
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

1-1-2014

Development of Electroplated-Ni Structured
Micromechanical Resonators for RF Application
Mian Wei
University of South Florida, mwei@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Wei, Mian, "Development of Electroplated-Ni Structured Micromechanical Resonators for RF Application" (2014). Graduate Theses
and Dissertations.
http://scholarcommons.usf.edu/etd/5404

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F5404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F5404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.usf.edu%2Fetd%2F5404&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 

Development of Electroplated-Ni Structured Micromechanical 

 Resonators for RF Application 

 

 

 

by 

 

 

 

Mian Wei 

  

 

 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Electrical Engineering  

Department of Electrical Engineering 

College of Engineering 

University of South Florida 

 

 

 

Major Professor: Jing Wang, Ph.D. 

Thomas Weller, Ph.D. 

Sylvia Thomas, Ph.D. 

Rasim Guldiken, Ph.D. 

Andreas Muller, Ph.D. 

 

 

Date of Approval: 

September 3, 2014 

 

 

 

Keywords: MEMS, Quality Factor, ALD, 

Capacitive, Piezoelectric, Non-linearity 

 

Copyright © 2014, Mian Wei  



 

DEDICATION 

To my mother Chunli Wang, my father Tiexiang Wei,  

my husband Ivan Rivera and my son Alejandro Rivera 

  



 

ACKNOWLEDGMENTS 

First, I would like to thank the members of my dissertation committee: Prof. Jing Wang, 

Prof. Thomas Weller, Prof. Sylvia Thomas, Prof. Rasim Guldiken, and Prof. Andreas Muller, not 

only for their advice and suggestions, but also their time and patience to help me accomplish the 

doctoral program. 

I would like to especially express my gratitude to my advisor Prof. Jing Wang, a 

passionate researcher and scientist who introduced me to the world of MEMS and guided my 

entire journey to achieve my Ph.D. Without his infinite ideas, encouragement, inspiration and 

support, I wouldn’t have gone this far.  

I would also like to thank all the staff from Nanotechnology Research and Education 

Center (NREC): Sclafani Louis-Jeune, Robert Tufts, Dr. Yusuf Emirov, Jay Bieber and Richard 

Everly, for running the laboratory smoothly and maintain the facility constantly to support 

students’ projects. I especially appreciate the tremendous help and patience from Rich Everly, a 

cleanroom engineer who takes care of the equipment, trains the users and provides countless help 

on all the difficulties that the users have faced.  

Other thanks go to the past and current group members (RF MEMS Transducers Group) 

for their friendship and encouragement. With all their efforts, our lab in IDRB is well organized 

and maintained so that I could fulfill my fabrication and measurement. 

I am deeply indebted to my parents who raised me with all their best, always support me 

and help me pursue my dreams.  



 

My deepest appreciation goes to my husband, Ivan Fernando Rivera, another future Ph.D. 

in the family for not only building up a new family with me and raising our son together, but also 

continuously encouraging me to overcome all the difficulties and never losing patience and 

confidence in me when I got frustrated. In the past few years, we spent more time in the 

cleanroom and testing lab than anywhere else, we talked about our research more than anything 

else, and we supported, corrected and learned from each other. I’m thankful for that we agreed 

on what we desired and have tried our best to pursue and fulfill it. My son, Alejandro Wei Rivera, 

my best gift so far, is another motivation for me to accomplish my Ph.D. His birth has definitely 

put more responsibility over my shoulders, but also enriched my life in the meantime. Both of 

my husband and my son have offered me endless love and support and I will return to them with 

all my heart.  

 

 



i 

 

 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................................... iii 

LIST OF FIGURES ....................................................................................................................... iv 

ABSTRACT ................................................................................................................................... ix 

CHAPTER 1 INTRODUCTION .................................................................................................... 1 

1.1 Background of Wireless Receiver Architecture ........................................................... 2 

1.1.1 Superheterodyne Receiver Architecture ........................................................ 3 

1.1.2 Direct-Conversion Receiver Architecture ...................................................... 4 

1.1.3 MEMS-Based Novel Receiver Architecture .................................................. 5 

1.2 Fundamentals of Quality Factor (Q) ............................................................................. 6 

1.2.1 Q by Energy ................................................................................................... 7 

1.2.2 Q by Bandwidth ............................................................................................. 7 

1.2.3 Q by Phase ..................................................................................................... 8 

1.3 MEMS-IC Integration Technology ............................................................................... 8 

1.4 Mixers and Filters ....................................................................................................... 10 

1.5 Previous Work of Micromechanical Resonators ........................................................ 11 

1.5.1 Piezoelectrically-actuated Resonators ......................................................... 12 

1.5.2 Capacitively-transduced MEMS Resonators ............................................... 15 

CHAPTER 2 CAPACITIVELY-TRANSDUCED RESONATORS ............................................ 20 

2.1 Capacitive Transducer ................................................................................................ 20 

2.1.1 Air-Gap Micromechanical Resonators ........................................................ 23 

2.1.2 Solid-Gap Micromechanical Resonators ..................................................... 24 

2.1.3 Partially-Refilled Air-Gap Micromechanical Resonators ............................ 25 

2.2 Atomic Layer Deposition ............................................................................................ 28 

2.3 Nickel Electroplating .................................................................................................. 30 

2.4 Distortion in Micromechanical Resonators ................................................................ 32 

2.4.1 Nonlinearity ................................................................................................. 33 

2.4.2 Fundamentals of Intermodulation Distortion ............................................... 33 

2.5 Intermodulation Distortion in MEMS Resonators ...................................................... 36 

2.5.1 IIP3 of Air-gap Resonators ........................................................................... 41 

2.5.2 IIP3 of Solid-gap Resonators ....................................................................... 44 

2.5.3 IIP3 of Partially-filled Air-gap Resonators .................................................. 44 

CHAPTER 3 ELECTROPLATED-NICKEL MEMS RESONATORS ....................................... 49 

3.1 Measurement Set-up ................................................................................................... 49 

3.2 Solid-Gap Resonator Fabrication Process .................................................................. 50 



ii 

3.3 Air-Gap Resonator Fabrication Process ..................................................................... 53 

3.4 Partially-Filled Air-Gap Resonator Fabrication Process ............................................ 56 

CHAPTER 4 PIEZOELECTRIC-ON-NICKEL MEMS RESONATORS ................................... 57 

4.1 Piezoelectric Effect and Piezoelectric Materials ........................................................ 57 

4.2 Piezoelectrically-actuated MEMS Resonator ............................................................. 58 

4.3 Fabrication Process ..................................................................................................... 64 

4.4 Localized Annealing ................................................................................................... 66 

4.5 Measurement Results .................................................................................................. 67 

4.5.1 Circular Disk ZnO-on-Nickel Resonators ................................................... 68 

4.5.2 Square and Rectangular Plate ZnO-on-Nickel Resonators .......................... 71 

4.5.3 Resonator Arrays ......................................................................................... 74 

4.5.4 In Air vs. In Vacuum Operation .................................................................. 74 

4.5.5 Annealing ..................................................................................................... 75 

4.5.6 Temperature Stability................................................................................... 76 

CHAPTER 5 CONCLUSION ...................................................................................................... 78 

5.1 Achievements .............................................................................................................. 78 

5.2 Future Works .............................................................................................................. 79 

REFERENCES ............................................................................................................................. 82 

APPENDICES .............................................................................................................................. 88 

Appendix A Process Traveler ........................................................................................... 89 

A.1 IC-Compatible Electroplated-Nickel Air-Gap Resonator Process                     

       Traveler .......................................................................................................... 89 

A.2 IC-Compatible Electroplated-Nickel Solid-Gap Resonator Process     

       Traveler .......................................................................................................... 96 

Appendix B Copyright Permissions ............................................................................... 104 

ABOUT THE AUTHOR ................................................................................................... End Page 

 

  



iii 

 

 

 

 

 

LIST OF TABLES 

Table 2.1 Comparison of Key Material Properties between Nickel and Other MEMS  

                Structural Materials ....................................................................................................... 31 

Table 2.2 Composition and Operating Conditions for Nickel Sulfamate Solution ...................... 32 

Table 4.1 Key Properties of Materials for Piezoelectric-on-Substrate Resonators ...................... 59 

Table 4.2 Comparison of Electroplated Nickel Young’s Modulus with Different Mean  

                Current Density ............................................................................................................. 62 

Table 4.3 Measurement Results of ZnO-on-Nickel Resonators with 700nm-thick ZnO 

                Piezoelectric Layers ...................................................................................................... 63 

Table 5.1 Properties of Piezoelectric Material Used In MEMS ................................................... 80 



iv 

  

 

 

 

 

LIST OF FIGURES 

Figure 1.1  Schematic block diagram for a typical superheterodyne wireless receiver  

                   architecture . ................................................................................................................. 3 

Figure 1.2 Schematic block diagram for a typical direct-conversion wireless receiver  

                  architecture . .................................................................................................................. 4 

Figure 1.3 Schematic block diagram for a micromechanical resonator enabled  

                  channel-select receiver architecture  ............................................................................. 5 

Figure 1.4 (a) A series RLC circuit representing the transfer function of a resonator;  

                  with (b) its magnitude and (c) phase spectra in frequency domain. ............................. 6 

Figure 1.5 MEMS-IC integration by (a) hybrid approach and (b) monolithic approach. ............... 9 

Figure 1.6 (a) Simplified block diagram of a wireless receiver indicating the replaceable 

                  components by mixler configuration; (b) Schematic diagram of  

                  micromechanical mixler for frequency down-conversion; (c) Equivalent  

                  block diagram of the mixler scheme ........................................................................... 10 

Figure 1.7 Schematic of a typical SAW resonator. ....................................................................... 12 

Figure 1.8 Schematic view of BAW resonators in (a) SMR and (b)FBAR configurations.......... 13 

Figure 1.9 Contour-mode ring resonators: (a) One-port circular ring resonator;  

                 (b) One-port square-shape ring resonator. ................................................................... 13 

Figure 1.10 (a) Schematic view of a two-port third-order thin-film  

                  piezoelectric-on-substrate resonator; (b) frequency response and SEM of a  

                  third-order AlN-on-silicon resonator. ......................................................................... 14 

Figure 1.11 (a) SEM photo and measured frequency response in (b) vacuum and  

                    (c) air for a polysilicon capacitively-transduced radial-contour mode disk  

                    resonator. ................................................................................................................... 15 

Figure 1.12 (a) SEM photo and measured frequency response with (b) air-gap and  

                    (c) solid-gap of a fabricated extensional wine-glass ring resonator ......................... 16 

 

 



v 

Figure 1.13 (a) SEM picture of polysilicon wine-glass mode disk resonator;  

                    (b) Schematic view of resonator-to-electrode gap reduction from 87nm to  

                    37nm via ALD partial-gap refill; (c) Comparison of measured frequency 

                    characteristics under vacuum with dc-bias voltage of 9V for 61-MHz 

                    wine-glass disk resonators treated with various ALD partial gap filling 

                    recipes. ...................................................................................................................... 17 

Figure 1.14 (a) Schematic view of charge-biasing the disk via a charged probe tip;  

                    (b) Mixing measurement and SEM photo of a stemless charge-biased  

                    60-MHz wine-glass mode nickel disk resonator. ...................................................... 18 

Figure 2.1 (a) Perspective schematic view of an air-gap wine-glass mode disk resonator 

                  in a two-port measurement set-up; (b) Equivalent circuit of a wine-glass  

                  mode disk resonator; (c) COMSOL simulation of wine-glass mode shape................ 21 

Figure 2.2 Perspective schematic and cross-section view of  

                  capacitively-transduced micromechanical resonators with a pair of air-gap  

                  capacitive transducers. ................................................................................................ 23 

Figure 2.3 Perspective schematic and cross-section view of capacitively-transduced 

                 micromechanical resonators with solid-gap capacitive transducers at its input 

                 and output ports............................................................................................................ 25 

Figure 2.4 Perspective schematic and cross-section view of capacitively-transduced 

                  micromechanical resonators with partially-filled air gap ........................................... 26 

Figure 2.5 Savannah 100 ALD system by Cambridge Nanotech Inc. used in this work. ............. 28 

Figure 2.6 Schematic illustration of atomic layer deposition reaction sequence. ......................... 28 

Figure 2.7 Schematic illustration of Nanolaminates with Al2O3 and TiO2 as sub-layer ............... 29 

Figure 2.8 (a) Schematic view and (b) experiment set-up of nickel electroplating ...................... 30 

Figure 2.9 Schematic illustration of signal corruption due to third-order intermodulation  

                  caused by system nonlinearity .................................................................................... 33 

Figure 2.10 Schematic definitions of IM3 and IIP3. ...................................................................... 35 

Figure 2.11 Schematic description of the mechanism for IM3 generation in a  

                   capacitively-transduced resonator. ............................................................................. 36 

Figure 2.12 (a) Perspective schematic view of an air-gap wine-glass mode disk resonator 

                    in the two-port measurement set-up; (b) Equivalent circuit of a contour  

                    mode disk resonator; (c) COMSOL simulation of contour mode shape. ................. 37 

 



vi 

Figure 2.13  Simulated motional impedance of (a) polysilicon resonators; and  

                     (b) electroplated nickel resonators depending upon capacitive  

                     disk-to-electrode gap spacing and applied DC-bias voltages. ................................. 41 

Figure 2.14 Simulated IIP3 of (a) polysilicon resonators; and (b) electroplated nickel  

                    resonators depending upon capacitive disk-to-electrode gap spacing and  

                    different Q factor....................................................................................................... 42 

Figure 2.15  Simulated IIP3 of (a) polysilicon resonators; and (b) electroplated nickel  

                     resonators depending upon capacitive disk-to-electrode gap spacing  

                     and applied DC-bias voltages. ................................................................................. 43 

Figure 2.16 Simulated IIP3 of (a) polysilicon resonators; and (b) electroplated nickel  

                    resonators depending upon capacitive disk-to-electrode gap spacing and  

                    radius of resonator disk. ............................................................................................ 44 

Figure 2.17 Schematic cross-section view of a partially-filled air-gap resonator. ....................... 46 

Figure 2.18  Simulated motional impedances as a function of the gap spacing and  

                     partially-filled air gap materials. .............................................................................. 47 

Figure 2.19 Simulated motional impedances as a function of air-gap spacing and applied 

                    bias voltages. ............................................................................................................. 47 

Figure 3.1 Schematic measurement set-up for nickel disk resonators. ......................................... 49 

Figure 3.2 Fabrication process flow of a solid-gap capacitively-transduced nickel  

                  resonator. ..................................................................................................................... 51 

Figure 3.3 SEM image of electroplated-Ni wine-glass mode disk resonator with a solid  

                  gap of 30nm. ............................................................................................................... 52 

Figure 3.4 Measurement results of electroplated-Ni wine-glass mode disk resonator with 

                  solid gap of 30nm........................................................................................................ 52 

Figure 3.5 Measurement results of electroplated-Ni wine-glass mode disk resonator with  

                  solid gap of 30nm........................................................................................................ 53 

Figure 3.6 Fabrication process flow of an air-gap capacitively-transduced nickel  

                  resonator ...................................................................................................................... 54 

Figure 3.7 SEM image of electroplated-Ni wine-glass mode disk resonator with an air  

                  gap of 100nm. ............................................................................................................. 55 

Figure 3.8 Cross-sectional illustration of a partially-filled air-gap capacitively-transduced  

                  nickel resonator. .......................................................................................................... 56 



vii 

Figure 3.9 SEM images of electroplated-Ni disk resonator with air gap of 100nm and  

                  partially-filled air gap of 70nm after 15nm ALD deposition. ..................................... 56 

Figure 4.1 Illustration of the direct and reverse piezoelectric effects. .......................................... 58 

Figure 4.2 Schematic view of (a) a thin-film piezoelectric rectangular plate resonator;  

                 (b) a piezoelectric-on-substrate rectangular plate resonator. ....................................... 58 

Figure 4.3 Schematics and simulated mode shapes for (a) wine-glass mode  

                  piezoelectric-on-nickel resonator; (b) contour-mode piezoelectric-on-nickel  

                  resonator; (c) lateral-extensional mode piezoelectric-on-nickel resonator. ................ 60 

Figure 4.4 XRD measurement of as-deposited ZnO thin films under different conditions. ......... 61 

Figure 4.5 Nanoindentation of electroplated nickel revealing its Young’s modulus and  

                  hardness....................................................................................................................... 62 

Figure 4.6 (a) ~ (f) Fabrication process flow of ZnO-on-nickel resonator and (g) A-A’  

                  and (h) B-B’ cross-sectional schematic view of the final released resonator  

                  structure....................................................................................................................... 65 

Figure 4.7 SEM image of a fabricated wine-glass mode ZnO-on-nickel resonator. .................... 66 

Figure 4.8 Illustration of the localized annealing by (a) Comsol simulation and  

                 (b) measurement set-up. ............................................................................................... 66 

Figure 4.9 Schematic measurement set-up for ZnO-on-Nickel resonators. .................................. 67 

Figure 4.10 Frequency response of a 275um-diameter wine-glass mode ZnO-on-nickel  

                    resonator. ................................................................................................................... 69 

Figure 4.11 Frequency response of a 225um-diameter radial-contour mode  

                    ZnO-on-nickel resonator. .......................................................................................... 69 

Figure 4.12 Frequency response of a 75um-diameter ZnO-on-nickel resonator with  

                    quarter-circle top electrodes. ..................................................................................... 70 

Figure 4.13 Frequency response of a 250um-diameter ZnO-on-nickel resonator with  

                    half-circle ring top electrodes. .................................................................................. 70 

Figure 4.14 Frequency response of two 82um-width square plate ZnO-on-nickel  

                    resonators with (a) n=3 and (b) n=5. ......................................................................... 71 

Figure 4.15 Frequency responses of two rectangular plate ZnO-on-nickel resonators  

                    with the same width of 96μm but different length of 480μm and 240μm,  

                    respectively. .............................................................................................................. 72 



viii 

Figure 4.16 Frequency response of a 60μm-width square plate ZnO-on-nickel  

                    resonator in fundamental mode and high order frequency modes. ........................... 72 

Figure 4.17 Frequency responses of ZnO-on-nickel resonator arrays: (a) 1×3 array;  

                    (b) 1×5 array; (c) 1×7 array; and (d) 1×9 array. ...................................................... 73 

Figure 4.18 Frequency responses of ZnO-on-Nickel resonator measured in air and in  

                    vacuum. ..................................................................................................................... 75 

Figure 4.19 Frequency responses of ZnO-on-nickel resonator measured before and after  

                    localized annealing. ................................................................................................... 76 

Figure 4.20 Measured fractional frequency change versus temperature for the same size 

                    ZnO resonator and ZnO-on-nickel resonator. ........................................................... 76 

Figure 5.1 (a) Crosstalk isolation scheme by faraday cage; (b) measurement of a faraday  

                      cage and reference structure at a transmission distance of 100 um. ....................... 80 

 

  



ix 

 

 

 

 

 

ABSTRACT 

On-chip vibrating MEMS resonators with high frequency-Q product on par with that of 

the off-chip quartz crystals have attracted lots of attention from both academia and industry for 

applications on sensing, signal processing, and wireless communication. Up to now, several 

approaches for monolithic integration of MEMS and transistors have been demonstrated. 

