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ABSTRACT 

 

The current techniques and methodologies used in the field of material 

characterization are well documented and widely accepted as reliable and accurate. 

However, literature describing these techniques focuses on the algorithms used during 

material characterization; few studies have reposted on the design of, and the selection 

criteria for, the test fixtures themselves. This research focuses on the measurement cell 

with the goal of determining the sensitivity of the measurement cell to the addition of a 

thin film material. 

Microstrip and coplanar waveguide were chosen for the analysis, which included 

three configurations of each transmission line geometry:  a reference with no additional 

thin film material, one with the thin film on top of the conductors and one with the thin 

film beneath the conductors but on top of the transmission line substrate. The scattering 

parameters for the reference cell are compared to the scattering parameters of the test cell 

with the thin film material. The additional thin film material changes the effective 

dielectric constant of the reference cell; this change is evident in the phase and amplitude 

of S21. 

The optimum measurement cell is the one that experiences the greatest change to 

the effective dielectric constant with the addition of the thin film. Thus the greatest 

difference in S21 between the reference cell and the test cell is indicative of the reference 

cell’s sensitivity. The figure of merit (FOM) to determine the structure’s sensitivity is the 
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integration over frequency of the magnitude of the vector difference of S21. The analysis 

shows that the double-layered CPW measurement cell was the most sensitive. 

Once the optimum structure was determined an analysis of the sensitivity of the 

FOM to changes in the physical and electrical properties of the reference structure was 

conducted. The most important factors in the selection of the reference cell as evident by 

the FOM’s sensitivity are the substrate to thin film dielectric constant ratio and the CPW 

conductor aspect ratio to the thin film thickness. In particular, thinner films require a 

smaller conductor gap while wider gaps are preferable for thicker films. 

Measurement of four different CPW geometries, each covered in a 300 micron 

Polydimethylsiloxane thick film, validate the analysis process. The measurement cells 

differ in the conductor aspect ratio. The values of the measured FOMs trend as predicted 

by the simulation analysis. 
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 CHAPTER 1  

INTRODUCTION 

 

1.1 Goals and Motivation 

The characterization of bulk and thin-film material electrical properties provides 

information that is critical to the development and utilization of the materials. The 

methods typically used for thin film characterization can be broadly classified as either 

resonator or transmission-line types. Resonant methods, such as those described in [1] are 

particularly useful for very low loss materials but generally require specialized equations 

for parameter extraction that may not be amenable to multi-layer film configurations. 

Transmission line approaches [2] offer relatively simpler extraction procedures but tend 

to lack the accuracy of the resonant techniques. 

The goal of this research is to investigate measurement cells (test fixtures) that 

maximize the sensitivity of the transmission line method for thin film characterization. 

Specifically, the aim is to determine the transmission line geometry that provides the 

greatest difference in scattering (S) parameters between two measurement cells. Both 

measurement cells have the same physical dimensions and transmission line geometry; 

however, the coating of one cell is a thin-film material with unknown electrical 

properties. The main selection criterion is the magnitude of the vector difference in the S 

parameters between the measurement cells. A quantification of the selection criterion is 

the figure of merit (FOM). The FOM is the integration of the magnitude difference of S21. 



2 

Processing limitations, related to the fabrication of the cells, were part of the 

considerations. The result is a standardized measurement cell used to extract the electrical 

properties of an unknown material. The intent of this approach is to determine the 

optimum measurement cell, so there are some assumptions as to the expected material 

properties of the characterized thin film. 

Initially, the thin-film material of interest in this study was a polymer-based 

nanocomposite, infused with magnetite (Fe3O4) or cobalt ferrite (CoFe2O4) nanoparticles. 

For the baseline simulations, the assumptions are that the thin film has a low dielectric 

constant (εr = 2) and is lossless (tan δ = 0). Throughout the optimization simulations, the 

thin film has a constant height of 10 microns. Due to fabrication difficulties, the magnetic 

nanocomposite material was abandoned and the extraction process was validated using a 

dielectric polymer. 

The measurement cell analysis considers two transmission line geometries: 

microstrip and CPW. The microstrip structures used for analysis were pre-manufactured1 

thru-reflect-line (TRL) calibration boards, of different substrate thicknesses and 

characteristic impedance. The three TRL boards used in the tests consist of two 4 mil 

boards and one 60 mil board, with characteristic impedances of 30 ohms, 50 ohms, and 

50 ohms, respectively. The signal line widths for the three calibration boards are 17.2 mil 

(4 mils 30 Ω), 7.6 mil (4 mils 50 Ω) and 132 mil (60 mils 50 Ω). The substrate for the 

CPW structure is a borosilicate glass with a thickness of 1 mm. Table 1.1 lists the 

electrical properties of the substrate for each measurement cell. Figure 1.1 is a cross 

                                                
1	  Prefabricated TRL standards use Rogers Corporation R04000® Series High Frequency Laminates.	  
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section of the two measurement cells used in the MATLAB LINPAR optimization 

analysis. 

 

Figure 1.1:  Measurement Cell Configurations 

Figure 1.1a is the microstrip measurement cell with the thin film under the 

conductor as a substrate. In Figure 1.1b, the thin film is moved and placed as a 

superstrate, on top of the microstrip signal conductor. Figure 1.1c and d display the CPW 

measurement cell configurations with the thin film situated as a substrate (Figure 1.1c) 

and as a superstrate (Figure 1.1d). 

Table 1.1:  Measurement Cell Substrate Electrical Properties 

Measurement  Cell  Substrate   Dielectric  Constant   Loss  Tangent  

4  mil  30  Ω  (RO4350B)   3.66   .0031  (2.5  GHz  @  23°C)  

4  mil  50  Ω  (RO4350B)   3.66   .0031  (2.5  GHz  @  23°C)  

60  mil  50  Ω  (RO4003C)   3.55   .0021  (2.5  GHz  @  23°C)  

1mm  Thick  Borosilicate  Glass     6.8   .0037  

 

1.2 Thesis Organization 

This thesis contains six chapters. Chapter 1 is the introductory chapter. This 

chapter discusses the motivation supporting the research, explains the goals of the 

research, establishes the measurement standards, and characterizes the basic material 

properties.  
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Chapter 2 presents the background information required to design, simulate and 

analyze the CPW and microstrip test structures. The chapter briefly introduces conformal 

mapping used in the quasi-static calculations of the effective dielectric constant and the 

characteristic impedance of the multilayered structures. Additionally, the chapter explains 

that LINPAR outputs the primary transmission line parameters (L, R, C, and G); 

therefore, the effects of the dielectric constant are evident through the change in the 

capacitance of the transmission line. Discussed is the capacitance and inductance model 

of the effective permittivity and permeability. The chapter covers the setup and execution 

of the MATLAB/LINPAR simulation. 

Chapter 3 contains the analysis and optimization of the test structures. The 

analysis compares the performance of each structure with the thin-film material placed 

above the conductors (superstrate configuration) and beneath the conductors (substrate 

configuration). The chapter explains how the optimization procedure enhances the test 

structure to provide the greatest sensitivity to the thin-film material as determined by the 

difference in the scattering parameters of the test structure. In addition, the chapter 

presents a second analysis that examines the overall sensitivity of the measurement cell to 

the physical and electrical properties of the thin-film material and test structure. 

Chapter 4 covers the fabrication of the polymer nanocomposite material and test 

structures. This chapter illustrates the drop casting deposition process, which results in a 

film with a surface variation in excess of 100 micron, requiring a chemical mechanical 

planarization (CMP) process. Additional details concerning the CMP and the deposition 

of the conductors are presented in Appendix I. The chapter provides a basic description 
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of the TRL calibration, with a more thorough explanation of the design and testing of the 

TRL calibration standards in Appendix II. 

Chapter 5 discusses the measurement process and the comparison of measured 

and simulated results. The chapter presents an analysis concerning the differences 

between the measured and simulated results. A validation process comparing the 

MATLAB/LINPAR process to Agilent’s Advanced Design System’s EM simulator, 

Momentum is also presented. The results show good agreement, validating the 

MATLAB/LINPAR approach. 

Chapter 6 offers the conclusions of the research, to include the problems 

encountered and the steps followed to overcome each obstacle. The chapter suggests 

theories, based on current research results, as to the direction of future research. 

1.3 Contributions and Conclusions 

The analysis of the CPW and microstrip showed that the CPW was more sensitive 

than microstrip to the additional thin film, with the DL-CPW being the most sensitive. 

The DL-CPW displays the greatest FOM given the anticipated thin film properties. The 

measurement cell sensitivity is directly related to the change in the structure’s 

capacitance and subsequently, the effective dielectric constant. The measurement cell 

with the greatest change in capacitance is the most sensitive to the addition of the thin 

film and therefore has the largest FOM. 

Fabrication difficulties prevented the construction of the DL-CPW measurement 

cell and the processing of the magnetic nanocomposite material. The fabrication 

difficulties caused a shift in the research focus with respect to the CPW measurement cell 

and thin film material. The measurement focused turned to the SCPW while the magnetic 
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material was replaced with a dielectric polymer, Polydimethylsiloxane (PDMS). Using 

the LINPAR iterative algorithm, the extracted dielectric constant matched published data 

for PDMS. The loss of the PDMS film was not extracted during the characterization 

process. 

After extracting the dielectric constant the measured FOM was compared to the 

LINPAR FOM. The initial comparison was not good; LINPAR did not accurately 

simulate the borosilicate glass substrate. An analysis of the LINPAR simulation 

determined that the borosilicate glass substrate was inaccurately defined in LINPAR. 

Using the Nicolson-Ross-Weir algorithm, the complex dielectric constant of the 

borosilicate glass was extracted from the measured results. Using the Nicolson-Ross-

Weir data, the borosilicate glass substrate was accurately defined and the measured and 

simulated FOMs results were more closely matched. 

The sensitivity analysis of the measurement cell showed that the FOM and 

subsequently the measurement cells sensitivity were strongly dependent upon the 

substrate to thin film dielectric constant ratio. This ratio played an important role in 

determining the optimum measurement cell configuration: SCPW or DL-CPW.  

For measuring thin films, smaller CPW conductor gaps increase the measurement 

cell sensitivity. Much of the electric fields for narrow gap CPW are confined to the region 

between the center conductor and ground plane. This confinement exposes most of the 

electric field to the thin film and subsequently to a higher dielectric material.  

Material characterization is normally approached from the accuracy of the 

extraction process algorithm or technique. Little explanation is given to the selection 

criteria used to determine the measurement cell. The anticipated electrical properties of 
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the material may play a role in the determining the extraction method: resonant or non-

resonant. The information gained during this research helps to determine the optimum 

measurement cell configuration need to accurately extract the material properties. 
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 CHAPTER 2  

BACKGROUND THEORY 

 

2.1 Introduction 

Chapter 2 presents the background information required to design, simulate and 

analyze the CPW and microstrip test structures. This chapter includes a discussion of the 

calculation of the propagation constant for low-loss and lossless materials. The dielectric 

constant information is extracted from beta, which is the imaginary part of the 

propagation constant.  

2.2 Microstrip Test Structure 

A microstrip (Figure 2.1) is a two-conductor transmission line consisting of a thin 

conducting strip and wider ground plane, separated by a dielectric sheet. The primary 

mode of propagation of microstrip is quasi-Transverse Electromagnetic (quasi-TEM). 

The presence of the dielectric material (εr > 1), is what leads to the quasi-TEM mode of 

propagation [3]. As the wave propagates through the microstrip, a portion of the field 

lines is traveling in the air above the conductor, while most of the signal propagates 

through the dielectric material below the conductor. The phase velocity and propagation 

constant in these two regions differ, resulting in the quasi-TEM mode of propagation.  

In general, the number of modes that a transmission line can support is equal to 

the number of conductors minus one [4]. Therefore, for a microstrip line, the number of 

modes that can propagate is one. For the quasi-static analysis to be valid, quasi-TEM 



9 

propagation is assumed. By definition, quasi-TEM propagation means the magnetic and 

electric field components, in the direction of propagation, are small enough to be 

considered non-existent.  

 

Figure 2.1:  Microstrip Transmission Line 

Of interest in the study and analysis of planar transmission lines are the effective 

dielectric constant, characteristic impedance, and propagation constant. The propagation 

constant is a complex parameter that describes the attenuation and phase shift the 

transmitted signal experiences while propagating in the transmission line. This paper will 

discuss the propagation constant in more detail later in this chapter. 

The effective dielectric constant of a microstrip line is a function of the dielectric 

constant of the substrate material, the height of the substrate, and the width of the top 

conducting strip. Equation (2.1) shows the dependence of the effective dielectric constant 

on the parameters mentioned above [5]. 

𝜀!"" =
𝜀! + 1
2 +

𝜀! − 1
2 1+ 10

ℎ
𝑊

!!

  

      (2.1)  
Where B is given by: 

𝐵 = 0.564 1+ !
!"
𝑙𝑛

(! !)
!! !

!"#
!

(! !)
!!.!"#

+ !
!".!

𝑙𝑛 1+ !
!".!"

! !!!!.!
!!!!

!.!"#
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In equation (2.1), W is the width of the top conductor, h is the height of the substrate, and 

εr is the dielectric constant of the substrate. The characteristic impedance is also a 

function of the physical dimensions and electrical properties of the microstrip 

transmission line.  

𝑍! =
60𝜋
𝜀!""

