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ABSTRACT 

 

 Detectors and sensors are an integral part of modern electronics and are crucial to 

highly sensitive applications. Metal-Insulator-Metal (MIM) tunnel junctions have been 

explored for the past five decades and are still being investigated due to its wide use of 

applications such as mixers, capacitors, detectors, rectifiers and energy conversion 

devices. In this research, various designs of thin film based tunnel junctions have been 

investigated and the optimum one picked for the purpose of a wide band detector up to 

10GHz based on their sensitivities. A modified design with an isolation layer 

incorporating a self-aligning method to increase fabrication throughput was developed. A 

mask for the reliability testing of multiple devices with different areas was also 

developed. Nickel Oxide based insulators with different stoichiometries have been 

incorporated in the fabrication of the device to identify which stoichiometry gives the 

best performance for high frequency applications. Nickel Oxide (NiO), Zinc Oxide (ZnO) 

and the combination of the two have been deposited using reactive sputtering and 

investigated as insulator materials. The bilayer devices showed increased sensitivities at 

lower turn on voltages and very good efficiencies at 100MHz and 1GHz. Although, the 

MIM device provides a simple structure, some of the critical parameters required to 

quantify the device functionality are still being explored. Based on the parameters, a 

criterion was developed to help engineer a tunnel device for a desired detectivity. 
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CHAPTER 1: INTRODUCTION 

 

 Metal-Insulator-Metal (MIM) tunnel junctions have been studied since the 1950s 

starting with Leo Esaki who invented the Esaki diode. Metal-Insulator-Metal (MIM) 

tunnel junctions, also known as Metal-Oxide-Metal (MOM) or Metal-Barrier-Metal 

(MBM) tunnel junctions are essentially sandwich structures consisting of a metal 

electrode, a thin dielectric layer and an additional metal electrode. MIM junctions have 

been investigated since the late forties and early fifties [1]. MIM is a device which works 

on the principle of quantum tunneling whereby electrons tunnel through the insulating 

barrier from one metal electrode to the other. With the turn of the century, the window of 

useful frequencies in the electromagnetic spectrum widened considerably. There was a 

need for technology being able to operate at higher frequencies and many breakthroughs 

were made with electronic materials one of them being the tunnel diode. The tunnel diode 

surpassed normal diodes in that tunnel diodes have very high switching speeds and 

sensitivities [2]. It was first successfully demonstrated by Leo Esaki (Esaki Reiona) in 

August 1957 [3, 4] which marked a new era for electronic devices. 

 

 1.1 Overview of MIM Junctions 

 There are a multitude of applications for the MIM tunnel junction such as 

magnetic tunnel junctions (MTJ) [5], capacitors [6], waveguides [7] and rectifiers[8, 9], 
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the latter being quite a new research field. MTJs utilize electrons as a source of current on 

the application of a magnetic field and the MIMs utilize the tunneling of electrons as a 

current source on the application of an electric field. Shortly after the discovery by Esaki, 

many groups experimented on the magnetic effects of MIMs and the MTJs were born. In 

the seventies, IBM developed the first MTJ for MRAM applications thus paving a way to 

store data without an applied voltage[10]. The rectifying behavior of MIMs led them to 

be investigated as energy conversion devices comprising of detectors and energy 

harvesters where detectors use external circuits to amplify the rectified signal, and energy 

harvesters utilize the rectified signal as usable power. Around the time of the 

development of MTJs by IBM, groups such as Gustafson et al [4, 11-13] were working 

on detection and mixing of infrared (IR) and optical frequencies using MIM as a diode 

[14-18], because Metal-Insulator-Metal tunnel junctions had gained increased popularity 

due to their ability to exhibit extremely low turn on voltage in “diodic” operations. MIM 

diodes do not operate like normal semiconductor tunnel diodes since tunnel diodes 

exhibit negative resistance and MIMs don’t, except in special conditions[19]. As far as 

the literature shows, Frank et al [6]produced in 1968 Metal-Insulator-Semiconductor 

(MIS) and MIM capacitors using reactive sputtering as a method of fabrication for silicon 

ICs. While there have been other rectifiers available to compete with MIM junctions, it is 

undeniable that due to its simplistic architecture and its ability to operate at high 

frequencies, it is unbeatable in device performance. This was one primary reason great 

attention was given to this particular device in the seventies and today. Superconductor-

Insulator-Superconductor (SIS) devices [20, 21] have also been used as quantum 

detectors and mixers but will not be discussed as it is outside the scope of this work. 



3 

  In particular the MIM junction is being investigated for its applications in energy 

conversion devices such as infrared and optical detection. The MIM junction as an 

energy-harvesting device and infrared (IR) detector is a new and upcoming research field. 

By coupling an antenna, designed for the THz frequency range, to the MIM tunnel 

junction, one can rectify IR radiation to derive usable power from the device. Whether it 

is used as a capacitor, resistor or diode, it can be surmised that the four main aspects of 

the MIM, that is, top electrode, insulating layer, bottom electrode, geometry[22] and 

configuration play crucial roles in the working efficiency of the device. The Proper 

selection of the two electrodes determines whether the MIM’s I-V response is 

asymmetric or symmetric. Asymmetry cannot be the only governing reason for choosing 

the right electrode materials since the compatibility of the metals with that of the 

insulator is important. Lattice mismatch between the metal and insulator layer, and 

delamination are issues one has to contend with. The insulating layer must also be 

conditioned to facilitate conduction (tunneling) of electrons. When fabricating the 

insulating layer, non-uniformities and pinholes can lead to non-repeatability and shorter 

device life time. Since the MIM is essentially a stacked device, careful fabrication of 

subsequent layers is imperative to the working of the device. Artifacts caused during 

fabrication techniques such as liftoff and etching can cause detrimental effects to the 

proper working of the device. Oxygen vacancies lead to electron traps and the 

intermittent operation of the device, thereby leading to the conclusion that not only the 

conditions while fabricating the insulator as well as the remaining layers affect the device 

performance. While performing electrical characterization of the device, improper 

positioning of probes, puncturing of the electrodes or voltage annealing can lead to 
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skewed or false results. Literature search on MIM diodes for rectification at THz 

frequencies shows that proper understanding of the rectification process still needs to be 

developed. There is also a need to establish a well-defined link between the mathematical 

modeling and the choice of dielectric materials in order to achieve a high current output 

from the device. 

 

 Even though there are many other constraints in the development of a MIM based 

energy conversion device, such as, impedance matching and antenna response, the 

objective of this research focuses on the rectification response (sensitivity) and tunneling 

mechanisms with respect to the dielectric layer characterization which influences the 

reliability of the tunnel junction. 

 

 1.2 Goals and Objectives 

 The main goal of this research was to obtain a device with a high 

efficiency/sensitivity. Towards this goal, the specific objectives are as follows: 

(i) To tune the dielectric so as to increase the asymmetry of the diode- To achieve 

good diodic behavior, not only must the work function difference of the two 

metals be large, but the dielectric must also facilitate better electron transport 

in one direction. Insulators with different oxygen concentrations would affect 

the electron transport through the barrier. Bilayer insulators used in the tunnel 

junctions might be able to accomplish this due to resonant tunneling. 
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(ii) To develop a reliable MIM tunnel junction that can be integrated with an antenna 

with a Co-Planar Waveguide feed. Since the primary use of the tunnel 

junction is to be used like a diode for detection of radiation, it has to be 

seamlessly integrable with an antenna designed for the detecting frequency. 

 

(iii)To investigate the tunneling mechanism in a bi-layered tunnel device- Various 

tunneling mechanisms such as Fowler-Nordheim tunneling and trap assisted 

tunneling. DC electrical measurements are carried out at various temperatures 

and the results fitted with various tunneling models to determine the tunneling 

mechanism. 

 

(iv) To determine the efficiency of the tunnel device in a wide range of frequencies- 

For the device to be effectively used as a wide band detector/sensor, the 

output power must be significant to derive any usable signal. 

 

 1.3 Organization of Manuscript 

Chapter two discusses in detail single layer and bilayer tunnel junctions, stating 

the properties, advantages and shortcomings of each. The motivation for this research and 

the current state of the art of devices operating at very high frequencies are also presented 

in this chapter. In chapter three, the operation of the tunnel junction with its various 

tunneling mechanisms and models are discussed. The band diagrams of the NiO only 

based devices and the NiO/ZnO bilayer based devices are also introduced. Chapter four 
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gives a brief overview of the development of MIM tunnel junction devices in general 

with major concentration on the optimization of the insulator layer used in developing the 

tunnel junction devices described in this research. Various oxygen concentrations used to 

fabricate the NiO layer and its material properties will be presented. The ZnO 

characteristics and the NiO/ZnO bilayer bandgap measurements will also be discussed. It 

is interesting to ascertain that the combined bandgap of the bilayer is smaller than the 

individual ones. This suggests that a natural quantum well is produced at the interface. 

Chapter five describes in detail the evolution of MIM tunnel junction based rectifying 

devices fabricated and studied in this research. The design and fabrication of a simple 

stacked device, its pitfalls and lessons learned leading to the design and fabrication of the 

optimized spaced device are discussed in detail.  Chapter six presents and analyzes the 

results of the designed and fabricated devices. In section 6.1 the responses of the devices 

operating from DC to 5kHz are presented illustrating the rectifying behavior of NiO, ZnO 

and bilayer devices. In section 6.2, the high frequency response of the devices is 

presented and the results are compared for 3 different dielectrics. 
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CHAPTER 2: BACKGROUND 

 

 The MIM junction, used for detection and mixing of infrared (IR) and optical 

radiation, was initially investigated by Frayne et al [18] and Dees et al [23]. A point 

contact configuration also known as the cat-whisker diode configuration was used for the 

detection and characterization experiment. However, due to its poor stability and 

reproducibility, other detectors such as thermopiles or bolometers were considered. 

Detectors prior to their introduction were mainly bolometers and bulk bimetallic contacts 

which relied heavily on liquid Helium as a cooling system [24, 25]. Bolometers, and later 

micro-bolometers, have a crippling disadvantage since they lack the required sensitivity 

and speed of response. Existing IR imaging/detection systems use focal plane arrays 

(FPA) which consist of an array of either thermopiles, bolometers, pyroelectrics [26] or 

biomaterial cantilevers [27] to detect temperature changes in the form of voltage change, 

carrier density change, resistance or capacitance change. Although some very recent 

advances have been made with such IR imaging devices, the underlying principle poses a 

problem; they all rely on the temperature change of the detecting material. The 

pyroelectric responses of each material must be taken into account when choosing them 

and even slight thermal noise can distort the output quality. The point contact diodes, and 

subsequently MIM diodes, eliminated the need for such cooling thereby heralding the era 

of un-cooled IR/photo detectors [15-17].  In this regard MIM based IR sensors can be 
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deemed superior since they do not rely on thermal effects for sensing and their response 

speeds are much higher than thermal based sensors. Matyi [9] proposed substituting each 

pixel of the FPA with double band nanoantennas that detect radiation in the Low IR and 

THz regions. Moreover, MIM based sensors can also operate in mm-wave regions and 

can detect signals which are not in the line of sight and under adverse weather conditions 

[8]. One must note that although the point contact diode can be regarded as an MIM 

diode, it is generally not referred to as such.  

 

 Metal-Insulator-Metal structures are also used as capacitors in MMICs for the 

increased capacitance they exhibit due to very thin high k dielectrics, and their excellent 

role in blocking the DC in MMICs [6, 28, 29]. The MIM tunnel junction can essentially 

be used for two purposes; that is, to allow electrons to tunnel through directly and/or 

under certain bias conditions, or to behave like a true capacitor and prevent leakage 

currents under certain bias conditions. Martin et al [7] also used an MIM like structure as 

a wave guide although it was quite unclear which materials were the metals and 

insulators. In the case of an MIM structure being used as a capacitor, the breakdown field 

is typically desired to be high and the insulating material to behave as close to an ideal 

insulator as possible. If the MIM structure is to be used as a tunneling junction, the 

insulating material would typically be very thin of the order of 50Å or less. The operation 

of a MIM tunnel junction and the governing equations as well as the numerical models 

used to predict the junction behavior are discussed in the following section. 
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 2.1 Single Layer MIM Junctions 

 A typical MIM, as its acronym suggests, is just a dielectric barrier sandwiched 

between 2 metal electrodes as shown in Fig. 1. The barrier can either be a native oxide of 

any one of the metal electrodes, or a non-native one. When a voltage is applied across the 

electrodes, electrons tunnel from one metal to the other through the insulating barrier 

layer. In a semiconductor tunnel diode, the thin heavily doped p-n junction creates a 

broken band-gap allowing electrons in the ‘n’ side to align with holes in the ‘p’ side. This 

reduced k-vector causes the electrons to tunnel over to the ‘p’ side which in turn allows 

for an increased current to flow when the applied voltage is very low. The MIM is similar 

in comparison but for the fact that the ‘p’ and ‘n’ type regions are electrodes and not 

semiconductors. In a way the semiconductor effect is being replicated here by using 

metal electrodes sandwiching a very thin barrier with the exception that very low turn on 

voltages can be acquired and usage at very high frequencies is possible. 

 [30].   

  

 

 

Contacts 

Bottom Electrode 
Insulator 

Top Electrode 

U 

e
-
 

x=0 x=l 

Metal Metal 

Very thin 

barrier (1nm) 

Vacuum level 

s 

Fermi level 

Figure 1. Side view of a typical 

MIM sandwich device 

Figure. 2. MIM with same metal 

electrodes (0V Bias) 



10 

 If the MIM is used to rectify high frequencies it must have a very high sensitivity 

and nonlinearity since it has to rectify very small amplitudes [31-35]. It also must have 

low impedance so that it can be matched with the antenna circuitry. For its use as an 

energy harvester, it has to exhibit high current near zero bias. In this case, the operation 

will greatly depend on the difference of the work functions, ∆Φ . However, ∆Φ  alone is 

not sufficient to overshadow the other characteristics of the MIM that limits its 

performance as a detector or harvester. The next section gives a brief overview of 

engineering the insulator layers to achieve high sensitivity, curvature (non-linearity) and 

asymmetry of an MIM tunnel junction.   

