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ABSTRACT 

 This PhD dissertation reports the development of miniature ion optics components of a 

mass spectrometer (MS) with the ultimate goal to lay the foundation for a compact low-power 

micromachined MS (µMS) for broad-range chemical analysis. Miniaturization of two specific 

components a) RF ion traps and b) an ion funnel have been investigated and miniature low-

power versions of these components have been developed and demonstrated successfully in 

lab experiments. Power savings, simpler electronics and packaging schemes required to 

operate the micro-scale RF cylindrical ion traps have been the key motivation driving this 

research. Microfabricated cylindrical ion traps (µCITs) and arrays in silicon, silicon-on-insulator 

and stainless steel substrates have been demonstrated  and average power of as low as 55 

mW for a low mass range (28 to 136 amu) and mass spectra with better than a unit-mass-

resolution have been recorded. For the ion funnel miniaturization effort, simple assembly, small 

form factor and ease of integration have been emphasized. A simplification of the conventional 

3D ion funnel design, called the planar ion funnel, has been developed in a single plate and has 

been tested to demonstrate ion funneling at medium vacuum levels (1E-5 Torr) using DC 

voltages and power less than 0.5 W. Miniaturization of these components also enables use of 

other novel ion optics components, packaging and integration, which will allow a new class of 

µMS architectures amenable for radical miniaturization.     



 

1 
 

 

 
 
 

CHAPTER 1 

INTRODUCTION 

 In today’s world, there is an insatiable appetite to know what, when and how in the 

quickest time possible. The technological revolution of telecom and internet has led to the 

peaking of this sense of awareness that spawns out into every aspect of our lives. One 

important aspect of this heightened awareness is chemical analysis. The driving force ranges 

from matters of homeland security to first responders; from a terrestrial regime to outer space 

explorations in search of life; from scientific/medical studies to commercial applications such as 

oil and gas exploration. To this effect, there has been a monumental effort in development of 

chemical sensors, detectors and analyzers with emphasis on simpler operation for the user, 

cost effective, enhanced mass analysis, rapid analysis cycle time, and miniaturization. When it 

comes to chemical analysis, mass spectrometry is often considered as the most extensive 

analytical technique and it has become a bench mark in this realm. In the following sections, I 

focus on the fundamentals of mass spectrometry and discuss the path towards miniaturization 

of mass spectrometers (MSs), towards a low size, weight, and power (SWaP) chemical 

detector.  

1.1 Dissertation Outline 

The organization of this dissertation is as follows. 

Chapter 1 describes the introduction about chemical sensing and mass spectrometry 

and introduces the most relevant topics and theory about ion trap mass spectrometers. 

Chapter 2 describes the development and demonstration of the first micro machined 

miniature ion trap in Si and validates the choice of miniature ion traps as ultimately low-power 

mass analysis. Critical improvements are mentioned. 
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Chapter 3 describes a gradient ion trap array with a range of ion trap geometry in the 

same Si chip. This method has been demonstrated as a rapid iterative step for determining the 

most optimum geometry and ease of validating other experimental studies. 

Chapter 4 describes a novel planar ion funnel in a 2D form factor which can ultimately 

enable a simple approach for ion concentration from a large flux of dispersed ion to small 

volume such as that of a µCIT. 

Chapter 5 describes the ongoing work, which makes use of novel ion optics (including 

µCIT arrays and broad beam electrons source) and packaging approach towards ultimately 

designing a µMS. Future direction is discussed with focus on optimizations critical for an 

efficient µMS design.     

1.2 Mass Spectrometry 

Mass Spectrometry is an analytical technique to determine the atomic or molecular mass 

of an unknown substance. The chemical of interest is introduced into a vacuum chamber in a 

controlled manner and ionized by an appropriate method to create ions of the analyte of 

interest. The ions are mass analyzed in a mass analyzer and detected, typically by a fast high 

gain electron multiplier to record the signal. The choice of ionization method, mass analyzer and 

detection method in the MS instrument determines the types of samples (solid, liquid, or gas) 

that can be mass analyzed, the method of mass analysis and how well the masses can be 

distinguished i.e. the mass resolution and specificity. The knowledge of the atomic/molecular 

mass can be used to determine the chemical composition of the compound, elemental/isotopic 

configurations, and in some cases indirect analysis of proteins and peptides. The range of 

samples types that can be analyzed and the mass resolution offered by mass spectrometry 

lends itself to a broad spectrum of applications such as medical diagnosis and DNA sequencing, 

homeland security for screening hazardous substances at high throughput transits such as 

airports, monitoring of hazardous natural and man-made dangers such as chemical warfare 
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agent manufacturing and storage, industrial process control, basic scientific investigations, oil 

and gas exploration and low earth orbit and outer space explorations.         

1.3 Ion Trap Mass Spectrometer  

A mass spectrometer is an instrument that creates a controlled vacuum environment to 

analyze the chemical of interest in its charged state, i.e., ions. The mass analysis can be 

performed by several methods such as electrostatic fields, electrodynamic fields, magnetic 

fields or a combination of these. MS classification extends widely based primarily on the type of 

mass analyzer used and the method of introduction/ionization of the analyte. Some of the most 

popular types of mass analyzers include quadrupole mass filters [1], triple quads [2], time of 

flight [3], quadrupole time-of-flight [4], magnetic sectors [5] , ion cyclotron resonance [6] and ion 

traps [7]. This research focuses on 3D RF ion traps as the mass analyzer due to the inherent 

amenability of ion traps for miniaturization and ease of construction. We will focus on the class 

of MS instrument that uses RF ion traps as mass analyzers and are commonly referred to as an 

“ion trap mass spectrometer” (ITMS).  

1.3.1 Quadrupole Ion Trap 

The original quadrupole ion trap (QIT) also known as the “Paul Trap” is a 3D version of 

the quadrupole mass filter and was invented by Wolfgang Paul in 1953. Instead of trapping the 

charged particle in a two dimensions as in a quadrupole mass filter, the QIT forms a 3D trapping 

potential, by virtue of the 3D form-factor obtained by stacking 3 electrodes together. By applying 

the appropriate RF potential on the ring electrode and grounding the endplate electrodes, the 

ions can be trapped in a stable trajectory at the center of the QIT assembly. Figure 1 shows the 

construction of the QIT and other components used to operate the QIT as a mass spectrometer. 

The QIT uses hyperbolic shapes on the surfaces of the ring and endplate electrode facing each 

other to generate a quadrupolar potential well. The two endplate electrodes have a center 

through-hole to allow entry and exit of ions from the potential well. In the case of internal 
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ionization, the ion gate can be replaced by a source of electrons, such as a tungsten filament, at 

the entrance endplate, to cause internal ionization of analytes present inside the QIT volume.     

 

Figure 1 A schematic of an ITMS using QIT as the mass analyzer.  

      With the application of an appropriate amplitude and frequency of the RF potential to the 

ring electrode, the ion cloud at the center of the trap experiences a restoring force that 

continuously drives the ions back to center, circulating in a cloud of small trajectories. The 

quadrupolar potential generated due to the hyperbolic shape of the electrodes generates a 

linear electric field. This in turn applies a force that is linear to the relative displacement of the 

ion at that moment of time during trapping. 

 

Figure 2 A cross-sectional view of the QIT along the cylindrical axis illustrating the radial and 
axial dimensions of the trap geometry. 
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The motion of the ions in the QIT can be described using the second-degree differential 

equation, as shown by Mathieu [9]. The force applied on the ions inside the QIT can be defined 

in terms of the Mathieu’s parameters az and qz and the trapping performance can be derived as 

follows: 

az= 8 / 0 	 					qz=4 / 0  (1) [7] 

where az and qz are the dimension-less Mathieu’s parameters, U and V are the DC and the RF 

potentials (volts) applied respectively, e is the charge of a singly charged ion (1.6E-19 C), m is 

the atomic/molecular mass (kg) of the trapped ion, r0 is radius of the trap (Figure 2) and Ω is the 

angular frequency (rad/s) of the RF potential. 

Equation 1 represents a perfect QIT, where r0
2 = 2z0

2, to obtain an ideal quadrupolar 

field [7]. 

 1.3.2 Stability Diagram  

The trajectory of the trapped ions and their stability can be defined in terms of 

stability/instability diagram using Equation 1. Figure 3 illustrates the plot of the stability diagram 

where az represents the ejection boundary in the radial direction and qz represents the ejection 

criteria of ions in the axial direction.  

To determine the stability of a particular ion, az and qz can be calculated using Equation 

1 and based on the values of the az and qz, the ion’s stability can be assessed. Conversely, 

other factors (RF potential amplitude, frequency, and size r0) of the Equation 1 can be adjusted 

to operate the QIT to trap ions of a certain mass. For a perfect QIT geometry, the stability 

extends out to a max qz value of 0.908, which is commonly referred to as the low-mass cut-off 

(LMCO) range. Conversely, for a trap operating as qz 0.908, any ion with a mass lower than the 

LMCO will not be trapped as the resulting qz value for that particular ion will be > 0.908.       
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Figure 3 A plot of the stability diagram with red dots representing ions of different masses 

One common type of mass analysis makes use of the “mass-selective instability mode”, 

in which the QIT is operated using RF potential, while the DC potential is kept zero, as 

illustrated by the green line in Figure 3. In this case, the value of az is zero and the ion stability 

can be plotted on the x-axis for different qz value. As the ions are trapped at a certain set of 

parameters (for qz<0.908), they can be cooled down to shrink to a smaller cloud via collisional 

cooling with background atoms. He is a common buffer gas used for this purpose. Collisional 

cooling has been demonstrated to improve the mass resolution by virtue of extracting thermal 

kinetic energies of the ions [11] . Once trapped for a few ms, the RF potential can be ramped 

and the increasing qz value, as depicted in Figure 3 and 4, the ions can be ejected sequentially 

in the increasing order of the mass to charge ratio. For singly charged ions, this means the ions 

will eject out in the increasing order of their masses. This signal when detected using a fast 

high-gain electron multiplier is used to create the mass spectrum.  
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Figure 4 Illustration of waveform sequence for practical implementation of mass-selective 
instability mode operation for ions generated internally inside the QIT.   

 1.3.3 Axial Modulation 

As ions are trapped in the parabolic shaped pseudo-potential well inside the QIT, the 

trajectories of the ions are defined by two main frequencies, also called the secular frequencies. 

The two secular frequencies define the motion of ions in the axial and radial directions. At one 

instant in time, the ion is being forced towards the center of the trap radially, while it is also 

forced away from the center of the trap axially. This simultaneous focusing and de-focusing 

effect in axial and radial dimension results in an “8”-shaped trajectory [12] traversed by the ion 

during a few micro seconds. The ions oscillating in these trajectories can be “excited” by 

applying a very low amplitude RF signal on the endplates. Typical potentials required to cause 

this excitation is on the order of few millivolts, and about half or one-third of the main RF 

frequency. This method of exciting the ions is called resonant excitation and is a fraction of the 

axial secular frequency is used for excitation; it is commonly referred to as “axial modulation”. 

Axial modulation has been demonstrated to improve the mass resolution [13] of the ion traps  by 

virtue of ejection of ions of similar masses in a tighter packet during RF ramp mass ejection, 

while minimizing the perturbation from ions of higher masses still trapped [12]. Axial modulation 

has also been found useful in order to increase the mass range of the QIT [14].             
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1.3.4 Miniature Cylindrical Ion Traps 

A cylindrical ion trap (CIT) is a simplified modification of the QIT, where the hyperbolic 

shape of the electrodes is replaced by a cylindrical shape. The CIT geometry was patented in 

early 1960s [15] and since then has been demonstrated by various groups for mass analysis in 

mass selective instability mode [16-19], and also as ion storage devices [20, 21] . Figure 5 

illustrates the geometry of CIT in comparison to a QIT as generated in ion optics software 

SIMION to display the trapping potential.    

 

Figure 5 A comparison of QIT vs. CIT geometry and trapping potential contours (in red). 

 CITs are an attractive candidate choice of mass analyzer for this research as the 

cylindrical shape lends itself amenable to miniaturization due to the ease of construction via 

conventional machining as well as micro machining processes. Miniature CITs allow drastic 

reduction in RF trapping voltage (Vrf) required for mass analysis for the same mass as 

compared to the larger counterparts, thereby drastically reducing the overall power consumption 

[22]. Equation 2 defines the ion trap LMCO (ions with m/z larger than this value are trapped, 

while smaller ions are ejected from the trap): 

  22
024  rqVAzm bndrfbnd  (2) 

where A2 is the relative contribution of the quadratic term in the multipole description of the 

trapping potential, qbnd is the boundary of the ion trap stability region on the q axis, r0 is the 

radius of the ring electrode, and Ω is the angular frequency of the trapping RF voltage [11].  
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As an example, a commercial hyperbolic ion trap that has a typical r0 of 1 cm uses RF 

voltages up to 7000 V0-p at 1 MHz for an analysis mass range of 700 m/z. Reducing r0  to 0.5 cm 

would decrease the required voltage to 1750 V0-p at the same frequency. If r0 were only 0.5 mm, 

the RF voltage at 1 MHz would be 17.5 V0-p, a tremendous savings in voltage and power, and 

therefore in overall mass spectrometer size and electronics as well. It should be noted, 

however, that the trapping RF frequency must usually be increased in very small traps to trap 

enough ions (ions must be redirected more frequently to avoid collision with the ion trap 

electrodes). In addition, the RF amplitude must be high enough to provide an adequate potential 

well to efficiently trap the ions. Thus, using a more realistic 5 MHz frequency, the 0.5 mm r0 trap 

would need an RF voltage of 437 V0-p for the same mass range as the typical commercial trap, 

still a reduction in voltage by a factor of 16. 