𝑙𝑛
ℎ
𝑊 𝐴 + 1+

2ℎ
𝑊

!

  

      (2.2)  
In equation (2.2), A is: 

𝐴 = 6+ 2𝜋 − 6 𝑒 ! !".!!!"
!

.!"#$

  
 

Equations (2.1) and (2.2) assume zero thickness conductors. The reported accuracy for 

equation (2.1) is better than 0.2% for ε2 ≤ 128 and 0.01 ≤ W/h ≤ 100 [6]. The accuracy of 

the characteristic impedance calculation is better than .01% for W/h ≤ 1 and .03% for 

W/h ≤ 1000 [6]. 

Equations (2.1) and (2.2) are for a basic microstrip measurement cell without the 

thin film. For the initial analysis used to determine the most sensitive cell, the thin-film 

material is added to the microstrip as a superstrate and a substrate. 

2.2.1 Microstrip Transmission Line with Dielectric Overlay 

The microstrip with a dielectric overlay (Figure 2.2) is the configuration with the 

thin film placed on top of the conductor; the thin film is a superstrate. To analyze the 

multilayered microstrip structure, the employment of a conformal mapping technique 

calculates the effective dielectric constant and the characteristic impedance. 
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Figure 2.2:  Microstrip with Dielectric Overlay 

The conformal mapping process transforms the multilayer microstrip into a 

parallel plate transmission line. Two filling factors (q1 and q2), describe the ratio of the 

microstrip dielectric material to the new structure’s dielectric material. The 

transformation for a wide conductor microstrip W/h ≥ 1 [7]: 

𝑞! = 1−
1
2
𝑙𝑛 𝜋

ℎ𝑤!" − 1
𝑤!"
ℎ

𝑞!

= 1− 𝑞! −
1
2
ℎ − 𝑣!
𝑤!"

𝑙𝑛 𝜋
𝑤!"
ℎ

𝑐𝑜𝑠 𝑣!𝜋2ℎ
𝜋 ℎ!

ℎ − 12 + 𝑣!𝜋2ℎ

+ 𝑠𝑖𝑛
𝑣!𝜋
2ℎ   

      (2.3)  
The effective line width, wef is: 

𝑤!" = 𝑤 +
2ℎ
𝜋 𝑙𝑛 17.08(

𝑤
2ℎ + 0.92)   

      (2.4)  
and ve is: 

𝑣! = 2
ℎ
𝜋 𝑡𝑎𝑛

!! 𝜋
𝜋
2
𝑤!"
ℎ − 2

ℎ!
ℎ − 1   

      (2.5)  
For a microstrip line with a narrow conductor (W/h ≤ 1) the filling factors become: 

𝑞! =
1
2+

0.9

𝜋𝑙𝑛  (ℎ𝑤)
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𝑞!

=
1
2−

0.9+ 𝜋4 𝑙𝑛
ℎ! ℎ + 1

ℎ! ℎ + 𝑤 4ℎ − 1 𝑐𝑜𝑠!! 1− ℎ
ℎ!

1− 𝑤
8ℎ

ℎ! ℎ + 1
ℎ! ℎ +𝑤 4ℎ − 1

𝜋𝑙𝑛 8ℎ𝑤
  

      (2.6)  
The above filling factors are required to calculate the effective dielectric constant using:  

𝜀!"" = 𝜀!!𝑞! + 𝜀!!
1− 𝑞! !

𝜀!! 1− 𝑞! − 𝑞! + 𝑞!
  

      (2.7)  
Equation (2.4) compensates for the strip width boundary condition using the 

appropriate filling factors q1 and q2. Two separate equations exist for the characteristic 

impedance, dependent on the strip width to substrate height ratio. 

𝑍! =
120𝜋ℎ!
𝜀!""𝑤!"

  

For  w/h  ≥  1.      (2.8)  

𝑍! =
60
𝜀!""

𝑙𝑛  (
8ℎ!
𝑤 )  

For  w/h  ≤  1.      (2.9)  

2.2.2 Double-Layered Microstrip 

The second multilayered microstrip line analyzed and simulated is the double-

layered microstrip shown in Figure 2.3. This structure contains two different dielectric 

materials between the top conductor and the lower ground plane. 

 

Figure 2.3:  Double-Layered Microstrip 
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As is the case with the dielectric overlay, a conformal mapping technique 

determines the characteristic impedance and effective dielectric constant of the double-

layered microstrip: 

𝑞! =
ℎ!
2ℎ 1+

𝜋
4 −

ℎ
𝑤!"

𝑙𝑛
𝜋
ℎ𝑤!"

𝑠𝑖𝑛 𝜋ℎ!2ℎ
𝜋ℎ!
2ℎ

+ 𝑐𝑜𝑠
𝜋ℎ!
2ℎ   

𝑞! = 1− 𝑞! −
1
2
𝑙𝑛 𝜋

ℎ𝑤!" − 1
𝑤!"
ℎ

  

      (2.10)  
where wef is defined above in equation (2.4). 

Equations (2.8) and (2.9) for the characteristic impedance are still valid; however, 

equation (2.7) for the effective dielectric constant is invalid for this structure. For the 

double-layered microstrip, the new dielectric constant equation is: 

𝜀!"" = 1− 𝑞! − 𝑞! + 𝜀!!𝜀!!
𝑞! + 𝑞! !

𝜀!!𝑞! + 𝜀!!𝑞!
  

      (2.11)  

2.3 Coplanar Waveguide 

In 1969, C. P. Wen introduced the coplanar waveguide (CPW) [8]. The 

conventional CPW (Figure 2.4) consists of a dielectric substrate supporting three 

conductors: one center conductor and two finite width ground planes on either side of the 

center conductor. The dimensions of the center conductor, the gap, and substrate 

thickness and permittivity determine the effective dielectric constant (εeff), the 

characteristic impedance (Z0), and the attenuation of the line (α). For the conventional 

CPW of Figure 2.4, S is the center conductor width, W is the gap width, t is the conductor 

thickness, h1 is the height of the substrate and εr is the dielectric constant of the substrate. 
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Figure 2.4:  Conventional CPW on Single Layer Substrate 

The CPW structure offers several advantages to the microstrip transmission line, 

such as easy connection of shunt components without the need for ground vias, more 

flexible control of the characteristic impedance compared to microstrip, and low 

dispersion. One disadvantage of CPW is poor field confinement, although this is a 

disadvantage for practical application and use, this characteristic may prove to be the 

reason CPW is better suited for thin film characterization. For microstrip transmission 

lines, most of the transmitted wave resides in the substrate between the top center 

conductor and the bottom ground plane. CPW does support the quasi-TEM mode of 

operation, which is important for the quasi-static assumption. CPW design offers more 

degrees of freedom to control the transmission properties and parameters of the 

measurement cell. The flexibility comes from the ratio of the center conductor width to 

the gap width; varying the ratio !
!!!!

 varies the characteristic impedance of the CPW 

structure. The characteristic impedance is inversely proportional to the conductor–gap 

ratio. 

Three different CPW structures were analyzed:  conventional CPW, CPW 

sandwiched between two dielectric sheets (thin film as a superstrate), and CPW on a 

double-layered dielectric substrate (including a thin film substrate). Expressions for Z0 

2a 
2b 

t 
h1 

rε

W W 

2c 

S 
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and εeff are derived for the conventional CPW and modified to fit the specific cases of the 

sandwich CPW (Figure 2.5a) and the double-layered substrate CPW (Figure 2.5b). 

(a)  

(b)  

Figure 2.5:  CPW Measurement Cells with Thin Film 

Figure 2.5 represents the CPW measurement cells used during the material 

parameter extraction process, where (a) is the arrangement sandwiched between two 

dielectrics, and (b) is the arrangement with a double-layered substrate. The effective 

dielectric constant of the overall structure is given by: 

𝜀!"" =
!!"#
!!"#

      

      (2.12)  
Ccpw is the total capacitance of the CPW, determined by summing the partial capacitances 

of the individual dielectric layers. The introduction of magnetic walls at the dielectric 

interfaces (including the CPW slots) force the tangential components of the magnetic 

field intensity to vanish, [9] thus confining the electric field to the partial region, 

surrounded by the magnetic walls.  
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Analytical expressions to calculate the effective dielectric constant and 

characteristic impedance of the multi-layered CPW rely on conformal mapping 

techniques. The total capacitance of the CPW is equal to the sum of the partial 

capacitances of the individual dielectric layers. For purposes of the analysis, the 

conductors and the dielectrics are considered perfect; the system is considered lossless. 

2.3.1 CPW Sandwiched Between Two Dielectric Substrates 

Figure 2.5a illustrates the CPW sandwiched between two dielectric substrates. 

The capacitance, Ccpw, is the sum of the partial capacitances of the structure. That is: 

𝐶!"# = 𝐶! + 𝐶! + 𝐶!"#     

      (2.13)  
C1 is the capacitance of the dielectric layer beneath the CPW conductors (lower region); 

C2 is the dielectric layer located above the conductors (upper region); Cair is the 

capacitance of the CPW structure with the dielectric constants of each layer set to 1. The 

capacitance of the partial dielectric regions Ci is given in [10] by: 

𝐶! = 2𝜀! 𝜀!" − 1
! !!
! !!

!     

      (2.14)  
K(ki) and K(k'i) are complete elliptic integrals. The modulus of the complete elliptic 

integrals ki and k'i are: 

𝑘! =
𝑠𝑖𝑛ℎ 𝜋𝑐

2ℎ!
𝑠𝑖𝑛ℎ 𝜋𝑏

2ℎ!

𝑠𝑖𝑛ℎ! 𝜋𝑏
2ℎ!

− 𝑠𝑖𝑛ℎ! 𝜋𝑎
2ℎ!

𝑠𝑖𝑛ℎ! 𝜋𝑐
2ℎ!

− 𝑠𝑖𝑛ℎ! 𝜋𝑎
2ℎ!

  

𝑘!! = 1− 𝑘!!  

  
      (2.15)  
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For equations (2.14) and (2.15), i is the index of the dielectric layer (i = 1,2), h is 

the dielectric layer height, a is equal to half the center conductor width, b is equal to half 

the center conductor width plus the width of one gap, and c is equal to half the center 

conductor plus the gap plus the width of one finite width ground plane. The capacitance 

Cair is given by [10]: 

𝐶!"# = 4𝜀!
𝐾(𝑘!! )
𝐾(𝑘!)

  

      (2.16)  
Where k0 and k’0 are: 

𝑘! =
𝑐
𝑏

𝑏! − 𝑎!

𝑐! − 𝑎!   

𝑘!! = 1− 𝑘!!  

      (2.17)  
Plugging equations (2.14) and (2.15) into (2.13) yields: 

          𝐶!"# = 2𝜀! 𝜀!! − 1
𝐾 𝑘!
𝐾 𝑘!!

+ 𝜀!! − 1
𝐾 𝑘!
𝐾 𝑘!!

+ 2𝜀!
𝐾(𝑘!! )
𝐾(𝑘!)

  

      (2.18)  
Using equation (2.12), the quasi-static approximation for εeff is: 

𝜀!"" = 1+ !!!!!
!

!(!!)
!(!!! )

!(!!! )
!(!!)

+ !!!!!
!

!(!!)
!(!!! )

!(!!! )
!(!!)

    

      (2.19)  
The characteristic impedance is a function of the phase velocity and the effective 

dielectric constant of the structure. The phase velocity and characteristic impedance are 

given by: 
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  𝑣!! =
𝑐
𝜀!""

  

𝑍! =
1

𝑐𝐶!"#𝑣!!
=

30𝜋
𝜀!""

𝐾(𝑘!)
𝐾(𝑘!! )

  

      (2.20)  
Where k0 and k’0 are defined by equation (2.17). 

These equations define the CPW measurement cell with the thin film as a 

superstrate, placed on top of the conductors. Analysis of this structure shows the greatest 

difference in scattering parameters when compared to conventional CPW without the thin 

film. However, fabrication of this configuration introduced several complications and 

concerns addressed in chapter 4.  

2.3.2 CPW on a Double-Layered Dielectric Substrate 

Calculating Ccpw of the double-layered substrate CPW (DL-CPW) requires a few 

minor modifications to the equations for the sandwiched CPW. Equations (2.13), (2.14) 

(for i = 1) (2,15) and (2.16) are still valid. The only change is in equation (2.14) when i = 

2, the capacitance for the upper layer becomes: 

𝐶! = 2𝜀!(𝜀!! − 𝜀!!)
𝐾(𝑘!)
𝐾(𝑘!! )

  

      (2.21)  
The change to the partial capacitance of the upper region reflects in the 

calculation of the effective dielectric constant. εeff now becomes: 

𝜀!"" = 1+ !!!!!!!
!

!(!!)
!(!!! )

!(!!! )
!(!!)

+ !!!!!
!

!(!!)
!(!!! )

!(!!! )
!(!!)

    

      (2.22)  

2.4 Lumped Element Model of Transmission Line 

For low frequency circuit theory, a transmission line is considered electrically 

small when compared to the wavelength of the transmitted signal. However, as the 
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operating frequency increases, the wavelength decreases and the physical size of the 

transmission line approaches the electrical wavelength of the transmitted signal. The 

magnitude and phase of the voltage and current waves may then vary significantly as a 

function of the position on the transmission line.  

