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ABSTRACT 

The following dissertation addresses a novel low cost process developed to fabricate a 

Vertical Organic Field Effect Transistor (VOFET).  The solution processable VOFET is 

designed, fabricated and tested in the context of bioengineering domains.  The scope of distinct 

biomedical applications has also been explored.   

Organic thin-film transistors are gathering industrial attention as a potential candidate for 

future electronics analogous to silicon technology.  Low fabrication cost, structural 

miniaturization and low operational voltage are the challenges for fabricating an Organic Field 

Effect Transistor (OFET).  To create these devices, OFETs require new design paradigms and 

wet processing routes.  However, conventional lateral OFET geometry cannot satisfy these 

demands because of process complexities and the high cost to achieve sub-micron channel 

length.  Despite these barriers, solvent sensitivity towards organic semiconductors, electrode 

patterning and masking make this process more challenging than are associated with current 

technologies.  Therefore, the need for production of a low cost high efficiency OFET is of high 

importance.  The soluble organic semiconductor exhibits promising device properties.  The 

growing demand of organic electronics poses great difficulty in adapting standard 

photolithography patterning for fabrication.  The main issue is incompatibility in handling 

organic materials.  To circumvent these challenges, a novel fabrication process has been 

developed to build OFETs in vertical geometry.  The novelty of this process allows for creation 

of sub-micron channel devices at very low cost. 
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Solution processed VOFET devices are fabricated using a 13,6-N-

sulfinylacetamidopentacene (NSFAAP) precursor.  Low cost fabrication techniques such as spin 

coating and drop casting are employed for achieving submicron channel length.  Nanoscale 

devices, i.e. channel lengths, L=265nm, 300nm and 535nm, are respectively fabricated using the 

spin coating technique.  Output characteristics are recorded at an operational voltage of 1volt.  

Short channel effects dominate the device performance, resulting in a linearity effect in I-V 

characteristics.  Strategies, such as perforated source electrode design and drop casting 

techniques, are evolved and employed to minimize the short channel effects.  

Space Charge Limited Current (SCLC) effects, better known as short channel effects, are 

observed during I-V characterizations at high longitudinal fields.  The drop casting technique is 

used over Patterned Electrode (PE) for reducing these SCLC effects.  Thick channel devices, i.e. 

L=2µm, are fabricated to minimize the SCLC effects.  Low cost polyimide 3M kapton tape is 

used as masking material in between the stacked layers.  Time-temperature balance is optimized 

during the precursor to pentacene growth process.  Metrological characterizations such as TEM, 

SEM, AFM, Raman Spectroscopy and X-RD are performed to confirm the precursor to 

pentacene conversion.  AFM scanning illustrates dendritic pentacene molecular growth at 170
°
C 

annealing.  Consequently, the conversion temperature is optimized around 200
°
C.   

In life sciences, there is always striving for translational technology development that can 

mimic, integrate and manipulate the biological system.  Electrical signals enhance the 

capabilities of electronics to interact and understand the signaling pathways in a biological 

system.  Keeping this in view, the potential applications into biomedical areas, such as flexible 

sensors and biomedical imagers, are proposed.  VOFET has been proposed as a mainstay for 

flexible cardiac sensors and as imagers.  OFET sensors could be designed to cover highly 



 

xi 

stretchy and arbitrary cardiac tissue.  Sensor web integration with pacemakers and Implantable 

Cardioverter Defibrillator (ICD) device systems has been proposed.  The OFET imaging sensor 

holds potential for early detection of cancer by detecting nuclear level changes in breast cancer 

images.  Nuclear pleomorphic (shape and size distortion of cancerous nuclei) feature detection 

and analysis could be a step forward in the direction of digital pathology.  The conventional 

analysis approach is time-consuming and error prone as it depends on visual inspection by 

pathologists.  The proposed approach is parallel in nature and supports the existing method of 

cancer detection. 
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CHAPTER 1: INTRODUCTION 

Organic electronics have shown incredible expansion over the last decade driven by 

innovative products.  Significant growth has been observed in key areas such as conformal large 

area sensors [1], chemical sensors [2], and e-skin [3].  A highly conductive polymer called 

polyacetylene, was discovered in 1977 by researchers Alan J. Heeger, G. MacDiarmid, and 

Hideki Shirakawa.  Their discovery triggered a new era of organic electronics also known as 

polymer or plastic electronics.  Organic semiconductors are widely accepted as active materials 

in manufacturing organic electronic devices because of their lighter weight and flexibilities.  

Their properties at the molecular level enable the manipulation and building of inexpensive and 

lighter weight electronic devices. 

OFETs are the main switching elements and play an important role in building organic 

electronics.  In general, organic semiconducting materials are used for fabricating OFETs.  

However, an organic FET´s performance is inferior as compared to a silicon thin film transistor.  

This is because of the fact that organic materials are highly disordered at the molecular level.  

Thus, the required switching voltage to operate the OFET is very high.  This is mainly because 

of the low mobility of charge carriers in organic material.  To operate an OFET at low voltages 

around 2-5 volts, the device channel length has to be reduced.  Reducing the channel length 

using standard photolithography is not only a costlier job but also invokes process complexities.  

By altering the geometry in the vertical direction, channel length reduction and low operational 

voltages can be achieved. 
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In vertical OFETs, the thickness of organic material defines the device channel length.  

Spin coating is extensively employed as a low cost deposition technique in vertical OFETs.  The 

channel thickness can easily be controlled up to nanoscale during coating speed.  Therefore, by 

reducing the channel length in vertical OFETs, a low voltage and high current density can be 

obtained [4].  Therefore, the main advantages of VOFET are its ease of fabrication, achieving 

short channel at low cost, low operational voltages, and high current density.   

OFETs can be fabricated over a variety of substrates such as paper, plastic, silk and 

biocompatible rubbers.  Ease of fabrication over a range of flexible substrates and inherent weak 

molecular bonding (van der Waals) within organic materials makes them malleable and flexible.  

Flexible OFETs are in high demand for various technology applications such as bendable large 

area displays and foldable monitors.  With the advent of synthetic chemistry, there is an 

opportunity of functional chemical structures which can be designed for developing new 

technologies in large area electronics [5].  Organic materials are biocompatible and 

environmentally safe for disposal.  Thus, OFET sensors have huge potential applications in the 

food industry, most notably to monitor freshness and quality of packaged food [6].  The 

biological and chemical sensing features of OFET have been extensively studied for the potential 

use in biomedical sensing applications [7].  Flexible OFETs are being applied to novel 

neuroprosthetics areas such as Brain-Computer Interface (BCI) and biomedical implants [8, 9].  

OFETs are an excellent candidate for tissue-electronics interface because of their ability to 

conduct electrons and ions.  In wireless sensing, potential technology applications are Organic 

Radio Frequency Identification (ORFID) tags [10], OFET sensors [11], and smart flexible 

displays.  Also, OFETs have been studied for biomedical application in medicine [12], cancer 

[13], bioelectronics [14], flexible explosive sensors [15], smart textiles [16], electronic robotic 
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skin [17], and advanced flexible electronic assemblies for human skin [18].  In addition, for a 

new generation of implants, flexible organic electronics offers opportunities to integrate signal 

recording microelectrodes into the biological system. 

1.1 Organic Electronics 

Organic electronics is defined as the area of electronics which uses organic materials as 

the active medium for current conduction.  Organic electronics are named by the use of materials 

for fabricating devices, such as polymer/plastic electronics, or by the fabrication process, such as 

printed electronics or soft electronics.  Due to an organic material`s solution processing 

capabilities at room temperature, organic electronics is advantageous over costlier technologies.  

Silicon devices are fabricated over thin, rigid silicon wafers in a highly mechanized and ultra-

clean micro-fabrication facility.  On the other hand, OFETs can be printable by inkjet printing 

machines over any substrate, ranging from glass, plastic, paper or silk, without requiring any 

ultra-clean room environment.  In a standard micro-fabrication process, the steps involved in 

electronic device fabrication takes a longer time (a few weeks) than printing an electronic circuit 

over plastic sheets or paper.  Also, organic electronic devices are lightweight, flexible, and 

stretchable [19]. 

Purity of silicon is an important material property considered while making electronic 

devices.  To fabricate silicon devices, the cost involved is very high due to the requirement of the 

ultra-clean room environment.  A clean room facility is of utmost priority, as even a small dust 

particle can ruin the whole integrated circuit.  In the case of organic device fabrication, material 

purity is not required because the charge carriers are injected from outside.  Normally, organic 

devices work on injection mode instead of material doping, i.e. charge carriers are not generated 

within the organic material, but injected from outside.  In addition, organic devices have a low 
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performance due to their low mobility, which allows the silicon devices to gain an advantageous 

edge.  The organic materials encourage the growth of the biological system over it, which is 

suitable for bioelectronics applications.  An organic material`s ability to conduct electrons, holes 

and ions makes it biocompatible and feasible to interface with a biological system.  Table 1.1 

summarizes the comparison of silicon and plastic electronics and its biocompatible properties.   

Table 1.1  Comparison of silicon and organic electronics. 

Parameters Silicon Electronics Organic Electronics 

Flexibility Brittle Highly Flexible 

Processing Temperature High Temperature Room Temperature 

Fabrication Time Few Weeks Few Days 

Purity 99.99% Not Required 

Performance High No High Expectations 

Cost High ($Billions) Low ($Thousands) 

Biocompatibility No Yes 

Tissue Interface Loose Interface Excellent 

 

There is a huge potential of market growth of plastic electronics in the next 5-12 years as 

surveyed by the market research company IDTechEx.  In Table 1.2  , the market share of plastic 
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electronic spin offs like OLED displays, photovoltaic and logic memory has been predicted to 

have an estimated growth of $330 billion by 2027. 

Table 1.2  Estimated organic electronics industry and its respective market share growth. 

(Source: IDTechEx) 

Industry Market Share (%) 

OLED Light 11% 

Photovoltaic 14% 

OLED Display 20% 

Logic/Memory 38% 

OLED Billboard Etc. 7% 

Electrophoretic  6% 

Others 4% 

 

1.2 Low Cost Flexible Organic Devices 

Organic electronics hold great potential for new generation flexible and printable low 

cost mobile devices [20].  In flexible electronics, polymeric materials are used for fabricating 

devices, as well as supporting substrates.  Thus, materials such as papers, plastic, polyimide and 

silk have been used for fabricating organic devices for various technological applications.  An 

organic electronic circuit can be printed on a flexible substrate using low cost printing 

technologies.  The use of polymeric materials in organic electronics could be a choice for 

disposable and biodegradable green electronics.  An important consideration in this direction to 

build organic electronic devices is the ease of fabrication at room temperature, no high resolution 

photolithography requirement, and low per unit area cost.  Inkjet printers and material printers 
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are widely used for printing a range of organic semiconductors and metallic materials on a 

variety of flexible substrates.  Printing the whole organic electronic circuit in a few days is a 

major factor towards cost reduction.  The advancement of low voltage OFETs on transparent 

flexible substrates also has been reviewed [21]. 

1.3 Organic Field Effect Transistor  

Organic transistors have been studied for the last few years and gathered significant 

attention of the research and industrial community toward its low cost manufacturing.  The 

OFET’s working principle is the same as that of the Metal Oxide Semiconductor Field Effect 

Transistor (MOSFET).  In generic terms, OFETs can be fabricated into two topologies, in lateral 

and vertical configurations.  In general terms, OFETs in the lateral geometry can be fabricated in 

top and bottom contact configurations.  In the same geometry and configuration, scaling the 

channel length down to submicron levels makes the fabrication process more complex and 

costlier.  Advanced patterning and standard lithography is the technique normally used to 

achieve submicron channel length in planar (lateral) OFETs.  Lithography cannot be employed 

for fabricating organic devices because of two major reasons.  First, the solvents used in 

photolithography are mostly unfriendly to organic materials.  Second, every additional masking 

in photolithography makes the process more challenging and costly.  Therefore, 

photolithography is incompatible for fabricating organic devices, particularly in vertical 

geometry.   

Materials such as gold (Au) and aluminum (Al) are widely used in OFET fabrication for 

designing source, drain and gate electrodes.  As an insulating medium between the gate electrode 

and organic semiconductor (in bottom gated devices), silicon dioxide (SiO2) has been 

extensively adopted.  The main role of organic semiconductors is to facilitate charge carrier 
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conduction.  Charge carriers are injected from the source electrode flow through an active 

medium and are collected at drain electrodes, which finally constitute an output current.  The 

OFET works in injection mode, i.e., charge carriers are injected from the source electrode and 

move through the channel to reach drain electrode.  Channel width and length are the important 

physical device parameters related directly to output drain current.  Channel width “W’’ is 

defined by the width of the source and the drain electrodes, whereas the semiconductor distance 

between the source and the drain is known as channel length “L’’.  Substrate materials vary from 

solid to flexible depending upon silicon or plastic/polyimide (in the case of flexible electronics). 

1.4  Need for Speed  

Organic electronics are gathering considerable attention of market giants like Samsung 

and Philips most notably in the area of flexible mobile phones and foldable monitors.  In the 

majority of commercially used organic displays, an organic FET is used as a fundamental 

switching element.  The low mobility of organic materials is the limitation involved in using an 

OFET, which results an inferior performance.  Indeed, VOFET is a potential alternative available 

to compensate for the low speed of OFET.  By lowering the channel length in vertical OFETs, 

the speed and current density could be enhanced. 

Why a solution processable vertical organic FET? 

 VOFET can be fabricated at room temperature. 

 No clean room and high vacuum are required for VOFET fabrication. 

 No high resolution photolithography is required. 

 Can be printable using polymers for a 3D biological system.  

 Integration on packaging (no extra packaging cost like in silicon technology). 

 Printable on paper, plastic and silk substrates. 



 

8 

 Can be realized using low cost fabrication techniques like inkjet printing, spin 

coating, and drop casting. 

1.5 Translational Technologies into the Biomedical Area 

In the development of new therapeutic tools, it is primarily important to understand the 

signaling pathways in a biological system.  Biomedical electronics utilizes the strength of 

electrical signals to understand and to interact with the biological system.  In this direction of 

employing organic electronics into biomedical domains, OFET is a promising candidate for 

numerous technological applications in biomedical areas [22].  Two important applications in 

which OFETs could be employed for translational technologies are flexible sensors and 

biomedical imagers [23].  The main role of an OFET is to drive the transducer, such as a pressure 

sensitive resistor or photodiode.  The array of such OFET elements could be designed to cover 

the tissue for sensing biologically important signals.   

