 553  

based on the equations introduced in Section 4.3. This theoretical resistance is in close 

agreement with the measured 598  motional resistance for the fabricated device. 

Although this device cannot be interfaced directly to 50  electronics, it can be easily 

matched using a L-matching circuit as demonstrated for all the filters developed in the 

present work. With regard to mechanically-coupled piezoelectrically-transduced filters, 

even though their motional resistances can be lowered at the same level of FBAR, they 

would still need relative large termination impedance on the order of 1 k or a matching 

circuit in order to flatten the passband. Although some prior research has demonstrated 

piezoelectrically-transduced resonators with motional impedance approaching 50  

[28][29], these devices have employed one port configuration, which is not well-suited 

for the implementation of filters. 

 Based on the best results obtained by this work, it is expected that filters and 

resonators with motional impedances in the range of 50  can be fulfilled by using piezo-

on-silicon resonators and acoustically-coupled monolithic filters configuration. Such 

devices would have to operate in higher order modes and have relatively large size (a 

comparable size to FBAR) in order to increase the electromechanical coupling factor. For 

example, a piezo-on-silicon monolithic filter with a size of 200 µm × 100 µm, fabricated 

with a stacked 5 µm-thick silicon device layer and 500 nm-thick ZnO piezoelectric 

transducer layer, operating in its 63
rd

 mode at 1.1 GHz , will have a motional impedance 

of 86 . However, if the thickness of silicon device layer could be further reduced to 2 

µm, the motional resistance of this device could be reduced to 46 , thus allowing its 
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direct integration to 50  circuitry. Potentially the performance of such devices would be 

on par with FBAR filters. Given such filter consists of one single MEMS resonator, a 

considerable lower size and greatly reduced the fabrication cost can be realized.  

 Now, if the MEMS filter technology developed by this work is compared with the 

present-day SAW technology, it has already exhibited a comparable performance in 

terms of insertion loss, shape factor, group delay, bandwidth, linearly, and impedance 

matching. Furthermore, the small footprints of the MEMS filters do not limit its 

performance. It is worth mentioning that the cutoff slope of a typical SAW device is a 

function of the device length, which would cause a trade-off between the required 

performance for certain applications and the package size limitation imposed by the RFIC 

industry.  

 Table 5.8 shows the performance parameters for SAW, BAW, capacitively-

transduced filters and for the fabricated piezoelectrically-transduced filters in this work. 

As can be noted, filters based on piezoelectrically-transduced contour-mode resonators 

can achieve equal or better performance that the commercially available solutions in 

terms of operational frequency, bandwidth, insertion loss, linearity and size. 

 
Table 5.8 – Performance comparison for SAW, BAW, capacitive and piezoelectric filters based 

on contour-mode resonators  

 

Technology 
Operational 

Frequency 
BW 

Motional 

Resistance 

Insertion 

loss 

Polarization 

Voltage 
IIP3 Size 

SAW 40 MHz- 5 GHz 0.1 - 5 % < 1 k Low No needed > 30 dBm < 0.2 mm2 

BAW 800 MHz - 10 GHz 1 - 10 % < 50  Low No needed > 30 dBm > 1 mm2 

Piezoelectric 

Contour-Mode 

Filters 

10 MHz - 10 GHz 0.05- 5 % < 1 k Low No needed > 30 dBm < 0.1 mm2 

Capacitive 

Contour-Mode 

Filters 

10 MHz - 10 GHz 0.05- 5 % > 10 k High 1-20 V <  19 dBm < 0.05 mm2 
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Chapter 6                                                                                                                    

Conclusion and Future Work 

6.1  Summary and Contributions to the RF-MEMS Field 

 This dissertation research has investigated the design and implementation of 

bandpass MEMS filters operating in the VHF and UHF bands with low insertion loss by 

employing piezoelectrically-transduced contour-mode resonators. Two different types of 

resonators were explored: Resonators made only of a thin film piezoelectric ZnO film 

embedded between metallic electrodes, and piezo-on-silicon resonators in which a major 

part of the structure is made of low acoustic loss acoustic single crystalline silicon. 