 Equation 2 describes the power P as a function of the capacitance of the ion trap, 

voltage Vrf, the angular frequency Ω, and Q, the quality factor of the tuned circuit. It shows that a 

reduction in Vrf will reduce the power by the square of Vrf if the frequency, quality factor, and 

capacitance are kept constant. For the example discussed above, the voltage reduction factor of 

16 results in a 256-fold decrease in power consumption. Power increases as a linear function of 

frequency [23]. 

Ω/2      (3) 

A lower RF voltage requirement also alleviates stringent design aspects and allows 

components to be packed into a smaller overall foot print. Simpler RF electronics directly reduce 

the resource allocation required on an instrument level and often are cost-effective to 

manufacture.  

1.3.5 Array of Ion Traps 

 One drawback of scaling down the size of the CITs is the reduced trapping capacity per 

trap. Simulation-based analysis indicate that the number of trapped ions scales as the 1.55-1.75 
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power of r0 [24]. This translates into lower sensitivity per miniature CITs due to decreased 

number of ions of the chemical of interest that can be analyzed. One way to circumvent this 

problem is to build a multitude of miniature CITs and operate them in unison. By doing so, the 

sensitivity lost due to miniaturization can be recovered, while maintaining the power and voltage 

savings of a miniature trap. 

 The number of ions that can be trapped in a CIT scales with the radius (r0) of the trap 

[25]. Figure 6 illustrates the relationship of the analyzable ions as compared to radius and 

number of traps in an array. 

 

Figure 6 Scaling of number of ions trapped (N) with CIT array size (n) 

If the foot print of the mass analyzer is kept constant, then the number of ions trapped in 

an array of n smaller traps scales with the size of the array. 

1.4 Motivation and Potential for µ-Mass Spectrometers 

Figure 7 shows an example of the evolution of miniature MS instrumentation in the 

commercial market for the past few decades. One of the main focuses in ITMS has been the 

solution path towards a low SWaP instrument that would enable cost effective and rapid in-situ 

chemical analysis and thereby provide real-time assessment of potentially hazardous 

events/scenario. In order to take mass spectrometry to the field, the overall foot print and 

complexity needs to be reduced. In-field measurements also require instruments that are 

relatively more tolerant to shock and vibrations. Power consumption is a crucial factor that 

needs to be addressed when designing miniature instruments as battery packs also needs to be 



 

11 
 

reduced to relieve the overall resources required to operate chemical screening mission. To 

enable novel missions, such as a dispersive network of sensors, these instruments need to be 

cost-effective and highly repeatable. Novel components and design concepts are needed to 

incorporate radical miniaturization.    

 

Figure 7 The evolution of MS instrumentation towards miniaturization that will enable stand-off 
“on-the-go” chemical screening missions on mobile platform. 

The ultimate goal of this research is to lay the foundation for low SWaP-C MS 

instruments that will ultimately transform the MS from an “instrument” to a “device” scale. It is 

worth mentioning here that there has to be an optimum balance of the savings in all aspects of 

SWaP-C, as any one of these factor will prevent use of such devices in a large scale dispersive 

network configuration.  

Some of the critical applications where this perceived µMS device would be highly 

applicable are: 

 Handheld detection for homeland security  

 Networked detection across sea ports and airports 

 Single point and networked constellation for LEO weather awareness, space and planetary 

exploration 

 Pervasive environmental monitoring (Ocean, Terrestrial and Atmospheric) 
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 Single point and pervasive stand-off chemical screening for protection of warfighters 

against chemical warfare agents (CWAs), toxic industrial compounds and explosive related 

compounds (ERCs) 

 Consumer applications including household applications towards general awareness and 

improvement in standard of life. Some examples are mold detection, fouling of food in 

refrigerators, personal heath devices etc.  

The global mass spectrometry market was assessed at $ 3.9B in 2013 and is expected 

to exceed $ 5.9B by the year 2018 [26]. It is worth pointing out that this market assessment is 

based on the current MS instrumentation which lends itself in applications which are limited to 

mostly scientific, clinical environmental and defense. It is expected that the availability of the 

above described form-factor and capabilities of µMS devices will significantly broaden the 

application base, as shown in Figure 8 and the market potential can be many folds higher than 

assessed currently.  

 

Figure 8 Expected application base for µMS 
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CHAPTER 2 

µCIT ARRAY: GENERATION-1 

2.1 Abstract 

This chapter1 describes a novel approach, in which MEMS technology is used for 

constructing miniature CIT mass spectrometer (MS) arrays in silicon (Si), is described. MEMS 

processes were used to fabricate precise µCIT geometries in a stack of Si, SiO2, and Si3N4. 

These geometries were then selectively coated with conductive (Cr/Au) layers to obtain a 

functional µCIT array with individual µCIT radii (r0) of 360 µm, half-thickness (z0) of 351 µm and 

aperture size (rH) of 162 µm. Each trap of a 5 × 5 CIT array was operated in the mass selective 

instability mode to analyze trichloroethylene (TCE) and perfluorotributylamine (PFTBA) at a 

pressure of 10-5 Torr. Mass spectra from individual µCITs in the array were obtained using a 

rasterable electron beam for internal ionization. Investigation of the operation of individual µCITs 

in the array is a critical step towards the understanding of the overall functioning of mass 

spectrometer arrays. 

2.2 Background 

Miniaturized chemical sensors are in ever increasing demand as in-situ analyzers for a 

wide range of applications, including environmental monitoring and homeland security [27]. 

Handheld sensors, for example, can be used for real-time mapping of toxic chemicals, on-site 

detection of specific hazardous materials, discovery of short-lived chemicals in the environment, 

                                                            

1 This chapter was published in Journal of Microelectromechanical Systems 

(10.1109/JMEMS.2009.2013390). Permission is included in Appendix A. 

 



 

14 
 

and tracking of rapid fluctuations of chemical concentrations [28, 29].  They may also be used 

for large scale autonomous industrial monitoring and point-of-care medical analysis. For harsher 

environments and exacting situations, future devices will need to be able to handle multiple 

complex samples rapidly with high specificity and sensitivity. These sensors will also need to 

have low power consumption and be relatively inexpensive. Present day MS instruments are 

relatively costly and large. If miniaturized, they could be good candidates for handheld chemical 

analyzers due to their accuracy, sensitivity and short response time [30]. Cost reduction of 

miniaturized MSs could ultimately lead to large-scale deployments of MS sensors for parallel 

monitoring, and networks of MS analyzers that can instantly detect and report chemical 

anomalies [31].  

With the advent of microelectromechanical systems (MEMS) technology, new avenues 

are now possible for building extremely small structures with micrometer precision in a variety of 

substrates. Several research groups have demonstrated the use of MEMS fabrication 

techniques to miniaturize MS components. For example, various mass analyzers [32-37], 

Faraday cup detectors [38], ionization sources [39-41], and micro-scale vacuum pumps [42-44] 

have been successfully fabricated and operated for proof of concept. Other examples of MEMS-

based components related to the field of MS miniaturization are micromachined gas 

chromatograph (GC) columns [45], microfabricated sample introduction systems [46], and 

micromachined electrospray ionization (ESI) devices [47]. Integration of multiple components 

into a truly miniature microfabricated mass spectrometer [37] could lead to production of 

extremely powerful and cost-effective chemical analyzers. One significant advantage that 

MEMS fabrication strategies have over conventional machining methods is that they enable low-

cost batch production of high-precision geometries and easy integration of these geometries to 

obtain millimeter-scale assemblies. 

A reduction in system performance, however, often results from component 

miniaturization. For example, MS miniaturization is typically accompanied by a reduction in 
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sensitivity. In the case of miniature ITMSs, this loss of sensitivity results primarily from lower 

transmission of ions and electrons into and out of the traps, as well as from the lower ion 

storage capacity of smaller ion traps. Sensitivity can, in principle, be regained by using an array 

of miniature ion traps that operate in unison [48]. Aside from the potential for low-cost batch 

fabrication of MS devices, arrays of microfabricated miniature ion traps can operate at much 

lower trapping voltages [33] than larger commercially available ion trap MSs, thereby 

significantly reducing the overall power consumption of the MS system. The array approach has 

the additional advantage in that MS arrays could be used to perform parallel analysis for 

increased throughput or accuracy [49].  

As the underlying methods of MEMS fabrication are fundamentally different from 

conventional machining, MEMS approaches might provide radically new ways to design ion 

optics and other MS components that have the same functionality as their larger counterparts, 

but with improved redundancy or reliability [50]. For example, most commercial ion trap mass 

spectrometers use ion traps with high-precision hyperbolic electrodes and a typical ring-

electrode radius of 1 cm. It has been shown that the trapping electric potential produced by a 

hyperbolic geometry can be closely approximated by a cylindrical geometry [17, 18]. Since the 

introduction of CITs in the 70s [16], numerous research groups have investigated CIT 

performance as a MS [51-53]. Also, several groups have improved the theoretical models for 

optimization of performance of CIT MSs [54-56]. Cylindrical structures are much easier to 

miniaturize and micro machine than hyperbolic electrodes. Therefore, in the present work 

MEMS fabrication methods were used to construct an array of µCIT mass spectrometers with 

radii of 360 µm. Data obtained from the µCIT array are reported, and future strategies are 

discussed. It is likely that future MEMS-fabricated mass spectrometer ion optics will deviate 

even further from conventional MS ion optics, allowing the implementation of radically new 

designs [57] that have not been possible to realize with conventional approaches. 

 



 

16 
 

2.3 Fabrication 

A MEMS process was developed to construct arrays of µCITs. The three-dimensional 

structures were built in silicon (Si) wafers, with thermally grown silicon oxide (SiO2), and low 

pressure chemical vapor deposition (LPCVD) silicon nitride (Si3N4), by using bulk 

micromachining. The approach [58] was to build µCIT arrays by fabricating two symmetrical 

half-µCIT arrays, selectively metallizing specific areas of the Si and Si3N4 layers by sputtering 

Cr/Au, and then bonding the two half-arrays back-to-back. The strategy of using conductive and 

non-conductive materials followed by metallization to make metal-coated ion optics has been 

validated in our previous work on fabrication of a low temperature co-fired ceramics (LTCC) 

based miniature CIT [59].  

 

Figure 9 Schematic representation of cylindrical ion trap geometry and its dimensions. 

Figure 9 is a schematic representation of one CIT in the fabricated array where (r0) is the 

radius of each CIT ring electrode, (dE) the endplate thickness, (ds) the endplate spacing, (zb) the 

ring electrode thickness and (z0) the distance from the center of the (Si) ring electrode to the 

metallized endplate aperture (Si3N4). The change in Si thickness during wet thermal oxidation 

was taken into account to determine the final value of z0. Three optical contact photomasks, one 
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each for ring electrode pattern, endplate pattern and metallization pattern were designed with 

Coventorware 4.0. These masks were obtained commercially from the Nano Fabrication Center 

(NFC) at University of Minnesota (Industry standard, 0.09 in thick, 5 × 5 in2 dimensions, dark 

field chrome-on-soda-lime optical masks).  

 

Figure 10 Schematic of the final fabrication process developed for µCIT array. 

Figure 10 describes the process flow used to fabricate the µCIT arrays. The schematic 

depicts only three µCIT units for simplified portrayal, but the process was applied to a Si wafer 

(100 mm diameter) with multiple 5 × 5 arrays of varying r0. Each wafer had pairs of identical 

arrays for each r0 to simultaneously obtain two symmetrical half-µCIT structures. Since typical 

wafers can differ in thickness by ± 25 µm, numerous arrays of a range (325 µm to 375 µm) of r0 

were incorporated in the optical mask to make sure there was a range of z0/r0 ratios (0.82 to 

1.23) obtained in each processed wafer. The process steps are described below in sections A 

through H and correspond with the process steps in Figure 7. To prepare the starting substrate, 

a 5µm thick layer of SiO2 was thermally grown on a (100) low resistivity (0.001-0.005 ohm-cm) 
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n-type 350 µm thick double-sided polished Si wafer. This process was followed by deposition of 

a 3 µm thick layer of Si3N4 using LPCVD.  

2.3.1 Ring Electrode Lithography (A-C) 

 Hexamethyldisilazene (HMDS), an adhesive promoter, was spun onto the starting 

substrate at 3000 r/min for 40 s. This process was followed by spinning a positive photoresist 

(PR) S 1827 (Shipley Microposit) at 3000 r/min for 40 s. The wafer was baked at 90 ºC for 60 s 

on a hot plate and exposed to 365 nm light for 6 s with an energy of 198 mJ/cm2 in a mask 

aligner (EV620) using the ring-electrode mask. The PR was developed in a MF319 developer 

(Shipley Microposit) and the exposed Si3N4 was completely etched in an inductively coupled 

plasma (ICP) based reactive ion etching (RIE) instrument operating at 200 W of RF power, 45 

SCCM of CF4 and 5 SCCM of O2 at 30 mTorr for 135 min. The wafer was then placed in 49% 

hydrofluoric acid (HF) for 5 min to etch the underlying exposed 5 µm thick SiO2 layer, to expose 

the Si areas to be etched, as defined by the ring-electrode mask. The Si etch step (step F) was 

performed later so that the backside of the wafer could be patterned with the endplate pattern 

before the bulk Si was etched away. Spinning the wafer on a vacuum chuck with the bulk Si 

etched away didn’t seem to be a feasible option due to fragility issues.  