Vibrating micromechanical disk resonators which utilize electroplated nickel as the structural 

material along with either a solid-gap high-k dielectric capacitive transducer or a piezoelectric 

transducer have great potential to offer unprecedented performance and capability of seamless 

integration with integrated circuits.  

Despite the frequency drift problems encountered in early attempts to use nickel as a 

structural material in MEMS gyroscopes, this low temperature nickel electroplating technology 

is amenable to post-transistor planar integration. The nickel microstructure is formed through the 

photoresist molding and electroplating process which enables the microstructure to have 

extremely high aspect ratio while retaining the overall process temperature under 60ºC. This 

temperature is low enough to allow the RF MEMS devices to be fabricated directly on top of 

foundry IC chips, thus enabling post-transistor monolithic integration with minimum parasitics. 

In addition, the electroplating setup for nickel deposition can be much cheaper as compared to 

the other deposition facilities (e.g., PVD, CVD, etc).  

However, as the dimensions of the resonators are shrunk to µm range, several issues have 

come forth such as higher motional resistance and lower power handling ability. In order to 

reduce the motional resistance, high permittivity material is employed to form a solid capacitive 



x 

gap instead of an air gap. As compared to the air gap, ease of the process, better stability and 

elimination of the particles are the additional benefits of using the solid gap. Therefore, an ultra-

thin high-k dielectric layer with atomically controlled thickness down to sub-nm range can be 

deposited under 100ºC on the vertical sidewall of the device structure by using ALD processing 

technology. This enhances the efficiency of the capacitive transducer enormously, thus reducing 

the characteristic motional resistance of the device. This research project explored the idea of 

applying low temperature process of electroplated nickel and high-k solid-gap as well as 

partially-filled air-gap capacitive transducers. To further reduce the motional impedance, 

electromechanically-coupled resonator arrays have been implemented. Furthermore, the linearity 

of solid-gap versus partially-filled air-gap resonators has been studied through a modeling 

approach for RF applications.  

In the meanwhile, this work also investigated electroplated nickel as a structural material 

for piezoelectrically-transduced resonators to demonstrate piezoelectric-on-nickel resonators 

with low temperature process. The thin film piezoelectric resonators can achieve high resonance 

frequency when increasing the piezoelectric film thickness and scaling down the device size. 

However, the sputtered piezoelectric films have very low deposition rate which limits the 

thickness to a couple of microns or less. Moreover, the yield of piezoelectric resonators is 

restricted after the releasing process since the stress of the thin films usually causes the structural 

layer to buckle or fracture. Thus, the development of piezoelectric-on-substrate resonators is an 

alternative solution to resolve the aforementioned issues. The previous work has been done by 

using single crystal silicon or nano-crystalline diamond (NCD) as resonator structural materials 

due to their high acoustic velocity and low loss. However, the deposition temperature for thin 

film silicon and diamond is too high to be allowable thermal budget of ICs. Therefore, 



xi 

electroplated nickel is also a reasonable substitute for silicon and diamond substrates while 

realizing high frequency and moderate Q. Furthermore, it is observed that a localized annealing 

process through Joule heating can be adopted to significantly improve the effective mechanical 

quality factor for the ZnO-on-nickel resonators. This work successfully demonstrated the ZnO-

on-nickel piezoelectrically-actuated MEMS resonators and resonator arrays with frequencies 

ranging from a few megahertz to 1.5 GHz by using IC compatible low temperature process. 
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CHAPTER 1 INTRODUCTION 

Ever since David E. Hughes introduced the concept of wireless radio wave transmission 

in 1879 [1], wireless communication systems have become one of the most popular inventions in 

human history. This concept has completely changed the way people communicate and 

revolutionized every aspect of life. Presently, wireless electronic devices such as portable PC 

(personal computer), RFID (radio frequency identification tag), GPS (global positioning system), 

smartphones, and tablets with 3G, 4G or Wi-Fi have become part of our daily necessities. In 

addition, since the concept of “lab-on-a-chip” was introduced in 1959 [2], the newly developed 

micro-electro-mechanical system (MEMS) technology has pushed the studies of sensors and 

actuators forward on various novel applications such as micro harvesters for energy harvesting, 

accelerometers and gyroscopes in vehicles and game controllers, and BioMEMS in disease 

diagnostics, cell culture, drug delivery, vital sign sensors, medical implants, etc.  Due to the fast 

growing evolution of these products which all demand for a wireless transceiver, wireless 

communication technology development in the past few decades has spurred the wireless gadgets 

with smaller size, lower cost and power consumption, simple interfaces, and better signal 

reception.  

However, several challenges have to be addressed before this technology could move 

forward. On one hand, as we all know, antenna typically pick up the entire band of signals 

transmitted in the air. Hence, wireless receivers require components with superior frequency 

selectivity in order to receive the desired signals among other substantial frequency contents 
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while rejecting the adjacent strong interferences. On the other hand, in order to precisely 

generate and select those frequencies, off-chip components such as ceramic, surface acoustic 

wave (SAW) resonators and quartz crystals are widely utilized by RF filters and reference 

oscillators in present-day wireless transceivers. These off-chip components have abilities of 

achieving high quality factor (Q), however, in order to be functionalized, most of these high-Q 

components must interface with transistor circuits through board-level integration, which is not 

quite efficient from a cost perspective and it is also against the trends of miniaturization of 

wireless communication devices. Moreover, recent interests on integration of microelectronics 

and integrated circuits (ICs) have brought the focus on IC compatible technology development 

for the sake of reducing the cost and minimizing the size of integrated microsystem assemblies. 

Among all the candidates, MEMS resonators hold great promises such as ability to 

operate at very high frequencies while achieving high quality factor (Q’s > 10,000). Their 

micromechanical structures reduce the size by several orders of magnitude as compared to the 

traditional off-chip components. Moreover, it is demonstrated as an IC-compatible micro-

fabrication technology [3] to eventually realize “system on a chip”. 

1.1 Background of Wireless Receiver Architecture 

Wireless transceiver transmits and receives radio frequency signals by sharing the same 

electronic circuitry within a narrow channel bandwidth in a crowded communication 

environment. Thus, a transmitter is used to modulate the baseband data and then up-convert it to 

the carrier frequency for propagation as well as providing sufficient power amplification for the 

transmission in the medium. On the other hand, a receiver is to pick up and then demodulate the 

desired signals among the strong interferers and noise. Therefore, the receiver is much more 

challenging to implement as compared to the transmitter architecture. To better understand the 
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challenges on taking advantages of MEMS technology into wireless receivers, some traditional, 

novel, and MEMS-based wireless receiver architecture will be reviewed first.  

1.1.1 Superheterodyne Receiver Architecture 

 

Figure 1.1  Schematic block diagram for a typical superheterodyne wireless receiver architecture 

[3]. 

The superheterodyne receiver, which was introduced by Edwin Armstrong in 1917 [4], is 

generally served as the receiver of choice in most transmitters and receivers due to its high 

selectivity and sensitivity. In order to achieve this selectivity, very high quality factor is required 

for a filter to reject out-of-band signals. On the other hand, the desired signals must be selected 

with minimum loss to meet the required sensitivity, resulting in difficulties for the filters in 

practical applications. 

In a typical superheterodyne receiver, the signal band could be translated to a much lower 

frequency for the sake of relaxing the Q requirement of the channel select filters. As shown in 

Figure 1.1, after antenna receives a signal, it first passes through a band-select RF filter to 

remove out-of-band interferences. Followed by a low noise amplifier (LNA), the signal is 

amplified with minimum added noise. An image-reject (IR) filter is used to remove the image 

frequency, the selected signal is then down-converted to an intermediate frequency (IF) by 

multiplying the RF signal with a local oscillator (LO) signal using a mixer. The LO signal is 
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generated by a voltage controlled oscillator (VCO)  together with a phase locked loop (PLL) 

configuration locked to a mechanical reference oscillator using off-chip components such as 

quartz crystals. Thereafter, the an IF filter picks up the selected channel in which the desired 

signal is then amplified and demodulated as baseband data. The role of the various filters in this 

superheterodyne receiver is illustrated to reduce the RF signal frequency and relax the Q 

requirement [5]. However, such architecture requires all kinds of high-Q off-chip components 

such as ceramic, quartz crystals and surface acoustic wave (SAW) resonators, which have to 

interface with transistor electronics at board level thus hindering both transceiver miniaturization 

and cost reduction.  

1.1.2 Direct-Conversion Receiver Architecture 

 

Figure 1.2 Schematic block diagram for a typical direct-conversion wireless receiver architecture 

[6]. 

Another popular architecture is direct-conversion receiver which has been widely used in 

mobile communication handsets due to its low cost, reduced size and low power consumption. 

Generally, the direct-conversion receiver is just like superheterodyne receiver converting the 

received RF signal directly down to the baseband, but with reduced numbers of off-chip 

components as shown in Figure 1.2. By setting the local oscillator frequency equal to the RF 
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signal frequency, there is no image frequency signal generated as compared to the 

superheterodyne. Therefore, the image reject filter is unnecessary in this direct-conversion 

receiver architecture, which is also known as “zero-IF” or “homodyne” receiver. Moreover, zero-

IF also brings the advantage of further reducing the cost and size by replacing the channel select 

filter (IF filter) applied in the superheterodyne receiver by a low-pass filter (LPF) which can be 

implemented by transistor circuitry [6].  

1.1.3 MEMS-Based Novel Receiver Architecture 

 

Figure 1.3 Schematic block diagram for a micromechanical resonator enabled channel-select 

receiver architecture [3]. 

Basically, both superheterodyne receiver and direct-conversion receiver architectures 

could be implemented into a single chip by substituting the off-chip high-Q passive devices (e.g. 

SAW filters and crystal reference oscillators, etc.) with MEMS-based elements. The advantages 

of applying on-chip MEMS components not only include the size shrinkage, cost reduction and 

power saving, but also the performance improvement such as high frequency, high-Q, high 

Antenna

Multi-Band Programmable 

Channel-Select Filter Bank

µMech.
Mixer-Filter

IF
AMP

  90° 

IQ
Osc.

µMech.
Res.

I

Q

Switchable 
µMech. Res.

Oscillator



6 

dynamic range, and sharp cut-off. With the help of IC-compatible MEMS technology, the 

system-on-a-chip could be potentially realized with unprecedented levels of functionality, 

reliability, and sophistication. 

By applying multi-band programmable channel-select filters, mixer-filter and switchable 

oscillator, Figure 1.3 presents a system-level block diagram which consists of several on-chip 

MEMS resonators. Compared to superheterodyne receiver as shown in Figure 1.1, MEMS-based 

novel receiver takes the advantage of MEMS technology to realize a front-end RF channelizer 

[3], an IF mixer-filter (also known as “mixler”) [7] and less loss micromechanical circuits in 

order to lower the power consumption and prevent from using RF low noise amplifier (LNA) 

and transistor mixer. 

1.2 Fundamentals of Quality Factor (Q) 

 

(a) 

  
                           (b)                         (c) 

Figure 1.4 (a) A series RLC circuit representing the transfer function of a resonator; with (b) its 

magnitude and (c) phase spectra in frequency domain. 
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The key parameter that is used to evaluate the performance of a resonator, filter and 

reference oscillator is the quality factor which could affect the selectivity, noise figure, insertion 

loss, etc. Therefore, higher Q has always been pursued when designing these devices. There are 

three common approaches to define this important parameter. 

1.2.1 Q by Energy  

In a resonator, the quality factor is defined as the ratio between the energy stored in the 

resonator and the energy dissipated per cycle as 

𝑄 =  2𝜋 ×
Energy Stored

Energy Dissipated per Cycle
 (1.1) 

In a RLC circuit illustrated in Figure 1.4 (a), the inductor, capacitor and resistor are connected in 

series, and the quality factor is defined as 

𝑄 =  
𝜔𝑜𝐿

R
=

1

𝜔𝑜𝑅𝐶
 (1.2) 

where R is the resistance, L is the inductance, C is the capacitance and 𝜔𝑜 is the resonant 

frequency of the LC tank, which can also be defined as 

𝜔𝑜 = 
1

√𝐿𝐶
 (1.3) 

Taking the MEMS resonator as an example, the quality factor indicates the ability to 

retain the mechanical energy in the system.  In order to obtain higher Q, the energy loss should 

be minimized which is contributed by squeeze film damping, anchor loss, thermoelastic damping, 

and so on [8].  

1.2.2 Q by Bandwidth 

In the complex frequency domain, a mechanical resonator can be modeled as a RLC 

circuit, the transfer function of which indicates the relationship between the input and output of 

the resonator. Thus, the transfer function can be expressed with its magnitude and phase as  
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𝐻(𝑗𝑤) = 𝐻(𝑠) 𝑠=𝑗𝑤 =  𝐻(𝑗𝑤) ∙ 𝑒𝑗∠𝐻(𝑗𝑤) (1.4) 

where  𝐻(𝑗𝑤)  and ∠𝐻(𝑗𝑤) are the magnitude and phase function of 𝐻(𝑗𝑤), both are illustrated 

in Figure 1.4. For the magnitude function, Q of the RLC circuit can be defined as  

𝑄 =
𝜔𝑜

∆𝜔
 (1.5) 

where 𝜔𝑜  is the center frequency and ∆𝜔  is the bandwidth between two cut-off angular 

frequencies at -3dB from 𝜔𝑜 as shown in Figure 1.4(b). To obtain a higher Q, a sharper 

frequency response is preferred to provide a narrow passband, which specifies the selectivity of 

the resonant tank. 

1.2.3 Q by Phase 

According to the transfer function (1.4) and phase response illustrated in Figure 1.4 (c), Q 

can also be defined as a function of its phase in complex frequency domain by 

𝑄 =
𝜔𝑜

2
∙ |

𝑑𝜙

𝑑𝜔
| (1.6) 

where 𝜙 is the phase response, which indicates a phase change at the resonance frequency. 

1.3 MEMS-IC Integration Technology  

As the development of MEMS technology becomes increasingly popular and significant, 

the integration of MEMS devices with integrated circuits (IC) has attracted a great deal of 

attention from both academia and industry, which holds great promise to potentially 

revolutionize the entire regime of the wireless technology for its compactness and performance. 

The traditional approach of MEMS-IC integration utilizes the hybrid integration technologies 

such as 3D through silicon via (TSV) stacking, chip-to-wafer bonding (C2W), wafer-to-wafer 

bonding (W2W) and so on [9]. By allowing the MEMS devices and the integrated circuits to be 
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designed and optimized independently, this modular hybrid approach has been widely employed 

on various products [10, 11]. However, the cost of assembly and packaging is far from optimum.  

  

(a) (b) 

Figure 1.5 MEMS-IC integration by (a) hybrid approach and (b) monolithic approach [12]. 

The monolithic approach, as a comparison, has advantages of lower cost, miniaturization 

ability, parasitic reduction and signal transduction enhancement due to its higher level of 

integration. Based on different fabrication sequences, MEMS-IC monolithic integration can be 

realized through four main approaches: (1) MEMS-first technology; (2) MEMS-last technology; 

(3) merged IC-MEMS technology; and (4) MEMS embedded within IC technology [9]. In order 

to address the key challenge on direct integration of RF MEMS passives with foundry-IC chips 

to strengthen the signal processing ability, MEMS-last technology provides several advantages 

such as reducing interconnect parasitic resistance and capacitance by fabricating MEMS devices 

directly over an integrated circuit chip.  