 

 2.2 Multilayered MIM Junctions 

The single layer MIM tunnel junction is a revolutionary device in its own right, 

since unlike semiconductors, the usage of oxides as an insulating layer allows an easier 

way to directly control how electron transport takes place. Also, the manufacture of such 

devices is far easier, compared to other semiconductor based devices, as will be seen in 

chapter four. Nevertheless, the single layer MIM tunnel junction is limited by its work 

function difference and the properties of the dielectric at high operating frequencies. In an 

effort to enhance the tunneling mechanism and thereby the electron transport, 

multilayered MIM tunnel junctions have been developed [31-38]. So far there is limited 

development on multilayered tunnel junctions for detectors and energy harvesters [31, 33, 

34, 37, 39], instead such tunnel junctions have been extensively used as magnetic tunnel 

junctions for sensors, and Magnetic Random Access memory (MRAM) devices [40-45]. 
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The multilayered tunnel junction mainly utilizes the resonant tunneling effect that 

was established by Esaki in 1974 [3] and is more frequently called Resonant Tunnel 

Diode (RTD). The p-n junction tunnel diode exhibits a negative differential resistance in 

its Current-Voltage response which proved to be very useful in amplifiers and high 

frequency triggers. The theory is as depicted below: 

 

Figure 3. Working theory of semiconducting tunnel diodes [46-48] 

In Fig. 3 the depletion layer acts as a thin barrier enabling tunneling to take place. 

(a) The barrier thickness is low and therefore charge carriers tunnel spontaneously or 

with little applied bias. (b) With an increase in bias, the barrier thickness increases and 

therefore the tunneling current decreases exhibiting negative differential resistance 

a 

b 

c 
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(NDR). (c) When the applied bias increases even further, electrons start conducting 

thermionically. Typically quantum wells do not exist in such devices although defect 

densities could possibly induce such wells. The band structure for a multilayered tunnel 

junction is different as is seen in Fig. 4. A low bandgap insulator material is sandwiched 

between two high bandgap insulator materials which, on either side, are in ohmic contact 

with metals having different work functions. By tailoring the insulator layers and the 

configuration of the tunnel stack, quantum well(s) can be introduced where a two 

dimensional electron gas (2DEG) confinement occurs at the interface. At certain energies 

that resonate with the quantum wells’ energy levels, a large tunneling probability occurs, 

leading to an increase in the tunneling current. These quantum wells can be physically 

defined and fabricated or exist in the presence of traps within the insulator or interface 

[32]. The tunneling in such a case can also be known as a trap assisted tunneling (TAT). 

Many groups have shown enhanced rectification and increased responsivities using 

multilayered MIM tunnel junctions [31-34, 37, 39]. 

 

Figure 4. Band structure for a multilayered MIM tunnel junction.  

This picture depicts a bi-layered device 

 

 

metal metal 

  

Ins
ula
tor 
1 

Ins
ula
tor 
2 

metal 
metal 

Ins
ula
tor 
1 

Ins
ula
tor 
2 

  

Quantum Well 
2DEG 

+ve Bias 



13 

RTDs typically exhibit NDR, however NDR effects may or may not be seen in oxide 

based Resonant Tunnel Junctions (RTJs). Many RTDs involving III-V semiconductors as 

the insulating materials display excellent NDR effects [48]. In this work, limited NDR 

effects have been noticed with the devices fabricated. More often it is observed in aged 

devices and therefore attributed to the formation of additional interfaces by diffusion over 

time consisting of a modified barrier.  

 2.3 Motivation 

The need for clean energy sources has become ever more pressing compared to 

just a decade ago. Apart from the utilization of renewable energy sources, recycling and 

reuse of energy is also widely being investigated to eliminate loss and increase efficiency. 

To this end, solar cells seem to be a very widely used solution for harvesting energy from 

the sun with the highest efficiency so far being around 60% [49]. Although advances can 

still be made in coming years increasing the efficiency of solar cells, it is always 

desirable to develop higher efficiency energy conversion devices. Solar cells utilize the 

particle nature of light (photons) to excite electrons from the valence band to the 

conduction band of the solar cell material creating an electron-hole pair. This produces a 

current which can be harnessed as energy when allowed to pass through an external load. 

This mechanism of solar conversion can be very lossy since excited electrons thermally 

relax after the energetic photons transfer their energy to them [31]. 

In a different concept, the rectenna, instead of using the particle nature of light 

involving inelastic collisions, one could use the wave nature of light. Electrons are able to 

resonate within the full length of the electromagnetic spectrum and therefore, designing 
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an antenna element that resonates at a particular frequency would cause the electrons in 

the Fermi level of the metal to oscillate at that frequency without almost any loss, 

provided the impedances are matched. When the antenna is coupled with a diode, the AC 

oscillations can be rectified to produce usable direct current. For this reason, rectennas 

have been viewed as promising devices for energy conversion. 

Energy converters typically fall into two categories: namely, detectors and energy 

harvesters with the former being the most widely researched type of device. As 

mentioned in the introduction, rectennas can also be used as detectors/sensors without 

depending on a zero-bias current when biased at operating suitable operating voltage. The 

concept of harnessing microwave power into usable energy was first conceived at 

Raytheon in the nineteen sixties with a GaAs/Pt Schottky barrier diode based rectenna 

element and demonstrated an efficiency of 90.6% [50]. The highest conversion efficiency 

so far (albeit at very high power and at 2.5GHz) has been reported to be around 85%-

90% [51]. Yoo et al [52] demonstrated efficiencies of 39% to 60% by using GaAs 

Schottky diodes coupled with antennas operating at 35GHz and 100mW output power. 

Devices operating at higher efficiencies, very high frequencies and very low power still 

need to be developed. Subsequently thin film rectenna arrays were developed sporting 

efficiencies of 85%  for detecting microwave radiation with high power [53, 54]. The use 

of the MIM as an energy harvesting device can be regarded as a spinoff from its original 

use as an IR detector. The MIM device would be able to scavenge or harvest usable 

power from primary and stray sources, such as thermal energy (solar, blackbody radiation 

or other kinds of waste heat) [55]. Since thermal (IR) radiation falls in the THz frequency 

range, antennas that are designed to capture THz radiation can be coupled to MIM diodes 
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to produce IR rectifying devices. Theoretically, MIM based rectennas could be more 

advantageous compared to solar cells in harnessing power from the sun. However there 

are many serious issues one must address and resolve before this can be realized.  

MIM detectors on the other hand have been developed and studied since the 

nineteen seventies, with their frequencies of detection ranging from 50MHz to UV [4, 9, 

11, 13, 14, 17, 21, 23, 56-69]. The essential difference between an energy harvesting 

MIM device and a detecting MIM device is that the turn-on voltage for the former should 

be zero or near zero meaning that the efficiency must be almost 100% which is 

practically impossible. The separating line between a harvester and a detector can be 

modified depending on how much of the obtained power one considers as useful. By 

maximizing the voltage derived from the antenna(s) and reducing the power output 

expectations from the diode, a rectenna may be operated as an energy harvester. On the 

other hand, it can be used as a detector or sensor by merely amplifying the signal derived 

from the diode. 

Whether it is used in energy harvesting or detection, there are essentially 4 

characteristics or features of the MIM diode that are crucial to its optimized operation. 

They are: asymmetry, resistivity, non-linearity and sensitivity. These features are inter-

dependent upon one another and also upon the MIM’s electrodes, insulator, geometry and 

process parameters. The sensitivity of the device is the deciding factor of whether the 

device can be used as an energy harvester, detector or linear rectifier and is defined as the 

current rectified by the device per unit of incident RF power [33]. It is defined 

mathematically as the ratio of the differential conductance to the non-linearity of the 

device and is given by '/ "I I  where 'I is the differential conductance calculated as 
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/dI dV and "I is the non-linearity calculated as 2 2/d I dV . A linear rectifier is a simple 

AC to DC converting device that operates in the order of kHz to tens of MHz. 

The applications of tunnel junction based rectennas can be easily understood from 

the application map shown in Fig. 5. The turn-on voltage which is related to the non-

linearity defines the voltage at which a large rectified current is produced by the device. 

For a device to behave as an energy harvester, the antenna element should also be able to 

deliver to the diode as high a voltage as possible. Unfortunately it is difficult to obtain a 

large voltage at very high frequencies because of the radiation small signal amplitude. 

Therefore the diode has to be able to exhibit a very high sensitivity and a very low turn 

on voltage. For the device to be used as a detector, the constraint on the turn on voltage 

and sensitivity is less since the device can be biased by an external power source and 

therefore the sensitivity need not be very high. However, a detector with too low a 

sensitivity would not be desirable. For the device to be used as a linear rectifier, the 

requirements for a high turn on voltage and sensitivity are more relaxed. Such devices 

can be used as basic rectifying diodes or in oscillator circuits. The advantages of such 

devices are that they are very easy to fabricate compared to CMOS devices which involve 

a multitude of steps such as diffusion, doping and thermal treatments. The need for 

rectenna detectors is as great as is the need for energy harvesters. Millimeter wave and 

higher frequency detectors are used in a number of applications ranging from medical 

imaging to security and surveillance [70, 71].  



17 

 

Figure 5. Application map of tunnel junction based rectennas 

There are many devices operating in the frequency range of 10GHz to 1THz, such 

as impact avalanche transit time (IMPATT) diodes [72], Gunn diodes [73], tunnel 

injection transit time (TUNNETT) diodes [74], Heterojunction bipolar transistors (HBT) 

[75], high electron mobility transistors (HEMT) [76], Schottky diode chains [77] and 

RTDs [78, 79]. A comparison of current state of the art tunneling diodes presently being 

used up to 1THz is shown in Fig. 6. One can discern that RTDs and Schottky diodes 

seem to be the best choices for higher frequencies. The work presented in this dissertation 

continues along this path involving Resonant Tunnel Junctions (RTJs) with an aim to 

further the state of the art of devices operating in the near-IR and IR regions. Table 1 

highlights the asymmetry characteristics of various tunnel junctions in literature. 
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Figure 6. RF power levels of current state of the art devices operating up to 1THz. 

Reprinted with permission [48] 

Table 1 Rectification ratios of various MIM tunnel junctions in literature 

MIM Configuration η Reference 

Al/Al2O3/Al 1 [58] 

Ni/NiO/Pt 3.6 [58] 

Al/Al2O3/Al 1 [80] 

Al/Al2O3/Sn 1 [80] 

Al/Al2O3/Pt 2 [57] 

Ti/TiO2/Ti 1.3 [81] 

Ti/TiO2/Pt 1.5 [55] 
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Table 1: (Continued) 

Cr/Cr2O3/Au 

Ni/NiO/Au 

For Ni-Au junction- 2 

For Cr-Au junction- 2.2 

[17] 

ZrCuAlNi/Al2O3/Al ~100 [82] 

Ni/NiO/Cr/Au 3.5 [83] 

Ni/NiO/Ni 1 [11] 

Nb/NbOx/Ag 1.1 [84] 

Ta/SiO2/Ta 1 [85] 

Cr/Cr2O3/Al2O3/Ag 1:2000 @400mV [31] 

W/Nb2O5/Ta2O5/W ~1:16 @450mV [33] 

Cr/Al2O3/HfO2/Cr 1:10 @ 2V [34] 

Cr/Hf2O3/Al2O3/Cr2O3/Cr 1:1750 @ 4V [37] 
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CHAPTER 3: OPERATION OF MIM TUNNEL JUNCTIONS 

 

 3.1 Intrinsic Working 

 As mentioned previously, the MIM junction works on the principle of quantum 

tunneling, where an electron crosses a barrier even though its energy is smaller than that 

needed to surmount the barrier. The barriers mentioned are walls of a potential well. 

Quantum tunneling utilizes the dual nature of a particle (an electron in the present case) 

postulated by the quantum theory [86]. The electron is considered a wave when it 

traverses through the barrier and the solution to that wave function is given by the 

Schrodinger’s wave equation from which the transmission coefficient of the tunneling 

electron can be obtained. In the following discussions, the electron is considered a wave 

packet given by 

( )
2

( )
x

x Asin Asin kx
π

ψ
λ

 
= = 

 
       (1) 

Where 

2
( )k

π

λ
=       (2) 

 Let us consider an ideal rectangular barrier as shown in Fig. 2. U is the potential 

energy of the barrier with the Fermi level of each metal generally aligned to one another. 

If there is a difference in work function between the two metals, band bending would take 

place giving rise to a trapezoidal barrier.  
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The Schrodinger time independent equation for a wave packet moving along the x-axis is 

given as 

( ) ( )
2

2

2d m
E U x

dx

ψ
ψ

 
= − − 

 ℏ      (3) 

Where  

2
h

π
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The complex wave function ψ(x) can be solved from equation 3 and is given as 

( ) { }1 1   0ik x ik x
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    (4) 
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Where k1 and k2 are wave numbers denoted as 
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The transmission coefficient of the electrons is given as [10]: 

( )
0

2
2 (

l

T exp m U x Edx
 − 

= − 
  

∫
ℏ

    (6) 

Most models on tunnel junctions are based on the transmission coefficient from which 

the current densities are approximated. 
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3.2 Wentzel Kramer Brillouin (WKB) Model 

For barrier penetrability we use the Wentzel Kramers Brillouin (WKB) 

approximation which allows for more general calculations, where detailed barrier shape 

and possible resonances associated with reflections at the barrier faces are not taken into 

account [31]. The reasoning is that scattering and interface roughness make them 

insignificant although there is a disadvantage in using the WKB model that will be 

discussed shortly. The current density J according to the WKB approximation is given as 

[87], 

0

( )
mE

T x xJ D E dEξ= ∫
     (7)

 

If Bφ is the barrier height and x2-x1 the barrier width, then the probability DT(Ex) that an 

electron at energy level Ex can penetrate it is given as  

( )
( )

2

1

4
( 2 )

x

B x

x

m x E dx
h

T xD E e

π
φ−  −  ∫

=

     (8)
 

ξ  is called the supply function and xdEξ represents the difference in the number of 

electrons incident on one side per second per unit area to those incident on the opposite 

side of the barrier having energy in the range Ex to Ex+dEx.  