 The devices presented in this dissertation have their resonance frequencies 

determined by the in-plane dimensions of the micromechanical structures and are excited 

into vibrations by the transverse (d31) piezoelectric coefficient, allowing the fabrication 

resonators and filters operating at multiple frequencies on the same substrate. Resonators 

with low motional impedances and high quality factor at frequencies up to 900 MHz have 

been demonstrated, which can also serve as a frequency reference devices for the existing 

transceivers operating in the UHF and VHF bands.   

 Three different filter coupling topologies based on mechanical, electrical and 

acoustical coupling techniques have been explored in order to synthesize narrow-band 

and wide-band filters (i.e., 0.1% - 3%) with low insertion loss, excellent out-of-band and 

spurious-mode rejection, high linearity and small group delay variation. The filters 

developed in this work not only exhibited comparable performance to that of the 
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dominant SAW technology in terms of all aforementioned major filter specifications, but 

also  significantly outperform the current state-of-the-art filters in some of the aspects.   

For instance, the typical size of a MEMS filter studied by this work is 10 times smaller 

than its SAW counterpart. It is worth mentioning that the MEMS filters implemented by 

this work have been successfully matched to 50  electronic using a either termination 

resistance or L-matching circuit.  

 Narrow-band piezoelectrically-transduced monolithic filters operating at 481.56 

MHz and 549.5 MHz have achieved low motional resistance on the order of 300 , 

which allows their direct integration with a 377  antenna without the need of external 

matching components. The incorporation of low acoustic loss material such as single 

crystalline silicon as the resonator structural material, improves both the linearity and the 

quality factor of the piezoelectrically-transduced resonators, thereby enabling the 

implementation of filters with passband as narrow as 200 kHz while meeting the key 

requirements for GSM/EDGE applications. 

 In addition, a robust and high-yield microfabrication process for thin-film ZnO 

and ZnO-on-SOI resonators and filters have been successfully developed. The process is 

entirely compatible with standard CMOS foundry processing with a low thermal budget 

with temperature well under 400ºC, which facilitates future monolithic integration 

between MEMS filters CMOS electronics on the same chip to fulfill single chip 

transceivers. 

6.2  Future Work 

 The filters implemented in this work have already exhibited similar performance 

to that of the commercial devices for frequencies below 600 MHz. Nevertheless, there is 
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still room for improvements for filter synthesis at gigahertz frequencies in terms of 

insertion loss, bandwidth, and out-of-band rejection. For instance, ladder and lattice filter 

configurations should be pursued to demonstrate the versatility of filters based on 

piezoelectrically-transduced contour-mode resonators to achieve wider bandwidth (>5%). 

 The achieved insertion losses of the MEMS filters in this work are far from being 

perfect as compared to the best-achievable results from FBAR and BAW technologies. 

The key limiting factor for the implementation of filters with even lower insertion losses 

is the moderate quality factor of the sputter-deposited ZnO piezoelectric layer. Although 

the inclusion of single crystalline silicon as part of the device layer mitigate this problem 

to some extent, a much better performance could be anticipated if AlN is used as the 

piezoelectric layer instead of ZnO. Moreover, AlN would cause a less severe loading 

effect to the silicon resonator body due to their comparable acoustic velocity. With the 

use of this technology along with AlN piezoelectric layer, filters operating between 1 and 

5 GHz can be fabricated, by employing interdigitated electrodes with fingers pitch sizes 

still above of 1 µm. Moreover, the use of AlN would reduce parasitic feedthrough 

between the filter input and output ports (at least for frequencies below <1 GHz) due to 

its high resistivity. Furthermore, the implementation of substrate isolation schemes such 

as integrated faraday cage and substrate impedance engineering can further mitigate the 

substrate crosstalk and enhance the out-of-band rejection of piezoelectrically-transduced 

MEMS filters. 