Due to the concerns related to the limited thermal budget for IC electronics, low 

temperature post-IC fabrication process is highly preferred for MEMS-last strategy. As a 

sequence, MEMS structural materials and fabrication processes have been limited by the 

temperature restriction (below 425°C) and application requirement (e.g. conductivity, damping 

loss, strain, stress, thermoelastic damping, biocompatible and so on). As for micromechanical 

resonators, electroplated nickel is a good candidate among all the available structural materials 

since nickel has a relatively high acoustic velocity and low deposition temperature (40°C ~ 60°C) 

MEMSIC
MEMS

IC
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which has been explored to demonstrate gyroscopes and resonators with high quality factors [13, 

14].   

1.4 Mixers and Filters 

 

Figure 1.6 (a) Simplified block diagram of a wireless receiver indicating the replaceable 

components by mixler configuration; (b) Schematic diagram of micromechanical mixler for 

frequency down-conversion; (c) Equivalent block diagram of the mixler scheme [7]. 

As mentioned in section 1.1, the received signal from antenna must be processed at the 

lower baseband frequency in a superheterodyne receiver. As a result, filters and mixers are 

highly demanded for frequency filtering, selection and conversion in order to minimize the 

power consumption. Frequency conversion is a process that involves the multiplication of two 

signals using a nonlinear device of which the output is no longer a simple proportional to the 

input. Both up-conversion and down-conversion could be achieved by a mixer product 

depending on the transceiver architecture, while down-conversion is mostly used in wireless 
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receivers.  A frequency selective filter usually follows after the mixer, removing all the by 

products from the mixer while selecting the desired frequency channel.  

In order to maximize performance, frequency selection and conversion are normally 

achieved by using separate and distinct components that must be interfaced with each other at the 

board level. On one hand, these off-chip components increase the design complexity and power 

consumption by matching the output of the mixer to the subsequent filter; on the other hand, this 

architecture circumvents the size reduction in the portable communication devices and induces 

additional insertion loss because of the impedance mismatches between the mixer output and the 

filter input. Thus, by interlinking micromechanical resonators with nonlinear capacitive 

transducers, “mixler” device has been studied and demonstrated to fulfill frequency down-

conversion and intermediate frequency filtering, thereby replacing mixer and filter devices in 

wireless transceivers [7]. 

1.5 Previous Work of Micromechanical Resonators 

On-chip vibrating MEMS resonators with high frequency-Q products have attracted great 

attention from both academia and industry because of their versatile applications in the 

promising fields of sensing, signal processing, and wireless communication systems. Among the 

wide variety of MEMS transduction mechanisms, piezoelectrically-actuated resonators equipped 

with well documented piezoelectric materials such as zinc oxide, aluminum nitride, barium 

titanate and lead-zirconate-titanate (PZT) have been widely studied. Also, acoustic-wave-type 

piezoelectric transducers such as surface acoustic wave devices (SAW), bulk acoustic wave 

device (BAW), and film bulk acoustic resonator (FBAR), have been broadly accepted by the 

industry into products such as filters and duplexers. However, due to the relative low-Q, these 
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piezoelectrically-transduced resonators have limited abilities in signal processing such as 

narrow-band filtering. 

Thus, the advent of capacitively-transduced resonators with measured resonance 

frequency easily exceeding 1GHz along with ultra-high Q (>10,000) have spurred new vigor in 

wireless communications. Aside from their high frequency-Q products, a widely adjustable range 

of linearity, low power consumption and high power handling are the other benefits of capacitive 

transduction. 

1.5.1 Piezoelectrically-actuated Resonators 

 

Figure 1.7 Schematic of a typical SAW resonator [15]. 

 Piezoelectric materials, such as quartz, zinc oxide, aluminum nitride, barium titanate and 

lead-zirconate-titanate (PZT), have been widely employed in a variety of electromechanical 

devices ever since they were discovered in 1880. In response to an applied electric field, 

piezoelectric material deforms and induces a mechanical strain which generates charges within 

the material. Piezoelectric resonator normally consists of a piezoelectric material and a 

mechanical structure along with strategically placed electrodes, which are employed to facilitate 

the coupling between the mechanical strain and the induced electrical field. When the applied 

AC signal matches the resonance frequency of a piezoelectric resonator, the acoustic wave will 

be excited and converted back to the electrical signal through the output piezoelectric transducer. 
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(a) (b) 

Figure 1.8 Schematic view of BAW resonators in (a) SMR and (b)FBAR configurations [15]. 

 Surface acoustic wave (SAW) is a mechanical wave which has both vertical shear and 

longitudinal component and is capable of propagating along the surface of piezoelectric material 

as shown in Figure 1.7. SAW resonators usually use inter-digital transducers (IDTs) to convert 

energy between electrical and mechanical domains, which have been widely applied in filters 

and sensors [16].  

 

 

(a) (b) 

Figure 1.9 Contour-mode ring resonators: (a) One-port circular ring resonator; (b) One-port 

square-shape ring resonator [17]. 

 Unlike the surface acoustic wave, bulk acoustic wave (BAW) travels from one surface 

through the piezoelectric material to the other surface, forming a sandwiched resonator structure 

which consists of top electrode, piezoelectric thin film and bottom electrode. There are two kinds 
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of implementation of BAW resonators as shown in Figure 1.8. One is the solid mounted 

resonator (SMR) which adopts Bragg reflectors to achieve mismatched acoustic impedance, and 

the other one is the film bulk acoustic resonator (FBAR) which simply applies air cavity to 

generate the high impedance mismatch for the sake of retaining acoustic energy in the resonator 

body [15].  

Since the frequency of FBAR devices is determined by piezoelectric film thickness, only 

one frequency can be designed on a single chip without post-process thickness trimming. 

Therefore, a newly developed contour-mode resonators were designed to be able to achieve 

various selected frequencies on a single chip as their resonance frequencies are determined by 

the lateral dimensions. As shown in Figure 1.9, both circular and square shaped ring resonators 

can be designed with variety radius and width, and built as a sandwich structure including Pt 

bottom electrode, AlN elastic body and Al top electrode [17].  

  

(a) (b) 

Figure 1.10 (a) Schematic view of a two-port third-order thin-film piezoelectric-on-substrate 

resonator; (b) frequency response and SEM of a third-order AlN-on-silicon resonator [18]. 

 Another lateral extensional resonator, thin-film piezoelectric-on-substrate resonator 

(TPoS), has recently been developed [18]. TPoS resonators employ the sandwich structure of 

bottom electrode, thin-film piezoelectric layer and top electrode on top of a thick, low-acoustic-
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loss and resonant structure made of single crystal silicon or nano-crystalline diamond as shown 

in Figure 1.10 (a). By taking the advantage of piezoelectric transduction and a low loss 

mechanical structure, this kind of devices provides very low motional impedance at relatively 

high frequencies with moderate to fairly high quality factor. 

1.5.2 Capacitively-transduced MEMS Resonators 

 

(a) 

 

(b) 

 

(c) 

Figure 1.11 (a) SEM photo and measured frequency response in (b) vacuum and (c) air for a 

polysilicon capacitively-transduced radial-contour mode disk resonator [19]. 

In contrast to the piezoelectric resonators, capacitive resonators are capable of achieving 

higher frequency-Q performance. As a result of employing high quality structural materials (e.g. 

high acoustic velocity, low loss) such as polycrystalline silicon, silicon carbide, polycrystalline 

diamond and ultrananocrystalline diamond (UNCD), capacitively-transduced resonators with 

ultra-high quality factor (~100,000) have been demonstrated at ultra-high frequency along with 

good thermal stability [20], high frequency stability [21], voltage-controlled tunability [22], IC-

compatibility and self-switching capability [23]. 

For the sake of obtaining high-Q in ultra-high frequency surpassing 1 GHz, a mass-

production viable fabrication methodology has been studied and demonstrated in a series of 

polysilicon radial-contour mode disk resonators: Q’s of 7,330 in vacuum and 6,100 in air at 

frequency of 733 MHz [24]; Q’s over 1,500 in both vacuum and air at frequency of 1.14 GHz 
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[24]; and Q’s over 2,650 in both vacuum and air at frequency of 1.156 GHz [19].  In contrast to 

the traditional anchor-alignment-refill technology which imposes a limitation of lithography 

alignment tolerance, this new self-alignment technique allows the supporting stem to be placed at 

the exact center of the disk resonator body which is also known as the motionless nodal point, as 

shown in Figure 1.11 (a). In consequence, this type of device symmetrically balances the 

resonator during radial vibration and dramatically reduces the energy loss from the anchor, 

resulting in high Q in both air and vacuum at gigahertz frequency.   

 

(a) (b) (c) 

Figure 1.12 (a) SEM photo and measured frequency response with (b) air-gap and (c) solid-gap of 

a fabricated extensional wine-glass ring resonator [25]. 

Although offering a high Q in GHz-range frequency, capacitively-driven 

micromechanical resonators still suffer from their relatively high impedance which prevents this 

type of devices from directly matching the 50 Ω systems for RF applications. In order to lower 

the impedance, solid-filled dielectric transducer gaps have been demonstrated in polysilicon 

micromechanical compound-(2,4) mode ring resonators, achieving 979.6 MHz with Q’s of 3,100 

while reducing motional resistances 4.7 times as compared to that of air-gap devices [25]. Since 

the motional resistance is proportional to the fourth power of resonator-to-electrode gap, 

reducing the gap spacing is a highly effective approach to lower the impedance aside from its 

limitation by the fabrication technology and reduction of the pull-in voltage. Applying a 

dielectric material of 28nm-thick nitride layer, whose permittivity is much higher than that of air, 
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a much smaller gap can be defined compared to the 65nm air-gap, which also reduces the 

motional resistance.  

 

 

 

(a) (b) (c) 

Figure 1.13 (a) SEM picture of polysilicon wine-glass mode disk resonator; (b) Schematic view 

of resonator-to-electrode gap reduction from 87nm to 37nm via ALD partial-gap refill; (c) 

Comparison of measured frequency characteristics under vacuum with dc-bias voltage of 9V for 

61-MHz wine-glass disk resonators treated with various ALD partial gap filling recipes [26].   

To further reduce the motional resistance for capacitively-transduced micromechanical 

resonators, partially filling the electrode-to-resonator gap by atomic layer deposition has been 

studied [26, 27]. The traditional approach, which adopts a wet etchant to release the resonator 

structure so that the device could move, anticipates difficulties of shrinking the gap spacing 

under 60nm. Thereby, an alternative approach, which generate a roughly 100nm air gap followed 

by atomic layer deposition to partially fill the capacitive gap with non-conductive high-k 

dielectric material, successfully reduces the electrode-to-resonator gap to 37nm, as shown in 

Figure 1.13 (b). As a result of the relatively high permittivity of ALD dielectric materials, the 

effective capacitance of this partially-filled capacitive transducer is still dominated by the air gap. 

With the new technique, capacitively-transduced micromechanical disk resonator has achieved 

low motional resistance (< 130Ω) and high Q (> 70,000) simultaneously at 61MHz. 

As the new generation of IC process can only survive temperature below 425°C, post-

transistor MEMS integration with foundry IC has been demonstrated with a new structural 
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material of nickel which can be deposited at very low temperature while remaining high Q [13]. 

With a highest process temperature of 380°C, electroplated-nickel micromechanical disk 

resonator has achieved Q’s over 54,000 at frequency of 60 MHz as seen in Figure 1.14, which 

proves its ability of post-fabrication over finished foundry transistors. Moreover, in order to 

improve the quality factor of metal structural devices, anchorless design and in situ localized 

annealing have been effectively studied to reduce the anchor loss and improve drift stability, 

respectively. 

 

(a) (b) 

Figure 1.14 (a) Schematic view of charge-biasing the disk via a charged probe tip; (b) Mixing 

measurement and SEM photo of a stemless charge-biased 60-MHz wine-glass mode nickel disk 

resonator [13]. 

In this work, capacitively-transduced electroplated-nickel micromechanical resonators 

and resonator arrays have been designed and fabricated with air gap, solid gap and partially-

filled air gap in low-temperature IC compatible process. Moreover, the linearity of solid-gap 

versus partially-filled air-gap resonators has been studied through a modeling approach for RF 

applications. In the meanwhile, this work also investigated electroplated nickel as a structural 

material for piezoelectrically-transduced resonators and successfully demonstrated the ZnO-on-
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nickel piezoelectrically-actuated MEMS resonators and resonator arrays with frequencies 

ranging from a few megahertz to 1.5 GHz by using IC compatible low temperature process.  
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CHAPTER 2 CAPACITIVELY-TRANSDUCED RESONATORS 

At present, capacitively-transduced micromechanical resonators have achieved resonant 

frequency in the GHz range [19, 28] with Q values exceeding 10,000 [29, 30] which holds a 

great potential for the applications on on-chip filters and low noise oscillators in wireless 

communications. However, the trade-off for extending operation frequencies by scaling the 

dimensions of micromechanical resonators is the highly increased impedance reported from 

1~2500 kΩ [19, 29], which is far too large to be matched with the 50-377 Ω range impedance 

that is widely expected for off-chip components in the RF front ends. Although capacitively-

transduced resonators have offered the highest frequency-Q product among micromechanical 

resonators, their inherent high impedance still prevents this kind of devices from taking over the 

piezoelectrically-actuated resonators, which can achieve quite low impedance without the need 

of bias voltages. Thus, ongoing efforts have been put into studying on how to reduce the 

motional impedance of capacitively-transduced resonators for directly matching the output 

circuits [25, 26].  

2.1 Capacitive Transducer  

As shown in Figure 2.1 (b) and (c), a wine-glass mode disk resonator is comprised of four 

supporting beams located at its quasi-nodal points (also known as motionless points), one input 

(driving) electrode and one output (sensing) electrode. In order to excite the device, an 

alternating AC signal vi is applied to the input electrode generating an electrostatic force to drive 

the resonator to its vibration frequency mode. At the same time, a DC-bias voltage Vp is applied 
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directly on the resonant structure forming a capacitance between the resonator disk and the 

output electrode which induces an output current io. This time-varying electrostatic excitation 

force can be expressed (in phasor form) as following if Vp >> vi,  

𝐹𝑒𝑙𝑒 ≅ 𝑉𝑝 ∙ 𝑉𝑖 ∙
𝜕𝐶

𝜕𝑥
 (2.1) 

where 𝜕𝐶/𝜕𝑥  is the integrated change in electrode-to-resonator overlap capacitance per unit 

displacement; 𝑉𝑖 is the phasor form input voltage (i.e. the voltage amplitude here).  

 

(a) 

 

 

(b) (c) 

Figure 2.1 (a) Perspective schematic view of an air-gap wine-glass mode disk resonator in a two-

port measurement set-up; (b) Equivalent circuit of a wine-glass mode disk resonator; (c) 

COMSOL simulation of wine-glass mode shape. 

When the frequency of AC signal matches the resonance frequency of the disk resonator, 

the amplitude of the resonance vibration can be expressed by 

𝑋 =
𝑄𝐹𝑒𝑙𝑒

𝑗𝑘𝑟𝑒
=

𝑄

𝑗𝑘𝑟𝑒
∙ 𝑉𝑝

𝜕𝐶
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𝑉𝑖 

(2.2) 
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where Q is the quality factor of the resonator; 𝑘𝑟𝑒 is the resonator equivalent stiffness. Along 

with the vibration, the time-varying capacitance between the disk and output electrode also 

produces an output current expressed by 

𝑖𝑜 = 𝑉𝑝 ∙
𝜕𝐶

𝜕𝑡
= 𝑉𝑝 ∙

𝜕𝐶

𝜕𝑥
∙
𝜕𝑥

𝜕𝑡
= 𝑉𝑝 ∙

𝜕𝐶

𝜕𝑥
∙ 𝜔𝑜𝑋 ≅

𝜔𝑜𝑄𝑉𝑖

𝑘𝑟𝑒
𝑉𝑝

2(
𝜕𝐶

𝜕𝑥
)2 (2.3) 

where 𝜔𝑜 = 2𝜋𝑓𝑜  is the radian resonance frequency. In this resonant mode shape, the disk 

expands along one axis and contracts along the orthogonal axis, thus the resonant frequency can 

be expressed by the solution of [31] 

[𝛹𝑛 (
𝜁

𝜉
) − 𝑛 − 𝑞] ∙ [𝛹𝑛(𝜁) − 𝑛 − 𝑞] = (𝑛𝑞 − 𝑛)2 (2.4) 

where  

𝛹𝑛(𝑥) =
𝑥𝐽𝑛−1(𝑥)

𝐽𝑛(𝑥)
 

 𝑞 =
𝜁2

2𝑛2 − 2
  

𝜁 = 2𝜋𝑓𝑜𝑅√
𝜌(2 + 2𝜎)

𝐸
   

𝜉 = √
2

1 − 𝜎
 

(2.5) 

where 𝐽𝑛(𝑥) is a Bessel function of first kind of order n; 𝛹𝑛(𝑥) is modified quotients of 𝐽𝑛(𝑥); R 

is the radius of resonator disk; 𝜌, 𝜎 and E are the density, Poisson’s ratio and Young’s modulus 

of the resonator structural material, respectively.  The mode shape of wine-glass appears when 

n=2. Also, the equation indicates that the resonant frequency fo of wine-glass mode disk 

resonator is to the first order inversely proportional to the resonator disk radius R. 