 3.3 Brinkman Dynes Rowel (BDR) Model 

The WKB model set a precedent for future tunneling models such as the 

Brinkman-Dynes-Rowell (BDR) [88] and the Simmons models [89]. Rowell identified 

that the tunneling conductance can be approximated by a parabola with its axis offset 
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from zero bias, a phenomena they call zero bias anomalies [90]. This meant that 

tunneling took place even when no bias voltage was applied. This was more pronounced 

with asymmetric barriers. The tunneling current density is given as[56],[91]: 

( )( ) ( )( )
0

2 2
exp( 2 ( , , ) )

s
e

j m x V E dx f E k f E k eV dEdk
h

φ  = − × − − ∫∫ ∫
ℏ   (9)

 

Where, 's' is the barrier thickness, Φ(x,V,E) is the position dependent barrier height for 

bias V for an electron with incident energy E, e is the positive electron charge, m is the 

mass of a free electron, k are wave vectors parallel to the junction interface and f is the 

Fermi function. The drawback of the BDR model is that it failed to explain large offsets 

in the conductance minimum attributing its cause to contaminated junctions [90]. 

It is standard practice in MIM literature to use the WKB model for the electron 

tunneling probability and to use the Simmons model [92] to approximate the I-V curve. 

Furthermore, according to Miller et al [93] the negligence of the interface roughness 

inherent in the WKB model gives rise to quadratic tunneling conductance even at 

anomalously high biases; which causes serious discrepancies when applied into the full 

functional form of the model. It was theorized that the band structure of the barrier and 

the roughening of the interfaces seemed to give rise to unrealistic tunnel barrier 

parameters. As a result, a modification or deviation from the WKB model is desired. 

 3.4 Simmons Model 

As far as modeling most MIM tunnel junctions, it is safer to use the Simmons 

model. Simmons effectively derives the current density vs. voltage calculations for 

symmetric and asymmetric barriers. 
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According to the Simmons model the current density, J, due to a net flow of electrons 

tunneling through a barrier is given by, 

( ){ }0
A A eV

J J e eV e
φ φφ φ− − += − +

    (10) 
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     (11) 
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where 
_

φ  the mean barrier height, h is Planck’s constant, φ 1, φ 2 are the work functions of 

metal 1 and 2, ∆φ  is the difference in work function, ( )xφ  is the barrier height function, 

β is the correction factor [92] and s is the dielectric thickness. 

From the above equations, one could logically conclude, that the larger the 

difference in work functions of the electrodes, the larger the asymmetricity. Work 

function is also known to affect nonlinearity of the device output [15]. Apart from the 

work functions, barrier height is also a deterministic factor of the tunneling current. More 

investigations would be made to determine the barrier height and its dependencies. 

Another crucial feature of the MIM for increased tunneling current is the contact area of 

the top electrode. Since the resistance is inversely proportional to the area according to 

the equation  
l

R
A

ρ
= , larger areas are found to give higher current. Unfortunately, since 
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the capacitance is directly proportional to the area 
A

C
d

ε
=
ε

 the operating frequency of 

the device goes down as area increases since  
1

2
f

RCπ
=  . We can circumvent this 

problem by using a material with a lower dielectric constant. 

 

 

Fig. 2 depicted the band diagram of a MIM junction where both the metal 

electrodes are of the same material. If there is a difference in work function between the 

two metals or if bias is applied between the two metals, band bending would take place 

giving rise to a trapezoidal barrier. This will cause substrate electrons to tunnel into the 

conduction band of the insulator, where they ballistically travel across the metal’s Fermi 

levels to the vacuum interface as illustrated by Fig. 7. 

It has been theorized by Simmons et al [92] that if the rectangular barrier is 

replaced by a trapezoidal one, the tunneling will take place more easily and it would be 

possible for zero bias current to flow through the device. Since the work functions of 

various metals are different, the introduction of dissimilar metals as the electrodes creates 

an asymmetric potential barrier [92]. If the applied bias and/or work function difference 

between the two metals is large enough such that band bending results in a triangular 
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Figure 7. Energy band diagram of 
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shape, the tunneling current density would increase.  As a result an intrinsic field Fi exists 

and is given by 
1 2

iF
es

φ φ−
=

 where Φ1 and Φ2 are the 2 work functions, e is the charge of 

electron and s is the barrier thickness in angstroms. Thus if Φ1 is the barrier height at 

Metal I, and Φ2 is the barrier height at metal II, the change in barrier height ∆Φ can be 

given as 1 2φ φ φ= −  

 3.5 Other Models 

There are many factors influencing the tunneling of electrons across the barrier, 

such as,  thermal assisted tunneling, phonon assisted tunneling, photo assisted tunneling, 

trap assisted tunneling, field assisted tunneling or Fowler-Nordheim (FN) tunneling, 

hopping assisted tunneling [94], chaos assisted tunneling and so on. Although the main 

causes of tunneling are photo assisted, thermal assisted and field assisted [11, 94] are 

depicted in Fig. 8.  

The thermal effects on the MIM, mainly from absorption of radiation, can cause 

the electrons to be thermally excited above the potential barrier height and play a 

significant role in the detector response. In the case of Fumeaux et al [59], IR radiation 

absorbed by the SiO2 layer heats  the diode contributing to thermal assisted tunneling. 

Thermal assisted tunneling and phonon assisted tunneling go hand in hand whereby 

impinging photons couple with phonons within the material to increase the metal’s 

temperature [11]. According to the Fermi-Dirac distribution, the electrons would gain 

k∆T of additional energy, where k is the Boltzmann constant, thus increasing the 

tunneling current. One must note that this effect is inherently slow because it is limited by 

the thermal time constant of the junction and is not directly related to the junction area. A 
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byproduct of phonon assisted tunneling is the “spreading resistance” [30] where electrons 

are inelastically scattered by phonons in the bulk material. Evidence was shown by Wilke 

et al that the spreading resistance also contributes to the nonlinear operation of the diodes 

thus contributing also to its tunneling mechanisms. Photo assisted tunneling, which is an 

inherently fast phenomenon, depends linearly on the junction area. Electrons in the metal 

electrodes absorb photons and become excited by the energy νℏ  thus grossly increasing 

their probability to surmount the barrier. Electrons which have not been excited by 

photons also manage to pass through the barrier producing dark current; however, the 

highest quantum yield reported did not exceed 0.1. Therefore, this type of assisted 

tunneling produces a current much smaller than the other two types of assisted tunneling 

[11].  

In conjunction with these tunneling mechanisms, trap assisted tunneling, Poole-

Frenkel emission of electrons and Schottky emission of electrons also take place mostly 

due to the above mentioned tunneling mechanisms. Trap assisted tunneling (TAT), as the 

name suggests, takes place when electrons from the electrode occupy unoccupied defects 

within the dielectric and tunnel from one trap to another till they reach the vacuum 

interface of the second electrode. When an electric field is applied, Poole-Frenkel 

emission takes place whereby the conduction band of the dielectric is lowered and 

electrons trapped within the defect levels of the dielectric move to the conduction band. 

Schottky emission takes place when the conduction band of the dielectric is lowered in 

the presence of an electric field and thermal effects cause electrons to move from the 

Fermi level of the electrode directly to the conduction band of the dielectric [95]. It can 

be noted that the latter three tunneling mechanisms are subsets of the previously 



28 

mentioned tunneling mechanisms. The Poole-Frenkel emissions and TAT rely on thermal 

effects and are accompanied by thermal assisted tunneling. The Schottky emission 

typically occurs in conjunction with FN tunneling and is affected by thermal effects. 

 

Figure 8. Illustration of different types of tunneling 

At this point we can conclude that the tunneling current in a MIM tunnel junction is 

dependent on many factors and any model that is constructed to predict its electrical 

behavior must take these factors into consideration. Ramprasad [95] determined the 

current densities for each of the three mechanisms as shown below. The time dependent 

current density for trap assisted tunneling is, 
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Where  q is the charge, x is the spatial location away from the electrode into the dielectric 

E is the energy level of the trap measures down from the conduction band edge of the 
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dielectric, F is the electric field, Nff is the field free distribution functions given as 

( ), ( , )ff
N x E N x E QFx= +

; 0 , f f∞  - are lower and upper Fermi levels respectively, τ is 

the tunneling relaxation time, and L is the thickness of the dielectric.  

The analytical equation for fitting to a TAT model is given as [96] 
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The Poole-Frenkel emission current density is given as, 
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Where  

 µ is the electronic mobility in the dielectric,  ε is the permittivity of the dielectric 

 PFF – the Pole-Frenkel factor=  

q qF
exp E

kT π

   
− − −   
   ε       (14) 

The Schottky emission total current density is given by 

2
2

3  Φ
2 4s S

qmk q qF
J T exp

h kTπ π

   
= = − − −   

   ε     (15) 

Where, ΦS is the offset between the conduction band minimum of the dielectric and the 

Fermi level of the electrode. Ramprasad [95] states that the leakage current measured at 

short times is mostly due to TAT. When the applied bias is maintained for longer periods 
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of time, the Poole-Frenkel or Schottky tunneling mechanisms take over. He also observed 

that the Poole-Frenkel current increased as TAT decreased which leads us to infer that 

there are fewer electrons making it to the Fermi level of the second electrode and, 

instead, they are exiting through the conduction band of the dielectric. The dependence of 

the TAT current on temperature was found to be weaker than that of the other two 

mechanisms. He theorized that the temperature affects the TAT only through the 

distortion of the Fermi levels, which is a weak effect. It would seem that tunneling 

between traps would greatly benefit from thermal effects although a drastic increase in 

temperature might cause lattice vibrations shifting the traps thereby impeding the 

tunneling of trapped electrons. Also intermediate annealing might take place reducing the 

number of traps and thus reducing the TAT. This theory seems plausible as Ramprasad 

further confirms that Schottky tunneling is more pronounced with increases in 

temperature than the other mechanisms, especially since Schottky tunneling does not 

depend on the defects of the dielectric. According to Hu et al [97], direct tunneling is 

associated with electrons traversing a trapezoidal barrier and FN tunneling occurs when 

electrons traverse a triangular barrier. The total current density is given as, 

eq FN trapezoid
J J J= ×

     (16) 
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Where

3
2 8 2 Φox bB mπ=

, mox is the oxide effective mass and Eox is the oxide field. 
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Fig. 9 depicts the output current as a function of applied bias for oxide films with 

thicknesses between 2.2nm to 9.7nm. Pure direct tunneling without FN tunneling takes 

place when the oxide thickness is below 2.2nm [98].  Hu’s paper also states that 

according to the above model as the barrier height is changed from triangular to 

trapezoidal, the leakage current increases. This is in contradiction to the Simmon’s model 

which states the opposite. Logically the Simmons model seems to make sense since the 

probability of an electron to tunnel through a triangular barrier where the electronic 

thickness is lesser than that of a trapezoidal barrier is higher. 

 

Figure 9. Output current of a tunnel junction w.r.t film thickness [98] 

 3.6 Resonant Tunnel Model For Multilayered Tunnel Junctions 

The resonant tunneling mechanism that takes place in a multi layered device can 

be modeled using the transfer matrix method [99]. Eliasson and Grover et al have shown 

how tunneling probability increases at certain bias energies that correspond with the 

barrier energies of the quantum well or trap states in eqn (18) [31, 33]. The electron 

tunneling probability as a function of energy is simulated and plotted in Fig. 10. The band 
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diagram is superimposed on the simulation to show the increased tunneling at various 

states. The voltage drop across each layer is given as 

/
( )

/
j j

j bias bi

j j

x
V V V

x

ε

ε
∆ = −

∑      (18) 

Vbi is the built in potential given as   
biV φ= ∆  

Where xj and εj are the thickness and dielectric constant of the jth layer respectively [33] 

 

Figure 10. Electron tunneling probability in a bi-layered tunnel junction as a 

function of energy [31] 

The tunneling models fitted to the results in this research are the TAT model using eqn 

(12) and the FN model which is given by eqn (17) 

2 2exp( / ) /J CV B V A cm
−= −      (19) 

Where V is the field at the Metal-Insulator interface. B and C are defined by 

7 1/2 3/26.83 10 ( ) ( )ox
m

B
m

φ− ×
 and  

61.541 10 (1/ )C φ−= × , 
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Where ɸ is the barrier height and mox is the effective mass of electrons in the insulator. 

The measured data was fitted to the model [96] 

2( / ) /Log J V Vφ≈ −      (20) 

Based on the fits of eqns (12) and (20), a suitable band energy diagram is illustrated for 

the NiO device, the ZnO device and the bilayer device as will be discussed in chapter six. 
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CHAPTER 4: DEVELOPMENT OF MIM TUNNEL JUNCTIONS 

 

One of the first MIM devices were the point contact which consisted of a thin 

metallic wire with a fine etched tip in weak contact with an oxidized metallic surface, as 

shown in Fig. 11. These diodes were called “whisker diodes” [59]. The whisker, mostly 

tungsten, has a tip radius of less than 50nm and a contact area of about 0.01µm2.  The 

whisker acts like an antenna and thus was used as a diode coupled antenna. But the point-

contact configuration of this device has a significant disadvantage, the devices do not 

operate in the infrared or visible regions and they have very low mechanical stability 

apart from being highly unreliable. Moreover the sensitivity and response times are 

strongly dependent on the contact area which is a difficult parameter to control due to its 

structure [59], hence leading to the development of thin film MIMs. It has been 

mentioned that the asymmetry of the tunnel junction determines the output of the device 

and depends on the electrode materials [100]. 

