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ABSTRACT

Metal-Insulator-Metal (MIM), Metal-Insulator-Insulator-Metal (MIIM), and Metal-
Insulator-Insulator-Insulator-Metal (MIIIM) quantum tunneling diodes have been designed,
fabricated, and characterized. The key interest of this work was to develop tunneling diodes
capable of operating and detecting THz radiation up to 30THz, which is well beyond the
operation ranges of other semiconductor-based diodes.

Al,O3, HfO, and TiO, metal oxides were employed for studying the behavior of metal-
insulator-metal (MIM) and metal-insulator-insulator-metal (MIIM) quantum tunneling diodes.
Specifically, ultra-thin films of these oxides with varied thicknesses were deposited by atomic
layer deposition (ALD) as the tunneling junction material that is sandwiched between platinum
(Pt) and titanium (Ti) electrodes, with dissimilar work functions of 5.3 eV and 4.1 eV,
respectively.

Due to the unique and well-controlled tunneling characteristic of the ALD ultra-thin
films, reproducible MIM and MIIM diode devices have been developed. The DC characteristics
of MIM and MIIM tunneling junctions with different junction areas and materials were
investigated in this work. The effects of the different compositions and thicknesses of the
tunneling layer on the diodes were studied systematically. Through the introduction of stacked
dual tunneling layers, it is demonstrated that the MIIM and MIIIM diodes exhibited a high

degree of asymmetry (large ratio between forward and reverse currents) and a strong nonlinearity

Xi



in their 1-V characteristics. The characterization was performed on diodes with micro and nano-
scale junction areas.

The MIM diodes reported herein exhibited lower junction resistances than those reported
by prior works. Moreover, a study was conducted to numerically extract the average barrier
heights by fitting the analytical model of the tunneling current to the measured I-V responses,
which were evaluated with respect to the thickness of the constituent tunneling layer. RF
characterization was performed on the MIM diodes up to 65GHz, and its junction impedance
was extracted. A rigorous procedure was followed to extract the diode equivalent circuit model

to obtain the intrinsic lumped element model parameters of the MIM diodes.
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CHAPTER 1: INTRODUCTION

This research focuses on the development of zero-bias and DC-biased diodes with high
responsivity for antenna-coupled detectors that are used in tightly packed 2D array formation for
high frequency (terahertz THz) radiation detection. For the past few decades, a great deal of
effort has been focused on the development of millimeter wave receivers [1-3]. Recently, there
has been growing interest in the development of antennas with operating wavelength range
between 1um and 100um. Despite the numerous potential applications, developments in this
wavelength range have been largely unexplored due to the lack of affordable and convenient
radiation sources and means of detection. However, advancements in laser and optics
technologies in the mid-twentieth century have helped to address issues of radiation sources
while the recent progress in semiconductor devices and nanofabrication technologies have been
instrumental in building THz detectors [4].

Due to unique resistive switching behavior [5], Metal-Insulator-Metal (MIM) diode have
sparked a great deal of interest since the 1960s. The earliest generation of MIM point-contact
diodes were composed of an atomically sharp tungsten wire tip, placed in direct contact with a
planar metal electrode that was coated with a thin layer of oxide [6, 7]. Despite the challenges of
reproducing those point-contact devices, it has been envisioned that MIM diodes coupled with
planar antennas to create rectennas would hold great promise for detecting and mixing high
frequency signals up to the THz range [8-10]. Particularly in the areas where high frequency
rectification is needed, MIM diodes are anticipated to outperform their counterparts with either

hetero-junctions or Schottky junctions [11], which have a rather limited cutoff frequency
1



(<3THz) [10] due to their fast response time. Several prior work on MIM diodes are either
directed toward their nonlinearity, or their characteristics when integrated with antenna to form

rectenna [12, 13].