23 

2.1.1 Air-Gap Micromechanical Resonators 

In the two-port measurement set-up, the wine-glass disk resonator can be expressed in the 

RLC electrical equivalent circuit as shown in Figure 2.1 (b), where Co is the static capacitance 

between the disk and input/output electrode; Rx, Lx and Cx are the motional resistance, inductance 

and capacitance, respectively. When the resonator is excited at its vibration frequency, the 

impedance of the inductor Lx and capacitor Cx are cancelled out, thus, the motional resistance is 

determined by the input voltage Vi and output current 𝑖𝑜 as following: 

𝑅𝑥 =
𝑉𝑖

𝑖𝑜
≅

𝑘𝑟𝑒

𝜔𝑜𝑄
∙ 𝑉𝑝

−2 ∙ (
𝜕𝐶

𝜕𝑥
)

−2

=
𝑘𝑟𝑒

𝜔𝑜𝑄𝑉𝑝
2 ∙

𝑑𝑜
4

𝜀𝑟
2𝜀𝑜

2𝐴𝑜
2 (2.6) 

where do is the electrode-to-resonator gap spacing; 𝜀𝑟 is the relative permittivity of the material 

used to fill the capacitive transducer gap; 𝜀𝑜 is the permittivity in vacuum; Ao is the electrode-to-

resonator overlap area.  

  

(a) (b) 

Figure 2.2 Perspective schematic and cross-section view of capacitively-transduced 

micromechanical resonators with a pair of air-gap capacitive transducers.  
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2.1.2 Solid-Gap Micromechanical Resonators 

As shown, in order to lower the motional impedance Rx, several approaches could be 

taken. The first approach is to apply higher dc-bias voltage. However, the applied dc-bias voltage 

is limited by the pull-in voltage value which is also determined by the gap spacing. Obviously, 

reducing the gap spacing is the most effective approach among all since the motional resistance 

is proportional to the fourth power of the gap distance; however, the fabrication limitation has 

restricted the minimum air gap to about 60nm. Moreover, smaller gap results in smaller pull-in 

voltage and also the device becomes more nonlinear [32]. Another approach is to increase the 

electrode-to-resonator overlapping area by enlarging the thickness and radius of the resonator 

correspondingly. The trade-offs of this approach are the cost and frequency because the 

frequency is inversely proportional to the resonator critical dimension such as disk radius. Last 

but not the least is to fill the air gap with a high-k material. Compared to air gap (εr=1), the 

employment of high-k dielectric filled electrode-to-resonator gap is expected to provide a better 

transducer efficiency as a result of higher permittivity. Although Si3N4 has been selected to form 

the solid transducer gap of wine-glass disk resonators and demonstrated a 8X reduction in series 

motional resistance [33], it has limitations in its thickness controllability, dielectric constant (εr= 

7.8), and high deposition temperature. Therefore, other thin film high-k materials should be 

explored.  

Atomic layer deposition is a thin film deposition technology that self-limits surface 

reaction down to atomic scale or monolayer level. Taking the advantages of several unique 

attributes from ALD process including precise thickness control at angstrom to nanometer, 

conformal coating even on high aspect ratio structures, pinhole and particle free, low deposition 

temperature (80ºC ~ 300ºC) and very wide variety of high-k materials, ALD has been widely 
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utilized in the semiconductor industry and MEMS applications [34]. In particular, a wide variety 

of high-k dielectric thin films including Al2O3 (εr=8), ZrO2 (εr=12.5), HfO2 (εr=25), TiO2 (εr=80) 

and BST (εr=300) [35] can be seamlessly integrated to serve as the solid gap for the capacitively-

transduced MEMS resonators. 

𝑅𝑥 =
𝑉𝑖

𝑖𝑜
≅

𝑘𝑟

𝜔𝑜𝑄
∙ 𝑉𝑝

−2 ∙ (
𝜕𝐶

𝜕𝑥
)

−2

=
𝑘𝑟

𝜔𝑜𝑄𝑉𝑝
2 ∙

𝑑𝑜
4

𝜀𝑟
2𝜀𝑜

2𝐴𝑜
2 (2.7) 

  

(a) (b) 

Figure 2.3 Perspective schematic and cross-section view of capacitively-transduced 

micromechanical resonators with solid-gap capacitive transducers at its input and output ports. 

2.1.3 Partially-Refilled Air-Gap Micromechanical Resonators 

As discussed previously, reducing the gap spacing is the most effective method to reduce 

the motional resistance. Unfortunately, due to the limitation of micro fabrication (e.g. thin film 

deposition and wet releasing), it is very difficult to achieve sub-100 nm air gap in a high-aspect-

ratio structure. However, there are several approaches that have been developed to successfully 

shrink the air gap below 100 nm. One approach is to fabricate the nano-scale gap directly by 

thermal oxidizing the polysilicon as hard mask and then transfer the trench pattern to silicon 

nitride and eventually to silicon through DRIE [36]. Due to the side-wall scalloping and 
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passivation layer formed during the DRIE process, a precise instrument and an optimized recipe 

are required.  

The advent of ALD technology brings thin film deposition down to sub-100 nm and it is 

capable of controlling the thickness precisely. Therefore, the electrode-to-resonator gap can be 

defined by ALD and then released by hydrofluoric acid (HF) wet etching. Although the thickness 

of ALD process can go down to angstrom scale, the wet etchant has difficulties entering into the 

small gap below about 60 nm due to the surface tension. Thus, HF vapor etching has been 

applied [37] to achieve a 10 nm air-gap resonator device. It is believed that gas phase etchant is 

more capable to diffuse into the small gap and also allows the etching by-products to escape 

from the gap as compared to the liquid phase etchant [38]. However, yield and circuit shortage 

problems are the major concerns for this method.  

 

(a) 

 

                      (b) 

Figure 2.4 Perspective schematic and cross-section view of capacitively-transduced 

micromechanical resonators with partially-filled air gap. 
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A recently developed partially-refilled air-gap resonator equipped with an electro-to-

resonator air gap down to 32 nm which results in significantly lowering down the motional 

resistance to hundreds of ohms [26, 27]. Instead of defining the sub-100 nm transducer gap from 

the beginning, an approximate 100 nm-thick oxide material can be deposited by ALD and 

released by HF wet etching to form an air gap. Again, by taking advantage of ALD’s precisely 

controlled thickness, the air gap is then uniformly filled with about 33 nm-thick dielectric 

materials on both sides to finally narrow the air gap down to 32 nm as shown in Figure 2.4. The 

partially-filled air gap not only helps to reduce the motional resistance, but also prevents the 

resonator from electrostatic discharge because the applied filling high-k material has high 

permittivity. In order to reduce the motional resistance, the effective transducer gap has to be the 

air gap other than the entire dielectric-air-dielectric gap.  Normally, the equivalent capacitance 

between the resonator and electrode can be expressed by 

1

𝐶𝑒𝑞
=

1

𝐶𝐴𝐿𝐷
+

1

𝐶𝑎𝑖𝑟
+

1

𝐶𝐴𝐿𝐷
 

𝐶𝑒𝑞 =
𝐶𝑎𝑖𝑟𝐶𝐴𝐿𝐷

2𝐶𝑎𝑖𝑟 + 𝐶𝐴𝐿𝐷
 

(2.8) 

where 𝐶𝑎𝑖𝑟 is air-gap capacitance; 𝐶𝐴𝐿𝐷 is sold-gap capacitance and two 𝐶𝐴𝐿𝐷 are identical since 

ALD provides conformal coating on all surfaces as illustrated in Figure 2.4 (b). If the dimensions 

of capacitor gap dALD and dair are set to be closely identical, the equivalent capacitance is then 

expressed by 

𝐶𝑒𝑞 ≅ 𝐶𝑎𝑖𝑟(
2

𝜀𝐴𝐿𝐷
+

1

𝜀𝑎𝑖𝑟
) (2.9) 

Also, in order to guarantee that the equivalent capacitance is dominated by air (which is 𝐶𝑒𝑞 ≅

𝐶𝑎𝑖𝑟), the relative permittivity of the filling material need to meet the following condition 
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𝜀𝐴𝐿𝐷 ≫ 20 (2.10) 

In practical, 𝜀𝐴𝐿𝐷 at least needs to be larger than 20, hence, HfO2 (εr=25) and TiO2 (εr=80) are the 

reasonable materials among the available selections.  

2.2 Atomic Layer Deposition 

 
Figure 2.5 Savannah 100 ALD system by Cambridge Nanotech Inc. used in this work. 

 

Figure 2.6 Schematic illustration of atomic layer deposition reaction sequence. 
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Figure 2.6 presents Al2O3 thin film deposition process by ALD using water and 

trimethylaluminum (TMA) precursors at 250°C. The process starts from exposure of the 1st 

precursor which is water vapor. H2O vapor is adsorbed on most of the surfaces, forming a 

hydroxyl group. After purging the reaction chamber, the non-reacted precursors and the gaseous 

reaction by-products will be removed. Then, the 2nd precursor of TMA is precisely pulsed into 

the reaction chamber to react with the adsorbed hydroxyl group until the surface is passivated.  

Neither TMA nor H2O vapor reacts with itself, which terminates the reaction to one layer and 

causes the perfect passivation to one atomic layer. After purging the reaction chamber again, the 

non-reacted precursors and the gaseous reaction by-products will be pumped away. This is the 

last step of a single cycle for atomic layer deposition, resulting in Al2O3 deposition rate of 1.07Å 

per cycle approximately. After multiple reaction cycles, a uniform, conformal, pinhole and 

particle free thin film will be deposited through ALD [39].  

 

Figure 2.7 Schematic illustration of Nanolaminates with Al2O3 and TiO2 as sub-layers. 

Furthermore, a new ALD deposition technique of nanolaminates has been discovered to 

improve the properties of the dielectric materials and achieve even higher dielectric constant than 

that of the single dielectric material. To synthesize nanolaminates, two different dielectric 

materials are deposited alternatingly with nanometer thickness of each as shown in Figure 2.7. 

The composition of the nanolaminates and the thickness of each material can be modified to 
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accomplish better dielectric characteristics. Nanolaminates of Al2O3 (εr = 8) and TiO2 (εr = 80) 

synthesized by ALD have been systematically investigated to achieve very high dielectric 

constant (εr = ~1,000) [40] due to the interfacial polarization effects such as the Maxwell-

Wagner effect or charge disproportionation in superlattice structures [41].  

2.3 Nickel Electroplating 

 
 

(a) (b) 

Figure 2.8 (a) Schematic view and (b) experiment set-up of nickel electroplating. 

Among the currently available low-temperature materials such as amorphous silicon, 

germanium, ultrananocrystalline diamond, and other metals, electroplated-nickel was employed 

here as structural material because of its low deposition temperature, as well as its low cost and 

the potential for realizing high-aspect-ratio microstructures. Particularly, the electroplating 

process was conducted in the nickel electroplating solution heated to 40ºC ~ 60ºC which was low 

enough to enable the post-transistor fabrication of MEMS devices over the foundry-fabricated 

electronics.  
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There are two popular types of electrolyte for nickel electroplating: one is the nickel 

sulfate (NiSO4 ∙ 6H2O) which is designed for high speed plating and through-hole metallization; 

the other one is the nickel sulfamate (Ni(SO3NH2)2) which provides low stress and high ductility. 

The electroplating solution applied here with a pH value of 4.0 was composed of nickel 

sulfamate, boric acid, nickel chloride and sodium lauryl sulfate. During the electroplating, the 

target sample was connected to the cathode where Ni2+ ions were attracted after giving a current 

source, while a platinum-meshed plate was connected to the anode where ions were produced for 

the electrolyte.    

Table 2.1 Comparison of Key Material Properties between Nickel and Other MEMS Structural 

Materials [13] 

Material 

Young’s 

Modulus 

E(GPa) 

Density 

ρ (kg/m³) 

Acoustic 

Velocity (m/s) 

Deposition 

Temperature 

(°C) 

Electrical 

Conductivity 

(107 /Ωm) 

PolySilicon 150 2,330 8,024 588 0.001 

PolyDiamond 1,144 3,500 18,076 800-1000 0.001 

Silicon Carbide 415 3,120 11,500 800 0.00083 

Nickel 195 8,900 4,680 40-60 1.43 

      

During the chemical reaction, hydrogen gas was released at the cathode and resulted in 

pitting at the surface of the plated nickel, raising the pH value of the plating solution and 

lowering the plating efficiency. Thus, in addition to constantly stirring the electroplating solution 

by a magnetic stirrer, boric acid was added to maintain the pH value and also help to reduce the 

pitting and roughness. Nickel chloride is adopted to improve the conductivity. Sodium lauryl 
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sulfate not only served as auxiliary brightener, but also acted as anti-pitting agent to reduce the 

surface tension and remove the bubble from the nickel surface [42]. 

Table 2.2 Composition and Operating Conditions for Nickel Sulfamate Solution 

Ni(SO3NH2)2, (Nickel Sulfamate) 180 g/L 

NiCl2 ∙ 6H2O, (Nickel Chloride) 4.5 g/L 

B(OH)3,  (Boric Acid) 22.5 g/L 

CH3(CH2)11OSO3Na (Sodium Lauryl Sulfate) 2.7 g/L 

Temperature 40-60 °C 

Agitation Rate 200 rpm 

Current density 1-20 mA/cm² 

pH 3.5-4.5 

  

2.4 Distortion in Micromechanical Resonators 

To date, capacitively-transduced micromechanical resonators with high frequency-Q 

performance have been realized an enabler for mixer-filters (“mixlers”) [7], on-chip filters and 

low noise oscillators [43] in wireless communications. Besides the frequency, Q factor, motional 

impedance, there are several other important parameters (e.g. dynamic range, intercept points, 

1dB compression point, etc.) that could determine if the resonator technology is able to be 

utilized in certain RF communication circuits for the target applications with special 

specifications. So far, only limited work has been done to study the system linearity of 

capacitively-transduced MEMS resonators: measured IIP3 of -3 dBm for a 10-MHz clamped-

clamped beam resonator [32]; measured IIP3 of 35.6 dBm at V=16 volts for a 8-MHz single-
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beam resonator [44]; and measured IIP3 of 19.49 dBm for a 156-MHz contour-mode disk 

resonator with Q’s of 20,500 [45]. Therefore, in order to better tailor the capacitively-transduced 

MEMS resonators for RF communication circuits, systemic study of system nonlinearity is 

highly demanded. 

2.4.1 Nonlinearity 

A system is considered nonlinear if its output is not directly proportional to the input. For 

a linear system, the characteristic function of the input and output is given by 

𝑦(𝑡) = 𝛼𝑥(𝑡) (2.11) 

where α is the small-signal gain of the system. For a nonlinear system, the characteristic function 

of the input and output is given by 

𝑦(𝑡) = 𝛼𝑜 + 𝛼1𝑥(𝑡) + 𝛼2𝑥
2(𝑡) + 𝛼3𝑥3(𝑡) + ⋯ (2.12) 

2.4.2 Fundamentals of Intermodulation Distortion 

 

Figure 2.9 Schematic illustration of signal corruption due to the third-order intermodulation 

caused by system nonlinearity [32]. 

Assume 𝑥(𝑡)  is a sinusoid signal which contains only one frequency, therefore, the 

generalized sinusoidal wave form can be expressed by 
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𝑥(𝑡) = 𝐴𝑐𝑜𝑠𝜔𝑡 (2.13) 

In a nonlinear system, the input signals consist of a fundamental signal at frequency 

of 𝜔𝑜, accompanied with two strong out-of-band interferers which occur at 𝜔1 and 𝜔2 and are 

separated from the fundamental frequency 𝜔𝑜 by 2∆𝜔 and ∆𝜔, respectively, as shown in Figure 

2.9. Thus, the relationship between the fundamental signal and interferers can be expressed by 

𝜔𝑜 = 2𝜔1 − 𝜔2 (2.14) 

These two non-harmonic interfered signals generate additional non-harmonic output frequencies 

through the nonlinear mixing process which is called intermodulation (IM) [46]. 