1.5.1 Flexible Cardiac Sensors 

The flatness and rigidity of silicon based electronics restrict its use in covering the three-

dimensional shape of the biological tissue surface.  Whereas, the strechability of an organic 

electronic device enables to cover the large conformal area of interest, and establishes a natural 

interface with the biological system.  To overcome the barrier of mismatch between rigid 

electronics and soft stretchable biological tissue, flexible organic electronics is an important 

interface.  The most pronounced challenge is to establish good electrical contact between tissue 

and electronics.  The human heart is a very good example of a highly stretchable tissue to test the 

tissue-electronics interface.  Cardiac sensors could be designed and integrated with the existing 

pacemaker/ICD devices.  An array of OFET-based sensors could be able to cover the cardiac 

surface to detect the origin of arrhythmias.  
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Figure 1.1  Two architectures of OFETs (a) as an imager using an organic photo-diode and (b) as 

a pressure sensor to record a signal from a stretchable biological tissue. 

Polymer-based plastic electronics have been successfully demonstrated as a tactile sensor 

[24].  A flexible network of OFETs is capable of covering stretchy biological tissue for signal 

recordings [25].  Organs and tissues are stretchable and bendable in nature.  Thus, an array of 

flexible OFET sensors can be used to record biologically important signals by establishing a 

proper electrical contact with flexible tissue in a wet environment [26].  The first reported 

flexible sensor application is demonstrated in robotic skin [2].  They demonstrated the possibility 

of creating a force map with the help of a flexible OFET back plane laminated in a stretchable 

conductive elastomer.  Using the inkjet printing technique, soluble organic materials could be 

used to print an organic transistor for tactile transducers for use in artificial robotic skin [27].   

1.5.2 OFET Imagers for Cancer Detection in Digital Pathology 

Carbon nanotubes and organic materials are widely used in fabricating OFET devices for 

electro-optical lighting in optical communication system technologies [28].  A voltage or 

current-programmed OFET backplane offers great advantages in imaging applications.  In a 
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novel architecture, an OFET and an organic photodiode per cell are incorporated to enable a fully 

adaptive photo sensing element on a flexible substrate [29].  Biomedical imaging and 

optogenetics are important application areas for flexible imagers to scan images deep inside a 

convoluted biological system.  Optogenetics use light energy to control neuronal activities inside 

the brain in Parkinson’s disease treatment.  Flexibility constraints of currently available scanning 

tools make them unable to twist and bend, which restricts their use in scanning 3-D organs inside 

the human body.  Flexible OFET imaging sensors hold potential for imaging abnormal cells in 

the early detection of cancer nuclei.  Nuclear pleomorphic (shape and size distortion of 

cancerous nuclei) feature detection and analysis could be a step forward in the direction of digital 

pathology.  Imaging cancer nuclei are supportive of the conventional approach, which is error 

prone as it depends on visual inspection by pathologists [30].  Low cost prototype devices are in 

high demand, especially for potential use in developing countries where the numbers of 

pathologists per patient are very few. 

1.5.3 Flexible Radiation Sensors 

Organic semiconductors have been explored for various sensing applications such as 

vapor sensing, biochemical sensing and ionizing radiation sensing.  In radiation sensing, these 

materials have been studied as a potential candidate for detecting low dose ionizing radiations 

[31].  In principal, upon exposure to ionizing radiations, the conjugation length of organic 

semiconductor decreases, which enables the detection of a low dose radiation [32].  In an OFET 

detector, changes in I-V characteristics are recorded after exposing the devices under ionizing 

radiations.  The change in electrical conductivity of organic material is measured as a function of 

ionizing radiations [33].  In radiation applications, an OFET is used as a two terminal resistor to 

measure the resistivity response of polymers towards ionizing radiations [34].  In radiation 
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sensing applications, solution processed OFETs have been studied as Infrared and Ultravoilet 

detector in military and security applications [35]. 

1.6 Objective and Dissertation Organization 

The central objective of this research is to design, fabricate and test vertical OFETs.  The 

novelty of research lies in a low cost solution processing technique and vertical design.  The 

peripheral objective is to explore opportunities for biomedical translational technologies such as 

sensing and stimulating flexible electrodes.  The organization of this dissertation is designed into 

five chapters. 

 Chapter 1 covers the introduction into organic electronics, flexible electronics and 

the need for speed in organic semiconductor devices.  The importance of vertical 

geometry is introduced and the need of vertical OFETs is discussed.   

 Chapter 2 introduces the basic background of organic semiconductors, conjugated 

polymers, and molecular orbital theory.  Organic FETs are discussed with types 

and the progress made so far on OFET development is reviewed.   

 Chapter 3 presents and describes the solution processable fabrication techniques 

for a vertical OFET.  Low cost techniques such as spin coating and drop casting 

are discussed.  The precursor to the pentacene conversion process, masking 

methods for various source electrodes, is discussed in this chapter.   

 Chapter 4 focuses on the main electrical and metrological device characterization 

techniques.   

 Chapter 5 describes the application domain, especially the biomedical area for 

sensing biological signals.  This chapter explores future applications of using a 

flexible VOFET array for detecting cardiac arrhythmia and localization.
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CHAPTER 2:  THEORY AND BACKGROUND 

Organic semiconductors are the organic materials that exhibit semiconducting properties.  

The mobility of charge carriers is very slow in organic materials (~0.1cm
2
/Vsec in pentacene) 

because of the disordered structure at the molecular level [36].  In organic semiconductors, the 

current conduction is possible only due to the movement of delocalized π electrons [37].  

However, the charge generation center is not lying within the organic materials, rather charges 

are injected into the organic materials from outside.  Organic materials are highly disordered in 

nature as compared to inorganic silicon.  In organic materials, the movement of charge carriers 

follows the hopping mechanism because of the presence of multiple traps and defects.  These 

defects and disordered molecular structure further create localized states.  Thus, charge carriers 

hop and are trapped between localized states, which results in the low mobility.  The multiple 

Trap and Release model (MTR) well describes this behavior of charge carrier movement in 

organic semiconductors [38].   

Gate voltage dependent mobility is another aspect of predicting field effect mobility in 

polymers [39].  The hypothesis of this model is that as the gate field increases, the traps start 

filling up with the injected carriers and transport of charge carriers improves.  The number of 

carriers injected, trapped and extracted can be measured in terms of displacement current.  In a 

separate study, it has been found that the traps are more in Au contact devices than in Cu 

contacts [40].  The possibilities of charge conduction in polymers have been extensively 

explored.  The conduction of charge carriers through organic semiconductors is possible because 
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of the presence of a conjugation system and delocalized π electrons.  The charge conduction 

mechanism, thin film morphology, and its effect on OFET performance have been reviewed [41]. 

2.1 Conjugated Polymers 

Conductive polymers are organic materials capable of conducting charge carriers.  The 

conduction mechanism can be described in terms of a conjugation system.  Conjugated organic 

molecules consist of repeating units of alternating single and double bonds.  Delocalized π 

electrons lie above the sigma bond and participate in the conduction mechanism through p-

orbitals.  Polyacetylene is a good example of conjugated polymers having alternating single and 

double bonds. 

 

 

Figure 2.1  Conjugation in polymers (a) delocalized π bond formation (b) polyacetylene 

molecular chain of alternating single and double bonds. 

Organic semiconductors are carbon based materials which have single and double bonds.  

Carbon forms one sigma and one π bond in its double bond configuration and only one sigma 

bond in single bond configuration.  Figure 2.1 shows the formation of π bond and a sigma bond 
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in polymers.  The Pi bond is a weak bond and a cloud of π electrons spreads over the region 

above the sigma bond plane;  whereas, the sigma bond is a strong bond which is formed by Px 

orbitals while π bonds are formed by electrons in the Pz molecular orbitals. 

2.2 Molecular Orbital Theory 

The shape of organic molecular structures is determined by the delocalized π electrons.  

The shared electrons in the p-orbitals are responsible not only for current conduction, but also 

provide molecular stability.  Figure 2.2 shows the orbital energy with reference to (w.r.t.) 

vacuum level as a reference line.   

 

 

Figure 2.2  Energy levels of molecular orbital such as HOMO and LUMO for charge transfer. 

Electron Affinity (EA) describes the position of Lowest Unoccupied Molecular Orbital 

(LUMO) band w.r.t. vacuum level, and Ionization Energy (IE) describes the position of the 
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Highest Occupied Molecular Orbital (HOMO) band from the same vacuum level.  The HOMO 

band is analogous to the valance band in inorganic semiconductors, whereas LUMO can be 

understood as conduction band. 

For fabricating hole (positive charge) transport devices, the energy level of a high work 

function metal like Au should be lined up with low IE or HOMO level materials.  Similarly, low 

work function metals like Ca should be lined up with high IE or LUMO level materials for an 

efficient transport of charge carriers.  With the advent of synthetic chemistry, for efficient charge 

migration it is now possible to move the position of molecular energies of HOMO or LUMO 

levels to match with the work function of metals. 

2.3 Organic Semiconductors 

Organic semiconductors are the family of electronic materials based on π conjugated 

carbon atoms.  Organic semiconductors are broadly classified into two types, such as polymers 

and conjugated small molecules.  The processing of polymers is a little easier (spin coating) than 

conjugated small molecules like pentacene (vacuum processed).  Organic semiconductors have 

the tendency to trap electrons rather than holes [5].  Charge carriers such as holes and electrons 

further classify organic semiconductors as p-type or n-type, respectively.  The p-channel or n-

channel OFET is defined by the type of material used, either p-type or n-type.  Usually p-type 

OFETs are more stable towards the environment and water than their counterparts.  Pentacene is 

a p-type material which has been widely accepted to fabricate organic devices.  Conjugation in 

organic semiconductors enables the charge carrier to move from one chain to the next by the 

sharing of electron clouds.  Delocalized π electrons exhibit p type behavior which dominates the 

conduction mechanism in pentacene molecules.  The five-ring structure of pentacene is supposed 

to be a highly stable chemical structure used for fabricating organic electronic devices. 
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2.3.1 Solution-Processable Organic Devices 

Electronic devices can be made out of polymers using various fabrication techniques and 

deposition methods.  Solution processable organic devices exhibit tremendous potential for a 

new generation of low cost electronics.  Micron to nanoscale thin films of organic materials can 

be deposited using spin coating, drop casting and inkjet printing techniques.  At the scale of sub 

micrometer, surface roughness is the main issue which should be considered to deposit a smooth 

thin film.  Surface morphology and film thickness can be optimized in solution processable 

polymers to achieve the desired level of surface roughness.  The best choice is polymer 

precursors, which exhibit promising trends in ease of deposition, quality of thin film, high 

performance and low cost fabrication.  In large area displays, wet processing techniques offer 

huge opportunities in printing transparent electronics on foldable substrates for a variety of 

optoelectronic applications.  Consequently, solution processable electronics are emerging fast 

and hold tremendous potential for flexible displays. 

2.3.2 Solution-Processing Low Cost Techniques 

Soluble materials and precursors are the building blocks of a solution processing 

technique.  In fabricating low cost organic devices, organic materials are processed to form thin 

films for fabricating a variety of electronic devices using various low cost techniques such as: 

 Spin Coating 

 Drop Casting 

 Dip Coating 

 Doctor Blading 

 Spray Coating 

 Langmuir-Blodgett (LB) 
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Each of these above mentioned techniques has its own advantages and downsides.  Spin 

coating could be advantageous for depositing uniform and  pin-hole free thin films, but there is 

an issue of material wastage [42].  In atomic level deposition, the LB technique is an excellent 

option. 

2.4 Theory and Operation of Organic Field Effect Transistor  

In an organic field effect transistor, organic materials are treated as a charge transporting 

medium.  The structure of OFET is almost similar to a MOSFET.  In the device structure, source 

and drain are used for injecting and draining out charge carriers.  An insulating layer is deposited 

to separate the gate electrode and semiconductor.  The gate electrode is employed to provide a 

gate field, which is used to control the drain current.  The charge-transporting channel forms at 

the interface of the insulator and the organic semiconducting layer, the width of which is 

controlled by the gate field.  The main difference between an OFET and MOSFET, is the 

materials used and the mode of operation.  Silicon is used as an active charge transporting 

material in a MOSFET, whereas an OFET uses organic materials and works in injection mode.  

Currently available OFETs operate at high voltage because of the low mobility of charge 

carriers.  Normally OFET operates around 20-40 volts, which is a great concern towards 

fabricating low voltage organic devices.   

2.4.1 Types of Organic Field Effect Transistors 

Broadly speaking, organic field effect transistors can be differentiated into two types as   

 Lateral (planar) OFET 

 Vertical OFET 

The movement of charge carriers from source to drain terminal defines the type of OFET 

as either lateral or vertical.  In the lateral type, charge carriers move horizontally between the 
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source and the drain electrode; that is, the channel is parallel to the gate electrode.  Whereas, the 

charge carrier moves vertically in vertical OFETs and the channel plane is normal to the gate 

electrode.  The position of the gate w.r.t. the source and drain is another way to define lateral and 

vertical OFETs.  The position of the gate electrode is symmetric in the lateral type while it is 

asymmetrical in vertical OFETs.  In addition, the position of the gate is equidistant w.r.t. the 

source and drain in lateral devices.  Whereas, in vertical OFETs, the gate electrode is placed near 

to a source terminal as compared to the drain.  The thickness of the organic material describes 

the channel length in vertical OFETs.  Thus, the organic semiconductor layer is sandwiched 

between the source and drain to define the channel in a vertical OFET.  Another important 

parameter is the electric field profiles of the drain and gate.  The electric field directions of both 

VDS and VGS differentiate between lateral and vertical OFET.  The details of lateral and vertical 

OFETs, their structures and the corresponding effect of the geometry on the device performance 

will be discussed in the following chapters. 

2.4.2 Lateral OFETs  

As the name suggests, the lateral OFETs are known by the horizontal charge movement.  

In lateral OFETs, the drain source (VDS) and gate source (VGS) fields act normal to each other.  

