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Abstract 
Barium strontium titanate thin film varactors have been widely investigated for the 

purpose of creating tunable front-ends for RF and microwave systems.  There is an 

abundance of literature observing the capacitance-voltage behavior and methods on 

improving tunability.  However, there is a lack of thorough investigations on the nonlinear 

behavior, specifically the third order intermodulation distortion, and the parameters that 

impact it.  There is also a research void that needs to be filled for nanoscale barium 

strontium titanate varactors as nanotechnology becomes increasingly prevalent in the 

design of RF and microwave components.   

This work aims to advance the understanding of nonlinear properties of barium 

strontium titanate varactors.   Temperature and voltage impacts on the third order 

intermodulation distortion products of BST varactors are observed by two-tone 

measurements.  The material properties of the films are correlated with the nonlinear 

behavior of the varactors.  Additionally, size reduction capabilities are shown by 

fabricating planar barium strontium titanate interdigital varactors with nanoscale size 

gaps between the electrodes.  Modeling techniques are also investigated. 
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Chapter 1 Introduction 

1.1 Motivation 
Consumers are constantly looking for faster, more portable, and affordable devices 

with greater functionality.  Electronic device and circuit miniaturization governed by 

Moore’s Law has played a key role in the pursuit of this goal.  Over the past 40 years, 

advances in semiconductor processing have helped to reduce transistor dimensions 

from 10µm down to 30nm [1].   

In an effort to keep up with Moore’s Law, there has been an explosion of research in 

nanotechnology, particularly involving the application of carbon nanotubes (CNTs) and 

nanoscale complementary metal oxide semiconductor (CMOS) devices.  Such 

applications include logic, energy storage using nanotube capacitors, and nanotube 

transistors for RF purposes [1-5].  As more frequency allocation becomes necessary, RF 

engineers are now looking towards the THz range for many applications including 

amplifiers and antennas for RFID tags.   Nanoscale devices such as nanotube radios 

and  antennas are capable of operating at that frequency range [6].  However, other 

arenas need to be investigated to allow more tunability and frequency agility at the 

nanoscale. 

1.2 Problem Definition 
There is an increased demand for low cost, frequency agile wireless communication 

systems which translates to an increased need for reconfigurable RF components for 

tunable front ends.  Due to their field dependent permittivity, ferroelectric thin films, such 
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as barium strontium titanate (BST), have been widely researched and recognized as a 

leading solution for this issue.  However, there is still a lack of knowledge regarding the 

nonlinear properties of BST devices and accurate models to predict the nonlinear 

behavior.  Additionally, there is a gap that needs to be bridged between the material 

properties of the BST thin films and the microwave performance of BST based 

microwave devices.   

As carbon nanotubes and other nanoscale technologies become more prevalent for 

RF and microwave devices, it is necessary to move in the direction of integrating 

nanoscale BST devices with existing nanoscale RF and microwave technology.  Doing 

so could produce more compact frequency agile systems capable of operating in the 

THz range and advancing the overall capabilities of RF systems.  Currently, there is little 

information on nanoscale barium strontium titanate devices; thus, a challenge is 

presented. 

1.3 Research Objectives  
The primary objective of this work is to examine the nonlinear behavior of BST 

varactors for RF and microwave applications.  A more detailed understanding of the 

nonlinear properties can assist in integrating BST varactors into RF and microwave 

components such as phase shifters, tunable filters and nonlinear transmission lines for 

modulation purposes.  Before a BST varactor is integrated into an RF component, it 

would be beneficial for its nonlinear performance to be well analyzed and properly 

modeled.  Therefore, a thorough investigation of existing BST varactor models is needed 

to see how accurately they predict the nonlinear behavior.   
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BST IDCs with microscale gaps have been widely investigated.  By fabricating planar 

BST varactors with nanoscale size critical features, a much higher capacitance density 

will be provided along with higher field strength in the BST film for given DC voltages 

and RF signal power levels.  Currently, there is limited literature discussing how the 

nonlinear behavior of BST varactors is impacted by reducing the critical dimensions 

down to the nanoscale, and this needs to be addressed.   

1.4 Contributions 
The major contributions of this work revolve around advancing the understanding of 

the nonlinear behavior of planar BST varactors.  Various parameters are considered 

while investigating the nonlinear behavior.  These parameters include material properties 

such as substrate of choice and BST film quality.  Other parameters examined, beyond 

the material influences, include externally applied DC bias voltage, temperature, and RF 

power.  Details on reducing the size of planar BST varactors by using nanoscale gaps 

instead of microscale gaps are also discussed.    

Single crystalline substrates have generally been the substrate of choice for growing 

high quality BST films.  However, in this work, a comparison of the nonlinear behavior is 

presented for BST varactors fabricated on single crystalline and polycrystalline substrate 

materials showing that higher tunability and more nonlinearity can be obtained from the 

cheaper polycrystalline substrates for a given film deposition technique.   

By completing two-tone measurements of BST varactors, third-order intermodulation 

distortion (IMD) products are analyzed with respect to input RF power.  A relative 

minimum or dip is observed in the third-order IMD.  This dip can potentially cause 

inaccuracies when trying to predict the power levels of the third-order IMD.  Additionally, 

it has been observed that the input RF power in which the dip is located along with its 
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depth are both dependent on the applied DC voltage and the temperature of the 

environment that the measured BST varactor is subjected to. 

Another aspect of this work involves the correlation of the nonlinear RF behavior of 

BST varactors to the material properties of the BST films used to fabricate them.  S-

parameter and two-tone measurements are taken on BST varactors that contain films of 

various surface roughness and grain size to observe how these two particular material 

properties impact the tunability and the power level of the third-order IMD products, 

respectively.  A correlation as such could be quite useful when designing BST varactors 

as precursor values for roughness and grain size of the film can be established for 

designing varactors and microwave components to yield specified nonlinear traits. 

Lastly, planar BST varactors with nanoscale gap sizes are presented.  It is shown 

that planar nanoscale varactors can be designed to give higher capacitance and 

tunability than planar varactors with microscale gap sizes.  Additionally, the area of the 

planar BST varactor can be reduced by over 80% when using a device with nanoscale 

gaps versus using one with microscale gaps.  This can be very useful for the purpose of 

size reduction for RF components and systems. 

1.5 Dissertation Structure 
Chapter 2 contains background information on ferroelectric materials.  Properties 

such as electric-field and temperature dependent permittivity are discussed.  A 

comparison of ferroelectrics and its competing technologies (semiconductor and MEMS) 

is presented.  Details are given on current RF applications of ferroelectric thin films along 

with current models and their shortcomings.   

The most significant element of a tunable ferroelectric RF device is the ferroelectric 

thin film.  Chapter 3 discusses techniques used in this work for depositing the barium 
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strontium titanate thin films for tunable capacitors in addition to post deposition 

treatment.  An important component of this research involves correlating the material 

properties of the BST thin film to the RF properties of the tunable capacitors that are 

fabricated with these films.  The thin film material properties examined include 

crystallinity, grain size and surface roughness.  Metrology tools including X-ray 

diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy 

(AFM) and procedures used for obtaining these parameters are discussed.   

Design and fabrication methods for the microscale and nanoscale capacitors are 

given in Chapters 4 and 5, respectively.  Simulation details are outlined for designing the 

planar capacitors.  Conventional lithography procedures are used for patterning the BST 

and constructing the electrodes for the microscale capacitors.  The conventional 

lithography tools used for this work yield devices with a limited critical dimension of 5µm 

which presents a challenge when trying to reduce the planar capacitor gap size down to 

the nanoscale.  Electron beam lithography is used to obtain the desired nanoscale 

dimensions for this work, and the procedures for this technique are discussed.   

Chapter 6 marks the transition from the materials and fabrication related work to the 

RF and microwave analysis.  The small-signal measurement techniques are outlined 

along with the methods used for extracting capacitance and calculating tunability from 

measured S-parameter data.  Details are given on the various types of measurement 

conditions used for analyzing the capacitance and tunability when devices are subjected 

to various temperatures.   

In Chapter 7, a review of previous nonlinear characterization methods of BST 

varactors is presented in addition to nonlinear RF measurement results from this work 

followed by a summary of device modeling presented in Chapter 8.   



6 

Concluding remarks are found in Chapter 9 summarizing the major contributions of 

this work and the potential areas to be examined for future work.   
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Chapter 2 Background of Ferroelectric Devices 

2.1 Introduction 
Over the past few decades, the use of wireless communication systems and their 

capabilities have grown at an exponential rate. Once utilized primarily for defense and 

emergency broadcast purposes, wireless systems are now commercially available to the 

public for enumerable applications from cellular phones and Bluetooth headsets to video 

game consoles with wireless control units. Below is a list of examples of common uses 

of wireless systems: 

• PDAs and internet access on mobile phones 

• GPS 

• Garage door openers 

• TV remotes 

• Headphones 

The use of wireless technology in common household products has become more 

and more feasible because of the miniaturization of the circuit components through 

semiconductor technology.  With the advancements in integrated circuit (IC) technology, 

large components that were once on breadboards and printed circuit boards were able 

to be reduced down to smaller chips.  Techniques, such as ion implantation, provided 

breakthroughs in easing the production of p-n junctions for semiconductor diodes and 

transistors (which can be used as capacitors in filter design and amplifiers respectively) 

and helped to overcome the challenges of size and bulkiness of vacuum tube 
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computing/systems.  RF circuit components were miniaturized down to the micro-scale 

allowing RF transceiver designs to be implemented on relatively smaller chips.  The 

reduction in required real estate paved the way for more complex frequency agile 

communication systems that include components such as tunable filters, matching 

networks, and phase shifters. 

2.2 Technology Comparison for Tunable Devices 
Semiconductor devices are typically fabricated with crystalline materials such as 

silicon, gallium arsenide, germanium [7].  These materials are well characterized and the 

processing methods are mature.  The tunability in semiconductor varactor diodes is 

caused by the variation in the width of the depletion region.  The width of the depletion 

region is adjusted by applying a reverse biased external electric filed across the junction. 

Changing the width of the region is similar to changing the thickness of the insulating 

material in a parallel plate capacitor. When the width changes, so does the capacitance.  

The junction is lightly doped to achieve high tunability.  These lightly doped layers, 

however, can be resistive, causing the varactor diode to be lossy at RF and microwave 

frequencies [8].  The tuning speed of semiconductor varactor diodes varies from type to 

type, but they are generally fast devices.  The switching is dependent on the transfer of 

electrons across the depletion or intrinsic regions and this happens on the order of ns to 

s depending on the type of diode [9].  The disadvantages of semiconductor devices are 

poor power handling capability along with increased losses at high frequencies. 

RF MEMS switches have the benefits of being able to handle moderately high power 

along with exhibiting low loss at RF frequencies [10].  Since they are physical switches 

that are either open or closed (not in contact or in contact), they have high isolation.  The 

fact that they are physical switches, however, comes with its downfalls as well.  Metal-to-
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metal contact RF MEMS switches have been known to fail by remaining in the closed 

positioned when they are supposed to be open due to the metal pads sticking to each 

other.  Although there has been significant progress in addressing this issue for metal-to 

metal contact switches, there is still a similar problem with capacitive RF MEMS 

switches in which the flexible cantilever beam sticks to the dielectric material due to 

charging.  They also have slower switching speeds compared to semiconductor devices 

(>1 s), and they can be expensive to manufacture due to the requirement of vacuum 

packaging [9].  Research with MEMS varactors has not accelerated like that of MEMS 

switches because of the abundance of low loss silicon and GaAs varactors [7].  

Additionally, they suffer from low tunability and bias-noise effects [7, 11]. 

Over the past few decades, ferroelectric materials have become popular candidates 

for tunable RF and microwave components [12-15].  Ferroelectrics have a relative 

permittivity that changes with an externally applied electric field.  When used as the 

dielectric/insulating material in capacitors, the device will take on the behavior of a 

varactor due to the capacitance value changing with an applied voltage.  Although the 

reported tunability may not be as high for ferroelectric varactors when compared to 

semiconductor varactors, they have fast switching speeds (ps – ns) and low losses at 

RF frequencies [16, 17].  Additionally, they are less prone to fail compared to MEMS 

switches since the tuning is caused by an electrical characteristic of the material instead 

of a mechanical switch.  They also have a symmetric capacitive-voltage relationship 

which can ease the design of biasing networks used with these types of devices. The 

main concern with ferroelectric devices is that they have to be operated above a certain 

temperature to avoid hysteretic behavior.  This is further explained in the next section.  

Table 2-1 summarizes the advantages and disadvantages of each of the previously 

mentioned technologies. 
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2.3 Ferroelectrics 

2.3.1  Theory of Ferroelectrics  
Some dielectric materials can exhibit spontaneous polarization in which the positive 

charges and the negatively charged electron cloud are not concentric when there is no 

external electric field being applied.  When this spontaneous polarization can be 

reversed by an electric field, then the material is defined as a ferroelectric [18].  

Ferroelectric materials can exist in two phases: ferroelectric (polar) phase and 

paraelectric phase.  While in the ferroelectric phase, the material is still subject to 

spontaneous polarization.  Therefore, it may not follow the same polarization-field 

relationship at all times while in the ferroelectric phase as shown in Figure 2-1 (a).  From 

a mathematical perspective, the polarization-field relationship is not functional for the 

ferroelectric phase since there could be multiple values of polarization for the one 

particular value of electric field.  Because of the hysteretic behavior of the polarization-

Table 2-1: Comparison of Technologies for Tunable RF Devices 
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field relationship while in the ferroelectric phase, the permittivity-field curve will not be 

symmetric.  These effects for the ferroelectric phase are shown in Figure 2-1 (a-b).   

Above some critical temperature, known as the Curie temperature, the spontaneous 

polarization in ferroelectrics disappears [19].  When this occurs, the ferroelectric material 

is said to be in a paraelectric phase.  Notice in Figure 2-1 (c), there are no longer any 

hysteretic effects observed in the polarization-field relationship.  The permittivity-field 

relationship is also symmetric about the y-axis as shown in Figure 2-1 (d).  Hence, the 

capacitance-voltage (C-V) curve will also be symmetric for a ferroelectric varactor while 

in the paraelectric phase.  Operating in the paraelectric phase is preferred when using 

ferroelectric thin films for microwave devices because it is easier to predict their behavior 

compared to the ferroelectric phase.  Additionally, the dielectric loss is greater in the 

ferroelectric phase due to increased friction in the domain walls caused by the 

spontaneous polarization [20]. 

2.3.2 Barium Strontium Titanate (BST) 
Several ferroelectric materials have been considered for tunable microwave devices 

such as PbTiO3 and LiNbO3 [21, 22] .  As of now, BST is one of the most attractive 

ferroelectric materials due to its high permittivity, high tunability and low loss at RF 

frequencies [17, 23].  BST has a perovskite crystal structure (ABO3) which is cubic in 

nature (shown in Figure 2-2) and has a chemical formula of BaxSr1-xTiO3.  Just like any 

other ferroelectric, it can be either in ferroelectric phase (exhibiting spontaneous 

polarization) or the paraelectric phase (no spontaneous polarization).  However, the 

Curie temperature for BST can be adjusted by varying the barium and strontium 

concentrations.  Previous research has shown that if the barium concentration is kept at  
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0.6 and below (x<0.6), then the Curie temperature of the BST material will be well below 

room temperature [24].  This is a very advantageous characteristic because microwave 

devices can be designed with BST films that have been engineered to operate in the 

 

Figure 2-2: BST Cubic Structure 

 

Figure 2-1: Field Dependent Polarization and Permittivity for Ferroelectrics 
(a) & (b): Ferroelectric Phase, (c) & (d): Paraelectric Phase 
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paraelectric phase at and above room temperature.  Therefore, the electrical behavior of 

a BST device in the paraelectric phase would be more stable with respect to 

temperature as shown in Figure 2-3 [9].  