𝑆𝑖𝑛 = 𝐴𝑜 ∙ 𝑐𝑜𝑠 𝜔𝑜𝑡 + 𝐴1 ∙ 𝑐𝑜𝑠 𝜔1𝑡 + 𝐴2 ∙ 𝑐𝑜𝑠 𝜔2𝑡 (2.15) 

where Ao is the amplitude of fundamental signal, A1 and A2 are the amplitudes of the interfered 

signals. Then, the output signal of this system is given by 

𝑆𝑜𝑢𝑡 ≈ 𝛼𝑜 + 𝛼1𝑆𝑖𝑛 + 𝛼2∙𝑆𝑖𝑛
2 + 𝛼3∙𝑆𝑖𝑛

3  (2.16) 

where 𝛼𝑜  , 𝛼1, 𝛼2 …, 𝛼𝑛 are the constants, after substituting Sin in equation (2.16) with equation 

(2.15), the output signal can be expanded as: 

𝑆𝑜𝑢𝑡 = 𝛼𝑜 + 𝛼1(𝐴𝑜 ∙ 𝑐𝑜𝑠 𝜔𝑜𝑡 + 𝐴1 ∙ 𝑐𝑜𝑠 𝜔1𝑡 + 𝐴2 ∙ 𝑐𝑜𝑠 𝜔2𝑡)                      

+ 𝛼2(𝐴𝑜 ∙ cos 𝜔𝑜𝑡 + 𝐴1 ∙ 𝑐𝑜𝑠 𝜔1𝑡 + 𝐴2 ∙ 𝑐𝑜𝑠 𝜔2𝑡)
2

+ 𝛼3(𝐴𝑜 ∙ cos 𝜔𝑜𝑡 + 𝐴1 ∙ 𝑐𝑜𝑠 𝜔1𝑡 + 𝐴2 ∙ 𝑐𝑜𝑠 𝜔2𝑡)
3 

                        = ⋯ + 𝛼1𝐴𝑜𝑐𝑜𝑠 𝜔𝑜𝑡 +
3𝛼3𝐴1

2𝐴2

4
cos(2𝜔1 − 𝜔2) 𝑡 + ⋯ 

(2.17) 

where the fundamental component (𝜔𝑜) and the third-order intermodulation component (2𝜔1 −

𝜔2) happened to occur at the same frequency as a sequence of nonlinearity. Therefore, 𝛼3 

represents the third-order intermodulation (IM3) distortion generated by the third-order 

nonlinearity which may disguise the desired signal if 𝛼3 or the magnitudes of interference signals 

are large enough as illustrated in Figure 2.9.  
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In order to measure the degree of nonlinearity in a system, a common method of “two-

tone” test is applied here which sets the two sinusoid input interference signals to have an equal 

amplitude A. The input signal is then given by 

𝑆𝑖𝑛 = 𝐴 ∙ 𝑐𝑜𝑠 𝜔𝑜𝑡 + 𝐴 ∙ 𝑐𝑜𝑠 𝜔1𝑡 + 𝐴 ∙ 𝑐𝑜𝑠 𝜔2𝑡 (2.18) 

If the amplitude of each tone increases, the output of IM3 components raises more sharply (∝ 𝐴3). 

As the amplitude continues to increase, the output of IM3 components will eventually reach the 

same level as that of the fundamental signal as shown in Figure 2.10. Therefore, the third-order 

input intermodulation intercept point (IIP3) is defined as the input amplitude at which the 

extrapolated IM3 and the fundamental output components are equal in magnitude. Similarly, the 

corresponding output is represented by 𝑂𝐼𝑃3
.  

 

Figure 2.10 Schematic definitions of IM3 and IIP3. 

To determine the IIP3, just simply denote the output of the fundamental to be equal to 

that of the third-order nonlinear product which is given by 
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4𝛼1

3𝛼3
 (2.19) 
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where 𝛼1and 𝛼3 are not related to any input signals but determined by the linearity of the device. 

With a higher IIP3 (higher 𝛼1), the fundamental signal dominates more in the output which 

indicates the circuit is more linear or can handle lager interferers, and vice versa. Thus, IIP3 is 

served as an important metric for the ability of a system to suppress the IM3 distortion.  

 

Figure 2.11 Schematic description of the mechanism for IM3 generation in a capacitively-

transduced resonator [32]. 

2.5 Intermodulation Distortion in MEMS Resonators 

In a RF receiver architecture, although these two out-of-band interferers have gone 

through a band-pass filter, an undesired signal still appears in the target signal channel (as shown 

in Figure 2.9 and 2.11) which is not acceptable for filtering devices that are designed to eliminate 

the out-of-band products. Accordingly, in order to circumvent this scenario, the third-order 

nonlinear term in (2.17) must be constrained below a minimum acceptable value in the practical 

communication systems. 

mMechanical Resonator

ω1 ω2 ωo 
Δω Δω

ω

Out-of-Band 

Interferers

Resonator

Frequency 

Responce

Electrical 

Signal Power

ω1 ω2 ωo 
Δω Δω

ω

Induced 

Displacement

Resonator

Frequency 

Responce

Mechanical 

Signal Power

IM3 Signal



37 

 

(a) 

 

 

(b) (c) 

Figure 2.12 (a) Perspective schematic view of an air-gap wine-glass mode disk resonator in the 

two-port measurement set-up; (b) Equivalent circuit of a contour mode disk resonator; (c) 

COMSOL simulation of contour mode shape. 

In order to excite the device, an alternating AC signal vi is applied to the input electrodes 

generating an electrostatic force to drive the resonator to its vibration frequency mode in which it 

expands and contracts uniformly around its perimeter [19] as illustrated in Figure 2.12. At the 

same time, a dc-bias voltage Vp is applied directly on the resonant structure forming a 

capacitance between the resonator disk and the output electrode which introduces an output 

current io. In the two-port measurement set-up, the contour mode disk resonator can be expressed 

in the RLC electrical equivalent circuit in Figure 2.12 (a), where Co is the static capacitance 
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between the disk and input/output electrode; Rx, Lx and Cx are the motional resistance, inductance 

and capacitance, respectively. 

So far, two approaches have been adopted when measuring the IIP3 of micromechanical 

resonators. One of the prior work [32] presented a traditional “two-tone” test that utilized a 

power combiner to combine two off-resonance interference signals and then injected it into the 

electrode of a beam resonator as an input signal. The other work [45] applied two interfering 

tones to two separated electrodes of the disk resonator without the need of a power combiner, for 

the purpose of withdrawing nonlinear components generated by the measurement instrument and 

allowing cleaner third-order nonlinear products to be measured.  

As shown in Figure 2.12 (a), a DC-bias voltage is applied to the resonator disk while an 

AC excitation voltage is applied to the driving electrode, thus, both DC and AC voltages here 

contribute to the force that drives the resonator into its desired resonance mode. Hence, the 

driving force can be expressed: 

𝐹𝑑 =
1

2
(𝑉𝑝 − 𝑣𝑖)

2
𝜕𝐶

𝜕𝑥
 (2.20) 

where 𝜕𝐶/𝜕𝑥 is the integrated change in the electrode-to-resonator overlap capacitance per unit 

displacement.  For the resonator, the value of the disk-to-sense-electrode capacitance as a 

function of displacement is roughly given by 

𝐶(𝑥) =
𝜀𝑜𝐴𝑜

𝑑𝑜 − 𝑥
= 𝐶𝑜(1 −

𝑥

𝑑𝑜
)−1 (2.21) 

where 𝐶𝑜, 𝐴𝑜 and 𝑑𝑜 are the static disk-to-electrode capacitance, overlap area and gap spacing, 

respectively. After differentiating (2.21), 𝜕𝐶/𝜕𝑥 can be expressed as 

𝜕𝐶

𝜕𝑥
=

𝐶𝑜

𝑑𝑜
(1 −

𝑥

𝑑𝑜
)−2 (2.22) 
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If the displacements are small, a Taylor series expansion may be performed in (2.22), 

yielding 

𝜕𝐶

𝜕𝑥
=

𝐶𝑜

𝑑𝑜
(1 +

2

𝑑𝑜
𝑥 +

3

𝑑𝑜
2 𝑥2 +

4

𝑑𝑜
3 𝑥3 + ⋯ ) (2.23) 

After applying (2.23) to (2.20), the driving force can be expanded as following [47]:  

𝐹𝑑 =
1

2
(𝑉𝑝 − 𝑣𝑖)

2
∙ (

𝐶𝑜

𝑑𝑜
) ∙ (1 +

2

𝑑𝑜
𝑥 +

3

𝑑𝑜
2 𝑥2 +

4

𝑑𝑜
3 𝑥3 + ⋯ ) (2.24) 

Here, in a nonlinear system, the two off-resonance interferers that occur at 𝜔1 and 𝜔2 and are 

separated from the fundamental frequency 𝜔𝑜 by 2∆𝜔 and ∆𝜔, respectively, are applied to the 

input electrodes. Therefore, the effective excitation voltage is the sum of two tone signals as 

following:  

𝑣𝑖 = 𝑉1  ∙ 𝑐𝑜𝑠(𝜔1𝑡) + 𝑉2  ∙ cos (𝜔2𝑡) (2.25) 

where 2𝜔1 − 𝜔2 = 𝜔𝑜. Then the mechanical displacement can be expanded as 

𝑥 = 𝑋1 ∙ 𝑐𝑜𝑠(𝜔1𝑡 + 𝜙1) + 𝑋2 ∙ 𝑐𝑜𝑠(𝜔2𝑡 + 𝜙2) (2.26) 

where the amplitude 𝑋1  and 𝑋2  can be obtained from the voltage-to-displacement transfer 

function of the mechanical resonator as following: 

𝑋1,2(𝑗𝜔) =
𝐹

𝑘𝑟𝑒
∙ 𝛩(𝜔) ≅

𝑉𝑝𝑉𝑖

𝑘𝑟𝑒
∙
𝐶𝑜

𝑑𝑜
∙ 𝛩1,2(𝜔) (2.27) 

where 𝑘𝑟𝑒  is the effective stiffness at any location on the disk perimeter; and the transfer 

functions of two interfering tones are given by 

𝛩1,2(𝜔) =
1

1 − (
𝜔1,2

𝜔𝑜
)

2

+ 𝑗 (
𝜔1,2

𝑄𝜔𝑜
)

 
(2.28) 
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By setting the input voltage amplitudes as 𝑉𝑖 and inserting (2.25) and (2.26) into (2.24), 

the total driving force can be solved including the force of a third-order intermodulation 

component, which can be expressed as [45]   

𝐹𝐼𝑀3
= 𝑉𝑖

3 ∙ {
1

2

𝜀𝑜
2𝐴𝑜

2

𝑑𝑜
5

𝑉𝑝

𝑘𝑟𝑒
𝛩1 +

1

4

𝜀𝑜
2𝐴𝑜

2

𝑑𝑜
5

𝑉𝑝

𝑘𝑟𝑒
𝛩2

∗ +
3

4

𝜀𝑜
3𝐴𝑜

3

𝑑𝑜
8

𝑉𝑝
3

𝑘𝑟𝑒
2 𝛩1

2

+
3

2

𝜀𝑜
3𝐴𝑜

3

𝑑𝑜
8

𝑉𝑝
3

𝑘𝑟𝑒
2 𝛩1𝛩2

∗ +
3

2

𝜀𝑜
4𝐴𝑜

4

𝑑𝑜
11

𝑉𝑝
5

𝑘𝑟𝑒
3 𝛩1

2𝛩2
∗} 

(2.29) 

It is known that the fundamental force component can be expressed by 

𝐹 = 𝑉𝑝 ∙ 𝑉𝑖 ∙
𝜕𝐶

𝜕𝑥
= 𝑉𝑝 ∙ 𝑉𝑖 ∙

𝜀𝑜𝐴𝑜

𝑑𝑜
2  (2.30) 

At the extrapolated input power, the third-order intermodulation components in a two-

tone test have the same value as the linear force component. By equating the IM3 force (2.29) to 

the fundamental force (2.30) and solving for 𝑉𝐼𝐼𝑃3
= 𝑉𝑖, then the input voltage magnitude at the 

IIP3 is explained as following:       

𝑉𝐼𝐼𝑃3
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(2.31) 

Therefore the power of IIP3  can be expressed as  

𝑃𝐼𝐼𝑃3
=

𝑉𝐼𝐼𝑃3

2

2(𝑅𝑥 + 50Ω)
 (2.32) 

where 50Ω is the load resistance representing the measurement instrument. 

The completed equations for calculating the equivalent mass and stiffness of contour-

mode disk resonators can be found in [19]: 
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𝑚𝑟𝑒 =
𝐾𝐸𝑡𝑜𝑡

1
2 𝑣′(𝑅𝑑𝑖𝑠𝑘 , 𝜃)2

=

2 𝜋 𝜌 𝑡 ∫  𝑟 𝐽1
2  (

𝜔𝑜

𝐶𝑄𝐿
𝑟) 𝑑𝑟

𝑅𝑑𝑖𝑠𝑘

0

𝐽1
2  (

𝜔𝑜

𝐶𝑄𝐿
 𝑅𝑑𝑖𝑠𝑘)

 (2.33) 

where the equivalent mass, 𝑚𝑟𝑒 , at a location (Rdisk ,) can be obtained by dividing the total 

kinetic energy by one-half the square of the velocity at that location;  𝐾𝐸𝑡𝑜𝑡 is the total kinetic 

energy in a vibrating disk obtained by integrating the kinetic energies of all infinitesimal mass 

elements; v’(Rdisk ,) is the velocity magnitude at location (Rdisk ,); CQL is quasi-longitudinal 

wave speed; Jn is Bessel function of first kind of order n. Thereafter, the equivalent stiffness can 

be expressed as: 

𝑘𝑟𝑒 = 𝜔𝑜
2 ∙ 𝑚𝑟𝑒 (2.34) 

2.5.1 IIP3 of Air-gap Resonators  

  

(a) (b) 

Figure 2.13  Simulated motional impedance of (a) polysilicon resonators; and (b) electroplated 

nickel resonators depending upon capacitive disk-to-electrode gap spacing and applied DC-bias 

voltages. 

By taking polysilicon as structural material, the simulated motional impedance is based 

on the device with specifications including disk radius of 30 µm, thickness of 4 µm, and quality 

factor of 10,000. By considering electroplated nickel as structural material, the simulation results 
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are based on the device with specifications including disk radius of 30 µm, thickness of 4 µm, 

and quality factor of 5,000. As shown, the motional impedance is highly dependent on the air-

gap spacing and applied DC-bias voltage. Since the material loss of nickel is higher than silicon, 

the quality factor for the nickel devices under similar conditions will be lower than that of silicon 

devices, which results in the difference of the motional resistance. 

  

(a) (b) 

Figure 2.14 Simulated IIP3 of (a) polysilicon resonators; and (b) electroplated nickel resonators 

depending upon capacitive disk-to-electrode gap spacing and different Q factor. 

By taking polysilicon as structural material, the IIP3 simulation results are based on the 

device with specifications including disk radius of 30 µm, thickness of 4 µm, and applied bias 

voltage of 20 volts. By considering electroplated nickel as structural material, the IIP3 simulation 

results are based on the device with specifications including disk radius of 30 µm, thickness of 4 

µm, and applied bias voltage of 20 volts. As shown in equation (2.6), the motional resistance is 

inversely proportional to the Q factor and PIIP3 is inversely proportional to the motional 

resistance. Meanwhile, the voltage of IIP3 is also inversely proportional to the Q factor. However, 

the motional resistance decreases faster than the voltage of IIP3 when Q factor increases up to 

10,000. Therefore, the IIP3 decreases as Q increases in this region. After the Q factor is greater 

than 10,000, the IIP3 becomes proportional to the Q factor. 
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Figure 2.15 (a) presents the simulated results of IIP3 based on the device with polysilicon 

as structural layer, disk radius of 30 µm, thickness of 4 µm, and quality factor of 10,000. By 

taking electroplated nickel as structural material, the simulation results in Figure 2.15 (b) are 

based on the device with a disk radius of 30 µm, thickness of 4 µm, and quality factor of 5,000. 

Since the motional resistance is highly proportional to the bias voltage Vp, while IIP3 is not 

dependent on it, the IIP3 increases when higher bias voltage applied. 

  

(a) (b) 

Figure 2.15  Simulated IIP3 of (a) polysilicon resonators; and (b) electroplated nickel resonators 

depending upon capacitive disk-to-electrode gap spacing and applied DC-bias voltages. 

Figure 2.16 (a) presents the simulated results of IIP3 based on the device with polysilicon 

as structural layer, thickness of 4 µm, applied bias-voltage of 20 volts, and quality factor of 

10,000 with varies disk radius from 5 µm to 50 µm. By taking electroplated nickel as structural 

material, the simulation results in Figure 2.16 (b) are based on the device with thickness of 4 µm, 

applied bias-voltage of 20 volts, and quality factor of 5,000 with varies disk radius from 5 µm to 

50 µm. The comparison shows that the smaller size device gains higher power of IIP3, but no 

significant improvement on it. It is because the smaller device provides less overlapping area as a 

trade-off of higher frequencies which actually increases the motional resistance.  
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(a) (b) 

Figure 2.16 Simulated IIP3 of (a) polysilicon resonators; and (b) electroplated nickel resonators 

depending upon capacitive disk-to-electrode gap spacing and radius of resonator disk. 

2.5.2 IIP3 of Solid-gap Resonators 

Compare to air-gap resonators, solid-gap resonators can provide much lower motional 

resistance by applying both high-k gap material and much smaller resonator-to-electrode gap. 

However, the motional resistance only slightly decreased according to the device measurement 

results [35] due to the increased stiffness as compared to that of air gap. Thus, the motional 

resistance of a solid-gap resonator can be approximately expressed by [35] 

𝑅𝑥 =
𝑉𝑖

𝑖𝑜
≅

𝑘𝑟

𝜔𝑜𝑄
∙ 𝑉𝑝

−2 ∙ (
𝜕𝐶

𝜕𝑥
)

−2

=
𝑘𝑟

𝜔𝑜𝑄𝑉𝑝
2 ∙

𝑑𝑜
4

𝜀𝑟
2𝜀𝑜

2𝐴𝑜
2 ∙

1

𝛾
 (2.34) 

where 𝛾 is a modified quotient of stiffness between the solid gap and surrounding electrode 

plates that at present is empirically extracted from the measurement results. 