 

Figure 11. llustration of whisker diode 
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 4.1 Processing Techniques 

With the advent of efficient optical lithography and advanced deposition systems, 

the active area of the diodes and thickness of a thin film could be highly controlled 

although its thickness was much larger than that of the point-contact diodes. By utilizing 

deposition processes such as thermal evaporation, sputtering (PVD), chemical vapor 

deposition (CVD), atomic layer deposition (ALD) and molecular beam epitaxy (MBE), 

the uniformity of the dielectric could be controlled to a high degree, unlike the point 

contact devices which are affected by atmospheric contamination [98] or the highly 

unpredictable surface area of the tip. Various methods have been investigated to achieve 

very thin films. Fisher et al [101] suggest that insulating layers thicker than a few tens of 

angstroms are nearly impenetrable by electrons and their tunneling probability falls off 

exponentially with an increase in thickness. He concludes that at very small voltages the 

resistance is ohmic whereas at larger voltages the current increases exponentially with 

voltage. It is contingent to acquire very thin films if one wants to facilitate tunneling 

through it and thus achieve a high tunneling current although determining whether the 

tunneling current is high or low depends on the operational purpose of the device. In the 

1960 article, Fisher et al tried three different ways of producing the layer: oxidizing the 

insulating layer in air, oxygen atmospheres and distilled water. With current technologies, 

depending on the material, different deposition methods can be considered efficient. If 

the material is one that readily oxidizes, the PVD or CVD methods can be employed after 

which a passivation process is immediately applied. If the material is one that does not 

readily oxidize in an ambient atmosphere, an oxidation layer can be formed either in air 

or in a pure oxygen atmosphere. The prior method though controllable, cannot achieve 
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very thin thicknesses, and the latter though uncontrollable, can achieve thicknesses of a 

few angstroms. The active area and the thickness of the dielectric can be considered as 

the critical dimensions for an MIM diode. The active or contact area of the layer 

determines the current density and also the parasitic capacitance which would be inherent 

within the device and the thickness of the dielectric layer determines the number of 

electrons that can tunnel through. Many designs can be used to attain the sandwich 

structure. A simple planar structure, a stepped structure (shown in Fig. 1) [8] and a cross 

hair [17] shown in Fig. 12  below are all effective structures that can be used to construct 

an MIM junction. Wang et al [102] fabricated Ta-Ta2O5-Ta based MIM structures whose 

thicknesses ranged from 1nm to 4nm. It was found that as the area of the top electrode 

increases, the breakdown field strength decreased considerably mainly due to the fact that 

the larger area increases the roughness and the probability to contain more impurities. 

 

Figure 12. Crosshair type design of the tunnel junction 

Although there was some asymmetry observed, the current was very low since the 

dielectric constant of Ta2O5 is about 25. This makes it a good capacitor rather than a 

diode. Many groups have tried creating very thin barriers, and very small areas [11, 103]. 

Heiblum et al and Havemann proposed and fabricated a totally new type of configuration 
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of the MIM structure viz. a vertical one. The area would now be the thickness of the 

metal layer with a very thin layer of oxide atop it. 

 

Figure 13. Edge diode structure 

Areas as small as tens of nanometers, and thicknesses as small as a few angstroms, can be 

achieved in this configuration. Havemann’s group fabricated an Al-Al2O3-Al, Ni-NiO-Ni, 

Pb-PbO2-Pb and Ni-NiO-Au structures as shown in Fig. 13, the top and bottom electrode 

was about 100 to 300nm thick.  

A thick spacer oxide was deposited on top of the bottom electrode prior to sputter 

depositing the oxide layer. Though this configuration shows great promise, there are a 

number of issues regarding its proper characterization and workings, the main issue being 

the formation of the edge. It is very difficult to control the geometry of a structure as we 

approach the nanometer and angstrom realms. What one would expect to be a straight 

edge would invariably end up being something different as shown for the possible edge 

geometries that could end up being fabricated, Fig. 14. One could end up with a slanted 

edge when employing wet etching techniques, or a jagged edge due to scalloping if dry 

etching techniques, such as metal RIE and DRIE, were to be employed. Even if it was 

possible to obtain a vertical straight wall, upon the deposition of the metal oxide, 
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especially physical vapor deposition, it would invariably end up as a curved edge [104]. 

If lift off is applied, the sidewall would tear at the edge tips leaving fin like structures 

which could pierce the films laid thereafter or cause non-uniformities in the stack [105, 

106].  As a result the control of the area through geometry is very difficult giving rise to 

nonrepeatable device results. The DC measurements done so far on MIM diodes, be it 

planar or vertical, are mostly in the nano or pico ampere range. Those in the mA range do 

not show much of non-linearity or asymmetricity and thus cannot be used as a diode for 

rectification purposes. It is for this reason that typically dissimilar electrode metals are 

used. 

 

Figure 14. Illustrations of various artifacts edges created on the edges during 

fabrication of an MIM diode 

The introduction of dissimilar metal electrodes was investigated with the hope that larger 

asymmetricity would be observed. Asymmetricity of the MIM tunnel junction is 

determined by the difference in work function of the top and bottom electrodes. As 

mentioned in a previous section, Fig. 16 shows the band diagram of an MIM tunnel 

junction using two dissimilar metals, at zero bias the difference in barrier height being 

∆φ1. Fig. 17 shows the same band diagram with an applied bias voltage VBias. As can be 

seen, even at zero bias there is a higher probability of electron tunneling than that of the 

same metal MIM junction. The application of a very small bias voltage increases the flow 

of electrons through the barrier. If one could achieve the same amount of current flow 
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with the rectangular barrier configuration, the bias voltage needed would be much higher. 

Wilke et al [30] surmised that Nickel Oxide (NiO) thin films used as the potential barrier 

give the best tunneling results when used in the infrared region although the exact reasons 

were not stated [107].   

 

Figure 15. Energy band diagram of an MIM tunnel junction using two dissimilar 

metals 

 

Figure 16. Energy band diagram of an MIM tunnel junction using two dissimilar 

metals at applied voltage Vbias 

A very early dissimilar electrode diode which was fabricated Gupta et al in 1976 [107] 

used barium stearate as the dielectric and was deposited using the Langmuir-Blodgett 

deposition technique. But the current output of the device’s I-V response was in the range 

of nA, and hence too low to be put to appreciable use.  
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One might wrongly assume that merely changing the electrode materials so as to 

introduce a large work function difference would result in a large current density at zero 

bias voltage, but this is not the case as there are many factors involved when using 

different electrode materials. If a readily oxidizing metal and its oxide are chosen, it must 

ideally be placed as the bottom electrode since its oxidation can be easily controlled prior 

to deposition of the top electrode. The challenges to using a readily oxidizing metal as the 

bottom electrode with a different metal oxide as the insulating layer, lies in its 

fabrication. If one was to use lithographic processes, after laying down the metal it would 

be very difficult to pattern its surface due to continual ambient oxidation. In such cases it 

would be in one’s best interests to pattern the device accordingly so as to fabricate the 

bottom electrode and the insulating layer in the same deposition environment. If a readily 

oxidizing metal is to be used as a top electrode it would be advisable to deposit a 

passivation layer atop the metal so as to prevent non uniform charge density due to 

depletion of the oxidized metal. Also the conductivity of the metals used as electrodes 

should preferably be large and the resistivity should preferably be negligible so as to not 

contribute to the characteristic impedance of the device when used in high frequency 

applications. Table 2 illustrates a table of metals that could be used as electrodes for the 

tunnel junctions studied in this work. The table was arranged with increasing work 

function and the electrode combinations with the highest ∆Φ are highlighted in yellow. 

Nickel Oxide was chosen as the insulating material for the devices presented in this work 

because of very low resistivity and superior electrical stability [8], which will be 

discussed in the following section. The Ni-Cr combination was chosen for this work due 

to the feasibility of the material targets and availability of fabrication equipment. 
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Table 2 Table of metals with work function difference 

 

Al and Ni were also used as top electrodes to compare the asymmetricity shown in Fig. 

42 in chapter six. It is interesting to note that although the ∆Φ  of Ni and Al is almost 

1.3eV, no clear asymmetry could be discerned. The experiment only proved that the 

Ni/NiO/Cr configuration was more stable over a range of measured devices. The bottom 

electrode (Ni) and the insulator layers were deposited using sputtering and reactive 

sputtering, respectively. Sputtering was performed when Al and Ni were used as the top 

electrode, sputtering was performed. When Cr was being used as the top electrode; 

thermal evaporation was performed followed by thermal evaporation of Au as a capping 

layer. The RC time constant of the tunnel junction is a limiting factor which affects its 

performance at very high frequencies. For the RC time constant to be small, the 

capacitance should be very small in which case either the area or dielectric constant 

should be very small. The dielectric constant of NiO is 11.9 and its reduction would not 

make any significant difference. The area however is in the order of microns and 
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reducing the length by an order of magnitude would reduce the capacitance by its square. 

For a rectifying device that operates at frequencies of 500GHz and below, the active area 

of the diode would have to be less than 1µm. Since such a small area could not be 

achieved in this research, the smallest area fabricated was 3 µm x 3 µm. The operating 

frequency for such a device is 51.2GHz. The following section discusses the tailoring of 

the insulating layers for both NiO and ZnO leading to the optimal choice for its 

integration in the tunnel junctions described in this work. 

 4.2 Optimization of the Dielectric Layer 

The primary goal of this research is to conceptually identify the intrinsic operation 

of Nickel Oxide thin films as a tunnel dielectric. The efficiency of a tunnel junction is 

almost as good as its dielectric layer. The effects of fabrication (pre and post) are leading 

factors to the modification of the dielectric layer. As mentioned earlier the electrodes play 

a major role in increasing the density of tunneling electrons, but the oxide is crucial to the 

probability of those electrons tunneling to the other electrode. The thickness of the film 

which corresponds to the barrier width determines whether the electron will hop, tunnel 

or resonate within the barrier. If the barrier width is larger than 10Å, electrons tend to hop 

rather than tunnel [87]. Depending on the barrier height it is possible that a combination 

of electron tunneling and hopping takes place. The crystallinity of the barrier is also 

important as better conduction of electrons would take place in highly crystalline films. 

Unless the insulating layer is an epitaxial film, it would almost always contain impurities 

[87]. These impurities serve as traps for electrons and hence they are also called electron 

traps. The space charge due to trapped electrons may seriously affect the tunneling I-V 
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response. If the phase of the metal oxide is not properly established, O2 vacancies present 

would distort the cation lattice and serve as excellent electron traps. 

     

Figure 17. Illustration of completed and distorted lattices 

This increases the space charge which in turn increases the barrier width thus 

limiting tunneling. Upon the application of an external voltage, further distortion or 

lattice reconstruction may take place thereby trapping or releasing more electrons. Fig. 17 

shows the difference between a completed lattice and one with O2 deficiencies. Such 

deficiencies also affect the zero bias resistance and the intrinsic impedance of the diode. 

Lunkenheimer et al [94] verified the frequency and temperature dependence of the 

electrical conductivity of NiO thin films using a model called the Correlated Barrier 

Hopping (CBH) model. The model proposes that electron pairs hop over potential 

barriers between defect sites where the heights of the barriers are correlated with the 

intersite separation. The films deposited by the reactive evaporation of Nickel Oxide, 

were around 610 nm and thick enough to contain multiple defects. Nickel Oxide films 

have very low resistivities of the order of 10-4 Ωcm [108] and therefore it was probably 

advantageous to deposit a thicker film. From the measurements, Lunkenheimer 
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demonstrated that at low frequencies the conductivity of NiO was ohmic, but at higher 

frequencies, it exhibited AC conductance. This could have a serious impact on the use of 

NiO thin films in IR detectors, since it suggests that at THz frequencies the device would 

not rectify as effectively.  

Improper phase formation of the insulating layer is also detrimental to the MIM 

when used as a diode. The presence of grain boundaries would conduct electrons directly 

thus acting as a mere resistor instead of a diode. Epitaxial films would not have this 

problem as the lattice sites would be completed, thus eliminating such impurities or traps, 

and segregation of grain boundaries would be minimal if not altogether absent. One 

method to reduce oxygen deficiencies would be to anneal the film in an O2 atmosphere, 

but this might lead to other problems, as discussed in the next chapter. 

Although the presence of impurities does seem undesirable for the working of an 

MIM tunnel junction, a positive outcome can be obtained if properly designed. Impurities 

present in the insulating layer form impurity states in the forbidden energy gap. When 

localized electronic wave functions of two impurity states overlap, an electron bound to 

the first impurity state can tunnel to an unoccupied second impurity state without 

involving activation to the conduction band [109]. The mobility of an electron between 

impurity states is very low and usually occurs at very low temperatures due to the 

presence of widely spaced impurities at those temperatures. Gadzuk [109] reported that 

resonance tunneling may take place through impurity states. He states that impurity states 

open up new tunneling channels with a concomitant slope of the I-V characteristics. But 

depending on the impurity concentrations, the change may not rise above noise levels. 

Since the number of impurity sites and the number of electrons control the probability of 
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impurity tunneling, careful doping and introduction of impurity sites while fabricating 

can facilitate electron tunneling in the insulator layer. 

Nickel oxide is a sought after material for its use as an antiferromagnetic, 

transparent conductance, chemical and electrical stability, among many others. It is 

known to be a Mott oxide exhibiting p-type electrical behavior. Its bulk crystal type is 

that of a cubic rock salt structure with a lattice parameter of 0.4195 [108, 110-114]. The 

p-type characteristic of NiO is because of Nickel deficiencies during the deposition of its 

thin film. The large oxygen atoms in the structure prevent Ni atoms from occupying the 

interstitial sites resulting in vacancies in the normally occupied Ni sites. In a natural 

attempt to preserve the electrical neutrality of the crystal, two Ni2+ ions are converted to 

Ni3+ for every vacant Ni site. These Ni3+ ions are effectively positive holes that move 

from one vacancy to another [110]. The NiO used as an insulating layer in the fabrication 

of MIM tunnel junctions, described in this research, was deposited at various oxygen 

concentrations. The relation of the oxygen concentration and the electrical characteristics 

of the devices were considered important in the selection of the best stoichiometry for the 

insulator. The fabrication of the devices is described in detail in the Appendices; in this 

section the deposition of the Nickel oxide layers with different oxygen concentrations 

will be presented.  

A 3” Ni target was used as the sputtering source since reactive sputtering was 

being used to deposit the films. Reactive sputtering is the process where a target is 

bombarded by ions in the presence of a reactive gas to form a chemical reaction with the 

sputtered atoms and gas resulting in the desired compound. The compound atoms diffuse 

around on the substrate and its adhesion is determined by the binding energy to the 
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substrate. Therefore it is paramount to have a very clean substrate and to deposit at ultra-

high vacuum conditions (of the order of 1µTorr – 0.1µTorr). The chemical reaction may 

take place at the cathode, en route to the substrate, or a combination of the two 

possibilities. A brief schematic is shown in Fig. 18. 

 

Figure 18. Schematic of a reactive sputtering process. Reprinted with permission [8] 

After the chamber has reached a base pressure of a few µTorr, Ar gas is introduced and 

the pressure is stabilized to 10mTorr. Subsequently O2 gas is introduced and the chamber 

pressure is adjusted to re-stabilize it back to 10mTorr. The Ar atoms initiate plasma that 

strikes the Ni target and releases Ni atoms. O2 atoms which are in the chamber also get 

ionized either through physical bombardment or through electrical ionization and react 

with the Ni atoms to form non stoichiometric NiO. The concentration of the oxygen is 

controlled by controlling the partial pressure of the O2 in the chamber during deposition. 