Figure 2.3 shows the basic lateral OFET topologies and configurations.  The lateral structure can 

further be divided into four sub-types.  By changing gate position (top and bottom contact) 

and/or by changing the source drain placement within an organic semiconductor material defines 

new configurations, i.e. planar structure or staggered structure.  Each design configuration has its 

own advantages and downsides.  The charge carrier path, gate field effect and fabrication process 

complexities make each configuration a unique OFET design.  For example, in the bottom gated 

co-planar configuration, the charge carrier movement lies in one plane and has greater gate field 
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control.  Whereas in the bottom gated staggered structure, charge carriers follow a non-linear 

path to constitute the drain current.  Similarly, changing the position of gate from bottom to top, 

a drop in the control of gate field is observed.  In normal practice, bottom gated lateral 

geometries are widely used in the range of 0.5µm-5µm channel length OFET devices.  

Fabrication of OFET beyond a 5µm channel length invokes process complexities and increased 

cost.  In a standard photolithographic processing environment, achieving submicron channel 

length OFETs is a challenging task.  Vertical geometry is an alternative available for achieving 

nanoscale OFETs without compromising the cost, with less process complexity.   

Generally, lateral OFET is designed by placing a gate electrode at the bottom, called as 

bottom-gated or at the top, called a top-gated OFET.  Further, the position of the source and the 

drain electrodes categorize lateral OFETs into coplanar or staggered types.  Coplanar OFETs 

have the source and the drain in the same plane, whereas staggered OFETs have the source and 

the drain placed differently [43].  Each configuration introduces a series contact resistance 

depending on the interfaces formed in the material layers.  Surface engineering and other 

techniques are used to reduce the series contact resistance.  The contact resistance between metal 

and organic semiconductors can be either Ohmic or Schottky type.  In staggered top-gated OFET 

geometry, contact resistance has been modeled and observed to be Ohmic [44].  In Ohmic 

contacts, the charge transport is bulk-limited, whereas in Schottky contacts, the transport is 

contact-limited.  This implies that in short channel OFETs, the contact effects are more 

pronounced, as the charges are injected from outside.  Charge carriers injected from source 

terminals create an electric field within the organic semiconductor.  The excess charges 

accumulated within the semiconductor generate a space charge region and thus a resultant 

current known as SCLC current.  Thus, the Schottky contacts exhibit non-linearity in OFET 
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characteristics.  Whereas in Ohmic devices, the overall resistance is introduced mainly by the 

bulk of semiconductors and there is a very limited effect of parasitic contact resistance.  

 

 

Figure 2.3  Various topologies of OFET device geometries. (a)-(b) bottom gated and (c)-(d) top 

gated. 

Space charge limited current dominates in the region near the injection electrode due to 

poor mobility of organic materials.  It’s always challenging to minimize the contact effects while 

fabricating organic devices.  Figure 2.3 (c) and (d) shows the lateral OFETs in top gate and 

bottom gate with respective staggered and coplanar configurations. 

2.4.3 Operation of Lateral OFET 

The geometry of OFET has improved over time.  In terms of device parameters such as 

ON/OFF ratio, field effect mobility and threshold voltage, the effect of geometry on the 

performance of OFETs has been reviewed [45].  The working of lateral OFETs can be 
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understood by the circuit operation, as shown in Figure 2.4.  A bottom gated p-type OFET is 

wired up for the measurement of I-V characteristics.  By using this circuit configuration the 

output and transfer characteristics are measured and recorded. 

Output characteristics are measured by supplying VDS biasing between source and drain 

terminals and output current IDS is measured across a load at a fixed value of VGS biasing.  Gate 

source voltage VGS is gradually increased in steps and the corresponding change in output drain 

current is recorded.  Transfer characteristics are measured by varying VGS and measuring IDS, 

keeping VDS at constant.  Transfer characteristics provide the threshold voltage and ON/OFF 

ratio, which are important switching parameters.   

 

 

Figure 2.4  Circuit diagram of a p-type OFET device in lateral geometry. 

2.4.4 Vertical Organic Field Effect Transistors 

Channel length in vertical transistors is defined by the thickness of organic layers 

between metal electrodes.  The main challenges involved in scaling down the silicon transistor 

are the cost and process complexities, which can be easily fixed in solution processed VOFET.  
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Channel length reduction is much easier in vertical geometries than can be controlled during spin 

coating.  To achieve micron to nanoscale channel length, speed of coating and the thickness of a 

properly diluted organic material plays an important role. 

Short channel OFETs are good in achieving low operating voltage and high current 

density.  Reduction in channel length can control the maximum switching frequency as f∞µ/L
2
, 

integration density N∞1/L
2
, and drain current ID∞µ/L [46].  Short channel organic devices hold 

the potential for achieving a high output current, high circuit density in a small area and high 

switching frequency. 

 

 

Figure 2.5  Vertical OFET geometry (a) charge carrier flow and biasing circuit (b) VOFET 

layout. 

Achieving short channel up to certain limits, i.e., L=10nm is possible in vertical OFETs.  

Quantum mechanical effects start playing a role while approaching the submicron regime.  

Consequently, unconventional output characteristics and decrease in ON/OFF ratio can be 

observed.  Solution processed vertical OFETs have the advantage over conventional OFETs 

because of their high current handling capabilities at low operation voltage [47].  The device 
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performance of solution processed OFET depends on the surface interfacing, which has been 

explored in recent years [48].   

2.4.5 Operation of Vertical OFET  

The geometrical structure and operation of a vertical OFET is not exactly similar to that 

of a lateral OFET.  Figure 2.5 shows the p-type VOFET in circuit operation and the arrows 

represent the flow of charge carriers inside the organic semiconductor.  Drain and gate terminals 

are negatively biased through VDS and VGS supply voltages.  The source terminal is kept 

grounded w.r.t. drain and gate terminals.  Negative VDS allows pulling the holes from the source 

towards the drain, which causes the current to flow through an active organic layer.  The bottom 

gate field is increased in steps to allow a complete channel formation into the semiconductor 

layer.  The concept of channel formation in VOFET is different from that of a lateral OFET.  The 

location of the channel in VOFET is not at the interface of the insulator-organic layer, but it lies 

in between the 3D organic layer [49].  The influence of the SCLC effect in the channel drives the 

device operation into an entirely different mode; whereas in the case of lateral OFET, the 

channel is uniformly built at the insulator / semiconductor interface.  The nanoscale channel in 

the vertical OFET will be explained in detail in chapter 4. 

2.4.6  Important Terms Involved in VOFET Operation  

For fabricating VOFET devices, the important terms involved are as follows: 

 Mobility 

 Linearity Effects 

 ON/OFF Ratio 

 Contact Resistance 
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2.4.6.1 Mobility 

Charge carrier mobility is the term used to demonstrate the ability of carriers to move 

quickly into organic material.  When an electric field is applied across the material, the charge 

carriers try to move with a velocity, known as drift velocity, which is proportional to the applied 

field.  The drift velocity v=µ.E, where µ is the mobility of charge carriers and E is the applied 

field.  The mobility of carriers in organic materials is very low compared to silicon.  To meet the 

optimal performance of an OFET, the required biasing voltage is very high, up to 30-40 volts, 

because of the low mobility of organic materials.  To circumvent the low mobility issue, a high 

current in a small region can be achieved at a very low voltage of around 1-2 volts in vertical 

OFETs.  So, low mobility of organics can be compensated in vertical devices. 

2.4.6.2 Linearity Effects 

In vertical OFET characteristic curves, super linearity is normally observed due to short 

channel effects [50].  The device works in the linear region and is unable to attain saturation due 

to the presence of the SCLC effect.  These types of devices are normally ON state devices and 

need biasing to switch it OFF or normally OFF and a required gate voltage to turn it ON.  Other 

factors responsible for linearity are contact effects, such as the Schottky effect.  

2.4.6.3 ON/OFF Ratio 

The important term involved in OFET is the ON/OFF ratio, which determines the 

switching action of a transistor.  It is defined as the ratio of maximum ON current (ION) and 

minimum leakage current (IOFF).  To achieve a good ON/OFF ratio, there should be a clear cut 

region of linear and saturation regimes of OFET.  Normally in solution processed VOFET, poor 

ON/OFF ratio is observed and reported [57] because of the unsaturated behavior of VOFET 

devices. 
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2.4.6.4 Contact Resistance 

In OFETs, the disordered organic material layer establishes uneven contacts with metals 

and dielectric layers.  These non-uniform contacts and interfaces contribute series resistance.  

The change in resistance is observed when charge carriers move from metallic electrodes to 

organic semiconductors.  These contacts play a crucial role in deciding device operation and 

characteristics.  There is a capacitance associated with the device due to overlapping layers that 

frequently experience charging and discharging during device operation.  The variation of 

capacitance restricts the device operation into a linear regime.  In addition, the effect of contacts 

dominates and the channel resistance increases. 

2.4.7 Factors Affecting VOFET Operation 

There are numerous factors involved which affect the device performance and operation 

of VOFET.  The operation of VOFET is different from its lateral counterpart due to its 

geometrical design.  Two main factors which can commonly be observed in vertical OFET are: 

 Short Channel Effect 

 Contact Effects 

2.4.7.1 Short Channel Effect 

Short channel in a vertical OFET results in an undesired effect in device operation, which 

is known as a short channel effect.  The main reason behind these unintended effects is the low 

mobility of charge carriers in organic materials.  The rate of injection of carriers from outer 

electrodes is more than the rate of diffusion of carriers into the organic material.  The injected 

charges try to accumulate around the injecting electrode and create a space charge region next to 

the depleted region.  This accumulated charge drives the current into the unsaturated region and 
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creates more linearity in the I-V characteristic curve.  Thus, this creates super linearity in 

characteristic curves and the device current is influenced under SCLC effects. 

2.4.7.2 Contact Effects 

In fabricating vertical OFETs, parasitic and contact resistances play a more dominant role 

in device performance.  These effects are more prevalent in vertical organic devices where short 

channel effects are dominating.  While stacking the layers vertically, the interfaces - namely 

metal/organic, organic/insulator and metal/insulator-are supposed to contribute towards 

respective contact resistances.  Each interface resistance, parasitic resistance and bulk resistance 

contributes towards overall series resistance.  To minimize the contact effects, surface 

engineering and sacrificial layers are to be employed.   

2.5 Literature Survey and Progress Review in Vertical OFET 

The structure optimization, interfacial and surface engineering, advanced functional 

materials, fabrication techniques and many more factors are involved, which need to be studied 

for improvement in performance of VOFET devices.  So far, vertical organic transistors have 

been fabricated using polymeric materials in different configurations and geometries.  The main 

fabrication process adopted for depositing thin films of organic material are thermal evaporation 

and spin coating.  Thermal evaporation can be used for deposition of metals, organic 

semiconductors and oxides.  In solution processed OFETs, thermal and e-beam evaporation 

techniques are used for source and drain electrode metallization.  In a standard micro fabrication 

environment, photolithography is a promising and standard process available for high resolution 

patterning.  Although, photolithography is a costlier process and involves the use of solvents like 

hydrofluoric (HF) acids, which are not friendly with organic materials.  However, as an 
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alternative, low cost thin film deposition technique such as spin coating, drop casting, and dip 

coating, etc. are available.  

Very limited literature is available on vertical OFETs since the area has recently emerged 

in the last 7-8 years and is still in its state of infancy.  The solution-processed method is even 

younger than the photolithography process in vertical OFET fabrication.  Therefore, efforts have 

been made to collect literature over organic FETs published in recent years in vertical 

geometries, materials used, deposition process adopted, and advantages of the fabrication 

process.  In Table 2.1 and Table 2.2 literature related to vertical geometries, with their respective 

I-V characteristic curves in biomedical applications, is collected.   
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Table 2.1  Literature of VOFET in various vertical orientations and geometries. I-V 

characteristic curves, organic materials used, and fabrication process adopted. 

 

Vertical Device Structure 

 

I-V Characteristics Curve 

 

Material 

Used, Process 

Adopted 

 

Reference 

 

 

 

 

 

Poly-

electrolyte 

gated, mask 

free 

photolitho-

graphy 

 

 

[50] 

 

 

 

 

 

6,13-

Bis(trisopropy

l-silylethynyl) 

Pentacene, 

step edge 

structure,  

photolitho-

graphy 

 

 

[51] 

 

 

 

 

 

Pentacene, 

photolitho-

graphy 

advantage of 

reducing 

parasitic 

capacitance 

 

 

[52] 
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Table 2.1 (Continued) 

 

 

 

 

 

 

 

 

Carbon 

nanotubes, 

high resolution 

patterning, 

high current 

density 

 

 

  

 

 

 

[53] 

 

 

 

 

 

 

P(NDI2OD-

T2) polymer, 

solution-

processed 

 

 

[54] 

 

 

 

 

 

 

 

Polyvinyl 

alcohol and 

C60 fullerene, 

spin coating 

 

 

[55] 
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Table 2.1 (Continued) 

   

PEDOT:PSS, 

stacked OLET 

with capacitor 

structure, spin 

coating and 

thermal 

evaporation 

 

 

 

 

 

[56] 

 

 

 

 

 

Vertically 

stacked super 

capacitor cell, 

C60, thermal 

 

 

 

[57] 

 

 

 

 

 

 

 

PEDOT:PSS, 

non-

photolitho-

graphy 

 

 

[58] 
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Table 2.1 (Continued) 

 

 

 

 

 

 

CuPc, organic 

SIT, nanoholes 

with thermal, 

photolithography 

 

 

[59] 

 

 

  

 

 

 

DNTT, graphene 

source electrode, 

spin coating 

 

 

[60] 

 

 

 

 

 

 

 

 

SPAN/Al   

bilayer   as 

drain, 

C60   fullerene, 

vertical 

structure, 

thermal 

 

 

[61] 
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Table 2.2  OFET used for various biomedical applications. 