2.5.3 IIP3 of Partially-filled Air-gap Resonators 

By taking into account the effect of the dielectric material which forms a partially-filled 

capacitive gap, the equivalent capacitance can be expressed as 
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𝐶𝑒𝑞 =
𝐶𝑎𝑖𝑟𝐶𝐴𝐿𝐷

2𝐶𝑎𝑖𝑟 + 𝐶𝐴𝐿𝐷
=

𝜀𝑜𝐴𝑜

𝑑1 − 𝑥
∙

𝜀𝑜𝜀𝑟𝐴𝑜

(𝑑1 − 𝑑𝑜)/2
2𝜀𝑜𝐴𝑜

𝑑1 − 𝑥
+

𝜀𝑜𝜀𝑟𝐴𝑜

(𝑑1 − 𝑑𝑜)/2

 (2.35) 

where 𝑑𝑜 is the spacing of the original released air gap; 𝑑1 is the spacing of final air gap after 

partially filled with ALD material; 𝜀𝑟 is permittivity of filled ALD high-k material. Then the 

differential of equivalent capacitance can be expressed as 

𝜕𝐶𝑒𝑞

𝜕𝑥
=

𝜀𝑜𝐴𝑜

(
𝑑𝑜 − 𝑑1

𝜀𝑟
+ 𝑑1)

2
∙ (1 −

𝑥

𝑑𝑜 − 𝑑1

𝜀𝑟
+ 𝑑1

)−2 (2.36) 

If the displacements are small, a Taylor series expansion may be performed in (2.36), yielding 

𝜕𝐶𝑒𝑞

𝜕𝑥
=

𝜀𝑜𝐴𝑜

𝐷2
(1 +

2

𝐷
𝑥 +

3

𝐷2
𝑥2 +

4

𝐷3
𝑥3 + ⋯ ) 

(2.37) 

where  

𝐷 =
𝑑𝑜 − 𝑑1

𝜀𝑟
+ 𝑑1 (2.38) 

Along with the vibration, the time-varying capacitance between the disk and output electrode 

also produces an output current expressed by 

𝑖𝑜 = 𝑉𝑝 ∙
𝜕𝐶𝑒𝑞

𝜕𝑡
= 𝑉𝑝 ∙

𝜕𝐶𝑒𝑞

𝜕𝑥
∙
𝜕𝑥

𝜕𝑡
= 𝑉𝑝 ∙

𝜕𝐶𝑒𝑞

𝜕𝑥
∙ 𝜔𝑜𝑋 ≅

𝜔𝑜𝑄𝑉𝑖

𝑘𝑟
𝑉𝑝

2(
𝜕𝐶𝑒𝑞

𝜕𝑥
)2 (2.39) 

The motional resistance is determined by the input voltage Vi and output current 𝑖𝑜 as 

following 

𝑅𝑥 =
𝑉𝑖

𝑖𝑜
≅

𝑘𝑟𝑒

𝜔𝑜𝑄
∙ 𝑉𝑝

−2 ∙ (
𝜕𝐶

𝜕𝑥
)

−2

=
𝑘𝑟𝑒

𝜔𝑜𝑄𝑉𝑝
2 ∙

𝐷4

𝜀𝑜
2𝐴𝑜

2 (2.40) 

By taking the same procedure as that of air gap scenario, the driving force of third-order 

intermodulation component can be expressed as 
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(2.41) 

As a sequence, the input voltage magnitude at the IIP3 is given by  
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(2.42) 

Thereafter, the power of IIP3  in a partially-filled air-gap resonator can be expressed as  

𝑃𝐼𝐼𝑃3
=

𝑉𝐼𝐼𝑃3

2

2(𝑅𝑥 + 50Ω)
 

(2.43) 

 

Figure 2.17 Schematic cross-section view of a partially-filled air-gap resonator. 

 Figure 2.18 presents the simulated motional impedance based on a polysilicon resonator 

device with disk radius of 30 µm, thickness of 4 µm, the initial released air gap of 100 µm, and 

applied ALD filling material of HfO2, TiO2 and BST.  
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Figure 2.18  Simulated motional impedances as a function of the gap spacing and partially-filled 

air gap materials. 

 

Figure 2.19 Simulated motional impedances as a function of air-gap spacing and applied bias 

voltages. 

 Under a common DC-bias voltage of 25 volts, Figure 2.18 shows the comparison of 

simulated motional resistance between air-gap resonator and partially-filled air-gap resonator. As 

for the partially-filled air-gap device, the motional resistance is not much higher than the air-gap 

device when the final air-gap spacing is below 20nm because the air-gap capacitance is not 

dominated in the overall capacitance. However, the air-gap device may only be released with air-
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gap spacing above 60 nm. Therefore, the partially-filled air-gap device has further advantages of 

reducing the motional resistance while having a decent fabrication yield. 

Figure 2.19 presents the simulated motional impedances for a resonator with partially-

filled air gap. As shown, when the applied DC-bias voltage increased, the motional resistance 

was reduced significantly. 
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CHAPTER 3 ELECTROPLATED-NICKEL MEMS RESONATORS 

3.1 Measurement Set-up 

The RF measurement was conducted through either wire-bonding or on-chip probing in 

both air and vacuum with equipment including a network analyzer, a signal generator, a 

spectrum analyzer, a signal generator, a power supply, a vacuum chamber and a probe station.  

 

Figure 3.1 Schematic measurement set-up for nickel disk resonators. 

In order to measure the resonance frequency and quality factor, Figure 3.1 presents a two-

port measurement set-up, which consists of a disk resonator with key features such as driving 

and sensing ports, and testing instruments. In order to excite the device, an alternating AC signal 

Vi is applied to the input electrodes generating an electrostatic force to drive the resonator to its 

vibration resonance mode. At the same time, a DC-bias voltage Vp is applied directly on the 
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resonant structure forming a DC-biased time varying capacitance between the resonator disk and 

the output electrodes which induces an output current io.  

3.2 Solid-Gap Resonator Fabrication Process 

Figure 3.2 presents a step-by-step fabrication process flow for a solid-gap capacitively-

transduced resonator using electroplated nickel as its structural material. Starting with a standard 

silicon wafer, a 1µm-thick silicon dioxide was coated through thermal oxidation to serve as an 

isolation layer. By applying the first photomask, the Cr/Au bottom electrodes were defined by 

means of UV photolithography, e-beam evaporation and lift-off process. Then a 1µm-thick 

amorphous silicon (-Si) layer was deposited by plasma enhanced chemical vapor deposition 

(PECVD) to serve as a sacrificial layer. After utilizing the second photomask and UV 

photolithography, the photoresist patterns were then transferred to -Si by silicon dry etching, 

thus forming via holes as the anchors of the resonator disk and electrodes. Followed by blanket 

deposition of Cr/Au seeding layers, AZ P4620 photoresist mold was then patterned using the 

third photomask. A 5µm-thick nickel microstructure was electroplated inside the mold to form 

the body of the disk resonator. After soaking in the solvent and metal etchant to remove the mold 

and seeding layers, respectively, a 30nm-thick HfO2 film was deposited by ALD to uniformly 

cover the sidewall of the resonators to define the electrode-to-resonator capacitive gap as shown 

in Figure 3.2(c). Followed by photolithography of the fourth photomask, the sidewall dielectric 

film was protected by the photoresist whereas the field HfO2 film was removed by dry etching to 

make contact to the bottom electrodes. Next, with the last photomask, molding process along 

with electroplating was employed again to form the surrounding electrodes for the MEMS 

resonators. Finally, a unique isotropic silicon dry etching process through DRIE was adopted to 

selectively etch away the amorphous silicon sacrificial layer resulting in suspended resonator 



51 

structures made of electroplated nickel. The final device cross-sectional structure is illustrated in 

Figure 3.2 (j). 

  

  

  

  

  

 

Figure 3.2 Fabrication process flow of a solid-gap capacitively-transduced nickel resonator. 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

SiO2Si Cr/Au Sacrificial Seed Layer Photoresist NiALD
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Figure 3.3 SEM image of electroplated-Ni wine-glass mode disk resonator with a solid gap of 

30nm. 

After 20 minutes isotropic silicon etching in an inductively-coupled plasma etcher, the 

nickel resonator was released along with the pre-defined 30 nm HfO2 electrode-to-disk solid 

capacitive gap as shown in Figure 3.3.  Also, the Cr/Au bottom electrodes were exposed for on-

chip probing in air or wire-bonding in vacuum measurement. Since the gap spacing of this solid-

gap device is smaller than the typical air gap, the pull-in voltage was only about 5 volts.  

 

Figure 3.4 Measurement results of electroplated-Ni wine-glass mode disk resonator with solid 

gap of 30nm. 

 The measurement results in Figure 3.4 were based on a wine-glass mode disk resonator 

with radius of 30 µm, thickness of 5um, and a solid gap of 30 nm. The applied DC-bias voltage 

was from 2 volts to 4 volts and the device was pulled-in after 5 volts.  
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Figure 3.5 presents the measured frequency response of a wine-glass mode disk resonator 

with radius of 20 µm, thickness of 5 µm and a solid-gap of 30 nm. The applied DC-bias voltage 

was 4 volts and the device was pulled-in after 5 volts. The extrapolated Young’s Modulus of 

electroplated nickel in this device is roughly 190 GPa that is on par with the prior reports. 

 

Figure 3.5 Measurement results of electroplated-Ni wine-glass mode disk resonator with solid 

gap of 30nm. 

3.3 Air-Gap Resonator Fabrication Process 

Figure 3.6 presents a step-by-step fabrication process flow for air-gap capacitively-

transduced resonator using electroplated nickel as its structural material. Apart from the solid-

gap devices, a high resistivity (6kΩ∙cm) silicon wafer was employed here so that the isolation 

layer is not necessary for keeping low feed-through level from the substrate. By utilizing the 

same photomask set for the solid-gap resonators, the fabrication process of air-gap resonators 

was performed similar to the solid-gap process. By applying the first photomask, the Cr/Au 

bottom electrodes were defined by means of UV photolithography, e-beam evaporation and a 

lift-off process. Instead of amorphous silicon, 1µm-thick silicon dioxide was coated here by 

PECVD at 250°C to serve as sacrificial layer. After utilizing the second photomask and UV 
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photolithography, the photoresist patterns were then transferred to silicon dioxide by dry etching, 

thus forming via holes as the anchors of resonator disk and electrodes.  

  

  

  

  

  

 

Figure 3.6 Fabrication process flow of an air-gap capacitively-transduced nickel resonator. 

Followed by a blanket deposition of Cr/Au (20nm/20nm) seeding layers, AZ P4620 

photoresist mold was then patterned using the third photomask. A 5µm-thick nickel 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

SiO2Si Cr/Au Seed Layer Photoresist NiALD
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microstructure was electroplated inside the mold to form the body of the disk resonator. After 

soaking in the solvent and metal etchant to remove the mold and seeding layers, respectively, a 

100nm-thick Al2O3 film was deposited by ALD to uniformly cover the sidewall of the resonators 

while defining the electrode-to-resonator capacitive gap as shown in Figure 3.6 (e). Followed by 

UV photolithography of the fourth photomask, the sidewall dielectric film was protected by 

photoresist from dry etching for the purpose of removing the field Al2O3 film and making 

contact to the bottom electrodes. Next, molding process along with electroplating was employed 

again to form the surrounding electrodes for the MEMS resonators. Finally, a wet etching 

process using 6:1 BOE (buffered oxide etchant) was adopted to selectively etch away the silicon 

dioxide sacrificial layer and Al2O3 transducer gap resulting in suspended resonator structures in 

electroplated nickel and released air gap. The final device cross-sectional structure is illustrated 

in Figure 3.6 (j).  

 

Figure 3.7 SEM image of electroplated-Ni wine-glass mode disk resonator with an air gap of 

100nm. 

After soaking the nickel resonator in the buffered oxide etchant for about 1 hour, the 

device was released to be suspended and the Al2O3 was etched away to form the 100 nm 

electrode-to-disk air gap as shown in Figure 3.7. Also, the Cr/Au bottom electrodes were 

exposed for on-chip probing for in air measurement or wire-bonding for in vacuum measurement. 

100 nm Air-Gap

DiskElectrode
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3.4 Partially-Filled Air-Gap Resonator Fabrication Process 

 

 

Figure 3.8 Cross-sectional illustration of a partially-filled air-gap capacitively-transduced nickel 

resonator. 

First, following the fabrication process for an air-gap nickel resonator, a 100nm-thick 

capacitive transducer gap was defined by ALD and an air-gap device was realized after a BOE 

wet etching. Then, a 15nm-thick HfO2 was deposited by ALD so that both sides of the released 

capacitive air gap were coated with a conformal ALD film. Therefore, the 100nm-thick air gap 

was refilled to effectively reducing the air gap down to 70 nm for an already released structure. 

 

Figure 3.9 SEM images of electroplated-Ni disk resonator with air gap of 100nm and partially-

filled air gap of 70nm after 15nm ALD deposition. 

 

Si Cr/Au Seed Layer NiALD



57 

CHAPTER 4 PIEZOELECTRIC-ON-NICKEL MEMS RESONATORS 

To date, piezoelectrically-actuated resonators have been successfully developed and 

commercially utilized for frequency control and sensing applications including MEMS 

oscillators from SiTime, IDT and Discera, Quartz-MEMS inertial measurement unit from Epson, 

BAW and SAW filters from Avago, Triquint and so on. Better performance devices are still 

being pursued by applying new material, fabrication technology and integration methods.  

4.1 Piezoelectric Effect and Piezoelectric Materials 

The piezoelectric effect was first discovered by Pierre Curie and Jacques Curie in 1880 

and later applied in transducers by Paul Langevin in 1916. As shown in Figure 4.1, for the direct 

piezoelectric effect, an electrical charge is generated by applying mechanical stress on 

piezoelectric materials. On the other hand, the converse piezoelectric effect appears when the 

mechanical deformation is generated by an electric field. Overall, the piezoelectric effect is a 

linear interaction between the mechanical and electrical domains in a reversible process [48]. 

The piezoelectric governing equations which show the relation between the electrical and 

mechanical domains can be expressed by [49] 

𝑇 = 𝑐𝐸 ∙ 𝑆 − 𝑒 ∙ 𝐸 (4.1) 

𝐷 = 𝑒 ∙ 𝑆 + 𝜀𝑆 ∙ 𝐸  (4.2) 

where T, S, D and E represent stress, strain, electric displacement and electric field, respectively; 

cE is the elastic stiffness at a constant electric field; e is the piezoelectric constant; 𝜀𝑆  is the 

permittivity at a constant strain. 
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Figure 4.1 Illustration of the direct and reverse piezoelectric effects [48]. 

Among all the materials that have piezoelectric effect, quartz and rochelle salt are 

naturally occurring crystals; barium titanate (BaTiO3), lead zirconate titanate (PZT), zinc oxide 

(ZnO) and aluminum nitride (AlN) are synthetic ceramics. So far, PZT, ZnO and AlN are the 

commonly used piezoelectric materials for MEMS applications due to their relatively low 

deposition temperature (below 300°C) which supports IC-compatible process for MEMS-IC 

integration.  

4.2 Piezoelectrically-actuated MEMS Resonator 

  

(a) (b) 

Figure 4.2 Schematic view of (a) a thin-film piezoelectric rectangular plate resonator; (b) a 

piezoelectric-on-substrate rectangular plate resonator.  

 The conventional piezoelectric resonators usually has the suspended sandwich structure 

as shown in Figure 4.2 (a) including a top electrode, a thin piezoelectric film and a bottom 

electrode. This kind of devices can achieve high operation frequency by decreasing the 
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piezoelectric film thickness in the thickness modes and scaling down the device lateral 

dimensions in the extensional modes. However, the sputtered piezoelectric films have limited 

thickness of a few microns or less due to the low deposition rate. Moreover, the yield of 

piezoelectric resonators is restricted by the releasing process since the stress of the thin films 

usually causes the structural layer to curve or fracture. Thus, the development of piezoelectric-

on-substrate resonators as shown in Figure 4.2 (b) is an alternative solution to solve the 

aforementioned drawbacks. The prior work has been done by using single crystal silicon or 

nano-crystalline diamond (NCD) as resonant structural material due to their high acoustic 

velocity and low material-related loss [18]. However, the deposition temperature for silicon and 

diamond structural layer hinders the monolithic integration with IC chips as discussed in Chapter 

2. Therefore, electroplated nickel is also a reasonable structural material candidate for 

piezoelectric-on-substrate resonators to retain high resonance frequencies and moderate Q’s. In 

the meanwhile, zinc oxide (ZnO) has been selected here as the piezoelectric film due to its low 

deposition temperature around 300°C and its compatibility with a dry etching. 

  Table 4.1 Key Properties of Materials for Piezoelectric-on-Substrate Resonators 

Material 

Young’s 

Modulus 

E(GPa) 

Density 

ρ (kg/m³) 

Acoustic 

Velocity (m/s) 

Deposition 

Temperature 

(°C) 

Electrical 

Conductivity 

(107 Ωm) 

ZnO (This work) 123 5676 4655 300 3∙10-7 

PolySilicon [13] 150 2330 8023 600 0.001 

PolyDiamond [13] 1,144 3500 18,076 800-1000 0.001 

Nickel (This work) 25711 8900 504843 40-60 1.43 
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Figure 4.3 Schematics and simulated mode shapes for (a) wine-glass mode piezoelectric-on-

nickel resonator; (b) contour-mode piezoelectric-on-nickel resonator; (c) lateral-extensional 

mode piezoelectric-on-nickel resonator.  