 Aside from single crystalline silicon, the use of high acoustic velocity 

nanocrystalline diamond (NCD) as the structural material along with the thin-film 

piezoelectric transducer layer stacked on top of resonator body is yet to be explored. 
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Given that the resonance frequency of contour-mode micromechanical resonators is 

proportional to the acoustic velocity, chemical vapor deposited nanocrystalline diamond 

provides the largest boost towards even higher operation frequencies. Although 

capacitively-transduced contour-mode disk resonators with diamond structural layer have 

been demonstrated with terrific Q’s on the order of 10
4
 at gigahertz frequencies [58], 

their motional resistances were on the  order of 1 M, which makes it difficult to directly 

integrate with 50  electronics. On the other hand, the preliminary results for piezo-on-

diamond resonators were promising but also far from its ideal performance [33] due to 

the relatively poor quality of the nanocrystalline diamond layer. It is worth mentioning 

that the quality and piezoelectric coefficient of the piezoelectric films highly depends on 

its smoothness and crystalline orientation. If piezo-on-diamond resonators and filters are 

going to be pursued as possible future work, improved fabrication methods should be 

employed to provide a smooth nanocrystalline diamond structure layer along with highly 

c-axis oriented piezoelectric films. 

 Additionally, the ZnO-on-SOI resonators and filters investigated in the present 

work have exhibited a temperature coefficient of frequency on par with FBAR and SAW 

devices. Nonetheless, as the wireless communication applications evolve exponentially, 

the frequency bands are going to packed ever closer to each other for spectrum 

efficiency. It will be very critical to develop a simple and viable temperature 

compensation scheme to for reducing the frequency temperature dependence of such 

devices without sacrificing their others key performance metrics such as quality factor, 

insertions loss, and so on.  
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Appendix A: Permissions 
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Appendix A (Continued) 
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Appendix A (Continued) 
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Appendix A (Continued) 
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Appendix A (Continued) 
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Appendix A (Continued) 

 

 
  



 

178 
 

Appendix A (Continued) 
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Appendix B: Detailed Fabrication Process for ZnO Resonators and Filters 

 

A. Sample Cleaning 

 

A.1. Label(scribe) the back of all sampled with series and sample number 

A.2. RCA clean 

A.3. Solvent clean 

 

B. Bottom Electrode (Mask 1) 

 

B.1. Lithography 3000PY - NR9  

Spin: Laurell Spinner 

3000PY - NR9: 40 sec @ 3000 RPM 

Softbake: 1 min @ 150°C 

Exposure: 18 sec @ 20 mW/cm
2
, hard contact 

Hardbake: 1 min @ 100°C 

Develop: 17 sec in RD6 

 

B.2. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 100 watts 

Time: 1 min 

 

B.3. Titanium Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

Pressure: 5 mTorr 

Flow rate: Ar 12 sccm 

Time: 16 min (~30 nm) 

 

B.4. Platinum Deposition 

Equipment: AJA Sputtering 

Power: 100 watts DC 

Pressure: 5 mTorr 

Flow rate: Ar 12 sccm 

Time: 11 min (~125 nm) 

 

B.5. Lift-off  

Submerge wafer in acetone overnight 

Sonication if is needed 

Solvent clean 

Descum  
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Appendix B (Continued) 

 

C. ZnO Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

O2: Ar 6:6 sccm 

Pressure: 5 mTorr 

Temperature: 300˚C 

Time: 256 min (500 nm) 

Annealing: 300˚C for 30 min 

 

D. Open Vias Bottom Electrode (Mask 2) 

 

D.1. Lithography S1813 ~1.3 µm 

Equipment: Laura Spinner 

Spin: Laurell Spinner 

HMDS: 10 sec @   700 RPM 

1813:     30 sec @ 4000 RPM 

Softbake time: 1 min @ 115°C 

Exposure time: 4 sec @ 25 mW 

Develop time: 70 sec in MF319 

Descum 

 

D.2. ZnO Wet Etch 

Solution: 1: 200 HCl: H2O 

Submerge wafer in solution for 50 sec 

Rinse wafer with water and dry 

Submerge wafer in acetone for 1 hr 

Solvent clean 

 

E. Top Electrode (Mask 3) 

 

E.1. Lithography 3000PY-NR9  

Spin: Laurell Spinner 

3000PY-NR9: 40 sec @ 3000 RPM 

Softbake: 1 min @ 150°C 

Exposure: 11 sec @ 20 mW/cm
2
, hard contact 

Hardbake: 1 min @ 100°C 

Develop: 17 sec in RD6 

Descum 
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Appendix B (Continued) 

 

E.2. Titanium Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

Pressure: 5 mTorr 

Flow rate: Ar 6 sccm 

Time: 16 min (~30 nm) 

 