2.3.2 Endplate Lithography and Metallization (D and E) 

A similar lithography procedure was performed on the back side of the substrate using 

the endplate mask to obtain an aperture in each endplate. The endplate pattern was backside 

aligned with the ring electrode pattern on the opposite side. The exposed Si3N4 was etched 

using an ICP-based RIE, exposing the underlying SiO2 layer. The wafer was then dipped in 49% 

HF for 1 min to partially etch back the SiO2 layer. The partial isotropic etch created a rounded 

SiO2 undercut under the Si3N4 aperture edge. This 1 µm undercut was incorporated to physically 

isolate a next Cr/Au layer deposited on the Si3N4 from the Cr/Au layer on this SiO2 layer, in order 

to lift off the Cr/Au along with the SiO2 layer during a following SiO2-release etch step (step G). 
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Lithography was then performed in the following manner on the backside using a 

negative PR to ensure metallization over the entire endplate (Si3N4) surface, except at the 

location of the dicing street. Negative PR 1500 (Futurrex Inc.) was spun at 3000 r/min for 40 s 

followed by a 1 min bake at 150 °C. The metallization mask was aligned to the apertures on the 

wafer using front side alignment and the wafer was exposed to 365 nm light for 15 s with energy 

of 198 mJ/cm2. The wafer was post-baked at 100 °C for 1 min before developing in a resist 

developer RD6 (Futurrex Inc.) for 15 s. The 150 Å of Cr, followed by 2500Å of Au, was 

sputtered onto this backside. The Cr layer was used to improve the adhesion of the Au layer. 

The sputtering was performed in 2 mTorr of Ar with 360 W of RF power. A Cr/Au layer was 

chosen to achieve high conductivity, and to allow for Au-Au thermal compression bonding (TCB) 

and Au wire bonding processes, used during the packaging stage (step H). The wafer was kept 

in acetone for 2 hr and subsequently rinsed to strip off the remaining PR and metal deposited on 

the PR. 

2.3.3 Ring Electrode Fabrication (F) 

To create arrays of ring electrodes with half thickness cylinders (dimension zb as shown 

in Figure 6), the exposed Si on the front side of the wafer was etched through its entire 

thickness. These deep cylindrical geometries were etched in Si by using the Si3N4/SiO2 as a 

hard mask in an ICP-based deep reactive ion etching (DRIE), in which a mixture of SF6, Ar, and 

C4F8 radicals were used according to the Bosch process [60]. After 445 Bosch cycles at 15 

mTorr and 400 W of ICP power, the Si was completely etched through, forming an array of 

cylinders and stopping on the back-side SiO2. The Si3N4 layer of the Si3N4/SiO2 mask layer gets 

completely etched during the DRIE process exposing the SiO2 layer on the front side.  

2.3.4 SiO2 Release and Metallization of Ring Electrode (G) 

The processed wafer was dipped in 49% HF for 4 min to etch the exposed SiO2 layer to 

reveal the Si3N4 endplates with apertures. This release step was extended for an extra 10 min to 
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create a 15 µm undercut in the SiO2 layer between Si and the Si3N4, in order to provide 

electrical isolation between the endplate and ring electrodes during metallization. 

A 150/2500 Å layer of Cr/Au was sputtered at an angle while rotating the substrate onto 

the front side surface of the wafer to obtain a conductive layer on the un-etched flat Si surface, 

the Si surface inside the arrays of cylinders, and the Si3N4 (endplate) surface at the bottom of 

the cylinders. As mentioned above, the shadow region (15 µm undercut) prevented formation of 

a continuous metal layer between the metallized Si cylinder and metallized Si3N4 endplates.  

2.3.5 Packaging of the µCIT Array (H) 

PR S1827 was then sprayed onto the wafer and baked for 30 s at 90 °C to encapsulate 

the undercut area and the cylinders from any particles that might be generated during the dicing 

process. The wafer was diced into separate arrays of 7.6 × 6.7 mm2 chips. The chips were 

dipped in acetone and methanol sequentially to strip the PR and to remove any residue.  

The half-µCIT array structures were tested individually for electrical isolation between 

the half cylinder and the endplate electrodes. Before flip-chip bonding, the two half arrays were 

rotated by 180 ° with respect to each other in order to provide access to the Au-coated flat Si 

surface, for electrical connections. The two identical half-µCIT array structures were pressed 

back-to-back under 0.8 MPa pressure at 320 °C for 2 min in a FineTech flip chip bonder. Under 

these conditions, Au-Au thermo compression bonding occurred and a single complete µCIT 

array was obtained. The bonded µCIT array was mounted with conductive epoxy onto a PCB, 

(with Au coated Cu traces) to electrically connect one endplate. Wire bonds were made with Au 

wire (diameter of 25 µm), connecting the ring electrode and the other endplate electrode to the 

PCB. Copper wires, to be attached to the electric feedthrough of the vacuum system were then 

soldered onto the traces of the PCB. 

2.4 Testing 

Ion trap mass spectra are typically obtained using a mass instability scan, whereby the 

LMCO for ion trapping is raised by a linear ramp of the RF trapping voltage (Vrf). The LMCO is 
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the smallest mass-to-charge ratio (m/z)bnd (bnd equals boundary) of an ion that can be trapped 

for a particular set of ion trap parameters. Equation (2) relates the LMCO to the operational 

parameters of a CIT MS [18, 61, 62] and can be used to assign mass values in Th (Thompson 

or m/z) to the peaks in the experimentally derived mass spectra.  

  22
024  rqVAzm bndrfbnd  (2) 

where (Ω) is the RF angular frequency (in rad/s), (qbnd) is the dimensionless value of the RF 

Mathieu parameter at the boundary of the ion trap stability diagram [7], and (A2) is the 

quadrupole component of the electric potential in the z-direction inside a CIT. The typically 

accepted value for qbnd, (for the common case where the DC Mathieu parameter (a) is zero) is 

0.90805 [63]. The parameter A2 depends on variables such as ring electrode-to-endplate 

spacing ds, the thickness of the endplates dE, the endplate aperture radius rH and the ratio z0/r0. 

To determine A2 (as well as other multipole components) for the ion traps in our array, the 

electric potential inside a µCIT (endplate to endplate) was numerically calculated (A2=0.64) 

using a finite difference software package, SIMION [64]. A least squares fit was then performed 

in MATLAB to obtain the multipole components of the numerically determined electric potential 

along the z-axis of the µCIT. A more detailed description of this approach is described in a 

previous publication [59]. 

Experiments were performed in a vacuum chamber with gas inlets and a holder to 

accommodate the packaged µCIT arrays (reported earlier [59]). Vacuum was obtained using an 

Adixen ATH 31+ turbo pump backed up by a KNF N813.4ANI roughing pump. Analytes (TCE 

>99.5% purity from Sigma/Aldrich and PFTBA calibration compound FC43 from SIS) were 

introduced from a vial, held at 30 ºC, through a capillary (360 μm o.d., 50 μm i.d. and 25 cm in 

length) connected to stainless steel tubing that directed the gas towards the µCIT array. Helium 

(He) was used as a carrier gas for analytes and as a buffer gas. Gas phase analytes were 

ionized with an ELG-2 electron gun from Kimball Physics Inc., which was positioned 3 cm away 
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from one endplate of the µCIT array. A Kimball Physics x-y raster controller (EGPS-2) was used 

to deflect the electron beam and allow examination of the performance of each CIT in the array. 

On the other side of the µCIT array was mounted an electron multiplier detector (Detech model 

DeTech XP-2074) for detection of ions ejected from each µCIT during the instability scan. When 

the electron beam was switched on, the detector was switched off, and vice versa, to avoid 

overloading the detector. The detector operation voltages, -1550 V to -1850 V (“on-mode”) and -

900 V (“off-mode”) were provided by a KEPCO high voltage power supply.  

The following procedure was used to determine the optimum deflection plate voltages to 

direct the electron beam through each µCIT for internal ionization of analytes. With the µCIT 

trapping voltage off, both the detector and electron gun were switched on and the x-y raster 

controller voltages were adjusted to find each µCIT. When the electron beam was properly 

aligned through a µCIT, a maximum number of ions was formed between the µCIT and electron 

multiplier and subsequently detected. The deflection plate voltages that resulted in the 

maximum ion generation were recorded for each µCIT and then subsequently used when 

obtaining mass spectra. Waveforms to trap and eject ions from the µCIT array were generated 

with a Wavetek Datron 195 waveform generator in combination with a Stanford DG535 digital 

delay/pulse generator. The waveform was amplified with a linear power amplifier and fed into an 

air-coil inductor that was attached to the µCIT array. The inductor and capacitance of the µCIT 

array formed a resonant circuit to obtain RF high voltages ranging from 0 to 250 V0-p. Ions 

ejected from the µCIT array were collected in the detector. The output signal of the detector was 

amplified with a current amplifier (Advanced Research Instruments Co. PMT5, gain set to 106 

V/A) and recorded with a Le Croy 9354A oscilloscope. Table I shows detailed experimental 

parameters. 
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2.5 Results and Discussions 

2.5.1 Fabrication 

The fabrication process used to construct the µCIT array was optimized through several 

fabrication runs and three design iterations. The final thickness of SiO2 and Si3N4 layers were 

derived during the characterization of the process, by balancing considerations of the fabrication 

feasibility (such as deposition and etch time), the overall capacitance, and mechanical aspects 

such as interlayer stress and sufficient robustness of the assembly. One key objective during 

design development was to keep the capacitance between the endplate and the ring electrode 

substrate as low as feasible to avoid excessive power dissipation. This led to the concept of 

etching bulk Si in areas between the ring-electrode cylinders, as shown in Figure 11(a), which 

was implemented in the final design and reduced the capacitance from 232 pF to 132 pF per 

half-µCIT array structure. The interlayer stress between the 5 µm thick SiO2 and 3 µm thick 

Si3N4 was not large enough to cause any significant bending or curling of the Si3N4 endplate 

membranes after SiO2 release step as shown in the optical profilometer scan, Figure 11(b).  

 

Figure 11 (a) A low magnification SEM image of the µCIT array half-structure showing the ring 
electrode (top) and the endplate electrode with apertures (bottom); (b) A 3-D surface analysis of 
the Si3N4 membrane showing an outward bowing of 0.6 µm at the aperture edge relative to the 
membrane. 

The surface quality of the cylinder walls was affected due to micron-scale scalloping and 

undercut of the hard mask (Si3N4 and SiO2) in the Bosch process. Extensive optimization of the 

Bosch process will be important to obtain desired µCIT geometries and to optimize its 
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performance. The etch rate per Bosch cycle was a function of the area of Si that was etched, 

resulting in a micro loading effect that produced varying etch depths with varying r0 within the 

same wafer. For this reason, the DRIE etch process was characterized to obtain a verticality of 

better than 89° of the ring-electrode walls for a predicted optimal r0 of 360 µm (the z0 of this 

wafer was found to be 351 µm, which resulted in the z0/r0 to be 0.975). The extent of SiO2 

undercut was determined experimentally.  

 

Figure 12 SiO2 undercut, shown by a) SEM image obtained by cutting the 3 µm thick Si3N4 by 
Focused Ion Beam (FIB); b) SEM image of the inside of the ring electrode. 

Figure 12 shows the SiO2 undercut obtained in 49% HF, which created a “shadow 

region” and prevented a continuous Cr/Au layer between Si and Si3N4 (step G in Figure 10) and 

maintains electrical isolation of the ring electrodes from the endplates electrodes. The flip chip 

bonder had a provision for alignment with a 2-µm precision. An offset of 2 µm could lead to 

shifts in the mass spectral peaks of at most 0.5 Th (see Equation 2). 

2.5.2 Experimental 

Electronic circuits were optimized to operate the µCIT array using a trapping voltage (Vrf) 

of 10-100 V at 5.5-6.5 MHz. The reasonably low capacitance of the µCIT array allowed for 

modest power consumption of 7 W and increased operation frequency.  The mass range 

obtainable (50-75 Th) using a single (Vrf) scan function was limited by the low potential well 

depth of the relatively small traps. Larger mass ranges, were investigated by post processing of 

data from several mass scans, each with increasing start and stop mass. The width (FWHM) of 
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mass spectral peaks was about 4-5 Th for PFTBA spectra. It is anticipated that mass resolution 

can be improved by further optimization of the µCIT geometry and/or application of axial 

modulation (43, 44). Direct introduction of the buffer gas and analyte into the vacuum chamber 

led to several problems, such as low mass-spectral signal current, detector instability (ion 

feedback or generation of plasma) and a high gas load on the vacuum system. To rectify these 

problems, analytes were locally introduced using a capillary to direct the gas influx directly in 

front of one µCIT endplate. He was used as buffer gas, but did not seem to dramatically 

increase mass resolution up to the limited achievable pressure of 1 mTorr (mean free path λ  5 

cm).  