 

For the purpose of this work, the BST will be in the paraelectric phase.  In the 

paraelectric phase, the crystal has no spontaneous polarization and the cubic structure 

is symmetric. When an E-field is applied, there is an ionic polarization that takes place 

within the BST molecule.  For simplicity, a 1 dimensional model with springs can be used 

to illustrate how the titanium ion moves about its equilibrium point [9].  When there is no 

applied E-field, the titanium ion rests at its equilibrium point at the center of the cubic 

structure as shown in Figure 2-4(a).  However, the titanium ion will shift in the direction 

of an externally applied field as shown in Figure 2-4(b), and the distance of the shift will 

depend on the strength of the electric field.  As the titanium ion shifts from its equilibrium 

point, its free energy increases and is characterized by a parabolic dependence [9].  This 

increase in free energy causes the titanium ion to begin to lose its capability to take on 

 

Figure 2-3: Permittivity vs. Temperature for Ferroelectric Materials 
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more energy.  In other words, the dielectric material will begin to lose its ability to take on 

more charge from the externally applied field.  The dielectric constant of a material 

indicates its charge (energy) storage capability: the larger its value, the greater its ability 

to store charge (energy) [19].  Figure 2-5 shows that the free energy of the titanium ion is 

inversely related to the permittivity of the film, theoretically. Therefore, the shifting of the 

titanium ion is the physical mechanism that allows the permittivity of the BST to change 

with an applied field, which in turn makes it a candidate for tunable microwave devices. 

2.4 BST Devices 
The previously described tunable characteristic of BST has made it a popular 

material to integrate into capacitors; hence making them varactors (tunable capacitors).  

BST varactors have a C-V relationship that is directly related to the permittivity-field 

relationship.  Figure 2-6 shows a plot of capacitance vs. voltage for a BST varactor 

simulated using Agilent’s Advanced Design System (ADS).  Notice the similarities that it 

has with the permittivity-field curve illustrated in Figure 2-5.  Compared to the previously 

mentioned  technologies, ferroelectric devices are appealing for microwave applications 

due to their simple fabrication process, fast analog-switching speed, compatibility with 

non-hermetic packaging, working frequencies above 5 GHz, compact size, and low DC 

control voltage [17]. 

BST varactors have gained significant attention because they can be used to make 

reconfigurable components for the front ends of wireless communication systems.  For 

instance, Kim et al have reported phase shifts of up to 135o using phase shifters that 

were designed with planar BST interdigitated capacitors (IDCs) [25].  Other examples of 

BST based phase shifters can be found in [26, 27].  In addition to phase shifters, BST 
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varactors have also been used for the design of phased array antennas, such as the 

steerable reflect-array mentioned in [28].   

Having the capability to adjust the frequency of operation in communication systems 

is an advantageous quality. Most tunable filters in defense and satellite communication 

systems rely on mechanically tunable filters or switched capacitor filter banks which 

 

 

 

Figure 2-5: Free Energy & Permittivity vs. Ti Ion Displacement & E-field, Respectively 

 

Figure 2-4: Ionic Polarization of BST 
(a) No Applied E-Field (b) With Applied E-Field 



16 

suffer from low tuning speeds and the lack of a continuous tuning range, respectively 

[29].  For this reason, tunable filters using BST varactors are being investigated.  Nath et 

al used BST interdigital capacitors (IDCs) to fabricate a bandpass filter in which the 

center frequency shifted from 2.44 GHz to 2.88 GHz using a bias voltage of up to 200V 

while maintaining a 1dB bandwidth of 400 MHz [13].  Other examples of tunable filters 

with integrated BST varactors are discussed in [30] and [31]. 

 

Impedance matching networks are essential in wireless communication systems.  

They are particularly used between the antenna and the front end of the system.  The 

antennas, primarily in handsets, are subject to the surrounding environment which may 

also change their input impedance [32].  For this reason, BST varactors have been 

integrated into impedance matching networks to make them tunable.  Vicki Chen et al, 

reported a tunable impedance transformation ratio of 2:1 to 4:1 using BST varactors [33].  

In [33], a tunable matching network is also designed to shift the operating frequency of 

the system to ensure that the antenna of the system was performing at high efficiency.  

Tunable impedance matching networks have also been reported in [34] and [35]. 

 

Figure 2-6: Capacitance (pF) vs. DC Voltage (V) for Simulated BST Varactor 
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As reported, there are several RF and microwave applications for tunable BST 

varactors.  However, more work needs to be done to fully understand the nonlinearity of 

BST devices in addition to developing proper models that will predict the nonlinear 

behavior.  
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Chapter 3 BST Film Deposition and Analysis 

3.1 Introduction 
Highly tunable and low loss barium strontium titanate films are necessary to produce 

tunable microwave devices.  There are several deposition techniques available to obtain 

BST thin films of high quality.  Popular methods include sol-gel deposition, pulsed-laser 

deposition (PLD), metal organic chemical vapor deposition (MOCVD) and RF sputtering 

[27, 36-41].  Table 3-1 shows the advantages and disadvantages of each method [42].  

Both sol-gel and MOCVD require the use of precursors which can be expensive [43].  

Another downfall of the sol-gel technique is that it’s difficult to control the composition of 

the film.  PLD generally produces films with good composition control; however, 

particulates from the laser ablation on the target are usually formed and deposited with 

the film.  Additionally, the deposition area is relatively small for PLD [44].  RF sputtering 

is a popular deposition technique for both research and industrial purposes.  This 

method produces smooth, stoichiometric films that adhere well to the substrate and are  

uniform in thickness over large areas [42].  For this work, RF sputtering is the method of 

choice for depositing BST thin films. 

Previous studies have shown that the BST film composition has an impact on the 

tunability [45-48].  As the barium content of the film increases, the tunability also 

increases.  The tradeoff of increasing the barium content is that the Curie temperature of 

the film rises with it.   
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As mentioned in the previous chapter, the BST films for this work will be kept in the 

paraelectric phase at room temperature to avoid hysteretic behavior in the devices; 

therefore, the film composition of the RF sputtering target must be chosen accordingly. 

For this work, Ba0.5Sr0.5TiO3 or BST (50/50) is chosen to ensure that the films will be in 

paraelectric phase at room temperature. 

Another important consideration for fabricating planar BST varactors is the substrate.  

In the case of planar structures, the BST film is grown directly on the substrate which will 

have a significant impact on the overall quality of the film.  Therefore, the substrate must 

be chosen carefully.   

Popular substrates for planar BST devices include magnesium oxide (MgO), 

lanthanum aluminum oxide (LAO), sapphire, and polycrystalline alumina [14, 49-55].  

The primary advantage of MgO, LAO, and sapphire substrates is that they are single 

crystalline materials.  When BST thin films are grown on single crystalline substrates, it 

is more likely that the films will be epitaxial leading to higher permittivity and increased 

Table 3-1: BST Deposition Techniques 
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tunability.  The caveat presented with using these types of substrates is the high cost.  

For this reason, polycrystalline alumina has been investigated for making tunable RF 

devices.  In addition to being a cheaper alternative when compared to the previously 

mentioned materials, research has shown that highly tunable BST devices can be 

obtained when BST films deposited on alumina go through post-deposition treatment 

[56, 57].  Although there are some comparative results of BST varactors fabricated on 

alumina versus MgO presented in this work, polycrystalline alumina is the primary 

substrate of choice for the bulk of the investigations.  Materials characterization is 

performed for BST films on alumina substrates only. 

3.2 RF Sputtering 
BST (50/50) films are sputtered onto polycrystalline alumina substrates using an AJA 

ATC 1800 Sputtering system courtesy of Dr. Gong’s group at the University of Central 

Florida.  Within the sputtering chamber, a high-energy plasma is created using an RF 

power level of 200 Watts along with argon and oxygen gases flowed into the chamber at 

a ratio of 20:2.5 respectively.  If the RF power is ramped up too quickly, the temperature 

of the ceramic target will also rise expeditiously causing the target to crack.  For this 

reason, the RF power supplied to the BST target is ramped up to 200 Watts at a rate of 

10 Watts/minute.  As the plasma bombards the BST sputtering target, BST atoms are 

released from the target and deposited onto the alumina substrates.  Other deposition 

parameters include a base pressure of 1.5 x 10-7 T, a deposition pressure of 5mT and a 

temperature of 400°C. 
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3.3 Annealing 
To achieve tunable BST RF devices, it is important that the BST films are crystalline.  

This implies that the atoms of the thin film must be organized in a periodic, repetitive 

fashion.  These clumps of crystallite structures are referred to as grains. If the films are 

amorphous (atoms randomly oriented), then they will most likely not be tunable.  

Previous studies show that post deposition annealing is a method that can be used to 

enhance the crystallinity of BST thin films [58-60].  When BST thin films are annealed, 

the grains increase in size which also increases the permittivity of the film.   

One of the objectives of this work is to analyze the RF properties of BST varactors 

with varied film qualities.  Therefore, samples of BST films on alumina are annealed for 

various times to obtain several experimental control points of BST film quality.  

Annealing times include 0, 3, 12, 18, and 24 hours.  Samples are annealed in a Fisher 

Scientific oven in an oxygen ambient environment at a temperature of 900°C.  Oxygen is 

circulated into the oven during the annealing process to prevent oxygen vacancies from 

forming in the BST film, in turn reducing the RF losses [61].  The temperature is ramped 

 

Figure 3-1: AJA RF Sputtering System 
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up to 900°C at a rate of 10°C/min.  After the annealing is completed, the samples are 

allowed to cool down to room temperature while oxygen is still flowing into the oven.  

Once the oven reaches room temperature, the oxygen is turned off and the samples are 

then removed.  

3.4 X-Ray Diffractometer Measurements (XRD) 
X-ray diffraction measurements can be used to analyze the crystallinity, grain size, 

and lattice constant (also known as interplanar spacing) of a material [62-64].  In XRD 

measurements, X-rays are transmitted at a range of incident angles. When X-rays are 

incident upon an atom within a material, they scatter in all directions.  However, if the 

atoms are arranged periodically, then there will be a certain angle in which the scattered 

X-rays will interfere constructively with one another and be diffracted, as shown in Figure 

3-2.  At this angle (θ) Bragg’s Law shown in Equation 3-1 will be satisfied, and the 

intensity of the scattered x-rays will be higher than at any other scanned incident angle 

[65].  The XRD data is generally plotted as diffracted x-ray intensity vs. scan angle, and 

a peak can be seen at the angle that satisfies Bragg’s Law.  The full width half max of 

this peak (B) along with the wavelength of the x-ray (λ  and θ can be used to determine 

the average grain size (t) using Scherrer’s Equation 3-2 the grain size (t) and the 

interplanar spacing can be obtained from x-rays that are diffracted from the sample for a 

range of incident angles.  K is a shape factor that is usually defined as 0.9. 

 

 

( )θ
λ

cosB
Kt =       Equation 3-2 

( )θλ sin2dn =       Equation 3-1 
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XRD measurements are taken on samples from each of the annealing times using 

the Philips XRD system shown in Figure 3-3.  The optics settings used for these 

measurements is listed in Appendix B.  The measured data is observed and analyzed 

using Xpert HighScore software.  Initially, data is collected using a typical powder 

diffraction scanning technique.  Figure 3-4 shows XRD data of both a blank 

polycrystalline alumina sample without BST and a polycrystalline alumina sample with a 

300nm thick blanket layer of BST (50/50) film that is annealed in oxygen for 12 hours.    

All of the peaks that are displayed in the top graph correspond to the various crystal 

orientations of polycrystalline alumina sample.  This is also true for the data set at the 

bottom of the Figure 3-4 except for the small peak located at 32°.  This peak 

corresponds to the BST thin film on top of the alumina substrate.   

 

Figure 3-2: XRD Illustration 
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Figure 3-4: XRD Data of Bare Alumina Sample (top) and Alumina/BST Sample (bottom) 

 

Figure 3-3: Philips XRD System 
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Since the BST peak is close to the noise floor when compared to the alumina peaks, it is 

difficult to perform a trustworthy analysis of the crystallinity of the BST film using the 

powder diffraction scan data.  Therefore, the grazing incidence method for XRD 

measurements is investigated. 

3.4.1 Grazing Incidence Technique 
In order to properly measure the BST films, grazing incidence XRD (GI-XRD) 

measurements are taken.  With this technique, the incident angle of the X-rays to the 

substrate is fixed at a low value typically below 1°.  The low angle of incidence allows the 

X-rays to be concentrated in the BST thin film and prevents them from penetrating the 

substrate.  Since the majority of the incident X-rays are contained within the thin film, 

most of the diffracted X-rays are going to be generated within the thin film instead of the 

substrate.  This will cause the intensity of the detected BST peaks to increase above the 

noise floor of the measured data while lowering the intensity of the substrate peaks.  

Figure 3-5 shows measured data collected by GI-XRD for a 12 hour annealed 

alumina/BST sample.  The incident angle is fixed at 0.6° which raises the intensity of the 

BST peak that was barely detected before using the powder diffraction technique.  This 

low angle of incidence also helps to detect more BST peaks.  The dominant peak at 32° 

corresponds to a <110> orientation.  However, Figure 3-6 shows that when the GI-XRD 

method is used to measure non-annealed BST films on alumina, no peaks are detected 

for the BST film.  This confirms that the non-annealed BST films are amorphous and 

post deposition annealing is needed to make them polycrystalline. 

GI-XRD measurements are used to collect data for each of the annealing conditions 

used.  To extract the grain size for each annealing condition, the FWHM value of the 

dominant peak is used from the XRD data.  However, a close observation of the peaks 
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shows that other than the non-annealed films, the FWHM does not vary with respect to 

annealing time.  Therefore, the extracted grain size calculated from Scherrer’s Formula 

does not vary either.  This problem stems from either the grain size of the film not 

changing significantly for the various anneal times or from limitations of the available 

diffracted beam optic configurations of the Philips XRD system.  To resolve this issue, a 

lanthanum boron (LaB6) powder standard from the National Institute of Standards and 

Technology (NIST) is measured using the same GI-XRD method that is used to measure 

the alumina/BST samples.  The NIST standard theoretically has no peak broadening 

affiliated with it; therefore, it is used to determine the instrumental peak broadening that 

is caused by the Philips XRD system.  The FWHM of the peak observed from the NIST 

standard is measured to be the same as that of the dominant peaks from the alumina 

BST/samples.  This implies that the instrumental peak broadening caused by the XRD 

system is so large that the peak width of the measured data cannot be determined 

accurately using GI-XRD with the available beam optics.  Although using the GI-XRD 

Figure 3-5: GI-XRD Data of 12 Hour Annealed BST on Alumina 
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method with the available system proves to be useful for observing the crystallinity of the 

BST thin films, it cannot be used to observe the variation in grain size as initially 

planned.  Therefore, alternative methods are needed to determine the grain size of the 

BST films.   

 

3.5 Transmission Electron Microscope Analysis 
Transmission electron microscopy (TEM) is investigated to measure the size of the 

grains within the BST thin films.  TEM is powerful enough to achieve atomic-scale 

resolution [66, 67].  Using TEM, electrons are focused into a very narrow beam using 

electromagnetic lenses.  The electron beam passes through and interacts with the 

sample causing some of the electrons to scatter.  The unscattered electrons travel 

through the specimen and collected onto a fluorescent screen creating a shadow image 

of the specimen.  Since the electrons are passing through the sample, the image 

produced gives a view of the sample interior.  In order for the electrons to pass through 

Figure 3-6: GI-XRD Data of Non-Annealed BST on Alumina  
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the sample, it has to be very thin.  Therefore, careful procedures must be followed to 

prepare the alumina/BST samples for TEM measurements.   

3.5.1 TEM Sample Preparation 
To measure the grain dimension of the BST thin films by TEM, a very thin cross-

sectional fragment must be extracted from the alumina/BST samples.  This is done using 

focused ion beam (FIB) milling.  Since the alumina substrates are insulative, a thin 

blanket layer of gold-palladium is sputtered onto the alumina/BST samples to avoid 

charging effects during the FIB milling process.  Once the sample is loaded into the FIB 

chamber, a platinum bar (10µm long x 1µm wide x 1µm thick) is deposited on the area to 

be extracted for TEM measurements.  The platinum protects the region to be extracted 

during the trench milling process.  A beam of gallium ions is used to mill a trench 

surrounding the area to be extracted from the alumina/BST sample.  Once extracted, the 

fragment is mounted onto a special holder for TEM measurements as shown in Figure 

3-7.  Figure 3-8 shows that the thickness of the sample is about 100nm, which is thin 

enough for TEM measurements. 