Organic Field Effect Transistors Biomedical  Application Areas Reference 

Organic bioelectronics 
OFET sensor, ability to conduct, charge 

carriers and ions 

[62] 

Organic bioelectronics in 

nanomedicine 

Organic electrochemical transistor 

(OECT) for medicine 

[63] 

OFET stimulating electrode 
Matrix-addressable high density 

stimulating electrodes 

 

[64] 

OECT in delivery of 

neurotransmitter in vivo 

Device mimics nerve synapse 
 

[12] 

OFET recording probes In vivo brain activity recording [65] 

OECT high trans conductance High gain OFET for sensor application [66] 

OECT barrier tissue integration 
Bioelectronics, organic device interface 

with barrier tissue 

[67] 

VOFET vertical OFET High current, low voltage operation [53] 

VOFET low voltage One volt operating voltage VOFET [68] 

Vertical  organic light emitting 

transistor (VOLET) 

Dual function of OLED and switching 

current transistor 

[56] 

VOFET low cost fabrication 
Low cost fabrication of inkjet printing, 

spin coating, dip coating 

[42, 69, 

70] 

OFET high speed High speed flexible OFET in 3D structure [71] 

Solution-processed organic 

transistor 

Solution processed organic transistor by 

nano imprint lithography 

[72] 
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CHAPTER 3: SOLUTION PROCESSABLE VOFET DEVICE FABRICATION 

Solution processable organic materials are emerging as a new choice of materials for 

making low cost OFET devices.  Solution based electronics is widely accepted as a new class of 

fabricating technology for developing low cost flexible OFETs using conventional methods such 

as inkjet printing, spin coating, dip coating, and drop casting techniques [73].  Room temperature 

processability of organic materials and ease of deposition using a range of polymeric materials is 

paving ways for exploring possibilities for a new generation of flexible, disposable and 

environmental friendly green technology.  As discussed in the previous chapter, the low mobility 

of organic materials limits its uses in fabricating devices; whereas, solution-processed devices 

are demonstrating improved performance and reliability for use in low cost flexible and 

disposable electronics.  Impressive improvement in device performance has been demonstrated 

by the new design of functional materials in synthetic chemistry.  Novel device structures have 

been fabricated using solution processable methods using wet chemistry routes. 

Organic thin-film transistors are making inroads as potential electronic elements in the 

various flexible device application areas.  Fabrication cost, structural miniaturization and low 

operational voltage are three important parameters that need to be addressed for fabricating the 

next generation OFETs.  To realize these devices, OFETs require new design paradigms and 

wet-processing routes.  However, the conventional lateral OFET geometry cannot satisfy these 

demands due to process complexities and high fabrication cost. 
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For developing organic devices using a standard photolithography technique, solvent 

sensitivity towards organic semiconductors, electrode patterning, and masking are major 

challenges.  Therefore, the solution route and novel device geometry are the key factors that need 

to be integrated to achieve nanoscale organic transistors.  Vertical OFETs have the potential to 

achieve sub-micron channel devices which can achieved by stacking material layers in  a vertical 

direction [74, 75].  Miniaturized device geometry in the vertical direction can be realized by 

applying low cost techniques such as spin coating [76], drop casting [77], dip coating [78], and 

ink jet printing etc.  Precursors of soluble organic semiconductor exhibit promising properties for 

device fabrication [79].  To realize nanoscale film thickness, the spin coating technique is 

frequently used as a low cost deposition method.  Concentration of material in solution, coating 

speed and ramping recipes decides the thickness of organic material.   

3.1  Solution Processable VOFET: Three Stage Process  

In this study, a soluble pentacene precursor is selected as the active organic 

semiconducting material.  In normal routines, pentacene is deposited using thermal evaporation 

methods.  However, a low cost solution route is adopted to deposit pentacene.  For this purpose, 

the precursor is converted to pentacene molecules by a series of processes and treatments.  The 

precursor 13,6-N-sulfinylacetamidopentacene based novel fabrication process is proposed to 

achieve a vertical OFET.  The low cost device fabrication processing technique involves 

deposition of organic material without the use of high resolution photolithography and vacuum 

conditions.  Sub-micron device features are optimized by controlling the thickness of the spin 

coated pentacene precursor.  The VOFET device fabrication process is divided into three stages 

as follows and is depicted in Figure 3.1. 

 Stage I  Gate, Source Fabrication Steps, Pentacene Deposition, and Masking 
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In this stage the bottom gate electrode, insulating layer, source electrode and precursor 

thin film are deposited.  The precursor is annealed at 200
°
C to convert it into pentacene. 

Polyimide masking is adopted and applied for material separation. 

 Stage II Pentacene Metrology Characterization to Confirm Conversion 

In this stage the metrology characterization is performed to test and confirm the precursor 

to pentacene conversion process. 

 Stage III Drain Deposition and Final Device Fabrication 

 

 

Figure 3.1  VOFET device fabrication steps elicited the whole fabrication scheme from Stage I to 

Stage III. 
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This is the final stage of device fabrication.  This stage involves multiple sub steps, 

depositing the drain electrode in the first part, and then all necessary masking is partially peeled 

off for exposing electrodes open for device testing. 

3.1.1 Stage I Gate, Source Fabrication and Precursor Deposition 

This is the first stage of device fabrication.  A highly-doped Si wafer is cleaned in the 

first step through the standard cleaning process in a clean room environment.  An Al gate layer 

of 200nm is deposited using a shadow mask into an e-beam evaporator chamber at the rate of 

1Å/sec at a base pressure of 10
-6

 Torr.  Polyimide masking is made by hand in the lab and 

applied over the wafer so that it can cover and protect the gate terminal upon exposure into the e-

beam vacuum chamber.  The Al gate terminal is partially covered with kapton polyimide 

masking, keeping the rest of patterned Al open for the next layer of dielectric coating over it.  

Two types of devices are made for the study.  Devices which represent for unpatterned source 

electrode into step geometry where SU-8 is taken as dielectric, are called Type I.  Devices of the 

Type II category have polymethyl methacrylate (PMMA) used as the dielectric with the 

patterned electrode.  SU-8 is selected as the gate dielectric in Type I devices due to its high 

thermal stability (Tg>200
0
C), to support the precursor to pentacene conversion process without 

any material degradation.  After SU-8 coating, an Au electrode (100nm thick) is deposited over 

the SU-8 layer using a designed metallic shadow mask into an e-beam evaporator.  Half of the 

Au electrode is masked partially with 3M Kapton polyimide tape (for connection openings later) 

to protect the source terminal during the precursor spin coating (shown in process flow steps).  

The inner edges of polyimide masking tape are cleaned carefully to remove the dust particles 

before applied for masking.  The complete process flow in Stage I and steps involved are shown 

in Figure 3.2. 
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Figure 3.2  VOFET fabrication stage I starting from gate deposition (top left) to pentacene 

conversion. 

The soluble pentacene precursor 13,6-Nsulfinylacetamidopentacene 97% (NSFAAP), is 

directly purchased from Sigma-Aldrich, a commercial supplier.  It can be dissolved either in 

chloroform or dichlorobenzene organic solvents to make a uniform solution.  In this case, it is 

dissolved in dichlorobenzene (15mg/ml) and stirred properly overnight to make uniform 

solution.  The next step is to attach a 0.2 micron filter in front of a syringe filled with a precursor 

solution to be suspended over the wafer held over spin coating chuck.  A few drops of precursor 

solution are suspended over the wafer so as to cover two-thirds of the wafer area consisting of 

gate and SU-8 layers.  After spin coating at 3000 rpm for 1 minute (600 rmp in the first 5 sec and 

then ramp up), a uniform thin film free from holes and of submicron thickness is deposited.  The 

thin film thickness is measured using a Filmetrics F20 Reflectometer. 
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Figure 3.3  E-beam chamber for electrode deposition (a) gold metal evaporation (b) e-beam 

facility at NREC. 

The e-beam evaporator and the steps involved in the metallization process are shown in 

Figure 3.3.  After thin film deposition, the wafer is removed from the spin coater chuck.  Wafers 

are kept for two minutes in the hood to settle down the thin film morphology at the 

microstructural level before moving them for the annealing process.  Thermal treatment is 

applied to convert the thin film of the precursor into pentacene over a preheated hot plate at 

200
°
C for one minute.  This conversion process is known as the reverse Diels-Alder process [79, 

80]. 

3.1.2 Stage II Pentacene Metrology Characterization 

In Stage II of device fabrication, the thermally treated thin film of soluble pentacene 

precursor 13,6-Nsulfinylacetamidopentacene 97% (NSFAAP) is tested to confirm the desired 

pentacene material.  Surface morphological inspection, spectroscopy analysis, and electron 

microscopy metrology techniques are performed to validate the conversion process without 
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physically disturbing the thin film.  Besides surface analysis, validation at molecular and atomic 

levels is also performed to make confirmation about a pentacene molecule.  The following tests 

are performed and are demonstrated in Figure 3.4. 

 

 

Figure 3.4  VOFET fabrication Stage II for pentacene conversion and metrological testing. 

 Transmission Electron Microscopy (TEM): A TEM scan of the thin film sample is 

performed to confirm the crystal size of pentacene grains after annealing on a 

preheated hot plate for 1 minute at 200
°
C. 

 Scanning Electron Microscopy (SEM): A cross sectional view of the SEM scan is 

recorded to confirm the stacked material layers in the vertical device structure. 

 Atomic Force Microscopy (AFM): An AFM scan is performed over the surface of 

the organic layer to confirm the molecule and grain size of the pentacene 

molecule. 
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 Raman Spectroscopy: Raman Spectroscopy is performed to test and confirm the 

peaks of disordered pentacene in order to get the initial signature at molecular 

level. 

 X-RD: X-ray diffraction techniques are employed for confirmation of pentacene 

at the atomic level, while matching the characteristic peaks with literature.  The 

detail of their images and analysis is discussed in Chapter 4 under the 

characterization section.  This stage of confirmation is very important before 

proceeding to the next level of VOFET device fabrication, in order to make sure 

that the converted material is actually the pentacene. 

3.1.3 Stage III Final Device Fabrication 

After the confirmation about the pentacene, the next and final step is to deposit the drain 

electrode.  The device is shifted into the e-beam evaporator vacuum chamber for depositing a 

final layer of gold (Au) (100nm thick) over the pentacene material layer.  The polyimide 

masking is applied (as shadow mask) to selectively protect the stacked bottom layers of the 

device.  The organic layer is exposed for gold deposition.   

There are chances of Au particles penetrating the organic layer and making a short 

circuit.  Extra care has to be taken to avoid this problem.  Three selective rates of Au deposition 

are selected, i.e.,0.5Å/sec, 1 Å/sec, and 1.5 Å/sec to avoid the Au penetration into pentacene [81].  

After gold deposition, the wafers are removed from the e-beam chamber to proceed to the next 

step.  The novel device structure is designed in such a way that the upper layer should fully cover 

the organic layer to avoid any contamination.  As shown in Figure 3.5, the final gold layer is not 

only to act as a drain electrode but also to protect the organic layer from the outer environment.  

Thus, the bottom pentacene layer is protected from oxide formation and other contaminants. 
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Figure 3.5  Stage III of fabrication elicited Au deposition and fabricated device picture. 

3.1.4 Precursor to Pentacene Conversion 

The soluble pentacene precursor is dissolved in dichlorobenzene to make a uniform 

solution.  After spin coating at 3000 rpm, a 1 minute thermal treatment is performed for 

conversion over a preheated hot plate at 200
°
C by the process known as the reverse Diels-Alder 

process [80].  A final layer of Au (100nm) is deposited over pentacene at three selective rates of 

0.5 Å/sec, 1 Å/sec, and 1.5 Å/sec to avoid the Au penetration into pentacene [81].   

At the next level, masked electrodes are made open partially by peeling off the Kapton 

tape for establishing electrical connections and electrical characterizations.  For Type II devices, 

the drop casting technique is employed on a patterned source electrode to avoid the problem of 

short channel effects.   
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Figure 3.6  Soluble pentacene precursor and scheme adopted for conversion process. 

 

 

Figure 3.7  Molecular structure of pentacene, SU-8 and PMMA. 
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The drop casting method is basically applied for depositing thick films.  The chemical 

reactions to complete the conversion process have been shown in Figure 3.6.  The chemical 

structures of materials used such as pentacene, SU-8 and PMMA are shown in Figure 3.7.  The 

material properties of SU-8 are also discussed. 

3.2 Low Cost Fabrication 

The complete device fabrication process flow is shown in Figure 3.8.  The whole low 

cost device fabrication process is evolved around two central point, namely novel device 

geometry and low operational power.   

 

 

Figure 3.8  Complete VOFET fabrication steps (a)-(b) process flow (c) sequence of stacking 

layers. 
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The electrical parameters of low voltage around which the design of this experiment 

evolved, will be discussed in Chapter 4 in the electrical characterization section.  The two major 

issues related to the physical device structure are listed below.   

 Low Cost 

 Processing Temperature 

3.2.1 Low Cost Design Process  

The device fabrication and design of experiments are planned to keep the novelty of 

process at a low cost.  Keeping this novel feature of low cost in view, polyimide masking and 

spin coating deposition techniques are adapted.  As known, standard micro fabrication 

processing involves a heavy cost, ultraclean room environment, photolithographic patterning, 

and high vacuum chambers.  Masking the stacked layer is another challenge involved in 

fabricating nanoscale electronic devices.  To mask the increased number of stacked layers not 

only raises the cost, but also raises the process complexities.  In addition, the solvents used in 

standard photolithography masking are not organic friendly.  Therefore, keeping all these 

challenges in view, the low cost novel process is evolved. 

3.2.2 VOFET Device Processing Temperature 

The fabrication process is evolved to maintain the glass transition temperature of 

materials between 200
°
C-300

°
C.  The selection of fabrication materials is planned to complement 

processing and glass transition temperature.  The processing temperature of soluble pentacene 

precursor 13, 6-Nsulfinylacetamidopentacene 97 % (NSFAAP) is around 200
°
C and glass 

transition temperature (Tg) of SU-8 is ~230
°
C.  The device structure is intentionally designed as 

bottom gated so that no further thermal treatment should be performed after pentacene 

conversion.  The final gold layer in VOFET is deposited at room temperature.  The organic layer 
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is fully encapsulated by a gold layer for its protection from the outer environment.  The complete 

fabrication process is explained in the previously published work [82]. 

3.3 Spin Coating Method  

Spin coating method is emerging as a quick and low cost technique for depositing thin 

and uniform film of organic material on a flat surface [83].  In the first step, organic material is 

dissolved in solvents to make a homogeneous solution.  A Few drops are dispensed over the 

surface of the substrate with the help of a dropper.  The experiment is designed with a recipe to 

achieve the desired film thickness.  A high speed rotation of the fluid centrifuges the excess 

material out of the surface and a nice uniform thin film is left.  This method is so quick and fast, 

it achieves nanoscale film thickness within minutes. 