This is done by controlling the flow ratio of the Oxygen gas to Argon gas using a Mass 
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Flow Controller (MFC) that operates in Standard Cubic Centimeters per Minute (SCCM). 

If the ratio of the flows is 5sccm Oxygen to 10sccm Argon, the ratio is 1:2 which results 

in 33% of oxygen in the chamber compared to Argon. This does not mean that there are 

33% of Oxygen atoms present in a unit cell of the NiO crystal lattice, this information 

can be discerned by quantitative analyses such as X-Ray Photoluminescence, 

Spectroscopy (XPS) or Energy Dispersive X-Ray Spectroscopy (EDS) and similar 

techniques. 

NiO thin films were deposited on (100) p-type Si substrates by DC magnetron 

reactive sputtering with a Nickel target in the presence of Ar and O2. The base pressure 

was kept at 0.9 µTorr to avoid any contamination, and the working pressure was 10 

mTorr. The ratios of the flow rate of O2 to Ar for 20%, 33%, 40%, 60%, 80% and 100% 

were 5sccm:20sccm, 5sccn:10sccm, 4sccm:6sccm, 6sccm:4sccm, 8sccm:2sccm and 

10sccm respectively. 

X-Ray Reflectography (XRR) measurements were performed using a Phillips X-

Pert X-Ray diffraction system and analyses were done by PANalytical X’Pert 

ReflectivityTM program on some of the films to determine their thickness. Since the limit 

of the XRR measurements is around 7nm (±1nm), thicker films were fabricated and the 

sputtering rate was determined. The XRR spectra were fitted (red curve) against the 

measured data (blue curve) using segmented fits to determine the thickness as can be seen 

for some of the films in Fig. 19, Fig. 20 and Fig. 21. Fig. 22 gives an idea of the change 

in sputter rate with respect to Oxygen concentration during deposition.  
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Figure 19. Fitted XRR spectrum of film deposited at 20% O2 partial pressure for 

30mins 

 

Figure 20. Fitted XRR spectrum of film deposited at 33% O2 partial pressure for 

30mins 
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Figure 21. Fitted XRR spectrum of film deposited at 40% O2 partial pressure for 

30mins 

As one would identify from the plot, the sputtering rate decreases exponentially although 

the ionization energy of oxygen is almost 3eV lesser than that of Argon. This could be 

because, as Oxygen concentration increases in the chamber, the increased reaction that 

takes place with Nickel atoms and their subsequent ionization causes the mean free path 

to decrease, thereby leading to a decrease in the sputtering rate. 
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Figure 22. Plot of sputtering rate as a function of Oxygen concentration 
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 The quality of the films was measured using X-Ray Diffraction (XRD) analysis as 

shown in Fig. 23. 
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Figure 23. XRD spectra of films deposited with different Oxygen partial pressures. 

The 0% spectra is a Nickel only film. 

From the above Fig. it can be seen that the two characteristic NiO peaks: the (200) and 

the (220) peaks are very prominent at 33% O2 concentration even without annealing. This 

has also been confirmed by Hotovy et al [108, 114]. The roughness of the films was 

studied by Atomic Force Microscope (AFM) using a Veeco Dimension III system. Fig. 

24, Fig. 24 and Table 3 illustrate the roughness of the sputtered NiO films as a function 

of Oxygen partial pressure during sputtering. 



51 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100% 120%
R

o
u

g
h

n
e

ss
 (

n
m

)

O2 Concentration

Roughness

 

Figure 24. Roughness as a function of O2 concentration during deposition 

When the oxygen flow rate is increased, the mean free path decreases leading to very low 

energies of the atoms arriving at the surface thereby forming an island type growth. At 

lower flow rates, the mean free path is increased giving sputtered atoms more energy to 

get deposited on the substrate. However, there is a possibility that oxygen atoms present 

get ionized and re-sputters the film from the substrate causing it to become rough. 

 

Figure 25. Starting from top left going clockwise, AFM images of NiO films 

deposited at 0%, 20%, 33%, 40%, 80%, 100%  
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From the roughness analysis, it can be observed that there is an increase in 

roughness as the oxygen concentration increases with a large rise from 20% to 40%. 

Since sputtering below 30% oxygen concentration is typically a metallic mode 

deposition[114], the next highest oxygen concentration (33%) was deemed suitable in an 

effort to decrease oxygen vacancies. From the above material characterization, it was 

clear that a film deposited at 33% oxygen partial pressure yielded better film 

characteristics. Later electrical measurements on devices consisting of such films also 

proved to exhibit better responses as will be seen in chapter six [115].  

In an effort to produce tunnel junction devices that exhibit a very high degree of 

non-linearity, the possibility of combining the p-type NiO film and an n-type ZnO film to 

form a bilayer was explored. The purpose of choosing such a combination was two-fold. 

One is that the bi-layer junction functions as a resonant tunneling diode at high 

frequencies. The other is that it can function as a regular P-N junction tunnel diode at low 

frequencies since NiO is a p-type oxide and ZnO is an n-type oxide. The n type charge 

carriers in the ZnO layer accumulate at the interface to form a sheet with high 

conductance. Also polar discontinuities at the interfaces aid in generating or removing 

charge carriers [116]. Such a bilayer was already investigated by a few groups but mostly 

for the application as transparent oxide semiconductors. It has also been reported to give 

very good asymmetry and non-linear characteristics [63, 117-119].  
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Table 3 Roughness characterization of NiO films deposited at various oxygen 

concentrations 

O2 Concentration Roughness Å 

0% 0.274 

20% 0.335 

33% 0.48 

40% 0.602 

60% 0.51 

80% 0.7 

100% 0.9 

 

Zinc Oxide (ZnO) films were deposited as the second insulator layer by 

compound reactive sputtering where the target material is not a metal but a compound (in 

this case it is ZnO) of what one wants to deposit. In this scenario, introducing O2 gas 

during the sputtering process is a healing method to aid in eliminating any oxygen 

vacancies since the sputtered compound would already have Oxygen atoms, but due to 

ionization may lose some. To keep the processes consistent, the ZnO films were also 

deposited with 33% oxygen partial pressure. The XRD spectrum of the sputtered ZnO 

film is shown in Fig. 26. The spectrum shows strong c-axis orientation owing to the 

increased intensity of the (002) plane. The film is polycrystalline as can be seen by the 

additional (103) peak crystallinity which is due to nature of thermally un-treated sputter 
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deposition technique. The XRD spectrum has been confirmed with multiple sources [63, 

117-121]. Hall measurements were performed on NiO films and ZnO films individually 

with thicknesses of around 10nm. The measurements of the NiO layer revealed that it 

was p-type with a resistivity of 94Ω and a carrier concentration of 1.832x1014 cm-3. The 

ZnO layer yielded a resistivity of 2kΩ and a carrier concentration of 2.32x1013 and 

exhibiting a negative Hall voltage suggesting that it was n-type. This confirms that the 

NiO and ZnO films deposited in this research conformed to the carrier types mentioned in 

literature. 

10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

103

Io
b
s
 [

c
ts

]

Pos. [°2Th.]

002

 

Figure 26. XRD spectrum of ZnO film showing strong c-axis orientation 

Reflectance mode UV-Vis measurements were done on the individual films and 

the bilayer to investigate the presence of energy levels and to determine the bandgap.  
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Fig. 27 shows the reflectance spectra of the films. The NiO film starts absorbing at 

around 683nm which renders it a good material for optical electronics from 650nm 

onwards. The ZnO film absorbs at around 770nm and then sharply reflects at around 

480nm allowing it to be used in optical sensors. The bilayer on the other hand shows a 

very gradual increase in absorption from around 950nm and increases again gradually 

from 450nm. Compared to the ZnO spectrum, the bilayer spectrum possesses a very 

broad peak. This indicates that there are many energy levels present in the film 

supporting the trap assisted tunneling mechanism.  
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Figure 27. Reflectance mode UV-Vis spectra of NiO film, ZnO film and the bilayer 

film 
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The bandgap was calculated by plotting the reflection coefficient k with respect to hν and 

determining the intercept on the x-axis as shown in Fig. 28. The relation between k and ν 

is given as 2( ) ( )
g

kh A h Eν ν= −  Where A is a constant [122-124] and k is given 

by max min

min

ln( )
R R

R R

−

−
. 

The theoretical and experimental values of NiO and ZnO thin films have been 

reported as 3.54eV and 3.4eV respectively [63, 117, 118, 125], and the calculated band 

gap values of the films deposited in this work is found to be 3.04eV and 2.4eV 

respectively.  
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Figure 28. Band gap determination of NiO film, ZnO film and their combination 



57 

This slight deviation could be attributed to defects in the films, which can be 

better understood with Deep Level Transient Spectroscopy (DLTS) that can measure 

defect densities [125]. However to at least get a partial confirmation of the existence of 

defects (traps) in the films, the measured IV curves were fitted using the Trap Assisted 

Tunneling (TAT) model which seemed to fit very well as will be discussed in the next 

chapter.  Following the calculated values of the bandgaps from Fig. 28, the energy band 

diagram of the bilayer tunnel junction that was studied in this work consisting of the 

Ni/NiO/ZnO/Cr configuration can be assumed to be as shown in Fig. 29.  

 

Figure 29. Energy band diagram of a Ni/NiO/ZnO/Cr bilayered tunnel junction 

device. 
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CHAPTER 5: EVOLUTION OF MIM TUNNEL JUNCTION DESIGNS 

 

One of the goals in this research is to arrive at an optimum design for the 

integration of MIM tunnel junctions with antennas to realize a fully functional rectenna 

for use as an energy conversion device. The geometry of the device and the fabrication 

method can both positively and negatively affect its performance as experimented 

exhaustively by Choi et al [100]. Over the course of this research, 3 generations of tunnel 

junction designs were designed and studied. Each successive design was an improvement 

from the previous one in various aspects. The first design was the stacked design (SK), 

however, because of its shortcomings, the stepped design (ST) was developed. 

Subsequently a Spaced design was developed and fabricated to address issues identified 

with the stepped design [126]. 

 5.1 Generation 1- Stacked Design (SK) 

The stacked structure was one of the first MIM tunnel junction designs to be 

fabricated and studied in this research. Although the ultimate goal was to use the tunnel 

junction in a rectenna as a detector, initially, a device was designed as a proof of concept. 

A schematic of the side view of the device is shown in Fig. 30. The active area is defined 

by Cr/Au dots directly deposited on top of the insulator film, where the tunnel junction 

device consists of the vertical path from the top of the dot to the bottom the Ni electrode, 
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as is detailed below. A schematic process flow is shown in Fig. 31 with the  detailed 

process flows for all the generations given in the appendices.  

 

Figure 30. Side view schematic of the SK design 

 

 

Figure 31. Process schematic of the SK device 

The SK device was fabricated by blanket depositing a 100nm Ni layer on a clean Si 

substrate that had about 1µm of thermally grown SiO2. The Ni layer was then masked on 
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one side to define the bottom electrode contact. The mask used was either photo resist or 

Kapton™ tape depending on the urgency of the process and the insulator layer was then 

deposited atop. Alternatively, in order to not break vacuum between the deposition of the 

bottom electrode and insulator layer, thereby introducing a contaminated interface, the 

two layers were deposited one after the other and the bottom contact made by puncturing 

the insulator layer with the probe through to the bottom electrode. The film was then 

masked again using a shadow mask with 1mm diameter holes for the top electrode which 

consisted of 150nm of Cr/Au. Optical lithography was also performed for defining the 

top electrode area using a chrome mask with openings of 500nm in length. The 

fabrication of these devices proved to be advantageous in two ways. First, it is a very 

quick process that enables one to determine the electrical characteristics of the MIM 

junction. Second, it enabled one to include coupon wafers during the deposition of the 

insulator layer and thereby perform material analysis of the deposited film. This is not 

possible in the later generation devices as will soon be identified, but it was not a 

significant drawback since this type of device was designed for characterizing the 

electrical and material characteristics of the insulator film.   

The obvious drawbacks of the device are that it is not integrable with an antenna, 

its active area is limited to 1mm which is the size of the holes in the shadow mask and its 

thickness variations are responsible for variations in the electrical characteristics. But the 

most important drawback is that the landing of the probes during measurement is affected 

since excess force can puncture the top electrode. Even variations on the amount of force 

could cause variations in the current-voltage responses. Electrical measurements 

performed on these devices with a 7nm NiO film are shown in Fig. 46. As can be seen, 
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there are large variations among the devices (dots) and the measured results are not 

representative of the junction. However, due to the ease of fabricating this design it was 

also used to initially characterize the devices using the ZnO and Bilayer as insulator 

layers. 

 5.2 Generation 2- Stepped Design (ST) 

To address the issues caused by the probing step of the earlier design, a stepped 

design was implemented and tested. The ST design side view schematic is shown in Fig. 

32 and an optical image shown in Fig. 33. The design initially did not include integration 

with an antenna since DC characterization was the focus at the time. Inclusion of this 

type of device along with the “spaced” device for rectenna compatibility was later made 

while designing the mask for the SP design as will be seen in section 5.3. The ST device 

was fabricated using optical lithography. First, the areas for gold contact pads were 

patterned and 150nm of Cr/Au was deposited. After liftoff, the areas for the bottom 

electrode and insulator were patterned and a Ni layer was deposited following an 

immediate deposition of a 7nm NiO layer, without breaking vacuum. After the liftoff of 

this layer, the surface of the device was defined for the active area and top electrode. 

Since optical lithography was being used, the active area of the top electrode was as small 

as 10um x 10um deeming the design superior to that of the stacked design. The issue 

arising from such a fabrication process is that although a small active area is achieved, 

the process is complicated involving three mask layers and liftoff procedures. The area is 

also not constant since the top electrode is “overlapped” onto the dielectric and the 

overlap may not be constant due to alignment errors. Furthermore, since the areas are 

small, the lift-off process is not easy. The wafer has to be subjected to ultrasonication 
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which in turn leads to tears on the stepped region of the overlap, which would lead to 

“opens” in the device. To complicate matters, the issue of an un-oxidized step is 

prevalent in this design as is revealed in the process flow schematic in Fig. 34 which 

increased the active area by including the step height. From the I-V responses in Fig. 46, 

although a higher current is achieved, the variance across devices is abnormally large 

giving evidence of not only user error but also the continuous oxidation of the step. 