 Figure 3-7: SEM Image of Sample Prepared for TEM 
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3.5.2 TEM Measurements 
TEM measurements are performed using the Tecnai T20 system shown in Figure 

3-9.  Initially, a low magnification is used to identify the BST layer within the cross-

sectional sample.    Figure 3-10 shows a low magnification TEM image of a sample with 

a BST thin film that is annealed for 12 hours.  Small particles/grains are visible 

throughout the BST film layer at a low magnification.  To accurately measure the size of 

the grains, the magnification is increased to 400,000X to see the atomic planes within 

the grains.  Figure 3-11 shows an image with increased magnification of a grain within 

the BST film annealed for 12 hours.  Within a grain, the atomic planes are all aligned in 

the same direction.  A grain boundary is reached when the alignment changes.  This 

particular grain is measured to be 26nm based on the arrangement of the atomic planes.   

TEM is used to obtain an average grain size for each annealing condition used.  The 

TEM software used lacks the statistical analysis capability for calculating the average  

  

 

Figure 3-8: SEM Image of Sample Prepared for TEM Displaying Thickness 
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grain size for a given observed area.  Therefore, individual grains are randomly selected 

from each sample and measured.  From there, an average grain size is calculated for 

each annealing condition.  Grains are easily observed and measured for each of the 

 

Figure 3-10: TEM of Prepared Sample with 12 Hour Annealed BST 

 

Figure 3-9: Tecnai T20 TEM System 
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annealing times except for the non-annealed samples.  As shown in Figure 3-12, the 

atoms are randomly positioned throughout the film; therefore, there are no atomic planes 

in place (no grains) to measure.  The average grain size for each annealing condition is 

shown in Figure 3-13.  There is a significant increase in grain size from non-annealed 

films to those annealed for 3 hours.  However, there is very little difference in grain size 

of films annealed for 3 hours and 12 hours.  Another increase in grain size is observed 

for the 18 hour and 24 hour annealed films when compared to the 12 hour annealed 

films.  

 

3.6 BST Film Roughness 
In addition to crystallinity, the surface roughness of the BST film was also monitored 

with respect to annealing time.  The film roughness was measured using the Digital 

Instruments atomic force microscope (AFM) shown in Figure 3-14 .  Using this 

technique, a flexible cantilever with a sharpened tip is brought into close proximity of the 

 

Figure 3-11: TEM of 12 Hour Annealed BST 
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sample surface, but it never makes physical contact with the sample.  Van der Waals 

interactions between the atoms of the BST film surface and the cantilever tip cause the 

cantilever to bend as it scans across the sample [68-70].  A laser and detector within the 

piezohead unit of the AFM tool are used to determine how far the cantilever is deflected 

 

Figure 3-13: Average Grain Size vs. Annealing Time 

 

Figure 3-12: TEM of Non-annealed BST on Alumina 
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from its natural position due to the atomic interactions between the tip and the film 

surface.  This information is then used to plot the surface topography of the sample.           

 

Three samples from each annealing condition are measured with the AFM tool using 

a 1µm x 1µm scan area.  Each sample is scanned in three different areas.  Two-

dimensional plots of the surface topography of the BST film from each annealing 

condition are displayed in Figure 3-15.  No grains are observed on the surface of the 

non-annealed BST films.  However, as the BST films are annealed, grains begin to form 

and appear to coagulate with annealing time.  This also confirms where the difference in 

the XRD data of the annealed and non-annealed BST films stems from.  When 

considering the AFM measurements of the amorphous non-annealed BST film, there are 

no grains/particles observed; therefore, no peak in the XRD data for this sample is 

detected either. 

   

(a)     (b) 

Figure 3-14: Atomic Force Microscopy System  
(a) AFM System (b) AFM Piezohead 
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The surface roughness of the film is also impacted by annealing.  Figure 3-16 shows 

the relationship of the surface roughness versus the annealing time for the range of 0 

hours – 24 hours.  The average surface roughness increases by three fold when 

comparing non-annealed films to those that were annealed for just three hours.  The 

subsequent increments of annealing time following three hours did not cause as much of 

a change in the observed film roughness; however, there is a monotonic increase in 

roughness versus annealing time. 
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(a)         (b) 

 

 
(c)       (d) 

 

 
(e)  

Figure 3-15: AFM Measurements of BST Annealed for Various Times 
(a) 0hrs (b) 3hrs (c) 12hrs (d) 18hrs (e) 24hrs 
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Figure 3-16: BST Film Roughness vs. Annealing Time 
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Chapter 4 Design and Fabrication of Microscale Planar BST Varactors 

4.1 Introduction 
Both parallel plate and planar device configurations have been used to make BST 

varactors for tunable RF components [30, 71-78].  The parallel plate structures come 

with the advantage of higher tunability due to the overall structure of the device.  Planar 

structures; however, have the advantage of being easier to fabricate.  This chapter 

discusses further details on the tradeoffs of both types of devices.  Additionally, design 

specifications along with fabrication procedures are explained. 

4.2 Parallel Plate vs. Planar Structures 
Parallel plate or metal-insulator-metal (MIM) devices are popular because of their 

high tunability compared to planar structures.  With the BST film being sandwiched 

between the two metal electrodes, the electric field of the external bias is mostly 

confined within the film resulting in higher capacitance and tunability than those obtained 

from planar structures [38].  The field confinement for a parallel plate and planar 

structure BST varactor is illustrated in Figure 4-1.  The disadvantage of MIM structures is 

the fabrication complexity presented by the bottom electrode.  As discussed in the 

previous chapter, the BST films typically have to be subjected to a post deposition 

anneal for enhancing crystallinity.  The metal that is chosen for the bottom electrode 

must be able to withstand the high temperature of the annealing process for extended 

periods of time.  For this reason, platinum is usually the metal of choice for the bottom 

electrode.  However it is very expensive.  In addition to that, hillocks can form between 

the platinum and the BST layers forming a dead layer of non-tunable BST [79, 80].    
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Planar structures are easier to fabricate than MIM structures [26, 81].  In this case, 

the BST is deposited directly onto the substrate.  Since there is no bottom electrode, 

there is no concern about forming hillocks when the BST is annealed.  Once the BST is 

annealed, the top electrodes are fabricated on top of the BST film. The tradeoff with this 

type of structure is that the electric field confinement is sacrificed.  The electric field from 

the external bias is no longer completely confined within the film.  As shown in Figure 

4-1, only a portion of the electric field between the two electrodes fringes into the BST 

film, reducing the capacitance and tunability of the device.  In an effort to focus more on 

modeling instead of fabrication, it was decided to use planar BST varactors for this work.   

The capacitance and the tunability of planar BST varactors can be varied by 

adjusting the length of the gap between the electrodes and the gap width.  As the gap 

width is reduced, the capacitance increases.  Additionally more of the E-field is confined 

within the film, increasing the tunability.  The length of the gap can also be adjusted to 

modify the capacitance.  By meandering the gap, a given surface area can yield a higher 

capacitance value.  This is what makes the interdigital structure attractive for planar BST 

varactors.   

4.3 IDC Design and Simulations 
When designing the interdigital BST capacitors used for this work, the frequency 

range of the nonlinear measurement test-bench must be considered.  For a given 

capacitance value, a capacitor can potentially appear as an RF open or an RF short 

depending on the frequency of the RF signal that is incident to the capacitor.  The goal is 

to make sure the capacitor’s behavior falls somewhere between the two extremes when 

performing the nonlinear characterization.   
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S-parameter simulations of several static capacitors are completed using Agilent’s 

Advance Design System (ADS).  The simulation schematic shown in Figure 4-2 is used 

to observe the reactance at 1GHz for a range of capacitance values (1 – 30pF).  As 

shown in Figure 4-3, there is a significant change in the reactance at low frequencies 

when comparing the 1pF, 5pF, and 10pF capacitors.  However, the reactance does not 

change much for the simulated capacitance values above 10pF.  Additionally, the 

reactance is small for the larger values of simulated capacitance.  This implies that the 

capacitors larger than 10pF will resemble an RF short at 1GHz  which is not suitable for 

the nonlinear characterization of the BST varactors (more details in Chapter 7).  

Therefore, it was decided to aim for capacitance values in the range of 1 – 10pF.     

 

 

Figure 4-1: BST Varactor Structures  
(a) MIM Structure (b) Planar Structure 
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Figure 4-3: Impedance vs. Frequency for Various Capacitance Values 

 

Figure 4-2: ADS Schematic for Static Capacitor Simulation 

Zin
Zin1
Zin1=zin(S11,PortZ1)

Zin

N

21

DC_Feed
DC_Feed2

1

21

DC_Block
DC_Block1

121

DC_Feed
DC_Feed1

1

2

Term
Term2

Z=50 Ohm
Num=2

1

21

DC_Block
DC_Block2

1

1 2

V_DC
SRC2
Vdc=V_DC V

1

2

Term
Term1

Z=50 Ohm
Num=1

21

C
C1
C=1 pF



41 

To design the photolithography mask for the conventional IDCs, simulations of 

various IDC geometries are performed using Ansoft’s High Frequency Simulation 

Software (HFSS).  Since the permittivity and loss tangent of the BST films used were 

unknown at the time, values for both are pulled from literature to run the simulations [82, 

83].  Using a permittivity of 500 and loss tangent of 0.02 for the BST film, IDC 

geometries using 5µm gaps are simulated.  This gap size is chosen because it is the 

smallest gap that can be obtained consistently using the tools available for conventional 

lithography.  An IDC with 300nm of patterned BST beneath the fingers is simulated with 

5 finger pairs using finger dimensions of 400µm long by 50µm wide.  A schematic of this 

IDC is shown in Figure 4-4.  The simulated capacitance of this device is 4.016pF, which 

is approximately in the middle of the capacitance range that was aimed for.  To allow for 

deviations in the actual permittivity and the simulated permittivity and keep the measured 

capacitance within the desired range of 1pF – 10 pF, IDC designs with 3 finger pairs and 

7 finger pairs are also included in the mask layout.   

 

 

 

Figure 4-4: 5 Finger Pair BST IDC Design 
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4.4 Fabrication 

4.4.1 Patterning BST 
The first step in fabricating the interdigital capacitors is to pattern the BST film that 

was deposited on the alumina substrates.  Initially, Shipley 1813 positive photoresist is 

used as a mask layer to prevent sections of the BST layer from being etched.  The 

samples are submerged in 6:1 buffered oxide etchant (BOE) to pattern the BST.  

Although this method is adequate for etching non-annealed BST films, the BOE solution 

is not strong enough to etch the annealed BST films.  Several variations of diluted 

hydrofluoric acid solutions (HF and water) along with diluted hydrochloric acid solutions 

are used in an attempt to etch the annealed BST films.  These diluted solutions are 

strong enough to etch the annealed films; however, the solutions are so strong that they 

undercut the masking photoresist and etch the films laterally.  This leaves BST patterns 

with damaged edges and pinholes after wet etching.  The effects of diluted HF and 

diluted HCl are shown Figure 4-5.      

Another option to obtain cleaner, non-damaged annealed BST patterns, is to use 

deep reactive ion etching (DRIE).  DRIE provides an anisotropic etching method for 

patterning the BST; therefore, there is no need to worry about undercutting the mask 

layer while etching.  The recipe used is more of a physical bombardment on the etched 

surface than a chemical reaction; so, the mask layer has to be thick enough to withstand 

the etching recipe until the BST film is completely etched down to the alumina substrate.  

Because of this, Shipley 1827 is used in place of 1813 when using DRIE to etch the 

annealed BST films.  Once the films are etched, the remaining resist of the mask layer is 

stripped from the samples using oxygen plasma. More details of the recipe are given in 

Appendix B.  
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4.4.2 Electrodes for IDCs 
The electrodes for the IDCs are fabricated on top of the BST patterns by using 

Futurexx 3000PY negative photoresist.  After the resist is patterned, the metal is 

deposited by thermal evaporation, A metal thickness of 800nm is used.  Initially, a metal 

stack consisting of Cr/Ag/Cr/Au (15nm/700nm/15nm/100nm) is considered because it is 

a cheaper alternative than using Cr/Au (15nm/800nm) only.  The Denton DV-502A 

thermal evaporator used to deposit the metal is capable of housing two metal sources at 

a time.  To put down the Cr/Ag/Cr/Au metal stack, the chamber has to be pumped down 

to a pressure of 2 x 10-6 Torr and Cr/Ag has to be deposited first.  The chamber has to 

be vented to atmospheric pressure to open it and exchange the Ag source for the Au 

source.  After pumping the thermal evaporator chamber back down, the Cr/Au layer is 

then deposited on top of the Cr/Ag layer.  A lift-off is performed using Futurexx RR41 

resist remover heated to 100°C, leaving the metal electrodes on top of the patterned 

BST.   

After fabricating the first round of IDCs, they are tested for tunability by applying an 

external DC voltage.  Upon applying a voltage in the range of 25V – 30V, burning is 

 
(a)        (b) 

 
Figure 4-5: Damaged BST Films from Wet Etch  
(a) Diluted HF (b) Diluted HCl 
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noticed within the gaps of the IDCs as shown in Figure 4-6.  At the time, it was unknown 

whether the burning was due to the BST film breaking down or due to faulty electrodes.   

In an effort to isolate the cause of the burning effect with DC bias, IDCs are 

fabricated on bare alumina samples without BST using two different metal stacks.  The 

initial metal stack of Cr/Ag/Cr/Au (15nm/700nm/15nm/100nm) is one of them.  The 

second metal stack consists of Cr/Au (15nm/800nm).  Both sets of metal are deposited 

by thermal evaporation.  Unlike the deposition process for the Cr/Ag/Cr/Au metal stack, 

vacuum is never broken when depositing the Cr/Au metal stack.  Current-voltage 

measurements are taken on both sets of electrodes by sweeping DC voltage from 0V – 

100V across the gaps of the IDCs using DC probes.  The IDCs consisting of the 

Cr/Ag/Cr/Au metal stack started to draw current once the DC voltage reached the range 

of 50-75 Volts.  Figure 4-7 shows a typical I-V plot for the IDC electrodes with the 

Cr/Ag/Cr/Au metal.  At low voltage levels, no measureable current is being pulled from 

the device; however, 10mA of current is drawn once the swept voltage reaches 60V.  

The electrodes using this metal stack also appear to burn with increasing DC voltage as 

displayed in Figure 4-8.  Since the same burning phenomena is observed with and 

without the BST film while using the Cr/Ag/Cr/Au this metal stack, it is obvious that the 

burning effect is not being caused by any defects of the BST film. 

The IDC electrodes that are fabricated using Cr/Au pull no measureable current 

throughout the entire range of swept voltage.  The current versus voltage data is shown 

in Figure 4-9.  There are no spikes or outliers observed in the data which implies that the 

amount of current being pulled or lack thereof is consistent throughout the duration of 

the DC testing.  As shown in Figure 4-10, the Cr/Au electrodes sustain no visible 

damage with applied voltage up to 100V.   
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At this point, the Cr/Au metal stack becomes the material of choice for the IDC 

electrodes.  It allows the for the BST film to be biased with a high externally applied 

electric field without suffering from physical defects which could cause discrepancies in 

the capacitance and tunability extraction.  It remains unknown whether the burning of the 

Cr/Ag/Cr/Au electrodes is due to some faulty characteristic of the silver that is exploited 

with applied bias or if there is an issue with the overall quality of the metal stack because 

 

Figure 4-7: Current vs. Voltage for Cr/Ag/Cr/Au Electrodes 

 

Figure 4-6: Burned BST IDCs with Cr/Ag/Cr/Au Metal Stack after Application of 25V 
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vacuum has to be broken in the process of the deposition.  The entire process flow for 

the fabrication of the IDCs using the Cr/Au metal stack for the electrodes is shown in 

Figure 4-11 with more details of the recipes listed in the Appendix B.  Examples of the 3, 

5, and 7 finger pair BST IDCs are shown Figure 4-12. 