 

 

Figure 3.9  Spin coating deposition method (a) diluted pentacene precursor suspension (b) spin 

coater.  
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Figure 3.9 shows a sketch of a spin coater used for depositing pentacene precursor at the 

Nanotechnology Education and Research Center (NERC) facility at USF.  Figure 3.9(a) shows 

the spin coating method, in which a diluted pentacene precursor is dropped over an insulating 

layer of a VOFET device. 

3.4 Drop Casting Method 

Drop casting is another low cost and quick method for thin film deposition in fabricating 

organic FETs [84].  It is the easiest way to get thin film.  By dropping the solution on a substrate, 

the spontaneous evaporation of solvent leaves behind the desired material.   

The film thickness is the function of solution concentration.  This technique is 

advantageous over spin coating as there is no wastage of material in drop casting.  However, the 

downside is that the thickness of the film is limited up to the micron range.  Drop size and 

dilution of material in solvent decides the film thickness.  It has limitations over large area 

coverage and poor film uniformity.  On the other hand, pinhole-free and uniform film can be 

easily achieved in the spin coating technique.  Figure 3.10 shows the drop casting technique 

applied for fabricating VOFET devices in patterned source electrodes.   

3.5 Precursor to Pentacene Conversion 

Organic material like pentacene is normally deposited by thermal evaporation for 

fabricating electronic devices.  In solution processed devices, pentacene is used in the form of 

precursors.  Some functional groups are attached to the pentacene molecules to make it soluble in 

organic solvents which can be evaporated out by thermal treatment.  Pentacene is insoluble in 

organic solvents used for fabrication in organic electronics.  To make pentacene amenable for 

processing in solutions, functional groups are attached to the rings of pentacene molecules.  This 

method helps in dissolving pentacene in organic solvents for fabricating OFETs [85]. 
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Figure 3.10  Drop casting deposition method where diluted pentacene precursor is dropped over 

patterned source. 

The soluble pentacene precursor 13,6-Nsulfinylacetamidopentacene 97% (NSFAAP) is 

an excellent choice available to get pentacene material for fabricating OFETs by the solution 

process.  The precursor to pentacene conversion process is easy, quick and low cost [86].  The 

thin film deposition of a pentacene by thermal evaporator requires high vacuum conditions, 

whereas the deposition by solution route is quiet, fast, and low cost to get uniform high quality 

film.   

3.5.1 Solution Preparation 

In solution preparation, the soluble pentacene precursor 13,6-

Nsulfinylacetamidopentacene 97% (NSFAAP) is dissolved into dichlorobenzene (15mg/ml) and 

stirred properly overnight to make a uniform solution.  The next step is to spin coat the dispensed 

solution at 3000 rpm speed.  Thereafter, a one minute thermal treatment is required for precursor 

to pentacene conversion.  As already mentioned, conversion process is better known as the 

reverse Diels-Alder process.  In the next step, the wafer is treated thermally over a preheated hot 
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plate at 200
°
C/1 minute.  Then, the wafer from the hot plate is allowed to stay at room 

temperature.  After two minutes, a fine, smooth, and uniform pentacene thin film is obtained.  

The conversion process and chemistry involved is shown in Figure 3.11.   

3.5.2 Time Temperature Optimization  

Time-temperature balance optimization is an important parameter which contributes to 

the performance of a solution processable OFET.  The precursor to pentacene conversion is 

governed by the reverse Diels-Alder process, in which the side chain is evaporated out of the 

pentacene ring during thermal treatment.  To achieve the semiconducting behavior of pentacene, 

the side group is removed in gaseous form.  Usually, a uniform but disordered thin film of 

pentacene is obtained after the thermal treatment.   

 

 

Figure 3.11  Time-temperature optimization curve for precursor to pentacene conversion process. 



 

49 

The conversion process optimization and spin coating rate determine the crystallinity of 

the pentacene film and device performance [87].  In a conversion process, time-temperature plot 

for a soluble pentacene precursor is recorded at different temperatures as shown in Figure 3.11.  

The conversion efficiency is reduced at a lower temperature, resulting in poor semiconducting 

quality of pentacene.  Therefore, it is advisable to optimize between 180
°
C/2min to 200

°
C/1min.  

The degradation of pentacene film starts at elevated temperatures beyond 220
°
C. 

3.6 Masking and Geometry Optimization 

In vertical organic device fabrication, it is very important to maintain the separation 

between interfacing material layers.  Masking is applied in standard Micro Electro Mechanical 

System (MEMS) fabrication through the conventional method of photoresist into a highly ultra 

clean environment.  In the MEMS device fabrication process, a higher number of stacking layers 

in a device means higher cost and design complexities.  The solvents applied for etching in 

MEMS fabrication are unfriendly with organic materials.  Thus, applying these micro fabrication 

solvents is undesirable in organic devices.  To overcome this challenge, a novel low cost 

masking process is evolved for fabricating the VOFET device.  Polyimide Kapton masking is 

selected for the separation of stacked layers.  3-M Kapton polyimide tape has excellent chemical, 

electrical and thermal properties.  The DuPont Company made it first for NASA space missions.  

It’s excellent thermal stability, ranging from -270
°
C to +400

°
C, made it good for a wide range of 

extreme temperature applications. 

3.6.1 Polyimide Masking for Electrode Protection 

Kapton masking is applied at multiple steps during device fabrication.  Kapton polyimide 

masking is employed at the following levels during fabrication. 

 Masking for the separation of stacked and interfacing material layers. 
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 Shadow masks are made out of Kapton polyimide tape. 

 Kapton polyimide tape is used as a flexible substrate for supporting the VOFET 

device. 

Thermal properties of polyimide are utilized to support the thermal stability of device 

materials, as all the fabrication materials are selected around the glass transition temperature (Tg) 

of 200
°
C-300

°
C.  The polyimide Kapton being thermally stable is also chemically very 

supportive for masking at various steps and levels of device fabrication.   

3.6.2 Polyimide Shadow Masking in Metal Deposition 

Kapton polyimide tape is also employed for shadow masks in the e-beam evaporation 

chamber for depositing the metal electrodes like gate, source, and drain.  All shadow masks are 

made out of polyimide cuttings and designed in the lab.   

 

 

Figure 3.12  Various shadow masking designs made out of polyimide Kapton tape. 
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Figure 3.12 shows the handmade shadow mask in various types of patterned metal 

electrodes.  In the first step, the double layered polyimide substrate is made by joining the 

sticking surfaces together in order to minimize their interference.  Then, shadow masking of 

polyimide is made to deposit the Au electrode.  Step edge resolution is not that important in 

vertical device design.   
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CHAPTER 4: VOFET DEVICE CHARACTERIZATION 

Solution processed vertical OFETs are fabricated using low cost techniques such as spin 

coating and drop casting.  Fabricated devices are tested for electrical, metrological, and radiation 

characterizations. 

4.1 Electrical Characterization 

In order to verify the device performance, fabricated VOFET devices are tested at various 

electrical characterization standards.  The basic tests performed are as follows: 

 I-V Characterization 

 C-V Characterization 

 Transient Time Analysis 

 Four Probe Resistivity 

Electrical characterizations are recorded on a HP4145B semiconductor parameter 

analyzer at non-ambient room temperature conditions.  Two types of low cost methods are 

adopted for VOFET fabrication: 

 Spin coating method 

 Drop casting method 

For characterization and testing purposes, fabricated devices are classified into two 

categories.  Devices fabricated with the spin coating method are Type I and with drop casting 

method are named Type II devices.  Step geometry is adopted to fabricate Type I devices 

whereas perforated geometry (bottom digitated source electrode) is adopted for Type II devices. 
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In the first step, VOFET devices are tested electrically to confirm their I-V curves.  Basic testing 

connections are made by partially removing the polyimide masking from respective electrodes.   

4.1.1 Current-Voltage Characteristics 

Current-voltage characteristics are plotted by sweeping the drain-to-source VDS voltage 

for a fixed gate-to-source VGS voltage.  Different VGS voltage values are set for each drain-to-

source sweep and corresponding output current IDS are recorded.  The plot lines shown in Figure 

4.1 illustrate the increase in output current with increasing drain-to-source voltage.  Both VGS 

and VDS are negatively biased.  Increase in IDS at each increased VGS voltage value indicates p 

channel (holes charge carriers, i.e. positive charge) accumulation type OFET.  It is observed that 

the VOFET is operating in the linear region which is influenced under short channel effects.  The 

output characteristic curves do not follow the normal trends analogous in lateral OFET 

transistors.  The curves are unable to achieve the saturation and follow the linear trend.  The 

presence of non-idealities, short channel SCLC effects cause the device to operate in non-

saturated mode of operation.  Device parameters are difficult to extract since the short channel 

effects are dominating at the interfaces of metal/semiconductor, thus affecting the charge 

injection process.  The SCLC effect will be discussed in detail in Chapter 5. 

Deviation from gradual channel approximation and lack of current saturation can be 

observed in the output characteristics during VDS sweep [88].  In a normal practice for a long 

channel lateral OFET, the gate electric field is perpendicular to the drain field and much 

stronger.  This results in gradual channel approximation and thus curves attained saturation.  But 

in short channel OFETs, the space charge limited bulk current prevents the curves attaining 

saturation and the device operation mode is linear [89].  To achieve saturation in short channel 
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devices, the dielectric should be thin enough to meet the channel length condition as L>10 

ddielectric  [90].   

The transfer characteristic is plotted by sweeping VGS and the corresponding IDS are 

recorded for a fixed VDS voltage.  The current-voltage characteristic plots are more or less 

different from conventional lateral type OFET devices because of the vertical design and the 

presence of short channel effects.  The unconventional trends in the I-V plots of VOFETs are on 

the expected line in vertical geometry [54, 55, 91, 92].  

 

 

Figure 4.1  Current-voltage (I-V) output characteristic plots at various channel lengths. (a)-(c) at 

L=535nm, 300nm and 265nm and (d) transfer characteristic curve.  
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The closely placed plot lines show the weak effect of the gate field and inability of the 

device to operate in a gradual channel approximation mode.  The channel formation occurs only 

near the step edge of the source electrode, as shown in Figure 4.1(a).  Non-uniformity and the 

weak strength of gate field could be one of the reasons behind the closely placed curves because 

the gate is more near to the source than the drain electrode.  In addition, the shielding effect 

offered by the source electrode could also be responsible for low gate field effects. 

 

 

Figure 4.2  Output characteristic plots at three different channel lengths elicited short channel at 

L=265nm (green line). 

The gate field is more effective at the edge of the source electrode where the charge 

injection/extraction occurs, referred to as the ON region, and the shielded part of the active layer 
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sandwiched between S/D is referred to as the OFF (leakage) region of the device [93].  Charge 

accumulation takes place near the step edge, which is extracted by vertical drain field, thus 

contributing towards the vertical channel formation. 

In device parameter optimization, channel length is an important design consideration in 

VOFET that predominantly influences the operation and characteristics of the device.  To study 

the effect of channel length on the I-V plot, three channel lengths are selected, i.e.  L=535nm, 

L=300nm and L=265nm.  The output characteristics are recorded for each channel length, as 

shown in Figure 4.1.  The bending of the curves (towards more linearity) is observed (with the 

reduction in channel length) as moving from L=535nm to L=265nm.  The effect of channel 

length on the device characteristics can be clearly observed from the output plot.  The factors 

involved in bending of curves will be discussed in Chapter 5.  To further optimize the VOFET 

device structure, I-V characteristic plots are recorded for Type I (spin coated method) and Type 

II (drop cast method) devices separately.   

Table 4.1  Device parameters of two types of devices fabricated by spin coating and drop casting 

techniques. 

Device Type I Type II 

Geometry Step  structure Patterned electrode 

Method Spin coating Drop casting 

Insulator SU-8 PMMA 

Channel Length 265nm 2µm 
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Efforts are made to design, fabricate and test the devices for patterned (perforated source 

electrode) and unpatterned (step geometry source electrodes).  The spin coating deposition 

technique is adopted for step type geometry (Type I), whereas the drop casting technique is 

adopted for patterned (Type II) devices.  Figure 4.3 shows the geometries and deposition 

methods adopted for device fabrication.  The method discussed so far is related to the Type I 

device fabrication process (with spin coating technique), whereas step geometry is adopted to 

design the source electrode.  Figure 4.3 (d) shows the transfer characteristic curve of the VOFET 

device. 

 

 

Figure 4.3  Type I devices (a) device layout (b) picture (c) I-V plot at L=300nm and (d) transfer 

characteristic curve. 
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In order to study the effect of source geometry, Type II devices (drop casting method), 

are fabricated with the patterned source electrode.  In Type II devices, perforation in the source 

electrode is introduced to get the complete field effect from the bottom side.  To compensate the 

short channel effect and to get the effective gate field, two methods are employed in Type II 

devices.  

Perforation geometry of the source electrode is used to get the bottom gate field effect 

and drop casting is used to reduce the SCLC effect by depositing thick films. 

Width/Length (W/L) ratio is an important device parameter, which is directly related to 

the output current.  In a perforated source electrode, both length and width of the source 

electrode extends and hence the W/L ratio increases.  The source electrode perforation thus 

reduces the SCLC effect and curves show little separation and bending. 

 

 

Figure 4.4  Type II devices (a) device layout (b) perforated source electrode (c) I-V plot at  

L=2µm, and (d) drop casting process. 
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As discussed earlier, in order to reduce the short channel effects, the drop casting 

technique has been introduced.  The channel length measured for Type II devices is L=2µm.  

The output characteristics recorded for Type II devices clearly demonstrates the effect of the gate 

field, as shown in Figure 4.4.  The role of the patterned electrode is also an important dimension 

in understanding VOFET operation.  As the perforated source electrode is influenced under the 

combined effects of drain and gate fields, so the change in design of the source electrode reduces 

the shielding effect and consequently the output current, as depicted in Figure 4.4. 