        

Figure 32. Sideview schematic of ST design 

 

 

Figure 33. Optical image of ST Design 
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Figure 34. Process schematic of the ST design 
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 5.3 Generation 3- Spaced Design (SP) 

To address the issues mentioned previously, an innovative self-fulfilling design 

which eliminated the step coverage problem and also presented a relatively well defined 

active area was implemented. An extra layer was added to the design so that the step 

could be shielded from the top electrode and could be fabricated using the same 

photolithographic processes. The bottom electrode and dielectric were fabricated with the 

same parameters as those mentioned in the previous designs. The extra layer, SiO2, was 

sputter deposited and the top electrode was evaporated using thermal evaporation or E-

Beam evaporation. The side view schematic and the optical photograph of the fabricated 

device are shown in Fig. 35. Although the fabrication of this device included an extra 

layer, it was designed to be self-aligned without requiring much user effort and created a 

well-defined area which did not include the step height. The SP design included 

integration with an antenna by way of a Co-Planar Waveguide (CPW). This type of 

waveguide is typically used where the operating frequency is wideband, not to mention 

its requirement for planar structures and MIMIC devices [76, 127, 128]. While designing 

the mask layout for the SP device, consideration was also given to including test features 

for metrological analyses such as AFM, SEM and FIB in the design. Features for Critical 

Dimension (CD) checks were also included. This enabled quick checks to verify if a 

feature with a particular resolution had been exposed and developed correctly without 

having to check all the device features in every wafer. The alignment marks were 

modified so that each successive alignment was done with respect to the previous layer 

and not with the very first layer. It enabled the alignments of the mask for each wafer to 

be very easy, efficient and quick. 
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Figure 35. (top) Optical image of the SP design; (bottom) Side view schematic of the 

SP design. 

For AFM test features, all four layers were laid down as individual pads on the 

wafer. This also served as a tool to measure the deposited thickness of each layer. The 

SEM and FIB features involved laying long bus lines to dissipate the charging effects that 

occur during imaging. It also served as good grounding ring surrounding the wafer to 

minimize electrostatic discharges in the device during handling. A snapshot of the mask 

layout for the SP design is shown in Fig. 36. The fabrication process steps for the SP 

device are the same as that of the ST device except that, after the second mask, an extra 

mask layer is introduced patterning the spacer layer, as shown in Fig. 37. Electrical 

measurements were performed on a SP device consisting of 10nm NiO as the insulator 

layer resulting in a decrease in measured current compared to the ST device. The I-V 
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responses of all 3 generations are plotted in Fig. 46 where the SP responses showed much 

better stability in the output current among the devices, which was a marked 

improvement from the ST design. The slight variations among devices can be further 

minimized by properly mapping the deposition process. One of the problems encountered 

during the fabrication of this design is that for the 3µm2 area, a 3 µm2 pillar of photoresist 

is effectively on top of the insulator layers. Therefore if the quality of the insulator films 

is not adequate, such as poor film adhesion, the insulator layer could get removed during 

the liftoff process.  

 

Figure 36. Overall layout of mask showing the functions of each feature 

The introduction of the thick spacer layer might also present an intrinsic parasitic 

capacitance in the device, as shown in Fig. 38. Since the attribute of the device that is 

most essential is its sensitivity, parasitic capacitances could negatively impact 

performance of the device as a rectifier. The device measured was the bi-layered one 

since it was the device of interest. 
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Figure 37. Process flow schematic of the SP design 

A capacitive value would inevitably be present in the device which would relate 

to the RC time constant of the diode. To ensure that the parasitic capacitance is not of 

concern to the normal rectifying behavior of the device, DC 4 wire measurements were 
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sensitivity is not affected. Fig. 39 shows the measured results when a 500mV bias pulse 

was toggled on two probes while current was being measured on another two probes. The 
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designs, it is evident that the most promising candidate is the SP design which has been 

used in subsequent DC and RF measurements. 

 

Figure 38. (top) Cross section schematic of parasitic capacitance due to spacer layer. 

(bottom) Equivalent circuit model of the same. Rs is the series resistance and Csp is 

the parasitic capacitance due to the SiO2 spacer. 
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Figure 39. Four wire measurements of the spacer device 
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CHAPTER 6: DEVICE CHARACTERIZATION 

 

 6.1 DC and Low Frequency Measurements  

The insulator layer of the MIM tunnel junction is the most important layer for 

optimum device performance since its quality affects the performance of the entire 

rectenna device. Changes in the material configuration and design would affect the 

electrical response of the device either favorably or adversely. The I-V responses were 

measured using a Kiethley 2400 source meter for which a Labview program was written. 

The devices were measured on a Cascade Probe station shown in Fig. 40. The voltage 

sensing and the current sourcing are done by the Keithley unit and tungsten probes were 

attached to micromanipulators which were connected to the ports of the Keithley. A 

schematic of the setup is shown in Fig. 41. 

In chapter four, devices with different electrode combinations were discussed. 

Fig. 42 shows a comparison of the I-V responses corresponding to each electrode 

combination. As can be seen, devices with the Ni and Cr as the bottom and top electrodes 

seem to give the best stability across all devices with the least amount of spread. 

Continuing the quest for determining a good insulator, the oxygen concentration in the 

NiO layer was varied and the electrical characteristics measured. Devices were fabricated 

with the O2 partial pressures during deposition set at 20%, 33%, 50% and 100%. The 
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measurements were done on devices of the ST design, fabricated with different O2 partial 

pressures during the deposition of the insulator layer and plotted in Fig. 43. The measured 

current is large due to the large area of the device. The devices that were fabricated with 

33% O2 partial pressure seemed to yield the best results as they exhibited non-linear 

characteristics and better asymmetry compared to the devices fabricated at the other O2 

partial pressures. The devices fabricated at 100% oxygen partial pressure show almost no 

non-linear characteristics which can be attributed to the Ni vacancies acting as 

conduction paths. The devices fabricated at 50% and 20% oxygen partial pressures show 

similar non-linearities however the current for the 20% device is less, suggesting that 

oxygen vacancies are acting as traps and are limiting electron transport. The sensitivities 

of the devices were extracted from the measured data and plotted with respect to O2 

concentration as shown in Fig. 44 and Fig. 45. It can be observed that the devices 

deposited at 33% oxygen partial pressure resulted in the highest sensitivity with NiO as 

the insulator layer. 

 

Figure 40. Cascade Probestation with Keithley 2400 Sourcemeter used to conduct 

DC measurements of the devices 
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Figure 41. Schematic of the electrical measurement setup 
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Figure 42. I-V responses for different top electrodes Ni, Al and Cr 
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Figure 43. I-V responses of devices fabricated with different oxygen partial 

pressures. 
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Figure 44. Sensitivities of each device at their fabricated oxygen partial pressures. 
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Figure 45. Sensitivities of the device plotted with respect to oxygen partial pressure 

As discussed in chapter five, the 3 types of designs (SK, ST and SP) were 

fabricated and electrical measurements were performed on them. It is evident from the 

results shown in Fig. 46 that the SP device shows better stability across devices with a 

reasonable amount of current output as compared to the ST devices. 
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Figure 46. I-V Responses  for all 3 generations of devices 
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The theoretical fit for each structure was also verified using the Simmon’s model 

programmed in Matlab™, shown in Fig. 47, from which the ∆Φ was calculated. The 

values of all the ∆Φs were found to be approximately 0.6eV which corresponded to the 

work function difference between Ni and Cr. The code for the program is given in 

Appendix B.  

 

Figure 47. Simmons fit of the 3 devices: (a)Stacked; (b) Stepped: and (c) Spaced 

Based on the above studies, 33% NiO layers were used for the fabrication of 

subsequent devices to evaluate their capability as a detector. The SP design was utilized 

to fabricate MIM tunnel junction devices in the CPW configuration using NiO, ZnO and 

their combination as the insulator layers. Comparisons of their I-V responses are given in 

Fig. 48. The inset shows the I-V response of ZnO devices because their current is too low 

(a) Δphi = 0.65eV (b) Δphi = 0.6eV 

(c) Δphi = 0.6eV 
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to be plotted together. From Fig. 48 it can be observed that the bilayer device has better 

asymmetry and non-linearity. The measured data was also fitted with the Fowler-

Nordheim (FN) model and the Trap Assisted Tunneling (TAT) model to identify which 

tunneling mechanism was most likely taking place in the insulator layers. Log(J/V2) as a 

function of (1/V) were plotted for the FN fit, and Log(J) as a function of (1/V) for the 

TAT fit as shown in Fig. 49 and Fig. 50, where J is the current density in A/cm2 and V is 

the applied bias. The FN fit of the NiO based device does not seem to fit well and is 

giving a positive slope with an unreasonable value for the barrier height. However the 

ZnO and Bilayer based devices seem to fit well with the FN model, with the ZnO based 

device fitting better. The TAT fittings of the insulators appear to give more uniform 

results and more believable barrier heights. A summary of the barrier heights extracted 

from the two fitting models are given in Table 4 below. Temperature measurements at 

different voltages were also carried out on the bi-layer samples to confirm if hopping or 

Hop Assisted Tunneling (HAT) was also a phenomenon present in the working of the 

device. A Signatone probe-in-a-box system was used and the chuck was modified to pass 

liquid nitrogen as the coolant. .  The Arrhenius plot of log (J) as a function of temperature 

is shown in Fig. 52 [96]. It is interesting to note that the linear region (where the current 

density remains constant) shows little temperature dependence and occurs from around 7 

˚C to 120 ˚C. There appears to be a strong temperature dependence at temperatures above 

120˚C and below 7˚C suggesting that hopping is one of the electron transport 

mechanisms. There also seems to be a slight decrease and then a sudden increase from 97 

˚C to 143 ˚C hinting that trapped states get thermally excited at 143 ˚C. 
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Figure 48. Comparison of I-V responses of devices fabricated with individual films 

as the insulator layer and the combination of the two. 
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Figure 49. FN fit of the devices 
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Figure 50. TAT fit of the devices 

 

Table 4 Effective barrier of the devices when fitted with the FN model 

 NiO Bilayer ZnO 

FN 0.03eV 0.3eV 0.5eV 

TAT 0.2eV 0.7eV 0.9eV 

 Measurements were also carried out on the devices to validate their characteristics 

at low frequencies. The results show excellent rectification characteristics suggesting 

promising performance at high frequencies which can be seen from Fig. 54 to Fig. 57.  
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 The measurements were performed using a function generator as the signal source 

and a Rigol Oscilloscope to plot the output response. A schematic of the setup is shown 

in Fig. 53. It should be noted that the high attenuation of the output in Fig. 57 is attributed 

to lossy connection in the cables connecting to the DUT. 

 

Figure 51. Modified chuck of Signatone system to allow liquid nitrogen to be used as 

a coolant. 

Sensitivity analyses were performed on the devices to try to validate the theory 

that a bilayer based MIM tunnel junction would give superior results as a rectifier at high 

frequencies compared to single layered ones. However, the analyses revealed that each 

type of device was better suited to a particular function. To be able to rectify efficiently, 

the diode element of the rectenna should have a high sensitivity at a low turn-on voltage. 

Fig. 50 shows a distribution of measured devices’ sensitivities with respect to their turn 

on voltages. It can be observed that bi-layered devices do indeed turn on at a lower 

voltage although they show a lower sensitivity. However some devices show promise of 

higher sensitivities at low turn on voltages. The yield of such devices can be increased by 

fine tuning the ZnO layer and increasing the quality of the films. When superimposed on 
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the application map as illustrated in Fig. 5, the measured sensitivities classify which 

devices are suitable for which type of application, as depicted in Fig. 59. 
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Figure 52. Plot of log (J/V) as a function of temperature at different bias voltage of 

the Bilayer device. 
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Figure 53. Schematic of the low frequency measurements setup 

 

Figure 54. Rectification using the bilayer device at 500Hz 

RL 
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Figure 55. Rectification using the bilayer device at 5 kHz 

 

Figure 56. Rectification using the bilayer device at 50 kHz 
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Figure 57. Rectification using the bilayer device at 5 MHz 

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0.000

0.049

0.098

0.147

0.196

0.245

0.294

 NiO Device  Bilayer Device  ZnO Device

V
o

lt
a

g
e
 (

V
)

Sensitivity

 

Figure 58. Comparison of sensitivity Vs turn on voltage of the NiO, ZnO and 

Bilayer based devices 
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Figure 59. Classification of fabricated devices in this research towards application in 

high frequency detection 

 

 6.2 RF Measurements 

To evaluate the performance of the fabricated devices as a rectifier or detector, RF 

measurements were performed on them. A Vector Network Analyzer (VNA) was used to 

send the input signals at various frequencies, and two bias tees were used to bias the 

device at various operating voltages. A schematic of the setup is shown below in Fig. 60 

and the results for each device fabricated with their respective material are shown from 

Fig. 61 to Fig. 64. As mentioned before, the devices were fabricated in a CPW design 

with the Ground-Signal-Ground (GSG) having pitch sizes 150µm-50µm-150µm, 

respectively. For frequencies up to 2.5GHz, the gap between the ground and signal lines 
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was 35µm. For frequencies above 2.5GHz up to around 100GHz, the gap was 30.4µm. 

Since the smallest active area fabricated was 3µm, the highest operational frequency is 

around 1GHz, however signal responses were observed up to 10GHz. The RF input was 

fed to Bias Tee 1 (Picosecond 5543-206) which was then connected to GSG probes to 

port 1 of the device via a V cable. The positive terminal of an Agilent E3634A power 

supply was connected to the DC force of Bias Tee 1. Port 2 of the device was connected 

to Bias Tee 2 (Picosecond 5542-203) using the GSG probes via a V cable. The negative 

of the power supply was connected to the negative terminal of the Keithley 2400 meter 

and the positive terminal was connected to the positive terminal of the power supply 

ensuring that the Keithley was connected in series with the Bias Tee 2 and the power 

supply. The measurements were performed at 100MHz, 1GHz and 10GHz and were done 

by turning on the power supply at a particular bias voltage first, then turning on the RF 

power and noting the increase in rectified current in the Keithley 2400. The bias voltage 

was determined using the peak values of the sensitivity analysis. The power and 

efficiencies were calculated by utilizing the DC resistance values at that particular 

voltage. Only one bias voltage at two different power levels (316µW and 1mW) was 

measured and therefore the results are preliminary. Further measurements at different 

bias voltage and higher frequencies should be done to better illicit a consolidated idea on 

the rectification properties of the fabricated devices as will be discussed in chapter seven. 