1.1  Background

A rectenna (e.g a tunneling diode-coupled antenna) concept, unlike the photovoltaic cell,
utilizes the wave nature of electromagnetic radiation by collecting the longer wavelengths at the
desired band [14, 15]. The device rectifies captured electromagnetic (EM) radiation and provides
direct current (DC) electrical output. A typical rectenna system consists of two major elements,
an antenna (slots, dipoles, spirals, and bow-tie) and a fast response tunneling diode. As shown in
Fig.1.1, the alternating current (AC) signal collected by the antenna is channeled [16] through
the diode where the rectification and mixing take place. It has been predicted that rectennas
would not have the fundamental limitation of semiconductor band-gap, which constrains their
conversion efficiencies [10, 17]. As a result, rectenna can be used in a variety of applications
including harvesting solar energy [18, 19], chemical, and gas detection [20-22], medical imaging
systems [23], non-volatile memory systems [24], and many other systems.

While the characteristics and performance of the individual components of the rectenna
elements have been extensively studied theoretically and experimentally, it has remained a
challenge to perfectly couple the antenna to the diode to realize optimum performance in term of
responsivity, sensitivity and noise equivalent power [25]. For example, performance analysis of
the tunnel junction diode have been thoroughly reported [9, 11, 26, 27], but the issue of
accurately matching diodes to antennas has not been fully addressed. Some attempt have been
made to tackle these problems, but most were based on using the antenna model to predict the

operating frequencies [28-30]. However, in these prior efforts, the responsivity of the device is

2



measured without proper matching thus hindering a good agreement with the operation

frequencies and performance characteristics.

Antenna
Rectifier

D.C
D Filter D Load

~]
1

Figure 1.1: Schematic diagram of a rectenna. The system is formed by coupling a diode to an antenna
to form a detector. The concept is that the antenna absorbs the AC radiation while the incorporated
diode rectifies the AC signal to generate a DC output.

Vcos ot
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Figure 1.2: Equivalent circuit model for antenna coupled diode. R, is the antenna impedance, Ry, is the
diode impedance, Cp, is the diode capacitance and the Vp, is the DC-bias voltage across the diode.

Fig.1.2 shows an equivalent circuit model of an antenna coupled with a tunneling diode.
The antenna section of the system is represented by the voltage source Veoswt in series with
internal resistance Ra representing the radiation resistance of the antenna. The nonlinear

resistance (Rpy is the diode junction resistance in parallel with the diode shunt junction
3



capacitance (Cp) representing the behavior of the tunnel diode junction. The theory of impedance
matching between the antenna to the diode was discussed by Sanchez [31] and Sarehraz [16]. In
particular, Sanchez [31] examined the relationship between diode output voltage and the incident

signal captured by the antenna, which is shown in the equations below:

vz,
" (Ra+Zp) (1.1)
Zp is the equivalent impedance of MIM diode calculated from the parallel Rp and Cp
R
Z,=——2— 1.2)
L+ jwCoR;)

Augeri [32] introduces the concept of additional voltage generator that represents the local

oscillator LO for the heterodyne receiver analysis.

V =V, coso  t+V, cosat (1.3)
therefore
Vo VR
(RA +Rp + Ja)RARDCD) (1.4)

where junction capacitance Cp=¢gyeA/L is due to the finite contact area A and the dielectric layer
thickness L, Zp is the parallel combination of Rp with X; introducing the concept of “reduced
frequency” ¢ = wCpRa, the “reduced diode resistance” X = Rp/Ra, and the “incident power” P =
VZI8R,, then

VX
[L+ @+ ja)x] (15)

Now the power dissipated in the shunt MIM diode resistance Rp is:
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Px
P = :
@+ x)* +q7x? (1.10)

The condition to obtain the value of diode resistance that maximized P is P, /ox =0. So at q<1,

the maximum P, takes place, i.e. Rp =Ra.

1.2 Terahertz Radiation

THz (10 Hz) lies between the microwave and infrared regions of the frequency
spectrum. The freque