 

Figure 13 Raster values of electron gun x-y raster deflection plate voltages for optimum 
transmission of the electron beam through each trap shown in x-y plot. The x and y scales are in 
voltage applied to the deflection plates of the electron gun. 

Figure 13 shows the values of electron gun x-y raster deflection plate voltages for 

optimum transmission of the electron beam through each trap. Figure 14 shows a small part of a 

TCE spectrum obtained from µCIT #5 at deflection plate voltages x = -6.9 V and y = -29.3 V. 

Spectrum 1 was obtained using a trapping voltage of 22 V during ionization and start of the 

mass instability scan, and spectrum 2 was obtained using an initial trapping voltage of 26.5 V. 
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The two spectra were combined to create Figure 14. Note that the spike in the signal current 

caused by switching on the electron multiplier in spectrum 1 and spectrum 2 were removed for 

clarification purpose. 

 

Figure 14 Partial TCE spectrum obtained from µCIT #1 at deflection plate voltages x = -29.3 V 
and y = 6.9 V. Peak A was assigned to isotope fragment (C2ClH)+. Peak B was assigned to 
isotope fragments of (C2Cl2H)+. 

We have assigned peak A to the mass range 60-63 Th (isotope distribution of TCE 

fragments (C2ClH)+) and peak B to the mass range 95-101 (TCE isotope fragments (C2Cl2H)+).  

Using these assignments in Equation 2 yields an A2 value  of 0.74, which is slightly higher than 

the calculated value of A2 (0.64) obtained by numerical determination of the electric potential 

along the µCIT z-axis. Peaks found at 35 V, 37 V, and 42 V are still under investigation. By 

comparing spectrum 1 and 2 in Figure 14, it can be seen that at low trapping potentials, higher 

masses have lower signal intensities indicating a limited storage capacity. PFTBA spectra were 

measured for all traps to obtain the variation in intensities, as shown in Figure 15.  
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Figure 15 Plot of obtained PFTBA signal intensities for each trap. 

We attributed this variation in intensity primarily to the use of a cone-type electron 

multiplier, in which the gain was highly dependent on location of ion impact. Figure 16, a spatial 

plot of the measured ion current for each µCIT reflected the cone-type shape and is consistent 

with our assumption. 

 

Figure 16 Spatial plot of the ion signal detected in a cone-type detector, illustrating the current 
gain variation across the cone geometry. 
 

 

 

0

25

50

75

100

1 5 9 13 17 21 25

Trap #

R
el

. i
on

 in
te

n
si

ty



 

28 
 

 

 

 

CHAPTER 3 

µCIT ARRAY: GENERATION-2 

3.1 Abstract 

This chapter2 describes a new fabrication method, simulations, and experimental results 

for µCIT arrays for use in miniaturized mass spectrometers. The µCIT arrays were fabricated in 

a silicon-on-insulator (SOI) substrate, and a variety of trap geometries were incorporated into a 

single µCIT array chip to allow fast iterative measurements of the differences in the mass 

spectra from µCITs with different ratios of half-axial to half-radial dimensions (z0/r0). The chip 

dimensions were approximately 1.0 cm x 1.5 cm x 0.1 cm. A series of z0/r0 were chosen in 

incremental steps of 3% for each array by changing r0 from 308 to 392 µm while keeping z0 

fixed at 355 µm, resulting in a range of z0/r0 from 1.16 to 0.92 (nine geometries in total). 

Simulations were performed in SIMION 7.0 to determine the optimum range of µCIT z0/r0 

to be fabricated and tested, by producing simulated mass spectra from µCITs with a variety of 

z0/r0 to evaluate predicted mass resolution. Following the simulations, we fabricated the arrays 

of µCIT geometries in SOI wafers using DRIE to create the cylindrical structures and surface 

metallization to create ion trap electrodes. Symmetrical arrays of half µCITs were fabricated, 

diced, and bonded back-to-back to obtain complete µCIT array chips containing all nine 

geometrical ratios (z0/r0), which are referred to in this chapter as the “gradient arrays”. The 

bonding process provided approximately 5-µm alignment accuracy between the two arrays of 

                                                            
2 This chapter was published in International Journal of Mass Spectrometry (DOI: 

10.1016/j.ijms.2014.06.032). Permission is included in Appendix A. 
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half µCITs, and the resulting arrays had flat µCIT endplate electrodes with < 3 µm upwards bow. 

We discuss several critical issues encountered during process development, such as 

delamination of the buried oxide layer, excessive wafer bow, high capacitance, and ring-

electrode wall verticality, along with solutions to mitigate these issues. Mass spectra were 

obtained experimentally from each trap geometry, and µCIT performance was found to follow 

the trend with respect to z0/r0 observed in the simulations. Experimental efforts indicated that 

axial modulation on one endplate electrode was required to remove spurious peaks in the mass 

spectra (caused by higher-order multipole contributions to the trapping electric field), and 

resulted in mass spectra with full-width-at-half-maximum peaks of 0.4 atomic mass units. 

3.2 Background 

It is important to develop low-power, potentially handheld, high-performance chemical 

analyzers to monitor and characterize naturally occurring and man-made chemicals, their 

(re)distributions and transformations [65]. Mass spectrometry has evolved as a powerful and 

versatile chemical analysis tool, and has been tailored to fit a broad spectrum of applications. 

These applications range from laboratory-based clinical measurements, drug testing, analysis of 

food products, pharmaceutical screening measurements, and environmental chemical analysis. 

There has been much activity to miniaturize MSs for prolonged in situ measurements at remote 

or hazardous locations, where it is costly for humans to collect samples and deliver to a 

laboratory for analysis [66]. For example, field-deployable mass spectrometers (MSs) have 

been used for in situ measurements of ocean chemistry [67, 68], offsite volcanic monitoring [69], 

space explorations for biogenic chemical compounds that could indicate extraterrestrial life [70], 

and studies of comet chemical compositions [71, 72].  

Most commercially available portable MS systems are somewhat miniaturized and 

ruggedized versions of conventional, laboratory-style instruments, which have been tailored for 

in situ chemical analysis. Further miniaturization based on current technologies gets 

increasingly difficult, and calls for radically different design methods and new integration 
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approaches for very small components. Such approaches are necessary to significantly reduce 

the footprint of all the components, the vacuum housing, and the electronic circuits. Ion trap 

MSs are a good choice for miniaturization because of their inherent tolerance to relatively high 

pressures, and because of their scalability without degradation of mass spectral resolution 

compared to other types of mass analyzers, such as time-of-flight (TOF) MSs and double-

focusing sector MSs [73]. Bonner et al. [17] studied the trapping performance of cylindrical ion 

traps, finding them to generate an effective electric trapping potential quite similar to that of 

quadruple ion traps (QITs) with hyperbolic electrodes. Thus, for ease of machinability, some 

groups have chosen to use cylindrical ring electrodes instead of hyperbolic ones, and have 

demonstrated a similar potential distribution [74] and device performance [75] for certain radius-

to-length ratios (r0/z0) [53]. It has been shown that as the r0 of an ion trap is reduced, the 

corresponding RF voltage required on the ring electrode to scan out an ion drops as the square 

of the radius, if the RF frequency is held constant. And for a given trap capacitance, the power 

required drops by the square of the RF voltage. For very small traps, however, the effective 

potential well depth becomes too small at very low voltages, so the frequency is typically 

increased to allow operation at higher voltages, and the overall power consumption is increased 

accordingly [32]. Still, a tremendous power savings can be accomplished by using very small 

ion traps.  

During miniaturization, however, geometrical imperfections, such as surface quality, 

alignment of the electrodes, and dimensional variations of miniature µCIT MSs, become 

relatively more prominent, significantly affecting the trap performance [76] . Therefore, it 

becomes increasingly important to fabricate these miniaturized structures with high precision. At 

the sub-millimeter scale, conventional machining of metals becomes less practical, especially 

for complex 3-D structures, and could be expensive, requiring special machining capabilities, 

such as electrical discharge machining. For a variety of millimeter-scale mass analyzers, 

several less conventional machining methods have been investigated, such as stereo 
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lithography of photosensitive resin to build rectilinear ion traps [77], photolithographically 

patterned metal surface electrodes on ceramic discs to build a halo ion trap [78], and 

compression molding of low-temperature co-fired ceramics (LTCCs) to build small CITs [59]. 

Each of these technologies offers a unique set of advantages over conventional machining, 

depending on the choice of substrate and mass analyzer. 

Reducing the size of ion-trap-based MSs also results in lower ion storage capacity, 

which can lead to lower sensitivity or degradation in mass resolution due to space charge 

effects (i.e., Coulomb interactions of the ions) if the traps are overfilled. One recent study on the 

miniaturization of ion traps estimated the total number of analyzable ions scales as the 

1.55-1.75 power of the CIT radius [24]. Several groups [79, 80] have proposed building arrays of 

miniature CITs that can be operated in unison, to make up for the loss in sensitivity of a single 

miniaturized CIT. In addition, new capabilities offered by arrays of CIT MSs, such as parallel 

analyses of chemicals, have been proposed and investigated [81].  

Another technology that has been applied to achieve extreme miniaturization is MEMS, 

due to the ease of building extremely miniature structures with high precision. Components and 

subsystems of the MS system that have been built using micromachining technologies include 

sub-millimeter ion trap MSs [32, 78, 82-84], a surface microstructure miniature MS [85], time-of-

flight analyzers [86] , quadrupole mass filters [87, 88] , Wien filters [89], micro pumps [90], and 

small electron [91] and ion sources [92]. A complete MS system, fully integrated with the MEMS 

approach, has also been demonstrated to build a highly miniaturized chemical sensor [34]. The 

key advantage of the MEMS approach is that it offers high-precision structures and allows 

integrated assembly techniques that are not achievable by assembling machined metal 

components. High-aspect-ratio etching, such as DRIE [93], can be used to produce 3-D 

structures (e.g., cylinders and trenches) in Si. A MEMS approach can ultimately be cost-

effective through batch fabrication, since multiple micro-devices can be processed 

simultaneously on a batch of 100-mm diameter Si wafers. Monolithically designed ion trap 
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structures could also offer extra mechanical ruggedness and higher alignment accuracy with 

less stringent assembly requirements [82].  

CITs are an ideal candidate for miniaturization and microfabrication due to their relatively 

simpler geometry compared to quadrupole ion traps with hyperbolic electrodes. A wide range of 

µCITs with sizes of 1 to 700 µm r0 have been micromachined over the past decade. One 

approach was to use iterative sputtering of tungsten to form the trap electrodes of ion traps with 

1 - 10 µm r0. These µm-scale traps were found to have very high capacitance due to close 

proximity of the trap electrodes [32]. Another group fabricated 20-µm r0 ion traps in silicon; these 

traps successfully obtained a mass spectrum of Xenon (Xe) gas from an array [82].  

We have investigated and reported on various substrates for fabrication of miniature 

CITs with high precision. Low-temperature co-fired ceramics [59], ceramics (alumina 99%), and 

Si wafers [83] are substrates that we have successfully used to construct miniature CITs. This 

chapter focuses on the fabrication and testing of a new μCIT array design in silicon-on-insulator 

(SOI) substrates, incorporating a variety of μCIT sizes (r0/z0) in each array. The design allowed 

for faster iterative testing to analyze the trap performance and to identify the optimum 

geometries. Here we report on the design, simulation, fabrication, and testing of these μCIT 

arrays.  

3.3 Device Design 

The design approach adopted to create this generation of µCIT arrays is a derivative of 

our previous designs [83]. An SOI substrate was chosen instead of Si to: 1) incorporate a 

thicker endplate electrode for better mechanical ruggedness, 2) incorporate a thicker SiO2 layer 

for lower capacitance and higher breakdown voltage, and 3) enable a simpler fabrication 

process. The wafers were custom ordered from Ultrasil and MEMS Engineering with a buried 

oxide layer (BOX) of 10 µm sandwiched between a 350-µm-thick Si layer (called “handle Si”) 

and a 40-µm- thick Si layer (called “device Si”). Figure 17 illustrates the structural details of two 

chip-scale arrays of half µCITs that were bonded back-to-back to obtain a complete µCIT array.  
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Figure 17 Cross-sectional schematic of the gradient μCIT array fabricated in an SOI substrate. 