E.3. Platinum Deposition 

Equipment: AJA Sputtering 

Power: 100 watts DC 

Pressure: 5 mTorr 

Flow rate: Ar 6 sccm  

Time: 11 min (~125 nm) 

 

E.4. Lift-off  

Submerge sample in acetone overnight 

Sonication if is needed 

Solvent clean 

Descum 

 

F. Gold Pads Contact (Mask 4) 

 

F.1. Lithography 3000PY-NR9  

Spin: Laurell Spinner 

3000PY-NR9: 40 sec @ 3000 RPM 

Softbake: 1 min @ 150°C 

Exposure: 11 sec @ 20 mW/cm
2
, hard contact 

Hardbake: 1 min @ 100°C 

Develop: 17 sec in RD6 

Descum 

 

F.2. Chrome Deposition 

Equipment: Thermal Evaporator 

Thickness: 30 nm 

 

F.3. Gold Deposition 

Equipment: Thermal Evaporator 

Thickness: 600 nm 

 

F.4. Lift-off  

Submerge sample in acetone overnight 

Solvent clean 

Descum  
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Appendix B (Continued) 

 

G. Pattern Resonator Body Structure (Mask 5) 

 

G.1. Lithography 1827 ~2.7 µm 

Spin: Laurell Spinner 

HMDS: 10 sec @   700 RPM 

1827:     30 sec @ 3500 RPM 

Softbake: 1 min @ 115°C 

Exposure: 14 sec @ 25 mW/cm
2
, hard contact 

Develop: 3 min in MF319 

Descum 

 

G.2. ZnO DRIE 

Equipment: AMS 100, Alcatel Vacuum Technology, France 

CH4/Ar 

Ar: 16 sccm 

CH: 32 sccm 

Power: 1800 watts 

Substrate temperature: -20 °C 

Time: 10 min 

Etch rate: ~0.5 um/min 

 

H. Dry Release 

 

H.1. SF6 Release 

Equipment: AMS 100, Alcatel Vacuum Technology, France 

SF6: 300 sccm 

ICP Power: 1500 watts 

Substrate temperature: 25 °C 

Chamber pressure: 40 mTorr 

Etch rate: ~5 µm/min 

 

H.2. Photoresist Ashing 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 100 watts 

Time: 30 min 
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Appendix C: Detailed Fabrication Process for ZnO-on-SOI Resonators and Filters 

 

A. Sample Cleaning 

A.1. Label(scribe) the back of all sampled with series and sample number 

A.2. RCA clean 

A.3. Solvent clean 

 

B. Pre-release Holes (Mask 1) 

 

B.1. Lithography S1827 ~2.7 µm 

Equipment: Laura Spinner 

Spin: Laurell Spinner 

HMDS: 10 sec @   700 RPM 

1827:     30 sec @ 3500 RPM 

Softbake time: 1 min @ 115°C 

Exposure time: 14 sec @ 25 mW, hard contact 

Develop time: 3 min in MF319 

Descum 

 

B.2. Si DRIE 

Equipment: AMS 100, Alcatel Vacuum Technology, France 

SF6: 300 sccm, 3 sec 

C4F8: 200 sccm; O2: 20 sccm, 1.4 sec 

Power: 1800 watts 

Pulsed power: 25 ms @ 100 watts; 75 ms @ 0 watts 

Substrate temperature: -15 °C 

Etch rate: ~7 um/min 

 

B.3. SiO2 Wet Etch 

Strip photoresist 

Solution: concentrated HF 49% + 3 drops of TritonX 

Submerge wafer in solution for 70 min 

Submerge wafer in methanol for 10 min 

Submerge wafer in isopropanol for 10 min 

Bake wafer in oven for 15 min at 110˚C 

Solvent clean 
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Appendix C (Continued) 

 

C. Bottom Electrode (Mask 2) 

 

C.1. Lithography 3000PY - NR9  

Spin: Laurell Spinner 

3000PY - NR9: 40 sec @ 3000 RPM 

Softbake: 1 min @ 150°C 

Exposure: 18 sec @ 20 mW/cm
2
, hard contact 

Hardbake: 1 min @ 100°C 

Develop: 17 sec in RD6 

 

C.2. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 100 watts 

Time: 1 min 

 