Although microstrip and CPW transmission lines are distributed-parameter 

networks, they model as lumped element ladder networks. Figure 2.6 is the lumped-

element model of a transmission line. The primary transmission line parameters describe 

the current and voltage waves, and how the line’s physical characteristics affect 

propagation. 

 

Figure 2.6:  Transmission Line Model 
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Table 2.1:  Definition of Transmission Line Parameters  

Parameter Definition (per-unit-length) Sources of Model 
Parameters 

R Series resistance – finite conductivity of the 
conductors (Ω/m) 

Conductance 
Geometry 
Radiation 

Skin Effect 
Proximity Effect 

L Series Inductance – total self-inductance of the 
two conductors (H/m) 

Permeability 
Geometry 

Skin Effect 
Proximity Effect 

C Shunt Capacitance – due to the separation of the 
two conductors (F/m) 

Geometry 
Permittivity 

G Shunt Conductance – due to the dielectric loss of 
the material between the conductors (S/m) 

Loss Tangent 
Conductance 

Geometry 
 

The parameters listed in Table 2.1 [11] are functions of the measurement cell’s 

electrical and physical properties. Fabrication used the same metallization process and 

materials for each of the CPW measurement cells. Therefore, the transmission line 

properties, dependent on the conductor’s physical dimensions and electrical properties, 

do not vary between the measurement cells. The addition of the thin film changes only 

the electrical properties of the measurement cell. Adding a dielectric material increases 

the measurement cell’s effective permittivity, while adding the polymer nanocomposite 

increases both the effective permittivity and the effective permeability. These effects 

generate changes in the measurement cell’s capacitance and inductance. Section 2.7 

explains how capacitors and inductors model permittivity and permeability, respectively.  

To analyze the transmission line, apply Kirchhoff’s laws and take the limit as the 

line length goes to zero. The resulting equations are the Telegrapher’s equations (2.23) 

for both the current and voltage on the transmission line.  



21 

𝜕𝑣 𝑧, 𝑡
𝜕𝑧 = −𝐿

𝜕𝑖 𝑧, 𝑡
𝜕𝑡 − 𝑅𝑖 𝑧, 𝑡   

𝜕𝑖 𝑧, 𝑡
𝜕𝑧 = −𝐶

𝜕𝑣 𝑧, 𝑡
𝜕𝑡 − 𝐶𝑣 𝑧, 𝑡   

      (2.23)  
Using a cosine–based phasor notation for sinusoidal steady-state conditions, 

(2.23) can be written: 

𝑎   
𝑑𝑉 𝑧
𝑑𝑧 = − 𝑅 + 𝑗𝜔𝐿 𝐼 𝑧 = −𝑍𝐼 𝑧  

𝑏   
𝑑𝐼 𝑧
𝑑𝑧 = − 𝐺 + 𝑗𝜔𝐶 𝑉 𝑧 = −𝑌𝐼 𝑧   

      (2.24)  
Differentiating equation (2.24a) with respect to z and substituting the result into 

equation (2.24b) yields: 

𝑑!𝑉(𝑧)
𝑑𝑧! = −𝑍

𝑑𝐼 𝑧
𝑑𝑧 = −𝑍𝑌𝐼 𝑧   

𝑑!𝐼(𝑧)
𝑑𝑧! = −𝑌

𝑑𝑉 𝑧
𝑑𝑧 = −𝑌𝑌𝐼 𝑧   

      (2.25)  
A general solution for the wave equations is the form 𝑉 𝑧 = 𝐴𝑒±!". 

Differentiating twice, with respect to z, yields 𝑉 𝑧 =   𝛾!𝐴𝑒!". 

  
𝑑!𝑉 𝑧
𝑑𝑧! = −𝛾!𝐼 𝑧 = −𝑍𝑌𝐼 𝑧   

𝑑!𝐼(𝑧)
𝑑𝑧! = −𝛾!𝑉(𝑧) = −𝑍𝑌𝑉 𝑧   

      (2.26)  
Therefore, from (2.26): 

𝛾! = 𝑌𝑍 = 𝑅 + 𝑗𝜔𝐿 𝐺 + 𝑗𝜔𝐶   

𝛾 = ± 𝑅 + 𝑗𝜔𝐿 𝐺 + 𝑗𝜔𝐶   

      (2.27)  
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γ is known as the propagation constant. For low-loss or lossy materials the propagation 

constant is a complex number: 𝛾 = 𝛼 + 𝑗𝛽. The real term, α, is responsible for the loss 

and the imaginary component, β, is responsible for the transmitted signal’s phase change. 

Since equation (2.25) is a second order differential equation, the solution will 

contain two constants of integration. Therefore, a more precise solution will be of the 

form: 

𝑉 𝑧 = 𝑉!!𝑒!!" + 𝑉!!𝑒!"  
      (2.28)  

where 𝑉!!and 𝑉!! are the amplitudes for the forward and reverse traveling waves, 

respectively. Setting equation (2.28) equal to (2.24a) and solving for I(z): 

𝐼 𝑧 =
𝛾

(𝑅 + 𝑗𝜔𝐿) 𝑉!
!𝑒!!" − 𝑉!!𝑒!"   

      (2.29)  

The term !
(!!!"#)

 is the characteristic impedance, Z0, of the transmission line, and is equal 

to !!!"#
!!!"#

, which reduces to !
!
 for low-loss and loss-less transmission lines. 

2.5 Propagation Constant 

The propagation constant is a complex quantity, which quantifies the effects the 

transmission line’s physical and electrical properties have on a propagating wave. The 

real term α quantifies all the losses of the transmission line; α represents several different 

loss mechanisms: radiation loss, conductive loss (αc) and dielectric loss (αd).  

In the distributed transmission line model, the series resistance R is used to model 

the conductive attenuation and is a result of the finite conductivity of the conductors, 

𝛼! =
!
!!!

 [12].  
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The dielectric losses are due to the energy lost in the polarization of the dielectric 

material that separates the conductors. The energy lost due to the dielectric polarization is 

dissipated in heat and is modeled by the shunt conductance G, 𝛼! =   
!!!
!

 [12]. To 

determine the total attenuation of the transmission line, sum the conductive and dielectric 

attenuation constants. 

As mentioned earlier, the parameter β quantifies the phase change in the 

transmitted signal experienced during propagation, referred to as the phase constant. By 

definition β, is equal to !!
!

; λ is the wavelength of the transmitted signal and is a function 

of the substrate properties of the microstrip and CPW. The guided wavelength λg is 

inversely proportional to 𝜀!"", 𝜆! =
!

! !!""
. Using these two relationships and solving 

for β leads to   𝛽 =
! !!""

!
. β determines the sensitivity of the measurement cell.  

Electrical length is the length of a transmission line expressed in terms of 

wavelengths, and is equal to βl, where l is the length of the transmission line. In 

scattering network theory, S21 is the signal transmitted through the network. The 

transmitted signal has a phase and magnitude component. The phase S21 is Θ =   𝛽𝑙.  The 

change in the phase of S21 can be attributed to the change in the effective dielectric 

constant of the measurement, which is directly affected by the dielectric constant of the 

thin film. 

𝛥𝜃!"! −
𝜀!""𝜔𝑙
𝑐   

      (2.30)  
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2.5.1 Loss-Less Transmission Line 

For a loss-less transmission line R = G = 0, setting R = G = 0 reduces equation 

(2.27) to: 

𝛾 = 𝑗𝛽 = 𝑗𝜔 𝐿𝐶  
𝛼 = 0  

      (2.31)  

2.5.2 Propagation Constant of Low Loss Transmission Line 

In reality, R and G cannot be 0 for planar transmission lines. By assuming R << 

ωL and G << ωC (RG << ω2LC) we can consider most transmission lines used for 

microwave frequencies low-loss. Rearranging equation (2.27) results in: 

𝛾 = −𝜔!𝐿𝐶 + 𝑅𝐺 + 𝑗𝜔(𝑅𝐶 + 𝐿𝐺)  

Ignoring the RG term in the above equation reduces the propagation constant to equation 

(2.32) for the low-loss case. 

𝛾 ≈ 𝑗𝜔 𝐿𝐶 +
1
2 𝐿𝐶

𝑅
𝐿 +

𝐺
𝐶   

      (2.32)  
From equation (2.32):  

𝛼 =
1
2 𝐿𝐶

𝑅
𝐿 +

𝐺
𝐶 ,𝛽 = 𝜔 𝐿𝐶  

      (2.33)  
Equation (2.33) is the attenuation constant α, and phase constant β for the low-loss 

transmission line. 

2.6 Measurement Cell Simulation with LINPAR and MATLAB 

Completion of the design and simulation of the measurement cells uses a 

combination of LINPAR transmission line software and MATLAB. MATLAB, as a file 

manager, acts as the creator and editor of the structure defining data file (temp.in8), 
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LINPAR executioner, and data processor. LINPAR, which uses a 2-D spectral domain 

technique, performs the numerical analysis of the transmission line structures providing 

the primary transmission line parameter matrices, per-unit-length (inductance, 

capacitance, resistance, and conductance). Subsequent calculations produce the s 

parameters for the measurement cell structures using the primary transmission line 

parameters. 

Each line of the temp.in8 file defines a different physical or electrical property of 

the measurement cell and thin film. The .in8 file extension, as defined by LINPAR, 

indicates a multi-layered, multi-conductor planar structure. The multi-layered planar 

structure configuration provides more options and flexibility in defining the measurement 

cell’s physical dimensions, electrical properties and transmission line geometry. The 

flexibility of the .in8 file allows its use for both measurement cell geometries and all 

simulations. 

The LINPAR analysis is a quasi-static analysis in which bound charges in a 

vacuum replace the dielectric materials, and free charges replace the conductors. The 

boundary conditions for the electrostatic potential and the normal component of the 

electric field derive a set of integral equations describing the charge distribution.  

LINPAR models both the microstrip and the CPW lines as a multi-layered, multi-

conductor planar structure. LINPAR’s analysis of multi-layered structures with N 

conductors results in an N x N matrix for each transmission line parameter. In the case of 

the CPW structure, this will result in a 3 x 3 matrix for each parameter. In each of the 

matrices, the element of interest is the X22 element, corresponding to the transmission 

line parameters for the center conductor of the planar structure.  
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2.6.1 Simulation of Coplanar Waveguide Measurement Cell  

LINPAR can simulate assemblies with multiple dielectric layers and with multiple 

conductors fabricated on each layer. However, each of the conductors references a 

ground plane on the bottom of the structure, which is not part of the fabricated CPW 

structures. To compensate for the presence of the ground plane, a layer of air is inserted 

between the ground plane and the bottom of the CPW substrate. This layer of air must be 

of sufficient thickness to reduce the effects of the ground plane on CPW performance. 

Time-varying currents on the signal conductors and the ground plane induce a 

voltage in all conductors including the reference conductor. The voltage for each signal 

conductor is calculated using: 

𝑣! = −𝑙!!
𝑑𝑖!
𝑑𝑡 − 𝑙!"

𝑑𝑖!
𝑑𝑡 −⋯ 𝑙!!

𝑑𝑖!
𝑑𝑡 ⋮ 

𝑣! = −𝑙!!
𝑑𝑖!
𝑑𝑡 − 𝑙!!

𝑑𝑖!
𝑑𝑡 −⋯ 𝑙!!

𝑑𝑖!
𝑑𝑡   

      (2.34)  
where v is the per-unit-length voltage, i is the signal conductor currents, l is the per-unit-

length inductance, and N is the number of signal conductors. Equation (2.34) shows that 

the currents on the conductors affect the voltage for each of the signal conductors. Since 

the LINPAR simulation treats the two outer conductors as signal conductors (not 

reference conductors), the resulting calculations for the inductance are not accurate. Each 

of the signal conductors has an inaccurate value for the induced voltage, which leads to 

erroneous voltage calculations and subsequently incorrect inductance values. 

The inductance is calculated by first analyzing the CPW structure with all 

dielectric constants set to 1 (εr = 1) and determining the capacitance (free space 

capacitance C0). For nonmagnetic materials, the inductance is not affected by the 
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dielectric properties of the substrate. The inductance is evaluated using the capacitance 

value of the “vacuum” structure and equation (2.35). 

𝐿𝐶! = 𝜀!𝜇! 

𝐿 =
𝜀!𝜇!
𝐶!

  

      (2.35)  
This value for inductance does not include any mutual coupling effects from the 

adjacent conductors and is used in subsequent calculations for the CPW structures 

without the thin film. The geometry of the CPW conductors determines the inductance of 

the structure and is not dependent on the dielectric substrate. This is not the case when 

the substrate material has magnetic properties, meaning the relative permeability is 

greater than unity.  

The value of the free space capacitance does not include the dielectric effects of 

the substrate materials. The substrate’s electrical properties affect the propagation 

constant, and subsequently the characteristic impedance, thus the free space capacitance 

value is not used in these calculations. When the substrate dielectric constant is set to the 

actual value for the substrate material, it determines the capacitance value used for these 

calculations. This value for capacitance is entered into the equations for Z0 and γ. 

2.6.2 Simulation of Magnetic Material Using LINPAR 

LINPAR assumes the substrate materials are piecewise-homogeneous dielectrics, 

thus LINPAR does not have a means to explicitly define permeability or model magnetic 

losses. A process described in [13] explains how to model magnetic material by setting 

the dielectric constant to 1 over the permeability !
!
. As will be described in section 2.7, 

magnetic materials increase the inductance when used as the core material of an inductor. 
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Therefore, the effects of a magnetic material can be seen in the inductance of the 

transmission line model.  