To fabricate a range of geometries (z0/r0) in the same SOI chip, a series of r0 with a 3% 

increment in r0 was incorporated into the mask design. Since the wafer thickness was constant 

for an SOI wafer, this resulted in a z0/r0 range (1.16 to 0.92). Each array consisted of nine 

columns of three identical traps to investigate the uniformity of MEMS structures and chip 

boundary effects. To investigate the effect of aperture size on the trapping performance, two 

sets of the gradient arrays (each with 3 x 9 traps) were incorporated within a single SOI chip: 

one with aperture size 30% of r0 and the other with 45% of r0. The overall footprint of each SOI 

chip was approximately 1 x 1.5 cm, and fabrication was performed using a 100-mm diameter 

SOI wafer. Table 1 lists the design details for each gradient µCIT array, where z0 is the sum of 

handle Si wafer thickness (zb) and the gap (ds) between the ring and endplate electrode, while 

de is the endplate electrode thickness. 
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Table 1 Design details of the µCIT array 

 

3.4 Simulations 

Simulations were performed in SIMION 7.0 to determine the anticipated spectral quality 

of a range of trap geometries to guide the design and fabrication of μCIT arrays. For each trap 

geometry, we generated separate trap files that conformed to the trap designs described in 

Section 3.3. A user program rendered and randomized the initial conditions of argon (Ar) ions 

(mass 40) at the start of the simulation. To simulate kinetic cooling of ions through ion-neutral 

interactions, a hard sphere collision model was used, with He as the buffer gas. The ions were 

initially trapped and cooled for 4-7 ms by applying an RF potential on the ring electrode, and 

then ejected using the mass selective instability mode by ramping the RF voltage amplitude. 

The ion number, mass, and time of flight were recorded and used to generate the simulated 

mass spectra. This process was repeated for each of the trap geometries. Table 2 shows the 

simulation parameters used. 
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Table 2 Parameters used for simulations in SIMION 

 

3.5 Fabrication 

The fabrication approach described in this chapter is a modification of the process 

described in chapter 2, used to create our previously reported Si-based µCIT arrays [83], to 

adapt the process for SOI substrates; Figure 18 provides a comparison of the process flows. 

The fabrication process is briefly described here; a more detailed description is available in 

chapter 2. 

 

Figure 18 A comparison of the process flow using Si wafer vs SOI wafer. 

To etch the endplate in the device Si of the SOI wafer, UV photolithography was 

performed in an AVG aligner AV620 to transfer the endplate pattern from the optical mask to a 
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PR layer. Using PR (Futurrex PR1-2000A) as the hard mask in Unaxis DRIE, the device Si was 

anisotropically completely etched using DRIE in the regions where PR was developed (i.e., 

removed). This resulted in a cylindrical pattern of endplate apertures in the device Si and 

exposed the BOX layer. Photolithography was repeated on the opposite side of the wafer using 

a negative PR (Futurrex NR9-3000PY) to transfer the ring electrode pattern on the handle Si 

layer. A blanket layer of 120 nm thick aluminum (Al) was sputtered in an AJA ATC 1800 

sputtering tool. The developed PR was stripped off using acetone to perform Al lift-off. The 

patterned Al layer was used as a hard mask in DRIE to etch the handle Si (350 µm) 

anisotropically using 630 cycles of the Bosch process [93].  

At this stage, the BOX layer was exposed from both sides at the bottom of the ring and 

endplate cylinders. A time-controlled etch in hydrofluoric acid (HF) was performed to remove the 

BOX layer in the cylinders. This also created a 10-µm undercut in the BOX layer as the HF etch 

was isotropic in nature. An additional 5-min HF etch was performed to increase the undercut to 

15 µm. Later, Cr/Au layers of 50/250 nm were deposited on both sides of this processed SOI 

wafer, coating the flat endplate layer (device Si), the vertical Si cylinder walls, and the flat 

handle Si surface to obtain conductive cylindrical geometries. The individual halfCIT arrays were 

then diced from the wafer in a rotating diamond-blade-type dicing machine (Kulicke & Soffa 

model) and bonded back-to-back in a “PICO” FineTech flip chip bonder. An optical system was 

used to manually align the endplate apertures with the ring cylinders using a micron precision 

stage. Thermal compression bonding of the Au-to-Au layers was performed by compressing the 

two structures together under 0.8 MPa pressure at 320° C. This resulted in complete µCIT 

arrays. The individual CIT arrays were tested for electrical isolation between the ring and the 

two endplate electrodes. Then, capacitance was measured in a probe station using an Agilent 

4263B LCR impedance meter. 

The fabricated µCIT arrays were mounted on one side of a custom-designed, Au-coated 

3.5 x 3.5 cm printed circuit board (PCB) using silver epoxy. The PCB was designed with a 
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center window cut-out for electron and ion transmission, and had four holes on the four corners 

for mounting to a custom vacuum flange. Electrical connections from a µCIT array to Au 

connection strips designed on the PCB were established using wire bonding of a 25-µm 

diameter Au wire in a wire bonder (Kulicke & Soffa 4524).  

3.6 Experimental 

Figure 19 illustrates the experimental setup used to test the gradient µCIT arrays. The 

vacuum system consisted of a custom-designed stainless steel (SS) vacuum chamber (6x4x4 

inches3) with three openings machined to provide for the installation of ISO 63 flanges. A 

rasterable electron gun (Kimball Physics ELG-2) was mounted on one flange, and the Turbo 

Pump (Varian V70) was mounted on the second flange backed up by a roughing pump (KNF 

UN813-4ANI). The third flange held the ion optics assembly, which, when installed, was in line 

with the electron gun.  A metering valve (Cole Parmer M2T1) provided for the introduction of 

gas directly into the chamber. On the back side of the gradient µCIT array, a chevron stack of 

micro-channel plates (MCP) (Burle APD 2 MA 18/12/10/12 40:1 MP) was installed to detect ion 

current. 

 

Figure 19 Rendering of the µCIT array mass spectrometer test setup. 

The signal from the MCP was amplified using a current amplifier (Advanced Research 

Instruments PMT-5), which provided a response time of 1.2 µs at an input sensitivity of 1 µA/V. 

The signal from the current amplifier was recorded on an oscilloscope (Le Croy 9354A) and 
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saved to generate the mass spectrum in a user-written MATLAB program. A continuous flow of 

the analyte was introduced into the chamber through a capillary (360-µm od, 50-µm id, 25-cm 

length), with the exit of the capillary placed close to the µCIT array to introduce analytes near 

the traps. 

To investigate the performance of each trap in the array, the x-y controls of the electron 

gun were used to direct the electron beam at the center of each trap. Ions were created in the 

µCITs, one trap at a time, to obtain a mass spectrum from each µCIT separately. The trigger 

sequence for the ionization cycle, RF voltage ramp, and detector voltage was created using a 

Stanford DG535 pulse generator. 

To create the trapping RF voltage and ramp, a sinusoidal signal was generated by one 

channel of a waveform generator (Wavetek 195), was modulated in amplitude by a positive 

ramp signal from another channel, and was then fed into a linear power amplifier. The RF 

voltage was applied to the ring electrode of the µCIT array using a custom-built inductor coil, 

which was introduced into the circuit (the µCIT array chip had an equivalent total capacitance of 

540 pF) to drive the circuit in a parallel resonance mode. The inductor coil was adjusted to tune 

the inductance so as to obtain resonance in the frequency range used for simulations. Both of 

the endplate electrode plates were initially grounded. Ions were ejected sequentially during the 

RF voltage ramp according to their m/z ratio, and the ion current was detected and amplified by 

the MCP detector and amplifier.  

Axial modulation via monopolar resonance excitation was used to improve mass 

resolution and to remove spurious peaks from non-linear resonances by applying a small RF 

signal (in the range of mV) at a fraction of the ion secular frequency (at ejection) to the endplate 

electrode closest to the MCP detector using another channel of the waveform generator. Table 

3 shows a detailed list of the µCIT array operation parameters. 

 
 



 

39 
 

Table 3 Operating parameters for the gradient µCIT array 

 

3.7 Results and Discussions 

3.7.1 Simulations 

Figure 20 shows several examples of simulated mass spectra of Ar (mass 40) for a 

series of µCIT geometries with 30% r0 endplate apertures without using axial modulation. From 

this selection, it is evident that z0/r0 in the range of 0.94-0.97 generates the best spectral 

resolution and signal intensity. Peaks from non-linear resonances are also visible in the spectra, 

in which ions are ejected at a qz in the stability diagram lower than the boundary ejection (qz = 
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0.908) [94]. Simulated results from µCIT geometries with 45% r0 endplate apertures showed 

similar trends; they are not shown here to avoid redundancy.    

 

Figure 20 Simulated mass spectra of Ar (mass 40) recorded using a range of µCIT geometries 
(z0/r0: 0.918 to 0.999) without axial modulation. 

3.7.2 Fabrication 

3.7.2.1 Delamination Issues 

As shown in Figure 21, partially floating endplate layers were obtained during µCIT array 

fabrication in the SOI wafers with a 10-µm BOX layer (purchased from Ultrasil). Initially, we 

believed that the HF etch rate was higher than expected and had created an excessive BOX 

layer undercut. However, SEM analysis of a cross-section of the floating endplate region 

revealed that a delamination occurred at the SiO2-SiO2 interface of the SOI substrate. 

 

Figure 21 Left: Wyko optical surface analysis shows upwards bow of about 3 µm from the 
center of each array to the side, indicating that the endplate could be partially (or fully) floating; 
Right: SEM of an SOI wafer cross-section, diced at the center of a µCIT ring electrode cylinder, 
showing the delamination between the two BOX layers. 
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This delamination was related to the vendor fabrication method for these SOI wafers. To 

form an SOI wafer, one Si wafer is usually oxidized and bonded to another Si wafer using 

anodic bonding, which is the industry standard. With this approach, however, the BOX layer is 

limited to 4 or 5 µm in thickness. Since we requested a 10-µm BOX layer, the SOI wafers were 

made by bonding together two oxidized Si wafers, each with an SiO2 layer thickness of 5 µm, 

using SiO2-to-SiO2 bonding. This apparently resulted in poor bond strength and high stress 

between the wafers. Consequently, once the HF etched the first 5 µm of the first BOX layer, it 

appeared to very rapidly delaminate due to residual stress along the BOX-to-BOX interface.  

 

Figure 22 3-D surface profile of the endplate layer, showing that the device Si layer is attached 
to the handle Si layer by BOX, and showing a slight upward bow at the apertures. 

To resolve this issue, the BOX was partially etched up to 4 µm in HF, and the remaining 

BOX was etched in RIE to avoid lateral etch and rapid delamination. Figure 22 shows the 

endplate surface profile of the half-µCIT structure created using this method. The half-µCIT 

structure shows a very flat membrane and a 1-to-2 µm upward bow at the edge of the apertures. 

3.7.2.2 Excessive Wafer Bow 

Another issue with the 10-µm BOX layer wafers was an excessive bow in each wafer. 

These wafers had a 5-µm backside thermal oxide (TOX) layer that was not required for our 

process, so it was removed during processing. During fabrication of the µCIT arrays using these 

SOI wafers, the bow increased to about 200 µm when the TOX was removed, leading to 

significant problems during the second lithography. To overcome this problem, the TOX layer 
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was not removed for subsequent wafers, and instead was used as the hard mask for the 

through-wafer DRIE process.  

3.7.2.3 µCIT Array Capacitance 

Due to limited BOX thickness, which separated the endplate and ring electrode surfaces, 

and the larger overall size of the gradient array compared with our previous designs [95], the 

capacitance was expected to be higher for these devices. The measured capacitance of the 

gradient array chips was approximately 540 pF. It would be desirable to achieve a larger 

dielectric gap between the endplate and ring electrode surfaces to reduce the capacitance, but 

with this fabrication approach, the gap was limited by the thickness of the BOX layer. A way to 

achieve a larger separation between these components would be to use three substrates, two 

for the endplate electrodes and one for the ring electrode, and then create a large stand-off by 

bulk etching much of the Si in endplate substrate, leaving much smaller surfaces for bonding the 

three components together.   

3.7.2.4 Fabrication Tolerance 

Radii of etched ring electrode cylindrical structures were measured with an optical 

microscope to compare with the designed radii in the optical mask. Optical microscope 

measurements indicated a 3-µm increase in the radial dimension, which was attributed to the 

combined effect of diffraction in thick PR during photolithography, and a hard mask undercut in 

DRIE. The result was a micromachining tolerance of about 0.4% of r0.  

3.7.2.5 DRIE Wall Verticality and Roughness (KOH) 

 Although the DRIE Bosch process is anisotropic, the verticality of the walls depends on 

factors such as the loading effect (how much area is being etched), the aspect ratio (the etch 

depth to width ratio), and the type of etch stop layer used [93]. Cylinder walls with an angle 

greater than 89° were observed in the ring electrode structures etched using the Bosch process. 

Residual Si whisker-like particles observed at the end of the DRIE step were typical of the DRIE 
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process when etching deep topography. A short KOH etch of 30 s was used to successfully 

remove the Si whiskers. 

3.7.2.6 Bonding Alignment Accuracy 

Two arrays of half µCITs are shown in Figure 23 next to a USA nickel coin for size 

comparison. These were then bonded back-to-back to form a complete µCIT array chip.  

      

Figure 23 Left: Optical image of the two symmetrical µCIT array half-structures before bonding. 
Right: Complete µCIT array obtained after bonding the two arrays of halfCITs mounted on an 
Au-coated PCB substrate. 