To confirm the SCLC effect, current densities are plotted against the normalized VDS 

field.  An increase in current density observed at lower channel length, i.e.  L=265nm, confirms 

the presence of the SCLC effect.  In the SCLC equation (inset), the power of VDS for n>2 is 

calculated for lower channel devices [94].  The space charge limited current effect is dominating 

at the nanoscale channel length.  The SCLC effect not only affects I-V plots and drives the 

devices towards non saturation, but also affects device performance.  Consequently, devices are 

influenced under SCLC effects and are confirmed, as shown in Figure 4.5. 

 

 

Figure 4.5  Current density Vs VDS plot for L=265nm channel length depicts SCLC effect at n>2. 
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4.1.2 Capacitance-Voltage Characteristics 

Capacitance-voltage characteristic tests are performed to understand the inbuilt device 

capacitance during fabrication.  VOFETs are tested to measure device capacitance and the width 

of depletion layer at the insulator/semiconductor interface by varying the bias voltage from -3V 

to +3V.  Traps and defects are very common in organic semiconductors.  At every step of bias 

reversal, the charging and discharging of traps takes place.  The charging of traps and localized 

states, changes the device capacitance.  Capacitance dependence on frequency reveals the 

localized states of pentacene and also helps in calculating charge carrier concentration and the 

width of depletion layer.  In the accumulation region, study of capacitance dependence on 

frequency can be helpful to extract the device parameters, such as mobility, contact resistance 

and carrier concentration [95].  Quasi-static capacitance-voltage (C-V) measurements are made 

on a HP4284A LCR precision meter for experimentally estimating the intrinsic capacitance and 

charge carrier concentration.  Au/pentacene contacts exhibits the Schottky barrier, which 

constitutes the depletion region near the interface.  The capacitance-voltage plot reveals that a 

depletion region exists at the organic/insulator interface and width of depletion changes with a 

sweep from -3V to +3V.  It has been observed that the capacitance is larger at the negative bias 

end due to the presence of initial interface charges.  Capacitance reduces with forward bias due 

to charge neutralization and increases further with the charging of traps. 

Figure 4.6 shows the C-V plot at various frequencies ranging from 100Hz to 60 KHz.  A 

Mott-Schottky plot, i.e. 1/C
2
-V, is used to extract the trap carrier concentration [96]. 
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where C is the capacitance, A is the geometrical area, q is the electronic charge, NA is the carrier 

concentration, ϵp is the relative dielectric constant of pentacene (ϵp=3), and Vdiff is the diffusion 

potential, which is extracted from the extrapolated intercept of the 1/C
2
-V plot.  From the slope 

of 1/C
2
 Vs V, Vdiff is calculated, i.e. Vdiff =1.15 volts.  NA is calculated using  eq  (1), which 

comes out to be NA=3.1x10
21 

cm
-3

.  The width of the depletion layer w is calculated by using the 

following expression 

  
 o diff2 V   V

   
qNA

w


  (2) 

By substituting NA and Vdiff, the value of w is calculated to be w=55nm at zero gate bias. 

 

 

Figure 4.6  C-V plot of VOFET device (a) at frequencies ranging from 100Hz to 60 KHz (b) 

spectrum analyzer (c) Mott-Schottky plot i.e. 1/C
2
-V. 
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4.1.2.1 C-V Analysis  

The capacitance-voltage plot of the MIS structure is usually studied for analyzing 

semiconductor surface, interface, and bulk material behavior.  The Quasi static (low frequency) 

capacitance of the layered device structure is measured by sweeping from +ve to –ve bias.  In 

another device design where PMMA is used as an insulator, C-V plots are recorded, as shown in 

Figure 4.7.  Capacitance-voltage plots show the accumulation to depletion profiles.  Internal 

device capacitance increases as the biasing trends changes from negative to positive. 

 

 

Figure 4.7  Quasi-static C-V plot of Type I device elicited the accumulation and depletion 

regions. 

When the positive voltage is applied, the charge carriers start accumulating at the 

PMMA/pentacene interface resulting in accumulation capacitance (Ca).  As the biasing reverses 

from +ve to –ve, the charges start building at the PMMA/pentacene interface.  The accumulated 
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charge depletes the pentacene and introduces an additional depletion capacitance (Cd), which 

results in a series with the total device capacitance.  Thus, total series capacitance (Ci) reduces 

due to series depletion and accumulation capacitance, as shown in Figure 4.7.  Flat band voltage 

VFB and threshold voltage VT can be extracted from the C-V plot.   

4.1.3 Transient Time Analysis 

In high frequency applications of OFET, an important switching parameter is the 

transient behavior of charge carriers, which helps to understand the charge propagation through 

the channel.  Switching speed of the device is expected to increase when the channel length is 

reduced, as shown in equation  (3).  The time of flight (TOF) experimental technique is employed 

to study the carrier’s propagation through a 350nm channel length OFET.  In a vertical device, 

time of propagation is studied as a function of applied voltage.   

 

 

Figure 4.8  Time of flight (TOF) experiment setup (a) circuit layout (b) applied input pulse (up) 

and recorded output (below) (c) pulse delay. 
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The transient analysis experiment is designed and performed by supplying a square pulse 

of 1volt amplitude/1 KHz to the gate electrode and the corresponding drain current is measured, 

as shown in Figure 4.8.  The rise time (including 90% of response) is calculated, i.e. rise 

time=36ms.  Thus, transient time is calculated from the expression given in the equation below 

as 
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where VGS and VT are gate-source and threshold voltages, respectively.  By substituting 

the device parameters, in equation (3), transient time is calculated, i.e. tr =12µs.  Material 

transport properties and contact resistances are the factors contributing towards transient time. 

4.1.4 Resistivity Measurements 

In short channel devices, the contact resistance dominates the channel resistance and 

contributes towards SCLC currents.  The influence of interface resistance plays a dominant role 

in OFET performance. 

Since the width is larger than the channel length, the total resistance is normalized with 

the width and can be expressed by the following equation as 

  
sheet

R W   R W   R L  
ON c

   (4) 

where RC is contact resistance and RON is the total ON resistance, which is calculated from the 

linear region by dividing VDS with IDS at different VGS values.   

The four-probe resistivity method is employed to measure sheet resistivity, as shown in 

Figure 4.9.  To extract the channel (sheet) resistance, the four-point probe technique is used for 

measuring Rsheet, which is calculated as Rsheet =6.79kΩ/sq.   
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Figure 4.9  Contact resistance (a)-(b) parasitic and channel resistance (c)-(d) four probe set up 

and circuit connections. 

The contact resistance RC is calculated as RC=15.99kΩ.  The sheet resistivity can be 

expressed in terms of mobility of charge carriers. 

4.2 Surface Metrological Characterization 

At the nanoscale level, surface roughness and mismatch interfaces play an important role 

in an estimation of device parameters.  In a multilayer device such as a VOFET, charge transport 

is affected predominantly by the surface roughness and non-uniform interfaces.  Interface 

engineering is normally seen in practice for minimizing surface effects.  In the VOFET 

fabrication process, an intermediate phase of surface metrology characterization has been 

introduced before the final device fabrication.  The main idea behind this is to test for pentacene 

material after the conversion process.  The basic surface morphological tests are performed at the 
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precursor to pentacene conversion stage.  This is named as phase II of the device fabrication 

stage which is created to confirm the conversion process.  At this stage, multiple surface 

metrology tests are performed before moving forward to the final stage of device fabrication.  In 

metrology characterizations, three basic levels of testing are performed, most notably at the 

surface level, molecular level, and atomic level.  The tests performed at this stage are as follows: 

 Transmission Electron Microscopy (TEM) 

 Atomic Force Microscopy (AFM) 

 Scanning Electron Microscopy (SEM) 

 Raman Spectroscopy 

 X-RD 

4.2.1 Transmission Electron Microscopy  

In the transmission electron microscopy technique, a beam of high energy electrons is 

exposed and allowed to transmit through the sample.  The interacted and transmitted electrons 

form an image of the exposed area.   

The TEM technique is employed to confirm the crystal formation of pentacene material 

immediately after thermal treatment.  Samples for the TEM tests are separately prepared from 

the actual VOFET device.  A chemical solution of pentacene precursor is prepared and dropped 

over the TEM sample holding mesh.  The sample holding mesh is shifted over the preheated hot 

plate (200
°
C) and treated thermally for 1 minute.  Then, the copper mesh holder is removed after 

heating the sample at 200
°
C/1min.  The sample holder micromesh is cooled down and handled 

very carefully before processing for TEM imaging.  The scanned TEM image of pentacene 

material is taken immediate after the annealing process.  The TEM image confirms the formation 

of pentacene crystals, as shown in Figure 4.10. 
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Figure 4.10  TEM images reveal formation of pentacene crystal size and grain boundaries. 

4.2.2 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) is a scanning microscopy technique used to image and 

manipulate the matter at the nanoscale level.  The AFM probe tip senses the atomic forces of the 

material surface at the nanoscale and generates the image accordingly.  AFM scans are 

performed over a thermally treated pentacene precursor to confirm pentacene conversion, surface 

roughness, and grain boundary formations.   

The performance of an OFET depends on the surface roughness, as the charge transport 

is confined to the first few mono layers of the organic channel.  It is observed from the scan that 

the pentacene growth is disordered for roughness more than 0.3nm.  In normal practice for a 

solution-processed pentacene, dendritic growth with less uniformity has been observed [97].  

Figure 4.11 shows 3D AFM images which are scanned over a 4µm x 4µm area that shows root 

mean square (rms) roughness of 67.3nm and a mean image roughness of 55nm. 
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Figure 4.11  AFM image (left) dendritic growth after precursor annealing (right) fully converted 

pentacene. 

In lateral charge movement, it’s challenging to compensate the surface roughness, 

whereas in vertical charge movement, vertical thin channel compensates for the non-uniformity 

and roughness of film.  AFM images are scanned for two different thermally treated samples at 

200
0
C/1 min and 170

0
C/10min.as shown in Figure 4.11. 

The Phase image of AFM is used to map the two different materials present in the 

sample.  It monitors the phase lag between the oscillating signal and output signal and creates a 

phase image.  AFM phase images are scanned to confirm the pentacene material and the 

substrate material, as shown in Figure 4.12.  Optimization of time-temperature balance in the 

thermal treatment plays an important role in deciding grain size of pentacene and its 

nanostructure.  The grain size area measurement of ordered grain (in red) and the average grain 

(in black) are demonstrated in the AFM grain scan, as shown in Figure 4.13. 
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Figure 4.12  AFM height (left) and phase (right) images of pentacene after thermal treatment. 

 

 

Figure 4.13  Mean (red) and average (black) grain size of pentacene recorded after conversion in 

AFM surface analysis. 



 

70 

4.2.3 Scanning Electron Microscopy 

Scanning electron microscopy is a technique used to analyze the surface morphology by 

exposing a focused beam of electrons that interact with the atoms present inside the material.  

The beam of electrons interacts and received back to the detector, creates the image of the 

sample topography.  For a VOFET device, the SEM image is scanned to confirm the deposited 

material layers.  The sample under test for SEM analysis is diced at an angle and mounted as 

slanted to scan a side view.  The focused electron beam is exposed on the side of the device 

edges.  The layered VOFET device under test for SEM is a half-complete device up to the source 

(Au) electrode layer.  Figure 4.14 shows the SEM image of stacked material layers in a VOFET 

device where SU-8 is deposited under the Au material.   

 

Figure 4.14  SEM image of deposited material layers elicited SU-8 insulating layer under the Au 

metal electrode. 

4.2.4 Raman Spectroscopy 

Raman spectroscopy provides unique structural information about the material.  In 

Raman spectroscopy, the incident laser light and the scattered light shifts in a frequency which is 

proportionally to the structure of material.  The Raman spectrograph provides this shift 
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information which is unique for every material.  The molecular structure is an important factor in 

determining material property, which controls the charge carrier mobility and device 

performance in electronic devices.  In solution processed OFETs, the interfacing between the 

active material uniformity with dielectric material layer results in molecular orientations.  Raman 

spectroscopy is an important molecular mapping technique to analyze at the molecular level.  

This technique is useful to map local arrangement backbone orientations in the case of solution 

processed pentacene devices.   

 

 

Figure 4.15  Raman spectroscopy measurement (left) and schematic representation of a Raman 

spectra (right). 

The Raman technique is non-destructive, compared to other structural analysis methods 

like FT-IR and X-RD.  It has the advantage of no prior sample preparation and in-situ 

measurements.  In VOFET fabrication and molecular level pentacene confirmation, Raman 

spectroscopy is performed on the thermally treated pentacene layer after the conversion process, 

as shown in Figure 4.15.  The characteristic peaks are recorded and observed to confirm the 

pentacene at the molecular level.  The scheme adopted for Raman spectroscopy and device 

exposure is also depicted in the same figure. 
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A Raman shift is recorded over a less ordered pentacene microstructural thin film [98].  

Raman shift is a powerful tool to confirm the microstructural changes in pentacene film.  Some 

researchers reported improvement in device performance after hours of operation, owing to the 

source-drain electric field, which makes irreversible structural modifications confirmed after 

Raman measurements [99]. 

4.2.5 X-Ray Diffraction  

The X-RD method is a very useful tool to identify the atomic and the molecular structure 

of a material.  By measuring the angles and intensities of a diffracted beam, the three 

dimensional picture of a material and the corresponding electron densities can be identified.  The 

X-RD method is used to confirm the pentacene material conversion at the atomic level by 

detecting the characteristic peaks.   

 

Figure 4.16  X-RD measurement (left) X-RD plot (right) diffraction system facility. 

Sample for X-RD tests are prepared particularly to test the pentacene confirmation 

immediately after thermal treatment.  A thin film of precursor is spin coated on a glass slide and 

treated thermally at 200
°
C/1 min.  The sample is removed from the hot plate and then tested for 

X-RD characterization.  Unlike Raman spectroscopy, which is used to test material at the 

molecular level, the X-RD technique is used to confirm material at the atomic level.  Figure 4.16 
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shows the X-RD image of the pentacene material scanned after thermal treatment.  The peaks in 

the plot are confirmed in the literature for the pentacene material [100]. 