 

 

 

 

 

Figure 4-9: Current vs. Voltage for Cr/Au Electrodes 

           
(a)    (b) 

 
Figure 4-8: Cr/Ag/Ac/Au Electrodes  
(a) Before Biasing (b) After Biasing 
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Figure 4-11: Microscale IDC Fabrication Process Flow Chart 
 

  
(a)     (b) 

 
Figure 4-10: Cr/Au Electrodes  
(a) Before Biasing (b) After Biasing 
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(a)              (b) 

 

 
(c) 

 
Figure 4-12: BST IDCs with 5µm Gaps  
(a) 3 Finger Pairs (b) 5 Finger Pairs (c) 7 Finger Pairs 
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Chapter 5 Nanoscale IDCs by Electron Beam Lithography 

5.1 Introduction 
To further enhance tunability, the gap size of the planar structure varactors needs to 

be reduced to enhance the E-field confinement within the BST film.  Additionally, making 

tunable nanoscale BST varactors  will help to ease integration of tunable BST varactors 

into full nanoscale tunable receivers.  Conventional photolithography using contact mask 

aligners similar to the one used for the work in the previous chapter limits the varactor 

gap sizes to the micrometer range.  Electron beam lithography (EBL) is used to reduce 

the gap size down to the nanoscale.  This chapter explains the procedures used to 

fabricate the nanoscale varactors used for this work.     

5.2 Fabrication Process Flow 
The overall concept of the nanoscale BST varactors is very similar to that of the 

microscale designs discussed in the previous chapter.  The process flow chart is shown 

in Figure 5-1.  The BST layer is patterned by DRIE etching using 1827 resist as a mask.  

ZEP, a positive EBL resist, is used for nanoscale lithography.  A layer consisting of 

Cr/Au patterns for EBL alignment marks is fabricated using 3000PY litho and liftoff.  The 

significance of this layer will be further discussed later in this chapter.  To avoid charging 

effects that are encountered from the electron beam hitting the insulative alumina 

substrates, a conductive spin on polymer is spincoated on top of the ZEP resist.  A 

comparison of writing patterns with and without E-spacer on alumina displayed in Figure 

5-2 shows why the E-spacer is necessary for insulative substrates.  After the patterns 

have been written with the electron beam, the E-spacer is removed by ultrasonication in 
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water.  The ZEP resist is then developed using Xylenes.  A thin metal layer of Cr/Au 

(15nm/125nm) is deposited followed by a liftoff in anisole, leaving electrodes with 

nanoscale gaps.   

The areas of the resist that are exposed to the electron beam will be developed and 

rinsed away.  Metal will be deposited in these exposed areas and a lift-off will be 

performed to leave the metal patterns.  After the exposure and develop, there will be 

very thin traces of resist that will be used to create the nanoscale gaps in the varactors 

when the lift-off is performed.  Therefore, it is important to make sure the resist is not 

being over-exposed by the electron beam when the nano-patterns are written. In an 

effort to reduce the possibility of devices being shorted, the electron beam current is 

reduced to write regions of the patterns that are close to the gaps.  Instead of using 

40nA, a 1nA beam current is used to write the outer 500nm areas of the electrode 

patterns.  This is shown in  

Figure 5-3 using an illustration of a line gap device. 

5.3 Exposure Dose Tests 
Dose tests are performed on bare silicon and alumina substrates as a part of the 

process development to derive the optimum exposure conditions for nanoscale features.  

It also allows one to determine the smallest achievable gap size for each structure type.   

An array of different patterns featuring various gap sizes is written repeatedly at various 

doses to see which dose yields the best results consistently.  The dose test matrix 

consists of tapered series gap, line gap, and interdigitated structures as shown in Figure 

5-4.  The design gap dimension for each structure is shown in Table 5-1. 
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After writing several arrays using doses in the range of 100 – 180 mJ/cm2, 160 

mJ/cm2 proves to be the optimum dose value to use.  Most of the features written using 

doses of 170 and 180 mJ/cm2 are shorted after performing the liftoff.  Also, it is observed 

that structures with the 25nm tapered gap design along with the 100nm line gap design 

are consistently shorted no matter what dose value is used.  Therefore, the minimum 

design gaps used are 50nm, 150nm, and 200nm for the tapered gap, line gap, and IDC 

structures respectively. 

 

Figure 5-1: EBL Process Flow 
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Figure 5-3: Overlap of High and Low Current Patterns 

 

Figure 5-2: Impact of E-spacer  
(a) Without E-spacer (b) With E-spacer 
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5.4 EBL Alignment 
The EBL portion of this work is done at the Center for Nanoscale Materials (CNM) 

within Argonne National Laboratory using the JEOL JBX-9300FS EBL system, shown in 

Figure 5-5.  The system is equipped with a semi-automatic alignment tool that can be 

used to write the nanoscale features so that they are properly aligned to previous 

fabrication layer in the design; the BST layer in this case.  In order to use this feature, 

alignment marks are included in the design of the BST mask layer so that the EBL 

system could use them as a point of reference when determining where to write the 

nano-patterns. 

A total of at least four alignment marks are necessary to use the alignment feature of 

the JEOL EBL system.  The local CAD design coordinates for the center of each 

Table 5-1: Dose Test Array Dimensions 
Tapered Gap 25nm 50nm 100nm 200nm 
Line Gap 100nm 150nm 200nm 250nm 
IDC  200nm 300nm 400nm 

 

Figure 5-4: Dose Test Layout 



54 

selected alignment mark to be used must be known.  Additionally, the corresponding 

global coordinates of the stage position within the main chamber of the EBL system 

must be known for each alignment mark used.  If the samples are loaded into the EBL 

system without the user’s knowledge of the global coordinates of the alignment marks, 

the user would have to turn on the SEM and blindly drive the stage around to find the 

marks.  The problem with this is that the SEM will expose all of the ZEP resist within the 

viewing window as the user tries to locate the marks, which would potentially yield a lot 

of shorted devices by the time the entire process flow is completed. 

 

 

To avoid the aforementioned issues, the Pre-Alignment Microscope System (PAMS) 

Metrology Tool is used to get a rough estimation of the global stage coordinates for the 

alignment marks.  Once the samples are prepared with ZEP and E-spacer, they are 

mounted on the JEOL cassette.  The JEOL cassette is loaded onto the PAMS tool which 

 

Figure 5-5: JEOL JBX-9300FS EBL System 
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consists of an inverted microscope and a mock stage of the JEOL EBL system.  Both the 

cassette and the PAMS tool are shown below in Figure 5-6.  The mock stage is 

connected to a PC with PAMS software that displays the global coordinates of the mock 

stage.  Using the microscope, the user can position the mock stage so that the targeted 

alignment marks appear in a cross hair on the monitor and the global stage coordinates 

can be observed.  Once the global stage coordinates are obtained from the mock stage, 

the cassette is loaded into the JEOL EBL system.  The known global coordinates can be 

entered into the JEOL EBL system so that the stage is driven to the exact coordinates of 

the targeted alignment marks.  The SEM is then turned on to verify that the alignment 

marks are in the near vicinity of the coordinates that are entered. 

 

 

 

 

 

 

 

The previously mentioned alignment procedures are initially attempted using 

alignment marks that were patterned in the BST layer from the DRIE process.  However, 

when trying to use the semi-automatic alignment tool of the JEOL EBL system, the BST 

alignment marks do not provide enough back scattered electrons for the alignment tool 

to detect the marks.  Therefore another mask layer has to be introduced to the process 

 

Figure 5-6: JEOL Accessories  
(a) Cassette (b) PAMS Metrology Tool 
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to put down a layer of Cr/Au for the EBL alignment marks on top of the existing BST 

alignment marks.  The metal provides enough back scattered electrons so that the 

alignment marks can be detected by the semi-automatic alignment tool of the JEOL.   

Caution must be exercised when choosing the target alignment marks for the semi-

automatic alignment tool.  If the chosen alignment marks suffer from a bad lift-off and 

have flags or adhesion issues with the surface, there is a possibility that the alignment 

tool within the JEOL will not recognize the alignment marks properly or not recognize 

them at all.  Figure 5-7 shows examples of good and bad alignment marks.  If bad 

alignment marks are used for the semi-automatic alignment tool of the EBL system, the 

nanoscale EBL patterns can be misaligned, stretched, and/or compressed with respect 

to the BST layer resulting in devices like the one shown in Figure 5-8.  If the IDC 

electrodes are not fabricated on top of the patterned BST, the measured capacitance of 

the device along with its tunability will be reduced.  If the alignment marks do not have 

any major flaws then the devices will come out as they are designed with the entire 

meandered gap of the IDC being on top of the patterned BST such as the one displayed 

in Figure 5-9.   

A variety of designs are used for the nanoscale IDCs so that a wide range of 0V bias 

capacitance values could be obtained for RF experimental purposes.  The device shown 

in Figure 5-9 has 3 finger pairs, and the IDC fingers are 65µm long and 10µm wide.  The 

gap spacing in this case is designed for 500nm, but it is measured to be approximately 

365nm after the lift-off was performed.  A second IDC design is used consisting of 10 

finger pairs with dimensions of 200µm x 10µm with similar gap dimensions.   
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Figure 5-8: Misaligned IDC from Flawed Alignment Marks 
 

 

Figure 5-7: Alignment Marks  
(a) Good Mark on Alumina (b) Good Mark on Patterned BST (c) Bad Mark from Incomplete 
Liftoff (d) Bad Mark on Patterned BST due to Metal Adhesion Issues
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5.5 CPW Transmission Lines 
In order to perform RF measurements on the nanoscale varactors, coplanar 

waveguide transmission lines have to be fabricated such that they overlap and make 

contact with the nanoscale features for probing.  This is done by patterning Futurex 

3000PY negative photoresist on top of the nanoscale electrodes followed by a Cr/Au 

deposition of 15nm and 800nm respectively using thermal evaporation.  A lift-off is then 

performed using Futurex RR41 resist remover.  An example of a completed structure is 

shown in Figure 5-10 in which the signal line of the CPW transmission line overlaps the 

nano-structures that were fabricated by EBL.     

 

Figure 5-9: IDC with Nanoscale Gap Size 
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(a)       (b) 

 
Figure 5-10: CPW Transmission Lines Overlapping Nanoscale IDCs  
(a) 65µm long fingers (b) 200µm long fingers
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Chapter 6 Small Signal RF Measurements & Analysis 

6.1 Introduction 
Small RF signal characterization is performed on the fabricated BST varactors using 

Scattering (S) parameter measurements.  The S-parameter data is used to observe the 

overall behavior of the devices with respect to frequency.  Additionally, the data is used 

to extract the capacitance and tunability of the varactors.  This chapter explains the 

procedures of how the S-parameter data is collected and analyzed for the microscale 

and nanoscale devices used in this work.  Temperature and substrate dependent 

tunability is also discussed. 

6.2 S-Parameter Measurements  
S-parameters are used to characterize the frequency dependent behavior of RF 

networks [84-87].  A voltage wave is inserted into one port of the device under test 

(DUT).  It scatters through the DUT and the output voltage wave is measured at all ports 

of the DUT including the insertion port.  This process is repeated using each port of the 

DUT as an insertion port while measuring the output at the remaining ports.  The 

measured S-parameter data is presented as ratios of the input and output voltage waves 

at the various ports.  For example, parameter Sij corresponds to the ratio of the voltage 

signal coming out of port i to the incident voltage signal at port j [88].  Investigating these 

parameters can result in useful information on the RF behavior of the DUT.  For this 

work in particular, the measured S-parameter data will be used to model the BST 

varactors and extract the capacitance along with tunability.  Therefore, it is imperative 

that the S-parameter data is obtained as accurately as possible. 
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When obtaining S-parameter data, the losses of all of the components within the 

measurement test bench (cables, probes, adapters, etc.) must be taken into account to 

avoid collecting false data for the DUT.  A custom set of on wafer CPW standards are 

designed using ADS LineCalc to perform a thru-reflect-line (TRL) calibration.  The TRL 

calibration method is primarily used for non-coaxial test settings such as waveguides, 

using test fixtures, or on-wafer measurements [89].  It is a popular technique because it 

allows the reference planes for the S-parameter measurements to be extended beyond 

the tips of the probes and interconnects used to contact the DUT [90, 91].  The TRL 

calibration standards consist of a thru, two opens, and three delay lines which 

theoretically span a frequency range of 0.7 – 147GHz (shown in Table 6-1).  The 

standards are designed for a characteristic impedance of 50 Ohms using a signal line 

width of 65µm and a gap of 25µm between the signal line and the ground lines.  When 

the TRL calibration is properly completed, the reference planes of the S-parameter 

measurements will be at the center of the thru [92].  The thru for this set of standards is 

designed to be 500µm long.  Therefore, the CPW interconnects leading to the 

interdigitated fingers of the BST varactors are designed to be 250µm or half the length of 

the thru calibration standard.  The shifted reference planes are illustrated in Figure 6-1.   

 

Table 6-1: TRL Delay Lines 
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MultiCal software by the National Institute of Standards and Technology (NIST) is 

used to collect the raw S-parameter data from the TRL standards and complete the 

calibration.  The quality of the calibration is verified by measuring the thru and open 

calibration standards.  For a good calibration, the log magnitude of S21 of the thru 

should be 0dB +/- 0.05dB and S11 of the opens should be 0dB +/- 0.05dB for the entire 

frequency range of interest.  Once the calibration is confirmed to be good, the BST 

varactors are measured.   

Using an Anritsu 37397C vector network analyzer and a Cascade Micro-Chamber 

probe station with a temperature controlled chuck shown in Figure 6-2, S-parameter data 

of the on-wafer IDCs is collected at varied bias voltages.  This set of measurements is 

done at room temperature.  GGB ground-signal-ground (GSG) probes with a 150µm 

pitch are used to contact the devices.  Picosecond Pulse Lab bias tees are used to apply 

a DC voltage across the gaps of the planar varactors through the signal line tips of the 

 

 
 

Figure 6-1: Reference Planes After TRL Calibration 
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GSG probes.  The data was acquired using Maury Microwave Automated Tuner System 

(ATS) 400 Software to control the set-point of the DC power supply and to collect data 

from the VNA.    

 

6.3 Microscale IDCs (MgO vs. Alumina) 
Before fabricating and testing nanoscale devices, IDCs with microscale gap sizes are 

tested first.  Although alumina is the primary substrate of choice for this work, IDCs are 

fabricated on both MgO and alumina substrates for the first round of devices.  For the 

case of comparing tunability on the two different substrates only BST films that have 

been annealed for 12 hours are used.  Figure 6-4, Figure 6-5, and Figure 6-6 show the 

S21 response for the 3 finger pair, 5 finger pair, and 7 finger pair IDCs, respectively.  

Data is shown for various applied DC voltages ranging from 0 – 90 Volts.  Although data 

is collected for frequencies up to 65 GHz, a reduced frequency range is used for each 

plot to illustrate tunability. The log magnitude of S21 decreases as the applied voltage 

increases for the illustrated frequency range. This behavior is caused by an increase in 

the impedance of the devices with DC voltage which corresponds to the permittivity of 

the BST films decreasing with applied electric field.   

 

Figure 6-2: Alumina Sample on Temperature Controlled Chuck 
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Agilent’s Advanced Design System (ADS) is used to convert the measured S-

parameter data into Y-parameters.  The Pi-network model displayed in Figure 6-3  is 

then used to extract the series capacitance of the IDCs.  The series component labeled 

as –Y12 represents the series admittance of the device corresponding to the 5 um gaps 

between the fingers. The shunt components of the model represent the admittance that 

occurs between the outermost fingers of the IDC and the surrounding ground planes of 

the CPW transmission lines.  Equation 6-1 is used to extract the capacitance from the Y-

parameters. 