The overall alignment accuracy of the endplate apertures and ring electrodes depends 

on two steps: (1) the alignment accuracy of the ring electrode pattern to the endplate pattern 

established by backside alignment during the second photolithography step (typically ±2-3 µm), 

and (2) the alignment accuracy of the two half arrays of µCITs when bonded together in the flip 

chip bonder (typically ±5 µm). The second alignment step was also critical to obtain continuous 

cylindrical walls inside the ring electrodes at the interface of the two half-ring electrodes, and to 

align the two endplate apertures axially with the ring electrode. Since the flip chip bonder uses a 

microscope and an XYZ stage, the alignment accuracy tends to be dependent on how well the 

structures are aligned by eye when looking into the microscope. Figure 24 shows the depth 

profile of the µCIT array with the two arrays of half µCITs bonded together. Figure 24 (left) 

shows an example of poor alignment, indicated by the reflection (in blue) off the edge of the 

lower endplate aperture during depth profile.   
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Figure 24 Depth-profile performed using an optical profilometer from the top endplate aperture 
to the bottom aperture to investigate the alignment of the two bonded arrays of half µCITs. Left: 
example of bad alignment; Right: example of good alignment at higher magnification.   

Figure 24 (right) shows an example of good alignment, indicated by the absence of the 

edge of the bottom aperture, suggesting that the two apertures and the ring electrode are well 

aligned within ca. 5 µm with respect to each other. 

3.7.3 Measurements 

A series of Ar spectra were obtained by directing the electron beam at the center of each 

trap in the gradient µCIT array. The relatively high capacitance (540 pF) of the gradient array 

µCIT chips limited the voltage that could be applied to the ring electrode at the RF frequencies 

required, due to the limited output power of our RF amplifier (6 W) and the LC resonance circuit 

used in these experiments. Thus, the upper mass range attainable was approximately 50 amu. 

Table 3 shows the experimental parameters used to obtain the spectra shown in Figures 25 

through 29. 

Figure 25 shows the spectra obtained from each trap in a gradient array (with 30% r0 

endplate apertures) without axial modulation. The RF voltage during the RF ramp (35-70 Vpp) at 

the time of Ar ion ejection was recorded to be 52 Vpp These experimental results show similar 

trends to the simulated results in Figure 20, indicating that the z0/r0 ratio 0.97 provides mass 

spectra with fewer spurious peaks from non-linear resonances created by higher-order 
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multipoles in the electric potential distribution inside the trap. This indicates that this z0/r0 ratio 

most faithfully reproduces the potential distribution of a quadrupole ion trap with hyperbolic 

electrodes. 

 

Figure 25 A series of Ar spectra obtained without axial modulation from each trap in the 
gradient µCIT array with the 30% ro aperture size. 

Figure 26 shows the mass spectra from the three traps with z0/r0 = 0.97 (taken from 

Figure 25) overlaid on the same graph.  
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Figure 26 An overlap of Ar mass spectra obtained from the three traps with the same z0/r0, 
showing a time shift in the spectra.   

These traps should yield identical results, but instead show a time shift in the spectra. 

The relative time shift is believed to be caused by a slight misalignment in the bonding process 

and an inherent non-uniformity associated with the micromachining process used to fabricate 

these structures. Figure 27 shows the series of Ar spectra obtained using axial modulation on 

one endplate.  

 

Figure 27 Experimentally obtained spectra of Ar for a range of z0/r0 in the gradient µCIT array 
using axial modulation.   

These experimental results corroborate previous findings [83] that predict the optimum 

geometry to be z0/r0 ≈ 0.97. Figure 28 shows a mass spectrum of doubly charged krypton (Kr2+) 

obtained from a µCIT with z0/r0 = 0.97 using axial modulation. The spectrum shows clearly 
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resolved stable Kr isotopes, and also contains peaks from the residual gas in the vacuum 

housing. 

 

Figure 28 Experimental mass spectral data from a single trap (z0/r0 = 0.97) in the gradient µCIT 
array. Axial modulation was used to obtain better-than-unit-mass resolution. Doubly charged 
krypton ions correspond to masses 82, 83, 84, and 86. 

 

Figure 29 Partial mass spectrum of TCE, showing the stable isotopes of chlorine. 

Figure 29 is the mass spectrum of fragments of trichloroethylene, showing the stable 

isotopes of chlorine (35Cl and 37Cl). 
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3.8 Conclusions and Future Work 

This chapter describes a novel design and fabrication method for creating µCIT arrays 

for use in miniaturized mass spectrometers. A series of z0/r0 were incorporated into each µCIT 

array chip for rapid and efficient testing to determine optimum µCIT geometries. Experimentally 

obtained spectra indicate a better-than-unit-mass resolution using axial modulation in mass-

selective instability mode in a single trap. These results compare well with simulations 

presented here and previously. Although design requirements of such high-precision sub-

millimeter structures are well met using MEMS technology, issues like excessive stress and 

wafer warp induced by thick SiO2 layers on Si need to be carefully accounted for in the design 

structure. The µCIT array chips had an undesirably high capacitance, which was attributed to a 

large area of overlap of electrodes and extremely close spacing, as dictated by the current 

design and by limitations of oxide layer growth. From the SOI process development, we learned 

that it is critical to know exactly how the starting substrate was fabricated to avoid undesirable 

effects during processing. 

Future improvements in µCIT array designs and processing methods should address 

capacitance, voltage breakdown, and alignment issues. A three-wafer design, in which endplate 

electrodes and ring electrodes are fabricated separately and bonded together, could address all 

of these issues. Large areas of the endplate electrodes could be bulk-etched to increase the 

gap between the endplates and ring electrodes, while leaving only small areas with a small 

spacing for bonding. The larger gap will decrease overall capacitance and increase breakdown 

voltage. Also, by forming each ring electrode in a single wafer, alignment precision can be less 

critical. In the reported approach, a misalignment would significantly distort the electric field at 

the center of each trap. To further increase sensitivity for a given µCIT array “footprint”, traps 

could be packed more closely (e.g., in a hexagonal orientation). This would also help to reduce 

capacitance, since there would be less bulk Si in the ring electrode chip. Better alignment 
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accuracy can be attained by using dedicated alignment marks for the flip chip bonding process, 

or by using passive alignment via mechanical locking structures.  

Furthermore, to compensate for possible geometric variations across the array and the 

resultant shift in the spectra among identical traps, it would be beneficial to detect ion currents 

from each trap independently. Post-processing of the ion currents from individual traps could 

minimize this shift to obtain high-resolution mass spectra. A multi-anode detector array can be 

designed to accomplish this. Lessons learned from this generation of µCIT array are being used 

in ongoing work to design a high-density µCIT array for a lower-power, higher mass-range µMS. 
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CHAPTER 4 

PLANAR ION FUNNEL 

4.1 Abstract  

The novel planar ion funnel (PIF) design presented in this chapter3 emphasizes simple 

fabrication, assembly, and operation, making it amenable to extreme miniaturization. 

Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a 

gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was 

fabricated on a 35 x 35 mm custom-designed PCB with a center hole for ions to pass through, 

and a series of concentric circular metal rings of increasing diameter on the front side of the 

PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential 

divider that was soldered on the back of the PCB. The PIF was tested at 5.5E-6 Torr in a 

vacuum test setup that was equipped with a broad-beam ion source on the front and a MCP ion 

detector on the back of the PIF. The ion current recorded on the MCP anode during testing 

indicated a 23x increase in the ion transmission through the PIF when electric potentials were 

applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel 

design with a much smaller footprint and simpler driving electronics than conventional 3D ion 

funnels. Future directions to improve the design and a possible micromachining approach to 

fabrication are discussed in the conclusions. 

 

                                                            
3 This chapter was published in Review of Scientific Instruments (DOI: 10.1063/1.4897480). 

Permission is included in Appendix A. 
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4.2 Background 

 A variety of methods for sample ionization and the efficient transfer of ions into mass 

analyzers have contributed to the widespread use of mass spectrometry in chemical, biological, 

and medical applications. The use of ion optics to efficiently transport ions is a critical 

component in the construction of many types of analytical instruments involving ionization 

methods, such as electrospray ionization mass spectrometry [96], ion mobility spectrometry 

(IMS) coupled with mass spectrometry [97-99], laser ablation [100], in-vacuum matrix-assisted 

laser desorption ionization (MALDI) [101], atmospheric pressure MALDI [102], Fourier transform 

ion cyclotron resonance [103, 104], and subambient ionization in quadrupole mass spectrometry 

[105]. The operation and efficiency of such ion transfer optics directly impact overall sensitivity 

[106] and could impact the resolution of the analytical instrument, as is the case for IMSMS [99]. 

Some examples of ion transmission devices are skimmers, inlet multi-capillary tubes[107], RF-

only multipole ion guides [108, 109] and a combination of these passive and active transmission 

components [110]. One of the more important functions of ion optics in such instruments is to 

transport the ions by “funneling” them from a broad-beam source into a more narrowly defined 

beam to efficiently introduce the ions into an analytical device, such as a mass analyzer [100], 

to obtain higher sensitivity. Ion funnels are also used to transport ions from a high-pressure 

region into a lower-pressure region, using a differential chamber vacuum housing, as is often 

used in a field-deployable ion trap mass spectrometer [111]. 

 Ion funnels provide a major improvement in ion injection efficiency and have become 

more prevalent at the front end of different types of mass spectrometers, where conventionally, 

a small orifice, commonly called a skimmer, is used to limit the conductance between different 

vacuum stages. The most popular design of an ion funnel, derived from the stacked radio 

frequency (RF) ion guide [112], uses a set of concentric annular plates of decreasing diameter, 

stacked together with a spacer, forming a funnel-like 3D cone geometry. The ions are funneled 

by applying either an electrostatic (DC) [97] or by a combination of electrodynamic RF potentials 
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and DC potentials [113, 114]. Transmission efficiencies of near 100% have been demonstrated 

in simulated models and validated through experiments at intermediate pressures of 1-20 Torr 

[115]. Using the popular 3D conical stack of electrodes, a passive ion funnel at atmospheric 

pressure has also been reported [116]. It makes use of isolated annular plates of decreasing 

diameter. Ion focusing is achieved by the potential generated when the charge builds up on the 

electrodes as they are exposed to the ion flux.  

 This chapter reports on an electrostatically driven PIF that was constructed in a two-

dimensional plane, making it amenable to further miniaturization. Instead of the conventional 

method of stacking a series of annular plates of decreasing internal diameters, a series of 

concentric rings, with successively smaller diameters, patterned on a single substrate, was used 

to focus the ions towards a center ion transit aperture. A voltage divider circuit soldered onto the 

back of the plate was used to apply a gradient of potentials on each successive concentric ring 

to generate the potential distribution in front of the concentric rings. The use of a gradient of 

electrostatic potentials to focus the ions in high vacuum applications simplifies the driving 

electronics and circuitry, but it is expected that the PIF could also be driven with RF potentials 

making it applicable to low to medium vacuum (>1 mTorr) applications as well. In the following, 

we present the simulations, fabrication approach, test setup, and performance analysis of the 

PIF prototype. Potential methods for optimization and future directions are discussed in 

conclusion.  

4.3 Simulations 

 The design of the PIF was initially modeled and simulated in SIMION [117] ion optics 

software to investigate the focusing effect on low-kinetic-energy (KE) (5-10 eV) ions of atomic 

mass number 28 to represent N2
+. The scale of dimensions for the model was chosen 

considering the scale of the ion source and ion detector to be used to test the prototype PIF, 

and also to ensure a realistically achievable PCB design with reasonable cost to show proof of 

principle. The model consisted of a series of seven concentric electrode rings with decreasing 
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internal diameter, each 0.4 mm wide, with a gap of 0.4 mm between each successively smaller 

ring. The inside diameter of the smallest ring was 3.6 mm, resulting in an opening with a spot 

size of 3.6 mm for ion transmission. A user program was written to apply a geometric series of 

DC voltages. The lowest voltage of 2 V was applied to the smallest ring and the highest voltage 

of 128 V was applied to the largest ring. Figure 30 illustrates the PIF model developed in 

SIMION, and the potential contours when the potentials were applied using the user program. 

Three annular plates were incorporated on the right side (exit) of the PIF, with independent 

potential control, to further collimate the ion beam transmitted through the center hole of the 

PIF. Ions were created 10 mm to the left of the PIF as a group spread across an area of 6 x 6 

mm, symmetrically placed along the center axis of the PIF, with an initial KE of 5 eV in the 

direction normal to the PIF plane. As the group of ions was initialized, trajectories were recorded 

as shown in Figure 31 (left). Figure 31 (right) shows the potential energy contours across the 

model as the ions traversed from left to right. To investigate the acceptance angle, a series of 

simulations were performed by progressively increasing the incident angle of the ion flux with 

respect to the PIF plane. A Gaussian 3D distribution was used as the initial ion flux (1000 ions). 

Acceptance angles up to 1.17 steradians resulted in higher than 33% ion-transmission 

efficiency, for ion spot-size of 1 mm at a distance of 1 mm past the ion-transmission aperture. 

The focal length of the transmitted ions was dependent on several simulation parameters such 

as initial KE energy, angle of incident, ion mass and the gradient and amplitude of voltages 

applied on PIF electrodes. It is also expected that the focal length would be relatively less 

dependent on PIF design factors such as electrode spacing, number of electrodes, electrode 

thickness etc., as long as a comparable potential gradient was applied across the PIF 

electrodes. 
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Figure 31 Left: 3D screenshot of ions being funneled by the PIF and the collimating lenses in 
SIMION; Right: Potential energy view of the PIF model, showing the gradient of potential energy 
across the concentric rings to illustrate the focusing effect. 