The result of changing the dielectric constant of the substrate materials is a 

change in the CPW’s capacitance. The relationship of equation (2.35) is still valid. The 

difference is the capacitive value used to calculate inductance.  

𝐿𝐶! = 𝜀!𝜇! 

𝐿 =
𝜀!𝜇!
𝐶!

  

      (2.36)  

In equation (2.36) is the capacitance with the dielectric constant set to !
!
. 

The relationship of equation (2.36) is valid only for perfect conductors; if the 

conductor is not perfect then the resulting inductance is only an approximation [13]. By 

definition ψ = LI using L from equation (2.36), ψ becomes: 

𝛹 =
𝜀!𝜇!
𝐶!

𝐿  

      (2.37)  
Solving for I: 

𝐼 =
𝜀!𝜇!
𝐶!

𝛹  

      (2.38)  
If 𝐶! does exist such that (2.36) exists, then the relationship of equation (2.35) is valid.  

2.7 Complex Permittivity and Permeability  

The interaction between the macroscopic properties of a material and 

electromagnetic waves are described by the constitutive parameters defined by: 

  

iC
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𝐷 = 𝜀𝐸 = 𝜀! − 𝑗𝜀!!   
𝐵 = 𝜇𝐻 = 𝜇! − 𝑗𝜇!!   

𝐽 = 𝜎𝐸  
      (2.39)  

The permittivity (ε), is a complex number whose real part (ε’) represents the 

storage ability of a material and the imaginary part (ε’’) quantifies the dielectric losses. 

The permeability (µ) is also a complex number and is the magnetic dual of permittivity. 

The real and imaginary parts of permeability represent the storage and losses of magnetic 

materials, respectively. In low-conductivity dielectric materials, the imaginary part of the 

permittivity is related to the conductivity of the material. Permittivity and permeability 

can be explained and modeled using a capacitor and an inductor, respectively. 

Capacitance is defined as the ability of a material to store charge. When a voltage 

is applied across the terminals of a parallel plate capacitor, charge builds up on each 

plate. The separation of charge leads to an electric field in the capacitor. Once the 

capacitor is fully charged, current will no longer flow in the circuit. Inserting a dielectric 

material into the capacitor will result in charge separation within the dielectric, which is 

referred to as polarization. Electronic polarization occurs in neutral atoms when the 

electron cloud is displaced from the nucleus.  

The bound charges of the dielectric material orient themselves with the external 

electric field across the capacitor. The electron clouds of the dielectric material’s atoms 

migrate towards the positively charged capacitor plate, leaving the positively charged 

nucleus closer to the negatively charged capacitor plates. The polarization of the atom 

creates a small electric field that opposes the larger external electric field across the 

capacitor. The overall effect of the numerous smaller electric fields is to reduce the 



30 

strength of the electric field across the capacitor. In reaction to the decrease in the electric 

field, the charging current increases to maintain full charge on the capacitor. This 

mechanism explains the increase in storage capacity of a dielectric loaded capacitor. 

Along the conductor – dielectric interfaces, the free charges on the capacitor 

plates pair with the bound charges in the dielectric material. Current flow from the 

voltage source provides more free charges to pair with any unbound charges of the 

dielectric material. The increase in charge on the capacitor plates and the effects of the 

internal electric fields results in an increase in the electric field across the capacitor. 

A capacitor with an air dielectric is connected to a voltage source, V=V0ejωt. The 

charge stored (Q) in the capacitor is equal to the voltage times capacitance (VC0). The 

time rate of change of charge is current, that is 𝐼 = !"
!"

. Therefore the capacitor’s charging 

current is !(!!!!!
!"#)

!"
= 𝑗𝜔𝐶!𝑉. The capacitance increases when a dielectric is inserted 

between the plates of the capacitor, that is 𝐶 = !!!
!!

. In addition to the charging current, a 

loss current may also be present. The loss current (Il) is a result of charge migration 

through the dielectric and is modeled using a resistor in shunt with the capacitor. The 

current through the resister is a ratio of the voltage and resistance, 𝐼 = !
!
= 𝐺𝑉, where G 

is the conductance. The total current for the capacitor is the sum of the loss current and 

the charging current.  

𝐼 = 𝐼! + 𝐼! = (𝑗𝜔𝐶 + 𝐺)𝑉  
      (2.40)  

Since a resistor cannot accurately model the losses associated with a dielectric 

material, complex permittivity is introduced to address these loss mechanisms. Complex 

permittivity is defined as: 
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𝜀∗ = (𝜀! − 𝑗𝜀!!)  
      (2.41)  

Relative permittivity is the ratio of the permittivity of a dielectric material to the 

permittivity of a vacuum or air. That is: 

𝜀! =
𝜀∗

𝜀!
= (𝜀!! − 𝑗𝜀!!!)  

      (2.42)  
The ratio of the energy loss to the energy storage capacity of a dielectric material 

is termed the dielectric loss tangent and is defined as  

𝑡𝑎𝑛𝛿 =
𝜀!!!

𝜀!!
  

      (2.43)  
Using the definition for relative permittivity the definition for capacitance 

becomes . Plugging this into equation (2.40) the total current through the 

capacitor becomes: 

𝐼 = 𝑗𝜔 𝜀!! − 𝑗𝜀!!! 𝐶!𝑉 = (𝑗𝜔𝜀!! + 𝜔𝜀!!!)𝐶!𝑉  
      (2.44)  

The capacitor’s current density is 𝐽 = (𝑗𝜔𝜀!! + 𝜔𝜀!!!)𝐸. From the constitutive 

relationships current density is 𝐽 = 𝜎𝐸. Using the definition of current density and 

equation (2.44) the dielectric conductivity is equal to 𝜖!!!𝜔. The dielectric conductivity 

quantifies the losses associated with the transfer of energy through a dielectric material. 

In a manner similar to complex permittivity, a lumped element inductor can be 

used to describe the behavior, effects and losses of magnetic materials and complex 

permeability. A voltage source connected to an inductor creates a magnetization current 

in the inductor. The current through the inductor is given by solving 𝑣! = 𝐿 !"!
!"

 for I 

giving: 

' ''
0( )r rC j Cε ε= −
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𝑖! =
𝑉!
𝑙 𝑒!"#𝑑𝑡 =

−𝑗𝑉
𝜔𝐿   

      (2.45)  
The inductor’s inductance is affected by the permeability of the core material 

through 𝐿 = !!!"
!

. If the material in the inductor’s core is magnetic with a permeability 

greater than 1 and is not lossless, then µ is complex and becomes 𝜇! − 𝑗𝜇!!. The real part 

of the complex permeability represents the magnetic storage capacity of the material and 

the imaginary component defines the magnetic losses of the core material. Using 

complex permeability the magnetization current becomes: 

𝑖! = −
𝑗𝑉(𝜇! − 𝑗𝜇!!)
𝜔𝐿(𝜇!" + 𝜇!")  

      (2.46)  
The magnetization current of equation (2.45) accounts for the storage capacity 

and the magnetic losses through the complex permeability. Like the dielectric loss 

tangent, the magnetic loss tangent is defined as the real part of the complex permeability 

to the imaginary part:  𝑡𝑎𝑛𝛿 = !!!

!!
. For either the dielectric material or magnetic material, 

the loss tangent is a good indication of the material’s energy efficiency and loss 

characteristics. 

2.8 Measurement Cell Selection 

The criterion to determine which transmission line geometry is the most sensitive 

to the thin film is the difference in the phase of S21. A comparison of the phase of S21 of a 

measurement without the thin film, to the same measurement cell with the thin film, 

determines which structure to choose. The measurement cell with the greatest difference 

in the phase of S21 is the cell that is most sensitive to the thin film’s electrical and 
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magnetic properties. The more sensitive the measurement cell is to the thin film, the 

easier it is to accurately extract the thin film’s properties. 

A graphical representation of the measurement cell’s sensitivity is the figure of 

merit (FOM). The FOM is the magnitude of the vector difference of S21 of the two 

measurement cells summed over frequency. 

𝐹𝑂𝑀 = 𝑆!"! − 𝑆!"!
!"#$

 

      (2.47)  
In equation (2.47) the “r” subscript refers to reference, this is the measurement cell 

without the thin-film material. The “t” subscript is for test; this refers to the measurement 

cell that contains the unknown thin-film material. 
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 CHAPTER 3  

MEASUREMENT CELL ANALYSIS 

 

3.1 Introduction 

For all sensitivity analysis simulations, the thin film is assumed lossless with a 

dielectric constant of 3 and a height of 10 microns. For Figures 3.2, 3.3, 3.19, and 3.20 

the CPW aspect ratio is 0.33.  

The LINPAR MATLAB simulation uses an iterative algorithm to vary structure 

parameters, calculate the propagation constant and characteristic impedance, compute 

ABCD parameters, and convert the ABCD parameters to S parameters. The basic process 

is outlined in Figure 3.1. 
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Figure 3.1:  Process Flow for LINPAR MATLAB Analysis and Simulation 

The output of the LINPAR simulation is four matrices, one for each of the 

transmission line parameters. The propagation constant for the transmission line model 

(Figure 2.6) is calculated using equation (2.27), (2.32) or (2.33). This data is used to 

calculate the ABCD matrix, which is then converted to S parameters. The ABCD matrix 

for a transmission line is [14]: 

𝐴 𝐵
𝐶 𝐷 =

𝑐𝑜𝑠ℎ  (𝛾𝑙) 𝑍!𝑠𝑖𝑛ℎ  (𝛾𝑙)
𝑠𝑖𝑛ℎ  (𝛾𝑙)

𝑍!
𝑐𝑜𝑠ℎ  (𝛾𝑙)   

      (3.1)  
where l is the length of the transmission line and Z0 is the characteristic impedance. In the 

case of the loss-less line, the trigonometric functions replace the hyperbolic trigonometric 

functions, and 𝛾 is replaced by 𝛽 (Im{𝛾}). Conversion to s parameters is accomplished 

using [15]: 

Step	  1	  
• Define	  physical	  and	  
electrical	  characteris5cs	  of	  
the	  measurement	  cell 	  	  
• Define	  Sweep	  Variable	  

Step	  2	  
• Run	  LINPAR	  -‐	  Evaluate	  
transmission	  line	  
parameters	  

Step	  3	  
• Compute	  characteris5c	  
impedance	  
• Compute	  propaga5on	  
constant	  

Step	  4	  
• Calculate	  ABCD	  parameters	  
• Convert	  ABCD	  parameters	  
to	  scaLering	  parameters	  

Step	  5	  
• Add	  thin	  film	  to	  
measurement	  cell	  

Step	  6	  
• Run	  LINPAR	  -‐	  Evaluate	  
transmission	  line	  
parameters	  

Step	  7	  
• Repeat	  steps	  3	  and	  4	  

Step	  8	  
• Calculate	  the	  magnitude	  of	  
the	  vector	  difference	  of	  S21	  
• Calculate	  FOM	  for	  
measurement	  cell	  

Step	  9	  
• Return	  to	  step	  1;	  Con5nue	  
un5l	  the	  range	  of	  the	  sweep	  
variable	  is	  covered	  
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𝑆!! 𝑆!"
𝑆!" 𝑆!!

=

𝐴 + 𝐵
𝑍!
− 𝐶𝑍! − 𝐷

∆
2(𝐴𝐷 − 𝐵𝐶)

∆

2
∆

−𝐴 + 𝐵
𝑍!
− 𝐶𝑍! + 𝐷

∆

  

      (3.2)  

In equation (3.2) ∆ is 𝐴 + !
!!
+ 𝐶𝑍! + 𝐷. As described in section 2.8, the criterion to 

determine the best measurement cell is the magnitude of the vector difference of S21. 

Integration of the magnitude of the vector difference for each measurement cell variation 

provides numerical values indicating a relative sensitivity of the cell to the added thin 

film. 

The area for each magnitude difference plot is estimated using trapezoidal 

integration. The trapezoidal integration estimates the graphical area by dividing the area 

under the curve into many small trapezoids, then summing the areas of each trapezoid.  

Figure 3.2 is a graph showing the figure of merit for the sandwiched CPW 

(SCPW) measurement cell (thin film superstrate). The FOM shows the results of the 

CPW simulation varying only the conductor width and the gap width. The results of the 

optimization simulation for each measurement cell configuration (Figure 1.1) shows that 

the double-layered CPW (thin film substrate) is the most sensitive and exhibits the 

greatest difference in the s parameters given the assumed material properties of the thin 

film. 
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Figure 3.2:  SCPW FOM Varying Conductor Width and Separation 

For the CPW measurement cells the conductor geometry that shows the greatest 

sensitivity is the geometry with the smallest conductor gap and center conductor width 

(s = w = 30 µm).  

 

 

Figure 3.3:  DL-CPW FOM Varying Conductor Width and Separation 

In transmission line modeling, R and L (L for non-magnetic materials) are 

functions of the conductor geometry and the conductor material properties (Table 2.1). 

For two measurement cells with the same physical dimensions and conductor materials, 
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produced using the same fabrication processes, the resistance and inductance are 

theoretically identical and will be treated as such. After the addition of the dielectric thin 

film, the capacitance and the conductance of the overall structure change. The 

measurement cell geometry with the greatest difference in the capacitance (Ccpw equation 

2.13) is the most sensitive to the thin film. 