4.3 Radiation Sensor Test 

In biomedical implants, any electronic device which is considered for biological signal 

recordings has to prove the biocompatibility and radiation test.  Keeping this in view, the 

VOFET devices are exposed and tested under radiation.  Pentacene-based organic VOFET 

devices are fabricated and tested as radiation sensors by exposing them under low dose 

radiations.  VOFET I-V characteristics are recorded after each level of irradiated doses.  Three 

incremental steps of calibrated radiation doses (each of 5 Gy increment) are set to irradiate over 

the set of devices.  The change in IDS current is recorded after each exposure.  A decrease in 

output current is observed with the increase in radiation dose, as shown in Figure 4.17. 

 

Figure 4.17  I-V plot of a VOFET resistive radiation sensor. Radiation absorption shifts elicited 

at every 5Gy dose increment. 

In this experiment, VOFET is used as a two terminal resistive element, thus no gate 

voltage is supplied.  Considerable changes in current are observed after exposure.  
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Characteristics are measured after each step of exposure, since there is no in situ facility 

available to record the I-V characteristics immediately after the exposure.  

The characteristic feature of the VOFET system and geometry allows its application to 

biomedical fields.  The interface of biological systems with electrical or optical sensors is highly 

viable.  In cardiac sensor applications, the coupling of a VOFET with a flexible substrate allows 

for advanced detection and identification of cardiac signals with precision.  For optical sensing 

and measurements, such as in digital pathology, the imaging and processing of cancer detection 

allows for advanced imaging applications.  In the following sections a description is provided in 

each of the biomedical areas.   

4.4 Flexible Cardiac Sensor 

The heart is a sophisticated organ in the human body that works continuously to pump 

pure blood into various parts of the body.  Irregular heartbeats or arrhythmias are the most 

common cause of sudden death in athletes [101].  Cardiac Resynchronization Therapy (CRT), 

evolving from pacemakers and development of ICD, has been adopted as a non-pharmacological 

treatment of important therapeutic value for cardiac patients.  The design of the conventional 

ICD device is very robust and consists of a metallic case and a lead system.  The overall 

structure and operational criteria for pacemakers and ICDs has not been changed much.  

Whereas significant changes have occurred in the commercially available CRT defibrillator with 

advancement on both the clinical and technical side, the design side still needs a lot of 

improvement. 

4.4.1 Implantable Cardioverter Defibrillator 

The ICD is a biomedical device implanted inside high risk cardiac patients to deliver the 

stimulation or defibrillation pulse at the onset of arrhythmia.  Commercially available cardiac 
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resynchronization therapy-defibrillation units (CRT-Ds) are very bulky in size.  The ICD device 

consists of a palm-sized metallic case and a set of leads that are inserted into atrial and 

ventricular chambers of the heart.  The metallic case of the ICD is comprised of two parts, 

namely pulse generator and the device battery.  The ICD leads consist of silicone flexible rubber 

with polyurethane to identify arrhythmia, i.e. the detection of bradycardia (slow beat) and/or 

tachycardia (fast heartbeat).  The lead system in an ICD primarily serves as a source to detect 

arrhythmia. 

 

 

Figure 4.18  Schematic representation of OFET flexible sensor integration. (a)-(b) algorithm 

flow chart and ECG monitoring (c) internal architecture of ICD (d) flexible sensor. 

The microprocessor collects abnormal heartbeat information in a localized manner from 

atrial and ventricular chambers.  However, the information collected from the lead system does 
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not provide specific detail about the site of arrhythmia with high resolution.  Therefore, there is a 

requirement for precision in arrhythmia detection and defibrillation.  The proposed idea is for 

flexible wireless sensors to be incorporated into the ICD device.  This approach would be a step 

forward towards a new generation of ICDs with complete information of arrhythmia and real 

time ECG monitoring.   

For measuring cardiac signals from the outer surface of the heart, integration of a flexible 

sensor within the conventional ICD device has been proposed, as shown in.Figure 4.18.  In the 

proposed idea, arrhythmia detection and defibrillation are the focus areas.  There could be a dual 

route for pulse delivery, either through ICD leads or through a sensor array based on the site of 

the arrhythmic activity.  This novel idea of integration of a flexible sensor array with current 

ICDs would allow for a stretchable bio-electronics interfacing system.   

Figure 4.18(a) shows the complete working concept to integrate signal detection and 

processing to allow defibrillation or pacemaker activity utilizing the flexible sensor technology.  

As shown in the algorithm, the arrhythmia signal will be detected by the flexible sensor at the 

surface of the heart, and this information will be relayed to the ICD microprocessor for analysis 

and identification of the arrhythmic event for delivery of pulse.  The smart algorithm of the 

microprocessor decides whether it is a pacing or defibrillation problem.  Figure 4.18(b) shows 

the proposed real time monitoring of the ECG pattern of high risk patients and at the same time 

this information is transmitted to health providers.  Figure 4.18(c) describes the internal 

architecture of ICD which includes battery and pulse generator (hardware and electronics).  ICDs 

are bulky in size because more than 50% of the space is occupied by the battery.  Reduction in 

battery size would be another addition towards device miniaturization.  Figure 4.18(d) shows the 

OFET sensor network wrapped around the heart to sense the arrhythmia and for the delivery of 
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defibrillation pulses.  The sensor network is made up of OFETs, as shown in the zoom part of the 

sensor array.  The flexible sensors could be designed out of stretchable materials on flexible 

substrates.   

4.5 Imager for Digital Pathology in Breast Cancer Analysis 

In clinical practice, Nottingham grading is the standard scoring system for tumors.  

Assessment is based, in part, on irregular nuclear pleomorphic features like shape, size, color, 

and intensity of individual cells.  Computationally differentiated and classified nuclei enhance 

the assessment of diagnosis and grading.  Cancer cell detection and separation is important for 

the accurate scoring of malignancy.  Automated image analysis and scoring can deliver accurate 

results.  Grading of cancer cells from a highly resolute histopathological image can minimize the 

chances of error for scoring, and thus, a better prognosis.  The Artificial Neural Network (ANN) 

classifier`s constant learning ability and nonlinear parallel processing can more accurately 

predict prognosis in cancer.  ANN classifier is tested for optimal combinations of training, 

validation and testing data set with hidden neuron numbers.  In a new generation of healthcare 

solutions for assisting pathologists, a new approach is proposed in diagnostic pathology which is 

parallel in nature and highly automated to deliver accurate decision. 

Breast cancer malignancy scoring is influenced by complex image structure analysis and 

features extraction techniques.  The nuclear micro texture features extraction and delineation, 

which is a tedious task, in spite of the detailed tumor information availability from high 

resolution digital whole slide images [102].  Breast cancer is a morphologically heterogeneous 

disease for which the grading is assessed by a characteristic trait of polymorphic nuclear and 

molecular features [103].  Nuclear pleomorphism assesses the mutation in nuclear geometrical 

features like shape and size with regard to normal epithelial/tumor cell nuclei.  Pleomorphic 
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changes due to activation of oncogene and spatial reorganization of chromatin in cancer nuclei 

leads to abnormal cell production and tumor malignancy.  Tumor malignancy is highly 

dependable on pleomorphic features of nuclei and further on morphological features for 

neoplasm aggressiveness and heterogeneity in the physical microenvironment (PME) [104].  The 

Nottingham grading system (NGS) is a grading system highly used worldwide which scores 

tumors on the basis of prognostic information [105].  The evaluation of NGS is based on 

morphological features such as (a) degree of tubule, (b) nuclear pleomorphic features (such as 

shape and size), and (c) mitotic count.  Therefore, a better understanding of diagnostically 

important factors such as nuclei shape distortion, size irregularity, and heterogeneity can help the 

pathologist to determine better therapeutic strategies, survival rate estimation, and 

histopathological characteristics like vascular invasion, gene expression, and precise tumor 

grading. 

A pathologist visually examines hundreds of slides per day under the microscope within 

the limitation of a human eye (differentiate between hue and intensity in the image) to detect 

nuclear level changes.  Nuclei segmentation is the most challenging task today which requires a 

highly skilled workforce, and clustering algorithms like K-means, fuzzy C-means, neural 

networks, and Gaussian mixture models [106].  Imaging informatics, computational 

segmentation, classification (through automated analysis and machine learning), and grading of 

pleomorphic nuclei into a high spatial resolution histopathological image eliminates the chances 

of errors.  The Nottingham grading system faces difficulties of lack of precision and agreement 

among pathologists because of reproducibility of less than 75% accuracy and with limited uses in 

core biopsies.  Therefore, computational analysis is emerging as a second opinion and a reliable 

tool in assisting the pathologist. 
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4.5.1 Nuclear Pleomorphism  

Changes in the shape and size of the cellular nucleus are referred to as nuclear 

pleomorphism.  In cancer cells, the roundness of the nuclei starts deteriorating with changes in 

their shape.  The degree of disturbance of nuclear features decides the level of malignancy in the 

cancer tumors.  By performing a detailed analysis of the cellular nucleus, the grading of cancer 

cells is achieved.  The Nottingham score is a well-established microscopic grading of breast 

cancer and is associated with survival of patients, however several groups contend that 

pathological evaluation alone does not provide enough information to be a reliable prognostic 

indicator.  In order to produce a more accurate prediction of prognosis and response to therapy, 

there is a need to develop a more quantifiable method for automated image analysis and breast 

cancer scoring [100, 107]. 

 

 

Figure 4.19  Proposed scheme of digital pathology for automated breast cancer scoring system. 



 

80 

A pathologist inspects visually all hematoxylin and eosin (H&E) stained histology slides, 

which are still considered as the gold standard for cancer diagnosis and grading of malignancy.  

In the Nottingham Bloom Richardson grading system, tubularity, pleomorphism and mitotic 

count are evaluated and graded for malignancy.  In pleomorphic nuclei grading, the nuclear 

features like shape, size, roundness, concavity, and area are taken into account while deciding the 

tumor grading.  Pleomorphic features of nuclei are judged as small uniform regular shape, 

moderate, and marked nuclear variation basis.  Irregular boundaries and moderate intensity are 

the factors causing errors in deciding grade II tumors.  The main challenges in diagnosis are the 

lack of agreement among pathologists and reproducibility in grade II level malignancy.   

According to the Nottingham grading system [108], pathologists score nuclear 

pleomorphism as follows: 

 Small nuclei with very little increase in size are graded as type  I tumors. 

 Cell size  larger than normal  are graded as type II  tumors. 

 Significant variation in size and shape,  are graded as type III tumors. 

The Nottingham Bloom Richardson (NGS) system, in moderate nuclei, i.e. in grade II 

tumors,  with low reproducibility is the source of error which depends on a pathologist’s 

experience and eye interpretation [109].  A machine learning based automated scoring system 

can reduce chances of errors, save time, and provide a second opinion. 

An artificial neural network is an algorithm based on a neural network system to 

implement the designed mathematical model.  It learns from its past experience and errors in a 

non-linear parallel processing manner.  The most popular algorithm is feed forward back 

propagation (FFBP) [110].  The breast cancer prognostic tools can be designed based on ANN`s 

powerful learning and processing features in a probabilistic and noisy environment.  The neuron 
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is the basic calculating entity, which computes from a number of inputs and delivers one output 

comparing with threshold value and thus turned on (fired).  The computational processing is 

done by an internal structural arrangement consisting of hidden layers which utilize the back 

propagation and feed forward mechanism to deliver an output close to accuracy.  The learning is 

based on reinforcement (supervised) and unsupervised (no target) type.  The unsupervised 

mimics the biological neuron pattern of learning.  The proposed scheme of digital pathology for 

an automated breast cancer scoring system is shown in Figure 4.19 . 

4.5.2 Experiment Design for Classifier Optimization 

Two experiments are designed and performed on MATLAB and NeuroSolutions Inc.  

Using pattern recognition and a classification tool for breast cancer data analysis, two target 

values, i.e. benign and malignant tumors, are studied.  The data set is pre-loaded under the cancer 

inputs tab, which represents 9x699 matrix for 699 patients having 9 attributes based on 

uniformity of cell size, clump thickness, etc.  The database is categorical in nature, with 

dependent variables as predictors for the benign or malignant tumor class. 

Experiment I is performed for data classification to test various combinations of hidden 

neuron numbers by varying training data, validation and out-of-sample testing data percentage.  

Figure 4.20 shows the optimal results of 97.25 % of accurately classified mean (%) with standard 

deviation (SD) of 0.478486 at fixed 70% training, 15% validation and 15% out-of-sample 

independent testing at 15 hidden neurons.  The total run is 51 (each) for every set of testing.   

Experiment II is performed with a similar number of experimental iterations (runs)  by 

setting two variables, such as the validation (%) and testing (%) data sets.  The training (%) data 

set is kept fixed at 70 % for each 10, 15 and 20 hidden neurons, respectively.  The best results 
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are seen at 97.249%, whose accurately classified mean (%) is in agreement with the pathologist’s 

view about benign and malignant tumors. 

MATLAB results from two experiments show that as the training data increases, the 

classifier accuracy increases along with an increase in the number of hidden neurons from 10 to 

15, but it falls slightly as the neuron number changes to 20.  The same increasing trend shows at 

even fixed training (%) data as changed from 10 to 15 neuron, but falls again into 15 to 20 

segments.  At a fixed neuron number, the Gaussian trend appears as we move from the 60% 

training data set to 80%, with a peak at 70%.   

 

 

Figure 4.20  Breast cancer data classification results from MATLAB and NeuroSolutions 

classifier. 

An independent test is performed on the NeuroSolutions classifier simulation platform 

for a different set of parameters.  In the NeuroSolutions classifier, data fragmentation of 60% as 

training, 20% as cross validation check, and 20% out of sample testing are distributed.  Under 
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classifier run for 1000 epochs at an elapsed time of 16 seconds, the results are very encouraging, 

correctly classified as 99.1 % benign and 100% as malignant on training/active confusion matrix, 

agreeing very closely with pathologist scoring.  On cross-validation window, 98.1 % data is 

correctly classified as a benign tumor.   

 

 

Figure 4.21  Artificial Neural Network classifier result (a)-(c) data for 699 breast cancer patients. 

MATLAB and the NeuroSolutions network classifier are tested as a pilot study for breast 

cancer data classification.  The performance of classified results is shown as confusion matrices 

for training, validation, and testing.  Our hypothesis is to use the scoring system which may then 

be activated to display scoring on the basis of Nottingham Grading System (NGS), which will 

further be checked in parallel for a match with the pathologist score.  In the conventional breast 

cancer diagnostics and treatment, the approach is highly serial in nature and time consuming. 
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The accurate diagnosis and scoring depends on a pathologist’s experience and skills.  