4.4 Fabrication 

 Figure 32 shows the prototype PIF, which was constructed using a custom-designed, 

1.6-mm- thick PCB (FR4 substrate) with leadless solder finish for the metal rings. The overall 

PCB was designed to be 35 x 35 mm2 with four holes (1.6 mm dia) on the corners for 

mechanical mounting and alignment with other Kimball Physics eV parts used in the vacuum 

test setup. Figure 32(a) shows the front side of the PIF with the center hole for ion transmission, 

ten concentric metal rings of decreasing internal diameter, and the ground plane. While the 

simulated PIF design has seven rings, the actual prototype has ten rings instead of seven to 

leave room for increasing the area of ion flux, if needed. Through-hole metal-filled vias were 

Figure 30 Left: 3D isometric view of the potential contours due to the gradient of voltages 
applied on the PIF electrodes (A) Right: Cross-sectional view of the PIF electrodes (A) and 
collimating lenses (B, C, and D) generated in SIMION, showing the potential contours. 
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incorporated into the design to electrically connect each concentric metal ring to a voltage 

divider circuit on the back side of the PCB, as shown in Figure 32(b). A network of resistors was 

used to obtain a geometric distribution of potential on the series of concentric rings. Surface-

mount resistors of appropriate values were soldered to the PCB, and the rest of the metal on the 

front side was grounded to reduce the area of the non-conductive surface (FR4 material) 

exposed to the ion flux to keep the charging of the PIF as low as possible.  

 

Figure 32 The PIF constructed for proof-of-principle tests. (a) Front side of the PIF, showing the 
concentric rings with the center ion transmission hole and the outside area plated with metal to 
form the ground plane. (b) Back side of the PIF, showing the voltage divider circuit and test 
points. 

Since the PIF was constructed on a PCB substrate, it was suspected that the insulating 

surface (0.4 mm wide) between the rings would charge up if it were exposed to the ion flux. 

Although it would be ideal to have a highly resistive layer to dissipate the charge while 

maintaining a potential gradient across the concentric rings, the authors did not have strong 

reasons to believe that this would significantly impact the performance of the PIF. If the 

funneling is efficient, then the ions will not reach the PIF surface and will be constantly 

redirected towards the center hole by the potential established via a potential gradient on the 

concentric ring. The charge dissipation, however, would be critical for applications where the 

PIF needs to be operated in a pulsed mode. In that case, the insulating surface could be coated 

with a highly resistive layer, such as Germanium, which would bleed excess charge to ground 

while maintaining the potential on the rings. 
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4.5 Experimental 

 The PIF was tested under vacuum at a background residual gas pressure of 5.5E-6 Torr. 

The test setup was built to fit in a 6 x 4 x 4 inch3 aluminum (Al) vacuum chamber with a turbo 

molecular pump (ATH 30+) and a roughing pump installed to obtain a background vacuum level 

of approximately 1E-7 Torr. The vacuum chamber top plate was equipped with four NW16KF 

electrical feed-throughs, including two high-voltage vacuum feed-throughs and a micro ion 

gauge (Granville-Phillips 354002-YD-T) to measure low pressures. A metering valve was used 

to introduce the gas for ionization into the vacuum chamber.  

 

Figure 33 Cross-sectional rendering of the segmented test setup used to verify the performance 
of the PIF. The section on the left contains the broad-beam ionization source and the ionization 
cell, the middle section contains the PIF, and the section on the right contains the ion detector 
assembly. 

 All the components were installed on two custom-designed Al flanges, as shown in 

Figure 33, mounted onto the top vacuum chamber flange, and were designed to divide the 

inside of the housing into three separate chambers: the ionization chamber, the PIF chamber, 

and the ion detection chamber. This separation ensured that any ions reaching the detector had 

to pass through the PIF center aperture. Holes (12.5 mm dia) were machined in the center of 
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the two plates for ion transmission, while the other regions where the flanges were cut out for 

sufficient gas conductance were covered with a fine nickel mesh (222 LPI) to avoid electric 

potential penetration from one section to the other.  

 To generate a broad beam of ions in the ionization chamber, a broad beam of electrons 

was generated by using a deep ultraviolet (DUV) range light-emitting diode (LED) (SET Inc. 

UVTOP255) coupled with a chevroned stack of two MCPs (Burle APD 2 MA 18/12/10/12 40:1 

MP). This approach to generating electrons has been previously tested in our lab. A DUV LED 

packaged in a TO-39 with flat window, with a beam divergence of 60°, was used to illuminate 

the entire active area (18 mm diameter) of the MCP to generate a broad beam of electrons. The 

front side of the MCP was biased at -1870 V while the potential at the back side of the MCP was 

adjusted relative to ground to produce most electrons in the 60-70 eV energy range, since this is 

the energy typically used in electron impact ion sources. The ionization cell was constructed 

using Kimball Physics stainless steel plates (plates 1, 2, and 3), as shown in Figure 33. In a 

separate experiment, plate 3 was connected to a picoammeter (Keithley 6487) and the average 

current measured by collecting the electrons generated by the MCP was recorded to be 4.8 µA. 

A grid was installed to extract and accelerate the ions from this cell towards the PIF. The 

ionization chamber design and the voltages required to generate a broad beam of ion flux with a 

low KE range was assessed by simulating the ionization chamber in SIMION. For plates 1, 2 

and 3 biased at 5V and the ion extraction grid at -5V and a 3D Gaussian distribution of ions 

across the volume of the ionization chamber, with initial KE 33 meV, an ion flux with average KE 

of 6.9 eV, median KE of 7 eV and a standard deviation of 0.9 eV was generated and directed 

towards the PIF. Out of 1000 simulated ions, 92% of the ions were extracted.   

 The PIF was installed on flange II, as shown in Figure 34. The voltage divider circuit and 

connections on the back side of the PIF are not shown for simplicity. The length of the ion flux 

path in the test setup was kept longer than that in the simulated model to investigate the use of 

lower voltages for focusing the ions. To validate the simulated configuration for the experiments, 
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as mentioned in Section II, only seven of the ten rings were connected to the voltage divider, 

and the remaining three rings were attached to the electrical ground.  

 

Figure 34 a) Test setup, showing the components mounted on the two Al flanges, which are 
installed on the top vacuum flange. The top vacuum flange is inverted from its normal 
configuration when installed on the vacuum chamber. b) Test setup outside the vacuum 
chamber, showing the path of ion flux from the ionization chamber to the PIF. 

4.6 Results and Discussion 

 The performance of the PIF was determined by comparing the total ion flux measured at 

the anode with the voltages on the PIF electrodes off, and then on at various magnitudes. The 

two experiments were performed in direct succession to minimize changes in operating 

conditions, such as background pressure, temperature, and electron flux. Air was introduced 

into the chamber through the needle valve, and the valve position was adjusted to keep the 

pressure stable at 5.5E-6 Torr. Since the background gas was air, it is believed that most of the 

ions formed through EI were N2
+ and O2

+. The DUV LED was operated at 5% duty cycle with a 

pulse period of 10 ms. A potential of -5 V was applied to the ion extraction grid to extract the 

ions towards the PIF chamber.  

 Figure 35 shows the ion signal recorded on the anode with increasing voltages applied 

to the PIF electrodes. With PIF voltage off (0 V), and hence the entire PIF substrate grounded, a 

very small amount of ion flux was detected by the ion detector.   
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Figure 35 Ions detected as they are focused towards the center of the PIF and traverse through 
the center ion transmission hole for a range of voltages applied to the PIF. The signal increased 
as the voltage was successively increased from 0 to 900 V. A maximum signal enhancement of 
23x was observed at 900 V. Inset Figure: Area under the curves representing the total ion signal 
detected for each successively higher potential applied to the PIF outside ring. Maximum gain 
was observed when the potential was increased from the 100 to 400 V range. 

 With the voltage supply at 100 V, a potential of 100 V was applied to the largest ring (the 

seventh, in this case) and geometrically lower voltages (by a factor of 2) were applied on each 

successively smaller ring. The increase in the detector signal indicated that substantially more 

ions traversed through the center hole of the PIF with increased PIF voltages. The focusing 

effect increased with higher voltages applied to the electrodes. Figure 35 (inset) shows the total 

area under the respective curves. The ratio of the ion signal detected with PIF off and with PIF 

on (with a maximum voltage 900 V) was measured to be about 23x. Coincidentally, the ratio of 

the area of the center hole to the total area spread for the seven concentric rings was calculated 

to be about 25. Any further incremental increase in the maximum voltage above 900 V did not 

further increase the signal, indicating that most of the ions were being funneled at 900 V. 

Increasing the voltage beyond 1200 V actually decreased the ion signal. One cause of the 
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decrease could be that the potentials on the rings were high enough to start repelling ions, so 

they did not reach the PIF transmission aperture in the center of the PCB. 

4.7 Conclusions 

 A novel PIF has been developed, and initial experiments indicate a strong focusing 

effect for low-energy ions. Signal increase of up to 23x has been measured using DC voltages 

of up to 900 V on the outer ring. The design and operation of the PIF provide an easy path to 

miniaturization, due to its small form factor and simple construction by mounting focusing rings 

and the electronic circuitry on a single substrate. Such a design, with careful optimizations, 

could possibly replace the larger, more conventional 3D ion funnels. Further optimization of the 

design, by using a more compatible fabrication technology, such as micromachining processes, 

is also possible. One way to achieve this would be to construct the PIF on a silicon (Si) wafer by 

sputtering a highly resistive layer on Si, similar to the germanium layer used fabrication of 2D 

“halo ion traps” [57, 118],  to generate a gradient potential rather than a series of discrete 

concentric rings. This would also further simplify the electronics, since no voltage divider circuit 

would be required. In addition, since the PIF focuses ions with different KEs at different 

locations along the axis, the PIF could also be used as an energy filter. The possibility for further 

miniaturization, along with the simpler setup and operation of a PIF, make it a compelling choice 

to be an integral part of miniature analytical instruments for efficient transport of ions. 
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CHAPTER 5 

ONGOING WORK AND FUTURE DIRECTIONS 

5.1 Ongoing µMS Development 

5.1.1 Summary 

 The primary objective of this collaborative research between SRI International (SRI) 

and Goddard Space Flight Center (GSFC) is to demonstrate the capabilities of an entirely 

new class of micro-mass spectrometer (µMS) instruments for use as chemical analyzers in 

space flight missions. 

 The objective of this research is to adapt µMS technology for detection of molecules of 

interest to astrobiology and to demonstrate the µMSs’ ability to measure higher-mass molecules 

(up to 250 atomic mass units). Figure 36 shows a µMS, which will collect interplanetary dust 

particles and gases from cometary coma on a sample collector plate. Gases can be 

continuously sampled. After the sample isolation chamber (SIC) interlock is closed, the sample 

collector plate can be heated slowly, to desorb molecules with lower vapor pressures from the 

plate or from dust particles collected on the plate, for analysis. Upon desorption of the 

chemicals, molecules flow into an array of µMSs, where they are ionized with a special electron 

ionization source using UV light. The ionized molecules are then mass analyzed and detected 

by a MCP with a multi-anode system. We will demonstrate the µMS prototype instrument’s 

ability to detect and characterize water and compounds of prebiotic relevance, such as those 

emitted from jets or forming on the surfaces of comets. The proposed instrument will weigh 

1000 g; its size will be 10x10x10 cm3 with a SIC of 1x1x2 cm3, and it will have a low power 

consumption of 4.5 W. 
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Figure 36 µMS cometary sampling concept device. 

5.1.2 Simulations 

Ion optics simulations were performed in ion optics software SIMION 8.0 to investigate 

two aspects of the µCIT geometry. 

5.1.2.1 Simulation 1: Optimum Geometry (z0/r0)  

 For a fixed 60-µm gap between the endplate electrode (EE) and ring electrode (RE), a 

series of simulations were performed for a range of r0, keeping z0 constant. This series allowed 

us to measure and compare mass spectra for z0/r0 ranging from 0.92 to 1.26. 

 

Figure 37 µCIT model in SIMION. 
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5.1.2.2 Simulation 2: Effects of Etched Wall Verticality 

 The motivation to investigate the effects of verticality is that the wall of the cylindrical 

hole of RE etched in Si using deep reactive ion etching (DRIE) tends to have a slight angle 

instead of being exactly 90°. Adjusting the process conditions in DRIE allows us to obtain near 

90° (almost vertical), but in some cases, 88° and 86° were also measured at GSFC. Beside the 

DRIE conditions, the angle is also affected by any change in the mask or the type of substrate.  

To understand the effect of varying wall verticality, a series of simulations was performed 

(Figure 38) using the most optimal ratio as identified by simulations in section 5.1.2.1. The angle 

was varied from 90° to 80° in steps of 2°, and the simulated mass spectra were recorded for 

ions ejecting on both sides of the µCIT model.    

 

Figure 38 Modeling the µCIT geometry in SIMION for varying cylinder wall verticality 
simulations. 

5.1.3 Fabrication 

  A three-electrode integration approach was adopted to build a complete µCIT array chip 

at NASA GSFC. This approach allowed flexibility in the range of gaps that could be incorporated 

between the three electrodes. The gap is a critical design aspect of the µCIT array and dictates 

the operational specifications of the µCIT. A 60-µm gap was chosen to avoid electrical 

breakdown due to high electric fields caused by anticipated particulate contamination and RF 

voltages required to operate the µCIT chip.    