C.3. Titanium Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

Pressure: 5 mTorr 

Flow rate: Ar 6 sccm  

Time: 16 min (~30 nm) 

 

C.4. Platinum Deposition 

Equipment: AJA Sputtering 

Power: 100 watts DC 

Pressure: 5 mTorr 

Flow rate: Ar 6 sccm  

Time: 11 min (~125 nm) 

 

C.5. Lift-off  

Submerge sample in acetone overnight 

Sonication if is needed 

Solvent clean 

Descum 
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Appendix C (Continued) 

 

D. ZnO Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

O2:Ar  6:6 sccm 

Pressure: 5 mTorr 

Temperature: 300˚C 

Time: 256 min (500 nm) 

Annealing: 300˚C for 30 min 

 

E. Open Vias Bottom Electrode (Mask #) 

 

E.1. Lithography S1813 ~1.3 µm 

Equipment: Laura Spinner 

Spin: Laurell Spinner 

HMDS: 10 sec @   700 RPM 

1813:     30 sec @ 4000 RPM 

Softbake time: 1 min @ 115°C 

Exposure time: 4 sec @ 25 mW, hard contact 

Develop time: 70 sec in MF319 

Descum 

 

E.2. ZnO Wet Etch 

Solution: 1: 200 HCl: H2O 

Submerge wafer in solution for 50 sec 

Rinse wafer with water and dry 

Submerge wafer in acetone for 1 hr 

Solvent clean 

 

F. Top Electrode (Mask 4) 

 

F.1. Lithography 3000PY-NR9  

Spin: Laurell Spinner 

3000PY-NR9: 40 sec @ 3000 RPM 

Softbake: 1 min @ 150°C 

Exposure: 11 sec @ 20 mW/cm
2
, hard contact 

Hardbake: 1 min @ 100°C 

Develop: 17 sec in RD6 

Descum 

  



 

186 
 

Appendix C (Continued) 

 

F.2. Titanium Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

Time: 16 min (~30 nm) 

 

F.3. Platinum Deposition 

Equipment: AJA Sputtering 

Power: 100 watts DC 

Time: 11 min (~125 nm) 

 

F.4. Lift-off  

Submerge wafer in acetone overnight 

Sonication if is needed 

Solvent clean 

Descum 

 

G. Gold Pads Contact (Mask 5) 

 

G.1. Lithography 3000PY-NR9  

Spin: Laurell Spinner 

3000PY-NR9: 40 sec @ 3000 RPM 

Softbake: 1 min @ 150°C 

Exposure: 11 sec @ 20 mW/cm
2
, hard contact 

Hardbake: 1 min @ 100°C 

Develop: 17 sec in RD6 

Descum 

 

G.2. Chrome Deposition 

Equipment: Thermal Evaporator 

Thickness: 30 nm 

 

G.3. Gold Deposition 

Equipment: Thermal Evaporator 

Thickness: 600 nm 

 

G.4. Lift-off  

Submerge sample in acetone overnight 

Solvent clean 

Descum 
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Appendix C (Continued) 

 

H. Pattern Resonator Body Structure (Mask 6) 

 

H.1. Lithography 1827 ~2.7 µm 

Spin: Laurell Spinner 

HMDS: 10 sec @   700 RPM 

1827:     30 sec @ 3500 RPM 

Softbake: 1 min @ 115°C 

Exposure: 14 sec @ 25 mW/cm
2
, hard contact 

Develop: 3 min in MF319 

Descum 

 

H.2. ZnO DRIE 

Equipment: AMS 100, Alcatel Vacuum Technology, France 

CH4/Ar 

Ar: 16 sccm 

CH: 32 sccm 

Power: 1800 watts 

Substrate temperature: -20 °C 

Time: 10 min 

Etch rate: ~0.5 um/min 

 

H.3. Si DRIE 

Equipment: AMS 100, Alcatel Vacuum Technology, France 

SF6: 300 sccm, 3 sec 

C4F8: 200 sccm; O2: 20 sccm, 1.4 sec 

Power: 1800 watts 

Pulsed power: 25 ms @ 100 watts; 75 ms @ 0 watts 

Substrate temperature: -15 °C 

Etch rate: ~7 um/min 

 

H.4. Photoresist Ashing 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 100 watts 

Time: 30 min 
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