When the DC bias is turned on, the current corresponding to that voltage flows in the 

device. When the RF signal is introduced, the signal is superimposed on the DC voltage 

and is rectified by the device resulting in an increase in the observed current. 
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Figure 60. RF Measurement Setup used to detect rectified current with applied bias 

From the results, it is interesting to note that the NiO device is very sensitive at 

lower frequencies and could not handle 1mW. It was also observed that the Bilayer 

device was very sensitive at power levels of 1mW and below. In the RF responses, the 

NiO devices registered an excessive enough current with 1mW of input power that they 

all broke down; as a result, additional measurements were not performed. The ZnO 

devices were oversensitive with 1mW of input power at 10GHz and 100MHz; however 

they were stable at 1GHz with 1mW input power. This difference between the two 

devices could be due to variation within the devices and further study is needed. The 

bilayer device shows good stability at 10GHz with both 1mW and 316µW input power 

and becomes oversensitive at lower frequencies with an input power of 1mW. It is 

worthwhile to note that the extreme sensitivity of the bi-layered device is observed by the 

breakdown of the device at 100MHz even at 316µW of input power. This shows promise 

of the bilayer device being used at a detector with very low input stimulus. 
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Figure 61. Detected current from NiO devices 
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Figure 62. Detected current from ZnO devices 

Oversensitivity (Device Breakdown) 
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Figure 63. Detected current from Bi-layered devices 
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Figure 64. Closeup of the Bilayer devices at 1GHz and 10GHz with 1mW and 

316µW of input power 
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Figure 65. (a) Current vs frequency analysis of NiO, ZnO and bilayer devices with 

1mW input power. (b) current vs frequency analysis of NiO, ZnO and bilayer 

devices with 316µW input power 
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Figure 66. (a) Output power vs frequency analysis of NiO, ZnO and bilayer devices 

with 1mW input power. (b) output power vs frequency analysis of NiO, ZnO and 

bilayer devices with 316µW input power 
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Figure 67. (a) Efficiency vs frequency analysis of NiO, ZnO and bilayer devices with 

1mW input power. (b) efficiency vs frequency analysis of NiO, ZnO and bilayer 

devices with 316µW input power. 

Fig. 65 to Fig. 67 show the variation of the devices with respect to output current, 

output power and efficiency, respectively, as a function of frequency. With 1mW of input 

power, the bilayer device shows higher current at 100MHz, 1GHz and 10GHz. With a 

lower input power the bilayer device still exhibits a higher current at low frequencies 

however; the NiO device proves to be more sensitive at higher frequencies. This is 

obviously due to the higher impedance of the bilayer and therefore impedance mismatch. 

The output power and efficiency results reflect the same trend with the bilayer device 

having a higher efficiency at low frequency and the NiO device having high efficiency at 

a higher frequency. Table 5 summarizes the RF measurements of the 3 device types. 

Cells that do not have any values mean that either the device was too sensitive to that 

input power and broke down, or that it was too noisy to detect any rectified current. 
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Table 5 Summary of the measured rectified current from each device 

Frequency (GHz) 10 1 0.1 
C

ur
re

nt
 (

A
) 

NiO 

1mW -- -- -- 

316µW 2.50E-06 2.19E-05 3.90E-05 

ZnO 

1mW 3.00E-07 7.70E-06 3.36E-04 

316µW -- 2.80E-06 2.90E-05 

Bilayer 

1mW 2.05E-06 0.00164 0.00688 

316µW 7.00E-08 1.18E-06 0.00499 

O
ut

pu
t P

ow
er

 (
m

W
) 

NiO 

1mW -- -- -- 

316µW 0.00856 0.65707 2.08377 

ZnO 

1mW 3.05E-06 0.00201 3.82717 

316µW -- 2.66E-04 0.02851 

Bilayer 

1mW 1.04E-05 6.67021 117.38931 

316µW 1.22E-08 3.45E-06 61.75225 

E
ff

ic
ie

nc
y 

(%
) 

NiO 

1mW -- -- -- 

316µW 2.71E-05 0.00208 0.00659 

ZnO 

1mW 3.05E-09 2.01E-06 0.00383 

316µW -- 8.41E-07 9.02E-05 

Bilayer 

1mW 1.04E-08 0.00667 0.11739 

316µW 3.85E-11 1.09E-08 0.19542 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

MIM tunnel junctions made of different insulator materials (NiO, ZnO and 

NiO/ZnO) and with different insulator stoichiometries (20%, 33%, 50% and 100%) were 

designed, fabricated and tested at DC, low and radio frequencies. Three generations of 

designs (SK, ST, and SP) were fabricated using both optical lithography and conventional 

shadow mask techniques. It was determined that the design with the spacer showed the 

greatest reliability. Sensitivity analysis was performed using the I-V responses from DC 

measurements. The  NiO stoichiometry with 33% oxygen during deposition showed the 

best stability and the highest sensitivity. The diodes with ZnO and NiO/ZnO (bilayer) as 

the insulator materials showed a very high non linearity and asymmetry, however, the bi-

layered device exhibited higher out current characteristics. An application criterion, based 

on sensitivity and turn-on voltage, for applications as a linear rectifier, detector and 

energy harvester, was developed to help engineer a device that can function at a desired 

level. It was found that the bilayer device seemed to be suitable for applications of both 

the linear rectifier and detector and possibly an energy harvester. Temperature 

measurements performed on the bilayer device suggest stable operation from 10˚C to 

120˚C. The bi-layered device seemed to behave like a regular rectifier when low 

frequency signals were fed to it. The responses were very similar to conventional 
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semiconductor diodes which suggest that this device could possibly replace 

semiconductor diodes due to its ease of fabrication. The devices also responded well 

when high frequency signals up to 10GHz were fed to it proving that it can operate in a 

wide spectrum of frequencies giving reasonable output. The rectified current measured 

from the bi-layered devices, at high frequencies, was quite high with the highest 

efficiency of around 0.1% at 100MHz. This performance can be further tuned by fine 

tuning the thickness and stoichiometry of the bilayer. Further analyses involving different 

bias voltages and lower power are required to better quantify the rectification capabilities 

of the devices.  

 

 7.1 Future Outlook 

The above research in the use of bi-layered tunnel junctions as energy converters 

is preliminary but promising. A better understanding of the bilayer film with respect to 

tunneling would greatly benefit the design and fabrication of the device. The variation of 

current across devices could be attributed to imperfections in the film quality. The lattice 

match between NiO and ZnO could be improved to increase adhesion between the two 

and decrease stress. Since even a slight variation of thickness could lead to drastic 

oscillations in the output current among devices, more uniform methods of deposition of 

the bilayer could be explored, such as Atomic Layer Deposition. Different 

stoichiometries of the insulator layer were investigated for the NiO material alone. 

Further measurements with NiO and ZnO combined, varying the stoichiometry of the 

NiO, could lead to changes in the tunneling characteristics and might improve the 
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rectification properties of the device. It would be interesting to inspect the 

semiconducting properties of the bilayer by performing Hall measurements. Better fits 

using resonant tunneling models based on traps may be explored to obtain a more 

accurate barrier height. 

Since the most important characteristic of the tunnel junction: its impedance, 

dictates its matching with the antenna and therefore the efficiency of the device, 

investigating the effect of varying the stoichiometries on the impedance would help in 

designing a tunnel junction that can be integrated more efficiently with the antenna. The 

RF measurements preformed require a more exhaustive analysis, based on different 

applied biases and input power, to better categorize the threshold sensitivities of the 

devices. Since the smallest area that could be fabricated was 3µm, a smaller area for 

operation at frequencies up to 100GHz could be structured by electron beam lithography 

or Focused Ion Beam (FIB) milling. A useful Design of Experiments (DOE) is suggested 

in Table 6, below, for possible future research in bi-layered and single layered tunnel 

junctions. 
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Table 6 Possible design of experiments to better characterize the bilayer and single 

layer devices 

O2 conc O2 conc O2 conc

10% IV/CV 20% IV/CV 10% IV/CV

20% IV/CV 33% IV/CV 20% IV/CV

33% IV/CV 33% IV/CV

50% IV/CV 50% IV/CV

100% IV/CV 100% IV/CV

Thickness -143C RT 100C 200C Thickness -143C RT 100C 200C Combined Thickness -143C RT 100C 200C

3nm IV IV IV IV 3nm IV IV IV IV 6nm IV IV IV IV

5nm IV IV IV IV 5nm IV IV IV IV 10nm IV IV IV IV

10nm IV IV IV IV 10nm IV IV IV IV 20nm IV IV IV IV

Area 3nm 5nm 10nm Area 3nm 5nm 10nm Area 6nm 10nm 20nm

3um IV/RF IV/RF IV/RF 3um IV/RF IV/RF IV/RF 3um IV/RF IV/RF IV/RF

5um IV/RF IV/RF IV/RF 5um IV/RF IV/RF IV/RF 5um IV/RF IV/RF IV/RF

10um IV/RF IV/RF IV/RF 10um IV/RF IV/RF IV/RF 10um IV/RF IV/RF IV/RF

20um IV/RF IV/RF IV/RF 20um IV/RF IV/RF IV/RF 20um IV/RF IV/RF IV/RF

FIB milling for an area of about 1um for checking with 60 and 94GHz

AFM,

XRD,

XPS,

Hall

Thickness

 6nm

Thickness

 6nm

Combined Thickness

6nm

TemperatureTemperature

w.r.t  Area w.r.t  Area w.r.t  Area

Temperature

NiO/ZnO with Cr/Au dots

AFM,

XRD,

XPS,

Hall

Best Concentration Candidate Best Concentration Candidate Best Concentration Candidate

NiO with Cr/Au dots ZnO with Cr/Au dots

AFM,

XRD,

XPS,

Hall

Best Insulator and Area Candidate

Concurrent Experiments

NiO  on CPW Devices ZnO  on CPW Devices

Thickness

NiO/ZnO on CPW Devices

Combined ThicknessThickness
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 Appendix A: Process Flow of SK Design 

Step 1: Substrate Cleaning 

RCA 1 Clean : Remove organic contaminants 

Immerse the substrate in 1:1:5 solution of NH4OH + H2O2+H2O at 75°C for 15 minutes 

Oxide removal: Short Immersion of 1:10 HF+H20 to remove the native silicon 

dioxide formed on the surface of the substrate 

RCA 2 Clean : Remove Ionic contaminants 

Immerse the substrates in 1:1:5 solution of HCl+H202+H20 at 75°C for 15 minutes. 

Rinse it with water and N2 dry. 

Step2: Thermal Oxidation 

Load sample in oxidation tube furnace. Heat up to 1100°C. Oxygen and Hydrogen flow 

rate corresponds for growing 1 µm thick oxide. 

Step 3: Bottom electrode deposition 

DC Sputtering - Ni 

Base pressure- 3 µTorr Power- 100 W; Working pressure – 3 mTorr; Sputter time ~ 

20mins 
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Appendix A (Continued) 

Step 3: Photolithography 

Layer 1- Pattern for bottom electrode contact 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Alternatively, a shadow mask may be used such as Kapton™ tape. 
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Appendix A (Continued) 

Step 4: Insulator Deposition 

Reactive DC sputtering – NiO 

Power- 30W; Working Pressure- 10mTorr; Sputter Time- 7mins 

RF Reactive Compound sputtering- ZnO 

Power- 100W; Working Pressure- 10mTorr; Sputter Time- 7mins 

Step 5: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted metals peel off from the 

substrate. Lift-off may be aided with ultrasonic bath 

Check thickness using Profilometer 

Step 6: Photolithography 

Layer 2- Pattern for top electrode contact 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 
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Appendix A (Continued) 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Alternatively, a shadow mask may be used such as an Aluminum plate with holes 

Step 7: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted layers peel off from the 

substrate. Lift-off may be aided with ultrasonic bath 

Check thickness using Profilometer 
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 Appendix B: Process Flow of ST Design 

Step 1: Substrate Cleaning 

RCA 1 Clean : Remove organic contaminants 

Immerse the substrate in 1:1:5 solution of NH4OH + H2O2+H2O at 75°C for 15 minutes 

Oxide removal: Short Immersion of 1:10 HF+H20 to remove the native silicon 

dioxide formed on the surface of the substrate 

RCA 2 Clean : Remove Ionic contaminants 

Immerse the substrates in 1:1:5 solution of HCl+H202+H20 at 75°C for 15 minutes. 

Rinse it with water and N2 dry. 

Step2: Thermal Oxidation 

Load sample in oxidation tube furnace. Heat up to 1100°C. Oxygen and Hydrogen flow 

rate corresponds for growing 1 µm thick oxide. 

Step 3: Photolithography 

Layer 1- Contacts and Ground 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  
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Appendix B (Continued) 

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Step 4: Metal Deposition 

Thermal Evaporation - Cr and Au 

Pressure – 3 µTorr, Current- 70 and 200 A for Cr and Au, respectively; Deposition rate – 

0.5Å/sec for Cr and 3Å/sec for Au. 

Step 5: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted metals peel off from the 

substrate. Lift-off aided with ultrasonic bath 

Check thickness using Profilometer 

Step 6: Photolithography 

Layer 2- Bottom Electrode and Insulator 
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Appendix B (Continued) 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Step 7: Metal and Insulator Deposition 

DC Sputtering - Ni 

Base pressure- 3 µTorr Power- 100 W; Working pressure – 3 mTorr; Sputter time ~ 

20mins 

Reactive DC sputtering – NiO 

Power- 30W; Working Pressure- 10mTorr; Sputter Time- 7mins 
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Appendix B (Continued) 

RF Reactive Compound sputtering- ZnO 

Power- 100W; Working Pressure- 10mTorr; Sputter Time- 7mins 

Step 8: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted layers peel off from the 

substrate. Lift-off aided with ultrasonic bath 

Check thickness using Profilometer 

Step 9: Photolithography 

Layer 3- Top Electrode 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 
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Appendix B (Continued) 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Step 10: Metal Deposition 

Thermal Evaporation - Cr and Au 

Pressure – 3 µTorr, Current- 70 and 200 A for Cr and Au, respectively; Deposition rate – 

0.5Å/sec for Cr and 3Å/sec for Au. 