 

 

Figure 6-7 shows the extracted series capacitance as a function of frequency for 

each of the three IDC geometries with an applied DC voltage of 0 Volts.  There is an 

increase in capacitance with increasing frequency due to the behavior of the devices 

approaching a point of resonance. The more finger pairs a device has, the larger its 

series capacitance will be.  If the devices are viewed as microwave resonators, the 

( )
f
Yimag

C
π2

2,1−
=              Equation 6-1 

 
 

Figure 6-3: Pi Network Model for Capacitance Extraction 
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(a) 

 
 

 
(b) 

 
Figure 6-4: S21 Response of 3 Finger Pair IDCs  
(a) Alumina (b) MgO 
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(a) 

 

 
(b) 

 
Figure 6-5: S21 Response of 5 Finger Pair IDCs  
(a) Alumina (b) MgO 
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(a) 

 

 
(b) 

 
Figure 6-6: S21 Response of 7 Finger Pair IDCs  
(a) Alumina (b) MgO 
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increased capacitance will lead to a decrease in resonant frequency according to 

Equation 6-2. 

 

Capacitance versus voltage (C-V) for each device type is shown in using a frequency 

of 1 GHz. This relatively low frequency is used so that the C-V curves and calculated 

tunability would not be skewed by the device resonance points. It is also close to the 

fundamental tone frequency that is used for nonlinear characterization which is 

discussed in Section IV. The C-V curves confirm that the IDCs fabricated on alumina 

have higher capacitance and tunability than those on MgO substrates.  The tunability (τ) 

for each device is calculated at voltage (x) by using the expression 

 

where VDC represents the DC voltage being applied.   

Table 6-2 shows the 0 Volts bias capacitance for each type of device along with the 

calculated tunability at 50 Volts (100 kV/cm across the gaps) and 90 Volts (180 kV/cm). 

The capacitance and tunability for the 5 finger device on MgO both appear to be outliers.  

The data for this device is displayed for consistency as it was the only one of its type that 

did not burn with an applied voltage of 90 Volts.  The highest tunability observed  at 90 

Volts (equating to 180 kV/cm using a 5µm gap) for an IDC on alumina was 33.8% and 

25.8% on MgO. Previous studies have shown tunability of 33% on alumina at lower DC 

voltages (116 kV/cm) and up to 65% on MgO [57, 93]. Although the tunability reported 

   Equation 6-3 

     Equation 6-2 
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Figure 6-8: Capacitance vs. Voltage for all Microscale IDCs at 1 GHz 

 
 

Figure 6-7: Capacitance vs. Frequency for all Microscale IDCs at 0 Volts Bias 
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here is less than that reported previously, it is still enough for nonlinear characterization.   

After determining that the tunability obtained using polycrystalline alumina substrates 

was higher than that obtained from single crystalline MgO, it was decided to use the 

alumina for further device fabrication and RF characterization since it was the cheaper 

option. 

 

6.4 S-par Measurements on Alumina (varied Temperature) 
An understanding of how temperature affects the tunability of BST varactors is 

beneficial when designing BST based RF circuits.  This information is particularly useful 

for applications in which the devices are used in various types of climates.  More S-

parameter measurements are taken on the planar BST varactors fabricated on alumina 

to further investigate the impact of temperature on the device tunability.  For this set of 

measurements, only the 5-finger pair IDCs are used. 

S-parameter data of the on-wafer IDCs is collected at various bias voltages; 

however, the temperature of the chuck was varied from 25º C to 125º C in 25º increments 

for these measurements.   A thru-reflect-line (TRL) calibration is again performed using 

standards that were fabricated on an alumina substrate.  For this set of measurements, 

both forward and reverse bias DC voltages ranging from -90 to 90V are applied to the 

varactors.   

Table 6-2: Tunability on Alumina vs. MgO 
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Once the S-parameter data is collected, the effective series capacitance is again 

extracted at 1 GHz for each experimental voltage and temperature using similar 

methods discussed earlier in the previous section.  Figure 6-9 shows the capacitance vs. 

voltage (C-V) behavior of the measured IDCs.  The overall capacitance of the devices 

decreases as the chuck temperature is raised.  Theoretically, as long as the BST film is 

operating in the paraelectric phase, the permittivity is expected to decrease with 

increasing temperature [9, 94].  The symmetry of the C-V curves in Figure 6-9 confirms 

that the BST film is operating in the paraelectric phase at room temperature (25ºC) and 

above.  The decrease in permittivity with increasing temperature is verified for the 

measured data using HFSS simulations to extract the film permittivity for each 

experimental temperature.  The results are displayed in Table 6-3.  From observing the 

compression of the C-V curves with increased temperature, it appears that temperature 

has its greatest impact on the permittivity when there is no DC bias applied to the 

devices. 

 

 
 

Figure 6-9: Capacitance vs. Voltage at Various Temperatures 
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6.5 Tunability vs. Annealing Time  
S-parameter measurements are taken on IDCs fabricated with BST films that are 

annealed for different times.  This is done to observe the impact that the material 

properties of the film have on the tunability of the IDCs.  Only the 5-finger pair IDC 

design is used for this work.  The capacitance and tunability are extracted using similar 

methods discussed earlier.   

Figure 6-10 shows capacitance vs. voltage plots for IDCs fabricated with BST films 

annealed for 0, 3, 12, 18, and 24 hours.  The CV trace representing the IDCs with non-

annealed BST films is relatively flat which implies that there is little or no tunability.  The 

zero-bias capacitance is just above 0.5pF.  According to the TEM data previously 

presented, the non-annealed BST films contain no grains or signs of atomic alignment 

which is important for obtaining tunable films.  As the films are annealed, the IDCs 

display a higher zero-bias capacitance along with increased tunability due to the 

formation of grains within the film.  The three hour annealed films produce IDCs with an 

average zero-bias capacitance of about 0.9pF.  For anneal times of 18 and 24 hours, 

there is very little difference in the zero-bias capacitance which is just above 1pF for 

each of the annealing conditions.  The largest change in the zero-bias capacitance is 

Table 6-3: Extracted Permittivity vs. Temperature 
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observed between the IDCs with the non-annealed films and those with films annealed 

for 3 hours.  This corresponds to the largest change in the film roughness and grain size 

occurring between the non-annealed films and those annealed for 3 hours. 

The tunability is extracted at 90V and shown with respect to the annealing time in 

Figure 6-11.  The largest change in tunability is observed between the non-annealed 

films and those annealed for 3 hours which corresponds to the largest change in grain 

size occurring for the same anneal time increments.  An increase in tunability is 

observed between the 12 hour and 18 hour annealing times, but there is not much 

difference in tunability for the 18 hour and 24 hour annealed samples.  Overall, the 

tunability increases with anneal time which translates to the tunability being directly 

related to the grain size.  This is validated by Figure 6-11 resembling the same trend as 

Figure 3-13 which shows grain size with respect to anneal time. 

 

 
 

Figure 6-10: Capacitance vs. Voltage for Various Annealing Times  
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6.6 S-Parameter Measurements on Nanoscale IDCs  
S-parameter data is collected for the IDCs with nanoscale gap sizes which are 

fabricated on 12 hour annealed BST films.  For the case of the nanoscale IDCs, DC bias 

voltages up to 25V are applied.  Beyond this voltage, the devices fail and behave as 

short.  They are not able to withstand higher voltages due to the reduced gap size 

between the fingers compared to the microscale devices.  The reduced metal thickness 

used for the electrodes of the nanoscale IDCs could also be a contributing factor in 

device failure at higher voltages.  The capacitance and tunability are calculated by the 

same methods used for the microscale IDCs.   

The CV curves for both geometries are displayed in Figure 6-12 and Figure 6-13.  

The average zero-biased capacitance of the IDCs with 65µm and 200µm long fingers is 

0.23pF and 2.25pF, respectively.  The tunability for both nanoscale IDC geometries is 

roughly the same at 23% and 22%.  These tunability values are much higher than that of 

the 5-finger pair IDC with 5 µm gaps which has only a tunability of 5.35% with a 25V DC 

 
 

Figure 6-11: Tunability vs. Anneal Time  
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bias.  This is illustrated in Figure 6-14 which displays normalized C-V curves for the 

microscale and nanoscale devices.  The nanoscale IDCs with 200µm long fingers have a 

zero-biased capacitance that is more than twice the capacitance of the IDCs with 

microscale gaps.  Additionally, by comparing the size of the microscale and nanoscale 

geometries shown in Table 6-4, the nanoscale IDC electrode geometry has an area that 

is about 20% of that of the microscale-gap IDC.  If an IDC geometry with nanoscale gaps 

is designed to give the same 1pF capacitance as the microscale-gap IDC used in this 

study, it would result in using an even smaller area than the geometry presented here 

with the 200µm long fingers.  By substituting an IDC with nanoscale gaps for an IDC 

design with microscale gaps, the physical size can be reduced by over 80%.  This is 

advantageous for several microwave circuit applications in which there is limited real-

estate. 

  

 

 

 
 

Figure 6-12: Capacitance vs. Voltage for Nanoscale IDC (65µm Fingers)  
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Figure 6-14: Normalized Capacitance vs. Voltage of Microscale and Nanoscale IDCs 

 
 

Figure 6-13: Capacitance vs. Voltage for Nanoscale IDC (200µm Fingers) 
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6.6.1 E-Field Confinement 
When comparing the normalized capacitance of the 5µm gap devices to that of the 

365nm gap devices, the device with the microscale gap actually appears to be more 

tunable as shown in Figure 6-15.  However, for a given DC bias voltage, the E-field 

across the 365nm gap is going to be approximately 13 times greater than the E-field 

across the 5µm gap due to the scaling of the gap size.  An approximation of the E-field 

can be calculated by dividing the bias voltage by the gap size.  With a 25V DC bias, for 

example, the E-field across the 5µm gap is calculated to be roughly 5V/µm.  However, 

the application of 25V across the 365nm gap yields an E-field of roughly 68.5 V/µm.   

To confirm this, electrostatic simulations are performed using Ansys’ Maxwell 

Software to observe E-field for the two gap sizes.  Figure 6-16 shows the cross section 

of metal electrodes with a 5µm gap on top of alumina/BST along with the simulated E-

field when a 25V bias is applied across the electrodes.  Figure 6-17 shows the same but 

for a 365nm gap.  When comparing the two simulated geometries, the E-field of the 

nanoscale gap is just over an order of magnitude larger than that of the microscale gap, 

and the E-field values displayed by the center of the color topography scale are similar 

to the E-field approximations previously calculated.  Additionally, the simulation results 

show that more of the field is confined within the film for the nanoscale gap.  The 

Table 6-4: Varactor Comparison 
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tunability is greatly enhanced for the nanoscale gap device due to the increased E-Field  

Therefore, less voltage is needed to tune the nanoscale varactor down to a given 

capacitance compared to that needed for a microscale varactor which can lead to less 

power consumption for tunable BST RF components. 

 
 

Figure 6-15: Normalized Capacitance vs. E-Field of Microscale and Nanoscale IDCs 
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Figure 6-17: E-Field Confinement of 365nm Gap 

 
 

Figure 6-16: E-Field Confinement of 5µm Gap 
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Chapter 7 Nonlinear RF Measurements & Analysis 

7.1 Introduction 
The tunable nature of BST is derived from its electric field-dependent permittivity.  

With this behavior comes an innate nonlinear characteristic.  The nonlinearity of BST 

devices must be accounted for in the design stages of RF components because of the 

possible generation of unwanted harmonics or intermodulation distortion products (IMD).  

This chapter discusses the nonlinear behavior of planar barium strontium titanate 

varactors.  The methodology of two-tone measurements for observing device 

nonlinearity is presented.  Details are given on previous investigations of the nonlinearity 

of  BST varactors followed by the nonlinear characterization performed in this work. 

7.2 Intermodulation Distortion 
Nonlinear devices do not follow the concept of superposition, which means that they 

are capable of modifying the frequency spectra of its input signal.  When two RF 

(sinusoidal) signals of frequencies ω  and ω are placed into a nonlinear device 

(Equation 7-1), the output consists of a large number of mixing terms as shown in 

Equation 7-2 where ω mω nω , and m, n  Z [95]. 

x t A cos ω t A cos ω t                Equation 7-1 

y t ∑ A cos ω t θ                      Equation 7-2 

All of the mixing frequencies (ωr ) generated by the combination of the two original tones 

are referred to as intermodulation distortion (IMD) products. 
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An illustration of how this concept works is shown in Figure 7-1.  If two signals of 

different frequencies are inserted into a linear device, theoretically, the output would 

consist of two signals at the same frequencies as the input signals but scaled in 

amplitude.  However, if this same test was done on a nonlinear device, the output would 

again have the same two signals at the same frequencies scaled in amplitude in addition 

to harmonics and IMD products that are generated by adding multiples of the two 

original tones together. 

IMD products can present a serious problem in communication receivers because 

they can interfere with the desired signals.  This is particularly the case for third order 

IMD products because these mixing terms are the closest in frequency to the 

fundamental/desired tones, and they are the strongest of the generated IMD products 

[96].  With the third order products being so close to the desired signals, they cannot be 

filtered out without disturbing the desired tone.     

One method of analyzing the nonlinearity of a device is to observe the generated 

IMD products when two signals of different frequencies are inserted into the device.  

This measurement concept is formally known as a two-tone measurement [95].  The 

power levels of the harmonics and IMD products can be measured to characterize the 

overall nonlinear behavior of the device.  Although higher order IMD products such as 5th 

and 7th can be observed, generally the 3rd order IMD products are of primary interest for 

reasons previously mentioned. 

7.3 Previous Studies of BST Device Nonlinear Characterization 
Previous research shows that the capacitance-voltage curve for BST varactors 

compresses as temperature is increased [75, 97].  Lourandakis et al shows this behavior 

for a parallel plate BST varactor used for a tunable power divider.  However, no 
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intermodulation distortion data is presented to correlate with the C-V behavior.  On the 

other hand, Deleniv et al shows temperature dependent C-V behavior along with 

temperature dependent IMD data in the form of third order intercept calculations for 

parallel plate devices.  It is unclear, however, what input RF power levels are used to 

calculate the third order intercept.  It also appears that the third order intercept is 

calculated using the 3rd harmonic and fundamental tone in this work.  Traditionally, the 

third order intercept is calculated using the third-order IMD product making the validity of 

this calculation questionable. 

There is limited literature regarding the voltage impacts on the intermodulation 

distortion products of BST varactors.  Chakraborty et al, show the effects of voltage on 

the third order intercept for a BST varactor based bandpass filter [98].  The third-order 

intercept remains constant throughout the tested voltage range, up to 300V.  For this 

particular case, however, the filter is fabricated on a bulk BST substrate that is roughly 2 

mm thick.  The third-order intercept remains constant because very high voltages are 

necessary to tune the varactors using the bulk BST substrate.  Such high voltages are 

 

Figure 7-1: Linear vs. Nonlinear Device Behavior 
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not needed when using BST thin films for making tunable devices; therefore, the 

nonlinearity will be impacted by the application of lower DC voltages.  The voltage 

dependent nonlinearity of BST thin film varactors needs to be investigatedPrevious 

studies show that annealing BST films can alter the internal structure, primarily the 

interplanar spacing and grain size [18].  It has been shown that as the grain size 

becomes larger, the dielectric constant and film tunability increases [99].  Although the 

material properties have been linked to the RF properties of dielectric constant and 

tunability, correlating the internal structure of the film to the intermodulation distortion of 

BST varactors has not yet been explored.  

Although previous studies have been carried out on the nonlinear behavior of BST 

RF and microwave devices, there are still other areas that need to be investigated for 

planar BST thin film varactors.  Correlating the material properties to the nonlinear 

behavior of varactors is important in the design stages of BST based RF components.  

The voltage and temperature effects on the nonlinear behavior of planar varactors needs 

to be further investigated for RF devices that may be subjected to different 

environments/climates.  These key items need to be addressed along with observing the 

nonlinear behavior of nanoscale BST varactors, which is a primary objective of this work.   

7.4 Nonlinear Behavior of Microscale IDCs (MgO vs. Alumina) 
The two-tone test bench displayed in Figure 7-2 was used to collect the first round 

IMD data to compare the nonlinearity of devices fabricated on alumina and MgO 

substrates.  Each RF signal is produced by an HP signal generator.  Two 10 Watt 

amplifiers are used to increase the power level of the RF signals.  Isolators and low pass 

filters are used to lower the power levels of any harmonics that may be generated by the  
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amplifiers.  Once both tones are filtered they are combined and inserted into the device 

under test (DUT).  The output of the DUT is then measured using a spectrum analyzer. 