3.2 Process Validation 

To validate the measurement cell analysis process, the results of the 

MATLAB/LINPAR simulation were compared to the results obtained from Momentum 

software.  

 

Figure 3.4:  Comparison of LINPAR/MATLAB Analysis to Momentum Software 

In Figure 3.4 the blue line is the data from the LINPAR/MATLAB simulation 

while the green line is the data from Momentum. The figure shows the phase (top row) 
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and magnitude (bottom row) of S21 for the CCPW, DLCPW, and SCPW (column wise) 

measurement cells with a S
S + 2W
!

"
#

$

%
& ratio of 0.17. 

The phase constant differs by less than 2% at high frequency. Momentum more 

accurately simulates the dispersive nature of the dielectric constant. A comparison of the 

effective dielectric constant shows that the difference between the simulated values is 3.5. 

The FOM is affected by both the magnitude and the phase of the S21.  

For the assumed thin film properties, the DL-CPW structure is the most sensitive 

to the addition of the thin-film material. The FOM values for four simulated structures, 

both DL-CPW and SCPW, are listed in Table 3.1. The magnitude of the Momentum 

FOM does not match the values predicted by the LINPAR simulation; however, the 

values trend and predict the same sensitivity as the LINPAR analysis.  

Table 3.1:  FOM Comparison  

 LINPAR FOM ADS MOMENTUM FOM 

Structure SCPW DL-CPW SCPW DL-CPW 

S = W = 50 (0.33) 146.27 242.15 181.72 197.65 

S = 160 W = 230 (0.25) 18.87 89.28 24.00 90.38 

S = 160 W = 380 (0.17) 14.61 72.34 18.77 73.29 

S = 290 W = 110 (0.57) 55.85 168.53 29.22 103.80 

 

3.3 CPW Measurement Cell Analysis 

3.3.1 Conventional CPW (CCPW) 

The quasi-static approximation relies on TEM or quasi-TEM propagation. The 

lowest order surface wave mode that propagates in a CCPW is a transverse electric (TE) 
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mode. The cutoff frequency for this mode is dependent upon the substrate’s thickness and 

dielectric constant. For the base CPW measurement cell, the cutoff frequency for the 

lowest order surface wave is given by [16]: 

𝑓!" =
𝑐

4ℎ! 𝜀! − 1
  

      (3.3)  
where c is the speed of light in a vacuum, h1 is the substrate height and εr is the dielectric 

constant for the substrate. For the CCPW measurement cell, the cutoff frequency for the 

TE mode is approximately 31 GHz. Up to this frequency, the quasi-TEM assumption is 

valid. 

The sensitivity of the measurement cell is directly tied to the propagation constant 

of the CPW or microstrip. As discussed in section 2.5, the real part of gamma quantifies 

the attenuation and the losses of the measurement cell. Of the two loss mechanisms, the 

measurement cell losses are dominated by conductor losses. Throughout the simulations 

the dielectric polymer thin film added to the measurement cell is treated as loss-less, 

i.e. tan δtf = 0.  

 

Figure 3.5:  Series Resistance of CPW Measurement Cell 
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Figure 3.5 shows the series resistance for the three configurations of the 0.33 

CPW measurement cell. The graph shows there is a small difference in the series 

resistance (≤ 8.22%). The conductive losses are frequency dependent and increase with 

the square root of the frequency. As the frequency increases the current flows closer to 

the edges of the conductor, essentially creating a current crowding condition, this action 

increases the conductive losses. The depth at which the amplitude of the field decreases 

by e-1 is referred to as the skin depth and is determined by [17]: 

𝛿! =
2

𝜔𝜇𝜎  

      (3.4)  
where ω is the radian frequency, µ is the permeability of the conductor, and σ is the 

conductivity. The resistance due to the skin depth is [18]: 

𝑅! =
𝜇𝜋𝑓
𝜎   

      (3.5)  
The series resistance accounts for all conductive losses. In the case of the CPW 

measurement cell, this includes the center conductor and both ground planes.  
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Figure 3.6:  Resistance Per-Unit-Length for CPW Measurement Cells 

Figure 3.6 displays the series resistances for four different CPW measurement 

cells. Each line plotted represents a different center conductor-to-conductor gap ratio 

( !
!!!!

). The CPW with the narrowest conductors and smallest conductor separation has 

the greatest resistance. This indicates that more than just skin depth affects the resistance. 

Narrow conductor and gap dimensions contribute to current crowding, increasing the 

overall conductive resistance of the structure. As the gap dimensions decrease the electric 

field must occupy a smaller area thus increasing the current crowding and subsequently 

increasing the resistance.  

The resistance data of Figure 3.6 follows an expected trend given the changing 

conductor width and gap. The lowest resistance value is associated with the 0.57 aspect 

ratio CPW which is the largest of the structures tested. The 0.17 and 0.26 CPW have the 

same center conductor width (160 um); however, the conductor gap is different. The 

conductor gap is 380 um and 230 um for an aspect ratio of 0.17 and 0.26, respectively. 

The resistance trend for these structures is inversely proportional to the conductor gap. As 

the conductor gap increases, current crowding decreases therefore reducing the 
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resistance. The largest resistance is associated with the 0.33 aspect ratio CPW which has 

a conductor gap and center conductor width of 50 microns. 

The conductive losses are the dominant losses in planar transmission lines 

separated by a low loss dielectric material. The dielectric losses are modeled through the 

conductance, G, of the transmission line model. For planar transmission lines, the 

dielectric losses are affected by the conductor geometry and the conductor-gap ratio. 

 

Figure 3.7:  Conductance for CCPW 

As the gap widens the conductance decreases as plotted in Figure 3.7. This is due 

to increased field penetration into the substrate. Although the conductance of the CCPW 

increases with the gap width, the dielectric attenuation constant (Figure 3.8) is 

independent of the gap dimension. 
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Figure 3.8:  Dielectric Attenuation Constant 

Utilizing the conformal mapping processes facilities the understanding of the 

capacitance of the CPW measurement cell. The conformal mapping process transforms 

the CPW into a parallel plate capacitor. The conductor gap maps to the sidewalls of the 

parallel plate capacitor [19]. The CPW conductors become the top and bottom conductors 

of the capacitor. Therefore, the ratio of the conductor gap to one-half the total conductor 

width determines the capacitance of the CPW. 

 

Figure 3.9:  Capacitance of CCPW 

The percentages listed in Figure 3.9 are the ratios of the gap width to the total 

conductor width extending laterally across the top of the CPW. As the center conductor 
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width increases, becoming larger than the conductor gap, the capacitance increases. 

Effectively, a wider center conductor relative to the conductor gap forces more of the 

electric field into the substrate thus increasing the capacitance. The capacitance is a 

function of the conductor geometry and the dielectric constant of the substrate and is 

directly proportional to the conductor surface area and inversely proportional to the 

distance separating the conductors. The capacitance in Figure 3.9 does not show 

frequency dependence, as expected. CPW is dispersive meaning that the characteristic 

impedance and the effective dielectric constant are functions of frequency. However, the 

quasi-static analysis uses a frequency independent dielectric constant and characteristic 

impedance.  

The inductance (Figure 3.10) of the CCPW measurement cell is determined using 

equation (2.35). Inductance is affected by the conductor geometry, skin depth and 

permeability. The substrate material of the CPW measurement cell is non-magnetic and 

therefore does not affect the inductance. Inductance does have frequency dependence but 

is held constant through the quasi-static analysis.  

 

Figure 3.10:  Inductance of CCPW 
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The importance of each of the transmission line parameters becomes apparent in 

the CCPW propagation constant. The conductive and dielectric losses of the 

measurement cell combine to have a cumulative impact on the sensitivity of the 

measurement cell. The FOM for each cell is directly related to the losses and the 

propagation effects of the transmission line. 

 

Figure 3.11:  Propagation Constant of CCPW 

Figure 3.11 displays the propagation constant of the four different CCPW 

measurement cells analyzed. The top graph is the real part of γ, the attenuation constant 

α. The attenuation constant is affected by all losses of the CPW: conductor losses and 

dielectric losses. In Figure 3.6, the 0.33 aspect ratio shows the highest resistance. The 

smaller center conductor width and gap width contribute to the attenuation constant, the 

resistance attributed to current crowding. 

In Figure 3.11 the bottom graph shows the imaginary part of the propagation 

constant, which is defined by 𝛽 in equation (2.31). It is obvious from the graphs of Figure 
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3.11 that there is very little difference in the propagation constant of the different 

geometry CCPWs.  

3.3.2 Sandwiched CPW (SCPW) 

During all simulations the thin film is assumed to be loss-less (tan δ = 0). The 

addition of the dielectric material increases the overall effective dielectric constant of the 

SCPW measurement cell. Placing the dielectric on top of the measurement cell replaces 

the air (εr = 1) with a material with a higher dielectric constant increasing the overall 

effective dielectric constant of the measurement cell.  

 

Figure 3.12:  Normalized Attenuation Constant 

Normalizing the SCPW parameters to the CCPW gives an indication of the 

relative change in performance of the measurement cell. Figure 3.12 is the normalized α 

for the SCPW. Figure 3.12 indicates increased losses of the SCPW. Although the thin 

film is simulated as loss-less, the overall conductance of the SCPW measurement cell 

increases. The loss tangent is the ratio of ε’’ (dielectric loss) to ε’ (storage abilities) of the 

dielectric. Therefore, the change in the effective dielectric constant causes a change in the 

conductance of the transmission line model.  
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Figure 3.13:  Normalized Phase Constant of SCPW  

In Figure 3.13 the normalized phase constant shows the same expected results. 

The increase in the phase constant of the measurement cell is a result of the addition of a 

material with a dielectric constant greater than unity. The filling factors of the conformal 

mapping algorithm are weighting functions used to determine the ratio of the multiple 

dielectric constants of the multilayer CPW to the single effective dielectric constant of 

the new structure. The filling factors are functions of the conductor geometry and height 

of each layer. The dielectric constant and loss tangent of the substrate affect the 

capacitance of a parallel plate capacitor.  

 

Figure 3.14:  Normalized Capacitance 
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The largest change in the transmission line parameters occurs in the capacitance 

of the CPW. The capacitance increased by as much as 14 % for the SCPW with a 

conductor-gap ratio of 0.33. 

3.3.3 Double-Layered CPW 

The DL-CPW has the largest FOM. Following the same process of normalizing 

the SCPW, the DL-CPW shows a greater change in the propagation constant. In the case 

of the SCPW, a thin layer of air above the conductors was replaced by a dielectric 

material with εr = 3. The overall effect was an increase in the effective dielectric constant. 

For the DL-CPW, the thin film is placed below the conductors, but on top of the glass 

substrate. The propagating waves are now traveling through a material with a lower 

dielectric constant. This is apparent in Figure 3.15 and Figure 3.16. All of the normalized 

values are below 1 meaning that all of the transmission line parameters have decreased 

relative to the CCPW.  

 

Figure 3.15:  Normalized Attenuation Constant of DL-CPW 
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Figure 3.16:  Normalized Phase Constant of DL-CPW 

The capacitance of the DL-CPW is 36 % lower than the CCPW measurement cell 

with a conductor ratio of 0.33, which accounts for the DL-CPW high FOM and 

sensitivity to the thin film. Figure 3.16 is the normalized capacitance for the DL-CPW 

measurement cell.  

 

Figure 3.17:  Normalized Capacitance – DL-CPW 

3.4 Microstrip Analysis 

The microstrip analysis was limited to a superstrate thin film because of the 

complications associated with fabricating via holes on glass substrates. Unlike CPW, the 

microstrip does not have much design flexibility, allowing only two degrees of freedom. 
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The only flexibility in the design comes in varying the substrate height and the conductor 

thickness.  

At high frequency, the electric field of a microstrip transmission line is bound to 

the substrate separating the ground plane and the top conductor. As a consequence of the 

increased field in the substrate, the dielectric losses increase. The conductor losses also 

increase due to the skin-effect resistance of the conductor. This is the primary reason that 

the microstrip does not show as much sensitivity to the superstrate thin film as does the 

CPW measurement cells. 

 

Figure 3.18:  Microstrip FOM – Thin Film Superstrate 

3.5 Measurement Cell Sensitivity 

A measurement cell sensitivity analysis was completed on the CPW geometry 

with the highest FOM value. The purpose of the analysis was to determine what effect the 

measurement cell and the thin film properties have on the FOM. The resultant analysis 

helps to determine the optimum measurement cell configuration, given expected thin-film 
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material properties. Optimizing the measurement cell’s sensitivity improves the ability to 

accurately extract the thin film’s electrical properties.  

The DL-CPW structure cell may not always be the optimum measurement cell 

configuration with the greatest sensitivity. The optimum measurement cell configuration 

is a function of the physical and electrical properties of the substrate and thin film. The 

ratio !!!
!!!

 is important to help determine the optimum location for the thin film.  