  The fabrication process was broadly divided into three process steps – RE fabrication, 

EE fabrication, and bonding – to form the complete µCIT array chip as shown in Figure 39 
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(right). Bulk etching in Si was performed using DRIE for all three CIT electrodes. To obtain a 

µCIT array chip design with low capacitance and high electrical breakdown between the three 

electrodes, a 2 µm thick silicon dioxide (SiO2) layer was thermally grown on all 3 electrodes 

followed by a selective metallization step. The micromachined and metallized electrodes were 

bonded together in a flip chip bonder using optical alignment. The obtained µCIT chip was 

packaged and delivered to SRI for testing. 

 

Figure 39 (Top) Cross-sectional view of the µCIT chip; (Left) SEM of etched structures in Si; 
(right) optical image of a complete µCIT array chip. 

5.1.4 µMS Architecture 

  We implemented the µMS design in a high-vacuum test setup to build an operational MS 

system. All ion optics components were incorporated in a custom-designed ULTEM 2100 

package (later to be replaced with ultra-high vacuum- compatible ceramics) with the volume of 

10 cm3. Figure 40 shows the 3D model of the µMS integration approach and the µMS test setup 

built to be fitted into a conventional vacuum chamber for preliminary characterization. All ion 
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optics components inside the µMS package were designed to be stacked together, aligned by 

the inside corners of the ULTEM package, and lightly compressed with four set screws.  

 

Figure 40 A) UV-LED fitted inside the µMS package; B) projection views of the µMS package 
with a cross-sectional view showing all the components; C) all components and electrical 
connectors installed in the µMS package; D) stainless steel CIT array assembled together using 
capillary-based mechanical alignment; E) integrated µMS assembly installed on the top flange 
of the vacuum chamber. 

 

5.1.5 µMS Test Setup 

 To ultimately perform ultra-high-vacuum (UHV) measurements emulating conditions 

on a cometary mission, an HV system was built using a 6-inch 6-way stainless steel cube 

with conflat (CF) flanges. A 300 l/s turbo molecular pump (Agilent 304) backed by a scroll 

pump (Agilent IDP3) was installed as the pumping system. A custom-designed CF was built 

with electrical feedthroughs required to apply the range of voltages and waveforms to 

perform complete MS operation in the mass-selective instability mode. The CF flange 

included two sub-miniature version A (SMA) connectors for RF voltages to the electrodes of 

the µCIT array chip, two 9-pin sub-d connectors for miscellaneous low-voltage signals for 
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UV LEDs and grids, one 25-pin sub-d connector for detecting the signal from each trap 

independently, one 4-pin HV (5KV/5A) connector for applying high voltages to MCPs, and 

one 1/16 Swagelok connector for analyte introduction into the vacuum chamber. Figure 41 

shows the UHV test bed with the details of the custom 6-inch CF flange in the inset. A full-

range pressure gauge was installed to measure the pressure down to 1E-10 Torr. A 

minimum pressure of 2E-10 Torr was observed so far.  

 

Figure 41 The UHV test setup installed and operational at 2E-10 Torr.  

5.1.6 Preliminary Results and Discussions 

5.1.6.1 Simulations 

5.1.6.1.1 Simulation 1 

Figure 42 shows the series of simulated spectra obtained by trapping and performing 

mass-selective instability ejection of 2000 ions each of 40 and 45 amu for a range of z0/r0 CIT 

models. The ions were cooled via collision cooling using He buffer gas for about 1.5 ms. 

Simulated spectra indicate z0/r0 in the range 0.96 to 1.02 is optimum. 
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Figure 42 Simulated spectra for a range of trap geometry (z0/r0). 

5.1.6.1.2 Simulation 2 

The series of simulations with varying cylinder wall angle in RE indicated a preferential 

ejection of ions from the larger diameter side of the RE. Figure 43 shows the trend of 

preferential ejection for varying cylinder wall angles. It is noticeable that the preferential ejection 

is significant for angles smaller than 88°. This is critical during MS test setup integration. The 

electron source is mounted on one side and the detector is mounted on the other side of the 

µCIT array chip. The 88° and 86° cases can be advantageous (more ions detected as 

compared to a perfect 90° cylinder wall) if the µCIT array is mounted with the right orientation; 

i.e. if the electron source is mounted on the tapered side of the µCIT array chip. No noticeable 

degradation of simulated spectra quality was observed in this series of simulations. An invention 

disclosure titled “3D ion trap optimized for preferential ejection” has been filed to cover this new 

finding.   
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Figure 43 (Left) Cross-sectional view of the CIT model; (right) trend of preferential ejection with 
varying cylinder wall angle. Total ions simulated: 1000.    

5.1.6.2 Fabrication 

5.1.6.2.1 Electrical Isolation 

The three electrodes were electrically isolated from each other, meaning that no 

electrical short occurred during the bonding or packaging process.  

5.1.6.2.2 Electrode Alignment  

The µCIT array chip was analyzed under the microscope to verify alignment across the 

chip. The optical mask used to fabricate the electrodes also incorporated Vernier calibration 

marks that were etched on the electrode surface and were visible under the microscope. Figure 

9 shows the microscope images of some of these Vernier marks. It was observed that some 

sides were better aligned (~6 µm) than others (~20 µm). With the flip-chip bonder used for 

alignment and bonding, a repeatable alignment accuracy of 5 µm is expected. This bonding 

process and alignment features will be optimized to achieve a targeted, repeatable alignment of 

<5 µm.  

5.1.6.2.3 Bonding Strength 

As the µCIT chip was being installed into the µMS ion optics package, one of the EE 

came off. Microscope analysis of the bond pads revealed that the bond area was smaller than 

the actual area of the pit (Figure 44). This is believed to be due to the slight curved topography 
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of the etched pits (in the ring electrode), while the posts had a relatively flat surface (un-etched 

Si surface), causing a non-conformal inter-substrate boundary.   

 

Figure 44 Optical image of the four bond pads in RE used to assemble the µCIT array. 

5.1.6.3 Testing  

 We took a low-risk path to validating the 10 cm3 µMS ion optics package and test 

setup, by designing a micro-scale CIT array in stainless steel (SS). The early-on validation 

of the SS micro-scale CITs is described here, which was performed in a different project, 

and is followed by the description of the implementation of SS µCITs in the 10 cm3 µMS ion 

optics package.  

5.1.6.3.1 Early Validation of SS µCITs 

 Micro-scale CIT array assembly was implemented using photo-etched SS and Kapton 

sheets, procured from Vacco industries. The SS µCIT array were comprised of three separate 

SS machined plates stacked together (with Kapton spacers in between each electrode) and co-

aligned using four high precision dowel pins procured from McMaster-Carr. The CIT geometry 

chosen for this approach was z0/r0 0.96 which is the most optimum geometry as deduced from 

prior project simulations and experiments at SRI. The alignment approach used for this design 

was expected to result in ring-endplate alignment of 50 µm. Figure 45 illustrates the SS µCIT 

design and dimensions. A conventional MS test setup equipped with a rasterable electron gun 

was used to generate mass spectra of Xe isotopes using the SS µCIT array. Figure 46 shows 

the SS µCIT array that was assembled onto a PCB package.  
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Figure 45 A cross-sectional 3D view to illustrate the SS µCIT array design and assembly. 

   

 

Figure 46 A) A cross-sectional view of the 3-D model of the SS µCIT array comprised of ring 
electrodes (teal) and two endplates (dark gray) separated by Kapton spacers (magenta), with 
the entire assembly supported by a fiberglass PCB (light gray) ; B) The three electrodes 
assembled together; C) High-magnification SEM image of SS ring electrode; D) A low-
magnification SEM image showing the SS µCIT ring electrode array; E) Measured mass spectra 
of Xe showing the various isotopes; F) NIST mass spectra showing relative isotope abundance, 
for comparison. 

Several parameters such as electron beam intensity, energy and focus, Xe partial 

pressure, He buffer gas partial pressure, ionization time, RF voltage ramp time, RF and 

ionization voltages, and MCP voltage were varied to find the most optimum settings to maximize 
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the trapped ion signal while maintaining the best separation of Xe isotopes. Axial modulation 

was used by applying a low frequency (1/3rd of the RF trapping frequency 7.44 MHz) voltage 

potential on the endplate that was closer to the MCP detector, to improve the ejected mass 

resolution. Figure 46 E shows the measured sequentially-scanned mass spectra of Xe showing 

the various detectable Xe isotopes (129-136 amu) and their relative abundance obtained, using 

the SS µCIT. Mass resolution is slightly greater than 1 atomic mass unit (noted by overlapping 

isotope spectral peaks) Figure 46F shows the NIST mass spectra of Xe as a benchmark. 

The capacitance of the SS µCITs was measured to be <25 pF. During post testing 

analysis, the electronics was altered by eliminating the RF amplifier and driving the LC 

tuned circuit directly from the waveform generator (WaveTek Datron 195). By optimizing the 

inductor value, an RF voltage of up to 200 Vp-p was measured across the SS µCIT array. 

The average power output from the waveform generator was measured by a power meter 

(Hewlett Packard 438A) to be in the 55 mW range. This means that the RF amplifier (Ophir 

5303055) was “overkill” for this application. It is believed that the µCITs, both Si and SS, can 

be operated at much lower power consumption as previously reported, as long as the 

capacitance is maintained in the 20-30 pF range.  

5.1.6.3.2 µMS Testing  

The form factor and trap sizes of the SS µCITs were identical to those of the µCIT 

array chip. The RE was designed for an array of 4x4 holes with r0 312 µm, and the EE was 

designed to be a 4x4 array of holes with radii equal to 35% of r0. High-precision, micro-

etched Kapton films were used as the dielectric layer to define the gap between the RE and 

EE, which resulted in a z0/r0 ~ 0.96. The SS electrodes were obtained by a vendor and were 

machined using chemical etching processes. The three SS electrodes were assembled 

together using four alignment holes on four corners of the electrodes, and using a capillary 

to mechanically align the three electrodes and the two Kapton spacers separating the three 

electrodes, as shown in Figure 47 A and B. Figure 47 C shows the assembled SS µCIT 
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array ready to be integrated into the µMS package. Figure 47 D shows the final setup just 

before the system was pumped down to perform measurements. For initial validation, a 

single plate was used as the anode to collect the ions ejected from all the traps across the 

array.    

 

Figure 47 A and B) Design of SS µCIT array; C) assembled SS µCIT array; D) µMS ion optics 
package with all electrical connections ready to be tested under vacuum. 

 Several configurations were optimized to reduce the RF pick-up on the anode. Initial MS 

operation experiments were performed with Ar as the analyte directly introduced into the 

vacuum chamber via a metering valve. Electronics waveforms and signals were set up using 

laboratory-scale versatile test equipment to operate the UVLED, MCPs, µCIT array, and 

detector MCPs.  A significant signal of trapped ions using Ar as the analyte was recorded on the 

anode, using the mass-selective instability mode operation. Experiments are underway to 

optimize the experiment conditions and operating parameters to improve the mass spectrum. It 

is promising to see a significant signal of trapped and ejected ions, without any electrical 

breakdown or severe RF pickup issues. The method of aligning the SS µCIT array can be 

improved to improve the mass resolution of the array collectively. 

5.2 Future Direction 

  It is expected that further improvements and characterization of the miniature ion optics 

described in this dissertation can be used to lay the foundation for novel MS architectures; 

particularly amenable to miniature, ruggedized and low-power MS designs. µCIT arrays are 
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poised to be instrumental in realization of radically new MS designs. In order to utilize the full 

potential, alignment accuracy of the µ-electrodes needs to be improved, especially if larger 

scale arrays are to be operated for enhanced sensitivity. Capacitance of µCIT arrays need to be 

reduced/maintained low while increasing array scale, to keep the power requirements low 

ultimately for a handheld MS. µCIT arrays also need ways to efficiently ionize molecules in the 

traps across the array uniformly and improvement in broad-beam switchable electron sources 

will be critical to address. Novel assembly and packaging schemes need to be applied to these 

miniature components. As micro-scale ion optics components are developed and demonstrated, 

they enable smaller form-factor packaging schemes. This works in favor of the mass analysis 

process as smaller gaps between 1) the ionization source and the traps and 2) the traps and the 

detector, can reduce losses during ionization and ion detection processes thereby improving the 

power efficiency of the overall mass spectrometer. Vacuum systems also needs considerable 

redesigning, which is enabled by small packages of micro ion optics components.    

In another application, the ion concentration qualities of the PIF can used to design a MS 

tailored for orbital measurement missions. New implementation schemes using sub-arrays of 

different trap sizes tailored for a specific range of chemicals can be used to perform parallel 

analysis for missions that only allow a very short window of measurement opportunity. 

Instrument-scale assembly and integration techniques can be the key to harness the potential 

these low power miniature ion optics have to offer.  

With the advent in robotics, mobile radio-controlled platforms and changing paradigms 

towards networked constellations, miniature sensors such as a µMS can be instrumental in 

enabling very low-cost, pervasive and agile, near-real-time chemical screening missions.
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