Previous research has shown that the IMD performance of the BST devices can be 

impacted by the tone spacing used during two-tone measurements [16, 100].  The 

observed change in the IMD power levels with respect to tone spacing can be correlated 

to the response time of the BST film.  To ensure that the film is responding to the RF 

signals and due to equipment limitations, a 1MHz tone separation is chosen for this 

work.  Fundamental tones of 950 MHz and 951 MHz are used for this series of 

measurements. 

The nonlinear behavior of the IDCs is observed at 0 Volts DC bias for the first round 

of measurements.  Theoretically, this is the applied DC voltage where the devices are 

most nonlinear [57]. Maury Microwave’s Automated Tuning System along with one of the 

thru lines from the TRL calibration is used to calibrate the two-tone test bench before 

measuring the IDCs. Third order intermodulation distortion (IMD) products of the thru are 

measured to analyze the linearity of the test bench. This is done to ensure that the IMD 

products that are observed with the spectrum analyzer when measuring the devices 

under test are being generated by the IDCs and not the test bench itself. As long as the 

observed IMD of the IDCs is higher than that observed when measuring the thru, then 

 

Figure 7-2: Two-Tone Test Bench 
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the measured IDC data is assumed to be valid.  Figure 7-3 shows the measured third 

order IMD for the thru and the measured IDCS. 

The 3rd order IMD generated by the IDCs overcomes that of the thru lines when hit 

with an input RF power at or above ~25 dBm.  Although measurements are taken with 

an input RF power ranging from 1 – 34 dBm, the displayed data in Figure 7-3 has been 

truncated to illustrate valid data only. It is observed that the 3rd order IMD produced by 

the alumina devices is higher than that of the MgO devices at RF power levels above 

~29 dBm.  

Also, the  nonlinearity of the measured IDCs appears to be dependent on the 

number of fingers. As the number of finger pairs increases for the alumina devices, the 

power level of the 3rd order IMD decreased. Increasing the number of fingers would 

decrease the capacitive reactance, lowering the RF voltage that is being placed across 

the device. By reducing the RF voltage swing along the static C-V curve of the device, it 

behaves in a more linear fashion [101, 102] which reduces the power level of the 3rd 

order IMD as shown in Figure 7-3.  

A similar trend is noticeable with devices fabricated on MgO substrates when 

comparing the 3 finger pair IDCs  to both the 5 and 7 finger pair IDCs.  It is believed that 

the 5 finger pair IDCs on MgO would have been more nonlinear than the 7 finger pair 

IDCs if the measured 5 finger device had not produced outlying data.   

The overall trend of the data for the alumina devices shows that the IDCs are being 

driven into compression at the displayed input RF power levels. This compression, along 

with the observed dips in the curves are possibly due to higher order IMD products that 

are being produced and cancelling out the 3rd order IMD products [57].   
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The 3rd order IMD data displayed for the measured thru shows that the noise floor of 

the system is at about -45 dBm for this case.  Therefore, unless the IMD power level of 

the DUTs is above this value, it is not feasible to obtain accurate data for the DUT.  In 

order to obtain accurate IMD data at lower input RF power levels, the two-tone test 

bench has to be modified.  

 

 

7.5 Two-Tone Testbench Modifications 
When using a high RF power level to measure intermodulation distortion products, it 

is important to keep the test bench itself as linear as possible to ensure that all 

nonlinearities are coming from the DUT.  Undesired nonlinearities can typically be 

generated by the internal mixer of the spectrum analyzer when performing two-tone 

measurements especially when attempting to use moderately high RF power levels for 

 

Figure 7-3: 3rd Order IMD of All Device Types and Thru Lines on MgO and Alumina 
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the two tones.  To accurately measure the nonlinearity of the DUT, it needs to be driven 

with a high RF power level while not overdriving the spectrum analyzer at the output of 

the DUT.  Adding a filter at the back-end of the test bench to reduce the fundamental 

tone power level will not help to achieve this goal because the 3rd order IMD products 

are typically close in frequency to the fundamentals and will be filtered out as well.    

A tone cancellation scheme is implemented to reduce the power level of the 

fundamental tones before reaching the spectrum analyzer without impacting the 3rd order 

IMD data [16].  Additional components consisting of 2-way splitters, continuously 

variable attenuator (CVA), phase shifters, and a 3-way combiner have to be added to the 

original test bench to accomplish this.  As shown Figure 7-4, each fundamental tone is 

divided in half using 3 dB power splitters. Half of each tone travels down the main 

branch of the test bench leading to the DUT.  The other half of each tone goes through a 

tone cancellation branch containing a phase shifter and a CVA.  The phase shifters are 

used to ensure that the half of each tone going through the cancellation branch was 180° 

out of phase with its other half that travels down the main branch before recombining the 

2 halves at the 3-way combiner.  The CVA is used to make sure the two halves are 

equal in amplitude.  Once the two halves meet at the 3-way combiner, they destructively 

intefere with one another which significantly reduces the power level of the fundamental 

tone before it reaches the spectrum analyzer.  This method allows the DUT to be 

subjected to a high RF power level without pushing the spectrum analyzer to a 

nonlinear, and perhaps damaging, point.   

The spectrum analyzer has a built in automatic input attenuator that is used to 

protect itself when it is subject to high RF power levels.  When the input RF power level 

reaches a certain threshold, the input attenuation level increases to avoid damaging the 

internal mixer.  The major caveat this presents is that when the input attenuation level 
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increases, the noise floor the spectrum analyzer rises with it.  As the noise floor rises, it 

becomes more difficult to observe 3rd order IMD of relatively low amplitudes.  Since the 

tone cancellation scheme lowers the RF power level of the fundamental tones before 

reaching the spectrum analyzer, it prevents the input attenuation level from rising thus 

keeping a low noise floor of the spectrum analyzer.  The tone cancellation scheme not 

only helps to ensure that the observed IMD  is coming from the DUT.  It also allows for a 

low noise floor of the test bench, enhancing the ability to accurately measure low power 

IMD products. 

 

 

7.6 Temperature and Voltage Dependent Nonlinearity 
The modified two-tone test bench was used to observe the temperature and voltage 

impact of BST varactors.  Due to bandwidth limitations of components that were added 

to modify bench, the frequencies of the tones had to be altered to 1 GHz and 1.001 GHz.  

Bias tees were used in the modified test bench to study the DC voltage impact on the 

DUT nonlinearity.  Since it was previously determined that the devices on alumina 

substrates are more tunable and nonlinear than those on MgO, only the IDCs on 

Figure 7-4: Modified Two-Tone Test Bench 
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alumina were used for this analysis.  Only the 5 finger pair microscale IDCs are 

measured for this case. 

In the following plots displaying the 3rd-order IMD, the term I3_lo corresponds to 2f1-

f2 (0.99 GHz) and I3_up corresponds to 2f2-f1 (1.002 GHz).  The combined power level 

of the RF tones was swept from -20 dBm to 34 dBm.  Figure 7-5 shows I3_lo vs. the 

combined input RF power level (consisting of both tones) at 25ºC for various applied DC 

voltage levels.  The noise floor of the test bench was established at approximately -80 

dBm.  This shows that the tone cancellation scheme that was implemented in the two-

tone test bench decreased the noise floor of the system by approximately 35 dB. 

Although the lower limit of the input RF power was -20 dBm during the measurements, 

no significant data is observed until the input RF power reaches about 10 dBm.  

Therefore, the plotting range has been truncated accordingly for the subsequent plots. 

Figure 7-6 shows the same data as Figure 7-5 with the focus being on the observed 

relative minimum/dip in the plotted I3_lo.  When viewing the 3rd-order IMD vs. input RF 

power, there is a notch in the data that is very similar to the nonlinear behavior of power 

amplifiers [103].  It has been documented that these minimum points, also known as 

sweet spots, are caused by higher-order IMD products (such as 5th and 7th)  interacting 

with the 3rd order IMD products when the DUT is subject to large incident RF signals 

[95, 103, 104].   

At input RF power levels below that of the location of the notch, the power levels of 

I3_lo decrease with applied DC voltage.  This occurs due to the behavior of the static C-

V curve.  When the RF voltage is superimposed along the C-V curve at a particular DC 

voltage setting (VDC), the instantaneous change in the capacitance caused by the RF 
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voltage swing decreases as |VDC| increases [105].  Therefore, the BST varactor will 

behave in a more linear fashion at higher DC voltages. 

Also as shown in Figure 7-6, the location of the I3_lo dip shifts to higher input RF 

power levels as VDC increases.  The same behavior is observed for I3_up which is 

 

Figure 7-6: I3_lo vs. Input RF Power with Varied DC Bias Voltage at 25°C 

 

Figure 7-5: I3_lo vs. Input RF Power at Different DC Bias Voltages, Displaying Noise Floor 
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shown in Figure 7-7.  The dip location can shift upward with respect to RF power by 

about 4–5dBm for every 10 volt increment of DC bias applied to the device.  Figure 7-7 

also shows that the dip can cause I3_up to be 10 dB below its expected value with a 20 

volt DC bias.  Behavior such as this is important to consider when predicting the 

nonlinear behavior of BST varactors. 

 

The nonlinear behavior is also observed while varying the temperature without the 

application of DC voltage.  Figure 7-8 and Figure 7-9 show I3_lo and I3_up vs. input RF 

power, respectively.  The temperature is incremented from 25 to 125ºC.  As the 

temperature increases, the power level of the 3rd-order IMD products decreases. This 

correlates with the overall compression of the C-V curve with increased temperature 

shown in Figure 6-9. 

 

Figure 7-7: I3_up vs. Input RF Power with Varied DC Bias Voltage at 25°C 
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7.7 Annealing Dependent Nonlinearity of Microscale Devices 
In an effort to correlate the BST thin film material properties to the nonlinear behavior 

of the BST varactors, two-tone measurements are taken on IDCs fabricated with BST 

films annealed for various times.  The lower-band (I3_lo) and upper-band (I3_up) third 

order IMD products are displayed in Figure 7-10 and Figure 7-11, respectively.  Each 

trace represents an average obtained from measuring three different 5-finger pair 

devices.  Similar to previous two-tone measurement results, I3_lo and I3_up are 

approximately identical.   

For the case of the IDCs with non-annealed BST films, the power levels of the 

measured third order IMD products remain below the noise floor until an RF power of 

about 28 dBm is inserted into the device.  For all of the other annealing conditions, the 

third-order IMD power level rises above the noise floor at an input RF power of 

approximately 10 dBm.  This means that IDCs with annealed BST films will behave in a 

more nonlinear fashion compared to those with non-annealed films.  The low third-order 

 

Figure 7-8: I3_lo vs. Input RF Power at 0 Volts with Varied Temperature 
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IMD power level of the non-annealed samples stems from the flat nature of its C-V curve 

displayed in Figure 6-10.  The capacitance of IDCs using non-annealed BST is nearly 

independent of the applied DC bias voltage; hence, making them more linear.   

 

Unexpectedly, the I3_lo for the 12 hour annealed films starts to slope toward a relative 

minimum point/sweet-spot before that of the films annealed for 18 hours and 24 hours 

when observed with respect to the input power.  The dip for the 12 hour I3_lo data is 

seen at an RF power level of 25 dBm while the dip in the I3_lo data for 18 hours and 24 

hours does not occur until reaching an input RF power of about 30 dBm. 

At low input RF power levels (before the sweet-spot occurs), the third order IMD 

power levels of the IDCs with variously annealed BST films follow somewhat of an 

expected trend.  For instance, at an input RF power of 15 dBm, the I3_lo power levels 

increase with anneal time as shown in Figure 7-12.  The trace displayed here resembles 

that of Figure 6-11 which shows tunability vs. anneal time.  This confirms that the 

 

Figure 7-9: I3_up vs. Input RF Power at 0 Volts with Varied Temperature 
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behavior of the third order IMD of BST varactors corresponds directly to the tunability of 

the device.  Furthermore, a relationship of the third-order IMD power level and the grain 

size is established and shown in Figure 7-13.  The third-order IMD power levels increase 

as a function of grain size.     

7.8 Nonlinear Behavior of Nanoscale Varactors 
Two-tone measurements are taken at room temperature on the IDC varactors 

fabricated with nanoscale gaps to observe their nonlinearity.  The maximum RF input 

power was reduced to 30 dBm in an effort to avoid damaging the measured devices.  As 

shown in Figure 7-14, the upper band and lower band third order IMD products match 

fairly well.  The lower band third order IMD products for both nanoscale geometries and 

the 5-finger microscale gap IDC (all with 12 hour annealed films) are displayed in Figure 

7-15.  The dips in I3_lo occur at lower input RF powers for the nanoscale IDCs 

compared to that of the microscale IDCs.  This means that the higher order IMD 

products that contribute to the dip come into play at lower RF power levels for the 

nanoscale IDCs.  To get more of a quantifiable comparison of the nonlinear behavior of 

the nanoscale and microscale IDC, the output third order intercept (OIP3) is calculated 

for each device using the expression 

 

where PF1_out is the power of one of the fundamental tones at the device output in units 

of dBm and P3_IMD is the power level of the third order IMD in (dBC).  The OIP3 is 

calculated for each device type for a range of input RF power and is displayed in Figure 

7-16.  The nanoscale device with 65µm long fingers (~0.23pF capacitance) has the 

lowest OIP3, meaning that it exhibits more nonlinearity than the other two IDC 
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Figure 7-11: I3_up vs. Input RF Power for Various Anneal Times 

 

Figure 7-10: I3_lo vs. Input RF Power for Various Anneal Times 
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Figure 7-13: I3_lo vs. Grain Size 

 

Figure 7-12: I3_lo vs. Anneal Time 
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geometries.  The nanoscale IDC with 200µm long fingers (~2.25pF capacitance) has an 

OIP3 that is higher than that of the microscale IDC (~0.95pF capacitance).  Even though 

the nanoscale IDC with 200µm long fingers has a higher tunability than the microscale 

IDC, it behaves in more of a linear fashion than the microscale IDC.  This shows that the 

nonlinearity of BST varactors is not just dependent on the tunability, but on the zero-bias 

capacitance as well for reasons explained in section 7.2.   

Potentially, a microscale BST varactor with a given zero-bias capacitance can be 

replaced by a much physically smaller nanoscale BST varactor designed for the same 

capacitance, yielding higher tunability (as shown in Chapter 6) and possibly IMD 

behavioral traits that are very similar.  This could be advantageous for RF and 

microwave applications in which maintaining a linear system is a priority.   

 

 

Figure 7-14: Third-Order IMD vs. RF Input Power of Nanoscale IDCs 
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Figure 7-16: Output Third-Order Intercept Comparison of Nanoscale and Microscale IDCs 

 

Figure 7-15: Third-Order IMD Comparison of Nanoscale and Microscale IDCs 
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Chapter 8 Modeling 

8.1 Introduction 
When integrating RF and microwave components into full systems, it is important to 

know how the components are going to behave under certain conditions based on the 

potential environments that the final system will be subjected to.  Hence, it is imperative 

to have accurate models to predict the microwave behavior of components, BST 

varactors in this case.  This chapter discusses the modeling aspects of this work.  A 

summary of previously derived models for BST varactors along with their shortcomings 

is presented.  Details are then given on the equivalent circuit and mathematical modeling 

techniques used in this work to simulate the behavior the BST varactors.  First, the C-V 

curve is addressed followed by the IMD behavior.  Future modeling considerations for 

BST varactors are also discussed. 

8.2 Previous Studies of BST Varactor Models 
With increased RF applications of BST varactors comes the necessity for accurate 

models that are needed in the design stages.  Chase et al. have developed the following 

expression for the DC voltage dependent capacitance of parallel plate BST devices: 
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where  is the maximum capacitance at zero DC volts,  is the fringing capacitance, 

and  represents the voltage at which 2 [74]. This model is based on a 

power series expansion of the field-polarization relation described in the Landau-

Devonshire-Ginzburg model.  Equation 2-1 is further developed to be dependent on the 

thickness of the BST thin film to account for the non-tunable interfacial capacitance.  A 

temperature dependence at 0 Volts DC bias is also presented. 