Step 11: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted layers peel off from the 

substrate. Lift-off aided with ultrasonic bath; Check thickness using Profilometer 
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 Appendix C: Process Flow of SP Design 

Step 1: Substrate Cleaning 

RCA 1 Clean : Remove organic contaminants 

Immerse the substrate in 1:1:5 solution of NH4OH + H2O2+H2O at 75°C for 15 minutes 

Oxide removal: Short Immersion of 1:10 HF+H20 to remove the native silicon 

dioxide formed on the surface of the substrate 

RCA 2 Clean : Remove Ionic contaminants 

Immerse the substrates in 1:1:5 solution of HCl+H202+H20 at 75°C for 15 minutes. 

Rinse it with water and N2 dry. 

Step2: Thermal Oxidation 

Load sample in oxidation tube furnace. Heat up to 1100°C. Oxygen and Hydrogen flow 

rate corresponds for growing 1 µm thick oxide. 

Step 3: Photolithography 

Layer 1- Contacts and Ground 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  
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Appendix C (Continued) 

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Step 4: Metal Deposition 

Thermal Evaporation - Cr and Au 

Pressure – 3 µTorr, Current- 70 and 200 A for Cr and Au, respectively; Deposition rate – 

0.5Å/sec for Cr and 3Å/sec for Au. 

Step 5: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted metals peel off from the 

substrate. Lift-off aided with ultrasonic bath 

Check thickness using Profilometer 

Step 6: Photolithography 

Layer 2- Bottom Electrode and Insulator 
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Appendix C (Continued) 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Step 7: Metal and Insulator Deposition 

DC Sputtering - Ni 

Base pressure- 3 µTorr Power- 100 W; Working pressure – 3 mTorr; Sputter time ~ 

20mins 

Reactive DC sputtering – NiO 

Power- 30W; Working Pressure- 10mTorr; Sputter Time- 7mins 
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Appendix C (Continued) 

RF Reactive Compound sputtering- ZnO 

Power- 100W; Working Pressure- 10mTorr; Sputter Time- 7mins 

Step 8: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted layers peel off from the 

substrate. Lift-off aided with ultrasonic bath 

Check thickness using Profilometer 

Step 9: Photolithography 

Layer 3- Spacer 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 2500 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  

Soft bake – Oven; T=120˚C for 10 min 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 
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Appendix C (Continued) 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Step 10: Spacer Oxide Deposition 

RF Compound Reactive Sputtering – SiO2 

Base pressure- 3 µTorr Power- 100 W; Working pressure – 10 mTorr; Sputter time ~ 

90mins 

Step 11: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted layers peel off from the 

substrate. Lift-off aided with ultrasonic bath 

Check thickness using Profilometer 

Step 12: Photolithography 

Layer 4- Top Contact 

Spin coat – Futurrex 1000 PY negative resist: 

5 sec at 500 RPM with 168 acceleration 

40 sec at 5000 RPM with 504 acceleration 

5 sec at 0 RPM with 504 deceleration  

Soft bake – Oven; T=120˚C for 10 min 
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Appendix C (Continued) 

UV Expose – Karl Suess Mask aligner; 3 sec at 20mW 

Hard bake – Oven; T=100˚C for 10 min 

Develop – RD 6 developer; Immersion developing at room temperature for 20 sec 

Rinse in DI water and N2 dry 

Pattern check: Optical Microscope 

Thickness check: Dektek Profilometer 

Step 13: Metal Deposition 

Thermal Evaporation - Cr and Au 

Pressure – 3 µTorr, Current- 70 and 200 A for Cr and Au, respectively; Deposition rate – 

0.5Å/sec for Cr and 3Å/sec for Au. 

Step 14: Lift-Off and Ultrasonic clean 

Immerse the substrate in Acetone until all the unwanted metals peel off from the 

substrate. Lift-off aided with ultrasonic bath 

 Check thickness using Profilometer 
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 Appendix D: Matlab Code for Simmons Fit 

Fitting function 

function [] = simslidev5() 

%% Cleanup 

clc; 

clear all; 

close all; 

%% Parameter Declaration 

global filenamee s phi1 phi2 a A 

filenamee=input('Enter name of excel file (Should have only two columns with only 

numbers) ', 's'); 

% filenamee=('r2d1.xls'); 

% s=input('Enter initial Thickness value in A '); 

% phi1=input('Enter initial Phi1 value in eV '); 

% phi2=input('Enter initial Phi2 value in eV '); 

% a=input('Enter initial Area value in um '); 

% A=(a*1e-4)^2; 

s=20.51; %Thickness in angstroms 
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phi1=0.6; % Potential Barrier one 

phi2=1.38; % Potential barrier two 

a=1950; 

A=(a*1e-4)^2; 

Jplot(filenamee,phi1,phi2,s,A); 

%% Slider Declaration 

S.fh = figure('units','pixels',... 

              'position',[1500 300 550 220],... 

              'menubar','none',... 

              'name','Simmons Fit Control Panel (Rudran{TM})',... 

              'numbertitle','off',... 

              'resize','on'); 

S.pb = uicontrol('style','push',... 

                 'unit','pix',... 

                 'position',[220 175 130 30],... 

                 'string','Dont let it go!!'); 
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S.ls(1) = uicontrol('style','list',...   %Thickness 

                 'unit','pix',... 

                 'position',[10 10 130 25],... 

                 'min',0,'max',2,... 

                 'fontsize',14,... 

                 'string',{'Thickness A'}); 

S.ls(2) = uicontrol('style','list',...     %Phi 1 

                 'unit','pix',... 

                 'position',[10 50 120 25],... 

                 'min',0,'max',2,... 

                 'fontsize',14,... 

                 'string',{'Phi 1 eV'}); 

S.ls(3) = uicontrol('style','list',...      %Phi2 

                 'unit','pix',... 

                 'position',[10 90 120 25],... 

                 'min',0,'max',2,... 
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                 'fontsize',14,... 

                 'string',{'Phi 2 eV'}); 

S.ls(4) = uicontrol('style','list',...        %Area 

                 'unit','pix',... 

                 'position',[10 140 140 25],... 

                 'min',0,'max',2,... 

                 'fontsize',14,... 

                 'string',{'Area um x um'}); 

S.sl(1) = uicontrol('style','slide',... 

                 'unit','pix',... 

                 'position',[150 10 270 25],... 

                 'min',1,'max',100,'val',s,'SliderStep',[0.001 0.05]); 

S.sl(2) = uicontrol('style','slide',... 

                 'unit','pix',... 

                 'position',[150 50 270 25],... 

                 'min',0,'max',5,'val',phi1,'SliderStep',[0.001 0.005]);  
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S.sl(3) = uicontrol('style','slide',... 

                 'unit','pix',... 

                 'position',[150 90 270 25],... 

                 'min',0,'max',5,'val',phi2,'SliderStep',[0.001 0.005]); 

S.sl(4) = uicontrol('style','slide',... 

                 'unit','pix',... 

                 'position',[150 140 270 25],... 

                 'min',1,'max',1000000,'val',a,'SliderStep',[0.01 0.05]); 

S.ed(1) = uicontrol('style','edit',... 

                 'unit','pix',... 

                 'position',[450 10 90 25],... 

                 'fontsize',16,... 

                 'string',s); 

S.ed(2) = uicontrol('style','edit',... 

                 'unit','pix',... 

                 'position',[450 50 90 25],... 
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                 'fontsize',16,... 

                 'string',phi1); 

S.ed(3) = uicontrol('style','edit',... 

                 'unit','pix',... 

                 'position',[450 90 90 25],... 

                 'fontsize',16,... 

                 'string',phi2); 

S.ed(4) = uicontrol('style','edit',... 

                 'unit','pix',... 

                 'position',[450 140 90 25],... 

                 'fontsize',16,... 

                 'string', a); 

set(S.pb,'callback',{@pb_call,S}) 

set([S.ed(:);S.sl(:)],'call',{@curvefit,S});  % Shared Callback. 

end 

function [] = curvefit(varargin) 
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%% Parameter Declaration 

global filenamee s phi1 phi2 a A L1 L2 L3 L4 

% phiparam=textread('param.txt','%f'); 

% phi1=phiparam(1); 

% phi2=phiparam(2); 

% s=phiparam(3); 

[h,S] = varargin{[1,3]};  % Get calling handle and structure. 

L1 = get(S.sl(1),{'min','max','value'}); 

L2 = get(S.sl(2),{'min','max','value'}); 

L3 = get(S.sl(3),{'min','max','value'}); 

L4 = get(S.sl(4),{'min','max','value'}); 

%% Slider 

switch h  

    case S.ed(1) 

        s = str2double(get(h,'string'));  % Numerical edit string. 

        Jplot(filenamee,phi1,phi2,s,A); 
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        if s >= L1{1} && s <= L1{2} 

            set(S.sl(1),'value',s)  % E falls within range of slider. 

        else 

            set(h,'string',L1{3}) % User tried to set slider out of range.  

        end 

    case S.ed(2) 

        phi1 = str2double(get(h,'string'));  % Numerical edit string. 

        Jplot(filenamee,phi1,phi2,s,A); 

        if phi1 >= L2{1} && phi1 <= L2{2} 

            set(S.sl(2),'value',phi1)  % E falls within range of slider. 

        else 

            set(h,'string',L2{3}) % User tried to set slider out of range.  

        end 

     case S.ed(3) 

        phi2 = str2double(get(h,'string'));  % Numerical edit string. 

        Jplot(filenamee,phi1,phi2,s,A); 
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        if phi2 >= L3{1} && phi2 <= L3{2} 

            set(S.sl(3),'value',phi2)  % E falls within range of slider. 

        else 

            set(h,'string',L3{3}) % User tried to set slider out of range.  

        end 

    case S.ed(4) 

        a = str2double(get(h,'string'));  % Numerical edit string. 

        A=(a*1e-4)^2; 

        Jplot(filenamee,phi1,phi2,s,A); 

        if a >= L4{1} && a <= L4{2} 

            set(S.sl(4),'value',a)  % E falls within range of slider. 

        else 

            set(h,'string',L4{3}) % User tried to set slider out of range.  

        end 

    case S.sl(1) 

        s=L1{3}; 
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        set(S.ed(1),'string',get(h,'value')) % Set edit to current slider. 

        Jplot(filenamee,phi1,phi2,s,A); 

    case S.sl(2) 

        phi1=L2{3}; 

        set(S.ed(2),'string',get(h,'value')) % Set edit to current slider. 

        Jplot(filenamee,phi1,phi2,s,A); 

    case S.sl(3) 

        phi2=L3{3}; 

        set(S.ed(3),'string',get(h,'value')) % Set edit to current slider. 

        Jplot(filenamee,phi1,phi2,s,A); 

    case S.sl(4) 

        a=L4{3}; 

        A=(a*1e-4)^2; 

        set(S.ed(4),'string',get(h,'value')) % Set edit to current slider. 

        Jplot(filenamee,phi1,phi2,s,A); 

end 
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end 

%% Exporting 

function [] = pb_call(varargin) 

global table 

outname=input('Enter stem name of the datafiles ', 's'); 

exten='.txt'; 

pfname=strcat(outname,exten); 

fid = fopen(pfname, 'w'); 

fprintf(fid, '%s  %s       %s      %s\r\n', table{1,1:end}); 

fprintf(fid, '\r\n%f  %f %f %f\r\n', table{2,1:end}); 

fclose(fid); 

han=figure(1); 

saveas(han, outname, 'tiff') 

end 
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Plotting Function 

function [] = Jplot(filenamee,phi1,phi2,s,A) 

global table 

extens='.xlsx'; 

xlsfilename=strcat(filenamee,extens); 

RAW=xlsread(xlsfilename,'Sheet1'); 

V=RAW(2:end,1); 

len=length(V); 

I=RAW(2:end,2);  %Collecting experimental current values 

for i=1:len 

    phi(i)=(phi1+phi2-(V(i)))/2; 

    %phip(i)=(phi1+phi2-(V(i))); 

    J_fwd(i)=(6.2e10/(s^2))*((phi(i)*exp(-1.025*s*sqrt(phi(i))))-((phi(i)+V(i))*exp(-

1.025*s*sqrt(phi(i)+V(i))))); 

    %J_fwd(i)=(6.2e10/(s^2))*((2*phi(i)*exp(-1.025*s*sqrt(phi(i))))-

((phip(i)+V(i))*exp(-1.025*s*sqrt(phip(i))))); 

    %J_fwd(i)=J_fwd(i)*A; 
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    J(i)=I(i)/A; 

end 

% Zerobias_Resistance=V(502)/J_fwd(502) 

% Zerobias_Current=J_fwd(502) 

are=sqrt(A)/(1e-4); 

c={' '}; 

thickness=strcat('Thickness',c,num2str(s),c,'A'); 

phi1name=strcat('Phi1',c,num2str(phi1),c,'eV'); 

phi2name=strcat('Phi2',c,num2str(phi2),c,'eV'); 

Area=strcat('Area',c,num2str(are),c,'um2'); 

%% Plotting 

figure(1) 

graph=plot(V,J_fwd); 

set(graph,'Color','red'); 

xlabel('Voltage (V)') 

ylabel('Current Density (A/cm2)') 
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hold on 

plot(V,J); 

h=legend('simulated','measured',2); 

set(h, 'interpreter', 'none') 

uicontrol('style','edit',... 

    'unit','pix',... 

    'position',[300 170 210 25],... 

    'fontsize',16,... 

    'string',thickness); 

uicontrol('style','edit',... 

    'unit','pix',... 

    'position',[300 140 160 25],... 

    'fontsize',16,... 

    'string',phi1name); 

uicontrol('style','edit',... 

    'unit','pix',... 
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    'position',[300 110 160 25],... 

    'fontsize',16,... 

    'string',phi2name); 

uicontrol('style','edit',... 

    'unit','pix',... 

    'position',[300 80 210 25],... 

    'fontsize',16,... 

    'string',Area); 

hold off 

% J=transpose(J_fwd); 

table={'thickness', 'Area', 'phi1', 'phi2';s, A, phi1, phi2}; 

% dlmwrite('J.txt',J,'delimiter', '\n'); 

end 
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 Appendix E: Labview Program for Electrical Measurements - Front Control 

Panel 
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 Appendix F: Permissions 
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