Among a great deal of vibration resonant modes, the radial-contour mode, wine-glass 

mode and lateral-extensional mode have been jointly investigated in this work. The schematic 

view, simulated mode shape and frequency equation can be found in Figure 4.3. Different shapes 

of top electrodes are strategically designed to excite the desired resonant mode while suppressing 
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the other spurious modes at the same time. More details will be discussed along with the 

measurement results. 

 

Figure 4.4 XRD measurement of as-deposited ZnO thin films under different conditions. 

 The ZnO deposition rate is about 120 nm per hour under normal conditions of 300°C 

substrate temperature, 6ccm Ar and 6ccm O2, 100W RF power. However, instead of using a 

single target for one source RF sputtering, deposition by using two ZnO targets powered by two 

different RF sources was conducted in order to double the deposition rate to about 240 nm per 

hour and improve the quality of c-axis aligned piezoelectric film. The comparison of as-

deposited ZnO thin films under different conditions was evaluated by x-ray diffraction (XRD). 

Figure 4.4 shows consistent results of two RF-gun deposited ZnO thin films which have a strong 

alignment to (002) plane while the one RF-gun deposited ZnO film has a crystal defect along 

(201) plane, which will result in extra mass loading and energy loss on the resonator. 
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Figure 4.5 Nanoindentation of electroplated nickel revealing its Young’s modulus and hardness. 

Nickel resonator microstructure was electroplated at 50°C in the nickel sulfamate 

solution. The mean current density here plays a significant role for determining the Young’s 

modulus [50]. The nanoindentation measurement was then carried out to determine the Young’s 

modulus of about 173 GPa and the hardness of 13 GPa for electroplated nickel under the current 

density of 20 mA/cm2. 

Table 4.2 Comparison of Electroplated Nickel Young’s Modulus with Different Mean Current 

Density 

Measured 

Young’s Modulus 

(GPa) 

Mean Current Density (mA/cm2) 

2 2.5 5 10 20 

Microindentation [50] 22319  20811 1807 17821 

Cantilever [50]  205   163 

Nanoindentation   

(This Work) 
    173 

ZnO-on-Nickel 

Resonator (This Work) 
 25711    
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For the sake of calculating the resonant frequency of ZnO-on-nickel resonators, the 

equivalent acoustic velocity has to be determined for the stacked device layers. Based on the 

Hooke’s Law, the equivalent acoustic velocity can be expressed by [51] 

𝑉𝑒𝑞 = √
𝐸1𝑇1 + 𝐸2𝑇2 + ⋯ + 𝐸𝑛𝑇𝑛

(𝜌1𝑇1 + 𝜌2𝑇2 + ⋯ + 𝜌𝑛𝑇𝑛)(1 − 𝜈2)
 (4.3) 

where n is the number of the stacked layers; T is the thickness of each material; E, ρ, and 𝜈 

denote the Young’s Modulus, density and Poisson’s ratio of the stacked resonator structural 

material. The equivalent Poisson’s ratio of the stacked layer structure is assumed to be 0.3. 

Table 4.3 Measurement Results of ZnO-on-Nickel Resonators with 700nm-thick ZnO 

Piezoelectric Layers 

Diameter (µm) Thickness of Ni (µm) Frequency (MHz) Quality Factor 

275 
2 29.1 546.5 

4 30.3 236.6 

225 
2 35.5 379.4 

4 36.9 199.4 

175 
2 45.3 395.5 

4 46.8 159.3 

125 
2 63.2 361.4 

4 65.3 193.5 

75 
2 72.0 202.3 

4 73.9 147.0 

50 
2 109.1 122.9 

4 111.4 109.5 
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Based on this method, the extracted acoustic velocity of electroplated nickel is 

determined to be slightly higher than that of ZnO. Thus, the equivalent acoustic velocity of ZnO-

on-nickel resonators is also slightly higher than ZnO resonators, which varies with different 

combinations of this ZnO-on-nickel layer stack. Table 4.3 presents ZnO-on-nickel resonators 

with the same 700nm-thick of ZnO piezoelectric layer but different thickness of electroplated 

nickel. The frequency of these devices increased when having a thicker nickel layer due to its 

higher equivalent acoustic velocity. However, the material loss of as-deposited nickel limited the 

Q of the devices with a thicker nickel structural layer as well.  

4.3 Fabrication Process 

Figure 4.6 presents a step-by-step fabrication process flow for a piezoelectrically-

actuated resonator using ZnO-on-nickel as its stacked structural material. Starting with a high 

resistivity (6kΩ∙cm) silicon wafer coated by a 5 µm PECVD SiO2 isolation layer, 1µm-thick 

amorphous silicon was then deposited by PECVD as a sacrificial layer. After a blanket 

deposition of Cr/Ni seeding layer, AZ P4620 photoresist mold was then patterned using the first 

photomask, where 4µm-thick nickel microstructure was electroplated inside the mold. Right after 

it, 200nm-thick platinum was then ebeam evaporated on top of the electroplated nickel and the 

photoresist mold. After a lift-off process, the platinum on nickel structure was then formed to act 

as the bottom electrode of the resonator. Thereafter, ZnO film was deposited by RF sputter at 

300°C with a deposition rate of 240nm/hr. By utilizing the second photomask and UV 

photolithography, the photoresist patterns were then transferred to ZnO by HCl: H2O (1: 100) 

wet etching, forming the contact openings to the bottom electrodes. The platinum top electrode 

was created by utilizing the third photomask and lift-off process. Finally, after patterning the 

photoresist by the fourth photomask to generate an opening for the release process and protect 
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the rest of the sample, the resonator structure was suspended by dry etching of ZnO and isotropic 

dry etching of amorphous silicon sacrificial layer via DRIE.  

  

  

  

  

Figure 4.6 (a) ~ (f) Fabrication process flow of ZnO-on-nickel resonator and (g) A-A’ and (h) B-

B’ cross-sectional schematic view of the final released resonator structure.  

An alternative release process of backside release was also carried out by utilizing the 

fifth photomask and aligning the backside of the silicon handle wafer followed by the DRIE 
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silicon etching. Figure 4.7 presents a fabricated wine-glass mode ZnO-on-nickel resonator with a 

ZnO thickness of 700 nm and a 4µm-thick electroplated nickel. 

 

Figure 4.7 SEM image of a fabricated wine-glass mode ZnO-on-nickel resonator. 

4.4 Localized Annealing   

  

(a) (b) 

Figure 4.8 Illustration of the localized annealing by (a) Comsol simulation and (b) measurement 

set-up. 

 Besides the low deposition temperature and the ease of process, the employment of 

electroplated nickel as structural material has lower resistivity as compared to doped polysilicon 

which has a concern of additional resistive loss [52]. However, electroplated nickel applied in 
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MEMS devices has shown relatively low Q’s [53]. Thus, a post-fabrication annealing procedure 

has been discovered [54] in order to improve the performance of nickel micromechanical 

resonators. 

 In situ localized annealing can be performed by applying an electrical current on the 

conductive micromechanical resonator structure to heat it up, which has been demonstrated to 

improve the Q’s of a 75-kHz folded-beam resonator from 4,103 to 14,172 by applying 1.5v for 4 

hours and reaching an elevated temperature of 886°C [54]. Comsol simulation has been 

conducted to simulate the relation between the applied voltage (1.5v) and the temperature of 

ZnO-on-nickel resonators as shown in Figure 4.8 (a). The suspended ZnO-on-nickel resonator 

body can be annealed to about 600°C to 700°C while the high resistivity silicon substrate retains 

a temperature of 200°C. 

 

Figure 4.9 Schematic measurement set-up for ZnO-on-Nickel resonators. 

4.5 Measurement Results 

In order to measure the frequency response of piezoelectric resonators, an AC electric 

field is required which is provided by a vector network analyzer (VNA) as shown in Figure 4.9. 
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The AC signal applied on the input electrodes excite the piezoelectric film which drives the 

resonator structure to vibrate at its resonant frequency. The deformation by the vibrating 

resonator body will then induce the piezoelectrically-generated charges which are detected by the 

output electrodes. Compared to the capacitively-transduced resonators, piezoelectrically-actuated 

resonators require no DC-bias voltage by relying on the piezoelectric effect. 

 The measurement results from VNA reflect both the resonant frequency and quality 

factor of the device. However, the measured Q here is the loaded Q (QL) which includes the 

external circuit influences from both the parasitic resistance (RL) in series together with the 

resonator motional resistance (Rm). The unloaded Q (QUL) reflects the intrinsic energy storage 

versus energy dissipation in the resonator system. The relationship among QL, QUL and insertion 

loss (IL) can be expressed by [55] 

𝑄𝑈𝐿

𝑄𝐿
=

10
𝐼𝐿
20

10
𝐼𝐿
20 − 1

 (4.4) 

Thereafter, the motional resistance could be extrapolated by taking 50 Ω termination of 

VNA (a total of 100 Ω for two-port measurement) and expressed by [56] 

𝑄𝐿 = 𝑄𝑈𝐿

𝑅𝑚

𝑅𝑚 + 𝑅𝐿
 (4.5) 

4.5.1 Circular Disk ZnO-on-Nickel Resonators 

Figure 4.10 shows the measured frequency response of a circular disk ZnO-on-nickel 

resonator operating in its wine-glass mode at 29.1 MHz which measured Q of 564.5. The 

frequency response reflects the design of the top input and output electrodes which align with the 

vibration mode shape shown in Figure 4.3 (a’). Also, the supporting beams are located at the 

quasi-nodal points to minimize the anchor loss. 
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Figure 4.10 Frequency response of a 275µm-diameter wine-glass mode ZnO-on-nickel resonator. 

 

Figure 4.11 Frequency response of a 225µm-diameter radial-contour mode ZnO-on-nickel 

resonator. 

Figure 4.11 presents the measured frequency response of a ZnO-on-nickel resonator 

operating in its radial-contour mode at 40.6 MHz and a Q of 520.5. The frequency response 

reflects the strategic design of the top input and output electrodes with the shape of two half 

circular rings which align with the vibration mode shape as shown in Figure 4.3 (b’). However, 

the supporting beams which are holding the vibrating structure are not directly located at the 

quasi-nodal point, which introduce anchor loss to the device leading a slightly lower Q as 

compared to wine-glass mode resonators. 
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Figure 4.12 Frequency response of a 75µm-diameter ZnO-on-nickel resonator with quarter-circle 

top electrodes. 

 

 

Figure 4.13 Frequency response of a 250µm-diameter ZnO-on-nickel resonator with half-circle 

ring top electrodes. 

 Figure 4.12 shows the measured frequency response of a circular disk ZnO-on-nickel 

resonator operating in its wine-glass mode at 72.0 MHz and radial-contour mode at 105.2 MHz. 

Both wine-glass mode and radial-contour mode can be actuated in a circular disk resonator. The 

top electrodes of this device were designed to match with the wine-glass mode shape. Therefore, 

the signal of the desired mode is much stronger than that of the radial-contour mode. 
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Figure 4.13 presents the measured frequency response of a circular disk ZnO-on-nickel 

resonator showing both wine-glass mode at 22.7 MHz and radial-contour mode at 33.2 MHz. 

Similarly, although both modes can be observed in this circular device, the top electrodes were 

designed to match with the radial-contour mode shape. Therefore, the signal of the desired 

radial-contour mode is much stronger than that of the wine-glass mode. 

4.5.2 Square and Rectangular Plate ZnO-on-Nickel Resonators 

  
(a) (b) 

Figure 4.14 Frequency response of two 82µm-width square plate ZnO-on-nickel resonators with 

(a) n=3 and (b) n=5. 

Figure 4.14 shows the frequency responses of two identically sized ZnO-on-nickel 

resonators with different top electrodes designs. As shown in Figure 4.14 (a), the resonator 

vibrates at 85.6 MHz which matches the modal frequency of n=3 as seen in Figure 4.3 (c). And 

the resonator in Figure 4.14 (b) vibrates at 146.2 MHz which matches the lateral-extensional 

frequency mode of n=5 and gives a higher Q because the deigned width of the top electrodes 

match the mode shape better than the one of n=3. In addition, for higher order mode device, the 

impedance is also reduced by a factor of N, where N = n for the even n; and N = (n2 -1) for the 

odd n [18].      
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Figure 4.15 Frequency responses of two rectangular plate ZnO-on-nickel resonators with the 

same width of 96 μm but different length of 480 μm and 240 μm, respectively. 

 

 

Figure 4.16 Frequency response of a 60μm-width square plate ZnO-on-nickel resonator in 

fundamental mode and high order frequency modes. 

 Figure 4.15 presents the measured frequency responses of two rectangular plate ZnO-on-

nickel resonators designed to have the same width but different length. Both of the devices were 

actuated in width extensional mode, therefore, the vibration frequencies are roughly the same 

which are determined by the size of width only. Since one of the devices has twice of the length, 

the overall area of ZnO film on top of the nickel is much larger which results in higher 
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electromechanical coupling coefficient. Thus, the motional resistance has decreased by 

increasing the effective piezoelectric transducer area. 

  
(a) (b) 

  
(c) (d) 

Figure 4.17 Frequency responses of ZnO-on-nickel resonator arrays: (a) 1×3 array; (b) 1×5 

array; (c) 1×7 array; and (d) 1×9 array. 

 Besides the fundamental frequency mode, higher frequency modes can also be observed 

in a single ZnO-on-nickel resonator as shown in Figure 4.16. With the width size of 60 μm and 

five top electrodes fingers, this square resonator was actuated at 203.0 MHz in the fundamental 

width-extensional mode. Meanwhile, higher mode of n=11, 13 and 39 also appeared at resonance 

frequency of 426.4 MHz, 517.4 MHz and 1.57 GHz, respectively. It is observed that the design 
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of this ZnO-on-nickel resonator can achieve frequencies ranging from very high frequency to 

ultra high frequency. 

4.5.3 Resonator Arrays 

In order to achieve higher operation frequency, the size of MEMS resonator has been 

reduced significantly. As a trade-off of the reduced-size resonator, the electromechanical 

coupling coefficient is reduced as well resulting in a higher motional resistance. Mechanically 

coupling several identical resonators into an array provides promising solution to lower the 

motional resistance while perfectly matching the frequency as compared to the electrically 

coupled method [57]. In an idea case, by sharing the same input voltage, the output current will 

be boosted by a factor that is equal to the number (N) of resonators in an array. As a result, the 

motional resistance could be reduced by N times while each resonator vibrates at the same 

frequency individually.  

The frequency responses of different resonator arrays as shown in Figure 4.17 indicate a 

significant reduction of motional resistance from 2.6 kΩ to 623 Ω when expanding the coupled 

resonators in parallel from three to nine with a consistent resonant frequency of about 77.1 MHz.  

4.5.4 In Air vs. In Vacuum Operation 

At this point, in order to improve the quality factor of resonators, it’s worth to mention all 

the energy dissipation mechanisms have to be taken into account including the radiation of 

elastic energy by the supporting structures to the substrate (e.g. anchor losses), air damping, 

squeeze film damping, surface related dissipation due to surface defects, and thermoelastic 

damping. Therefore, the overall Q of a resonator can be expressed by [58]  

1

𝑄𝑡𝑜𝑡𝑎𝑙
=

1

𝑄𝑎𝑛𝑐ℎ𝑜𝑟
+

1

𝑄𝑎𝑖𝑟
+

1

𝑄𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+

1

𝑄𝑡ℎ𝑒𝑟𝑚𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐
 (4.6) 
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After wire bonding, the devices can also be tested inside a vacuum chamber. The 

frequency responses of ZnO-on-nickel resonator are shown in Figure 4.18, which compare the 

results measured in air and in vacuum. Figure 4.18 (a) presents the responses in flexural mode 

which is an out-of-plane mode at a lower frequency. After measuring in vacuum, the Q has been 

improved almost twice as a result of the reduced air damping in vacuum. 

  

(a) (b) 

Figure 4.18 Frequency responses of ZnO-on-Nickel resonator measured in air and in vacuum. 

 The resonator vibrates in width extensional mode as shown in Figure 4.18 (b), also 

known as in-plane mode. Measured Q in vacuum has not been enhanced as compared to the in 

air measurement, which indicates that most of the energy dissipation may come from the 

material loss, anchor loss or thermoelastic loss instead of air damping in this range of frequency 

and mode shape.   

4.5.5 Annealing 

Figure 4.19 compares the frequency responses of a ZnO-on-nickel resonator measured 

before and after localized annealing. After applying a DC voltage of 1.5 v, the resonator was 

annealed in air for half an hour. As shown, the frequency has drifted by 0.3 MHz and the Q has 
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been increased by about 3 times from 87.5 to 246.6 as a result of the enhanced material 

properties after annealing or surface defect removal [54]. 

 

Figure 4.19 Frequency responses of ZnO-on-nickel resonator measured before and after localized 

annealing. 

4.5.6 Temperature Stability 

 

Figure 4.20 Measured fractional frequency change versus temperature for the same size ZnO 

resonator and ZnO-on-nickel resonator. 