Replacing the present analogue system with fully-automated digital healthcare solutions for 

electronic file sharing is highly demanding.  Physical transportation of slides for a second 

opinion and collaboration is a challenge.  This includes handling, packaging, logistics, and high 

chances of contamination, which leads to a loss of information.  In solutions, digitally scanned 

slides are transported electronically on web based software for real time viewing, expert opinion 

and efficient timely health care solutions.  Virtual microscopy is making this process more rapid 

and accurate with the use of technology. 
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CHAPTER 5: CONCLUSIONS, APPLICATIONS AND FUTURE WORK 

5.1 Conclusions 

In conclusion, the VOFET fabrication process has been developed and explored.  In order 

to fabricate VOFET, a novel solution processable low cost fabrication process has been evolved.  

The design and the main framework to build a low cost and low voltage organic transistor are 

outlined.  The cost to fabricate nano scale vertical transistors in a standard photolithographic 

environment is very high.  In the present study, spin coating and drop casting methods are 

employed to fabricate a VOFET device.  The main advantage of spin coating is the ease of 

deposition, where nanoscale film thickness can be attained.  By utilizing this approach, two 

major issues are resolved.  First, nanoscale channel length is achieved without the use of any 

photolithography process.  The Second achievement is low operational voltage because of 

nanoscale channel length.  Maintaining low cost and to complement the processing temperature, 

Kapton polyimide masking is adopted for the partition of stacking layers.   

The organic material is deposited through a wet conversion process.  The conversion 

process is an additional novelty of the device fabrication.  The fabricated devices are tested under 

a series of standard characterization processes such as electrical, metrological, and radiation 

tests.  Short channel effects are observed in VOFET devices during I-V electrical 

characterization.  To overcome this SCLC effect, the drop casting method is adopted to deposit a 

thick organic channel.  The vertical organic field effect transistor is emerging as a new type of 

organic transistor with several advantages, such as its low operational voltage, high current 
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density, and high frequency.  Although lateral and vertical transistors look almost similar in 

design, the working principle of vertical transistors is different in many ways.  The modification 

in the geometry provides the opportunities to reduce the fabrication cost.  The main advantage of 

VOFET fabrication is solution processability and ease of scaling down the channel length in 

nanoscale. 

The working of VOFET is mainly influenced by the SCLC effect, which is discussed in 

the following sections. 

5.1.1 Influence of SCLC Effect 

VOFET operation is governed by the electric field inside the channel of the device.  The 

working of the device is largely influenced by drain-source and gate-source fields, which acts in 

parallel to each other unlike in a lateral device where they act normally.  The electric field 

directions and charge movement inside the VOFET are shown in Figure 5.1 (b).  

In the circuit operation, the source terminal is common with respect to the gate and drain.  

This is a p-type VOFET, thus negative biasing is applied at the gate and drain terminals.  The 

organic transistor works in charge injection mode, i.e. the charge carriers, are injected into the 

organic material from outside the source electrode.  Initially at zero gate bias, drain-to-source 

voltage is supplied, which allows the charge carriers (holes) to fill the traps and form a current 

below the threshold level. 

As the source drain biasing level crosses the threshold value, a noticeable drain current 

starts flowing into the device at a zero gate value.  According to the MTR mobility model, the 

injected charge carriers fill the traps and are then released to reach at drain terminal to constitute 

the output current.  Inside the organic material, charge carriers follow the hopping mechanism to 

propagate through the active channel.  As the gate biasing is increased, the channel starts 
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building and widening (accumulation) near the edge of the source electrode and facilitates the 

drain current.  Output current modulation is noticeable (not substantial) due to asymmetric 

placement of the gate terminal from the source and drain, as shown in Figure 5.1 (b).   

 

 

Figure 5.1  Short channel effects (a) the SCLC region formation and (b) the circuit operation. 

This results in a poor ON/OFF ratio, thus, the vertical organic transistors operate in either 

the ON or OFF state [111].  The SCLC effect originates from the combined effect of the short 

channel length of device and contact effects.  The rate of injection is more than the rate of 

diffusion, which is explained by the drift diffusion model for charge transportation [112].  The 

excess injected charge starts accumulating near the electrode.  At this stage, more charge carriers 

are available inside the organic semiconductor, creating a high current density.  This makes 

VOFET a high current device at the low drain field.  As previously shown in Figure 4.5, the 

dependence of output current IDS on VDS is now reduced, with a power factor of n>2 of drain-

source voltage for a device of short channel length, i.e.  L=265nm channel length.  This SCLC 
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effect is demonstrated with a depletion region and is shown in Figure 5.1 (a).  The geometrical 

shape and design of the source electrode also contributes towards shielding and transporting the 

gate field.  Apart from the structural dissimilarity of a VOFET from a lateral OFET, the main 

factors which influence the VOFET performance are the gate field and the physical location of 

the gate terminal. 

5.1.2 Facts, Factors and Findings in Solution Processable VOFET 

Efforts have been made to study and explore the facts and factors involved in a solution-

processed VOFET fabrication.  The two prominent features of VOFET are: 

 Solution processed  

 Vertical geometry 

In addition to this, low cost and ease of fabrication are the promising advantages of 

VOFET.  Thus, the following structural parameters and the facts about VOFET fabrication 

which should be carefully kept in view are: 

 Source electrode design (step or perforated) which plays a crucial role in VOFET 

device performance.  

 Stacked overlapping layers which could increase the internal device capacitance.  

 Bottom gate electrode should be carefully designed to get the field effect. 

The above mentioned facts and factors involved in solution processable VOFET devices 

are illustrated in Figure 5.2.  These parameters are mainly on structural/geometrical design and 

electrical characterization basis.  The factors are collected from experimental observations which 

are experienced and observed during fabrication.  Materials used for device fabrication play an 

important role in the process development, such as maintenance of critical glass transition 

temperature.    
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Figure 5.2  Facts and findings about solution processed VOFET device. 

Apart from structural parameters,  there are some other important factors which should be 

carefully considered and calculated while designing and estimating the performance of a solution 

processable VOFET. 

The main factors are as follows: 

 Charge carrier distribution and profile inside the organic channel. 

 Electric field profile of both EDS and EGS. 

 Contact resistances, SCLC and short channel effects. 

 Surface engineering is required to minimize the contact effects and parasitic series 

resistances.  
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The VOFET device is designed, and fabricated using the low cost solution-processable 

method.  Figure 5.3  shows the research problems which are addressed and proposed based on 

the potential application areas.   

 

 

Figure 5.3  Summary of research problems addressed and proposed. 

The main research problems addressed and proposed are as follows: 

 VOFET solution processed devices are fabricated and a novel fabrication process 

evolved. 

 A flexible array of VOFET is proposed as cardiac arrhythmia sensors for 

integration into ICD and pacemaker devices. 
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 VOFETs are tested for radiation sensors. 

 VOFETs are proposed for imaging applications to detect and analyze the benign 

and malignant nuclear features of tumors.   

5.2 Applications 

The proposed application areas are mainly in biomedical domains.  VOFETs are low 

power high current devices, thus they could be used for biomedical implants to record 

biologically important information inside the human body.  It is required for implants to 

consume less power and last longer.  The main role of VOFETs has been proposed as sensors 

and stimulation electrodes.  

Flexible organic electronics is a fast emerging field of technology for applications in 

large area electronics [75].  OLED displays are already in the market in flexible mobile phone 

monitors and large area foldable displays.  OFET is the basic building block in flexible 

electronics such as in OLED displays, plastic TFT, E-book and wearable flexible electronics.  

Due to low mobility of organic materials, OFETs are consuming high voltage.  To overcome this 

problem, vertical organic FETs are emerging as an alternative and the first choice of researchers 

and industry as low cost, low voltage, and high current devices.   

In bio-electronic applications, organic materials have the natural advantage of interfacing 

with biological systems.  Organics materials have an inclination for the biological environment 

because of their weak molecular forces and low temperature processing.  The exchange of ions 

between organic materials and the biological milieu makes it obvious to use them for biosensor 

applications.  The biomedical area is VOFETs are more suitable for biology and electronics 

interfacing, such as in brain-machine interface [113].  Flexible biomedical implants are an 

extended application in BCI to record in-vivo brain activity using a flexible array of sensors 
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[114].  Organic materials have the ability to conduct electrons, holes, and ions.  Overall, 

VOFETs are excellent candidates for biomedical interfacing electronics. 

Neuroprosthetics is a fast developing area in therapeutics which utilizes the selective 

electrical stimulation of a tissue to restore lost neural functions.  The disorders of a nervous 

system can be restored back by selective stimulation of signal pathways.  It could be done by 

implanting microelectrode arrays for stimulation/deactivation of neural activity [115].  In a 

brain-machine interface, the penetrating microelectrodes record neural activity and  motor 

signals to interfaces with the machines [116].  Organic Electrochemical Transistors (OECT) hold 

great potential for adhesion of biological cells to grow over the electrolyte of an OECT 

transistor.  These new types of organic transistors have been successfully employed for 

biological and chemical sensor applications [117]. As known, flexible organic electronics have 

the natural advantage to interface with tissue to record and stimulate the neural activity inside the 

brain.  Flexible organic electronics can bend and stretch with the tissue movement into an 

aqueous milieu.  Large area organic electronics are expected to expand the scope of their 

application and prospects beyond sensors and actuators to the human-machine interface because 

of their ability to bend and stretch.   

The VOFET devices are proposed for a new generation of biomedical applications like 

flexible cardiac sensors and imagers in cancer applications.  The use of VOFETs as flexible 

cardiac sensors could be a forward step towards a new generation of cardiac implants for 

observing real time ECG patterns in high risk patients.  This could be time saving and helpful to 

reduce surgery cost.  In imaging application for breast cancer patients, a parallel approach is 

proposed to assist pathologists in grading benign and malignant tumors.  This approach will be a 

step towards digital pathology.  The idea is to share patient data with the pathologist for timely 
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diagnosis and therapy recommendation.  This will be helpful for patients in developing countries 

where the patient/pathologist ratio is very less. 

5.2.1  Novel Neuroprosthetics Using Flexible Organic Electronics 

Neuroprosthetics are therapeutics used for restoring sensory pathways for selective 

electric stimulation to restore lost neural functions.  In many diseases due to some underlying 

processes the sensory pathways become dysfunctional, which leads to impaired activity.  The 

microelectrodes are implanted to sense those signals directly from the motor cortex and decode 

the neural activity to a prosthetic arm or limb.  The basic point behind this activity is a good 

electrical interface between biology and electronics.  Thus, flexible organic electronics are 

interfaced with tissue to record the neural activity.  Flexible electronics could be a good 

candidate to establish an intact electrical contact between the tissue and electronics.  The 

conventional approach of using Utah and Michigan micro electrodes is an invasive technique 

that harms the tissue  with a loss of  electrical contact due to formation of glial sheath at the site 

of rupture [118, 119].  This approach could result in poor signal to noise ratio.  Non-invasive 

pressure sensitive monitoring arrays have been demonstrated [120].  The use of flexible organic 

VOFETs can have an advantageous edge not only to differentiate between actual signal and 

noise, but can also be helpful in on-site signal amplification.  Thus, the use of VOFETs is 

proposed for sensing and stimulation in advanced neuroprosthetics applications [121, 122].  

Figure 5.4(a) shows the interface of a VOFET with an enzymatic reaction system.  Changes in 

enzymatic reaction can alter the VOFET device current, which could be recorded for sensor 

applications.  The interface of VOFET electronics with reaction center could provide an 

opportunity to directly record changes in biological systems at the microorganism level.  Good 

electrical contact and selective signal sensing would be helpful in reduction of noise and in 
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providing an amplified signal for processing.  The action potential of a neuron can artificially be 

triggered by a VOFET device current as shown in Figure 5.4(b), which could be exploited for the 

neural stimulation purpose.  A VOFET can initiate a biological reaction by providing an external 

trigger.  To propagate an action potential, VOFET could control the minimum trigger by 

stimulating the neural tissue.  This approach can be very helpful in Parkinson`s or epilepsy 

diseases to deactivate the hyperactive neural activity or to initiate a neural activity in a basal 

ganglia for the release of dopamine.  The idea of novel neural prosthetics is shown in Figure 5.4. 

 

 

Figure 5.4  VOFET used in neuroprosthetics (a) sensor application (b) neural stimulation. 

5.2.2 Flexible Stimulating Probes 

In neuroprosthetics applications, the conventional approach of penetrating a Utah and 

Michigan type microelectrode array for recording signals from a 3D irregular shaped tissue is not 

sufficient.  In retinal and Electrocorticography (ECoG) implants, there is always a demanding 

need for a high resolution output picture [123].  As shown in previous reports, state of the art 

retinal implants use only 100 channel microelectrodes for creating a checkerboard type of image 
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for a patient suffering from visual disorders and diseases.  By using a dense array of curvilinear 

electrodes, it is possible to cover a large tissue area in the case of ECoG implants in 

neuroprosthetics or epilepsy [124, 125].  For a high resolution recording, the integration 

approach needs wires and access lines.  The wiring problem can be minimized by using an array 

or flexible grid of VOFETs.  Thus, the integration of VOFETs solves a wiring problem, helpful 

in on-site signal amplification, and provides a high signal-to-noise ratio.  Figure 5.5 shows the 

flexible VOFET array integration for covering the larger tissue area. 

 

 

Figure 5.5  VOFET integration into large area stimulation electrodes for novel neuroprosthetics 

applications. 

5.3 Future Work 

Vertical organic transistors have been recognized as low cost and low power electronic 

elements for future biomedical applications.  The organic materials have an inherent ability to 
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conduct both charge carriers (electrons and holes) and exchange ions in a natural biological 

environment.  In addition, organic materials are low cost and easily processable at room 

temperature.  Biocompatibility of organic materials makes them a suitable candidate for green 

and environmentally friendly technologies.  Integration of organic materials in vertical transistors 

can be explored for a new generation of bio-electronic applications.  Thus, convergence of all 

these areas could be exploited for future translational technologies. 

 

 

Figure 5.6  Integration of organic materials for new generation bio-electronic applications using 

VOFET transistors. 
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