 

Figure 3.19:  SCPW FOM Varying Thin Film and Substrate Dielectric Constants 

The FOM is the integration of the magnitude of the vector difference of S21 of the 

CCPW and the DL-CPW, and S21 of the CCPW and the SCPW. In Figure 3.19, the 

SCPW FOM indicates that when the thin film’s dielectric constant equals 1, the FOM 

equals 0. This is to be expected since a SCPW structure with a thin film with εr =1 is the 

same structure as the CCPW. The optimum dielectric constant ratio is the ratio that 

results in the highest FOM. As the substrate dielectric constant increases the optimum 

dielectric ratio decreases; therefore, the optimum ratio varies and is dependent upon the 

substrate’s dielectric constant.  
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Figure 3.20:  DL-CPW FOM Varying Thin Film and Substrate Dielectric Constants 

The DL-CPW FOM of Figure 3.20 shows that as the two dielectric constants 

approach the same value (ratio of !!!
!!!

 approaches 1) the magnitude of the FOM 

approaches 0. The FOM increases when the value of the dielectric constant ratio changes 

from 1 (either increases or decreases). Essentially, when the two dielectric constants are 

equal, the DL-CPW mimics the behavior of a CCPW; a CPW structure with a single 

dielectric substrate material. When the two dielectric constants are equal, the two separate 

layers will appear, electrically, as one. As with the SCPW structure, the optimum ratio 

varies with the substrate dielectric constant. 
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Figure 3.21:  FOM Difference – SCPW FOM – DL-CPW FOM 

The dielectric constant ratio helps determine the optimum location of the thin film 

and subsequently the measurement cell configuration, either SCPW or DL-CPW. 

Subtracting the FOM for the two CPW structures provides an indication of the optimum 

configuration for a given dielectric constant ratio. The positive values in Figure 3.21 

indicate that the SCPW is the optimum structure for the corresponding dielectric constant 

ratio. For the dielectric constant ratios with negative FOM difference values the DL-CPW 

structure has the larger FOM and therefore is more sensitive to the addition of the thin 

film.  

An analysis of the thin film height to substrate height ratio shows that the 

thickness of each layer did not affect the optimum configuration. The results show that 

the DL-CPW is always more sensitive, meaning the analysis results in a higher FOM for 

the DL-CPW when compared to the SCPW. As expected, thicker thin films are easier to 

measure and have a greater impact on the FOM. For thinner films, the conductor width to 

conductor gap ratio becomes more important.  
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The analysis results in Figure 3.22 show that for thin films with thicknesses much 

less than the center conductor width a narrow gap results in the highest FOM value. The 

FOM does not vary uniformly with an increasing center conductor width. Each line in 

Figure 3.22 is a different center conductor width. However, as can be seen in Figure 3.23, 

once the thin film thickness exceeds twice the center conductor width, the FOM 

decreases with the gap width but increases with the center conductor width (Figure 3.23). 

In both figures the x axis label, ∆, is the !!!"  !"#$  !"#$!!
!"#  !"#$!

.  For thinner films, the 

conductor gap has a greater impact on the FOM.  Once the thin film height exceeds the 

conductor gap, the center conductor width becomes more import and the FOM increase 

with the width of the center conductor.  In Figure 3.22, the conductor gap decrease along 

the x axis while in Figure 3.23, the conductor gap is increasing along the x axis. 

 

Figure 3.22:  DL-CPW FOM for Thin Film vs. Conductor Gap – 10𝜇𝑚 Thin Film 
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Figure 3.23:  DL-CPW FOM for Thin Film vs. Conductor Gap – 100𝜇𝑚 Thin Film 

3.6 Conclusion 

An analysis of the CCPW shows the effects the geometry has on the primary 

transmission line parameters. This provides the basis for the comparison to the SCPW 

and DLCPW. The DLCPW displays the greatest FOM given the anticipated thin film 

properties. The measurement cell sensitivity is directly related to the change in the 

structure’s capacitance and subsequently, the effective dielectric constant. The 

measurement cell with the greatest change in capacitance is the most sensitive to the 

addition of the thin film and therefore has the largest FOM. 

The physical structure of the microstrip transmission line lends to its lower FOM 

and sensitivity. The ground plane placed underneath the signal conductor confines the 

electric fields to the substrate that separates the conductors. As frequency increases the 

microstrip becomes more dispersive and more of the electric fields are confined to the 

substrate. The design flexibility of the CPW allows for more control of the electric fields; 

choosing the right !
!!!!

 ratio can force a greater percentage of the electric fields to be 

seen by the thin film layer. Different from the CPW, the microstrip’ electric fields are 
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perpendicular to the dielectric interfaces; the electric fields pass through each dielectric 

layer.  

An advantage of the CPW measurement cell is the design flexibility; the ability to 

vary the conductor/ gap ratio provides a great deal of flexibility in designing a sensitive 

measurement cell. The flexibility of the CPW measurement cell results in a large number 

of possible combinations of design parameters. Because of this the sensitivity analysis 

did not cover all of the possible thin film and CPW configurations.  
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 CHAPTER 4  

FABRICATION 

 

4.1 Introduction 

There are two goals of the fabrication processes. The first is the deposition of the 

CPW conductors with a targeted thickness of 2 microns. The conductors were deposited 

following established industry standards for RF sputtering and electroplating. The second 

goal is to deposit the thin film such that the CPW measurement cell is uniformly covered. 

The thin film was deposited using a simple drop cast method. The high viscosity of the 

polymer allowed for the drop cast method. The thin film material used to validate the 

extraction process and the FOM values is Polydimethylsiloxane.  

4.2 CPW TRL Standards and Transmission Line Conductor Deposition  

4.2.1 RF Sputtering 

RF sputtering deposition is a vapor deposition process for depositing thin films. 

During the RF sputtering process, high-energy waves are transmitted through an inert gas 

to create ions. These ions strike a “target” material dislodging particles that fill a vacuum 

chamber. The “target” material is the bulk source material that will ultimately comprise 

the thin film layer. The particles in the vacuum chamber are deposited as a thin film onto 

the surface of a substrate.  
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The CPW conductor deposition process requires three layers of conductive thin 

films. The first two layers, titanium and copper, are deposited using RF sputtering. The 

third and final layer (gold) is deposited using electroplating. Figure 4.1 is a pictographic 

representation of the deposition process. Before starting the deposition process, all of the 

glass substrates are cleaned using a piranha etch. A more detailed explanation of the 

piranha etch can be found in Appendix I.  

 

Figure 4.1:  Deposition and Liftoff Stages for CPW Conductors 

The titanium and copper layers are deposited in succession. Both of the target 

materials and the substrate are loaded into the vacuum chamber, such that both 

conductive thin films are deposited during one deposition process, eliminating the need to 

break the vacuum. Argon is the inert gas used in the sputtering process. Table 4.1 lists the 

details of the sputtering process. The titanium layer is referred to as the adhesion or seed 

layer because it adheres to the glass and provides a layer of material onto which the 
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copper can stick. The copper layer is required because the titanium is prone to oxidation. 

The copper does not have good adhesion abilities and will not stick to the glass.  

Table 4.1:  RF Sputtering Settings 

Material Layer RF Power Argon Vacuum Level Time Thickness 

Titanium 120 W 5 mTorr 25 min ~ 30 nm 

Copper 100 W 5 mTorr 35 min ~ 200 nm 

 

The end result of the RF sputtering process is a double-layered conductive thin 

film consisting of a 30nm layer of titanium beneath a 200nm layer of copper 

(Figure 4.1.b). The next step in the deposition process is to spin photoresist on top of the 

copper layer. 

The photoresist layer acts as a mold for the gold conductive layer; gold will only 

adhere to exposed copper. A layer of photoresist is placed on top of the copper, covering 

the copper completely (Figure 4.1.c). The photoresist is patterned to resemble the CPW 

conductor layout; therefore, any exposed copper will be coated with gold (Figure 4.1.d). 

4.2.2 Gold Electroplating 

Electroplating uses an electrolysis process to deposit gold on top of the exposed 

copper. Electrolysis is a process by which positively charged ions are attracted to, and 

deposited onto, a negatively charged material. In this case, the CPW measurement cell, 

coated with patterned photoresist, is held at a negative potential while the gold 

suspension is positively charged by way of a positive electrode placed in the suspension.  

The total surface needing to be electroplated was calculated to be 0.351 sq. 

inches. With a gold suspension rated for 1 ASF (Amp per square foot), the deposition rate 
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is approximately 1 um per 10 minutes. For the electroplating process, the negative 

terminal of a power supply was connected to the CPW measurement cell and the positive 

terminal was connected to a metal screen that is completely submerged in the gold 

suspension. The power supply was set to output 2.44 mA. The goal of the electroplating 

process was a conductor thickness of 2 um. After electroplating is finished, the 

measurement cell resembles Figure 4.1.e.  

The final steps of the deposition process are to remove the photoresist and the 

excess titanium and copper. The photoresist is removed by flushing the measurement cell 

with acetone. The acetone does not affect the metal conductors. The last step is to remove 

the exposed titanium and copper. A 1:1 solution of ammonium hydroxide and hydrogen 

peroxide (NH4OH:H2O2) is used to etch away the titanium and copper. Once completed 

the ended result is the final CPW measurement cell (Figure 4.1.f). 

 

Figure 4.2:  Profilometer Measurement of CPW Conductors 

Figure 4.2 is a profilometer measurement of the final CPW measurement cell 

conductors. The result was a CPW measurement cell with a conductor thickness of ~ 3 

microns. 



62 

4.2.3 Thin Film Deposition 

The thin film was deposited using a simple drop cast technique. Scotch tape 

provided a tall enough barrier to retain the thin-film material while it dries. Once the 

material was dry to the touch the scotch tape was removed and the coated CPW 

measurement cells were placed in a vacuum oven to cure. The vacuum is used to help 

prevent air pockets from forming in the thin film. The coated measurement cells were 

placed in the vacuum oven at a temperature of 85 °C for 2 hours. Since the thin film is 

placed on top of the CPW conductors (SCPW) no further processing is required. A 

profilometer measurement of the thin film shows an approximate height of 300 um 

(Figure 4.3).  

 

Figure 4.3:  Profilometer Measurement of Thin Film 

4.2.4 Conclusion 

The CPW conductors were deposited utilizing established industry standards for 

RF sputtering and electroplating. The intention of the fabrication processes is to create a 

conductor thickness of 2 micron and a thin film height of 10 microns. Neither goal was 

attained. Complications with the chemical mechanical planarization process (described in 

Appendix I) prevented post processing of the thin film. However, since the CPW 
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conductors were beneath the thin film, further processing was not required. The final 

product was CPW measurement cell with 3 micron thick conductors, coated with a 300 

micron thick film. Further details describing the fabrication process and complications 

associated with post processing are covered in Appendix I. 
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 CHAPTER 5  

MEASUREMENT RESULTS ANALYSIS 

 

5.1 Introduction 

The thin film permittivity is extracted using an iterative technique in which the 

LINPAR defined thin film dielectric constant is varied until the simulated phase of S21 

matches the measured phase of S21. Using this technique, the extracted dielectric constant 

of the PDMS thin film matched published data. An initial assessment of the simulated 

and measured FOMs shows a large difference between the two datasets. An investigation 

into the discrepancy revealed LINPAR was not accurately simulating the losses. The 

Nicolson-Ross-Weir (NRW) algorithm was applied to the CCPW measured data to 

characterize the borosilicate glass substrate. Using the NRW extracted data to define the 

borosilicate glass in LINPAR, the simulated FOM closely matches the measured FOM. 

5.2 Measured FOM 

The FOM is affected by both the magnitude and phase of S21. However, for a low 

loss or lossless material, the additional dielectric material has the greatest effects on the 

phase of S21. For this reason, the phase of S21 is used to extract the dielectric properties of 

the thin film. The extent of the CPW measurement cell’s sensitivity to the thin film can 

be seen in the difference in phase of S21 between the two measurement cells. The 

measured results in Figure 5.1 show a large change in the phase S21.  
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Figure 5.1:  Measured Phase S21 for CCPW Versus SCPW 

The measured FOM is calculated using equation (2.47). Table 5.1 displays the 

FOM data for four separate measurement cell geometries compared to the original 

simulation data. The measured FOM values do not match those predicted by the original 

LINPAR simulation. The initial simulations assumed a lossless thin film 10 micron thick 

with a dielectric constant of 2. As indicated by Figure 4.3, the deposited thin film height 

is greater than 10 microns. The first step in the analysis of the measured data is to extract 

the dielectric constant of the thin film.  

Table 5.1:  Measured Versus Simulated FOM 

Aspect Ratio Measured FOM Simulated SCPW 
0.33 168.21 146.27 

0.26 160.58 18.87 

0.17 183.42 14.61 

0.57 180.25 55.85 

 

Figure 5.3 is a flowchart showing the process for extracting the thin film dielectric 

constant. The extraction method is an iterative process in which the simulated thin film 

dielectric constant is varied until a minimum value for the difference between the 
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measured phase of S21 and the simulated phase of S21 is found. Following this process the 

thin film dielectric constant was determined to be 2.65. Figure 5.2 is a comparison of the 

measured phase S21 to the simulated phase S21 where the dielectric constant for thin film 

is set to 2.65. 