 Figure 4.20 presents the measurement of fractional frequency change versus temperature 

for ZnO resonator and ZnO-on-nickel resonator with the same size. The extracted temperature 

coefficients of the two devices are -48.89 ppm/°C and -97.03 ppm°/C, respectively. Although the 
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uncompensated temperature coefficient of ZnO-on-nickel resonator is higher than that of ZnO 

resonator, the frequency versus temperature dependence is very linear which can be readily 

compensated as compared to the quartz crystal resonators which have nonlinear temperature 

dependency. 
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CHAPTER 5 CONCLUSION 

According to Yole, a market research, technology evaluation and strategy consulting 

company, “MEMS will continue to see steady, sustainable double digit growth for the next six 

years including 13 per cent CAGR in revenues and 20 per cent CAGR in units. MEMS will grow 

to $21 billion market by 2017.” New innovative MEMS technologies have been developed and 

deployed in the devices for sensing, computing, communications and so on.  

The growing needs in wireless communications have driven RF MEMS technologies to 

meet the requirements such as low power consumption, high power handling, high selectivity 

and sensitivity. IC-compatible vibrating micromechanical resonator devices have been 

demonstrated as on-chip passives having great potential on various applications in wireless 

communications.  

5.1 Achievements 

Piezoelectrically-actuated vibrating micromechanical resonators with ZnO-on-nickel 

structures were demonstrated to have proper performance that is suitable for applications such as 

filter, oscillator, and mixer in wireless communications. First, the resonant frequency of the 

ZnO-on-nickel resonators and resonator arrays were determined by the lateral dimensions of the 

vibrating structure and actuated by piezoelectric ZnO film. Hence, multiple frequencies can be 

achieved on the same sample. Secondly, the fabricated ZnO-on-nickel resonators and resonator 

arrays have been measured to operate at HF, VHF and UHF ranges with low motional impedance 

and moderate quality factor. Thirdly, the very high yield and repeatable device fabrication 

process was demonstrated under 300°C which is totally compatible with post fabrication over the 
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IC electronics for further IC-MEMS integration. Last but not the least, electroplated nickel as 

MEMS structural material brings the benefit of both low deposition temperature and low cost 

which is easier to be realized in the industry.  

Capacitively-transduced vibrating micromechanical resonators with electroplated nickel 

as structural material and different transducer gaps including air gap, solid gap and partially-

filled air gap were developed for the applications such as filter, oscillator and mixer in wireless 

communications. Air-gap, solid-gap and partially-filled air-gap resonators were fabricated under 

250°C process temperature by using the same five-mask set with slightly modified fabrication 

process and materials. By applying low temperature process of nickel electroplating and ALD 

deposition, capacitively-transduced MEMS resonators and arrays can be directly fabricated over 

IC electronics allowing monolithic IC-MEMS integration to reduce the parasitics, lower the cost 

and improve the efficiency in RF applications. Furthermore, the nonlinearity of air-gap, solid-

gap partially-filled air gap resonators were simulated and designed for RF applications. 

5.2 Future Works 

As a trade-off of acquiring small form factor devices at high frequency, large motional 

impedance has been induced and become a big challenge for applications in wireless 

communications. As compared to air-gap resonators, partially-filled air-gap resonators can 

further reduce the gap spacing, lower the motional resistance close to 50 Ω, and significantly 

improve the quality factor higher than those of solid-gap capacitive transducers. Thus, 

nanolaminates by ALD could be a candidate of filling material since the combination of Al2O3 

and TiO2 brings the dielectric constant up to 1,000 and also improve the material quality. It is 

interesting to study the resonator behavior after employing nanolaminates.  
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In order to effectively decrease the crosstalk through silicon substrate, an on-chip 

Faraday cage isolation structure has been developed [59]. Faraday cage structure consists of 

serial high-aspect-ratio Cu-filled vias through silicon wafer to build an enclosure blocking out 

external static electric fields and shunt the middle of the transmitter-receiver gap to ground 

through the substrate vias as shown in Figure 5.1. 

  

             (a)                                  (b) 

Figure 5.1 (a) Crosstalk isolation scheme by faraday cage; (b) measurement of a faraday cage 

and reference structure at a transmission distance of 100 um [59].  

Table 5.1 Properties of Piezoelectric Material Used In MEMS 

Material 

Young’s 

Modulus 

E(GPa) 

Density 

ρ (kg/m³) 

Acoustic 

Velocity 

(m/s) 

Piezoelectric 

Coefficient 

(pm/V) 

Deposition 

Temperature 

(°C) 

ZnO 123 5676 4655 4.7 300 

AlN [60] 330 3260 10547 2 300 

PZT [61] 101 7600 3821 185 350 

 

Among the piezoelectric materials, ZnO is the easiest one to be deposited and patterned 

during micro fabrication process. However, ZnO does not have the best piezoelectric 
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performance as compared to AlN or PZT which have either higher acoustic velocity or higher 

piezoelectric coefficient and can be deposited at relatively low temperature as well. By realizing 

AlN-on-nickel or PZT-on-nickel resonators, both resonant frequency and quality factor could be 

boosted by taking the advantages of their great piezoelectric properties.   
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Appendix A Process Traveler 

A.1 IC-Compatible Electroplated-Nickel Air-Gap Resonator Process Traveler 

1. Starting Wafers: High Resistivity Silicon, 6000-cm, p-type, <100>, 450um 

Label wafers as process and control samples. 

2. Pattern Resonator Bottom Electrodes 

a. Solvent Clean 

b. Dehydration Bake on Hotplate: 5 min @ 150°C 

c. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

LOR 3B: 30 sec @ 3000 RPM 

Softbake: 30sec @ 100°C 

1827: 40 sec @ 4000 RPM 

Softbake: 2 min @ 100°C 

d. Expose in EVG Mask Aligner 

Hard Contact  

4 sec @ 25 mW/cm2  

e. Develop  

Chemical: AZ 726  

Time: 1 min 

f. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

g. Deposit Metal 

Equipment: E-beam Evaporation 

Cr: 100nm 

Au: 300nm 

h. Lift-Off 
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Chemical: 1165 Photoresist Stripper 

Time: 1hr 

i. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

3. Deposit Sacrificial Layer  

Equipment: Plasma Therm 

PECVD SiO2: 1um 

4. Pattern Via Anchors 

a. Solvent Clean 

b. Dehydration Bake on Hotplate: 5 min @ 150°C 

c. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

1827: 40 sec @ 4000 RPM 

Softbake: 2 min @ 100°C 

d. Expose in EVG Mask Aligner 

Hard Contact  

4 sec @ 25 mW/cm2  

e. Develop  

Chemical: AZ 726  

Time: 1 min 

f. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

g. Etch Sacrificial Layer 
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Equipment: Alcatel AMS 100 

Temperature: -20°C 

C4F8: 17 sccm 

He: 150 sccm 

CH4: 13 sccm 

Power: 2800 watts 

Time: 2.5 min 

h. Strip Photoresist 

Chemical: 1165 Photoresist Stripper 

Time: 40 min 

5. Nickel Electroplating for Resonator  

a. Deposit Seed Layer 

Equipment: E-beam Evaporation 

Cr: 20nm 

Au: 30nm 

b. Solvent Clean 

c. Dehydration Bake on Hotplate: 5 min @ 150°C 

d. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 5 min @ 100°C 

e. Expose in EVG Mask Aligner 

Vacuum Contact  

10 sec @ 25 mW/cm2  

f. Develop  

Chemical: AZ 400K  

Time: 3 min 

g. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 
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Power: 75 watts 

Time: 2 min 

h. Nickel Electroplating 

Chemical: Nickel Sulfamate 

Agitation Rate: 200 rpm 

Temperature: 50°C 

pH: 3.5-4.5 

Current density: 10-20 mA/cm² 

Time: 13mins 

Thickness: 5um 

i. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

j. Strip Seed Layer 

Chemical: Au Etchant, Cr Etchant 

Time: 1min 

6. Define Resonator to Electrode Gap 

a. Deposit Al2O3 by Atomic Layer Deposition 

Equipment: Savannah 100 by Cambridge NanoTech Inc. 

Temperature: I=O=250 °C, T=V=B=150 °C 

Flow rate: 20 sccm 

Recipe: pulse H2O, 0.015 sec 

 wait 20 sec 

        pulse TMA, 0.1 sec 

        wait 20 sec 

        cycle 867 

 Deposition rate: 0.9 Å/cycle  

b. Solvent Clean 

c. Dehydration Bake on Hotplate: 5 min @ 150°C 

d. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 
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AZ P4620: 40 sec @ 2000 RPM 

Softbake: 10 min @ 100°C 

e. Expose in EVG Mask Aligner 

Vacuum Contact  

10 sec @ 25 mW/cm2  

f. Develop  

Chemical: AZ 400K  

Time: 3 min 

g. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

h. Etch ALD 

Equipment: Alcatel AMS 100 

Temperature: -20°C 

C4F8: 17 sccm 

He: 150 sccm 

CH4: 13 sccm 

Power: 2800 watts 

Time: 40 sec 

i. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

7. Nickel Electroplating for Electrodes 

a. Deposit Seed Layer 

Equipment: E-beam Evaporation 

Cr: 20nm 

Cu: 30nm 

b. Solvent Clean 
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c. Dehydration Bake on Hotplate: 5 min @ 150°C 

d. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 10 min @ 100°C 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 10 min @ 100°C 

e. Etch Back Process 

Equipment: Alcatel AMS 100 

Temperature: 20°C 

O2: 50 sccm 

Power: 2000 watts 

Time: 12 min 

f. Etch Top Seed Layer 

Chemical: Cu Etchant, Cr Etchant 

Time: 1min 

g. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

h. Solvent Clean 

i. Dehydration Bake on Hotplate: 5 min @ 150°C 

Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 5 min @ 100°C 

j. Expose in EVG Mask Aligner 

Vacuum Contact  

10 sec @ 25 mW/cm2  

k. Develop  

Chemical: AZ 400K  

Time: 3 min 
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l. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

m. Nickel Electroplating 

Chemical: Nickel Sulfamate 

Agitation Rate: 200 rpm 

Temperature: 50°C 

pH: 3.5-4.5 

Current density: 10-20 mA/cm² 

Time: 13mins 

Thickness: 5um 

n. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

o. Strip Seed Layer 

Chemical: Cu Etchant, Cr Etchant 

Time: 1min 

8. Structure Release 

a. Etch Sacrificial Layer 

Chemical: Diluted HF with Triton-X 

Time: 20-30 min 

Rinse: 10 min 

b. Methanol Soak 

Time: 10 min 

Air Dry 

9. Partially Fill Air Gap 

a. Deposit Al2O3 by Atomic Layer Deposition 

Equipment: Savannah 100 by Cambridge NanoTech Inc. 
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Temperature: I=O=250 °C, T=V=B=150 °C 

Flow rate: 20 sccm 

Recipe: pulse H2O, 0.015 sec 

 wait 20 sec 

        pulse TMA, 0.1 sec 

        wait 20 sec 

        cycle 867 

 Deposition rate: 0.9 Å/cycle  

A.2 IC-Compatible Electroplated-Nickel Solid-Gap Resonator Process Traveler 

1. Starting Wafers: Standard Silicon, 1-100 -cm, p-type, <100>, 450um 

Label wafers as process and control samples. 

2. Pattern Resonator Bottom Electrodes 

a. Solvent Clean 

b. Dehydration Bake on Hotplate: 5 min @ 150°C 

c. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

LOR 3B: 30 sec @ 3000 RPM 

Softbake: 30sec @ 100°C 

1827: 40 sec @ 4000 RPM 

Softbake: 2 min @ 100°C 

d. Expose in EVG Mask Aligner 

Hard Contact  

4 sec @ 25 mW/cm2  

e. Develop  

Chemical: AZ 726  

Time: 1 min 

f. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 
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Power: 75 watts 

Time: 2 min 

g. Deposit Metal 

Equipment: E-beam Evaporation 

Cr: 100nm 

Au: 300nm 

Pt: 100nm 

h. Lift-Off 

Chemical: 1165 Photoresist Stripper 

Time: 1hr 

i. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

3. Deposit Sacrificial Layer  

Equipment: Plasma Therm 

PECVD amorphous-Si: 1um 

4. Pattern Via Anchors 

a. Solvent Clean 

b. Dehydration Bake on Hotplate: 5 min @ 150°C 

c. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

1827: 40 sec @ 4000 RPM 

Softbake: 2 min @ 100°C 

d. Expose in EVG Mask Aligner 

Hard Contact  

4 sec @ 25 mW/cm2  

e. Develop  

Chemical: AZ 726  
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Time: 1 min 

f. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

g. Etch Sacrificial Layer 

Equipment: Alcatel AMS 100 

Temperature: -15°C 

SF6: 300 sccm, 3 sec 

C4F8: 200 sccm, 1.4 sec 

O2: 20 sccm, 1.4 sec 

Power: 2400 watts 

Pulsed power: 25 ms @ 100 watts; 75 ms @ 0 watts 

Time: 1 min 10 sec 

Etch rate: ~0.8 um/min 

h. Strip Photoresist 

Chemical: 1165 Photoresist Stripper 

Time: 40 min 

5. Nickel Electroplating for Resonator  

a. Deposit Seed Layer 

Equipment: E-beam Evaporation 

Cr: 20nm 

Au: 30nm 

b. Solvent Clean 

c. Dehydration Bake on Hotplate: 5 min @ 150°C 

d. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 5 min @ 100°C 
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e. Expose in EVG Mask Aligner 

Vacuum Contact  

10 sec @ 25 mW/cm2  

f. Develop  

Chemical: AZ 400K  

Time: 3 min 

g. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

h. Nickel Electroplating 

Chemical: Nickel Sulfamate 

Agitation Rate: 200 rpm 

Temperature: 50°C 

pH: 3.5-4.5 

Current density: 10-20 mA/cm² 

Time: 13mins 

Thickness: 5um 

i. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

j. Strip Seed Layer 

Chemical: Au Etchant, Cr Etchant 

Time: 1min 

6. Define Resonator to Electrode Gap 

a. Deposit Ti2O3 by Atomic Layer Deposition 

Equipment: Savannah 100 by Cambridge NanoTech Inc. 

Temperature: I=O=250 °C, T=V=B=150 °C 

Flow rate: 20 sccm 



100 

Recipe: pulse H2O, 0.015 sec 

 wait 20 sec 

        pulse Ti(NMe2)4, 0.1 sec 

        wait 20 sec 

        cycle 769 

 Deposition rate: 0.39 Å/cycle  

b. Solvent Clean 

c. Dehydration Bake on Hotplate: 5 min @ 150°C 

d. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 10 min @ 100°C 

e. Expose in EVG Mask Aligner 

Vacuum Contact  

10 sec @ 25 mW/cm2  

f. Develop  

Chemical: AZ 400K  

Time: 3 min 

g. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

h. Etch ALD 

Equipment: Alcatel AMS 100 

Temperature: -20°C 

C4F8: 17 sccm 

He: 150 sccm 

CH4: 13 sccm 

Power: 2800 watts 
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Time: 30 sec 

i. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

7. Nickel Electroplating for Electrodes 

a. Deposit Seed Layer 

Equipment: E-beam Evaporation 

Cr: 20nm 

Cu: 30nm 

b. Solvent Clean 

c. Dehydration Bake on Hotplate: 5 min @ 150°C 

d. Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 10 min @ 100°C 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 10 min @ 100°C 

e. Etch Back Process 

Equipment: Alcatel AMS 100 

Temperature: 20°C 

O2: 50 sccm 

Power: 2000 watts 

Time: 12 min 

f. Etch Top Seed Layer 

Chemical: Cu Etchant, Cr Etchant 

Time: 1min 

g. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

h. Solvent Clean 

i. Dehydration Bake on Hotplate: 5 min @ 150°C 
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Spin Photoresist by Laura Spinner  

HMDS: 30 sec @ 3000 RPM 

AZ P4620: 40 sec @ 2000 RPM 

Softbake: 5 min @ 100°C 

j. Expose in EVG Mask Aligner 

Vacuum Contact  

10 sec @ 25 mW/cm2  

k. Develop  

Chemical: AZ 400K  

Time: 3 min 

l. Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 75 watts 

Time: 2 min 

m. Nickel Electroplating 

Chemical: Nickel Sulfamate 

Agitation Rate: 200 rpm 

Temperature: 50°C 

pH: 3.5-4.5 

Current density: 10-20 mA/cm² 

Time: 13mins 

Thickness: 5um 

n. Strip Photoresist 

Chemical: AZ 400T Photoresist Stripper 

Time: 20 min 

o. Strip Seed Layer 

Chemical: Cu Etchant, Cr Etchant 

Time: 1min 

8. Structure Release 
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a. Etch Sacrificial Layer 

Equipment: Alcatel AMS 100 

Temperature: -15°C 

SF6: 300 sccm, 3 sec 

O2: 20 sccm, 1.4 sec 

Power: 2400 watts 

Time: 20min 
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Appendix B Copyright Permissions 

The permission below is for the use of Figure 1.6. 
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The permission below is for the use of Figure 1.7 and 1.8. 
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The permission below is for the use of Figure 1.9. 
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The permission below is for the use of Figure 1.10. 
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The permission below is for the use of Figure 1.11. 
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The permission below is for the use of Figure 1.12. 
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The permission below is for the use of Figure 1.14. 
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