Chase’s model is referenced and further expanded by Schmidt et al. to consider 

nonlinear conductance [106].  The expression for the differential conductance was 

assumed to be: 

          

where γ , γ , and γ are fitting parameters.  The model was verified up to an RF power 

level of 10 dBm by comparing two-tone measurement results of an SP2T switch with 

ADS simulations utilizing symbolically defined devices (SDDs).  Above 10 dBm, the 

model no longer fits the data.  Although this model accounts for the device geometry of 

parallel plate devices, film thickness, and fringing capacitance, a correlation between the 

RF signal level and the capacitance was not established.  Also, in [106], it is not stated if 

the two-tone measurements were taken with an applied DC bias voltage to verify the 

model.  Other shortcomings of this model are discussed later in Chapter 8. 

In [107], planar STO varactors are used to fabricate microstrip resonators.  The 

effect of the RF signal level on nonlinear response is examined at 1.7 – 1.9 GHz by 
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measuring the level of the third order intermodulation distortion signal relative to the 

input signal level.  The fundamental tones were 1 MHz apart and the power for each 

tone was 22 dBm.  When a DC bias voltage was applied, the level of the third order IMD 

product was depressed relative to the output power at the fundamental frequency.  The 

DC bias also caused the resonator transmission coefficient to increase, which was 

attributed to a lower loss tangent with increasing DC bias.  As in [106], the capacitor 

impedance is modeled as parallel connected capacitance and conductance which are 

both dependent on microwave voltage and presented as a power series.  It was also 

stated that the losses increase with microwave voltage, but decrease with increasing DC 

voltages. 

A third order IMD transfer function was derived depending on the incident power, the 

varactor reactance, and the resonator quality factor in [107]. 

 

In Equation 2-3,  is the inclusion coefficient (defined as the ratio of capacitive RF 

energy stored in the capacitor to the total energy stored in the resonator microstrip line 

and capacitor),  is the varactor reactance, and  is the external quality factor of the 

resonator.  The transfer function shows a relationship between the P3out and the 

capacitor reactance, but it does not appear that this expression accounts directly for the 

DC bias voltage.  This function may have been derived for 0V DC bias, and it does not 

seem to account for the polarization of the STO film.  It seems that this expression could 

have been derived no matter what type of capacitor was placed into the resonator.  The 

argument that this expression is dependent on STO film properties is questionable.  

 36     Equation 8-3 
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Rundqvist et al developed a large signal model for parallel plate ferroelectric 

varactors based on measurements using RF signals ranging from -10 dBm to 17 dBm at 

0 Volts DC bias [77].  In this study, all the RF characterization is completed using either 

a vector network analyzer or LCR meter.  Therefore, all higher order harmonics are 

measured as losses.  No measurements were actually carried out using a spectrum 

analyzer, but it is stated that the harmonic generation of the model was verified using 

ADS.  Measured data of harmonics and intermodulation distortion products would have 

provided stronger validation. 

8.3 C-V Modeling 
In an attempt to model the C-V behavior of the BST varactors, the expression in 

Equation 2-1 derived in [74] is used in a symbolically defined device (SDD) component 

in ADS. The results are labeled as “Chase Model” in Figure 8-1.  A second model 

discussed in [106], which accounts for nonlinear conductance, (labeled as “Schmidt 

Model” in Figure 8-1) is also investigated.  Although both models are popular for 

predicting the C-V behavior of BST varactors, neither can be used to accurately emulate 

the measured C-V behavior of the devices used in this work. It is likely that this 

deficiency stems from the fact that these models were developed for parallel plate 

structures.  Only the 5-finger pair IDCs with microscale gaps are considered for 

modeling purposes in this work since this is the only geometry that is subject to all 

aforementioned measurement techniques.   

A cubic spline interpolation fit was performed using MATLAB to model the measured 

C-V behavior.  A list of measured data points consisting of n ordered pairs consisting of 

a voltage value and its corresponding capacitance is used by the MATLAB program to 

generate  n-1 third order polynomials to fit the measured C-V curve.  There is a separate 
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polynomial to fit (interpolate) the data between all the measured data points.  The 

complete C-V expression derived by the spline interpolation is expressed as a piecewise 

function of the following in the form: 

 

where ci is a third order polynomial in the form: 

 

for i = 1, 2, . . . n-1. The MATLAB code is shown in Appendix E.  Once the polynomial is 

created, it is then inserted into an SDD component in ADS and simulated.  The results, 

labeled as “Spline Model”, are shown in Figure 8-1. Even though the spline model lacks 

physical significance, it provides a better fit for the measured C-V data than the two 

previously discussed models.  Although modeled C-V results are shown for a 

temperature of 25°C only, a spline fit is derived for each investigated temperature: 25°C, 

50°C, 75°C, 100°C, 125°C. 

Once the C-V behavior is modeled, other components are added to the C-V SDD 

component to create a more accurate equivalent circuit model.  A static series 

inductance and frequency dependent resistance is added to model the behavior of the 

electrodes of the IDC.  Shunt capacitors are added to account for the capacitance 

between the IDC fingers along the outer perimeter of the device and the ground planes 
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of the CPW lines.  Optimizations are completed in ADS to determine the values of these 

added components by matching the measured S-parameters to the simulated S-

parameters of the equivalent circuit model which is shown in Figure 8-2.  Optimization 

goals are set to minimize the differences of the measured and modeled S21 responses 

and that of the measured and modeled S11 responses for the frequency range of 0.5 – 

10 GHz.  Measured and modeled S-parameter responses resulting from the optimization 

are shown in Figure 8-3. 

 

 

 

Figure 8-2: Equivalent Circuit Model of BST Varactor 

 

Figure 8-1: Capacitance vs. Voltage (Measured and Modeled) 
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8.4 IMD Prediction 
Harmonic balance simulations are completed in ADS to emulate two-tone 

measurements of the equivalent circuit model.  Simulated RF tones of 1 GHz and 1.001 

GHz are inserted into the model with various amplitudes similar to those used in the 

 
(a) 

 

 
(b) 

 
Figure 8-3: Measured and Modeled S-Parameters 
(a): S11 (b) S21 
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actual two-tone test bench.  Although the spline model yields a good fit for the C-V 

behavior of the BST varactors, the simulated third order IMD does not match the 

measured third order IMD as shown in Figure 8-4.  When observing the lower input RF 

power range, the location of the simulated sweet-spot does not match that of the 

measured data.  The fit improves beyond the dip at higher RF power levels over 30 

dBm. 

It has been documented that models should not only fit the initial parameters of 

interest to accurately predict the IMD behavior, but the derivatives of those parameters 

as well [103, 108, 109].  In light of this, the C-V spline model is revisited for further 

investigation.  To ensure that the spline model is a good fit for the measured C-V data, 

the first derivatives of the measured C-V data and the spline fit are calculated and 

compared using MATLAB.  Figure 8-5 displays the calculated derivatives and further 

validates that the spline interpolation is a good model for the C-V data.  Therefore, 

studies that go beyond obtaining a good fit for the C-V data are necessary in order to 

accurately predict the IMD behavior of a BST varactor.  In [106], it is shown that the 

voltage dependent conductance component of the derived model can impact the 

simulated IMD behavior, specifically causing a dip in the third order IMD product.  

Hence, the nonlinear conductance of the BST varactor is investigated.   

8.4.1 Nonlinear Conductance for IMD Prediction 
To account for the nonlinear conductance of the BST varactor, another SDD 

component is added to the equivalent circuit model.  This component is placed in parallel 

with the spline fit SDD component and is defined by the expression: 
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where γ0, γ1, γ2,and N are fitting parameters.  This expression is very similar to Equation 

2-2, except that the exponent of 2 has been made adjustable in this case to allow for 

more flexibility when fitting the measured data.  More optimizations are run in ADS to 

determine the fitting parameters within the G(V) expression for each temperature.  By 

doing so, a model for the BST varactor is derived for each specific temperature that is 

investigated.  Each model consists of a unique spline fit to model the CV behavior and a 

unique G(V) expression to model conductivity at each temperature.  The revised 

equivalent circuit model for 25°C is shown in Figure 8-6.  The optimized G(V) fitting 

parameters are displayed in Table 8-1.  The shunt resistance values obtained by taking 

the inverse of the calculated G(V) values are plotted and displayed in Figure 8-7. 

Overall, the models fit the measured data better at higher RF input power (beyond 

the power level in which the dip in the measured data occurs).  The results of the 

measured and new modeled third order IMD data at 25°C are shown in Figure 8-8.  The 

dip location in the modeled data begins to approach that of the measured data, but still 

does not match it exactly.  This is the case for each of the models derived for the 

considered temperatures.  This affirms that adding the nonlinear conductance 

component to the model is a step in the right direction.   
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Figure 8-5: Derivatives of Measured and Modeled C-V 

 

Figure 8-4: Third Order IMD (Measured and Modeled) 
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In an effort to better understand the voltage and temperature impact on the shunt 

conductance, the G(V) SDD components in the revised equivalent circuit models are 

replaced with static resistors.  Using the spline fit to model the CV behavior, 

optimizations are performed to fit the shunt resistances for various voltages (0V – 50V) 

while leaving the temperature fixed at 25°C, initially.  This is done to see how the shunt 

resistance changes as a function of voltage for various temperatures. After fitting the 

resistors at 25C, more optimizations are performed to fit the resistance values over 

Table 8-1: Optimized G(V) Fitting Parameters 

 

 

Figure 8-6: Circuit Model with Nonlinear Conductance Component 
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Figure 8-8: Third Order IMD (Measured and Modeled) with G(V) 

 

Figure 8-7: Third Order IMD (Measured and Modeled) with G(V) 
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voltage at fixed temperature points of 50°C, 75°C, 100°C, and 125°C.  Figure 8-9 shows 

the optimized values for the shunt resistors for each of the voltage and temperature 

settings.  The only temperatures that display a monotonic change in the shunt resistance 

with respect to the voltage are 25C, 50C, and 75C.  At the other investigated 

temperatures (100C, and 125C), the shunt resistance value doesn’t change 

monotonically.   

The resistance values obtained from the two methods (static resistor fit and G(V) fit) 

do not match exactly; however they do show an overall similar trend of the resistance 

increasing with respect to voltage.  For the temperatures in which the optimized static 

resistance values do not increase monotonically with respect to voltage, the G(V) 

expression in its current form will not be able to replicate this behavior.  There appears 

to be another component/parameter that is not being accounted for in the G(V) 

expression.  More work is necessary to accurately model the nonlinear conductivity with 

respect to temperature for BST varactors.   

 

 

Figure 8-9: Optimized Values for Static Resistors 
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8.4.2 Conductance vs. Anneal Time 
Using similar methods previously discussed, the effects of anneal time on the shunt 

conductance component of the BST varactors is investigated.  Figure 8-10 shows the 

shunt resistance value vs. anneal time for various DC bias voltages which is extracted 

by ADS optimizations.  Overall, the shunt resistance decreases with respect to the 

anneal time.  This shows that the anneal time/grain size impacts the nonlinear 

conductivity translating to an influence of the sweet spot location in the IMD products.  

Therefore, in addition to temperature and voltage, the grain size could potentially be a 

parameter to be included in future models for describing the nonlinear conductance and 

accurately predicting the IMD products of BST varactors. 

 

 

  

 

Figure 8-10: Optimized Resistance Values vs. Anneal Time 
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Chapter 9 Conclusion 

9.1 Summary of Accomplishments  
The nonlinear properties of microscale and nanoscale planar BST varactors have 

been investigated.  The material properties of the BST thin films have been correlated to 

the nonlinear behavior and the post-deposition annealing treatment is proven to 

contribute greatly to the overall quality of the film and the tunability of the BST varactors.  

Post deposition annealing is also shown to contribute greatly to the intermodulation 

distortion generated by the BST varactors.  In addition to the film properties, temperature 

and DC voltage have an impact on the intermodulation distortion and trends have been 

identified.   It is also shown that a significant reduction in size can be achieved when 

using IDCs with nanoscale gap sizes instead of microscale gap sizes.  Modeling 

techniques for predicting the C-V behavior have been examined; however, more work 

needs to be done to accurately predict the IMD products, particularly at the sweet-spot. 

9.2 Future Work 
From a procedural perspective, the experiments could have been performed 

differently to yield more precise and consistent results.  For this work, materials 

characterization and RF measurements were done in parallel.  For a particular batch of 

samples with films annealed for a certain time, half of those samples were used for 

materials characterization: XRD, TEM, AFM.  The other samples from the batch were 

used to fabricate the BST varactors for RF measurements.  Instead of carrying out 

experiments in parallel on different samples, perhaps the work could be repeated by 

using a set of samples for the materials analysis and then using the exact same set of 
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samples for fabricating devices for RF measurements once the materials analysis is 

completed. 

Additionally, the grain size values extracted could have more of a statistical 

validation if the XRD approach could have been used.  Using a parallel plate collimator 

of a finer mesh than that available at the time to collect the diffracted X-rays coming from 

the measured samples would have possibly resolved the issue of the FWHM values not 

changing with respect to the anneal time. Statistically this would allow for a better 

extraction of grain size by calculating the size of the grains within the entire section of 

the film that is being exposed to the X-rays rather than using TEM to zoom and 

measuring randomly selected grains individually. 

As discussed in Chapter 8, there is still much work to be done in deriving models that 

accurately predict the 3rd order intermodulation distortion products for BST varactors.  

The nonlinear conductance component has been identified as a source for the dip 

observed in the third order IMD when viewed with respect to input RF power.  If an 

expression can be derived for the conductance that is not only dependent on the DC 

voltage, but on the RF voltage amplitude, temperature, and grain size, it is believed that 

this will lead to better prediction capability of the third order IMD products.  Once a more 

accurate model is derived, it can be used for designing RF components that contain 

planar BST varactors such as filters, phase shifters, tunable matching networks, and 

tunable antennas for frequency selective surface applications.   

This work examines BST films that have been annealed for 0, 3, 12, 18, and 24 

hours.  It is shown that the largest change in material properties of the BST film along 

with the tunability and nonlinear behavior of the BST varactors occurs between the non-

annealed samples and those annealed for 3 hours.   
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More work needs to be done to see how the film quality and RF behavior of the 

varactors change when the films are annealed for smaller increments: perhaps 15 – 30 

minutes at a time.   

The BST films observed in this work are 50/50 in composition and are also non-

doped.  It may be worthwhile to examine the nonlinear behavior of BST varactors 

produced with films of various concentrations such as 60/40 and 70/30, as these other 

compositions are also popular for developing tunable RF components.  Additionally, 

nonlinear properties of varactors created with doped BST films should also be 

investigated  as doped films have been examined in the past to increase tunability and 

lower losses [53].  This could possibly lead to advanced models for predicting the 

nonlinear behavior of BST varactors using various stoichiometries of BST that could 

possibly account for hysteretic behavior. 

Previous research has aimed to examine the switching speed of BST films using 

two-tone measurement techniques with varied tone spacing [16].  The power level of the 

third order IMD products is observed with respect to tone spacing in an effort to see how 

the film is responding to RF signals at various frequencies.  It would be advantageous to 

perform the same type of studies on BST films that have various material properties.  

This would allow for the examination of BST film switching speed based on roughness, 

grain size, and perhaps interplanar spacing.    

The nanoscale BST IDCs fabricated for this research have gap sizes just below 

400nm and this significantly reduces the size of the BST varactor when compared to one 

with microscale gaps.  If the gap size of the nanoscale devices can be further reduced, 

this could lead to additional device miniaturization which will be advantageous for 
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producing tunable nanoscale front ends for carbon nanotube and nanoscale CMOS 

based RF applications. 