 

Figure 5.2:  Comparison of Measured and Simulated Phase S21 Using Extracted 
Dielectric Constant for Thin Film 
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Figure 5.3:  Dielectric Constant Extraction Flowchart 

5.3 FOM Comparison  

Figure 5.2 shows that a simulation using the extracted dielectric constant of the 

thin film results in a very good match of the phase of S21 with the measured data. This 

indicates the differences between the measured and simulated FOMs are tied to the losses 

of the measurement cell. As mentioned in chapter 2, the loss mechanisms for the CPW 

measurement cell are qualified through the series and shunt resistance components of the 
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transmission line model. In LINPAR, for a given aspect ratio, the series resistance is 

varied by changing the conductor sigma. The shunt resistance, conductance, is affected 

by the dielectric loss tangent. These two variables are the only means to model and 

predict the losses of the measurement cell. 

An initial analysis of the simulated losses shows the simulation does not 

accurately predict the losses of the CCPW. The LINPAR simulation underestimates the 

losses of the measurement cell (Figure 5.4). The iterative nature of the LINPAR 

simulation makes it difficult to extract the losses of the measurement cell. Since the 

simulations assume a lossless material, only the losses associated with the CCPW are of 

interest. 

 

Figure 5.4:  Simulated Versus Measured Magnitude of S21 

5.4 Nicolson-Ross-Weir (NRW) Analysis 

In 1970 Nicolson and Ross [20] developed a technique to extract the complex 

permittivity and permeability of materials using broadband s parameter measurements. In 

1974 Weir [21] improved upon the technique. The NRW extraction algorithm is a 

technique that is widely accepted as an accurate method used for material 

characterization. The NRW algorithm uses the first reflected and transmitted signals to 



69 

calculate the complex effective dielectric constant. The complex permittivity is then 

calculated from the extracted effective dielectric constant. 

The results of the NRW extraction algorithm are frequency dependent dielectric 

constant and loss tangent. The NRW technique is used to accurately characterize the 

borosilicate glass substrate. The technique cannot be used to characterize the thin film; 

this is a limitation of the algorithm. The frequency dependent dielectric constant and loss 

tangent extracted, using the NRW algorithm, are shown in Figure 5.5 and Figure 5.6, 

respectively.  

 

Figure 5.5:  NRW Extracted Dielectric Constant 

The dielectric constant and loss tangent for the borosilicate glass used in the 

initial LINPAR simulations was 6.8 and .0037, respectively. Borosilicate glass is not a 

common microwave material and, as such, there is little documented information about 

its microwave properties and performance. The NRW extracted dielectric constant is 

slightly lower than expected while the loss tangent is higher than documented.  
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Figure 5.6:  NRW Extracted Dielectric Loss Tangent 

The extracted dielectric properties are entered into LINPAR and the simulation 

results are then compared to the measured results. The results show a more accurate 

prediction of the CPW losses as evident by the magnitude of S21 (Figure 5.7) when using 

the NRW extracted data to define the CCPW measurement cell. As indicated in Table 

5.2, the new FOM values are much closer to the measured FOM values and trend with the 

measured data.  

 

 

Figure 5.7:  Magnitude and Phase of S21 Simulated Versus Measured Using NRW 
Extracted Dielectric Constant and Loss Tangent 



71 

Table 5.2:  Measured Versus Simulated FOM with Simulation Using NRW Extracted 
Data 

Aspect Ratio Measured FOM Simulated SCPW 
0.33 168.21 155.87 

0.26 160.58 147.06 

0.17 183.42 168.90 

0.57 180.25 169.47 

 

5.5 Conclusion 

The initial LINPAR simulations did not predict the correct measurement cell 

geometry that displayed the largest FOM. Upon investigation, it was determined that the 

LINPAR simulations did not predict the losses of the CCPW measurement cells; 

however, the phase information was correct. The Nicolson-Ross-Weir algorithm, an 

industry recognized and accepted extraction technique, was used to extract the complex 

permittivity of the borosilicate glass substrate. This information was then entered in to the 

LINPAR simulation and new FOMs were calculated for each CPW measurement cell. 

The new FOMs more closely match the measurement results both in magnitude and 

trend. 
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 CHAPTER 6  

LESSONS LEARNED AND FUTURE WORK 

 

6.1 Introduction 

The initial goal of this research was to extract the intrinsic material properties of a 

nano-composite thin film, both complex permittivity and complex permeability. 

However, fabrication concerns and obstacles changed the focus of the research to 

polymer-only dielectric films. The iterative LINPAR simulation accurately extracted the 

real relative permittivity of the thin film, a value, which matched published data for 

PDMS.  

The sensitivity analysis indicated that the DL_CPW was the most sensitive for the 

anticipated thin film properties. Additional measurements can be performed to validate 

the sensitivity analysis for different configurations.  

6.2 Sensitivity Analysis Validation 

The initial LINPAR simulations assumed a lossless thin film with a dielectric 

constant of 3 at a height of 10 microns. Although the fabricated thin film was 

300 microns thick with a dielectric constant of 2.65, the LINPAR analysis was able to 

match, with reasonably good agreement, the measured FOM for the SCPW measurement 

cell.  

The DL-CPW displays the greatest sensitivity to the addition of a low dielectric 

constant film with a thickness of 10 microns. Due to process limitations and fabrication 
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problems, the DL-CPW was not fabricated and measured; only the SCPW was measured. 

The analysis and data process of the measurement results indicated that LINPAR 

accurately predicted the sensitivity of the SCPW. More work is required to determine 

how to address the problems associated with CMP to allow for the deposit of conductors 

on top of the thin film. 

Completing additional measurements of thin films of varying heights and 

dielectric constants will help validate the LINAPR analysis for both CPW structures. 

Emphasis should be placed on films with a thickness less than the conductor gap of the 

CCPW measurement cell. The FOM was sensitive to the relationship between the 

conductor gap and the thin film thickness.  

The thin film to substrate dielectric constant ratio is a significant consideration 

when selecting the substrate material. Measurements on multiple test cells comprised of 

different substrates will validate the importance of the dielectric constants ratios. 

Changing the CPW substrate thickness did not affect the sensitivity if the measurement 

cell. 

As evident in the measurement of the SCPW cells, the PDMS material is not 

lossless. Since during the LINPAR analysis the material was treated as lossless, the 

accuracy of the sensitivity analysis when using lossy material is not completely known. 

Therefore, additional measurements and analysis of lossy materials is also recommended 

to increase confidence in the LINAPR analysis and to verify LINAPR’s flexibility to 

analyze and predict the sensitivity when dealing with lossy materials. 
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6.3 Magnetic Nano-composite Thin Films 

Because LINPAR is designed to analyze multi-conductor transmission lines 

embedded in piecewise-homogeneous dielectric materials, permeability cannot be 

explicitly defined. Roger Harrington [8] describes a technique in which a magnetic 

material can be simulated by setting the permittivity to 
1
µr

. Since the nanocomposite 

material is both a dielectric and magnetic material, an iterative approach to extract the 

permeability will result in erroneous data. Characterization of the composite material will 

require a different approach. For the magnetic nanocomposite material both the 

inductance and capacitance must be accurately defined to simulate the material. 

6.4 Complex Parameter Extraction 

The iterative extraction process was able to accurately define the real relative 

permittivity of the thin film material. Broadband techniques are not as accurate as 

resonant techniques for calculating losses; however, usual information concerning the 

thin film losses can still be obtained.  

6.5 FOM Analysis 

The CPW measurement cells were studied to determine the sensitivity to the thin 

film material. An optimization algorithm was completed to determine the CPW 

measurement cell with the largest FOM and therefore the greatest sensitivity to the thin 

film. However, additional analysis needs to be performed to understand how much 

benefit is gained by optimizing the measurement cell to increase sensitivity.  
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 APPENDIX I  

FABRICATION PROCESS RECIPES 

 

I.1 Chemical Mechanical Planarization of PNC Film 

The drop-cast deposition process results in a film with a large surface roughness. 

The thin film surface roughness, measured using a profilometer, is shown in Figure I.1.  

 

Figure I.1:  Profilometer Measurement for Polymer Thin Film 

 

By definition, the surface roughness of the material is the arithmetic mean of the 

summation of the magnitude of the surface variations: 

𝑅! =
1
𝑙 𝑓(𝑥)

!

!
𝑑𝑥  

      (4.1)  
Using (I.1), the surface roughness for the thin film in Figure I.1 is approximately 

2 microns; however, this does not provide an accurate depiction of the surface of the thin  
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APPENDIX I (Continued) 

film. The goal of the conductor deposition process is to reach a metallization thickness of 

1 micron. The distance between the peaks and valleys is greater than 1 micron and not 

suitable for the desired conductor thickness. Chemical mechanical planarization (CMP) 

can provide a solution to the surface roughness problem. 

CMP accomplishes two functions: first, the CMP process will smooth the surface 

of the thin film, second the process reduces the thickness of the film (goal is a 10 micron 

thick film). These two tasks are completed simultaneously. Unfortunately, the CMP 

process is not an automatic process controlled by a processor that can monitor the 

material’s removal rate. As such, continuous monitoring of the process ensures the 

removal of an appropriate amount of material.  

 

Figure I.2:  Rotary CMP 

Figure I.2 is a depiction of a rotary CMP process. In rotary CMP, both the platen 

and the vacuum chuck rotate. The material removal rate is a function of several factors: 

the platen rotational speed; the downward force on the polishing pad; the friction between 

the polishing pad and the substrate; and the chemical and physical properties of the 

slurry. 
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APPENDIX I (Continued) 

The CMP machine is equipped with a 12-inch platen and has several 

programmable functions. The programmable operational parameters for the thin film 

polishing process are the platen rotational speed (0 to 70 RPM), and the inner and outer 

arm swing. Downward pressure on the polishing pad can be increased by adding up to 

nine 338-gram weights. As shown in Figure I.3, the vacuum chuck rests in the cradle of 

the swing arm during polishing. The platen’s direction of rotation holds the vacuum 

chuck into the swing arm’s cradle. The swing arm is attached to a post that sweeps in a 

clockwise and counter-clockwise direction. 

 

Figure I.3: Top Down View of Rotary CMP 

The amount of rotation is adjustable and is changed by setting the inner and outer 

swing percentages. An outer setting of 100, with an inner setting of 0, will swing the arm 

a distance equal to the radius of the platen. The cradle of the swing arm is equipped with 

roller wheels at the cradle’s fingertips. These wheels allow the vacuum chuck to spin 

inside the cradle as the arm sweeps and the platen rotates. The vacuum chuck will spin in 

the same direction as the platen. The collaborative movements are designed to result in a 

uniform film of even thickness and surface roughness. 
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APPENDIX I (Continued) 

The sample is connected to a vacuum through the chuck. The underside of the 

vacuum chuck has several concentric circles radiating out from the center. Each circle has 

four holes, spaced 90 degrees apart, and drilled through the chuck. The CPW substrates 

are two inches squared; the outer circles have a radius of greater than two inches. This 

creates a problem with a vacuum. The substrate is not large enough to cover all of the 

holes and therefore cannot create a good seal for the vacuum.  

To help the vacuum seal, a flat piece of Teflon the same diameter of the vacuum 

chuck is placed on the bottom of the chuck. The Teflon plate has several holes around the 

center. These holes pass the vacuum suction to the polished substrate and hold it in place. 

Because Teflon is a frictionless material, tape is placed on both sides of the disk to help 

the vacuum seal.  

During photoresist patterning (section I.2.1) the mask must come into contact 

with the photoresist. In the case of the thin film, this means that the Epo-Tek dam must 

be removed or polished down to a height that is even with the thin-film material. The 

dam is a very hard ceramic material and adds significantly to the total time required to 

polish the thin film.  

CMP requires some material preparation. The polishing pad requires a 

conditioning step to charge the pad by adding an abrasive material. Three small, 

approximately quarter sized, drops of the abrasive suspension is placed around the 

polishing pad. The drops are spaced in such a manner to create a uniform distribution of 

the suspension. Two different diamond abrasive solutions were used during CMP: the 

first a 30 micron suspension, the second 45 microns. Given the hardness of diamonds, the  
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polishing pad only needs to be charged once, as long as the rotational speed is kept 

relatively low. If the rotational speed is too high, centripetal force will cause the 

diamonds to migrate to the edge of the pad and be discharged from the pad entirely. 

The large particle size and the hardness of the diamonds are effective for 

polishing the ceramic dam that surrounds the thin film. The dam height varies around the 

edge of the substrate and at its lowest peak is still tens of microns higher than the surface 

of the film. The polymer only film is very soft and can be quickly damaged during CMP; 

care needs to be taken to avoid damaging the polymer or removing too much material. 

After the dam is at the same height as the film, a finer suspension consisting of smaller 

particles is used to fine polish the film to avoid damage to the polymer.  

Since CMP is not an automated process, it must be completed in several steps or 

stages, defined by time. Initially, while the dam is still tall, the amount of time for each 

stage is high. Table I.1 lists the operational parameters used while CMP is completed on 

the nanocomposite film. The composite film is harder than the polymer only film and 

needs a harder abrasive process to polish. If profilometer measurements after coarse 

polishing indicate the surface is too rough for a one micron metallization layer then a 

finer polishing is required.  
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Table I.1:  Operational Parameters for CMP 

Operational Parameter Value 
Platen Rotational Speed 50 RPM 
Suspension 45 micron diamond – 30 micron diamond 
Inner Sweep Percent 0 
Outer Sweep Percent 100 

Weight 
3 kg (9 338 gram weights)—reduced as the dam 
height approached the thin film surface. Removed 
three at a time to keep weight evenly distributed. 

Time 
15 to 30 minute intervals—checking dam height and 
film surface after each interval. Total time required 
averaged 6 hours per board. 