Overall, the work presented here shows that there is still room and purpose for 

advancing the understanding of the nonlinear behavior of BST film based varactors. 
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Appendix A: Copyright Permissions 

A.1 Permission to Use Figure 2.1 
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Appendix A (Continued) 

A.2 Permission to Use Miscellaneous Material from Previous IEEE Publications 
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Appendix B: XRD Optics and Settings 

B.1 Incident Beam Optics (Powder Diffraction Method) 
The following options are selected for the incident beam optics on the XRD system 

when using the powder diffraction method: 

• PreFIX Module: X-ray mirror Cu 

• Divergence slit: slit fixed 1/2 ° 

• Anti scatter slit: none 

• Mask: Inc. Mask fixed 10mm 

• Mirror: None 

• Monochromator: None 

• Beam attenuator: None 

• Filter: None 

• Soller Slit: 0.04 rad 

B.2 Diffracted Beam Optics (Powder Diffraction Method) 
The following options are selected for the diffracted beam optics on the XRD system 

when using the powder diffraction method: 

• PreFIX Module: Programmable Receiving Slit (PRS) 

• Anti scatter slit: slit fixed 1/2 ° 

• Receiving slit: 0.25mm 

• Filter: Nickel 

• Mask: None 

• soller slit: 0.04 rad 

• Monochromator: None 

• Collimator: None 
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Appendix B (Continued) 

• Detector: Mini Prop. Large Window 

• Beam attenuator: None 

B.3 Scanning Specifications (Powder Diffraction Method) 
The following scanning specifications are used for the powder diffraction method: 

• Scan range: 20° – 70° 

• Time per step: 5 seconds 

• Scan speed: 0.012°/sec. 

• Total Scan Time: 1:09:30 

B.4 Incident Beam Optics (Grazing Incidence Method) 
The following options are selected for the diffracted beam optics on the XRD system 

when using the grazing incidence method: 

• PreFIX Module: X-ray mirror Cu 

• Divergence slit: slit fixed 1/8 degree 

• anti scatter slit: none 

• Mask: Inc. Mask fixed 10mm 

• Mirror: default Inc X-ray mirror Cu (MRD) 

• Monochromator: none 

• Beam attenuator: Ni 0.125mm automatic, usage: at pre-set intensity 

• filter: none 

• soller slit: none 
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Appendix B (Continued) 

B.5 Diffracted Beam Optics (Grazing Incidence Method) 
The following options are selected for the diffracted beam optics on the XRD system 

when using the grazing incidence method: 

• PreFIX Module: Parallel plate collimator 0.27° 

• anti scatter slit: none 

• Receiving slit: none 

• Mask: none 

• soller slit: 0.04 rad 

• Monochromator: None 

• Collimator: Default 0.27°(thin film) 

• Detector: Mini Prop. Large Window 

• Beam attenuator: None 

B.6 Scanning Specifications (Grazing Incidence Method) 
The following scanning specifications are used for the grazing incidence method: 

• Omega = 0.6° (This is fixed throughout the entire scan when using the 

grazing incidence method.) 

• Scan range: 20° – 70° 

• Time per step: 5 seconds 

• Scan speed: 0.012°/sec. 

• Total Scan Time: 1:09:30 
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Appendix C: Detailed Fabrication Recipes for Microscale BST IDCs 

C.1 Cleaning Samples 

• Label (scribe) the back of all samples with series and sample number 

before using 

• Clean with acetone and methanol, then N2 dry 

• Dehydration bake on hotplate at 115°C for 5 minutes.  Let it cool for a 

couple of minutes before spin-coating with resist. 

C.2 Depositing BST 

• BST Deposition at UCF (AJA ATC 1800 Sputtering System) 

• Deposition Pressure: 5mT 

• Base Pressure: ~1.5e-7T 

• Argon/oxygen ratio: 20:2.5 

• RF Power: 200 Watts (ramped up at 5W every 30 seconds) 

• Temperature: 400°C 

• Annealing: Ramp up to 900°C at 10°/minute 

• Anneal at 900°C in oxygen.using a Fisher Scientific .  Various annealing 

times are used for this work. 

• Let the oven cool down on its own (no ramp rate set for cool down). It 

takes about 3 hours to cool down. 

• An extra silicon sample is included with each run when depositing BST.  

This sample is not annealed and used to estimate the thickness of the 

BST film. 
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Appendix C (Continued) 

C.3 Patterning 1827 Positive Resist 

• Be sure to put down black colored dicing saw tape on Quintel chuck if 

using transparent substrates to avoid reflective scattering while exposing 

the resist. 

• Spin HMDS at 3000rpm for 30 seconds. 

• Spin 1827 at 3000rpm for 30 seconds. 

• Bake on hotplate at 90oC for 90 seconds. 

• Expose for 10 seconds on Quintel mask aligner (lamp intensity was at 

18.5 mW/cm2 when recipe was derived) 

• Develop for 30 - 40 second (or longer if necessary) in MF319 or AZ-726. 

• Descum for 2 minutes in O2, using brown box asher at 50-75W (It’s 

difficult to tune right at 50W).  This will remove 1827 resist at 82nm/min. 

Or the plasma therm can be used: O2, flow rate of 99 sccm, pressure of 

300 mT, power of 75 Watts. 

• No Hardbake, resist etches at ~304 nm/min in DRIE.  

• Initially 1813 resist was being used when doing wet etch, but it was not 

thick enough to protect the films during the DRIE process.  Therefore 

1827photoresist was used for patterning BST with DRIE. 
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Appendix C (Continued) 

C.4 Determining BST Thickness  

• Pattern 1827resist on the Si/BST sample (the one that was not annealed).  

• Submerge the sample in 10:1 BOE to etch the BST film.   

• Observe the sample while it is in the BOE.  When it appears that the BST 

has been etched  (you should be able to clearly see the silicon substrate 

in the areas in which there is no photoresist), take the sample out of the 

BOE.  It could take anywhere from 5 – 10 minutes to etch through the 

non-annealed BST using 10:1 BOE, depending on the thickness.  

• Place it in DI water for 1min and then N2 dry. 

• Observe the sample using a microscope to ensure that the BST film has 

been removed from the field. 

• Rinse the sample with acetone and methanol to remove the 1827 resist.  

If that doesn’t work, then use 1165 resist remover at 80oC for ~20 

minutes. 

• Determine thickness of the non-annealed BST using a profilometer. 

(Measurement A) 

• Etch the BST using NREC’s Alcatel DRIE system with recipe listed below 

C.5 Pyrex Recipe 

• RF 2800W (13.5MHz) 

• Bias: 550W 

• C4F8: 17sccm 

• CH4: 13 sccm 

• Argon: 100sccm 

• Temp: -20C 
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• Substrate distance from source: 140mm 

• Once the samples have patterned 1827 on them, measure the thickness 

of the patterned resist using a profilometer. (Measurement B) 

• Run the pyrex DRIE recipe for 1-2 min and then take more profilometer 

measurements.  The step that is being measured in this case consists of 

resist and patterned BST. (Measurement C) 

• Strip the resist from the sample by putting it in the brown box asher (up to 

30 min) or by using the plasma therm. 

• Take more profilometer measurements.  This time, only the step height of 

the BST is being measured since the resist has been removed. 

(Measurement D) 

• Use etch rate = Measurement D / experimental etch time to calculate the 

etch rate of the BST film. Calculate the time required to etch through the 

total film by using total etch time = Measurement A/etch rate. (Based on 

film thickness determined from silicon sample) 

• Calculate the thickness of the resist that was left on the sample after the 

DRIE etch by using Measurement C – Measurement D. 

• Calculate the etch rate of the resist by using (Measurement B – 

(Measurement C-MeasurementD)) / experimental etch time. 

• Once the total etch time required is known, use this time to etch the BST 

films on the remainder of the samples.   

• Strip the remaining resist using oxygen plasma 150 Watts for 10minutes. 
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• Side notes: Films grown on different substrate materials will have different 

characteristics and will etch at different rates.  Also, if the annealing 

conditions are different, the etch rates will vary.  Therefore, the above 

procedure needs to be carried out for each substrate material used along 

with each annealing condition used.  

• Etches BST on Alumina (annealed for 12 hours) at 75nm/min (calculated 

from Series A) 

• Etches 1827 resist at 304nm/min 

• Etches alumina substrate at 145nm/min  

• Series A average BST film thickness was ~550nm.  I used an etch time of 

7.5 min, but I think that the samples were slightly over-etched. 

• Since the resist has been exposed to plasma during the DRIE process, it 

will be very difficult to remove with acetone and methanol.  This is why it 

is best to put it in the asher to get rid of any resist residue. 

C.6 Patterning 3000PY (NR-1) Resist 

• Spin coat 3000PY at 6krpm for 50 seocnds (resist thickess: ~2.5um) 

• Pre-exposure bake at 155C for 90 seconds 

• Expose for 11 seconds (lamp intensity on Quintel was down to 18.8 

mW/cm2 at the time), 

• Bake at 110C for 60 seconds 

• Develop in RD6 for 7-10 seconds 

• Descum for 2 minutes in O2  at 75W in for 2 min   
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C.7 Metal Deposition (Using Thermal Evaporator)  

Metal Rate Current Displayed 
Thickness 

Actual 
Thickness 

Cr 0.3 – 0.4 A/s ~50Amps 0.15kA or 15nm  
Au 0.4 – 0.5 A/s (0-

100A) 
3 A/s (100 – 
1000A) 
6.5 A/s (1000 – 
max ) 

190 Amps 
210 Amps 
220 Amps 

5.3kA or 530nm 
10.06 kA or 1um 
12kA or 1.2um 

4.7kA or 
400nm 
7.8kA or 
780nm 
9.1 kA or 
912nm 

 

C.8 Lift Off 

• Lift-off 3000PY and excess metal using RR41 resist remover at 

temperature of 100 C for at least 20 minutes. 

• USB clean as needed (up to 10 – 15 minutes) while samples are 

submerged in RR41. 
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Appendix D: Fabrication Recipe for Nanoscale BST Varactors 

D.1 Sample Preparation 

• Spin-coated undiluted ZEP at 4krpm for 45 seconds 

• Bake on a hotplate at 180°C for 3 minutes 

• Let the sample cool briefly 

• Spin-coat with diluted Espacer (2:1) at 900rpm for 45 seconds 

• Changed spin recipe to 2krpm for 5 seconds to get rid of edge beads and 

excess resist in the corners of the sample 

• Write the pattern using JEOL 9300 FS  

D.2 Develop 

• Dipped in Xylenes to break E-spacer 

• Rinsed with IPA 

• USB clean in H2O for 30 seconds to remove E-spacer residue 

• Tilt the beaker slightly and insert the sample, face up into the beaker.  

Use the tweezers to hold on to it while developing. Develop the sample in 

Xylenes for 1.5 – 2 minutes in 30 second increments to ensure ZEP resist 

is not over-developed. 

• Immediately after developing, rinse the sample with IPA.   

• Dry with N2. 

• Descum at 165 mT using 25W, and 25sccm of O2 for 20 seconds 

D.3 Metal Deposition 

• 15nm of Cr is deposited by E-beam evaporation 

• 125nm of Au is deposited by E-beam evaporation 
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D.4 ZEP Lift-Off 

• Heat anisol in a glass beaker on a hotplate up to 70 deg C.  Once it is at 

temperature, submerge the sample for 15min and observe.  If there is still 

residue, put it back in the beaker for a few minutes at a time. 

• When it looks good, put it in the ultrasonic bath for up to 10min.   

• Rinse the sample with IPA.    

• Never spray this with water.  This could damage the nanoscale features 

in the EBL resist.   
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Appendix E: MATLAB Code for Spline Fit Coefficients 
%%% Tony Price 
%%% Capacitance-Voltage Curve Fit Using Cubic Spline 
Interpolation 
%%% USF/UCF BST films Series C  

  
  

%%%positive voltage only 
clc; close all; clear all; 
format short e; 
  
%%%%%Sample C3 Device R4C3 5F2P at Temperature: 25C 
voltage = [0 2 5 10 15 20 25 30 40 50 60 70 80 90]; 
Cap_pF=[1.288 1.288 1.282 1.260 1.234 1.204 1.173 1.144 1.092 
1.048 1.011 0.979 0.952 0.928]; 
  
% Data at Temperature 50C 
% Cap_pF=[1.221 1.220 1.214 1.198 1.178 1.155 1.132 1.109 1.065 
1.027 0.994 %0.965 0.940 0.918]; 
  
% Data at Temperature 75C 
%Cap_pF=[1.161 1.160 1.156 1.144 1.130 1.112 1.094 1.076 1.041 
1.009 0.981 %0.955 0.933 0.913]; 
  
% Data at Temperature 100C 
%Cap_pF=[1.106 1.106 1.102 1.094 1.084 1.070 1.057 1.043 1.016 
0.989 0.966 %0.944 0.924 0.906]; 
  
% Data at Temperature 125C 
%Cap_pF=[1.059 1.058 1.056 1.051 1.043 1.033 1.024 1.013 0.991 
0.969 0.950 %0.932 0.915 0.899]; 
  
  
figure(1); 
plot(voltage, Cap_pF); 
  
xlabel('Volts'); 
ylabel('Capacitance (pF)'); 
title('CV Measured and Fitted Data'); 
legend('Measured Data', 'Fitted Data', 'Gaussian_CV', 'York CV'); 
grid on; 
  
%%% Calcultating 1st derivative of measured data and padding with 
extra %element in array%%% 
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Appendix E (Continued) 
dev_meas=diff(Cap_pF); 
last_ind = find(dev_meas, 1, 'last'); 
last_element = dev_meas(last_ind); 
new_dev_meas = [dev_meas, last_element]; 
  
  
%%%%%Plotting derivatives 
figure(2) 
plot(voltage, new_dev_meas); 
xlabel('Volts'); 
ylabel('1st derivative of Capacitance'); 
title('Derivatives of Measured Data'); 
grid on; 
  
  
%%%%Spline fit  
%%%%define smaller increments for voltage 
spline_val = spline(voltage,Cap_pF); 
[breaks,coefs,l,k,d] = unmkpp(spline_val); 
spline_CV_fit=ppval(spline_val,voltage); 
  
figure(3) 
plot(voltage,Cap_pF,'o',voltage,spline_CV_fit); 
legend('Measured CV', 'Spline Fit'); 
grid on 
  
%%%Coefficients to ADS%%%% 
%%% This section of code assigns variable names to the calculated 
%%% coefficients from the MATLAB spline fit and places them into 
a text 
%%% file which is later used to insert the coefficients into an 
ADS 
%%% schematic for modeling 
  
siz = size(coefs);   %size of coefs matrix, row x column 
  
row = siz(1); % number of rows 
column = siz(2); % number of columns 
  
for x = 1:column  % assigns variables A, B, C, or D to columns 
1,2,3,and 4 
    if x==1 
        var = 'A'; 
    elseif x==2 
        var = 'B'; 
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Appendix E (Continued)   
elseif x==3 
        var = 'C'; 
    elseif x==4 
        var = 'D'; 
    end 
  
  
for y = 1:row  %assigns row numbers to variable name 
        varnam = strcat(var,int2str(y)); % concatenates letter 
and number assignments (i.e. A1) 
        varcnam = strcat(varnam,'=',num2str(coefs(y,x))); % 
assigns variables to coefs in the form, i.e. A1=2 
  
foldername= 'Coeffs'; % name of text file 
dest_dir='C:\Documents and Settings\tsprice\My Documents\MATLAB'; 
% directory text file is saved in 
  dest_filename = char(strcat(dest_dir,'\',foldername, '.txt')); 
% concatenates destination and file name for complete directory 
  
dlmwrite(dest_filename, varcnam,'delimiter', '', 'newline', 'pc', 
'-append', 'roffset', 0); % saves variable to text file 
  
  
    end 
  
   
end 
  
%%% Calcultating 1st derivative of Spline Fit and padding with 
extra element in array%%% 
spline_dev=diff(spline_CV_fit); 
last_ind_spline_dev = find(spline_dev, 1, 'last'); 
last_element_spline_Dev = spline_dev(last_ind_spline_dev); 
new_spline_dev = [spline_dev, last_element_spline_Dev]; 
  
figure(4) 
plot(voltage, new_dev_meas,'bd-', voltage, new_spline_dev,'r'); 
grid on 
legend('Derivative of Measured CV', 'Derivative of Spline Fit'); 
xlabel('Voltage'); 
ylabel('Delta Cap'); 
title('Derivatives of Measured and Modeled C-V')
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