 

The CMP for the nanocomposite film introduces a different set of concerns. The 

introduction of the nanoparticles to the polymer reduces the amount of polymer per 

sample. This means that less polymer is available to provide adhesion and structure for 

the particles. The lower adhesive properties means the nanocomposite film may not 

adhere to the glass and could separate during CMP. Minor adjustments to the operational 

parameters listed Table I.1 are needed when working with the nanocomposite film. If the 

material removal rate is too high, the composite film could be damaged or removed from 

the glass. To reduce the material removal rate, downward force, rotational speed, abrasive 

particle size, and the time interval are all reduced. 

The goal of the CMP process is a thin film with a low surface roughness and a 

height of approximately 10 micron. Once CMP is complete the films are ready for resist 

patterning and the deposition of the conductors. 
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I.2 CPW TRL Standards and Transmission Line Fabrication  

Two different fabrication processes were used to produce the TRL standards and 

the measurement cells. The first process required a negative photoresist due to the use a 

positively polarized mask and thermal evaporation to deposit the conductors. This 

process is detailed in section I.2.1. Section I.2.2 describes the steps followed during the 

second fabrication process. A second, different fabrication process was needed because 

of the use of a negatively polarized mask. The conductor deposition used sputtering to 

deposit a seed layer followed by electro-plating.  

I.2.1 Thermal Deposition Based Fabrication 

The following explanation refers to Figure I.4. The first step is to clean the 

borosilicate glass slide using a piranha etch. The piranha etch is a chemical cleaning 

process that uses a 3:1 solution of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2). 

The piranha etch is designed to remove any organic deposits or residues from the glass 

substrate. In addition to the piranha etch the glass is rinsed with acetone and methanol 

just prior to spinning the photoresist onto the glass. These two process combine to ensure 

the glass surface is clean of contaminates that could reduce the adhesive abilities of the 

photoresist and subsequently the chrome and gold. 

Spinning the photoresist follows cleaning the glass substrate (Figure I.4b). The 

photoresist is Futurrex 3000PY. The numeric value in the photoresist’s part number 

indicates the approximate thickness of the photoresist layer after spinning; the 

photoresist’s viscosity, the spinning speed and spinning duration determine the actual  
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thickness. After spinning the glass substrate with the 3000PY, the photoresist layer was 

2.7 µm thick.  

3000PY is classified as a negative photoresist;, meaning that when exposed to 

ultra-violet light it will become polymerized and harder to remove. The UV wavelength 

for 3000PY exposure is 365 nm. Prior to exposure, the photoresist is baked at 175 ºC for 

90 s. This “soft bake” removes most of the solvents from the photoresist layer and makes 

the material layer photosensitive. It is imperative that the photoresist is baked for the 

prescribed duration. Over-baking will reduce the photosensitivity of the resist by either 

reducing the developer solubility or by destroying the sensitizer. If the resist is “under-

baked” some of the UV light may not reach the sensitizer, therefore preventing the resist 

from polymerizing and increasing the possibility that all of the resist may be removed by 

the developer solution. 

A “hard-bake” hardens the resist and improves the adhesive properties of the 

resist layer. After the “hard-bake” the sample is placed in RD6 resist developer. Any 

resist that was not exposed to the UV light is removed during this step. The result is a 

negative of the CPW transmission lines (Figure I.4c) on the glass substrate. The final step 

in patterning the photoresist is to clean the sample. An acetone rinse followed by a 

methanol rinse cleans the sample. 

  



85 

APPENDIX I (Continued) 

 

Figure I.4:  Deposition and Liftoff Stages for Chrome – Gold Metallization 

The chrome and gold deposition process uses thermal evaporation. Following the 

thermal evaporator operating instructions, a layer of chrome followed by a layer of gold 

were deposited. The glass sample is placed inside of the vacuum chamber under a strong 

vacuum. A high current is then passed through the electrodes (first the chromium, then 

the gold) creating high temperatures in the metal to be deposited. The high temperature 

causes the metal to evaporate, filling the chamber. The evaporated metal condenses on 

the surface of the samples in the chamber. 

The deposition of the CPW conductors is two separate stages or steps, although 

completed in a single deposition session. The two steps are the deposition of chrome, 

then the deposition of gold. A chromium rod is connected across electrode one; a crucible 

containing four gold pellets is connected across electrode two. Prior to the start of the 

first step, the chamber must be vacuum-sealed. 
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A thickness monitor displays the deposition rate and the approximate thickness of 

the metal. The crystal’s oscillating frequency is a function of its elasticity and mass. As 

evaporated metal deposits onto the exposed face of the crystal, the mass changes, 

changing the oscillating frequency. The increase in the crystal’s mass causes the 

oscillating frequency to decrease. Knowledge of the relationship of how the change in 

mass effects the change in frequency allows for the calculation of the thickness of the 

metallization layer and the deposition rate.  

To start evaporating the chromium, the current through electrode one is slowly 

increased until the thickness monitor indicates the desired deposition rate. Figure I.4d is a 

pictorial depiction of the samples after the chrome deposition. At this point the samples, 

with a negative image of the CPW structures, are covered with a thin layer of chrome.  

The next step is to deposit the gold. However, time should be allotted between the 

deposition of chrome and gold to allow the remaining chrome to settle. Waiting a few 

minutes will help facilitate a clean gold metallization layer, ensuring better adhesion and 

conductive properties. The gold is deposited in the same manner as the chrome. The 

differences between the deposition stages are the amount of current, the deposition rate, 

the thickness, and the time required to complete the deposition. A profilometer 

measurement showed the combined thickness of the chrome and gold (Figure I.4e) varied 

between 1.2 to 1.4 µm.  

At this point the entire sample has a layer of gold covering the surface of the glass 

substrate. The final step is to liftoff the remaining excess chrome and gold. To begin the  
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liftoff process, the samples are placed in an acetone bath for 48 hours. The acetone bath 

alone is not enough to completely remove the excess gold. Sonication combined with 

utilizing resist remover, Futurrex RR41, helped speed the lift off process. 

I.2.2 Sputtering Deposition Based Fabrication 

Prior to patterning the photoresist, the glass substrates are cleaned using a piranha 

etch as described above in section I.2.1. The photoresist used during the sputtering based 

deposition is the Shipely 1827. The Shipely photoresist will create a pattern 

approximately 2.7 microns deep. The process to pattern the Shipely photoresist is the 

same as that for the Futurrex 3000PY; however, the time and temperature requirements 

for the soft and hard bakes differ.  

The sputtering based deposition process begins with the deposition of an adhesion 

layer of titanium followed by a deposition of a seed layer of copper. The titanium 

provides a layer for the copper to adhere. The copper is a seed layer for the gold to bind 

to during electroplating.  

Sputtering uses radio frequency energy to vaporize a target (either titanium or 

copper), the vapors fill the vacuum chamber containing the substrate and condense on the 

substrate creating a uniform coating of material. The vacuum chamber is filled with argon 

gas while the chamber is pumped down to a strong vacuum. Table I.2 contains the 

parameters for the sputtering system. 
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Table I.2:  Sputtering Parameters 

Metal Vacuum 
(mTorr) 

RF Energy 
(W) 

Time (min) Layer Thickness 
(nm) 

Titanium 5 120 25 ~30 
Copper 5 100 35 ~ 200 
 

The result of the sputtering and photoresist patterning is a negative of the CPW 

structure. The next step is to deposit the gold using electroplating. To electroplate, the 

substrate is held at a negative potential while a metal grid is held at a positive potential. 

The negative potential attracts the positively charged gold depositing it on the exposed 

copper on the substrate. A low current (in the mA range) is forced through the plating 

solution causing the gold to be deposited onto the exposed copper. 

The two factors that determine the deposition rate and deposition current are: the 

area to be covered and the current rating of the plating solution. Once the area is known, 

the current rating is used to determine the deposition current. The calculations used to 

determine the deposition current and time are: 

𝐼 =
𝐴𝑟𝑒𝑎  𝑐𝑚!

#  𝑐𝑚  𝑖𝑛  𝑓𝑡! ∗ 1000   

      (I.1)  
The deposition rate for a plating solution with a rating of 1ASF is approximately 1 𝜇𝑚 

per 10 minutes. Using the results of equation I.1 in equation I.2 gives the time needed to 

reach the desired thickness.  

𝑇𝑖𝑚𝑒 =

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
𝑑𝑒𝑝𝑜𝑠𝑡𝑖𝑜𝑛  𝑟𝑎𝑡𝑒

𝐼   

      (I.2)  
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Each board fabricated had different areas and therefore required different 

deposition times. The times varied from 25 to 30 minutes. After electroplating, the 

adhesion layer and the seed layer are removed using a chemical etch. The boards are 

soaked in a 1:1 solution of ammonium hydroxide and hydrogen peroxide for 1.5 minutes. 

Figure I.5 is a profilometer measurement showing the conductor thickness for the CPW 

measurement cell. The conductors are approximately 3 µm thick.  

 

Figure I.5:  Measurement Cell Conductor Thickness 
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TRL CALIBRATION STANDARDS DESIGN 

 

II.1 Design of Thru-Reflect-Line Calibration Standards 

The TRL calibration accomplishes two separate tasks. First it corrects the phase 

and magnitude errors introduced by moving the reference planes out of the VNA to the 

measurement cell. Second, the TRL calibration compensates for the insertion loss of the 

cables, connectors and probes used during the measurements.  

As a minimum the TRL calibration uses three standards to compute 12 error 

terms: a thru, a reflection (open or short), and a delay line. As a rule of thumb, the phase 

difference between the thru and the delay line should be less than π and optimally reside 

between 20° and 160°. The limitation placed on the phase difference between the thru 

and the line, limits the frequency range for which the calibration is accurate. Additional 

lines may be added to increase the bandwidth of the calibration. For a multiline TRL, the 

phase delay for the calibration band must meet the 20° to 160° phase requirement. To 

ensure compliance with the phase requirements the frequency range for which each 

individual line is valid must overlap the frequency range covered by the other lines. Each 

thru/line pair is valid for a frequency band to start frequency ratio of 8:1. 
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The physical length of a 90° long transmission line is given by: 

𝐿 =
90 ∗ 𝑐

360 ∗ 𝑓 ∗ 𝜀!""
  

      (II.1)  
where c is the speed of light, f is frequency and εeff is the effective dielectric constant of 

the transmission line. Equation II.1 is used to calculate the physical length for each 

individual delay line. The center frequencies of the delay lines are multiples of two, i.e. 2, 

4, 8, and16 GHz. This helps to maintain the phase delay recommendations. The 

frequency band for the measurements extends from 40 MHz to 20 GHz.  

To cover this frequency range, each TRL calibration set consists of four delay 

lines. As previously mentioned, each thru/line pair covers a frequency band of 8:1. 

Optimally, the phase delay of the calibration should be close to 90° across the frequency 

band. Figure II.1 shows the calculated phase delay for the desired frequency band.  

 

Figure II.1:  Calculated Phase Delay for Calibrated Frequency Band 
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Figure II.1 shows that by overlapping the frequencies of the delay lines the 

calibration phase delay does not drop below 60°. Table II.1 lists the center frequency and 

length for each of the delay lines. For ease of design, the calculated physical lengths were 

rounded to integer mm values. The fabricated length includes four mm for the thru. The 

thru calibration standard sets the reference planes of the calibration. If the thru is defined 

to have zero length then the reference planes are located at the center of the thru (Figure 

II.1).  

Table II.1:  Delay Line Lengths and Frequency Limits for TRL Calibration Standards 

Center Frequency 
(GHz) 

Calculated Physical Length 
(mm) Fabricated Length (mm) 

2 19.3 23 

4 9.65 14 

8 4.83 8 

16 2.41 6 

 

 

Figure II.2:  Calibration Reference Plane – Thru 

Moving the reference planes to the center of the thru removes the effects of the probe 

pads and transitions from the measurements. The section of the transmission lines outside 

of the reference planes in Figure II.3 become part of the test setup after calibration and do 

not affect the measurement results.  
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Figure II.3:  Calibration Reference Planes – Delay Line 

II.2 Calibration Measurement and Verification 

A measurement of the thru and open standards is used to verify the validity and 

quality of the calibration. After the calibration, the thru becomes part of the VNA and 

measurement system. Therefore, when measuring the thru, ports 1 and 2 can be viewed as 

being matched. Figure II.4 shows the amplitude of the reflection of ports 1 and 2 from the 

thru measurement. The amplitudes of the measurement are below 35 dB indicating a 

good match. 

 

Figure II.4:  Reflection Coefficient for Port 1 and Port 2 
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The calibration compensates for the losses of the measurement system. The 

transmission coefficient of the thru should be 0 ± .1 dB. As the results of Figure II.5 

indicate, the measurement system (cables and probes) can be considered loss-less. A final 

indication that the reference planes are located at the center of the thru is the phase of S21. 

The phase of Figure II.6 is essentially zero. 

 

Figure II.5:  Amplitude of the Transmission Measurement of the Thru 

 

 

Figure II.6:  Phase of S21 of Thru Measurement 
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An ideal reflection standard, either an open or a short, will have a 0 dB S11 or S22 

measurement. S11 and S22 for the open in Figure II.7 0 ± .1 dB is a good result. 

 

Figure II.7:  Reflection Measurement of Open 
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